Sample records for alamos weapons neutron

  1. The Los Alamos Neutron Science Center Spallation Neutron Sources

    NASA Astrophysics Data System (ADS)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ∼100 keV. The characteristics of these sources, and

  2. The Los Alamos Neutron Science Center Spallation Neutron Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutronsmore » are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources

  3. The Los Alamos Neutron Science Center Spallation Neutron Sources

    DOE PAGES

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    2017-10-26

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutronsmore » are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources

  4. Igniting the Light Elements: The Los Alamos Thermonuclear Weapon Project, 1942-1952

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzpatrick, Anne C.

    1999-07-01

    The American system of nuclear weapons research and development was conceived and developed not as a result of technological determinism, but by a number of individual architects who promoted the growth of this large technologically-based complex. While some of the technological artifacts of this system, such as the fission weapons used in World War II, have been the subject of many historical studies, their technical successors--fusion (or hydrogen) devices--are representative of the largely unstudied highly secret realms of nuclear weapons science and engineering. In the postwar period a small number of Los Alamos Scientific Laboratory's staff and affiliates were responsiblemore » for theoretical work on fusion weapons, yet the program was subject to both the provisions and constraints of the US Atomic Energy Commission, of which Los Alamos was a part. The Commission leadership's struggle to establish a mission for its network of laboratories, least of all to keep them operating, affected Los Alamos's leaders' decisions as to the course of weapons design and development projects. Adapting Thomas P. Hughes's ''large technological systems'' thesis, I focus on the technical, social, political, and human problems that nuclear weapons scientists faced while pursuing the thermonuclear project, demonstrating why the early American thermonuclear bomb project was an immensely complicated scientific and technological undertaking. I concentrate mainly on Los Alamos Scientific Laboratory's Theoretical, or T, Division, and its members' attempts to complete an accurate mathematical treatment of the ''Super''--the most difficult problem in physics in the postwar period--and other fusion weapon theories. Although tackling a theoretical problem, theoreticians had to address technical and engineering issues as well. I demonstrate the relative value and importance of H-bomb research over time in the postwar era to scientific, politician, and military participants in this project

  5. Induction of Micronuclei in Human Fibroblasts from the Los Alamos High Energy Neutron Beam

    NASA Technical Reports Server (NTRS)

    Cox, Bradley

    2009-01-01

    The space radiation field includes a broad spectrum of high energy neutrons. Interactions between these neutrons and a spacecraft, or other material, significantly contribute to the dose equivalent for astronauts. The 15 degree beam line in the Weapons Neutron Research beam at Los Alamos Nuclear Science Center generates a neutron spectrum relatively similar to that seen in space. Human foreskin fibroblast (AG1522) samples were irradiated behind 0 to 20 cm of water equivalent shielding. The cells were exposed to either a 0.05 or 0.2 Gy entrance dose. Following irradiation, micronuclei were counted to see how the water shield affects the beam and its damage to cell nuclei. Micronuclei induction was then compared with dose equivalent data provided from a tissue equivalent proportional counter.

  6. Los Alamos Using Neutrons to Stop Nuclear Smugglers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favalli, Andrea; Swinhoe, Martyn; Roark, Kevin

    Los Alamos National Laboratory researchers have successfully demonstrated for the first time that laser-generated neutrons can be enlisted as a useful tool in the War on Terror. The international research team used the short-pulse laser at Los Alamos's TRIDENT facility to generate a neutron beam with novel characteristics that interrogated a closed container to confirm the presence and quantity of nuclear material inside. The successful experiment paves the way for creation of a table-top-sized or truck-mounted neutron generator that could be installed at strategic locations worldwide to thwart smugglers trafficking in nuclear materials.

  7. Los Alamos Using Neutrons to Stop Nuclear Smugglers

    ScienceCinema

    Favalli, Andrea; Swinhoe, Martyn; Roark, Kevin

    2018-02-14

    Los Alamos National Laboratory researchers have successfully demonstrated for the first time that laser-generated neutrons can be enlisted as a useful tool in the War on Terror. The international research team used the short-pulse laser at Los Alamos's TRIDENT facility to generate a neutron beam with novel characteristics that interrogated a closed container to confirm the presence and quantity of nuclear material inside. The successful experiment paves the way for creation of a table-top-sized or truck-mounted neutron generator that could be installed at strategic locations worldwide to thwart smugglers trafficking in nuclear materials.

  8. Studies of fission fragment properties at the Los Alamos Neutron Science Center (LANSCE)

    NASA Astrophysics Data System (ADS)

    Tovesson, Fredrik; Mayorov, Dmitriy; Duke, Dana; Manning, Brett; Geppert-Kleinrath, Verena

    2017-09-01

    Nuclear data related to the fission process are needed for a wide variety of research areas, including fundamental science, nuclear energy and non-proliferation. While some of the relevant data have been measured to the required accuracies there are still many aspects of fission that need further investigation. One such aspect is how Total Kinetic Energy (TKE), fragment yields, angular distributions and other fission observables depend on excitation energy of the fissioning system. Another question is the correlation between mass, charge and energy of fission fragments. At the Los Alamos Neutron Science Center (LANSCE) we are studying neutron-induced fission at incident energies from thermal up to hundreds of MeV using the Lujan Center and Weapons Neutron Research (WNR) facilities. Advanced instruments such as SPIDER (time-of-flight and kinetic energy spectrometer), the NIFFTE Time Projection Chamber (TPC), and Frisch grid Ionization Chambers (FGIC) are used to investigate the properties of fission fragments, and some important results for the major actinides have been obtained.

  9. Studies of fission fragment properties at the Los Alamos Neutron Science Center (LANSCE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tovesson, Fredrik; Mayorov, Dmitriy; Duke, Dana

    Nuclear data related to the fission process are needed for a wide variety of research areas, including fundamental science, nuclear energy and non-proliferation. While some of the relevant data have been measured to the required accuracies there are still many aspects of fission that need further investigation. One such aspect is how Total Kinetic Energy (TKE), fragment yields, angular distributions and other fission observables depend on excitation energy of the fissioning system. Another question is the correlation between mass, charge and energy of fission fragments. At the Los Alamos Neutron Science Center (LANSCE) we are studying neutron-induced fission at incidentmore » energies from thermal up to hundreds of MeV using the Lujan Center and Weapons Neutron Research (WNR) facilities. Advanced instruments such as SPIDER (time-of-flight and kinetic energy spectrometer), the NIFFTE Time Projection Chamber (TPC), and Frisch grid Ionization Chambers (FGIC) are used to investigate the properties of fission fragments, and some important results for the major actinides have been obtained.« less

  10. Studies of fission fragment properties at the Los Alamos Neutron Science Center (LANSCE)

    DOE PAGES

    Tovesson, Fredrik; Mayorov, Dmitriy; Duke, Dana; ...

    2017-09-13

    Nuclear data related to the fission process are needed for a wide variety of research areas, including fundamental science, nuclear energy and non-proliferation. While some of the relevant data have been measured to the required accuracies there are still many aspects of fission that need further investigation. One such aspect is how Total Kinetic Energy (TKE), fragment yields, angular distributions and other fission observables depend on excitation energy of the fissioning system. Another question is the correlation between mass, charge and energy of fission fragments. At the Los Alamos Neutron Science Center (LANSCE) we are studying neutron-induced fission at incidentmore » energies from thermal up to hundreds of MeV using the Lujan Center and Weapons Neutron Research (WNR) facilities. Advanced instruments such as SPIDER (time-of-flight and kinetic energy spectrometer), the NIFFTE Time Projection Chamber (TPC), and Frisch grid Ionization Chambers (FGIC) are used to investigate the properties of fission fragments, and some important results for the major actinides have been obtained.« less

  11. The Los ALamos Neutron Science Center Hydrogen Moderator System

    NASA Astrophysics Data System (ADS)

    Jarmer, J. J.; Knudson, J. N.

    2006-04-01

    At the Los Alamos Neutron Science Center (LANSCE), spallation neutrons are produced by an 800-MeV proton beam interacting with tungsten targets. Gun-barrel-type penetrations through the heavy concrete and steel shielding that surround the targets collimate neutrons to form neutron beams used for scattering experiments. Two liquid hydrogen moderators of one-liter volume each are positioned adjacent to the neutron-production targets. Some of the neutrons that pass through a moderator interact with or scatter from protons in the hydrogen. The neutron-proton interaction reduces the energy or moderates neutrons to lower energies. Lower energy "moderated" neutrons are the most useful for some neutron scattering experiments. We provide a description of the LANSCE hydrogen-moderator system and its cryogenic performance with proton beams of up to 125 micro-amp average current.

  12. Los Alamos Neutron Science Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kippen, Karen Elizabeth

    For more than 30 years the Los Alamos Neutron Science Center (LANSCE) has provided the scientific underpinnings in nuclear physics and material science needed to ensure the safety and surety of the nuclear stockpile into the future. In addition to national security research, the LANSCE User Facility has a vibrant research program in fundamental science, providing the scientific community with intense sources of neutrons and protons to perform experiments supporting civilian research and the production of medical and research isotopes. Five major experimental facilities operate simultaneously. These facilities contribute to the stockpile stewardship program, produce radionuclides for medical testing, andmore » provide a venue for industrial users to irradiate and test electronics. In addition, they perform fundamental research in nuclear physics, nuclear astrophysics, materials science, and many other areas. The LANSCE User Program plays a key role in training the next generation of top scientists and in attracting the best graduate students, postdoctoral researchers, and early-career scientists. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) —the principal sponsor of LANSCE—works with the Office of Science and the Office of Nuclear Energy, which have synergistic long-term needs for the linear accelerator and the neutron science that is the heart of LANSCE.« less

  13. Neutron Capture Experiments Using the DANCE Array at Los Alamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dashdorj, D.; MonAme Scientific Research Center, Ulaanbaatar; Mitchell, G. E.

    2009-03-31

    The Detector for Advanced Neutron Capture Experiments (DANCE) is designed for neutron capture measurements on very small and/or radioactive targets. The DANCE array of 160 BaF{sub 2} scintillation detectors is located at the Lujan Center at the Los Alamos Neutron Science Center (LANSCE). Accurate measurements of neutron capture data are important for many current applications as well as for basic understanding of neutron capture. The gamma rays following neutron capture reactions have been studied by the time-of-flight technique using the DANCE array. The high granularity of the array allows measurements of the gamma-ray multiplicity. The gamma-ray multiplicities and energy spectramore » for different multiplicities can be measured and analyzed for spin and parity determination of the resolved resonances.« less

  14. Refinements in the Los Alamos model of the prompt fission neutron spectrum

    DOE PAGES

    Madland, D. G.; Kahler, A. C.

    2017-01-01

    This paper presents a number of refinements to the original Los Alamos model of the prompt fission neutron spectrum and average prompt neutron multiplicity as derived in 1982. The four refinements are due to new measurements of the spectrum and related fission observables many of which were not available in 1982. Here, they are also due to a number of detailed studies and comparisons of the model with previous and present experimental results including not only the differential spectrum, but also integal cross sections measured in the field of the differential spectrum. The four refinements are (a) separate neutron contributionsmore » in binary fission, (b) departure from statistical equilibrium at scission, (c) fission-fragment nuclear level-density models, and (d) center-of-mass anisotropy. With these refinements, for the first time, good agreement has been obtained for both differential and integral measurements using the same Los Alamos model spectrum.« less

  15. Prompt fission neutron spectra from fission induced by 1 to 8 MeV neutrons on U235 and Pu239 using the double time-of-flight technique

    NASA Astrophysics Data System (ADS)

    Noda, S.; Haight, R. C.; Nelson, R. O.; Devlin, M.; O'Donnell, J. M.; Chatillon, A.; Granier, T.; Bélier, G.; Taieb, J.; Kawano, T.; Talou, P.

    2011-03-01

    Prompt fission neutron spectra from U235 and Pu239 were measured for incident neutron energies from 1 to 200 MeV at the Weapons Neutron Research facility (WNR) of the Los Alamos Neutron Science Center, and the experimental data were analyzed with the Los Alamos model for the incident neutron energies of 1-8 MeV. A CEA multiple-foil fission chamber containing deposits of 100 mg U235 and 90 mg Pu239 detected fission events. Outgoing neutrons were detected by the Fast Neutron-Induced γ-Ray Observer array of 20 liquid organic scintillators. A double time-of-flight technique was used to deduce the neutron incident energies from the spallation target and the outgoing energies from the fission chamber. These data were used for testing the Los Alamos model, and the total kinetic energy parameters were optimized to obtain a best fit to the data. The prompt fission neutron spectra were also compared with the Evaluated Nuclear Data File (ENDF/B-VII.0). We calculate average energies from both experimental and calculated fission neutron spectra.

  16. Bombs, Bosons and Beer Cans-Research at the Los Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Pynn, Roger

    1997-04-01

    The neutron scattering community is justifiably proud of the contributions it has made to basic research in many areas of science. Information obtained using neutrons has contributed strongly to our basic understanding of phenomena in diverse systems of interest to physicists, chemists and biologists - think, for example, of how little we would know about excitations in quantum fluids, the spin-density-wave state of chromium, electronic back-donation in the bonding of organometallic compounds, or the conformation of proteins and DNA in nucleosomes without neutron scattering. However, illustrious as this history of neutron scattering may be, it is not the only type of contribution neutrons have made to our modern scientific and technological enterprise. Increasingly in recent years, we have witnessed the application of neutrons to later parts of the R&D cycle, to problems that have been called ''strategic research'' and even in areas that are ''applied research'' or ''product development''. The purpose of my talk at this meeting is to illustrate this aspect of research at spallation neutron sources, using examples of work that has been done at the Los Alamos Neutron Science Center (LANSCE). Some of this work is driven by the fact that our principal funding agency, the Office of Defense Programs within the U.S. Department of Energy, has a need to master the science behind technologies relevant to nuclear weapons. Even so, most of the examples I have picked are equally relevant to the industrial sector and several would not shame even the most devout proponent of ''pure'' research. To demonstrate the breadth of the research performed at LANSCE, I will describe examples of recent experiments in the following areas: materials texture; temperature and particle velocity measurement in reacting high explosives; radiographic imaging with protons; chemical bonding in metal-dihydride complexes; and the structure of thin adhesive layers. LANSCE operates a user program and

  17. Neutron total cross section measurement at WNR. [215 to 250 MeV experimental techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisowski, P.W.; Moore, M.S.; Morgan, G.L.

    1979-01-01

    The techniques involved in measuring fast-neutron total cross sections at the Weapons Neutron Facility (WNR) of the Los Alamos Scientific Laboratory are described. Results of total cross section measurements on natural carbon covering the range 2.5 to 250 MeV are presented. 16 references.

  18. Electrical Engineering in Los Alamos Neutron Science Center Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Michael James

    The field of electrical engineering plays a significant role in particle accelerator design and operations. Los Alamos National Laboratories LANSCE facility utilizes the electrical energy concepts of power distribution, plasma generation, radio frequency energy, electrostatic acceleration, signals and diagnostics. The culmination of these fields produces a machine of incredible potential with uses such as isotope production, neutron spallation, neutron imaging and particle analysis. The key isotope produced in LANSCE isotope production facility is Strontium-82 which is utilized for medical uses such as cancer treatment and positron emission tomography also known as PET scans. Neutron spallation is one of the verymore » few methods used to produce neutrons for scientific research the other methods are natural decay of transuranic elements from nuclear reactors. Accelerator produce neutrons by accelerating charged particles into neutron dense elements such as tungsten imparting a neutral particle with kinetic energy, this has the benefit of producing a large number of neutrons as well as minimizing the waste generated. Utilizing the accelerator scientist can gain an understanding of how various particles behave and interact with matter to better understand the natural laws of physics and the universe around us.« less

  19. High-energy neutron depth-dose distribution experiment.

    PubMed

    Ferenci, M S; Hertel, N E

    2003-01-01

    A unique set of high-energy neutron depth-dose benchmark experiments were performed at the Los Alamos Neutron Science Center/Weapons Neutron Research (LANSCE/WNR) complex. The experiments consisted of filtered neutron beams with energies up to 800 MeV impinging on a 30 x 30 x 30 cm3 liquid, tissue-equivalent phantom. The absorbed dose was measured in the phantom at various depths with tissue-equivalent ion chambers. This experiment is intended to serve as a benchmark experiment for the testing of high-energy radiation transport codes for the international radiation protection community.

  20. The performance of the upgraded Los Alamos Neutron Source

    NASA Astrophysics Data System (ADS)

    Ito, Takeyasu; LANL UCN Source Collaboration

    2017-09-01

    Los Alamos National Laboratory has been operating an ultracold (UCN) source based on a solid deuterium (SD2) UCN converter driven by spallation neutrons for over 10 years. It has recently been successfully upgraded, by replacing the cryostat that contains the cold neutron moderator, SD2 volume, and vertical UCN guide. The horizontal UCN guide that transports UCN out of the radiation shield was also replaced. The new design reflects lessons learned from the 10+ year long operation of the previous version of the UCN source and is optimized to maximize the cold neutron flux at the SD2 volume, featuring a close coupled cold neutron moderator, and maximize the transport of the UCN to experiments. During the commissioning of the upgraded UCN source, data were collected to measure its performance, including cold neutron spectra as a function of the cold moderator temperature, and the UCN density in a vessel outside the source. In this talk, after a brief overview of the design of the upgraded source, the results of the performance tests and comparison to prediction will be presented. This work was funded by LANL LDRD.

  1. Measurement of Continuous-Energy Neutron-Incident Neutron-Production Cross Section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shigyo, Nobuhiro; Kunieda, Satoshi; Watanabe, Takehito

    Continuous energy neutron-incident neutron-production double differential cross sections were measured at the Weapons Neutron Research (WNR) facility of the Los Alamos Neutron Science Center. The energy of emitted neutrons was derived from the energy deposition in a detector. The incident-neutron energy was obtained by the time-of-flight method between the spallation target of WNR and the emitted neutron detector. Two types of detectors were adopted to measure the wide energy range of neutrons. The liquid organic scintillators covered up to 100 MeV. The recoil proton detectors that constitute the recoil proton radiator and phoswich type NaI (Tl) scintillators were used formore » neutrons above several tens of MeV. Iron and lead were used as sample materials. The experimental data were compared with the evaluated nuclear data, the results of GNASH, JQMD, and PHITS codes.« less

  2. Los Alamos Science Facilities

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  3. Living in Los Alamos

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  4. Prompt γ rays and neutrons from fission

    NASA Astrophysics Data System (ADS)

    Kwan, E.; Wu, C. Y.; Chyzh, A.; Gostic, J.; Henderson, R.; Haight, R. C.; Lee, H. Y.; O'Donnell, J. M.; Perdue, B. A.; Taddeucci, T. N.

    2011-10-01

    Nuclear data are needed to test the accuracy of calculations from nuclear reaction codes. Information on the prompt γ-ray distributions from fission is sparse and only a handful of published experiments data that measured the prompt γ-ray distribution above incident neutron energies of 1 MeV can be found. In addition, improvement on the accuracy and shape of neutron spectrum from the fission of actinides been requested by the nuclear data community. An investigation on the shapes of the neutron and γ-ray distributions from the spontaneous fission of 252Cf and the neutron-induced fission of 235U was undertaken using the Chi-Nu detector array at the Weapons Neutron Research Facility of the Los Alamos Neutron Science Center. Preliminary results will be presented. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and the Los Alamos National Laboratory under Contract DE-AC52-06NA25396.

  5. User Guide for the Plotting Software for the Los Alamos National Laboratory Nuclear Weapons Analysis Tools Version 2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleland, Timothy James

    The Los Alamos National Laboratory Plotting Software for the Nuclear Weapons Analysis Tools is a Java™ application based upon the open source library JFreeChart. The software provides a capability for plotting data on graphs with a rich variety of display options while allowing the viewer interaction via graph manipulation and scaling to best view the data. The graph types include XY plots, Date XY plots, Bar plots and Histogram plots.

  6. Plastic fiber scintillator response to fast neutrons

    NASA Astrophysics Data System (ADS)

    Danly, C. R.; Sjue, S.; Wilde, C. H.; Merrill, F. E.; Haight, R. C.

    2014-11-01

    The Neutron Imaging System at NIF uses an array of plastic scintillator fibers in conjunction with a time-gated imaging system to form an image of the neutron emission from the imploded capsule. By gating on neutrons that have scattered from the 14.1 MeV DT energy to lower energy ranges, an image of the dense, cold fuel around the hotspot is also obtained. An unmoderated spallation neutron beamline at the Weapons Neutron Research facility at Los Alamos was used in conjunction with a time-gated imaging system to measure the yield of a scintillating fiber array over several energy bands ranging from 1 to 15 MeV. The results and comparison to simulation are presented.

  7. Plastic fiber scintillator response to fast neutrons.

    PubMed

    Danly, C R; Sjue, S; Wilde, C H; Merrill, F E; Haight, R C

    2014-11-01

    The Neutron Imaging System at NIF uses an array of plastic scintillator fibers in conjunction with a time-gated imaging system to form an image of the neutron emission from the imploded capsule. By gating on neutrons that have scattered from the 14.1 MeV DT energy to lower energy ranges, an image of the dense, cold fuel around the hotspot is also obtained. An unmoderated spallation neutron beamline at the Weapons Neutron Research facility at Los Alamos was used in conjunction with a time-gated imaging system to measure the yield of a scintillating fiber array over several energy bands ranging from 1 to 15 MeV. The results and comparison to simulation are presented.

  8. Recent Research with the Detector for Advanced Neutron Capture Experiments (dance) at the LOS Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.

    2014-09-01

    The DANCE detector at Los Alamos is a 160 element, nearly 4π BaF2 detector array designed to make measurements of neutron capture on rare or radioactive nuclides. It has also been used to make measurements of gamma-ray multiplicity following capture and gamma-ray output from fission. Several examples of measurements are briefly discussed.

  9. Identification of nuclear weapons

    DOEpatents

    Mihalczo, J.T.; King, W.T.

    1987-04-10

    A method and apparatus for non-invasively indentifying different types of nuclear weapons is disclosed. A neutron generator is placed against the weapon to generate a stream of neutrons causing fissioning within the weapon. A first detects the generation of the neutrons and produces a signal indicative thereof. A second particle detector located on the opposite side of the weapon detects the fission particles and produces signals indicative thereof. The signals are converted into a detected pattern and a computer compares the detected pattern with known patterns of weapons and indicates which known weapon has a substantially similar pattern. Either a time distribution pattern or noise analysis pattern, or both, is used. Gamma-neutron discrimination and a third particle detector for fission particles adjacent the second particle detector are preferably used. The neutrons are generated by either a decay neutron source or a pulled neutron particle accelerator.

  10. Science and Innovation at Los Alamos

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  11. SPEAR — ToF neutron reflectometer at the Los Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Dubey, M.; Jablin, M. S.; Wang, P.; Mocko, M.; Majewski, J.

    2011-11-01

    This article discusses the Surface ProfilE Analysis Reflectometer (SPEAR), a vertical scattering geometry time-of-flight reflectometer, at the Los Alamos National Laboratory Lujan Neutron Scattering Center. SPEAR occupies flight path 9 and receives spallation neutrons from a polychromatic, pulsed (20Hz) source that pass through a liquid-hydrogen moderator at 20K coupled with a Be filter to shift their energy spectrum. The spallation neutrons are generated by bombarding a tungsten target with 800MeV protons obtained from an accelerator. The process produces an integrated neutron flux of ˜ 3.4×106 cm-2 s-1 at a proton current of 100 μA. SPEAR employs choppers and frame overlap mirrors to obtain a neutron wavelength range of 4.5-16 Å. SPEAR uses a single 200mm long 3He linear position-sensitive detector with ˜ 2 mm FWHM resolution for simultaneous studies of both specular and off-specular scattering. SPEAR's moderated neutrons are collimated into a beam which impinges from above upon a level sample with an average angle of 0.9° to the horizontal, to facilitate air-liquid interface studies. In the vertical direction, the beam converges at the sample position. The neutrons can be further collimated to the desired divergence by finely slitting the beam using a set of two 10B4C slit packages. The instrument is ideally suited to study organic and inorganic thin films with total thicknesses between 5 and 3000 Å in a variety of environments. Specifically designed sample chambers available at the instrument provide the opportunity to study biological systems at the solid-liquid interface. SPEAR's unique experimental capabilities are demonstrated by specific examples in this article. Finally, an outlook for SPEAR and perspectives on future instrumentation are discussed.

  12. Post-Cold War Science and Technology at Los Alamos

    NASA Astrophysics Data System (ADS)

    Browne, John C.

    2002-04-01

    Los Alamos National Laboratory serves the nation through the development and application of leading-edge science and technology in support of national security. Our mission supports national security by: ensuring the safety, security, and reliability of the U.S. nuclear stockpile; reducing the threat of weapons of mass destruction in support of counter terrorism and homeland defense; and solving national energy, environment, infrastructure, and health security problems. We require crosscutting fundamental and advanced science and technology research to accomplish our mission. The Stockpile Stewardship Program develops and applies, advanced experimental science, computational simulation, and technology to ensure the safety and reliability of U.S. nuclear weapons in the absence of nuclear testing. This effort in itself is a grand challenge. However, the terrorist attack of September 11, 2001, reminded us of the importance of robust and vibrant research and development capabilities to meet new and evolving threats to our national security. Today through rapid prototyping we are applying new, innovative, science and technology for homeland defense, to address the threats of nuclear, chemical, and biological weapons globally. Synergistically, with the capabilities that we require for our core mission, we contribute in many other areas of scientific endeavor. For example, our Laboratory has been part of the NASA effort on mapping water on the moon and NSF/DOE projects studying high-energy astrophysical phenomena, understanding fundamental scaling phenomena of life, exploring high-temperature superconductors, investigating quantum information systems, applying neutrons to condensed-matter and nuclear physics research, developing large-scale modeling and simulations to understand complex phenomena, and exploring nanoscience that bridges the atomic to macroscopic scales. In this presentation, I will highlight some of these post-cold war science and technology advances

  13. Internship at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunham, Ryan Q.

    2012-07-11

    Los Alamos National Laboratory (LANL) is located in Los Alamos, New Mexico. It provides support for our country's nuclear weapon stockpile as well as many other scientific research projects. I am an Undergraduate Student Intern in the Systems Design and Analysis group within the Nuclear Nonproliferation division of the Global Security directorate at LANL. I have been tasked with data analysis and modeling of particles in a fluidized bed system for the capture of carbon dioxide from power plant flue gas.

  14. Lanl Neutron-Induced Fission Cross Section Measurement Program

    NASA Astrophysics Data System (ADS)

    Laptev, A. B.; Tovesson, F.; Hill, T. S.

    2014-09-01

    A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R&D). Combining measurements at two LANSCE facilities, the Lujan Center and the Weapons Neutron Research facility (WNR), cover neutron energies over 10 orders of magnitude: from sub-thermal up to 200 MeV. A parallel-plate fission ionization chamber was used as a fission fragment detector. The 235U(n,f) standard was used as the reference. Fission cross sections have been measured for multiple actinides. The new data presented here completes the suite of long-lived Uranium isotopes that were investigated with this experimental approach. The cross section data are presented in comparison with existing evaluations and previous measurements.

  15. Use of the WNR spallation neutron source at LAMPF to determine the absolute efficiency of a neutron scintillation detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staples, P.A.; Egan, J.J.; Kegel, G.H.R.

    1994-06-01

    Prompt fission neutron spectrum measurements at the University of Massachusetts Lowell 5.5 MV Van de Graaff accelerator laboratory require that the neutron detector efficiency be well known over a neutron energy range of 100 keV to 20 MeV. The efficiency of the detector, has been determined for energies greater than 5.0 MeV using the Weapons Neutron Research (WNR) white neutron source at the Los Alamos Meson Physics Facility (LAMPF) in a pulsed beam, time-of-flight (TOF) experiment. Carbon matched polyethylene and graphite scatterers were used to obtain a hydrogen spectrum. The detector efficiency was determined using the well known H(n,n) scatteringmore » cross section. Results are compared to the detector efficiency calculation program SCINFUL available from the Radiation Shielding Information Center at Oak Ridge National Laboratory.« less

  16. Narrow beam neutron dosimetry.

    PubMed

    Ferenci, M Sutton

    2004-01-01

    Organ and effective doses have been estimated for male and female anthropomorphic mathematical models exposed to monoenergetic narrow beams of neutrons with energies from 10(-11) to 1000 MeV. Calculations were performed for anterior-posterior, posterior-anterior, left-lateral and right-lateral irradiation geometries. The beam diameter used in the calculations was 7.62 cm and the phantoms were irradiated at a height of 1 m above the ground. This geometry was chosen to simulate an accidental scenario (a worker walking through the beam) at Flight Path 30 Left (FP30L) of the Weapons Neutron Research (WNR) Facility at Los Alamos National Laboratory. The calculations were carried out using the Monte Carlo transport code MCNPX 2.5c.

  17. Development and Characterization of a High-Energy Neutron Time-of-Flight Imaging System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madden, Amanda Christine; Schirato, Richard C.; Swift, Alicia L.

    We present that Los Alamos National Laboratory has developed a prototype of a high-energy neutron time-of-flight imaging system for the non-destructive evaluation of dense, massive, and/or high atomic number objects. High-energy neutrons provide the penetrating power, and thus the high dynamic range necessary to image internal features and defects of such objects. The addition of the time gating capability allows for scatter rejection when paired with a pulsed monoenergetic beam, or neutron energy selection when paired with a pulsed broad-spectrum neutron source. The Time Gating to Reject Scatter and Select Energy (TiGReSSE) system was tested at the Los Alamos Neutronmore » Science Center’s (LANSCE) Weapons Nuclear Research (WNR) facility, a spallation neutron source, to provide proof of concept measurements and to characterize the instrument response. This paper will show results of several objects imaged during this run cycle. In addition, results from system performance metrics such as the Modulation Transfer Function and the Detective Quantum Efficiency measured as a function of neutron energy, characterize the current system performance and inform the next generation of neutron imaging instrument.« less

  18. Development and Characterization of a High-Energy Neutron Time-of-Flight Imaging System

    DOE PAGES

    Madden, Amanda Christine; Schirato, Richard C.; Swift, Alicia L.; ...

    2017-02-09

    We present that Los Alamos National Laboratory has developed a prototype of a high-energy neutron time-of-flight imaging system for the non-destructive evaluation of dense, massive, and/or high atomic number objects. High-energy neutrons provide the penetrating power, and thus the high dynamic range necessary to image internal features and defects of such objects. The addition of the time gating capability allows for scatter rejection when paired with a pulsed monoenergetic beam, or neutron energy selection when paired with a pulsed broad-spectrum neutron source. The Time Gating to Reject Scatter and Select Energy (TiGReSSE) system was tested at the Los Alamos Neutronmore » Science Center’s (LANSCE) Weapons Nuclear Research (WNR) facility, a spallation neutron source, to provide proof of concept measurements and to characterize the instrument response. This paper will show results of several objects imaged during this run cycle. In addition, results from system performance metrics such as the Modulation Transfer Function and the Detective Quantum Efficiency measured as a function of neutron energy, characterize the current system performance and inform the next generation of neutron imaging instrument.« less

  19. Total Quality Management and nuclear weapons: A historian`s perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meade, R.A.

    1993-11-01

    Total Quality Management (TQM) has become a significant management theme at Los Alamos National Laboratory. This paper discusses the historical roots of TQM at Los Alamos and how TQM has been used in the development of nuclear weapons.

  20. Design of the Next Generation Target at the Lujan Neutron Scattering Center, LANSCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferres, Laurent

    Los Alamos National Laboratory (LANL) supports scientific research in many diverse fields such as biology, chemistry, and nuclear science. The Laboratory was established in 1943 during the Second World War to develop nuclear weapons. Today, LANL is one of the largest laboratories dedicated to nuclear defense and operates an 800 MeV proton linear accelerator for basic and applied research including: production of high- and low-energy neutrons beams, isotope production for medical applications and proton radiography. This accelerator is located at the Los Alamos Neutron Science Center (LANSCE). The work performed involved the redesign of the target for the low-energy neutronmore » source at the Lujan Neutron Scattering Center, which is one of the facilities built around the accelerator. The redesign of the target involves modeling various arrangements of the moderator-reflector-shield for the next generation neutron production target. This is done using Monte Carlo N-Particle eXtended (MCNPX), and ROOT analysis framework, a C++ based-software, to analyze the results.« less

  1. The Prompt Fission Neutron Spectrum of 235U(n,f) below 2.5 MeV for Incident Neutrons from 0.7 to 20 MeV

    NASA Astrophysics Data System (ADS)

    Devlin, M.; Gomez, J. A.; Kelly, K. J.; Haight, R. C.; O'Donnell, J. M.; Taddeucci, T. N.; Lee, H. Y.; Mosby, S. M.; Perdue, B. A.; Fotiades, N.; Ullmann, J. L.; Wu, C. Y.; Bucher, B.; Buckner, M. Q.; Henderson, R. A.; Neudecker, D.; White, M. C.; Talou, P.; Rising, M. E.; Solomon, C. J.

    2018-02-01

    New prompt fission neutron spectrum measurements are reported for 235U(n , f) reactions induced by neutrons with energies from 0.7 to 20 MeV. These measurements cover outgoing neutron energies from 2.5 MeV down to 10 keV, using an array of 6Li-glass scintillators for neutron detection and a double time-of-flight technique. The neutrons were produced at the Weapons Neutron Research facility of the Los Alamos Neutron Science Center. A detailed MCNP® model of the experimental equipment and the surrounding room was used to interpret the experimental results. Backgrounds were measured in situ, making use of the time-dependent singles rates of the various detectors with asynchronous readout from waveform digitizers. The results presented here have been included in a re-evaluation of the fission neutron spectra for this fissioning system, a description of which is presented elsewhere in this issue.

  2. LOS ALAMOS NEUTRON SCIENCE CENTER CONTRIBUTIONS TO THE DEVELOPMENT OF FUTURE POWER REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GAVRON, VICTOR I.; HILL, TONY S.; PITCHER, ERIC J.

    The Los Alamos Neutron Science Center (LANSCE) is a large spallation neutron complex centered around an 800 MeV high-currently proton accelerator. Existing facilities include a highly-moderated neutron facility (Lujan Center) where neutrons between thermal and keV energies are produced, and the Weapons Neutron Research Center (WNR), where a bare spallation target produces neutrons between 0.1 and several hundred MeV.The LANSCE facility offers a unique capability to provide high precision nuclear data over a large energy region, including that for fast reactor systems. In an ongoing experimental program the fission and capture cross sections are being measured for a number ofmore » minor actinides relevant for Generation-IV reactors and transmutation technology. Fission experiments makes use of both the highly moderated spallation neutron spectrum at the Lujan Center, and the unmoderated high energy spectrum at WNR. By combininb measurements at these two facilities the differential fission cross section is measured relative to the {sup 235}U(n,f) standard from subthermal energies up to about 200 MeV. An elaborate data acquisition system is designed to deal with all the different types of background present when spanning 10 energy decades. The first isotope to be measured was {sup 237}Np, and the results were used to improve the current ENDF/B-VII evaluation. Partial results have also been obtained for {sup 240}Pu and {sup 242}Pu, and the final results are expected shortly. Capture cross sections are measured at LANSCE using the Detector for Advanced Neutron Capture Experiments (DANCE). This unique instrument is highly efficient in detecting radiative capture events, and can thus handle radioactive samples of half-lives as low as 100 years. A number of capture cross sections important to fast reaction applications have been measured with DANCE. The first measurement was on {sup 237}Np(n,{gamma}), and the results have been submitted for publication. Other capture

  3. Seventy Years of Computing in the Nuclear Weapons Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer, Billy Joe

    Los Alamos has continuously been on the forefront of scientific computing since it helped found the field. This talk will explore the rich history of computing in the Los Alamos weapons program. The current status of computing will be discussed, as will the expectations for the near future.

  4. Micronuclei Induction in Human Fibroblasts Exposed In Vitro to Los Alamos High-Energy Neutrons

    NASA Technical Reports Server (NTRS)

    Gersey, Brad; Sodolak, John; Hada, Megumi; Saganti, Prem; Wilkins, Richard; Cucinotta, Francis; Wu, Honglu

    2006-01-01

    High-energy secondary neutrons, produced by the interaction of galactic cosmic rays with the atmosphere, spacecraft structure and planetary surfaces, contribute to a significant fraction to the dose equivalent in crew members and passengers during commercial aviation travel, and astronauts in space missions. The Los Alamos Nuclear Science Center (LANSCE) neutron facility#s ICE House 30L beamline is known to generate neutrons that simulate the secondary neutron spectra of earth#s atmosphere. The neutron spectrum is also similar to that measured onboard spacecraft like the MIR and International Space Station (ISS). To evaluate the biological damage, we exposed human fibroblasts in vitro to the LANSCE neutron beams without degrader at an entrance dose rate of 25 mGy/hr and analyzed the micronuclei (MN) induction. The cells were also placed behind a 9.9 cm water column to study effect of shielding in the protection of neutron induced damages. It was found that the dose response in the MN frequency was linear for the samples with and without shielding and the slope of the MN yield behind the shielding was reduced by a factor of 3.5. Compared to the MN induction in human fibroblasts exposed to a gamma source at a low dose rate, the RBE was found to be 16.7 and 10.0 for the neutrons without and with 9.9 cm water shielding, respectively.

  5. The Prompt Fission Neutron Spectrum of 235U(n,f) below 2.5 MeV for Incident Neutrons from 0.7 to 20 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devlin, Matthew James; Gomez, Jaime A.; Kelly, Keegan John

    New prompt fission neutron spectrum measurements are reported for 235U(n,f) reactions induced by neutrons with energies from 0.7 to 20 MeV. These measurements cover outgoing neutron energies from 2.5 MeV down to 10 keV, using an array of 6Li-glass scintillators for neutron detection and a double time-of-flight technique. The neutrons were produced at the Weapons Neutron Research facility of the Los Alamos Neutron Science Center. A detailed MCNP ® model of the experimental equipment and the surrounding room was used to interpret the experimental results. Backgrounds were measured in situ, making use of the time-dependent singles rates of the variousmore » detectors with asynchronous readout from waveform digitizers. The results presented here have been included in a re-evaluation of the fission neutron spectra for this fissioning system, a description of which is presented elsewhere in this issue.« less

  6. The Prompt Fission Neutron Spectrum of 235U(n,f) below 2.5 MeV for Incident Neutrons from 0.7 to 20 MeV

    DOE PAGES

    Devlin, Matthew James; Gomez, Jaime A.; Kelly, Keegan John; ...

    2018-02-01

    New prompt fission neutron spectrum measurements are reported for 235U(n,f) reactions induced by neutrons with energies from 0.7 to 20 MeV. These measurements cover outgoing neutron energies from 2.5 MeV down to 10 keV, using an array of 6Li-glass scintillators for neutron detection and a double time-of-flight technique. The neutrons were produced at the Weapons Neutron Research facility of the Los Alamos Neutron Science Center. A detailed MCNP ® model of the experimental equipment and the surrounding room was used to interpret the experimental results. Backgrounds were measured in situ, making use of the time-dependent singles rates of the variousmore » detectors with asynchronous readout from waveform digitizers. The results presented here have been included in a re-evaluation of the fission neutron spectra for this fissioning system, a description of which is presented elsewhere in this issue.« less

  7. CF NEUTRON TIME OF FLIGHT TRANSMISSION FOR MATERIAL IDENTIFICATION FOR WEAPONS TRAINERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihalczo, John T; Valentine, Timothy E; Blakeman, Edward D

    2011-01-01

    The neutron transmission, elastic scattering, and non elastic reactions can be used to distinguish various isotopes. Neutron transmission as a function of energy can be used in some cases to identify materials in unknown objects. A time tagged californium source that provides a fission spectrum of neutrons is a useful source for neutron time-of-flight (TOF) transmission measurements. Many nuclear weapons trainer units for a particular weapons system (no fissile, but of same weight and center of gravity) in shipping containers were returned to the National Nuclear Security Administration Y-12 National Security Complex in the mid 1990s. Nuclear Materials Identification Systemmore » (NMIS) measurements with a time tagged californium neutron source were used to verify that these trainers did not contain fissile material. In these blind tests, the time distributions of neutrons through the containers were measured as a function of position to locate the approximate center of the trainer in the container. Measurements were also performed with an empty container. TOF template matching measurements were then performed at this location for a large number of units. In these measurements, the californium source was located on one end of the container and a proton recoil scintillator was located on the other end. The variations in the TOF transmission for times corresponding to 1 to 5 MeV were significantly larger than statistical. Further examination of the time distribution or the energy dependence revealed that these variations corresponded to the variations in the neutron cross section of aluminum averaged over the energy resolution of the californium TOF measurement with a flight path of about 90 cm. Measurements using different thicknesses of aluminum were also performed with the source and detector separated the same distance as for the trainer measurements. These comparison measurements confirmed that the material in the trainers was aluminum, and the total thickness

  8. Los Alamos Explosives Performance Key to Stockpile Stewardship

    ScienceCinema

    Dattelbaum, Dana

    2018-02-14

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.

  9. Studies of Neutron-Induced Fission of 235U, 238U, and 239Pu

    NASA Astrophysics Data System (ADS)

    Duke, Dana; TKE Team

    2014-09-01

    A Frisch-gridded ionization chamber and the double energy (2E) analysis method were used to study mass yield distributions and average total kinetic energy (TKE) release from neutron-induced fission of 235U, 238U, and 239Pu. Despite decades of fission research, little or no TKE data exist for high incident neutron energies. Additional average TKE information at incident neutron energies relevant to defense- and energy-related applications will provide a valuable observable for benchmarking simulations. The data can also be used as inputs in theoretical fission models. The Los Alamos Neutron Science Center-Weapons Neutron Research (LANSCE - WNR) provides a neutron beam from thermal to hundreds of MeV, well-suited for filling in the gaps in existing data and exploring fission behavior in the fast neutron region. The results of the studies on 238U, 235U, and 239Pu will be presented. LA-UR-14-24921.

  10. Neutron and gamma dose and spectra measurements on the Little Boy replica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoots, S.; Wadsworth, D.

    1984-06-01

    The radiation-measurement team of the Weapons Engineering Division at Lawrence Livermore National Laboratory (LLNL) measured neutron and gamma dose and spectra on the Little Boy replica at Los Alamos National Laboratory (LANL) in April 1983. This assembly is a replica of the gun-type atomic bomb exploded over Hiroshima in 1945. These measurements support the National Academy of Sciences Program to reassess the radiation doses due to atomic bomb explosions in Japan. Specifically, the following types of information were important: neutron spectra as a function of geometry, gamma to neutron dose ratios out to 1.5 km, and neutron attenuation in themore » atmosphere. We measured neutron and gamma dose/fission from close-in to a kilometer out, and neutron and gamma spectra at 90 and 30/sup 0/ close-in. This paper describes these measurements and the results. 12 references, 13 figures, 5 tables.« less

  11. Los Alamos National Laboratory Facility Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Ronald Owen

    2015-06-05

    This series of slides depicts the Los Alamos Neutron Science Center (LANSCE). The Center's 800-MeV linac produces H + and H - beams as well as beams of moderated (cold to 1 MeV) and unmoderated (0.1 to 600 MeV) neutrons. Experimental facilities and their capabilities and characteristics are outlined. Among these are LENZ, SPIDER, and DANCE.

  12. Los Alamos Explosives Performance Key to Stockpile Stewardship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dattelbaum, Dana

    2014-11-03

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- andmore » small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.« less

  13. Performance of the upgraded ultracold neutron source at Los Alamos National Laboratory and its implication for a possible neutron electric dipole moment experiment

    DOE PAGES

    Ito, Takeyasu M.; Adamek, E. R.; Callahan, N. B.; ...

    2018-01-29

    We report the ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN densitymore » measured at the exit of the biological shield was 184(32) UCN / cm 3, a fourfold increase from the highest previously reported. Finally, the polarized UCN density stored in an external chamber was measured to be 39(7) UCN / cm 3, which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ(d n) = 3 × 10 -27 e cm.« less

  14. Performance of the upgraded ultracold neutron source at Los Alamos National Laboratory and its implication for a possible neutron electric dipole moment experiment

    NASA Astrophysics Data System (ADS)

    Ito, T. M.; Adamek, E. R.; Callahan, N. B.; Choi, J. H.; Clayton, S. M.; Cude-Woods, C.; Currie, S.; Ding, X.; Fellers, D. E.; Geltenbort, P.; Lamoreaux, S. K.; Liu, C.-Y.; MacDonald, S.; Makela, M.; Morris, C. L.; Pattie, R. W.; Ramsey, J. C.; Salvat, D. J.; Saunders, A.; Sharapov, E. I.; Sjue, S.; Sprow, A. P.; Tang, Z.; Weaver, H. L.; Wei, W.; Young, A. R.

    2018-01-01

    The ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN density measured at the exit of the biological shield was 184 (32 ) UCN /cm3 , a fourfold increase from the highest previously reported. The polarized UCN density stored in an external chamber was measured to be 39 (7 ) UCN /cm3 , which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ (dn) =3 ×10-27e cm .

  15. Performance of the upgraded ultracold neutron source at Los Alamos National Laboratory and its implication for a possible neutron electric dipole moment experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Takeyasu M.; Adamek, E. R.; Callahan, N. B.

    We report the ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN densitymore » measured at the exit of the biological shield was 184(32) UCN / cm 3, a fourfold increase from the highest previously reported. Finally, the polarized UCN density stored in an external chamber was measured to be 39(7) UCN / cm 3, which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ(d n) = 3 × 10 -27 e cm.« less

  16. A physicists guide to The Los Alamos Primer

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2016-11-01

    In April 1943, a group of scientists at the newly established Los Alamos Laboratory were given a series of lectures by Robert Serber on what was then known of the physics and engineering issues involved in developing fission bombs. Serber’s lectures were recorded in a 24 page report titled The Los Alamos Primer, which was subsequently declassified and published in book form. This paper describes the background to the Primer and analyzes the physics contained in its 22 sections. The motivation for this paper is to provide a firm foundation of the background and contents of the Primer for physicists interested in the Manhattan Project and nuclear weapons.

  17. New Developments in Proton Radiography at the Los Alamos Neutron Science Center (LANSCE)

    DOE PAGES

    Morris, C. L.; Brown, E. N.; Agee, C.; ...

    2015-12-30

    An application of nuclear physics, a facility for using protons for flash radiography, was developed at the Los Alamos Neutron Science Center (LANSCE). Protons have proven far superior to high energy x-rays for flash radiography because of their long mean free path, good position resolution, and low scatter background. Although this facility is primarily used for studying very fast phenomena such as high explosive driven experiments, it is finding increasing application to other fields, such as tomography of static objects, phase changes in materials and the dynamics of chemical reactions. The advantages of protons are discussed, data from some recentmore » experiments will be reviewed and concepts for new techniques are introduced.« less

  18. Comparison of polystyrene scintillator fiber array and monolithic polystyrene for neutron imaging and radiography.

    PubMed

    Simpson, R; Cutler, T E; Danly, C R; Espy, M A; Goglio, J H; Hunter, J F; Madden, A C; Mayo, D R; Merrill, F E; Nelson, R O; Swift, A L; Wilde, C H; Zocco, T G

    2016-11-01

    The neutron imaging diagnostic at the National Ignition Facility has been operating since 2011 generating neutron images of deuterium-tritium (DT) implosions at peak compression. The current design features a scintillating fiber array, which allows for high imaging resolution to discern small-scale structure within the implosion. In recent years, it has become clear that additional neutron imaging systems need to be constructed in order to provide 3D reconstructions of the DT source and these additional views need to be on a shorter line of sight. As a result, there has been increased effort to identify new image collection techniques that improve upon imaging resolution for these next generation neutron imaging systems, such as monolithic deuterated scintillators. This work details measurements performed at the Weapons Neutron Research Facility at Los Alamos National Laboratory that compares the radiographic abilities of the fiber scintillator with a monolithic scintillator, which may be featured in a future short line of sight neutron imaging systems.

  19. Comparison of polystyrene scintillator fiber array and monolithic polystyrene for neutron imaging and radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, R., E-mail: raspberry@lanl.gov; Cutler, T. E.; Danly, C. R.

    The neutron imaging diagnostic at the National Ignition Facility has been operating since 2011 generating neutron images of deuterium-tritium (DT) implosions at peak compression. The current design features a scintillating fiber array, which allows for high imaging resolution to discern small-scale structure within the implosion. In recent years, it has become clear that additional neutron imaging systems need to be constructed in order to provide 3D reconstructions of the DT source and these additional views need to be on a shorter line of sight. As a result, there has been increased effort to identify new image collection techniques that improvemore » upon imaging resolution for these next generation neutron imaging systems, such as monolithic deuterated scintillators. This work details measurements performed at the Weapons Neutron Research Facility at Los Alamos National Laboratory that compares the radiographic abilities of the fiber scintillator with a monolithic scintillator, which may be featured in a future short line of sight neutron imaging systems.« less

  20. Comparison of polystyrene scintillator fiber array and monolithic polystyrene for neutron imaging and radiography

    NASA Astrophysics Data System (ADS)

    Simpson, R.; Cutler, T. E.; Danly, C. R.; Espy, M. A.; Goglio, J. H.; Hunter, J. F.; Madden, A. C.; Mayo, D. R.; Merrill, F. E.; Nelson, R. O.; Swift, A. L.; Wilde, C. H.; Zocco, T. G.

