Science.gov

Sample records for alarm pheromone components

  1. Isolation of a pyrazine alarm pheromone component from the fire ant, Solenopsis invicta.

    PubMed

    Vander Meer, Robert K; Preston, Catherine A; Choi, Man-Yeon

    2010-02-01

    Alarm pheromones in social insects are an essential part of a complex of pheromone interactions that contribute to the maintenance of colony integrity and sociality. The alarm pheromones of ants were among the first examples of animal pheromones identified, primarily because of the large amount of chemical produced and the distinctive responses of ants to the pheromone. However, the alarm pheromone of the fire ant, Solenopsis invicta, eluded identification for over four decades. We identified 2-ethyl-3,6-dimethylpyrazine as an alarm pheromone component of S. invicta. Worker fire ants detect the pyrazine alarm pheromone at 30 pg/ml, which is comparable to alarm pheromone sensitivities reported for other ant species. The source of this alarm pheromone are the mandibular glands, which, in fire ants, are not well developed and contain only about 300 pg of the compound, much less than the microgram quantities of alarm pheromones reported for several other ant species. Female and male sexuals and workers produce the pyrazine, which suggests that it may be involved in fire ant mating flight initiation, as well as the typical worker alarm response. This is the first report of 2-ethyl-3,6-dimethylpyrazine from a Solenopsis species and the first example of this alkaloid functioning as an alarm pheromone. PMID:20145982

  2. Addition of Alarm Pheromone Components Improves the Effectiveness of Desiccant Dusts Against Cimex lectularius

    PubMed Central

    BENOIT, JOSHUA B.; PHILLIPS, SETH A.; CROXALL, TRAVIS J.; CHRISTENSEN, BRADY S.; YODER, JAY A.; DENLINGER, DAVID L.

    2009-01-01

    We demonstrate that the addition of bed bug, Cimex lectularius, alarm pheromone to desiccant formulations greatly enhances their effectiveness during short-term exposure. Two desiccant formulations, diatomaceous earth (DE) and Dri-die (silica gel), were applied at the label rate with and without bed bug alarm pheromone components, (E)-2-hexenal, (E)-2-octenal, and a (E)-2-hexenal:(E)-2-octenal blend. First-instar nymphs and adult females were subjected to 10-min exposures, and water loss rates were used to evaluate the response. Optimal effectiveness was achieved with a pheromone concentration of 0.01 M. With Dri-die alone, the water loss was 21% higher than in untreated controls, and water loss increased nearly two times with (E)-2-hexenal and (E)-2-octenal and three times with the (E)-2-hexenal: (E)-2-octenal blend. This shortened survival of first-instar nymphs from 4 to 1 d, with a similar reduction noted in adult females. DE was effective only if supplemented with pheromone, resulting in a 50% increase in water loss over controls with the (E)-2-hexenal:(E)-2-octenal blend, and a survival decrease from 4 to 2 d in first-instar nymphs. Consistently, the addition of the pheromone blend to desiccant dust was more effective than adding either component by itself or by using Dri-die or DE alone. Based on observations in a small microhabitat, the addition of alarm pheromone components prompted bed bugs to leave their protective harborages and to move through the desiccant, improving the use of desiccants for control. We concluded that short exposure to Dri-die is a more effective treatment against bed bugs than DE and that the effectiveness of the desiccants can be further enhanced by incorporation of alarm pheromone. Presumably, the addition of alarm pheromone elevates excited crawling activity, thereby promoting cuticular changes that increase water loss. PMID:19496429

  3. Addition of alarm pheromone components improves the effectiveness of desiccant dusts against Cimex lectularius.

    PubMed

    Benoit, Joshua B; Phillips, Seth A; Croxall, Travis J; Christensen, Brady S; Yoder, Jay A; Denlinger, David L

    2009-05-01

    We demonstrate that the addition of bed bug, Cimex lectularius, alarm pheromone to desiccant formulations greatly enhances their effectiveness during short-term exposure. Two desiccant formulations, diatomaceous earth (DE) and Dri-die (silica gel), were applied at the label rate with and without bed bug alarm pheromone components, (E)-2-hexenal, (E)-2-octenal, and a (E)-2-hexenal:(E)-2-octenal blend. First-instar nymphs and adult females were subjected to 10-min exposures, and water loss rates were used to evaluate the response. Optimal effectiveness was achieved with a pheromone concentration of 0.01 M. With Dri-die alone, the water loss was 21% higher than in untreated controls, and water loss increased nearly two times with (E)-2-hexenal and (E)-2-octenal and three times with the (E)-2-hexenal: (E)-2-octenal blend. This shortened survival of first-instar nymphs from 4 to 1 d, with a similar reduction noted in adult females. DE was effective only if supplemented with pheromone, resulting in a 50% increase in water loss over controls with the (E)-2-hexenal:(E)-2-octenal blend, and a survival decrease from 4 to 2 d in first-instar nymphs. Consistently, the addition of the pheromone blend to desiccant dust was more effective than adding either component by itself or by using Dri-die or DE alone. Based on observations in a small microhabitat, the addition of alarm pheromone components prompted bed bugs to leave their protective harborages and to move through the desiccant, improving the use of desiccants for control. We concluded that short exposure to Dri-die is a more effective treatment against bed bugs than DE and that the effectiveness of the desiccants can be further enhanced by incorporation of alarm pheromone. Presumably, the addition of alarm pheromone elevates excited crawling activity, thereby promoting cuticular changes that increase water loss. PMID:19496429

  4. Isolation of a pyrazine alarm pheromone component from the fire ant, Solenopsis invicta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alarm pheromones in social insects are an essential part of a complex of pheromone interactions that contribute to the maintenance of colony integrity and sociality. The alarm pheromones of ants were among the first chemical ecology examples, primarily due to the large amount of pheromone produced a...

  5. Alkylpyrazines: Alarm pheromone components of the little fire ant, Wasmannia auropunctata (Roger) (Hymenoptera, Formicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The previous identification of 2,5-dimethyl-3-(3-methylbutyl) pyrazine as the mandibular alarm pheromone of the little fire ant, Wasmannia auropunctata (Roger), has been found to be incorrect. Gas chromatography-mass spectrometry (GC-MS) of ant extracts suggested the correct structure to be the reg...

  6. Electroantennogram and behavioral responses of the imported fire ant, Solenopsis invicta Buren, to an alarm pheromone component and its analogues.

    PubMed

    Guan, Di; Lu, Yong-Yue; Liao, Xiao-Lan; Wang, Lei; Chen, Li

    2014-12-10

    A characteristic behavior in ants is to move rapidly to emission sources of alarm pheromones. The addition of ant alarm pheromones to bait is expected to enhance its attractiveness. To search for candidate compounds for bait enhancement in fire ant control, 13 related alkylpyrazine analogues in addition to synthetic alarm pheromone component were evaluated for electroantennogram (EAG) and behavioral activities in Solenopsis invicta. Most compounds elicited dose-dependent EAG and behavioral responses. There exists a correlation between the EAG and behavioral responses. Among the 14 tested alkylpyrazines, three compounds, 2-ethyl-3,6(5)-dimethyl pyrazine (1), 2,3,5-trimethylpyrazine (7), and 2,3-diethyl-5-methylpyrazine (12), elicited significant alarm responses at a dose range of 0.1-1000 ng. Further bait discovery bioassay with the three most active alkylpyrazines demonstrated that food bait accompanied by sample-treated filter paper disk attracted significantly more fire ant workers in the first 15 min period. EAG and behavioral bioassays with pure pheromone isomers accumulated by semi-preparative high-performance liquid chromatography demonstrated that 2-ethyl-3,6-dimethylpyrazine was significantly more active than 2-ethyl-3,5-dimethylpyrazine. PMID:25415443

  7. Alarm pheromone processing in the ant brain: an evolutionary perspective.

    PubMed

    Mizunami, Makoto; Yamagata, Nobuhiro; Nishino, Hiroshi

    2010-01-01

    Social insects exhibit sophisticated communication by means of pheromones, one example of which is the use of alarm pheromones to alert nestmates for colony defense. We review recent advances in the understanding of the processing of alarm pheromone information in the ant brain. We found that information about formic acid and n-undecane, alarm pheromone components, is processed in a set of specific glomeruli in the antennal lobe of the ant Camponotus obscuripes. Alarm pheromone information is then transmitted, via projection neurons (PNs), to the lateral horn and the calyces of the mushroom body of the protocerebrum. In the lateral horn, we found a specific area where terminal boutons of alarm pheromone-sensitive PNs are more densely distributed than in the rest of the lateral horn. Some neurons in the protocerebrum responded specifically to formic acid or n-undecane and they may participate in the control of behavioral responses to each pheromone component. Other neurons, especially those originating from the mushroom body lobe, responded also to non-pheromonal odors and may play roles in integration of pheromonal and non-pheromonal signals. We found that a class of neurons receive inputs in the lateral horn and the mushroom body lobe and terminate in a variety of premotor areas. These neurons may participate in the control of aggressive behavior, which is sensitized by alarm pheromones and is triggered by non-pheromonal sensory stimuli associated with a potential enemy. We propose that the alarm pheromone processing system has evolved by differentiation of a part of general odor processing system. PMID:20676235

  8. Quantitative trait loci influencing honeybee alarm pheromone levels.

    PubMed

    Hunt, G J; Collins, A M; Rivera, R; Page, R E; Guzmán-Novoa, E

    1999-01-01

    Quantitative trait loci (QTL) mapping procedures were used to identify loci that influence the levels of alarm pheromones found in the stinging apparatus of worker honeybees. An F1 queen was produced from a cross between a queen of European origin and a drone descended from an African subspecies. Haploid drones from the hybrid queen were individually backcrossed to European queens to produce 172 colonies. Samples of stings were taken from backcross workers of these colonies. Alarm pheromone levels were determined by gas chromatography. RAPD markers were scored from the haploid drone fathers of these colonies. The multiple-QTL model (MQM) of MapQTL was used to identify QTLs that influence the levels of four alarm pheromone components. Seven independent, potential QTLs were identified with LOD scores greater than two, and one at LOD 1.88. We identified one QTL for n-decyl acetate, three for n-octanol, four for isopentyl acetate, and one for hexyl acetate. One region of linkage group XI shows a strong influence on body size and the levels of three alarm pheromone components. This locus explained 40% of the variance for the amount of n-decyl acetate (LOD 6.57). In general, the QTLs influencing alarm pheromone levels were independent of previously identified loci that influenced the stinging behavior of these colonies. The only exception was a potential locus influencing levels of n-octanol, which was inversely correlated with stinging behavior. PMID:10544503

  9. Neural pathways for the processing of alarm pheromone in the ant brain.

    PubMed

    Yamagata, Nobuhiro; Nishino, Hiroshi; Mizunami, Makoto

    2007-12-01

    Social insects like ants exhibit sophisticated communication by means of pheromones, one example of which is the use of alarm pheromones to alert nestmates for colony defense. In the ant Camponotus obscuripes, we have reported that information about formic acid and n-undecane, alarm pheromone components, is processed in a set of specific glomeruli in the antennal lobe (primary olfactory center). Alarm pheromone signals are then transmitted, mainly via uniglomerular projection neurons (uni-PNs), to the protocerebrum (PR), where sensory signals are integrated to form motor commands for behavioral responses. In this study, we physiologically and morphologically characterized 63 alarm pheromone-sensitive PR neurons in ants by using intracellular recording and staining techniques. Most of the pheromone-sensitive PR neurons had dendrites in the mushroom body (MB), the lateral horn, or the medial PR. Some neurons with dendrites in these areas responded specifically to formic acid or n-undecane and may participate in the control of specific behavioral responses to each pheromone component. Other neurons responded also to non-pheromonal odors, in contrast to uni-PNs, most of which responded specifically to alarm pheromones. Responses to non-pheromonal odors were most prominent in efferent neurons of the MB lobe, suggesting that they may participate in integration of pheromonal and non-pheromonal information. We found a class of PR neurons that receives input in all of these pheromone-processing areas and terminates in a variety of premotor areas. These neurons may participate in the control of pheromone-sensitized aggressive behavior, which is triggered by non-pheromonal sensory stimuli associated with a potential enemy. PMID:17912739

  10. The main component of an alarm pheromone of kissing bugs plays multiple roles in the cognitive modulation of the escape response

    PubMed Central

    Minoli, Sebastian; Palottini, Florencia; Manrique, Gabriel

    2013-01-01

    Innate responses in animals can be modulated by experience. Disturbed adults of the triatomine bug Triatoma infestans release an alarm pheromone (AP) that elicits an escape response in conspecific larvae. The main component of this AP, the isobutyric acid (IsoAc), alone has already shown to generate an escape response in this species. However, not much is known about the modulation of this behavior by non-associative and associative cognitive processes. We present here evidences of the cognitive capacities of T. infestans larvae in an escape context under different conditioning paradigms, including IsoAc in different roles. We show that: (1) the duration of a pre-exposure to IsoAc plays a main role in determining the type of non-associative learning expressed: short time pre-exposures elicit a sensitization while a longer pre-exposure time triggers a switch from repellence to attractiveness; (2) a simple pre-exposure event is enough to modulate the escape response of larvae to the AP and to its main component: IsoAc; (3) IsoAc and the AP are perceived as different chemical entities; (4) an association between IsoAc and an aversive stimulus can be created under a classical conditioning paradigm; (5) an association between IsoAc and a self-action can be generated under an operant conditioning. These results evince that IsoAc can attain multiple and different cognitive roles in the modulation of the escape response of triatomines and show how cognitive processes can modulate a key behavior for surviving, as it is the escaping response in presence of a potential danger in insects. PMID:23847483

  11. Bees eavesdrop upon informative and persistent signal compounds in alarm pheromones.

    PubMed

    Wang, Zhengwei; Wen, Ping; Qu, Yufeng; Dong, Shihao; Li, Jianjun; Tan, Ken; Nieh, James C

    2016-01-01

    Pollinators such as bees provide a critical ecosystem service that can be impaired by information about predation. We provide the first evidence for olfactory eavesdropping and avoidance of heterospecific alarm signals, alarm pheromones, at food sources in bees. We predicted that foragers could eavesdrop upon heterospecific alarm pheromones, and would detect and avoid conspicuous individual pheromone compounds, defined by abundance and their ability to persist. We show that Apis cerana foragers avoid the distinctive alarm pheromones of A. dorsata and A. mellifera, species that share the same floral resources and predators. We next examined responses to individual alarm pheromone compounds. Apis cerana foragers avoided isopentyl acetate (IPA), which is found in all three species and is the most abundant and volatile of the tested compounds. Interestingly, A. cerana also avoided an odor component, gamma-octanoic lactone (GOL), which is >150-fold less volatile than IPA. Chemical analyses confirmed that GOL is only present in A. dorsata, not in A. cerana. Electroantennogram (EAG) recordings revealed that A. cerana antennae are 10-fold more sensitive to GOL than to other tested compounds. Thus, the eavesdropping strategy is shaped by signal conspicuousness (abundance and commonality) and signal persistence (volatility). PMID:27157595

  12. Bees eavesdrop upon informative and persistent signal compounds in alarm pheromones

    PubMed Central

    Wang, Zhengwei; Wen, Ping; Qu, Yufeng; Dong, Shihao; Li, Jianjun; Tan, Ken; Nieh, James C.

    2016-01-01

    Pollinators such as bees provide a critical ecosystem service that can be impaired by information about predation. We provide the first evidence for olfactory eavesdropping and avoidance of heterospecific alarm signals, alarm pheromones, at food sources in bees. We predicted that foragers could eavesdrop upon heterospecific alarm pheromones, and would detect and avoid conspicuous individual pheromone compounds, defined by abundance and their ability to persist. We show that Apis cerana foragers avoid the distinctive alarm pheromones of A. dorsata and A. mellifera, species that share the same floral resources and predators. We next examined responses to individual alarm pheromone compounds. Apis cerana foragers avoided isopentyl acetate (IPA), which is found in all three species and is the most abundant and volatile of the tested compounds. Interestingly, A. cerana also avoided an odor component, gamma-octanoic lactone (GOL), which is >150-fold less volatile than IPA. Chemical analyses confirmed that GOL is only present in A. dorsata, not in A. cerana. Electroantennogram (EAG) recordings revealed that A. cerana antennae are 10-fold more sensitive to GOL than to other tested compounds. Thus, the eavesdropping strategy is shaped by signal conspicuousness (abundance and commonality) and signal persistence (volatility). PMID:27157595

  13. Behavioral responses to the alarm pheromone of the ant Camponotus obscuripes (Hymenoptera: Formicidae).

    PubMed

    Fujiwara-Tsujii, Nao; Yamagata, Nobuhiro; Takeda, Takeshi; Mizunami, Makoto; Yamaoka, Ryohei

    2006-04-01

    The alarm pheromone of the ant Camponotus obscuripes (Formicinae) was identified and quantified by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Comparisons between alarm pheromone components and extracts from the major exocrine gland of this ant species revealed that the sources of its alarm pheromone are Dufour's gland and the poison gland. Most components of Dufour's gland were saturated hydrocarbons. n-Undecane comprised more than 90% of all components and in a single Dufour's gland amounted to 19 microg. n-Decane and n-pentadecane were also included in the Dufour's gland secretion. Only formic acid was detected in the poison gland, in amounts ranging from 0.049 to 0.91 microl. This ant species releases a mixture of these substances, each of which has a different volatility and function. When the ants sensed formic acid, they eluded the source of the odor; however, they aggressively approached odors of n-undecane and n-decane, which are highly volatile. In contrast, n-pentadecane, which has the lowest volatility among the identified compounds, was shown to calm the ants. The volatilities of the alarm pheromone components were closely related to their roles in alarm communication. Highly volatile components vaporized rapidly and spread widely, and induced drastic reactions among the ants. As these components became diluted, the less volatile components calmed the excited ants. How the worker ants utilize this alarm communication system for efficient deployment of their nestmates in colony defense is also discussed herein. PMID:16702768

  14. An Alarm Pheromone Modulates Appetitive Olfactory Learning in the Honeybee (Apis Mellifera)

    PubMed Central

    Urlacher, Elodie; Francés, Bernard; Giurfa, Martin; Devaud, Jean-Marc

    2010-01-01

    In honeybees, associative learning is embedded in a social context as bees possess a highly complex social organization in which communication among individuals is mediated by dance behavior informing about food sources, and by a high variety of pheromones that maintain the social links between individuals of a hive. Proboscis extension response conditioning is a case of appetitive learning, in which harnessed bees learn to associate odor stimuli with sucrose reward in the laboratory. Despite its recurrent use as a tool for uncovering the behavioral, cellular, and molecular bases underlying associative learning, the question of whether social signals (pheromones) affect appetitive learning has not been addressed in this experimental framework. This situation contrasts with reports underlining that foraging activity of bees is modulated by alarm pheromones released in the presence of a potential danger. Here, we show that appetitive learning is impaired by the sting alarm pheromone (SAP) which, when released by guards, recruits foragers to defend the hive. This effect is mimicked by the main component of SAP, isopentyl acetate, is dose-dependent and lasts up to 24 h. Learning impairment is specific to alarm signal exposure and is independent of the odorant used for conditioning. Our results suggest that learning impairment may be a response to the biological significance of SAP as an alarm signal, which would detract bees from responding to any appetitive stimuli in a situation in which such responses would be of secondary importance. PMID:20838475

  15. Phorid fly, Pseudacteon tricuspis, response to alkylpyrazine analogs of a fire ant, Solenopsis invicta, alarm pheromone.

    PubMed

    Sharma, Kavita; Vander Meer, Robert K; Fadamiro, Henry Y

    2011-07-01

    The phorid fly, Pseudacteon tricuspis Borgmeier, is a parasitoid of the red imported fire ant, Solenopsis invicta Buren. This fly has been reported to use fire ant chemicals, specifically venom alkaloids and possibly alarm pheromone to locate its host. A recent study identified 2-ethyl-3,6-dimethyl pyrazine as a component of the alarm pheromone of S. invicta. To determine the possible involvement of this fire ant alarm pheromone component in mediating fire ant-phorid fly interactions, we tested electroantennogram (EAG) and behavioral responses of P. tricuspis females to the commercially available mixture of 2-ethyl-3,6-dimethyl pyrazine and its 3,5-dimethyl isomer, as well as six structurally related alkylpyrazine analogs at varying doses. Pseudacteon tricuspis females showed significant EAG response to 2-ethyl-3,6(or 5)-dimethyl pyrazine (herein referred to as pheromone-isomer) at all doses, 0.001-10 μg. Among the tested alkylpyrazine analogs, 2,3-diethyl-5-methyl pyrazine showed significant EAG activity at 0.1 and 1 μg. 2,3-dimethyl pyrazine also showed significant EAG activity at 0.1 μg. Results of four-choice olfactometer bioassays demonstrated significant attraction of P. tricuspis females to the pheromone-isomer (2-ethyl-3,6(or 5)-dimethyl pyrazine) at all tested doses (0.01, 0.1, 1 and 10 μg). The analogs, 2,3-diethyl-5-methyl pyrazine and 2,3-dimethyl pyrazine were significantly better than the control at the higher doses (0.1, 1 and 10 μg). The pheromone-isomer was significantly better than both analogs at two doses, 0.1 and 1 μg. These results confirm that the reported fire ant alarm pheromone component plays a role in mediating attraction of phorid flies to host workers. Venom alkaloids were previously shown to attract P. tricuspis; therefore, we propose that fire ant alarm pheromones may act in tandem or synergistically with venom alkaloids to attract phorid fly parasitoids to fire ant workers. PMID:21524656

  16. Alarm pheromone does not modulate 22-kHz calls in male rats.

    PubMed

    Muyama, Hiromi; Kiyokawa, Yasushi; Inagaki, Hideaki; Takeuchi, Yukari; Mori, Yuji

    2016-03-15

    Rats are known to emit a series of ultrasonic vocalizations, termed 22-kHz calls, when exposed to distressing stimuli. Pharmacological studies have indicated that anxiety mediates 22-kHz calls in distressed rats. We previously found that exposure to the rat alarm pheromone increases anxiety in rats. Therefore, we hypothesized that the alarm pheromone would increase 22-kHz calls in pheromone-exposed rats. Accordingly, we tested whether exposure to the alarm pheromone induced 22-kHz calls, as well as whether the alarm pheromone increased 22-kHz calls in response to an aversive conditioned stimulus (CS). Rats were first fear-conditioned to an auditory and contextual CS. On the following day, the rats were either exposed to the alarm pheromone or a control odor that was released from the neck region of odor-donor rats. Then, the rats were re-exposed to the aversive CS. The alarm pheromone neither induced 22-kHz calls nor increased 22-kHz calls in response to the aversive CS. In contrast, the control odor unexpectedly reduced the total number and duration of 22-kHz calls elicited by the aversive CS, as well as the duration of freezing. These results suggest that the alarm pheromone does not affect 22-kHz calls in rats. However, we may have found evidence for an appeasing olfactory signal, released from the neck region of odor-donor rats. PMID:26796788

  17. (E,E)-alpha-farnesene, an alarm pheromone of the termite Prorhinotermes canalifrons.

    PubMed

    Sobotník, Jan; Hanus, Robert; Kalinová, Blanka; Piskorski, Rafal; Cvacka, Josef; Bourguignon, Thomas; Roisin, Yves

    2008-04-01

    The behavioral and electroantennographic responses of Prorhinotermes canalifrons to its soldier frontal gland secretion, and two separated major components of the secretion, (E)-1-nitropentadec-1-ene and (E,E)-alpha-farnesene, were studied in laboratory experiments. Behavioral experiments showed that both the frontal gland secretion and (E,E)-alpha-farnesene triggered alarm reactions in P. canalifrons, whereas (E)-1-nitropentadec-1-ene did not affect the behavior of termite groups. The alarm reactions were characterized by rapid walking of activated termites and efforts to alert and activate other members of the group. Behavioral responses to alarm pheromone differed between homogeneous and mixed groups, suggesting complex interactions. Antennae of both soldiers and pseudergates were sensitive to the frontal gland secretion and to (E,E)-alpha-farnesene, but soldiers showed stronger responses. The dose responses to (E,E)-alpha-farnesene were identical for both soldiers and pseudergates, suggesting that both castes use similar receptors to perceive (E,E)-alpha-farnesene. Our data confirm (E,E)-alpha-farnesene as an alarm pheromone of P. canalifrons. PMID:18386097

  18. Spatial representation of alarm pheromone information in a secondary olfactory centre in the ant brain.

    PubMed

    Yamagata, Nobuhiro; Mizunami, Makoto

    2010-08-22

    Pheromones play major roles in intraspecific communication in many animals. Elaborated communication systems in eusocial insects provide excellent materials to study neural mechanisms for social pheromone processing. We previously reported that alarm pheromone information is processed in a specific cluster of glomeruli in the antennal lobe of the ant Camponotus obscuripes. However, representation of alarm pheromone information in a secondary olfactory centre is unknown in any animal. Olfactory information in the antennal lobe is transmitted to secondary olfactory centres, including the lateral horn, by projection neurons (PNs). In this study, we compared distributions of terminal boutons of alarm pheromone-sensitive and -insensitive PNs in the lateral horn of ants. Distributions of their dendrites largely overlapped, but there was a region where boutons of pheromone-sensitive PNs, but not those of pheromone-insensitive PNs, were significantly denser than in the rest of the lateral horn. Moreover, most of a major type of pheromone-sensitive efferent neurons from the lateral horn extended dendritic branches in this region, suggesting specialization of this region for alarm pheromone processing. This study is the first study to demonstrate the presence of specialized areas for the processing of a non-sexual, social pheromone in the secondary olfactory centre in any animal. PMID:20375054

  19. Alarm pheromone is detected by the vomeronasal organ in male rats.

    PubMed

    Kiyokawa, Yasushi; Kodama, Yuka; Kubota, Takahiro; Takeuchi, Yukari; Mori, Yuji

    2013-10-01

    It is widely known that a stressed animal releases specific pheromones, possibly for alarming nearby conspecifics. We previously investigated an alarm pheromone in male rats and found that this alarm pheromone evokes several responses, including increases in the defensive and risk assessment behaviors in a modified open-field test, and enhancement of the acoustic startle reflex. However, the role of the vomeronasal organ in these pheromone effects remains unclear. To clarify this point, vomeronasal organ-excising or sham surgeries were performed in male rats for use in 2 experimental models, after which they were exposed to alarm pheromone. We found that the vomeronasal organ-excising surgery blocked the effects of this alarm pheromone in both the modified open-field test and acoustic startle reflex test. In addition, the results of habituation/dishabituation test and soybean agglutinin binding to the accessory olfactory bulb suggested that the vomeronasal organ-excising surgery completely ablated the vomeronasal organ while preserving the functioning of the main olfactory system. From the above results, we showed that the vomeronasal organ plays an important role in alarm pheromone effects in the modified open-field test and acoustic startle reflex test. PMID:23821727

  20. Alarm Pheromone Activity of Nymph-specific Geraniol in Chrysanthemum Lace Bug Corythucha marmorata against Adults and Nymphs.

    PubMed

    Watanabe, Kisaki; Shimizu, Nobuhiro

    2015-09-01

    The exotic insect pest Corythucha marmorata (Uhler) is increasingly spreading in Japan using the weed Solidago canadensis L. as a major host plant. The nymphs form colonies on the backs of leaves where they crowd together; however, aggregation does not occur in the adults. When an individual nymph is crushed using a needle tip and further the needle tip covered with the nymph's bodily fluids is moved slowly toward the center of the crowd, the surrounding nymphs display an escape behavior and their aggregation is disrupted. We detected geraniol as a nymph-specific volatile component. Bioassay results indicated that geraniol was effective as an alarm pheromone on second to fifth instar nymphs. Furthermore, we found that male and female adults responded sensitively to the alarm pheromone produced by nymphs. These results suggest that although the adult insects do not secrete geraniol, they can detect it produced by nymphs, thereby retaining the ability to escape from danger while suppressing the cost of geraniol production. The present study is the first to demonstrate that an alarm pheromone secreted by nymphs is also effective in adults among Tingidae. PMID:26594742

  1. Phorid fly, Pseudacteon tricuspis, response to alkylpyrazine analogs of a fire ant, Solenopsis invicta, alarm pheromone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phorid fly, Pseudacteon tricuspis Borgmeier, is a parasitoid of the red imported fire ant, Solenopsis invicta Buren. This fly has been reported to use fire ant chemicals, specifically venom alkaloids and possibly alarm pheromone to locate its host. A recent study identified 2-ethyl-3,6-dimethyl...

  2. Aphid alarm pheromone as a cue for ants to locate aphid partners.

    PubMed

    Verheggen, François J; Diez, Lise; Sablon, Ludovic; Fischer, Christophe; Bartram, Stefan; Haubruge, Eric; Detrain, Claire

    2012-01-01

    The mutualistic relationships that occur between myrmecophilous aphids and ants are based on the rich food supply that honeydew represents for ants and on the protection they provide against aphid natural enemies. While aphid predators and parasitoids actively forage for oviposition sites by using aphid semiochemicals, scouts of aphid-tending ant species would also benefit from locating honeydew resources by orienting toward aphid pheromone sources. The present study aims to provide additional information on the use of Aphis fabae alarm pheromone, i.e. (E)-β-farnesene (EβF), by ant scouts. The perception and behavioral impact of EβF on Lasius niger were investigated using electroantennography and two bio-assays measuring their attraction and orientation towards aphid semiochemicals. Pronounced electrical depolarizations were observed from L. niger scout antennae to stimulations of A. fabae alarm pheromone, while other sesquiterpenes elicited weak or no responses. L. niger scouts were significantly attracted toward EβF in a four-arm olfactometer, as well as in an two-choice bioassay. These laboratory results suggest for the first time that low amounts of aphid alarm pheromone can be used by L. niger scouts as a cue indicating the presence of aphid colonies and could therefore mediate the aphid-ant partnership in the field. PMID:22870255

  3. A cost of alarm pheromone production in cotton aphids, Aphis gossypii

    NASA Astrophysics Data System (ADS)

    Byers, John A.

    2005-02-01

    The sesquiterpene, (E)-β-farnesene, is used by many aphid species as an alarm pheromone to warn related individuals of predation. Disturbed cotton aphids, Aphis gossypii Glover, released (E)-β-farnesene into the air as detected by solid phase microextraction and gas chromatography mass spectrometry (GC MS). Solvent extracts of cotton aphids of various life stages and weights also were analyzed by GC MS for sums of ions 69 and 93, which discriminated (E)-β-farnesene from coeluting compounds. Aphids of all life stages and sizes reared on cotton plants in both an environmental chamber and glasshouse contained (E)-β-farnesene in amounts ranging from 0.1 to 1.5 ng per individual. The quantities of (E)-β-farnesene in aphids increased in relation to increasing body weight, and variation in individual weights explained about 82% of the variation in alarm pheromone. However, the concentrations (ng/mg fresh weight) declined exponentially with increasing body weight. These findings indicate that aphid nymphs try to compensate for their smaller size by producing relatively more pheromone per weight than adults but still cannot approach an evolutionary optimal load, as assumed in adults with the greatest total amounts. This suggests that young aphids need to balance costs of growth and maturation with costs of producing the alarm pheromone.

  4. Sink or swim: a test of tadpole behavioral responses to predator cues and potential alarm pheromones from skin secretions.

    PubMed

    Maag, Nino; Gehrer, Lukas; Woodhams, Douglas C

    2012-11-01

    Chemical signaling is a vital mode of communication for most organisms, including larval amphibians. However, few studies have determined the identity or source of chemical compounds signaling amphibian defensive behaviors, in particular, whether alarm pheromones can be actively secreted from tadpoles signaling danger to conspecifics. Here we exposed tadpoles of the common toad Bufo bufo and common frog Rana temporaria to known cues signaling predation risk and to potential alarm pheromones. In both species, an immediate reduction in swimming activity extending over an hour was caused by chemical cues from the predator Aeshna cyanea (dragonfly larvae) that had been feeding on conspecific tadpoles. However, B. bufo tadpoles did not detectably alter their behavior upon exposure to potential alarm pheromones, neither to their own skin secretions, nor to the abundant predator-defense peptide bradykinin. Thus, chemicals signaling active predation had a stronger effect than general alarm secretions of other common toad tadpoles. This species may invest in a defensive strategy alternative to communication by alarm pheromones, given that Bufonidae are toxic to some predators and not known to produce defensive skin peptides. Comparative behavioral physiology of amphibian alarm responses may elucidate functional trade-offs in pheromone production and the evolution of chemical communication. PMID:22972229

  5. Fire ant alarm pheromone and venom alkaloids act in concert to attract parasitic phorid flies, Pseudacteon spp.

    PubMed

    Sharma, Kavita R; Fadamiro, Henry Y

    2013-11-01

    Pseudacteon tricuspis, Pseudacteon obtusus and Pseudacteon curvatus are three species of parasitic phorid flies (Diptera: Phoridae), which have been introduced as classical biological control agents of imported, Solenopsis fire ants (Hymenoptera: Formicidae) in the southern USA. Previous studies demonstrated the behavioral response of P. tricuspis to the venom alkaloids and alarm pheromone of the fire ant, S. invicta. In the present study, we compared the responses of P. tricuspis, P. obtusus and P. curvatus to Solenopsis invicta alarm pheromone, venom alkaloids, or a mixture of both chemicals in four-choice olfactometer bioassays. The main hypothesis tested was that the fire ant alarm pheromone and venom alkaloids act in concert to attract Pseudacteon phorid flies. Both sexes of all three Pseudacteon species were attracted to low doses of the fire ant alarm pheromone or venom alkaloids (i.e. 1 ant worker equivalent) alone. However, the flies were significantly more attracted to a mixture of both chemicals (i.e., 1:1 mixture of alarm pheromone+alkaloids) than to either chemical. The results suggest an additive rather than a synergistic effect of combining both chemicals. Comparing the fly species, P. tricuspis showed relatively greater attraction to cis alkaloids, whereas the alkaloid mixture (cis+trans) was preferred by P. obtusus and P. curvatus. In general, no key sexual differences were recorded, although females of P. tricuspis and P. obtusus showed slightly higher response than conspecific males to lower doses of the alarm pheromone. The ecological significance of these findings is discussed, and a host location model is proposed for parasitic phorid flies involving the use of fire ant alarm pheromone and venom alkaloids as long range and short range attractants, respectively. PMID:24035750

  6. Symmetry breaking on density in escaping ants: experiment and alarm pheromone model.

    PubMed

    Li, Geng; Huan, Di; Roehner, Bertrand; Xu, Yijuan; Zeng, Ling; Di, Zengru; Han, Zhangang

    2014-01-01

    The symmetry breaking observed in nature is fascinating. This symmetry breaking is observed in both human crowds and ant colonies. In such cases, when escaping from a closed space with two symmetrically located exits, one exit is used more often than the other. Group size and density have been reported as having no significant impact on symmetry breaking, and the alignment rule has been used to model symmetry breaking. Density usually plays important roles in collective behavior. However, density is not well-studied in symmetry breaking, which forms the major basis of this paper. The experiment described in this paper on an ant colony displays an increase then decrease of symmetry breaking versus ant density. This result suggests that a Vicsek-like model with an alignment rule may not be the correct model for escaping ants. Based on biological facts that ants use pheromones to communicate, rather than seeing how other individuals move, we propose a simple yet effective alarm pheromone model. The model results agree well with the experimental outcomes. As a measure, this paper redefines symmetry breaking as the collective asymmetry by deducing the random fluctuations. This research indicates that ants deposit and respond to the alarm pheromone, and the accumulation of this biased information sharing leads to symmetry breaking, which suggests true fundamental rules of collective escape behavior in ants. PMID:25551611

  7. Modulation of aphid alarm pheromone emission of pea aphid prey by predators.

    PubMed

    Joachim, Christoph; Hatano, Eduardo; David, Anja; Kunert, Maritta; Linse, Cornelia; Weisser, Wolfgang W

    2013-06-01

    Recent studies on animal alarm signaling have shown that alarm calls generally are not uniform, but may vary depending on the type and intensity of threat. While alarm call variability has been studied intensively in birds and mammals, little is known about such variation in insects. We investigated variability in alarm signaling in aphids, group-living insect herbivores. Under attack, aphids release droplets containing a volatile alarm pheromone, (E)-β-farnesene (EBF), that induces specific escape behavior in conspecifics. We used a handheld gas chromatograph (zNose™), which allows real-time volatile analysis, to measure EBF emission by pea aphids, Acyrthosiphon pisum, under attack from different predators, lacewing or ladybird larvae. We demonstrate that aphid alarm signaling is affected by the predator species attacking. Ladybirds generally elicited smaller EBF emission peaks and consumed aphids more quickly, resulting in lower total EBF emission compared to lacewing attacks. In 52 % of the replicates with lacewings and 23 % with ladybirds, no EBF was detectable in the headspace, although aphids secreted cornicle droplets after attack. We, therefore, examined EBF amounts contained in these droplets and the aphid body. While all aphid bodies always contained EBF, many secreted droplets did not. Our experiments show that alarm signaling in insects can be variable, and both the attacker as well as the attacked may affect alarm signal variation. While underlying mechanisms of such variation in aphid-predator interactions need to be investigated in more detail, we argue that at least part of this variation may be adaptive for the predator and the aphid. PMID:23686467

