Sample records for alaska highway gas

  1. 2010 Annual Traffic Volume Report : Alaska Marine Highway System

    DOT National Transportation Integrated Search

    2010-01-01

    The Alaska Marine Highway System (AMHS) serves 31 Alaska ports by transporting passengers and vehicles between coastal communities. This service helps meet the social, educational, health and economic needs of Alaskans.

  2. 2011 Annual Traffic Volume Report : Alaska Marine Highway System

    DOT National Transportation Integrated Search

    2011-01-01

    The Alaska Marine Highway System (AMHS) serves 31 Alaska ports by transporting passengers and vehicles between coastal communities. This service helps meet the social, educational, health and economic needs of Alaskans.

  3. 2009 Annual Traffic Volume Report : Alaska Marine Highway System

    DOT National Transportation Integrated Search

    2009-01-01

    The Alaska Marine Highway System (AMHS) serves 30 Alaska ports by transporting passengers and vehicles between coastal communities. This service helps meet the social, educational, health and economic needs of Alaskans.

  4. Performance of depressed medians on divided highways in Alaska.

    DOT National Transportation Integrated Search

    2015-07-01

    The population of Alaska especially the city of Anchorage is steadily increasing. As a result, traffic volumes are higher and demands to : add lanes to existing highways is increasing in order to relieve congestion. In Alaska, an expressway or freewa...

  5. Canada seeks US financing waiver to clear Alaska Gas Pipeline's path

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corrigan, R.

    1981-09-26

    A Canadian official outlines in an interview his government's hope that the US will proceed with the financing and construction of the Alaska Highway natural gas pipeline. The Canadian portion of the pipeline was begun under good faith because Canada sees her best interests served when US supply needs are met and when both countries have the energy to develop and prosper. Canada asks the Reagan administration to present Congress with a waiver package that will facilitate financing by eliminating a prohibition against pipeline share ownership by the owners of gas in Alaska. (DCK)

  6. 78 FR 7336 - Safety Zone; Alaska Marine Highway System Port Valdez Ferry Terminal, Port Valdez; Valdez, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... 1625-AA00 Safety Zone; Alaska Marine Highway System Port Valdez Ferry Terminal, Port Valdez; Valdez, AK... Alaska Marine Highway System (AMHS) Port Valdez Ferry Terminal. The purpose of the safety zone is to... Security Delegation No. 0170.1. A representative of the Alaska Marine Highway System requested that the...

  7. 2006 Annual Traffic Volume Report : Alaska Marine Highway System

    DOT National Transportation Integrated Search

    2006-01-01

    The Alaska Marine Highway System (AMHS) serves Alaskan communities by transporting passengers and vehicles between coastal communities. This service helps meet the social, educational, health and economic needs of Alaskans.

  8. 2008 Annual Traffic Volume Report : Alaska Marine Highway System

    DOT National Transportation Integrated Search

    2008-01-01

    The Alaska Marine Highway System (AMHS) serves Alaskan communities by transporting passengers and vehicles between coastal communities. This service helps meet the social, educational, health and economic needs of Alaskans.

  9. 2007 Annual Traffic Volume Report : Alaska Marine Highway System

    DOT National Transportation Integrated Search

    2007-01-01

    The Alaska Marine Highway System (AMHS) serves Alaskan communities by transporting passengers and vehicles between coastal communities. This service helps meet the social, educational, health and economic needs of Alaskans.

  10. Home, Alaska Oil and Gas Conservation Commission, State of Alaska

    Science.gov Websites

    State logo Alaska Department of Administration Alaska Oil and Gas Conservation Commission Administration AOGCC Alaska Oil and Gas Conservation Commission Javascript is required to run this webpage

  11. Subsurface flow recently triggered the development of taliks under a sub-Arctic road embankment: a prelude to the collapse of the Alaska Highway?

    NASA Astrophysics Data System (ADS)

    Chen, L.; Fortier, D.; Sliger, M.; McKenzie, J. M.; Murchison, P.

    2017-12-01

    The Alaska Highway extends over 2200 km between central Alaska, U.S.A. and northern British-Columbia, Canada. This transportation corridor is crucial for the economy of Alaska as it is the only terrestrial link between mainland Alaska and the contiguous United States. Northern British Columbia and southwestern Yukon also greatly benefit from this highway for the transportation of goods and people across this remote corner of Canada. About a quarter of the Alaska Highway is built on permafrost, which is typically ice-rich and at a temperature near the point of thawing. Degradation of the permafrost under the embankment has led to severe structural damages to the highway such as deep longitudinal cracks, extended depressions, potholes and sinkholes. Here we present thermal data from the Beaver Creek experimental road test section in southwestern Yukon. Our study investigates convective heat transfers linked to subsurface water flow under the road embankment based on seven years (2009 to 2016) of thermal monitoring. Observation results demonstrate that snowmelt water infiltration in the spring causes rapid temperature increase of the upper portion of the embankment. Later in the summer, subsurface flow under the highway embankment can lead to step temperature-increase rates, which can be 200 times larger than those via conductive heat transfers. In the fall water trapped under the road significantly delays freeze back of the active layer and contributes to higher permafrost temperature. During the monitoring period, we observed the initiation and growth of taliks along sub-surface flow paths. Positive feedback mechanisms related to water flow through the taliks significantly increased permafrost degradation. Such taliks represent an un-precedent and presumably irreversible thermal state of the highway. Similar terrain conditions which severely threaten the structural integrity of the infrastructure on the short term are numerous along the Alaska Highway corridor.

  12. Scenic Byways, Transportation & Public Facilities, State of Alaska

    Science.gov Websites

    Sterling Highway: north segment Sterling Highway: south segment Taylor & Top of the World Highways Highway Taylor Highway & Top of the World Highway Alaska Railroad Prince of Wales Island Road System Highway - northern segment Taylor & Top of the World Highways Alaska Railroad Alaska Railroad Parks

  13. Effects of the earthquake of March 27, 1964, on the Alaska highway system: Chapter C in The Alaska earthquake, March 27, 1964: effects on transportation, communications, and utilities

    USGS Publications Warehouse

    Kachadoorian, Reuben

    1968-01-01

    The great earthquake that struck Alaska about 5:36 p.m., Alaska standard time, Friday, March 27, 1964 (03:36:1.3.0, Greenwich mean time, March 28, 1964), severely crippled the highway system in the south-central part of the State. All the major highways and most secondary roads were impaired. Damage totaled more than $46 million, well over $25 million to bridges and nearly $21 million to roadways. Of the 204 bridges in south-central Alaska, 141 were damaged; 92 were severely damaged or destroyed. The earthquake damaged 186 of the 830 miles of roadway in south-central Alaska, 83 miles so severely that replacement or relocation was required. Earthquake damage to the roadways and bridges was chiefly by (1) seismic shaking, (2) compaction of fills as well as the underlying sediments, (3) lateral displacement of the roadway and bridges, (4) fractures, (5) landslides, (6) avalanches, (7) inundation by seismic sea waves, (8) scouring by seismic sea waves, (9) regional tectonic subsidence, causing inundation and erosion by high tides in subsided areas. The intensity of damage was controlled primarily by the geologic environment (including the depth of the water table) upon which the highway structures rested, and secondarily by the engineering characteristics of the structures. Structures on bedrock were only slightly damaged if at all, whereas those on unconsolidated sediments were slightly to severely damaged, or were completely destroyed by seismic shaking. The low-lying areas underlain by saturated sediments, such as the Snow River Crossing and Turnagain Arm sections of the Seward-Anchorage Highway, were the most severely damaged stretches of the highway system in south-central Alaska. At Snow River and Turnagain Arm, the sediments underlying the roadway are fine grained and the water table is shallow. These factors were responsible for the intense damage along this stretch of the highway. All the bridges on the Copper River Highway except for one on bedrock were

  14. Alaskan Marine Highway System analysis.

    DOT National Transportation Integrated Search

    2011-10-01

    The Alaska Department of Transportation and Public Facilities (DOT&PF) has contracted with a team of consultants, led by the University of Alaska Fairbanks, to conduct a comprehensive analysis of the Alaska Marine Highway System (AMHS) and make recom...

  15. Glaciers along proposed routes extending the Copper River Highway, Alaska

    USGS Publications Warehouse

    Glass, R.L.

    1996-01-01

    Three inland highway routes are being considered by the Alaska Department of Transportation and Public Facilities to connect the community of Cordova in southcentral Alaska to a statewide road system. The routes use part of a Copper River and Northwest Railway alignment along the Copper River through mountainous terrain having numerous glaciers. An advance of any of several glaciers could block and destroy the roadway, whereas retreating glaciers expose large quantities of unconsolidated, unvegetated, and commonly ice-rich sediments. The purpose of this study was to map historical locations of glacier termini near these routes and to describe hazards associated with glaciers and seasonal snow. Historical and recent locations of glacier termini along the proposed Copper River Highway routes were determined by reviewing reports and maps and by interpreting aerial photographs. The termini of Childs, Grinnell, Tasnuna, and Woodworth Glaciers were 1 mile or less from a proposed route in the most recently available aerial photography (1978-91); the termini of Allen, Heney, and Schwan Glaciers were 1.5 miles or less from a proposed route. In general, since 1911, most glaciers have slowly retreated, but many glaciers have had occasional advances. Deserted Glacier and one of its tributary glaciers have surge-type medial moraines, indicating potential rapid advances. The terminus of Deserted Glacier was about 2.1 miles from a proposed route in 1978, but showed no evidence of surging. Snow and rock avalanches and snowdrifts are common along the proposed routes and will periodically obstruct the roadway. Floods from ice-dammed lakes also pose a threat. For example, Van Cleve Lake, adjacent to Miles Glacier, is as large as 4.4 square miles and empties about every 6 years. Floods from drainages of Van Cleve Lake have caused the Copper River to rise on the order of 20 feet at Million Dollar Bridge.

  16. Gas Hydrates | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    R&D Program USGS Energy Resources Program Industry and professional associations AAPG - Energy Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska collaboratively with federal, university, and industry researchers to assess Alaska's gas hydrate resource

  17. National Association Links, Alaska Oil and Gas Conservation Commission,

    Science.gov Websites

    Oil and Gas Conservation Commission Alaska Department of Administration, Alaska Oil and Gas Guidelines Regulatory Regulations Statutes Industry Guidance Bulletins Memorandums of Agreement Links Oil Field Terms (Schlumberger) Spot Price Information (DOE) West Coast Price - NS Oil (DOR) Calendar State

  18. Analyzing Driver Behavior in Passing Zones with Differential Speed Limits on Two-Lane Two-Way Undivided Highways in Alaska

    DOT National Transportation Integrated Search

    2017-12-01

    Due to the relatively high crash rates attributed to two lane highways in Alaska, solutions have been explored to improve safety by providing passing lanes to give drivers a better chance to pass the slow moving vehicles. Drivers of slow moving vehic...

  19. Safety Information, Transportation & Public Facilities, State of Alaska

    Science.gov Websites

    Department of Transportation & Public Facilities/ Safety Information Search DOT&PF State of Alaska DOT&PF> Safety Information DOT&PF Safety Information link to 511 511.alaska.gov - Traveler Information link to AHSO Alaska Highway Safety Office link to HSIP Highway Safety Improvement Program link to

  20. Use of H2Ri wicking fabric to prevent frost boils in the Dalton Highway Beaver Slide area, Alaska final report.

    DOT National Transportation Integrated Search

    2012-08-01

    Many roads in Alaska, such as the Dalton Highway, experience degradation during spring thaw due to the downslope running of shallow groundwater. The water flow : down the slope and pools up in the road embankments, where it freezes, causing frost boi...

  1. Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope

    USGS Publications Warehouse

    Collett, T.S.; Lee, M.W.; Agena, W.F.; Miller, J.J.; Lewis, K.A.; Zyrianova, M.V.; Boswell, R.; Inks, T.L.

    2011-01-01

    In the 1960s Russian scientists made what was then a bold assertion that gas hydrates should occur in abundance in nature. Since this early start, the scientific foundation has been built for the realization that gas hydrates are a global phenomenon, occurring in permafrost regions of the arctic and in deep water portions of most continental margins worldwide. In 1995, the U.S. Geological Survey made the first systematic assessment of the in-place natural gas hydrate resources of the United States. That study suggested that the amount of gas in the gas hydrate accumulations of northern Alaska probably exceeds the volume of known conventional gas resources on the North Slope. Researchers have long speculated that gas hydrates could eventually become a producible energy resource, yet technical and economic hurdles have historically made gas hydrate development a distant goal. This view began to change in recent years with the realization that this unconventional resource could be developed with existing conventional oil and gas production technology. One of the most significant developments was the completion of the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well on the Alaska North Slope, which along with the Mallik project in Canada, have for the first time allowed the rational assessment of gas hydrate production technology and concepts. Almost 40 years of gas hydrate research in northern Alaska has confirmed the occurrence of at least two large gas hydrate accumulations on the North Slope. We have also seen in Alaska the first ever assessment of how much gas could be technically recovered from gas hydrates. However, significant technical concerns need to be further resolved in order to assess the ultimate impact of gas hydrate energy resource development in northern Alaska. ?? 2009 Elsevier Ltd.

  2. Publications - STATEMAP Project | Alaska Division of Geological &

    Science.gov Websites

    ., 2008, Surficial-geologic map of the Salcha River-Pogo area, Big Delta Quadrangle, Alaska: Alaska , Engineering - geologic map, Alaska Highway corridor, Delta Junction to Dot Lake, Alaska: Alaska Division of geologic map of the Salcha River-Pogo area, Big Delta Quadrangle, Alaska: Alaska Division of Geological

  3. A petroleum system model for gas hydrate deposits in northern Alaska

    USGS Publications Warehouse

    Lorenson, T.D.; Collett, Timothy S.; Wong, Florence L.

    2011-01-01

    Gas hydrate deposits are common on the North Slope of Alaska around Prudhoe Bay, however the extent of these deposits is unknown outside of this area. As part of a United States Geological Survey (USGS) and the Bureau of Land Management (BLM) gas hydrate research collaboration, well cutting and mud gas samples have been collected and analyzed from mainly industry-drilled wells on the Alaska North Slope for the purpose of prospecting for gas hydrate deposits. On the Alaska North Slope, gas hydrates are now recognized as an element within a petroleum systems approach or TPS (Total Petroleum System). Since 1979, 35 wells have been samples from as far west as Wainwright to Prudhoe Bay in the east. Geochemical studies of known gas hydrate occurrences on the North Slope have shown a link between gas hydrate and more deeply buried conventional oil and gas deposits. Hydrocarbon gases migrate from depth and charge the reservoir rock within the gas hydrate stability zone. It is likely gases migrated into conventional traps as free gas, and were later converted to gas hydrate in response to climate cooling concurrent with permafrost formation. Gas hydrate is known to occur in one of the sampled wells, likely present in 22 others based gas geochemistry and inferred by equivocal gas geochemistry in 11 wells, and absent in one well. Gas migration routes are common in the North Slope and include faults and widespread, continuous, shallowly dipping permeable sand sections that are potentially in communication with deeper oil and gas sources. The application of this model with the geochemical evidence suggests that gas hydrate deposits may be widespread across the North Slope of Alaska.

  4. Publications - Geospatial Data | Alaska Division of Geological &

    Science.gov Websites

    from rocks collected in the Richardson mining district, Big Delta Quadrangle, Alaska: Alaska Division , 40Ar/39Ar data, Alaska Highway corridor from Delta Junction to Canada border, parts of Mount Hayes

  5. 75 FR 2126 - Regulations Governing the Conduct of Open Seasons for Alaska Natural Gas Transportation Projects...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... Governing the Conduct of Open Seasons for Alaska Natural Gas Transportation Projects; Notice of Alaska Natural Gas Transportation Projects Open Season Pre-Filing Workshop January 5, 2010. On January 12, 2010... and process for commenting upon and holding an open season for an Alaska Natural Gas Transportation...

  6. 75 FR 6370 - Regulations Governing the Conduct of Open Seasons for Alaska Natural Gas Transportation Projects...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... Governing the Conduct of Open Seasons for Alaska Natural Gas Transportation Projects; Notice of Alaska Natural Gas Transportation Projects Open Season Pre-Filing Workshop February 2, 2010. On February 11, 2010... and process for holding and commenting on an open season for an Alaska Natural Gas Transportation...

  7. The State of Alaska Agency Directory

    Science.gov Websites

    State Government Jobs Federal Jobs Starting a Small Business Living Get a Driver License Get a Hunting /Fishing License Get a Birth Certificate, Marriage License, etc. Alaska Permanent Fund Dividend Statewide Highway Conditions Take a University Class Look up Alaska Laws Recreation Find a Recreational Area Alaska

  8. Life cycle costs for Alaska bridges.

    DOT National Transportation Integrated Search

    2014-08-01

    A study was implemented to assist the Alaska Department of Transportation and Public Facilities (ADOT&PF) with life cycle costs for : the Alaska Highway Bridge Inventory. The study consisted of two parts. Part 1 involved working with regional offices...

  9. Deep-seated gravitational slope deformations near the Trans-Alaska Pipeline, east-central Alaska Range, Alaska, USA

    NASA Astrophysics Data System (ADS)

    Newman, S. D.; Clague, J. J.; Rabus, B.; Stead, D.

    2013-12-01

    Multiple, active, deep-seated gravitational slope deformations (DSGSD) are present near the Trans-Alaska Pipeline and Richardson Highway in the east-central Alaska Range, Alaska, USA. We documented spatial and temporal variations in rates of surface movement of the DSGSDs between 2003 and 2011 using RADARSAT-1 and RADARSAT-2 D-InSAR images. Deformation rates exceed 10 cm/month over very large areas (>1 km2) of many rock slopes. Recent climatic change and strong seismic shaking, especially during the 2002 M 7.9 Denali Fault earthquake, appear to have exacerbated slope deformation. We also mapped DSGSD geological and morphological characteristics using field- and GIS-based methods, and constructed a conceptual 2D distinct-element numerical model of one of the DSGSDs. Preliminary results indicate that large-scale buckling or kink-band slumping may be occurring. The DSGSDs are capable of generating long-runout landslides that might impact the Trans-Alaska Pipeline and Richardson Highway. They could also block tributary valleys, thereby impounding lakes that might drain suddenly. Wrapped 24-day RADARSAT-2 descending spotlight interferogram showing deformation north of Fels Glacier. The interferogram is partially transparent and is overlaid on a 2009 WorldView-1 panchromatic image. Acquisition interval: August 2 - August 26, 2011. UTM Zone 6N.

  10. 77 FR 61022 - Notice of National Petroleum Reserve-Alaska Oil and Gas Lease Sale 2012 and Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... National Petroleum Reserve-Alaska Oil and Gas Lease Sale 2012 and Notice of Availability of the Detailed Statement of Sale for Oil and Gas Lease Sale 2012 in the National Petroleum Reserve-- Alaska AGENCY: Bureau... National Petroleum Reserve-Alaska oil and gas lease sale bid opening for tracts in the Northeast and...

  11. A multi-scale permafrost investigation along the Alaska Highway Corridor based on airborne electromagnetic and auxiliary geophysical data

    NASA Astrophysics Data System (ADS)

    Minsley, B. J.; Kass, M. A.; Bloss, B.; Pastick, N.; Panda, S. K.; Smith, B. D.; Abraham, J. D.; Burns, L. E.