    2016-11-01

    The neutron imaging diagnostic at the National Ignition Facility has been operating since 2011 generating neutron images of deuterium-tritium (DT) implosions at peak compression. The current design features a scintillating fiber array, which allows for high imaging resolution to discern small-scale structure within the implosion. In recent years, it has become clear that additional neutron imaging systems need to be constructed in order to provide 3D reconstructions of the DT source and these additional views need to be on a shorter line of sight. As a result, there has been increased effort to identify new image collection techniques that improve upon imaging resolution for these next generation neutron imaging systems, such as monolithic deuterated scintillators. This work details measurements performed at the Weapons Neutron Research Facility at Los Alamos National Laboratory that compares the radiographic abilities of the fiber scintillator with a monolithic scintillator, which may be featured in a future short line of sight neutron imaging systems.

  1. Analysis of the Nuclear Structure of 186 Re Using Neutron-Induced Reactions

    NASA Astrophysics Data System (ADS)

    Matters, David; McClory, John; Carroll, James; Chiara, Chris; Fotiades, Nikolaos; Devlin, Matt; Nelson, Ron O.

    2015-04-01

    Evaluated nuclear structure data for 186 Re identifies the majority of spin-parity assignments as tentative, with approximate values associated with the energies of several levels and transitions. In particular, the absence of known transitions that feed the Jπ =8+ isomer motivates their discovery, which would have astrophysical implications and a potential application in the development of an isomer power source. Using the GErmanium Array for Neutron Induced Excitations (GEANIE) spectrometer at the Los Alamos Neutron Science Center (LANSCE) Weapons Neutron Research (WNR) facility, the (n,2n γ) and (n,n' γ) reactions in a 99.52% enriched 187 Re target were used to measure γ-ray excitation functions in 186 Re and 187 Re, respectively. A preliminary analysis of the data obtained from the experiment reveals several new transitions in 186 Re and 187 Re.

  2. Two detector arrays for fast neutrons at LANSCE

    NASA Astrophysics Data System (ADS)

    Haight, R. C.; Lee, H. Y.; Taddeucci, T. N.; O'Donnell, J. M.; Perdue, B. A.; Fotiades, N.; Devlin, M.; Ullmann, J. L.; Laptev, A.; Bredeweg, T.; Jandel, M.; Nelson, R. O.; Wender, S. A.; White, M. C.; Wu, C. Y.; Kwan, E.; Chyzh, A.; Henderson, R.; Gostic, J.

    2012-03-01

    The neutron spectrum from neutron-induced fission needs to be known in designing new fast reactors, predicting criticality for safety analyses, and developing techniques for global security application. The experimental data base of fission neutron spectra is very incomplete and most present evaluated libraries are based on the approach of the Los Alamos Model. To validate these models and to provide improved data for applications, a program is underway to measure the fission neutron spectrum for a wide range of incident neutron energies using the spallation source of fast neutrons at the Weapons Neutron Research (WNR) facility at the Los Alamos Neutron Science Center (LANSCE). In a double time-of-flight experiment, fission neutrons are detected by arrays of neutron detectors to increase the solid angle and also to investigate possible angular dependence of the fission neutrons. The challenge is to measure the spectrum from low energies, down to 100 keV or so, to energies over 10 MeV, where the evaporation-like spectrum decreases by 3 orders of magnitude from its peak around 1 MeV. For these measurements, we are developing two arrays of neutron detectors, one based on liquid organic scintillators and the other on 6Li-glass detectors. The range of fission neutrons detected by organic liquid scintillators extends from about 600 keV to well over 10 MeV, with the lower limit being defined by the limit of pulse-shape discrimination. The 6Li-glass detectors have a range from very low energies to about 1 MeV, where their efficiency then becomes small. Various considerations and tests are in progress to understand important contributing factors in designing these two arrays and they include selection and characterization of photomultiplier tubes (PM), the performance of relatively thin (1.8 cm) 6Li-glass scintillators on 12.5 cm diameter PM tubes, use of 17.5 cm diameter liquid scintillators with 12.5 cm PM tubes, measurements of detector efficiencies with tagged neutrons

  3. A New Measurement of Neutron Induced Fission Cross Sections

    NASA Astrophysics Data System (ADS)

    Magee, Joshua; Niffte Collaboration

    2017-09-01

    Neutron induced fission cross sections of actinides are of great interest in nuclear energy and stockpile stewardship. Traditionally, measurements of these cross sections have been made with fission chambers, which provide limited information on the actual fragments, and ultimately result in uncertainties on the order of several percent. The Neutron Induced Fission ragment Tracking Experiment (NIFFTE) collaboration designed and built a fission Time Projection Chamber (fissionTPC), which provides additional information on these processes, through 3-dimensional tracking, improved particle identification, and in-situ profiles of target and beam non-uniformities. Ultimately, this should provide sub-percent measurements of (n,f) cross-sections. During the 2016 run cycle, measurements of the 238U(n,f)/235U(n,f) cross section shape was performed at the Los Alamos Neutron Science Center (LANSCE) Weapons Neutron Research (WNR) facility. An overview of the fission TPC will be given, as well as these recently reported results. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Penetrating radiation: applications at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Watson, Scott; Hunter, James; Morris, Christopher

    2013-09-01

    Los Alamos has used penetrating radiography extensively throughout its history dating back to the Manhattan Project where imaging dense, imploding objects was the subject of intense interest. This interest continues today as major facilities like DARHT1 have become the mainstay of the US Stockpile Stewardship Program2 and the cornerstone of nuclear weapons certification. Meanwhile, emerging threats to national security from cargo containers and improvised explosive devices (IEDs) have invigorated inspection efforts using muon tomography, and compact x-ray radiography. Additionally, unusual environmental threats, like those from underwater oil spills and nuclear power plant accidents, have caused renewed interest in fielding radiography in severe operating conditions. We review the history of penetrating radiography at Los Alamos and survey technologies as presently applied to these important problems.

  5. Reducing Uncertainties in Neutron-Induced Fission Cross Sections Using a Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Manning, Brett; Niffte Collaboration

    2015-10-01

    Neutron-induced fission cross sections for actinides have long been of great interest for nuclear energy and stockpile stewardship. Traditionally, measurements were performed using fission chambers which provided limited information about the detected fission events. For the case of 239Pu(n,f), sensitivity studies have shown a need for more precise measurements. Recently the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) has developed the fission Time Projection Chamber (fissionTPC) to measure fission cross sections to better than 1% uncertainty by providing 3D tracking of fission fragments. The fissionTPC collected data to calculate the 239Pu(n,f) cross section at the Weapons Neutron Research facility at the Los Alamos Neutron Science Center during the 2014 run cycle. Preliminary analysis has been focused on studying particle identification and target and beam non-uniformities to reduce the uncertainty on the cross section. Additionally, the collaboration is investigating other systematic errors that could not be well studied with a traditional fission chamber. LA-UR-15-24906.

  6. Advanced Scintillator Detectors for Neutron Imaging in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Geppert-Kleinrath, Verena; Danly, Christopher; Merrill, Frank; Simpson, Raspberry; Volegov, Petr; Wilde, Carl

    2016-10-01

    The neutron imaging team at Los Alamos National Laboratory (LANL) has been providing two-dimensional neutron imaging of the inertial confinement fusion process at the National Ignition Facility (NIF) for over five years. Neutron imaging is a powerful tool in which position-sensitive detectors register neutrons emitted in the fusion reactions, producing a picture of the burning fuel. Recent images have revealed possible multi-dimensional asymmetries, calling for additional views to facilitate three-dimensional imaging. These will be along shorter lines of sight to stay within the existing facility at NIF. In order to field imaging capabilities equivalent to the existing system several technological challenges have to be met: high spatial resolution, high light output, and fast scintillator response to capture lower-energy neutrons, which have scattered from non-burning regions of fuel. Deuterated scintillators are a promising candidate to achieve the timing and resolution required; a systematic study of deuterated and non-deuterated polystyrene and liquid samples is currently ongoing. A test stand has been implemented to measure the response function, and preliminary data on resolution and light output have been obtained at the LANL Weapons Neutrons Research facility.

  7. Neutron and gamma-ray dose measurements at various distances from the Little Boy replica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huntzinger, C.J.; Hankins, D.E.

    We measured neutron and gamma-ray dose rates at various distances from the Little Boy-Comet Critical Assembly at Los Alamos National Laboratory (LANL) in April of 1983. The Little Boy-Comet Assembly is a replica of the atomic weapon detonated over Hiroshima, designed to be operated at various steady-state power levels. The selected distances for measurement ranged from 107 m to 567 m. Gamma-ray measurements were made with a Reuter-Stokes environmental ionization chamber which has a sensitivity of 1.0 ..mu..R/hour. Neutron measurements were made with a pulsed-source remmeter which has a sensitivity of 0.1 ..mu..rem/hour, designed and built at Lawrence Livermore Nationalmore » Laboratory (LLNL). 12 references, 7 figures, 6 tables.« less

  8. [Consequences for military medicine of new nuclear weapons developments].

    PubMed

    Vogler, H

    1985-01-15

    The development and production of qualitatively new nuclear weapons (e.g. neutron weapons) has consequences also for the medical protection under conditions of war. In the present paper the peculiarities of these new systems of arms as well as the profile of injured persons which is to be expected after use of neutron weapons are analysed and general conclusions for the medical service are drawn.

  9. Biophysics and medical effects of enhanced radiation weapons.

    PubMed

    Reeves, Glen I

    2012-08-01

    Enhanced radiation weapons (ERW) are fission-fusion devices where the massive numbers of neutrons generated during the fusion process are intentionally allowed to escape rather than be confined to increase yield (and fallout products). As a result, the energy partition of the weapon output shifts from blast and thermal energies toward prompt radiation. The neutron/gamma output ratio is also increased. Neutrons emitted from ERW are of higher energy than the Eave of neutrons from fission weapons. These factors affect the patterns of injury distribution; delay wound healing in combined injuries; reduce the therapeutic efficacy of medical countermeasures; and increase the dose to radiation-only casualties, thus potentiating the likelihood of encountering radiation-induced incapacitation. The risk of radiation-induced carcinogenesis is also increased. Radiation exposure to first responders from activation products is increased over that expected from a fission weapon of similar yield. However, the zone of dangerous fallout is significantly reduced in area. At least four nations have developed the potential to produce such weapons. Although the probability of detonation of an ERW in the near future is very small, it is nonzero, and clinicians and medical planners should be aware of the medical effects of ERW.

  10. Neutron-induced fission cross section measurements for uranium isotopes 236U and 234U at LANSCE

    NASA Astrophysics Data System (ADS)

    Laptev, A. B.; Tovesson, F.; Hill, T. S.

    2013-04-01

    A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R&D). The incident neutron energy range spans from sub-thermal up to 200 MeV by combining two LANSCE facilities, the Lujan Center and the Weapons Neutron Research facility (WNR). The time-of-flight method is implemented to measure the incident neutron energy. A parallel-plate fission ionization chamber was used as a fission fragment detector. The event rate ratio between the investigated foil and a standard 235U foil is converted into a fission cross section ratio. In addition to previously measured data new measurements include 236U data which is being analyzed, and 234U data acquired in the 2011-2012 LANSCE run cycle. The new data complete the full suite of Uranium isotopes which were investigated with this experimental approach. Obtained data are presented in comparison with existing evaluations and previous data.

  11. Neutron capture cross section of ^243Am

    NASA Astrophysics Data System (ADS)

    Jandel, M.

    2009-10-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL) was used for neutron capture cross section measurement on ^243Am. The high granularity of DANCE (160 BaF2 detectors in a 4π geometry) enables the efficient detection of prompt gamma-rays following neutron capture. DANCE is located on the 20.26 m neutron flight path 14 (FP14) at the Manuel Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE). The methods and techniques established in [1] were used for the determination of the ^243Am neutron capture cross section. The cross sections were obtained in the range of neutron energies from 0.02 eV to 400 keV. The resonance region was analyzed using SAMMY7 and resonance parameters were extracted. The results will be compared to existing evaluations and calculations. Work was performed under the auspices of the U.S. Department of Energy at Los Alamos National Laboratory by the Los Alamos National Security, LLC under Contract No. DE-AC52-06NA25396 and at Lawrence Livermore National Laboratory by the Lawrence Livermore National Security, LLC under Contract No. DE-AC52-07NA27344. [4pt] [1] M. Jandel et al., Phys. Rev. C78, 034609 (2008)

  12. Vulnerability assessment of a space based weapon platform electronic system exposed to a thermonuclear weapon detonation

    NASA Astrophysics Data System (ADS)

    Perez, C. L.; Johnson, J. O.

    Rapidly changing world events, the increased number of nations with inter-continental ballistic missile capability, and the proliferation of nuclear weapon technology will increase the number of nuclear threats facing the world today. Monitoring these nation's activities and providing an early warning and/or intercept system via reconnaissance and surveillance satellites and space based weapon platforms is a viable deterrent against a surprise nuclear attack. However, the deployment of satellite and weapon platform assets in space will subject the sensitive electronic equipment to a variety of natural and man-made radiation environments. These include Van Allen Belt protons and electrons; galactic and solar flare protons; and neutrons, gamma rays, and x-rays from intentionally detonated fission and fusion weapons. In this paper, the MASH vl.0 code system is used to estimate the dose to the critical electronics components of an idealized space based weapon platform from neutron and gamma-ray radiation emitted from a thermonuclear weapon detonation in space. Fluence and dose assessments were performed for the platform fully loaded, and in several stages representing limited engagement scenarios. The results indicate vulnerabilities to the Command, Control, and Communication bay instruments from radiation damage for a nuclear weapon detonation for certain source/platform orientations. The distance at which damage occurs will depend on the weapon yield (n,(gamma)/kiloton) and size (kilotons).

  13. Los Alamos high-power proton linac designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, G.P.

    1995-10-01

    Medium-energy high-power proton linear accelerators have been studied at Los Alamos as drivers for spallation neutron applications requiring large amounts of beam power. Reference designs for such accelerators are discussed, important design factors are reviewed, and issues and concern specific to this unprecedented power regime are discussed.

  14. Tactical Nuclear Weapons: Their Purpose and Placement

    DTIC Science & Technology

    2015-06-01

    War II, nuclear scientists argued against the development of fusion weapons .3 In the 1970s, politicians debated the use of neutron bombs, weapons ...Tactical Nuclear Weapons : Their Purpose and Placement BY EDWARD G. FERGUSON A THESIS SUBMITTED TO THE FACULTY OF THE...This study answers the question -- Why does America have tactical nuclear weapons (TNWs) in Europe today? – treating America and the North

  15. Los Alamos National Laboratory JOWOG 31 Weapons Engineering Education & Training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domzalski, Mark W.

    The objectives of this report are to recruit talented staff, invest in new and early/mid career staff, retain trained and talented staff and future leaders, and shorten the ~5-10 year time line to realize new Weaponeers.

  16. The Mini-CAPTAIN Neutron Run and Future CAPTAIN Program

    NASA Astrophysics Data System (ADS)

    Cooper, Robert; CAPTAIN Collaboration

    2016-09-01

    The Cryogenic Apparatus for Precision Tests of Argon Interaction with Neutrinos (CAPTAIN) is an experimental program to measure critical neutrino interaction cross sections in argon for the DUNE long-baseline program. These cross sections are important for understanding and improving the energy resolution of measurements for neutrino oscillations and supernova detection in argon. The full CAPTAIN detector is a 5-ton fiducial volume liquid argon (LAr) time-projection chamber (TPC) with an independently triggered photon detection system (PDS) for fast-timing capabilities on accelerators. To test the full CAPTAIN concept, the 1-ton fiducial volume mini-CAPTAIN detector has been deployed. Mini-CAPTAIN is another LAr TPC with PDS. It was recently deployed to the Weapons Neutron Research (WNR) facility at Los Alamos National Laboratory to measure high-energy neutron interactions in argon. The WNR is a pulsed accelerator capable of delivering neutrons up to 800 MeV in energy. In this talk, I will report on the analysis of the first time-of-flight tagged, high-energy neutron response in liquid argon from our February 2016 run. I will also highlight a second neutron run at the WNR scheduled for Summer 2017 and discuss the implications these data have on the future CAPTAIN program.

  17. Chromosome Aberrations in Human Epithelial Cells Exposed Los Alamos High-Energy Secondary Neutrons: M-BAND Analysis

    NASA Technical Reports Server (NTRS)

    Hada, M.; Saganti, P. B.; Gersey, B.; Wilkins, R.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    High-energy secondary neutrons, produced by the interaction of galactic cosmic rays (GCR) with the atmosphere, spacecraft structure and planetary surfaces, contribute a significant fraction to the dose equivalent radiation measurement in crew members and passengers of commercial aviation travel as well as astronauts in space missions. The Los Alamos Nuclear Science Center (LANSCE) neutron facility's 30L beam line (4FP30L-A/ICE House) is known to generate neutrons that simulate the secondary neutron spectrum of the Earth's atmosphere at high altitude. The neutron spectrum is also similar to that measured onboard spacecrafts like the MIR and the International Space Station (ISS). To evaluate the biological damage, we exposed human epithelial cells in vitro to the LANSCE neutron beams with an entrance dose rate of 2.5 cGy/hr, and studied the induction of chromosome aberrations that were identified with multicolor-banding in situ hybridization (mBAND) technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of inter-chromosomal aberrations (translocation to unpainted chromosomes) and intra-chromosomal aberrations (inversions and deletions within a single painted chromosome). Compared to our previous results with gamma-rays and 600 MeV/nucleon Fe ions of high dose rate at NSRL (NASA Space Radiation Laboratory at Brookhaven National Laboratory), the neutron data from the LANSCE experiments showed significantly higher frequency of chromosome aberrations. However, detailed analysis of the inversion type revealed that all of the three radiation types in the study induced a low incidence of simple inversions. Most of the inversions in gamma-ray irradiated samples were accompanied by other types of intrachromosomal aberrations but few inversions were accompanied by interchromosomal aberrations. In contrast, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both

  18. History of Los Alamos Participation in Active Experiments in Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pongratz, Morris B.

    Beginning with the Teak nuclear test in 1958, Los Alamos has a long history of participation in active experiments in space. The last pertinent nuclear tests were the five explosions as part of the Dominic series in 1962. The Partial Test Ban Treaty signed in August 1963 prohibited all test detonations of nuclear weapons except for those conducted underground. Beginning with the “Apple” thermite barium release in June 1968 Los Alamos has participated in nearly 100 non-nuclear experiments in space, the last being the NASA-sponsored “AA-2” strontium and europium doped barium thermite releases in the Arecibo beam in July ofmore » 1992. The rationale for these experiments ranged from studying basic plasma processes such as gradientdriven structuring and velocity-space instabilities to illuminating the convection of plasmas in the ionosphere and polar cap to ionospheric depletion experiments to the B.E.A.R. 1-MeV neutral particle beam test in 1989. This report reviews the objectives, techniques and diagnostics of Los Alamos participation in active experiments in space.« less

  19. Nuclear Weapons: Comprehensive Test Ban Treaty

    DTIC Science & Technology

    2006-11-15

    Unicorn ,” was conducted in a “down-hole” or vertical CRS-18 58 “Nanos Tours Nevada Test Site,” Daily Newsbulletin, Los Alamos National Laboratory...radioactive decay of aged plutonium would degrade weapon performance. Several SCEs have been used to support certification of the W88 pit. (A pit is the...tools and data that assess age -related complications and maintain the reliability and safety of the nation’s nuclear deterrent.”59 As they produce no

  20. Neutron Tomography at the Los Alamos Neutron Science Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, William Riley

    Neutron imaging is an incredibly powerful tool for non-destructive sample characterization and materials science. Neutron tomography is one technique that results in a three-dimensional model of the sample, representing the interaction of the neutrons with the sample. This relies both on reliable data acquisition and on image processing after acquisition. Over the course of the project, the focus has changed from the former to the latter, culminating in a large-scale reconstruction of a meter-long fossilized skull. The full reconstruction is not yet complete, though tools have been developed to improve the speed and accuracy of the reconstruction. This project helpsmore » to improve the capabilities of LANSCE and LANL with regards to imaging large or unwieldy objects.« less

  1. Race horses vs work horses: Competition between the nuclear weapons labs in the 1950s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, S.

    1992-01-01

    This document provides a discussion of the missions and research programs of Los Alamos National Laboratory and Lawrence Livermore National Laboratory and details the competition between the two nuclear weapons laboratories in the 1950's. (FI)

  2. Race horses vs work horses: Competition between the nuclear weapons labs in the 1950s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, S.

    1992-06-01

    This document provides a discussion of the missions and research programs of Los Alamos National Laboratory and Lawrence Livermore National Laboratory and details the competition between the two nuclear weapons laboratories in the 1950`s. (FI)

  3. Neutron Imaging at LANSCE—From Cold to Ultrafast

    DOE PAGES

    Nelson, Ronald Owen; Vogel, Sven C.; Hunter, James F.; ...

    2018-02-23

    In recent years, neutron radiography and tomography have been applied at different beam lines at Los Alamos Neutron Science Center (LANSCE), covering a very wide neutron energy range. The field of energy-resolved neutron imaging with epi-thermal neutrons, utilizing neutron absorption resonances for contrast as well as quantitative density measurements, was pioneered at the Target 1 (Lujan center), Flight Path 5 beam line and continues to be refined. Applications include: imaging of metallic and ceramic nuclear fuels, fission gas measurements, tomography of fossils and studies of dopants in scintillators. The technique provides the ability to characterize materials opaque to thermal neutronsmore » and to utilize neutron resonance analysis codes to quantify isotopes to within 0.1 atom %. The latter also allows measuring fuel enrichment levels or the pressure of fission gas remotely. More recently, the cold neutron spectrum at the ASTERIX beam line, also located at Target 1, was used to demonstrate phase contrast imaging with pulsed neutrons. This extends the capabilities for imaging of thin and transparent materials at LANSCE. In contrast, high-energy neutron imaging at LANSCE, using unmoderated fast spallation neutrons from Target 4 [Weapons Neutron Research (WNR) facility] has been developed for applications in imaging of dense, thick objects. Using fast (ns), time-of-flight imaging, enables testing and developing imaging at specific, selected MeV neutron energies. The 4FP-60R beam line has been reconfigured with increased shielding and new, larger collimation dedicated to fast neutron imaging. The exploration of ways in which pulsed neutron beams and the time-of-flight method can provide additional benefits is continuing. We will describe the facilities and instruments, present application examples and recent results of all these efforts at LANSCE.« less

  4. Neutron Imaging at LANSCE—From Cold to Ultrafast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Ronald Owen; Vogel, Sven C.; Hunter, James F.

    In recent years, neutron radiography and tomography have been applied at different beam lines at Los Alamos Neutron Science Center (LANSCE), covering a very wide neutron energy range. The field of energy-resolved neutron imaging with epi-thermal neutrons, utilizing neutron absorption resonances for contrast as well as quantitative density measurements, was pioneered at the Target 1 (Lujan center), Flight Path 5 beam line and continues to be refined. Applications include: imaging of metallic and ceramic nuclear fuels, fission gas measurements, tomography of fossils and studies of dopants in scintillators. The technique provides the ability to characterize materials opaque to thermal neutronsmore » and to utilize neutron resonance analysis codes to quantify isotopes to within 0.1 atom %. The latter also allows measuring fuel enrichment levels or the pressure of fission gas remotely. More recently, the cold neutron spectrum at the ASTERIX beam line, also located at Target 1, was used to demonstrate phase contrast imaging with pulsed neutrons. This extends the capabilities for imaging of thin and transparent materials at LANSCE. In contrast, high-energy neutron imaging at LANSCE, using unmoderated fast spallation neutrons from Target 4 [Weapons Neutron Research (WNR) facility] has been developed for applications in imaging of dense, thick objects. Using fast (ns), time-of-flight imaging, enables testing and developing imaging at specific, selected MeV neutron energies. The 4FP-60R beam line has been reconfigured with increased shielding and new, larger collimation dedicated to fast neutron imaging. The exploration of ways in which pulsed neutron beams and the time-of-flight method can provide additional benefits is continuing. We will describe the facilities and instruments, present application examples and recent results of all these efforts at LANSCE.« less

  5. Neutron-Induced Fission Cross Section Measurements for Full Suite of Uranium Isotopes

    NASA Astrophysics Data System (ADS)

    Laptev, Alexander; Tovesson, Fredrik; Hill, Tony

    2010-11-01

    A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R&D). The incident neutron energy range spans energies from sub-thermal energies up to 200 MeV by measuring both the Lujan Center and the Weapons Neutron Research center (WNR). Conventional parallel-plate fission ionization chambers with actinide deposited foils are used as a fission detector. The time-of-flight method is implemented to measure neutron energy. Counting rate ratio from investigated and standard U-235 foils is translated into fission cross section ratio. Different methods of normalization for measured ratio are employed, namely, using of actinide deposit thicknesses, normalization to evaluated data, etc. Finally, ratios are converted to cross sections based on the standard U-235 fission cross section data file. Preliminary data for newly investigated isotopes U-236 and U-234 will be reported. Those new data complete a full suite of Uranium isotopes, which were investigated with presented experimental approach. When analysis of the new measured data will is completed, data will be delivered to evaluators. Having data for full set of Uranium isotopes will increase theoretical modeling capabilities and make new data evaluations much more reliable.

  6. Reducing Uncertainties in Neutron Induced Fission Cross Sections via a Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Magee, Joshua; Niffte Collaboration

    2016-09-01

    Neutron induced fission cross sections of actinides are of great interest in nuclear energy and stockpile stewardship. Traditionally, measurements of these cross sections have been made with fission chambers, which provide limited information on the actual fragments, and ultimately result in uncertainties on the order of several percent. The Neutron Induced Fission Fragment Tracking Experiment collaboration (NIFFTE) designed and built a fission Time Project Chamber (fission TPC), which provides additional information on these processes, through 3-dimensional tracking, improved particle identification, and in-situ profiles of target and beam non-uniformities. Ultimately, this should provide sub-percent measurements of (n,f) cross-sections. During the 2015 run cycle, measurements of several actinides were performed at the Los Alamos Neutron Science Center (LANSCE) Weapons Neutron Research (WNR) facility. An overview of the fission TPC will be given, as well as the current progress towards a sub-percent measurement of the 239Pu/235U (n,f) cross-section ratio. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. Little Boy neutron spectrum below 1 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, A.E.

    1984-01-01

    A high-resolution /sup 3/He ionization chamber of the type development by Cuttler and Shalev was used to study the neutron spectrum from the Little Boy mockup. Measurements were made at distances of 0.75 and 2.0 m and at angles of 0/sup 0/, 45/sup 0/, and 90/sup 0/ with respect to the axis of the assembly, which was operated at power levels from 8.6 to 450 mW. Detector efficiency as a function of energy as well as parameters for correction of pulse-height distributions for proton-recoil and wall effects were determined from a set of response functions for monoenergetic neutrons measured atmore » the Los Alamos 3.75-MeV Van de Graaff Accelerator Facility. Pulse-shape discrimination was used to separate /sup 3/He-recoil pulses from the pulse-height distribution. The spectrum was found to be highly structured, with peaks corresponding to minima in the total neutron cross section of iron. In particular, 15% of the neutrons above the epithermal peak in energy were found to be in the 24-keV iron window. Lesser peaks out to 700 keV are also attributable to filtering action of the weapon's heavy iron casing. Data taken using experimental proton-recoil proportional counters are compared with the high-resolution spectra.« less

  8. Proton Radiography at Los Alamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saunders, Alexander

    2017-02-28

    The proton radiography (pRad) facility at Los Alamos National Lab uses high energy protons to acquire multiple frame flash radiographic sequences at megahertz speeds: that is, it can make movies of the inside of explosions as they happen. The facility is primarily used to study the damage to and failure of metals subjected to the shock forces of high explosives as well as to study the detonation of the explosives themselves. Applications include improving our understanding of the underlying physical processes that drive the performance of the nuclear weapons in the United States stockpile and developing novel armor technologies inmore » collaboration with the Army Research Lab. The principle and techniques of pRad will be described, and examples of some recent results will be shown.« less

  9. Red China’s Capitalist Bomb: Inside the Chinese Neutron Bomb Program

    DTIC Science & Technology

    2015-01-01

    developed an enhanced radiation weapon (ERW) but did not deploy it. ERWs, better known as “ neutron bombs,” are specialized nuclear weapons with...contemporary systems of concern. An ERW is a specialized nuclear weapon optimized to produce prompt radiation. Such a device emits neutrons with high...Council stated that China mastered “in succession the neutron bomb design technology and the nuclear weapon miniaturization technology.”10 This statement

  10. Neutron Particle Effects on a Quad-Redundant Flight Control Computer

    NASA Technical Reports Server (NTRS)

    Eure, Kenneth; Belcastro, Celeste M.; Gray, W Steven; Gonzalex, Oscar

    2003-01-01

    This paper describes a single-event upset experiment performed at the Los Alamos National Laboratory. A closed-loop control system consisting of a Quad-Redundant Flight Control Computer (FCC) and a B737 simulator was operated while the FCC was exposed to a neutron beam. The purpose of this test was to analyze the effects of neutron bombardment on avionics control systems operating at altitudes where neutron strikes are probable. The neutron energy spectrum produced at the Los Alamos National Laboratory is similar in shape to the spectrum of atmospheric neutrons but much more intense. The higher intensity results in accelerated life tests that are representative of the actual neutron radiation that a FCC may receive over a period of years.

  11. "Fat Man and Little Boy": The Cinematic Representation of Interests in the Nuclear Weapons Organization.

    ERIC Educational Resources Information Center

    Taylor, Bryan C.

    1993-01-01

    Examines the ironic "problems" of the 1989 Hollywood film "Fat Man and Little Boy" (portraying the construction of the atomic bomb at the Los Alamos Laboratory during World War II) to demonstrate the ideological operations of nuclear texts, and the role of the nuclear weapons organization as a symbolic form in cultural…

  12. LANSCE: Los Alamos Neutron Science Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kippen, Karen Elizabeth

    The principle goals of this project is to increase flux and improve resolution for neutron energies above 1 keV for nuclear physics experiments; and preserve current strong performance at thermal energies for material science.

  13. Nuclear Forensics and Radiochemistry: Cross Sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rundberg, Robert S.

    The neutron activation of components in a nuclear device can provide useful signatures of weapon design or sophistication. This lecture will cover some of the basics of neutron reaction cross sections. Nuclear reactor cross sections will also be presented to illustrate the complexity of convolving neutron energy spectra with nuclear excitation functions to calculate useful effective reactor cross sections. Deficiencies in the nuclear database will be discussed along with tools available at Los Alamos to provide new neutron cross section data.

  14. International workshop on cold neutron sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, G.J.; West, C.D.

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more ofmore » a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.« less

  15. Audit Report, "Fire Protection Deficiencies at Los Alamos National Laboratory"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-06-01

    The Department of Energy's Los Alamos National Laboratory (Los Alamos) maintains some of the Nation's most important national security assets, including nuclear materials. Many of Los Alamos' facilities are located in close proximity to one another, are occupied by large numbers of contract and Federal employees, and support activities ranging from nuclear weapons design to science-related activities. Safeguarding against fires, regardless of origin, is essential to protecting employees, surrounding communities, and national security assets. On June 1, 2006, Los Alamos National Security, LLC (LANS), became the managing and operating contractor for Los Alamos, under contract with the Department's National Nuclearmore » Security Administration (NNSA). In preparation for assuming its management responsibilities at Los Alamos, LANS conducted walk-downs of the Laboratory's facilities to identify pre-existing deficiencies that could give rise to liability, obligation, loss or damage. The walk-downs, which identified 812 pre-existing fire protection deficiencies, were conducted by subject matter professionals, including fire protection experts. While the Los Alamos Site Office has overall responsibility for the effectiveness of the fire protection program, LANS, as the Laboratory's operating contractor, has a major, day-to-day role in minimizing fire-related risks. The issue of fire protection at Los Alamos is more than theoretical. In May 2000, the 'Cerro Grande' fire burned about 43,000 acres, including 7,700 acres of Laboratory property. Due to the risk posed by fire to the Laboratory's facilities, workforce, and surrounding communities, we initiated this audit to determine whether pre-existing fire protection deficiencies had been addressed. Our review disclosed that LANS had not resolved many of the fire protection deficiencies that had been identified in early 2006: (1) Of the 296 pre-existing deficiencies we selected for audit, 174 (59 percent) had not been

  16. MW Spallation Neutron Sources for Fusion Materials Testing

    ScienceCinema

    Dr. Donald Rej

    2018-04-18

    Dr. Donald Rej of Los Alamos National Laboratory presents an overview of issues, needs, and performance gaps related to materials testing and how they are being addressed at their facility. Current projects such as the Los Alamos Neutron Science Center (LANSCE) and Matter-Radiation Interactions in Extremes (MaRIE) are also discussed.

  17. Workshop on Probing Frontiers in Matter with Neutron Scattering, Wrap-up Session Chaired by John C. Browne on December 14, 1997, at Fuller Lodge, Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezei, F.; Thompson, J.

    1998-12-01

    The Workshop on Probing Frontiers in Matter with Neutron Scattering consisted of a series of lectures and discussions about recent highlights in neutron scattering. In this report, we present the transcript of the concluding discussion session (wrap-up session) chaired by John C. Browne, Director of Los Alamos National Laboratory. The workshop had covered a spectrum of topics ranging from high T{sub c} superconductivity to polymer science, from glasses to molecular biology, a broad review aimed at identifying trends and future needs in condensed matter research. The focus of the wrap-up session was to summarize the workshop participants' views on developmentsmore » to come. Most of the highlights presented during the workshop were the result of experiments performed at the leading reactor-based neutron scattering facilities. However, recent advances with very high power accelerators open up opportunities to develop new approaches to spallation technique that could decisively advance neutron scattering research in areas for which reactor sources are today by far the best choice. The powerful combination of neutron scattering and increasingly accurate computer modeling emerged as another area of opportunity for research in the coming decades.« less

  18. Los Alamos nEDM Experiment and Demonstration of Ramsey's Method on Stored UCNs at the LANL UCN Source

    NASA Astrophysics Data System (ADS)

    Clayton, Steven; Chupp, Tim; Cude-Woods, Christopher; Currie, Scott; Ito, Takeyasu; Liu, Chen-Yu; Long, Joshua; MacDonald, Stephen; Makela, Mark; O'Shaughnessy, Christopher; Plaster, Brad; Ramsey, John; Saunders, Andy; LANL nEDM Collaboration

    2017-09-01

    The Los Alamos National Laboratory ultracold neutron (UCN) source was recently upgraded for a factor of 5 improvement in stored density, providing the statistical precision needed for a room temperature neutron electric dipole moment measurement with sensitivity 3 ×10-27 e . cm, a factor 10 better than the limit set by the Sussex-RAL-ILL experiment. Here, we show results of a demonstration of Ramsey's separated oscillatory fields method on stored UCNs at the LANL UCN source and in a geometry relevant for a nEDM measurement. We argue a world-leading nEDM experiment could be performed at LANL with existing technology and a short lead time, providing a physics result with sensitivity intermediate between the current limit set by Sussex-RAL-ILL, and the anticipated limit from the complex, cryogenic nEDM experiment planned for the next decade at the ORNL Spallation Neutron Source (SNS-nEDM). This work was supported by the Los Alamos LDRD Program, Project 20140015DR.

  19. Feeding of Rh and Ag isomers in fast-neutron-induced reactions

    DOE PAGES

    Fotiades, Nikolaos; Devlin, Matthew James; Nelson, Ronald Owen; ...

    2016-10-17

    In (n,n') reactions on stable Ir and Au isotopes in the mass A=190 region, the experimentally established feeding of the isomers relative to the feeding of the corresponding ground states increases with increasing neutron energy, up to the neutron energy where the (n,2n) reaction channel opens up, and then decreases. In order to check for similar behavior in the mass A=100 region, the feeding of isomers and ground states in fast-neutron-induced reactions on stable isotopes in this mass region was studied. This is of especial interest for Rh which can be used as a radiochemical detector. Here, excited states weremore » studied using the (n,n'γ), (n,2nγ), and (n,3nγ) reactions on 103Rh and 109Ag. A germanium detector array for γ-ray detection and the broad-spectrum pulsed neutron source of the Los Alamos Neutron Science Center's Weapons Neutron Research facility were used for the measurement. The energy of the incident neutrons was determined using the time-of-flight technique. Absolute partial γ-ray cross sections were measured for 57 transitions feeding isomers and ground states in 101,102,103Rh and 107,108,109Ag. The feeding of the isomers was found to be very similar in the corresponding reaction channels and it is compared to the feeding determined for the ground states. In conclusion, the opening of reaction channels at higher neutron energies removes angular momentum from the residual nucleus and reduces the population of the higher-spin isomers relative to the feeding of the lower-spin ground states. Similar behavior was observed in the mass A=190 region in the feeding of higher-spin isomers, but the reverse behavior was observed in 176Lu with a lower-spin isomer and a higher-spin ground state.« less

  20. Feeding of Rh and Ag isomers in fast-neutron-induced reactions

    NASA Astrophysics Data System (ADS)

    Fotiades, N.; Devlin, M.; Nelson, R. O.; Kawano, T.; Carroll, J. J.

    2016-10-01

    Background: In (n ,n' ) reactions on stable Ir and Au isotopes in the mass A =190 region, the experimentally established feeding of the isomers relative to the feeding of the corresponding ground states increases with increasing neutron energy, up to the neutron energy where the (n ,2 n ) reaction channel opens up, and then decreases. Purpose: In order to check for similar behavior in the mass A =100 region, the feeding of isomers and ground states in fast-neutron-induced reactions on stable isotopes in this mass region was studied. This is of especial interest for Rh which can be used as a radiochemical detector. Methods: Excited states were studied using the (n ,n'γ ), (n ,2 n γ ), and (n ,3 n γ ) reactions on 103Rh and 109Ag. A germanium detector array for γ -ray detection and the broad-spectrum pulsed neutron source of the Los Alamos Neutron Science Center's Weapons Neutron Research facility were used for the measurement. The energy of the incident neutrons was determined using the time-of-flight technique. Results: Absolute partial γ -ray cross sections were measured for 57 transitions feeding isomers and ground states in 101,102,103Rh and 107,108,109Ag. The feeding of the isomers was found to be very similar in the corresponding reaction channels and it is compared to the feeding determined for the ground states. Conclusions: The opening of reaction channels at higher neutron energies removes angular momentum from the residual nucleus and reduces the population of the higher-spin isomers relative to the feeding of the lower-spin ground states. Similar behavior was observed in the mass A =190 region in the feeding of higher-spin isomers, but the reverse behavior was observed in 176Lu with a lower-spin isomer and a higher-spin ground state.

  1. Feeding of Rh and Ag isomers in fast-neutron-induced reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fotiades, Nikolaos; Devlin, Matthew James; Nelson, Ronald Owen

    In (n,n') reactions on stable Ir and Au isotopes in the mass A=190 region, the experimentally established feeding of the isomers relative to the feeding of the corresponding ground states increases with increasing neutron energy, up to the neutron energy where the (n,2n) reaction channel opens up, and then decreases. In order to check for similar behavior in the mass A=100 region, the feeding of isomers and ground states in fast-neutron-induced reactions on stable isotopes in this mass region was studied. This is of especial interest for Rh which can be used as a radiochemical detector. Here, excited states weremore » studied using the (n,n'γ), (n,2nγ), and (n,3nγ) reactions on 103Rh and 109Ag. A germanium detector array for γ-ray detection and the broad-spectrum pulsed neutron source of the Los Alamos Neutron Science Center's Weapons Neutron Research facility were used for the measurement. The energy of the incident neutrons was determined using the time-of-flight technique. Absolute partial γ-ray cross sections were measured for 57 transitions feeding isomers and ground states in 101,102,103Rh and 107,108,109Ag. The feeding of the isomers was found to be very similar in the corresponding reaction channels and it is compared to the feeding determined for the ground states. In conclusion, the opening of reaction channels at higher neutron energies removes angular momentum from the residual nucleus and reduces the population of the higher-spin isomers relative to the feeding of the lower-spin ground states. Similar behavior was observed in the mass A=190 region in the feeding of higher-spin isomers, but the reverse behavior was observed in 176Lu with a lower-spin isomer and a higher-spin ground state.« less

  2. Radiation Detection and Classification of Heavy Oxide Inorganic Scintillator Crystals for Detection of Fast Neutrons

    DTIC Science & Technology

    2016-06-01

    of these three pillars, yet current detectors for fast neutrons from nuclear weapons materials are bulky, expensive, and have low efficiencies, well...passive fast neutron emissions. Similarly, isotopes present in weapons grade Plutonium (which is predominantly Pu-239), especially Pu-240, are... weapons material, and the propensity of the neutrons resulting from their fission to inelastically scatter, defines the interactions of interest

  3. α and 2 p 2 n emission in fast neutron-induced reactions on 60Ni

    NASA Astrophysics Data System (ADS)

    Fotiades, N.; Devlin, M.; Haight, R. C.; Nelson, R. O.; Kunieda, S.; Kawano, T.

    2015-06-01

    Background: The cross sections for populating the residual nucleus in the reaction ZAX(n,x) Z -2 A -4Y exhibit peaks as a function of incident neutron energy corresponding to the (n ,n'α ) reaction and, at higher energy, to the (n ,2 p 3 n ) reaction. The relative magnitudes of these peaks vary with the Z of the target nucleus. Purpose: Study fast neutron-induced reactions on 60Ni. Locate experimentally the nuclear charge region along the line of stability where the cross sections for α emission and for 2 p 2 n emission in fast neutron-induced reactions are comparable as a further test of reaction models. Methods: Data were taken by using the Germanium Array for Neutron-Induced Excitations. The broad-spectrum pulsed neutron beam of the Los Alamos Neutron Science Center's Weapons Neutron Research facility provided neutrons in the energy range from 1 to 250 MeV. The time-of-flight technique was used to determine the incident-neutron energies. Results: Absolute partial cross sections for production of seven discrete Fe γ rays populated in 60Ni (n ,α /2 p x n γ ) reactions with 2 ≤x ≤5 were measured for neutron energies 1 MeVneutron energies while discrepancies appear at higher neutron energies. The cross section for producing an isotope in fast neutron-induced reactions on stable targets via α emission at the peak of the (n ,α ) and (n ,n'α ) reactions is comparable to that for 2 p 2 n and 2 p 3 n emission at higher incident energies in the nuclear charge region around Fe.

  4. Historic Manhattan Project Sites at Los Alamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGehee, Ellen

    The Manhattan Project laboratory constructed at Los Alamos, New Mexico, beginning in 1943, was intended from the start to be temporary and to go up with amazing speed. Because most of those WWII-era facilities were built with minimal materials and so quickly, much of the original infrastructure was torn down in the late '40s and early '50s and replaced by more permanent facilities. However, a few key facilities remained, and are being preserved and maintained for historic significance. Four such sites are visited briefly in this video, taking viewers to V-Site, the buildings where the first nuclear explosive device wasmore » pre-assembled in preparation for the Trinity Test in Southern New Mexico. Included is another WWII area, Gun Site. So named because it was the area where scientists and engineers tested the so-called "gun method" of assembling nuclear materials -- the fundamental design of the Little Boy weapon that was eventually dropped on Hiroshima. The video also goes to Pajarito Site, home of the "Slotin Building" and "Pond Cabin." The Slotin Building is the place where scientist Louis Slotin conducted a criticality experiment that went awry in early 1946, leading to his unfortunate death, and the Pond Cabin served the team of eminent scientist Emilio Segre who did early chemistry work on plutonium that ultimately led to the Fat Man weapon.« less

  5. Historic Manhattan Project Sites at Los Alamos

    ScienceCinema

    McGehee, Ellen

    2018-05-11

    The Manhattan Project laboratory constructed at Los Alamos, New Mexico, beginning in 1943, was intended from the start to be temporary and to go up with amazing speed. Because most of those WWII-era facilities were built with minimal materials and so quickly, much of the original infrastructure was torn down in the late '40s and early '50s and replaced by more permanent facilities. However, a few key facilities remained, and are being preserved and maintained for historic significance. Four such sites are visited briefly in this video, taking viewers to V-Site, the buildings where the first nuclear explosive device was pre-assembled in preparation for the Trinity Test in Southern New Mexico. Included is another WWII area, Gun Site. So named because it was the area where scientists and engineers tested the so-called "gun method" of assembling nuclear materials -- the fundamental design of the Little Boy weapon that was eventually dropped on Hiroshima. The video also goes to Pajarito Site, home of the "Slotin Building" and "Pond Cabin." The Slotin Building is the place where scientist Louis Slotin conducted a criticality experiment that went awry in early 1946, leading to his unfortunate death, and the Pond Cabin served the team of eminent scientist Emilio Segre who did early chemistry work on plutonium that ultimately led to the Fat Man weapon.

  6. World's Largest Gold Crystal Studied at Los Alamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, Sven; Nakotte, Heinz

    2014-04-03

    When geologist John Rakovan needed better tools to investigate whether a dazzling 217.78-gram piece of gold was in fact the world's largest single-crystal specimen - a distinguishing factor that would not only drastically increase its market value but also provide a unique research opportunity - he traveled to Los Alamos National Laboratory's Lujan Neutron Scattering Center to peer deep inside the mineral using neutron diffractometry. Neutrons, different from other probes such as X-rays and electrons, are able to penetrate many centimeters deep into most materials. Revealing the inner structure of a crystal without destroying the sample - imperative, as thismore » one is worth an estimated $1.5 million - would allow Rakovan and Lujan Center collaborators Sven Vogel and Heinz Nakotte to prove that this exquisite nugget, which seemed almost too perfect and too big to be real, was a single crystal and hence a creation of nature. Its owner, who lives in the United States, provided the samples to Rakovan to assess the crystallinity of four specimens, all of which had been found decades ago in Venezuela.« less

  7. World's Largest Gold Crystal Studied at Los Alamos

    ScienceCinema

    Vogel, Sven; Nakotte, Heinz

    2018-02-07

    When geologist John Rakovan needed better tools to investigate whether a dazzling 217.78-gram piece of gold was in fact the world's largest single-crystal specimen - a distinguishing factor that would not only drastically increase its market value but also provide a unique research opportunity - he traveled to Los Alamos National Laboratory's Lujan Neutron Scattering Center to peer deep inside the mineral using neutron diffractometry. Neutrons, different from other probes such as X-rays and electrons, are able to penetrate many centimeters deep into most materials. Revealing the inner structure of a crystal without destroying the sample - imperative, as this one is worth an estimated $1.5 million - would allow Rakovan and Lujan Center collaborators Sven Vogel and Heinz Nakotte to prove that this exquisite nugget, which seemed almost too perfect and too big to be real, was a single crystal and hence a creation of nature. Its owner, who lives in the United States, provided the samples to Rakovan to assess the crystallinity of four specimens, all of which had been found decades ago in Venezuela.

  8. LANL: Weapons Infrastructure Briefing to Naval Reactors, July 18, 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chadwick, Frances

    Presentation slides address: The Laboratory infrastructure supports hundreds of high hazard, complex operations daily; LANL’s unique science and engineering infrastructure is critical to delivering on our mission; LANL FY17 Budget & Workforce; Direct-Funded Infrastructure Accounts; LANL Org Chart; Weapons Infrastructure Program Office; The Laboratory’s infrastructure relies on both Direct and Indirect funding; NA-50’s Operating, Maintenance & Recapitalization funding is critical to the execution of the mission; Los Alamos is currently executing several concurrent Line Item projects; Maintenance @ LANL; NA-50 is helping us to address D&D needs; We are executing a CHAMP Pilot Project at LANL; G2 = Main Toolmore » for Program Management; MDI: Future Investments are centered on facilities with a high Mission Dependency Index; Los Alamos hosted first “Deep Dive” in November 2016; Safety, Infrastructure & Operations is one of the most important programs at LANL, and is foundational for our mission success.« less

  9. Neutron-Induced Charged Particle Studies at LANSCE

    NASA Astrophysics Data System (ADS)

    Lee, Hye Young; Haight, Robert C.

    2014-09-01

    Direct measurements on neutron-induced charged particle reactions are of interest for nuclear astrophysics and applied nuclear energy. LANSCE (Los Alamos Neutron Science Center) produces neutrons in energy of thermal to several hundreds MeV. There has been an effort at LANSCE to upgrade neutron-induced charged particle detection technique, which follows on (n,z) measurements made previously here and will have improved capabilities including larger solid angles, higher efficiency, and better signal to background ratios. For studying cross sections of low-energy neutron induced alpha reactions, Frisch-gridded ionization chamber is designed with segmented anodes for improving signal-to-noise ratio near reaction thresholds. Since double-differential cross sections on (n,p) and (n,a) reactions up to tens of MeV provide important information on deducing nuclear level density, the ionization chamber will be coupled with silicon strip detectors (DSSD) in order to stop energetic charged particles. In this paper, we will present the status of this development including the progress on detector design, calibrations and Monte Carlo simulations. This work is funded by the US Department of Energy - Los Alamos National Security, LLC under Contract DE-AC52-06NA25396.

  10. Politics and Didactics of Peace Education: "Securing Peace in the Nuclear Age--The Case of the Neutron Weapon". A Course for Political Instruction in Schools in Hessen.

    ERIC Educational Resources Information Center

    Krell, Gert

    1980-01-01

    Describes a course developed for the public schools of Hessen, Germany, through the cooperative efforts of army officers, peace researchers, and educators. Information is presented on goals and contents of peace education as a part of political education, learning goals, course sequence, and content related to the neutron weapons controversy. (DB)

  11. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.

    2009-01-28

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 10 eV and 250 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented where the fission events were actively triggered during the experiments. In these experiments, a Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in themore » center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) events from (n,f) events. The first direct observation of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.« less

  12. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jandel, Marian

    2008-01-01

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 35 eV and 200 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented, where the fission events were actively triggered during the experiments. In these experiments, the Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in themore » center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) from (n,f) events. The first evidence of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.« less

  13. Los Alamos Scientific Laboratory energy-related history, research, managerial reorganization proposals, actions taken, and results. History report, 1945--1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammel, E.F.