  8. Does the Aphid Alarm Pheromone (E)-β-farnesene Act as a Kairomone under Field Conditions?

    PubMed

    Joachim, Christoph; Weisser, Wolfgang W

    2015-03-01

    Insect natural enemies use several environmental cues for host/prey finding, and adjust their foraging behavior according to these signals. In insects, such cues are mainly chemical, derived from the host plant or the prey itself. The aphid alarm pheromone, (E)-β-farnesene (EBF), is believed to be such a cue, because several aphid enemies are able to perceive EBF and show attractant behavior. These studies are, however, based mainly on electroantennogram or olfactometer assays, and often use unnaturally high pheromone concentrations. It is, therefore, unclear if EBF is used to locate prey in the field when only naturally released amounts are present. We monitored the frequencies and durations of plant visits by aphid natural enemies in the field using long-duration camera observations. By placing pheromone releasers emitting no, natural or exaggerated amounts of EBF next to small colonies of pea aphids (Acyrthosiphon pisum), we analyzed if EBF presence altered long-range foraging behavior of natural enemies. Thirteen potential groups of aphid natural enemies were observed in 720 hr of analyzed video data. There was no effect of EBF on the number of predator visits to an aphid colony, or on predator patch residence times. The number of plant visits increased at exaggerated EBF amounts but not at natural EBF levels. We conclude that while there may be potential for use of high EBF concentrations for agricultural pest management strategies, an ecological role of EBF as a kairomone in a natural context is doubtful. PMID:25779875

  9. The use of alarm pheromones to enhance bait harvest by grass-cutting ants.

    PubMed

    Hughes, W O H; Goulson, D

    2002-06-01

    The enhancement of bait for the control of grass-cutting ants was investigated using two species of grass-cutting ant, Atta bisphaerica (Forel) and Atta capiguara (Gonçalves) (Hymenoptera: Formicidae). Bait was applied in loose piles to obtain a direct relationship between ant attraction and bait harvest. Enhancement with alarm pheromone compounds significantly increased the attractiveness and harvest of bait under certain conditions. A large proportion of the ants attracted to the enhanced bait were minor workers. These ants rarely transport bait because of their small size, and so it may be possible to increase the effect of bait enhancement by using smaller bait granules. Foragers of A. capiguara were less inclined to transport citrus-pulp bait than were those of Atta laevigata (Fr. Smith), a species that also harvests dicotyledonous plants. This emphasizes the importance of developing a bait matrix that is more acceptable to grass-cutting species. Nevertheless, the results suggest that alarm pheromone compounds have significant potential to improve the efficacy of baits for the control of grass-cutting ants. PMID:12088538

  10. Honey Bees Modulate Their Olfactory Learning in the Presence of Hornet Predators and Alarm Component

    PubMed Central

    Wang, Zhengwei; Qu, Yufeng; Dong, Shihao; Wen, Ping; Li, Jianjun; Tan, Ken; Menzel, Randolf

    2016-01-01

    In Southeast Asia the native honey bee species Apis cerana is often attacked by hornets (Vespa velutina), mainly in the period from April to November. During the co-evolution of these two species honey bees have developed several strategies to defend themselves such as learning the odors of hornets and releasing alarm components to inform other mates. However, so far little is known about whether and how honey bees modulate their olfactory learning in the presence of the hornet predator and alarm components of honey bee itself. In the present study, we test for associative olfactory learning of A. cerana in the presence of predator odors, the alarm pheromone component isopentyl acetate (IPA), or a floral odor (hexanal) as a control. The results show that bees can detect live hornet odors, that there is almost no association between the innately aversive hornet odor and the appetitive stimulus sucrose, and that IPA is less well associated with an appetitive stimulus when compared with a floral odor. In order to imitate natural conditions, e.g. when bees are foraging on flowers and a predator shows up, or alarm pheromone is released by a captured mate, we tested combinations of the hornet odor and floral odor, or IPA and floral odor. Both of these combinations led to reduced learning scores. This study aims to contribute to a better understanding of the prey-predator system between A. cerana and V. velutina. PMID:26919132

  11. Differential field responses of the little fire ant, Wasmannia auropunctata (Roger), to alarm pheromone enantiomers.

    PubMed

    Yu, Yang; Jang, Eric B; Siderhurst, Matthew S

    2014-12-01

    The little fire ant, Wasmannia auropunctata (Roger) (Hymenoptera: Formicidae), is an invasive ant with negative impacts on both biodiversity and agriculture throughout the tropics and subtropics. Field experiments were conducted in order to elucidate the relative attractiveness of the enantiomers of the alarm pheromones, 2,5-dimethyl-3-(2-methylbutyl)pyrazine and 3-methyl-2-(2-methylbutyl)pyrazine. The enantiomers tested were synthesized from commercially available (S)-2-methylbutan-1-ol or kinetically resolved (R)-2-methylbutan-1-ol, prepared using Pseudomonas cepacia lipase (PCL). Bioassays conducted in a macadamia orchard on the island of Hawaii demonstrated that W. auropunctata were preferentially attracted to the (S)-enantiomers of both alkyl pyrazines over the racemic mixtures in all experiments. To our knowledge, this is the first instance of differential attraction of ants to the enantiomers of chiral pyrazine pheromones despite many examples of these compounds in the literature. In addition, using a chiral column it was determined that (S)-2,5-dimethyl-3-(2-methylbutyl)pyrazine and (S)-3-methyl-2-(2-methylbutyl)pyrazine are the only enantiomers produced by W. auropunctata. PMID:25370918

  12. Temporary inactivation of the anterior part of the bed nucleus of the stria terminalis blocks alarm pheromone-induced defensive behavior in rats

    PubMed Central

    Breitfeld, Tino; Bruning, Johann E. A.; Inagaki, Hideaki; Takeuchi, Yukari; Kiyokawa, Yasushi; Fendt, Markus

    2015-01-01

    Rats emit an alarm pheromone in threatening situations. Exposure of rats to this alarm pheromone induces defensive behaviors, such as head out behavior, and increases c-Fos expression in brain areas involved in the mediation of defensive behaviors. One of these brain areas is the anterior bed nucleus of the stria terminalis (aBNST). The goal of the present study was to investigate if pharmacological inactivation of the aBNST by local microinjections of the GABAA receptor-agonist muscimol modulates alarm pheromone-induced defensive behaviors. We first established the behavioral paradigm of alarm pheromone-induced defensive behaviors in Sprague-Dawley rats in our laboratory. In a second experiment, we inactivated the aBNST, then exposed rats to one of four different odors (neck odor, female urine, alarm pheromone, fox urine) and tested the effects of the aBNST inactivation on the behavior in response to these odors. Our data show that temporary inactivation of the aBNST blocked head out behavior in response to the alarm pheromone. This indicates that the aBNST plays an important role in the mediation of the alarm pheromone-induced defensive behavior in rats. PMID:26441496

  13. Association of MACE-based insecticide resistance in Myzus persicae with reproductive rate, response to alarm pheromone and vulnerability to attack by Aphidius colemani.

    PubMed

    Foster, Stephen P; Kift, Neil B; Baverstock, Jason; Sime, Sue; Reynolds, Kelly; Jones, Julie E; Thompson, Robin; Tatchell, G Mark

    2003-11-01

    Reproductive success and response to alarm pheromone, both potentially important components of fitness, were assessed using clones of Myzus persicae (Sulzer) to establish associations with insecticide resistance conferred by insensitive modified acetylcholinesterase (MACE). Both traits showed significant trends that were apparently related to this mechanism. MACE forms appeared to reproduce at slower rates than non-MACE forms expressing moderate (R1) levels of another resistance mechanism based on elevated carboxylesterase. However, MACE forms were more responsive to alarm pheromone than their non-MACE counterparts. The potential implications for parasitoid performance were tested using two clones showing clear differences in alarm response. The level of parasitism of M persicae by the parasitoid Aphidius colemani (Viereck) was significantly lower in MACE forms on pepper crops compared to non-MACE forms. In addition, the distribution of MACE and non-MACE forms differed on the pepper plants, with more MACE forms being found on the growing points. The presence of the parasitoid A colemani did not alter this change in distribution. PMID:14620042

  14. Evidence for a Nest Defense Pheromone in Bald-Faced Hornets, Dolichovespula Maculata, and Identification of Components.

    PubMed

    Jimenez, Sebastian Ibarra; Gries, Regine; Zhai, Huimin; Derstine, Nathan; McCann, Sean; Gries, Gerhard

    2016-05-01

    In eusocial insects like Bald-faced hornets, Dolichovespula maculata, nest defense is essential because nests contain a large number of protein-rich larvae and pupae, and thus are attractive to nest predators. Our objectives were to investigate whether D. maculata exhibit pheromone-mediated nest defense, and to identify and field test any pheromone components. We tested for pheromone-mediated nest defense behavior of D. maculata by placing a paired box-apparatus near the entrance of D. maculata nests, and treating both boxes with a solvent control, or one of the two boxes with a solvent control and the other with either venom sac extract, the putative source of nest defense pheromone, or synthetic pheromone. The sound impulses caused by nest mates attempting to sting or strike the boxes were recorded for 3 min. Compared to the double-control treatment, the number of strikes increased 27-fold when one of the two boxes was treated with venom sac extract, providing evidence for an alarm response. The box treated with venom sac extract also induced a significantly greater proportion of strikes than the corresponding control box, providing evidence for a target-oriented response. Analyzing venom sac extract by gas chromatographic-electroantennographic detection (GC-EAD) and GC-mass spectrometry resulted in the identification of seven candidate pheromone components: (a) dimethylaminoethanol, (b) dimethylamino ethyl acetate, (c) 2,5-dimethylpyrazine, (d) N-3-methylbutylacetamide, (e) 2-heptadecanone, (f) (Z)-8-heptadecen-2-one, and (g) (Z)-10-nonadecen-2-one. Testing in paired-box bioassays blends of the nitrogen-containing volatile components a-d, the less volatile ketones e-g, or both (a-g), indicated that a-d primarily have an alarm function. The ketones e-g, in contrast, induced target-oriented responses, possibly marking the box, or potential nest predators, for guided and concerted attacks, or enhancing the alarm-inducing effect of the volatile pheromone components

  15. Field evaluation of potential of alarm pheromone compounds to enhance baits for control of grass-cutting ants (Hymenoptera: Formicidae).

    PubMed

    Hughes, William O H; Howse, Philip E; Vilela, Evaldo F; Knapp, Jenny J; Goulson, Dave

    2002-06-01

    Leaf-cutting ants are important economic pests of the Neotropics, and the most common method of control involves the use of insecticidal baits. Baits that are currently available exhibit low attractiveness to grass-cutting species, thus there is a need to develop improved baits. The potential for using alarm pheromone compounds to enhance the attractiveness and subsequent harvest of baits was examined for two economically important species of grass-cutting ant, Atta bisphaerica (Forel) and Atta capiguara (Goncalves). Compounds of the alarm pheromone were applied to rubber septa that were then sealed inside plastic sachets together with citrus pulp-based bait. The best candidate compound for bait enhancement was 4-methyl-3-heptanone. This compound significantly increased the attractiveness of bait sachets to both species. It also appeared to improve the discovery of nearby unenhanced sachets. However, 4-methyl-3-heptanone resulted in only a slight and non-significant improvement in bait harvest. Enhanced and unenhanced bait sachets were applied at a number of positions to obtain an improvement in harvest, but without success. The possible reasons for the lack of an enhancement of harvest and the potential for using alarm pheromone compounds as leaf-cutting ant bait enhancers are discussed. PMID:12075997

  16. Sex Pheromone Components of Pink Gypsy Moth, Lymantria mathura

    NASA Astrophysics Data System (ADS)

    Gries, Gerhard; Gries, Regine; Schaefer, Paul W.; Gotoh, Tadao; Higashiura, Yasutomo

    Pheromone extract of female pink gypsy moth, Lymantria mathura, was analyzed by coupled gas chromatographic-electroantennographic detection (GC-EAD) and coupled GC-mass spectrometry (MS), employing fused silica columns coated with DB-5, DB-210, or DB-23 and a custom-made GC column that separated enantiomers of unsaturated epoxides. These analyses revealed (9R,10S)-cis-9,10-epoxy-Z3,Z6-nonadecadiene [termed here (+)-mathuralure] and (9S,10R)-cis-9,10-epoxy-Z3,Z6-nonadecadiene [termed here (-)-mathuralure] at a 1 : 4 ratio as major candidate pheromone components. In field experiments in northern Japan (Morioka, Iwate Prefecture and Bibai, Hokkaido Prefecture), (+)- and (-)-mathuralure at a ratio of 1 : 4, but not 1 : 1 or singly, were attractive to male L. mathura. This is the first demonstration that attraction of male moths required the very same ratio of pheromone enantiomers as produced by conspecific females. Whether L. mathura employ different blend ratios in different geographic areas, and the role of five additional candidate pheromone components identified in this study remains to be investigated.

  17. Three pheromone-binding proteins help segregation between two Helicoverpa species utilizing the same pheromone components.

    PubMed

    Guo, Hao; Huang, Ling-Qiao; Pelosi, Paolo; Wang, Chen-Zhu

    2012-09-01

    The two sibling species Helicoverpa armigera and Helicoverpa assulta utilise the same two aldehydes as their sex pheromones, but in opposite ratios. In both species three odorant-binding proteins (OBPs) can be classified as pheromone-binding proteins (PBPs). To investigate the role of these three PBPs in chemical communication between sexes and their mode of action, we have expressed the proteins in bacteria and prepared mutants lacking their C-terminal regions. Using polyclonal antibodies we found that the expression of the three PBPs is basically confined to the antennae of both sexes and both species. Binding experiments with the fluorescent probe N-phenyl-1-naphthylamine across a pH range indicated that, the affinity of wild-type proteins decreases at low pH, while that of the mutants is not or less affected, suggesting that a conformational change of the C-terminus occurs in these proteins, as reported for other lepidopteran OBPs. All three proteins bind with similar strength both pheromone components, as well as their corresponding alcohols and acetates. However, they exhibit significant selectivity to linear alcohols and aldehydes of different length, with optimal affinities to the ligand of 13-15 carbon atoms for PBP1 and 12-14 carbon atoms for PBP2. We suggest that all three PBPs might cooperate to build a unique olfactory image, that could help avoiding cross-mating between the two species and with other noctuids. PMID:22750167

  18. Foreign-language skills in rove-beetles? Evidence for chemical mimicry of ant alarm pheromones in myrmecophilous Pella beetles (Coleoptera: Staphylinidae).

    PubMed

    Stoeffler, Michael; Maier, Tanja S; Tolasch, Till; Steidle, Johannes L M

    2007-07-01

    By using chemical analyses, as well as laboratory and field behavioral tests, we tested the hypothesis that rove beetles of the myrmecophilous genus Pella use alarm pheromone compounds to avert attacks by their host ant Lasius fuliginosus. The secretions of Pellafunestus and P. humeralis contain quinones and different aliphatic compounds, mainly undecane and 6-methyl-5-hepten-2-one (sulcatone). The latter two chemicals are also found in L. fuliginosus pheromone glands. Behavioral tests confirmed that undecane serves as an "aggressive alarm"-inducing pheromone in L. fuliginosus, whereas sulcatone most likely is a "panic-alarm"-inducing pheromone. The main tergal-secretion compounds, various quinones and undecane, individually and in mixtures induced aggression in L. fuliginosus workers. When sulcatone was added to these compounds, the space around the odor source was avoided and a reduced number of aggressive acts observed, suggesting that sulcatone blocks the aggression-inducing effect of undecane and the quinones. These results support the hypothesis that Pella beetles mimic alarm pheromones of their hosts. This is a rare example of chemical mimicry in myrmecophilous insects in which chemicals other than cuticular hydrocarbons are used. PMID:17558536

  19. Orco mediates olfactory behaviors and winged morph differentiation induced by alarm pheromone in the grain aphid, Sitobion avenae.

    PubMed

    Fan, Jia; Zhang, Yong; Francis, Frédéric; Cheng, Dengfa; Sun, Jingrun; Chen, Julian

    2015-09-01

    Olfaction is crucial for short distance host location and pheromone detection by insects. Complexes of olfactory receptors (ORs) are composed of odor-specific ORs and OR co-receptors (Orco). Orcos are widely co-expressed with odor-specific ORs and are conserved across insect taxa. A number of Orco orthologs have been studied to date, although none has been identified in cereal aphids. In this study, an Orco gene ortholog was cloned from the grain aphid, Sitobion avenae, and named "SaveOrco"; RNA interference (RNAi) reduced the expression of SaveOrco to 34.11% in aphids, resulting in weaker EAG (electroantennogram) responses to plant volatiles (Z-3-hexene-1-ol; methyl salicylate, MeSA) and aphid alarm pheromone (E-β-farnesene, EBF). Aphid wing differentiation induced by EBF was investigated in both RNAi treated and untreated aphids. EBF induced production of winged aphids in both pre-natal and post-natal periods in untreated aphids, but no such induction was observed in the RNAi-treated aphids. We conclude that SaveOrco is crucial for the aphid's response to pheromones and other volatiles, and is involved in wing differentiation triggered by EBF. PMID:26187252

  20. Impact of aphid alarm pheromone release on virus transmission efficiency: When pest control strategy could induce higher virus dispersion.

    PubMed

    Lin, Fang-Jing; Bosquée, Emilie; Liu, Ying-Jie; Chen, Ju-Lian; Yong, Liu; Francis, Frédéric

    2016-09-01

    Aphids cause serious damages to crops not only by tacking sap but also by transmitting numerous viruses. To develop biological control, the aphid alarm pheromone, namely E-β-farnesene (EβF), has been demonstrated to be efficient to repel aphids and as attract beneficials, making it a potential tool to control aphid pests. Considering aphids also as virus vectors, changes of their behavior could also interfere with the virus acquisition and transmission process. Here, a combination of two aphid species and two potato virus models were selected to test the influence of EβF release on aphid and virus dispersion under laboratory conditions. EβF release was found to significantly decrease the population of Myzus persicae and Macrosiphum euphorbiae around the infochemical releaser but simultaneously also increasing the dispersal of Potato Virus Y (PVY). At the opposite, no significant difference for Potato Leaf Roll Virus (PLRV) transmission efficiency was observed with similar aphid alarm pheromone releases for none of the aphid species. These results provide some support to carefully consider infochemical releasers not only for push-pull strategy and pest control but also to include viral disease in a the plant protection to aphids as they are also efficient virus vectors. Impact of aphid kinds and transmission mechanisms will be discussed according to the large variation found between persistent and non persistent potato viruses and interactions with aphids and related infochemicals. PMID:27185564

  1. Transcriptome comparison of the sex pheromone glands from two sibling Helicoverpa species with opposite sex pheromone components

    PubMed Central

    Li, Zhao-Qun; Zhang, Shuai; Luo, Jun-Yu; Wang, Chun-Yi; Lv, Li-Min; Dong, Shuang-Lin; Cui, Jin-Jie

    2015-01-01

    Differences in sex pheromone component can lead to reproductive isolation. The sibling noctuid species, Helicoverpa armigera and Helicoverpa assulta, share the same two sex pheromone components, Z9-16:Ald and Z11-16:Ald, but in opposite ratios, providing an typical example of such reproductive isolation. To investigate how the ratios of the pheromone components are differently regulated in the two species, we sequenced cDNA libraries from the pheromone glands of H. armigera and H. assulta. After assembly and annotation, we identified 108 and 93 transcripts putatively involved in pheromone biosynthesis, transport, and degradation in H. armigera and H. assulta, respectively. Semi-quantitative RT-PCR, qRT-PCR, phylogenetic, and mRNA abundance analyses suggested that some of these transcripts involved in the sex pheromone biosynthesis pathways perform. Based on these results, we postulate that the regulation of desaturases, KPSE and LPAQ, might be key factor regulating the opposite component ratios in the two sibling moths. In addition, our study has yielded large-scale sequence information for further studies and can be used to identify potential targets for the bio-control of these species by disrupting their sexual communication. PMID:25792497

  2. Two Odorant-Binding Proteins Mediate the Behavioural Response of Aphids to the Alarm Pheromone (E)-ß-farnesene and Structural Analogues

    PubMed Central

    Qiao, Hui Li; Iovinella, Immacolata; Yang, Shao Xiang; Ling, Yun; Riviello, Lea; Battaglia, Donatella; Falabella, Patrizia; Yang, Xin Ling; Pelosi, Paolo

    2012-01-01

    Background Aphids are agricultural pests of great economical interest. Alternatives to insecticides, using semiochemicals, are of difficult applications. In fact, sex pheromones are of little use as aphids reproduce partenogenetically most of the time. Besides, the alarm pheromone, (E)-ß-farnesene for a great number of species, is difficult to synthesize and unstable in the environment. The search for novel semiochemicals to be used in population control can be efficiently approached through the study of the olfactory system at the biochemical level. Recently odorant-binding proteins (OBPs) have been shown to play a central role in olfactory recognition, thus becoming the target of choice for designing new semiochemicals. Methodology/Principal Findings To address the question of how the alarm message is recognised at the level of OBPs, we have tested 29 compounds, including (E)-ß-farnesene, in binding assays with 6 recombinant proteins and in behaviour experiments. We have found that good repellents bind OBP3 and/or OBP7, while non repellents present different spectra of binding. These results have been verified with two species of aphids, Acyrthosiphon pisum and Myzus persicae, both using (E)-ß-farnesene as the alarm pheromone. Conclusions Our results represent further support to the idea (so far convincingly demonstrated only in Drosophila) that OBPs are involved in decoding the chemical information of odorants and pheromones, and for the first time provide such evidence in other insect species and using wild-type insects. Moreover, the data offer guidelines and protocols for the discovery of potential alarm pheromones, using ligand-binding assays as a preliminary screening before subjecting selected compounds to behaviour tests. PMID:22427877

  3. Larval sensilla of the moth Heliothis virescens respond to sex pheromone components.

    PubMed

    Zielonka, M; Gehrke, P; Badeke, E; Sachse, S; Breer, H; Krieger, J

    2016-10-01

    Female-released sex pheromones orchestrate the mating behaviour of moths. Recent studies have shown that sex pheromones not only attract adult males but also caterpillars. Single sensillum recordings revealed that larval antennal sensilla of the moth Heliothis virescens respond to specific sex pheromone components. In search for the molecular basis of pheromone detection in larvae, we found that olfactory sensilla on the larval antennae are equipped with the same molecular elements that mediate sex pheromone detection in adult male moths, including the Heliothis virescens receptors 6 (HR6) and HR13, as well as sensory neurone membrane protein 1 (SNMP1). Thirty-eight olfactory sensory neurones were identified in three large sensilla basiconica; six of these are considered as candidate pheromone responsive cells based on the expression of SNMP1. The pheromone receptor HR6 was found to be expressed in two cells and the receptor HR13 in three cells. These putative pheromone responsive neurones were accompanied by cells expressing pheromone-binding protein 1 (PBP1) and PBP2. The results indicate that the responsiveness of larval sensilla to female-emitted sex pheromones is based on the same molecular machinery as in the antennae of adult males. PMID:27465144

  4. Geometric isomers of sex pheromone components do not affect attractancy of Conopomorpha cramerella in cocoa plantations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sex pheromone of cocoa pod borer (CPB), Conopomorpha cramerella, has previously been identified as a blend of (E,Z,Z)- and (E,E,Z)-4,6,10-hexadecatrienyl acetates and the corresponding alcohols. These pheromone components have been synthesized with modification of the existing method and relative at...

  5. Attractiveness of a Four-Component Pheromone Blend to Male Navel Orangeworm Moths

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The attractiveness of the various combinations of the four component pheromone of the female navel orangeworm moth, Amyelois transitella, was measured in a wind-tunnel bioassay. Upwind flight along the pheromone plume and landing on the odor source required the simultaneous presence of two componen...

  6. Discrimination of cis-trans sex pheromone components in two sympatric Lepidopteran species.

    PubMed

    Zhang, Sufang; Kong, Xiangbo; Ze, Sangzi; Wang, Hongbin; Lin, Aizhu; Liu, Fu; Zhang, Zhen

    2016-06-01

    Pheromone-binding proteins (PBPs) play an important role in the recognition of pheromones by insects. However, the abilities of these PBPs to discriminate pheromone components and recognize the isomers are unclear. Dendrolimus houi and Dendrolimus kikuchii are two sympatric coniferous pests whose pheromones have cis-trans isomers. We used these insect species to detect the precise recognition abilities of PBPs. The four PBPs examined showed male-biased antenna-intensive expression patterns, whereas PBP1 showed higher expression than PBP2 in the antenna. DhouPBP1 only bound to a minor interspecific pheromone component, whereas DhouPBP2 bound to all three intraspecific components and another minor interspecific component. DkikPBP1 and DkikPBP2 could recognize all three intraspecific components with affinities negatively correlated with their ratios, and they bound to interspecific pheromones with affinity that was positively correlated with the ratios. The four PBPs have different cis-trans isomer discrimination abilities, i.e., DhouPBP1 and DkikPBP1 could not discriminate the two cis-trans isomer pairs of pheromones from the two species, whereas DhouPBP2 could discriminate between both pairs, and DkikPBP2 could only discriminate one pair. Overall, PBPs from D. houi and D. kikuchii use different strategies to help the moths to discriminate the intra- and interspecific pheromone components. Our work will contribute to better understanding of the sex pheromone recognition mechanism in these two sister species of moths and provide insights into more effective management practices of these pest species. PMID:27107681

  7. Binding interaction between a queen pheromone component HOB and pheromone binding protein ASP1 of Apis cerana.

    PubMed

    Weng, Chen; Fu, Yuxia; Jiang, Hongtao; Zhuang, Shulin; Li, Hongliang

    2015-01-01

    The honeybee's social behavior is closely related to the critical response to pheromone, while pheromone binding proteins (PBPs) play an important role in binding and transferring those pheromones. Here we report one known PBP, antennal special protein 1(ASP1), which has high affinity with a queen mandibular pheromone component, methyl-p-hydroxybenzoate (HOB). In this study, multiple fluorescent spectra, UV absorption spectra, circular dichroism (CD) spectra and molecular docking analysis were combined to clarify the binding process. Basically, fluorescence intensity of ASP1 could be considerably quenched by HOB with an appropriate interaction distance (3.1 nm), indicating that a complex, which is more stable in lower temperature, was formed. The fact ΔH < 0, ΔS < 0, by thermodynamic analysis, indicated the van der Waals and hydrogen bond as main driving force. Moreover, synchronous fluorescence spectra and CD spectra analysis showed the change of partial hydrophilicity of ASP1 and the increase of α-helix after HOB addition. In conclusion, ASP1 can strongly and spontaneously interact with HOB. But the binding ability decreases with the rise of temperature, which may be necessary for sufficient social stability of hives. This study provides elucidation of the detailed binding mechanism and potential physicochemical basis of thermal stability to the social behavior of honeybee. PMID:25195542

  8. Identification of conjugated pentadecadienals as sex pheromone components of the sphingid moth, Dolbina tancrei.

    PubMed

    Uehara, Takuya; Naka, Hideshi; Matsuyama, Shigeru; van Vang, Le; Ando, Tetsu; Honda, Hiroshi

    2013-12-01

    Homologs of bombykal, (10E,12Z)-10,12-hexadecadienal, have been reported to be sex pheromones or sexual attractants of several species of sphingid moths. In this study, we identified novel bombykal analogs as sex pheromone components from a Japanese sphingid moth, Dolbina tancrei. Staudinger (Sphingidae: Lepidoptera). Sex pheromone gland extracts from calling female moths were subjected to gas chromatography/electroantennograhic detection (GC/EAD), gas chromatography/mass spectrometry (GC/MS), and gas chromatography (GC) analyses. GC/EAD analyses showed two active components in the crude pheromone extracts. GC/MS analysis determined these two components to be pentadecadienals. GC/MS of their MTAD derivatives showed conjugated double bonds at the 9- and 11-positions, indicating 9,11-pentadecadienals. The isomeric configurations of these candidates were determined by comparison of their Kováts retention indices with those of synthetic compounds. Field bioassays with the four isomers of 9,11-pentadecadienal and their mixtures confirmed that the two sex pheromone components of D. tancrei are (9E,11Z)-9,11-pentadecadienal and (9Z,11Z)-9,11-pentadecadienal, with the highest male catches observed for a 90:10 blend. This is the first report of 9,11-pentadecadienals as sex pheromone components in lepidopteran species. PMID:24190021

  9. [Electrophysiological and behavioral responses of male Apamea apameoides (Draudt) (Lepidoptera: Noctuidae) to sex pheromone components].

    PubMed

    Zhang, Ai-Liang; Zhou, Zhang-Ting; Zhang, Ya-Bo; Zhou, Zhi-Feng; Shen, Zhi-Lian; Wang, Hao-Jie; Shu, Jin-Ping

    2014-10-01

    The sex pheromone gland extracts collected from calling females of Apamea apameoides (Lepidoptera: Noctuidae) were analyzed with GC-MS, the electrophysiological and behavioral responses of the male adults to serial dilutions of sex pheromone components and their synthetic blends were investigated with Y-tube olfactometer in laboratory and in bamboo forest field. The results indicated that (Z)-11-hexadecenyl acetate and (Z)-11-hexadecen-1-ol were the functional components in the sex pheromone gland extracts. Electroantennogram (EAG) recordings showed that sex pheromone gland extracts, (Z)-11-hexadecenyl acetate, (Z)-11-hexadecen-1-ol and the mixture of (Z)-11-hexadecenyl acetate and (Z)-11-hexadecen-1-ol all could elicit strong EAG responses, and the average EAG values increased with the increasing concentration of the sex pheromone. The blends of (Z)-11-hexadecenyl acetate and (Z)-11-hexadecen-1-ol at the ratio of 57:43 elicited a higher EAG value than each singular component did. The results of behavioral assay by Y-tube olfactometer accorded with those of EAG responses on the whole, and the mixture of (Z)-11-hexadecenyl acetate and (Z)-11-hexadecen-1-ol at the ratio of 57:43 was more attractive than each component alone. In field tests with silicone rubber as pheromone dispensers (concentration = 10(4) ng · uL(-1)), the average number of male adults captured per trap by the mixture was (48.5 ± 6.7). PMID:25796914

  10. Identification of Critical Secondary Components of the Sex Pheromone of the Navel Orangeworm (Lepidoptera: Pyralidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We identified a four-component sex pheromone blend that is as attractive to male navel orangeworm (NOW), Amyelois transitella, as hexane extracts from female pheromone glands. This blend contains Z11,Z13-16:Ald, Z11,Z13-16:OH, Z11,E13-16:OH and (3Z,6Z,9Z,12Z,15Z-23:H)-tricosapentaene (C23 pentaene)....

  11. Identification by GC-EAD of the two-component trail-following pheromone of Prorhinotermes simplex (Isoptera, Rhinotermitidae, Prorhinotermitinae).

    PubMed

    Sillam-Dussès, David; Kalinová, Blanka; Jiros, Pavel; Brezinová, Anna; Cvacka, Josef; Hanus, Robert; Sobotník, Jan; Bordereau, Christian; Valterová, Irena

    2009-08-01

    GC/MS analysis confirmed that neocembrene is the major component of the trail pheromone in the three species of the termite genus Prorhinotermes (P. simplex, P. canalifrons, P. inopinatus). In addition, EAG and GC-EAD experiments with P. simplex strongly suggest that dodecatrienol is a quantitatively minor component but a qualitatively important component of this trail pheromone. Trail-following bioassays confirmed the two-component nature of the trail pheromone. This is the first report of the use of the GC-EAD for the identification of trail pheromone in termites. These original results underline once again the special phylogenetic status of the Prorhinotermitinae among Rhinotermitidae. PMID:19394339

  12. Single-Component Pheromone Consisting of Bombykal in a Diurnal Hawk Moth, Neogurelca himachala sangaica.

    PubMed

    Uehara, Takuya; Kitahara, Hiroshi; Naka, Hideshi; Matsuyama, Shigeru; Ando, Tetsu; Honda, Hiroshi

    2016-06-01

    Recent work has suggested that hawk moths share pheromone components but are sexually separated by qualitative and quantitative differences in their pheromone blends. During field assays on the sex pheromones of other species, a diurnal hawk moth, Neogurelca himachala sangaica (Lepidoptera: Sphingidae), was frequently captured, but the composition of the sex pheromone of this species was not known. Analysis of hexane extracts of the pheromone glands of calling female by gas chromatography (GC) using an electroantennographic detector (EAD) revealed two components that elicited EAD responses from male moth antennae. These components were identified by their mass spectra and retention indices on two GC columns as (10E,12Z)-10,12-hexadecadienal (E10,Z12-16:Ald) and a trace of its (10E,12E)-isomer (E10,E12-16:Ald) in 98:2 ratio. In field experiments, E10,Z12-16:Ald alone attracted male moths, and addition of E10,E12-16:Ald significantly reduced the attractiveness, even at the naturally-occurring ratio. Analysis of the data using a generalized linear mixed model showed that E10,Z12-16:Ald positively contributed to attractiveness, whereas E10,E12-16:Ald did so negatively, and it was concluded that the sex pheromone of N. himachala sangaica consists solely of E10,Z12-16:Ald, bombykal. The negative effect of E10,E12-16:Ald on attractiveness could promote the species-specificity of this single-component pheromone system. PMID:27300505

  13. Identification of the sex pheromone components secreted by female moths of Peridroma saucia (Noctuidae: Noctuinae).

    PubMed

    Inomata, Shin-ichi; Tsuchiya, Satoshi; Ikeda, Kazutaka; Saito, Osamu; Ando, Tetsu

    2002-11-01

    The variegated cutworm, Peridroma saucia Hübner, is a lepidopteran pest to a large number of crops in Canada, the United States, and Europe. It was probably naturalized in Japan in the 1970s. The pheromone glands of the female moth include two components with electroantennographic activity in a ratio of 3:1. GC-MS analyses of pheromone extracts untreated and treated with dimethyl disulfide revealed the major component to be (Z)-11-hexadecenyl acetate and the minor component to be (Z)-9-tetradecenyl acetate. The synthetic pheromone was used to attract a large number of males in a vegetable field in Tokyo, which suggests that this species has already become a harmful pest in Japan. PMID:12506988

  14. Aphid pheromones.

    PubMed

    Dewhirst, Sarah Y; Pickett, John A; Hardie, Jim

    2010-01-01

    Aphids are the main insect pests of agricultural crops in temperate regions causing major economic losses. Although broad-spectrum insecticides are available for control, alternative and more targeted methods are needed due to insecticide resistance and increasing environmental pressures. An alternative control method for aphids is to exploit their pheromones, which have been extensively studied in recent years. For example, aphids release alarm pheromones in response to natural enemy attack and these could be used to deter aphids from the crops. Sex pheromones have also been identified which could be used to interfere males locating conspecific females (oviparae), as well as for manipulating natural enemies. Several hypotheses relating to how species integrity is maintained via the aphid sex pheromone have been proposed. The composition and behavioral activity of these pheromones, and how their use could be implemented in integrated pest management systems to control aphids, is discussed. PMID:20831961

  15. Tarsi of male heliothine moths contain aldehydes and butyrate esters as potential pheromone components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Noctuidae is one of the most specious moth families and contains the genera Helicoverpa and Heliothis. Their major sex pheromone component is (Z)-11-hexadecenal except for Helicoverpa assulta and Helicoverpa gelotopoeon both of which utilize (Z)-9-hexadecenal. The minor components of heliothine ...

  16. Midgut tissue of male pine engraver , Ips pini, synthesizes monoterpenoid pheromone component ipsdienol de novo

    NASA Astrophysics Data System (ADS)

    Hall, Gregory M.; Tittiger, Claus; Andrews, Gracie L.; Mastick, Grant S.; Kuenzli, Marilyn; Luo, Xin; Seybold, Steven J.; Blomquist, Gary J.

    2002-02-01

    For over three decades the site and pathways of bark beetle aggregation pheromone production have remained elusive. Studies on pheromone production in Ips spp. bark beetles have recently shown de novo biosynthesis of pheromone components via the mevalonate pathway. The gene encoding a key regulated enzyme in this pathway, 3-hydroxy-3-methylglutaryl-CoA reductase ( HMG-R), showed high transcript levels in the anterior midgut of male pine engravers, Ips pini (Say) (Coleoptera:Scolytidae). HMG-R expression in the midgut was sex, juvenile hormone, and feeding dependent, providing strong evidence that this is the site of acyclic monoterpenoid (ipsdienol) pheromone production in male beetles. Additionally, isolated midgut tissue from fed or juvenile hormone III (JH III)-treated males converted radiolabeled acetate to ipsdienol, as assayed by radio-HPLC. These data support the de novo production of this frass-associated aggregation pheromone component by the mevalonate pathway. The induction of a metazoan HMG-R in this process does not support the postulated role of microorganisms in ipsdienol production.

  17. Identification of a Male-Produced Pheromone Component of the Citrus Longhorned Beetle, Anoplophora chinensis.

    PubMed

    Hansen, Laura; Xu, Tian; Wickham, Jacob; Chen, Yi; Hao, Dejun; Hanks, Lawrence M; Millar, Jocelyn G; Teale, Stephen A

    2015-01-01

    The Asian wood-boring beetle Anoplophora chinensis (Forster) (Coleoptera: Cerambycidae) is an important pest of hardwood trees in its native range, and has serious potential to invade other areas of the world through worldwide commerce in woody plants and wood products. This species already has been intercepted in North America, and is the subject of ongoing eradication efforts in several countries in Europe. Attractants such as pheromones would be immediately useful as baits in traps for its detection. Because long-range pheromones are frequently conserved among closely related species of cerambycids, we evaluated two components of the volatile pheromone produced by males of the congener A. glabripennis (Motschulsky), 4-(n-heptyloxy)butan-1-ol and 4-(n-heptyloxy)butanal, as potential pheromones of A. chinensis. Both compounds subsequently were detected in headspace volatiles from male A. chinensis, but not in volatiles from females. Only 4-(n-heptyloxy)butanol elicited responses from beetle antennae in coupled gas chromatography-electroantennogram analyses, and this compound attracted adult A. chinensis of both sexes in field bioassays. These data suggest that 4-(n-heptyloxy)butan-1-ol is an important component of the male-produced attractant pheromone of A. chinensis, which should find immediate use in quarantine monitoring for this pest. PMID:26241651

  18. Identification of a Male-Produced Pheromone Component of the Citrus Longhorned Beetle, Anoplophora chinensis

    PubMed Central

    Hansen, Laura; Xu, Tian; Wickham, Jacob; Chen, Yi; Hao, Dejun; Hanks, Lawrence M.; Millar, Jocelyn G.; Teale, Stephen A.