    2012-12-01

    More than 8000 square kilometers of airborne electromagnetic (AEM) data were acquired along the Alaska Highway Corridor in 2005-2006 by the Alaska Department of Natural Resources Division of Geological and Geophysical Surveys. Because this large AEM dataset covers diverse geologic and permafrost settings, it is an excellent testbed for studying the electrical geophysical response from a wide range of subsurface conditions. These data have been used in several recent investigations of geology, permafrost, and infrastructure along the highway corridor. In this study, we build on existing interpretations of permafrost features by re-inverting the AEM data using traditional least squares inversion techniques as well as recently developed stochastic methods aimed at quantifying uncertainty in geophysical data. Ground-based geophysical measurements, including time-domain electromagnetic soundings, surface nuclear magnetic resonance soundings, and shallow frequency-domain electromagnetic profiles, have also been acquired to help validate and extend the AEM interpretations. Here, we focus on the integration of different types of data to yield an improved characterization of permafrost, including: methods to discriminate between geologic and thermal controls on resistivity; identifying relationships between shallow resistivity and active layer thickness by incorporating auxiliary remote sensing data and ground-based measurements; quantifying apparent slope-aspect-resistivity relationships, where south-facing slopes appear less resistive than north-facing slopes within similar geologic settings; and investigating an observed decrease in resistivity beneath several areas associated with recent fires.

  12. 75 FR 39579 - Notice of National Petroleum Reserve-Alaska Oil and Gas Lease Sale 2010 and Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-09

    ... Petroleum Reserve-Alaska Oil and Gas Lease Sale 2010 and Notice of Availability of the Detailed Statement of Sale for Oil and Gas Lease Sale 2010 in the National Petroleum Reserve-- Alaska AGENCY: Bureau of Land... notifies the public it will hold a National Petroleum Reserve-Alaska oil and gas lease sale bid opening for...

  13. Publications - SR 60 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey ; Aeromagnetic Survey; Airborne Geophysical Survey; Alaska Highway Corridor; Alaska Peninsula; Alaska, State of ; Bismuth; Chalcopyrite; Chandalar Mining District; Cleary Summit; Coal; Conductivity Survey; Construction

  14. Publications - IC 60 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey (500.0 K) Keywords Admiralty Island; Aeromagnetic Data; Aeromagnetic Map; Aeromagnetic Survey; Airborne Geophysical Survey; Alaska Highway Corridor; Alaska Peninsula; Alaska, State of; Ambler; Ambler Mineral Belt

  15. Permafrost Changes along the Alaska Highway Corridor, Southern Yukon, from Ground Temperature Measurements and DC Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Duguay, M. A.; Lewkowicz, A. G.; Smith, S.

    2011-12-01

    A natural gas pipeline running across permafrost terrain from Prudhoe Bay, Alaska, through Canada to US markets was first proposed more than 30 years ago. In the intervening period, mean annual air temperatures in the region have risen by 0.5-1.0°C and it is probable that the ground has also warmed. Renewed interest in the pipeline has meant that information on permafrost and geotechnical conditions within the Alaska Highway Corridor of the southern Yukon must be updated for engineering design and the assessment of environmental impacts. To accomplish this goal, results from 1977-1981 drilling and ground temperature monitoring programs within the proposed pipeline corridor were used in combination with air photo analysis to select sites potentially sensitive to climate change. The sites are distributed across the extensive and sporadic discontinuous permafrost zones over a distance of 475 km between Beaver Creek and Whitehorse. To date, 11 targeted boreholes with permafrost have been found and cased to permit renewed ground temperature monitoring. By the end of summer 2011, it is expected that another 7 will have been instrumented. Measurable temperature increases relative to the 1970s are expected, except where values were previously just below 0°C. In the latter case, if the sites are still in permafrost, latent heat effects may have substantially moderated the temperature increase. Electrical resistivity tomography surveys are also being conducted to characterize the local permafrost distribution and geotechnical conditions. These 2D resistivity profiles will be used with the ground temperatures to examine current conditions and response to climate change and vegetation disturbance.

  16. National Assessment of Oil and Gas Project: geologic assessment of undiscovered gas hydrate resources on the North Slope, Alaska

    USGS Publications Warehouse

    USGS AK Gas Hydrate Assessment Team: Collett, Timothy S.; Agena, Warren F.; Lee, Myung Woong; Lewis, Kristen A.; Zyrianova, Margarita V.; Bird, Kenneth J.; Charpentier, Ronald R.; Cook, Troy A.; Houseknecht, David W.; Klett, Timothy R.; Pollastro, Richard M.

    2014-01-01

    Scientists with the U.S. Geological Survey have completed the first assessment of the undiscovered, technically recoverable gas hydrate resources beneath the North Slope of Alaska. This assessment indicates the existence of technically recoverable gas hydrate resources—that is, resources that can be discovered, developed, and produced using current technology. The approach used in this assessment followed standard geology-based USGS methodologies developed to assess conventional oil and gas resources. In order to use the USGS conventional assessment approach on gas hydrate resources, three-dimensional industry-acquired seismic data were analyzed. The analyses indicated that the gas hydrates on the North Slope occupy limited, discrete volumes of rock bounded by faults and downdip water contacts. This assessment approach also assumes that the resource can be produced by existing conventional technology, on the basis of limited field testing and numerical production models of gas hydrate-bearing reservoirs. The area assessed in northern Alaska extends from the National Petroleum Reserve in Alaska on the west through the Arctic National Wildlife Refuge on the east and from the Brooks Range northward to the State-Federal offshore boundary (located 3 miles north of the coastline). This area consists mostly of Federal, State, and Native lands covering 55,894 square miles. Using the standard geology-based assessment methodology, the USGS estimated that the total undiscovered technically recoverable natural-gas resources in gas hydrates in northern Alaska range between 25.2 and 157.8 trillion cubic feet, representing 95 percent and 5 percent probabilities of greater than these amounts, respectively, with a mean estimate of 85.4 trillion cubic feet.

  17. Publications - PIR 2008-3B | Alaska Division of Geological & Geophysical

    Science.gov Websites

    , Delta Junction to Dot Lake, Alaska Authors: Reger, R.D., and Solie, D.N. Publication Date: Dec 2008 : Download below or please see our publication sales page for more information. Quadrangle(s): Big Delta , Alaska Highway corridor, Delta Junction to Dot Lake, Alaska: Alaska Division of Geological &

  18. Evaluation of long-term gas hydrate production testing locations on the Alaska north slope

    USGS Publications Warehouse

    Collett, T.S.; Boswell, R.; Lee, M.W.; Anderson, B.J.; Rose, K.; Lewis, K.A.

    2011-01-01

    The results of short duration formation tests in northern Alaska and Canada have further documented the energy resource potential of gas hydrates and justified the need for long-term gas hydrate production testing. Additional data acquisition and long-term production testing could improve the understanding of the response of naturally-occurring gas hydrate to depressurization-induced or thermal-, chemical-, and/or mechanical-stimulated dissociation of gas hydrate into producible gas. The Eileen gas hydrate accumulation located in the Greater Prudhoe Bay area in northern Alaska has become a focal point for gas hydrate geologic and production studies. BP Exploration (Alaska) Incorporated and ConocoPhillips have each established research partnerships with U.S. Department of Energy to assess the production potential of gas hydrates in northern Alaska. A critical goal of these efforts is to identify the most suitable site for production testing. A total of seven potential locations in the Prudhoe Bay, Kuparuk, and Milne Point production units were identified and assessed relative to their suitability as a long-term gas hydrate production test site. The test site assessment criteria included the analysis of the geologic risk associated with encountering reservoirs for gas hydrate testing. The site selection process also dealt with the assessment of the operational/logistical risk associated with each of the potential test sites. From this review, a site in the Prudhoe Bay production unit was determined to be the best location for extended gas hydrate production testing. The work presented in this report identifies the key features of the potential test site in the Greater Prudhoe Bay area, and provides new information on the nature of gas hydrate occurrence and potential impact of production testing on existing infrastructure at the most favorable sites. These data were obtained from well log analysis, geological correlation and mapping, and numerical simulation

  19. Evaluation of long-term gas hydrate production testing locations on the Alaska North Slope

    USGS Publications Warehouse

    Collett, Timothy; Boswell, Ray; Lee, Myung W.; Anderson, Brian J.; Rose, Kelly K.; Lewis, Kristen A.

    2011-01-01

    The results of short duration formation tests in northern Alaska and Canada have further documented the energy resource potential of gas hydrates and justified the need for long-term gas hydrate production testing. Additional data acquisition and long-term production testing could improve the understanding of the response of naturally-occurring gas hydrate to depressurization-induced or thermal-, chemical-, and/or mechanical-stimulated dissociation of gas hydrate into producible gas. The Eileen gas hydrate accumulation located in the Greater Prudhoe Bay area in northern Alaska has become a focal point for gas hydrate geologic and production studies. BP Exploration (Alaska) Incorporated and ConocoPhillips have each established research partnerships with U.S. Department of Energy to assess the production potential of gas hydrates in northern Alaska. A critical goal of these efforts is to identify the most suitable site for production testing. A total of seven potential locations in the Prudhoe Bay, Kuparuk, and Milne Point production units were identified and assessed relative to their suitability as a long-term gas hydrate production test site. The test site assessment criteria included the analysis of the geologic risk associated with encountering reservoirs for gas hydrate testing. The site selection process also dealt with the assessment of the operational/logistical risk associated with each of the potential test sites. From this review, a site in the Prudhoe Bay production unit was determined to be the best location for extended gas hydrate production testing. The work presented in this report identifies the key features of the potential test site in the Greater Prudhoe Bay area, and provides new information on the nature of gas hydrate occurrence and potential impact of production testing on existing infrastructure at the most favorable sites. These data were obtained from well log analysis, geological correlation and mapping, and numerical simulation.

  20. 75 FR 19645 - Denali-The Alaska Gas Pipeline LLC; Notice of Request for Approval of Plan for Conducting an Open...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-15

    ... Alaska Gas Pipeline LLC; Notice of Request for Approval of Plan for Conducting an Open Season April 8... governing Open Seasons for Alaska Natural Gas Transportation Projects, Denali--The Alaska Gas Pipeline LLC (Denali) filed a Request for Commission Approval of its Plan for Conducting an Open Season. The proposed...

  1. 78 FR 59952 - Notice of National Petroleum Reserve-Alaska Oil and Gas Lease Sale 2013 and Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... National Petroleum Reserve-Alaska Oil and Gas Lease Sale 2013 and Notice of Availability of the Detailed Statement of Sale for Oil and Gas Lease Sale 2013 in the National Petroleum Reserve- Alaska AGENCY: Bureau... State Office hereby notifies the public that it will hold a National Petroleum Reserve-Alaska oil and...

  2. Evaluation of long-term gas hydrate production testing locations on the Alaska North Slope

    USGS Publications Warehouse

    Collett, Timothy S.; Boswell, Ray; Lee, Myung W.; Anderson, Brian J.; Rose, Kelly K.; Lewis, Kristen A.

    2012-01-01

    The results of short-duration formation tests in northern Alaska and Canada have further documented the energy-resource potential of gas hydrates and have justified the need for long-term gas-hydrate-production testing. Additional data acquisition and long-term production testing could improve the understanding of the response of naturally occurring gas hydrate to depressurization-induced or thermal-, chemical-, or mechanical-stimulated dissociation of gas hydrate into producible gas. The Eileen gashydrate accumulation located in the Greater Prudhoe Bay area in northern Alaska has become a focal point for gas-hydrate geologic and production studies. BP Exploration (Alaska) Incorporated and ConocoPhillips have each established research partnerships with the US Department of Energy to assess the production potential of gas hydrates in northern Alaska. A critical goal of these efforts is to identify the most suitable site for production testing. A total of seven potential locations in the Prudhoe Bay, Kuparuk River, and Milne Point production units were identified and assessed relative to their suitability as a long-term gas-hydrate-production test sites. The test-site-assessment criteria included the analysis of the geologic risk associated with encountering reservoirs for gas-hydrate testing. The site-selection process also dealt with the assessment of the operational/logistical risk associated with each of the potential test sites. From this review, a site in the Prudhoe Bay production unit was determined to be the best location for extended gas-hydrate-production testing. The work presented in this report identifies the key features of the potential test site in the Greater Prudhoe Bay area and provides new information on the nature of gas-hydrate occurrence and the potential impact of production testing on existing infrastructure at the most favorable sites. These data were obtained from well-log analysis, geological correlation and mapping, and numerical

  3. Gas hydrate prospecting using well cuttings and mud-gas geochemistry from 35 wells, North Slope, Alaska

    USGS Publications Warehouse

    Lorenson, T.D.; Collett, Timothy S.

    2011-01-01

    Gas hydrate deposits are common on the North Slope of Alaska around Prudhoe Bay; however, the extent of these deposits is unknown outside of this area. As part of a U.S. Geological Survey (USGS) and Bureau of Land Management gas hydrate research collaboration, well-cutting and mud-gas samples have been collected and analyzed from mainly industry-drilled wells on the North Slope for the purpose of prospecting for gas hydrate deposits. On the Alaska North Slope, gas hydrates are now recognized as an element within a petroleum systems approach or "total petroleum system." Since 1979, 35 wells have been sampled from as far west as Wainwright to Prudhoe Bay in the east. Regionally, the USGS has assessed the gas hydrate resources of the North Slope and determined that there is about 85.4 trillion cubic feet of technically recoverable hydrate-bound gas within three assessment units. The assessment units are defined mainly by three separate stratigraphic sections and constrained by the physical temperatures and pressures where gas hydrate can form. Geochemical studies of known gas hydrate occurrences on the North Slope have shown a link between gas hydrate and more deeply buried conventional oil and gas deposits. The link is established when hydrocarbon gases migrate from depth and charge the reservoir rock within the gas hydrate stability zone. It is likely gases migrated into conventional traps as free gas and were later converted to gas hydrate in response to climate cooling concurrent with permafrost formation. Results from this study indicate that some thermogenic gas is present in 31 of the wells, with limited evidence of thermogenic gas in four other wells and only one well with no thermogenic gas. Gas hydrate is known to occur in one of the sampled wells, likely present in 22 others on the basis of gas geochemistry, and inferred by equivocal gas geochemistry in 11 wells, and one well was without gas hydrate. Gas migration routes are common in the North Slope and

  4. Evaluation of the stability of gas hydrates in Northern Alaska

    USGS Publications Warehouse

    Kamath, A.; Godbole, S.P.; Ostermann, R.D.; Collett, T.S.

    1987-01-01

    The factors which control the distribution of in situ gas hydrate deposits in colder regions such as Northern Alaska include; mean annual surface temperatures (MAST), geothermal gradients above and below the base of permafrost, subsurface pressures, gas composition, pore-fluid salinity and the soil condition. Currently existing data on the above parameters for the forty-six wells located in Northern Alaska were critically examined and used in calculations of depths and thicknesses of gas hydrate stability zones. To illustrate the effect of gas hydrate stability zones, calculations were done for a variable gas composition using the thermodynamic model of Holder and John (1982). The hydrostatic pressure gradient of 9.84 kPa/m (0.435 lbf/in2ft), the salinity of 10 parts per thousand (ppt) and the coarse-grained soil conditions were assumed. An error analysis was performed for the above parameters and the effect of these parameters on hydrate stability zone calculations were determined. After projecting the hydrate stability zones for the forty-six wells, well logs were used to identify and to obtain values for the depth and thickness of hydrate zones. Of the forty-six wells, only ten wells showed definite evidence of the presence of gas hydrates. ?? 1987.

  5. 76 FR 68502 - National Petroleum Reserve-Alaska Oil and Gas Lease Sale 2011 and Notice of Availability of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-04

    ... Petroleum Reserve-Alaska Oil and Gas Lease Sale 2011 and Notice of Availability of the Detailed Statement of Sale for Oil and Gas Lease Sale 2011 in the National Petroleum Reserve-Alaska AGENCY: Bureau of Land... tracts in the National Petroleum Reserve-Alaska. The United States reserves the right to withdraw any...

  6. 77 FR 28617 - Call for Nominations and Comments for the 2012 National Petroleum Reserve-Alaska Oil and Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-15

    ... Nominations and Comments for the 2012 National Petroleum Reserve-Alaska Oil and Gas Lease Sale AGENCY: Bureau... tracts for oil and gas leasing for the 2012 National Petroleum Reserve in Alaska (NPR-A) oil and gas... receive all nominations and comments on these tracts for consideration on or before June 29, 2012...

  7. 76 FR 36145 - Call for Nominations and Comments for the 2011 National Petroleum Reserve-Alaska Oil and Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLAK930000.L13100000.EI0000.241A] Call for Nominations and Comments for the 2011 National Petroleum Reserve--Alaska Oil and Gas Lease Sale AGENCY: Bureau... tracts for oil and gas leasing for the 2011 National Petroleum Reserve--Alaska (NPR-A) oil and gas lease...

  8. Debris flow susceptibility mapping using a qualitative heuristic method and Flow-R along the Yukon Alaska Highway Corridor, Canada

    NASA Astrophysics Data System (ADS)

    Blais-Stevens, A.; Behnia, P.

    2016-02-01

    This research activity aimed at reducing risk to infrastructure, such as a proposed pipeline route roughly parallel to the Yukon Alaska Highway Corridor (YAHC), by filling geoscience knowledge gaps in geohazards. Hence, the Geological Survey of Canada compiled an inventory of landslides including debris flow deposits, which were subsequently used to validate two different debris flow susceptibility models. A qualitative heuristic debris flow susceptibility model was produced for the northern region of the YAHC, from Kluane Lake to the Alaska border, by integrating data layers with assigned weights and class ratings. These were slope angle, slope aspect, surficial geology, plan curvature, and proximity to drainage system. Validation of the model was carried out by calculating a success rate curve which revealed a good correlation with the susceptibility model and the debris flow deposit inventory compiled from air photos, high-resolution satellite imagery, and field verification. In addition, the quantitative Flow-R method was tested in order to define the potential source and debris flow susceptibility for the southern region of Kluane Lake, an area where documented debris flow events have blocked the highway in the past (e.g. 1988). Trial and error calculations were required for this method because there was not detailed information on the debris flows for the YAHC to allow us to define threshold values for some parameters when calculating source areas, spreading, and runout distance. Nevertheless, correlation with known documented events helped define these parameters and produce a map that captures most of the known events and displays debris flow susceptibility in other, usually smaller, steep channels that had not been previously documented.

  9. Debris flow susceptibility mapping using a qualitative heuristic method and Flow-R along the Yukon Alaska Highway Corridor, Canada

    NASA Astrophysics Data System (ADS)

    Blais-Stevens, A.; Behnia, P.

    2015-05-01

    This research activity aimed at reducing risk to infrastructure, such as a proposed pipeline route roughly parallel to the Yukon Alaska Highway Corridor (YAHC) by filling geoscience knowledge gaps in geohazards. Hence, the Geological Survey of Canada compiled an inventory of landslides including debris flow deposits, which were subsequently used to validate two different debris flow susceptibility models. A qualitative heuristic debris flow susceptibility model was produced for the northern region of the YAHC, from Kluane Lake to the Alaska border, by integrating data layers with assigned weights and class ratings. These were slope angle, slope aspect (derived from a 5 m × 5 m DEM), surficial geology, permafrost distribution, and proximity to drainage system. Validation of the model was carried out by calculating a success rate curve which revealed a good correlation with the susceptibility model and the debris flow deposit inventory compiled from air photos, high resolution satellite imagery, and field verification. In addition, the quantitative Flow-R method was tested in order to define the potential source and debris flow susceptibility for the southern region of Kluane Lake, an area where documented debris flow events have blocked the highway in the past (e.g., 1988). Trial and error calculations were required for this method because there was not detailed information on the debris flows for the YAHC to allow us to define threshold values for some parameters when calculating source areas, spreading, and runout distance. Nevertheless, correlation with known documented events helped define these parameters and produce a map that captures most of the known events and displays debris flow susceptibility in other, usually smaller, steep channels that had not been previously documented.