    1997-03-01

    This report documents the development of major energy-related programs at the Los Alamos Scientific Laboratory between 1945 and 1979. Although the Laboratory`s primary mission during that era was the design and development of nuclear weapons and most of the Laboratory`s funding came from a single source, a number of factors were at work that led to the development of these other programs. Some of those factors were affected by the Laboratory`s internal management structure and organization; others were the result of increasing environmental awareness within the general population and the political consequences of that awareness; still others were related tomore » the increasing demand for energy and the increasing turmoil in the energy-rich Middle East. This report also describes the various activities in Los Alamos, in Washington, and in other areas of the world that contributed to the development of major energy-related programs at Los Alamos. The author has a unique historical perspective because of his involvement as a scientist and manager at the Los Alamos Scientific Laboratory during the time period described within the report. In addition, in numerous footnotes and references, he cites a large body of documents that include the opinions and perspectives of many others who were involved at one time or another in these programs. Finally the report includes a detailed chronology of geopolitical events that led to the development of energy-related programs at Los Alamos.« less

  14. Coupled neutron--gamma multigroup--multitable cross sections for 29 materials pertinent to nuclear weapons effect calculations generated by LASL/TD Division

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandmeier, H.A.; Hansen, G.E.; Seamon, R.E.

    This report lists 42-group, coupled, neutron -gamma cross sections for H, D, T, /sup 3/He, /sup 4/He, /sup 6/Li, /sup 7/Li, Be, /sup 10/B, /sup 11/B, C, N, O, Na, Mg, Ai, Si, Cl, A, K, Ca, Fe, Cu, W, Pb, /sup 235/U, /sup 238/U, / sup 239/Pu, and /sup 240/Pu. Most of these materials are used in nuclear- weaponseffects calculations, where the elements for air, ground, and sea water are needed. Further, lists are given of cross sections for materials used in nuclear weapons vulnerability calculations, such as the elements of high explosives as well as materials that willmore » undergo fusion and fission. Most of the common reactor materials are also listed. The 42 coupled neutron-gamma groups are split into 30 neutron groups (17 MeV through 1.39 x 10/sup -4/ eV) and 12 gamma groups (10 MeV through 0.01 MeV). Data sources and averaging schemes used for the development of these multigroup parameters are given. (119 tables) (auth)« less

  15. An independent evaluation of plutonium body burdens in populations near Los Alamos Laboratory using human autopsy data.

    PubMed

    Gaffney, Shannon H; Donovan, Ellen P; Shonka, Joseph J; Le, Matthew H; Widner, Thomas E

    2013-06-01

    In the mid-1940s, the United States began producing atomic weapon components at the Los Alamos National Laboratory (LANL). In an attempt to better understand historical exposure to nearby residents, this study evaluates plutonium activity in human tissue relative to residential location and length of time at residence. Data on plutonium activity in the lung, vertebrae, and liver of nearby residents were obtained during autopsies as a part of the Los Alamos Tissue Program. Participant residential histories and the distance from each residence to the primary plutonium processing buildings at LANL were evaluated in the analysis. Summary statistics, including Student t-tests and simple regressions, were calculated. Because the biological half-life of plutonium can vary significantly by organ, data were analyzed separately by tissue type (lung, liver, vertebrae). The ratios of plutonium activity (vertebrae:liver; liver:lung) were also analyzed in order to evaluate the importance of timing of exposure. Tissue data were available for 236 participants who lived in a total of 809 locations, of which 677 were verified postal addresses. Residents of Los Alamos were found to have higher plutonium activities in the lung than non-residents. Further, those who moved to Los Alamos before 1955 had higher lung activities than those who moved there later. These trends were not observed with the liver, vertebrae, or vertebrae:liver and liver:lung ratio data, however, and should be interpreted with caution. Although there are many limitations to this study, including the amount of available data and the analytical methods used to analyze the tissue, the overall results indicate that residence (defined as the year that the individual moved to Los Alamos) may have had a strong correlation to plutonium activity in human tissue. This study is the first to present the results of Los Alamos Autopsy Program in relation to residential status and location in Los Alamos. Copyright © 2012

  16. Critical assembly: A technical history of Los Alamos during the Oppenheimer years, 1943--1945

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoddeson, L.; Henriksen, P.W.; Meade, R.A.

    1993-11-01

    This volume treats the technical research that led to the first atomic bombs. The authors explore how the ``critical assembly`` of scientists, engineers, and military Personnel at Los Alamos collaborated during World War II, blending their traditions to create a new approach to large-scale research. The research was characterized by strong mission orientation, multidisciplinary teamwork, expansion of the scientists` traditional methodology with engineering techniques, and a trail-and-error methodology responding to wartime deadlines. The book opens with an introduction laying out major themes. After a synopsis of the prehistory of the bomb project, from the discovery of nuclear fission to themore » start of the Manhattan Engineer District, and an overview of the early materials program, the book examines the establishment of the Los Alamos Laboratory, the implosion and gun assembly programs, nuclear physics research, chemistry and metallurgy, explosives, uranium and plutonium development, confirmation of spontaneous fission in pile-produced plutonium, the thermonuclear bomb, critical assemblies, the Trinity test, and delivery of the combat weapons.« less

  17. Recent UCN source developments at Los Alamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seestrom, S.J.; Anaya, J.M.; Bowles, T.J.

    The most intense sources of ultra cold neutrons (UCN) have bee built at reactors where the high average thermal neutron flux can overcome the low UCN production rate to achieve usable densities of UCN. At spallation neutron sources the average flux available is much lower than at a reactor, though the peak flux can be comparable or higher. The authors have built a UCN source that attempts to take advantage of the high peak flux available at the short pulse spallation neutron source at the Los Alamos Neutron Science Center (LANSCE) to generate a useful number of UCN. In themore » source UCN are produced by Doppler-shifted Bragg scattering of neutrons to convert 400-m/s neutrons down into the UCN regime. This source was initially tested in 1996 and various improvements were made based on the results of the 1996 running. These improvements were implemented and tested in 1997. In sections 2 and 3 they discuss the improvements that have been made and the resulting source performance. Recently an even more interesting concept was put forward by Serebrov et al. This involves combining a solid Deuterium UCN source, previously studied by Serebrov et al., with a pulsed spallation source to achieve world record UCN densities. They have initiated a program of calculations and measurements aimed at verifying the solid Deuterium UCN source concept. The approach has been to develop an analytical capability, combine with Monte Carlo calculations of neutron production, and perform benchmark experiments to verify the validity of the calculations. Based on the calculations and measurements they plan to test a modified version of the Serebrov UCN factory. They estimate that they could produce over 1,000 UCN/cc in a 15 liter volume, using 1 {micro}amp of 800 MeV protons for two seconds every 500 seconds. They will discuss the result UCN production measurements in section 4.« less

  18. CHELSI: a portable neutron spectrometer for the 20-800 MeV region.

    PubMed

    McLean, T D; Olsher, R H; Romero, L L; Miles, L H; Devine, R T; Fallu-Labruyere, A; Grudberg, P

    2007-01-01

    CHELSI is a CsI-based portable spectrometer being developed at Los Alamos National Laboratory for use in high-energy neutron fields. Based on the inherent pulse shape discrimination properties of CsI(Tl), the instrument flags charged particle events produced via neutron-induced spallation events. Scintillation events are processed in real time using digital signal processing and a conservative estimate of neutron dose rate is made based on the charged particle energy distribution. A more accurate dose estimate can be made by unfolding the 2D charged particle versus pulse height distribution to reveal the incident neutron spectrum from which dose is readily obtained. A prototype probe has been assembled and data collected in quasi-monoenergetic fields at The Svedberg Laboratory (TSL) in Uppsala as well as at the Los Alamos Neutron Science Center (LANSCE). Preliminary efforts at deconvoluting the shape/energy data using empirical response functions derived from time-of-flight measurements are described.

  19. Stockpile Stewardship: Los Alamos

    ScienceCinema

    McMillan, Charlie; Morgan, Nathanial; Goorley, Tom; Merrill, Frank; Funk, Dave; Korzekwa, Deniece; Laintz, Ken

    2018-01-16

    "Heritage of Science" is a short video that highlights the Stockpile Stewardship program at Los Alamos National Laboratory. Stockpile Stewardship was conceived in the early 1990s as a national science-based program that could assure the safety, security, and effectiveness of the U.S. nuclear deterrent without the need for full-scale underground nuclear testing. This video was produced by Los Alamos National Laboratory for screening at the Lab's Bradbury Science Museum in Los Alamos, NM and is narrated by science correspondent Miles O'Brien.

  20. New Organic Scintillators for Neutron Detection

    DTIC Science & Technology

    2016-03-01

    highly enriched uranium and weapons grade plutonium. Neutrons and gamma rays are two signatures of these materials. Gamma ray detection techniques are...New Organic Scintillators for Neutron Detection Distribution Statement A. Approved for public release; distribution is unlimited. March...Title: New Organic Scintillators for Neutron Detection I. Abstract In this project, Radiation Monitoring Devices (RMD) proposes to develop novel

  1. New Mexico: Los Alamos

    Atmospheric Science Data Center

    2014-05-15

    article title:  Los Alamos, New Mexico     View Larger JPEG image ... kb) Multi-angle views of the Fire in Los Alamos, New Mexico, May 9, 2000. These true-color images covering north-central New Mexico ...

  2. The Los Alamos Scientific Laboratory - An Isolated Nuclear Research Establishment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradbury, Norris E.; Meade, Roger Allen

    Early in his twenty-five year career as the Director of the Los Alamos Scientific Laboratory, Norris Bradbury wrote at length about the atomic bomb and the many implications the bomb might have on the world. His themes were both technical and philosophical. In 1963, after nearly twenty years of leading the nation’s first nuclear weapons laboratory, Bradbury took the opportunity to broaden his writing. In a paper delivered to the International Atomic Energy Agency’s symposium on the “Criteria in the Selection of Sites for the Construction of Reactors and Nuclear Research Centers,” Bradbury took the opportunity to talk about themore » business of nuclear research and the human component of operating a scientific laboratory. This report is the transcript of his talk.« less

  3. Medical implications of enhanced radiation weapons.

    PubMed

    Reeves, Glen I

    2010-12-01

    During the 1960s through 1980s the United States and several other nations developed, and even considered deploying, enhanced-radiation warheads (ERWs). The main effect of ERWs (sometimes called "neutron bombs"), as compared to other types of nuclear weapons, is to enhance radiation casualties while reducing blast and thermal damage to the infrastructure. Five nations were reported to have developed and tested ERWs during this period, but since the termination of the "Cold War" there have been no threats of development, deployment, or use of such weapons. However, if the technology of a quarter of a century ago has been developed, maintained, or even advanced since then, it is conceivable that the grim possibility of future ERW use exists. The type of destruction, initial triage of casualties, distribution of patterns of injury, and medical management of ERWs will be shown to significantly differ from that of fission weapons. Emergency response planners and medical personnel, civilian or military, must be aware of these differences to reduce the horrible consequences of ERW usage and appropriately treat casualties.

  4. Performance of the New Los Alamos UCN Source and Implications for Future Experiments

    NASA Astrophysics Data System (ADS)

    Makela, Mark; LANL UCN Team

    2017-01-01

    The Los Alamos Ultracold Neutron (UCN) source was replaced during this past summer and has been commissioned during the last few months. The new source is the result of lessons learned during the 10 year operation of the first UCN source and extensive Monte Carlo analysis. The new source is a spallation driven source based on a solid deuterium UCN moderator similar the previous one. This talk will present an overview of the new source design and the results of commissioning tests. The talk will conclude with a brief overview of the implications of source performance on the neutron lifetime and LANL nEDM experiments. This work was funded by LANL LDRD.

  5. Determination of spallation neutron flux through spectral adjustment techniques

    DOE PAGES

    Mosby, Michelle A.; Engle, Jonathan Ward; Jackman, Kevin Richard; ...

    2016-05-30

    The Los Alamos Isotope Production Facility (IPF) creates medical isotopes using a proton beam impinged on a target stack. Spallation neutrons are created in the interaction of the beam with target. The use of these spallation neutrons to produce additional radionuclides has been proposed in this paper. However, the energy distribution and magnitude of the flux is not well understood. Finally, a modified SAND-II spectral adjustment routine has been used with radioactivation foils to determine the differential neutron fluence for these spallation neutrons during a standard IPF production run.

  6. New Pulsed Cold Neutron Beam Line for Fundamental Nuclear Physics at LANSCE.

    PubMed

    Seo, P-N; Bowman, J D; Gericke, M; Gillis, R C; Greene, G L; Leuschner, M B; Long, J; Mahurin, R; Mitchell, G S; Penttila, S I; Peralta, G; Sharapov, E I; Wilburn, W S

    2005-01-01

    The NPDGamma collaboration has completed the construction of a pulsed cold neutron beam line on flight path12 at the Los Alamos Neutron Science Center (LANSCE). We describe the new beam line and characteristics of the beam. We report results of the moderator brightness and the guide performance measurements. FP12 has the highest pulsed cold neutron intensity for nuclear physics in the world.

  7. Los Alamos Climatology 2016 Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruggeman, David Alan

    The Los Alamos National Laboratory (LANL or the Laboratory) operates a meteorology monitoring network to support LANL emergency response, engineering designs, environmental compliance, environmental assessments, safety evaluations, weather forecasting, environmental monitoring, research programs, and environmental restoration. Weather data has been collected in Los Alamos since 1910. Bowen (1990) provided climate statistics (temperature and precipitation) for the 1961– 1990 averaging period, and included other analyses (e.g., wind and relative humidity) based on the available station locations and time periods. This report provides an update to the 1990 publication Los Alamos Climatology (Bowen 1990).

  8. Los Alamos offers Fellowships

    NASA Astrophysics Data System (ADS)

    Los Alamos National Laboratory in New Mexico is calling for applications for postdoctoral appointments and research fellowships. The positions are available in geoscience as well as other scientific disciplines.The laboratory, which is operated by the University of California for the Department of Energy, awards J. Robert Oppenheimer Research Fellowships to scientists that either have or will soon complete doctoral degrees. The appointments are for two years, are renewable for a third year, and carry a stipend of $51,865 per year. Potential applicants should send a resume or employment application and a statement of research goals to Carol M. Rich, Div. 89, Human Resources Development Division, MS P290, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 by mid-November.

  9. Neutron star evolution and emission

    NASA Astrophysics Data System (ADS)

    Epstein, R. I.; Edwards, B. C.; Haines, T. J.

    1997-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors investigated the evolution and radiation characteristics of individual neutron stars and stellar systems. The work concentrated on phenomena where new techniques and observations are dramatically enlarging the understanding of stellar phenomena. Part of this project was a study of x-ray and gamma-ray emission from neutron stars and other compact objects. This effort included calculating the thermal x-ray emission from young neutron stars, deriving the radio and gamma-ray emission from active pulsars and modeling intense gamma-ray bursts in distant galaxies. They also measured periodic optical and infrared fluctuations from rotating neutron stars and search for high-energy TeV gamma rays from discrete celestial sources.

  10. Los Alamos National Lab: National Security Science

    Science.gov Websites

    SKIP TO PAGE CONTENT Los Alamos National Laboratory Delivering science and technology to protect Permit for Storm Water Public Reading Room Environment Home News Los Alamos National Lab: National deposition operations for the Center for Integrated Nanotechnologies at Los Alamos. Innovation drives his

  11. The Manhattan Project; A very brief introduction to the physics of nuclear weapons

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2017-05-01

    The development of nuclear weapons by the Manhattan Project during World War II was one of the most dramatic scientific/technological episodes in human history. This book, prepared by a recognized expert on the Manhattan Project, offers a concise survey of the essential physics concepts underlying fission weapons. The text describes the energetics and timescales of fast-neutron chain reactions, why only certain isotopes of uranium and plutonium are suitable for use in fission weapons, how critical mass and bomb yield can be estimated, how the efficiency of nuclear weapons can be enhanced, how the fissile forms of uranium and plutonium were obtained, some of the design details of the 'Little Boy' and 'Fat Man' bombs, and some of the thermal, shock, and radiation effects of nuclear weapons. Calculation exercises are provided, and a Bibliography lists authoritative print and online sources of information for readers who wish to pursue more detailed study of this fascinating topic.

  12. Prompt fission neutron multiplicity and spectrum model for 30-80 MeV neutrons incident on 238U

    NASA Astrophysics Data System (ADS)

    Tudora, Anabella; Vladuca, G.; Morillon, B.

    2004-08-01

    The improved Los Alamos model is developed for the first time in order to provide prompt fission neutron multiplicity, prompt fission neutron spectra and other quantities at high incident neutron energies where the fission of secondary compound nuclei formed by charged particle emission occurs. In this model (exemplified by the n+ 238U reaction up to 80 MeV incident energy) the fission of the secondary nuclei formed by proton emission, neutron evaporation from the nuclei formed by proton emission, deuteron emission, alpha emission and neutron evaporation from the nuclei formed by alpha emission is taken into account. Input model parameters and related excitation energy dependences are determined using available experimental information and systematics as well as total and partial neutron induced fission cross-sections and their ratios obtained separately from a recent evaluation performed up to medium energies. Our present model predictions are in good agreement with the measured prompt neutron spectra and multiplicities.

  13. Determination of the axial-vector weak coupling constant with ultracold neutrons.

    PubMed

    Liu, J; Mendenhall, M P; Holley, A T; Back, H O; Bowles, T J; Broussard, L J; Carr, R; Clayton, S; Currie, S; Filippone, B W; García, A; Geltenbort, P; Hickerson, K P; Hoagland, J; Hogan, G E; Hona, B; Ito, T M; Liu, C-Y; Makela, M; Mammei, R R; Martin, J W; Melconian, D; Morris, C L; Pattie, R W; Pérez Galván, A; Pitt, M L; Plaster, B; Ramsey, J C; Rios, R; Russell, R; Saunders, A; Seestrom, S J; Sondheim, W E; Tatar, E; Vogelaar, R B; VornDick, B; Wrede, C; Yan, H; Young, A R

    2010-10-29

    A precise measurement of the neutron decay β asymmetry A₀ has been carried out using polarized ultracold neutrons from the pulsed spallation ultracold neutron source at the Los Alamos Neutron Science Center. Combining data obtained in 2008 and 2009, we report A₀ = -0.119 66±0.000 89{-0.001 40}{+0.001 23}, from which we determine the ratio of the axial-vector to vector weak coupling of the nucleon g{A}/g{V}=-1.275 90{-0.004 45}{+0.004 09}.

  14. Silicon Photomultipliers for Compact Neutron Scatter Cameras

    NASA Astrophysics Data System (ADS)

    Ruch, Marc L.

    The ability to locate and identify special nuclear material (SNM) is critical for treaty verification and emergency response applications. SNM is used as the nuclear explosive in a nuclear weapon. This material emits neutrons, either spontaneously or when interrogated. The ability to form an image of the neutron source can be used for characterization and/or to confirm that the item is a weapon by determining whether its shape is consistent with that of a weapon. Additionally, treaty verification and emergency response applications might not be conducive to non-portable instruments. In future weapons treaties, for example, it is unlikely that host countries will make great efforts to facilitate large, bulky, and/or fragile inspection equipment. Furthermore, inspectors and especially emergency responders may need to access locations not easily approachable by vehicles. Therefore, there is a considerable need for a compact, human-portable neutron imaging system. Of the currently available neutron imaging technologies, only neutron scatter cameras (NSCs) can be made truly compact because aperture-based imagers, and time-encoded imagers, rely on large amounts of materials to modulate the neutron signal. NSCs, in contrast, can be made very small because most of the volume of the imager can be filled with active detector material. Also, unlike other neutron imaging technologies, NSCs have the inherent ability to act as neutron spectrometers which gives them an additional means of identifying a neutron source. Until recently, NSCs have relied on photomultiplier tubes (PMT) readouts, which are bulky and fragile, require high voltage, and are very sensitive to magnetic fields. Silicon photomultipliers (SiPMs) do not suffer from these drawbacks and are comparable to PMTs in many respects such as gain, and cost with better time resolution. Historically, SiPMs have been too noisy for these applications; however, recent advancements have greatly reduced this issue and they have

  15. Spectral unfolding of fast neutron energy distributions

    NASA Astrophysics Data System (ADS)

    Mosby, Michelle; Jackman, Kevin; Engle, Jonathan

    2015-10-01

    The characterization of the energy distribution of a neutron flux is difficult in experiments with constrained geometry where techniques such as time of flight cannot be used to resolve the distribution. The measurement of neutron fluxes in reactors, which often present similar challenges, has been accomplished using radioactivation foils as an indirect probe. Spectral unfolding codes use statistical methods to adjust MCNP predictions of neutron energy distributions using quantified radioactive residuals produced in these foils. We have applied a modification of this established neutron flux characterization technique to experimentally characterize the neutron flux in the critical assemblies at the Nevada National Security Site (NNSS) and the spallation neutron flux at the Isotope Production Facility (IPF) at Los Alamos National Laboratory (LANL). Results of the unfolding procedure are presented and compared with a priori MCNP predictions, and the implications for measurements using the neutron fluxes at these facilities are discussed.

  16. Measurement of neutron-induced reactions on 242mAm

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C.-Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; Ullmann, J. L.; Dance Collaboration

    2016-09-01

    Neutron-induced reaction cross sections of 242mAm were measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. A new neutron-capture cross section was determined relative to a simultaneous measurement of the well-known 242mAm(n,f) cross section. The (n, γ) cross section was measured from thermal to an incident energy of 1 eV. Our new 242mAm fission cross section was normalized to ENDF/B-VII.1 and agreed well with the (n,f) cross section reported in the literature from thermal energy to 1 keV. The capture-to-fission ratio was determined from thermal energy to En = 0.1 eV, and it was found to be (n, γ)/(n,f) = 26(4)% compared to 19% from ENDF/B-VII.1. Our latest results will be reported. US Department of Energy by Lawrence Livermore National Security, LLC Contract DE-AC52-07NA27344 and Los Alamos National Security, LLC Contract DE-AC52-06NA25396 and U.S. DOE/NNSA Office of Defense Nuclear Nonproliferation Research and Development.

  17. Neutron Resonance Spin Determination Using Multi-Segmented Detector DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baramsai, B.; Mitchell, G. E.; Chyzh, A.

    2011-06-01

    A sensitive method to determine the spin of neutron resonances is introduced based on the statistical pattern recognition technique. The new method was used to assign the spins of s-wave resonances in {sup 155}Gd. The experimental neutron capture data for these nuclei were measured with the DANCE (Detector for Advanced Neutron Capture Experiment) calorimeter at the Los Alamos Neutron Science Center. The highly segmented calorimeter provided detailed multiplicity distributions of the capture {gamma}-rays. Using this information, the spins of the neutron capture resonances were determined. With these new spin assignments, level spacings are determined separately for s-wave resonances with J{supmore » {pi}} = 1{sup -} and 2{sup -}.« less

  18. Tacit Knowledge Involvement in the Production of Nuclear Weapons: A Critical Component of a Credible US Nuclear Deterrent in the 21st Century

    DTIC Science & Technology

    2013-02-14

    important in sustaining a credible nuclear deterrent without testing. Thinking in the early days of the Manhattan Project was that designing a nuclear...weapon would occur quickly. Renowned physicist Edward Teller recalled being discouraged from joining the Manhattan Project at Los Alamos National...difficulties with their nuclear program in the early years despite involvement with portions of the Manhattan Project . With permission, the British

  19. SABRINA - An interactive geometry modeler for MCNP (Monte Carlo Neutron Photon)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, J.T.; Murphy, J.

    SABRINA is an interactive three-dimensional geometry modeler developed to produce complicated models for the Los Alamos Monte Carlo Neutron Photon program MCNP. SABRINA produces line drawings and color-shaded drawings for a wide variety of interactive graphics terminals. It is used as a geometry preprocessor in model development and as a Monte Carlo particle-track postprocessor in the visualization of complicated particle transport problem. SABRINA is written in Fortran 77 and is based on the Los Alamos Common Graphics System, CGS. 5 refs., 2 figs.

  20. Radiative neutron capture cross sections on 176Lu at DANCE

    NASA Astrophysics Data System (ADS)

    Roig, O.; Jandel, M.; Méot, V.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.

    2016-03-01

    The cross section of the neutron capture reaction 176Lu(n ,γ ) has been measured for a wide incident neutron energy range with the Detector for Advanced Neutron Capture Experiments at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be (1912 ±132 ) b for one of the Lu natural isotopes, 176Lu. The resonance part was measured and compared to the Mughabghab's atlas using the R -matrix code, sammy. At higher neutron energies the measured cross sections are compared to ENDF/B-VII.1, JEFF-3.2, and BRC evaluated nuclear data. The Maxwellian averaged cross sections in a stellar plasma for thermal energies between 5 keV and 100 keV were extracted using these data.

  1. ADVANCEMENTS IN NEUTRON RADIOGRAPHY WITHIN THE DEPARTMENT OF THE ARMY

    DTIC Science & Technology

    2016-11-01

    Defense (DoD) production facility for direct use in quality control of munitions and weapons system by means of neutron radiographic inspection...UNCLASSIFIED UNCLASSIFIED AD-E403 813 Technical Report AREIS-TR-16004 ADVANCEMENTS IN NEUTRON RADIOGRAPHY WITHIN THE...REPORT DATE (DD-MM-YYYY) November 2016 2. REPORT TYPE Final 3. DATES COVERED (From – To) 4. TITLE AND SUBTITLE ADVANCEMENTS IN NEUTRON

  2. A Simple Correlation for Neutron Capture Rates from Nuclear Masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, Aaron Joseph

    Recent studies of neutron capture performed at LANL have revealed a previously unrecognized connection between nuclear masses and the average neutron capture cross section. A team of three scientists from Los Alamos (P-27), Yale Univ., and Istanbul Univ. (Turkey) recently discovered this connection and have published their results as a Rapid Communication in Physical Review C. Neutron capture is a reaction in which a free neutron is absorbed by the nucleus, keeping the element unchanged, but changing isotopes. This reaction is typically exothermic. As a result, the reaction can proceed even when many other reaction channels are closed. In anmore » astrophysical environment, this means that neutron capture is the primary mechanism by which all of the elements with atomic number greater than nickel are produced is neutron capture.« less

  3. Neutron beam effects on spin-exchange-polarized 3He.

    PubMed

    Sharma, M; Babcock, E; Andersen, K H; Barrón-Palos, L; Becker, M; Boag, S; Chen, W C; Chupp, T E; Danagoulian, A; Gentile, T R; Klein, A; Penttila, S; Petoukhov, A; Soldner, T; Tardiff, E R; Walker, T G; Wilburn, W S

    2008-08-22

    We have observed depolarization effects when high intensity cold neutron beams are incident on alkali-metal spin-exchange-polarized 3He cells used as neutron spin filters. This was first observed as a reduction of the maximum attainable 3He polarization and was attributed to a decrease of alkali-metal polarization, which led us to directly measure alkali-metal polarization and spin relaxation over a range of neutron fluxes at Los Alamos Neutron Science Center and Institute Laue-Langevin. The data reveal a new alkali-metal spin-relaxation mechanism that approximately scales as sqrt[phi_{n}], where phi_{n} is the neutron capture-flux density incident on the cell. This is consistent with an effect proportional to the concentration of electron-ion pairs but is much larger than expected from earlier work.

  4. The Prompt Fission Neutron Spectrum of 235U for Einc 0.7-5.0 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez, Jaime A.; Devlin, Matthew James; Haight, Robert Cameron

    2017-03-23

    The Chi-Nu experiment aims to accurately measure the prompt fission neutron spectrum (PFNS) for the major actinides. At the Los Alamos Neutron Science Center (LANSCE), fission can be induced using the white neutron source. Using a two arm time of flight (T.O.F) technique; Chi-Nu presents a preliminary result of the low energy component of the 235U PFNS measured using an array of 22-Lithium glass scintillators.

  5. Isomeric ratio measurements for the radiative neutron capture 176Lu(n,γ) at DANCE

    NASA Astrophysics Data System (ADS)

    Denis-Petit, D.; Roig, O.; Méot, V.; Jandel, M.; Vieira, D. J.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.

    2016-03-01

    The isomeric ratio for the neutron capture reaction 176Lu(n,γ) on the Jπ= 5/2-, 761.7 keV, T1/2=32.8 ns level of 177mLu, has been determined in the neutron energy range 8.5 eV-100 keV for the first time using the DANCE array at the Los Alamos National Laboratory.

  6. Neutron capture measurement on {sup 173}Lu at LANSCE with DANCE detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theroine, C.; Ebran, A.; Meot, V.

    2013-06-10

    The (n,{gamma}) cross section on the unstable {sup 173}Lu(t{sub 1/2} = 1.37y) has been measured from thermal energy up to 200 eV at Los Alamos Neutron Science Center (LANSCE) with The Detector for Advanced Neutron Capture Experiements (DANCE). The main aim of this study is to validate and optimize reaction models for unstable nucleus. A preliminary capture yield will be presented in this paper.

  7. Measurement of the energy and multiplicity distributions of neutrons from the photofission of U 235

    DOE PAGES

    Clarke, S. D.; Wieger, B. M.; Enqvist, A.; ...

    2017-06-20

    For the first time, the complete neutron multiplicity distribution has been measured in this study from the photofission of 235U induced by high-energy spallation γ rays arriving ahead of the neutron beam at the Los Alamos Neutron Science Center. The resulting average neutron multiplicity 3.80 ± 0.08 (stat.) neutrons per photofission is in general agreement with previous measurements. In addition, unique measurements of the prompt fission energy spectrum of the neutrons from photofission and the angular correlation of two-neutron energies emitted in photofission also were made. Finally, the results are compared to calculations with the complete event fission model FREYA.

  8. Laser-based fast-neutron spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pomerantz, Ishay; Kishon, Itay; Kleinschmidt, Annika; Schanz, Victor A.; Tebartz, Alexandra; Fernández, Juan Carlos; Gautier, Donald C.; Johnson, Randall Philip; Shimada, Tsutomu; Wurden, Glen Anthony; Roth, Markus

    2017-05-01

    Great progress has been made in recent years in realizing compact, laser-based neutron generators. These devices, however, are inapplicable for conducting energy-resolved fast-neutron radiography because of the electromagnetic noise produced by the interaction of a strong laser field with matter. To overcome this limitation, we developed a novel neutron time-of-flight detector, largely immune to electromagnetic noise. The detector is based on plastic scintillator, only a few mm in size, which is coupled to a silicon photo-multiplier by a long optical fiber. I will present results we obtained at the Trident Laser Facility at Los Alamos National Laboratory during the summer of 2016. Using this detector, we recorded high resolution, low-background fast neutron spectra generated by the interaction of laser accelerated deuterons with Beryllium. The quality of these spectra was sufficient to resolve the unique neutron absorption spectra of different elements and thus it is the first demonstration of laser-based fast neutron spectroscopy. I will discuss how this achievement paves the way to realizing compact neutron radiography systems for research, security, and commercial applications.

  9. Measurement of absolute response functions and detection efficiencies of an NE213 scintillator up to 600 MeV

    NASA Astrophysics Data System (ADS)

    Kajimoto, Tsuyoshi; Shigyo, Nobuhiro; Sanami, Toshiya; Ishibashi, Kenji; Haight, Robert C.; Fotiades, Nikolaos

    2011-02-01

    Absolute neutron response functions and detection efficiencies of an NE213 liquid scintillator that was 12.7 cm in diameter and 12.7 cm in thickness were measured for neutron energies between 15 and 600 MeV at the Weapons Neutron Research facility of the Los Alamos Neutron Science Center. The experiment was performed with continuous-energy neutrons on a spallation neutron source by 800-MeV proton incidence. The incident neutron flux was measured using a 238U fission ionization chamber. Measured response functions and detection efficiencies were compared with corresponding calculations using the SCINFUL-QMD code. The calculated and experimental values were in good agreement for data below 70 MeV. However, there were discrepancies in the energy region between 70 and 150 MeV. Thus, the code was partly modified and the revised code provided better agreement with the experimental data.

  10. The weapons effect.

    PubMed

    Benjamin, Arlin James; Bushman, Brad J

    2018-02-01

    In some societies, weapons are plentiful and highly visible. This review examines recent trends in research on the weapons effect, which is the finding that the mere presence of weapons can prime people to behave aggressively. The General Aggression Model provides a theoretical framework to explain why the weapons effect occurs. This model postulates that exposure to weapons increases aggressive thoughts and hostile appraisals, thus explaining why weapons facilitate aggressive behavior. Data from meta-analytic reviews are consistent with the General Aggression Model. These findings have important practical as well as theoretical implications. They suggest that the link between weapons and aggression is very strong in semantic memory, and that merely seeing a weapon can make people more aggressive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Detection of Nuclear Weapons and Materials: Science, Technologies, Observations

    DTIC Science & Technology

    2010-06-04

    extensive use of photons, packets of energy with no rest mass and no electrical charge. Electromagnetic radiation consists of photons, and may be measured...bulk property, expressed as mass per unit volume. In general, the densest materials are those of high Z. These properties may be used to detect...SNM by detecting the time pattern of neutron generation. A subcritical mass of highly enriched uranium or weapons-grade plutonium can support a

  12. Water Supply at Los Alamos 1998-2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard J. Koch; David B. Rogers

    2003-03-01

    For the period 1998 through 2001, the total water used at Los Alamos from all sources ranged from 1325 million gallons (Mg) in 1999 to 1515 Mg in 2000. Groundwater production ranged from 1323 Mg in 1999 to 1506 Mg in 2000 from the Guaje, Pajarito, and Otowi fields. Nonpotable surface water used from Los Alamos reservoir ranged from zero gallons in 2001 to 9.3 Mg in 2000. For years 1998 through 2001, over 99% of all water used at Los Alamos was groundwater. Water use by Los Alamos National Laboratory (LANL) between 1998 and 2001 ranged from 379 Mgmore » in 2000 to 461 Mg in 1998. The LANL water use in 2001 was 393 Mg or 27% of the total water use at Los Alamos. Water use by Los Alamos County ranged from 872 Mg in 1999 to 1137 Mg in 2000, and averaged 1006 Mg/yr. Four new replacement wells in the Guaje field (G-2A, G-3A, G-4A, and G-5A) were drilled in 1998 and began production in 1999; with existing well G-1A, the Guaje field currently has five producing wells. Five of the old Guaje wells (G-1, G-2, G-4, G-5, and G-6) were plugged and abandoned in 1999, and one well (G-3) was abandoned but remains as an observation well for the Guaje field. The long-term water level observations in production and observation (test) wells at Los Alamos are consistent with the formation of a cone of depression in response to water production. The water level decline is gradual and at most has been about 0.7 to 2 ft per year for production wells and from 0.4 to 0.9 ft/yr for observation (test) wells. The largest water level declines have been in the Guaje field where nonpumping water levels were about 91 ft lower in 2001 than in 1951. The initial water levels of the Guaje replacement wells were 32 to 57 ft lower than the initial water levels of adjacent original Guaje wells. When production wells are taken off-line for pump replacement or repair, water levels have returned to within about 25 ft of initial static levels within 6 to 12 months. Thus, the water-level trends suggest no

  13. Combined application of imaging techniques for the characterization and authentication of ancient weapons

    NASA Astrophysics Data System (ADS)

    Salvemini, Filomena; Grazzi, Francesco; Kardjilov, Nikolay; Wieder, Frank; Manke, Ingo; Edge, David; Williams, Alan; Zoppi, Marco

    2017-05-01

    Non-invasive experimental methods play an important role in the field of cultural heritage. Benefiting from the technical progress in recent years, neutron imaging has been demonstrated to complement effectively studies based on surface analysis, allowing for a non-invasive characterization of the whole three-dimensional volume. This study focuses on a kris and a kanjar, two weapons from ancient Asia, to show the potential of the combined use of X-ray and neutron imaging techniques for the characterisation of the manufacturing methods and the authentication of objects of cultural and historical interest.

  14. The Manuel Lujan, Jr. Neutron Scattering Center, LANSCE experiment reports: 1990 Run Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiStravolo, M.A.

    1991-10-01

    This year was the third in which LANSCE ran a formal user program. A call for proposals was issued before the scheduled run cycles, and experiment proposals were submitted by scientists from universities, industry, and other research facilities around the world. An external program advisory committee, which LANSCE shares with the Intense Pulsed Neutron Source (IPNS), Argonne National Laboratory examined the proposals and made recommendations. At LANSCE, neutrons are produced by spallation when a pulsed, 800-MeV proton beam impinges on a tungsten target. The proton pulses are provided by the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator and anmore » associated Proton Storage Ring (PSR), which can alter the intensity, time structure, and repetition rate of the pulses. The LAMPF protons of Line D are shared between the LANSCE target and the Weapons Neutron Research facility, which results in LANSCE spectrometers being available to external users for unclassified research about 80% of each six-month LAMPF run cycle. Measurements of interest to the Los Alamos National Laboratory may also be performed and may occupy up to an additional 20% of the available beam time. These experiments are reviewed by an internal program advisory committee. One hundred thirty-four proposals were submitted for unclassified research and twelve proposals for research of a programmatic nature to the Laboratory. Our definition of beam availability is when the proton current from the PSR exceeds 50% of the planned value. The PSR ran at 65{mu}A current (average) at 20 Hz for most of 1990. All of the scheduled experiments were performed and experiments in support of the LANSCE research program were accomplished during the discretionary periods.« less

  15. Neutron capture cross sections of Kr

    NASA Astrophysics Data System (ADS)

    Fiebiger, Stefan; Baramsai, Bayarbadrakh; Couture, Aaron; Krtička, Milan; Mosby, Shea; Reifarth, René; O'Donnell, John; Rusev, Gencho; Ullmann, John; Weigand, Mario; Wolf, Clemens

    2018-01-01

    Neutron capture and β- -decay are competing branches of the s-process nucleosynthesis path at 85Kr [1], which makes it an important branching point. The knowledge of its neutron capture cross section is therefore essential to constrain stellar models of nucleosynthesis. Despite its importance for different fields, no direct measurement of the cross section of 85Kr in the keV-regime has been performed. The currently reported uncertainties are still in the order of 50% [2, 3]. Neutron capture cross section measurements on a 4% enriched 85Kr gas enclosed in a stainless steel cylinder were performed at Los Alamos National Laboratory (LANL) using the Detector for Advanced Neutron Capture Experiments (DANCE). 85Kr is radioactive isotope with a half life of 10.8 years. As this was a low-enrichment sample, the main contaminants, the stable krypton isotopes 83Kr and 86Kr, were also investigated. The material was highly enriched and contained in pressurized stainless steel spheres.

  16. Neutron spectrum measurements using proton recoil proportional counters: results of measurements of leakage spectra for the Little Boy assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, E.F.; Yule, T.J.

    1984-01-01

    Measurements of degraded fission-neutron spectra using recoil proportional counters are done routinely for studies involving fast reactor mockups. The same techniques are applicable to measurements of neutron spectra required for personnel dosimetry in fast neutron environments. A brief discussion of current applications of these methods together with the results of a measurement made on the LITTLE BOY assembly at Los Alamos are here described.

  17. Beam Loss Measurements at the Los Alamos Proton Storage Ring

    NASA Astrophysics Data System (ADS)

    Spickermann, Thomas

    2005-06-01

    During normal operation the Los Alamos Proton Storage Ring (PSR) accumulates up to 4ṡ1013 protons over 625μs with a repetition rate of 20 Hz, corresponding to a current of 125μA to the Lujan Neutron Science Center. Beam losses in the ring as well as in the extraction beam line and the subsequent activation of material are a limiting factor at these currents. Careful tuning of injection, ring and extraction line is paramount to limiting losses to acceptable levels. Losses are typically not uniform around the ring, but occur in significantly higher levels in certain "hot spots". Here I will report on losses related to the stripper foil which are the dominant source of losses in the ring. First results of a comparison with simulations will also be presented.

  18. Condensed-matter research at the Los Alamos pulsed neutron source (WNR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckert, J.

    1982-01-01

    The experimental program at the WNR in condensed matter research at present is aimed principally at utilizing the high epithermal neutron flux available at a spallation neutron source. Interesting new results have been obtained in several areas including hydrogen vibrations in metals, chemical vibrational spectroscopy and the structure of liquids. For example, extensive vibrational spectra were obtained of hydrogen in Nb which could be described in terms of a three-dimensional localized anharmonic oscillator, deuterium substitution methods were used to determine the variation with 0-0 distance of the hydrogen bending mode frequency in extremely short intramolecular hydrogen bonds, and model-independent partialmore » structure factors were determined for liquid water.« less

  19. Flexible weapons architecture design

    NASA Astrophysics Data System (ADS)

    Pyant, William C., III

    Present day air-delivered weapons are of a closed architecture, with little to no ability to tailor the weapon for the individual engagement. The closed architectures require weaponeers to make the target fit the weapon instead of fitting the individual weapons to a target. The concept of a flexible weapons aims to modularize weapons design using an open architecture shell into which different modules are inserted to achieve the desired target fractional damage while reducing cost and civilian casualties. This thesis shows that the architecture design factors of damage mechanism, fusing, weapons weight, guidance, and propulsion are significant in enhancing weapon performance objectives, and would benefit from modularization. Additionally, this thesis constructs an algorithm that can be used to design a weapon set for a particular target class based on these modular components.

  20. Progress on the Europium Neutron-Capture Study using DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agvaanluvsan, U; Becker, J A; Macri, R A

    2006-09-05

    The accurate measurement of neutron-capture cross sections of the Eu isotopes is important for many reasons including nuclear astrophysics and nuclear diagnostics. Neutron capture excitation functions of {sup 151,153}Eu targets were measured recently using a 4{pi} {gamma}-ray calorimeter array DANCE located at the Los Alamos Neutron Science Center for E{sub n} = 0.1-100 keV. The progress on the data analysis efforts is given in the present paper. The {gamma}-ray multiplicity distributions for the Eu targets and Be backing are significantly different. The {gamma}-ray multiplicity distribution is found to be the same for different neutron energies for both {sup 151}Eu andmore » {sup 153}Eu. The statistical simulation to model the {gamma}-ray decay cascade is summarized.« less

  1. Nuclear weapons modernizations

    NASA Astrophysics Data System (ADS)

    Kristensen, Hans M.

    2014-05-01

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

  2. Neutron capture by hook or by crook

    NASA Astrophysics Data System (ADS)

    Mosby, Shea

    2016-03-01

    The neutron capture reaction is a topic of fundamental interest for both heavy element (A>60) nucleosynthesis and applications in such fields as nuclear energy and defense. The full suite of interesting isotopes ranges from stable nuclei to the most exotic, and it is not possible to directly measure all the relevant reaction rates. The DANCE instrument at Los Alamos provides direct access to the neutron capture reaction for stable and long-lived nuclei, while Apollo coupled to HELIOS at Argonne has been developed as an indirect probe for cases where a direct measurement is impossible. The basic techniques and their implications will be presented, and the status of ongoing experimental campaigns to address neutron capture in the A=60 and A=100 mass regions will be discussed.

  3. Spallation Neutron Source Materials Studies

    NASA Astrophysics Data System (ADS)

    Sommer, W. F.

    1998-04-01

    Operation of accelerator facilities such as Los Alamos Neutron Science Center (LANSCE), ISIS at Rutherford Appleton Laboratory, the Swiss Institute Neutron Source (SINQ) at Paul Scherrer Institute, and others has provided valuable information on materials performance in high energy particle beams and high energy neutron environments. The Accelerator Production of Tritium (APT) project is sponsoring an extensive series of tests on the effect of spallation neutron source environments to physical and mechanical properties of candidate materials such as nickel-based alloys, stainless steel alloys, aluminum alloys and solid target materials such as tungsten. Measurements of corrosion rates of these candidate materials during irradiation and while in contact with flowing coolant water are being made. The APT tests use the irradiation facility in the beam stop area of the LANSCE accelerator using 800 MeV protons as well as the neutron flux-spectrum generated as these protons interact with targets. The initial irradiations were completed in summer 1997, exposing materials to a fluence approaching 4-6 x 10^21 protons/cm^2. Sample retrieval is now underway. Mechanical properties measurements are being conducted at several laboratories. Studies on components used in service have also been initiated.

  4. Neutron and gamma-ray measurements on the LANL Little Boy Comet Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hankins, D.E.

    1983-09-01

    We measured the neutron and gamma-ray dose rates at various distances from the Little Boy Comet Assembly at Los Alamos National Laboratory (LANL), Los Alamos, New Mexico on April 28 and 29, 1983. The distances selected varied from 350 ft to 1860 ft from the assembly, with the latter point being located at the edge of the mesa overlooking Pajarito Canyon. We varied the power levels for the various runs but we have normalized all of them to a single power-level. We also made corrections for the variations in the power-level indicators of the assembly using data provided by LANL.

  5. Zirconia ceramics for excess weapons plutonium waste

    NASA Astrophysics Data System (ADS)

    Gong, W. L.; Lutze, W.; Ewing, R. C.

    2000-01-01

    We synthesized a zirconia (ZrO 2)-based single-phase ceramic containing simulated excess weapons plutonium waste. ZrO 2 has large solubility for other metallic oxides. More than 20 binary systems A xO y-ZrO 2 have been reported in the literature, including PuO 2, rare-earth oxides, and oxides of metals contained in weapons plutonium wastes. We show that significant amounts of gadolinium (neutron absorber) and yttrium (additional stabilizer of the cubic modification) can be dissolved in ZrO 2, together with plutonium (simulated by Ce 4+, U 4+ or Th 4+) and impurities (e.g., Ca, Mg, Fe, Si). Sol-gel and powder methods were applied to make homogeneous, single-phase zirconia solid solutions. Pu waste impurities were completely dissolved in the solid solutions. In contrast to other phases, e.g., zirconolite and pyrochlore, zirconia is extremely radiation resistant and does not undergo amorphization. Baddeleyite (ZrO 2) is suggested as the natural analogue to study long-term radiation resistance and chemical durability of zirconia-based waste forms.

  6. Nuclear weapons modernizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristensen, Hans M.

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludesmore » that new limits on nuclear modernizations are needed.« less

  7. Space Science at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Smith, Karl

    2017-09-01

    The Space Science and Applications group (ISR-1) in the Intelligence and Space Research (ISR) division at the Los Alamos National Laboratory lead a number of space science missions for civilian and defense-related programs. In support of these missions the group develops sensors capable of detecting nuclear emissions and measuring radiations in space including γ-ray, X-ray, charged-particle, and neutron detection. The group is involved in a number of stages of the lifetime of these sensors including mission concept and design, simulation and modeling, calibration, and data analysis. These missions support monitoring of the atmosphere and near-Earth space environment for nuclear detonations as well as monitoring of the local space environment including space-weather type events. Expertise in this area has been established over a long history of involvement with cutting-edge projects continuing back to the first space based monitoring mission Project Vela. The group's interests cut across a large range of topics including non-proliferation, space situational awareness, nuclear physics, material science, space physics, astrophysics, and planetary physics.

  8. On The Export Control Of High Speed Imaging For Nuclear Weapons Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Scott Avery; Altherr, Michael Robert

    Since the Manhattan Project, the use of high-speed photography, and its cousins flash radiography1 and schieleren photography have been a technological proliferation concern. Indeed, like the supercomputer, the development of high-speed photography as we now know it essentially grew out of the nuclear weapons program at Los Alamos2,3,4. Naturally, during the course of the last 75 years the technology associated with computers and cameras has been export controlled by the United States and others to prevent both proliferation among non-P5-nations and technological parity among potential adversaries among P5 nations. Here we revisit these issues as they relate to high-speed photographicmore » technologies and make recommendations about how future restrictions, if any, should be guided.« less

  9. The 235U prompt fission neutron spectrum measured by the Chi-Nu project at LANSCE

    DOE PAGES

    Gomez, J. A.; Devlin, M.; Haight, R. C.; ...

    2017-09-13

    The Chi-Nu experiment aims to accurately measure the prompt fission neutron spectrum for the major actinides. At the Los Alamos Neutron Science Center (LANSCE), fission can be induced with neutrons ranging from 0.7 MeV and above. Using a two arm time-of-flight (TOF) technique, the fission neutrons are measured in one of two arrays: a 22- 6Li glass array for lower energies, or a 54-liquid scintillator array for outgoing energies of 0.5 MeV and greater. Presented here are the collaboration's preliminary efforts at measuring the 235U PFNS.

  10. The 235U prompt fission neutron spectrum measured by the Chi-Nu project at LANSCE

    NASA Astrophysics Data System (ADS)

    Gomez, J. A.; Devlin, M.; Haight, R. C.; O'Donnell, J. M.; Lee, H. Y.; Mosby, S. M.; Taddeucci, T. N.; Kelly, K. J.; Fotiades, N.; Neudecker, D.; White, M. C.; Talou, P.; Rising, M. E.; Solomon, C. J.; Wu, C. Y.; Bucher, B.; Buckner, M. Q.; Henderson, R. A.

    2017-09-01

    The Chi-Nu experiment aims to accurately measure the prompt fission neutron spectrum for the major actinides. At the Los Alamos Neutron Science Center (LANSCE), fission can be induced with neutrons ranging from 0.7 MeV and above. Using a two arm time-of-flight (TOF) technique, the fission neutrons are measured in one of two arrays: a 22-6Li glass array for lower energies, or a 54-liquid scintillator array for outgoing energies of 0.5 MeV and greater. Presented here are the collaboration's preliminary efforts at measuring the 235U PFNS.