    2015-01-01

    The Asian wood-boring beetle Anoplophora chinensis (Forster) (Coleoptera: Cerambycidae) is an important pest of hardwood trees in its native range, and has serious potential to invade other areas of the world through worldwide commerce in woody plants and wood products. This species already has been intercepted in North America, and is the subject of ongoing eradication efforts in several countries in Europe. Attractants such as pheromones would be immediately useful as baits in traps for its detection. Because long-range pheromones are frequently conserved among closely related species of cerambycids, we evaluated two components of the volatile pheromone produced by males of the congener A. glabripennis (Motschulsky), 4-(n-heptyloxy)butan-1-ol and 4-(n-heptyloxy)butanal, as potential pheromones of A. chinensis. Both compounds subsequently were detected in headspace volatiles from male A. chinensis, but not in volatiles from females. Only 4-(n-heptyloxy)butanol elicited responses from beetle antennae in coupled gas chromatography-electroantennogram analyses, and this compound attracted adult A. chinensis of both sexes in field bioassays. These data suggest that 4-(n-heptyloxy)butan-1-ol is an important component of the male-produced attractant pheromone of A. chinensis, which should find immediate use in quarantine monitoring for this pest. PMID:26241651

  19. Pheromone-sensitive glomeruli in the primary olfactory centre of ants.

    PubMed

    Yamagata, Nobuhiro; Nishino, Hiroshi; Mizunami, Makoto

    2006-09-01

    Tremendous evolutional success and the ecological dominance of social insects, including ants, termites and social bees, are due to their efficient social organizations and their underlying communication systems. Functional division into reproductive and sterile castes, cooperation in defending the nest, rearing the young and gathering food are all regulated by communication by means of various kinds of pheromones. No brain structures specifically involved in the processing of non-sexual pheromone have been physiologically identified in any social insects. By use of intracellular recording and staining techniques, we studied responses of projection neurons of the antennal lobe (primary olfactory centre) of ants to alarm pheromone, which plays predominant roles in colony defence. Among 23 alarm pheromone-sensitive projection neurons recorded and stained in this study, eight were uniglomerular projection neurons with dendrites in one glomerulus, a structural unit of the antennal lobe, and the remaining 15 were multiglomerular projection neurons with dendrites in multiple glomeruli. Notably, all alarm pheromone-sensitive uniglomerular projection neurons had dendrites in one of five 'alarm pheromone-sensitive (AS)' glomeruli that form a cluster in the dorsalmost part of the antennal lobe. All alarm pheromone-sensitive multiglomerular projection neurons had dendrites in some of the AS glomeruli as well as in glomeruli in the anterodorsal area of the antennal lobe. The results suggest that components of alarm pheromone are processed in a specific cluster of glomeruli in the antennal lobe of ants. PMID:16901842

  20. Factors influencing capture of invasive sea lamprey in traps baited with a synthesized sex pheromone component

    USGS Publications Warehouse

    Johnson, Nicholas; Siefkes, Michael J.; Wagner, C. Michael; Bravener, Gale; Steeves, Todd; Twohey, Michael; Li, Weiming

    2015-01-01

    The sea lamprey, Petromyzon marinus, is emerging as a model organism for understanding how pheromones can be used for manipulating vertebrate behavior in an integrated pest management program. In a previous study, a synthetic sex pheromone component 7α,12α, 24-trihydroxy-5α-cholan-3-one 24-sulfate (3kPZS) was applied to sea lamprey traps in eight streams at a final in-stream concentration of 10−12 M. Application of 3kPZS increased sea lamprey catch, but where and when 3kPZS had the greatest impact was not determined. Here, by applying 3kPZS to additional streams, we determined that overall increases in yearly exploitation rate (proportion of sea lampreys that were marked, released, and subsequently recaptured) were highest (20–40 %) in wide streams (~40 m) with low adult sea lamprey abundance (<1000). Wide streams with low adult abundance may be representative of low-attraction systems for adult sea lamprey and, in the absence of other attractants (larval odor, sex pheromone), sea lamprey may have been more responsive to a partial sex pheromone blend emitted from traps. Furthermore, we found that the largest and most consistent responses to 3kPZS were during nights early in the trapping season, when water temperatures were increasing. This may have occurred because, during periods of increasing water temperatures, sea lamprey become more active and males at large may not have begun to release sex pheromone. In general, our results are consistent with those for pheromones of invertebrates, which are most effective when pest density is low and when pheromone competition is low.

  1. Factors Influencing Capture of Invasive Sea Lamprey in Traps Baited With a Synthesized Sex Pheromone Component.

    PubMed

    Johnson, Nicholas S; Siefkes, Michael J; Wagner, C Michael; Bravener, Gale; Steeves, Todd; Twohey, Michael; Li, Weiming

    2015-10-01

    The sea lamprey, Petromyzon marinus, is emerging as a model organism for understanding how pheromones can be used for manipulating vertebrate behavior in an integrated pest management program. In a previous study, a synthetic sex pheromone component 7α,12α, 24-trihydroxy-5α-cholan-3-one 24-sulfate (3kPZS) was applied to sea lamprey traps in eight streams at a final in-stream concentration of 10(-12) M. Application of 3kPZS increased sea lamprey catch, but where and when 3kPZS had the greatest impact was not determined. Here, by applying 3kPZS to additional streams, we determined that overall increases in yearly exploitation rate (proportion of sea lampreys that were marked, released, and subsequently recaptured) were highest (20-40%) in wide streams (~40 m) with low adult sea lamprey abundance (<1000). Wide streams with low adult abundance may be representative of low-attraction systems for adult sea lamprey and, in the absence of other attractants (larval odor, sex pheromone), sea lamprey may have been more responsive to a partial sex pheromone blend emitted from traps. Furthermore, we found that the largest and most consistent responses to 3kPZS were during nights early in the trapping season, when water temperatures were increasing. This may have occurred because, during periods of increasing water temperatures, sea lamprey become more active and males at large may not have begun to release sex pheromone. In general, our results are consistent with those for pheromones of invertebrates, which are most effective when pest density is low and when pheromone competition is low. PMID:26399432

  2. Mammalian pheromones.

    PubMed

    Liberles, Stephen D

    2014-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  3. Mammalian Pheromones

    PubMed Central

    Liberles, Stephen D.

    2015-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d ) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  4. Specificity of the receptor for the major sex pheromone component in Heliothis virescens.

    PubMed

    Vásquez, Gissella M; Syed, Zainulabeuddin; Estes, Patricia A; Leal, Walter S; Gould, Fred

    2013-01-01

    In a previous study, the Drosophila melanogaster OR67d(GAL4);UAS system was used to functionally characterize the receptor for the major component of the sex pheromone in the tobacco budworm, Heliothis virescens Fabricius (Lepidoptera: Noctuidae), HvOR13. Electrophysiological and behavioral assays showed that transgenic flies expressing HvOR13 responded to (Z)-11-hexadecenal (Z11-16:Ald). However, tests were not performed to determine whether these flies would also respond to secondary components of the H. virescens sex pheromone. Thus, in this study the response spectrum of HvOR13 expressed in this system was examined by performing single cell recordings from odor receptor neuron in trichoid T1 sensilla on antennae of two Or67d(GAL4 [1]); UAS-HvOR13 lines stimulated with Z11-16:Ald and six H. virescens secondary pheromone components. Fly courtship assays were also performed to examine the behavioral response of the Or67d(GAL4[1]); UAS-HvOR13 flies to Z11-16:Ald and the secondary component Z9-14:Ald. Our combined electrophysiological and behavioral studies indicated high specificity and sensitivity of HvOR13 to Z11-16:Ald. Interestingly, a mutation leading to truncation in the HvOR13 C-terminal region affected but did not abolish pheromone receptor response to Z11-16:Ald. The findings are assessed in relationship to other HvOR13 heterologous expression studies, and the role of the C-terminal domain in receptor function is discussed. A third line expressing HvOR15 was also tested but did not respond to any of the seven pheromone components. PMID:24773407

  5. (2S,12Z)-2-Acetoxy-12-heptadecene: major sex pheromone component of pistachio twig borer, Kermania pistaciella.

    PubMed

    Gries, Regine; Khaskin, Grigori; Daroogheh, Hassan; Mart, Cafer; Karadag, Serpil; Er, M Kubilay; Britton, Robert; Gries, Gerhard

    2006-12-01

    The sex pheromone of the pistachio twig borer, Kermania pistaciella (Lepidoptera: Oinophilidae), one of the most important insect pests of pistachio, Pistacia vera, in Turkey and Iran, was identified. In gas chromatographic-electroantennographic detection (GC-EAD) and GC-mass spectrometric analyses of pheromone gland extracts of female K. pistaciella from Turkey, (2S,12Z)-2-acetoxy-12-heptadecene was identified as the major candidate pheromone component. In field experiments in Turkey, lures containing synthetic (2S,12Z)-2-acetoxy-12-heptadecene attracted large numbers of male moths. Its attractiveness was significantly reduced by the presence of the R-enantiomer or of either enantiomer of the corresponding alcohol. (2S,12Z)-2-Acetoxy-12-heptadecene is the first pheromone component identified in the Oinophilidae and the first secondary acetate pheromone component identified in the Lepidoptera. PMID:17123172

  6. Olfactory perception and behavioral effects of sex pheromone gland components in Helicoverpa armigera and Helicoverpa assulta

    PubMed Central

    Xu, Meng; Guo, Hao; Hou, Chao; Wu, Han; Huang, Ling-Qiao; Wang, Chen-Zhu

    2016-01-01

    Two sympatric species Helicoverpa armigera and Helicoverpa assulta use (Z)-11-hexadecenal and (Z)-9-hexadecenal as sex pheromone components in reverse ratio. They also share several other pheromone gland components (PGCs). We present a comparative study on the olfactory coding mechanism and behavioral effects of these additional PGCs in pheromone communication of the two species using single sensillum recording, in situ hybridization, calcium imaging, and wind tunnel. We classify antennal sensilla types A, B and C into A, B1, B2, C1, C2 and C3 based on the response profiles, and identify the glomeruli responsible for antagonist detection in both species. The abundance of these sensilla types when compared with the number of OSNs expressing each of six pheromone receptors suggests that HarmOR13 and HassOR13 are expressed in OSNs housed within A type sensilla, HarmOR14b within B and C type sensilla, while HassOR6 and HassOR16 within some of C type sensilla. We find that for H. armigera, (Z)-11-hexadecenol and (Z)-11-hexadecenyl acetate act as behavioral antagonists. For H. assulta, instead, (Z)-11-hexadecenyl acetate acts as an agonist, while (Z)-9-hexadecenol, (Z)-11-hexadecenol and (Z)-9-hexadecenyl acetate are antagonists. The results provide an overall picture of intra- and interspecific olfactory and behavioral responses to all PGCs in two sister species. PMID:26975244

  7. Olfactory perception and behavioral effects of sex pheromone gland components in Helicoverpa armigera and Helicoverpa assulta.

    PubMed

    Xu, Meng; Guo, Hao; Hou, Chao; Wu, Han; Huang, Ling-Qiao; Wang, Chen-Zhu

    2016-01-01

    Two sympatric species Helicoverpa armigera and Helicoverpa assulta use (Z)-11-hexadecenal and (Z)-9-hexadecenal as sex pheromone components in reverse ratio. They also share several other pheromone gland components (PGCs). We present a comparative study on the olfactory coding mechanism and behavioral effects of these additional PGCs in pheromone communication of the two species using single sensillum recording, in situ hybridization, calcium imaging, and wind tunnel. We classify antennal sensilla types A, B and C into A, B1, B2, C1, C2 and C3 based on the response profiles, and identify the glomeruli responsible for antagonist detection in both species. The abundance of these sensilla types when compared with the number of OSNs expressing each of six pheromone receptors suggests that HarmOR13 and HassOR13 are expressed in OSNs housed within A type sensilla, HarmOR14b within B and C type sensilla, while HassOR6 and HassOR16 within some of C type sensilla. We find that for H. armigera, (Z)-11-hexadecenol and (Z)-11-hexadecenyl acetate act as behavioral antagonists. For H. assulta, instead, (Z)-11-hexadecenyl acetate acts as an agonist, while (Z)-9-hexadecenol, (Z)-11-hexadecenol and (Z)-9-hexadecenyl acetate are antagonists. The results provide an overall picture of intra- and interspecific olfactory and behavioral responses to all PGCs in two sister species. PMID:26975244

  8. SNMP is a signaling component required for pheromone sensitivity in Drosophila.

    PubMed

    Jin, Xin; Ha, Tal Soo; Smith, Dean P

    2008-08-01

    The only known volatile pheromone in Drosophila, 11-cis-vaccenyl acetate (cVA), mediates a variety of behaviors including aggregation, mate recognition, and sexual behavior. cVA is detected by a small set of olfactory neurons located in T1 trichoid sensilla on the antennae of males and females. Two components known to be required for cVA reception are the odorant receptor Or67d and the extracellular pheromone-binding protein LUSH. Using a genetic screen for cVA-insensitive mutants, we have identified a third component required for cVA reception: sensory neuron membrane protein (SNMP). SNMP is a homolog of CD36, a scavenger receptor important for lipoprotein binding and uptake of cholesterol and lipids in vertebrates. In humans, loss of CD36 is linked to a wide range of disorders including insulin resistance, dyslipidemia, and atherosclerosis, but how CD36 functions in lipid transport and signal transduction is poorly understood. We show that SNMP is required in pheromone-sensitive neurons for cVA sensitivity but is not required for sensitivity to general odorants. Using antiserum to SNMP infused directly into the sensillum lymph, we show that SNMP function is required on the dendrites of cVA-sensitive neurons; this finding is consistent with a direct role in cVA signal transduction. Therefore, pheromone perception in Drosophila should serve as an excellent model to elucidate the role of CD36 members in transmembrane signaling. PMID:18653762

  9. Biosynthesis of Unusual Moth Pheromone Components Involves Two Different Pathways in the Navel Orangeworm, Amyelois transitella

    PubMed Central

    Wang, Hong-Lei; Zhao, Cheng-Hua; Millar, Jocelyn G.; Cardé, Ring T.

    2010-01-01

    The sex pheromone of the navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), consists of two different types of components, one type including (11Z,13Z)-11,13-hexadecadienal (11Z,13Z-16:Ald) with a terminal functional group containing oxygen, similar to the majority of moth pheromones reported, and another type including the unusual long-chain pentaenes, (3Z,6Z,9Z,12Z,15Z)-3,6,9,12,15-tricosapentaene (3Z,6Z,9Z,12Z,15Z-23:H) and (3Z,6Z,9Z,12Z,15Z)- 3,6,9,12,15-pentacosapentaene (3Z,6Z,9Z,12Z,15Z-25:H). After decapitation of females, the titer of 11Z,13Z-16:Ald in the pheromone gland decreased significantly, whereas the titer of the pentaenes remained unchanged. Injection of a pheromone biosynthesis activating peptide (PBAN) into the abdomens of decapitated females restored the titer of 11Z,13Z-16:Ald and even increased it above that in intact females, whereas the titer of the pentaenes in the pheromone gland was not affected by PBAN injection. In addition to common fatty acids, two likely precursors of 11Z,13Z-16:Ald, i.e., (Z)-11-hexadecenoic and (11Z,13Z)-11,13-hexadecadienoic acid, as well as traces of (Z)-6-hexadecenoic acid, were found in gland extracts. In addition, pheromone gland lipids contained (5Z,8Z,11Z,14Z,17Z)-5,8,11,14,17-icosapentaenoic acid, which also was found in extracts of the rest of the abdomen. Deuterium-labeled fatty acids, (16,16,16-D3)-hexadecanoic acid and (Z)-[13,13,14,14,15,15,16,16,16-D9]-11-hexadecenoic acid, were incorporated into 11Z,13Z-16:Ald after topical application to the sex pheromone gland coupled with abdominal injection of PBAN. Deuterium label was incorporated into the C23 and C25 pentaenes after injection of (9Z,12Z,15Z)- [17,17,18,18,18-D5]-9,12,15-octadecatrienoic acid into 1–2 d old female pupae. These labeling results, in conjunction with the composition of fatty acid intermediates found in pheromone gland extracts, support different pathways leading to the two pheromone components. 11Z,13Z-16

  10. Multiple functions of a multi-component mating pheromone in sea lamprey Petromyzon marinus

    USGS Publications Warehouse

    Johnson, N.S.; Yun, S.-S.; Buchinger, T.J.; Li, W.

    2012-01-01

    The role of the C24 sulphate in the mating pheromone component, 7α,12α,24-trihydroxy-5α-cholan-3-one 24-sulphate (3kPZS), to specifically induce upstream movement in ovulated female sea lampreys Petromyzon marinus was investigated. 7α,12α-dihydroxy-5α-cholan-3-one 24-oic acid (3kACA), a structurally similar bile acid released by spermiated males, but lacking the C24 sulphate ester, was tested in bioassays at concentrations between 10−11 and 10−14 molar (M). 3kACA did not induce upstream movement in females or additional reproductive behaviours. In contrast, spermiated male washings induced upstream movement, prolonged retention on a nest and induced an array of nesting behaviours. Differential extraction and elution by solid-phase extraction resins showed that components other than 3kPZS + 3kACA are necessary to retain females on nests and induce nest cleaning behaviours. All pheromone components, including components in addition to 3kPZS + 3kACA that retain females and induce nest cleaning behaviours were released from the anterior region of the males, as had been reported for 3kPZS. It is concluded that the sea lamprey male mating pheromone has multiple functions and is composed of multiple components.

  11. Nectar Attracts Foraging Honey Bees with Components of Their Queen Pheromones.

    PubMed

    Liu, Fanglin; Gao, Jie; Di, Nayan; Adler, Lynn S

    2015-11-01

    Floral nectar often contains chemicals that are deterrent to pollinators, presenting potential challenges to outcrossing plant species. Plants may be able to co-opt pollinator chemical signals to mitigate the negative effects of nectar deterrent compounds on pollination services. We found that buckwheat (Fagopyrum esculentum) and Mexican sunflower (Tithonia diversifolia) produce nectar with abundant phenolics, including three components of the Apis honeybee queen mandibular pheromone (QMP). In addition, these nectars contain a non-pheromonal phenolic, chlorogenic acid (CA), which was toxic to honeybees, and T. diversifolia nectar also contained isochlorogenic acid (IA). Fresh nectar or solutions containing nectar phenolics reduced Apis individual feeding compared to sucrose solutions. However, freely foraging bees preferred solutions with QMP components to control solutions, and QMP components over-rode or reversed avoidance of CA and IA. Furthermore, prior exposure to the presence or just the odor of QMP components removed the deterrent effects of CA and IA. By mimicking the honey bee pheromone blend, nectar may maintain pollinator attraction in spite of deterrent nectar compounds. PMID:26511862

  12. Competition-Based Model of Pheromone Component Ratio Detection in the Moth

    PubMed Central

    Zavada, Andrei; Buckley, Christopher L.; Martinez, Dominique; Rospars, Jean-Pierre; Nowotny, Thomas

    2011-01-01

    For some moth species, especially those closely interrelated and sympatric, recognizing a specific pheromone component concentration ratio is essential for males to successfully locate conspecific females. We propose and determine the properties of a minimalist competition-based feed-forward neuronal model capable of detecting a certain ratio of pheromone components independently of overall concentration. This model represents an elementary recognition unit for the ratio of binary mixtures which we propose is entirely contained in the macroglomerular complex (MGC) of the male moth. A set of such units, along with projection neurons (PNs), can provide the input to higher brain centres. We found that (1) accuracy is mainly achieved by maintaining a certain ratio of connection strengths between olfactory receptor neurons (ORN) and local neurons (LN), much less by properties of the interconnections between the competing LNs proper. An exception to this rule is that it is beneficial if connections between generalist LNs (i.e. excited by either pheromone component) and specialist LNs (i.e. excited by one component only) have the same strength as the reciprocal specialist to generalist connections. (2) successful ratio recognition is achieved using latency-to-first-spike in the LN populations which, in contrast to expectations with a population rate code, leads to a broadening of responses for higher overall concentrations consistent with experimental observations. (3) when longer durations of the competition between LNs were observed it did not lead to higher recognition accuracy. PMID:21373177

  13. Tarsi of Male Heliothine Moths Contain Aldehydes and Butyrate Esters as Potential Pheromone Components.

    PubMed

    Choi, Man-Yeon; Ahn, Seung-Joon; Park, Kye-Chung; Meer, Robert Vander; Cardé, Ring T; Jurenka, Russell

    2016-05-01

    The Noctuidae are one of the most speciose moth families and include the genera Helicoverpa and Heliothis. Females use (Z)-11-hexadecenal as the major component of their sex pheromones except for Helicoverpa assulta and Helicoverpa gelotopoeon, both of which utilize (Z)-9-hexadecenal. The minor compounds found in heliothine sex pheromone glands vary with species, but hexadecanal has been found in the pheromone gland of almost all heliothine females so far investigated. In this study, we found a large amount (0.5-1.5 μg) of hexadecanal and octadecanal on the legs of males of four heliothine species, Helicoverpa zea, Helicoverpa armigera, H. assulta, and Heliothis virescens. The hexadecanal was found on and released from the tarsi, and was in much lower levels or not detected on the remaining parts of the leg (tibia, femur, trochanter, and coxa). Lower amounts (0.05-0.5 μg) of hexadecanal were found on female tarsi. This is the first known sex pheromone compound to be identified from the legs of nocturnal moths. Large amounts of butyrate esters (about 16 μg) also were found on tarsi of males with lower amounts on female tarsi. Males deposited the butyrate esters while walking on a glass surface. Decapitation did not reduce the levels of hexadecanal on the tarsi of H. zea males, indicating that hexadecanal production is not under the same neuroendocrine regulation system as the production of female sex pheromone. Based on electroantennogram studies, female antennae had a relatively high response to hexadecanal compared to male antennae. We consider the possible role of aldehydes and butyrate esters as courtship signals in heliothine moths. PMID:27155602

  14. Identification of volatile sex pheromone components released by the southern armyworm,Spodoptera eridania (Cramer).

    PubMed

    Teal, P E; Mitchell, E R; Tumlinson, J H; Heath, R R; Sugie, H

    1985-06-01

    Analysis of sex pheromone gland extracts and volatile pheromone components collected from the calling female southern armyworm,Spodoptera eridania (Cramer), by high-resolution capillary gas chromatography and mass spectroscopy indicated that a number of 14-carbon mono- and diunsaturated acetates and a monounsaturated 16-carbon acetate were produced. Gland extracts also indicated the presence of (Z)-9-tetradecen-1-ol. However, this compound was not found in collections of volatiles. Field trapping studies indicated that the volatile blend composed of (Z)-9-tetradecen-1-ol acetate (60%), (Z)-9-(E)-12-tetradecadien-1-ol acetate (17%), (Z)-9-(Z)-12-tetradecadien-1-ol acetate (15%), (Z)-9-(E)-11-tetradecadien-1-ol acetate (5%), and (Z)-11-hexadecen-1-ol acetate (3 %) was an effective trap bait for males of this species. The addition of (Z)-9-tetradecen-1-ol to the acetate blends tested resulted in the capture of beet armyworm,S. exigua (Hubner), males which provides further evidence that the alcohol is a pheromone component of this species. PMID:24310218

  15. A tetraene aldehyde as the major sex pheromone component of the promethea moth (Callosamia promethea (Drury)).

    PubMed

    Gago, Rafael; Allison, Jeremy D; McElfresh, J Steven; Haynes, Kenneth F; McKenney, Jessica; Guerrero, Angel; Millar, Jocelyn G

    2013-10-01

    The promethea moth Callosamia promethea is one of three species of silkmoths from the genus Callosamia that occur in North America. Cross attraction of males to heterospecific calling females has been observed in the field, and hybrid progeny have been produced by pairing heterospecifics in captivity. These observations suggest that all three species share or have considerable overlap in the sex attractant pheromones produced by females, so that other prezygotic isolating mechanisms, such as diel differences in reproductive activity, limit hybridization in the field. Coupled gas chromatography-electroantennogram detection and gas chromatography- mass-spectrometry analyses of extracts of volatiles collected from female promethea moths supported the identification of (4E,6E,11Z,13Z)-hexadeca-4,6,11,13-tetraenal [(4E,6E,11Z,13Z)-16:Ald] as the compound in extracts that elicited the largest responses from antennae of males. The identification was confirmed by non-selective synthesis of several isomers as analytical standards, and stereoselective synthesis of (4E,6E,11Z,13Z)-16:Ald for testing in field trials. Male moths were strongly attracted to synthetic (4E,6E,11Z,13Z)-16:Ald, suggesting that this compound is the major and possibly the only component of the sex pheromone of these large saturniid moths. Based on the cross-attraction of heterospecifics, it is likely that this is also a major pheromone component of the other two North American Callosamia species as well. PMID:24091710

  16. An overlooked component: (Z)-9-tetradecenal as a sex pheromone in Helicoverpa armigera.

    PubMed

    Zhang, Jin-Ping; Salcedo, Christian; Fang, Yu-Ling; Zhang, Ruo-Jian; Zhang, Zhong-Ning

    2012-09-01

    The sex pheromone blend of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is a multi-component system, as is that of many other moths, and (Z)-11-hexadecenal 90-99%+(Z)-9-hexadecenal 10-1% was recommended as a standard blend for attracting the species. However, this fails to account for the significance of other compounds that exist in the sex gland. The aim of the present study was to investigate the function of other compounds present in the female sex gland of H. armigera. Extract of female sex glands were analysed by GC-MS combined with GC-EAD. Total 10 compounds were identified, which two novel were reported in female sex gland: heptanal and nonanal, and some previously identified compounds were confirmed. We developed bioassays to evaluate the potential roles of these 10 compounds. In Y-tube bioassays, the gland constituents hexadecanal, (Z)-7-hexadecenal and (Z)-9-tetradecenal increased male attractiveness when added as a three-compound admixture to the standard blend. Field trapping tests showed that (Z)-9-tetradecenal doubled trap catch in comparison with the standard blend, but that the addition of (Z)-7-hexadecenal and hexadecanal did not significantly increase trap catch. These results indicated that while (Z)-7-hexadecenal and hexadecanal function well only at short range, (Z)-9-tetradecenal plays a very important role at both short and long ranges. We suggest that that (Z)-9-tetradecenal as a previously overlooked sex pheromone component of H. armigera, it should be added to sex pheromone lure formulations to improve pheromone trap sensitivity and the efficacy of commercial mating disruption. PMID:22732233

  17. Identification and Behavioral Evaluation of Sex Pheromone Components of the Chinese Pine Caterpillar Moth, Dendrolimus tabulaeformis

    PubMed Central

    Kong, Xiang-Bo; Liu, Kui-Wei; Wang, Hong-Bin; Zhang, Su-Fang; Zhang, Zhen

    2012-01-01

    Background The Chinese pine caterpillar moth, Dendrolimus tabulaeformis Tsai and Liu (Lepidoptera: Lasiocampidae) is the most important defoliator of coniferous trees in northern China. Outbreaks occur over enormous areas and often lead to the death of forests during 2–3 successive years of defoliation. The sex pheromone of D. tabulaeformis was investigated to define its chemistry and behavioral activity. Methodology/Principal Findings Sex pheromone was collected from calling female D. tabulaeformis by headspace solid phase microextraction (SPME) and by solvent extraction of pheromone glands. Extracts were analyzed by coupled gas chromatography/mass spectrometry (GC-MS) and coupled GC-electroantennographic detection (GC-EAD), using antennae from male moths. Five components from the extracts elicited antennal responses. These compounds were identified by a combination of retention indices, electron impact mass spectral matches, and derivatization as (Z)-5-dodecenyl acetate (Z5-12:OAc), (Z)-5-dodecenyl alcohol (Z5-12:OH), (5Z,7E)-5,7-dodecadien-1-yl acetate (Z5,E7-12:OAc), (5Z,7E)-5,7-dodecadien-1-yl propionate (Z5,E7-12:OPr), and (5Z,7E)-5,7-dodecadien-1-ol (Z5,E7-12:OH). Behavioral assays showed that male D. tabulaeformis strongly discriminated against incomplete and aberrant blend ratios. The correct ratio of Z5,E7-12:OAc, Z5,E7-12:OH, and Z5,E7-12:OPr was essential for optimal upwind flight and source contact. The two monoenes, Z5-12:OAc and Z5-12:OH, alone or binary mixtures, had no effect on behavioral responses when added to the optimal three-component blend. Conclusions/Significance The fact that deviations from the optimal ratio of 100∶100∶4.5 of Z5,E7-12:OAc, Z5,EZ7-12:OH, and Z5,E7-12:OPr resulted in marked decreases in male responses suggests that biosynthesis of the pheromone components is precisely controlled. The optimal blend of the sex pheromone components of D. tabulaeformis worked out in this study should find immediate use in monitoring this

  18. The nature of alarm communication in Constrictotermes cyphergaster (Blattodea: Termitoidea: Termitidae): the integration of chemical and vibroacoustic signals.

    PubMed

    Cristaldo, Paulo F; Jandák, Vojtĕch; Kutalová, Kateřina; Rodrigues, Vinícius B; Brothánek, Marek; Jiříček, Ondřej; DeSouza, Og; Šobotník, Jan

    2015-01-01

    Alarm signalling is of paramount importance to communication in all social insects. In termites, vibroacoustic and chemical alarm signalling are bound to operate synergistically but have never been studied simultaneously in a single species. Here, we inspected the functional significance of both communication channels in Constrictotermes cyphergaster (Termitidae: Nasutitermitinae), confirming the hypothesis that these are not exclusive, but rather complementary processes. In natural situations, the alarm predominantly attracts soldiers, which actively search for the source of a disturbance. Laboratory testing revealed that the frontal gland of soldiers produces a rich mixture of terpenoid compounds including an alarm pheromone. Extensive testing led to identification of the alarm pheromone being composed of abundant monoterpene hydrocarbons (1S)-α-pinene and myrcene, along with a minor component, (E)-β-ocimene. The vibratory alarm signalling consists of vibratory movements evidenced as bursts; a series of beats produced predominantly by soldiers. Exposing termite groups to various mixtures containing the alarm pheromone (crushed soldier heads, frontal gland extracts, mixture of all monoterpenes, and the alarm pheromone mixture made of standards) resulted in significantly higher activity in the tested groups and also increased intensity of the vibratory alarm communication, with the responses clearly dose-dependent. Lower doses of the pheromone provoked higher numbers of vibratory signals compared to higher doses. Higher doses induced long-term running of all termites without stops necessary to perform vibratory behaviour. Surprisingly, even crushed worker heads led to low (but significant) increases in the alarm responses, suggesting that other unknown compound in the worker's head is perceived and answered by termites. Our results demonstrate the existence of different alarm levels in termites, with lower levels being communicated through vibratory signals, and

  19. The nature of alarm communication in Constrictotermes cyphergaster (Blattodea: Termitoidea: Termitidae): the integration of chemical and vibroacoustic signals

    PubMed Central

    Cristaldo, Paulo F.; Jandák, Vojtĕch; Kutalová, Kateřina; Rodrigues, Vinícius B.; Brothánek, Marek; Jiříček, Ondřej; DeSouza, Og; Šobotník, Jan

    2015-01-01

    ABSTRACT Alarm signalling is of paramount importance to communication in all social insects. In termites, vibroacoustic and chemical alarm signalling are bound to operate synergistically but have never been studied simultaneously in a single species. Here, we inspected the functional significance of both communication channels in Constrictotermes cyphergaster (Termitidae: Nasutitermitinae), confirming the hypothesis that these are not exclusive, but rather complementary processes. In natural situations, the alarm predominantly attracts soldiers, which actively search for the source of a disturbance. Laboratory testing revealed that the frontal gland of soldiers produces a rich mixture of terpenoid compounds including an alarm pheromone. Extensive testing led to identification of the alarm pheromone being composed of abundant monoterpene hydrocarbons (1S)-α-pinene and myrcene, along with a minor component, (E)-β-ocimene. The vibratory alarm signalling consists of vibratory movements evidenced as bursts; a series of beats produced predominantly by soldiers. Exposing termite groups to various mixtures containing the alarm pheromone (crushed soldier heads, frontal gland extracts, mixture of all monoterpenes, and the alarm pheromone mixture made of standards) resulted in significantly higher activity in the tested groups and also increased intensity of the vibratory alarm communication, with the responses clearly dose-dependent. Lower doses of the pheromone provoked higher numbers of vibratory signals compared to higher doses. Higher doses induced long-term running of all termites without stops necessary to perform vibratory behaviour. Surprisingly, even crushed worker heads led to low (but significant) increases in the alarm responses, suggesting that other unknown compound in the worker's head is perceived and answered by termites. Our results demonstrate the existence of different alarm levels in termites, with lower levels being communicated through vibratory

  20. Trail communication regulated by two trail pheromone components in the fungus-growing termite Odontotermes formosanus (Shiraki).

    PubMed

    Wen, Ping; Ji, Bao-Zhong; Sillam-Dussès, David

    2014-01-01

    The eusocial termites are well accomplished in chemical communication, but how they achieve the communication using trace amount of no more than two pheromone components is mostly unknown. In this study, the foraging process and trail pheromones of the fungus-growing termite Odontotermes formosanus (Shiraki) were systematically studied and monitored in real-time using a combination of techniques, including video analysis, solid-phase microextraction, gas chromatography coupled with either mass spectrometry or an electroantennographic detector, and bioassays. The trail pheromone components in foraging workers were (3Z)-dodec-3-en-1-ol and (3Z,6Z)-dodeca-3,6-dien-1-ol secreted by their sternal glands. Interestingly, ratio of the two components changed according to the behaviors that the termites were displaying. This situation only occurs in termites whereas ratios of pheromone components are fixed and species-specific for other insect cuticular glands. Moreover, in bioassays, the active thresholds of the two components ranged from 1 fg/cm to 10 pg/cm according to the behavioral contexts or the pheromonal exposure of tested workers. The two components did not act in synergy. (3Z)-Dodec-3-en-1-ol induced orientation behavior of termites that explore their environment, whereas (3Z,6Z)-dodeca-3,6-dien-1-ol had both an orientation effect and a recruitment effect when food was discovered. The trail pheromone of O. formosanus was regulated both quantitatively by the increasing number of workers involved in the early phases of foraging process, and qualitatively by the change in ratio of the two pheromone components on sternal glandular cuticle in the food-collecting workers. In bioassays, the responses of workers to the pheromone were also affected by the variation in pheromone concentration and component ratio in the microenvironment. Thus, this termite could exchange more information with nestmates using the traces of the two trail pheromone components that can be easily

  1. Trail Communication Regulated by Two Trail Pheromone Components in the Fungus-Growing Termite Odontotermes formosanus (Shiraki)

    PubMed Central

    Wen, Ping; Ji, Bao-Zhong; Sillam-Dussès, David

    2014-01-01

    The eusocial termites are well accomplished in chemical communication, but how they achieve the communication using trace amount of no more than two pheromone components is mostly unknown. In this study, the foraging process and trail pheromones of the fungus-growing termite Odontotermes formosanus (Shiraki) were systematically studied and monitored in real-time using a combination of techniques, including video analysis, solid-phase microextraction, gas chromatography coupled with either mass spectrometry or an electroantennographic detector, and bioassays. The trail pheromone components in foraging workers were (3Z)-dodec-3-en-1-ol and (3Z,6Z)-dodeca-3,6-dien-1-ol secreted by their sternal glands. Interestingly, ratio of the two components changed according to the behaviors that the termites were displaying. This situation only occurs in termites whereas ratios of pheromone components are fixed and species-specific for other insect cuticular glands. Moreover, in bioassays, the active thresholds of the two components ranged from 1 fg/cm to 10 pg/cm according to the behavioral contexts or the pheromonal exposure of tested workers. The two components did not act in synergy. (3Z)-Dodec-3-en-1-ol induced orientation behavior of termites that explore their environment, whereas (3Z,6Z)-dodeca-3,6-dien-1-ol had both an orientation effect and a recruitment effect when food was discovered. The trail pheromone of O. formosanus was regulated both quantitatively by the increasing number of workers involved in the early phases of foraging process, and qualitatively by the change in ratio of the two pheromone components on sternal glandular cuticle in the food-collecting workers. In bioassays, the responses of workers to the pheromone were also affected by the variation in pheromone concentration and component ratio in the microenvironment. Thus, this termite could exchange more information with nestmates using the traces of the two trail pheromone components that can be easily

  2. Identification of sex pheromone components of blueberry spanworm Itame argillacearia (Lepidoptera: Geometridae).

    PubMed

    De Silva, E C A; Silk, P J; Mayo, P; Hillier, N K; Magee, D; Cutler, G C

    2013-09-01

    Blueberry spanworm, Itame argillacearia (Packard), is an important defoliator of lowbush (syn. 'wild') blueberry, Vaccinium angustifolium Aiton, in north-eastern North America. The goal of the present study was to identify the female I. argillacearia sex pheromone, which could be used in traps for monitoring or mass-trapping this pest. Gas chromatography/mass spectrometry (GC/MS) and electroantennogram (EAG) recordings of sex pheromone gland extracts, in combination with chemical synthesis, a Y-tube olfactometer study and field experiments confirmed (2R,3S)-2-ethyl-3-((Z,Z)-tridecadi-2,5-enyl) oxirane (hereafter (Z,Z)-(3R,4S)-3,4-epoxy-6,9-heptadecadiene) and (Z,Z,Z)-3,6,9-heptadecatriene as female-produced sex pheromone components. (Z,Z)-(3R,4S)-3,4-Epoxy-6,9-heptadecadiene elicited a response from male I. argillacearia antennae during EAG recording, and in the Y-tube olfactometer tests males did not discriminate between a live female and (Z,Z)-(3R,4S)-3,4-epoxy-6,9-heptadecadiene. Field-trapping experiments showed that a blend of (Z,Z)-(3R,4S)-3,4-epoxy-6,9-heptadecadiene and (Z,Z,Z)-3,6,9-heptadecatriene was more attractive to male moths than (Z,Z)-(3R,4S)-3,4-epoxy-6,9-heptadecadiene alone. PMID:23979535

  3. Attractiveness of a Four-component Pheromone Blend to Male Navel Orangeworm Moths

    PubMed Central

    Kanno, Hiroo; Kuenen, L. P. S.; Klingler, Kimberly A.; Millar, Jocelyn G.