  10. Long-term autonomous volcanic gas monitoring with Multi-GAS at Mount St. Helens, Washington, and Augustine Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Kelly, P. J.; Ketner, D. M.; Kern, C.; Lahusen, R. G.; Lockett, C.; Parker, T.; Paskievitch, J.; Pauk, B.; Rinehart, A.; Werner, C. A.

    2015-12-01

    In recent years, the USGS Volcano Hazards Program has worked to implement continuous real-time in situ volcanic gas monitoring at volcanoes in the Cascade Range and Alaska. The main goal of this ongoing effort is to better link the compositions of volcanic gases to other real-time monitoring data, such as seismicity and deformation, in order to improve baseline monitoring and early detection of volcanic unrest. Due to the remote and difficult-to-access nature of volcanic-gas monitoring sites in the Cascades and Alaska, we developed Multi-GAS instruments that can operate unattended for long periods of time with minimal direct maintenance from field personnel. Our Multi-GAS stations measure H2O, CO2, SO2, and H2S gas concentrations, are comprised entirely of commercial off-the-shelf components, and are powered by small solar energy systems. One notable feature of our Multi-GAS stations is that they include a unique capability to perform automated CO2, SO2, and H2S sensor verifications using portable gas standards while deployed in the field, thereby allowing for rigorous tracking of sensor performances. In addition, we have developed novel onboard data-processing routines that allow diagnostic and monitoring data - including gas ratios (e.g. CO2/SO2) - to be streamed in real time to internal observatory and public web pages without user input. Here we present over one year of continuous data from a permanent Multi-GAS station installed in August 2014 in the crater of Mount St. Helens, Washington, and several months of data from a station installed near the summit of Augustine Volcano, Alaska in June 2015. Data from the Mount St. Helens Multi-GAS station has been streaming to a public USGS site since early 2015, a first for a permanent Multi-GAS site. Neither station has detected significant changes in gas concentrations or compositions since they were installed, consistent with low levels of seismicity and deformation.

  11. 2002 Alaska traffic collisions

    DOT National Transportation Integrated Search

    2004-09-01

    Traffic collisions injured 6370 and killed 89 Alaskans during 2002. There were, on average, : 36.5 crashes per day and 1.5 crashes per hour. One person died on Alaska highways every : 4.1 days. : There were 272 traffic collisions per 100 million ...

  12. Alaska Energy Inventory Project: Consolidating Alaska's Energy Resources

    NASA Astrophysics Data System (ADS)

    Papp, K.; Clough, J.; Swenson, R.; Crimp, P.; Hanson, D.; Parker, P.

    2007-12-01

    Alaska has considerable energy resources distributed throughout the state including conventional oil, gas, and coal, and unconventional coalbed and shalebed methane, gas hydrates, geothermal, wind, hydro, and biomass. While much of the known large oil and gas resources are concentrated on the North Slope and in the Cook Inlet regions, the other potential sources of energy are dispersed across a varied landscape from frozen tundra to coastal settings. Despite the presence of these potential energy sources, rural Alaska is mostly dependent upon diesel fuel for both electrical power generation and space heating needs. At considerable cost, large quantities of diesel fuel are transported to more than 150 roadless communities by barge or airplane and stored in large bulk fuel tank farms for winter months when electricity and heat are at peak demands. Recent increases in the price of oil have severely impacted the price of energy throughout Alaska, and especially hard hit are rural communities and remote mines that are off the road system and isolated from integrated electrical power grids. Even though the state has significant conventional gas resources in restricted areas, few communities are located near enough to these resources to directly use natural gas to meet their energy needs. To address this problem, the Alaska Energy Inventory project will (1) inventory and compile all available Alaska energy resource data suitable for electrical power generation and space heating needs including natural gas, coal, coalbed and shalebed methane, gas hydrates, geothermal, wind, hydro, and biomass and (2) identify locations or regions where the most economic energy resource or combination of energy resources can be developed to meet local needs. This data will be accessible through a user-friendly web-based interactive map, based on the Alaska Department of Natural Resources, Land Records Information Section's (LRIS) Alaska Mapper, Google Earth, and Terrago Technologies' Geo

  13. Performance analysis of the Dowling multi-lane roundabouts in Anchorage, Alaska.

    DOT National Transportation Integrated Search

    2010-06-01

    The first multi-lane roundabouts in Alaska were constructed in 2004 at the ramps of the Dowling Road/Seward Highway interchange in : Anchorage. These serve as junctions for commuters accessing the Seward Highway. As vehicle traffic in Anchorage conti...

  14. Performance analysis of the Dowling multi-lane roundabouts in Anchorage, Alaska : [summary].

    DOT National Transportation Integrated Search

    2010-06-01

    The first multi-lane roundabouts in Alaska were constructed in 2004 at the ramps of the Dowling Road/Seward Highway interchange in : Anchorage. These serve as junctions for commuters accessing the Seward Highway. As vehicle traffic in Anchorage conti...

  15. Application of the multi-dimensional surface water modeling system at Bridge 339, Copper River Highway, Alaska

    USGS Publications Warehouse

    Brabets, Timothy P.; Conaway, Jeffrey S.

    2009-01-01

    The Copper River Basin, the sixth largest watershed in Alaska, drains an area of 24,200 square miles. This large, glacier-fed river flows across a wide alluvial fan before it enters the Gulf of Alaska. Bridges along the Copper River Highway, which traverses the alluvial fan, have been impacted by channel migration. Due to a major channel change in 2001, Bridge 339 at Mile 36 of the highway has undergone excessive scour, resulting in damage to its abutments and approaches. During the snow- and ice-melt runoff season, which typically extends from mid-May to September, the design discharge for the bridge often is exceeded. The approach channel shifts continuously, and during our study it has shifted back and forth from the left bank to a course along the right bank nearly parallel to the road.Maintenance at Bridge 339 has been costly and will continue to be so if no action is taken. Possible solutions to the scour and erosion problem include (1) constructing a guide bank to redirect flow, (2) dredging approximately 1,000 feet of channel above the bridge to align flow perpendicular to the bridge, and (3) extending the bridge. The USGS Multi-Dimensional Surface Water Modeling System (MD_SWMS) was used to assess these possible solutions. The major limitation of modeling these scenarios was the inability to predict ongoing channel migration. We used a hybrid dataset of surveyed and synthetic bathymetry in the approach channel, which provided the best approximation of this dynamic system. Under existing conditions and at the highest measured discharge and stage of 32,500 ft3/s and 51.08 ft, respectively, the velocities and shear stresses simulated by MD_SWMS indicate scour and erosion will continue. Construction of a 250-foot-long guide bank would not improve conditions because it is not long enough. Dredging a channel upstream of Bridge 339 would help align the flow perpendicular to Bridge 339, but because of the mobility of the channel bed, the dredged channel would

  16. Brookian sequence well log correlation sections and occurrence of gas hydrates, north-central North Slope, Alaska

    USGS Publications Warehouse

    Lewis, Kristen A.; Collett, Timothy S.

    2013-01-01

    Gas hydrates are naturally occurring crystalline, ice-like substances that consist of natural gas molecules trapped in a solid-water lattice. Because of the compact nature of their structure, hydrates can effectively store large volumes of gas and, consequently, have been identified as a potential unconventional energy source. First recognized to exist geologically in the 1960s, significant accumulations of gas hydrate have been found throughout the world. Gas hydrate occurrence is limited to environments such as permafrost regions and subsea sediments because of the pressure and temperature conditions required for their formation and stability. Permafrost-associated gas hydrate accumulations have been discovered in many regions of the Arctic, including Russia, Canada, and the North Slope of Alaska. Gas hydrate research has a long history in northern Alaska. This research includes the drilling, coring, and well log evaluation of two gas hydrate stratigraphic test wells and two resource assessments of gas hydrates on the Alaska North Slope. Building upon these previous investigations, this report provides a summary of the pertinent well log, gas hydrate, and stratigraphic data for key wells related to gas hydrate occurrence in the north-central North Slope. The data are presented in nine well log correlation sections with 122 selected wells to provide a regional context for gas hydrate accumulations and the relation of the accumulations to key stratigraphic horizons and to the base of the ice-bearing permafrost. Also included is a well log database that lists the location, available well logs, depths, and other pertinent information for each of the wells on the correlation section.

  17. Publications - SR 32 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS SR 32 Publication Details Title: Oil and gas basins map of Alaska Authors: Ehm, Arlen Publication ): Alaska Statewide Bibliographic Reference Ehm, Arlen, 1983, Oil and gas basins map of Alaska: Alaska Sheets Sheet 1 Oil and gas basins map of Alaska, scale 1:2,500,000 (21.0 M) Keywords Alaska Statewide

  18. Alaska North Slope regional gas hydrate production modeling forecasts

    USGS Publications Warehouse

    Wilson, S.J.; Hunter, R.B.; Collett, T.S.; Hancock, S.; Boswell, R.; Anderson, B.J.

    2011-01-01

    A series of gas hydrate development scenarios were created to assess the range of outcomes predicted for the possible development of the "Eileen" gas hydrate accumulation, North Slope, Alaska. Production forecasts for the "reference case" were built using the 2002 Mallik production tests, mechanistic simulation, and geologic studies conducted by the US Geological Survey. Three additional scenarios were considered: A "downside-scenario" which fails to identify viable production, an "upside-scenario" describes results that are better than expected. To capture the full range of possible outcomes and balance the downside case, an "extreme upside scenario" assumes each well is exceptionally productive.Starting with a representative type-well simulation forecasts, field development timing is applied and the sum of individual well forecasts creating the field-wide production forecast. This technique is commonly used to schedule large-scale resource plays where drilling schedules are complex and production forecasts must account for many changing parameters. The complementary forecasts of rig count, capital investment, and cash flow can be used in a pre-appraisal assessment of potential commercial viability.Since no significant gas sales are currently possible on the North Slope of Alaska, typical parameters were used to create downside, reference, and upside case forecasts that predict from 0 to 71??BM3 (2.5??tcf) of gas may be produced in 20 years and nearly 283??BM3 (10??tcf) ultimate recovery after 100 years.Outlining a range of possible outcomes enables decision makers to visualize the pace and milestones that will be required to evaluate gas hydrate resource development in the Eileen accumulation. Critical values of peak production rate, time to meaningful production volumes, and investments required to rule out a downside case are provided. Upside cases identify potential if both depressurization and thermal stimulation yield positive results. An "extreme upside

  19. Pollen, vegetation, and climate relationships along the Dalton Highway, Alaska, USA: a basis for holocene paleoecological and paleoclimatic studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Short, S.K.; Andrews, J.T.; Webber, P.J.

    The Dalton Highway extends from Fairbanks, in the interior of Alaska, to Prudhoe Bay on the Arctic Coastal Plain. Over this 600-km transect, July temperatures vary from 17 to 5/sup 0/C. Studies of vegetation along the Dalton Highway identified nine major zones. During the vegetation survey moss polsters were collected within the survey quadrats. Two hundred and nineteen individual moss polsters document regional variations in the modern pollen spectra along this vegetation/climate transect. Treeline is distinguished by a change from dominance by spruce and shrub (especially alder) pollen to the south to herb and shrub (especially willow) pollen dominance tomore » the north; a shift from high modern pollen concentration values to very low values is also noted. Discriminant analysis indicated that the vegetation zones are also defined by different pollen assemblages, suggesting that former changes in vegetation during the Holocene, as recorded in peat deposits, could be interpreted from pollen diagrams. Transfer functions were developed to examine the statistical association between the modern pollen rain and several climatic parameters. The correlation between pollen taxa and mean July temperature was r = 0.84. The most important taxa in the equation are Picea, Alnus, Pinus, Sphagnum, and Betula. 59 references, 7 figures, 4 tables.« less

  20. Crustal structure of the alaska range orogen and denali fault along the richardson highway

    USGS Publications Warehouse

    Fisher, M.A.; Pellerin, L.; Nokleberg, W.J.; Ratchkovski, N.A.; Glen, J.M.G.

    2007-01-01

    A suite of geophysical data obtained along the Richardson Highway crosses the eastern Alaska Range and Denali fault and reveals the crustal structure of the orogen. Strong seismic reflections from within the orogen north of the Denali fault dip as steeply as 25?? north and extend downward to depths between 20 and 25 km. These reflections reveal what is probably a shear zone that transects most of the crust and is part of a crustal-scale duplex structure that probably formed during the Late Cretaceous. These structures, however, appear to be relict because over the past 20 years, they have produced little or no seismicity despite the nearby Mw = 7.9 Denali fault earthquake that struck in 2002. The Denali fault is nonreflective, but we interpret modeled magnetotelluric (MT), gravity, and magnetic data to propose that the fault dips steeply to vertically. Modeling of MT data shows that aftershocks of the 2002 Denali fault earthquake occurred above a rock body that has low electrical resistivity (>10 ohm-m), which might signify the presence of fluids in the middle and lower crust. Copyright ?? 2007 The Geological Society of America.

  1. Assessment of undiscovered oil and gas resources of the Susitna Basin, southern Alaska, 2017

    USGS Publications Warehouse

    Stanley, Richard G.; Potter, Christopher J.; Lewis, Kristen A.; Lillis, Paul G.; Shah, Anjana K.; Haeussler, Peter J.; Phillips, Jeffrey D.; Valin, Zenon C.; Schenk, Christopher J.; Klett, Timothy R.; Brownfield, Michael E.; Drake II, Ronald M.; Finn, Thomas M.; Haines, Seth S.; Higley, Debra K.; Houseknecht, David W.; Le, Phuong A.; Marra, Kristen R.; Mercier, Tracey J.; Leathers-Miller, Heidi M.; Paxton, Stanley T.; Pearson, Ofori N.; Tennyson, Marilyn E.; Woodall, Cheryl A.; Zyrianova, Margarita V.

    2018-05-01

    The U.S. Geological Survey (USGS) recently completed an assessment of undiscovered, technically recoverable oil and gas resources in the Susitna Basin of southern Alaska. Using a geology-based methodology, the USGS estimates that mean undiscovered volumes of about 2 million barrels of oil and nearly 1.7 trillion cubic feet of gas may be found in this area.

  2. Persistence of triclopyr in Alaska subarctic environments

    USDA-ARS?s Scientific Manuscript database

    Field dissipation and vertical mobility of the butoxyethyl ester of triclopyr was assessed in two distinct geographic locations within the state of Alaska. Interior sites near Delta Junction included vegetated plots within highway rights-of-way (ROW) and Conservation Reserve Program (CRP) fields and...

  3. Asphalt concrete properties and performance in Alaska : final report

    DOT National Transportation Integrated Search

    1981-07-01

    This report examines asphalt pavement properties of 117 older highway sections within the State of Alaska. Principal research objectives included: 1) documentation of commonly measured physical properties of the asphalt concrete cores and extracted a...

  4. 40 CFR 60.4216 - What requirements must I meet for engines used in Alaska?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engines used in Alaska? 60.4216 Section 60.4216 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... alternative plan for implementing the requirements of 40 CFR part 60, subpart IIII, for public-sector electrical utilities located in rural areas of Alaska not accessible by the Federal Aid Highway System. This...

  5. Frozen soil lateral resistance for the seismic design of highway bridge foundations : [summary].

    DOT National Transportation Integrated Search

    2012-12-01

    With recent seismic activity and earthquakes in Alaska and throughout the Pacific Rim, seismic design is becoming an increasingly important public safety concern for : highway bridge designers. Hoping to generate knowledge that can improve the seismi...

  6. Asphalt concrete properties and performance in Alaska : executive summary

    DOT National Transportation Integrated Search

    1982-01-01

    A major study of asphalt concrete properties and performance of Alaska's highways was completed in 1982. The project data base was obtained from 117 statewide pavement sections through numerous core samples and measurements of cracking, patching and ...

  7. Study on highway transportation greenhouse effect external cost estimation in China

    NASA Astrophysics Data System (ADS)

    Chu, Chunchao; Pan, Fengming

    2017-03-01

    This paper focuses on estimating highway transportation greenhouse gas emission volume and greenhouse gas external cost in China. At first, composition and characteristics of greenhouse gases were analysed about highway transportation emissions. Secondly, an improved model of emission volume was presented on basis of highway transportation energy consumption, which may be calculated by virtue of main affecting factors such as the annual average operation miles of each type of the motor vehicles and the unit consumption level. the model of emission volume was constructed which considered not only the availability of energy consumption statistics of highway transportation but also the greenhouse gas emission factors of various fuel types issued by IPCC. Finally, the external cost estimation model was established about highway transportation greenhouse gas emission which combined emission volume with the unit external cost of CO2 emissions. An example was executed to confirm presented model which ranged from 2011 to 2015 Year in China. The calculated result shows that the highway transportation total emission volume and greenhouse gas external cost are growing up, but the unit turnover external cost is steadily declining. On the whole overall, the situation is still grim about highway transportation greenhouse gas emission, and the green transportation strategy should be put into effect as soon as possible.

  8. Ground temperatures across the old and new roads at mile 130, Richardson highway during 1954-62

    USGS Publications Warehouse

    Jin, H.; Brewer, M.C.; Perkins, R.A.; ,

    2002-01-01

    Year-round studies of the geothermal impacts of road construction in a "warm" permafrost area were undertaken during 1954-1962 at six road sections across the Richardson and Glenn Highways, in the vicinity of Glennallen, Alaska. As a result, significant information was obtained regarding the temperatures, and changes in temperatures, in the permafrost beneath and adjacent to the highway sections.

  9. Assessment of potential oil and gas resources in source rocks of the Alaska North Slope, 2012

    USGS Publications Warehouse

    Houseknecht, David W.; Rouse, William A.; Garrity, Christopher P.; Whidden, Katherine J.; Dumoulin, Julie A.; Schenk, Christopher J.; Charpentier, Ronald R.; Cook, Troy A.; Gaswirth, Stephanie B.; Kirschbaum, Mark A.; Pollastro, Richard M.

    2012-01-01

    The U.S. Geological Survey estimated potential, technically recoverable oil and gas resources for source rocks of the Alaska North Slope. Estimates (95-percent to 5-percent probability) range from zero to 2 billion barrels of oil and from zero to nearly 80 trillion cubic feet of gas.

  10. INTERRELATIONSHIPS BETWEEN IN-SITU GAS HYDRATES AND HEAVY OIL OCCURRENCES ON THE NORTH SLOPE OF ALASKA.

    USGS Publications Warehouse

    Collett, T.S.

    1985-01-01

    In 1973, during the drilling of the West Sak #1 well on the North Slope of Alaska, oil was first recovered from a shallow Cretaceous sand interval which was later informally named the West Sak sands by ARCO Alaska. Stratigraphically above the West Sak sands there are two additional oil bearing sands, and are informally referred to by ARCO as the Ugnu and the 2150 horizons. Gas hydrates are interpreted to exist in the West Sak #6 well in conjunction with heavy oil and the physical properties of this oil may have been influenced by the gas hydrate. Prior to this work, only experimental evidence suggested that hydrates and oil could exist in the same reservoir.

  11. Geologic Assessment of Undiscovered, Technically Recoverable Coalbed-Gas Resources in Cretaceous and Tertiary Rocks, North Slope and Adjacent State Waters, Alaska

    USGS Publications Warehouse

    Roberts, Stephen B.

    2008-01-01

    The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geology-based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States, focusing on the distribution, quantity, and availability of oil and natural gas resources. The USGS has completed an assessment of the undiscovered, technically recoverable coalbed-gas resources in Cretaceous and Tertiary rocks underlying the North Slope and adjacent State waters of Alaska (USGS Northern Alaska Province 5001). The province is a priority Energy Policy and Conservation Act (EPCA) province for the National Assessment because of its potential for oil and gas resources. The assessment of this province is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (stratigraphy, sedimentology, petrophysical properties), and hydrocarbon traps (trap formation and timing). In the Northern Alaska Province, the USGS used this geologic framework to define one composite coalbed gas total petroleum system and three coalbed gas assessment units within the petroleum system, and quantitatively estimated the undiscovered coalbed-gas resources within each assessment unit.