  11. Los Alamos Fires From Landsat 7

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On May 9, 2000, the Landsat 7 satellite acquired an image of the area around Los Alamos, New Mexico. The Landsat 7 satellite acquired this image from 427 miles in space through its sensor called the Enhanced Thematic Mapper Plus (ETM+). Evident within the imagery is a view of the ongoing Cerro Grande fire near the town of Los Alamos and the Los Alamos National Laboratory. Combining the high-resolution (30 meters per pixel in this scene) imaging capacity of ETM+ with its multi-spectral capabilities allows scientists to penetrate the smoke plume and see the structure of the fire on the surface. Notice the high-level of detail in the infrared image (bottom), in which burn scars are clearly distinguished from the hotter smoldering and flaming parts of the fire. Within this image pair several features are clearly visible, including the Cerro Grande fire and smoke plume, the town of Los Alamos, the Los Alamos National Laboratory and associated property, and Cerro Grande peak. Combining ETM+ channels 7, 4, and 2 (one visible and two infrared channels) results in a false color image where vegetation appears as bright to dark green (bottom image). Forested areas are generally dark green while herbaceous vegetation is light green. Rangeland or more open areas appear pink to light purple. Areas with extensive pavement or urban development appear light blue or white to purple. Less densely-developed residential areas appear light green and golf courses are very bright green. The areas recently burned appear black. Dark red to bright red patches, or linear features within the burned area, are the hottest and possibly actively burning areas of the fire. The fire is spreading downslope and the front of the fire is readily detectable about 2 kilometers to the west and south of Los Alamos. Combining ETM+ channels 3, 2, and 1 provides a true-color image of the greater Los Alamos region (top image). Vegetation is generally dark to medium green. Forested areas are very dark green

  12. Preliminary neutron and X-ray crystallographic studies of equine cyanomethemoglobin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalevsky, A.Y.; Fisher, S.Z.; Seaver, S.

    2010-08-18

    Room-temperature and 100 K X-ray and room-temperature neutron diffraction data have been measured from equine cyanomethemoglobin to 1.7 {angstrom} resolution using a home source, to 1.6 {angstrom} resolution on NE-CAT at the Advanced Photon Source and to 2.0 {angstrom} resolution on the PCS at Los Alamos Neutron Science Center, respectively. The cyanomethemoglobin is in the R state and preliminary room-temperature electron and neutron scattering density maps clearly show the protonation states of potential Bohr groups. Interestingly, a water molecule that is in the vicinity of the heme group and coordinated to the distal histidine appears to be expelled from thismore » site in the low-temperature structure.« less

  13. Radiative neutron capture cross section from 236U

    NASA Astrophysics Data System (ADS)

    Baramsai, B.; Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Roman, A. R.; Rusev, G.; Walker, C. L.; Couture, A.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Kawano, T.

    2017-08-01

    The 236U(n ,γ ) reaction cross section has been measured for the incident neutron energy range from 10 eV to 800 keV by using the Detector for Advanced Neutron Capture Experiments (DANCE) γ -ray calorimeter at the Los Alamos Neutron Science Center. The cross section was determined with the ratio method, which is a technique that uses the 235U(n ,f ) reaction as a reference. The results of the experiment are reported in the resolved and unresolved resonance energy regions. Individual neutron resonance parameters were obtained below 1 keV incident energy by using the R -matrix code sammy. The cross section in the unresolved resonance region is determined with improved experimental uncertainty. It agrees with both ENDF/B-VII.1 and JEFF-3.2 nuclear data libraries. The results above 10 keV agree better with the JEFF-3.2 library.

  14. Detection system for neutron β decay correlations in the UCNB and Nab experiments

    DOE PAGES

    Broussard, L. J.; Oak Ridge National Lab.; Zeck, B. A.; ...

    2016-12-19

    Here, we describe a detection system designed to precisely measure multiple correlations in neutron β decay. Furthermore, the system is based on thick, large area, highly segmented silicon detectors developed in collaboration with Micron Semiconductor, Ltd. The prototype system meets specifications of energy thresholds below 10 keV, energy resolution of ~3 keV FWHM, and rise time of ~50 ns with 19 of the 127 detector pixels instrumented. We have demonstrated the coincident detection of β particles and recoil protons from neutron β decay, using ultracold neutrons at the Los Alamos Neutron Science Center, . The fully instrumented detection system willmore » be implemented in the UCNB and Nab experiments, to determine the neutron β decay parameters B, a, and b.« less

  15. Characterization and application of a laser-driven intense pulsed neutron source using Trident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, Sven C.

    A team of Los Alamos researchers supported a final campaign to use the Trident laser to produce neutrons, contributed their multidisciplinary expertise to experimentally assess if laser-driven neutron sources can be useful for MaRIE. MaRIE is the Laboratory’s proposed experimental facility for the study of matter-radiation interactions in extremes. Neutrons provide a radiographic probe that is complementary to x-rays and protons, and can address imaging challenges not amenable to those beams. The team's efforts characterize the Laboratory’s responsiveness, flexibility, and ability to apply diverse expertise where needed to perform successful complex experiments.

  16. Comparison of Fast Neutron Detector Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stange, Sy; Mckigney, Edward Allen

    2015-02-09

    This report documents the work performed for the Department of Homeland Security Domestic Nuclear Detection O ce as the project Fast Neutron Detection Evaluation under contract HSHQDC-14-X-00022. This study was performed as a follow-on to the project Study of Fast Neutron Signatures and Measurement Techniques for SNM Detection - DNDO CFP11-100 STA-01. That work compared various detector technologies in a portal monitor con guration, focusing on a comparison between a number of fast neutron detection techniques and two standard thermal neutron detection technologies. The conclusions of the earlier work are contained in the report Comparison of Fast Neutron Detector Technologies.more » This work is designed to address questions raised about assumptions underlying the models built for the earlier project. To that end, liquid scintillators of two di erent sizes{ one a commercial, o -the-shelf (COTS) model of standard dimensions and the other a large, planer module{were characterized at Los Alamos National Laboratory. The results of those measurements were combined with the results of the earlier models to gain a more complete picture of the performance of liquid scintillator as a portal monitor technology.« less

  17. Publications of Los Alamos Research, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheridan, C.J.; McClary, W.J.; Rich, J.A.

    1984-10-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1983. Papers published in 1982 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers releasedmore » as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers publishd in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.« less

  18. Preparation of iridium targets by electrodeposition for neutron capture cross section measurements

    DOE PAGES

    Bond, Evelyn M.; Moody, W. Allen; Arnold, Charles; ...

    2016-03-01

    Here, the preparation of 191Ir and 193Ir electrodeposits for neutron capture cross-section measurements at the detector for advanced neutron capture experiments located at the at Los Alamos Neutron Science Center is described. The electrodeposition of iridium in the desired thickness of 0.4–1 mg/cm 2 is challenging. Better yields and thicknesses were obtained using electrodeposition from isopropyl alcohol solutions than from ammonium sulfate solutions. 191Ir and 193Ir targets were initially prepared using the standard single-sided electrodeposition cell. Iridium electrodepositions using a double-sided electrodeposition cell were developed and were optimized, resulting in thick, uniform iridium deposits. LA UR 15-22475.

  19. Airport-Noise Levels and Annoyance Model (ALAMO) system's reference manual

    NASA Technical Reports Server (NTRS)

    Deloach, R.; Donaldson, J. L.; Johnson, M. J.

    1986-01-01

    The airport-noise levels and annoyance model (ALAMO) is described in terms of the constituent modules, the execution of ALAMO procedure files, necessary for system execution, and the source code documentation associated with code development at Langley Research Center. The modules constituting ALAMO are presented both in flow graph form, and through a description of the subroutines and functions that comprise them.

  20. Large Cleaner Detectors for the UCN τ Neutron Lifetime Experiment

    NASA Astrophysics Data System (ADS)

    Gonzalez, Francisco; UCNtau Collaboration

    2017-09-01

    The UCN τ experiment at Los Alamos National Laboratory measures the neutron β-decay lifetime by storing ultracold neutrons (UCNs) in a magneto-gravitational trap for holding times longer than the neutron's lifetime. Neutrons with energies above the trapping potential can escape the trap, giving rise to a systematic error. To mitigate this effect, a large polyethylene sheet is lowered into the trap to remove the high energy unbound neutrons. High energy UCN upscatter in the polyethylene sheet and leave the trap. Such a ``UCN spectrum cleaner,'' covering half the trap top, was shown to be effective in removing high-energy neutrons in previous run cycles. During this run cycle, the UCN τ collaboration has added two thermal neutron detectors on the spectrum cleaner. The new thermal neutron detectors will monitor high-energy neutrons throughout upcoming run cycles, providing important information on the neutron normalization, spectral cleaning, and heating during storage. These detectors use LiF-ZnS sheets coupled to a wavelength-shifting plastic slab, with silicon photomultipliers attached to the edges. We will present results of the light detection simulation and performance tests of these detectors.

  1. Neutron Imaging Developments at LANSCE

    NASA Astrophysics Data System (ADS)

    Nelson, Ron; Hunter, James; Schirato, Richard; Vogel, Sven; Swift, Alicia; Ickes, Tim; Ward, Bill; Losko, Adrian; Tremsin, Anton

    2015-10-01

    Neutron imaging is complementary to x-ray imaging because of its sensitivity to light elements and greater penetration of high-Z materials. Energy-resolved neutron imaging can provide contrast enhancements for elements and isotopes due to the variations with energy in scattering cross sections due to nuclear resonances. These cross section differences exist due to compound nuclear resonances that are characteristic of each element and isotope, as well as broader resonances at higher energies. In addition, multi-probe imaging, such as combined photon and neutron imaging, is a powerful tool for discerning properties and features in materials that cannot be observed with a single probe. Recently, we have demonstrated neutron imaging, both radiography and computed tomography, using the moderated (Lujan Center) and high-energy (WNR facility) neutron sources at LANSCE. Flat panel x-ray detectors with suitable scintillator-converter screens provide good sensitivity for both low and high neutron energies. Micro-Channel-Plate detectors and iCCD scintillator camera systems that provide the fast time gating needed for energy-resolved imaging have been demonstrated as well. Examples of recent work will be shown including fluid flow in plants and imaging through dense thick objects. This work is funded by the US Department of Energy, National Nuclear Security Administration, and performed by Los Alamos National Security LLC under Contract DE-AC52-06NA25396.

  2. Isomeric ratio measurements for the radiative neutron capture 176Lu(n,γ) at DANCE

    NASA Astrophysics Data System (ADS)

    Denis-Petit, D.; Roig, O.; Méot, V.; Morillon, B.; Romain, P.; Jandel, M.; Kawano, T.; Vieira, D. J.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.

    2017-09-01

    The isomeric ratios for the neutron capture reaction 176Lu(n,γ) to the Jπ = 5/2-, 761.7 keV, T1/2 = 32.8 ns and the Jπ = 15/2+, 1356.9 keV, T1/2 = 11.1 ns levels of 177Lu, have been measured for the first time with the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos National Laboratory. These measured isomeric ratios are compared with TALYS calculations.

  3. Physics Division progress report, January 1, 1984-September 30, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, W.E.

    1987-10-01

    This report provides brief accounts of significant progress in development activities and research results achieved by Physics Division personnel during the period January 1, 1984, through September 31, 1986. These efforts are representative of the three main areas of experimental research and development in which the Physics Division serves Los Alamos National Laboratory's and the Nation's needs in defense and basic sciences: (1) defense physics, including the development of diagnostic methods for weapons tests, weapon-related high-energy-density physics, and programs supporting the Strategic Defense Initiative; (2) laser physics and applications, especially to high-density plasmas; and (3) fundamental research in nuclear andmore » particle physics, condensed-matter physics, and biophysics. Throughout the report, emphasis is placed on the design, construction, and application of a variety of advanced, often unique, instruments and instrument systems that maintain the Division's position at the leading edge of research and development in the specific fields germane to its mission. A sampling of experimental systems of particular interest would include the relativistic electron-beam accelerator and its applications to high-energy-density plasmas; pulsed-power facilities; directed energy weapon devices such as free-electron lasers and neutral-particle-beam accelerators; high-intensity ultraviolet and x-ray beam lines at the National Synchrotron Light Source (at Brookhaven National Laboratory); the Aurora KrF ultraviolet laser system for projected use as an inertial fusion driver; antiproton physics facility at CERN; and several beam developments at the Los Alamos Meson Physics Facility for studying nuclear, condensed-matter, and biological physics, highlighted by progress in establishing the Los Alamos Neutron Scattering Center.« less

  4. 242Pu absolute neutron-capture cross section measurement

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.

    2017-09-01

    The absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. During target fabrication, a small amount of 239Pu was added to the active target so that the absolute scale of the 242Pu(n,γ) cross section could be set according to the known 239Pu(n,f) resonance at En,R = 7.83 eV. The relative scale of the 242Pu(n,γ) cross section covers four orders of magnitude for incident neutron energies from thermal to ≈ 40 keV. The cross section reported in ENDF/B-VII.1 for the 242Pu(n,γ) En,R = 2.68 eV resonance was found to be 2.4% lower than the new absolute 242Pu(n,γ) cross section.

  5. Preliminary study on weapon grade uranium utilization in molten salt reactor miniFUJI

    NASA Astrophysics Data System (ADS)

    Aji, Indarta Kuncoro; Waris, A.

    2014-09-01

    Preliminary study on weapon grade uranium utilization in 25MWth and 50MWth of miniFUJI MSR (molten salt reactor) has been carried out. In this study, a very high enriched uranium that we called weapon grade uranium has been employed in UF4 composition. The 235U enrichment is 90 - 95 %. The results show that the 25MWth miniFUJI MSR can get its criticality condition for 1.56 %, 1.76%, and 1.96% of UF4 with 235U enrichment of at least 93%, 90%, and 90%, respectively. In contrast, the 50 MWth miniFUJI reactor can be critical for 1.96% of UF4 with 235U enrichment of at smallest amount 95%. The neutron spectra are almost similar for each power output.

  6. A Sailor in the Los Alamos Navy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judd, D. L.; Meade, Roger Allen

    As part of the War Department’s Manhattan Engineer District (MED), Los Alamos was an Army installation during World War II, complete with a base commander and a brace of MPs. But it was a unique Army installation, having more civilian then military personnel. Even more unique was the work performed by the civilian population, work that required highly educated scientists and engineers. As the breadth, scope, and complexity of the Laboratory’s work increased, more and more technically educated and trained personnel were needed. But, the manpower needs of the nation’s war economy had created a shortage of such people. Tomore » meet its manpower needs, the MED scoured the ranks of the Army for anyone who had technical training and reassigned these men to its laboratories, including Los Alamos, as part of its Special Engineer Detachment (SED). Among the SEDs assigned to Los Alamos was Val Fitch, who was awarded the Nobel Prize in Physics in 1980. Another was Al Van Vessem, who helped stack the TNT for the 100 ton test, bolted together the Trinity device, and rode shotgun with the bomb has it was driven from Los Alamos to ground zero.« less

  7. Environmental analysis of Lower Pueblo/Lower Los Alamos Canyon, Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.

    1994-12-01

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, Pueblo Canyon, and Los Alamos Canyon found residual contamination at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons all the way to the Rio Grande. The largest reservoir of residual radioactivity is in lower Pueblo Canyon, which is on DOE property. However, residual radioactivity does not exceed proposed cleanup criteria in either lower Pueblo or lower Los Alamos Canyons. The three alternatives proposed are (1) to take no action, (2) to construct a sediment trap in lowermore » Pueblo Canyon to prevent further transport of residual radioactivity onto San Ildefonso Indian Pueblo land, and (3) to clean the residual radioactivity from the canyon system. Alternative 2, to cleanup the canyon system, is rejected as a viable alternative. Thousands of truckloads of sediment would have to be removed and disposed of, and this effort is unwarranted by the low levels of contamination present. Residual radioactivity levels, under either present conditions or projected future conditions, will not result in significant radiation doses to persons exposed. Modeling efforts show that future transport activity will not result in any residual radioactivity concentrations higher than those already existing. Thus, although construction of a sediment trap in lower Pueblo Canyon is a viable alternative, this effort also is unwarranted, and the no-action alternative is the preferred alternative.« less

  8. New Generation of Los Alamos Opacity Tables

    NASA Astrophysics Data System (ADS)

    Colgan, James; Kilcrease, D. P.; Magee, N. H.; Sherrill, M. E.; Abdallah, J.; Hakel, P.; Fontes, C. J.; Guzik, J. A.; Mussack, K. A.

    2016-05-01

    We present a new generation of Los Alamos OPLIB opacity tables that have been computed using the ATOMIC code. Our tables have been calculated for all 30 elements from hydrogen through zinc and are publicly available through our website. In this poster we discuss the details of the calculations that underpin the new opacity tables. We also show several recent applications of the use of our opacity tables to solar modeling and other astrophysical applications. In particular, we demonstrate that use of the new opacities improves the agreement between solar models and helioseismology, but does not fully resolve the long-standing `solar abundance' problem. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396.

  9. The IAEA neutron coincidence counting (INCC) and the DEMING least-squares fitting programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krick, M.S.; Harker, W.C.; Rinard, P.M.

    1998-12-01

    Two computer programs are described: (1) the INCC (IAEA or International Neutron Coincidence Counting) program and (2) the DEMING curve-fitting program. The INCC program is an IAEA version of the Los Alamos NCC (Neutron Coincidence Counting) code. The DEMING program is an upgrade of earlier Windows{reg_sign} and DOS codes with the same name. The versions described are INCC 3.00 and DEMING 1.11. The INCC and DEMING codes provide inspectors with the software support needed to perform calibration and verification measurements with all of the neutron coincidence counting systems used in IAEA inspections for the nondestructive assay of plutonium and uranium.

  10. Youths carrying a weapon or using a weapon in a fight: what makes the difference?

    PubMed

    Thurnherr, Judit; Michaud, Pierre-André; Berchtold, André; Akré, Christina; Suris, Joan-Carles

    2009-04-01

    The objective of this study was to characterize weapon-carrying adolescents and to assess whether weapon carriers differ from weapon users. Data were drawn from a cross-sectional school-based survey of 7548 adolescents aged 16-20 years in Switzerland. Youths carrying a weapon were compared with those who do not. Subsequently, weapon carriers were divided into those who had used it in a fight and those who had not. Individual, family, school and social factors were analyzed using bivariate and stepwise multivariate analysis. For both genders, delinquent behavior and being victim of physical violence were associated with weapon carrying. For males, quarreling while intoxicated, being an apprentice, being sensation seekers, having a tattoo, having a poor relationship with parents and practicing unsafe sex were also related to weapon carrying. Compared with weapon carriers, female weapon users were more likely to be regular smokers. Male weapon users were foreign born, urban and apprentices; had poor school connectedness; practiced unsafe sex and quarreled while intoxicated. Carrying a weapon is a relatively frequent behavior among youths in Switzerland and a sizeable proportion of weapon carriers have used it in a fight. Weapon carrying should be part of the clinical assessment and preventive counseling of adolescents. Preventive programs specific for at-risk youth groups need to be developed.

  11. Capabilities for high explosive pulsed power research at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goforth, James H; Oona, Henn; Tasker, Douglas G

    2008-01-01

    Research on topics requiring high magnetic fields and high currents have been pursued using high explosive pulsed power (HEPP) techniques since the 1950s at Los Alamos National Laboratory. We have developed many sophisticated HEPr systems through the years, and most of them depend on technology available from the nuclear weapons program. Through the 1980s and 1990s, our budgets would sustain parallel efforts in zpinch research using both HEPr and capacitor banks. In recent years, many changes have occurred that are driven by concerns such as safety, security, and environment, as well as reduced budgets and downsizing of the National Nuclearmore » Security Administration (NNSA) complex due to the end of the cold war era. In this paper, we review the teclmiques developed to date, and adaptations that are driven by changes in budgets and our changing complex. One new Ranchero-based solid liner z-pinch experimental design is also presented. Explosives that are cast to shape instead of being machined, and initiation systems that depend on arrays of slapper detonators are important new tools. Some materials that are seen as hazardous to the environment are avoided in designs. The process continues to allow a wide range of research however, and there are few, if any, experiments that we have done in the past that could not be perform today. The HErr firing facility at Los Alamos continues to have a 2000 lb. high explosive limit, and our 2.4 MJ capacitor bank remains a mainstay of the effort. Modem diagnostic and data analysis capabilities allow fewer personnel to achieve better results, and in the broad sense we continue to have a robust capability.« less

  12. 32 CFR 234.10 - Weapons.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Weapons. 234.10 Section 234.10 National Defense... PENTAGON RESERVATION § 234.10 Weapons. (a) Except as otherwise authorized under this section, the following are prohibited: (1) Possessing a weapon. (2) Carrying a weapon. (3) Using a weapon. (b) This section...

  13. 32 CFR 234.10 - Weapons.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Weapons. 234.10 Section 234.10 National Defense... PENTAGON RESERVATION § 234.10 Weapons. (a) Except as otherwise authorized under this section, the following are prohibited: (1) Possessing a weapon. (2) Carrying a weapon. (3) Using a weapon. (b) This section...

  14. 32 CFR 234.10 - Weapons.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Weapons. 234.10 Section 234.10 National Defense... PENTAGON RESERVATION § 234.10 Weapons. (a) Except as otherwise authorized under this section, the following are prohibited: (1) Possessing a weapon. (2) Carrying a weapon. (3) Using a weapon. (b) This section...

  15. 32 CFR 234.10 - Weapons.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Weapons. 234.10 Section 234.10 National Defense... PENTAGON RESERVATION § 234.10 Weapons. (a) Except as otherwise authorized under this section, the following are prohibited: (1) Possessing a weapon. (2) Carrying a weapon. (3) Using a weapon. (b) This section...

  16. 32 CFR 234.10 - Weapons.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Weapons. 234.10 Section 234.10 National Defense... PENTAGON RESERVATION § 234.10 Weapons. (a) Except as otherwise authorized under this section, the following are prohibited: (1) Possessing a weapon. (2) Carrying a weapon. (3) Using a weapon. (b) This section...

  17. HEND Maps of Fast Neutrons

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Observations by NASA's 2001 Mars Odyssey spacecraft show a global view of Mars in high-energy, or fast, neutrons. These maps are based on data acquired by the high-energy neutron detector, one of the instruments in the gamma ray spectrometer suite. Fast neutrons, like epithermal neutrons, are sensitive to the presence of hydrogen. Unlike epithermal neutrons, however, they are not affected by the presence of carbon dioxide, which at the time of these observations covered the north polar area as 'dry ice' frost. The low flux of fast neutrons (blue and purple colors) in the north polar region suggests an abundance of hydrogen in the soil comparable to that determined in the south from the flux of epithermal neutrons. These observations were acquired during the first two months of mapping operations. Contours of topography are superimposed on these maps for geographic reference.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson, and NASA's Johnson Space Center, Houston, operate the science instruments. The gamma-ray spectrometer was provided by the University of Arizona in collaboration with the Russian Aviation and Space Agency, which provided the high-energy neutron detector, and the Los Alamos National Laboratories, New Mexico, which provided the neutron spectrometer. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. Spectroscopic Investigations with Dual Neutron-Gamma Scintillators

    NASA Astrophysics Data System (ADS)

    Chowdhury, P.; Brown, T.; Doucet, E.; Lister, C. J.; Morse, C.; Rogers, A. M.; Wilson, G. L.; Devlin, M.; Fotiades, N.; Gomez, J. A.; Mosby, S.

    2017-09-01

    The spectroscopic capabilities of 7Li-enriched Cs27LiYCl6 (C7LYC) dual neutron-gamma scintillators are being tested in diverse application arenas to exploit the excellent pulse-shape discrimination together with the unprecedented pulse height resolution ( 10%) for fast neutrons in the < 8 MeV range via the 35Cl(n,p) reaction. Test experiments include both elastic and inelastic neutron scattering cross-sections on 56Fe at Los Alamos with a pulsed white neutron source, as well as (p,n) and (d,n) reactions on low-Z targets using mono-energetic proton and deuteron beams from the 5.5 MV Van de Graaff accelerator at the UMass Lowell Radiation Laboratory. Tests of waveform digitizers with different sampling rates are also being performed. A key goal is to evaluate whether the low intrinsic efficiency of C7LYC for fast neutrons compared to traditional neutron detectors, such as liquid scintillators, can be effectively offset by the gain in solid angle obtained by positioning the detectors much closer to the target, since the typical long time-of-flight arms for energy resolution are not necessary. Supported by the NNSA Stewardship Science Academic Alliance Program under Grant DE-NA0002932.

  19. [Chemical weapons and chemical terrorism].

    PubMed

    Nakamura, Katsumi

    2005-10-01

    Chemical Weapons are kind of Weapons of Mass Destruction (WMD). They were used large quantities in WWI. Historically, large quantities usage like WWI was not recorded, but small usage has appeared now and then. Chemical weapons are so called "Nuclear weapon for poor countrys" because it's very easy to produce/possession being possible. They are categorized (1) Nerve Agents, (2) Blister Agents, (3) Cyanide (blood) Agents, (4) Pulmonary Agents, (5) Incapacitating Agents (6) Tear Agents from the viewpoint of human body interaction. In 1997 the Chemical Weapons Convention has taken effect. It prohibits chemical weapons development/production, and Organization for the Prohibition of Chemical Weapons (OPCW) verification regime contributes to the chemical weapons disposal. But possibility of possession/use of weapons of mass destruction by terrorist group represented in one by Matsumoto and Tokyo Subway Sarin Attack, So new chemical terrorism countermeasures are necessary.

  20. The Mesoscale Science of the Matter-Radiation Interactions in Extremes (MaRIE) project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kippen, Karen Elizabeth; Montoya, Donald Raymond

    The National Nuclear Security Administration (NNSA) requires the ability to understand and test how material structures, defects, and interfaces determine performance in extreme environments such as in nuclear weapons. To do this, MaRIE will be an x-ray source that is laser-like and brilliant with very fl exible and fast pulses to see at weapons-relevant time scales, and with high enough energy to study critical materials. The Department of Energy (DOE) has determined there is a mission need for MaRIE to deliver this capability. MaRIE can use some of the existing infrastructure of the Los Alamos Neutron Science Center (LANSCE) andmore » its accelerator capability. MaRIE will be built as a strategic partnership of DOE national laboratories and university collaborators.« less

  1. Los Alamos National Laboratory Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neu, Mary

    Mary Neu, Associate Director for Chemistry, Life and Earth Sciences at Los Alamos National Laboratory, delivers opening remarks at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.

  2. Youths Carrying a Weapon or Using a Weapon in a Fight: What Makes the Difference?

    ERIC Educational Resources Information Center

    Thurnherr, Judit; Michaud, Pierre-Andre; Berchtold, Andre; Akre, Christina; Suris, Joan-Carles

    2009-01-01

    The objective of this study was to characterize weapon-carrying adolescents and to assess whether weapon carriers differ from weapon users. Data were drawn from a cross-sectional school-based survey of 7548 adolescents aged 16-20 years in Switzerland. Youths carrying a weapon were compared with those who do not. Subsequently, weapon carriers were…

  3. Radonuclide concentrations in bees and honey in the vicinity of Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fresquez, P.R.; Armstrong, D.R.

    Honeybees are effective monitors of environmental pollution; they forage for P len and nectar over a large area ({congruent}7 km{sup 2}), accumulate contaminants from air, water, plants, and soil, and return to a fixed location (the hive) for sampling. Los Alamos National Laboratory (LANL), in fact, has maintained a network of honeybee colonies within and around LANL for 16 years (1979 to 1994); the objectives for maintaining this honeybee network were to (1) determine the bioavailability of radionuclides in the environment, and (2) the committed effective dose equivalent (CEDE) to people who may consume honey from these beehives (Los Alamosmore » and White Rock/Pajarito Acres lownsites). Of all the radionuclides studied over the years, tritium (314) was consistently picked up by the bees and was most readily transferred to the honey. Tritium in honey collected from hives located within LANL, for example, ranged in concentration from 0.07 Bq mL{sup -1} (1.9 pCi mL{sup -1}) to 27.75 Bq mL{sup -1} (749.9 pCi mL{sup -1}) (LANL Neutron Science Center); the average concentration of {sup 3}H in honey Collected from hives located around the LANL area (perimeter) ranged in concentration from 0.34 Bq mL{sup -1} (9.3 pCi mL{sup -1}) (White Rock/Pajarito Acres townsite) to 3.67 Bq mL{sup -1} (99.3 pCi mL{sup -1}) (Los Alamos townsite). Overall, the CEDE-based on the average concentration of all radionuclides measured over the years-from consuming 5 kg (11 lbs) of honey collected from hives located within the townsites of Los Alamos and White Rock/Pajarito Acres, after regional (background) as been subtracted, was 0.074 {mu}Sv y{sup -1} (0.0074 mrem y{sup -1}) and 0.024 pSv y{sup -1} (0.0024 mrem y{sup -1}), respectively. The highest CEDE, based on the mean + 2 standard deviations (95% confidence level), was 0.334 fiSv y{sup -1} (0.0334 mrem y{sup -1}) (Los Alamos townsitc).« less

  4. Trinity to Trinity 1945-2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moniz, Ernest; Carr, Alan; Bethe, Hans

    The Trinity Test of July 16, 1945 was the first full-scale, real-world test of a nuclear weapon; with the new Trinity supercomputer Los Alamos National Laboratory's goal is to do this virtually, in 3D. Trinity was the culmination of a fantastic effort of groundbreaking science and engineering by hundreds of men and women at Los Alamos and other Manhattan Project sites. It took them less than two years to change the world. The Laboratory is marking the 70th anniversary of the Trinity Test because it not only ushered in the Nuclear Age, but with it the origin of today’s advancedmore » supercomputing. We live in the Age of Supercomputers due in large part to nuclear weapons science here at Los Alamos. National security science, and nuclear weapons science in particular, at Los Alamos National Laboratory have provided a key motivation for the evolution of large-scale scientific computing. Beginning with the Manhattan Project there has been a constant stream of increasingly significant, complex problems in nuclear weapons science whose timely solutions demand larger and faster computers. The relationship between national security science at Los Alamos and the evolution of computing is one of interdependence.« less

  5. Trinity to Trinity 1945-2015

    ScienceCinema

    Moniz, Ernest; Carr, Alan; Bethe, Hans; Morrison, Phillip; Ramsay, Norman; Teller, Edward; Brixner, Berlyn; Archer, Bill; Agnew, Harold; Morrison, John

    2018-01-16

    The Trinity Test of July 16, 1945 was the first full-scale, real-world test of a nuclear weapon; with the new Trinity supercomputer Los Alamos National Laboratory's goal is to do this virtually, in 3D. Trinity was the culmination of a fantastic effort of groundbreaking science and engineering by hundreds of men and women at Los Alamos and other Manhattan Project sites. It took them less than two years to change the world. The Laboratory is marking the 70th anniversary of the Trinity Test because it not only ushered in the Nuclear Age, but with it the origin of today’s advanced supercomputing. We live in the Age of Supercomputers due in large part to nuclear weapons science here at Los Alamos. National security science, and nuclear weapons science in particular, at Los Alamos National Laboratory have provided a key motivation for the evolution of large-scale scientific computing. Beginning with the Manhattan Project there has been a constant stream of increasingly significant, complex problems in nuclear weapons science whose timely solutions demand larger and faster computers. The relationship between national security science at Los Alamos and the evolution of computing is one of interdependence.

  6. Perceived popularity of adolescents who use weapons in violence and adolescents who only carry weapons.

    PubMed

    Wallace, Lacey N

    2017-01-01

    Prior research has found that persistently delinquent youth or more violent youth were less popular than their less delinquent peers (Young, 2013). However, recent research has also found that weapon carrying is associated with being more popular in adolescence (Dijkstra et al., 2010). The present paper examines the perceived popularity of adolescents who carry weapons in comparison to those who both carry and use weapons in acts of violence or threatened violence. Data consist of two waves from the National Longitudinal Study of Adolescent to Adult Health. Analyses use OLS regression with lagged predictors. This paper found no differences in number of friends between weapon carriers and weapon users. However, among both male and female gang members, those who did not use or carry weapons (abstainers) named significantly fewer friends than weapon users. Among females, weapon abstainers both named and were named by significantly more people than weapon users. These differences were not observed for males. Implications of these results and directions for future research are discussed.

  7. Actinide Sputtering Induced by Fission with Ultra-cold Neutrons

    NASA Astrophysics Data System (ADS)

    Shi, Tan; Venuti, Michael; Fellers, Deion; Martin, Sean; Morris, Chris; Makela, Mark

    2017-09-01

    Understanding the effects of actinide sputtering due to nuclear fission is important for a wide range of applications, including nuclear fuel storage, space science, and national defense. A new program at the Los Alamos Neutron Science Center uses ultracold neutrons (UCN) to induce fission in actinides such as uranium and plutonium. By controlling the UCN energy, it is possible to induce fission at the sample surface within a well-defined depth. It is therefore an ideal tool for studying the effects of fission-induced sputtering as a function of interaction depth. Since the mechanism for fission-induced surface damage is not well understood, this work has the potential to deconvolve the various damage mechanisms. During the irradiation with UCN, NaI detectors are used to monitor the fission events and were calibrated by monitoring fission fragments with an organic scintillator. Alpha spectroscopy of the ejected actinide material is performed in an ion chamber to determine the amount of sputtered material. Actinide samples with various sample properties and surface conditions are irradiated and analyzed. In this talk, I will discuss our experimental setup and present the preliminary results from the testing of multiple samples. This work has been supported by Los Alamos National Laboratory and Seaborg Summer Research Fellowship.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putnam, T.M.

    This report presents the objectives, organization, policies, and essential rules and procedures that have been adopted by MP Division and that form the basis of the Health and Safety Program of the Clinton P. Anderson Meson Physics Facility (LAMPF). The facility includes the beam-delivery systems for the Los Alamos Neutron Scattering Center and the Weapons Neutron Research Facility (LANSCE/WNR). The program is designed not only to assure the health and safety of all personnel, including users, in their work at LAMPF, and of MP-Division staff in their work on the LANSCE/WNR beam lines, but also to protect the facility (buildingsmore » and equipment) and the environment. 33 refs., 18 figs., 2 tabs.« less

  9. Nonstrategic Nuclear Weapons

    DTIC Science & Technology

    2017-02-21

    missiles; cruise missiles; and gravity bombs . In contrast with the longer-range “strategic” nuclear weapons, these weapons had a lower profile in policy...States sought to deploy dual-capable aircraft and nuclear bombs at bases on the territories of NATO members in eastern Europe. Neither NATO, as an...ballistic missiles; cruise missiles; and gravity bombs . The United States deployed these weapons with its troops in the field, aboard aircraft, on

  10. Classifying threats with a 14-MeV neutron interrogation system.

    PubMed

    Strellis, Dan; Gozani, Tsahi

    2005-01-01

    SeaPODDS (Sea Portable Drug Detection System) is a non-intrusive tool for detecting concealed threats in hidden compartments of maritime vessels. This system consists of an electronic neutron generator, a gamma-ray detector, a data acquisition computer, and a laptop computer user-interface. Although initially developed to detect narcotics, recent algorithm developments have shown that the system is capable of correctly classifying a threat into one of four distinct categories: narcotic, explosive, chemical weapon, or radiological dispersion device (RDD). Detection of narcotics, explosives, and chemical weapons is based on gamma-ray signatures unique to the chemical elements. Elements are identified by their characteristic prompt gamma-rays induced by fast and thermal neutrons. Detection of RDD is accomplished by detecting gamma-rays emitted by common radioisotopes and nuclear reactor fission products. The algorithm phenomenology for classifying threats into the proper categories is presented here.

  11. Atmospheres of Quiescent Low-Mass Neutron Stars

    NASA Astrophysics Data System (ADS)

    Karpov, Platon; Medin, Zachary; Calder, Alan; Lattimer, James M.

    2016-01-01

    Observations of the neutron stars in quiescent low-mass X-ray binaries are important for determining their masses and radii which can lead to powerful constraints on the dense matter nuclear equation of state. The interpretation of these sources is complex and their spectra differ appreciably from blackbodies. Further progress hinges on reducing the uncertainties stemming from models of neutron star atmospheres. We present a suite of low-temperature neutron star atmospheres of different chemical compositions (pure H and He). Our models are constructed over a range of temperatures [log(T/1 K)=5.3, 5.6, 5.9, 6.2, 6.5] and surface gravities [log(g/1 cm/s2)=14.0, 14.2, 14.4, 14.6]. We generated model atmospheres using zcode - a radiation transfer code developed at Los Alamos National Laboratory. In order to facilitate analytic studies, we developed three-parameter fits to our models, and also compared them to diluted blackbodies in the energy range of 0.4-5 keV (CXO/MGE). From the latter, we extract color-correction factors (fc), which represent the shift of the spectra as compared to a blackbody with the same effective temperature. These diluted blackbodies are also useful for studies of photspheric expansion X-ray bursts. We provide a comparison of our models to previous calculations using the McGill Planar Hydrogen Atmosphere Code (McPHAC). These results enhance our ability to interpret thermal emission from neutron stars and to constrain the mass-radius relationship of these exotic objects.This research was supported in part by the U.S. Department of Energy under grant DE-FG02-87ER40317 and by resources at the Institute for Advanced Computational Science at Stony Brook University. This research was carried out in part under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory and supported by Contract No. DE-AC52-06NA25396.

  12. Improved Determination of the Neutron Lifetime

    NASA Astrophysics Data System (ADS)

    Yue, A.

    2013-10-01

    The most precise determination of the neutron lifetime using the beam method reported a result of τn = (886 . 3 +/- 3 . 4) s. The dominant uncertainties were attributed to the absolute determination of the fluence of the neutron beam (2.7 s). The fluence was determined with a monitor that counted the neutron-induced charged particles from absorption in a thin, well-characterized 6Li deposit. The detection efficiency of the monitor was calculated from the areal density of the deposit, the detector solid angle, and the ENDF/B-VI 6Li(n,t)4He thermal neutron cross section. We have used a second, totally-absorbing neutron detector to directly measure the detection efficiency of the monitor on a monochromatic neutron beam of precisely known wavelength. This method does not rely on the 6Li(n,t)4He cross section or any other nuclear data. The monitor detection efficiency was measured to an uncertainty of 0.06%, which represents a five-fold improvement in uncertainty. We have verified the temporal stability of the monitor with ancillary measurements, and the measured neutron monitor efficiency has been used to improve the fluence determination in the past lifetime experiment. An updated neutron lifetime based on the improved fluence determination will be presented. Work done in collaboration with M. Dewey, D. Gilliam, J. Nico, National Institute of Standards and Technology; G. Greene, University of Tennessee / Oak Ridge National Laboratory; A. Laptev, Los Alamos National Laboratory; W. Snow, Indiana University; and F. Wietfeldt, Tulane University.

  13. Perceived popularity of adolescents who use weapons in violence and adolescents who only carry weapons

    PubMed Central

    Wallace, Lacey N.

    2017-01-01

    Prior research has found that persistently delinquent youth or more violent youth were less popular than their less delinquent peers (Young, 2013). However, recent research has also found that weapon carrying is associated with being more popular in adolescence (Dijkstra et al., 2010). The present paper examines the perceived popularity of adolescents who carry weapons in comparison to those who both carry and use weapons in acts of violence or threatened violence. Data consist of two waves from the National Longitudinal Study of Adolescent to Adult Health. Analyses use OLS regression with lagged predictors. This paper found no differences in number of friends between weapon carriers and weapon users. However, among both male and female gang members, those who did not use or carry weapons (abstainers) named significantly fewer friends than weapon users. Among females, weapon abstainers both named and were named by significantly more people than weapon users. These differences were not observed for males. Implications of these results and directions for future research are discussed. PMID:29104446

  14. Upgrades to the Polarized Neutron Reflectometer Asterix at LANSCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pynn, Roger

    2015-03-16

    We have upgraded the polarized neutron reflectometer, Asterix, at the Lujan Neutron Scattering Center at Los Alamos for the benefit of the research communities that study magnetic and complex-fluid films, both of which play important roles in support of the DOE’s energy mission. The upgrades to the instrument include: • A secondary spectrometer that was integrated with a Huber sample goniometer purchased with other funds just prior to the start of our project. The secondary spectrometer provides a flexible length for the scattered flight path, includes a mechanism to select among 3 alternative polarization analyzers as well as a supportmore » for new neutron detectors. Also included is an optic rail for reproducible positioning of components for Spin Echo Scattering Angle Measurement (SESAME). The entire secondary spectrometer is now non-magnetic, as required for neutron Larmor labeling. • A broad-band neutron polarizer for the incident neutron beam based on the V geometry. • A wide-angle neutron polarization analyzer • A 2d position-sensitive neutron detector • Electromagnetic coils (Wollaston prisms) for SESAME plus the associated power supplies, cooling, safety systems and integration into the data acquisition system. The upgrades allowed a nearly effortless transition between configurations required to serve the polarized neutron reflectometry community, users of the 11 T cryomagnet and users of SESAME.« less

  15. SEDs at Los Alamos: A Personal Memoir

    NASA Astrophysics Data System (ADS)

    Bederson, Benjamin

    2001-03-01

    I have written this personal memoir approximately 55 years after the events I describe. It is based almost exclusively on memory, since apart from the diary I kept while on Tinian, I have few documents concerning it. It covers my service in the U.S. Army's Special Engineering Detachment (SED) in Oak Ridge and Los Alamos in 1944-45, on Tinian island, the launching pad for the bombing raids on Japan, in the summer and fall of 1945, and my return to Los Alamos until my discharge in January 1946.

  16. New transitions and feeding of the Jπ=(8+) isomer in 186Re

    NASA Astrophysics Data System (ADS)

    Matters, D. A.; Fotiades, N.; Carroll, J. J.; Chiara, C. J.; McClory, J. W.; Kawano, T.; Nelson, R. O.; Devlin, M.

    2015-11-01

    The spallation neutron source at the Los Alamos Neutron Science Center Weapons Neutron Research facility was used to populate excited states in 186Re via (n ,2 n γ ) reactions on an enriched 187Re target. Gamma rays were detected with the GErmanium Array for Neutron Induced Excitations spectrometer, a Compton-suppressed array of 18 HPGe detectors. Incident neutron energies were determined by the time-of-flight technique and used to obtain γ -ray excitation functions for the purpose of identifying γ rays by reaction channel. Analysis of the singles γ -ray spectrum gated on the neutron energy range 10 ≤En≤25 MeV resulted in five transitions and one level added to the 186Re level scheme. The additions include the placement of three γ rays at 266.7, 381.2, and 647.7 keV which have been identified as feeding the 2.0 ×105yr , Jπ=(8+) isomer and yield an improved value of 148.2 (5 )keV for the isomer energy. These transitions may have astrophysical implications related to the use of the Re-Os cosmochronometer.

  17. Stockpile Stewardship at Los Alamos(U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webster, Robert B.

    2012-06-29

    Stockpile stewardship is the retention of nuclear weapons in the stockpile beyond their original design life. These older weapons have potential changes inconsistent with the original design intent and military specifications. The Stockpile Stewardship Program requires us to develop high-fidelity, physics-based capabilities to predict, assess, certify and design nuclear weapons without conducting a nuclear test. Each year, the Lab Directors are required to provide an assessment of the safety, security, and reliability our stockpile to the President of the United States. This includes assessing whether a need to return to testing exists. This is a talk to provide an overviewmore » of Stockpile Stewardship's scientific requirements and how stewardship has changed in the absence of nuclear testing. The talk is adapted from an HQ talk to the War college, and historical unclassified talks on weapon's physics.« less

  18. Preliminary study on weapon grade uranium utilization in molten salt reactor miniFUJI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aji, Indarta Kuncoro; Waris, A., E-mail: awaris@fi.itb.ac.id

    Preliminary study on weapon grade uranium utilization in 25MWth and 50MWth of miniFUJI MSR (molten salt reactor) has been carried out. In this study, a very high enriched uranium that we called weapon grade uranium has been employed in UF{sub 4} composition. The {sup 235}U enrichment is 90 - 95 %. The results show that the 25MWth miniFUJI MSR can get its criticality condition for 1.56 %, 1.76%, and 1.96% of UF{sub 4} with {sup 235}U enrichment of at least 93%, 90%, and 90%, respectively. In contrast, the 50 MWth miniFUJI reactor can be critical for 1.96% of UF{sub 4}more » with {sup 235}U enrichment of at smallest amount 95%. The neutron spectra are almost similar for each power output.« less

  19. A different kind of weapon focus: simulated training with ballistic weapons reduces change blindness.

    PubMed

    Taylor, J Eric T; Witt, Jessica K; Pratt, Jay

    2017-01-01

    Attentional allocation is flexibly altered by action-related priorities. Given that tools - and specifically weapons - can affect attentional allocation, we asked whether training with a weapon or holding a weapon during search would affect change detection. In three experiments, participants searched for changes to agents, shootable objects, or environments in the popular flicker paradigm. Participants trained with a simulated weapon or watched a video from the same training perspective and then searched for changes while holding a weapon or a control object. Results show an effect of training, highlighting the importance of sensorimotor experience for the action-relevant allocation of attention, and a possible interaction between training and the object held during search. Simulated training with ballistic weapons reduces change blindness. This result has implications for the interaction between tool use and attentional allocation.

  20. PRESCILA: a new, lightweight neutron rem meter.

    PubMed

    Olsher, Richard H; Seagraves, David T; Eisele, Shawna L; Bjork, Christopher W; Martinez, William A; Romero, Leonard L; Mallett, Michael W; Duran, Michael A; Hurlbut, Charles R

    2004-06-01

    Conventional neutron rem meters currently in use are based on 1960's technology that relies on a large neutron moderator assembly surrounding a thermal detector to achieve a rem-like response function over a limited energy range. Such rem meters present an ergonomic challenge, being heavy and bulky, and have caused injuries during radiation protection surveys. Another defect of traditional rem meters is a poor high-energy response above 10 MeV, which makes them unsuitable for applications at high-energy accelerator facilities. Proton Recoil Scintillator-Los Alamos (PRESCILA) was developed as a low-weight (2 kg) alternative capable of extended energy response, high sensitivity, and moderate gamma rejection. An array of ZnS(Ag) based scintillators is located inside and around a Lucite light guide, which couples the scintillation light to a sideview bialkali photomultiplier tube. The use of both fast and thermal scintillators allows the energy response function to be optimized for a wide range of operational spectra. The light guide and the borated polyethylene frame provide moderation for the thermal scintillator element. The scintillators represent greatly improved versions of the Hornyak and Stedman designs from the 1950's, and were developed in collaboration with Eljen Technology. The inherent pulse height advantage of proton recoils over electron tracks in the phosphor grains eliminates the need for pulse shape discrimination and makes it possible to use the PRESCILA probe with standard pulse height discrimination provided by off-the-shelf health physics counters. PRESCILA prototype probes have been extensively tested at both Los Alamos and the German Bureau of Standards, Physikalisch-Technische Bundesanstalt. Test results are presented for energy response, directional dependence, linearity, sensitivity, and gamma rejection. Initial field tests have been conducted at Los Alamos and these results are also given. It is concluded that PRESCILA offers a viable

  1. Blinding laser weapons.

    PubMed

    Peters, A

    1996-01-01

    At its October 1995 Review Conference, the Convention on Conventional Weapons added a protocol banning the use and transfer of blinding laser weapons. The background to, and significance and limitations of this ban are discussed.

  2. Global Map of Thermal Neutrons

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Observations by NASA's 2001 Mars Odyssey spacecraft show a global view of Mars in low energy, or thermal, neutrons. Thermal neutrons are sensitive to the presence of hydrogen and the presence of carbon dioxide, in this case 'dry ice' frost. The red area at the top of the map indicates that about one meter (three feet) of carbon dioxide frost covers the surface, as it does every Mars winter in the polar regions. Soil enriched by hydrogen is indicated by the deep blue colors on the map, which show a low intensity of thermal neutrons. An enhancement of thermal neutrons close to the south pole, seen as a light green color, indicates the presence of residual carbon dioxide in the south polar cap, even though the annual frost dissipated from that region during southern summer.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson, and NASA's Johnson Space Center, Houston, operate the science instruments. The gamma-ray spectrometer was provided by the University of Arizona in collaboration with the Russian Aviation and Space Agency, which provided the high-energy neutron detector, and the Los Alamos National Laboratories, New Mexico, which provided the neutron spectrometer. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. Federal enclaves: The community culture of Department of Energy cities Livermore, Los Alamos, Oak Ridge

    NASA Astrophysics Data System (ADS)

    Moore, Patrick Kerry

    During the Second World War, the United States Government funded the research of nuclear fusion to create the first atomic weapons. To accomplish this task, the Manhattan Engineering District recruited scientists and engineers to remote sites in New Mexico, Tennessee, and Washington. During the five decades of the Cold War, the congressionally created Atomic Energy Commission, and later the Department of Energy (DOE), funded and operated numerous facilities throughout the United States. The mission of the facilities was to design and stockpile atomic weapons and to further the understanding of nuclear energy. This dissertation examines the influences of the United States federal government on three communities associated with these facilities, Los Alamos, New Mexico, Oak Ridge, Tennessee, and Livermore, California. As isolated secret cities, these environments each created complex community structures. This work identifies how, unlike other community settings, the influences of the federal government, both directly and indirectly, created distinctive patterns of behavior within the residents of each city. Examining these behaviors within the framework of the dissertation's chapters provides the necessary context to understand fully the community culture of these Department of Energy cities. This work addresses contemporary community settings in new ways. It approaches the topic broadly by examining five specific areas of community interaction: social, political, business and economic, educational, and ethical. Through the use of oral history methodology and techniques, the researcher captured significant information from respondents. This approach provides valuable insights to the behavior and interaction of the individual populations while revealing important insights all aspects of each town's community culture.