    2010-01-01

    The attractiveness to male navel orangeworm moth, Amyelois transitella, of various combinations of a four-component pheromone blend was measured in wind-tunnel bioassays. Upwind flight along the pheromone plume and landing on the odor source required the simultaneous presence of two components, (11Z,13Z)-hexadecadienal and (3Z,6Z,9Z,12Z,15Z)-tricosapentaene, and the addition of either (11Z,13Z)-hexadecadien-1-ol or (11Z,13E)-hexadecadien-1-ol. A mixture of all four components produced the highest levels of rapid source location and source contact. In wind-tunnel assays, males did not seem to distinguish among a wide range of ratios of any of the three components added to (11Z,13Z)-hexadecadienal. Dosages of 10 and 100 ng of the 4-component blend produced higher levels of source location than dosages of 1 and 1,000 ng. Electronic supplementary material The online version of this article (doi:10.1007/s10886-010-9799-x) contains supplementary material, which is available to authorized users. PMID:20473710

  4. Sensillar expression and responses of olfactory receptors reveal different peripheral coding in two Helicoverpa species using the same pheromone components

    PubMed Central

    Chang, Hetan; Guo, Mengbo; Wang, Bing; Liu, Yang; Dong, Shuanglin; Wang, Guirong

    2016-01-01

    Male moths efficiently recognize conspecific sex pheromones thanks to their highly accurate and specific olfactory system. The Heliothis/Helicoverpa species are regarded as good models for studying the perception of sex pheromones. In this study, we performed a series of experiments to investigate the peripheral mechanisms of pheromone coding in two-closely related species, Helicoverpa armigera and H. assulta. The morphology and distribution patterns of sensilla trichoidea are similar between the two species when observed at the scanning electron microscope, but their performances are different. In H. armigera, three functional types of sensilla trichoidea (A, B and C) were found to respond to different pheromone components, while in H. assulta only two types of such sensilla (A and C) could be detected. The response profiles of all types of sensilla trichoidea in the two species well matched the specificities of the pheromone receptors (PRs) expressed in the same sensilla, as measured in voltage-clamp experiments. The expressions of PRs in neighboring olfactory sensory neurons (OSNs) within the same trichoid sensillum were further confirmed by in situ hybridization. Our results show how the same pheromone components can code for different messages at the periphery of two Helicoverpa species. PMID:26744070

  5. A sea lamprey (Petromyzon marinus) sex pheromone mixture increases trap catch relative to a single synthesized component in specific environments

    USGS Publications Warehouse

    Johnson, Nicholas S.; Tix, John A.; Hlina, Benjamin L.; Wagner, C. Michael; Siefkes, Michael J.; Wang, Huiyong; Li, Weiming

    2015-01-01

    Spermiating male sea lamprey (Petromyzon marinus) release a sex pheromone, of which a component, 7α, 12α, 24-trihydoxy-3-one-5α-cholan-24-sulfate (3kPZS), has been identified and shown to induce long distance preference responses in ovulated females. However, other pheromone components exist, and when 3kPZS alone was used to control invasive sea lamprey populations in the Laurentian Great Lakes, trap catch increase was significant, but gains were generally marginal. We hypothesized that free-ranging sea lamprey populations discriminate between a partial and complete pheromone while migrating to spawning grounds and searching for mates at spawning grounds. As a means to test our hypothesis, and to test two possible uses of sex pheromones for sea lamprey control, we asked whether the full sex pheromone mixture released by males (spermiating male washings; SMW) is more effective than 3kPZS in capturing animals in traditional traps (1) en route to spawning grounds and (2) at spawning grounds. At locations where traps target sea lampreys en route to spawning grounds, SMW-baited traps captured significantly more sea lampreys than paired 3kPZS-baited traps (~10 % increase). At spawning grounds, no difference in trap catch was observed between 3kPZS and SMW-baited traps. The lack of an observed difference at spawning grounds may be attributed to increased pheromone competition and possible involvement of other sensory modalities to locate mates. Because fishes often rely on multiple and sometimes redundant sensory modalities for critical life history events, the addition of sex pheromones to traditionally used traps is not likely to work in all circumstances. In the case of the sea lamprey, sex pheromone application may increase catch when applied to specifically designed traps deployed in streams with low adult density and limited spawning habitat.

  6. Beyond sodefrin: evidence for a multi-component pheromone system in the model newt Cynops pyrrhogaster (Salamandridae).

    PubMed

    Van Bocxlaer, Ines; Maex, Margo; Treer, Dag; Janssenswillen, Sunita; Janssens, Rik; Vandebergh, Wim; Proost, Paul; Bossuyt, Franky

    2016-01-01

    Sodefrin, a decapeptide isolated from the male dorsal gland of the Japanese fire belly newt Cynops pyrrhogaster, was the first peptide pheromone identified from a vertebrate. The fire belly salamander and sodefrin have become a model for sex pheromone investigation in aquatically courting salamanders ever since. Subsequent studies in other salamanders identified SPF protein courtship pheromones of around 20 kDa belonging to the same gene-family. Although transcripts of these proteins could be PCR-amplified in Cynops, it is currently unknown whether they effectively use full-length SPF pheromones next to sodefrin. Here we combined transcriptomics, proteomics and phylogenetics to investigate SPF pheromone use in Cynops pyrrhogaster. Our data show that not sodefrin transcripts, but multiple SPF transcripts make up the majority of the expression profile in the dorsal gland of this newt. Proteome analyses of water in which a male has been courting confirm that this protein blend is effectively secreted and tail-fanned to the female. By combining phylogenetics and expression data, we show that independent evolutionary lineages of these SPF's were already expressed in ancestral Cynops species before the origin of sodefrin. Extant Cynops species continue to use this multi-component pheromone system, consisting of various proteins in addition to a lineage-specific peptide. PMID:26935790

  7. Beyond sodefrin: evidence for a multi-component pheromone system in the model newt Cynops pyrrhogaster (Salamandridae)

    PubMed Central

    Van Bocxlaer, Ines; Maex, Margo; Treer, Dag; Janssenswillen, Sunita; Janssens, Rik; Vandebergh, Wim; Proost, Paul; Bossuyt, Franky

    2016-01-01

    Sodefrin, a decapeptide isolated from the male dorsal gland of the Japanese fire belly newt Cynops pyrrhogaster, was the first peptide pheromone identified from a vertebrate. The fire belly salamander and sodefrin have become a model for sex pheromone investigation in aquatically courting salamanders ever since. Subsequent studies in other salamanders identified SPF protein courtship pheromones of around 20 kDa belonging to the same gene-family. Although transcripts of these proteins could be PCR-amplified in Cynops, it is currently unknown whether they effectively use full-length SPF pheromones next to sodefrin. Here we combined transcriptomics, proteomics and phylogenetics to investigate SPF pheromone use in Cynops pyrrhogaster. Our data show that not sodefrin transcripts, but multiple SPF transcripts make up the majority of the expression profile in the dorsal gland of this newt. Proteome analyses of water in which a male has been courting confirm that this protein blend is effectively secreted and tail-fanned to the female. By combining phylogenetics and expression data, we show that independent evolutionary lineages of these SPF’s were already expressed in ancestral Cynops species before the origin of sodefrin. Extant Cynops species continue to use this multi-component pheromone system, consisting of various proteins in addition to a lineage-specific peptide. PMID:26935790

  8. N-3-Methylbutanoyl-O-methylpropanoyl-L-serine Methyl Ester - Pheromone Component of Western Black Widow Females.

    PubMed

    Scott, Catherine; McCann, Sean; Gries, Regine; Khaskin, Grigori; Gries, Gerhard

    2015-05-01

    Chemical communication is common in spiders but few pheromones have been identified. Female widow spiders in the genus Latrodectus spin webs that disseminate an attractive sex pheromone, and a contact pheromone on the silk elicits courtship behavior by males. The methyl ester of N-3-methylbutanoyl-O-(S)-2-methylbutanoyl-L-serine is a contact pheromone of the Australian redback spider Latrodectus hasselti. We hypothesized that the contact pheromone of congeneric L. hesperus resembles that of L. hasselti. The silk of virgin L. hesperus females was extracted with methanol, and analyses by gas chromatography-mass spectrometry (GC/MS) provided evidence for the presence of N-3-methylbutanoyl-O-methylpropanoyl-L-serine methyl ester (MB-MP-S), a lower homologue of the L. hasselti contact pheromone. Behavioral responses of L. hesperus males to test stimuli were assayed on T-shaped rods with the end sections of the horizontal arm enveloped in filter paper. Males spent 40 % longer in contact with paper bearing female silk than with blank paper, and 39 % longer in contact with paper treated with silk extract than with solvent controls. Contact with silk and silk extract induced courtship behavior by 96 % and 80 % of males, respectively, indicating that there was a methanol-soluble courtship-eliciting contact pheromone on the silk. Males responded less strongly to synthetic MB-MP-S than to silk or silk extract. Paper impregnated with synthetic MB-MP-S (10 or 100 μg) induced courtship behavior in 3-16 % of males, and prompted males to stay 10-16 % longer than on control paper. Our data support the conclusion that MB-MP-S is part of a multi-component contact pheromone of L. hesperus. PMID:25940849

  9. A synthesized mating pheromone component increases adult sea lamprey (Petromyzon marinus) trap capture in management scenarios

    USGS Publications Warehouse

    Johnson, Nicholas S.; Siefkes, Michael J.; Wagner, C. Michael; Dawson, Heather; Wang, Huiyong; Steeves, Todd; Twohey, Michael; Li, Weiming

    2013-01-01

    Application of chemical cues to manipulate adult sea lamprey (Petromyzon marinus) behavior is among the options considered for new sea lamprey control techniques in the Laurentian Great Lakes. A male mating pheromone component, 7a,12a,24-trihydroxy-3-one-5a-cholan-24-sulfate (3kPZS), lures ovulated female sea lamprey upstream into baited traps in experimental contexts with no odorant competition. A critical knowledge gap is whether this single pheromone component influences adult sea lamprey behavior in management contexts containing free-ranging sea lampreys. A solution of 3kPZS to reach a final in-stream concentration of 10-12 mol·L-1 was applied to eight Michigan streams at existing sea lamprey traps over 3 years, and catch rates were compared between paired 3kPZS-baited and unbaited traps. 3kPZS-baited traps captured significantly more sexually immature and mature sea lampreys, and overall yearly trapping efficiency within a stream averaged 10% higher during years when 3kPZS was applied. Video analysis of a trap funnel showed that the likelihood of sea lamprey trap entry after trap encounter was higher when the trap was 3kPZS baited. Our approach serves as a model for the development of similar control tools for sea lamprey and other aquatic invaders.

  10. A contact sex pheromone component of the emerald ash borer Agrilus planipennis Fairmaire (Coleoptera: Buprestidae)

    NASA Astrophysics Data System (ADS)

    Silk, Peter J.; Ryall, Krista; Barry Lyons, D.; Sweeney, Jon; Wu, Junping

    2009-05-01

    Analyses of the elytral hydrocarbons from male and female emerald ash borer, Agrilus planipennis Fairmaire, that were freshly emerged vs. sexually mature (>10 days old) revealed a female-specific compound, 9-methyl-pentacosane (9-Me-C25), only present in sexually mature females. This material was synthesized by the Wittig reaction of 2-decanone with ( n-hexadecyl)-triphenylphosphonium bromide followed by catalytic reduction to yield racemic 9-Me C25, which matched the natural compound by gas chromatography/mass spectrometry (retention time and EI mass spectrum). In field bioassays with freeze-killed sexually mature A. planipennis females, feral males spent significantly more time in contact and attempting copulation with unwashed females than with females that had been washed in n-hexane to remove the cuticular lipids. Hexane-washed females to which 9-Me-C25 had been reapplied elicited similar contact time and percentage of time attempting copulation as unwashed females, indicating that 9-methyl-pentacosane is a contact sex pheromone component of A. planipennis. This is the first contact sex pheromone identified in the Buprestidae.

  11. Methyl 6-methylsalicylate: a female-produced pheromone component of the parasitoid wasp Spalangia endius.

    PubMed

    Nichols, William J; Cossé, Allard A; Bartelt, Robert J; King, Bethia H

    2010-10-01

    Sex-pheromone-related behavior and chemistry were studied in the wasp Spalangia endius Walker (Hymenoptera: Pteromalidae), a pupal parasitoid of the house fly, Musca domestica L. (Diptera: Muscidae). Males responded behaviorally to female extracts by arrestment, whereas females did not arrest to male extracts. In a comparison of male and female extracts by gas chromatography-mass spectrometry (GC-MS), two female-specific compounds were found. One was identified as methyl 6-methylsalicylate (gas chromatographic retention time and mass spectrum versus an authentic standard), but the chemical structure of the second compound is still unknown. Male antennae were sensitive to both compounds in electrophysiological tests (GC-EAD). Males responded behaviorally to methyl 6-methylsalicylate by arrestment, but did not arrest to the second compound. Methyl 6-methylsalicylate has been reported previously from some ant and beetle species, but never from the Pteromalidae. Chemical analysis of the extracts and the male behavioral results are consistent with the hypothesis that methyl 6-methylsalicylate functions as a female-emitted pheromone component at short range, but the exact role of both compounds in intersexual interactions in S. endius remains to be determined. PMID:20820889

  12. Specific olfactory neurons and glomeruli are associated to differences in behavioral responses to pheromone components between two Helicoverpa species.

    PubMed

    Wu, Han; Xu, Meng; Hou, Chao; Huang, Ling-Qiao; Dong, Jun-Feng; Wang, Chen-Zhu

    2015-01-01

    Sex pheromone communication of moths helps to understand the mechanisms underlying reproductive isolation and speciation. Helicoverpa armigera and Helicoverpa assulta use (Z)-11-hexadecenal (Z11-16:Ald) and (Z)-9-hexadecenal (Z9-16:Ald) as pheromone components in reversed ratios, 97:3 and 5:95, respectively. H. armigera also produces trace amount of (Z)-9-tetradecenal (Z9-14:Ald) in the sex pheromone gland, but H. assulta does not. Wind tunnel studies revealed that the addition of small amounts (0.3%) of Z9-14:Ald to the main pheromone blend of H. armigera increased the males' attraction, but at higher doses (1%, 10%) the same compound acted as an inhibitor. In H. assulta, Z9-14:Ald reduced male attraction when presented as 1% to the pheromone blend, but was ineffective at lower concentrations (0.3%). Three types (A-C) of sensilla trichodea in antennae were identified by single sensillum recording, responding to Z11-16:Ald, Z9-14:Ald, and both Z9-16:Ald and Z9-14:Ald, respectively. Calcium imaging in the antennal lobes (ALs) revealed that the input information of the three chemicals was transmitted to three units of the macroglomerular complex (MGC) in ALs in both species: a large glomerulus for the major pheromone components, a small one for the minor pheromone components, and a third one for the behavioral antagonists. The type A and C neurons tuned to Z11-16:Ald and Z9-16:Ald had a reversed target in the MGC between the two species. In H. armigera, low doses (1, 10 μg) of Z9-14:Ald dominantly activated the glomerulus which processes the minor pheromone component, while a higher dose (100 μg) also evoked an equal activity in the antagonistic glomerulus. In H. assulta, instead, Z9-14:Ald always strongly activated the antagonistic glomerulus. These results suggest that Z9-14:Ald plays different roles in the sexual communication of two Helicoverpa species through activation of functionally different olfactory pathways. PMID:26300751

  13. Specific olfactory neurons and glomeruli are associated to differences in behavioral responses to pheromone components between two Helicoverpa species

    PubMed Central

    Wu, Han; Xu, Meng; Hou, Chao; Huang, Ling-Qiao; Dong, Jun-Feng; Wang, Chen-Zhu

    2015-01-01

    Sex pheromone communication of moths helps to understand the mechanisms underlying reproductive isolation and speciation. Helicoverpa armigera and Helicoverpa assulta use (Z)-11-hexadecenal (Z11-16:Ald) and (Z)-9-hexadecenal (Z9-16:Ald) as pheromone components in reversed ratios, 97:3 and 5:95, respectively. H. armigera also produces trace amount of (Z)-9-tetradecenal (Z9-14:Ald) in the sex pheromone gland, but H. assulta does not. Wind tunnel studies revealed that the addition of small amounts (0.3%) of Z9-14:Ald to the main pheromone blend of H. armigera increased the males' attraction, but at higher doses (1%, 10%) the same compound acted as an inhibitor. In H. assulta, Z9-14:Ald reduced male attraction when presented as 1% to the pheromone blend, but was ineffective at lower concentrations (0.3%). Three types (A–C) of sensilla trichodea in antennae were identified by single sensillum recording, responding to Z11-16:Ald, Z9-14:Ald, and both Z9-16:Ald and Z9-14:Ald, respectively. Calcium imaging in the antennal lobes (ALs) revealed that the input information of the three chemicals was transmitted to three units of the macroglomerular complex (MGC) in ALs in both species: a large glomerulus for the major pheromone components, a small one for the minor pheromone components, and a third one for the behavioral antagonists. The type A and C neurons tuned to Z11-16:Ald and Z9-16:Ald had a reversed target in the MGC between the two species. In H. armigera, low doses (1, 10 μg) of Z9-14:Ald dominantly activated the glomerulus which processes the minor pheromone component, while a higher dose (100 μg) also evoked an equal activity in the antagonistic glomerulus. In H. assulta, instead, Z9-14:Ald always strongly activated the antagonistic glomerulus. These results suggest that Z9-14:Ald plays different roles in the sexual communication of two Helicoverpa species through activation of functionally different olfactory pathways. PMID:26300751

  14. Use of an alarm pheromone against ants for gaining access to aphid/scale prey by the red velvet mite Balaustium sp. (Erythraeidae) in a honeydew-rich environment.

    PubMed

    Yoder, Jay A; Condon, Michael R; Hart, Chloé E; Collier, Matthew H; Patrick, Kevin R; Benoit, Joshua B

    2010-02-01

    This study shows that honeydew prompts arrestment and reduced activity, but not attraction, by the mite Balaustium sp. nr. putmani. When presented with short-range, two-choice bioassays, mites ceased their characteristic rapid crawling activity when they encountered honeydew-treated surfaces, resulting in them clustering around the honeydew. Approximately 80% of mites were retained by honeydew, with responses being independent of both mite life-history stage and source of honeydew (coccid scale insect or aphid). No obvious crawling movements or redirection of running path were made to the honeydew by the mites, implying the lack of any kind of attractant. Response of mites to single-sugar presentations of the main honeydew components--glucose, sucrose, fructose and trehalose--(0.001-0.1 mmol l(-1)) were inconsistent and failed to reproduce the arrestment/clustering associated with raw honeydew, suggesting that none of these sugars is an active arrestant ingredient. Formation of feeding clusters on honeydew does not contribute to enhancing water conservation by suppressing net transpiration (water loss) rates of individual mites as group size increases, indicating that the clustering is an artifact of arrestment. We hypothesize that release of neryl formate by the mites reduces negative interactions with the local ant species commonly associated with honeydew. We hypothesize that honeydew serves as: (1) a cue that facilitates discovery of scale/aphid prey; (2) a retainer on plants where these prey are present, signaling abundance and quality; and (3) an alternative and supplemental food source like that noted for other plant-inhabiting predatory mites. Neryl formate serves as an alarm pheromone and foul-tasting allomonal defense secretion that prevents predation of mites by ants that co-exist with aphid/scale insects in these honeydew-rich habitats. PMID:20086122

  15. cis-Vaccenyl acetate, a female-produced sex pheromone component of Ortholeptura valida, a longhorned beetle in the subfamily Lepturinae.

    PubMed

    Ray, Ann M; Zunič, Alenka; Alten, Ronald L; McElfresh, J Steven; Hanks, Lawrence M; Millar, Jocelyn G

    2011-02-01

    We report the identification, synthesis, and field bioassays of a female-produced sex attractant pheromone component of the cerambycid beetle Ortholeptura valida (LeConte). Headspace volatiles from females contained a female-specific compound, (Z)-11-octadecen-1-yl acetate, which elicited a strong response from antennae of adult males in coupled gas chromatography-electroantennogram analyses. In field bioassays, significant numbers of males were collected by traps baited with this compound. The pheromone represents a new structural class of cerambycid pheromones, and is the first pheromone identified for a cerambycid species in the subfamily Lepturinae. PMID:21274597

  16. Sex pheromone component ratios and mating isolation among three Lygus plant bug species of North America

    NASA Astrophysics Data System (ADS)

    Byers, John A.; Fefer, Daniela; Levi-Zada, Anat

    2013-12-01

    The plant bugs Lygus hesperus, Lygus lineolaris, and Lygus elisus (Hemiptera: Miridae) are major pests of many agricultural crops in North America. Previous studies suggested that females release a sex pheromone attractive to males. Other studies showed that males and females contain microgram amounts of ( E)-4-oxo-2-hexenal, hexyl butyrate, and ( E)-2-hexenyl butyrate that are emitted as a defense against predators. Using gas chromatography-mass spectrometry, we found that female L. lineolaris and L. elisus have a 4:10 ratio of hexyl butyrate to ( E)-2-hexenyl butyrate that is reversed from the 10:1 ratio in female L. hesperus (males of the three species have ~10:1 ratio). These reversed ratios among females of the species suggest a behavioral role. Because both sexes have nearly equal amounts of the major volatiles, females should release more to attract males. This expectation was supported because L. hesperus females released more hexyl butyrate (mean of 86 ng/h) during the night (1800-0700 hours) than did males (<1 ng/h). We used slow-rotating pairs of traps to test the attraction of species to blends of the volatiles with a subtractive method to detect synergism. Each species' major butyrate ester was released at 3 μg/h, the minor butyrate according to its ratio, and ( E)-4-oxo-2-hexenal at 2 μg/h. The resulting catches of only Lygus males suggest that ( E)-4-oxo-2-hexenal is an essential sex pheromone component for all three species, ( E)-2-hexenyl butyrate is essential for L. elisus and L. lineolaris, and hexyl butyrate is essential for L. hesperus. However, all three components are recognized by each species since ratios of the butyrate esters are critical for conspecific attraction and heterospecific avoidance by males and thus play a role in reproductive isolation among the three species. Because L. hesperus males and females are known to emit these major volatiles for repelling ant predators, our study links defensive allomones in Lygus bugs with an

  17. Sex pheromone component ratios and mating isolation among three Lygus plant bug species of North America.

    PubMed

    Byers, John A; Fefer, Daniela; Levi-Zada, Anat

    2013-12-01

    The plant bugs Lygus hesperus, Lygus lineolaris, and Lygus elisus (Hemiptera: Miridae) are major pests of many agricultural crops in North America. Previous studies suggested that females release a sex pheromone attractive to males. Other studies showed that males and females contain microgram amounts of (E)-4-oxo-2-hexenal, hexyl butyrate, and (E)-2-hexenyl butyrate that are emitted as a defense against predators. Using gas chromatography-mass spectrometry, we found that female L. lineolaris and L. elisus have a 4:10 ratio of hexyl butyrate to (E)-2-hexenyl butyrate that is reversed from the 10:1 ratio in female L. hesperus (males of the three species have ~10:1 ratio). These reversed ratios among females of the species suggest a behavioral role. Because both sexes have nearly equal amounts of the major volatiles, females should release more to attract males. This expectation was supported because L. hesperus females released more hexyl butyrate (mean of 86 ng/h) during the night (1800-0700 hours) than did males (<1 ng/h). We used slow-rotating pairs of traps to test the attraction of species to blends of the volatiles with a subtractive method to detect synergism. Each species' major butyrate ester was released at 3 μg/h, the minor butyrate according to its ratio, and (E)-4-oxo-2-hexenal at 2 μg/h. The resulting catches of only Lygus males suggest that (E)-4-oxo-2-hexenal is an essential sex pheromone component for all three species, (E)-2-hexenyl butyrate is essential for L. elisus and L. lineolaris, and hexyl butyrate is essential for L. hesperus. However, all three components are recognized by each species since ratios of the butyrate esters are critical for conspecific attraction and heterospecific avoidance by males and thus play a role in reproductive isolation among the three species. Because L. hesperus males and females are known to emit these major volatiles for repelling ant predators, our study links defensive allomones in Lygus bugs with an

  18. Revisiting the Male-Produced Aggregation Pheromone of the Lesser Mealworm, Alphitobius diaperinus (Coleoptera, Tenebrionidae): Identification of a Six-Component Pheromone from a Brazilian Population.

    PubMed

    Hassemer, Marla J; Sant'Ana, Josué; Borges, Miguel; Withall, David; Pickett, John A; de Oliveira, Márcio W M; Laumann, Raul A; Birkett, Michael A; Blassioli-Moraes, Maria C

    2016-09-14

    The lesser mealworm, Alphitobius diaperinus Panzer 1797 (Coleoptera: Tenebrionidae), is a cosmopolitan insect pest affecting poultry production. Due to its cryptic behavior, insecticide control is usually not efficient. Thus, sustainable and effective methods would have an enormous and positive impact in poultry production. The aim of this study was to confirm the identity of the male-produced aggregation pheromone for a Brazilian population of A. diaperinus and to evaluate its biological activity in behavioral assays. Six male-specific compounds were identified: (R)-limonene (1), (E)-ocimene (2), 2-nonanone (3), (S)-linalool (4), (R)-daucene (5), all described before in an American population, and a sixth component, (E,E)-α-farnesene (6), which is apparently exclusive to a Brazilian population. Y-Tube bioassays confirmed the presence of a male-produced aggregation pheromone and showed that all components need to be present in a similar ratio and concentration as emitted by male A. diaperinus to produce a positive chemotactic response. PMID:27494353

  19. Attraction modulated by spacing of pheromone components and anti-attractants in a bark beetle and a moth.

    PubMed

    Andersson, Martin N; Binyameen, Muhammad; Sadek, Medhat M; Schlyter, Fredrik

    2011-08-01

    Orientation for insects in olfactory landscapes with high semiochemical diversity may be a challenging task. The partitioning of odor plumes into filaments that are interspersed with pockets of 'clean air' may help filament discrimination and upwind flight to attractive sources in the face of inhibitory signals. We studied the effect of distance between odor sources on trap catches of the beetle, Ips typographus, and the moth, Spodoptera littoralis. Insects were tested both to spatially separated pheromone components [cis-verbenol and 2-methyl-3-buten-2-ol for Ips; (Z,E)-9,11-tetradecadienyl acetate and (Z,E)-9,12-tetradecadienyl acetate for Spodoptera], and to separated pheromone and anti-attractant sources [non-host volatile (NHV) blend for Ips; (Z)-9-tetradecenyl acetate for Spodoptera]. Trap catch data were complemented with simulations of plume structure and plume overlap from two separated sources using a photo ionization detector and soap bubble generators. Trap catches of the beetle and the moth were both affected when odor sources in the respective traps were increasingly separated. However, this effect on trap catch occurred at smaller (roughly by an order of magnitude) odor source separation distances for the moth than for the beetle. This may reflect differences between the respective olfactory systems and central processing. For both species, the changes in trap catches in response to separation of pheromone components occurred at similar spacing distances as for separation of pheromone and anti-attractant sources. Overlap between two simulated plumes depended on distance between the two sources. In addition, the number of detected filaments and their concentration decreased with downwind distance. This implies that the response to separated odor sources in the two species might take place under different olfactory conditions. Deploying multiple sources of anti-attractant around a pheromone trap indicated long-distance (meter scale) effects of NHV on

  20. Components of female sex pheromone of cocoa pod borer moth,Conopomorpha cramerella.

    PubMed

    Beevor, P S; Cork, A; Hall, D R; Nesbitt, B F; Day, R K; Mumford, J D

    1986-01-01

    The cocoa pod borer,Conopomorpha cramerella (Snellen) (Lepidoptera: Gracillariidae), is the most serious pest of cocoa in Southeast Asia. Analyses of ovipositor washings and entrained volatiles from virgin female moths by gas chromatography (GC) linked to electroantennography (EAG), and comparison of EAG responses from the male moth to synthetic compounds indicated the presence of theE,Z,Z andE,E,Z isomers of 4,6,10-hexadecatrienyl acetate and the corresponding alcohols, and of hexadecyl alcohol. Amounts of pheromone produced were less than 0.1 ng/female, and no peaks for the unsaturated components were observed on GC analysis. Extensive field testing of synthetic mixtures in Sabah, East Malaysia, showed that traps baited with a polyethylene vial impregnated with 1.2 mg of a mixture of the above five components in 40∶60∶4∶6∶10 ratio caught more maleC. cramerella moths than traps baited with a virgin female moth. PMID:24306393

  1. Isolation of a Female-Emitted Sex Pheromone Component of the Fungus Gnat, Lycoriella ingenua, Attractive to Males.

    PubMed

    Andreadis, Stefanos S; Cloonan, Kevin R; Myrick, Andrew J; Chen, Haibin; Baker, Thomas C

    2015-12-01

    Lycoriella ingenua Dufour (Diptera: Sciaridae) is acknowledged as the major pest species of the white button mushroom, Agaricus bisporus, throughout the world. Components of the female-produced sex pheromone of this species were identified previously as C15-C18 n-alkanes, with the major component n-heptadecane, and shown to be attractive to L. mali. However, a subsequent report could not repeat this work. We reinvestigated the sex pheromone of this species by confirming that virgin females were attractive to males in a Y-tube bioassay and by collection of extracts from virgin females. Extracts were analyzed by gas chromatography coupled to electroantennographic detection, and by the less widely-used technique of gas chromatography coupled to a behavioral bioassay to detect compounds causing wing-fanning and copulatory abdomen curling in males. A single, behaviorally-active pheromone component was isolated and characterized by gas chromatography coupled to mass spectrometry. This component was definitively not n-heptadecane or any of the other C15-C19 n-alkanes reported previously, but is proposed to be a sesquiterpene alcohol having analytical characteristics that closely matched those of reference germacradienols. PMID:26585193

  2. Synthesis of sex pheromone components of the forest tent caterpillar,Malacosoma disstria (Hübner) and of the western tent caterpillar,Malacosoma californicum (Packard).

    PubMed

    Chisholm, M D; Steck, W F; Bailey, B K; Underbill, E W

    1981-01-01

    All four geometrical isomers of 5,7-dodecadien-1-ol have been stereoselectively synthesized by using Wittig condensation reactions. (5 Z,7E)-5,7-Dodecadien-1-ol and its corresponding aldehyde are components of the sex pheromone of the forest tent caterpillar. (5 E,7 Z)-5,7-Dodecadienal is a component of the pheromone of the western tent caterpillar. These compounds have been successfully tested in the field. PMID:24420435

  3. Evidence that (+)-endo-brevicomin is a male-produced component of the Southern pine beetle aggregation pheromone.

    PubMed

    Sullivan, Brian T; Shepherd, William P; Pureswaran, Deepa S; Tashiro, Takuya; Mori, Kenji

    2007-08-01

    Previous research indicated that the aggregation pheromone of the southern pine beetle, Dendroctonus frontalis, is produced only by females, the sex that initiates attacks. We provide evidence indicating that secondarily arriving males augment mass aggregation by releasing the attractive synergist (+)-endo-brevicomin. Healthy pines artificially infested with both sexes of D. frontalis were significantly more attractive to conspecifics than trees infested solely with females. Coupled gas chromatography-electroantennographic detection (GC-EAD) analyses of volatiles isolated from male beetles revealed substantially greater olfactory sensitivity by D. frontalis to endo-brevicomin than to any other component. The threshold of detection of both sexes for (+)-endo-brevicomin was four orders of magnitude lower than for its antipode and at least one order of magnitude lower than for either enantiomer of frontalin, the major female-produced aggregation pheromone component. Pairing with a female in a gallery stimulated individual male beetles to produce hundreds of nanograms of (+)-endo-brevicomin. (+)-endo-Brevicomin was detected in a small percentage of female D. frontalis, whereas (-)-endo-brevicomin was never detected in either sex. In field trapping bioassays, we confirmed that (+)-endo-brevicomin is a potent synergist for attractive combinations of frontalin and pine turpentine. However, (+)-endo-brevicomin failed to attract D. frontalis either when presented alone or in combination with turpentine. We postulate that mass colonization of host trees by D. frontalis is mediated by distinct semiochemicals from both sexes rather than females alone. Our discovery of a key aggregation pheromone component in such an apparently well-studied species implies that the pheromone models of other bark beetles could benefit from systematic reexamination using newer technologies. Additionally, baits fortified with (+)-endo-brevicomin may enhance pest management strategies that exploit

  4. Pheromone communication and the mushroom body of the ant, Camponotus obscuripes (Hymenoptera: Formicidae)

    NASA Astrophysics Data System (ADS)

    Yamagata, Nobuhiro; Fujiwara-Tsujii, Nao; Yamaoka, Ryohei; Mizunami, Makoto

    2005-11-01

    Communication by means of pheromones plays predominant roles in colony integration by social insects. However, almost nothing is known about pheromone processing in the brains of social insects. In this study, we successfully applied intracellular recording and staining techniques to anatomically and physiologically characterize brain neurons of the ant Camponotus obscuripes. We identified 42 protocerebral neurons that responded to undecane and/or formic acid, components of alarm pheromones that evoke attraction or evasive behavior, respectively. Notably, 30 (71%) of these neurons were efferent (output) or feedback neurons of the mushroom body, and many of these exhibited different responses to formic acid and undecane. Eight of the remaining 12 neurons had arborizations in the lateral and/or medial protocerebrum, which receive terminations of efferent neurons of the mushroom body and from which premotor descending neurons originate. The remaining four neurons were bilateral neurons that connect lateral accessory lobes or dorsal protocerebrums of both hemispheres. We suggest that the mushroom body of the ant participates in the processing of alarm pheromones. Seventeen (40%) of 42 neurons exhibited responses to nonpheromonal odors, indicating that the pheromonal and nonpheromonal signals are not fully segregated when they are processed in the protocerebrum. This may be related to modulatory functions of alarm pheromones, i.e., they change alertness of the ant and change responses to a variety of sensory stimuli.

  5. Pheromone communication and the mushroom body of the ant, Camponotus obscuripes (Hymenoptera: Formicidae).

    PubMed

    Yamagata, Nobuhiro; Fujiwara-Tsujii, Nao; Yamaoka, Ryohei; Mizunami, Makoto

    2005-11-01

    Communication by means of pheromones plays predominant roles in colony integration by social insects. However, almost nothing is known about pheromone processing in the brains of social insects. In this study, we successfully applied intracellular recording and staining techniques to anatomically and physiologically characterize brain neurons of the ant Camponotus obscuripes. We identified 42 protocerebral neurons that responded to undecane and/or formic acid, components of alarm pheromones that evoke attraction or evasive behavior, respectively. Notably, 30 (71%) of these neurons were efferent (output) or feedback neurons of the mushroom body, and many of these exhibited different responses to formic acid and undecane. Eight of the remaining 12 neurons had arborizations in the lateral and/or medial protocerebrum, which receive terminations of efferent neurons of the mushroom body and from which premotor descending neurons originate. The remaining four neurons were bilateral neurons that connect lateral accessory lobes or dorsal protocerebrums of both hemispheres. We suggest that the mushroom body of the ant participates in the processing of alarm pheromones. Seventeen (40%) of 42 neurons exhibited responses to nonpheromonal odors, indicating that the pheromonal and nonpheromonal signals are not fully segregated when they are processed in the protocerebrum. This may be related to modulatory functions of alarm pheromones, i.e., they change alertness of the ant and change responses to a variety of sensory stimuli. PMID:16184392

  6. Pellet Formulations of Sex Pheromone Components for Mating Disruption of Oriental Beetle (Coleoptera: Scarabaeidae) in Turfgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A previous study showed that sprayable sex pheromone formulations for mating disruption to control the oriental beetle, Anomala orientalis Waterhouse, had limited persistence and contaminated shoes worn in the treated areas. Contamination of shoes created a nuisance by attracting male beetles when ...

  7. Odour-evoked responses to queen pheromone components and to plant odours using optical imaging in the antennal lobe of the honey bee drone Apis mellifera L.