  12. Assessment of Coalbed Gas Resources in Cretaceous and Tertiary Rocks on the North Slope, Alaska, 2006

    USGS Publications Warehouse

    Roberts, Steve; Barker, Charles E.; Bird, Kenneth J.; Charpentier, Ronald R.; Cook, Troy; Houseknecht, David W.; Klett, Timothy R.; Pollastro, Richard M.; Schenk, Christopher J.

    2006-01-01

    The North Slope of Alaska is a vast area of land north of the Brooks Range, extending from the Chukchi Sea eastward to the Canadian border. This Arctic region is known to contain extensive coal deposits; hypothetical coal resource estimates indicate that nearly 4 trillion short tons of coal are in Cretaceous and Tertiary rocks. Because of the large volume of coal, other studies have indicated that this region might also have potential for significant coalbed gas resources. The present study represents the first detailed assessment of undiscovered coalbed gas resources beneath the North Slope by the USGS. The assessment is based on the total petroleum system (TPS) concept. Geologic elements within a TPS relate to hydrocarbon source rocks (maturity, hydrocarbon generation, migration), the characteristics of reservoir rocks, and trap and seal formation. In the case of coalbed gas, the coal beds serve as both source rock and reservoir. The Brookian Coalbed Gas Composite TPS includes coal-bearing rocks in Cretaceous and Tertiary strata underlying the North Slope and adjacent Alaska State waters. Assessment units (AUs) within the TPS (from oldest to youngest) include the Nanushuk Formation Coalbed Gas AU, the Prince Creek and Tuluvak Formations Coalbed Gas AU, and the Sagavanirktok Formation Coalbed Gas AU.

  13. Alternative Low-Sulfur Diesel Fuel Transition Program for Alaska Final Rule

    EPA Pesticide Factsheets

    This final rule will implement the requirements for sulfur, cetane and aromatics for highway, nonroad, locomotive and marine diesel fuel produced in, imported into, and distributed or used in the rural areas of Alaska.

  14. Assessment of undiscovered oil and gas resources of the Cook Inlet region, south-central Alaska, 2011

    USGS Publications Warehouse

    Stanley, Richard G.; Charpentier, Ronald R.; Cook, Troy A.; Houseknecht, David W.; Klett, Timothy R.; Lewis, Kristen A.; Lillis, Paul G.; Nelson, Philip H.; Phillips, Jeffrey D.; Pollastro, Richard M.; Potter, Christopher J.; Rouse, William A.; Saltus, Richard W.; Schenk, Christopher J.; Shah, Anjana K.; Valin, Zenon C.

    2011-01-01

    The U.S. Geological Survey (USGS) recently completed a new assessment of undiscovered, technically recoverable oil and gas resources in the Cook Inlet region of south-central Alaska. Using a geology-based assessment methodology, the USGS estimates that mean undiscovered volumes of nearly 600 million barrels of oil, about 19 trillion cubic feet of natural gas, and 46 million barrels of natural gas liquids remain to be found in this area.

  15. Evaluation of gas production potential from gas hydrate deposits in National Petroleum Reserve Alaska using numerical simulations

    USGS Publications Warehouse

    Nandanwar, Manish S.; Anderson, Brian J.; Ajayi, Taiwo; Collett, Timothy S.; Zyrianova, Margarita V.

    2016-01-01

    An evaluation of the gas production potential of Sunlight Peak gas hydrate accumulation in the eastern portion of the National Petroleum Reserve Alaska (NPRA) of Alaska North Slope (ANS) is conducted using numerical simulations, as part of the U.S. Geological Survey (USGS) gas hydrate Life Cycle Assessment program. A field scale reservoir model for Sunlight Peak is developed using Advanced Processes & Thermal Reservoir Simulator (STARS) that approximates the production design and response of this gas hydrate field. The reservoir characterization is based on available structural maps and the seismic-derived hydrate saturation map of the study region. A 3D reservoir model, with heterogeneous distribution of the reservoir properties (such as porosity, permeability and vertical hydrate saturation), is developed by correlating the data from the Mount Elbert well logs. Production simulations showed that the Sunlight Peak prospect has the potential of producing 1.53 × 109 ST m3 of gas in 30 years by depressurization with a peak production rate of around 19.4 × 104 ST m3/day through a single horizontal well. To determine the effect of uncertainty in reservoir properties on the gas production, an uncertainty analysis is carried out. It is observed that for the range of data considered, the overall cumulative production from the Sunlight Peak will always be within the range of ±4.6% error from the overall mean value of 1.43 × 109 ST m3. A sensitivity analysis study showed that the proximity of the reservoir from the base of permafrost and the base of hydrate stability zone (BHSZ) has significant effect on gas production rates. The gas production rates decrease with the increase in the depth of the permafrost and the depth of BHSZ. From the overall analysis of the results it is concluded that Sunlight Peak gas hydrate accumulation behaves differently than other Class III reservoirs (Class III reservoirs are composed of a single layer of hydrate with no

  16. Engineering Geology | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Highway and development of avalanche susceptibility and prediction models near Atigun Pass. Alaska coastal

  17. Geologic cross section, gas desorption, and other data from four wells drilled for Alaska rural energy project, Wainwright, Alaska, coalbed methane project, 2007-2009

    USGS Publications Warehouse

    Clark, Arthur C.; Roberts, Stephen B.; Warwick, Peter D.

    2010-01-01

    Energy costs in rural Alaskan communities are substantial. Diesel fuel, which must be delivered by barge or plane, is used for local power generation in most off-grid communities. In addition to high costs incurred for the purchase and transport of the fuel, the transport, transfer, and storage of fuel products pose significant difficulties in logistically challenging and environmentally sensitive areas. The Alaska Rural Energy Project (AREP) is a collaborative effort between the United States Geological Survey (USGS) and the Bureau of Land Management Alaska State Office along with State, local, and private partners. The project is designed to identify and evaluate shallow (<3,000 ft) subsurface resources such as coalbed methane (CBM) and geothermal in the vicinity of rural Alaskan communities where these resources have the potential to serve as local-use power alternatives. The AREP, in cooperation with the North Slope Borough, the Arctic Slope Regional Corporation, and the Olgoonik Corporation, drilled and tested a 1,613 ft continuous core hole in Wainwright, Alaska, during the summer of 2007 to determine whether CBM represents a viable source of energy for the community. Although numerous gas-bearing coal beds were encountered, most are contained within the zone of permafrost that underlies the area to a depth of approximately 1,000 ft. Because the effective permeability of permafrost is near zero, the chances of producing gas from these beds are highly unlikely. A 7.5-ft-thick gas-bearing coal bed, informally named the Wainwright coal bed, was encountered in the sub-permafrost at a depth of 1,242 ft. Additional drilling and testing conducted during the summers of 2008 and 2009 indicated that the coal bed extended throughout the area outlined by the drill holes, which presently is limited to the access provided by the existing road system. These tests also confirmed the gas content of the coal reservoir within this area. If producible, the Wainwright coal bed

  18. Pre- and post-drill comparison of the Mount Elbert gas hydrate prospect, Alaska North Slope

    USGS Publications Warehouse

    Lee, M.W.; Agena, W.F.; Collett, T.S.; Inks, T.L.

    2011-01-01

    In 2006, the United States Geological Survey (USGS) completed a detailed analysis and interpretation of available 2-D and 3-D seismic data, along with seismic modeling and correlation with specially processed downhole well log data for identifying potential gas hydrate accumulations on the North Slope of Alaska. A methodology was developed for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area. The study revealed a total of 14 gas hydrate prospects in this area.In order to validate the gas hydrate prospecting protocol of the USGS and to acquire critical reservoir data needed to develop a longer-term production testing program, a stratigraphic test well was drilled at the Mount Elbert prospect in the Milne Point area in early 2007. The drilling confirmed the presence of two prominent gas-hydrate-bearing units in the Mount Elbert prospect, and high quality well logs and core data were acquired. The post-drill results indicate pre-drill predictions of the reservoir thickness and the gas-hydrate saturations based on seismic and existing well data were 90% accurate for the upper unit (hydrate unit D) and 70% accurate for the lower unit (hydrate unit C), confirming the validity of the USGS approach to gas hydrate prospecting. The Mount Elbert prospect is the first gas hydrate accumulation on the North Slope of Alaska identified primarily on the basis of seismic attribute analysis and specially processed downhole log data. Post-drill well log data enabled a better constraint of the elastic model and the development of an improved approach to the gas hydrate prospecting using seismic attributes. ?? 2009.

  19. Molecular and isotopic analyses of the hydrocarbon gases within gas hydrate-bearing rock units of the Prudhoe Bay-Kuparuk River area in northern Alaska

    USGS Publications Warehouse

    Valin, Zenon C.; Collett, Timothy S.

    1992-01-01

    Gas hydrates, which are crystalline substances of water molecules that encase gas molecules, have the potential for being a significant source of natural gas. World-wide estimates for the amount of gas contained in hydrates range from 1.1 x 105 to 2.7 x 108 trillion cubic feet. Gas hydrates exist in many Arctic regions, including the North Slope of Alaska. The two primary objectives of the U.S. Geological Survey Gas Hydrate Research Project are (1) to map the distribution of in-situ gas hydrates on the North Slope of Alaska, and (2) to evaluate the geologic parameters that control the distribution of these gas hydrates. To aid in this study, British Petroleum Exploration, ARCO Alaska, Exxon Company USA, and the Continental Oil Company allowed the U.S. Geological Survey to collect geochemical samples from drilling North Slope production wells. Molecular analysis of gaseous drill cutting and free-flowing gas samples from 10 production wells drilled in the Prudhoe Bay, Kuparuk River, and Milne Point oil fields indicates that methane is the primary hydrocarbon gas in the gas hydrate-bearing stratigraphic units. Isotopic data for several of these rock units indicate that the methane within the inferred gas hydrate occurences originated from both microbial and thermogenic processes.

  20. Sections | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    State Employees DGGS State of Alaska search Department of Natural Resources, Division of Geological & Communications Alaska Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates Sponsors' Proposals STATEMAP

  1. The Impact of Energy Efficient Vehicles on Gas Tax (Highway Trust Fund) and Alternative Funding for Infrastructure Construction, Upgrade, and Maintenance

    DOT National Transportation Integrated Search

    2012-01-01

    Road construction, upgrades, and maintenance have largely been financed by a gas tax since the first tax on fuel was instituted by the federal government in 1932. Monies from the gas tax and other sources are deposited in the Highway Trust Fund to ha...

  2. 2010 updated assessment of undiscovered oil and gas resources of the National Petroleum Reserve in Alaska (NPRA)

    USGS Publications Warehouse

    Houseknecht, D.W.; Bird, K.J.; Schuenemeyer, J.H.; Attanasi, E.D.; Garrity, C.P.; Schenk, C.J.; Charpentier, R.R.; Pollastro, R.M.; Cook, T.A.; and Klett, T.R.

    2010-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean volumes of 896 million barrels of oil (MMBO) and about 53 trillion cubic feet (TCFG) of nonassociated natural gas in conventional, undiscovered accumulations within the National Petroleum Reserve in Alaska and adjacent State waters. The estimated volume of undiscovered oil is significantly lower than estimates released in 2002, owing primarily to recent exploration drilling that revealed an abrupt transition from oil to gas and reduced reservoir quality in the Alpine sandstone 15-20 miles west of the giant Alpine oil field. The National Petroleum Reserve in Alaska (NPRA) has been the focus of oil exploration during the past decade, stimulated by the mid-1990s discovery of the adjacent Alpine field-the largest onshore oil discovery in the United States during the past 25 years. Recent activities in NPRA, including extensive 3-D seismic surveys, six Federal lease sales totaling more than $250 million in bonus bids, and completion of more than 30 exploration wells on Federal and Native lands, indicate in key formations more gas than oil and poorer reservoir quality than anticipated. In the absence of a gas pipeline from northern Alaska, exploration has waned and several petroleum companies have relinquished assets in the NPRA. This fact sheet updates U.S. Geological Survey (USGS) estimates of undiscovered oil and gas in NPRA, based on publicly released information from exploration wells completed during the past decade and on the results of research that documents significant Cenozoic uplift and erosion in NPRA. The results included in this fact sheet-released in October 2010-supersede those of a previous assessment completed by the USGS in 2002.

  3. Performance Analysis of the Dowling Multi-Lane Roundabouts, in Anchorage, Alaska.

    DOT National Transportation Integrated Search

    2010-06-01

    The first multi-lane roundabouts in Alaska were constructed in 2004 at the ramp : terminals of the Dowling/New Seward Highway interchange in Anchorage. The Dowling : roundabouts are currently operating at capacity for a short period of time during th...

  4. 76 FR 78642 - TransCanada Alaska Company, LLC; Notice of Public Scoping Meetings for the Planned Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ... Project (APP). The APP is a planned natural gas pipeline system that would transport gas produced on the Alaska North Slope to the Alaska-Canada border to connect with a pipeline system in Canada for onward..., 2051 Barter Avenue Kaktovik, AK. Dated: December 9, 2011. Kimberly D. Bose, Secretary. [FR Doc. 2011...

  5. 76 FR 30956 - Outer Continental Shelf, Alaska OCS Region, Chukchi Sea Planning Area, Oil and Gas Lease Sale 193

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ... Continental Shelf, Alaska OCS Region, Chukchi Sea Planning Area, Oil and Gas Lease Sale 193 AGENCY: Bureau of...: BOEMRE announces the availability of a Revised Draft SEIS, OCS Oil and Gas Lease Sale 193, Chukchi Sea.... The Revised Draft SEIS augments the analysis of the Final EIS, Oil and Gas Lease Sale 193, Chukchi Sea...

  6. 77 FR 44472 - Safety Zone; Port Valdez, Alaska Maritime Highway System Ferry Terminal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... Game, which does not afford time for public feedback on a safety zone that will be in effect only when... month of July, the Alaska Department of Fish and Game has announced fishing openers in the Port of... an Alaska Department of Fish and Game fish opener that includes the 200-yard radius surrounding the...

  7. Publications - GMC 397 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    : Apache Corp., Alaska Division of Oil and Gas, and Weatherford Laboratories Publication Date: Nov 2011 Apache Corp., Alaska Division of Oil and Gas, and Weatherford Laboratories, 2011, Porosity and Files gmc397.pdf (2.8 M) gmc397.zip (24.2 M) Keywords Cook Inlet Basin; Oil and Gas; Permeability

  8. 77 FR 18260 - Outer Continental Shelf (OCS), Alaska OCS Region, Cook Inlet Planning Area, Proposed Oil and Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... OCS Region, Cook Inlet Planning Area, Proposed Oil and Gas Lease Sale 244 for OCS Oil and Gas Leasing...) identifies Sale 244 as a potential special interest sale for the Cook Inlet Planning Area in Alaska. While...-central region of the state, as evidenced by acreage leased in state sales and announced discoveries of...

  9. Baseline and projected future carbon storage and greenhouse-gas fluxes in ecosystems of Alaska

    USGS Publications Warehouse

    Zhu, Zhiliang; McGuire, A. David

    2016-06-01

    This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act of 2007 and to contribute to knowledge of the storage, fluxes, and balance of carbon and methane gas in ecosystems of Alaska. The carbon and methane variables were examined for major terrestrial ecosystems (uplands and wetlands) and inland aquatic ecosystems in Alaska in two time periods: baseline (from 1950 through 2009) and future (projections from 2010 through 2099). The assessment used measured and observed data and remote sensing, statistical methods, and simulation models. The national assessment, conducted using the methodology described in SIR 2010-5233, has been completed for the conterminous United States, with results provided in three separate regional reports (PP 1804, PP 1797, and PP 1897).

  10. Energy Resources | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates Sponsors' Proposals STATEMAP content Energy Resources Additional information Energy Resources Posters and Presentations Gas Hydrates Sponsors' Proposals Energy Resources Staff Projects The Alaska Division of Geological & Geophysical

  11. Economics of Undiscovered Oil and Gas in the North Slope of Alaska: Economic Update and Synthesis

    USGS Publications Warehouse

    Attanasi, E.D.; Freeman, P.A.

    2009-01-01

    The U.S. Geological Survey (USGS) has published assessments by geologists of undiscovered conventional oil and gas accumulations in the North Slope of Alaska; these assessments contain a set of scientifically based estimates of undiscovered, technically recoverable quantities of oil and gas in discrete oil and gas accumulations that can be produced with conventional recovery technology. The assessments do not incorporate economic factors such as recovery costs and product prices. The assessors considered undiscovered conventional oil and gas resources in four areas of the North Slope: (1) the central North Slope, (2) the National Petroleum Reserve in Alaska (NPRA), (3) the 1002 Area of the Arctic National Wildlife Refuge (ANWR), and (4) the area west of the NPRA, called in this report the 'western North Slope'. These analyses were prepared at different times with various minimum assessed oil and gas accumulation sizes and with slightly different assumptions. Results of these past studies were recently supplemented with information by the assessment geologists that allowed adjustments for uniform minimum assessed accumulation sizes and a consistent set of assumptions. The effort permitted the statistical aggregation of the assessments of the four areas composing the study area. This economic analysis is based on undiscovered assessed accumulation distributions represented by the four-area aggregation and incorporates updates of costs and technological and fiscal assumptions used in the initial economic analysis that accompanied the geologic assessment of each study area.

  12. High Resolution Regional Climate Simulations over Alaska

    NASA Astrophysics Data System (ADS)

    Monaghan, A. J.; Clark, M. P.; Arnold, J.; Newman, A. J.; Musselman, K. N.; Barlage, M. J.; Xue, L.; Liu, C.; Gutmann, E. D.; Rasmussen, R.

    2016-12-01

    In order to appropriately plan future projects to build and maintain infrastructure (e.g., dams, dikes, highways, airports), a number of U.S. federal agencies seek to better understand how hydrologic regimes may shift across the country due to climate change. Building on the successful completion of a series of high-resolution WRF simulations over the Colorado River Headwaters and contiguous USA, our team is now extending these simulations over the challenging U.S. States of Alaska and Hawaii. In this presentation we summarize results from a newly completed 4-km resolution WRF simulation over Alaska spanning 2002-2016 at 4-km spatial resolution. Our aim is to gain insight into the thermodynamics that drive key precipitation processes, particularly the extremes that are most damaging to infrastructure.

  13. 76 FR 47573 - TransCanada Alaska Company, LLC; Notice of Intent To Prepare an Environmental Impact Statement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... is a new natural gas pipeline system that would transport natural gas produced on the Alaska North... provisions of section 7(c) of the Natural Gas Act (NGA) and the Alaska Natural Gas Pipeline Act of 2004... pipeline to Valdez, Alaska for delivery into a liquefied natural gas (LNG) plant for liquefaction and...

  14. Energy insurance for Anchorage, Alaska - Beluga river gas field, Cook Inlet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, N.D.; Lindblom, R.G.