  4. HEND Maps of Epithermal Neutrons

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Observations by NASA's 2001 Mars Odyssey spacecraft show a global view of Mars in intermediate-energy, or epithermal, neutrons. These maps are based on data acquired by the high-energy neutron detector, one of the instruments in the gamma ray spectrometer suite. Soil enriched by hydrogen is indicated by the purple and deep blue colors on the maps, which show a low intensity of epithermal neutrons. Progressively smaller amounts of hydrogen are shown in the colors light blue, green, yellow and red. Hydrogen in the far north is hidden at this time beneath a layer of carbon dioxide frost (dry ice). These observations were acquired during the first two months of mapping operations. Contours of topography are superimposed on these maps for geographic reference.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson, and NASA's Johnson Space Center, Houston, operate the science instruments. The gamma-ray spectrometer was provided by the University of Arizona in collaboration with the Russian Aviation and Space Agency, which provided the high-energy neutron detector, and the Los Alamos National Laboratories, New Mexico, which provided the neutron spectrometer. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. Imaging of Nuclear Weapon Trainers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwellenbach, David

    2017-12-06

    The Configurable Muon Tracker (CMT) is an adaptation of the existing drift tube detector commercially available from Decision Sciences International Corporation (DSIC). NSTec engineered the CMT around commercially available drift tube assemblies to make a detector that is more versatile than previous drift tube assemblies. The CMT became operational in February 2013. Traditionally, cosmic-ray muon trackers rely on near-vertical trajectory muons for imaging. Since there are scenarios where imaging using vertical trajectory muons is not practical, NSTec designed the CMT specifically for quick configurability to track muons from any trajectory. The CMT was originally designed to be changed from verticalmore » imaging mode to horizontal imaging mode in a few hours with access to a crane or other lifting equipment. In FY14, locations for imaging weapon trainers and SNM were identified and it was determined that lifting equipment would not typically be available in experimental areas. The CMT was further modified and a portable lifting system was developed to allow reconfiguration of the CMT without access to lifting equipment at the facility. This system was first deployed at Los Alamos National Laboratory’s W-division, where several trainers were imaged in both horizontal and vertical modes. Real-time images have been compared in both modes showing that imaging can be done in both modes with the expected longer integration time for horizontal mode. Further imaging and post processing of the data is expected to continue into early FY15.« less

  6. Fifty-one years of Los Alamos Spacecraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenimore, Edward E.

    2014-09-04

    From 1963 to 2014, the Los Alamos National Laboratory was involved in at least 233 spacecraft. There are probably only one or two institutions in the world that have been involved in so many spacecraft. Los Alamos space exploration started with the Vela satellites for nuclear test detection, but soon expanded to ionospheric research (mostly barium releases), radioisotope thermoelectric generators, solar physics, solar wind, magnetospheres, astrophysics, national security, planetary physics, earth resources, radio propagation in the ionosphere, and cubesats. Here, we present a list of the spacecraft, their purpose, and their launch dates for use during RocketFest

  7. A high-field adiabatic fast passage ultracold neutron spin flipper for the UCNA experiment.

    PubMed

    Holley, A T; Broussard, L J; Davis, J L; Hickerson, K; Ito, T M; Liu, C-Y; Lyles, J T M; Makela, M; Mammei, R R; Mendenhall, M P; Morris, C L; Mortensen, R; Pattie, R W; Rios, R; Saunders, A; Young, A R

    2012-07-01

    The UCNA collaboration is making a precision measurement of the β asymmetry (A) in free neutron decay using polarized ultracold neutrons (UCN). A critical component of this experiment is an adiabatic fast passage neutron spin flipper capable of efficient operation in ambient magnetic fields on the order of 1 T. The requirement that it operate in a high field necessitated the construction of a free neutron spin flipper based, for the first time, on a birdcage resonator. The design, construction, and initial testing of this spin flipper prior to its use in the first measurement of A with UCN during the 2007 run cycle of the Los Alamos Neutron Science Center's 800 MeV proton accelerator is detailed. These studies determined the flipping efficiency of the device, averaged over the UCN spectrum present at the location of the spin flipper, to be ̅ε=0.9985(4).

  8. Attempt to Measure (n, xn) Double-Differential Cross Sections for Incident Neutron Energies above 100 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, T.; Kunieda, S.; Shigyo, N.

    The experimental technique for measurement of (n, xn) double differential cross sections for incident neutron energy above 100 MeV has been attempted to be developed with continuous-energy neutrons up to 400 MeV. Neutrons were produced in the spallation reaction by the 800 MeV proton beam, which was incident on a thick, heavily shielded tungsten target at the WNR facility at Los Alamos National Laboratory. The energies of incident neutrons were determined by the time-of-flight method. Emitted neutrons were detected by the recoil proton method. A phoswich detector consisting of NaI(Tl) and NE102A plastic scintillators was used for detecting recoil protons.more » We compared the preliminary experimental cross section data with the calculations by PHITS and QMD codes.« less

  9. Using the Internet in Middle Schools: A Model for Success. A Collaborative Effort between Los Alamos National Laboratory (LANL) and Los Alamos Middle School (LAMS).

    ERIC Educational Resources Information Center

    Addessio, Barbara K.; And Others

    Los Alamos National Laboratory (LANL) developed a model for school networking using Los Alamos Middle School as a testbed. The project was a collaborative effort between the school and the laboratory. The school secured administrative funding for hardware and software; and LANL provided the network architecture, installation, consulting, and…

  10. A survey of macromycete diversity at Los Alamos National Laboratory, Bandelier National Monument, and Los Alamos County; A preliminary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarmie, N.; Rogers, F.J.

    The authors have completed a 5-year survey (1991--1995) of macromycetes found in Los Alamos County, Los Alamos National Laboratory, and Bandelier National Monument. The authors have compiled a database of 1,048 collections, their characteristics, and identifications. The database represents 123 (98%) genera and 175 (73%) species reliably identified. Issues of habitat loss, species extinction, and ecological relationships are addressed, and comparisons with other surveys are made. With this baseline information and modeling of this baseline data, one can begin to understand more about the fungal flora of the area.

  11. Los Alamos, Toshiba probing Fukushima with cosmic rays

    ScienceCinema

    Morris, Christopher

    2018-01-16

    Los Alamos National Laboratory has announced an impending partnership with Toshiba Corporation to use a Los Alamos technique called muon tomography to safely peer inside the cores of the Fukushima Daiichi reactors and create high-resolution images of the damaged nuclear material inside without ever breaching the cores themselves. The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. Muon radiography (also called cosmic-ray radiography) uses secondary particles generated when cosmic rays collide with upper regions of Earth's atmosphere to create images of the objects that the particles, called muons, penetrate. The process is analogous to an X-ray image, except muons are produced naturally and do not damage the materials they contact. Muon radiography has been used before in imaginative applications such as mapping the interior of the Great Pyramid at Giza, but Los Alamos's muon tomography technique represents a vast improvement over earlier technology.

  12. Time gating for energy selection and scatter rejection: High-energy pulsed neutron imaging at LANSCE

    NASA Astrophysics Data System (ADS)

    Swift, Alicia; Schirato, Richard; McKigney, Edward; Hunter, James; Temple, Brian

    2015-09-01

    The Los Alamos Neutron Science Center (LANSCE) is a linear accelerator in Los Alamos, New Mexico that accelerates a proton beam to 800 MeV, which then produces spallation neutron beams. Flight path FP15R uses a tungsten target to generate neutrons of energy ranging from several hundred keV to ~600 MeV. The beam structure has micropulses of sub-ns width and period of 1.784 ns, and macropulses of 625 μs width and frequency of either 50 Hz or 100 Hz. This corresponds to 347 micropulses per macropulse, or 1.74 x 104 micropulses per second when operating at 50 Hz. Using a very fast, cooled ICCD camera (Princeton Instruments PI-Max 4), gated images of various objects were obtained on FP15R in January 2015. Objects imaged included blocks of lead and borated polyethylene; a tungsten sphere; and a tungsten, polyethylene, and steel cylinder. Images were obtained in 36 min or less, with some in as little as 6 min. This is novel because the gate widths (some as narrow as 10 ns) were selected to reject scatter and other signal not of interest (e.g. the gamma flash that precedes the neutron pulse), which has not been demonstrated at energies above 14 MeV. This proof-of-principle experiment shows that time gating is possible above 14MeV and is useful for selecting neutron energy and reducing scatter, thus forming clearer images. Future work (simulation and experimental) is being undertaken to improve camera shielding and system design and to precisely determine optical properties of the imaging system.

  13. New Rad Lab for Los Alamos

    ScienceCinema

    None

    2017-12-09

    The topping out ceremony for a key construction stage in the Los Alamos National Laboratory's newest facility, the Radiological Laboratory Utility & Office Building. This is part of the National Nu...  

  14. Notes on Los Alamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meade, Roger Allen

    In 1954 an unknown author drafted a report, reprinted below, describing the Laboratory and the community as they existed in late 1953. This report, perhaps intended to be crafted into a public relations document, is valuable because it gives us an autobiographical look at Los Alamos during the first half of the 1950s. It has been edited to enhance readability.

  15. Lattice modeling and application of independent component analysis to high power, long bunch beams in the Los Alamos Proton Storage Ring

    NASA Astrophysics Data System (ADS)

    Kolski, Jeffrey

    The linear lattice properties of the Proton Storage Ring (PSR) at the Los Alamos Neutron Science Center (LANSCE) in Los Alamos, NM were measured and applied to determine a better linear accelerator model. We found that the initial model was deficient in predicting the vertical focusing strength. The additional vertical focusing was located through fundamental understanding of experiment and statistically rigorous analysis. An improved model was constructed and compared against the initial model and measurement at operation set points and set points far away from nominal and was shown to indeed be an enhanced model. Independent component analysis (ICA) is a tool for data mining in many fields of science. Traditionally, ICA is applied to turn-by-turn beam position data as a means to measure the lattice functions of the real machine. Due to the diagnostic setup for the PSR, this method is not applicable. A new application method for ICA is derived, ICA applied along the length of the bunch. The ICA modes represent motions within the beam pulse. Several of the dominate ICA modes are experimentally identified.

  16. Pre Incident Planning For The Los Alamos National Laboratory

    DTIC Science & Technology

    2017-12-01

    laboratory was asked to design and build the world’s first atomic bomb . The Los Alamos Fire Department (LAFD) provides emergency response services to...Project: the newly established laboratory was asked to design and build the world’s first atomic bomb . The Los Alamos Fire Department (LAFD) provides...lower priority despite its importance to the responders’ scene safety.20 In a Carolina Fire Rescue EMS Journal article, retired New York City

  17. Physics in the Confrontation of Nuclear Weapons

    NASA Astrophysics Data System (ADS)

    Toevs, James

    2011-03-01

    Had the detonations on 9/11 involved nuclear explosives rather than jet fuel the number of deaths and the costs would have been multiplied by 100 or 1,000. This talk will briefly describe the nuclear threat and then focus on the technologies, both extant and evolving, for the detection and interdiction of clandestine trafficking of nuclear weapons and nuclear and radiological material. The methods vary from passive detection of heat, gamma radiation, neutrons, or other signatures from nuclear material, through radiological approaches to examine contents of vehicles and cargo containers, to active interrogation concepts that are under development. All of these methods have major physics components ranging from simple gamma ray detection as learned in a senior undergraduate lab to the latest ideas in muon production and acceleration.

  18. Neutron imaging with the short-pulse laser driven neutron source at the TRIDENT Laser Facility

    DOE PAGES

    Guler, Nevzat; Volegov, Petr Lvovich; Favalli, Andrea; ...

    2016-10-17

    Emerging approaches to short-pulse laser-driven neutron production offer a possible gateway to compact, low cost, and intense broad spectrum sources for a wide variety of applications. They are based on energetic ions, driven by an intense short-pulse laser, interacting with a converter material to produce neutrons via breakup and nuclear reactions. Recent experiments performed with the high-contrast laser at the Trident laser facility of Los Alamos National Laboratory have demonstrated a laser-driven ion acceleration mechanism operating in the regime of relativistic transparency, featuring a volumetric laser-plasma interaction. This mechanism is distinct from previously studied ones that accelerate ions at themore » laser-target surface. The Trident experiments produced an intense beam of deuterons with an energy distribution extending above 100 MeV. This deuteron beam, when directed at a beryllium converter, produces a forward-directed neutron beam with ~5x10 9 n/sr, in a single laser shot, primarily due to deuteron breakup. The neutron beam has a pulse duration on the order of a few nanoseconds with an energy distribution extending from a few hundreds of keV to almost 80 MeV. For the experiments on neutron-source spot-size measurements, our gated neutron imager was setup to select neutrons in the energy range of 2.5 to 35 MeV. The spot size of neutron emission at the converter was measured by two different imaging techniques, using a knife-edge and a penumbral aperture, in two different experimental campaigns. The neutron-source spot size is measured ~1 mm for both experiments. The measurements and analysis reported here give a spatial characterization for this type of neutron source for the first time. In addition, the forward modeling performed provides an empirical estimate of the spatial characteristics of the deuteron ion-beam. Finally, these experimental observations, taken together, provide essential yet unique data to benchmark and verify theoretical

  19. Neutron imaging with the short-pulse laser driven neutron source at the TRIDENT Laser Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guler, Nevzat; Volegov, Petr Lvovich; Favalli, Andrea

    Emerging approaches to short-pulse laser-driven neutron production offer a possible gateway to compact, low cost, and intense broad spectrum sources for a wide variety of applications. They are based on energetic ions, driven by an intense short-pulse laser, interacting with a converter material to produce neutrons via breakup and nuclear reactions. Recent experiments performed with the high-contrast laser at the Trident laser facility of Los Alamos National Laboratory have demonstrated a laser-driven ion acceleration mechanism operating in the regime of relativistic transparency, featuring a volumetric laser-plasma interaction. This mechanism is distinct from previously studied ones that accelerate ions at themore » laser-target surface. The Trident experiments produced an intense beam of deuterons with an energy distribution extending above 100 MeV. This deuteron beam, when directed at a beryllium converter, produces a forward-directed neutron beam with ~5x10 9 n/sr, in a single laser shot, primarily due to deuteron breakup. The neutron beam has a pulse duration on the order of a few nanoseconds with an energy distribution extending from a few hundreds of keV to almost 80 MeV. For the experiments on neutron-source spot-size measurements, our gated neutron imager was setup to select neutrons in the energy range of 2.5 to 35 MeV. The spot size of neutron emission at the converter was measured by two different imaging techniques, using a knife-edge and a penumbral aperture, in two different experimental campaigns. The neutron-source spot size is measured ~1 mm for both experiments. The measurements and analysis reported here give a spatial characterization for this type of neutron source for the first time. In addition, the forward modeling performed provides an empirical estimate of the spatial characteristics of the deuteron ion-beam. Finally, these experimental observations, taken together, provide essential yet unique data to benchmark and verify theoretical

  20. Nuclear Weapons: Comprehensive Test Ban Treaty

    DTIC Science & Technology

    2007-07-12

    done. Critics raised concerns about the implications of these policies for testing and new weapons. At present, Congress addresses nuclear weapon...future, but there are no plans to do so.’”7 Critics expressed concern about the implications of these policies for testing and new weapons. A statement by...opportunity to design and build new nuclear weapons, and abandon a ten-year-old moratorium on nuclear weapons testing.”8 Another critic felt that

  1. Neutron Capture Measurements on 97Mo with the DANCE Array

    NASA Astrophysics Data System (ADS)

    Walker, Carrie L.

    Neutron capture is a process that is crucial to understanding nucleosynthesis, reactors, and nuclear weapons. Precise knowledge of neutron capture cross-sections and level densities is necessary in order to model these high-flux environments. High-confidence spin and parity assignments for neutron resonances are of critical importance to this end. For nuclei in the A=100 mass region, the p-wave neutron strength function is at a maximum, and the s-wave strength function is at a minimum, producing up to six possible Jpi combinations. Parity determination becomes important to assigning spins in this mass region, and the large number of spin groups adds complexity to the problem. In this work, spins and parities for 97Mo resonances are assigned, and best fit models for photon strength function and level density are determined. The neutron capture-cross section for 97Mo is also determined, as are resonance parameters for neutron energies ranging from 16 eV to 2 keV.

  2. Developing an in-situ Detector of Neutron-Induced Fission for Actinide Sputtering Characterization

    NASA Astrophysics Data System (ADS)

    Fellers, Deion

    2016-09-01

    The physical mechanism describing the transfer of large amounts of energy due to fission in a material is not well understood and represents one of the modern challenges facing nuclear scientists, with applications including nuclear energy and national defense. Fission fragments cause damage to the material from sputtering of matter as they pass through or near the material's surface. We have developed a new technique at the Los Alamos Neutron Science Center for characterizing the ejecta by using ultracold neutrons (neutrons with kinetic energy less than 300 neV) to induce fission at finely controlled depths in an actinide. This program will ultimately provide a detailed description of the properties of the sputtered particles as a function of the depth of the fission in the material. A key component of this project is accurately quantifying the number of neutron induced fissions in the sample. This poster depicts the development of an in-situ detector of neutron-induced fission for the AShES (Actinide Sputtering from ultracold neutron Exposure at the Surface) experiment.

  3. Gamma neutron assay method and apparatus

    DOEpatents

    Cole, J.D.; Aryaeinejad, R.; Greenwood, R.C.

    1995-01-03

    The gamma neutron assay technique is an alternative method to standard safeguards techniques for the identification and assaying of special nuclear materials in a field or laboratory environment, as a tool for dismantlement and destruction of nuclear weapons, and to determine the isotopic ratios for a blend-down program on uranium. It is capable of determining the isotopic ratios of fissionable material from the spontaneous or induced fission of a sample to within approximately 0.5%. This is based upon the prompt coincidence relationships that occur in the fission process and the proton conservation and quasi-conservation of nuclear mass (A) that exists between the two fission fragments. The system is used in both passive (without an external neutron source) and active (with an external neutron source) mode. The apparatus consists of an array of neutron and gamma-ray detectors electronically connected to determine coincident events. The method can also be used to assay radioactive waste which contains fissile material, even in the presence of a high background radiation field. 7 figures.

  4. Gamma neutron assay method and apparatus

    DOEpatents

    Cole, Jerald D.; Aryaeinejad, Rahmat; Greenwood, Reginald C.

    1995-01-01

    The gamma neutron assay technique is an alternative method to standard safeguards techniques for the identification and assaying of special nuclear materials in a field or laboratory environment, as a tool for dismantlement and destruction of nuclear weapons, and to determine the isotopic ratios for a blend-down program on uranium. It is capable of determining the isotopic ratios of fissionable material from the spontaneous or induced fission of a sample to within approximately 0.5%. This is based upon the prompt coincidence relationships that occur in the fission process and the proton conservation and quasi-conservation of nuclear mass (A) that exists between the two fission fragments. The system is used in both passive (without an external neutron source and active (with an external neutron source) mode. The apparatus consists of an array of neutron and gamma-ray detectors electronically connected to determine coincident events. The method can also be used to assay radioactive waste which contains fissile material, even in the presence of a high background radiation field.

  5. Slow fuze on the neutron bomb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frye, A.

    The U.S. government has wrestled with the neutron bomb's production and its potential bargaining powers for years. President Carter's decision not to decide about the neutron bomb has now provoked a furor. The alarm focuses more on the politics of the decision than on its moral, military, and strategic aspects. The political reaction to Carter's deferring production may virtually compel him to produce neutron warheads eventually, unless the Soviet Union displays compensating restraint in the coming months. While the Kremlin has indicated a willingness to forgo production of similar weapons of its own, it is unlikely to accept American demandsmore » for other concessions, such as a limit on Soviet SS-20 missile deployments. Since the issue has not been settled, but merely postponed, further thought should be given to the potential costs and benefits of an eventual deployment. Following a lengthy discussion of all aspects of the issue, the answers for the use of the neutron bomb and as to whether it will make Europe and America more secure remain unanswered. (MCW)« less

  6. Advanced setup for high-pressure and low-temperature neutron diffraction at hydrostatic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lokshin, Konstantin A.; Zhao Yusheng

    2005-06-15

    We describe a design of the experimental setup for neutron diffraction studies at low temperatures and hydrostatic pressure. The significant benefit of the setup, compared to the previous methods, is that it makes possible the simultaneous collection of neutrons diffracted at the 30 deg. -150 deg. range with no contamination by the primary scattering from the sample surroundings and without cutting out the incident and diffracted beams. The suggested design is most useful for third-generation time-of-flight diffractometers and constant wavelength instruments. Application of the setup expands the capabilities of high-pressure neutron diffraction, allowing time-resolved kinetics and structural studies, multihistogram Rietveld,more » and pair distribution function and texture analyses. The high efficiency of the setup was proven for the HIPPO diffractometer at Los Alamos Neutron Science Center under pressures up to 10 kbar and temperatures from 4 to 300 K.« less

  7. Los Alamos Programming Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergen, Benjamin Karl

    This is the PDF of a powerpoint presentation from a teleconference on Los Alamos programming models. It starts by listing their assumptions for the programming models and then details a hierarchical programming model at the System Level and Node Level. Then it details how to map this to their internal nomenclature. Finally, a list is given of what they are currently doing in this regard.

  8. The morality of weapons research.

    PubMed

    Forge, John

    2004-07-01

    I ask whether weapons research is ever justified. Weapons research is identified as the business of the engineer. It is argued that the engineer has responsibility for the uses to which the tools that he designs can be put, and that responsibility extends to the use of weapons. It is maintained that there are no inherently defensive weapons, and hence there is no such thing as 'defensive' weapons research. The issue then is what responsibilities as a professional the engineer has in regard to such research. An account is given to ground the injunction not to provide the means to harm as a duty for the engineers. This account is not, however, absolutist, and as such it allows justifiable exceptions. The answer to my question is thus not that weapons research is never justified but there must be a strong assurance that the results will only be used as a just means in a just cause.

  9. Active interrogation of highly enriched uranium

    NASA Astrophysics Data System (ADS)

    Fairrow, Nannette Lea

    Safeguarding special nuclear material (SNM) in the Department of Energy Complex is vital to the national security of the United States. Active and passive nondestructive assays are used to confirm the presence of SNM in various configurations ranging from waste to nuclear weapons. Confirmation measurements for nuclear weapons are more challenging because the design complicates the detection of a distinct signal for highly enriched uranium. The emphasis of this dissertation was to investigate a new nondestructive assay technique that provides an independent and distinct signal to confirm the presence of highly enriched uranium (HEU). Once completed and tested this assay method could be applied to confirmation measurements of nuclear weapons. The new system uses a 14-MeV neutron source for interrogation and records the arrival time of neutrons between the pulses with a high efficiency detection system. The data is then analyzed by the Feynman reduced variance method. The analysis determined the amount of correlation in the data and provided a unique signature of correlated fission neutrons. Measurements of HEU spheres were conducted at Los Alamos with the new system. Then, Monte Carlo calculations were performed to verify hypothesis made about the behavior of the neutrons in the experiment. Comparisons of calculated counting rates by the Monte Carlo N-Particle Transport Code (MCNP) were made with the experimental data to confirm that the measured response reflected the desired behavior of neutron interactions in the highly enriched uranium. In addition, MCNP calculations of the delayed neutron build-up were compared with the measured data. Based on the results obtained from this dissertation, this measurement method has the potential to be expanded to include mass determinations of highly enriched uranium. Although many safeguards techniques exist for measuring special nuclear material, the number of assays that can be used to confirm HEU in shielded systems is

  10. Scissors Mode of 162 Dy Studied from Resonance Neutron Capture

    DOE PAGES

    Baramsai, B.; Bečvář, F.; Bredeweg, T. A.; ...

    2015-05-28

    Multi-step cascade γ-ray spectra from the neutron capture at isolated resonances of 161Dy nucleus were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The objectives of this experiment were to confirm and possibly extend the spin assignment of s-wave neutron resonances and get new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. The preliminary results show that the scissors mode plays a significant role in all transitions between accessible states of the studied nucleus. The photon strength functions describing well our data are compared to results from 3He-induced reactions,more » (n,γ) experiments on Gd isotopes, and (γ,γ’) reactions.« less

  11. Measurement of the Neutron Beta Decay Lifetime using Magnetically Trapped Ultracold Neutrons

    NASA Astrophysics Data System (ADS)

    Adamek, Evan Robert

    The neutron lifetime is an important parameter in the Standard Model of particle physics, with influences on the electroweak interaction and on Big Bang nucleosynthesis. Measurements of this quantity in cold beam experiments and in experiments using ultracold neutrons (UCN) disagree; this discrepancy may indicate that these measurements possess unaccounted-for systematic errors. The UCNtau experiment at Los Alamos Neutron Science Center (LANSCe) utilizes an asymmetrical magneto-gravitational storage volume with an in-situ vanadium detector. This setup is designed to either avoid or control many of the weaknesses that reduce systematic precision in other UCN lifetime experiments. Controlling for the many measurable errors requires detailed calculation and simulation, aided, for example, by the Geant4 Monte Carlo particle transport toolkit, which has been used to create a high fidelity model of the UCNtau experiment for modeling UCN transport, storage, and detection. Through the course of running the experiment, improvements in knowledge of particle measurement have led to improvements to the transport and to the detectors used in various parts of the experiment. With the experimental setup optimized to account for the subtleties of the measurement, the 2014-2015 beam period at LANSCe generated 85 measurement runs from which we could calculate the storage lifetime. Careful analysis of the effects of background on the vanadium detector assembly allowed for elimination of undesired signal and allowed for the extraction of a preliminary value for the neutron lifetime and the determination of areas to improve for the following run cycle.

  12. DANCEing with the Stars: Measuring Neutron Capture on Unstable Isotopes with DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, A.; Bond, E.; Bredeweg, T. A.

    2009-03-10

    Isotopes heavier than iron are known to be produced in stars through neutron capture processes. Two major processes, the slow (s) and rapid (r) processes are each responsible for 50% of the abundances of the heavy isotopes. The neutron capture cross sections of the isotopes on the s process path reveal information about the expected abundances of the elements as well as stellar conditions and dynamics. Until recently, measurements on unstable isotopes, which are most important for determining stellar temperatures and reaction flow, have not been experimentally feasible. The Detector for Advance Neutron Capture Experiments (DANCE) located at the Losmore » Alamos Neutron Science Center (LANSCE) was designed to perform time-of-flight neutron capture measurements on unstable isotopes for nuclear astrophysics, stockpile stewardship, and reactor development. DANCE is a 4-{pi}BaF{sub 2} scintillator array which can perform measurements on sub-milligram samples of isotopes with half-lives as short as a few hundred days. These cross sections are critical for advancing our understanding of the production of the heavy isotopes.« less

  13. Preliminary investigation of parasitic radioisotope production using the LANL IPF secondary neutron flux

    NASA Astrophysics Data System (ADS)

    Engle, J. W.; Kelsey, C. T.; Bach, H.; Ballard, B. D.; Fassbender, M. E.; John, K. D.; Birnbaum, E. R.; Nortier, F. M.

    2012-12-01

    In order to ascertain the potential for radioisotope production and material science studies using the Isotope Production Facility at Los Alamos National Lab, a two-pronged investigation has been initiated. The Monte Carlo for Neutral Particles eXtended (MCNPX) code has been used in conjunction with the CINDER 90 burnup code to predict neutron flux energy distributions as a result of routine irradiations and to estimate yields of radioisotopes of interest for hypothetical irradiation conditions. A threshold foil activation experiment is planned to study the neutron flux using measured yields of radioisotopes, quantified by HPGe gamma spectroscopy, from representative nuclear reactions with known thresholds up to 50 MeV.

  14. A progress report on UNICOS misuse detection at Los Alamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, J.L.; Jackson, K.A.; Stallings, C.A.

    An effective method for detecting computer misuse is the automatic monitoring and analysis of on-line user activity. During the past year, Los Alamos enhanced its Network Anomaly Detection and Intrusion Reporter (NADIR) to include analysis of user activity on Los Alamos` UNICOS Crays. In near real-time, NADIR compares user activity to historical profiles and tests activity against expert rules. The expert rules express Los Alamos` security policy and define improper or suspicious behavior. NADIR reports suspicious behavior to security auditors and provides tools to aid in follow-up investigations. This paper describes the implementation to date of the UNICOS component ofmore » NADIR, along with the operational experiences and future plans for the system.« less

  15. Los Alamos, Toshiba probing Fukushima with cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Christopher

    2014-06-16

    Los Alamos National Laboratory has announced an impending partnership with Toshiba Corporation to use a Los Alamos technique called muon tomography to safely peer inside the cores of the Fukushima Daiichi reactors and create high-resolution images of the damaged nuclear material inside without ever breaching the cores themselves. The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. Muon radiography (also called cosmic-ray radiography) uses secondary particles generated when cosmic rays collide with upper regions of Earth's atmosphere to create imagesmore » of the objects that the particles, called muons, penetrate. The process is analogous to an X-ray image, except muons are produced naturally and do not damage the materials they contact. Muon radiography has been used before in imaginative applications such as mapping the interior of the Great Pyramid at Giza, but Los Alamos's muon tomography technique represents a vast improvement over earlier technology.« less

  16. Making weapons, talking peace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    York, H.F.

    The memoirs of the author traces his life from his first-year graduate studies in physics at the University of Rochester in 1942 to his present position as Director of the University of California's Institute on Global Conflict and Cooperation. The part of his life involved in making weapons extends from 1942 to 1961. During this period, he worked with E.O. Lawrence on the Manhattan Project and served as director of Livermore after it became the Atomic Energy Commission's second nuclear weapons laboratory. He also served on many government advisory boards and commissions dealing with nuclear and other weapons. In 1961,more » the combination of a heart attack and changes in administration in Washington led York too return to the University of California for the talking peace portion of his life. He has since become a public exponent of arms control and disarmament and the futility of seeking increased security through more and better nuclear weapons. York's explanation of his move from making weapons to talking peace leaves the reader with a puzzle.« less

  17. Do Weapons Facilitate Adolescent Delinquency? An Examination of Weapon Carrying and Delinquency Among Adolescents.

    PubMed

    Emmert, Amanda D; Hall, Gina Penly; Lizotte, Alan J

    2018-03-01

    This article examines whether weapon carrying influences the frequency and variety of violent, property, and drug delinquency adolescents commit through fixed-effects analyses of data from the Rochester Youth Development Study (RYDS). We conclude that weapon carrying contributes to violent, substance, and property delinquency, and delinquent behaviors learned during weapon carrying continue to affect substance and property delinquency long after carrying has ceased.

  18. Neurotoxic Weapons and Syndromes.

    PubMed

    Carota, Antonio; Calabrese, Pasquale; Bogousslavsky, Julien

    2016-01-01

    The modern era of chemical and biological warfare began in World War I with the large-scale production and use of blistering and choking agents (chlorine, phosgene and mustard gases) in the battlefield. International treaties (the 1925 Geneva Protocol, the 1975 Biological and Toxin Weapons Convention and the 1993 Chemical Weapons Convention) banned biological and chemical weapons. However, several countries are probably still engaged in their development. Hence, there is risk of these weapons being used in the future. This chapter will focus on neurotoxic weapons (e.g. nerve agents, chemical and biological neurotoxins, psychostimulants), which act specifically or preeminently on the central nervous system and/or the neuromuscular junction. Deeply affecting the function of the nervous system, these agents either have incapacitating effects or cause clusters of casualties who manifest primary symptoms of encephalopathy, seizures, muscle paralysis and respiratory failure. The neurologist should be prepared both to notice patterns of symptoms and signs that are sufficiently consistent to raise the alarm of neurotoxic attacks and to define specific therapeutic interventions. Additionally, extensive knowledge on neurotoxic syndromes should stimulate scientific research to produce more effective antidotes and antibodies (which are still lacking for most neurotoxic weapons) for rapid administration in aerosolized forms in the case of terrorist or warfare scenarios. © 2016 S. Karger AG, Basel.

  19. Biological assessment for the effluent reduction program, Los Alamos National Laboratory, Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cross, S.P.

    1996-08-01

    This report describes the biological assessment for the effluent recution program proposed to occur within the boundaries of Los Alamos National Laboratory. Potential effects on wetland plants and on threatened and endangered species are discussed, along with a detailed description of the individual outfalls resulting from the effluent reduction program.

  20. Musculoskeletal colloquialisms based on weapons.

    PubMed

    Agrawal, Anuj

    2017-01-01

    Eponyms and colloquialisms are commonly used in orthopaedic literature and convey a great deal of information in a concise fashion. Several orthopaedic conditions have characteristic clinical or radiologic appearances, mimicking the appearance of certain arms or weapons. Most of these are easy to memorise and recognise, provided the orthopaedic surgeon is aware of the colloquialism and familiar with the appearance of the weapon on which it is based. Unfortunately, many such colloquialisms are based on traditional weapons no longer in current use, and their appearances are not familiar to most orthopaedists, creating confusion and difficulty in understanding them. In this paper, we have reviewed the musculoskeletal colloquialisms based on weapons, including a brief description of the weapon with illustrations, highlighting the importance of the colloquialism in diagnosis or treatment of musculoskeletal conditions.

  1. The US nuclear weapon infrastructure and a stable global nuclear weapon regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Immele, John D; Wagner, Richard L

    2009-01-01

    US nuclear weapons capabilities -- extant force structure and nuclear weapons infrastructure as well as declared policy -- influence other nations' nuclear weapons postures, at least to some extent. This influence can be desirable or undesirable, and is, of course, a mixture of both. How strong the influence is, and its nature, are complicated, controversial, and -- in our view -- not well understood but often overstated. Divergent views about this influence and how it might shape the future global nuclear weapons regime seem to us to be the most serious impediment to reaching a national consensus on US weaponsmore » policy, force structure and supporting infrastructure. We believe that a paradigm shift to capability-based deterrence and dissuasion is not only consistent with the realities of the world and how it has changed, but also a desirable way for nuclear weapon postures and infrastructures to evolve. The US and other nuclear states could not get to zero nor even reduce nuclear arms and the nuclear profile much further without learning to manage latent capability. This paper has defined three principles for designing NW infrastructure both at the 'next plateau' and 'near zero.' The US can be a leader in reducing weapons and infrastructure and in creating an international regime in which capability gradually substitutes for weapons in being and is transparent. The current 'strategy' of not having policy or a Congressionally-approved plan for transforming the weapons complex is not leadership. If we can conform the US infrastructure to the next plateau and architect it in such a way that it is aligned with further arms reductions, it will have these benefits: The extant stockpile can be reduced in size, while the smaller stockpile still deters attack on the US and Allies. The capabilities of the infrastructure will dissuade emergence of new challenges/threats; if they emerge, nevertheless, the US will be able to deal with them in time. We will begin to

  2. Wounds and weapons.

    PubMed

    Vogel, H; Dootz, B

    2007-08-01

    X-ray findings are described, which are typical for injuries due to conventional weapons. It is intended to demonstrate that radiographs can show findings characteristic for weapons. The radiograms have been collected in Vietnam, Croatia, Serbia, Bosnia, Chad, Iran, Afghanistan, USA, Great Britain, France, Israel, Palestine, and Germany. Radiograms of injuries due to hand grenades show their content (globes) and cover fragments. The globes are localized regionally in the victim's body. Survivors of cluster bombs show singular or few globes; having been hit by many globes would have been lethal. Shotguns produce characteristic distributions of the pallets and depth of penetration different from those of hand grenades and cluster bombs; cover fragments are lacking. Gunshot wounds (GSW) can be differentiated in those to low velocity bullets, high velocity projectiles, and projectiles, which disintegrate on impact. The radiogram furnishes the information about a dangerous shock and helps to recognize the weapon. Radiograms of victims of explosion show fragments and injuries due to the blast, information valid for therapy planning and prognosis. The radiogram shows details which can be used in therapy, forensic medicine and in war propaganda - examples could be findings typical for cluster bombs and for dumdum bullets; it shows the cruelty of the employment of weapons against humans and the conflict between the goal of medical care and those of military actions. Radiographs may show, which weapon has been employed; they can be read as war reports.

  3. The application of an MPM-MFM method for simulating weapon-target interaction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, X.; Zou, Q.; Zhang, D. Z.

    2005-01-01

    During the past two decades, Los Alamos National Laboratory (LANL) has developed computational algorithms and software for analysis of multiphase flow suitable for high-speed projectile penetration of metallic and nonmetallic materials, using a material point method (MPM)-multiphase flow method (MFM). Recently, ACTA has teamed with LANL to advance a computational algorithm for simulating complex weapon-target interaction for penetrating and exploding munitions, such as tank rounds and artillery shells, as well as non-exploding kinetic energy penetrators. This paper will outline the mathematical basis for the MPM-MFM method as implemented in LANL's CartaBlanca code. CartaBlanca, written entirely in Java using object-oriented design,more » is used to solve complex problems involving (a) failure and penetration of solids, (b) heat transfer, (c) phase change, (d) chemical reactions, and (e) multiphase flow. We will present its application to the penetration of a steel target by a tungsten cylinder and compare results with time-resolved experimental data published by Anderson, et. al., Int. J. Impact Engng., Vol. 16, No. 1, pp. 1-18, 1995.« less

  4. Helicon plasma generator-assisted surface conversion ion source for the production of H(-) ion beams at the Los Alamos Neutron Science Center.

    PubMed

    Tarvainen, O; Rouleau, G; Keller, R; Geros, E; Stelzer, J; Ferris, J

    2008-02-01

    The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H(-) ion beams in a filament-driven discharge. In this kind of an ion source the extracted H(-) beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H(-) converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H(-) ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H(-) ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H(-) production (main discharge) in order to further improve the brightness of extracted H(-) ion beams.

  5. Helicon plasma generator-assisted surface conversion ion source for the production of H- ion beams at the Los Alamos Neutron Science Centera)

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Rouleau, G.; Keller, R.; Geros, E.; Stelzer, J.; Ferris, J.

    2008-02-01

    The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H- ion beams in a filament-driven discharge. In this kind of an ion source the extracted H- beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H- converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H- ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H- ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H- production (main discharge) in order to further improve the brightness of extracted H- ion beams.

  6. Francis Perrin's 1939 Analysis of Uranium Criticality

    NASA Astrophysics Data System (ADS)

    Reed, Cameron

    2012-03-01

    In May 1939, French physicist Francis Perrin published the first numerical estimate of the fast-neutron critical mass of a uranium compound. While his estimate of about 40 metric tons (12 tons if tamped) pertained to uranium oxide of natural isotopic composition as opposed to the enriched uranium that would be required for a nuclear weapon, it is interesting to examine Perrin's physics and to explore the subsequent impact of his paper. In this presentation I will discuss Perrin's model, the likely provenance of his parameter values, and how his work compared to the approach taken by Robert Serber in his 1943 Los Alamos Primer.

  7. Shielding calculations and verifications for the new Radiation Instrument Calibration Facility at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, G. L.; Olsher, R. H.; Seagraves, D. T.

    2002-01-01

    MCNP-4C1 was used to perform the shielding design for the new Central Health Physics Calibration Facility (CHPCF) at Los Alamos National Laboratory (LANL). The problem of shielding the facility was subdivided into three separate components: (1) Transmission; (2) Skyshine; and (3) Maze Streaming/ Transmission. When possible, actual measurements were taken to verify calculation results. The comparison of calculation versus measurement results shows excellent agreement for neutron calculations. For photon comparisons, calculations resulted in conservative estimates of the Effective Dose Equivalent (EDE) compared to measured results. This disagreement in the photon measurements versus calculations is most likely due to several conservativemore » assumptions regarding shield density and composition. For example, reinforcing steel bars (Rebar) in the concrete shield walls were not included in the shield model.« less

  8. Air weapon fatalities.

    PubMed Central

    Milroy, C M; Clark, J C; Carter, N; Rutty, G; Rooney, N

    1998-01-01

    AIMS: To describe characteristics of a series of people accidentally and deliberately killed by air powered weapons. METHODS: Five cases of fatal airgun injury were identified by forensic pathologists and histopathologists. The circumstances surrounding the case, radiological examination, and pathological findings are described. The weapon characteristics are also reported. RESULTS: Three of the victims were adult men, one was a 16 year old boy, and one an eight year old child. Four of the airguns were .22 air rifles, the other a .177 air rifle. Two committed suicide, one person shooting himself in the head, the other in the chest. In both cases the guns were fired at contact range. Three of the cases were classified as accidents: in two the pellet penetrated into the head and in one the chest. CONCLUSIONS: One person each year dies from an air powered weapon injury in the United Kingdom. In addition there is considerable morbidity from airgun injuries. Fatalities and injuries are most commonly accidents, but deliberately inflicted injuries occur. Airguns are dangerous weapons when inappropriately handled and should not be considered as toys. Children should not play with airguns unsupervised. Images PMID:9797730

  9. MCNP (Monte Carlo Neutron Photon) capabilities for nuclear well logging calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forster, R.A.; Little, R.C.; Briesmeister, J.F.

    The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. The general-purpose continuous-energy Monte Carlo code MCNP (Monte Carlo Neutron Photon), part of the LARTCS, provides a computational predictive capability for many applications of interest to the nuclear well logging community. The generalized three-dimensional geometry of MCNP is well suited for borehole-tool models. SABRINA, another component of the LARTCS, is a graphics code that can be used to interactively create a complex MCNP geometry. Users can define many source and tally characteristics with standard MCNP features. The time-dependent capabilitymore » of the code is essential when modeling pulsed sources. Problems with neutrons, photons, and electrons as either single particle or coupled particles can be calculated with MCNP. The physics of neutron and photon transport and interactions is modeled in detail using the latest available cross-section data. A rich collections of variance reduction features can greatly increase the efficiency of a calculation. MCNP is written in FORTRAN 77 and has been run on variety of computer systems from scientific workstations to supercomputers. The next production version of MCNP will include features such as continuous-energy electron transport and a multitasking option. Areas of ongoing research of interest to the well logging community include angle biasing, adaptive Monte Carlo, improved discrete ordinates capabilities, and discrete ordinates/Monte Carlo hybrid development. Los Alamos has requested approval by the Department of Energy to create a Radiation Transport Computational Facility under their User Facility Program to increase external interactions with industry, universities, and other government organizations. 21 refs.« less

  10. Flaws found in Los Alamos safety procedures

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2017-12-01

    A US government panel on nuclear safety has discovered a series of safety issues at the Los Alamos National Laboratory, concluding that government oversight of the lab's emergency preparation has been ineffective.

  11. 75 FR 72829 - Los Alamos Historical Document Retrieval and Assessment (LAHDRA) Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ... Historical Document Retrieval and Assessment (LAHDRA) Project The Centers for Disease Control and Prevention... release of the Final Report of the Los Alamos Historical Document Retrieval and Assessment (LAHDRA)Project... information about historical chemical or radionuclide releases from facilities at the Los Alamos National...

  12. No weapons in the weapons lab

    NASA Astrophysics Data System (ADS)

    Trebino, Rick

    2010-03-01

    I spent 12 years working at a top-secret nuclear-weapons lab that had its own dedicated force of heavily armed security guards. Of course, security-related incidents were rare, so the guards' main challenge was simply staying awake.

  13. Fission fragment yields and total kinetic energy release in neutron-induced fission of235,238U,and239Pu

    NASA Astrophysics Data System (ADS)

    Tovesson, F.; Duke, D.; Geppert-Kleinrath, V.; Manning, B.; Mayorov, D.; Mosby, S.; Schmitt, K.

    2018-03-01

    Different aspects of the nuclear fission process have been studied at Los Alamos Neutron Science Center (LANSCE) using various instruments and experimental techniques. Properties of the fragments emitted in fission have been investigated using Frisch-grid ionization chambers, a Time Projection Chamber (TPC), and the SPIDER instrument which employs the 2v-2E method. These instruments and experimental techniques have been used to determine fission product mass yields, the energy dependent total kinetic energy (TKE) release, and anisotropy in neutron-induced fission of U-235, U-238 and Pu-239.

  14. Why Sexually Selected Weapons Are Not Ornaments.

    PubMed

    McCullough, Erin L; Miller, Christine W; Emlen, Douglas J

    2016-10-01

    The elaboration and diversification of sexually selected weapons remain poorly understood. We argue that progress in this topic has been hindered by a strong bias in sexual selection research, and a tendency for weapons to be conflated with ornaments used in mate choice. Here, we outline how male-male competition and female choice are distinct mechanisms of sexual selection, and why weapons and ornaments are fundamentally different types of traits. We call for research on the factors contributing to weapon divergence, the potential for male-male competition to drive speciation, and the specific use of weapons in the context of direct fights versus displays. Given that weapons are first and foremost fighting structures, biomechanical approaches are an especially promising direction for understanding weapon design. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Measurement of the Total Kinetic Energy Release (TKE) in 232 Th(n,f) with En = 2.59 - 87.31 MeV

    NASA Astrophysics Data System (ADS)

    King, Jonathan; Yanez, Ricardo; Barrett, Jonathan; Loveland, Walter; Tovesson, Fredrik; Fotiades, Nick; Lee, Hye Young

    2015-04-01

    Experimental results for the Total Kinetic Energy Release (TKE) of 232 Th(n,f) with En = 2.59 - 87.31 MeV will be presented. The experiment was performed at the 15R beamline at the Weapons Neutron Research(WNR) facility at LANL-LANSCE. WNR provides a white spectrum of neutrons peaking at 2 MeV and reaching up to 800 MeV, with neutron energies being deduced from measurements of the neutron time of flight (TOF). A thin-backed 232 ThF4 target of 2 cm diameter with a thorium areal density of 178.9 μg/cm2 was placed between two arrays of Hammamatsu PIN diodes (active area 4 cm2 each). The beam was collimated to 1 cm diameter. The target was placed 45 degrees off of the beam axis, with the detectors at 60 degrees and 120 degrees from the beam axis. Over 25,000 fission fragment coincidence events were recorded, allowing for sixteen energy bins between 2.59 and 87.31 MeV. We believe that this will be the most comprehensive published measurement of the TKE for 232 Th(n,f) with En = 2.59 - 87.31 MeV. This work was supported in part by the Director, Office of Energy Research, Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the USDoE under Grant DE-FG06-97ER41026. This work has benefited from the use of the Los Alamos Neutron Science Center at the Los Alamos National Laboratory. This facility is funded by the USDoE under DOE Contract No. DE-AC52-06NA25396.

  16. Sandia National Laboratories: National Security Missions: Nuclear Weapons:

    Science.gov Websites

    Safety & Security Sandia National Laboratories Exceptional service in the national interest & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Twitter YouTube Flickr RSS Top Nuclear Weapons About Nuclear Weapons at Sandia Safety & Security

  17. Space Law and Weapons in Space

    NASA Astrophysics Data System (ADS)

    Mosteshar, Sa'id

    2017-07-01

    Although legal principles to govern space were discussed as early as the mid-1950s, they were not formalized until the Outer Space Treaty (OST) of 1967 was adopted and came into force. The Outer Space Treaty establishes a number of principles affecting the placement of weapons in outer space. In particular, it provides for the peaceful use of earth's moon along with other celestial bodies and prohibits the testing of any types of weapons on such bodies. More generally the OST forbids the placement of nuclear weapons or other weapons of mass destruction in outer space. In addition, there are a number of disarmament treaties and agreements emanating from the UN Office for Disarmament Affairs and the Conference on Disarmament that are relevant to weapons in space. One of the fundamental question that arises is what constitutes a weapon and does its placement in space breach the requirement that outer space be used exclusively for peaceful purposes. For example, does a satellite used to control and direct an armed drone breach the peaceful use provision of the OST? There may be risks that without international norms governments and sub-state groups may acquire and use armed drones in ways that threaten regional stability, laws of war, and the role of domestic rule of law in decisions to use force. The nature of weapons and other questions of laws affecting the placement of weapons in space, as well as the use of space assets for non-peaceful purposes, are thus of real significance when considering space law and weapons in space. Examining the characteristics that render a space object a weapon and the role of intent and perception in the issues that arise become essential aspects to consider. This also necessitates examining dual-use systems common to many space systems and operations.

  18. Concealed weapons detection using electromagnetic resonances

    NASA Astrophysics Data System (ADS)

    Hunt, Allen R.; Hogg, R. Douglas; Foreman, William

    1998-12-01

    Concealed weapons pose a significant threat to both law enforcement and security agency personnel. The uncontrolled environments associated with peacekeeping and the move toward relaxation of concealed weapons laws here in the U.S. provide a strong motivation for developing weapons detection technologies which are noninvasive and can function noncooperatively. Existing weapons detection systems are primarily oriented to detecting metal and require the cooperation of the person being searched. The new generation of detectors under development that focuses primarily on imaging methods, faces problems associated with privacy issues. There remains a need for a weapons detector which is portable, detects weapons remotely, avoids the issues associated with privacy rights, can tell the difference between car keys and a knife, and is affordable enough that one can be issued to every peacekeeper and law enforcement officer. AKELA is developing a concealed weapons detector that uses wideband radar techniques to excite natural electromagnetic resonances that characterize the size, shape, and material composition of an object. Neural network processing is used to classify the difference between weapons and nuisance objects. We have constructed both time and frequency domain test systems and used them to gather experimental data on a variety of armed and unarmed individuals. These experiments have been performed in an environment similar to the operational environment. Preliminary results from these experiments show that it is possible to detect a weapon being carried by an individual from a distance of 10 to 15 feet, and to detect a weapon being concealed behind the back. The power required is about 100 milliwatts. A breadboard system is being fabricated and will be used by AKELA and our law enforcement partner to gather data in operationally realistic situations. While a laptop computer will control the breadboard system, the wideband radar electronics will fit in a box the

  19. Naval Directed-Energy Weapons - No Longer a Future Weapon Concept

    DTIC Science & Technology

    2012-01-01

    DE efforts. High-Energy Laser Weapons HEL weapon systems have been envisioned for a great many years, to include be- ing referred to as Martian “Heat...PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES... ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S

  20. Safety features of subcritical fluid fueled systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, C.R.

    1995-10-01

    Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system operating in a neutron source-supported subcritical mode, using molten salt reactor technology and accelerator-driven proton-neutron spallation. In this paper, the safety features and characteristics of such systems are explored from the perspective of the fundamental nuclear safety objectives that any reactor-type system should address. This exploration is qualitativemore » in nature and uses current vintage solid-fueled reactors as a baseline for comparison. Based on the safety perspectives presented, such systems should be capable of meeting the fundamental nuclear safety objectives. In addition, they should be able to provide the safety robustness desired for advanced reactors. However, the manner in which safety objectives and robustness are achieved is very different from that associated with conventional reactors. Also, there are a number of safety design and operational challenges that will have to be addressed for the safety potential of such systems to be credible.« less

  1. 76 FR 6087 - Draft Weapons Safety Assessment on the Use of Enhanced Weapons; Notice of Availability and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-03

    ... holders, and other stakeholders on a draft guidance document entitled ``Weapons Safety Assessment'' (WSA... weapons under the NRC's proposed rule titled ``Enhanced Weapons, Firearms Background Checks, and Security.... You should not include any site-specific security information in your comments. Federal rulemaking Web...