    PubMed

    Sandoz, Jean-Christophe

    2006-09-01

    The primordial functional role of honey bee males (drones) is to mate with virgin queens, a behaviour relying heavily on the olfactory detection of queen pheromone. In the present work I studied olfactory processing in the drone antennal lobe (AL), the primary olfactory centre of the insect brain. In drones, the AL consists of about 103 ordinary glomeruli and four enlarged glomeruli, the macroglomeruli (MG). Two macroglomeruli (MG1 and MG2) and approximately 20 ordinary glomeruli occupy the anterior surface of the antennal lobe and are thus accessible to optical recordings. Calcium imaging was used to measure odour-evoked responses to queen pheromonal components and plant odours. MG2 responded specifically to the main component of the queen mandibular pheromone, 9-ODA. The secondary components HOB and HVA each triggered activity in one, but not the same, ordinary glomerulus. MG1 did not respond to any of the tested stimuli. Plant odours induced signals only in ordinary glomeruli in a combinatorial manner, as in workers. This study thus shows that the major queen pheromonal component is processed in the most voluminous macroglomerulus of the drone antennal lobe, and that plant odours, as well as some queen pheromonal components, are processed in ordinary glomeruli. PMID:16943499

  8. Pheromone Signalling

    ERIC Educational Resources Information Center

    Hart, Adam G.

    2011-01-01

    Pheromones are chemicals used to communicate with members of the same species. First described in insects, pheromones are often used to attract mates but in social insects, such as ants and bees, pheromone use is much more sophisticated. For example, ants use pheromones to make foraging trails and the chemical and physical properties of the…

  9. A female-emitted pheromone component is associated with reduced male courtship in the parasitoid wasp Spalangia endius.

    PubMed

    Mowles, Sophie L; King, Bethia H; Linforth, Robert S T; Hardy, Ian C W

    2013-01-01

    During courtship interactions, the courted individual may not always be prepared to mate. For example, mating or courtship may be detrimental to its fitness and resistance is expected under these circumstances. As such, various resistance strategies have evolved, from physically fending off courting individuals to producing behavioural signals of unreceptivity. In the parasitoid wasp Spalangia endius, females rarely re-mate and mated females are avoided by males in favour of virgin females. Further, mated females appear to advertise their mating status by the release of a pheromone component (methyl 6-methylsalicylate), but direct evidence of the nature of this release is lacking. Here we used real-time chemical analysis to track the emission of the pheromone component during courtship interactions between virgin males and either virgin or mated females. We found that females actively release methyl 6-methylsalicylate when courted and that significantly greater concentrations are released by previously mated females. Further, high concentrations of this component are associated with both the prevention and termination of courtship. PMID:24278468

  10. The female sex pheromone of sugarcane stalk borer,Chilo auricilius identification of four components and field tests.

    PubMed

    Nesbitt, B F; Beevor, P S; Cork, A; Hall, D R; David, H; Nandagopal, V

    1986-06-01

    Four pheromonal components have been detected in ovipositor washings and volatiles from female sugarcane stalk borers,Chilo auricilius Dudgeon (Lepidoptera: Pyralidae), using combined gas chromatography-electroantennography. The components have been identified as (I) (Z)-7-do-decenyl acetate, (II) (Z)-8-tridecenyl acetate, (III) (Z)-9-tetradecenyl acetate, and (IV) (Z)-10-pentadecenyl acetate by comparison of their gas chromatographic behavior with that of synthetic standards. In field tests carried out in northern India during 1982-1984, a combination of II, III, and IV in their naturally occurring ratio (8∶4∶1) was shown to provide a highly attractive synthetic source for trap use. (Z)-7-Dodecenyl acetate was found to reduce catches of maleC. auricilius, both when dispensed with the other three components and when released from dispensers surrounding a trap baited with the other three components. PMID:24307117

  11. Extracting the Behaviorally Relevant Stimulus: Unique Neural Representation of Farnesol, a Component of the Recruitment Pheromone of Bombus terrestris.

    PubMed

    Strube-Bloss, Martin F; Brown, Austin; Spaethe, Johannes; Schmitt, Thomas; Rössler, Wolfgang

    2015-01-01

    To trigger innate behavior, sensory neural networks are pre-tuned to extract biologically relevant stimuli. Many male-female or insect-plant interactions depend on this phenomenon. Especially communication among individuals within social groups depends on innate behaviors. One example is the efficient recruitment of nest mates by successful bumblebee foragers. Returning foragers release a recruitment pheromone in the nest while they perform a 'dance' behavior to activate unemployed nest mates. A major component of this pheromone is the sesquiterpenoid farnesol. How farnesol is processed and perceived by the olfactory system, has not yet been identified. It is much likely that processing farnesol involves an innate mechanism for the extraction of relevant information to trigger a fast and reliable behavioral response. To test this hypothesis, we used population response analyses of 100 antennal lobe (AL) neurons recorded in alive bumblebee workers under repeated stimulation with four behaviorally different, but chemically related odorants (geraniol, citronellol, citronellal and farnesol). The analysis identified a unique neural representation of the recruitment pheromone component compared to the other odorants that are predominantly emitted by flowers. The farnesol induced population activity in the AL allowed a reliable separation of farnesol from all other chemically related odor stimuli we tested. We conclude that the farnesol induced population activity may reflect a predetermined representation within the AL-neural network allowing efficient and fast extraction of a behaviorally relevant stimulus. Furthermore, the results show that population response analyses of multiple single AL-units may provide a powerful tool to identify distinct representations of behaviorally relevant odors. PMID:26340263

  12. A Multi-Component Pheromone in the Urine of Dominant Male Tilapia (Oreochromis mossambicus) Reduces Aggression in Rivals.

    PubMed

    Keller-Costa, Tina; Saraiva, João L; Hubbard, Peter C; Barata, Eduardo N; Canário, Adelino V M

    2016-02-01

    Males often use scent to communicate their dominance, and to mediate aggressive and breeding behaviors. In teleost fish, however, the chemical composition of male pheromones is poorly understood. Male Mozambique tilapia, Oreochromis mossambicus, use urine that signals social status and primes females to spawn. The urinary sex pheromone directed at females consists of 5β-pregnane-3α,17α,20β-triol 3-glucuronate and its 20α-epimer. The concentration of these is positively correlated with male social rank. This study tested whether dominant male urine reduces aggression in receiver males, and whether the pregnanetriol 3-glucuronates also reduce male-male aggression. Males were allowed to fight their mirror image when exposed to either: i) water control or a chemical stimulus; ii) dominant male urine (DMU); iii) C18-solid phase (C18-SPE) DMU eluate; iv) C18-SPE DMU eluate plus filtrate; v) the two pregnanetriol 3-glucuronates (P3Gs); or vi) P3Gs plus DMU filtrate. Control males mounted an increasingly aggressive fight against their image over time. However, DMU significantly reduced this aggressive response. The two urinary P3Gs did not replicate the effect of whole DMU. Neither did the C18-SPE DMU eluate, containing the P3Gs, alone, nor the C18-SPE DMU filtrate to which the two P3Gs were added. Only exposure to reconstituted DMU (C18-SPE eluate plus filtrate) restored the aggression-reducing effect of whole DMU. Olfactory activity was present in the eluate and the polar filtrate in electro-olfactogram studies. We conclude that P3Gs alone have no reducing effect on aggression and that the urinary signal driving off male competition is likely to be a multi-component pheromone, with components present in both the polar and non-polar urine fractions. PMID:26846373

  13. Extracting the Behaviorally Relevant Stimulus: Unique Neural Representation of Farnesol, a Component of the Recruitment Pheromone of Bombus terrestris

    PubMed Central

    Strube-Bloss, Martin F.; Brown, Austin; Spaethe, Johannes; Schmitt, Thomas; Rössler, Wolfgang

    2015-01-01

    To trigger innate behavior, sensory neural networks are pre-tuned to extract biologically relevant stimuli. Many male-female or insect-plant interactions depend on this phenomenon. Especially communication among individuals within social groups depends on innate behaviors. One example is the efficient recruitment of nest mates by successful bumblebee foragers. Returning foragers release a recruitment pheromone in the nest while they perform a ‘dance’ behavior to activate unemployed nest mates. A major component of this pheromone is the sesquiterpenoid farnesol. How farnesol is processed and perceived by the olfactory system, has not yet been identified. It is much likely that processing farnesol involves an innate mechanism for the extraction of relevant information to trigger a fast and reliable behavioral response. To test this hypothesis, we used population response analyses of 100 antennal lobe (AL) neurons recorded in alive bumblebee workers under repeated stimulation with four behaviorally different, but chemically related odorants (geraniol, citronellol, citronellal and farnesol). The analysis identified a unique neural representation of the recruitment pheromone component compared to the other odorants that are predominantly emitted by flowers. The farnesol induced population activity in the AL allowed a reliable separation of farnesol from all other chemically related odor stimuli we tested. We conclude that the farnesol induced population activity may reflect a predetermined representation within the AL-neural network allowing efficient and fast extraction of a behaviorally relevant stimulus. Furthermore, the results show that population response analyses of multiple single AL-units may provide a powerful tool to identify distinct representations of behaviorally relevant odors. PMID:26340263

  14. Pheromone production in bark beetles.

    PubMed

    Blomquist, Gary J; Figueroa-Teran, Rubi; Aw, Mory; Song, Minmin; Gorzalski, Andrew; Abbott, Nicole L; Chang, Eric; Tittiger, Claus

    2010-10-01

    The first aggregation pheromone components from bark beetles were identified in 1966 as a mixture of ipsdienol, ipsenol and verbenol. Since then, a number of additional components have been identified as both aggregation and anti-aggregation pheromones, with many of them being monoterpenoids or derived from monoterpenoids. The structural similarity between the major pheromone components of bark beetles and the monoterpenes found in the host trees, along with the association of monoterpenoid production with plant tissue, led to the paradigm that most if not all bark beetle pheromone components were derived from host tree precursors, often with a simple hydroxylation producing the pheromone. In the 1990 s there was a paradigm shift as evidence for de novo biosynthesis of pheromone components began to accumulate, and it is now recognized that most bark beetle monoterpenoid aggregation pheromone components are biosynthesized de novo. The bark beetle aggregation pheromones are released from the frass, which is consistent with the isoprenoid aggregation pheromones, including ipsdienol, ipsenol and frontalin, being produced in midgut tissue. It appears that exo-brevocomin is produced de novo in fat body tissue, and that verbenol, verbenone and verbenene are produced from dietary α-pinene in fat body tissue. Combined biochemical, molecular and functional genomics studies in Ips pini yielded the discovery and characterization of the enzymes that convert mevalonate pathway intermediates to pheromone components, including a novel bifunctional geranyl diphosphate synthase/myrcene synthase, a cytochrome P450 that hydroxylates myrcene to ipsdienol, and an oxidoreductase that interconverts ipsdienol and ipsdienone to achieve the appropriate stereochemistry of ipsdienol for pheromonal activity. Furthermore, the regulation of these genes and their corresponding enzymes proved complex and diverse in different species. Mevalonate pathway genes in pheromone producing male I. pini

  15. Details of the structure determination of the sulfated steroids PSDS and PADS: new components of the sea lamprey (petromyzon marinus) migratory pheromone.

    PubMed

    Hoye, Thomas R; Dvornikovs, Vadims; Fine, Jared M; Anderson, Kari R; Jeffrey, Christopher S; Muddiman, David C; Shao, Feng; Sorensen, Peter W; Wang, Jizhou

    2007-09-28

    The discovery of two new components of the migratory pheromone used by sea lamprey to guide adults to spawning grounds was recently reported. These hold promise for use in a pheromone-based control program for this species, an invasive pest in the Great Lakes. Details of the structure determination of these steroidal bis-sulfates [petromyzosterol disulfate (PSDS, 2) and petromyzonamine disulfate (PADS, 3)] are described here. Pattern matching of 1H NMR data was particularly valuable. This involved comparison of spectra of the natural samples of 2 and 3 with those of appropriate steroidal analogues [e.g., petromyzonol sulfate (PS, 1, a previously known sea lamprey bile acid derivative that is a third component of the migratory pheromone), cholesterol sulfate (6), and squalamine (8)] and model compounds containing the unprecedented aminolactam substructure present in 3. The logic underlying the iterative analyses used is presented. PMID:17718505

  16. A plant factory for moth pheromone production.

    PubMed

    Ding, Bao-Jian; Hofvander, Per; Wang, Hong-Lei; Durrett, Timothy P; Stymne, Sten; Löfstedt, Christer

    2014-01-01

    Moths depend on pheromone communication for mate finding and synthetic pheromones are used for monitoring or disruption of pheromone communication in pest insects. Here we produce moth sex pheromone, using Nicotiana benthamiana as a plant factory, by transient expression of up to four genes coding for consecutive biosynthetic steps. We specifically produce multicomponent sex pheromones for two species. The fatty alcohol fractions from the genetically modified plants are acetylated to mimic the respective sex pheromones of the small ermine moths Yponomeuta evonymella and Y. padella. These mixtures are very efficient and specific for trapping of male moths, matching the activity of conventionally produced pheromones. Our long-term vision is to design tailor-made production of any moth pheromone component in genetically modified plants. Such semisynthetic preparation of sex pheromones is a novel and cost-effective way of producing moderate to large quantities of pheromones with high purity and a minimum of hazardous waste. PMID:24569486

  17. Pheromones and exocrine glands in Isoptera.

    PubMed

    Costa-Leonardo, Ana Maria; Haifig, Ives

    2010-01-01

    Termites are eusocial insects that have a peculiar and intriguing system of communication using pheromones. The termite pheromones are composed of a blend of chemical substances and they coordinate different social interactions or activities, including foraging, building, mating, defense, and nestmate recognition. Some of these sociochemicals are volatile, spreading in the air, and others are contact pheromones, which are transmitted by trophallaxis and grooming. Among the termite semiochemicals, the most known are alarm, trail, sex pheromones, and hydrocarbons responsible for the recognition of nestmates. The sources of the pheromones are exocrine glands located all over the termite body. The principal exocrine structures considered pheromone-producing glands in Isoptera are the frontal, mandibular, salivary or labial, sternal, and tergal glands. The frontal gland is the source of alarm pheromone and defensive chemicals, but the mandibular secretions have been little studied and their function is not well established in Isoptera. The secretion of salivary glands involves numerous chemical compounds, some of them without pheromonal function. The worker saliva contains a phagostimulating pheromone and probably a building pheromone, while the salivary reservoir of some soldiers contains defensive chemicals. The sternal gland is the only source of trail-following pheromone, whereas sex pheromones are secreted by two glandular sources, the sternal and tergal glands. To date, the termite semiochemicals have indicated that few molecules are involved in their chemical communication, that is, the same compound may be secreted by different glands, different castes and species, and for different functions, depending on the concentration. In addition to the pheromonal parsimony, recent studies also indicate the occurrence of a synergic effect among the compounds involved in the chemical communication of Isoptera. PMID:20831960

  18. Gqalpha-linked PLCbeta and PLCgamma are essential components of the pheromone biosynthesis activating neuropeptide (PBAN) signal transduction cascade

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sex pheromone production for most moths is regulated by pheromone biosynthesis activating neuropeptide (PBAN). In Bombyx mori, PBAN binding triggers the opening of store-operated Ca2+ channels, suggesting the involvement of a receptor-activated phospholipase C (PLC). In this study, we found that P...

  19. Foxn1 gene knockout suppresses sexual attractiveness and pheromonal components of male urine in inbred mice.

    PubMed

    Zhang, Jian-Xu; Sun, Lixing; Zhang, Yao-Hua

    2010-01-01

    The immunocompetence handicap hypothesis (ICHH) posits that females prefer signals emitted by immunocompetent males over immunocompromised males and that these signals are honest. However, mechanisms of mate choice under an ICHH model may be impacted by levels of genetic variation (inbred animals vs. outbred animals). Here, we conducted 2-choice female preference experiments and chemical analyses of male urine in inbred BALB/c and outbred CD-1 mice, both of which have immunocompromised nude (nu) strains resulting from a Foxn1 gene knockout. We found that inbred BALB/c females but not outbred CD-1 females preferred the urine of healthy males over that of immunocompromised males despite measured differences in the qualities of their urine. There was a clear increase in female-attracting pheromones (such as farnesenes) in the preputial glands and urine metabolites in healthy BALB/c males but no such difference between CD-1 and CD-1 nu males. Therefore, CD-1 male urine failed to provide an honest mate-choice cue for females. Our results suggest that deleterious traits associated with male odor in mice might be jointly affected by the level of inbreeding and immunodeficiency caused by a single-gene knockout. PMID:20019156

  20. Alarms Philosophy

    SciTech Connect

    White, Karen S; Kasemir, Kay

    2009-01-01

    An effective alarm system consists of a mechanism to monitor control points and generate alarm notifications, tools for operators to view, hear, acknowledge and handle alarms and a good configuration. Despite the availability of numerous fully featured tools, accelerator alarm systems continue to be disappointing to operations, frequently to the point of alarms being permanently silenced or totally ignored. This is often due to configurations that produce an excessive number of alarms or fail to communicate the required operator response. Most accelerator controls systems do a good job of monitoring specified points and generating notifications when parameters exceed predefined limits. In some cases, improved tools can help, but more often, poor configuration is the root cause of ineffective alarm systems. A SNS, we have invested considerable effort in generating appropriate configurations using a rigorous set of rules based on best practices in the industrial process controls community. This paper will discuss our alarm configuration philosophy and operator response to our new system.

  1. A Lysine at the C-Terminus of an Odorant-Binding Protein is Involved in Binding Aldehyde Pheromone Components in Two Helicoverpa Species

    PubMed Central

    Sun, Ya-Lan; Huang, Ling-Qiao; Pelosi, Paolo; Wang, Chen-Zhu

    2013-01-01

    Odorant-binding proteins (OBPs) are soluble proteins, whose role in olfaction of insects is being recognized as more and more important. We have cloned, expressed and purified an OBP (HarmOBP7) from the antennae of the moth Helicoverpa armigera. Western blot experiments indicate specific expression of this protein in the antennae of adults. HarmOBP7 binds both pheromone components Z-11-hexadecenal and Z-9-hexadecenal with good affinity. We have also performed a series of binding experiments with linear aldehydes, alcohols and esters, as well as with other compounds and found a requirement of medium size for best affinity. The affinity of OBP7, as well as that of a mutant lacking the last 6 residues does not substantially decrease in acidic conditions, but increases at basic pH values with no significant differences between wild-type and mutant. Binding to both pheromone components, instead, is negatively affected by the lack of the C-terminus. A second mutant, where one of the three lysine residues in the C-terminus (Lys123) was replaced by methionine showed reduced affinity to both pheromone components, as well as to their analogues, thus indicating that Lys123 is involved in binding these compounds, likely forming hydrogen bonds with the functional groups of the ligands. PMID:23372826

  2. (R)-desmolactone, a female-produced sex pheromone component of the cerambycid beetle Desmocerus californicus californicus (subfamily Lepturinae).

    PubMed

    Ray, Ann M; Swift, Ian P; McElfresh, J Steven; Alten, Ronald L; Millar, Jocelyn G

    2012-02-01

    We report the identification, synthesis, and field bioassays of a female-produced sex attractant pheromone for the cerambycid beetle Desmocerus californicus californicus Horn. Headspace volatiles from females contained a sex-specific compound, (R)-desmolactone [(4R,9Z)-hexadec-9-en-4-olide], which elicited strong responses from the antennae of adult males in coupled gas chromatography-electroantennogram analyses. Short syntheses of both enantiomers were developed from commercial chiral synthons. In field bioassays, significant numbers of males were collected in traps baited with (R)-desmolactone, whereas the (S)-enantiomer attracted no males. The racemate was less attractive than the pure (R)-enantiomer, indicating some degree of antagonism by the unnatural enantiomer. This compound is the first example of a new structural class of cerambycid pheromones, and is the second pheromone identified for a species in the subfamily Lepturinae. PMID:22350519

  3. Methyl 6-methylsalicylate: A female-produced pheromone component of the parasitoid wasp Spalangia endius (Hymenoptera: Pteromalidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sex pheromone-related behavior and chemistry were studied in the wasp Spalangia endius Walker (Hymenoptera: Pteromalidae), a pupal parasitoid of house flies Musca domestica L. (Diptera: Muscidae). Males responded behaviorally to female extracts by arrestment, whereas females did not arrest to male e...

  4. Synchronous firing of antennal-lobe projection neurons encodes the behaviorally effective ratio of sex-pheromone components in male Manduca sexta

    PubMed Central

    Martin, Joshua P.; Lei, Hong; Riffell, Jeffrey A.; Hildebrand, John G.

    2013-01-01

    Olfactory stimuli that are essential to an animal's survival and reproduction are often complex mixtures of volatile organic compounds in characteristic proportions. Here, we investigated how these proportions are encoded in the primary olfactory processing center, the antennal lobe (AL), of male Manduca sexta moths. Two key components of the female's sex pheromone, present in an approximately 2:1 ratio, are processed in each of two neighboring glomeruli in the macroglomerular complex (MGC) of males of this species. In wind-tunnel flight experiments, males exhibited behavioral selectivity for ratios approximating the ratio released by conspecific females. The ratio between components was poorly represented, however, in the firing-rate output of uniglomerular MGC projection neurons (PNs). PN firing rate was mostly insensitive to the ratio between components, and individual PNs did not exhibit a preference for a particular ratio. Recording simultaneously from pairs of PNs in the same glomerulus, we found that the natural ratio between components elicited the most synchronous spikes, and altering the proportion of either component decreased the proportion of synchronous spikes. The degree of synchronous firing between PNs in the same glomerulus thus selectively encodes the natural ratio that most effectively evokes the natural behavioral response to pheromone. PMID:24002682

  5. Unraveling the pheromone biosynthesis activating neuropeptide (PBAN) signal transduction cascade that regulates sex pheromone production in moths

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies over the past three decades have demonstrated that female moths usually produce sex pheromones as multi-component blends in which the ratios of the individual components are precisely controlled, making it possible to generate species-specific pheromone blends. Most moth pheromone component...

  6. Identification and Characterization of Pheromone Receptors and Interplay between Receptors and Pheromone Binding Proteins in the Diamondback Moth, Plutella xyllostella

    PubMed Central

    Sun, Mengjing; Liu, Yang; Walker, William B.; Liu, Chengcheng; Lin, Kejian; Gu, Shaohua; Zhang, Yongjun; Zhou, Jingjiang; Wang, Guirong

    2013-01-01

    Moths depend on olfactory cues such as sex pheromones to find and recognize mating partners. Pheromone receptors (PRs) and Pheromone binding proteins (PBPs) are thought to be associated with olfactory signal transduction of pheromonal compounds in peripheral olfactory reception. Here six candidate pheromone receptor genes in the diamondback moth, Plutella xyllostella were identified and cloned. All of the six candidate PR genes display male-biased expression, which is a typical characteristic of pheromone receptors. In the Xenopus-based functional study and in situ hybridization, PxylOR4 is defined as another pheromone receptor in addition to the previously characterized PxylOR1. In the study of interaction between PRs and PBPs, PxylPBPs could increase the sensitivity of the complex expressing oocyte cells to the ligand pheromone component while decreasing the sensitivity to pheromone analogs. We deduce that activating pheromone receptors in olfactory receptor neurons requires some role of PBPs to pheromone/PBP complex. If the chemical signal is not the pheromone component, but instead, a pheromone analog with a similar structure, the complex would have a decreased ability to activate downstream pheromone receptors. PMID:23626773

  7. Characterisation of Acetyl-CoA Thiolase: The First Enzyme in the Biosynthesis of Terpenic Sex Pheromone Components in the Labial Gland of Bombus terrestris.

    PubMed

    Brabcová, Jana; Demianová, Zuzana; Kindl, Jiří; Pichová, Iva; Valterová, Irena; Zarevúcka, Marie

    2015-05-01

    Buff-tailed bumblebees, Bombus terrestris, use a male sex pheromone for premating communication. Its main component is a sesquiterpene, 2,3-dihydrofarnesol. This paper reports the isolation of a thiolase (acetyl-CoA thiolase, AACT_BT), the first enzyme involved in the biosynthetic pathway leading to formation of isoprenoids in the B. terrestris male sex pheromone. Characterisation of AACT_BT might contribute to a better understanding of pheromonogenesis in the labial gland of B. terrestris males. The protein was purified to apparent homogeneity by column chromatography with subsequent stepwise treatment. AACT_BT showed optimum acetyltransferase activity at pH 7.1 and was strongly inhibited by iodoacetamide. The enzyme migrated as a band with an apparent mass of 42.9 kDa on SDS-PAGE. MS analysis of an AACT_BT tryptic digest revealed high homology to representatives of the thiolase family. AACT_BT has 96 % amino acid sequence identity with the previously reported Bombus impatiens thiolase. PMID:25801592

  8. The attractivity of the female sex pheromone ofPeriplaneta americana and its components for conspecific males and males ofPeriplaneta australasiae in the field.

    PubMed

    Waldow, U; Sass, H

    1984-07-01

    The attractivity of virgin female odors of the American cockroach was examined in field experiments. Crude extracts of the female odor, the isolated sex pheromone fractions, periplanone-A and periplanone-B, and other compounds obtained during the isolation served as stimulants. An extract of male odors, obtained by identical collection methods, was used as a control. Males ofPeriplaneta americana were attracted by the crude extract and periplanone-B; males of the sympatric species,P. Australasiae, by periplanone-A. Experiments in which these components were presented subsequently and as mixtures indicate that, under certain conditions, periplanone-A may also function as an attracting substance forP. americana males and that periplanone-B and possibly some other components act as an inhibitor for males ofP. australasiae. PMID:24318844

  9. Utilization of pheromones in the population management of moth pests.

    PubMed Central

    Cardé, R T

    1976-01-01

    Pheromones are substances emitted by one individual of a species and eliciting a specific response in a second individual of the same species. In moths (Lepidoptera) generally females lure males for mating by emission of a sex attractant pheromone comprised of either one or more components. Since 1966 the identification of the pheromone blends of many moth pests has allowed investigations into the use of these messengers for population manipulation. Pheromone-baited traps may be used both to detect pest presence and to estimate population density, so that conventional control tactics can be employed only as required and timed precisely for maximum effectiveness. Attractant traps also can be utilized for direct population suppression when the traps are deployed at a density effective in reducing mating success sufficiently to achieve control. A third use pattern of pheromones and related compounds is disruption of pheromone communication via atmospheric permeation with synthetic disruptants. The behavioral modifications involved in disruption of communication may include habituation of the normal response sequence (alteration of the pheromone response threshold) and "confusion" (inability of the organism to perceive and orient to the naturally emitted lure). Disruption of communication employing the natural pheromone components as the disruptant has been most successful, although nonattractant behavioral modifiers structurally similar to the pheromone components also may prove useful. Possible future resistance to direct pheromone manipulation may be expected to involve the evolution of behavioral and sensory changes that minimize the informational overlap between the natural pheromone system and the pheromone control technique. PMID:789060

  10. Sex Pheromone of Anastrepha striata.

    PubMed

    Cruz-López, Leopoldo; Malo, Edi A; Rojas, Julio C

    2015-05-01

    The guava fruit fly, Anastrepha striata, is a pest of several cultivated species of Myrtaceae in the American tropics and subtropics. During calling, A. striata males release numerous volatiles. This study was conducted to identify which of the male volatiles function as the A. striata sex pheromone and to investigate the effects of age and time of day on the emission of pheromone components. Analysis of the volatiles from males collected by solid phase microextraction using gas chromatography coupled to electroantennographic detection (GC-EAD) showed that three volatile compounds elicited repeatable responses from the antennae of females. The EAD-active compounds were identified by GC/mass spectrometry as ethyl hexanoate, linalool, and ethyl octanoate. In two-choice tests using Multilure traps placed in field cages, traps baited with live males, ethyl hexanoate, or the three-component blend captured more females than unbaited traps. However, there was no difference in catches when traps baited with live males were compared against traps baited with ethyl hexanoate. Although traps baited with the three-component blend caught more females than traps baited with live males, the difference was not significant. Analyses of pheromonal components released by A. striata males 8 to 26 days old showed that there was an effect of age on pheromone production and also a significant effect of time of day on pheromone emission. Release of the volatile compounds occurred from 14.00 to 18.00 hr, although traces of linalool were detected from 08.00 hr. Peak emission of pheromone compounds occurred at 14.00 hr. PMID:25912228

  11. Sex pheromone and trail pheromone of the sand termite Psammotermes hybostoma.

    PubMed

    Sillam-Dussès, David; Hanus, Robert; Abd El-Latif, Ashraf Oukasha; Jiroš, Pavel; Krasulová, Jana; Kalinová, Blanka; Valterová, Irena; Sobotník, Jan

    2011-02-01

    Within the complex network of chemical signals used by termites, trail pheromones and sex pheromones are among the best known. Numerous recent papers map the chemical identity and glandular origin of these pheromones in nearly all major isopteran taxa. In this study, we aimed to describe the sex pheromone and the trail pheromone of a poorly known sand termite, Psammotermes hybostoma. We identified (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol (dodecatrienol) as the sex pheromone released by tergal and sternal glands of female imagos and, at the same time, as the trail pheromone secreted from the sternal gland of workers. We conclude that chemical communication in Psammotermes does not differ from that of most other Rhinotermitidae, such as Reticulitermes, despite the presence of a diterpene as a major component of the trail pheromone of Prorhinotermes to which Psammotermes is presumed to be phylogenetically close. Our findings underline once again the conservative nature of chemical communication in termites, with dodecatrienol being a frequent component of pheromonal signals in trail following and sex attraction and, at the same time, a tight evolutionary relationship between the trail following of working castes and the sex attraction of imagos. PMID:21318399

  12. Xcel Energy implements an alarm management strategy

    SciTech Connect

    Bass, J.; Abreu, G.

    2007-11-15

    Not so long ago, Xcel Energy's Pawnee Station, a 505 MW coal-fired generating station in Brush, Colorado, USA was commonly generating 300 to 400 alarms per 8-hour shift. The article describes how the alarm system was revised and improved by tackling alarm dead-bands, and rationalising alarms for routine events. Operators are trained to understand the functions of alarm management components, their use and response, and obtain feedback. Today the power station reports about one alarm per hour. 3 photos.

  13. Identification of a Pheromone Component and a Critical Synergist for the Invasive Beetle Callidiellum rufipenne (Coleoptera: Cerambycidae).

    PubMed

    Zou, Yunfan; Rutledge, Claire E; Nakamuta, Kiyoshi; Maier, Chris T; Hanks, Lawrence M; Richards, Austin B; Lacey, Emerson S; Millar, Jocelyn G

    2016-02-01

    The invasive Asian cerambycid beetle Callidiellum rufipenne (Motschulsky), informally known as the Japanese cedar longhorned beetle, was first detected in North America in North Carolina in 1997. The beetle has since been detected in neighboring states and is expected to further expand its range. However, delineating the current distribution of C. rufipenne has been hindered by the lack of efficient sampling methods. Here, we present the results of research on the chemistry of volatile pheromones of C. rufipenne. Analyses of headspace odors revealed that males produce (R)-3-hydroxyhexan-2-one, with lesser amounts of (S)-3-hydroxyhexan-2-one, and (R)- and (S)-2-hydroxyhexan-3-one. In field bioassays conducted over several years in Connecticut, where populations of the beetle were well established, no reconstructed blend of these compounds was significantly attractive to beetles of either sex. However, during field trials in Japan that targeted another species, we discovered that adult male and female C. rufipenne were attracted to a blend of racemic 3-hydroxyhexan-2-one and a novel natural product, 1-(1H-pyrrol-2-yl)-1,2-propanedione. Attraction to (R)-3-hydroxyhexan-2-one and the pyrrole subsequently was confirmed in field trials in Connecticut. Although it is unclear why the pyrrole acts as a synergist for a species that apparently does not produce it, the serendipitous discovery that adult C. rufipenne are attracted by the blend of ketone and pyrrole provides a badly needed method for monitoring its ongoing range expansion within North America, and for detecting new introductions in other parts of the world. PMID:26510607

  14. Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein.

    PubMed

    Laughlin, John D; Ha, Tal Soo; Jones, David N M; Smith, Dean P

    2008-06-27

    Detection of volatile odorants by olfactory neurons is thought to result from direct activation of seven-transmembrane odorant receptors by odor molecules. Here, we show that detection of the Drosophila pheromone, 11-cis vaccenyl acetate (cVA), is instead mediated by pheromone-induced conformational shifts in the extracellular pheromone-binding protein, LUSH. We show that LUSH undergoes a pheromone-specific conformational change that triggers the firing of pheromone-sensitive neurons. Amino acid substitutions in LUSH that are predicted to reduce or enhance the conformational shift alter sensitivity to cVA as predicted in vivo. One substitution, LUSH(D118A), produces a dominant-active LUSH protein that stimulates T1 neurons through the neuronal receptor components Or67d and SNMP in the complete absence of pheromone. Structural analysis of LUSH(D118A) reveals that it closely resembles cVA-bound LUSH. Therefore, the pheromone-binding protein is an inactive, extracellular ligand converted by pheromone molecules into an activator of pheromone-sensitive neurons and reveals a distinct paradigm for detection of odorants. PMID:18585358

  15. Gqalpha-linked phospholipase Cbeta1 and phospholipase Cgamma are essential components of the pheromone biosynthesis activating neuropeptide (PBAN) signal transduction cascade.

    PubMed

    Hull, J J; Lee, J M; Matsumoto, S

    2010-08-01

    Sex pheromone production for most moths is regulated by pheromone biosynthesis activating neuropeptide (PBAN). In Bombyx mori, PBAN binding triggers the opening of store-operated Ca(2+) channels, suggesting the involvement of a receptor-activated phospholipase C (PLC). In this study, we found that PLC inhibitors U73122 and compound 48/80 reduced sex pheromone production and that intracellular levels of (3)H-inositol phosphate species increased following PBAN stimulation. In addition, we amplified cDNAs from pheromone glands corresponding to PLCbeta1, PLCbeta4, PLCgamma and two G protein alpha subunits, Go and Gq. In vivo RNA interference-mediated knockdown analyses revealed that BmPLCbeta1, BmGq1, and unexpectedly, BmPLCgamma, are part of the PBAN signal transduction cascade. PMID:20546038

  16. Bed bug aggregation pheromone finally identified.

    PubMed

    Gries, Regine; Britton, Robert; Holmes, Michael; Zhai, Huimin; Draper, Jason; Gries, Gerhard

    2015-01-19

    Bed bugs have become a global epidemic and current detection tools are poorly suited for routine surveillance. Despite intense research on bed bug aggregation behavior and the aggregation pheromone, which could be used as a chemical lure, the complete composition of this pheromone has thus far proven elusive. Here, we report that the bed bug aggregation pheromone comprises five volatile components (dimethyl disulfide, dimethyl trisulfide, (E)-2-hexenal, (E)-2-octenal, 2-hexanone), which attract bed bugs to safe shelters, and one less-volatile component (histamine), which causes their arrestment upon contact. In infested premises, a blend of all six components is highly effective at luring bed bugs into traps. The trapping of juvenile and adult bed bugs, with or without recent blood meals, provides strong evidence that this unique pheromone bait could become an effective and inexpensive tool for bed bug detection and potentially their control. PMID:25529634

  17. [Biosynthesis and endocrine regulation of sex pheromones in moth].

    PubMed

    Wang, Bo; Lin, Xin-da; Du, Yong-jun

    2015-10-01

    The crucial importance of sex pheromones in driving mating behaviors in moths has been well demonstrated in the process of sexual communication between individuals that produce and recognize species specific pheromones. Sex-pheromone molecules from different moth species are chemically characteristic, showing different terminal functional groups, various carbon chain lengths, different position and configuration of double bond system. This review summarized information on the biosynthetic pathways and enzymes involved in producing pheromone molecules in different moths. Then we listed the components and their ratios in the sex pheromones of 15 moth species belonging to different subfamilies in Noctuidae. We also discussed the various viewpoints regarding how sex pheromones with specific ratios are produced. In the discussion we attempted to classify the pheromone molecules based on their producers, characteristics of their functional groups and carbon chain lengths. In particular, composition and ratio variations of pheromones in closely related species or within a species were compared, and the possible molecular mechanisms for these variations and their evolutionary significance were discussed. Finally, we reviewed the endocrine regulation and signal transduction pathways, in which the pheromone biosynthesis activating neuropeptide (PBAN) is involved. Comparing the biosynthetic pathways of sex pheromones among different species, this article aimed to reveal the common principles in pheromone biosynthesis among moth species and the characteristic features associated with the evolutionary course of individual species. Subsequently, some future research directions were proposed. PMID:26995936

  18. Dynamic alarm response procedures

    SciTech Connect

    Martin, J.; Gordon, P.; Fitch, K.

    2006-07-01

    The Dynamic Alarm Response Procedure (DARP) system provides a robust, Web-based alternative to existing hard-copy alarm response procedures. This paperless system improves performance by eliminating time wasted looking up paper procedures by number, looking up plant process values and equipment and component status at graphical display or panels, and maintenance of the procedures. Because it is a Web-based system, it is platform independent. DARP's can be served from any Web server that supports CGI scripting, such as Apache{sup R}, IIS{sup R}, TclHTTPD, and others. DARP pages can be viewed in any Web browser that supports Javascript and Scalable Vector Graphics (SVG), such as Netscape{sup R}, Microsoft Internet Explorer{sup R}, Mozilla Firefox{sup R}, Opera{sup R}, and others. (authors)

  19. The smell of moulting: N-acetylglucosamino-1,5-lactone is a premoult biomarker and candidate component of the courtship pheromone in the urine of the blue crab, Callinectes sapidus.