    1987-05-01

    The Beluga River gas field is the primary energy source for Anchorage, Alaska. The field is located 40 mi west of Anchorage astride the northwest shoreline of the Cook Inlet. Gas was discovered in December 1962 by Chevron's Beluga River unit (BRU) 1 well in section 35, T13N, R10W, S.B. and M. There are 16 producing wells in the field capable of a total gas potential of 140,000 MCFD. The current production averages 75,000 MCFD and the field has produced 220 BCF gas. Chevron, Shell, and ARCO have equal interests in the field. The Beluga River unit was formed inmore » 1962 with Chevron as operator. The produced gas is sold to the Chugach Electric Company and the Enstar Gas Company, both Anchorage-based utilities. The gas accumulation is trapped by a doubly plunging, slightly asymmetric anticlinal fold trending northeast-southwest. Gas is found from 3000 to 6000 ft vertical depth in sands within the lower Sterling (Pliocene) and Beluga River (upper Miocene) Formations. Reservoir sands range in thickness from 5 to 85 ft with average porosities of 24 to 30%. The Sterling sands were deposited in broad sand channels in a fluvial-deltaic setting, whereas Beluga sands were deposited in a high-energy fluvial environment in shifting stream courses. The use of the wireline repeat formation tester has aided in correlation, evaluation, and management of the multiple sand reservoirs. New gas sand reservoirs and partly depleted reservoirs are recognized, enabling completion from reservoirs of similar pressures and reducing risks associated with cross flow between reservoirs.« less

  15. Publications - AR 2011-A | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Communications Alaska Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2011-A main

  16. Publications - AR 2010-B | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Communications Alaska Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2010-B main

  17. Publications - AR 2011-B | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Communications Alaska Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2011-B main

  18. The trans-Alaska pipeline controversy: Technology, conservation, and the frontier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coates, P.A.

    1991-01-01

    The Trans-Alaska Pipeline was the object of perhaps the most passionately fought conservation battle in the U.S. Although numerous authors documented the pipeline construction during its construction, there is, surprisingly, no previous scholarly treatment of this event written by an historian. Coates is an environmental historian who views the most interesting aspect of the controversy to be [open quote]its relationship to earlier engineering projects and technological innovations in Alaska and the debates that accompanied them.[close quotes] Thus, he describes how the conservationist and environmental ideas arose during numerous earlier major Alaskan projects and controversies, including the Alaska Highway (1938-41), Canolmore » Pipeline (1943-45), exploration of Naval Petroleum Reserve Number Four (Pet 4, 1944-1953), DEWline (1953-57), oil development in the Kenai National Moose Range (1957-58), statehood (1958), the creation of the Arctic Wildlife Refuge (1960), Project Chariot (1958-63), and Rampart Dam (1959-67). The history starts with the acquisition of Alaska in 1867 and finishes about the time of the Valdez oil spill in 1989.« less

  19. Publications - MP 8 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information Geologic DGGS MP 8 Publication Details Title: Geothermal resources of Alaska Authors: Motyka, R.J., Moorman, M.A , S.A., 1983, Geothermal resources of Alaska: Alaska Division of Geological & Geophysical Surveys

  20. Staff - Kenneth R. Papp | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information Alaska Energy Authority, and the Curator of the Geologic Materials Center (2009-2015). Position: Division survey-wide interface for geologists to publish digital map data (DGGS) Established the Alaska Energy

  1. Successful gas hydrate prospecting using 3D seismic - A case study for the Mt. Elbert prospect, Milne Point, North Slope Alaska

    USGS Publications Warehouse

    Inks, T.L.; Agena, W.F.

    2008-01-01

    In February 2007, the Mt. Elbert Prospect stratigraphic test well, Milne Point, North Slope Alaska encountered thick methane gas hydrate intervals, as predicted by 3D seismic interpretation and modeling. Methane gas hydrate-saturated sediment was found in two intervals, totaling more than 100 ft., identified and mapped based on seismic character and wavelet modeling.

  2. Improving passing lane safety and efficiency for Alaska's rural non-divided highways.

    DOT National Transportation Integrated Search

    2014-06-01

    A series of experiments using a fixed-base driving simulator were conducted to examine the potential safety and operational : benefits of several highway safety interventions for reducing collision risk. Our approach sought to go beyond typical mitig...

  3. High-mast light poles anchor nut loosening in Alaska : an investigation of field monitoring and finite-element analysis.

    DOT National Transportation Integrated Search

    2014-09-01

    High mast lighting poles (HMLPs) are tall, roadside structures effective for lighting large areas of highways and intersections. The Alaska Department of Transportation : and Public Facilities (AKDOT&PF) maintains 118 such poles in the greater Anchor...

  4. 49 CFR 27.75 - Federal Highway Administration-highways.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Federal Highway Administration-highways. 27.75... Specific Operating Administration Programs: Airports, Railroads, and Highways § 27.75 Federal Highway Administration—highways. (a) New facilities—(1) Highway rest area facilities. All such facilities that will be...

  5. 49 CFR 27.75 - Federal Highway Administration-highways.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false Federal Highway Administration-highways. 27.75... Specific Operating Administration Programs: Airports, Railroads, and Highways § 27.75 Federal Highway Administration—highways. (a) New facilities—(1) Highway rest area facilities. All such facilities that will be...

  6. 49 CFR 27.75 - Federal Highway Administration-highways.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false Federal Highway Administration-highways. 27.75... Specific Operating Administration Programs: Airports, Railroads, and Highways § 27.75 Federal Highway Administration—highways. (a) New facilities—(1) Highway rest area facilities. All such facilities that will be...

  7. 49 CFR 27.75 - Federal Highway Administration-highways.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Federal Highway Administration-highways. 27.75... Specific Operating Administration Programs: Airports, Railroads, and Highways § 27.75 Federal Highway Administration—highways. (a) New facilities—(1) Highway rest area facilities. All such facilities that will be...

  8. 49 CFR 27.75 - Federal Highway Administration-highways.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false Federal Highway Administration-highways. 27.75... Specific Operating Administration Programs: Airports, Railroads, and Highways § 27.75 Federal Highway Administration—highways. (a) New facilities—(1) Highway rest area facilities. All such facilities that will be...

  9. Alaska: A twenty-first-century petroleum province

    USGS Publications Warehouse

    Bird, K.J.

    2001-01-01

    Alaska, the least explored of all United States regions, is estimated to contain approximately 40% of total U.S. undiscovered, technically recoverable oil and natural-gas resources, based on the most recent U.S. Department of the Interior (U.S. Geological Survey and Minerals Management Service) estimates. Northern Alaska, including the North Slope and adjacent Beaufort and Chukchi continental shelves, holds the lion's share of the total Alaskan endowment of more than 30 billion barrels (4.8 billion m3) of oil and natural-gas liquids plus nearly 200 trillion cubic feet (5.7 trillion m3) of natural gas. This geologically complex region includes prospective strata within passive-margin, rift, and foreland-basin sequences. Multiple source-rock zones have charged several regionally extensive petroleum systems. Extensional and compressional structures provide ample structural objectives. In addition, recent emphasis on stratigraphic traps has demonstrated significant resource potential in shelf and turbidite systems in Jurassic to Tertiary strata. Despite robust potential, northern Alaska remains a risky exploration frontier - a nexus of geologic complexity, harsh economic conditions, and volatile policy issues. Its role as a major petroleum province in this century will depend on continued technological innovations, not only in exploration and drilling operations, but also in development of huge, currently unmarketable natural-gas resources. Ultimately, policy decisions will determine whether exploration of arctic Alaska will proceed.

  10. Field-trip guide to volcanic and volcaniclastic deposits of the lower Jurassic Talkeetna formation, Sheep Mountain, south-central Alaska

    USGS Publications Warehouse

    Draut, Amy E.; Clift, Peter D.; Blodgett, Robert B.

    2006-01-01

    This guide provides information for a one-day field trip in the vicinity of Sheep Mountain, just north of the Glenn Highway in south-central Alaska. The Lower Jurassic Talkeetna Formation, consisting of extrusive volcanic and volcaniclastic sedimentary rocks of the Talkeetna arc complex, is exposed on and near Sheep Mountain. Field-trip stops within short walking distance of the Glenn Highway (approximately two hours’ drive from Anchorage) are described, which will be visited during the Geological Society of America Penrose meeting entitled Crustal Genesis and Evolution: Focus on Arc Lower Crust and Shallow Mantle, held in Valdez, Alaska, in July 2006. Several additional exposures of the Talkeetna Formation on other parts of Sheep Mountain that would need to be accessed with longer and more strenuous walking or by helicopter are also mentioned.

  11. Nighttime visibility of in-service pavement markings, pavement markers, and guardrail delineation in Alaska (with and without continuous lighting).

    DOT National Transportation Integrated Search

    2011-03-01

    This research determined the visibility of in-service pavement markings along lighted and unlighted highway sections, and compared : visibility of in-service pavement markings to the FHWA proposed minimum retroreflectivity levels for the Alaska Depar...

  12. Physical properties of sediment from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Winters, W.; Walker, M.; Hunter, R.; Collett, T.; Boswell, R.; Rose, K.; Waite, W.; Torres, M.; Patil, S.; Dandekar, A.

    2011-01-01

    This study characterizes cored and logged sedimentary strata from the February 2007 BP Exploration Alaska, Department of Energy, U.S. Geological Survey (BPXA-DOE-USGS) Mount Elbert Gas Hydrate Stratigraphic Test Well on the Alaska North Slope (ANS). The physical-properties program analyzed core samples recovered from the well, and in conjunction with downhole geophysical logs, produced an extensive dataset including grain size, water content, porosity, grain density, bulk density, permeability, X-ray diffraction (XRD) mineralogy, nuclear magnetic resonance (NMR), and petrography.This study documents the physical property interrelationships in the well and demonstrates their correlation with the occurrence of gas hydrate. Gas hydrate (GH) occurs in three unconsolidated, coarse silt to fine sand intervals within the Paleocene and Eocene beds of the Sagavanirktok Formation: Unit D-GH (614.4. m-627.9. m); unit C-GH1 (649.8. m-660.8. m); and unit C-GH2 (663.2. m-666.3. m). These intervals are overlain by fine to coarse silt intervals with greater clay content. A deeper interval (unit B) is similar lithologically to the gas-hydrate-bearing strata; however, it is water-saturated and contains no hydrate.In this system it appears that high sediment permeability (k) is critical to the formation of concentrated hydrate deposits. Intervals D-GH and C-GH1 have average "plug" intrinsic permeability to nitrogen values of 1700 mD and 675 mD, respectively. These values are in strong contrast with those of the overlying, gas-hydrate-free sediments, which have k values of 5.7. mD and 49 mD, respectively, and thus would have provided effective seals to trap free gas. The relation between permeability and porosity critically influences the occurrence of GH. For example, an average increase of 4% in porosity increases permeability by an order of magnitude, but the presence of a second fluid (e.g., methane from dissociating gas hydrate) in the reservoir reduces permeability by more than

  13. Physical properties of sediment from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Winters, William J.; Walker, Michael; Hunter, Robert; Collett, Timothy S.; Boswell, Ray M.; Rose, Kelly K.; Waite, William F.; Torres, Marta; Patil, Shirish; Dandekar, Abhijit

    2011-01-01

    This study characterizes cored and logged sedimentary strata from the February 2007 BP Exploration Alaska, Department of Energy, U.S. Geological Survey (BPXA-DOE-USGS) Mount Elbert Gas Hydrate Stratigraphic Test Well on the Alaska North Slope (ANS). The physical-properties program analyzed core samples recovered from the well, and in conjunction with downhole geophysical logs, produced an extensive dataset including grain size, water content, porosity, grain density, bulk density, permeability, X-ray diffraction (XRD) mineralogy, nuclear magnetic resonance (NMR), and petrography. This study documents the physical property interrelationships in the well and demonstrates their correlation with the occurrence of gas hydrate. Gas hydrate (GH) occurs in three unconsolidated, coarse silt to fine sand intervals within the Paleocene and Eocene beds of the Sagavanirktok Formation: Unit D-GH (614.4 m-627.9 m); unit C-GH1 (649.8 m-660.8 m); and unit C-GH2 (663.2 m-666.3 m). These intervals are overlain by fine to coarse silt intervals with greater clay content. A deeper interval (unit B) is similar lithologically to the gas-hydrate-bearing strata; however, it is water-saturated and contains no hydrate. In this system it appears that high sediment permeability (k) is critical to the formation of concentrated hydrate deposits. Intervals D-GH and C-GH1 have average "plug" intrinsic permeability to nitrogen values of 1700 mD and 675 mD, respectively. These values are in strong contrast with those of the overlying, gas-hydrate-free sediments, which have k values of 5.7 mD and 49 mD, respectively, and thus would have provided effective seals to trap free gas. The relation between permeability and porosity critically influences the occurrence of GH. For example, an average increase of 4% in porosity increases permeability by an order of magnitude, but the presence of a second fluid (e.g., methane from dissociating gas hydrate) in the reservoir reduces permeability by more than an

  14. Gaseous emissions from compressed natural gas buses in urban road and highway tests in China.

    PubMed

    Yue, Tingting; Chai, Fahe; Hu, Jingnan; Jia, Ming; Bao, Xiaofeng; Li, Zhenhua; He, Liqang; Zu, Lei

    2016-10-01

    The natural gas vehicle market is rapidly developing throughout the world, and the majority of such vehicles operate on compressed natural gas (CNG). However, most studies on the emission characteristics of CNG vehicles rely on laboratory chassis dynamometer measurements, which do not accurately represent actual road driving conditions. To further investigate the emission characteristics of CNG vehicles, two CNG city buses and two CNG coaches were tested on public urban roads and highway sections. Our results show that when speeds of 0-10km/hr were increased to 10-20km/hr, the CO 2 , CO, nitrogen oxide (NO x ), and total hydrocarbon (THC) emission factors decreased by (71.6±4.3)%, (65.6±9.5)%, (64.9±9.2)% and (67.8±0.3)%, respectively. In this study, The Beijing city buses with stricter emission standards (Euro IV) did not have lower emission factors than the Chongqing coaches with Euro II emission standards. Both the higher emission factors at 0-10km/hr speeds and the higher percentage of driving in the low-speed regime during the entire road cycle may have contributed to the higher CO 2 and CO emission factors of these city buses. Additionally, compared with the emission factors produced in the urban road tests, the CO emission factors of the CNG buses in highway tests decreased the most (by 83.2%), followed by the THC emission factors, which decreased by 67.1%. Copyright © 2016. Published by Elsevier B.V.

  15. Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Overview of scientific and technical program

    USGS Publications Warehouse

    Hunter, R.B.; Collett, T.S.; Boswell, R.; Anderson, B.J.; Digert, S.A.; Pospisil, G.; Baker, R.; Weeks, M.

    2011-01-01

    The Mount Elbert Gas Hydrate Stratigraphic Test Well was drilled within the Alaska North Slope (ANS) Milne Point Unit (MPU) from February 3 to 19, 2007. The well was conducted as part of a Cooperative Research Agreement (CRA) project co-sponsored since 2001 by BP Exploration (Alaska), Inc. (BPXA) and the U.S. Department of Energy (DOE) in collaboration with the U.S. Geological Survey (USGS) to help determine whether ANS gas hydrate can become a technically and commercially viable gas resource. Early in the effort, regional reservoir characterization and reservoir simulation modeling studies indicated that up to 0.34 trillion cubic meters (tcm; 12 trillion cubic feet, tcf) gas may be technically recoverable from 0.92 tcm (33 tcf) gas-in-place within the Eileen gas hydrate accumulation near industry infrastructure within ANS MPU, Prudhoe Bay Unit (PBU), and Kuparuk River Unit (KRU) areas. To further constrain these estimates and to enable the selection of a test site for further data acquisition, the USGS reprocessed and interpreted MPU 3D seismic data provided by BPXA to delineate 14 prospects containing significant highly-saturated gas hydrate-bearing sand reservoirs. The "Mount Elbert" site was selected to drill a stratigraphic test well to acquire a full suite of wireline log, core, and formation pressure test data. Drilling results and data interpretation confirmed pre-drill predictions and thus increased confidence in both the prospect interpretation methods and in the wider ANS gas hydrate resource estimates. The interpreted data from the Mount Elbert well provide insight into and reduce uncertainty of key gas hydrate-bearing reservoir properties, enable further refinement and validation of the numerical simulation of the production potential of both MPU and broader ANS gas hydrate resources, and help determine viability of potential field sites for future extended term production testing. Drilling and data acquisition operations demonstrated that gas hydrate

  16. Road facilitation of trematode infections in snails of northern Alaska.

    PubMed

    Urban, Mark C

    2006-08-01

    Road disturbances can influence wildlife health by spreading disease agents and hosts or by generating environmental conditions that sustain these agent and host populations. I evaluated field patterns of trematode infections in snails inhabiting ponds at varying distances from the Dalton Highway, a wilderness road that intersects northern Alaska. I also assessed the relationships between trematode infections and snail densities and six environmental variables: calcium concentration, aquatic vegetative cover canopy cover temperature, pond size, and community structure. Presence of trematode infections and snail density were negatively correlated with distance from the highway. Of the pond characteristics measured, only calcium concentration and vegetation density declined with distance from road. However neither variable was positively associated with snail density or trematode presence. One potential explanation for observed patterns is that vehicles, road maintenance, or vertebrate vectors attracted to the highway facilitate colonization of snails or trematodes. Emerging disease threats to biological diversity in northern ecosystems highlight the importance of understanding how roads affect disease transmission.

  17. 77 FR 19004 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-29

    ... Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery AGENCY: National Marine... Salmon Fishery. DATES: Comments must be submitted on or before 5 p.m. EST April 13, 2012. ADDRESSES: Send... Seine Salmon Buyback, 1315 East-West Highway, Silver Spring, MD 20910 (see FOR FURTHER INFORMATION...

  18. U.S. Geological Survey 2011 assessment of undiscovered oil and gas resources of the Cook Inlet region, south-central Alaska

    USGS Publications Warehouse

    Stanley, Richard G.; Pierce, Brenda S.; Houseknecht, David W.

    2011-01-01

    The U.S. Geological Survey (USGS) has completed an assessment of the volumes of undiscovered, technically recoverable oil and gas resources in conventional and continuous accumulations in Cook Inlet. The assessment used a geology-based methodology and results from new scientific research by the USGS and the State of Alaska, Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas (DOG). In the Cook Inlet region, the USGS estimates mean undiscovered volumes of nearly 600 million barrels of oil, about 19 trillion cubic feet of gas, and about 46 million barrels of natural gas liquids.

  19. Assessing Gas-Hydrate Prospects on the North Slope of Alaska - Theoretical Considerations

    USGS Publications Warehouse

    Lee, Myung W.; Collett, Timothy S.; Agena, Warren F.

    2008-01-01

    Gas-hydrate resource assessment on the Alaska North Slope using 3-D and 2-D seismic data involved six important steps: (1) determining the top and base of the gas-hydrate stability zone, (2) 'tying' well log information to seismic data through synthetic seismograms, (3) differentiating ice from gas hydrate in the permafrost interval, (4) developing an acoustic model for the reservoir and seal, (5) developing a method to estimate gas-hydrate saturation and thickness from seismic attributes, and (6) assessing the potential gas-hydrate prospects from seismic data based on potential migration pathways, source, reservoir quality, and other relevant geological information. This report describes the first five steps in detail using well logs and provides theoretical backgrounds for resource assessments carried out by the U.S. Geological Survey. Measured and predicted P-wave velocities enabled us to tie synthetic seismograms to the seismic data. The calculated gas-hydrate stability zone from subsurface wellbore temperature data enabled us to focus our effort on the most promising depth intervals in the seismic data. A typical reservoir in this area is characterized by the P-wave velocity of 1.88 km/s, porosity of 42 percent, and clay volume content of 5 percent, whereas seal sediments encasing the reservoir are characterized by the P-wave velocity of 2.2 km/s, porosity of 32 percent, and clay volume content of 20 percent. Because the impedance of a reservoir without gas hydrate is less than that of the seal, a complex amplitude variation with respect to gas-hydrate saturation is predicted, namely polarity change, amplitude blanking, and high seismic amplitude (a bright spot). This amplitude variation with gas-hydrate saturation is the physical basis for the method used to quantify the resource potential of gas hydrates in this assessment.