  2. Nuclear criticality safety staff training and qualifications at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monahan, S.P.; McLaughlin, T.P.

    1997-05-01

    Operations involving significant quantities of fissile material have been conducted at Los Alamos National Laboratory continuously since 1943. Until the advent of the Laboratory`s Nuclear Criticality Safety Committee (NCSC) in 1957, line management had sole responsibility for controlling criticality risks. From 1957 until 1961, the NCSC was the Laboratory body which promulgated policy guidance as well as some technical guidance for specific operations. In 1961 the Laboratory created the position of Nuclear Criticality Safety Office (in addition to the NCSC). In 1980, Laboratory management moved the Criticality Safety Officer (and one other LACEF staff member who, by that time, wasmore » also working nearly full-time on criticality safety issues) into the Health Division office. Later that same year the Criticality Safety Group, H-6 (at that time) was created within H-Division, and staffed by these two individuals. The training and education of these individuals in the art of criticality safety was almost entirely self-regulated, depending heavily on technical interactions between each other, as well as NCSC, LACEF, operations, other facility, and broader criticality safety community personnel. Although the Los Alamos criticality safety group has grown both in size and formality of operations since 1980, the basic philosophy that a criticality specialist must be developed through mentoring and self motivation remains the same. Formally, this philosophy has been captured in an internal policy, document ``Conduct of Business in the Nuclear Criticality Safety Group.`` There are no short cuts or substitutes in the development of a criticality safety specialist. A person must have a self-motivated personality, excellent communications skills, a thorough understanding of the principals of neutron physics, a safety-conscious and helpful attitude, a good perspective of real risk, as well as a detailed understanding of process operations and credible upsets.« less

  3. Environmental surveillance at Los Alamos during 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    This report describes environmental monitoring activities at Los Alamos National Laboratory for 1994. Data were collected to assess external penetrating radiation, airborne emissions, liquid effluents, radioactivity of environmental materials and food stuffs, and environmental compliance.

  4. 48 CFR 25.301-3 - Weapons.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Weapons. 25.301-3 Section... FOREIGN ACQUISITION Contracts Performed Outside the United States 25.301-3 Weapons. The contracting officer shall follow agency procedures and the weapons policy established by the combatant commander or...

  5. 48 CFR 25.301-3 - Weapons.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Weapons. 25.301-3 Section... FOREIGN ACQUISITION Contracts Performed Outside the United States 25.301-3 Weapons. The contracting officer shall follow agency procedures and the weapons policy established by the combatant commander or...

  6. 48 CFR 25.301-3 - Weapons.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Weapons. 25.301-3 Section... FOREIGN ACQUISITION Contracts Performed Outside the United States 25.301-3 Weapons. The contracting officer shall follow agency procedures and the weapons policy established by the combatant commander or...

  7. 48 CFR 25.301-3 - Weapons.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Weapons. 25.301-3 Section... FOREIGN ACQUISITION Contracts Performed Outside the United States 25.301-3 Weapons. The contracting officer shall follow agency procedures and the weapons policy established by the combatant commander or...

  8. 48 CFR 25.301-3 - Weapons.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Weapons. 25.301-3 Section... FOREIGN ACQUISITION Contracts Performed Outside the United States 25.301-3 Weapons. The contracting officer shall follow agency procedures and the weapons policy established by the combatant commander or...

  9. Evaluation of the 239 Pu prompt fission neutron spectrum induced by neutrons of 500 keV and associated covariances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neudecker, D.; Talou, P.; Kawano, T.

    2015-08-01

    We present evaluations of the prompt fission neutron spectrum (PFNS) of (PU)-P-239 induced by 500 keV neutrons, and associated covariances. In a previous evaluation by Talon et al. (2010), surprisingly low evaluated uncertainties were obtained, partly due to simplifying assumptions in the quantification of uncertainties from experiment and model. Therefore, special emphasis is placed here on a thorough uncertainty quantification of experimental data and of the Los Alamos model predicted values entering the evaluation. In addition, the Los Alamos model was extended and an evaluation technique was employed that takes into account the qualitative differences between normalized model predicted valuesmore » and experimental shape data These improvements lead to changes in the evaluated PENS and overall larger evaluated uncertainties than in the previous work. However, these evaluated uncertainties are still smaller than those obtained in a statistical analysis using experimental information only, due to strong model correlations. Hence, suggestions to estimate model defect uncertainties are presented. which lead to more reasonable evaluated uncertainties. The calculated k(eff) of selected criticality benchmarks obtained with these new evaluations agree with each other within their uncertainties despite the different approaches to estimate model defect uncertainties. The k(eff) one standard deviations overlap with some of those obtained using ENDF/B-VILl, albeit their mean values are further away from unity. Spectral indexes for the Jezebel critical assembly calculated with the newly evaluated PFNS agree with the experimental data for selected (n,) and (n,f) reactions, and show improvements for highenergy threshold (n,2n) reactions compared to ENDF/B-VII.l. (C) 2015 Elsevier B.V. All rights reserved.« less

  10. Experimental validation of a coupled neutron-photon inverse radiation transport solver

    NASA Astrophysics Data System (ADS)

    Mattingly, John; Mitchell, Dean J.; Harding, Lee T.

    2011-10-01

    Sandia National Laboratories has developed an inverse radiation transport solver that applies nonlinear regression to coupled neutron-photon deterministic transport models. The inverse solver uses nonlinear regression to fit a radiation transport model to gamma spectrometry and neutron multiplicity counting measurements. The subject of this paper is the experimental validation of that solver. This paper describes a series of experiments conducted with a 4.5 kg sphere of α-phase, weapons-grade plutonium. The source was measured bare and reflected by high-density polyethylene (HDPE) spherical shells with total thicknesses between 1.27 and 15.24 cm. Neutron and photon emissions from the source were measured using three instruments: a gross neutron counter, a portable neutron multiplicity counter, and a high-resolution gamma spectrometer. These measurements were used as input to the inverse radiation transport solver to evaluate the solver's ability to correctly infer the configuration of the source from its measured radiation signatures.

  11. Low temperature nickel titanium iron shape memory alloys: Actuator engineering and investigation of deformation mechanisms using in situ neutron diffraction at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Krishnan, Vinu B.

    Shape memory alloys are incorporated as actuator elements due to their inherent ability to sense a change in temperature and actuate against external loads by undergoing a shape change as a result of a temperature-induced phase transformation. The cubic so-called austenite to the trigonal so-called R-phase transformation in NiTiFe shape memory alloys offers a practical temperature range for actuator operation at low temperatures, as it exhibits a narrow temperature-hysteresis with a desirable fatigue response. Overall, this work is an investigation of selected science and engineering aspects of low temperature NiTiFe shape memory alloys. The scientific study was performed using in situ neutron diffraction measurements at the newly developed low temperature loading capability on the Spectrometer for Materials Research at Temperature and Stress (SMARTS) at Los Alamos National Laboratory and encompasses three aspects of the behavior of Ni46.8Ti50Fe3.2 at 92 K (the lowest steady state temperature attainable with the capability). First, in order to study deformation mechanisms in the R-phase in NiTiFe, measurements were performed at a constant temperature of 92 K under external loading. Second, with the objective of examining NiTiFe in one-time, high-stroke, actuator applications (such as in safety valves), a NiTiFe sample was strained to approximately 5% (the R-phase was transformed to B19' phase in the process) at 92 K and subsequently heated to full strain recovery under a load. Third, with the objective of examining NiTiFe in cyclic, low-stroke, actuator applications (such as in cryogenic thermal switches), a NiTiFe sample was strained to 1% at 92 K and subsequently heated to full strain recovery under load. Neutron diffraction spectra were recorded at selected time and stress intervals during these experiments. The spectra were subsequently used to obtain quantitative information related to the phase-specific strain, texture and phase fraction evolution using the

  12. Global strike hypersonic weapons

    NASA Astrophysics Data System (ADS)

    Lewis, Mark J.

    2017-11-01

    Beginning in the 1940's, the United States has pursued the development of hypersonic technologies, enabling atmospheric flight in excess of five times the speed of sound. Hypersonic flight has application to a range of military and civilian applications, including commercial transport, space access, and various weapons and sensing platforms. A number of flight tests of hypersonic vehicles have been conducted by countries around the world, including the United States, Russia, and China, that could lead the way to future hypersonic global strike weapon systems. These weapons would be especially effective at penetrating conventional defenses, and could pose a significant risk to national security.

  13. Detecting special nuclear material using a neutron time projection chamber

    NASA Astrophysics Data System (ADS)

    Carosi, G.; Bernstein, A.; Bowden, N.; Burke, J.; Carter, D.; Foxe, M.; Heffner, M.; Jovanovic, I.; Mintz, J.; O'Malley, P.

    2010-02-01

    Time projection chambers are 3-dimensional charged particle cameras based on drifting ionization tracks at a known velocity onto an electronic readout plane. These instruments are capable of detecting fast neutrons which are unique signatures of special nuclear material with low natural background rates. Here we describe a neutron Time Projection Chamber (nTPC) developed at Lawrence Livermore National Laboratory (LLNL) which has demonstrated directional sensitivity to fission neutrons along with high rejection of background gamma-ray and electron events. Using a combination hydrogen/methane drift gas at several atmospheres we've demonstrated the ability to point to a Cf-252 source simulating 6kg of weapons grade plutonium at 10's of meters with one hour integration time. Plans for future field deployable devices will also be outlined. )

  14. Non-destructive studies of fuel pellets by neutron resonance absorption radiography and thermal neutron radiography

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Vogel, S. C.; Mocko, M.; Bourke, M. A. M.; Yuan, V.; Nelson, R. O.; Brown, D. W.; Feller, W. B.

    2013-09-01

    Many isotopes in nuclear materials exhibit strong peaks in neutron absorption cross sections in the epithermal energy range (1-1000 eV). These peaks (often referred to as resonances) occur at energies specific to particular isotopes, providing a means of isotope identification and concentration measurements. The high penetration of epithermal neutrons through most materials is very useful for studies where samples consist of heavy-Z elements opaque to X-rays and sometimes to thermal neutrons as well. The characterization of nuclear fuel elements in their cladding can benefit from the development of high resolution neutron resonance absorption imaging (NRAI), enabled by recently developed spatially-resolved neutron time-of-flight detectors. In this technique the neutron transmission of the sample is measured as a function of spatial location and of neutron energy. In the region of the spectra that borders the resonance energy for a particular isotope, the reduction in transmission can be used to acquire an image revealing the 2-dimensional distribution of that isotope within the sample. Provided that the energy of each transmitted neutron is measured by the neutron detector used and the irradiated sample possesses neutron absorption resonances, then isotope-specific location maps can be acquired simultaneously for several isotopes. This can be done even in the case where samples are opaque or have very similar transmission for thermal neutrons and X-rays or where only low concentrations of particular isotopes are present (<0.1 atom% in some cases). Ultimately, such radiographs of isotope location can be utilized to measure isotope concentration, and can even be combined to produce three-dimensional distributions using tomographic methods. In this paper we present the proof-of-principle of NRAI and transmission Bragg edge imaging performed at Flight Path 5 (FP5) at the LANSCE pulsed, moderated neutron source of Los Alamos National Laboratory. A set of urania mockup

  15. 36 CFR 2.4 - Weapons, traps and nets.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Weapons, traps and nets. 2.4... PROTECTION, PUBLIC USE AND RECREATION § 2.4 Weapons, traps and nets. (a)(1) Except as otherwise provided in... prohibited: (i) Possessing a weapon, trap or net (ii) Carrying a weapon, trap or net (iii) Using a weapon...

  16. 36 CFR 2.4 - Weapons, traps and nets.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Weapons, traps and nets. 2.4... PROTECTION, PUBLIC USE AND RECREATION § 2.4 Weapons, traps and nets. (a)(1) Except as otherwise provided in... prohibited: (i) Possessing a weapon, trap or net (ii) Carrying a weapon, trap or net (iii) Using a weapon...

  17. 36 CFR 2.4 - Weapons, traps and nets.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Weapons, traps and nets. 2.4... PROTECTION, PUBLIC USE AND RECREATION § 2.4 Weapons, traps and nets. (a)(1) Except as otherwise provided in... prohibited: (i) Possessing a weapon, trap or net (ii) Carrying a weapon, trap or net (iii) Using a weapon...

  18. 36 CFR 2.4 - Weapons, traps and nets.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Weapons, traps and nets. 2.4... PROTECTION, PUBLIC USE AND RECREATION § 2.4 Weapons, traps and nets. (a)(1) Except as otherwise provided in... prohibited: (i) Possessing a weapon, trap or net (ii) Carrying a weapon, trap or net (iii) Using a weapon...

  19. 36 CFR 2.4 - Weapons, traps and nets.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Weapons, traps and nets. 2.4... PROTECTION, PUBLIC USE AND RECREATION § 2.4 Weapons, traps and nets. (a)(1) Except as otherwise provided in... prohibited: (i) Possessing a weapon, trap or net (ii) Carrying a weapon, trap or net (iii) Using a weapon...

  20. Enhanced trigger for the NIFFTE fissionTPC in presence of high-rate alpha backgrounds

    NASA Astrophysics Data System (ADS)

    Bundgaard, Jeremy; Niffte Collaboration

    2015-10-01

    Nuclear physics and nuclear energy communities call for new, high precision measurements to improve existing fission models and design next generation reactors. The Neutron Induced Fission Fragment Tracking experiment (NIFFTE) has developed the fission Time Projection Chamber (fissionTPC) to measure neutron induced fission with unrivaled precision. The fissionTPC is annually deployed to the Weapons Neutron Research facility at Los Alamos Neutron Science Center where it operates with a neutron beam passing axially through the drift volume, irradiating heavy actinide targets to induce fission. The fissionTPC was developed at the Lawrence Livermore National Laboratory's TPC lab, where it measures spontaneous fission from radioactive sources to characterize detector response, improve performance, and evolve the design. To measure 244Cm, we've developed a fission trigger to reduce the data rate from alpha tracks while maintaining a high fission detection efficiency. In beam, alphas from 239Pu are a large background when detecting fission fragments; implementing the fission trigger will greatly reduce this background. The implementation of the cathode fission trigger in the fissionTPC will be presented along with a detailed study of its efficiency.

  1. Gadolinium-148 and other spallation production cross section measurements for accelerator target facilities

    NASA Astrophysics Data System (ADS)

    Kelley, Karen Corzine

    At the Los Alamos Neutron Science Center accelerator complex, protons are accelerated to 800 MeV and directed to two tungsten targets, Target 4 at the Weapons Neutron Research facility and the 1L target at the Lujan Center. The Department of Energy requires hazard classification analyses to be performed on these targets and places limits on certain radionuclide inventories in the targets to avoid characterizing the facilities as "nuclear facilities." Gadolinium-148 is a radionuclide created from the spallation of tungsten. Allowed isotopic inventories are particularly low for this isotope because it is an alpha-particle emitter with a 75-year half-life. The activity level of Gadolinium-148 is low, but it encompasses almost two-thirds of the total dose burden for the two tungsten targets based on present yield estimates. From a hazard classification standpoint, this severely limits the lifetime of these tungsten targets. The cross section is not well-established experimentally and this is the motivation for measuring the Gadolinium-148 production cross section from tungsten. In a series of experiments at the Weapons Neutron Research facility, Gadolinium-148 production was measured for 600- and 800-MeV protons on tungsten, tantalum, and gold. These experiments used 3 mum thin tungsten, tantalum, and gold foils and 10 mum thin aluminum activation foils. In addition, spallation yields were determined for many short-lived and long-lived spallation products with these foils using gamma and alpha spectroscopy and compared with predictions of the Los Alamos National Laboratory codes CEM2k+GEM2 and MCNPX. The cumulative Gadolinium-148 production cross section measured from tantalum, tungsten, and gold for incident 600-MeV protons were 15.2 +/- 4.0, 8.31 +/- 0.92, and 0.591 +/- 0.155, respectively. The average production cross sections measured at 800 MeV were 28.6 +/- 3.5, 19.4 +/- 1.8, and 3.69 +/- 0.50 for tantalum, tungsten, and gold, respectively. These cumulative

  2. Weapons in Schools. NSSC Resource Paper.

    ERIC Educational Resources Information Center

    Butterfield, George E., Ed.; Turner, Brenda, Ed.

    More than ever, our public school system must confront weapons in schools and become aware of steadily rising statistics on youth homicide and suicide. This report delineates the problem, discusses why children carry weapons to school, and outlines strategies for keeping weapons out of schools and for improving school safety. Although some…

  3. Transmutation of 129I and 237Np using spallation neutrons produced by 1.5, 3.7 and 7.4 GeV protons

    NASA Astrophysics Data System (ADS)

    Wan, J.-S.; Schmidt, Th.; Langrock, E.-J.; Vater, P.; Brandt, R.; Adam, J.; Bradnova, V.; Bamblevski, V. P.; Gelovani, L.; Gridnev, T. D.; Kalinnikov, V. G.; Krivopustov, M. I.; Kulakov, B. A.; Sosnin, A. N.; Perelygin, V. P.; Pronskikh, V. S.; Stegailov, V. I.; Tsoupko-Sitnikov, V. M.; Modolo, G.; Odoj, R.; Phlippen, P.-W.; Zamani-Valassiadou, M.; Adloff, J. C.; Debeauvais, M.; Hashemi-Nezhad, S. R.; Guo, S.-L.; Li, L.; Wang, Y.-L.; Dwivedi, K. K.; Zhuk, I. V.; Boulyga, S. F.; Lomonossova, E. M.; Kievitskaja, A. F.; Rakhno, I. L.; Chigrinov, S. E.; Wilson, W. B.

    2001-05-01

    Small samples of 129I and 237Np, two long-lived radwaste nuclides, were exposed to spallation neutron fluences from relatively small metal targets of lead and uranium, that were surrounded with a 6 cm thick paraffin moderator, and irradiated with 1.5, 3.7 and 7.4 GeV protons. The (n,γ) transmutation rates were determined for these nuclides. Conventional radiochemical La- and U-sensors and a variety of solid-state nuclear track detectors were irradiated simultaneously with secondary neutrons. Compared with results from calculations with well-known cascade codes (LAHET from Los Alamos and DCM/CEM from Dubna), the observed secondary neutron fluences are larger.

  4. The weapon potential of a microbe.

    PubMed

    Casadevall, Arturo; Pirofski, Liise-anne

    2004-06-01

    The designation of a microbe as a potential biological weapon poses the vexing question of how such a decision is made given the many pathogenic microbes that cause disease. Analysis of the properties of microbes that are currently considered biological weapons against humans revealed no obvious relationship to virulence, except that all are pathogenic for humans. Notably, the weapon potential of a microbe rather than its pathogenic properties or virulence appeared to be the major consideration when categorizing certain agents as biological weapons. In an effort to standardize the assessment of the risk that is posed by microbes as biological warfare agents using the basic principles of microbial communicability (defined here as a parameter of transmission) and virulence, a simple formula is proposed for estimating the weapon potential of a microbe.

  5. Mass Yields and Average Total Kinetic Energy Release in Fission for 235U, 238U, and 239Pu

    NASA Astrophysics Data System (ADS)

    Duke, Dana

    2015-10-01

    Mass yield distributions and average total kinetic energy (TKE) in neutron induced fission of 235U, 238U, and 239Pu targets were measured with a gridded ionization chamber. Despite decades of fission research, our understanding of how fragment mass yields and TKE depend on incident neutron energy is limited, especially at higher energies (above 5-10 MeV). Improved accuracy in these quantities is important for nuclear technology as it enhances our simulation capabilities and increases the confidence in diagnostic tools. The data can also guide and validate theoretical fission models where the correlation between the fragment mass and TKE is of particular value for constraining models. The Los Alamos Neutron Science Center - Weapons Neutron Research (LANSCE - WNR) provides a neutron beam with energies from thermal to hundreds of MeV, well-suited for filling in the gaps in existing data and exploring fission behavior in the fast neutron region. The results of the studies on target nuclei 235U, 238U, and 239Pu will be presented with a focus on exploring data trends as a function of neutron energy from thermal through 30 MeV. Results indicate clear evidence of structure due to multi-chance fission in the TKE . LA-UR-15-24761.

  6. Recent Infrasound Calibration Activity at Los Alamos

    NASA Astrophysics Data System (ADS)

    Whitaker, R. W.; Marcillo, O. E.

    2014-12-01

    Absolute infrasound sensor calibration is necessary for estimating source sizes from measured waveforms. This can be an important function in treaty monitoring. The Los Alamos infrasound calibration chamber is capable of absolute calibration. Early in 2014 the Los Alamos infrasound calibration chamber resumed operations in its new location after an unplanned move two years earlier. The chamber has two sources of calibration signals. The first is the original mechanical piston, and the second is a CLD Dynamics Model 316 electro-mechanical unit that can be digitally controlled and provide a richer set of calibration options. During 2008-2010 a number of upgrades were incorporated for improved operation and recording. In this poster we give an overview of recent chamber work on sensor calibrations, calibration with the CLD unit, some measurements with different porous hoses and work with impulse sources.

  7. Toward a nuclear weapons free world?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maaranen, S.A.

    Doubts about the wisdom of relying on nuclear weapons are as old as nuclear weapons themselves. But despite this questioning, nuclear weapons came to be seen as the indispensable element of American (indeed Western) security during the Cold War. By the 1970s and 1980s, however, discontent was growing about the intense US-Soviet nuclear arms competition, as it failed to provide any enduring improvement in security; rather, it was seen as creating ever greater risks and dangers. Arms control negotiations and limitations, adopted as a means to regulate the technical competition, may also have relieved some of the political pressures andmore » dangers. But the balance of terror, and the fears of it, continued. The Strategic Defense Initiative (SDI) under President Reagan was a very different approach to escaping from the precarious protection of nuclear weapons, in that it sought a way to continue to defend the US and the West, but without the catastrophic risks of mutual deterrence. As such, SDI connoted unhappiness with the precarious nuclear balance and, for many, with nuclear weapons in general. The disappearance of the Warsaw Pact, the disintegration of the Soviet Union, and the sudden end of the Cold War seemed to offer a unique opportunity to fashion a new, more peaceful world order that might allow for fading away of nuclear weapons. Scholars have foreseen two different paths to a nuclear free world. The first is a fundamental improvement in the relationships between states such that nuclear weapons are no longer needed. The second path is through technological development, e.g., missile defenses which could provide effective protection against nuclear attacks. The paper discusses nuclear weapon policy in the US, views of other nuclear states, the future of nuclear weapons, and issues in a less-nuclear world.« less

  8. Characterization of a prototype neutron portal monitor detector

    NASA Astrophysics Data System (ADS)

    Nakhoul, Nabil

    The main objective of this thesis is to provide characterization measurements on a prototype neutron portal monitor (NPM) detector constructed at the University of Massachusetts Lowell. NPM detectors are deployed at all United States border crossings and shipping ports to stop the illicit transfer of weapons-grade plutonium (WGPu) into our country. This large prototype detector with its 0.93 square meter face area is based on thermal neutron capture in 6Li as an alternate technology to the current, very expensive, 3He-based NPM. A neutron detection efficiency of 27.5 % is measured with a 252Cf source which has a spontaneous fission neutron spectrum very similar to that of 240Pu in WGPu. Measurements with an intense 137Cs source establish the extreme insensitivity of the prototype NPM to gamma-ray backgrounds with only one additional count registered for 1.1 million incident gamma rays. This detector also has the ability to locate neutron sources to within an angle of a few degrees. Its sensitivity is further demonstrated by discovering in a few-second measurement the presence of a 2 curie PuBe neutron source even at a distance of 95.5 feet. This thesis also covers in considerable detail the design features that give rise to both a high intrinsic neutron detection efficiency and an extreme gamma-ray insensitivity.

  9. FY07 LDRD Final Report Neutron Capture Cross-Section Measurements at DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, W; Agvaanluvsan, U; Wilk, P

    2008-02-08

    We have measured neutron capture cross sections intended to address defense science problems including mix and the Quantification of Margins and Uncertainties (QMU), and provide details about statistical decay of excited nuclei. A major part of this project included developing the ability to produce radioactive targets. The cross-section measurements were made using the white neutron source at the Los Alamos Neutron Science Center, the detector array called DANCE (The Detector for Advanced Neutron Capture Experiments) and targets important for astrophysics and stockpile stewardship. DANCE is at the leading edge of neutron capture physics and represents a major leap forward inmore » capability. The detector array was recently built with LDRD money. Our measurements are a significant part of the early results from the new experimental DANCE facility. Neutron capture reactions are important for basic nuclear science, including astrophysics and the statistics of the {gamma}-ray cascades, and for applied science, including stockpile science and technology. We were most interested in neutron capture with neutron energies in the range between 1 eV and a few hundred keV, with targets important to basic science, and the s-process in particular. Of particular interest were neutron capture cross-section measurements of rare isotopes, especially radioactive isotopes. A strong collaboration between universities and Los Alamos due to the Academic Alliance was in place at the start of our project. Our project gave Livermore leverage in focusing on Livermore interests. The Lawrence Livermore Laboratory did not have a resident expert in cross-section measurements; this project allowed us to develop this expertise. For many radionuclides, the cross sections for destruction, especially (n,{gamma}), are not well known, and there is no adequate model that describes neutron capture. The modeling problem is significant because, at low energies where capture reactions are important, the

  10. Little Boy neutron spectrum below 3 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, A.E.; Bennett, E.F.; Yule, T.J.

    The leakage neutron spectrum from the Little Boy replica has been measured from 12 keV to 3 MeV using a high-resolution /sup 3/He ionization chamber, and from 1 keV to 3 MeV using proton-recoil proportional counters. The /sup 3/He-spectrometer measurements were made at distances of 0.75 and 2.0 m from the active center and at angles of 0/sup 0/, 45/sup 0/, and 90/sup 0/ with respect to the axis of the assembly. Proton-recoil measurments were made at 90/sup 0/ to the assembly axis at distances of 0.75 and 2.0 m, with a shielded measurement made at 2.0 m to estimatemore » background due to scattering. The /sup 3/He spectrometer was calibrated at Los Alamos using monoenergetic /sup 7/Li(p,n)/sup 7/Be neutrons to generate a family of response functions. The proton-recoil counters were calibrated at Argonne by studying the capture of thermal neutrons by nitrogen in the counters, by observation of the 24-keV neutron resonance in iron, and by relating to the known hydrogen content of the counters. The neutron spectrum from Little Boy was found to be highly structured, with peaks corresponding to minima in the iron total neutron cross section. In particular, influence of the 24-keV iron window was evident in both sets of spectra. The measurements provide information for dosimetry calculations and also a valuable intercomparison of neutron spectrometry using the two different detector types. Spectra measured with both detectors are in essential agreement. 8 references, 7 figures, 2 tables.« less

  11. Proliferation of nuclear weapons: opportunities for control and abolition.

    PubMed

    Sidel, Victor W; Levy, Barry S

    2007-09-01

    Nuclear weapons pose a particularly destructive threat. Prevention of the proliferation and use of nuclear weapons is urgently important to public health. "Horizontal" proliferation refers to nation-states or nonstate entities that do not have, but are acquiring, nuclear weapons or developing the capability and materials for producing them. "Vertical" proliferation refers to nation-states that do possess nuclear weapons and are increasing their stockpiles of these weapons, improving the technical sophistication or reliability of their weapons, or developing new weapons. Because nation-states or other entities that wish to use or threaten to use nuclear weapons need methods for delivering those weapons, proliferation of delivery mechanisms must also be prevented. Controlling proliferation--and ultimately abolishing nuclear weapons--involves national governments, intergovernmental organizations, nongovernmental and professional organizations, and society at large.

  12. Fifteen years of the Protein Crystallography Station: the coming of age of macromolecular neutron crystallography.

    PubMed

    Chen, Julian C-H; Unkefer, Clifford J

    2017-01-01

    The Protein Crystallography Station (PCS), located at the Los Alamos Neutron Scattering Center (LANSCE), was the first macromolecular crystallography beamline to be built at a spallation neutron source. Following testing and commissioning, the PCS user program was funded by the Biology and Environmental Research program of the Department of Energy Office of Science (DOE-OBER) for 13 years (2002-2014). The PCS remained the only dedicated macromolecular neutron crystallography station in North America until the construction and commissioning of the MaNDi and IMAGINE instruments at Oak Ridge National Laboratory, which started in 2012. The instrument produced a number of research and technical outcomes that have contributed to the field, clearly demonstrating the power of neutron crystallo-graphy in helping scientists to understand enzyme reaction mechanisms, hydrogen bonding and visualization of H-atom positions, which are critical to nearly all chemical reactions. During this period, neutron crystallography became a technique that increasingly gained traction, and became more integrated into macromolecular crystallography through software developments led by investigators at the PCS. This review highlights the contributions of the PCS to macromolecular neutron crystallography, and gives an overview of the history of neutron crystallography and the development of macromolecular neutron crystallography from the 1960s to the 1990s and onwards through the 2000s.

  13. Geothermal investigation of spring and well waters of the Los Alamos Region, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, F.E.; Sayer, S.

    1980-04-01

    The chemical and isotopic characters of 20 springs and wells in the Los Alamos area were investigated for indications of geothermal potential. These waters were compared with known hot and mineral springs from adjacent Valles Caldera and San Ysidro. All waters in the Los Alamos area are composed of meteoric water. Isotopic data show that the two primary aquifers beneath the Los Alamos region have different recharge areas. Relatively high concentrations of lithium, arsenic, chlorine, boron, and fluorine in some of the Los Alamos wells suggest these waters may contain a small fraction of thermal/mineral water of deep origin. Thermalmore » water probably rises up high-angle faults associated with a graben of the Rio Grande rift now buried by the Pajarito Plateau.« less

  14. Global Map of Epithermal Neutrons

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Observations by NASA's 2001 Mars Odyssey spacecraft show a global view of Mars in intermediate-energy, or epithermal, neutrons. Soil enriched by hydrogen is indicated by the deep blue colors on the map, which show a low intensity of epithermal neutrons. Progressively smaller amounts of hydrogen are shown in the colors light blue, green, yellow and red. The deep blue areas in the polar regions are believed to contain up to 50 percent water ice in the upper one meter (three feet) of the soil. Hydrogen in the far north is hidden at this time beneath a layer of carbon dioxide frost (dry ice). Light blue regions near the equator contain slightly enhanced near-surface hydrogen, which is most likely chemically or physically bound because water ice is not stable near the equator. The view shown here is a map of measurements made during the first three months of mapping using the neutron spectrometer instrument, part of the gamma ray spectrometer instrument suite. The central meridian in this projection is zero degrees longitude. Topographic features are superimposed on the map for geographic reference.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson, and NASA's Johnson Space Center, Houston, operate the science instruments. The gamma-ray spectrometer was provided by the University of Arizona in collaboration with the Russian Aviation and Space Agency, which provided the high-energy neutron detector, and the Los Alamos National Laboratories, New Mexico, which provided the neutron spectrometer. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. Non-Lethal Weapons Program

    Science.gov Websites

    ), 26th Marine Expeditionary Unit (MEU), practice non-lethal control techniques during a non-lethal Skip to main content (Press Enter). Toggle navigation Non-Lethal Weapons Program Search Search JNLWP: Search Search JNLWP: Search Non-Lethal Weapons Program U.S. Department of Defense Non-Lethal

  16. Non-Lethal Chemical Weapons

    DTIC Science & Technology

    2003-04-01

    effects include stupor, confusion, and confabulation with concrete and panoramic illusions and hallucinations , and regression to automatic “phantom...scientifically feasible.” (Federation of American Scientists Article, 2) Opponents of non-lethal weapons contend that because certain individuals...3000.3) According to the Federation of American Scientists , these weapons can be placed into two main categories: incapacitants (including military

  17. Distinguishing among weapons offenders, drug offenders, and weapons and drug offenders based on childhood predictors and adolescent correlates.

    PubMed

    Stephens, Skye; Day, David M

    2013-07-01

    Weapons and drug offences incur a large cost to society and tend to be strongly associated. Improved understanding of their antecedents could inform targeted early intervention and prevention programmes. This study aimed to examine differences in criminal careers, childhood predictors and adolescent correlates among weapons-only offenders, drugs-only offenders and a versatile group of weapons + drugs offenders. We conducted a longitudinal records study of 455 young Canadians charged with drug and/or weapons offences who started their offending in late childhood/early adolescence. Consistent with expectation, differences emerged in their criminal careers as the versatile group had a longer criminal career and desisted from offending at a later age than weapons-only offenders. Against prediction, weapons-only offenders experienced the greatest number of childhood predictors and adolescent correlates. The three offending groups could be differentiated on offending trajectories and developmental factors.In making links between past events and later behaviour, life-course criminology may inform development of effective early intervention and prevention strategies.As weapons-only offenders experience the greatest level of adversity in childhood and adolescence, they may benefit most (of these three groups) from early intervention and prevention programmes.A reduction in weapon carrying and use might be achieved by early identification of children risk factors (e.g. family adversity) and appropriate intervention. Copyright © 2013 John Wiley & Sons, Ltd.

  18. High-pressure and high-temperature neutron reflectometry cell for solid-fluid interface studies

    NASA Astrophysics Data System (ADS)

    Wang, P.; Lerner, A. H.; Taylor, M.; Baldwin, J. K.; Grubbs, R. K.; Majewski, J.; Hickmott, D. D.

    2012-07-01

    A new high pressure-temperature ( P - T Neutron Reflectometry (NR) cell developed at Los Alamos National Laboratory (LANL) is described that significantly extends the capabilities of solid/fluid interface investigations up to 200MPa ( ensuremath ˜ 30000 psi) and 200 ° C. The cell's simple aluminum construction makes it light and easy to operate while thinned neutron windows allow up to 74% neutron transmission. The wide-open neutron window geometry provides a maximum theoretical ensuremath Qz range of 0.31Å-1. Accurate T and P controls are integrated on the cell's control panel. Built-in powder wells provide the ability to saturate fluids with reactive solids, producing aqueous species and/or decomposing into gaseous phases. The cell is designed for samples up to 50.8mm in diameter and 10.0mm in thickness. An experiment investigating the high P - T corrosion behavior of aluminum on LANL's Surface ProfilE Analysis Reflectometer (SPEAR) is presented, demonstrating the functioning and capability of the cell. Finally, outlooks on high P - T NR applications and perspectives on future research are discussed.

  19. Measurement of the Am 242 m neutron-induced reaction cross sections

    DOE PAGES

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; ...

    2017-02-17

    The neutron-induced reaction cross sections of 242mAm were measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. A new neutron-capture cross section was determined, and the absolute scale was set according to a concurrent measurement of the well-known 242mAm(n,f) cross section. The (n,γ) cross section was measured from thermal energy to an incident energy of 1 eV at which point the data quality was limited by the reaction yield in the laboratory. Our new 242mAm fission cross section was normalized to ENDF/B-VII.1 tomore » set the absolute scale, and it agreed well with the (n,f) cross section from thermal energy to 1 keV. Lastly, the average absolute capture-to-fission ratio was determined from thermal energy to E n = 0.1 eV, and it was found to be 26(4)% as opposed to the ratio of 19% from the ENDF/B-VII.1 evaluation.« less

  20. Weapon Involvement in the Victimization of Children.

    PubMed

    Mitchell, Kimberly J; Hamby, Sherry L; Turner, Heather A; Shattuck, Anne; Jones, Lisa M

    2015-07-01

    To report the prevalence of weapons involved in the victimization of youth with particular emphasis on weapons with a "high lethality risk" and how such exposure fits into the broader victimization and life experiences of children and adolescents. Data were collected as part of the Second National Survey of Children's Exposure to Violence, a nationally representative telephone survey of youth ages 2 to 17 years and caregivers (N = 4114) conducted in 2011. Estimates from the Second National Survey of Children's Exposure to Violence indicate that almost 14 million youth, ages 2–17, in the United States have been exposed to violence involving a weapon in their lifetimes as witnesses or victims,or .1 in 5 children in this age group [corrected]. More than 2 million youth in the United States (1 in 33) have been directly assaulted in incidents where the high lethality risk weapons of guns and knives were used. Differences were noted between victimizations involving higher and lower lethality risk weapons as well as between any weapon involvement versus none. Poly-victims, youth with 7 or more victimization types, were particularly likely to experience victimization with any weapon, as well as victimization with a highly lethal weapon compared with nonpoly-victims. Findings add to the field's broadening conceptualization of youth victimization highlighting the potentially highly consequential risk factor of weapon exposure as a component of victimization experiences on the mental health of youth. Further work on improving gun safety practices and taking steps to reduce children's exposure to weapon-involved violence is warranted to reduce this problem. Copyright © 2015 by the American Academy of Pediatrics.

  1. A Tracer Test at the Los Alamos Canyon Weir

    NASA Astrophysics Data System (ADS)

    Levitt, D. G.; Stone, W. J.; Newell, D. L.; Wykoff, D. S.

    2002-12-01

    A low-head weir was constructed in the Los Alamos Canyon to reduce the transport of contaminant-bearing sediment caused by fire-enhanced runoff off Los Alamos National Laboratory (LANL) property towards the Rio Grande following the May 2000 Cerro Grande fire at Los Alamos, New Mexico. Fractured basalt was exposed in the channel by grading during construction of the weir, and water temporarily ponds behind the weir following periods of runoff. In order to monitor any downward transport of contaminants into fractured basalt, and potentially downward to the regional ground water, three boreholes (one vertical, one at 43 degrees, and one at 34 degrees from horizontal) were installed for environmental monitoring. The boreholes penetrate to depths ranging from approximately 9 to 82 m below the weir floor. The two angled boreholes are fitted with flexible FLUTe liners with resistance sensors to measure relative moisture content and absorbent sampling pads for contaminant and environmental tracer sampling within the vadose zone. The two angled boreholes are also monitored for relative changes in moisture content by neutron logging. The vertical borehole penetrates three perched water zones and is equipped with four screens and sampling ports. In April 2002, a tracer test was initiated with the application of a 0.2 M (16,000 ppm) solution of potassium bromide (KBr) onto the weir floor. The tracer experiment was intended to provide data on travel times through the complex hydrogeologic media of fractured basalt. A precipitation and runoff event in June 2002 resulted in approximately 0.61 m of standing water behind the weir. If the KBr and flood waters were well mixed, the concentration of KBr in the flood waters was approximately 24 ppm. Bromide was detected in the absorbent membrane in the 43 degree hole at concentrations up to 2 ppm. Resistance sensors in the 43 degree borehole detected moisture increases within 3 days at a depth of 27 m, indicating an average wetting

  2. [Modern pneumatic weapons and injuries they cause].

    PubMed

    Kozachenko, I N

    2013-01-01

    The data on the history of development and further improvement of pneumatic weapons are presented with special reference to specific features of different types and varieties of these weapons, cartridges for them, and the sphere of their application. Investigations into peculiarities of damages caused by high-capacity pneumatic weapons to the objects of forensic medical expertise affected from different distances are reviewed. Results of forensic medical expertise and clinical studies on the structure of body injuries inflicted by gunshots from pneumatic weapons to the human body are discussed. The author emphasizes the necessity of developing up-to-date terminology and classification of gunshot injuries caused by shooting from pneumatic weapons.

  3. Evaluation of the ²³⁹Pu prompt fission neutron spectrum induced by neutrons of 500 keV and associated covariances

    DOE PAGES

    Neudecker, D.; Talou, P.; Kawano, T.; ...

    2015-08-01

    We present evaluations of the prompt fission neutron spectrum (PFNS) of ²³⁹Pu induced by 500 keV neutrons, and associated covariances. In a previous evaluation by Talou et al. 2010, surprisingly low evaluated uncertainties were obtained, partly due to simplifying assumptions in the quantification of uncertainties from experiment and model. Therefore, special emphasis is placed here on a thorough uncertainty quantification of experimental data and of the Los Alamos model predicted values entering the evaluation. In addition, the Los Alamos model was extended and an evaluation technique was employed that takes into account the qualitative differences between normalized model predicted valuesmore » and experimental shape data. These improvements lead to changes in the evaluated PFNS and overall larger evaluated uncertainties than in the previous work. However, these evaluated uncertainties are still smaller than those obtained in a statistical analysis using experimental information only, due to strong model correlations. Hence, suggestions to estimate model defect uncertainties are presented, which lead to more reasonable evaluated uncertainties. The calculated k eff of selected criticality benchmarks obtained with these new evaluations agree with each other within their uncertainties despite the different approaches to estimate model defect uncertainties. The k eff one standard deviations overlap with some of those obtained using ENDF/B-VII.1, albeit their mean values are further away from unity. Spectral indexes for the Jezebel critical assembly calculated with the newly evaluated PFNS agree with the experimental data for selected (n,γ) and (n,f) reactions, and show improvements for high-energy threshold (n,2n) reactions compared to ENDF/B-VII.1.« less

  4. Weapon Carrying Among Victims of Bullying.

    PubMed

    Pham, Tammy B; Schapiro, Lana E; John, Majnu; Adesman, Andrew

    2017-12-01

    To examine, in a large, nationally representative sample of high school students, the association between bullying victimization and carrying weapons to school and to determine to what extent past experience of 1, 2, or 3 additional indicators of peer aggression increases the likelihood of weapon carrying by victims of bullying (VoBs). National data from the 2015 Youth Risk Behavior Survey were analyzed for grades 9 to 12 ( N = 15 624). VoB groups were determined by self-report of being bullied at school and additional adverse experiences: fighting at school, being threatened or injured at school, and skipping school out of fear for one's safety. Weapon carrying was measured by a dichotomized (ie, ≥1 vs 0) report of carrying a gun, knife, or club on school property. VoB groups were compared with nonvictims with respect to weapon carrying by logistic regression adjusting for sex, grade, and race/ethnicity. When surveyed, 20.2% of students reported being a VoB in the past year, and 4.1% reported carrying a weapon to school in the past month. VoBs experiencing 1, 2, or 3 additional risk factors were successively more likely to carry weapons to school. The subset of VoBs who experienced all 3 additional adverse experiences were more likely to carry weapons to school compared with nonvictims (46.4% vs 2.5%, P < .001). Pediatricians should recognize that VoBs, especially those who have experienced 1 or more indicators of peer aggression in conjunction, are at substantially increased risk of weapon carrying. Copyright © 2017 by the American Academy of Pediatrics.

  5. New opportunities in quasi elastic neutron scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Mezei, F.; Russina, M.

    2001-07-01

    The high energy resolution usually required in quasi elastic neutron scattering (QENS) spectroscopy is commonly achieved by the use of cold neutrons. This is one of the important research areas where the majority of current work is done on instruments on continuous reactor sources. One particular reason for this is the capability of continuous source time-of-flight spectrometers to use instrumental parameters optimally adapted for best data collection efficiency in each experiment. These parameters include the pulse repetition rate and the length of the pulses to achieve optimal balance between resolution and intensity. In addition, the disc chopper systems used provide perfect symmetrical line shapes with no tails and low background. Recent development of a set of novel techniques enhance the efficiency of cold neutron spectroscopy on existing and future spallation sources in a dramatic fashion. These techniques involve the use of extended pulse length, high intensity coupled moderators, disc chopper systems and advanced neutron optical beam delivery, and they will enable Lujan center at Los Alamos to surpass the best existing reactor instruments in time-of-flight QENS work by more than on order of magnitude in terms of beam flux on the sample. Other applications of the same techniques will allow us to combine advantages of backscattering spectroscopy on continuous and pulsed sources in order to deliver μeV resolution in a very broad energy transfer range.

  6. Proliferation of Nuclear Weapons: Opportunities for Control and Abolition

    PubMed Central

    Sidel, Victor W.; Levy, Barry S.

    2007-01-01

    Nuclear weapons pose a particularly destructive threat. Prevention of the proliferation and use of nuclear weapons is urgently important to public health. “Horizontal” proliferation refers to nation-states or nonstate entities that do not have, but are acquiring, nuclear weapons or developing the capability and materials for producing them. “Vertical” proliferation refers to nation-states that do possess nuclear weapons and are increasing their stockpiles of these weapons, improving the technical sophistication or reliability of their weapons, or developing new weapons. Because nation-states or other entities that wish to use or threaten to use nuclear weapons need methods for delivering those weapons, proliferation of delivery mechanisms must also be prevented. Controlling proliferation—and ultimately abolishing nuclear weapons—involves national governments, intergovernmental organizations, nongovernmental and professional organizations, and society at large. PMID:17666690

  7. Los Alamos National Laboratory Human and Intellectual Capital for Sustaining Nuclear Deterrence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAlpine, Bradley

    2015-04-01

    This paper provides an overview of the current human and intellectual capital at Los Alamos National Laboratory, through specific research into the statistics and demographics as well as numerous personal interviews at all levels of personnel. Based on this information, a series of recommendations are provided to assist Los Alamos National Laboratory in ensuring the future of the human and intellectual capital for the nuclear deterrence mission. While the current human and intellectual capital is strong it stands on the precipice and action must be taken to ensure Los Alamos National Laboratory maintains leadership in developing and sustaining national nuclearmore » capabilities. These recommendations may be applicable to other areas of the nuclear enterprise, including the Air Force, after further research and study.« less

  8. Progress in alternative neutron detection to address the helium-3 shortage

    NASA Astrophysics Data System (ADS)

    Kouzes, Richard T.; Lintereur, Azaree T.; Siciliano, Edward R.

    2015-06-01

    One of the main uses for 3He is in gas proportional counters for neutron detection. Such detectors are used at neutron scattering science facilities and in radiation portal monitors deployed for homeland security and non-proliferation applications. Other uses of 3He are for research detectors, commercial instruments, well logging detectors, dilution refrigerators, lung imaging, for targets in nuclear research, and for basic research in condensed matter physics. The supply of 3He comes entirely from the decay of tritium produced for nuclear weapons in the U.S. and Russia. Due to the large increase in use of 3He for science and homeland security (since 2002), the supply could no longer meet the demand. This has led to the development of a number of alternative neutron detection schemes.

  9. Los Alamos Before and After the Fire

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On May 4, 2000, a prescribed fire was set at Bandelier National Monument, New Mexico, to clear brush and dead and dying undergrowth to prevent a larger, subsequent wildfire. Unfortunately, due to high winds and extremely dry conditions in the surrounding area, the prescribed fire quickly raged out of control and, by May 10, the blaze had spread into the nearby town of Los Alamos. In all, more than 20,000 people were evacuated from their homes and more than 200 houses were destroyed as the flames consumed about 48,000 acres in and around the Los Alamos area. The pair of images above were acquired by the Enhanced Thematic Mapper Plus (ETM+) sensor, flying aboard NASA's Landsat 7 satellite, shortly before the Los Alamos fire (top image, acquired April 14) and shortly after the fire was extinguished (lower image, June 17). The images reveal the extent of the damage caused by the fire. Combining ETM+ channels 7, 4, and 2 (one visible and two infrared channels) results in a false-color image where vegetation appears as bright to dark green. Forested areas are generally dark green while herbaceous vegetation is light green. Rangeland or more open areas appear pink to light purple. Areas with extensive pavement or urban development appear light blue or white to purple. Less densely-developed residential areas appear light green and golf courses are very bright green. In the lower image, the areas recently burned appear bright red. Landsat 7 data courtesy United States Geological Survey EROS DataCenter. Images by Robert Simmon, NASA GSFC.

  10. Critical partnerships: Los Alamos, universities, and industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, C.L.

    1997-04-01

    Los Alamos National Laboratory, situated 35 miles northwest of Santa Fe, NM, is one of the Department of Energy`s three Defense Programs laboratories. It encompasses 43 square miles, employees approximately 10,000 people, and has a budget of approximately $1.1B in FY97. Los Alamos has a strong post-cold war mission, that of reducing the nuclear danger. But even with that key role in maintaining the nation`s security, Los Alamos views partnerships with universities and industry as critical to its future well being. Why is that? As the federal budget for R&D comes under continued scrutiny and certain reduction, we believe thatmore » the triad of science and technology contributors to the national system of R&D must rely on and leverage each others capabilities. For us this means that we will rely on these partners to help us in 5 key ways: We expect that partnerships will help us maintain and enhance our core competencies. In doing so, we will be able to attract the best scientists and engineers. To keep on the cutting edge of research and development, we have found that partnerships maintain the excellence of staff through new and exciting challenges. Additionally, we find that from our university and corporate partners we often learn and incorporate {open_quotes}best practices{close_quotes} in organizational management and operations. Finally, we believe that a strong national system of R&D will ensure and enhance our ability to generate revenues.« less

  11. Living with nuclear weapons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carnesale, A.; Doty, P.; Hoffmann, S.