    PubMed

    Kamio, Michiya; Schmidt, Manfred; Germann, Markus W; Kubanek, Julia; Derby, Charles D

    2014-04-15

    component of the sex pheromone and that it acts in conjunction with other yet unidentified components. PMID:24363413

  20. Improved alarm tracking for better accountability

    SciTech Connect

    Nemesure, S.; Marr, G.; Shrey, T.; Kling, N.; Hammons, L.; Ingrassia, P.; D'Ottavio, T.

    2011-03-28

    An alarm system is a vital component of any accelerator, as it provides a warning that some element of the system is not functioning properly. The severity and age of the alarm may sometimes signify whether urgent or deferred attention is required. For example, older alarms may be given a lower priority if an assumption is made that someone else is already investigating it, whereas those of higher severity or alarms that are more current may indicate the need for an immediate response. The alarm history also provides valuable information regarding the functionality of the overall system, thus careful tracking of these data is likely to improve response time, remove uncertainty about the current status and assist in the ability to promptly respond to the same warning/trigger in the future. Since one goal of every alarm display is to be free of alarms, a clear and concise presentation of an alarm along with useful historic annotations can help the end user address the warning more quickly, thus expediting the elimination of such alarm conditions. By defining a discrete set of very specific alarm management states and by utilizing database resources to maintain a complete and easily accessible alarm history, we anticipate facilitated work flow due to more efficient operator response and management of alarms.

  1. Unusual mechanism of hydrocarbon formation in the housefly: cytochrome P450 converts aldehyde to the sex pheromone component (Z)-9-tricosene and CO2.

    PubMed

    Reed, J R; Vanderwel, D; Choi, S; Pomonis, J G; Reitz, R C; Blomquist, G J

    1994-10-11

    An unusual mechanism for hydrocarbon biosynthesis is proposed from work examining the formation of (Z)-9-tricosene (Z9-23:Hy), the major sex pheromone component of the female housefly, Musca domestica. Incubation of (Z)-15-[1-14C]- and (Z)-15-[15,16-3H2]tetracosenoic acid (24:1 fatty acid) with microsomes from houseflies gave equal amounts of [3H]Z9-23:Hy and 14CO2. The formation of CO2 and not CO, as reported for hydrocarbon formation in plants, animals, and microorganisms [Dennis, M. & Kolattukudy, P. E. (1992) Proc. Natl. Acad. Sci. USA 89, 5306-5310], was verified by trapping agents and by radio-GLC analysis. Incubation of (Z)-15-[15,16-3H2]tetracosenoyl-CoA with microsomal preparations in the presence of NADPH and O2 gave almost equal amounts of (Z)-15-3H2]tetrasosenal (24:1 aldehyde) and Z9-23:Hy. Addition of increasing amounts of hydroxylamine (aldehyde trapping agent) caused a decrease in hydrocarbon formation with a concomitant increase in oxime (aldehyde derivative) formation. The 24:1 aldehyde was efficiently converted to (Z)-9-tricosene only in the presence of both NADPH and O2. Bubbling carbon monoxide (20:80 CO/O2) or including an antibody against housefly cytochrome P450 reductase inhibited the formation Z9-23:Hy from 24:1 aldehyde. These data demonstrate an unusual mechanism for hydrocarbon formation in insects in which the acyl-CoA is reduced to the corresponding aldehyde and then carbon-1 is removed as CO2. The requirement for NADPH and O2 and the inhibition by CO and the antibody to cytochrome P450 reductase strongly implicate the participation of a cytochrome P450 in this reaction. PMID:7937826

  2. Targeted disruption of a single sex pheromone receptor gene completely abolishes in vivo pheromone response in the silkmoth

    PubMed Central

    Sakurai, Takeshi; Mitsuno, Hidefumi; Mikami, Akihisa; Uchino, Keiro; Tabuchi, Masashi; Zhang, Feng; Sezutsu, Hideki; Kanzaki, Ryohei

    2015-01-01

    Male moths use species-specific sex pheromones to identify and orientate toward conspecific females. Odorant receptors (ORs) for sex pheromone substances have been identified as sex pheromone receptors in various moth species. However, direct in vivo evidence linking the functional role of these ORs with behavioural responses is lacking. In the silkmoth, Bombyx mori, female moths emit two sex pheromone components, bombykol and bombykal, but only bombykol elicits sexual behaviour in male moths. A sex pheromone receptor BmOR1 is specifically tuned to bombykol and is expressed in specialized olfactory receptor neurons (ORNs) in the pheromone sensitive long sensilla trichodea of male silkmoth antennae. Here, we show that disruption of the BmOR1 gene, mediated by transcription activator-like effector nucleases (TALENs), completely removes ORN sensitivity to bombykol and corresponding pheromone-source searching behaviour in male moths. Furthermore, transgenic rescue of BmOR1 restored normal behavioural responses to bombykol. Our results demonstrate that BmOR1 is required for the physiological and behavioural response to bombykol, demonstrating that it is the receptor that mediates sex pheromone responses in male silkmoths. This study provides the first direct evidence that a member of the sex pheromone receptor family in moth species mediates conspecific sex pheromone information for sexual behaviour. PMID:26047360

  3. The use of the sex pheromone as an evolutionary solution to food source selection in caterpillars.

    PubMed

    Poivet, Erwan; Rharrabe, Kacem; Monsempes, Christelle; Glaser, Nicolas; Rochat, Didier; Renou, Michel; Marion-Poll, Frédéric; Jacquin-Joly, Emmanuelle

    2012-01-01

    Sex pheromones are released by adults of a species to elicit a sexual interaction with the other sex of the same species. Here we report an unexpected effect of a moth sex pheromone on the caterpillars of the same species. We demonstrate that larvae of the cotton leafworm Spodoptera littoralis are attracted by the moth sex pheromone and that this phenomenon is independent of sex determination. In addition, we show that the olfactory sensilla carried by the caterpillar antennae are sensitive to the pheromone and that the caterpillar sensilla express pheromone-binding proteins that are used by adult antennae to bind pheromone components. Finally, we demonstrate that the larvae are preferentially attracted to a food source when it contains the sex pheromone main component. A possible interpretation of these results is that the sex pheromone is used to promote food search in caterpillars, opening potential new routes for insect pest management. PMID:22948829

  4. Pheromone detection by a pheromone emitter: a small sex pheromone-specific processing system in the female American cockroach.

    PubMed

    Nishino, Hiroshi; Iwasaki, Masazumi; Mizunami, Makoto

    2011-03-01

    Many animals depend on pheromone communication for successful mating. Sex pheromone in insects is usually released by females to attract males. In American cockroaches, the largest glomerulus (B-glomerulus) in the male antennal lobe (first-order olfactory center) processes the major component of sex pheromone. Using intracellular recordings combined with fine neuroanatomical techniques, we provide evidence that the female homolog of the male B-glomerulus also acts as a sex pheromone-specific detector. Whereas ordinary glomeruli that process normal environmental odors are innervated by single projection neurons (PNs), the B-glomerulus in both sexes is innervated by multiple PNs, one of which possesses a thicker axon, termed here B-PN. Both soma size and axon diameter were smaller on B-PNs from females compared with B-PNs from males. The female B-PNs also produce fewer terminal arborizations in the protocerebrum than male B-PNs. Termination fields in the lateral protocerebrum of the female B-PN are mostly segregated from those formed by other uniglomerular PNs innervating ordinary glomeruli. Female B-PN activity was greatest in response to sex pheromone but lower than that in the male B-PN. This specific detection system suggests that sex pheromone affects the behavior and/or endocrine system of female cockroaches. PMID:21098584

  5. 40 CFR 180.1064 - Tomato pinworm insect pheromone; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Tomato pinworm insect pheromone... RESIDUES IN FOOD Exemptions From Tolerances § 180.1064 Tomato pinworm insect pheromone; exemption from the... residues of both components of the tomato pinworm insect pheromone (E)-4-tridecen-1-yl acetate and...

  6. 40 CFR 180.1064 - Tomato pinworm insect pheromone; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Tomato pinworm insect pheromone... RESIDUES IN FOOD Exemptions From Tolerances § 180.1064 Tomato pinworm insect pheromone; exemption from the... residues of both components of the tomato pinworm insect pheromone (E)-4-tridecen-1-yl acetate and...

  7. 40 CFR 180.1064 - Tomato pinworm insect pheromone; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Tomato pinworm insect pheromone... RESIDUES IN FOOD Exemptions From Tolerances § 180.1064 Tomato pinworm insect pheromone; exemption from the... residues of both components of the tomato pinworm insect pheromone (E)-4-tridecen-1-yl acetate and...

  8. 40 CFR 180.1064 - Tomato pinworm insect pheromone; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Tomato pinworm insect pheromone... RESIDUES IN FOOD Exemptions From Tolerances § 180.1064 Tomato pinworm insect pheromone; exemption from the... residues of both components of the tomato pinworm insect pheromone (E)-4-tridecen-1-yl acetate and...

  9. 40 CFR 180.1064 - Tomato pinworm insect pheromone; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Tomato pinworm insect pheromone... RESIDUES IN FOOD Exemptions From Tolerances § 180.1064 Tomato pinworm insect pheromone; exemption from the... residues of both components of the tomato pinworm insect pheromone (E)-4-tridecen-1-yl acetate and...

  10. A flux capacitor for moth pheromones.

    PubMed

    Olsson, Shannon B; Hansson, Bill S

    2012-05-01

    In this issue of Chemical Senses, Baker et al. propose a provocative and intriguing explanation for a commonly observed phenomenon in moth chemocommunication. Sex pheromones in moths typically consist of mixtures of long-chain unsaturated compounds in specific ratios. These ratios are correspondingly detected by male moths using separate olfactory sensory neurons for each pheromone component housed singly or multiply in long trichoid sensilla on the antennal surface. These neurons are often present in different proportions, typically with the neuron responding to the highest ratio component present in greatest abundance or with the largest dendritic diameter. In their article, Baker et al. postulate that these physical differences in neuron magnitudes arise to compensate for the higher molecular flux present with the most abundant pheromone components. Such a suggestion raises several questions concerning the physiological and behavioral nature of pheromone communication. Specifically, is the flux in a natural pheromone plume high enough to warrant increased flux detection for the most abundant components? Second, how can changes in neuronal number or size lead to increased flux detection? And finally, how would this increased flux detection be accomplished at molecular, cellular, and ultimately network scales? We address each of these questions and propose future experiments that could offer insight into the stimulating proposition raised by Baker et al. PMID:22334600

  11. Speech Alarms Pilot Study

    NASA Technical Reports Server (NTRS)

    Sandor, A.; Moses, H. R.

    2016-01-01

    Currently on the International Space Station (ISS) and other space vehicles Caution & Warning (C&W) alerts are represented with various auditory tones that correspond to the type of event. This system relies on the crew's ability to remember what each tone represents in a high stress, high workload environment when responding to the alert. Furthermore, crew receive a year or more in advance of the mission that makes remembering the semantic meaning of the alerts more difficult. The current system works for missions conducted close to Earth where ground operators can assist as needed. On long duration missions, however, they will need to work off-nominal events autonomously. There is evidence that speech alarms may be easier and faster to recognize, especially during an off-nominal event. The Information Presentation Directed Research Project (FY07-FY09) funded by the Human Research Program included several studies investigating C&W alerts. The studies evaluated tone alerts currently in use with NASA flight deck displays along with candidate speech alerts. A follow-on study used four types of speech alerts to investigate how quickly various types of auditory alerts with and without a speech component - either at the beginning or at the end of the tone - can be identified. Even though crew were familiar with the tone alert from training or direct mission experience, alerts starting with a speech component were identified faster than alerts starting with a tone. The current study replicated the results from the previous study in a more rigorous experimental design to determine if the candidate speech alarms are ready for transition to operations or if more research is needed. Four types of alarms (caution, warning, fire, and depressurization) were presented to participants in both tone and speech formats in laboratory settings and later in the Human Exploration Research Analog (HERA). In the laboratory study, the alerts were presented by software and participants were

  12. Mating disruption of oriental beetle with sprayable sex pheromone formulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The feasibility of mating disruption in the oriental beetle (OB), Anomala orientalis, with microencapsulated sprayable formulations of the major component of its sex pheromone, was evaluated in turfgrass. The effect of the applications was measured by monitoring male OB captures in pheromone-baited ...

  13. The pheromone emergency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Female moths utilize sex pheromones to attract mates across a potentially long geographic distance. The biochemical basis of how moth female sex pheromones are synthesized has been elucidated in a number of species, and a particularly large amount of effort has been expended on the agricultural pes...

  14. Pheromone biosynthesis activating neuropeptide receptors (PBANRs) in moths: New developments regarding alternative splice variants and the potential for targeted disruption of PBANR in pest control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For most moths, the ability of conspecific males to locate receptive females is governed by the detection of a blend of semiochemicals known as sex pheromones. Sex pheromone components are de novo synthesized in the female pheromone gland in response to pheromone biosynthesis activating neuropeptid...

  15. Identification of a pheromone regulating caste differentiation in termites.

    PubMed

    Matsuura, Kenji; Himuro, Chihiro; Yokoi, Tomoyuki; Yamamoto, Yuuka; Vargo, Edward L; Keller, Laurent

    2010-07-20

    The hallmark of social insects is their caste system: reproduction is primarily monopolized by queens, whereas workers specialize in the other tasks required for colony growth and survival. Pheromones produced by reigning queens have long been believed to be the prime factor inhibiting the differentiation of new reproductive individuals. However, there has been very little progress in the chemical identification of such inhibitory pheromones. Here we report the identification of a volatile inhibitory pheromone produced by female neotenics (secondary queens) that acts directly on target individuals to suppress the differentiation of new female neotenics and identify n-butyl-n-butyrate and 2-methyl-1-butanol as the active components of the inhibitory pheromone. An artificial pheromone blend consisting of these two compounds had a strong inhibitory effect similar to live neotenics. Surprisingly, the same two volatiles are also emitted by eggs, playing a role both as an attractant to workers and an inhibitor of reproductive differentiation. This dual production of an inhibitory pheromone by female reproductives and eggs probably reflects the recruitment of an attractant pheromone as an inhibitory pheromone and may provide a mechanism ensuring honest signaling of reproductive status with a tight coupling between fertility and inhibitory power. Identification of a volatile pheromone regulating caste differentiation in a termite provides insights into the functioning of social insect colonies and opens important avenues for elucidating the developmental pathways leading to reproductive and nonreproductive castes. PMID:20615972

  16. Identification of pheromone components and their binding affinity to the odorant binding protein CcapOBP83a-2 of the Mediterranean fruit fly, Ceratitis capitata

    PubMed Central

    Siciliano, P.; He, X.L.; Woodcock, C.; Pickett, J.A.; Field, L.M.; Birkett, M.A.; Kalinova, B.; Gomulski, L.M.; Scolari, F.; Gasperi, G.; Malacrida, A.R.; Zhou, J.J.

    2014-01-01

    The Mediterranean fruit fly (or medfly), Ceratitis capitata (Wiedemann; Diptera: Tephritidae), is a serious pest of agriculture worldwide, displaying a very wide larval host range with more than 250 different species of fruit and vegetables. Olfaction plays a key role in the invasive potential of this species. Unfortunately, the pheromone communication system of the medfly is complex and still not well established. In this study, we report the isolation of chemicals emitted by sexually mature individuals during the “calling” period and the electrophysiological responses that these compounds elicit on the antennae of male and female flies. Fifteen compounds with electrophysiological activity were isolated and identified in male emissions by gas chromatography coupled to electroantennography (GC–EAG). Within the group of 15 identified compounds, 11 elicited a response in antennae of both sexes, whilst 4 elicited a response only in female antennae. The binding affinity of these compounds, plus 4 additional compounds known to be behaviourally active from other studies, was measured using C. capitata OBP, CcapOBP83a-2. This OBP has a high homology to Drosophila melanogaster OBPs OS-E and OS-F, which are associated with trichoid sensilla and co-expressed with the well-studied Drosophila pheromone binding protein LUSH. The results provide evidence of involvement of CcapOBP83a-2 in the medfly's odorant perception and its wider specificity for (E,E)-α-farnesene, one of the five major compounds in medfly male pheromone emission. This represents the first step in the clarification of the C. capitata and pheromone reception pathway, and a starting point for further studies aimed towards the creation of new powerful attractants or repellents applicable in the actual control strategies. PMID:24607850

  17. Stereochemical studies on pheromonal communications

    PubMed Central

    MORI, Kenji

    2014-01-01

    Pheromonal communications are heavily dependent on the stereochemistry of pheromones. Their enantioselective syntheses could establish the absolute configuration of the naturally occurring pheromones, and clarified the unique relationships between absolute configuration and bioactivity. For example, neither the (R)- nor (S)-enantiomer of sulcatol, the aggregation pheromone of an ambrosia beetle, is behaviorally active, while their mixture is bioactive. Recent results as summarized in the present review further illustrate the unique and diverse relationships between stereochemistry and bioactivity of pheromones. PMID:25504227

  18. Performance of the species-typical alarm response in young workers of the ant Myrmica sabuleti (Hymenoptera: Formicidae) is induced by interactions with mature workers.

    PubMed

    Cammaerts, Marie-Claire

    2014-01-01

    Young workers of the ant Myrmica sabuleti (Hymenoptera: Formicidae) Meinert 1861 perceived nestmate alarm pheromone but did not display normal alarm behavior (orientation toward the source of emission, increased running speed). They changed their initial behavior when in the presence of older nestmates exhibiting normal alarm behavior. Four days later, the young ants exhibited an imperfect version of normal alarm behavior. This change of behavior did not occur in young ants, which were not exposed to older ants reacting to alarm pheromone. Queen ants perceived the alarm pheromone and, after a few seconds, moved toward its source. Thus, the ants' ability to sense the alarm pheromone and to identify it as an alarm signal is native, while the adult alarm reaction is acquired over time (= age based polyethism) by young ants. It is possible that the change in behavior observed in young ants could be initiated and/or enhanced (via experience-induced developmental plasticity, learning, and/or other mechanisms) by older ants exhibiting alarm behavior. PMID:25525102

  19. Performance of the Species-Typical Alarm Response in Young Workers of the Ant Myrmica sabuleti (Hymenoptera: Formicidae) Is Induced by Interactions with Mature Workers

    PubMed Central

    Cammaerts, Marie-Claire

    2014-01-01

    Young workers of the ant Myrmica sabuleti (Hymenoptera: Formicidae) Meinert 1861 perceived nestmate alarm pheromone but did not display normal alarm behavior (orientation toward the source of emission, increased running speed). They changed their initial behavior when in the presence of older nestmates exhibiting normal alarm behavior. Four days later, the young ants exhibited an imperfect version of normal alarm behavior. This change of behavior did not occur in young ants, which were not exposed to older ants reacting to alarm pheromone. Queen ants perceived the alarm pheromone and, after a few seconds, moved toward its source. Thus, the ants’ ability to sense the alarm pheromone and to identify it as an alarm signal is native, while the adult alarm reaction is acquired over time (= age based polyethism) by young ants. It is possible that the change in behavior observed in young ants could be initiated and/or enhanced (via experience-induced developmental plasticity, learning, and/or other mechanisms) by older ants exhibiting alarm behavior. PMID:25525102

  20. The chemistry of eavesdropping, alarm, and deceit.

    PubMed Central

    Stowe, M K; Turlings, T C; Loughrin, J H; Lewis, W J; Tumlinson, J H

    1995-01-01

    Arthropods that prey on or parasitize other arthropods frequently employ those chemical cues that reliably indicate the presence of their prey or hosts. Eavesdropping on the sex pheromone signals emitted to attract mates allows many predators and parasitoids to find and attack adult insects. The sex pheromones are also useful signals for egg parasitoids since eggs are frequently deposited on nearby plants soon after mating. When the larval stages of insects or other arthropods are the targets, a different foraging strategy is employed. The larvae are often chemically inconspicuous, but when they feed on plants the injured plants respond by producing and releasing defensive chemicals. These plant chemicals may also serve as "alarm signals" that are exploited by predators and parasitoids to locate their victims. There is considerable evidence that the volatile "alarm signals" are induced by interactions of substances from the herbivore with the damaged plant tissue. A very different strategy is employed by several groups of spiders that remain stationary and send out chemical signals that attract prey. Some of these spiders prey exclusively on male moths. They attract the males by emitting chemicals identical to the sex pheromones emitted by female moths. These few examples indicate the diversity of foraging strategies of arthropod predators and parasitoids. It is likely that many other interesting chemically mediated interactions between arthropod hunters and their victims remain to be discovered. Increased understanding of these systems will enable us to capitalize on natural interactions to develop more ecologically sound, environmentally safe methods for biological control of insect pests of agriculture. PMID:7816823

  1. Molecular and neural mechanisms of sex pheromone reception and processing in the silkmoth Bombyx mori

    PubMed Central

    Sakurai, Takeshi; Namiki, Shigehiro; Kanzaki, Ryohei

    2014-01-01

    Male moths locate their mates using species-specific sex pheromones emitted by conspecific females. One striking feature of sex pheromone recognition in males is the high degree of specificity and sensitivity at all levels, from the primary sensory processes to behavior. The silkmoth Bombyx mori is an excellent model insect in which to decipher the underlying mechanisms of sex pheromone recognition due to its simple sex pheromone communication system, where a single pheromone component, bombykol, elicits the full sexual behavior of male moths. Various technical advancements that cover all levels of analysis from molecular to behavioral also allow the systematic analysis of pheromone recognition mechanisms. Sex pheromone signals are detected by pheromone receptors expressed in olfactory receptor neurons in the pheromone-sensitive sensilla trichodea on male antennae. The signals are transmitted to the first olfactory processing center, the antennal lobe (AL), and then are processed further in the higher centers (mushroom body and lateral protocerebrum) to elicit orientation behavior toward females. In recent years, significant progress has been made elucidating the molecular mechanisms underlying the detection of sex pheromones. In addition, extensive studies of the AL and higher centers have provided insights into the neural basis of pheromone processing in the silkmoth brain. This review describes these latest advances, and discusses what these advances have revealed about the mechanisms underlying the specific and sensitive recognition of sex pheromones in the silkmoth. PMID:24744736

  2. Uncoupling primer and releaser responses to pheromone in honey bees

    NASA Astrophysics Data System (ADS)

    Grozinger, Christina M.; Fischer, Patrick; Hampton, Jacob E.

    2007-05-01

    Pheromones produce dramatic behavioral and physiological responses in a wide variety of species. Releaser pheromones elicit rapid responses within seconds or minutes, while primer pheromones produce long-term changes which may take days to manifest. Honeybee queen mandibular pheromone (QMP) elicits multiple distinct behavioral and physiological responses in worker bees, as both a releaser and primer, and thus produces responses on vastly different time scales. In this study, we demonstrate that releaser and primer responses to QMP can be uncoupled. First, treatment with the juvenile hormone analog methoprene leaves a releaser response (attraction to QMP) intact, but modulates QMP’s primer effects on sucrose responsiveness. Secondly, two components of QMP (9-ODA and 9-HDA) do not elicit a releaser response (attraction) but are as effective as QMP at modulating a primer response, downregulation of foraging-related brain gene expression. These results suggest that different responses to a single pheromone may be produced via distinct pathways.

  3. Pheromone binding proteins enhance the sensitivity of olfactory receptors to sex pheromones in Chilo suppressalis

    PubMed Central

    Chang, Hetan; Liu, Yang; Yang, Ting; Pelosi, Paolo; Dong, Shuanglin; Wang, Guirong

    2015-01-01

    Sexual communication in moths offers a simplified scenario to model and investigate insect sensory perception. Both PBPs (pheromone-binding proteins) and PRs (pheromone receptors) are involved in the detection of sex pheromones, but the interplay between them still remains largely unknown. In this study, we have measured the binding affinities of the four recombinant PBPs of Chilo suppressalis (CsupPBPs) to pheromone components and analogs and characterized the six PRs using the Xenopus oocytes expression system. Interestingly, when the responses of PRs were recorded in the presence of PBPs, we measured in several combinations a dramatic increase in signals as well as in sensitivity of such combined systems. Furthermore, the discrimination ability of appropriate combinations of PRs and PBPs was improved compared with the performance of PBPs or PRs alone. Besides further supporting a role of PBPs in the pheromone detection and discrimination, our data shows for the first time that appropriate combinations of PRs and PBPs improved the discrimination ability of PBPs or PRs alone. The variety of responses measured with different pairing of PBPs and PRs indicates the complexity of the olfaction system, which, even for the relatively simple task of detecting sex pheromones, utilises a highly sophisticated combinatorial approach. PMID:26310773

  4. Peptide pheromone signaling in Streptococcus and Enterococcus

    PubMed Central

    Cook, Laura C.; Federle, Michael J.

    2014-01-01

    Intercellular chemical signaling in bacteria, commonly referred to as quorum sensing (QS), relies on the production and detection of compounds known as pheromones to elicit coordinated responses among members of a community. Pheromones produced by Gram-positive bacteria are comprised of small peptides. Based on both peptide structure and sensory system architectures, Gram-positive bacterial signaling pathways may be classified into one of four groups with a defining hallmark: cyclical peptides of the Agr type, peptides that contain Gly-Gly processing motifs, sensory systems of the RNPP family, or the recently characterized Rgg-like regulatory family. The recent discovery that Rgg family members respond to peptide pheromones increases substantially the number of species in which QS is likely a key regulatory component. These pathways control a variety of fundamental behaviors including conjugation, natural competence for transformation, biofilm development, and virulence factor regulation. Overlapping QS pathways found in multiple species and pathways that utilize conserved peptide pheromones provide opportunities for interspecies communication. Here we review pheromone signaling identified in the genera Enterococcus and Streptococcus, providing examples of all four types of pathways. PMID:24118108

  5. Pheromone Transduction in Moths

    PubMed Central

    Stengl, Monika

    2010-01-01

    Calling female moths attract their mates late at night with intermittent release of a species-specific sex-pheromone blend. Mean frequency of pheromone filaments encodes distance to the calling female. In their zig-zagging upwind search male moths encounter turbulent pheromone blend filaments at highly variable concentrations and frequencies. The male moth antennae are delicately designed to detect and distinguish even traces of these sex pheromones amongst the abundance of other odors. Its olfactory receptor neurons sense even single pheromone molecules and track intermittent pheromone filaments of highly variable frequencies up to about 30 Hz over a wide concentration range. In the hawkmoth Manduca sexta brief, weak pheromone stimuli as encountered during flight are detected via a metabotropic PLCβ-dependent signal transduction cascade which leads to transient changes in intracellular Ca2+ concentrations. Strong or long pheromone stimuli, which are possibly perceived in direct contact with the female, activate receptor-guanylyl cyclases causing long-term adaptation. In addition, depending on endogenous rhythms of the moth's physiological state, hormones such as the stress hormone octopamine modulate second messenger levels in sensory neurons. High octopamine levels during the activity phase maximize temporal resolution cAMP-dependently as a prerequisite to mate location. Thus, I suggest that sliding adjustment of odor response threshold and kinetics is based upon relative concentration ratios of intracellular Ca2+ and cyclic nucleotide levels which gate different ion channels synergistically. In addition, I propose a new hypothesis for the cyclic nucleotide-dependent ion channel formed by insect olfactory receptor/coreceptor complexes. Instead of being employed for an ionotropic mechanism of odor detection it is proposed to control subthreshold membrane potential oscillation of sensory neurons, as a basis for temporal encoding of odors. PMID:21228914

  6. Fire alarm system improvement

    SciTech Connect

    Hodge, S.G.

    1994-10-01

    This document contains the Fire Alarm System Test Procedure for Building 234-5Z, 200-West Area on the Hanford Reservation, Richland, Washington. This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the modifications to the Fire Protection systems function as required by project criteria. The ATP will test the Fire Alarm Control Panels, Flow Alarm Pressure Switch, Heat Detectors, Smoke Detectors, Flow Switches, Manual Pull Stations, and Gong/Door by Pass Switches.

  7. Pheromones: a new ergogenic aid in sport?

    PubMed

    Papaloucas, Marios; Kyriazi, Kyriaki; Kouloulias, Vassilis

    2015-10-01

    Nowadays, antidoping laboratories are improving detection methods to confirm the use of forbidden substances. These tests are based both on direct identification of new substances or their metabolites and on indirect evaluation of changes in gene, protein, or metabolite patterns (genomics, proteomics, or metabolomics). The World Anti-Doping Agency (WADA) officially monitors anabolic steroids, hormones, growth factors, β-agonists, hormone and metabolic modulators, masking agents, street drugs, manipulation of blood and blood components, chemical and physical manipulation, gene doping, stimulants, narcotics, glucocorticosteroids, and β-blockers. However, several other substances are under review by WADA. Pheromones accomplish the structure and function of life from its first step, while they have an impact on the body's performance. Both testosterone and pheromones have an ergogenic effect that could potentially affect an athlete's performance. The authors share their questions concerning the potential impact of pheromones in sports. PMID:25710097

  8. Identification of Esters as Novel Aggregation Pheromone Components Produced by the Male Powder-Post Beetle, Lyctus africanus Lesne (Coleoptera: Lyctinae)

    PubMed Central

    2015-01-01

    Lyctus africanus is a cosmopolitan powder-post beetle that is considered one of the major pests threatening timber and timber products. Because infestations of this beetle are inconspicuous, damage is difficult to detect and identification is often delayed. We identified the chemical compounds involved in the aggregation behavior of L. africanus using preparations of crude hexanic extracts from male and female beetles (ME and FE, respectively). Both male and female beetles showed significant preferences for ME, which was found to contain three esters. FE was ignored by both the sexes. Further bioassay confirmed the role of esters in the aggregation behavior of L. africanus. Three esters were identified as 2-propyl dodecanoate, 3-pentyl dodecanoate, and 3-pentyl tetradecanoate. Further behavioral bioassays revealed 3-pentyl dodecanoate to play the main role in the aggregation behavior of female L. africanus beetles. However, significantly more beetles aggregated on a paper disk treated with a blend of the three esters than on a paper disk treated with a single ester. This is the first report on pheromone identification in L. africanus; in addition, the study for the first time presents 3-pentyl dodecanoate as an insect pheromone. PMID:26544984

  9. Low Voltage Alarm Apprenticeship. Related Training Modules. 7.1-26.10 Alarm Basics.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This packet of 70 learning modules on alarm basics is 1 of 8 such packets developed for apprenticeship training for low voltage alarm. Introductory materials are a complete listing of all available modules and a supplementary reference list. Each module contains some or all of these components: goal, performance indicators, study guide (a check…

  10. Video systems for alarm assessment

    SciTech Connect

    Greenwoll, D.A.; Matter, J.C. ); Ebel, P.E. )

    1991-09-01

    The purpose of this NUREG is to present technical information that should be useful to NRC licensees in designing closed-circuit television systems for video alarm assessment. There is a section on each of the major components in a video system: camera, lens, lighting, transmission, synchronization, switcher, monitor, and recorder. Each section includes information on component selection, procurement, installation, test, and maintenance. Considerations for system integration of the components are contained in each section. System emphasis is focused on perimeter intrusion detection and assessment systems. A glossary of video terms is included. 13 figs., 9 tabs.

  11. Laboratory Syntheses of Insect Pheromones.

    ERIC Educational Resources Information Center

    Cormier, Russell A.; Hoban, James N.

    1984-01-01

    Provides background information and procedures for the multi-step synthesis of tiger moth and boll weevil pheromones (sex attractants). These syntheses require several laboratory periods. The tiger moth pheromone synthesis is suitable for introductory organic chemistry while the boll weevil pheromone is recommended for an advanced laboratory…

  12. Volatile Hydrocarbon Pheromones from Beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter reviews literature about hydrocarbons from beetles that serve as long-range pheromones. The most thoroughly studied beetles that use volatile hydrocarbon pheromones belong to the family Nitidulidae in the genera Carpophilus and Colopterus. Published pheromone research deals with behav...

  13. Medical audible alarms: a review

    PubMed Central

    Edworthy, Judy

    2013-01-01

    Objectives This paper summarizes much of the research that is applicable to the design of auditory alarms in a medical context. It also summarizes research that demonstrates that false alarm rates are unacceptably high, meaning that the proper application of auditory alarm design principles are compromised. Target audience Designers, users, and manufacturers of medical information and monitoring systems that indicate when medical or other parameters are exceeded and that are indicated by an auditory signal or signals. Scope The emergence of alarms as a ‘hot topic’; an outline of the issues and design principles, including IEC 60601-1-8; the high incidence of false alarms and its impact on alarm design and alarm fatigue; approaches to reducing alarm fatigue; alarm philosophy explained; urgency in audible alarms; different classes of sound as alarms; heterogeneity in alarm set design; problems with IEC 60601-1-8 and ways of approaching this design problem. PMID:23100127

  14. Pheromone Autodetection: Evidence and Implications.

    PubMed

    Holdcraft, Robert; Rodriguez-Saona, Cesar; Stelinski, Lukasz L

    2016-01-01

    Olfactory communication research with insects utilizing sex pheromones has focused on the effects of pheromones on signal receivers. Early pheromone detection studies using the silkworm moth, Bombyx mori L., and Saturniids led to the assumption that emitters, especially females, are unable to detect their own pheromone. Pheromone anosmia, i.e., the inability of females to detect their conspecific sex pheromone, was often assumed, and initially little attention was paid to female behaviors that may result from autodetection, i.e., the ability of females to detect their sex pheromone. Detection of conspecific pheromone plumes from nearby females may provide information to improve chances of mating success and progeny survival. Since the first documented example in 1972, numerous occurrences of autodetection have been observed and verified in field and laboratory studies. We summarize here a significant portion of research relating to autodetection. Electrophysiological and behavioral investigations, as well as expression patterns of proteins involved in pheromone autodetection are included. We discuss problems inherent in defining a boundary between sex and aggregation pheromones considering the occurrence of autodetection, and summarize hypothesized selection pressures favoring autodetection. Importance of including autodetection studies in future work is emphasized by complications arising from a lack of knowledge combined with expanding the use of pheromones in agriculture. PMID:27120623

  15. Pheromone Autodetection: Evidence and Implications

    PubMed Central

    Holdcraft, Robert; Rodriguez-Saona, Cesar; Stelinski, Lukasz L.

    2016-01-01

    Olfactory communication research with insects utilizing sex pheromones has focused on the effects of pheromones on signal receivers. Early pheromone detection studies using the silkworm moth, Bombyx mori L., and Saturniids led to the assumption that emitters, especially females, are unable to detect their own pheromone. Pheromone anosmia, i.e., the inability of females to detect their conspecific sex pheromone, was often assumed, and initially little attention was paid to female behaviors that may result from autodetection, i.e., the ability of females to detect their sex pheromone. Detection of conspecific pheromone plumes from nearby females may provide information to improve chances of mating success and progeny survival. Since the first documented example in 1972, numerous occurrences of autodetection have been observed and verified in field and laboratory studies. We summarize here a significant portion of research relating to autodetection. Electrophysiological and behavioral investigations, as well as expression patterns of proteins involved in pheromone autodetection are included. We discuss problems inherent in defining a boundary between sex and aggregation pheromones considering the occurrence of autodetection, and summarize hypothesized selection pressures favoring autodetection. Importance of including autodetection studies in future work is emphasized by complications arising from a lack of knowledge combined with expanding the use of pheromones in agriculture. PMID:27120623

  16. Pheromone production, male abundance, body size, and the evolution of elaborate antennae in moths

    PubMed Central

    Symonds, Matthew RE; Johnson, Tamara L; Elgar, Mark A

    2012-01-01

    The males of some species of moths possess elaborate feathery antennae. It is widely assumed that these striking morphological features have evolved through selection for males with greater sensitivity to the female sex pheromone, which is typically released in minute quantities. Accordingly, females of species in which males have elaborate (i.e., pectinate, bipectinate, or quadripectinate) antennae should produce the smallest quantities of pheromone. Alternatively, antennal morphology may be associated with the chemical properties of the pheromone components, with elaborate antennae being associated with pheromones that diffuse more quickly (i.e., have lower molecular weights). Finally, antennal morphology may reflect population structure, with low population abundance selecting for higher sensitivity and hence more elaborate antennae. We conducted a phylogenetic comparative analysis to test these explanations using pheromone chemical data and trapping data for 152 moth species. Elaborate antennae are associated with larger body size (longer forewing length), which suggests a biological cost that smaller moth species cannot bear. Body size is also positively correlated with pheromone titre and negatively correlated with population abundance (estimated by male abundance). Removing the effects of body size revealed no association between the shape of antennae and either pheromone titre, male abundance, or mean molecular weight of the pheromone components. However, among species with elaborate antennae, longer antennae were typically associated with lower male abundances and pheromone compounds with lower molecular weight, suggesting that male distribution and a more rapidly diffusing female sex pheromone may influence the size but not the general shape of male antennae. PMID:22408739

  17. Smart smoke alarm

    DOEpatents

    Warmack, Robert J. Bruce; Wolf, Dennis A; Frank, Steven Shane

    2015-04-28

    Methods and apparatus for smoke detection are disclosed. In one embodiment, a smoke detector uses linear discriminant analysis (LDA) to determine whether observed conditions indicate that an alarm is warranted.

  18. Alarm Notification System

    Energy Science and Technology Software Center (ESTSC)

    1995-03-12

    AN/EMS, the Alarm Notification Energy Management System, is used to monitor digital sensors in PETC buildings and to notify the safety/security operator by both a video and an audio system when a possibly hazardous condition arises.