  20. A Survey of Road Construction and Maintenance Problems in Central Alaska.

    DTIC Science & Technology

    1976-10-01

    recent natural disasters, such as the earthquake of 1964 and the Fairbanks flood in 1967, seriously set back the Alaskan highway program for several...problems as classifica- tion of natural road building materials, prevention of culvert icing, measurement of subgrade temperature, maintenance of slopes...Scarcity of clays or other material suitable for use as a binder in gravel surfacings poses additional problems throughout Alaska. Dust and stones

  1. 78 FR 13379 - Wrangell-St. Elias National Park and Preserve, Alaska; Proposed Mining Plan of Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ...] Wrangell-St. Elias National Park and Preserve, Alaska; Proposed Mining Plan of Operations AGENCY: National...) unpatented placer claims within Wrangell-St. Elias National Park and Preserve. Public Availability: This plan...: Wrangell-St. Elias National Park and Preserve Headquarters, Mile 106.8 Richardson Highway, Post Office Box...

  2. Gas geochemistry of the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: implications for gas hydrate exploration in the Arctic

    USGS Publications Warehouse

    Lorenson, T.D.; Collett, T.S.; Hunter, R.B.

    2011-01-01

    Gases were analyzed from well cuttings, core, gas hydrate, and formation tests at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well, drilled within the Milne Point Unit, Alaska North Slope. The well penetrated a portion of the Eileen gas hydrate deposit, which overlies the more deeply buried Prudhoe Bay, Milne Point, West Sak, and Kuparuk River oil fields. Gas sources in the upper 200 m are predominantly from microbial sources (C1 isotopic compositions ranging from −86.4 to −80.6‰). The C1 isotopic composition becomes progressively enriched from 200 m to the top of the gas hydrate-bearing sands at 600 m. The tested gas hydrates occur in two primary intervals, units D and C, between 614.0 m and 664.7 m, containing a total of 29.3 m of gas hydrate-bearing sands. The hydrocarbon gases in cuttings and core samples from 604 to 914 m are composed of methane with very little ethane. The isotopic composition of the methane carbon ranges from −50.1 to −43.9‰ with several outliers, generally decreasing with depth. Gas samples collected by the Modular Formation Dynamics Testing (MDT) tool in the hydrate-bearing units were similarly composed mainly of methane, with up to 284 ppm ethane. The methane isotopic composition ranged from −48.2 to −48.0‰ in the C sand and from −48.4 to −46.6‰ in the D sand. Methane hydrogen isotopic composition ranged from −238 to −230‰, with slightly more depleted values in the deeper C sand. These results are consistent with the concept that the Eileen gas hydrates contain a mixture of deep-sourced, microbially biodegraded thermogenic gas, with lesser amounts of thermogenic oil-associated gas, and coal gas. Thermal gases are likely sourced from existing oil and gas accumulations that have migrated up-dip and/or up-fault and formed gas hydrate in response to climate cooling with permafrost formation.

  3. Alaska Department of Natural Resources

    Science.gov Websites

    Commission on Federal Areas in Alaska Exxon Valdez Oil Spill Trustee Council Natural Resources Conservation Hazards Safety Commission Geologic Mapping Advisory Board Minerals Commission Royalty Oil and Gas Geological and Geophysical Surveys Mining, Land and Water Division of Oil and Gas Parks and Outdoor

  4. About Us - Alaska Statutes | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Geologic Hazards in Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates Sponsors potential of Alaskan land for production of metals, minerals, fuels, and geothermal resources; the locations declaration of sources, see 4 1, ch. 175, SLA 1980, in the legislative policy on geothermal re- Temporary and

  5. Hydraulic survey and scour assessment of Bridge 524, Tanana River at Big Delta, Alaska

    USGS Publications Warehouse

    Heinrichs, Thomas A.; Langley, Dustin E.; Burrows, Robert L.; Conaway, Jeffrey S.

    2007-01-01

    Bathymetric and hydraulic data were collected August 26–28, 1996, on the Tanana River at Big Delta, Alaska, at the Richardson Highway bridge and Trans-Alaska Pipeline crossing. Erosion along the right (north) bank of the river between the bridge and the pipeline crossing prompted the data collection. A water-surface profile hydraulic model for the 100- and 500-year recurrence-interval floods was developed using surveyed information. The Delta River enters the Tanana immediately downstream of the highway bridge, causing backwater that extends upstream of the bridge. Four scenarios were considered to simulate the influence of the backwater on flow through the bridge. Contraction and pier scour were computed from model results. Computed values of pier scour were large, but the scour during a flood may actually be less because of mitigating factors. No bank erosion was observed at the time of the survey, a low-flow period. Erosion is likely to occur during intermediate or high flows, but the actual erosion processes are unknown at this time.

  6. Gas hydrate characterization and grain-scale imaging of recovered cores from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Stern, Laura A.; Lorenson, T.D.; Pinkston, John C.

    2011-01-01

    Using cryogenic scanning electron microscopy (CSEM), powder X-ray diffraction, and gas chromatography methods, we investigated the physical states, grain characteristics, gas composition, and methane isotopic composition of two gas-hydrate-bearing sections of core recovered from the BPXA–DOE–USGS Mount Elbert Gas Hydrate Stratigraphic Test Well situated on the Alaska North Slope. The well was continuously cored from 606.5 m to 760.1 m depth, and sections investigated here were retrieved from 619.9 m and 661.0 m depth. X-ray analysis and imaging of the sediment phase in both sections shows it consists of a predominantly fine-grained and well-sorted quartz sand with lesser amounts of feldspar, muscovite, and minor clays. Cryogenic SEM shows the gas-hydrate phase forming primarily as a pore-filling material between the sediment grains at approximately 70–75% saturation, and more sporadically as thin veins typically several tens of microns in diameter. Pore throat diameters vary, but commonly range 20–120 microns. Gas chromatography analyses of the hydrate-forming gas show that it is comprised of mainly methane (>99.9%), indicating that the gas hydrate is structure I. Here we report on the distribution and articulation of the gas-hydrate phase within the cores, the grain morphology of the hydrate, the composition of the sediment host, and the composition of the hydrate-forming gas.

  7. Gas hydrate characterization and grain-scale imaging of recovered cores from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Stern, L.A.; Lorenson, T.D.; Pinkston, J.C.

    2011-01-01

    Using cryogenic scanning electron microscopy (CSEM), powder X-ray diffraction, and gas chromatography methods, we investigated the physical states, grain characteristics, gas composition, and methane isotopic composition of two gas-hydrate-bearing sections of core recovered from the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well situated on the Alaska North Slope. The well was continuously cored from 606.5. m to 760.1. m depth, and sections investigated here were retrieved from 619.9. m and 661.0. m depth. X-ray analysis and imaging of the sediment phase in both sections shows it consists of a predominantly fine-grained and well-sorted quartz sand with lesser amounts of feldspar, muscovite, and minor clays. Cryogenic SEM shows the gas-hydrate phase forming primarily as a pore-filling material between the sediment grains at approximately 70-75% saturation, and more sporadically as thin veins typically several tens of microns in diameter. Pore throat diameters vary, but commonly range 20-120 microns. Gas chromatography analyses of the hydrate-forming gas show that it is comprised of mainly methane (>99.9%), indicating that the gas hydrate is structure I. Here we report on the distribution and articulation of the gas-hydrate phase within the cores, the grain morphology of the hydrate, the composition of the sediment host, and the composition of the hydrate-forming gas. ?? 2009.

  8. Downhole well log and core montages from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Collett, T.S.; Lewis, R.E.; Winters, W.J.; Lee, M.W.; Rose, K.K.; Boswell, R.M.

    2011-01-01

    The BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well was an integral part of an ongoing project to determine the future energy resource potential of gas hydrates on the Alaska North Slope. As part of this effort, the Mount Elbert well included an advanced downhole geophysical logging program. Because gas hydrate is unstable at ground surface pressure and temperature conditions, a major emphasis was placed on the downhole-logging program to determine the occurrence of gas hydrates and the in-situ physical properties of the sediments. In support of this effort, well-log and core data montages have been compiled which include downhole log and core-data obtained from the gas-hydrate-bearing sedimentary section in the Mount Elbert well. Also shown are numerous reservoir parameters, including gas-hydrate saturation and sediment porosity log traces calculated from available downhole well log and core data. ?? 2010.

  9. 75 FR 63504 - Outer Continental Shelf, Alaska OCS Region, Chukchi Sea Planning Area, Oil and Gas Lease Sale 193

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... Continental Shelf, Alaska OCS Region, Chukchi Sea Planning Area, Oil and Gas Lease Sale 193 AGENCY: Bureau of... development; (2) determine whether missing information identified by BOEMRE in the 193 FEIS was essential or... in the FEIS for Chukchi Sea Lease Sale 193 was essential or relevant under 40 CFR 1502.22; and (3...

  10. Publications - DDS 5 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska's Mineral MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information Geologic Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications DDS 5 main content

  11. Publications - MP 146 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska's Mineral MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information Geologic Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications MP 146 main content

  12. Publications - MP 159 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska's Mineral MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information Geologic Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications MP 159 main content

  13. Interpretation of Stratified Fill, Frost Depths, Water Tables, and Massive Ice within Multi-Frequency Ground-Penetrating Radar Profiles Recorded Beneath Highways in Interior Alaska

    NASA Astrophysics Data System (ADS)

    Arcone, S. A.

    2014-12-01

    Road Radar generally refers to ground-penetrating radar (GPR) surveys intended to investigate pavement construction using pulses centered above 1 GHz. In interior Alaska thick sand and gravel grading and its frozen state by late winter generally afford up to 10 m of signal penetration at lower frequencies. Consequently, this penetration potentially allows identification of pavement issues involving frost heave and thaw settlement, while the smooth surface allows assessment of GPR performance in permafrost areas under ideal survey conditions. Here I discuss profiles using pulse center frequencies from 50 to 360 MHz, recorded over sections of the Steese and Elliott Highways within and just north of Fairbanks, respectively, and of the Tok Highway near Glennallen. Construction fill is easily recognized by its stratification; where marginally present along the Elliott it is replaced by steeply dipping horizons from the underlying schist. The frost depth and water table horizons are recognized by phase attributes of the reflected pulse, as dictated by the contrasts present in dielectric permittivity, their relative depths, and their continuity. Undulating stratification in the sand and gravel fill indicates thaw settlement, as caused by the melting of buried massive ice. The Tok section reveals the top and likely the bottom of massive ice. Generally, signal penetration is greatly reduced beneath the water table and so the highest resolution, at 360 MHz, covers all horizons. There is rare evidence of a permafrost table because it is most likely masked or nearly coincident with the water table. Permafrost penetration in frozen silts is a long-standing problem for GPR, for which I discuss a possible cause related to Maxwell-Wagner dielectric relaxation losses associated with unfrozen water.

  14. Seismic evidence for an extensive gas-bearing layer at shallow depth, offshore from Prudhoe Bay, Alaska

    USGS Publications Warehouse

    Boucher, G.; Reimnitz, E.; Kempema, E.

    1981-01-01

    High-resolution seismic reflection data, recorded offshore from Prudhoe Bay, Alaska, were processed digitally to determine the reflectivity structure of the uppermost layers of the seafloor. A prominent reflector, found at 27 m below the mud line (water depths 7-9 m), has a negative reflection coefficient greater than 0.5. The large acoustic impedance contrast, coupled with a report of gas encountered at a corresponding depth in a nearby drillhole, shows that the reflector is the upper boundary of a zone containing gas. The gas exists in sandy gravel capped by stiff, silty clay. Analysis of unprocessed conventional high-resolution records from the region indicates that the gas-bearing layer may extend over an area of at least 50 km2 at a depth of 20-35 m below the mud line. Similar-appearing reflectors (Reimnitz, 1972), previously unexplained, occur in patches over wide regions of the shelf where offshore oil development is beginning at a rapid pace. This suggests the exercise of caution with respect to possible hazards from shallow gas pockets.

  15. Coalbed methane, Cook Inlet, south-central Alaska: A potential giant gas resource

    USGS Publications Warehouse

    Montgomery, S.L.; Barker, C.E.

    2003-01-01

    Cook Inlet Basin of south-central Alaska is a forearc basin containing voluminous Tertiary coal deposits with sufficient methane content to suggest a major coalbed gas resource. Coals ranging in thickness from 2 to 50 ft (0.6 to 15 m) and in gas content from 50 to 250 scf/ton (1.6 to 7.8 cm2/g) occur in Miocene-Oligocene fluvial deposits of the Kenai Group. These coals have been identified as the probable source of more than 8 tcf gas that has been produced from conventional sandstone reservoirs in the basin. Cook Inlet coals can be divided into two main groups: (1) those of bituminous rank in the Tyonek Formation that contain mainly thermogenic methane and are confined to the northeastern part of the basin (Matanuska Valley) and to deep levels elsewhere; and (2) subbituminous coals at shallow depths (<5000 ft [1524 m]) in the Tyonek and overlying Beluga formations, which contain mainly biogenic methane and cover most of the central and southern basin. Based on core and corrected cuttings-desorption analyses, gas contents average 230 scf/ton (7.2 cm2/g) for bituminous coals and 80 scf/ton (2.5 cm2/g) for subbituminous coals. Isotherms constructed for samples of both coal ranks suggest that bituminous coals are saturated with respect to methane, whereas subbituminous coals at shallow depths along the eroded west-central basin margin are locally unsaturated. A preliminary estimate of 140 tcf gas in place is derived for the basin.

  16. Facts About Alaska, Alaska Kids' Corner, State of Alaska

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees State of Alaska Search Home Quick Links Departments Commissioners Employee Whitepages State Government Jobs Federal Jobs Starting a Small Business Living Get a Driver License Get a Hunting

  17. A Compilation of Gas Emission-Rate Data from Volcanoes of Cook Inlet (Spurr, Crater Peak, Redoubt, Iliamna, and Augustine) and Alaska Peninsula (Douglas, Fourpeaked, Griggs, Mageik, Martin, Peulik, Ukinrek Maars, and Veniaminof), Alaska, from 1995-2006

    USGS Publications Warehouse

    Doukas, Michael P.; McGee, Kenneth A.

    2007-01-01

    INTRODUCTION This report presents gas emission rates from data collected during numerous airborne plume-measurement flights at Alaskan volcanoes since 1995. These flights began in about 1990 as means to establish baseline values of volcanic gas emissions during periods of quiescence and to identify anomalous levels of degassing that might signal the beginning of unrest. The primary goal was to make systematic measurements at the major volcanic centers around the Cook Inlet on at least an annual basis, and more frequently during periods of unrest and eruption. A secondary goal was to measure emissions at selected volcanoes on the Alaska Peninsula. While the goals were not necessarily met in all cases due to weather, funding, or the availability of suitable aircraft, a rich dataset of quality measurements is the legacy of this continuing effort. An earlier report (Doukas, 1995) presented data for the period from 1990 through 1994 and the current report provides data through 2006. This report contains all of the available measurements for SO2, CO2, and H2S emission rates in Alaska determined by the U. S. Geological Survey from 1995 through 2006; airborne measurements for H2S began in Alaska in 2001. The results presented here are from Cook Inlet volcanoes at Spurr, Crater Peak, Redoubt, Iliamna, and Augustine and cover periods of unrest at Iliamna (1996) and Spurr (2004-2006) as well as the 2006 eruption of Augustine. Additional sporadic measurements at volcanoes on the Alaska Peninsula (Douglas, Martin, Mageik, Griggs, Veniaminof, Ukinrek Maars, Peulik, and Fourpeaked during its 2006 unrest) are also reported here.

  18. Assessment of unconvential (tight) gas resources in Upper Cook Inlet Basin, South-central Alaska

    USGS Publications Warehouse

    Schenk, Christopher J.; Nelson, Philip H.; Klett, Timothy R.; Le, Phuong A.; Anderson, Christopher P.; Schenk, Christopher J.

    2015-01-01

    A geologic model was developed for the assessment of potential Mesozoic tight-gas resources in the deep, central part of upper Cook Inlet Basin, south-central Alaska. The basic premise of the geologic model is that organic-bearing marine shales of the Middle Jurassic Tuxedni Group achieved adequate thermal maturity for oil and gas generation in the central part of the basin largely due to several kilometers of Paleogene and Neogene burial. In this model, hydrocarbons generated in Tuxedni source rocks resulted in overpressure, causing fracturing and local migration of oil and possibly gas into low-permeability sandstone and siltstone reservoirs in the Jurassic Tuxedni Group and Chinitna and Naknek Formations. Oil that was generated either remained in the source rock and subsequently was cracked to gas which then migrated into low-permeability reservoirs, or oil initially migrated into adjacent low-permeability reservoirs, where it subsequently cracked to gas as adequate thermal maturation was reached in the central part of the basin. Geologic uncertainty exists on the (1) presence of adequate marine source rocks, (2) degree and timing of thermal maturation, generation, and expulsion, (3) migration of hydrocarbons into low-permeability reservoirs, and (4) preservation of this petroleum system. Given these uncertainties and using known U.S. tight gas reservoirs as geologic and production analogs, a mean volume of 0.64 trillion cubic feet of gas was assessed in the basin-center tight-gas system that is postulated to exist in Mesozoic rocks of the upper Cook Inlet Basin. This assessment of Mesozoic basin-center tight gas does not include potential gas accumulations in Cenozoic low-permeability reservoirs.

  19. Geologic Map of Central (Interior) Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Dover, James H.; Bradley, Dwight C.; Weber, Florence R.; Bundtzen, Thomas K.; Haeussler, Peter J.

    1998-01-01

    Introduction: This map and associated digital databases are the result of a compilation and reinterpretation of published and unpublished 1:250,000- and limited 1:125,000- and 1:63,360-scale mapping. The map area covers approximately 416,000 sq km (134,000 sq mi) and encompasses 25 1:250,000-scale quadrangles in central Alaska. The compilation was done as part of the U.S. Geological Survey National Surveys and Analysis project, whose goal is nationwide assemble geologic, geochemical, geophysical, and other data. This map is an early product of an effort that will eventually encompass all of Alaska, and is the result of an agreement with the Alaska Department of Natural Resources, Division of Oil And Gas, to provide data on interior basins in Alaska. A paper version of the three map sheets has been published as USGS Open-File Report 98-133. Two geophysical maps that cover the identical area have been published earlier: 'Bouguer gravity map of Interior Alaska' (Meyer and others, 1996); and 'Merged aeromagnetic map of Interior Alaska' (Meyer and Saltus, 1995). These two publications are supplied in the 'geophys' directory of this report.

  20. Highway Statistics 1994

    DOT National Transportation Integrated Search

    1995-10-01

    This is an annual report containing analyzed statistical data on motor fuel; motor vehicles; driver licensing; highway-user taxation; State highway finance; highway mileage; Federal aid for highways; highway finance data for municipalities, counties,...

  1. Publications - GMC 291 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 291 Publication Details Title: Geologic log of and measured air-dry gas content desorption Reference State of Alaska, and Seamount, D.T., 2000, Geologic log of and measured air-dry gas content

  2. Diffuse gas emissions at the Ukinrek Maars, Alaska: Implications for magmatic degassing and volcanic monitoring

    USGS Publications Warehouse

    Evans, William C.; Bergfeld, D.; McGimsey, R.G.; Hunt, A.G.