    1983-01-01

    At Harvard President Derek Bok's request, six Harvard professors explain nuclear arms issues to help citizens understand all sides of the national security debates. The goal is to encourage public participation in policy formulation. The book emphasizes that escapism will not improve security; that idealistic plans to eliminate nuclear weapons are a form of escapism. Learning to live with nuclear weapons, they suggest, requires an understanding of the current nuclear predicament and the implications of alternative weapons and policy choices. After reviewing these matters, they emphasize that informed persons will continue to disagree, but that knowledge will improve understanding andmore » appreciation of their differences and improve the quality of policy debates. 54 references, 5 figures, 2 tables. (DCK)« less

  12. Absolute measurement of the 242Pu neutron-capture cross section

    DOE PAGES

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; ...

    2016-04-21

    Here, the absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. The first direct measurement of the 242Pu(n,γ) cross section was made over the incident neutron energy range from thermal to ≈ 6 keV, and the absolute scale of the (n,γ) cross section was set according to the known 239Pu(n,f) resonance at E n,R = 7.83 eV. This was accomplished by adding a small quantity of 239Pu to the 242Pu sample. The relative scale of themore » cross section, with a range of four orders of magnitude, was determined for incident neutron energies from thermal to ≈ 40 keV. Our data, in general, are in agreement with previous measurements and those reported in ENDF/B-VII.1; the 242Pu(n,γ) cross section at the E n,R = 2.68 eV resonance is within 2.4% of the evaluated value. However, discrepancies exist at higher energies; our data are ≈30% lower than the evaluated data at E n ≈ 1 keV and are approximately 2σ away from the previous measurement at E n ≈ 20 keV.« less

  13. Automated System Calibration and Verification of the Position Measurements for the Los Alamos Isotope Production Facility and the Switchyard Kicker Facilities

    NASA Astrophysics Data System (ADS)

    Barr, D.; Gilpatrick, J. D.; Martinez, D.; Shurter, R. B.

    2004-11-01

    The Los Alamos Neutron Science Center (LANSCE) facility at Los Alamos National Laboratory has constructed both an Isotope Production Facility (IPF) and a Switchyard Kicker (XDK) as additions to the H+ and H- accelerator. These additions contain eleven Beam Position Monitors (BPMs) that measure the beam's position throughout the transport. The analog electronics within each processing module determines the beam position using the log-ratio technique. For system reliability, calibrations compensate for various temperature drifts and other imperfections in the processing electronics components. Additionally, verifications are periodically implemented by a PC running a National Instruments LabVIEW virtual instrument (VI) to verify continued system and cable integrity. The VI communicates with the processor cards via a PCI/MXI-3 VXI-crate communication module. Previously, accelerator operators performed BPM system calibrations typically once per day while beam was explicitly turned off. One of this new measurement system's unique achievements is its automated calibration and verification capability. Taking advantage of the pulsed nature of the LANSCE-facility beams, the integrated electronics hardware and VI perform calibration and verification operations between beam pulses without interrupting production beam delivery. The design, construction, and performance results of the automated calibration and verification portion of this position measurement system will be the topic of this paper.

  14. Measuring Fission Fragment Mass Distributions as a Function of Incident Neutron Energy Using the fissionTPC

    NASA Astrophysics Data System (ADS)

    Gearhart, Joshua; Niffte Collaboration

    2017-09-01

    Fission fragment mass distributions are important observables for developing next generation dynamical models of fission. Many previous measurements have utilized ionization chambers to measure fission fragment energies and emission angles which are then used for mass calculations. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration has built a time projection chamber (fissionTPC) that is capable of measuring additional quantities such as the ionization profiles of detected particles, allowing for the association of an individual fragment's ionization profile with its mass. The fragment masses are measured using the previously established 2E method. The fissionTPC takes its data using a continuous incident neutron energy spectrum provided by the Los Alamos Neutron Science CEnter (LANSCE). Mass distribution measurements across a continuous range of neutron energies put stronger constraints on fission models than similar measurements conducted at a handful of discrete neutron energies. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Numbers DE-NA0003180 and DE-NA0002921.

  15. Los Alamos National Laboratory Prepares for Fire Season

    ScienceCinema

    L’Esperance, Manny

    2018-01-16

    Through the establishment of a Wildland Fire Program Office, and the Interagency Fire Base located on Laboratory property, Los Alamos National Laboratory is continuing and improving a program to prepare for wildland fire.

  16. Los Alamos National Laboratory Prepares for Fire Season

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L’Esperance, Manny

    Through the establishment of a Wildland Fire Program Office, and the Interagency Fire Base located on Laboratory property, Los Alamos National Laboratory is continuing and improving a program to prepare for wildland fire.

  17. Assessment of Laser-Driven Pulsed Neutron Sources for Poolside Neutron-based Advanced NDE – A Pathway to LANSCE-like Characterization at INL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Markus; Vogel, Sven C.; Bourke, Mark Andrew M.

    A variety of opportunities for characterization of fresh nuclear fuels using thermal (~25meV) and epithermal (~10eV) neutrons have been documented at Los Alamos National Laboratory. They include spatially resolved non-destructive characterization of features, isotopic enrichment, chemical heterogeneity and stoichiometry. The LANSCE spallation neutron source is well suited in neutron fluence and temporal characteristics for studies of fuels. However, recent advances in high power short pulse lasers suggest that compact neutron sources might, over the next decade, become viable at a price point that would permit their consideration for poolside characterization on site at irradiation facilities. In a laser-driven neutron sourcemore » the laser is used to accelerate deuterium ions into a beryllium target where neutrons are produced. At this time, the technology is new and their total neutron production is approximately four orders of magnitude less than a facility like LANSCE. However, recent measurements on a sub-optimized system demonstrated >10 10 neutrons in sub-nanosecond pulses in predominantly forward direction. The compactness of the target system compared to a spallation target may allow exchanging the target during a measurement to e.g. characterize a highly radioactive sample with thermal, epithermal, and fast neutrons as well as hard X-rays, thus avoiding sample handling. At this time several groups are working on laser-driven neutron production and are advancing concepts for lasers, laser targets, and optimized neutron target/moderator systems. Advances in performance sufficient to enable poolside fuels characterization with LANSCE-like fluence on sample within a decade may be possible. This report describes the underlying physics and state-of-the-art of the laser-driven neutron production process from the perspective of the DOE/NE mission. It also discusses the development and understanding that will be necessary to provide customized capability for

  18. Bugs and gas: Agreements banning chemical and biological weapons

    NASA Astrophysics Data System (ADS)

    Mikulak, Robert P.

    2017-11-01

    The use of chemical or biological weapons, whether by a State or terrorists, continues to be a serious security concern. Both types of weapons are prohibited by multilateral treaties that have very broad membership, but both the Biological Weapons Convention and the Chemical Weapons Convention are facing major challenges. In particular, the continued use of chemical weapons in the Syrian civil war by government forces risks eroding the norm against the use of such weapons. This paper briefly explore the recent history of efforts to constrain chemical and biological weapons and outlines challenges for the future.

  19. Childhood maltreatment and threats with weapons.

    PubMed

    Casiano, Hygiea; Mota, Natalie; Afifi, Tracie O; Enns, Murray W; Sareen, Jitender

    2009-11-01

    The relationship between childhood maltreatment and future threats with weapons is unknown. We examined data from the nationally representative National Comorbidity Survey Replication (n = 5692) and conducted multiple logistic regression analyses to determine the association between childhood maltreatment and lifetime behavior of threatening others with a gun or other weapon. After adjusting for sociodemographic variables, physical abuse, sexual abuse, and witnessing domestic violence were significantly associated with threats made with a gun (adjusted odds ratios [AOR] ranging between 3.38 and 4.07) and other weapons (AOR ranging between 2.16 and 2.83). The greater the number of types of maltreatment experienced, the stronger the association with lifetime threats made to others with guns and any weapons. Over 94% of respondents who experienced maltreatment and made threats reported that the maltreatment occurred prior to threatening others with weapons. Prevention efforts that reduce exposure to maltreatment may reduce violent behavior in later life.

  20. 36 CFR 1002.4 - Weapons, traps and nets.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Weapons, traps and nets. 1002... AND RECREATION § 1002.4 Weapons, traps and nets. (a)(1) Except as otherwise provided in this section, the following are prohibited: (i) Possessing a weapon, trap or net. (ii) Carrying a weapon, trap or...

  1. 36 CFR 1002.4 - Weapons, traps and nets.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Weapons, traps and nets. 1002... AND RECREATION § 1002.4 Weapons, traps and nets. (a)(1) Except as otherwise provided in this section, the following are prohibited: (i) Possessing a weapon, trap or net. (ii) Carrying a weapon, trap or...

  2. Application of neutron diffraction in characterization of texture evolution during high-temperature creep in magnesium alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, Sven C; Sediako, Dimitry; Shook, S

    2010-01-01

    A good combination of room-temperature and elevated temperature strength and ductility, good salt-spray corrosion resistance and exceUent diecastability are frequently among the main considerations in development of a new alloy. Unfortunately, there has been much lesser effort in development of wrought-stock alloys for high temperature applications. Extrudability and high temperature performance of wrought material becomes an important factor in an effort to develop new wrought alloys and processing technologies. This paper shows some results received in creep testing and studies of in-creep texture evolution for several wrought magnesium alloys developed for use in elevated-temperature applications. These studies were performed usingmore » E3 neutron spectrometer of the Canadian Neutron Beam Centre in Chalk River, ON, and HIPPO time-of-flight (TOF) spectrometer at Los Alamos Neutron Science Center, NM.« less

  3. Review of Livermore-Led Neutron Capture Studies Using DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, W; Sheets, S; Agvaanluvsan, U

    2007-05-11

    We have made neutron capture cross-section measurements using the white neutron source at the Los Alamos Science Center, the DANCE detector array (Detector for Advanced Neutron Capture Experiments) and targets important for basic science and stockpile stewardship. In this paper, we review results from (n,{gamma}) reactions on {sup 94,95}Mo, {sup 152,154,157,160,nat}Gd, {sup 151,153}Eu and {sup 242m}Am for neutron energies from < 1eV up to {approx} 20 keV. We measured details of the {gamma}-ray cascade following neutron capture, for comparison with results of statistical model simulations. We determined the neutron energy dependent (n,{gamma}) cross section and gained information about statistical decaymore » properties, including the nuclear level density and the photon strength function. Because of the high granularity of the detector array, it is possible to look at gamma cascades with a specified number of transitions (a specific multiplicity). We simulated {gamma}-ray cascades using a combination of the DICEBOX/GEANT computer codes. In the case of the deformed nuclei, we found evidence of a scissors-mode resonance. For the Eu, we also determined the (n,{gamma}) cross sections. For the {sup 94,95}Mo, we focused on the spin and parity assignments of the resonances and the determination of the photon strength functions for the compound nuclei {sup 95,96}Mo. Future plans include measurements on actinide targets; our immediate interest is in {sup 242m}Am.« less

  4. Compatibility of photomultiplier tube operation with SQUIDs for a neutron EDM experiment

    NASA Astrophysics Data System (ADS)

    Libersky, Matthew; nEDM Collaboration

    2013-10-01

    An experiment at the Spallation Neutron Source at Oak Ridge National Laboratory with the goal of reducing the experimental limit on the electric dipole moment (EDM) of the neutron will measure the precession frequencies of neutrons when a strong electric field is applied parallel and anti-parallel to a weak magnetic field. A difference in these frequencies would indicate a nonzero neutron EDM. To correct for drifts of the magnetic field in the measurement volume, polarized 3He will be used as a co-magnetometer. In one of the two methods built into the apparatus, superconducting quantum interference devices (SQUIDs) will be used to read out the 3He magnetization. Photomultiplier tubes will be used concurrently to measure scintillation light from neutron capture by 3He. However, the simultaneous noise-sensitive magnetic field measurement by the SQUIDs makes conventional PMT operation problematic due to the alternating current involved in generating the high voltages needed. Tests were carried out at Los Alamos National Laboratory to study the compatibility of simultaneous SQUID and PMT operation, using a custom battery-powered high-voltage power supply developed by Meyer and Smith (NIM A 647.1) to operate the PMT. The results of these tests will be presented.

  5. A novel design for scintillator-based neutron and gamma imaging in inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Geppert-Kleinrath, Verena; Cutler, Theresa; Danly, Chris; Madden, Amanda; Merrill, Frank; Tybo, Josh; Volegov, Petr; Wilde, Carl

    2017-10-01

    The LANL Advanced Imaging team has been providing reliable 2D neutron imaging of the burning fusion fuel at NIF for years, revealing possible multi-dimensional asymmetries in the fuel shape, and therefore calling for additional views. Adding a passive imaging system using image plate techniques along a new polar line of sight has recently demonstrated the merit of 3D neutron image reconstruction. Now, the team is in the process of designing a new active neutron imaging system for an additional equatorial view. The design will include a gamma imaging system as well, to allow for the imaging of carbon in the ablator of the NIF fuel capsules, constraining the burning fuel shape even further. The selection of ideal scintillator materials for a position-sensitive detector system is the key component for the new design. A comprehensive study of advanced scintillators has been carried out at the Los Alamos Neutron Science Center and the OMEGA Laser Facility in Rochester, NY. Neutron radiography using a fast-gated CCD camera system delivers measurements of resolution, light output and noise characteristics. The measured performance parameters inform the novel design, for which we conclude the feasibility of monolithic scintillators over pixelated counterparts.

  6. [Scientific progress and new biological weapons].

    PubMed

    Berche, Patrick

    2006-02-01

    The biological weapons are different from conventional weapons, because living germs hold an extraordinary and predictable potential for multiplication, propagation and genetic variation during their dissemination in a susceptible population. Only natural pathogens (1rst generation weapons) have been used in the past (smallpox virus, plague, anthrax, toxins...). However, new threats are emerging, due to the rapid progress of scientific knowledge and its exponential worldwide diffusion. It is possible to synthesize microorganisms from in silico sequences widely diffused on Internet (poliovirus, influenza...), thus resulting in the accessibility of very dangerous virus confined today in high-security laboratories (virus Ebola...). It is possible also to "improve" pathogens by genetic manipulations, becoming more resistant or virulent (2nd generation weapons). Finally, one can now create de novo new pathogens by molecular breeding (DNA shuffling), potentially highly dangerous for naive populations (3rd generation weapons). Making biological weapons does not require too much technological resources and appears accessible to terrorists, due to low cost and easy use. Although the destructive consequences are difficult to predict, the psychological and social damages should be considerable, because of the highly emotional burden in the population associated to the transgression by man of a taboo of life.

  7. Measurement of Systematic effects in the UCN τ neutron lifetime experiment

    NASA Astrophysics Data System (ADS)

    Callahan, Nathan; UCNtau Collaboration

    2017-09-01

    The UCN τ experiment at the Los Alamos Neutron Science Center (LANSCe) measures the neutron β decay lifetime (τn) by trapping Ultracold Neutrons (UCN) in a magneto-gravitational trap. UCN are confined from below by magnetic fields and above by gravity. UCN are loaded into the trap, held for times on the order of τn, and counted. Several systematic effects can potentially shift the measured τn including heating and other losses of UCN during storage, insufficient removal of UCN with energies above the traping potential, and phase space evolution of UCN during storage which can cause changes in detection efficiency. The UCN τ collaboration has put limits on these systematic effects via measurements in the 2016-2017 run cycle at LANSCE. For the first two effects, a limit is placed by searching for high-energy UCN at the end of storage. A limit is placed on the effects of phase space evolution by comparing arrival time distributions for UCN under different conditions. Data from the 2016-2017 run cycle and systematic limits derived from it will be discussed.

  8. Bioterrorism: toxins as weapons.

    PubMed

    Anderson, Peter D

    2012-04-01

    The potential for biological weapons to be used in terrorism is a real possibility. Biological weapons include infectious agents and toxins. Toxins are poisons produced by living organisms. Toxins relevant to bioterrorism include ricin, botulinum, Clostridium perfrigens epsilson toxin, conotoxins, shigatoxins, saxitoxins, tetrodotoxins, mycotoxins, and nicotine. Toxins have properties of biological and chemical weapons. Unlike pathogens, toxins do not produce an infection. Ricin causes multiorgan toxicity by blocking protein synthesis. Botulinum blocks acetylcholine in the peripheral nervous system leading to muscle paralysis. Epsilon toxin damages cell membranes. Conotoxins block potassium and sodium channels in neurons. Shigatoxins inhibit protein synthesis and induce apoptosis. Saxitoxin and tetrodotoxin inhibit sodium channels in neurons. Mycotoxins include aflatoxins and trichothecenes. Aflatoxins are carcinogens. Trichothecenes inhibit protein and nucleic acid synthesis. Nicotine produces numerous nicotinic effects in the nervous system.

  9. Applications of a Fast Neutron Detector System to Verification of Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Mayo, Douglas R.; Byrd, Roger C.; Ensslin, Norbert; Krick, Merlyn S.; Mercer, David J.; Miller, Michael C.; Prettyman, Thomas H.; Russo, Phyllis A.

    1998-04-01

    An array of boron-loaded plastic optically coupled to bismuth germanate scintillators has been developed to detect neutrons for measurement of special nuclear materials. The phoswiched detection system has the advantage of a high neutron detection efficiency and short die-away time. This is achieved by mixing the moderator (plastic) and the detector (^10B) at the molecular level. Simulations indicate that the neutron capture probabilities equal or exceed those of the current thermal neutron multiplicity techniques which have the moderator (polyethylene) and detectors (^3He gas proportional tubes) macroscopically separate. Experiments have been performed to characterize the response of these detectors and validate computer simulations. The fast neutron detection system may be applied to the quantitative assay of plutonium in high (α,n) backgrounds, with emphasis on safeguards and enviromental scenarios. Additional applications of the insturment, in a non-quantative mode, has been tested for possible verification activities involving dismantlement of nuclear weapons. A description of the detector system, simulations and preliminary data will be presented.

  10. Water Supply at Los Alamos during 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. N. Maes; S. G. McLin; W. D. Purtymun

    1998-12-01

    Production of potable municipal water supplies during 1997 totaled about 1,285.9 million gallons from wells in the Guaje, Pajarito, and Otowi well fields. There was no water used from the spring gallery in Water Canyon or from Guaje Reservoir during 1997. About 2.4 million gallons of water from Los Alamos Reservoir was used to irrigate public parks and recreational lands. The total water usage in 1997 was about 1,288.3 million gallons, or about 135 gallons per day per person living in Los Alamos County. Groundwater pumpage was down about 82.2 million gallons in 1997 compared with the pumpage in 1996.more » Four new replacement wells were drilled and cased in Guaje Canyon between October 1997 and March 1998. These wells are currently being developed and aquifer tests are being performed. A special report summarizing the geological, geophysical, and well construction logs will be issued in the near future for these new wells.« less

  11. 7 CFR 502.13 - Weapons and explosives.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Weapons and explosives. 502.13 Section 502.13....13 Weapons and explosives. No person while in or on BARC property shall carry firearms, other dangerous or deadly weapons, or explosives, either openly or concealed, except as officially authorized for...

  12. 36 CFR 520.15 - Weapons and explosives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Weapons and explosives. 520... Weapons and explosives. No person while on the premises shall carry firearms, other dangerous or deadly weapons, or explosives, either openly or concealed, except for official purposes, nor shall any person...

  13. 36 CFR 504.14 - Weapons and explosives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Weapons and explosives. 504... GOVERNING SMITHSONIAN INSTITUTION BUILDINGS AND GROUNDS § 504.14 Weapons and explosives. No person while on the premises shall carry firearms, other dangerous or deadly weapons, or explosives, either openly or...

  14. 36 CFR 520.15 - Weapons and explosives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Weapons and explosives. 520... Weapons and explosives. No person while on the premises shall carry firearms, other dangerous or deadly weapons, or explosives, either openly or concealed, except for official purposes, nor shall any person...

  15. 7 CFR 500.12 - Weapons and explosives.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Weapons and explosives. 500.12 Section 500.12... OF AGRICULTURE NATIONAL ARBORETUM Conduct on U.S. National Arboreturm Property § 500.12 Weapons and... weapons, or explosives, either openly or concealed, except for authorized official purposes. (b) No person...

  16. 36 CFR 504.14 - Weapons and explosives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Weapons and explosives. 504... GOVERNING SMITHSONIAN INSTITUTION BUILDINGS AND GROUNDS § 504.14 Weapons and explosives. No person while on the premises shall carry firearms, other dangerous or deadly weapons, or explosives, either openly or...

  17. 7 CFR 502.13 - Weapons and explosives.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Weapons and explosives. 502.13 Section 502.13....13 Weapons and explosives. No person while in or on BARC property shall carry firearms, other dangerous or deadly weapons, or explosives, either openly or concealed, except as officially authorized for...

  18. 36 CFR 520.15 - Weapons and explosives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Weapons and explosives. 520... Weapons and explosives. No person while on the premises shall carry firearms, other dangerous or deadly weapons, or explosives, either openly or concealed, except for official purposes, nor shall any person...

  19. 7 CFR 500.12 - Weapons and explosives.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Weapons and explosives. 500.12 Section 500.12... OF AGRICULTURE NATIONAL ARBORETUM Conduct on U.S. National Arboreturm Property § 500.12 Weapons and... weapons, or explosives, either openly or concealed, except for authorized official purposes. (b) No person...

  20. 7 CFR 500.12 - Weapons and explosives.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Weapons and explosives. 500.12 Section 500.12... OF AGRICULTURE NATIONAL ARBORETUM Conduct on U.S. National Arboreturm Property § 500.12 Weapons and... weapons, or explosives, either openly or concealed, except for authorized official purposes. (b) No person...

  1. 7 CFR 502.13 - Weapons and explosives.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Weapons and explosives. 502.13 Section 502.13....13 Weapons and explosives. No person while in or on BARC property shall carry firearms, other dangerous or deadly weapons, or explosives, either openly or concealed, except as officially authorized for...

  2. 36 CFR 504.14 - Weapons and explosives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Weapons and explosives. 504... GOVERNING SMITHSONIAN INSTITUTION BUILDINGS AND GROUNDS § 504.14 Weapons and explosives. No person while on the premises shall carry firearms, other dangerous or deadly weapons, or explosives, either openly or...

  3. 7 CFR 500.12 - Weapons and explosives.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Weapons and explosives. 500.12 Section 500.12... OF AGRICULTURE NATIONAL ARBORETUM Conduct on U.S. National Arboreturm Property § 500.12 Weapons and... weapons, or explosives, either openly or concealed, except for authorized official purposes. (b) No person...

  4. 31 CFR 700.11 - Weapons and explosives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Weapons and explosives. 700.11... FEDERAL LAW ENFORCEMENT TRAINING CENTER (FLETC) BUILDINGS AND GROUNDS § 700.11 Weapons and explosives. No person, while on the property, shall carry firearms, other dangerous or deadly weapons, or explosives...

  5. 7 CFR 502.13 - Weapons and explosives.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Weapons and explosives. 502.13 Section 502.13....13 Weapons and explosives. No person while in or on BARC property shall carry firearms, other dangerous or deadly weapons, or explosives, either openly or concealed, except as officially authorized for...

  6. 36 CFR 520.15 - Weapons and explosives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Weapons and explosives. 520... Weapons and explosives. No person while on the premises shall carry firearms, other dangerous or deadly weapons, or explosives, either openly or concealed, except for official purposes, nor shall any person...

  7. 7 CFR 502.13 - Weapons and explosives.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Weapons and explosives. 502.13 Section 502.13....13 Weapons and explosives. No person while in or on BARC property shall carry firearms, other dangerous or deadly weapons, or explosives, either openly or concealed, except as officially authorized for...

  8. 7 CFR 500.12 - Weapons and explosives.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Weapons and explosives. 500.12 Section 500.12... OF AGRICULTURE NATIONAL ARBORETUM Conduct on U.S. National Arboreturm Property § 500.12 Weapons and... weapons, or explosives, either openly or concealed, except for authorized official purposes. (b) No person...

  9. Nuclear Weapons: Comprehensive Test Ban Treaty

    DTIC Science & Technology

    2007-05-24

    remain current. It indicated plans to reduce the time between a decision to conduct a nuclear test and the test itself, which has been done. Critics ...over the Summit,” Manila Bulletin, August 27, 2005. Critics expressed concern about the implications of these policies for testing and new weapons...force, seek the opportunity to design and build new nuclear weapons, and abandon a ten-year-old moratorium on nuclear weapons testing.”8 Another critic

  10. Weapons and Minority Youth Violence.

    ERIC Educational Resources Information Center

    Northrop, Daphne; Hamrick, Kim

    Weapons violence is a major public health problem that especially impacts minority youth. Interventions designed to reduce weapon use by youth are categorized as educational/behavioral change, legal, and technological/environmental. Few educational programs currently exist, but those that do largely concern firearm safety courses, public…

  11. SMA texture and reorientation: simulations and neutron diffraction studies

    NASA Astrophysics Data System (ADS)

    Gao, Xiujie; Brown, Donald W.; Brinson, L. Catherine

    2005-05-01

    With increased usage of shape memory alloys (SMA) for applications in various fields, it is important to understand how the material behavior is affected by factors such as texture, stress state and loading history, especially for complex multiaxial loading states. Using the in-situ neutron diffraction loading facility (SMARTS diffractometer) and ex situ inverse pole figure measurement facility (HIPPO diffractometer) at the Los Alamos Neutron Science Center (LANCE), the macroscopic mechanical behavior and texture evolution of Nickel-Titanium (Nitinol) SMAs under sequential compression in alternating directions were studied. The simplified multivariant model developed at Northwestern University was then used to simulate the macroscopic behavior and the microstructural change of Nitinol under this sequential loading. Pole figures were obtained via post-processing of the multivariant results for volume fraction evolution and compared quantitatively well to the experimental results. The experimental results can also be used to test or verify other SMA constitutive models.

  12. 31 CFR 700.11 - Weapons and explosives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Weapons and explosives. 700.11 Section... ENFORCEMENT TRAINING CENTER (FLETC) BUILDINGS AND GROUNDS § 700.11 Weapons and explosives. No person, while on the property, shall carry firearms, other dangerous or deadly weapons, or explosives, either openly or...

  13. 7 CFR 501.12 - Weapons and explosives.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Weapons and explosives. 501.12 Section 501.12... OF AGRICULTURE CONDUCT ON U.S. MEAT ANIMAL RESEARCH CENTER, CLAY CENTER, NEBRASKA § 501.12 Weapons... arrows, darts, other dangerous or deadly weapons, or explosives, either openly or concealed, except as...

  14. 7 CFR 501.12 - Weapons and explosives.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Weapons and explosives. 501.12 Section 501.12... OF AGRICULTURE CONDUCT ON U.S. MEAT ANIMAL RESEARCH CENTER, CLAY CENTER, NEBRASKA § 501.12 Weapons... arrows, darts, other dangerous or deadly weapons, or explosives, either openly or concealed, except as...

  15. 31 CFR 700.11 - Weapons and explosives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Weapons and explosives. 700.11 Section... ENFORCEMENT TRAINING CENTER (FLETC) BUILDINGS AND GROUNDS § 700.11 Weapons and explosives. No person, while on the property, shall carry firearms, other dangerous or deadly weapons, or explosives, either openly or...

  16. 15 CFR 265.39 - Weapons and explosives.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 1 2012-01-01 2012-01-01 false Weapons and explosives. 265.39 Section..., GAITHERSBURG, MARYLAND, AND BOULDER AND FORT COLLINS, COLORADO Buildings and Grounds § 265.39 Weapons and... dangerous or deadly weapons or materials, or explosives, either openly or concealed, without the written...

  17. 7 CFR 501.12 - Weapons and explosives.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Weapons and explosives. 501.12 Section 501.12... OF AGRICULTURE CONDUCT ON U.S. MEAT ANIMAL RESEARCH CENTER, CLAY CENTER, NEBRASKA § 501.12 Weapons... arrows, darts, other dangerous or deadly weapons, or explosives, either openly or concealed, except as...

  18. 7 CFR 501.12 - Weapons and explosives.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Weapons and explosives. 501.12 Section 501.12... OF AGRICULTURE CONDUCT ON U.S. MEAT ANIMAL RESEARCH CENTER, CLAY CENTER, NEBRASKA § 501.12 Weapons... arrows, darts, other dangerous or deadly weapons, or explosives, either openly or concealed, except as...

  19. 31 CFR 91.13 - Weapons and explosives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Weapons and explosives. 91.13 Section... GROUNDS § 91.13 Weapons and explosives. No person while on the property shall carry firearms, other dangerous or deadly weapons, or explosives, either openly or concealed, except for official purposes. ...

  20. 15 CFR 265.39 - Weapons and explosives.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Weapons and explosives. 265.39 Section..., GAITHERSBURG, MARYLAND, AND BOULDER AND FORT COLLINS, COLORADO Buildings and Grounds § 265.39 Weapons and... dangerous or deadly weapons or materials, or explosives, either openly or concealed, without the written...

  1. 7 CFR 501.12 - Weapons and explosives.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Weapons and explosives. 501.12 Section 501.12... OF AGRICULTURE CONDUCT ON U.S. MEAT ANIMAL RESEARCH CENTER, CLAY CENTER, NEBRASKA § 501.12 Weapons... arrows, darts, other dangerous or deadly weapons, or explosives, either openly or concealed, except as...

  2. 15 CFR 265.39 - Weapons and explosives.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 1 2014-01-01 2014-01-01 false Weapons and explosives. 265.39 Section..., GAITHERSBURG, MARYLAND, AND BOULDER AND FORT COLLINS, COLORADO Buildings and Grounds § 265.39 Weapons and... dangerous or deadly weapons or materials, or explosives, either openly or concealed, without the written...

  3. 31 CFR 700.11 - Weapons and explosives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Weapons and explosives. 700.11 Section... ENFORCEMENT TRAINING CENTER (FLETC) BUILDINGS AND GROUNDS § 700.11 Weapons and explosives. No person, while on the property, shall carry firearms, other dangerous or deadly weapons, or explosives, either openly or...

  4. 31 CFR 91.13 - Weapons and explosives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance: Treasury 1 2012-07-01 2012-07-01 false Weapons and explosives. 91.13 Section... GROUNDS § 91.13 Weapons and explosives. No person while on the property shall carry firearms, other dangerous or deadly weapons, or explosives, either openly or concealed, except for official purposes. ...

  5. 15 CFR 265.39 - Weapons and explosives.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Weapons and explosives. 265.39 Section..., GAITHERSBURG, MARYLAND, AND BOULDER AND FORT COLLINS, COLORADO Buildings and Grounds § 265.39 Weapons and... dangerous or deadly weapons or materials, or explosives, either openly or concealed, without the written...

  6. 31 CFR 91.13 - Weapons and explosives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 1 2014-07-01 2014-07-01 false Weapons and explosives. 91.13 Section... GROUNDS § 91.13 Weapons and explosives. No person while on the property shall carry firearms, other dangerous or deadly weapons, or explosives, either openly or concealed, except for official purposes. ...

  7. 31 CFR 91.13 - Weapons and explosives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance: Treasury 1 2013-07-01 2013-07-01 false Weapons and explosives. 91.13 Section... GROUNDS § 91.13 Weapons and explosives. No person while on the property shall carry firearms, other dangerous or deadly weapons, or explosives, either openly or concealed, except for official purposes. ...

  8. 31 CFR 700.11 - Weapons and explosives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Weapons and explosives. 700.11 Section... ENFORCEMENT TRAINING CENTER (FLETC) BUILDINGS AND GROUNDS § 700.11 Weapons and explosives. No person, while on the property, shall carry firearms, other dangerous or deadly weapons, or explosives, either openly or...

  9. BB and pellet guns--toys or deadly weapons?

    PubMed

    Harris, W; Luterman, A; Curreri, P W

    1983-07-01

    BB and pellet weapons are not included in gun control laws and are often sold as children's toys. Injuries caused by these weapons have been considered trivial unless they involve vulnerable surface organs such as the eye. The purpose of this study was to review the management of six cases of pellet or BB gun injuries that required abdominal exploration at the University of South Alabama Medical Center from January 1980 through June 1982. Five of the six patients had significant internal injuries including perforations of the stomach, jejunum, liver, and pancreas. The ballistics of pneumatic weapons are reviewed. The muzzle velocities of many of these weapons necessitate that wounds caused by these weapons be handled with the same principles as for any small-caliber, low-velocity (less than 1,200 feet/second) weapons. Public education programs are urgently needed to educate parents as to the potential danger involved in purchasing these weapons for unsupervised use as toys by children.

  10. 32 CFR 1903.10 - Weapons.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Weapons. 1903.10 Section 1903.10 National Defense Other Regulations Relating to National Defense CENTRAL INTELLIGENCE AGENCY CONDUCT ON AGENCY INSTALLATIONS § 1903.10 Weapons. (a) Except as provided in paragraph (c) of this section, knowingly possessing...

  11. 32 CFR 1903.10 - Weapons.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Weapons. 1903.10 Section 1903.10 National Defense Other Regulations Relating to National Defense CENTRAL INTELLIGENCE AGENCY CONDUCT ON AGENCY INSTALLATIONS § 1903.10 Weapons. (a) Except as provided in paragraph (c) of this section, knowingly possessing...

  12. 32 CFR 1903.10 - Weapons.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Weapons. 1903.10 Section 1903.10 National Defense Other Regulations Relating to National Defense CENTRAL INTELLIGENCE AGENCY CONDUCT ON AGENCY INSTALLATIONS § 1903.10 Weapons. (a) Except as provided in paragraph (c) of this section, knowingly possessing...

  13. 32 CFR 1903.10 - Weapons.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Weapons. 1903.10 Section 1903.10 National Defense Other Regulations Relating to National Defense CENTRAL INTELLIGENCE AGENCY CONDUCT ON AGENCY INSTALLATIONS § 1903.10 Weapons. (a) Except as provided in paragraph (c) of this section, knowingly possessing...

  14. 32 CFR 1903.10 - Weapons.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Weapons. 1903.10 Section 1903.10 National Defense Other Regulations Relating to National Defense CENTRAL INTELLIGENCE AGENCY CONDUCT ON AGENCY INSTALLATIONS § 1903.10 Weapons. (a) Except as provided in paragraph (c) of this section, knowingly possessing...

  15. Effects of Weapons on Aggressive Thoughts, Angry Feelings, Hostile Appraisals, and Aggressive Behavior: A Meta-Analytic Review of the Weapons Effect Literature.

    PubMed

    Benjamin, Arlin J; Kepes, Sven; Bushman, Brad J

    2017-09-01

    Guns are associated with aggression. A landmark 1967 study showed that simply seeing a gun can increase aggression-called the "weapons effect." This meta-analysis integrates the findings of weapons effect studies conducted from 1967 to 2017. It includes 162 effect-size estimates from 78 independent studies involving 7,668 participants. The theoretical framework used to explain the weapons effect was the General Aggression Model (GAM), which proposes three routes to aggression-cognitive, affective, and arousal. The GAM also proposes that hostile appraisals can facilitate aggression. As predicted by the GAM, the mere presence of weapons increased aggressive thoughts, hostile appraisals, and aggression, suggesting a cognitive route from weapons to aggression. Weapons did not significantly increase angry feelings. Only one study tested the effects of weapons on arousal. These findings also contribute to the debate about social priming by showing that incidental exposure to a stimulus (weapon) can affect subsequent related behavior (aggression).

  16. Characterising the online weapons trafficking on cryptomarkets.

    PubMed

    Rhumorbarbe, Damien; Werner, Denis; Gilliéron, Quentin; Staehli, Ludovic; Broséus, Julian; Rossy, Quentin

    2018-02-01

    Weapons related webpages from nine cryptomarkets were manually duplicated in February 2016. Information about the listings (i.e. sales proposals) and vendors' profiles were extracted to draw an overview of the actual online trafficking of weapons. Relationships between vendors were also inferred through the analysis of online digital traces and content similarities. Weapons trafficking is mainly concentrated on two major cryptomarkets. Besides, it accounts for a very small proportion of the illicit trafficking on cryptomarkets compared to the illicit drugs trafficking. Among all weapon related listings (n=386), firearms only account for approximately 25% of sales proposal since the proportion of non-lethal and melee weapons is important (around 46%). Based on the recorded pseudonyms, a total of 96 vendor profiles were highlighted. Some pseudonyms were encountered on several cryptomarkets, suggesting that some vendors may manage accounts on different markets. This hypothesis was strengthened by comparing pseudonyms to online traces such as PGP keys, images and profiles descriptions. Such a method allowed to estimate more accurately the number of vendors offering weapons across cryptomarkets. Finally, according to the gathered data, the extent of the weapons trafficking on the cryptomarkets appear to be limited compared to other illicit goods. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. 7 CFR 503.13 - Weapons and explosives.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Weapons and explosives. 503.13 Section 503.13... OF AGRICULTURE CONDUCT ON PLUM ISLAND ANIMAL DISEASE CENTER § 503.13 Weapons and explosives. No person while in or on the PIADC shall carry firearms or other dangerous or deadly weapons or explosives...

  18. 7 CFR 503.13 - Weapons and explosives.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Weapons and explosives. 503.13 Section 503.13... OF AGRICULTURE CONDUCT ON PLUM ISLAND ANIMAL DISEASE CENTER § 503.13 Weapons and explosives. No person while in or on the PIADC shall carry firearms or other dangerous or deadly weapons or explosives...

  19. 46 CFR 386.23 - Weapons and explosives.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false Weapons and explosives. 386.23 Section 386.23 Shipping... AND GROUNDS AT THE UNITED STATES MERCHANT MARINE ACADEMY § 386.23 Weapons and explosives. No person shall carry or possess firearms, other dangerous or deadly weapons or parts thereof, explosives or items...

  20. 46 CFR 386.23 - Weapons and explosives.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Weapons and explosives. 386.23 Section 386.23 Shipping... AND GROUNDS AT THE UNITED STATES MERCHANT MARINE ACADEMY § 386.23 Weapons and explosives. No person shall carry or possess firearms, other dangerous or deadly weapons or parts thereof, explosives or items...

  1. 7 CFR 503.13 - Weapons and explosives.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Weapons and explosives. 503.13 Section 503.13... OF AGRICULTURE CONDUCT ON PLUM ISLAND ANIMAL DISEASE CENTER § 503.13 Weapons and explosives. No person while in or on the PIADC shall carry firearms or other dangerous or deadly weapons or explosives...

  2. 7 CFR 503.13 - Weapons and explosives.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Weapons and explosives. 503.13 Section 503.13... OF AGRICULTURE CONDUCT ON PLUM ISLAND ANIMAL DISEASE CENTER § 503.13 Weapons and explosives. No person while in or on the PIADC shall carry firearms or other dangerous or deadly weapons or explosives...

  3. 46 CFR 386.23 - Weapons and explosives.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Weapons and explosives. 386.23 Section 386.23 Shipping... AND GROUNDS AT THE UNITED STATES MERCHANT MARINE ACADEMY § 386.23 Weapons and explosives. No person shall carry or possess firearms, other dangerous or deadly weapons or parts thereof, explosives or items...

  4. 7 CFR 503.13 - Weapons and explosives.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Weapons and explosives. 503.13 Section 503.13... OF AGRICULTURE CONDUCT ON PLUM ISLAND ANIMAL DISEASE CENTER § 503.13 Weapons and explosives. No person while in or on the PIADC shall carry firearms or other dangerous or deadly weapons or explosives...

  5. 46 CFR 386.23 - Weapons and explosives.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Weapons and explosives. 386.23 Section 386.23 Shipping... AND GROUNDS AT THE UNITED STATES MERCHANT MARINE ACADEMY § 386.23 Weapons and explosives. No person shall carry or possess firearms, other dangerous or deadly weapons or parts thereof, explosives or items...

  6. High-precision measurement of the light response of BC-418 plastic scintillator to protons with energies from 100 keV to 10 MeV

    NASA Astrophysics Data System (ADS)

    Henzl, Vladimir; Daub, Brian; French, Jennifer; Matthews, June; Kovash, Michael; Wender, Stephen; Famiano, Michael; Koehler, Katrina; Yuly, Mark

    2010-11-01

    The determination of the light response of many organic scintillators to various types of radiation has been a subject of numerous experimental as well as theoretical studies in the past. But while the data on light response to particles with energies above 1 MeV are precise and abundant, the information on light response to very low energy particles (i.e. below 1 MeV) is scarce or completely missing. In this study we measured the light response of a BC-418 scintillator to protons with energies from 100 keV to 10 MeV. The experiment was performed at Weapons Neutron Research Facility at LANSCE, Los Alamos. The neutron beam from a spallation source is used to irradiate the active target made from BC-418 plastic scintillator. The recoiled protons detected in the active target are measured in coincidence with elastically scattered incident neutrons detected by and adjacent liquid scintillator. Time of flight of the incident neutron and the knowledge of scattering geometry allow for a kinematically complete and high-precision measurement of the light response as a function of the proton energy.

  7. Fifteen years of the Protein Crystallography Station: The coming of age of macromolecular neutron crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Julian C.-H.; Unkefer, Clifford Jay

    The Protein Crystallography Station (PCS), located at the Los Alamos Neutron Scattering Center (LANSCE), was the first macromolecular crystallography beamline to be built at a spallation neutron source. Following testing and commissioning, the PCS user program was funded by the Biology and Environmental Research program of the Department of Energy Office of Science (DOE-OBER) for 13 years (2002–2014). The PCS remained the only dedicated macromolecular neutron crystallography station in North America until the construction and commissioning of the MaNDi and IMAGINE instruments at Oak Ridge National Laboratory, which started in 2012. The instrument produced a number of research and technicalmore » outcomes that have contributed to the field, clearly demonstrating the power of neutron crystallography in helping scientists to understand enzyme reaction mechanisms, hydrogen bonding and visualization of H-atom positions, which are critical to nearly all chemical reactions. During this period, neutron crystallography became a technique that increasingly gained traction, and became more integrated into macromolecular crystallography through software developments led by investigators at the PCS. As a result, this review highlights the contributions of the PCS to macromolecular neutron crystallography, and gives an overview of the history of neutron crystallography and the development of macromolecular neutron crystallography from the 1960s to the 1990s and onwards through the 2000s.« less

  8. Fifteen years of the Protein Crystallography Station: The coming of age of macromolecular neutron crystallography

    DOE PAGES

    Chen, Julian C.-H.; Unkefer, Clifford Jay

    2017-01-01

    The Protein Crystallography Station (PCS), located at the Los Alamos Neutron Scattering Center (LANSCE), was the first macromolecular crystallography beamline to be built at a spallation neutron source. Following testing and commissioning, the PCS user program was funded by the Biology and Environmental Research program of the Department of Energy Office of Science (DOE-OBER) for 13 years (2002–2014). The PCS remained the only dedicated macromolecular neutron crystallography station in North America until the construction and commissioning of the MaNDi and IMAGINE instruments at Oak Ridge National Laboratory, which started in 2012. The instrument produced a number of research and technicalmore » outcomes that have contributed to the field, clearly demonstrating the power of neutron crystallography in helping scientists to understand enzyme reaction mechanisms, hydrogen bonding and visualization of H-atom positions, which are critical to nearly all chemical reactions. During this period, neutron crystallography became a technique that increasingly gained traction, and became more integrated into macromolecular crystallography through software developments led by investigators at the PCS. As a result, this review highlights the contributions of the PCS to macromolecular neutron crystallography, and gives an overview of the history of neutron crystallography and the development of macromolecular neutron crystallography from the 1960s to the 1990s and onwards through the 2000s.« less

  9. Fifteen years of the Protein Crystallography Station: the coming of age of macromolecular neutron crystallography

    PubMed Central

    Chen, Julian C.-H.

    2017-01-01

    The Protein Crystallography Station (PCS), located at the Los Alamos Neutron Scattering Center (LANSCE), was the first macromolecular crystallography beamline to be built at a spallation neutron source. Following testing and commissioning, the PCS user program was funded by the Biology and Environmental Research program of the Department of Energy Office of Science (DOE-OBER) for 13 years (2002–2014). The PCS remained the only dedicated macromolecular neutron crystallography station in North America until the construction and commissioning of the MaNDi and IMAGINE instruments at Oak Ridge National Laboratory, which started in 2012. The instrument produced a number of research and technical outcomes that have contributed to the field, clearly demonstrating the power of neutron crystallo­graphy in helping scientists to understand enzyme reaction mechanisms, hydrogen bonding and visualization of H-atom positions, which are critical to nearly all chemical reactions. During this period, neutron crystallography became a technique that increasingly gained traction, and became more integrated into macromolecular crystallography through software developments led by investigators at the PCS. This review highlights the contributions of the PCS to macromolecular neutron crystallography, and gives an overview of the history of neutron crystallography and the development of macromolecular neutron crystallography from the 1960s to the 1990s and onwards through the 2000s. PMID:28250943

  10. 25 CFR 11.444 - Carrying concealed weapons.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Carrying concealed weapons. 11.444 Section 11.444 Indians... ORDER CODE Criminal Offenses § 11.444 Carrying concealed weapons. A person who goes about in public places armed with a dangerous weapon concealed upon his or her person is guilty of a misdemeanor unless...

  11. 4 CFR 25.14 - Weapons and explosives.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 4 Accounts 1 2010-01-01 2010-01-01 false Weapons and explosives. 25.14 Section 25.14 Accounts... AND ON ITS GROUNDS § 25.14 Weapons and explosives. No person while entering or in the GAO Building or on its grounds shall carry or possess firearms, other dangerous or deadly weapons, explosives or...

  12. 25 CFR 11.444 - Carrying concealed weapons.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Carrying concealed weapons. 11.444 Section 11.444 Indians... ORDER CODE Criminal Offenses § 11.444 Carrying concealed weapons. A person who goes about in public places armed with a dangerous weapon concealed upon his or her person is guilty of a misdemeanor unless...

  13. 25 CFR 11.444 - Carrying concealed weapons.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Carrying concealed weapons. 11.444 Section 11.444 Indians... ORDER CODE Criminal Offenses § 11.444 Carrying concealed weapons. A person who goes about in public places armed with a dangerous weapon concealed upon his or her person is guilty of a misdemeanor unless...

  14. 25 CFR 11.444 - Carrying concealed weapons.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Carrying concealed weapons. 11.444 Section 11.444 Indians... ORDER CODE Criminal Offenses § 11.444 Carrying concealed weapons. A person who goes about in public places armed with a dangerous weapon concealed upon his or her person is guilty of a misdemeanor unless...

  15. 4 CFR 25.14 - Weapons and explosives.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 4 Accounts 1 2011-01-01 2011-01-01 false Weapons and explosives. 25.14 Section 25.14 Accounts... AND ON ITS GROUNDS § 25.14 Weapons and explosives. No person while entering or in the GAO Building or on its grounds shall carry or possess firearms, other dangerous or deadly weapons, explosives or...

  16. 4 CFR 25.14 - Weapons and explosives.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 4 Accounts 1 2012-01-01 2012-01-01 false Weapons and explosives. 25.14 Section 25.14 Accounts... AND ON ITS GROUNDS § 25.14 Weapons and explosives. No person while entering or in the GAO Building or on its grounds shall carry or possess firearms, other dangerous or deadly weapons, explosives or...

  17. 25 CFR 11.444 - Carrying concealed weapons.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Carrying concealed weapons. 11.444 Section 11.444 Indians... ORDER CODE Criminal Offenses § 11.444 Carrying concealed weapons. A person who goes about in public places armed with a dangerous weapon concealed upon his or her person is guilty of a misdemeanor unless...

  18. 4 CFR 25.14 - Weapons and explosives.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 4 Accounts 1 2014-01-01 2013-01-01 true Weapons and explosives. 25.14 Section 25.14 Accounts... AND ON ITS GROUNDS § 25.14 Weapons and explosives. No person while entering or in the GAO Building or on its grounds shall carry or possess firearms, other dangerous or deadly weapons, explosives or...

  19. 4 CFR 25.14 - Weapons and explosives.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 4 Accounts 1 2013-01-01 2013-01-01 false Weapons and explosives. 25.14 Section 25.14 Accounts... AND ON ITS GROUNDS § 25.14 Weapons and explosives. No person while entering or in the GAO Building or on its grounds shall carry or possess firearms, other dangerous or deadly weapons, explosives or...

  20. Fission-fragment total kinetic energy and mass yields for neutron-induced fission of 235U and 238U with En =200 keV - 30 MeV

    NASA Astrophysics Data System (ADS)

    Duke, D. L.; Tovesson, F.; Brys, T.; Geppert-Kleinrath, V.; Hambsch, F.-J.; Laptev, A.; Meharchand, R.; Manning, B.; Mayorov, D.; Meierbachtol, K.; Mosby, S.; Perdue, B.; Richman, D.; Shields, D.; Vidali, M.

    2017-09-01

    The average Total Kinetic Energy (TKE) release and fission-fragment yields in neutron-induced fission of 235U and 238U was measured using a Frisch-gridded ionization chamber. These observables are important nuclear data quantites that are relevant to applications and for informing the next generation of fission models. The measurements were performed a the Los Alamos Neutron Science Center and cover En = 200 keV - 30 MeV. The double-energy (2E) method was used to determine the fission-fragment yields and two methods of correcting for prompt-neutron emission were explored. The results of this study are correlated mass and TKE data.