  19. Food collection and response to pheromones in an ant species exposed to electromagnetic radiation.

    PubMed

    Cammaerts, Marie-Claire; Rachidi, Zoheir; Bellens, François; De Doncker, Philippe

    2013-09-01

    We used the ant species Myrmica sabuleti as a model to study the impact of electromagnetic waves on social insects' response to their pheromones and their food collection. We quantified M. sabuleti workers' response to their trail, area marking and alarm pheromone under normal conditions. Then, we quantified the same responses while under the influence of electromagnetic waves. Under such an influence, ants followed trails for only short distances, no longer arrived at marked areas and no longer orientated themselves to a source of alarm pheromone. Also when exposed to electromagnetic waves, ants became unable to return to their nest and recruit congeners; therefore, the number of ants collecting food increases only slightly and slowly. After 180 h of exposure, their colonies deteriorated. Electromagnetic radiation obviously affects social insects' behavior and physiology. PMID:23320633

  20. Speech Alarms Pilot Study

    NASA Technical Reports Server (NTRS)

    Sandor, Aniko; Moses, Haifa

    2016-01-01

    Speech alarms have been used extensively in aviation and included in International Building Codes (IBC) and National Fire Protection Association's (NFPA) Life Safety Code. However, they have not been implemented on space vehicles. Previous studies conducted at NASA JSC showed that speech alarms lead to faster identification and higher accuracy. This research evaluated updated speech and tone alerts in a laboratory environment and in the Human Exploration Research Analog (HERA) in a realistic setup.

  1. Nerol: An alarm substance of the stingless bee,Trigona fulviventris (Hymenoptera: Apidae).

    PubMed

    Johnson, L K; Wiemer, D F

    1982-09-01

    Bees of the genusTrigona and subgenusTrigona possess volatile materials in their mandibular glands, used as alarm substances and as marking pheromones. Heads of workers ofTrigona fulviventris were analyzed by gas chromatography-mass spectrometry. The two major volatile components were nerol (∼ 50%), and octyl caproate (∼ 20%). Relative to other substances tested at a Costa Rican nest, treatments containing 20 μg of nerol attractedT. fulviventris, depressed numbers of bees leaving the nest by about 50%, and elicited wing vibration and biting. The responses were similar to those obtained with the contents of one worker head. Attraction and biting were also seen in response to captures of colony members by assassin bugs (Apiomerus pictipes) outside a nest entrance; one bee responded in about 15% of the captures. This alarm behavior, although weak, is of interest since it was thought thatT. fulviventris was unusual for its subgenus in its lack of nest defense behaviors. PMID:24413960

  2. Video methods for evaluating physiologic monitor alarms and alarm responses.

    PubMed

    Bonafide, Christopher P; Zander, Miriam; Graham, Christian Sarkis; Weirich Paine, Christine M; Rock, Whitney; Rich, Andrew; Roberts, Kathryn E; Fortino, Margaret; Nadkarni, Vinay M; Lin, Richard; Keren, Ron

    2014-01-01

    False physiologic monitor alarms are extremely common in the hospital environment. High false alarm rates have the potential to lead to alarm fatigue, leading nurses to delay their responses to alarms, ignore alarms, or disable them entirely. Recent evidence from the U.S. Food and Drug Administration (FDA) and The Joint Commission has demonstrated a link between alarm fatigue and patient deaths. Yet, very little scientific effort has focused on the rigorous quantitative measurement of alarms and responses in the hospital setting. We developed a system using multiple temporarily mounted, minimally obtrusive video cameras in hospitalized patients' rooms to characterize physiologic monitor alarms and nurse responses as a proxy for alarm fatigue. This allowed us to efficiently categorize each alarm's cause, technical validity, actionable characteristics, and determine the nurse's response time. We describe and illustrate the methods we used to acquire the video, synchronize and process the video, manage the large digital files, integrate the video with data from the physiologic monitor alarm network, archive the video to secure servers, and perform expert review and annotation using alarm "bookmarks." We discuss the technical and logistical challenges we encountered, including the root causes of hardware failures as well as issues with consent, confidentiality, protection of the video from litigation, and Hawthorne-like effects. The description of this video method may be useful to multidisciplinary teams interested in evaluating physiologic monitor alarms and alarm responses to better characterize alarm fatigue and other patient safety issues in clinical settings. PMID:24847936

  3. Receptor for detection of a Type II sex pheromone in the winter moth Operophtera brumata

    PubMed Central

    Zhang, Dan-Dan; Wang, Hong-Lei; Schultze, Anna; Froß, Heidrun; Francke, Wittko; Krieger, Jürgen; Löfstedt, Christer

    2016-01-01

    How signal diversity evolves under stabilizing selection in a pheromone-based mate recognition system is a conundrum. Female moths produce two major types of sex pheromones, i.e., long-chain acetates, alcohols and aldehydes (Type I) and polyenic hydrocarbons and epoxides (Type II), along different biosynthetic pathways. Little is known on how male pheromone receptor (PR) genes evolved to perceive the different pheromones. We report the identification of the first PR tuned to Type II pheromones, namely ObruOR1 from the winter moth, Operophtera brumata (Geometridae). ObruOR1 clusters together with previously ligand-unknown orthologues in the PR subfamily for the ancestral Type I pheromones, suggesting that O. brumata did not evolve a new type of PR to match the novel Type II signal but recruited receptors within an existing PR subfamily. AsegOR3, the ObruOR1 orthologue previously cloned from the noctuid Agrotis segetum that has Type I acetate pheromone components, responded significantly to another Type II hydrocarbon, suggesting that a common ancestor with Type I pheromones had receptors for both types of pheromones, a preadaptation for detection of Type II sex pheromone. PMID:26729427

  4. The role of pheromonal responses in rodent behavior: future directions for the development of laboratory protocols.

    PubMed

    Bind, Rebecca H; Minney, Sarah M; Rosenfeld, SaraJane; Hallock, Robert M

    2013-03-01

    Pheromones--chemical signals that can elicit responses in a conspecific--are important in intraspecies communication. Information conveyed by pheromones includes the location of an animal, the presence of food or a threat, sexual attraction, courtship, and dam-pup interactions. These chemical messages remain intact and volatile even when animals, such as rodents, are housed in laboratories rather than their natural environment. Laboratory protocols, such as the cage cleaning and sanitation processes, as well as general housing conditions can alter a rodent's normal production of pheromones in both amount and type and thus may affect behavior. In addition, some procedures induce the release of alarm pheromones that subsequently alter the behavior of other rodents. To prevent pheromonal interference and stress-induced pheromonal release in their research subjects, experimenters should assess current laboratory protocols regarding cage cleaning processes, housing designs, and behavioral assays. Here we discuss how the most commonly used laboratory procedures can alter pheromonal signaling and cause confounding effects. PMID:23562094

  5. Smoke alarm tests may not adequately indicate smoke alarm function.

    PubMed

    Peek-Asa, Corinne; Yang, Jingzhen; Hamann, Cara; Young, Tracy

    2011-01-01

    Smoke alarms are one of the most promoted prevention strategies to reduce residential fire deaths, and they can reduce residential fire deaths by half. Smoke alarm function can be measured by two tests: the smoke alarm button test and the chemical smoke test. Using results from a randomized trial of smoke alarms, we compared smoke alarm response to the button test and the smoke test. The smoke alarms found in the study homes at baseline were tested, as well as study alarms placed into homes as part of the randomized trial. Study alarms were tested at 12 and 42 months postinstallation. The proportion of alarms that passed the button test but not the smoke test ranged from 0.5 to 5.8% of alarms; this result was found most frequently among ionization alarms with zinc or alkaline batteries. These alarms would indicate to the owner (through the button test) that the smoke alarm was working, but the alarm would not actually respond in the case of a fire (as demonstrated by failing the smoke test). The proportion of alarms that passed the smoke test but not the button test ranged from 1.0 to 3.0%. These alarms would appear nonfunctional to the owner (because the button test failed), even though the alarm would operate in response to a fire (as demonstrated by passing the smoke test). The general public is not aware of the potential for inaccuracy in smoke alarm tests, and burn professionals can advocate for enhanced testing methods. The optimal test to determine smoke alarm function is the chemical smoke test. PMID:21747329

  6. Clinical Alarms in Intensive Care Units: Perceived Obstacles of Alarm Management and Alarm Fatigue in Nurses

    PubMed Central

    Cho, Ok Min; Lee, Young Whee; Cho, Insook

    2016-01-01

    Objectives The purpose of this descriptive study was to investigate the current situation of clinical alarms in intensive care unit (ICU), nurses' recognition of and fatigue in relation to clinical alarms, and obstacles in alarm management. Methods Subjects were ICU nurses and devices from 48 critically ill patient cases. Data were collected through direct observation of alarm occurrence and questionnaires that were completed by the ICU nurses. The observation time unit was one hour block. One bed out of 56 ICU beds was randomly assigned to each observation time unit. Results Overall 2,184 clinical alarms were counted for 48 hours of observation, and 45.5 clinical alarms occurred per hour per subject. Of these, 1,394 alarms (63.8%) were categorized as false alarms. The alarm fatigue score was 24.3 ± 4.0 out of 35. The highest scoring item was "always get bothered due to clinical alarms". The highest scoring item in obstacles was "frequent false alarms, which lead to reduced attention or response to alarms". Conclusions Nurses reported that they felt some fatigue due to clinical alarms, and false alarms were also obstacles to proper management. An appropriate hospital policy should be developed to reduce false alarms and nurses' alarm fatigue. PMID:26893950

  7. The evolution of pheromonal communication.

    PubMed

    Swaney, William T; Keverne, Eric B

    2009-06-25

    Small-brained rodents have been the principle focus for pheromonal research and have provided comprehensive insights into the chemosensory mechanisms that underpin pheromonal communication and the hugely important roles that pheromones play in behavioural regulation. However, pheromonal communication does not start or end with the mouse and the rat, and work in amphibians reveals much about the likely evolutionary origins of the chemosensory systems that mediate pheromonal effects. The dual olfactory organs (the main olfactory epithelium and the vomeronasal organ), their receptors and their separate projection pathways appear to have ancient evolutionary origins, appearing in the aquatic ancestors of all tetrapods during the Devonian period and so pre-dating the transition to land. While the vomeronasal organ has long been considered an exclusively pheromonal organ, accumulating evidence indicates that it is not the sole channel for the transduction of pheromonal information and that both olfactory systems have been co-opted for the detection of different pheromone signals over the course of evolution. This has also led to great diversity in the vomeronasal and olfactory receptor families, with enormous levels of gene diversity and inactivation of genes in different species. Finally, the evolution of trichromacy as well as huge increases in social complexity have minimised the role of pheromones in the lives of primates, leading to the total inactivation of the vomeronasal system in catarrhine primates while the brain increased in size and behaviour became emancipated from hormonal regulation. PMID:18977248

  8. SUBSURFACE VISUAL ALARM SYSTEM ANALYSIS

    SciTech Connect

    D.W. Markman

    2001-08-06

    difficulty and complexity in determining requirements in adapting existing data communication highways to support the subsurface visual alarm system. These requirements would include such things as added or new communication cables, added Programmable Logic Controller (PLC), Inputs and Outputs (I/O), and communication hardware components, and human machine interfaces and their software operating system. (4) Select the best data communication highway system based on this review of adapting or integrating with existing data communication systems.

  9. FIRE ALARM SYSTEM OUTDATED.

    ERIC Educational Resources Information Center

    CHANDLER, L.T.

    AN EFFICIENT FIRE ALARM SYSTEM SHOULD--(1) PROVIDE WARNING OF FIRES THAT START IN HIDDEN OR UNOCCUPIED LOCATIONS, (2) INDICATE WHERE THE FIRE IS, (3) GIVE ADVANCE WARNING TO FACULTY AND ADMINISTRATION SO THAT PANIC AND CONFUSION CAN BE AVOIDED AND ORDERLY EVACUATION OCCUR, (4) AUTOMATICALLY NOTIFY CITY FIRE HEADQUARTERS OF THE FIRE, (5) OPERATE BY…

  10. Cooperation, conflict, and the evolution of queen pheromones.

    PubMed

    Kocher, Sarah D; Grozinger, Christina M

    2011-11-01

    While chemical communication regulates individual behavior in a wide variety of species, these communication systems are most elaborated in insect societies. In these complex systems, pheromones produced by the reproductive individuals (queens) are critical in establishing and maintaining dominant reproductive status over hundreds to thousands of workers. The proximate and ultimate mechanisms by which these intricate pheromone communication systems evolved are largely unknown, though there has been much debate over whether queen pheromones function as a control mechanism or as an honest signal facilitating cooperation. Here, we summarize results from recent studies in honey bees, bumble bees, wasps, ants and termites. We further discuss evolutionary mechanisms by which queen pheromone communication systems may have evolved. Overall, these studies suggest that queen-worker pheromone communication is a multi-component, labile dialog between the castes, rather than a simple, fixed signal-response system. We also discuss future approaches that can shed light on the proximate and ultimate mechanisms that underlie these complex systems by focusing on the development of increasingly sophisticated genomic tools and their potential applications to examine the molecular mechanisms that regulate pheromone production and perception. PMID:22083225

  11. Pheromone-based mating disruption to control the historical top three insect pests of Wisconsin cranberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2012, the first 3-species pheromone mating disruption program was tested in Wisconsin cranberries. Preliminary data suggest that there was substantial disruption of blackheaded fireworm and Sparganothis fruitworm mating. The pheromone of cranberry fruitworm only contained a single component, and ...

  12. SEX PHEROMONE OF THE PLANT BUG, PHYTOCORTIS conspurcatus Knight (HETEROPTERA: MIRIDAE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Female Phytocoris sp. produce a sex pheromone from metathoracic scent glands. The pheromone consists of hexyl acetate (HA; present in both sexes), with the female-specific compounds, (E)-2-hexenyl acetate (E2HA), octyl acetate (OA) and (E)-2-octenyl acetate (E2OA). HA and E2OA are key components of ...

  13. Spotted cutworm, Xestia c-nigrum (L.) (Lepidoptera: Noctuidae) responses to sex pheromone and blacklight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traps baited with the sex pheromone blend of (Z7)- and (Z5)-tetradecenyl acetate captured significant numbers of male spotted cutworm moths, Xestia c-nigrum (L.). Nearly no males were captured in traps baited with (Z7)-tetradecenyl acetate, the major pheromone component. Antennae of spotted cutworm ...

  14. Putative pathway of sex pheromone biosynthesis and degradation by expression patterns of genes identified from female pheromone gland and adult antenna of Sesamia inferens (Walker).

    PubMed

    Zhang, Ya-Nan; Xia, Yi-Han; Zhu, Jia-Yao; Li, Sheng-Yun; Dong, Shuang-Lin

    2014-05-01

    The general pathway of biosynthesis and degradation for Type-I sex pheromones in moths is well established, but some genes involved in this pathway remain to be characterized. The purple stem borer, Sesamia inferens, employs a pheromone blend containing components with three different terminal functional groups (Z11-16:OAc, Z11-16:OH, and Z11-16:Ald) of Type-I sex pheromones. Thus, it provides a good model to study the diversity of genes involved in pheromone biosynthesis and degradation pathways. By analyzing previously obtained transcriptomic data of the sex pheromone glands and antennae, we identified 73 novel genes that are possibly related to pheromone biosynthesis (46 genes) or degradation (27 genes). Gene expression patterns and phylogenetic analysis revealed that one desaturase (SinfDes4), one fatty acid reductase (SinfFAR2), and one fatty acid xtransport protein (SinfFATP1) genes were predominantly expressed in pheromone glands, and clustered with genes involved in pheromone synthesis in other moth species. Ten genes including five carboxylesterases (SinfCXE10, 13, 14, 18, and 20), three aldehyde oxidases (SinfAOX1, 2 and 3), and two alcohol dehydrogenases (SinfAD1 and 3) were expressed specifically or predominantly in antennae, and could be candidate genes involved in pheromone degradation. SinfAD1 and 3 are the first reported alcohol dehydrogenase genes with antennae-biased expression. Based on these results we propose a pathway involving these potential enzyme-encoding gene candidates in sex pheromone biosynthesis and degradation in S. inferens. This study provides robust background information for further elucidation of the genetic basis of sex pheromone biosynthesis and degradation, and ultimately provides potential targets to disrupt sexual communication in S. inferens for control purposes. PMID:24817326

  15. TICK PHEROMONES AND USES THEREOF

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The subject invention provides materials and methods for tick control. The tick control methods of the subject invention are particularly advantageous because they utilize natural chemical signals (pheromones) in combination with an acaricide. The use of environmentally friendly pheromones makes i...

  16. Identification and synthesis of a female-produced sex pheromone for the cerambycid beetle Prionus californicus.

    PubMed

    Rodstein, Joshua; McElfresh, J Steven; Barbour, James D; Ray, Ann M; Hanks, Lawrence M; Millar, Jocelyn G

    2009-05-01

    Females of the large cerambycid beetle Prionus californicus produce a powerful sex pheromone that attracts males. The pheromone was adsorbed on solid phase microextraction (SPME) fibers inserted into the ovipositor sheath and analyzed by coupled gas chromatography-electroantennogram detection and GC-mass spectrometry. The pheromone was identified as an isomer of 3,5-dimethyldodecanoic acid by a combination of retention index comparisons and mass spectral interpretation. The mass spectrum was misleading because it exhibited enlarged fragment ions that were not representative of branch points or other obvious stabilizing structural elements. The structure was verified by synthesis of 3,5-dimethyldodecanoic acid as a mixture of all four possible isomers, and this mixture was highly attractive to male beetles in field bioassays. The SPME extracts also contained several other compounds that were tentatively identified as chain-extended homologs of the main pheromone component. This pheromone should prove useful for sampling and management of the beetle, which is an important pest of hops, and an occasional pest in a variety of orchard crops. Although this is the first female-produced pheromone to be identified from the Cerambycidae, there is considerable evidence for pheromone production by females of other species in the subfamily Prioninae. Thus, this pheromone and the associated methodology used in its identification should be useful in the identification of female-produced attractant pheromones from other members of the subfamily. PMID:19396491

  17. Control of ELT false alarms

    NASA Technical Reports Server (NTRS)

    Toth, S.; Gershkoff, I.

    1979-01-01

    The statistics of emergency locator transmitter (ELT) alarms are presented. The primary sources of data include ELT Incident Logs, Service Difficulty Reports, and Frequency Interference Reports. The number of reported and unreported alarms is discussed, as are seasonal variations, duration of ELT transmissions, and cost of silencing. Origin, causes, and possible strategies for reducing the impact of alarms on the aviation community are considered.

  18. IMPEDANCE ALARM SYSTEM

    DOEpatents

    Cowen, R.G.

    1959-09-29

    A description is given of electric protective systems and burglar alarm systems of the capacitance type in which the approach of an intruder at a place to be protected varies the capacitance in an electric circuit and the change is thereafter communicated to a remote point to actuate an alarm. According to the invention, an astable transitor multi-vibrator has the amplitude at its output voltage controlled by a change in the sensing capacitance. The sensing capacitance is effectively connected between collector and base of one stage of the multivibrator circuit through the detector-to-monitor line. The output of the detector is a small d-c voltage across the detector-to-monitor line. This d- c voltage is amplified and monitored at the other end of the line, where an appropriate alarm is actuated if a sudden change in the voltage occurs. The present system has a high degree of sensitivity and is very difficult to defeat by known techniques.

  19. Mimicking Insect Communication: Release and Detection of Pheromone, Biosynthesized by an Alcohol Acetyl Transferase Immobilized in a Microreactor

    PubMed Central

    Muñoz, Lourdes; Dimov, Nikolay; Carot-Sans, Gerard; Bula, Wojciech P.; Guerrero, Angel; Gardeniers, Han J. G. E.

    2012-01-01

    Infochemical production, release and detection of (Z,E)-9,11-tetradecadienyl acetate, the major component of the pheromone of the moth Spodoptera littoralis, is achieved in a novel microfluidic system designed to mimic the final step of the pheromone biosynthesis by immobilized recombinant alcohol acetyl transferase. The microfluidic system is part of an “artificial gland”, i.e., a chemoemitter that comprises a microreactor connected to a microevaporator and is able to produce and release a pre-defined amount of the major component of the pheromone from the corresponding (Z,E)-9,11-tetradecadienol. Performance of the entire chemoemitter has been assessed in electrophysiological and behavioral experiments. Electroantennographic depolarizations of the pheromone produced by the chemoemitter were ca. 40% relative to that evoked by the synthetic pheromone. In a wind tunnel, the pheromone released from the evaporator elicited on males a similar attraction behavior as 3 virgin females in most of the parameters considered. PMID:23155372

  20. Similar worldwide patterns in the sex pheromone signal and response in the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The response of Grapholita molesta (Busck) males to three-component sex pheromone blends containing a 100% ratio of the major sex pheromone component, (Z)-8-dodecenyl acetate and a 10% ratio of (Z)-8-dodecenol, but with varying ratios of (E)-8-dodecenyl acetate (0.4%, 5.4%, 10.4%, 30.4%, and 100.1% ...

  1. Electrophysiological and behavioral responses of Diaphania glauculalis males to female sex pheromone.

    PubMed

    Ma, Tao; Liu, Zhi Tao; Zhang, Yuan Yuan; Sun, Zhao Hui; Li, Yi Zhen; Wen, Xiu Jun; Chen, Xiao Yang

    2015-10-01

    The aim of this study is to identify the pheromone active component of female moths, Diaphania glauculalis, an important pest of Anthocephalus chinensis in China. The sex pheromone was extracted from sex pheromone gland extracts of virgin female moth of D. glauculalis using n-hexane, and the pheromone gland extracts of females were analyzed using coupled gas chromatography-electroantennogram detection (GC-EAD) and gas chromatography-mass spectrometry (GC-MS). The sex pheromone active components were based on the comparison the retention time and mass spectrum, with suitable synthetic compounds. (E)-11-hexadecenal (E11-16:Ald) and (E,E)-10,12-hexadecadienal (E10E12-16:Ald) were identified as the major sex pheromone components in the females. Their biological activities were evaluated in a series of electroantennogram (EAG) experiments and four-arm olfactometer assays using synthetic compounds. D. glauculalis males could be attracted by any single component, but a mixture of the E11-16:Ald and E10E12-16:Ald in a ratio of 5:5 elicited a substantial response, demonstrating that the binary blend is essential in male attraction. We therefore conclude that the aldehyde compounds, a mixture of E11-16:Ald and E10E12-16:Ald, comprise the sex pheromone components of D. glauculalis, which might be applied for insect field trapping. PMID:26002369

  2. Hypo- and Hyperglycemic Alarms

    PubMed Central

    Howsmon, Daniel; Bequette, B. Wayne

    2015-01-01

    Soon after the discovery that insulin regulates blood glucose by Banting and Best in 1922, the symptoms and risks associated with hypoglycemia became widely recognized. This article reviews devices to warn individuals of impending hypo- and hyperglycemia; biosignals used by these devices include electroencephalography, electrocardiography, skin galvanic resistance, diabetes alert dogs, and continuous glucose monitors (CGMs). While systems based on other technology are increasing in performance and decreasing in size, CGM technology remains the best method for both reactive and predictive alarming of hypo- or hyperglycemia. PMID:25931581

  3. A context-dependent alarm signal in the ant Temnothorax rugatulus.

    PubMed

    Sasaki, Takao; Hölldobler, Bert; Millar, Jocelyn G; Pratt, Stephen C

    2014-09-15

    Because collective cognition emerges from local signaling among group members, deciphering communication systems is crucial to understanding the underlying mechanisms. Alarm signals are widespread in the social insects and can elicit a variety of behavioral responses to danger, but the functional plasticity of these signals has not been well studied. Here we report an alarm pheromone in the ant Temnothorax rugatulus that elicits two different behaviors depending on context. When an ant was tethered inside an unfamiliar nest site and unable to move freely, she released a pheromone from her mandibular gland that signaled other ants to reject this nest as a potential new home, presumably to avoid potential danger. When the same pheromone was presented near the ants' home nest, they were instead attracted to it, presumably to respond to a threat to the colony. We used coupled gas chromatography/mass spectrometry to identify candidate compounds from the mandibular gland and tested each one in a nest choice bioassay. We found that 2,5-dimethylpyrazine was sufficient to induce rejection of a marked new nest and also to attract ants when released at the home nest. This is the first detailed investigation of chemical communication in the leptothoracine ants. We discuss the possibility that this pheromone's deterrent function can improve an emigrating colony's nest site selection performance. PMID:25013103

  4. The joy of sex pheromones

    PubMed Central

    Gomez-Diaz, Carolina; Benton, Richard

    2013-01-01

    Sex pheromones provide an important means of communication to unite individuals for successful reproduction. Although sex pheromones are highly diverse across animals, these signals fulfil common fundamental roles in enabling identification of a mating partner of the opposite sex, the appropriate species and of optimal fecundity. In this review, we synthesize both classic and recent investigations on sex pheromones in a range of species, spanning nematode worms, insects and mammals. These studies reveal comparable strategies in how these chemical signals are produced, detected and processed in the brain to regulate sexual behaviours. Elucidation of sex pheromone communication mechanisms both defines outstanding models to understand the molecular and neuronal basis of chemosensory behaviours, and reveals how similar evolutionary selection pressures yield convergent solutions in distinct animal nervous systems. EMBO reports advance online publication 13 September 2013; doi:10.1038/embor.2013.140 PMID:24030282

  5. Functional relationship-based alarm processing

    DOEpatents

    Corsberg, D.R.

    1987-04-13

    A functional relationship-based alarm processing system and method analyzes each alarm as it is activated and determines its relative importance with other currently activated alarms and signals in accordance with the relationships that the newly activated alarm has with other currently activated alarms. Once the initial level of importance of the alarm has been determined, that alarm is again evaluated if another related alarm is activated. Thus, each alarm's importance is continuously updated as the state of the process changes during a scenario. Four hierarchical relationships are defined by this alarm filtering methodology: (1) level precursor (usually occurs when there are two alarm settings on the same parameter); (2) direct precursor (based on causal factors between two alarms); (3) required action (system response or action expected within a specified time following activation of an alarm or combination of alarms and process signals); and (4) blocking condition (alarms that are normally expected and are not considered important). 11 figs.

  6. Alarm toe switch

    DOEpatents

    Ganyard, Floyd P.

    1982-01-01

    An alarm toe switch inserted within a shoe for energizing an alarm circuit n a covert manner includes an insole mounting pad into which a miniature reed switch is fixedly molded. An elongated slot perpendicular to the reed switch is formed in the bottom surface of the mounting pad. A permanent cylindrical magnet positioned in the forward portion of the slot with a diameter greater than the pad thickness causes a bump above the pad. A foam rubber block is also positioned in the slot rearwardly of the magnet and holds the magnet in normal inoperative relation. A non-magnetic support plate covers the slot and holds the magnet and foam rubber in the slot. The plate minimizes bending and frictional forces to improve movement of the magnet for reliable switch activation. The bump occupies the knuckle space beneath the big toe. When the big toe is scrunched rearwardly the magnet is moved within the slot relative to the reed switch, thus magnetically activating the switch. When toe pressure is released the foam rubber block forces the magnet back into normal inoperative position to deactivate the reed switch. The reed switch is hermetically sealed with the magnet acting through the wall so the switch assembly S is capable of reliable operation even in wet and corrosive environments.

  7. Male Courtship Pheromones Induce Cloacal Gaping in Female Newts (Salamandridae)

    PubMed Central

    Janssenswillen, Sunita; Bossuyt, Franky

    2016-01-01

    Pheromones are an important component of sexual communication in courting salamanders, but the number of species in which their use has been demonstrated with behavioral evidence remains limited. Here we developed a behavioral assay for demonstrating courtship pheromone use in the aquatically courting Iberian ribbed newt Pleurodeles waltl. By performing an in-depth study of the courtship behavior, we show that females invariably open their cloaca (cloacal gaping) before engaging in pinwheel behavior, the circling movement that is the prelude to spermatophore uptake. In contrast, cloacal gaping was not observed in failed courtships, where females escaped or displayed thanatosis. Since gaping mainly occurred during male amplexus and cloacal imposition, which is the obvious period of pheromone transfer, we next investigated whether male courtship water (i.e., water holding courtship pheromones) alone was able to induce this reaction in females. These tests showed that courtship water induced cloacal gaping significantly more than water, even in the absence of a male. Cloacal gaping thus provides a simple and robust test for demonstrating courtship pheromone use in the Iberian ribbed newt. Since opening the cloaca is an essential prerequisite for spermatophore pick-up in all internally fertilizing salamanders, we hypothesize that variations on this assay will also be useful in several other species. PMID:26771882

  8. Male Courtship Pheromones Induce Cloacal Gaping in Female Newts (Salamandridae).

    PubMed

    Janssenswillen, Sunita; Bossuyt, Franky

    2016-01-01

    Pheromones are an important component of sexual communication in courting salamanders, but the number of species in which their use has been demonstrated with behavioral evidence remains limited. Here we developed a behavioral assay for demonstrating courtship pheromone use in the aquatically courting Iberian ribbed newt Pleurodeles waltl. By performing an in-depth study of the courtship behavior, we show that females invariably open their cloaca (cloacal gaping) before engaging in pinwheel behavior, the circling movement that is the prelude to spermatophore uptake. In contrast, cloacal gaping was not observed in failed courtships, where females escaped or displayed thanatosis. Since gaping mainly occurred during male amplexus and cloacal imposition, which is the obvious period of pheromone transfer, we next investigated whether male courtship water (i.e., water holding courtship pheromones) alone was able to induce this reaction in females. These tests showed that courtship water induced cloacal gaping significantly more than water, even in the absence of a male. Cloacal gaping thus provides a simple and robust test for demonstrating courtship pheromone use in the Iberian ribbed newt. Since opening the cloaca is an essential prerequisite for spermatophore pick-up in all internally fertilizing salamanders, we hypothesize that variations on this assay will also be useful in several other species. PMID:26771882

  9. Identification and functional characterization of sex pheromone receptors in beet armyworm Spodoptera exigua (Hübner).

    PubMed

    Liu, Chengcheng; Liu, Yang; Walker, William B; Dong, Shuanglin; Wang, Guirong

    2013-08-01

    In moths, males can detect a distinct blend of several pheromone components by specialized olfactory receptor neurons (ORNs) on the antennae. Four candidate pheromone receptors (PR) with seven transmembrane domains were identified by homology cloning from the antennae of Spodoptera exigua (Sexi). Phylogenetic analyses reveal that all four odorant receptors (OR) belong to pheromone receptor subtypes. Expression patterns revealed that PRs were male-specific in the antenna except for SexiOR11, which was female antenna-biased. Functional analyses of these PRs were conducted using heterologous expression in Xenopus oocytes. SexiOR13 and SexiOR16 were all broadly activated by multiple pheromone components. SexiOR13 responded robustly to the critical pheromone component, Z9, E12-14:OAc and the minor pheromone component, Z9-14:OAc at a concentration of 10(-4) M. Dose-response studies indicate that SexiOR13 was approximately 4 times more sensitive to Z9,E12-14:OAc (EC50 = 3.158 × 10(-6) M) compared to Z9-14:OAc (EC50 = 1.203 × 10(-5) M). While, SexiOR16 responded robustly to the secondary pheromone component Z9-14:OH with high sensitivity (EC50 = 9.690 × 10(-7) M). However, similar tests of the five pheromones with SexiOR6 and SexiOR11 failed to elicit any response. These results provide basic knowledge to further advance research on the molecular mechanisms of pheromone reception. PMID:23751753

  10. Pheromone-evoked potentials and oscillations in the antennal lobes of the sphinx moth Manduca sexta.

    PubMed

    Heinbockel, T; Kloppenburg, P; Hildebrand, J G

    1998-06-01

    Using intra- and extracellular recording methods, we studied the activity of pheromone-responsive projection neurons in the antennal lobe of the moth Manduca sexta. Intracellularly recorded responses of neurons to antennal stimulation with the pheromone blend characteristically included both inhibitory and excitatory stages of various strengths. To observe the activity of larger groups of neurons, we recorded responses extracellularly in the macroglomerular complex of the antennal lobe. The macroglomerular complex is part of a specialized olfactory subsystem and the site of first-order central processing of sex-pheromonal information. Odors such as the pheromone blend and host-plant (tobacco) volatiles gave rise to evoked potentials that were reproducible upon repeated antennal stimulation. Evoked potentials showed overriding high-frequency oscillations when the antenna was stimulated with the pheromone blend or with either one of the two key pheromone components. The frequency of the oscillations was in the range of 30-50 Hz. Amplitude and frequency of the oscillations varied during the response to pheromonal stimulation. Recording intracellular and extracellular activity simultaneously revealed phase-locking of action potentials to potential oscillations. The results suggest that the activity of neurons of the macroglomerular complex was temporally synchronized, potentially to strengthen the pheromone signal and to improve olfactory perception. PMID:9631552

  11. Sex Pheromone Evolution Is Associated with Differential Regulation of the Same Desaturase Gene in Two Genera of Leafroller Moths

    PubMed Central

    Albre, Jérôme; Liénard, Marjorie A.; Sirey, Tamara M.; Schmidt, Silvia; Tooman, Leah K.; Carraher, Colm; Greenwood, David R.; Löfstedt, Christer; Newcomb, Richard D.

    2012-01-01

    Chemical signals are prevalent in sexual communication systems. Mate recognition has been extensively studied within the Lepidoptera, where the production and recognition of species-specific sex pheromone signals are typically the defining character. While the specific blend of compounds that makes up the sex pheromones of many species has been characterized, the molecular mechanisms underpinning the evolution of pheromone-based mate recognition systems remain largely unknown. We have focused on two sets of sibling species within the leafroller moth genera Ctenopseustis and Planotortrix that have rapidly evolved the use of distinct sex pheromone blends. The compounds within these blends differ almost exclusively in the relative position of double bonds that are introduced by desaturase enzymes. Of the six desaturase orthologs isolated from all four species, functional analyses in yeast and gene expression in pheromone glands implicate three in pheromone biosynthesis, two Δ9-desaturases, and a Δ10-desaturase, while the remaining three desaturases include a Δ6-desaturase, a terminal desaturase, and a non-functional desaturase. Comparative quantitative real-time PCR reveals that the Δ10-desaturase is differentially expressed in the pheromone glands of the two sets of sibling species, consistent with differences in the pheromone blend in both species pairs. In the pheromone glands of species that utilize (Z)-8-tetradecenyl acetate as sex pheromone component (Ctenopseustis obliquana and Planotortrix octo), the expression levels of the Δ10-desaturase are significantly higher than in the pheromone glands of their respective sibling species (C. herana and P. excessana). Our results demonstrate that interspecific sex pheromone differences are associated with differential regulation of the same desaturase gene in two genera of moths. We suggest that differential gene regulation among members of a multigene family may be an important mechanism of molecular innovation in

  12. Sex Pheromone Investigation of Anastrepha serpentina (Diptera: Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Attraction of virgin females to odor of calling males was demonstrated. This sex pheromone mediated attraction occurred during the latter half of a 13-h photophase but not during the first half of the day. Two major components of emissions of calling males, 2,5-dimethylpyrazine (DMP) and 2,5-dihyd...

  13. Understanding behavioral responses of fish to pheromones in natural freshwater environments

    USGS Publications Warehouse

    Johnson, Nicholas S.; Li, Weiming

    2010-01-01

    There is an abundance of experimental studies and reviews that describe odorant-mediated behaviors of fish in laboratory microcosms, but research in natural field conditions has received considerably less attention. Fish pheromone studies in laboratory settings can be highly productive and allow for controlled experimental designs; however, laboratory tanks and flumes often cannot replicate all the physical, physiological and social contexts associated with natural environments. Field experiments can be a critical step in affirming and enhancing understanding of laboratory discoveries and often implicate the ecological significance of pheromones employed by fishes. When findings from laboratory experiments have been further tested in field environments, often different and sometimes contradictory conclusions are found. Examples include studies of sea lamprey (Petromyzon marinus) mating pheromones and fish alarm substances. Here, we review field research conducted on fish pheromones and alarm substances, highlighting the following topics: (1) contradictory results obtained in laboratory and field experiments, (2) how environmental context and physiological status influences behavior, (3) challenges and constraints of aquatic field research and (4) innovative techniques and experimental designs that advance understanding of fish chemical ecology through field research.

  14. The first crop plant genetically engineered to release an insect pheromone for defence

    PubMed Central

    Bruce, Toby J.A.; Aradottir, Gudbjorg I.; Smart, Lesley E.; Martin, Janet L.; Caulfield, John C.; Doherty, Angela; Sparks, Caroline A.; Woodcock, Christine M.; Birkett, Michael A.; Napier, Johnathan A.; Jones, Huw D.; Pickett, John A.