    2009-01-01

    Diffuse CO2 efflux near the Ukinrek Maars, two small volcanic craters that formed in 1977 in a remote part of the Alaska Peninsula, was investigated using accumulation chamber measurements. High CO2 efflux, in many places exceeding 1000 g m-2 d-1, was found in conspicuous zones of plant damage or kill that cover 30,000-50,000 m2 in area. Total diffuse CO2 emission was estimated at 21-44 t d-1. Gas vents 3-km away at The Gas Rocks produce 0.5 t d-1 of CO2 that probably derives from the Ukinrek Maars basalt based on similar ??13C values (???-6???), 3He/4He ratios (5.9-7.2 RA), and CO2/3He ratios (1-2 ?? 109) in the two areas. A lower 3He/4He ratio (2.7 RA) and much higher CO2/3He ratio (9 ?? 1010) in gas from the nearest arc-front volcanic center (Mount Peulik/Ugashik) provide a useful comparison. The large diffuse CO2 emission at Ukinrek has important implications for magmatic degassing, subsurface gas transport, and local toxicity hazards. Gas-water-rock interactions play a major role in the location, magnitude and chemistry of the emissions.

  3. Publications - GMC 268 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 268 Publication Details Title: Whole oil-gas chromatogram of Prudhoe Bay Sadlerochit oil from Unknown, 1996, Whole oil-gas chromatogram of Prudhoe Bay Sadlerochit oil from the BP Exploration (Alaska

  4. Publications - GMC 405 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 405 Publication Details Title: Geochemical analyses of oil and gas cuttings from the of Alaska, and TestAmerica Laboratories, Inc., 2012, Geochemical analyses of oil and gas cuttings (265.0 K) Keywords Geochemistry; Oil and Gas Top of Page Department of Natural Resources, Division of

  5. Characterization of hydrocarbon gas within the stratigraphic interval of gas-hydrate stability on the North Slope of Alaska, U.S.A.

    USGS Publications Warehouse

    Collett, T.S.; Kvenvolden, K.A.; Magoon, L.B.

    1990-01-01

    In the Kuparuk River Unit 2D-15 well, on the North Slope of Alaska, a 60 m-thick stratigraphic interval that lies within the theoretical pressure-temperature field of gas-hydrate stability is inferred to contain methane hydrates. This inference is based on interpretations from well logs: (1) release of methane during drilling, as indicated by the mud log, (2) an increase in acoustic velocity on the sonic log, and (3) an increase of electrical resistivity on the electric logs. Our objective was to determine the composition and source of the gas within the shallow gas-hydrate-bearing interval based on analyses of cutting gas. Headspace gas from canned drill cuttings collected from within the gas-hydrate-bearing interval of this well has an average methane to ethane plus propane [C1/(C2 + C3)] ratio of about 7000 and an average methane ??13C value of -46% (relative to the PDB standard). These compositions are compared with those obtained at one well located to the north of 2D-15 along depositional strike and one down-dip well to the northeast. In the well located on depositional strike (Kuparuk River Unit 3K-9), gas compositions are similar to those found at 2D-15. At the down-dip well (Prudhoe Bay Unit R-1), the C1/(C2 + C3) ratios are lower (700) and the methane ??13C is heavier (-33%). We conclude that the methane within the stratigraphic interval of gas hydrate stability comes from two sources-in situ microbial gas and migrated thermogenic gas. The thermal component is greatest at Prudhoe Bay. Up-dip to the west, the thermogenic component decreases, and microbial gas assumes more importance. ?? 1990.

  6. In-situ gas hydrate hydrate saturation estimated from various well logs at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Lee, M.W.; Collett, T.S.

    2011-01-01

    In 2006, the U.S. Geological Survey (USGS) completed detailed analysis and interpretation of available 2-D and 3-D seismic data and proposed a viable method for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area of northern Alaska. To validate the predictions of the USGS and to acquire critical reservoir data needed to develop a long-term production testing program, a well was drilled at the Mount Elbert prospect in February, 2007. Numerous well log data and cores were acquired to estimate in-situ gas hydrate saturations and reservoir properties.Gas hydrate saturations were estimated from various well logs such as nuclear magnetic resonance (NMR), P- and S-wave velocity, and electrical resistivity logs along with pore-water salinity. Gas hydrate saturations from the NMR log agree well with those estimated from P- and S-wave velocity data. Because of the low salinity of the connate water and the low formation temperature, the resistivity of connate water is comparable to that of shale. Therefore, the effect of clay should be accounted for to accurately estimate gas hydrate saturations from the resistivity data. Two highly gas hydrate-saturated intervals are identified - an upper ???43 ft zone with an average gas hydrate saturation of 54% and a lower ???53 ft zone with an average gas hydrate saturation of 50%; both zones reach a maximum of about 75% saturation. ?? 2009.

  7. Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Coring operations, core sedimentology, and lithostratigraphy

    USGS Publications Warehouse

    Rose, K.; Boswell, R.; Collett, T.

    2011-01-01

    In February 2007, BP Exploration (Alaska), the U.S. Department of Energy, and the U.S. Geological Survey completed the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert well) in the Milne Point Unit on the Alaska North Slope. The program achieved its primary goals of validating the pre-drill estimates of gas hydrate occurrence and thickness based on 3-D seismic interpretations and wireline log correlations and collecting a comprehensive suite of logging, coring, and pressure testing data. The upper section of the Mount Elbert well was drilled through the base of ice-bearing permafrost to a casing point of 594??m (1950??ft), approximately 15??m (50??ft) above the top of the targeted reservoir interval. The lower portion of the well was continuously cored from 606??m (1987??ft) to 760??m (2494??ft) and drilled to a total depth of 914??m. Ice-bearing permafrost extends to a depth of roughly 536??m and the base of gas hydrate stability is interpreted to extend to a depth of 870??m. Coring through the targeted gas hydrate bearing reservoirs was completed using a wireline-retrievable system. The coring program achieved 85% recovery of 7.6??cm (3??in) diameter core through 154??m (504??ft) of the hole. An onsite team processed the cores, collecting and preserving approximately 250 sub-samples for analyses of pore water geochemistry, microbiology, gas chemistry, petrophysical analysis, and thermal and physical properties. Eleven samples were immediately transferred to either methane-charged pressure vessels or liquid nitrogen for future study of the preserved gas hydrate. Additional offsite sampling, analyses, and detailed description of the cores were also conducted. Based on this work, one lithostratigraphic unit with eight subunits was identified across the cored interval. Subunits II and Va comprise the majority of the reservoir facies and are dominantly very fine to fine, moderately sorted, quartz, feldspar, and lithic fragment-bearing to

  8. Wood energy for residential heating in Alaska: current conditions, attitudes, and expected use

    Treesearch

    David L. Nicholls; Allen M. Brackley; Valerie Barber

    2010-01-01

    This study considered three aspects of residential wood energy use in Alaska: current conditions and fuel consumption, knowledge and attitudes, and future use and conditions. We found that heating oil was the primary fuel for home heating in southeast and interior Alaska, whereas natural gas was used most often in south-central Alaska (Anchorage). Firewood heating...

  9. Highway Statistics 1950

    DOT National Transportation Integrated Search

    1952-01-01

    This publication, the sixth of an annual series, presents the 1950 statistical and analytical tables of general interest on motor fuel, motor vehicles, highway-user taxation, financing of State highways, highway mileage, and Federal aid for highways....

  10. Maps showing sedimentary basins, surface thermal maturity, and indications of petroleum in the Central Alaska Province

    USGS Publications Warehouse

    Troutman, Sandra M.; Stanley, Richard G.

    2003-01-01

    This publication includes two maps (at 1:2,500,000 scale) and a pamphlet that describe sedimentary basins, surface thermal maturity, and 95 reported occurrences of petroleum in natural seeps, wells, and rock outcrops in central Alaska. No commercial petroleum production has been obtained from central Alaska, in contrast to the prolific deposits of oil and gas that have been found and developed in northern Alaska and the Cook Inlet region. Nevertheless, confirmed indications of petroleum in central Alaska include (1) natural seeps of methane gas on the Yukon Delta; (2) occurrences of methane gas in wells in the Bethel, Kotzebue, Nenana, Northway, and Yukon Flats basins; (3) oil and methane gas in seeps and wells in Norton Sound; (4) small quantities of liquid and solid hydrocarbons associated with mercury ore in the Kuskokwim Mountains; (5) oil shale and numerous occurrences of bitumen in the Kandik area; and (6) tasmanite, a form of oil shale, in the uplands north of Yukon Flats.

  11. Pore fluid geochemistry from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Torres, M.E.; Collett, T.S.; Rose, K.K.; Sample, J.C.; Agena, W.F.; Rosenbaum, E.J.

    2011-01-01

    The BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well was drilled and cored from 606.5 to 760.1. m on the North Slope of Alaska, to evaluate the occurrence, distribution and formation of gas hydrate in sediments below the base of the ice-bearing permafrost. Both the dissolved chloride and the isotopic composition of the water co-vary in the gas hydrate-bearing zones, consistent with gas hydrate dissociation during core recovery, and they provide independent indicators to constrain the zone of gas hydrate occurrence. Analyses of chloride and water isotope data indicate that an observed increase in salinity towards the top of the cored section reflects the presence of residual fluids from ion exclusion during ice formation at the base of the permafrost layer. These salinity changes are the main factor controlling major and minor ion distributions in the Mount Elbert Well. The resulting background chloride can be simulated with a one-dimensional diffusion model, and the results suggest that the ion exclusion at the top of the cored section reflects deepening of the permafrost layer following the last glaciation (???100 kyr), consistent with published thermal models. Gas hydrate saturation values estimated from dissolved chloride agree with estimates based on logging data when the gas hydrate occupies more than 20% of the pore space; the correlation is less robust at lower saturation values. The highest gas hydrate concentrations at the Mount Elbert Well are clearly associated with coarse-grained sedimentary sections, as expected from theoretical calculations and field observations in marine and other arctic sediment cores. ?? 2009 Elsevier Ltd.

  12. Highway Statistics 1995

    DOT National Transportation Integrated Search

    1996-11-01

    This is an annual report containing analyzed statistical data on motor fuel, motor vehicles, driver licensing, highway-user taxation, State and local highway finance, highway mileage, and Federal-aid for highways, as well as information from the Nati...

  13. Highway Statistics 1990

    DOT National Transportation Integrated Search

    1991-10-01

    This publication is the 46th of an annual series. It presents the 1990 analyzed statistics of general interest on motor fuel, motor vehicles, driver licensing, highway-user taxation, State highway finance, highway mileage, and Federal aid for highway...

  14. Geologic controls on gas hydrate occurrence in the Mount Elbert prospect, Alaska North Slope

    USGS Publications Warehouse

    Boswell, R.; Rose, K.; Collett, T.S.; Lee, M.; Winters, W.; Lewis, K.A.; Agena, W.

    2011-01-01

    Data acquired at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well, drilled in the Milne Point area of the Alaska North Slope in February, 2007, indicates two zones of high gas hydrate saturation within the Eocene Sagavanirktok Formation. Gas hydrate is observed in two separate sand reservoirs (the D and C units), in the stratigraphically highest portions of those sands, and is not detected in non-sand lithologies. In the younger D unit, gas hydrate appears to fill much of the available reservoir space at the top of the unit. The degree of vertical fill with the D unit is closely related to the unit reservoir quality. A thick, low-permeability clay-dominated unit serves as an upper seal, whereas a subtle transition to more clay-rich, and interbedded sand, silt, and clay units is associated with the base of gas hydrate occurrence. In the underlying C unit, the reservoir is similarly capped by a clay-dominated section, with gas hydrate filling the relatively lower-quality sands at the top of the unit leaving an underlying thick section of high-reservoir quality sands devoid of gas hydrate. Evaluation of well log, core, and seismic data indicate that the gas hydrate occurs within complex combination stratigraphic/structural traps. Structural trapping is provided by a four-way fold closure augmented by a large western bounding fault. Lithologic variation is also a likely strong control on lateral extent of the reservoirs, particularly in the D unit accumulation, where gas hydrate appears to extend beyond the limits of the structural closure. Porous and permeable zones within the C unit sand are only partially charged due most likely to limited structural trapping in the reservoir lithofacies during the period of primary charging. The occurrence of the gas hydrate within the sands in the upper portions of both the C and D units and along the crest of the fold is consistent with an interpretation that these deposits are converted free gas accumulations

  15. Comprehensive investigation into historical pipeline construction costs and engineering economic analysis of Alaska in-state gas pipeline

    NASA Astrophysics Data System (ADS)

    Rui, Zhenhua

    This study analyzes historical cost data of 412 pipelines and 220 compressor stations. On the basis of this analysis, the study also evaluates the feasibility of an Alaska in-state gas pipeline using Monte Carlo simulation techniques. Analysis of pipeline construction costs shows that component costs, shares of cost components, and learning rates for material and labor costs vary by diameter, length, volume, year, and location. Overall average learning rates for pipeline material and labor costs are 6.1% and 12.4%, respectively. Overall average cost shares for pipeline material, labor, miscellaneous, and right of way (ROW) are 31%, 40%, 23%, and 7%, respectively. Regression models are developed to estimate pipeline component costs for different lengths, cross-sectional areas, and locations. An analysis of inaccuracy in pipeline cost estimation demonstrates that the cost estimation of pipeline cost components is biased except for in the case of total costs. Overall overrun rates for pipeline material, labor, miscellaneous, ROW, and total costs are 4.9%, 22.4%, -0.9%, 9.1%, and 6.5%, respectively, and project size, capacity, diameter, location, and year of completion have different degrees of impacts on cost overruns of pipeline cost components. Analysis of compressor station costs shows that component costs, shares of cost components, and learning rates for material and labor costs vary in terms of capacity, year, and location. Average learning rates for compressor station material and labor costs are 12.1% and 7.48%, respectively. Overall average cost shares of material, labor, miscellaneous, and ROW are 50.6%, 27.2%, 21.5%, and 0.8%, respectively. Regression models are developed to estimate compressor station component costs in different capacities and locations. An investigation into inaccuracies in compressor station cost estimation demonstrates that the cost estimation for compressor stations is biased except for in the case of material costs. Overall average

  16. 2015 Volcanic activity in Alaska—Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Dixon, James P.; Cameron, Cheryl E.; Iezzi, Alexandra M.; Wallace, Kristi

    2017-09-28

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 14 volcanic centers in Alaska during 2015. The most notable volcanic activity consisted of continuing intermittent ash eruptions from Cleveland and Shishaldin volcanoes in the Aleutian Islands. Two eruptive episodes, at Veniaminof and Pavlof, on the Alaska Peninsula ended in 2015. During 2015, AVO re-established the seismograph network at Aniakchak, installed six new broadband seismometers throughout the Aleutian Islands, and added a Multiple component Gas Analyzer System (MultiGAS) station on Augustine.

  17. Traffic Analysis For Highway-To-Highway Interchanges On Automated Highway Systems, Congestion In Absence Of Dedicated Ramps

    DOT National Transportation Integrated Search

    1997-01-01

    SPECIAL CONNECTOR RAMPS LINKING THE AUTOMATED LANES AT AUTOMATED HIGHWAY-TO-AUTOMATED HIGHWAY INTERCHANGES MAY BE NEEDED TO ENABLE CONTINUOUS AUTOMATED DRIVING BETWEEN TWO CROSSING HIGHWAYS. ALTHOUGH A TYPICAL CLOVERLEAF CONFIGURATION HAS ONLY TWO LE...

  18. Improving passing lane safety and efficiency for Alaska's rural non\\0x2010divided highways.

    DOT National Transportation Integrated Search

    2014-06-01

    A series of experiments using a fixed-base driving simulator were conducted to examine the potential safety and operational : benefits of several highway safety interventions for reducing collision risk. Our approach sought to go beyond typical mitig...

  19. Development and Calibration of Two-Dimensional Hydrodynamic Model of the Tanana River near Tok, Alaska

    USGS Publications Warehouse

    Conaway, Jeffrey S.; Moran, Edward H.

    2004-01-01

    Bathymetric and hydraulic data were collected by the U.S. Geological Survey on the Tanana River in proximity to Alaska Department of Transportation and Public Facilities' bridge number 505 at mile 80.5 of the Alaska Highway. Data were collected from August 7-9, 2002, over an approximate 5,000- foot reach of the river. These data were combined with topographic data provided by Alaska Department of Transportation and Public Facilities to generate a two-dimensional hydrodynamic model. The hydrodynamic model was calibrated with water-surface elevations, flow velocities, and flow directions collected at a discharge of 25,600 cubic feet per second. The calibrated model was then used for a simulation of the 100-year recurrence interval discharge of 51,900 cubic feet per second. The existing bridge piers were removed from the model geometry in a second simulation to model the hydraulic conditions in the channel without the piers' influence. The water-surface elevations, flow velocities, and flow directions from these simulations can be used to evaluate the influence of the piers on flow hydraulics and will assist the Alaska Department of Transportation and Public Facilities in the design of a replacement bridge.

  20. Alaska Department of Revenue - Alaska Film Office

    Science.gov Websites

    State Employees Alaska Film Office Alaska Film Office State of Alaska HOME CREDIT PROGRAM PUBLIC REPORTING CPA ECONOMIC DEVELOPMENT CONTACT US State of Alaska > Department of Revenue > Alaska Film Office > Text Size: A+ | A- | A Text Only Effective July 1, 2015, the film production incentive

  1. 2006 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Dixon, James P.; Manevich, Alexander; Rybin, Alexander

    2008-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near nine separate volcanic centers in Alaska during 2006. A significant explosive eruption at Augustine Volcano in Cook Inlet marked the first eruption within several hundred kilometers of principal population centers in Alaska since 1992. Glaciated Fourpeaked Mountain, a volcano thought to have been inactive in the Holocene, produced a phreatic eruption in the fall of 2006 and continued to emit copious amounts of volcanic gas into 2007. AVO staff also participated in hazard communication and monitoring of multiple eruptions at seven volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  2. Highway Safety Program Manual: Volume 12: Highway Design, Construction and Maintenance.

    ERIC Educational Resources Information Center

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    Volume 12 of the 19-volume Highway Safety Program Manual (which provides guidance to State and local governments on preferred highway safety practices) focuses on highway design, construction and maintenance. The purpose and specific objectives of such a program are described. Federal authority in the area of highway safety and policies regarding…

  3. Assessment of undiscovered oil and gas resources in the Cretaceous Nanushuk and Torok Formations, Alaska North Slope, and summary of resource potential of the National Petroleum Reserve in Alaska, 2017

    USGS Publications Warehouse

    Houseknecht, David W.; Lease, Richard O.; Schenk, Christopher J.; Mercier, Tracey J.; Rouse, William A.; Jarboe, Palma B.; Whidden, Katherine J.; Garrity, Christopher P.; Lewis, Kristen A.; Heller, Samuel; Craddock, William H.; Klett, Timothy R.; Le, Phuong A.; Smith, Rebecca; Tennyson, Marilyn E.; Gaswirth, Stephanie B.; Woodall, Cheryl A.; Brownfield, Michael E.; Leathers-Miller, Heidi M.; Finn, Thomas M.

    2017-12-22

    The U.S. Geological Survey estimated mean undiscovered, technically recoverable resources of 8.7 billion barrels of oil and 25 trillion cubic feet of natural gas (associated and nonassociated) in conventional accumulations in the Cretaceous Nanushuk and Torok Formations in the National Petroleum Reserve in Alaska, adjacent State and Native lands, and State waters. The estimated undiscovered oil resources in the Nanushuk and Torok Formations are significantly higher than previous estimates, owing primarily to recent, larger than anticipated oil discoveries.