  1. Total Kinetic Energy and Fragment Mass Distribution of Neutron-Induced Fission of U-233

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, Daniel James; Schmitt, Kyle Thomas; Mosby, Shea Morgan

    Properties of fission in U-233 were studied at the Los Alamos Neutron Science Center (LANSCE) at incident neutron energies from thermal to 40 MeV at both the Lujan Neutron Scattering Center flight path 12 and at WNR flight path 90-Left from Dec 2016 to Jan 2017. Fission fragments are observed in coincidence using a twin ionization chamber with Frisch grids. The average total kinetic energy (TKE) released from fission and fragment mass distributions are calculated from observations of energy deposited in the detector and conservation of mass and momentum. Accurate experimental measurements of these parameters are necessary to better understandmore » the fission process and obtain data necessary for calculating criticality. The average TKE released from fission has been well characterized for several isotopes at thermal neutron energy, however, few measurements have been made at fast neutron energies. This experiment expands on previous successful experiments using an ionization chamber to measure TKE and fragment mass distributions of U-235, U-238, and Pu-239. This experiment requires the full spectrum of neutron energies and can therefore only be performed at a small number of facilities in the world. The required full neutron energy spectrum is obtained by combining measurements from WNR 90L and Lujan FP12 at LANSCE.« less

  2. High-energy laser weapons: technology overview

    NASA Astrophysics Data System (ADS)

    Perram, Glen P.; Marciniak, Michael A.; Goda, Matthew

    2004-09-01

    High energy laser (HEL) weapons are ready for some of today"s most challenging military applications. For example, the Airborne Laser (ABL) program is designed to defend against Theater Ballistic Missiles in a tactical war scenario. Similarly, the Tactical High Energy Laser (THEL) program is currently testing a laser to defend against rockets and other tactical weapons. The Space Based Laser (SBL), Advanced Tactical Laser (ATL) and Large Aircraft Infrared Countermeasures (LAIRCM) programs promise even greater applications for laser weapons. This technology overview addresses both strategic and tactical roles for HEL weapons on the modern battlefield and examines current technology limited performance of weapon systems components, including various laser device types, beam control systems, atmospheric propagation, and target lethality issues. The characteristics, history, basic hardware, and fundamental performance of chemical lasers, solid state lasers and free electron lasers are summarized and compared. The elements of beam control, including the primary aperture, fast steering mirror, deformable mirrors, wavefront sensors, beacons and illuminators will be discussed with an emphasis on typical and required performance parameters. The effects of diffraction, atmospheric absorption, scattering, turbulence and thermal blooming phenomenon on irradiance at the target are described. Finally, lethality criteria and measures of weapon effectiveness are addressed. The primary purpose of the presentation is to define terminology, establish key performance parameters, and summarize technology capabilities.

  3. Optimization of Aimpoints for Coordinate Seeking Weapons

    DTIC Science & Technology

    2015-09-01

    aiming) and independent ( ballistic ) errors are taken into account, before utilizing each of the three damage functions representing the weapon. A Monte...characteristics such as the radius of the circle containing the weapon aimpoint, impact angle, dependent (aiming) and independent ( ballistic ) errors are taken...Dependent (Aiming) Error .................................8 2. Single Weapon Independent ( Ballistic ) Error .............................9 3

  4. The Manhattan Project

    Science.gov Websites

    Short History of Oak Ridge National Laboratory (1943 - 1993) Los Alamos, New Mexico * Selected as Atomic Weapons Laboratory * Site Selection * History @ Los Alamos Hanford, Washington * Selected as Plutonium Production Facility * History of the Hanford Site 1943 - 1990 Chicago, Illinois * Promethean Boldness at

  5. New Weapons and the Arms Race

    NASA Astrophysics Data System (ADS)

    Tsipis, Kosta

    1983-10-01

    In speaking about technologies that could further animate the weapons competition between the United States and the U.S.S.R., it would be useful to distinguish between technologies that have already been incorporated into specific weapons systems, and new technologies that are of a generic nature, can be used in a variety of applications, adn can best be described by the tasks that they can perform rather than any specific weapons application. Let me begin with the latter class.

  6. 32 CFR 552.104 - Disposition of confiscated/seized weapons.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Disposition of confiscated/seized weapons. 552... RESERVATIONS AND NATIONAL CEMETERIES REGULATIONS AFFECTING MILITARY RESERVATIONS Firearms and Weapons § 552.104 Disposition of confiscated/seized weapons. All weapons, ammunition, explosives or other devices defined in...

  7. 32 CFR 552.104 - Disposition of confiscated/seized weapons.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 3 2013-07-01 2013-07-01 false Disposition of confiscated/seized weapons. 552... RESERVATIONS AND NATIONAL CEMETERIES REGULATIONS AFFECTING MILITARY RESERVATIONS Firearms and Weapons § 552.104 Disposition of confiscated/seized weapons. All weapons, ammunition, explosives or other devices defined in...

  8. 32 CFR 552.104 - Disposition of confiscated/seized weapons.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Disposition of confiscated/seized weapons. 552... RESERVATIONS AND NATIONAL CEMETERIES REGULATIONS AFFECTING MILITARY RESERVATIONS Firearms and Weapons § 552.104 Disposition of confiscated/seized weapons. All weapons, ammunition, explosives or other devices defined in...

  9. 32 CFR 552.104 - Disposition of confiscated/seized weapons.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 3 2012-07-01 2009-07-01 true Disposition of confiscated/seized weapons. 552... RESERVATIONS AND NATIONAL CEMETERIES REGULATIONS AFFECTING MILITARY RESERVATIONS Firearms and Weapons § 552.104 Disposition of confiscated/seized weapons. All weapons, ammunition, explosives or other devices defined in...

  10. 32 CFR 552.104 - Disposition of confiscated/seized weapons.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Disposition of confiscated/seized weapons. 552... RESERVATIONS AND NATIONAL CEMETERIES REGULATIONS AFFECTING MILITARY RESERVATIONS Firearms and Weapons § 552.104 Disposition of confiscated/seized weapons. All weapons, ammunition, explosives or other devices defined in...

  11. The Sound of Freedom. Naval Weapons Technology at Dahlgren, Virginia, 1918-2006

    DTIC Science & Technology

    2006-01-01

    the TRINITY device, before later succeeding J. Robert Oppenheimer as the director of Los Alamos National Laboratory. Other former Dahlgren...and the Computer (Cambridge, Mass.: The MIT Press, 1999); Michael R. Williams, A History of Computing Technology, 2nd ed. ( Los Alamos , Calif.: IEEE...Minutes of Advisory Council. 3. Ibid. 4. Ibid.; Michael R. Williams, A History of Computing Technology, 2nd ed. ( Los Alamos , Calif.: IEEE Computer

  12. Los Alamos on Radio Café: Nina Lanza

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanza, Nina; Domandi, Mary-Charlotte

    2017-04-11

    First up in the new series is Los Alamos National Laboratory’s Nina Lanza from the Space and Remote Sensing group. Lanza is a planetary geologist who has been part of the Mars Curiosity Rover “ChemCam” team since 2012.

  13. 32 CFR 552.130 - Disposition of confiscated/seized weapons.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Disposition of confiscated/seized weapons. 552..., Ammunition and Other Dangerous Weapons on Fort Gordon § 552.130 Disposition of confiscated/seized weapons. All weapons, ammunition, explosives, or other devices defined in this subpart, that are confiscated...

  14. 32 CFR 552.130 - Disposition of confiscated/seized weapons.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Disposition of confiscated/seized weapons. 552..., Ammunition and Other Dangerous Weapons on Fort Gordon § 552.130 Disposition of confiscated/seized weapons. All weapons, ammunition, explosives, or other devices defined in this subpart, that are confiscated...

  15. 32 CFR 552.130 - Disposition of confiscated/seized weapons.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 3 2013-07-01 2013-07-01 false Disposition of confiscated/seized weapons. 552..., Ammunition and Other Dangerous Weapons on Fort Gordon § 552.130 Disposition of confiscated/seized weapons. All weapons, ammunition, explosives, or other devices defined in this subpart, that are confiscated...

  16. 32 CFR 552.130 - Disposition of confiscated/seized weapons.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 3 2012-07-01 2009-07-01 true Disposition of confiscated/seized weapons. 552..., Ammunition and Other Dangerous Weapons on Fort Gordon § 552.130 Disposition of confiscated/seized weapons. All weapons, ammunition, explosives, or other devices defined in this subpart, that are confiscated...

  17. 32 CFR 552.130 - Disposition of confiscated/seized weapons.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Disposition of confiscated/seized weapons. 552..., Ammunition and Other Dangerous Weapons on Fort Gordon § 552.130 Disposition of confiscated/seized weapons. All weapons, ammunition, explosives, or other devices defined in this subpart, that are confiscated...

  18. Airport-Noise Levels and Annoyance Model (ALAMO) user's guide

    NASA Technical Reports Server (NTRS)

    Deloach, R.; Donaldson, J. L.; Johnson, M. J.

    1986-01-01

    A guide for the use of the Airport-Noise Level and Annoyance MOdel (ALAMO) at the Langley Research Center computer complex is provided. This document is divided into 5 primary sections, the introduction, the purpose of the model, and an in-depth description of the following subsystems: baseline, noise reduction simulation and track analysis. For each subsystem, the user is provided with a description of architecture, an explanation of subsystem use, sample results, and a case runner's check list. It is assumed that the user is familiar with the operations at the Langley Research Center (LaRC) computer complex, the Network Operating System (NOS 1.4) and CYBER Control Language. Incorporated within the ALAMO model is a census database system called SITE II.

  19. [Biological and toxin terrorism weapons].

    PubMed

    Bokan, Slavko

    2003-03-01

    The use of biological agents and toxins in warfare and terrorism has a long history. Human, animal and plant pathogens and toxins can cause disease and can be used as a threat to humans, animals and staple crops. The same is true for biological agents. Although the use of biological agents and toxins in military conflicts has been a concern of military communities for many years, several recent events have increased the awareness of terrorist use of these weapons against civilian population. A Mass Casualty Biological (Toxin) Weapon (MCBTW) is any biological and toxin weapon capable of causing death or disease on a large scale, such that the military or civilian infrastructure of the state or organization being attacked is overwhelmed. A militarily significant (or terrorist) weapon is any weapon capable of affecting, directly or indirectly, that is physically or psychologically, the outcome of a military operation. Although many biological agents such as toxins and bioregulators can be used to cause diseases, there are only a few that can truly threaten civilian populations on a large scale. Bioregulators or modulators are biochemical compounds, such as peptides, that occur naturally in organisms. They are new class of weapons that can damage nervous system, alter moods, trigger psychological changes and kill. The potential military or terrorist use of bioregulators is similar to that of toxins. Some of these compounds are several hundred times more potent than traditional chemical warfare agents. Important features and military advantages of new bioregulators are novel sites of toxic action; rapid and specific effects; penetration of protective filters and equipment, and militarily effective physical incapacitation. This overview of biological agents and toxins is largely intended to help healthcare providers on all levels to make decisions in protecting general population from these agents.

  20. 48 CFR 217.173 - Multiyear contracts for weapon systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... weapon systems. 217.173 Section 217.173 Federal Acquisition Regulations System DEFENSE ACQUISITION... Mulityear Contracting 217.173 Multiyear contracts for weapon systems. As authorized by 10 U.S.C. 2306b(h... contract for— (a) A weapon system and associated items, services, and logistics support for a weapon system...

  1. Military laser weapons: current controversies.

    PubMed

    Seet, B; Wong, T Y

    2001-09-01

    Military laser weapons systems are becoming indispensable in most modern armies. These lasers have undergone many stages of development, and have outpaced research on eye protection measures, which continue to have inherent limitations. Eye injuries caused by military lasers are increasingly reported, leading to speculation that these would become an important cause of blinding in modern conflicts. As part of the effort to ban inhumane weapons, international laws have been passed to restrict the proliferation of such blinding weapons. However, there are controversies concerning the interpretation, implementation and effectiveness of these laws. The ophthalmic community can play a greater role in highlighting ocular morbidity from military lasers, and in preventing their further proliferation.

  2. Polar Maps of Thermal and Epithermal Neutrons

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Observations by NASA's 2001 Mars Odyssey spacecraft show views of the polar regions of Mars in thermal neutrons (top) and epithermal neutrons (bottom). In these maps, deep blue indicates a low amount of neutrons, and red indicates a high amount. Thermal neutrons are sensitive to the presence of hydrogen and the presence of carbon dioxide, in this case 'dry ice' frost. The red area in the upper right map indicates that about one meter (three feet) of carbon dioxide frost covers the surface around the north pole, as it does every Mars winter in the polar regions. An enhancement of thermal neutrons close to the south pole, seen as a light green color on the upper left map, indicates the presence of residual carbon dioxide in the south polar cap, even though the annual frost dissipated from that region during southern summer. Soil enriched with hydrogen is indicated by the deep blue colors on the epithermal maps (bottom), showing a low intensity of epithermal neutrons. The deep blue areas in the polar regions are believed to contain up to 50 percent water ice in the upper one meter (three feet) of the soil. The views shown here are of measurements made during the first three months of mapping using the neutron spectrometer instrument, part of the gamma ray spectrometer instrument suite. Topographic features are superimposed on the map for geographic reference.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson, and NASA's Johnson Space Center, Houston, operate the science instruments. The gamma-ray spectrometer was provided by the University of Arizona in collaboration with the Russian Aviation and Space Agency, which provided the high-energy neutron detector, and the Los Alamos National Laboratories, New Mexico, which provided the neutron spectrometer. Lockheed Martin Astronautics, Denver, is the prime

  3. Overall View of Chemical and Biochemical Weapons

    PubMed Central

    Pitschmann, Vladimír

    2014-01-01

    This article describes a brief history of chemical warfare, which culminated in the signing of the Chemical Weapons Convention. It describes the current level of chemical weapons and the risk of using them. Furthermore, some traditional technology for the development of chemical weapons, such as increasing toxicity, methods of overcoming chemical protection, research on natural toxins or the introduction of binary technology, has been described. In accordance with many parameters, chemical weapons based on traditional technologies have achieved the limit of their development. There is, however, a big potential of their further development based on the most recent knowledge of modern scientific and technical disciplines, particularly at the boundary of chemistry and biology. The risk is even higher due to the fact that already, today, there is a general acceptance of the development of non-lethal chemical weapons at a technologically higher level. In the future, the chemical arsenal will be based on the accumulation of important information from the fields of chemical, biological and toxin weapons. Data banks obtained in this way will be hardly accessible and the risk of their materialization will persist. PMID:24902078

  4. Overall view of chemical and biochemical weapons.

    PubMed

    Pitschmann, Vladimír

    2014-06-04

    This article describes a brief history of chemical warfare, which culminated in the signing of the Chemical Weapons Convention. It describes the current level of chemical weapons and the risk of using them. Furthermore, some traditional technology for the development of chemical weapons, such as increasing toxicity, methods of overcoming chemical protection, research on natural toxins or the introduction of binary technology, has been described. In accordance with many parameters, chemical weapons based on traditional technologies have achieved the limit of their development. There is, however, a big potential of their further development based on the most recent knowledge of modern scientific and technical disciplines, particularly at the boundary of chemistry and biology. The risk is even higher due to the fact that already, today, there is a general acceptance of the development of non-lethal chemical weapons at a technologically higher level. In the future, the chemical arsenal will be based on the accumulation of important information from the fields of chemical, biological and toxin weapons. Data banks obtained in this way will be hardly accessible and the risk of their materialization will persist.

  5. A New Generation of Los Alamos Opacity Tables

    DOE PAGES

    Colgan, James Patrick; Kilcrease, David Parker; Magee, Jr., Norman H.; ...

    2016-01-26

    We present a new, publicly available, set of Los Alamos OPLIB opacity tables for the elements hydrogen through zinc. Our tables are computed using the Los Alamos ATOMIC opacity and plasma modeling code, and make use of atomic structure calculations that use fine-structure detail for all the elements considered. Our equation-of-state (EOS) model, known as ChemEOS, is based on the minimization of free energy in a chemical picture and appears to be a reasonable and robust approach to determining atomic state populations over a wide range of temperatures and densities. In this paper we discuss in detail the calculations thatmore » we have performed for the 30 elements considered, and present some comparisons of our monochromatic opacities with measurements and other opacity codes. We also use our new opacity tables in solar modeling calculations and compare and contrast such modeling with previous work.« less

  6. DoD Nuclear Weapons Personnel Reliability Assurance

    DTIC Science & Technology

    2016-04-27

    destructive power, and the potential consequences of an accident or unauthorized act. Assured nuclear weapons safety, security, and control remain of...DOD INSTRUCTION 5210.42 DOD NUCLEAR WEAPONS PERSONNEL RELIABILITY ASSURANCE Originating Component: Office of the Under Secretary of...from the DoD Issuances Website at http://www.dtic.mil/whs/directives. Reissues and renames: DoD Instruction 5210.42, “ Nuclear Weapons Personnel

  7. Integral measurements of neutron and gamma-ray leakage fluxes from the Little Boy replica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muckenthaler, F.J.

    This report presents integral measurements of neutron and gamma-ray leakage fluxes from a critical mockup of the Hiroshima bomb Little Boy at Los Alamos National Laobratory with detector systems developed by Oak Ridge National Laboratory. Bonner ball detectors were used to map the neutron fluxes in the horizontal midplane at various distances from the mockup and for selected polar angles, keeping the source-detector separation constant. Gamma-ray energy deposition measurements were made with thermoluminescent detectors at several locations on the iron shell of the source mockup. The measurements were performed as part of a larger progam to provide benchmark data formore » testing the methods used to calculate the radiation released from the Little Boy bomb over Hiroshima. 3 references, 10 figures.« less

  8. Neutron Physics. A Revision of I. Halpern's notes on E. Fermi's lectures in 1945

    DOE R&D Accomplishments Database

    Beckerley, J.G.

    1951-10-16

    In the Fall of 1945 a course in Neutron Physics was given by Professor Fermi as part of the program of the Los Alamos University. The course consisted of thirty lectures most of which were given by Fermi. In his absence R.F. Christy and E. Segre gave several lectures. The present revision is based upon class notes prepared by I. Halpern with some assistance by B.T. Feld and issued first as document LADC 255 and later with wider circulation as MDDC 320.

  9. Some Notes on Neutron Up-Scattering and the Doppler-Broadening of High-Z Scattering Resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, Donald Kent

    When neutrons are scattered by target nuclei at elevated temperatures, it is entirely possible that the neutron will actually gain energy (i.e., up-scatter) from the interaction. This phenomenon is in addition to the more usual case of the neutron losing energy (i.e., down-scatter). Furthermore, the motion of the target nuclei can also cause extended neutron down-scattering, i.e., the neutrons can and do scatter to energies lower than predicted by the simple asymptotic models. In recent years, more attention has been given to temperature-dependent scattering cross sections for materials in neutron multiplying systems. This has led to the inclusion of neutronmore » up-scatter in deterministic codes like Partisn and to free gas scattering models for material temperature effects in Monte Carlo codes like MCNP and cross section processing codes like NJOY. The free gas scattering models have the effect of Doppler Broadening the scattering cross section output spectra in energy and angle. The current state of Doppler-Broadening numerical techniques used at Los Alamos for scattering resonances will be reviewed, and suggestions will be made for further developments. The focus will be on the free gas scattering models currently in use and the development of new models to include high-Z resonance scattering effects. These models change the neutron up-scattering behavior.« less

  10. Combating the Proliferation of Weapons of Mass Destruction.

    ERIC Educational Resources Information Center

    Jenkins, Bonnie

    1997-01-01

    Reveals the growing threat posed to all countries by the proliferation of weapons of mass destruction. Discusses the international effort combating this proliferation including the Nuclear Non-Proliferation Treaty, Strategic Arms Reduction Treaties, Biological Weapons Convention, and Chemical Weapons Convention. Also considers regional arms…

  11. James L. Tuck Los Alamos ball lightning pioneer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, D.A.

    1999-07-01

    James Tuck was well known for starting the Project Sherwood group at Los Alamos Scientific Laboratory in 1952. This group was formed to study and develop concepts for controlled fusion energy. In his later years after retiring from Controlled Fusion Division, he continued research at Los Alamos on the topic of ball lightning. He traveled widely giving lectures on both observations of others and his own experimental efforts. He collected anecdotal observations obtained from those in his lecture audiences during his travels and from responses from newspaper articles where he asked for specific information from ball lightning observers. He finallymore » cut off this collection of data when the number of responses became overwhelming. The author's primary publication on ball lightning was a short laboratory report. He planned on publishing a book on the subject but this was never completed before his death. Tuck focused his experimental effort on attempting to duplicate the production of plasma balls claimed to be observed in US Navy submarines when a switch was opened under overload conditions with battery power. During lunch breaks he made use of a Los Alamos N-division battery bank facility to mock up a submarine power pack and switch gear. This non-funded effort was abruptly terminated when an explosion occurred in the facility. An overview of Tuck's research and views will be given. The flavor Jim's personality as well as a ball produced with his experimental apparatus will be shown using video chips.« less

  12. 36 CFR § 1002.4 - Weapons, traps and nets.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Weapons, traps and nets. Â... USE AND RECREATION § 1002.4 Weapons, traps and nets. (a)(1) Except as otherwise provided in this section, the following are prohibited: (i) Possessing a weapon, trap or net. (ii) Carrying a weapon, trap...

  13. Weapon use increases the severity of domestic violence but neither weapon use nor firearm access increases the risk or severity of recidivism.

    PubMed

    Folkes, Stephanie E F; Hilton, N Zoe; Harris, Grant T

    2013-04-01

    Use of weapons is a risk factor for domestic violence severity, especially lethality. It is not clear, however, whether access to firearms itself increases assault severity, or whether it is characteristic of a subgroup of offenders who are more likely to commit severe and repeated domestic assault. This reanalysis of 1,421 police reports of domestic violence by men found that 6% used a weapon during the assault and 8% had access to firearms. We expected that firearm use would be rare compared to other weapons and that actual weapon use rather than firearm access would increase the severity of domestic assaults. Firearm access was associated with assault severity, but this was mostly attributable to use of nonfirearm weapons. Weapon use was associated with older age, lower education, and relationship history as well as to assault severity. Victims were most concerned about future assaults following threats and actual injuries. Although firearm access and weapon use were related to actuarial risk of domestic violence recidivism, neither predicted the occurrence or severity of recidivism. We conclude that, consistent with previous research in the United States and Canada, firearm use in domestic violence is uncommon even among offenders with known firearm access. Weapon use is characteristic of a subgroup of offenders who commit more severe domestic violence, and seizure of weapons may be an effective intervention.

  14. Syria’s Chemical Weapons: Issues for Congress

    DTIC Science & Technology

    2013-09-12

    chemical weapons, explaining that “a red line for us is we start seeing a whole bunch of chemical weapons moving around or being utilized. That would...Damascus used or lost control of its chemical weapons, explaining that “a red line for us is we start seeing a whole bunch of chemical weapons moving...do further work to establish a definitive judgment as to whether or not the red line has been crossed and to inform our decision-making about what to

  15. 32 CFR 552.125 - Disposition of confiscated weapons.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 3 2012-07-01 2009-07-01 true Disposition of confiscated weapons. 552.125..., Ammunition, and Explosives-Fort Lewis, Washington § 552.125 Disposition of confiscated weapons. Commanders will maintain confiscated weapons in the unit arms room pending final disposition. They will provide...

  16. 32 CFR 552.125 - Disposition of confiscated weapons.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Disposition of confiscated weapons. 552.125..., Ammunition, and Explosives-Fort Lewis, Washington § 552.125 Disposition of confiscated weapons. Commanders will maintain confiscated weapons in the unit arms room pending final disposition. They will provide...

  17. 32 CFR 552.125 - Disposition of confiscated weapons.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Disposition of confiscated weapons. 552.125..., Ammunition, and Explosives-Fort Lewis, Washington § 552.125 Disposition of confiscated weapons. Commanders will maintain confiscated weapons in the unit arms room pending final disposition. They will provide...

  18. 32 CFR 552.125 - Disposition of confiscated weapons.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Disposition of confiscated weapons. 552.125..., Ammunition, and Explosives-Fort Lewis, Washington § 552.125 Disposition of confiscated weapons. Commanders will maintain confiscated weapons in the unit arms room pending final disposition. They will provide...

  19. 32 CFR 552.125 - Disposition of confiscated weapons.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 3 2013-07-01 2013-07-01 false Disposition of confiscated weapons. 552.125..., Ammunition, and Explosives-Fort Lewis, Washington § 552.125 Disposition of confiscated weapons. Commanders will maintain confiscated weapons in the unit arms room pending final disposition. They will provide...

  20. Biological Weapons Attribution: A Primer

    DTIC Science & Technology

    2007-06-01

    attacks are very difficult: (1) the nature of biological weapons, (2) the unique restrictions the international environment places on BW attribution, and...provides a basic epistemological framework for analysis for successful BW attribution, detailing the nature , methods, and limits of current BW...difficult: (1) the nature of biological weapons, (2) the unique restrictions the international environment places on BW attribution, and (3) the

  1. Quality assurance of temporal variability of natural decay chain and neutron induced background for low-level NORM analysis

    DOE PAGES

    Yoho, Michael; Porterfield, Donivan R.; Landsberger, Sheldon

    2015-09-22

    In this study, twenty-one high purity germanium (HPGe) background spectra were collected over 2 years at Los Alamos National Laboratory. A quality assurance methodology was developed to monitor spectral background levels from thermal and fast neutron flux levels and naturally occurring radioactive material decay series radionuclides. 238U decay products above 222Rn demonstrated minimal temporal variability beyond that expected from counting statistics. 238U and 232Th progeny below Rn gas displayed at most twice the expected variability. Further, an analysis of the 139 keV 74Ge(n, γ) and 691 keV 72Ge(n, n') spectral features demonstrated temporal stability for both thermal and fastmore » neutron fluxes.« less

  2. Commissioning of the NPDGamma Detector Array: Counting Statistics in Current Mode Operation and Parity Violation in the Capture of Cold Neutrons on B 4 C and (27) Al.

    PubMed

    Gericke, M T; Bowman, J D; Carlini, R D; Chupp, T E; Coulter, K P; Dabaghyan, M; Desai, D; Freedman, S J; Gentile, T R; Gillis, R C; Greene, G L; Hersman, F W; Ino, T; Ishimoto, S; Jones, G L; Lauss, B; Leuschner, M B; Losowski, B; Mahurin, R; Masuda, Y; Mitchell, G S; Muto, S; Nann, H; Page, S A; Penttila, S I; Ramsay, W D; Santra, S; Seo, P-N; Sharapov, E I; Smith, T B; Snow, W M; Wilburn, W S; Yuan, V; Zhu, H

    2005-01-01

    The NPDGamma γ-ray detector has been built to measure, with high accuracy, the size of the small parity-violating asymmetry in the angular distribution of gamma rays from the capture of polarized cold neutrons by protons. The high cold neutron flux at the Los Alamos Neutron Scattering Center (LANSCE) spallation neutron source and control of systematic errors require the use of current mode detection with vacuum photodiodes and low-noise solid-state preamplifiers. We show that the detector array operates at counting statistics and that the asymmetries due to B4C and (27)Al are zero to with- in 2 × 10(-6) and 7 × 10(-7), respectively. Boron and aluminum are used throughout the experiment. The results presented here are preliminary.

  3. Mobile Pit verification system design based on passive special nuclear material verification in weapons storage facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, J. N.; Chin, M. R.; Sjoden, G. E.

    2013-07-01

    A mobile 'drive by' passive radiation detection system to be applied in special nuclear materials (SNM) storage facilities for validation and compliance purposes has been designed through the use of computational modeling and new radiation detection methods. This project was the result of work over a 1 year period to create optimal design specifications to include creation of 3D models using both Monte Carlo and deterministic codes to characterize the gamma and neutron leakage out each surface of SNM-bearing canisters. Results were compared and agreement was demonstrated between both models. Container leakages were then used to determine the expected reactionmore » rates using transport theory in the detectors when placed at varying distances from the can. A 'typical' background signature was incorporated to determine the minimum signatures versus the probability of detection to evaluate moving source protocols with collimation. This established the criteria for verification of source presence and time gating at a given vehicle speed. New methods for the passive detection of SNM were employed and shown to give reliable identification of age and material for highly enriched uranium (HEU) and weapons grade plutonium (WGPu). The finalized 'Mobile Pit Verification System' (MPVS) design demonstrated that a 'drive-by' detection system, collimated and operating at nominally 2 mph, is capable of rapidly verifying each and every weapon pit stored in regularly spaced, shelved storage containers, using completely passive gamma and neutron signatures for HEU and WGPu. This system is ready for real evaluation to demonstrate passive total material accountability in storage facilities. (authors)« less

  4. 49 CFR 1544.219 - Carriage of accessible weapons.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 9 2012-10-01 2012-10-01 false Carriage of accessible weapons. 1544.219 Section...: AIR CARRIERS AND COMMERCIAL OPERATORS Operations § 1544.219 Carriage of accessible weapons. (a... weapons, do not apply to a law enforcement officer (LEO) aboard a flight for which screening is required...

  5. 49 CFR 1544.219 - Carriage of accessible weapons.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Carriage of accessible weapons. 1544.219 Section...: AIR CARRIERS AND COMMERCIAL OPERATORS Operations § 1544.219 Carriage of accessible weapons. (a... weapons, do not apply to a law enforcement officer (LEO) aboard a flight for which screening is required...

  6. 49 CFR 1544.219 - Carriage of accessible weapons.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Carriage of accessible weapons. 1544.219 Section...: AIR CARRIERS AND COMMERCIAL OPERATORS Operations § 1544.219 Carriage of accessible weapons. (a... weapons, do not apply to a law enforcement officer (LEO) aboard a flight for which screening is required...

  7. 49 CFR 1544.219 - Carriage of accessible weapons.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Carriage of accessible weapons. 1544.219 Section...: AIR CARRIERS AND COMMERCIAL OPERATORS Operations § 1544.219 Carriage of accessible weapons. (a... weapons, do not apply to a law enforcement officer (LEO) aboard a flight for which screening is required...

  8. 49 CFR 1544.219 - Carriage of accessible weapons.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 9 2013-10-01 2013-10-01 false Carriage of accessible weapons. 1544.219 Section...: AIR CARRIERS AND COMMERCIAL OPERATORS Operations § 1544.219 Carriage of accessible weapons. (a... weapons, do not apply to a law enforcement officer (LEO) aboard a flight for which screening is required...

  9. ALTERNATIVES TO HELIUM-3 FOR NEUTRON MULTIPLICITY DETECTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ely, James H.; Siciliano, Edward R.; Swinhoe, Martyn T.

    Collaboration between the Pacific Northwest National Laboratory (PNNL) and the Los Alamos National Laboratory (LANL) is underway to evaluate neutron detection technologies that might replace the high-pressure helium (3He) tubes currently used in neutron multiplicity counter for safeguards applications. The current stockpile of 3He is diminishing and alternatives are needed for a variety of neutron detection applications including multiplicity counters. The first phase of this investigation uses a series of Monte Carlo calculations to simulate the performance of an existing neutron multiplicity counter configuration by replacing the 3He tubes in a model for that counter with candidate alternative technologies. Thesemore » alternative technologies are initially placed in approximately the same configuration as the 3He tubes to establish a reference level of performance against the 3He-based system. After these reference-level results are established, the configurations of the alternative models will be further modified for performance optimization. The 3He model for these simulations is the one used by LANL to develop and benchmark the Epithermal Neutron Multiplicity Counter (ENMC) detector, as documented by H.O. Menlove, et al. in the 2004 LANL report LA-14088. The alternative technologies being evaluated are the boron-tri-fluoride-filled proportional tubes, boron-lined tubes, and lithium coated materials previously tested as possible replacements in portal monitor screening applications, as documented by R.T. Kouzes, et al. in the 2010 PNNL report PNNL-72544 and NIM A 623 (2010) 1035–1045. The models and methods used for these comparative calculations will be described and preliminary results shown« less

  10. Upgrades and Enclosure of Building 15 at Technical Area 40: Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plimpton, Kathryn D; Garcia, Kari L. M; Brunette, Jeremy Christopher

    The U.S. Department of Energy, National Nuclear Security Administration, Los Alamos Field Office (Field Office) proposes to upgrade and enclose Building 15 at Technical Area (TA) 40, Los Alamos National Laboratory. Building TA-40-15, a Cold War-era firing site, was determined eligible for listing in the National Register of Historic Places (Register) in DX Division’s Facility Strategic Plan: Consolidation and Revitalization at Technical Areas 6, 8, 9, 14, 15, 22, 36, 39, 40, 60, and 69 (McGehee et al. 2005). Building TA-40-15 was constructed in 1950 to support detonator testing. The firing site will be enclosed by a steel building tomore » create a new indoor facility that will allow for year-round mission capability. Enclosing TA-40-15 will adversely affect the building by altering the characteristics that make it eligible for the Register. In compliance with Section 106 of the National Historic Preservation Act of 1966, as amended, the Field Office is initiating consultation for this proposed undertaking. The Field Office is also requesting concurrence with the use of standard practices to resolve adverse effects as defined in the Programmatic Agreement among the U.S. Department of Energy, National Nuclear Security Administration, Los Alamos Field Office, the New Mexico State Historic Preservation Office and the Advisory Council on Historic Preservation Concerning Management of the Historic Properties at Los Alamos National Laboratory, Los Alamos, New Mexico.« less

  11. Air gun wounding and current UK laws controlling air weapons.

    PubMed

    Bruce-Chwatt, Robert Michael

    2010-04-01

    Air weapons whether rifles or pistols are, potentially, lethal weapons. The UK legislation is complex and yet little known to the public. Hunting with air weapons and the laws controlling those animals that are permitted to be shot with air weapons is even more labyrinthine due to the legal power limitations on the possession of air weapons. Still relatively freely available by mail order or on the Internet, an increasing number of deaths have been reported from the misuse of air weapons or accidental discharges. Ammunition for air weapons has become increasingly sophisticated, effective and therefore increasingly dangerous if misused, though freely available being a mere projectile without a concomitant cartridge containing a propellant and an initiator.

  12. Los Alamos on Radio Café: Ludmil Alexandrov

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domandi, Mary-Charlotte; Alexandrov, Ludmil

    In a creative breakthrough in cancer research, Ludmil Alexandrov, the J. Robert Oppenheimer Distinguished Postdoctoral Fellow at Los Alamos National Laboratory, combines Big Data, supercomputing and machine-learning to identify the telltale mutations of cancer. Knowing these mutational signatures can help researchers develop new methods of prevention.

  13. 36 CFR § 504.14 - Weapons and explosives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Weapons and explosives. § 504... REGULATIONS GOVERNING SMITHSONIAN INSTITUTION BUILDINGS AND GROUNDS § 504.14 Weapons and explosives. No person while on the premises shall carry firearms, other dangerous or deadly weapons, or explosives, either...

  14. Measuring the Neutron Cross Section and Detector Response from Interactions in Liquid Argon

    NASA Astrophysics Data System (ADS)

    Kamp, Nicholas; Collaboration, Captain

    2017-09-01

    The main objective of the CAPTAIN (Cryogenic Apparatus for Precision Tests of Argon Interactions with Neutrinos) program is to measure neutron and neutrino interactions in liquid argon. These results will be essential to the development of both short and long baseline neutrino experiments. The full CAPTAIN experiment involves a 10 ton liquid argon time projection chamber (LArTPC) that will take runs at a low-energy ( 10-50 MeV) stopped pion neutrino source. A two ton LArTPC, MiniCAPTAIN, will serve as a prototype for the full CAPTAIN detector. MiniCAPTAIN has been deployed to take data at the Los Alamos Neutron Science Center in late July. During this run, it will both test new LArTPC technologies and measure the cross section and detector response of neutron interactions in liquid argon. The results will be helpful in characterizing neutral current neutrino interactions and identifying background in future neutrino detection experiments. This poster gives an overview of these results and a status update on the CAPTAIN collaboration.

  15. A Wildfire Behavior Modeling System at Los Alamos National Laboratory for Operational Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.W. Koch; R.G.Balice

    2004-11-01

    To support efforts to protect facilities and property at Los Alamos National Laboratory from damages caused by wildfire, we completed a multiyear project to develop a system for modeling the behavior of wildfires in the Los Alamos region. This was accomplished by parameterizing the FARSITE wildfire behavior model with locally gathered data representing topography, fuels, and weather conditions from throughout the Los Alamos region. Detailed parameterization was made possible by an extensive monitoring network of permanent plots, weather towers, and other data collection facilities. We also incorporated a database of lightning strikes that can be used individually as repeatable ignitionmore » points or can be used as a group in Monte Carlo simulation exercises and in other randomization procedures. The assembled modeling system was subjected to sensitivity analyses and was validated against documented fires, including the Cerro Grande Fire. The resulting modeling system is a valuable tool for research and management. It also complements knowledge based on professional expertise and information gathered from other modeling technologies. However, the modeling system requires frequent updates of the input data layers to produce currently valid results, to adapt to changes in environmental conditions within the Los Alamos region, and to allow for the quick production of model outputs during emergency operations.« less

  16. 36 CFR 13.30 - Weapons, traps and nets.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Weapons, traps and nets. 13... INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA General Provisions § 13.30 Weapons, traps and nets. (a... of this chapter, the following are prohibited— (1) Possessing a weapon, trap, or net; (2) Carrying a...

  17. 36 CFR 13.30 - Weapons, traps and nets.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Weapons, traps and nets. 13... INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA General Provisions § 13.30 Weapons, traps and nets. (a... of this chapter, the following are prohibited— (1) Possessing a weapon, trap, or net; (2) Carrying a...

  18. 36 CFR 13.30 - Weapons, traps and nets.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Weapons, traps and nets. 13... INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA General Provisions § 13.30 Weapons, traps and nets. (a... of this chapter, the following are prohibited— (1) Possessing a weapon, trap, or net; (2) Carrying a...

  19. 50 CFR 27.43 - Weapons other than firearms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Weapons other than firearms. 27.43 Section... (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Disturbing Violations: With Weapons § 27.43 Weapons other than firearms. The use or possession of cross bows, bows and arrows, air guns, spears, gigs...

  20. 50 CFR 27.43 - Weapons other than firearms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Weapons other than firearms. 27.43 Section... (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Disturbing Violations: With Weapons § 27.43 Weapons other than firearms. The use or possession of cross bows, bows and arrows, air guns, spears, gigs...

  1. 50 CFR 27.43 - Weapons other than firearms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Weapons other than firearms. 27.43 Section... (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Disturbing Violations: With Weapons § 27.43 Weapons other than firearms. The use or possession of cross bows, bows and arrows, air guns, spears, gigs...

  2. 36 CFR 13.30 - Weapons, traps and nets.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Weapons, traps and nets. 13... INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA General Provisions § 13.30 Weapons, traps and nets. (a... of this chapter, the following are prohibited— (1) Possessing a weapon, trap, or net; (2) Carrying a...

  3. 50 CFR 27.43 - Weapons other than firearms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Weapons other than firearms. 27.43 Section... (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Disturbing Violations: With Weapons § 27.43 Weapons other than firearms. The use or possession of cross bows, bows and arrows, air guns, spears, gigs...

  4. 36 CFR 13.30 - Weapons, traps and nets.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Weapons, traps and nets. 13... INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA General Provisions § 13.30 Weapons, traps and nets. (a... of this chapter, the following are prohibited— (1) Possessing a weapon, trap, or net; (2) Carrying a...

  5. 36 CFR § 520.15 - Weapons and explosives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Weapons and explosives. § 520... § 520.15 Weapons and explosives. No person while on the premises shall carry firearms, other dangerous or deadly weapons, or explosives, either openly or concealed, except for official purposes, nor shall...

  6. 50 CFR 27.43 - Weapons other than firearms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Weapons other than firearms. 27.43 Section... (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Disturbing Violations: With Weapons § 27.43 Weapons other than firearms. The use or possession of cross bows, bows and arrows, air guns, spears, gigs...

  7. Victimization and health risk factors among weapon-carrying youth.

    PubMed

    Stayton, Catherine; McVeigh, Katharine H; Olson, E Carolyn; Perkins, Krystal; Kerker, Bonnie D

    2011-11-01

    To compare health risks of 2 subgroups of weapon carriers: victimized and nonvictimized youth. 2003-2007 NYC Youth Risk Behavior Surveys were analyzed using bivariate analyses and multinomial logistic regression. Among NYC teens, 7.5% reported weapon carrying without victimization; 6.9% reported it with victimization. Both subgroups were more likely than non-weapon carriers to binge drink, use marijuana, smoke, fight, and have multiple sex partners; weapon carriers with victimization also experienced persistent sadness and attempted suicide. Subgroups of weapon carriers have distinct profiles. Optimal response should pair disciplinary action with screening for behavioral and mental health concerns and victimization.

  8. Chemical weapons: documented use and compounds on the horizon.

    PubMed

    Bismuth, Chantal; Borron, Stephen W; Baud, Frederic J; Barriot, Patrick

    2004-04-01

    Man's inhumanity to man is expressed through a plethora of tools of modern warfare and terror. The use of chemical and biological weapons with the goals of assault, demoralisation and lethality has been documented in recent history, both on the battlefield and in urban terror against civilians. A general review of a few of the currently employed chemical weapons and biological toxins, along with a look at potential chemical weapons and tools of counter-terrorism, follows. While these weapons are fearsome elements, the dangers should be viewed in the context of the widespread availability and efficacy of conventional weapons.

  9. Induction Inserts at the Los Alamos PSR

    NASA Astrophysics Data System (ADS)

    Ng, K. Y.

    2002-12-01

    Ferrite-loaded induction tuners installed in the Los Alamos Proton Storage Ring have been successful in compensating space-charge effects. However, the resistive part of the ferrite introduces unacceptable microwave instability and severe bunch lengthening. An effective cure was found by heating the ferrite cores up to ˜ 130°C. An understanding of the instability and cure is presented.

  10. Los Alamos Team Demonstrates Bottle Scanner Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espy, Michelle; Schultz, Larry

    2014-05-06

    Los Alamos scientists are demonstrating a Nuclear Magnetic Resonance Imaging (NMR) technology that may provide a breakthrough for screening liquids at airport security. By adding low-power X-ray data to the NMR mix, scientists believe they have unlocked a new detection technology. Funded in part by the Department of Homeland Security's Science and Technology Directorate, the new technology is called MagRay.

  11. Los Alamos Team Demonstrates Bottle Scanner Technology

    ScienceCinema

    Espy, Michelle; Schultz, Larry

    2018-02-13

    Los Alamos scientists are demonstrating a Nuclear Magnetic Resonance Imaging (NMR) technology that may provide a breakthrough for screening liquids at airport security. By adding low-power X-ray data to the NMR mix, scientists believe they have unlocked a new detection technology. Funded in part by the Department of Homeland Security's Science and Technology Directorate, the new technology is called MagRay.

  12. 43 CFR 15.11 - Explosives and dangerous weapons.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Explosives and dangerous weapons. 15.11 Section 15.11 Public Lands: Interior Office of the Secretary of the Interior KEY LARGO CORAL REEF PRESERVE... other kind of weapon potentially harmful to the reef structure. The use of such weapons from beyond the...

  13. 43 CFR 15.11 - Explosives and dangerous weapons.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Explosives and dangerous weapons. 15.11 Section 15.11 Public Lands: Interior Office of the Secretary of the Interior KEY LARGO CORAL REEF PRESERVE... other kind of weapon potentially harmful to the reef structure. The use of such weapons from beyond the...

  14. 43 CFR 15.11 - Explosives and dangerous weapons.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Explosives and dangerous weapons. 15.11 Section 15.11 Public Lands: Interior Office of the Secretary of the Interior KEY LARGO CORAL REEF PRESERVE... other kind of weapon potentially harmful to the reef structure. The use of such weapons from beyond the...

  15. 43 CFR 15.11 - Explosives and dangerous weapons.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Explosives and dangerous weapons. 15.11 Section 15.11 Public Lands: Interior Office of the Secretary of the Interior KEY LARGO CORAL REEF PRESERVE... other kind of weapon potentially harmful to the reef structure. The use of such weapons from beyond the...

  16. 43 CFR 15.11 - Explosives and dangerous weapons.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Explosives and dangerous weapons. 15.11 Section 15.11 Public Lands: Interior Office of the Secretary of the Interior KEY LARGO CORAL REEF PRESERVE... other kind of weapon potentially harmful to the reef structure. The use of such weapons from beyond the...

  17. Background Radioactivity in River and Reservoir Sediments near Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.G.McLin; D.W. Lyons

    2002-05-05

    As part of its continuing Environmental Surveillance Program, regional river and lake-bottom sediments have been collected annually by Los Alamos National Laboratory (the Laboratory) since 1974 and 1979, respectively. These background samples are collected from three drainage basins at ten different river stations and five reservoirs located throughout northern New Mexico and southern Colorado. Radiochemical analyses for these sediments include tritium, strontium-90, cesium-137, total uranium, plutonium-238, plutonium-239,-240, americium-241, gross alpha, gross beta, and gross gamma radioactivity. Detection-limit radioactivity originates as worldwide fallout from aboveground nuclear weapons testing and satellite reentry into Earth's atmosphere. Spatial and temporal variations in individual analytemore » levels originate from atmospheric point-source introductions and natural rate differences in airborne deposition and soil erosion. Background radioactivity values on sediments reflect this variability, and grouped river and reservoir sediment samples show a range of statistical distributions that appear to be analyte dependent. Traditionally, both river and reservoir analyte data were blended together to establish background levels. In this report, however, we group background sediment data according to two criteria. These include sediment source (either river or reservoir sediments) and station location relative to the Laboratory (either upstream or downstream). These grouped data are statistically evaluated through 1997, and background radioactivity values are established for individual analytes in upstream river and reservoir sediments. This information may be used to establish the existence and areal extent of trace-level environmental contamination resulting from historical Laboratory research activities since the early 1940s.« less

  18. Latitude variation of the subsurface lunar temperature: Lunar Prospector thermal neutrons

    NASA Astrophysics Data System (ADS)

    Little, R. C.; Feldman, W. C.; Maurice, S.; Genetay, I.; Lawrence, D. J.; Lawson, S. L.; Gasnault, O.; Barraclough, B. L.; Elphic, R. C.; Prettyman, T. H.; Binder, A. B.

    2003-05-01

    Planetary thermal neutron fluxes provide a sensitive proxy for mafic and feldspathic terranes and are also necessary for translating measured gamma-ray line strengths to elemental abundances. Both functions require a model for near-surface temperatures and a knowledge of the dependence of thermal neutron flux on temperature. We have explored this dependence for a representative sample of lunar soil compositions and surface temperatures using the Monte Carlo N-Particle Code (MCNP™)(MNCP is a trademark of the Regents of the University of California, Los Alamos National Laboratory). For all soil samples, the neutron density is found to be independent of temperature, in accord with neutron moderation theory. The thermal neutron flux, however, does vary with temperature in a way that depends on Δ, the ratio of macroscopic absorption to energy-loss cross sections of soil compositions. The weakest dependence is for the largest Δ (which corresponds to the Apollo 17 high-Ti basalt in our soil selection), and the largest dependence is for the lowest Δ (which corresponds to ferroan anorthosite, [FAN] in our selection). For the lunar model simulated, the depth at which the thermal neutron population is most sensitive to temperature is ~30 g cm-2. These simulations were compared with the flux of thermal neutrons measured using the Lunar Prospector neutron spectrometer over the lunar highlands using a subsurface temperature profile that varies with latitude, λ, as Cos1/4λ. Model results assuming equatorial temperatures of 200 and 250 K are in reasonable agreement with measured data. This range of equatorial temperatures is not inconsistent with the average temperature measured below the diurnal thermal wave at the equator, Tmeas = 252 +/- 3 K [Langseth and Keihm, 1977].

  19. Isomeric ratio measurements for the radiative neutron capture 176Lu(n ,γ ) at the LANL DANCE facility

    NASA Astrophysics Data System (ADS)

    Denis-Petit, D.; Roig, O.; Méot, V.; Morillon, B.; Romain, P.; Jandel, M.; Kawano, T.; Vieira, D. J.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.

    2016-11-01

    The isomeric ratios for the neutron capture reaction 176Lu(n ,γ ) to the Jπ=5 /2- , 761.7 keV, T1 /2=32.8 ns and the Jπ=15 /2+ , 1356.9 keV, T1 /2=11.1 ns levels of 177Lu have been measured for the first time. The experiment was carried out with the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos National Laboratory. Measured isomeric ratios are compared with talys calculations using different models for photon strength functions, level densities, and optical potentials. In order to reproduce the experimental γ -ray spectra, a low-energy resonance must be added in the photon strength function used in our Hauser-Feshbach calculations.

  20. Psychological markers underlying murder weapon profile: a quantitative study.

    PubMed

    Kamaluddin, M R; Othman, A; Ismail, K H; Mat Saat, G A

    2017-12-01

    The horrific nature of murder using different types of weapons has been an important focal point of many criminological studies. Weapons that are used in murders seem to play dominant roles in murder investigations as they may provide information leading to arrest. The established factors for weapon usage include environmental context, demography and availability of weapons. However, there is insufficient research attention on the psychological functioning of murderers for particular weapon usage. In light of this, the current study seeks to narrow this gap of information by identifying the influences of psychological traits on weapon usage among a sample of male murderers. The present cross-sectional study was conducted among 71 male murderers incarcerated in 11 prisons within Peninsular Malaysia. The selection of the sample was based on predetermined selection criteria using a purposive sampling method. A guided self-administered questionnaire comprising sociodemography variables and four Malay validated psychometric instruments: Zuckerman-Kuhlman Personality Questionnaire-40-Cross-Culture, Self-control Scale, "How I Think" Questionnaire and Aggression Questionnaire; was used. Independent sample t-test was performed to establish the mean score differences of psychological traits between the murderers who used single and multiple weapons while Kruskal-Wallis tests were carried out to ascertain the differences between the specific types of weapons used among the murderers. Following this, one-way ANOVA was carried out to ascertain the psychological trait differences among the murderers according to the different sources of weapon. Results indicated specific psychological traits influenced the number(s), source(s) and type(s) of weapon used in committing murder. The findings have implications for the psychological profiling of unknown murderers within the Malaysian context.