    2015-01-01

    Insect pheromones offer potential for managing pests of crop plants. Volatility and instability are problems for deployment in agriculture but could be solved by expressing genes for the biosynthesis of pheromones in the crop plants. This has now been achieved by genetically engineering a hexaploid variety of wheat to release (E)-β-farnesene (Eβf), the alarm pheromone for many pest aphids, using a synthetic gene based on a sequence from peppermint with a plastid targeting amino acid sequence, with or without a gene for biosynthesis of the precursor farnesyl diphosphate. Pure Eβf was produced in stably transformed wheat lines with no other detectable phenotype but requiring targeting of the gene produced to the plastid. In laboratory behavioural assays, three species of cereal aphids were repelled and foraging was increased for a parasitic natural enemy. Although these studies show considerable potential for aphid control, field trials employing the single and double constructs showed no reduction in aphids or increase in parasitism. Insect numbers were low and climatic conditions erratic suggesting the need for further trials or a closer imitation, in the plant, of alarm pheromone release. PMID:26108150

  15. The first crop plant genetically engineered to release an insect pheromone for defence.

    PubMed

    Bruce, Toby J A; Aradottir, Gudbjorg I; Smart, Lesley E; Martin, Janet L; Caulfield, John C; Doherty, Angela; Sparks, Caroline A; Woodcock, Christine M; Birkett, Michael A; Napier, Johnathan A; Jones, Huw D; Pickett, John A

    2015-01-01

    Insect pheromones offer potential for managing pests of crop plants. Volatility and instability are problems for deployment in agriculture but could be solved by expressing genes for the biosynthesis of pheromones in the crop plants. This has now been achieved by genetically engineering a hexaploid variety of wheat to release (E)-β-farnesene (Eβf), the alarm pheromone for many pest aphids, using a synthetic gene based on a sequence from peppermint with a plastid targeting amino acid sequence, with or without a gene for biosynthesis of the precursor farnesyl diphosphate. Pure Eβf was produced in stably transformed wheat lines with no other detectable phenotype but requiring targeting of the gene produced to the plastid. In laboratory behavioural assays, three species of cereal aphids were repelled and foraging was increased for a parasitic natural enemy. Although these studies show considerable potential for aphid control, field trials employing the single and double constructs showed no reduction in aphids or increase in parasitism. Insect numbers were low and climatic conditions erratic suggesting the need for further trials or a closer imitation, in the plant, of alarm pheromone release. PMID:26108150

  16. A practical method for obtaining useful quantities of pheromones from sea lamprey and other fishes for identification and control

    USGS Publications Warehouse

    Fine, J.M.; Sisler, S.P.; Vrieze, L.A.; Swink, W.D.; Sorensen, P.W.

    2006-01-01

    Pheromonally-mediated trapping is currently being developed for use in sea lamprey control in the Laurentian Great Lakes. To identify and test lamprey pheromones a practical procedure was needed to isolate relatively large quantities of pheromone from lamprey holding water. The present study developed such a technique. It employs Amberlite XAD7HP, an adsorbent resin which we found can extract over 80% of the sea lamprey migratory pheromone from larval holding water at low cost and with relative ease. This technique allowed its to collect tens of milligrams of all three components of the sea lamprey migratory pheromone, eventually permitting both identification and successful field testing. This technique might also be used to collect pheromones released by other species of fish.

  17. Larval salivary glands are a source of primer and releaser pheromone in honey bee ( Apis mellifera L.)

    NASA Astrophysics Data System (ADS)

    Conte, Yves Le; Bécard, Jean-Marc; Costagliola, Guy; de Vaublanc, Gérard; Maâtaoui, Mohamed El; Crauser, Didier; Plettner, Erika; Slessor, Keith N.

    2006-05-01

    A brood pheromone identified in honeybee larvae has primer and releaser pheromone effects on adult bees. Using gas chromatography-mass spectrometry (GC-MS) to evaluate fatty acid esters—the pheromonal compounds—in different parts of the larvae, we have localized the source of the esters as the larval salivary glands. A histochemical study describes the glands and confirms the presence of lipids in the glands. Epithelial cells of the gland likely secrete the fatty acids into the lumen of the gland. These results demonstrate the salivary glands to be a reservoir of esters, components of brood pheromone, in honeybee larvae.

  18. A new pheromone race of Acrobasis nuxvorella (Lepidoptera: Pyralidae).

    PubMed

    Harris, Marvin K; Fu, A A Agustin; Nunez, Humberto; Aranda-Herrera, Enrique; Moreira, Jardel A; McElfresh, J Steven; Millar, Jocelyn G

    2008-06-01

    The sex pheromone of the monophagous Acrobasis nuxvorella Neunzig (Lepidoptera: Pyralidae) was reported as (9E,11Z)-hexadecadienal (9E,11Z-16:Ald) (Biorg. Med. Chem. 4: 331-339, 1996), and it has since been an effective integrated pest management (IPM) tool for monitoring this pest in the United States, but not in Mexico. Field and laboratory studies were conducted to confirm that the species in Mexico was indeed A. nuxvorella and to investigate the pheromone chemistry of the Mexican populations of this species. Initial field trials testing compounds structurally related to the known pheromone component, and blends thereof, indicated that a 100 microg:100 microg blend of (9E,11Z)-hexadecadien-1-yl acetate (9E,11Z-16:Ac):9E,11Z-16:Ald in rubber septa was effective in attracting male moths in Mexico. Coupled gas chromatography-electroantennogram analyses confirmed the presence of these compounds in extracts of pheromone glands of females, and antennae of male moths also responded to the alcohol analog (9E,11Z)-hexadecadien-1-ol (9E,11Z-16:OH). Subsequent field trials of various blends of these three compounds in Mexico showed that 1) both the acetate and aldehyde components were required for optimal attraction of male moths of the Mexican populations, and 2) addition of the alcohol suppressed attraction of males in a dose-dependent manner. Tests with the 1:1 9E,11Z-16:Ac:9E,11Z-16:Ald blend at various sites in the United States showed that this blend attracted some moths, but that moths attracted to 9E,11Z-16:Ald alone were predominant in the population. Furthermore, in preliminary studies the latter seemed not to respond to the blend. These findings indicate that there are two pheromone types of the pecan nut casebearer, and they have major implications for the direct use of these pheromones in pecan IPM. PMID:18613577

  19. Evaluation of ventilator alarms.

    PubMed

    1984-01-01

    An evaluation of ventilator alarms is being carried out for the DHSS within the Welsh National School of Medicine. The technical performance and safety assessments are being made within the Department of Anaesthetics and clinical trials within the South Glamorgan Area Health Authority. For this evaluation (published in 'Health Equipment Information' ['HEI'] No. 124 [June 1984]) one example of each model was assessed (Penlon IDP, Draeger, Medix Ventimonitor 101, BOC Medishield, East Ventilarm, Cape TTL) and the conclusions are based on the assumption that the sample was typical of normal production. This is a continuing programme and the next report will evaluate a group of infant ventilators. For full details of the evaluation findings, readers should consult 'HEI' 124. The following are extracts from the report. PMID:6398368

  20. Sex Pheromones and Reproductive Isolation in Five Mirid Species

    PubMed Central

    Yang, Chang Yeol; Kim, Se-Jin; Kim, Junheon; Kang, Taek-Jun; Ahn, Seung-Joon

    2015-01-01

    Mate location in many mirid bugs (Heteroptera: Miridae) is mediated by female-released sex pheromones. To elucidate the potential role of the pheromones in prezygotic reproductive isolation between sympatric species, we investigated differences in the pheromone systems of five mirid species, Apolygus lucorum, Apolygus spinolae, Orthops campestris, Stenotus rubrovittatus and Taylorilygus apicalis. GC/MS analyses of metathoracic scent gland extracts of virgin females showed that all five species produced mixtures of hexyl butyrate, (E)-2-hexenyl butyrate and (E)-4-oxo-2-hexenal, but in quite different ratios. (E)-2-hexenyl butyrate was the major component of A. spinolae, while hexyl butyrate was the most abundant component in the pheromone blends of the other four species. In addition to the three compounds, a fourth component, (E)-2-octenyl butyrate, was present in the gland extracts of A. lucorum and T. apicalis females. Field tests suggest that the ternary blends of hexyl butyrate, (E)-2-hexenyl butyrate and (E)-4-oxo-2-hexenal as found in the extracts of the females of each species do not inhibit attraction of conspecific males but ensure species-specificity of attraction between A. lucorum, O. campestris and T. apicalis. Furthermore, (E)-2-octenyl butyrate was essential for attraction of A. lucorum and T. apicalis males, but strongly inhibited attraction of male A. spinolae, O. campestris and S. rubrovittatus. The combined results from this study and previous studies suggest that the minor component and pheromone dose in addition to the relative ratio of the major components play an important role in reproductive isolation between mirid species. PMID:25973902

  1. Neurogenic and Neuroendocrine Effects of Goldfish Pheromones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Goldfish (Carassius auratus) use reproductive hormones as endocrine signals to synchronize sexual behavior with gamete maturation, and as exogenous signals (pheromones) to mediate spawning interactions between conspecifics. We examined the differential effects of two hormonal pheromones, prostagland...

  2. Talking Fire Alarms Calm Kids.

    ERIC Educational Resources Information Center

    Executive Educator, 1984

    1984-01-01

    The new microprocessor-based fire alarm systems can help to control smoke movement throughout school buildings by opening vents and doors, identify the burning section, activate voice alarms, provide firefighters with telephone systems during the fire, and release fire-preventing gas. (KS)

  3. Investigating dormant season application of pheromone in citrus to control overwintering and spring populations of Phyllocnistis citrella (Lepidoptera: Gracillariidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The leafminer, Phyllocnistis citrella Stainton, reproduces on leaf flush during winter. Deployment of pheromone during winter could suppress moth populations in spring and summer more than a spring application alone. We tested the primary pheromone component of Phyllocnistis (P. citrella), (Z,Z,E)-7...

  4. Identification of the sex pheromone of the diurnal hawk moth, Hemaris affinis.

    PubMed

    Uehara, Takuya; Naka, Hideshi; Matsuyama, Shigeru; Ando, Tetsu; Honda, Hiroshi

    2015-01-01

    Sex pheromones of nocturnal hawk moths have been identified previously, but not those of diurnal hawk moths. Here, we report laboratory analyses and field testing of the sex pheromone of the diurnal hawk moth, Hemaris affinis (Bremer 1861) (Lepidoptera: Sphingidae). Sex pheromone glands were removed and extracted in hexane during peak calling activity of virgin female moths. Analysis of gland extracts by gas chromatography (GC) with electroantennographic detection revealed three components that elicited responses from male moth antennae. These components were identified, based on their mass spectra and retention indices on two GC columns, as (Z)-11-hexadecenal and (10E, 12Z)- and (10E,12E)-10,12-hexadecadienals with a ratio of 45:20:35. In a field experiment, traps baited with the three-component synthetic blend, but none of the single- or two-component blends, caught male moths. All three pheromone components have been identified previously in pheromones of other Lepidoptera, including Sphingid moths, and thus the ternary blend is probably responsible for the species specificity of the pheromone of this moth. PMID:25533775

  5. Identification of trail pheromone of larva of eastern tent caterpillarMalacosoma americanum (Lepidoptera: Lasiocampidae).

    PubMed

    Crump, D; Silverstein, R M; Williams, H J; Fitzgerald, T D

    1987-03-01

    Previous studies have shown that larvae of the eastern tent caterpillar (Malacosoma americanum F.) mark trails, leading from their tent to feeding sites on host trees, with a pheromone secreted from the posterior tip of the abdominal sternum. 5β-Cholestane-3,24-dione (1) has been identified as an active component of the trail. The larvae have a threshold sensitivity to the pheromone of 10(-11) g/mm of trail. Several related compounds elicit the trail-following response. Two other species of tent caterpillars also responded positively to the pheromone in preliminary laboratory tests. PMID:24301883

  6. Plant odorants interfere with detection of sex pheromone signals by male Heliothis virescens

    PubMed Central

    Pregitzer, Pablo; Schubert, Marco; Breer, Heinz; Hansson, Bill S.; Sachse, Silke; Krieger, Jürgen

    2012-01-01

    In many insects, mate finding relies on female-released sex pheromones, which have to be deciphered by the male olfactory system within an odorous background of plant volatiles present in the environment of a calling female. With respect to pheromone-mediated mate localization, plant odorants may be neutral, favorable, or disturbing. Here we examined the impact of plant odorants on detection and coding of the major sex pheromone component, (Z)-11-hexadecenal (Z11-16:Ald) in the noctuid moth Heliothis virescens. By in vivo imaging the activity in the male antennal lobe (AL), we monitored the interference at the level of olfactory sensory neurons (OSN) to illuminate mixture interactions. The results show that stimulating the male antenna with Z11-16:Ald and distinct plant-related odorants simultaneously suppressed pheromone-evoked activity in the region of the macroglomerular complex (MGC), where Z11-16:Ald-specific OSNs terminate. Based on our previous findings that antennal detection of Z11-16:Ald involves an interplay of the pheromone binding protein (PBP) HvirPBP2 and the pheromone receptor (PR) HR13, we asked if the plant odorants may interfere with any of the elements involved in pheromone detection. Using a competitive fluorescence binding assay, we found that the plant odorants neither bind to HvirPBP2 nor affect the binding of Z11-16:Ald to the protein. However, imaging experiments analyzing a cell line that expressed the receptor HR13 revealed that plant odorants significantly inhibited the Z11-16:Ald-evoked calcium responses. Together the results indicate that plant odorants can interfere with the signaling process of the major sex pheromone component at the receptor level. Consequently, it can be assumed that plant odorants in the environment may reduce the firing activity of pheromone-specific OSNs in H. virescens and thus affect mate localization. PMID:23060749

  7. Beyond species recognition: somatic state affects long-distance sex pheromone communication

    PubMed Central

    Chemnitz, Johanna; Jentschke, Petra C.; Ayasse, Manfred; Steiger, Sandra

    2015-01-01

    Long-range sex pheromones have been subjected to substantial research with a particular focus on their biosynthesis, peripheral perception, central processing and the resulting orientation behaviour of perceivers. Fundamental to the research on sex attractants was the assumption that they primarily coordinate species recognition. However, especially when they are produced by the less limiting sex (usually males), the evolution of heightened condition dependence might be expected and long-range sex pheromones might, therefore, also inform about a signaller's quality. Here we provide, to our knowledge, the first comprehensive study of the role of a male's long-range pheromone in mate choice that combines chemical analyses, video observations and field experiments with a multifactorial manipulation of males' condition. We show that the emission of the long-distance sex pheromone of the burying beetle, Nicrophorus vespilloides is highly condition-dependent and reliably reflects nutritional state, age, body size and parasite load—key components of an individual's somatic state. Both, the quantity and ratio of the pheromone components were affected but the time invested in pheromone emission was largely unaffected by a male's condition. Moreover, the variation in pheromone emission caused by the variation in condition had a strong effect on the attractiveness of males in the field, with males in better nutritional condition, of older age, larger body size and bearing less parasites being more attractive. That a single pheromone is influenced by so many aspects of the somatic state and causes such variation in a male's attractiveness under field conditions was hitherto unknown and highlights the need to integrate indicator models of sexual selection into pheromone research. PMID:26180067

  8. Beyond species recognition: somatic state affects long-distance sex pheromone communication.

    PubMed

    Chemnitz, Johanna; Jentschke, Petra C; Ayasse, Manfred; Steiger, Sandra

    2015-08-01

    Long-range sex pheromones have been subjected to substantial research with a particular focus on their biosynthesis, peripheral perception, central processing and the resulting orientation behaviour of perceivers. Fundamental to the research on sex attractants was the assumption that they primarily coordinate species recognition. However, especially when they are produced by the less limiting sex (usually males), the evolution of heightened condition dependence might be expected and long-range sex pheromones might, therefore, also inform about a signaller's quality. Here we provide, to our knowledge, the first comprehensive study of the role of a male's long-range pheromone in mate choice that combines chemical analyses, video observations and field experiments with a multifactorial manipulation of males' condition. We show that the emission of the long-distance sex pheromone of the burying beetle, Nicrophorus vespilloides is highly condition-dependent and reliably reflects nutritional state, age, body size and parasite load--key components of an individual's somatic state. Both, the quantity and ratio of the pheromone components were affected but the time invested in pheromone emission was largely unaffected by a male's condition. Moreover, the variation in pheromone emission caused by the variation in condition had a strong effect on the attractiveness of males in the field, with males in better nutritional condition, of older age, larger body size and bearing less parasites being more attractive. That a single pheromone is influenced by so many aspects of the somatic state and causes such variation in a male's attractiveness under field conditions was hitherto unknown and highlights the need to integrate indicator models of sexual selection into pheromone research. PMID:26180067

  9. Alarm fatigue: a patient safety concern.

    PubMed

    Sendelbach, Sue; Funk, Marjorie

    2013-01-01

    Research has demonstrated that 72% to 99% of clinical alarms are false. The high number of false alarms has led to alarm fatigue. Alarm fatigue is sensory overload when clinicians are exposed to an excessive number of alarms, which can result in desensitization to alarms and missed alarms. Patient deaths have been attributed to alarm fatigue. Patient safety and regulatory agencies have focused on the issue of alarm fatigue, and it is a 2014 Joint Commission National Patient Safety Goal. Quality improvement projects have demonstrated that strategies such as daily electrocardiogram electrode changes, proper skin preparation, education, and customization of alarm parameters have been able to decrease the number of false alarms. These and other strategies need to be tested in rigorous clinical trials to determine whether they reduce alarm burden without compromising patient safety. PMID:24153215

  10. Monitor alarm fatigue: an integrative review.

    PubMed

    Cvach, Maria

    2012-01-01

    Alarm fatigue is a national problem and the number one medical device technology hazard in 2012. The problem of alarm desensitization is multifaceted and related to a high false alarm rate, poor positive predictive value, lack of alarm standardization, and the number of alarming medical devices in hospitals today. This integrative review synthesizes research and non-research findings published between 1/1/2000 and 10/1/2011 using The Johns Hopkins Nursing Evidence-Based Practice model. Seventy-two articles were included. Research evidence was organized into five main themes: excessive alarms and effects on staff; nurse's response to alarms; alarm sounds and audibility; technology to reduce false alarms; and alarm notification systems. Non-research evidence was divided into two main themes: strategies to reduce alarm desensitization, and alarm priority and notification systems. Evidence-based practice recommendations and gaps in research are summarized. PMID:22839984

  11. An alarm for monitoring CPAP.

    PubMed

    Carter, B; Clare, D; Hochmann, M; Osborne, A; Fraser, T

    1993-04-01

    We have built a device for use within the hospital and at home that is designed to warn of circuit disconnection when used in conjunction with continuous positive airway pressure (CPAP) therapy delivered via ventilators or CPAP generating systems. The Royal Children's Hospital CPAP alarm is a compact, battery operated alarm and monitor of circuit pressure. The device includes intrinsic safety features including a safety blow-off valve, a high pressure alarm and design features that make the device practical, safe and easy to use by both trained hospital personnel and home care attendants with limited training. PMID:8517514

  12. An improved criticality alarm system

    SciTech Connect

    Tyree, W.H.; Gilpin, H.E.; Balmer, D.K.; Vennitti, D.A.

    1991-12-31

    The Rocky Flats Plant near Golden, Colorado is the primary facility for the production of plutonium components used in the US arsenal of nuclear weapons. It is operated by EG&G under contract to the US Department of Energy (DOE). There are ten production buildings on plant site with neutron based criticality alarm systems. These systems have been in operation for the past seventeen years. Changes in the interpretation of A.N.S.I. standards and DOE orders have precipitated an evaluation of detector sensitivity and placement criteria. As a result of this evaluation, improvements in detector design and calibration have improved detector sensitivity by a factor of six. Testing performed on the design defined a minimum sensitivity as required by A.N.S.I. 8.3 and provided information for saturation and survivability for a fission event of up to 1 {times} 10{sup 17} fissions in 80 microseconds. A rigorous testing and calibration program has been developed and is in place. Neutron sensitivity is certified at a nearby reactor which is traceable to N.I.S.T.. 4 refs.

  13. Demonstration and Characterization of a Persistent Pheromone Lure for the Navel Orangeworm, Amyelois transitella (Lepidoptera: Pyralidae).

    PubMed

    Higbee, Bradley S; Burks, Charles S; Larsen, Thomas E

    2014-01-01

    The lack of an effective pheromone lure has made it difficult to monitor and manage the navel orangeworm, Amyelois transitella (Lepidoptera: Pyralidae), in the economically important crops in which it is the primary insect pest. A series of experiments was conducted to demonstrate and characterize a practical synthetic pheromone lure for capturing navel orangeworm males. Traps baited with lures prepared with 1 or 2 mg of a three- or four-component formulation captured similar numbers of males. The fluctuation over time in the number of males captured in traps baited with the pheromone lure correlated significantly with males captured in female-baited traps. Traps baited with the pheromone lure usually did not capture as many males as traps baited with unmated females, and the ratio of males trapped with pheromone to males trapped with females varied between crops and with abundance. The pheromone lure described improves the ability of pest managers to detect and monitor navel orangeworm efficiently and may improve management and decrease insecticide treatments applied as a precaution against damage. Awareness of differences between male interaction with the pheromone lure and calling females, as shown in these data, will be important as further studies and experience determine how best to use this lure for pest management. PMID:26462827

  14. Demonstration and Characterization of a Persistent Pheromone Lure for the Navel Orangeworm, Amyelois transitella (Lepidoptera: Pyralidae)

    PubMed Central

    Higbee, Bradley S.; Burks, Charles S.; Larsen, Thomas E.

    2014-01-01

    The lack of an effective pheromone lure has made it difficult to monitor and manage the navel orangeworm, Amyelois transitella (Lepidoptera: Pyralidae), in the economically important crops in which it is the primary insect pest. A series of experiments was conducted to demonstrate and characterize a practical synthetic pheromone lure for capturing navel orangeworm males. Traps baited with lures prepared with 1 or 2 mg of a three- or four-component formulation captured similar numbers of males. The fluctuation over time in the number of males captured in traps baited with the pheromone lure correlated significantly with males captured in female-baited traps. Traps baited with the pheromone lure usually did not capture as many males as traps baited with unmated females, and the ratio of males trapped with pheromone to males trapped with females varied between crops and with abundance. The pheromone lure described improves the ability of pest managers to detect and monitor navel orangeworm efficiently and may improve management and decrease insecticide treatments applied as a precaution against damage. Awareness of differences between male interaction with the pheromone lure and calling females, as shown in these data, will be important as further studies and experience determine how best to use this lure for pest management. PMID:26462827

  15. Co-option and evolution of non-olfactory proteinaceous pheromones in a terrestrial lungless salamander.

    PubMed

    Doty, Kari A; Wilburn, Damien B; Bowen, Kathleen E; Feldhoff, Pamela W; Feldhoff, Richard C

    2016-03-01

    Gene co-option is a major force in the evolution of novel biological functions. In plethodontid salamanders, males deliver proteinaceous courtship pheromones to the female olfactory system or transdermally to the bloodstream. Molecular studies identified three families of highly duplicated, rapidly evolving pheromones (PRF, PMF, and SPF). Analyses for Plethodon salamanders revealed pheromone mixtures of primarily PRF and PMF. The current study demonstrates that in Desmognathus ocoee--a plesiomorphic species with transdermal delivery--SPF is the major pheromone component representing >30% of total protein. Chromatographic profiles of D. ocoee pheromones were consistent from May through October. LC/MS-MS analysis suggested uniform SPF isoform expression between individual male D. ocoee. A gene ancestry for SPF with the Three-Finger Protein superfamily was supported by intron-exon boundaries, but not by the disulfide bonding pattern. Further analysis of the pheromone mixture revealed paralogs to peptide hormones that contained mutations in receptor binding regions, such that these novel molecules may alter female physiology by acting as hormone agonists/antagonists. Cumulatively, gene co-option, duplication, and neofunctionalization have permitted recruitment of additional gene families for pheromone activity. Such independent co-option events may be playing a key role in salamander speciation by altering male traits that influence reproductive success. PMID:26385001

  16. The trail pheromone of a stingless bee, Trigona corvina (Hymenoptera, Apidae, Meliponini), varies between populations.

    PubMed

    Jarau, Stefan; Dambacher, Jochen; Twele, Robert; Aguilar, Ingrid; Francke, Wittko; Ayasse, Manfred

    2010-09-01

    Stingless bees, like honeybees, live in highly organized, perennial colonies. Their eusocial way of life, which includes division of labor, implies that only a fraction of the workers leave the nest to forage for food. To ensure a sufficient food supply for all colony members, stingless bees have evolved different mechanisms to recruit workers to foraging or even to communicate the location of particular food sites. In some species, foragers deposit pheromone marks between food sources and their nest, which are used by recruited workers to locate the food. To date, pheromone compounds have only been described for 3 species. We have identified the trail pheromone of a further species by means of chemical and electrophysiological analyses and with bioassays testing natural gland extracts and synthetic compounds. The pheromone is a blend of wax type and terpene esters. The relative proportions of the single components showed significant differences in the pheromones of foragers form 3 different colonies. This is the first report on a trail pheromone comprised of esters of 2 different biogenetic origins proving variability of the system. Pheromone specificity may serve to avoid confusions between the trails deposited by foragers of different nests and, thus, to decrease competition at food sources. PMID:20534775

  17. Field and Laboratory Responses of Male Leaf Roller Moths, Choristoneura rosaceana and Pandemis pyrusana, to Pheromone Concentrations in an Attracticide Paste Formulation

    PubMed Central

    Curkovic, Tomislav; Brunner, Jay F.; Landolt, Peter J.

    2009-01-01

    Male leafroller moths, Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae) and Pandemis pyrusana (Kearfott), were evaluated for responses to a paste formulation loaded with a range of concentrations of the two species' pheromone blends and evaluated in a laboratory wind tunnel and in the field. Response criteria were flight, flight towards the pheromone source, and contact with the pheromone source for the wind tunnel assays, and capture of moths in traps for the field tests. In the wind tunnel and field, responses of males of both species to the paste generally increased as the pheromone concentration in the paste was increased. There was little response by either species to paste with less than 0.16% pheromone. The relationship between pheromone concentration and response for P. pyrusana was linear and for C. rosaceana was sinusoidal over the range of pheromone concentrations tested. These patterns were seen both in the wind tunnel and in the field. Initial release rates from the paste of (Z)-11-tetradecenyl acetate, the main component of the pheromone blends of both species was 3.6–3.8 ng/h. Inhibitory thresholds for responses were not reached for either species, using pheromone concentrations as high as 16%, in either the wind tunnel or the field. For both species, response of males to rubber septa with one mg pheromone loads was similar to the response to the paste with pheromone at concentrations greater than 3–4%. For C. rosaceana, rates of contact with the paste in the wind tunnel were statistically similar to rates of contact in response to conspecific females, with paste pheromone concentrations above 1.6%. Response rates for males of P. pyrusana were significantly lower to the paste than to conspecific females at all paste pheromone concentrations tested. Overall, the optimum pheromone concentration in the paste for moth attraction to contact was 3.2 % for C. rosaceana and 8% for P. pyrusana. PMID:19619030

  18. Ultrasonic Technology in Duress Alarms.

    ERIC Educational Resources Information Center

    Lee, Martha A.

    2000-01-01

    Provides the pros and cons of the most commonly used technologies in personal duress alarm systems in the school environment. Discussed are radio frequency devices, infrared systems, and ultrasonic technology. (GR)

  19. Acoustic structures in the alarm calls of Gunnison's prairie dogs.

    PubMed

    Slobodchikoff, C N; Placer, J

    2006-05-01

    Acoustic structures of sound in Gunnison's prairie dog alarm calls are described, showing how these acoustic structures may encode information about three different predator species (red-tailed hawk-Buteo jamaicensis; domestic dog-Canis familaris; and coyote-Canis latrans). By dividing each alarm call into 25 equal-sized partitions and using resonant frequencies within each partition, commonly occurring acoustic structures were identified as components of alarm calls for the three predators. Although most of the acoustic structures appeared in alarm calls elicited by all three predator species, the frequency of occurrence of these acoustic structures varied among the alarm calls for the different predators, suggesting that these structures encode identifying information for each of the predators. A classification analysis of alarm calls elicited by each of the three predators showed that acoustic structures could correctly classify 67% of the calls elicited by domestic dogs, 73% of the calls elicited by coyotes, and 99% of the calls elicited by red-tailed hawks. The different distributions of acoustic structures associated with alarm calls for the three predator species suggest a duality of function, one of the design elements of language listed by Hockett [in Animal Sounds and Communication, edited by W. E. Lanyon and W. N. Tavolga (American Institute of Biological Sciences, Washington, DC, 1960), pp. 392-430]. PMID:16708970

  20. Identifying the C. cactorum Pheromone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cactus moth, Cactoblastis cactorum (Berg), is an invasive pest of Opuntia spp. Since its arrival in the Florida Keys in 1989, it has moved rapidly up the east and west coasts of Florida, threatening to invade the southwestern United States and Mexico. Female moths produce a sex pheromone that ...

  1. Volatile pheromone signalling in Drosophila.

    PubMed

    Smith, Dean P

    2012-03-01

    Once captured by the antenna, 11-cis vaccenyl acetate (cVA) binds to an extracellular binding protein called LUSH that undergoes a conformational shift upon cVA binding. The stable LUSH-cVA complex is the activating ligand for pheromone receptors present on the dendrites of the aT1 neurones, comprising the only neurones that detect cVA pheromone. This mechanism explains the single molecule sensitivity of insect pheromone detection systems. The receptor that recognizes activated LUSH consists of a complex of several proteins, including Or67d, a member of the tuning odourant receptor family, Orco, a co-receptor ion channel, and SNMP, a CD36 homologue that may be an inhibitory subunit. In addition, genetic screens and reconstitution experiments reveal additional factors that are important for pheromone detection. Identification and functional dissection of these factors in Drosophila melanogaster Meigen should permit the identification of homologous factors in pathogenic insects and agricultural pests, which, in turn, may be viable candidates for novel classes of compounds to control populations of target insect species without impacting beneficial species. PMID:24347807

  2. The Influence of Host Plant Volatiles on the Attraction of Longhorn Beetles to Pheromones.

    PubMed

    Collignon, R Maxwell; Swift, Ian P; Zou, Yunfan; McElfresh, J Steven; Hanks, Lawrence M; Millar, Jocelyn G

    2016-03-01

    Host plant volatiles have been shown to strongly synergize the attraction of some longhorn beetle species (Coleoptera: Cerambycidae) to their pheromones. This synergism is well documented among species that infest conifers, but less so for angiosperm-infesting species. To explore the extent of this phenomenon in the Cerambycidae, we first tested the responses of a cerambycid community to a generic pheromone blend in the presence or absence of chipped material from host plants as a source of host volatiles. In the second phase, blends of oak and conifer volatiles were reconstructed, and tested at low, medium, and high release rates with the pheromone blend. For conifer-infesting species in the subfamilies Spondylidinae and Lamiinae, conifer volatiles released at the high rate synergized attraction of some species to the pheromone blend. When comparing high-release rate conifer blend with high-release rate α-pinene as a single component, species responses varied, with Asemum nitidum LeConte being most attracted to pheromones plus α-pinene, whereas Neospondylis upiformis (Mannerheim) were most attracted to pheromones plus conifer blend and ethanol. For oak-infesting species in the subfamily Cerambycinae, with the exception of Phymatodes grandis Casey, which were most attracted to pheromones plus ethanol, neither synthetic oak blend nor ethanol increased attraction to pheromones. The results indicate that the responses to combinations of pheromones with host plant volatiles varied from synergistic to antagonistic, depending on beetle species. Release rates of host plant volatiles also were important, with some high release rates being antagonistic for oak-infesting species, but acting synergistically for conifer-infesting species. PMID:26980612

  3. Functional relationship-based alarm processing

    DOEpatents

    Corsberg, Daniel R.

    1988-01-01

    A functional relationship-based alarm processing system and method analyzes each alarm as it is activated and determines its relative importance with other currently activated alarms and signals in accordance with the relationships that the newly activated alarm has with other currently activated alarms. Once the initial level of importance of the alarm has been determined, that alarm is again evaluated if another related alarm is activated. Thus, each alarm's importance is continuously oupdated as the state of the process changes during a scenario. Four hierarchical relationships are defined by this alarm filtering methodology: (1) level precursor (usually occurs when there are two alarm settings on the same parameter); (2) direct precursor (based on caussal factors between two alarms); (3) required action (system response or action) expected within a specified time following activation of an alarm or combination of alarms and process signals); and (4) blocking condition (alarms that are normally expected and are not considered important). The alarm processing system and method is sensitive to the dynamic nature of the process being monitored and is capable of changing the relative importance of each alarm as necessary.

  4. Functional relationship-based alarm processing system

    DOEpatents

    Corsberg, Daniel R.

    1989-01-01

    A functional relationship-based alarm processing system and method analyzes each alarm as it is activated and determines its relative importance with other currently activated alarms and signals in accordance with the functional relationships that the newly activated alarm has with other currently activated alarms. Once the initial level of importance of the alarm has been determined, that alarm is again evaluated if another related alarm is activated or deactivated. Thus, each alarm's importance is continuously updated as the state of the process changes during a scenario. Four hierarchical relationships are defined by this alarm filtering methodology: (1) level precursor (usually occurs when there are two alarm settings on the same parameter); (2) direct precursor (based on causal factors between two alarms); (3) required action (system response or action expected within a specified time following activation of an alarm or combination of alarms and process signals); and (4) blocking condition (alarms that are normally expected and are not considered important). The alarm processing system and method is sensitive to the dynamic nature of the process being monitored and is capable of changing the relative importance of each alarm as necessary.

  5. Functional relationship-based alarm processing system

    DOEpatents

    Corsberg, D.R.

    1988-04-22

    A functional relationship-based alarm processing system and method analyzes each alarm as it is activated and determines its relative importance with other currently activated alarms and signals in accordance with the functional relationships that the newly activated alarm has with other currently activated alarms. Once the initial level of importance of the alarm has been determined, that alarm is again evaluated if another related alarm is activated or deactivated. Thus, each alarm's importance is continuously updated as the state of the process changes during a scenario. Four hierarchical relationships are defined by this alarm filtering methodology: (1) level precursor (usually occurs when there are two alarm settings on the same parameter); (2) direct precursor (based on causal factors between two alarms); (3) required action (system response or action expected within a specified time following activation of an alarm or combination of alarms and process signals); and (4) blocking condition (alarms that are normally expected and are not considered important). The alarm processing system and method is sensitive to the dynamic nature of the process being monitored and is capable of changing the relative importance of each alarm as necessary. 12 figs.

  6. An anti-steroidogenic inhibitory primer pheromone in male sea lamprey (Petromyzon marinus)

    USGS Publications Warehouse

    Chung-Davidson, Yu-Wen; Wang, Huiyong; Bryan, Mara B.; Wu, Hong; Johnson, Nicholas S.; Li, Weiming

    2013-01-01

    Reproductive functions can be modulated by both stimulatory and inhibitory primer pheromones released by conspecifics. Many stimulatory primer pheromones have been documented, but relatively few inhibitory primer pheromones have been reported in vertebrates. The sea lamprey male sex pheromone system presents an advantageous model to explore the stimulatory and inhibitory primer pheromone functions in vertebrates since several pheromone components have been identified. We hypothesized that a candidate sex pheromone component, 7α, 12α-dihydroxy-5α-cholan-3-one-24-oic acid (3 keto-allocholic acid or 3kACA), exerts priming effects through the hypothalamic-pituitary-gonadal (HPG) axis. To test this hypothesis, we measured the peptide concentrations and gene expressions of lamprey gonadotropin releasing hormones (lGnRH) and the HPG output in immature male sea lamprey exposed to waterborne 3kACA. Exposure to waterborne 3kACA altered neuronal activation markers such as jun and jun N-terminal kinase (JNK), and lGnRH mRNA levels in the brain. Waterborne 3kACA also increased lGnRH-III, but not lGnRH-I or -II, in the forebrain. In the plasma, 3kACA exposure decreased all three lGnRH peptide concentrations after 1 h exposure. After 2 h exposure, 3kACA increased lGnRHI and -III, but decreased lGnRH-II peptide concentrations in the plasma. Plasma lGnRH peptide concentrations showed differential phasic patterns. Group housing condition appeared to increase the averaged plasma lGnRH levels in male sea lamprey compared to isolated males. Interestingly, 15α-hydroxyprogesterone (15α-P) concentrations decreased after prolonged 3kACA exposure (at least 24 h). To our knowledge, this is the only known synthetic vertebrate pheromone component that inhibits steroidogenesis in males.

  7. Use of pagers with an alarm escalation system to reduce cardiac monitor alarm signals.

    PubMed

    Cvach, Maria M; Frank, Robert J; Doyle, Pete; Stevens, Zeina Khouri

    2014-01-01

    Alarm fatigue desensitizes nurses to alarm signals and presents potential for patient harm. This project describes an innovative method of communicating cardiac monitor alarms to pagers using an alarm escalation algorithm. This innovation was tested on 2 surgical progressive care units over a 6-month period. There was a significant decrease in mean frequency and duration of high-priority monitor alarms and improvement in nurses' perception of alarm response time, using this method of alarm communication. PMID:23963169

  8. Hormones and pheromones in regulation of insect behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both pheromones and hormones are well recognized regulators of insect biology. However, the interactions between hormones and pheromones in coordinating insect biology are less well understood. We have studied the interactions between juvenile hormone, its precursor methyl farnesoate, and pheromon...

  9. Evaporation rate of emulsion and oil-base emulsion pheromones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of pheromone evaporation rate is critical to distribute pheromone containers effectively in the forest, orchard and field. There are several factors influencing the pheromone evaporation rate that include wind speed, container size and porosity, release area, temperature, humidity, pherom...

  10. Isolation and identification of sex pheromone ofSymmetrischema tangolias (Gyen) (Lepidoptera: Gelechiidae).

    PubMed

    Griepink, F C; van Beek, T A; Visser, J H; Voerman, S; de Groot, A

    1995-12-01

    The sex pheromone of the South American potato tuber mothSymmetrischema tangolias (syn.:Symmetrischema plaesiosema) was identified as a 2:1 mixture of (E,Z)-3,7-tetradecadien-1-ol acetate and (E)-3-tetradecen-1-ol acetate by means of dual-column GC, EAG, GC-EAD, GC-MS, NMR, and wind-tunnel bioassays. (Z)-5-Tetradecen-1-ol acetate and (Z)-7-tetradecen-1-ol acetate were also identified in the pheromone gland extract. MaleS. tangolias were able to detect these acetates (EAG), but their addition to the two-component sex pheromone did not improve attractiveness. Field trials in Cajamarca and Cusco, Peru, showed that traps baited with the synthetic sex pheromone were able to catch large numbers of maleS. tangolias. PMID:24233902