  4. Dollars for lives: the effect of highway capital investments on traffic fatalities.

    PubMed

    Nguyen-Hoang, Phuong; Yeung, Ryan

    2014-12-01

    This study examines the effect of highway capital investments on highway fatalities. We used state-level data from the 48 contiguous states in the United States from 1968 through 2010 to estimate the effects on highway fatalities of capital expenditures and highway capital stock. We estimated these effects by controlling for a set of control variables together with state and year dummy variables and state-specific linear time trends. We found that capital expenditures and capital stock had significant and negative effects on highway fatalities. States faced with declines in gas tax revenues have already cut back drastically on spending on roads including on maintenance and capital outlay. If this trend continues, it may undermine traffic safety. While states and local governments are currently fiscally strained, it is important for them to continue investments in roadways to enhance traffic safety and, more significantly, to save lives. Copyright © 2014 National Safety Council and Elsevier Ltd. All rights reserved.

  5. 75 FR 6199 - TransCanada Alaska Company LLC; Notice of Request for Approval of Plan for Conducting an Open Season

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... governing Open Seasons for Alaska Natural Gas Transportation Projects, TransCanada Alaska Company LLC (TC... firm natural gas transportation service and optional firm gas treatment service to be provided by TC... , or call (866) 208-3676 (toll free). For TTY, call (202) 502-8659. Please note that the review of TC...

  6. Aerosol and trace gas flux measurements from a mobile car platform on the highway

    NASA Astrophysics Data System (ADS)

    Gordon, M.; Miller, S. J.; Staebler, R. M.; Taylor, P.

    2016-12-01

    Mobile flux measurements of aerosols and trace gases at the surface can provide valuable information about the vertical transport of these compounds from near-surface sources. These measurements can be complimentary to stationary tower measurements or elevated mobile measurements from aircraft and unmanned aerial systems (UAS). In July, 2016 a mobile platform (Toyota Highlander), outfitted with a sonic anemometer (ATI), an open path CO2/H2O analyzer (Licor), and an ultrafine particle sizer (DMT), was driven on highways as part of a chasing study to investigate vehicle-induced turbulence and mixing. The open path analyzer and particle sizer inlet were co-located with the anemometer in order to investigate the feasibility of making flux measurements of heat, momentum, water vapour, CO2, and sub-micron aerosols on the highway. These highway flux measurements are compared to stationary platform measurements made upwind and downwind of the highway. Statistical and spectral analyses are used to demonstrate the validity of the mobile measurements. Uncertainties due to flow distortion around the vehicle, under-sampling, and heterogeneity of the vertical temperature and concentrations are investigated and discussed.

  7. Grady Highway Extension (Ship Creek Crossing) Elmendorf Air Force Base and Fort Richardson, Alaska

    DTIC Science & Technology

    2005-06-01

    Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302... eastern alignment (“Park Route”) upstream of the Proposed Action connecting to Fort Richardson at Fifth Street; and, use of access at Arctic Valley...Wetland A ............................................................................ 3-19 Figure 3-8 Large Ponded Area on Eastern Portion of Wetland B

  8. Coal database for Cook Inlet and North Slope, Alaska

    USGS Publications Warehouse

    Stricker, Gary D.; Spear, Brianne D.; Sprowl, Jennifer M.; Dietrich, John D.; McCauley, Michael I.; Kinney, Scott A.

    2011-01-01

    This database is a compilation of published and nonconfidential unpublished coal data from Alaska. Although coal occurs in isolated areas throughout Alaska, this study includes data only from the Cook Inlet and North Slope areas. The data include entries from and interpretations of oil and gas well logs, coal-core geophysical logs (such as density, gamma, and resistivity), seismic shot hole lithology descriptions, measured coal sections, and isolated coal outcrops.

  9. Highway funding : problems with Highway Trust Fund information can affect state highway funds

    DOT National Transportation Integrated Search

    2000-06-01

    The Transportation Equity Act for the 21st Century (TEA-21) authorized $217.9 billion for highway, mass transit, and other surface transportation programs for fiscal years 1998 through 2003. TEA-21 continued the use of the Highway Trust Fund-which is...

  10. Geologic Map of the Utukok River Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2006-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically.

  11. Highway Statistics 1980

    DOT National Transportation Integrated Search

    1980-01-01

    This publication brings together annual series of selected statistical tabulations relating to highway transportation in three major areas: (1) Highway use--the ownership and operation of motor vehicles; (2) highway finance--the receipts and expendit...

  12. Highway statistics 2007

    DOT National Transportation Integrated Search

    2007-01-01

    This publication brings together annual series of selected statistical tabulations relating to highway transportation in four major areas: (1) highway infrastructure and users; (2) motor vehicles and fuel; (3) highway finance--the receipts and expend...

  13. 75 FR 8329 - Regulations Governing the Conduct of Open Seasons for Alaska Natural Gas Transportation Projects...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    .... TransCanada Alaska Company LLC (TC Alaska) has recently filed its request for approval of its Open...-Filing Workshop is attached. There will be no discussion of TC Alaska's filing in Docket No. PF09-11-001...

  14. Highway Statistics 1960

    DOT National Transportation Integrated Search

    1960-01-01

    This publication, the sixteenth of an annual series, presents the 1960 statistical and analytical tables of general interest on motor fuel, motor vehicles, highway-user taxation, State and local highway finance, highway mileage, and Federal aid for h...

  15. Highway Statistics 1970

    DOT National Transportation Integrated Search

    1971-10-01

    This publication was prepared by the Highway Statistics Division, Office of Highway Planning, Federal Highway Administration. The 26th of an annual series, it presents the 1970 statistical and analytical tables of general interest on motor fuel, moto...

  16. Gas production from a cold, stratigraphically-bounded gas hydrate deposit at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Implications of uncertainties

    USGS Publications Warehouse

    Moridis, G.J.; Silpngarmlert, S.; Reagan, M.T.; Collett, T.; Zhang, K.

    2011-01-01

    As part of an effort to identify suitable targets for a planned long-term field test, we investigate by means of numerical simulation the gas production potential from unit D, a stratigraphically bounded (Class 3) permafrost-associated hydrate occurrence penetrated in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well on North Slope, Alaska. This shallow, low-pressure deposit has high porosities (?? = 0.4), high intrinsic permeabilities (k = 10-12 m2) and high hydrate saturations (SH = 0.65). It has a low temperature (T = 2.3-2.6 ??C) because of its proximity to the overlying permafrost. The simulation results indicate that vertical wells operating at a constant bottomhole pressure would produce at very low rates for a very long period. Horizontal wells increase gas production by almost two orders of magnitude, but production remains low. Sensitivity analysis indicates that the initial deposit temperature is by the far the most important factor determining production performance (and the most effective criterion for target selection) because it controls the sensible heat available to fuel dissociation. Thus, a 1 ??C increase in temperature is sufficient to increase the production rate by a factor of almost 8. Production also increases with a decreasing hydrate saturation (because of a larger effective permeability for a given k), and is favored (to a lesser extent) by anisotropy. ?? 2010.

  17. Presentations - Herriott, T.M. and others, 2015 | Alaska Division of

    Science.gov Websites

    fieldwork and subsurface data in a region of known oil and gas accumulations (poster): Geological Society of data in a region of known oil and gas accumulations (poster): Geological Society of America Slope, Alaska - Integration of fieldwork and subsurface data in a region of known oil and gas

  18. 2007 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.; Dixon, James P.; Malik, Nataliya; Chibisova, Marina

    2011-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near nine separate volcanic centers in Alaska during 2007. The year was highlighted by the eruption of Pavlof, one of Alaska's most frequently active volcanoes. Glaciated Fourpeaked Mountain, a volcano thought to have been inactive in the Holocene, produced a phreatic eruption in the autumn of 2006 and continued to emit copious amounts of steam and volcanic gas into 2007. Redoubt Volcano showed the first signs of the unrest that would unfold in 2008-09. AVO staff also participated in hazard communication and monitoring of multiple eruptions at seven volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  19. Modeling spatial variations of black carbon particles in an urban highway-building environment.

    PubMed

    Tong, Zheming; Wang, Yan Jason; Patel, Molini; Kinney, Patrick; Chrillrud, Steven; Zhang, K Max

    2012-01-03

    Highway-building environments are prevalent in metropolitan areas. This paper presents our findings in investigating pollutant transport in a highway-building environment by combing field measurement and numerical simulations. We employ and improve the Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model to simulate the spatial variations of black carbon (BC) concentrations near highway I-87 and an urban school in the South Bronx, New York. The results of CTAG simulations are evaluated against and agree adequately with the measurements of wind speed, wind directions, and BC concentrations. Our analysis suggests that the BC concentration at the measurement point of the urban school could decrease by 43-54% if roadside buildings were absent. Furthermore, we characterize two generalized conditions in a highway-building environment, i.e., highway-building canyon and highway viaduct-building. The former refers to the canyon between solid highway embankment and roadside buildings, where the spatial profiles of BC depend on the equivalent canyon aspect ratio and flow recirculation. The latter refers to the area between a highway viaduct (i.e., elevated highway with open space underneath) and roadside buildings, where strong flow recirculation is absent and the spatial profiles of BC are determined by the relative heights of the highway and buildings. The two configurations may occur at different locations or in the same location with different wind directions when highway geometry is complex. Our study demonstrates the importance of incorporating highway-building interaction into the assessment of human exposure to near-road air pollution. It also calls for active roles of building and highway designs in mitigating near-road exposure of urban population.

  20. Modeling spatial variations of black carbon particles in an urban highway-buildings environment

    PubMed Central

    Tong, Zheming; Wang, Yan; Patel, Molini; Kinney, Patrick; Chrillrud, Steven; Zhang, K. Max

    2011-01-01

    Highway-building environments are prevalent in metropolitan areas. This paper presents our findings in investigating pollutant transport in a highway-building environment by combing field measurement and numerical simulations. We employ and improve the Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model to simulate the spatial variations of black carbon (BC) concentrations near highway I-87 and an urban school in the South Bronx, New York. The results of CTAG simulations are evaluated against and agree adequately with the measurements of wind speed, wind directions and BC concentrations. Our analysis suggests that the BC concentration at the measurement point of the urban school could decrease by 43–54% if roadside buildings were absent. Furthermore, we characterize two generalized conditions in a highway-building environment, i.e., highway-building canyon and highway viaduct-building. The former refers to the canyon between solid highway embankment and roadside buildings, where the spatial profiles of BC depend on the equivalent canyon aspect ratio and flow recirculation. The latter refers to the area between a highway viaduct (i.e., elevated highway with open space underneath) and roadside buildings, where strong flow recirculation is absent and the spatial profiles of BC are determined by the relative heights of the highway and buildings. The two configurations may occur at different locations or in the same location with different wind directions when highway geometry is complex. Our study demonstrates the importance of incorporating highway-building interaction into the assessment of human exposure to near-road air pollution. It also calls for active roles of building and highway designs in mitigating near-road exposure of urban population. PMID:22084971

  1. 76 FR 46889 - Notice of Final Federal Agency Actions on Proposed Highway in Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ... trestle to Harbor Island in Portland Canal, a distance of 0.7 miles. Hyder is 75 air miles northeast of....C. 4321-4351]; Federal-Aid Highway Act [23 U.S.C. 109]. 2. Air: Clean Air Act, 42 U.S.C. 7401-7671(q... Act (FPPA) [7 U.S.C. 4201-4209]. 7. Wetlands and Water Resources: Clean Water Act, 33 U.S.C. 1251...

  2. Volcanic gas emissions during active dome growth at Mount Cleveland, Alaska, August 2015

    NASA Astrophysics Data System (ADS)

    Werner, Cynthia; Kern, Christoph; Lyons, John; Kelly, Peter; Schneider, David; Wallace, Kristi; Wessels, Rick

    2016-04-01

    Volcanic gas emissions and chemistry data were measured for the first time at Mount Cleveland (1730 m) in the Central Aleutian arc, Alaska, on August 14-15, 2015 as part of the NSF-GeoPRISMS initiative, and co-funded by the Deep Carbon Observatory (DCO) and the USGS Alaska Volcano Observatory. The measurements were made in the month following two explosive events (July 21 and August 7, 2015) that destroyed a small dome (˜50x85 m), which had experienced episodic growth in the crater since November, 2014. These explosions resulted in the elevation of the aviation color code and alert level from Yellow/Advisory to Orange/Watch on July 21, 2015. Between the November, 2014 and July, 2015 dome-destroying explosions, the volcano experienced: (1) frequent periods of elevated surface temperatures in the summit region (based on Mid-IR satellite observations), (2) limited volcano-seismic tremor, (3) visible degassing as recorded in webcam images with occasionally robust plumes, and (4) at least one aseismic volcanic event that deposited small amounts of ash on the upper flanks of the volcano (detected by infrasound, observed visually and in Landsat 8 images). Intermittent plumes were also sometimes detectable up to 60 km downwind in Mid-IR satellite images, but this was not typical. Lava extrusion resumed following the explosion as indicated in satellite data by highly elevated Mid-IR surface temperatures, but was not identifiable in seismic data. By early-mid August, 2015, a new dome growing in the summit crater had reached 80 m across with temperatures of 550-600 C as measured on August 4 with a helicopter-borne thermal IR camera. A semitransparent plume extended several kilometers downwind of the volcano during the field campaign. A helicopter instrumented with an upward-looking UV spectrometer (mini DOAS) and a Multi-GAS was used to measure SO2 emission rates and in situ mixing ratios of H2O, CO2, SO2, and H2S in the plume. On August 14 and 15, 2015, a total of 14

  3. In Situ Leaf Level Gas Exchange Measurements, Barrow, Alaska, 2013

    DOE Data Explorer

    Alistair Rogers; Stefanie Lasota

    2015-01-13

    Survey measurements of photosynthetic rate and stomatal conductance together with carbon dioxide concentration, temperature, PAR, and relative humidity for 8 species on the BEO. Previously titled "Plant Physiology Data, Barrow, Alaska, 2013"

  4. Publications - GMC 427 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 427 Publication Details Title: Gas Chromatography coupled to Tandem Mass Spectrometry (GC/MS Tandem Mass Spectrometry (GC/MS/MS) analyses of cuttings for 16 Arctic Slope wells: Alaska Division of

  5. Blue Mountain and The Gas Rocks: Rear-Arc Dome Clusters on the Alaska Peninsula

    USGS Publications Warehouse

    Hildreth, Wes; Fierstein, Judy; Calvert, Andrew T.

    2007-01-01

    Behind the single-file chain of stratovolcanoes on the Alaska Peninsula, independent rear-arc vents for mafic magmas are uncommon, and for silicic magmas rarer still. We report here the characteristics, compositions, and ages of two andesite-dacite dome clusters and of several nearby basaltic units, all near Becharof Lake and 15 to 20 km behind the volcanic front. Blue Mountain consists of 13 domes (58-68 weight percent SiO2) and The Gas Rocks of three domes (62-64.5 weight percent SiO2) and a mafic cone (52 weight percent SiO2). All 16 domes are amphibole-biotite-plagioclase felsite, and nearly all are phenocryst rich and quartz bearing. Although the two dome clusters are lithologically and chemically similar and only 25 km apart, they differ strikingly in age. The main central dome of Blue Mountain yields an 40Ar/39Ar age of 632?7 ka, and two of the Gas Rocks domes ages of 25.7?1.4 and 23.3?1.2 ka. Both clusters were severely eroded by glaciation; surviving volumes of Blue Mountain domes total ~1 km3, and of the Gas Rocks domes 0.035 km3. Three basaltic vents lie close to The Gas Rocks, another lies just south of Blue Mountain, and a fifth is near the north shore of Becharof Lake. A basaltic andesite vent 6 km southeast of The Gas Rocks appears to be a flank vent of the arc-front center Mount Peulik. The basalt of Ukinrek Maars has been called transitionally alkalic, but all the other basaltic rocks are subalkaline. CO2-rich gas emissions near the eponymous Gas Rocks domes are not related to the 25-ka dacite dome cluster but, rather, to intracrustal degassing of intrusive basalt, one batch of which erupted 3 km away in 1977. The felsic and mafic vents all lie along or near the Bruin Bay Fault where it intersects a broad transverse structural zone marked by topographic, volcanologic, and geophysical discontinuities.

  6. A 2000 ton crawler/transporter for operation in Prudhoe Bay, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trask, W.H.; Trask, J.L.; Crane, T.

    1986-01-01

    Recently designed and fabricated in Kennewick, Washington, a pair of 2000 ton capacity crawler/transporters has been used in moving refinery modules to permanent installations on Alaska's North Slope. Vehicle design features include four corner chain-driven, track driving sprockets (tumblers), resilient track roller suspensions, elevating load platform (hereinafter ''bolsters''), dynamic braking, diesel/torque converter power, automatic lubrication and electro-pneumatic controls. Four independent power units provide 1400 horse-power per crawler and over two million pounds of drawbar pull at converter stall. Weighing 300 tons, the pin-connected crawler dissembles for highway transport into loads of under 95,000 pounds.

  7. Alaska Melilotus invasions: Distribution, origin, and susceptibility of plant communities

    USGS Publications Warehouse

    Conn, J.S.; Beattie, K.L.; Shephard, M.A.; Carlson, M.L.; Lapina, I.; Hebert, M.; Gronquist, R.; Densmore, R.; Rasy, M.

    2008-01-01

    Melilotus alba and M. officinalis were introduced to Alaska in 1913 as potential forage crops. These species have become naturalized and are now invading large, exotic plant-free regions of Alaska. We determined distributions of M. alba and M. officinalis in Alaska from surveys conducted each summer from 2002 to 2005. Melilotus alba and M. officinalis occurred at 721 and 205 sites, respectively (39,756 total sites surveyed). The northward limit for M. alba and M. officinalis was 67.15??N and 64.87??N, respectively. Both species were strictly associated with soil disturbance. Melilotus alba extended no farther than 15 m from road edges except where M. alba on roadsides met river floodplains and dispersed downriver (Matanuska and Nenana Rivers). Melilotus has now reached the Tanana River, a tributary of the Yukon River. Populations on floodplains were most extensive on braided sections. On the Nenana River, soil characteristics did not differ between where M. alba was growing versus similar areas where it had not yet reached. The pH of river soils (7.9-8.3) was higher than highway soils (7.3). Upland taiga plant communities grow on acid soils which may protect them from invasion by Melilotus, which prefer alkaline soils; however, early succession communities on river floodplains are susceptible because soils are alkaline. ?? 2008 Regents of the University of Colorado.

  8. Vegetation and Environmental Gradients of the Prudhoe Bay Region, Alaska,

    DTIC Science & Technology

    1985-09-01

    to patterned-ground features , gram (IBP) to examine the tundra biome (Brown and the effects on other soil parameters. A major 1975, Tieszen 1978...ment of Environmental, Population and Organismic Biology. The study was initiat- ed in 1973 under the U.S. Tundra Biome portion of the International...contributions to the University of Alaska’s Tundra Biome Center from the Prudhoe Bay Environmental Subcommit- tee of the Alaska Oil and Gas Association

  9. Highway corridor responsibility

    Treesearch

    Bonnie L. Harper-Lore

    1998-01-01

    As highways cross the nation they provide safe travel for the vacationers, commuters, truckers, the military, farmers, congressmen, our families, and friends. Highway corridors provide safe passage for many plant invaders as well. Highway vegetation managers manage millions of acres of rights-of-way that cross your land. It is imperative that we understand each other...

  10. Geologic Map of the Point Lay Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2008-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.

  11. Geologic Map of the Ikpikpuk River Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2005-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.

  12. Geologic Map of the Lookout Ridge Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2006-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.

  13. Assessment of undiscovered petroleum resources of the Arctic Alaska Petroleum Province

    USGS Publications Warehouse

    Houseknecht, David W.; Bird, Kenneth J.; Garrity, Christopher P.

    2012-01-01

    The Arctic Alaska Petroleum Province encompasses all lands and adjacent continental shelf areas north of the Brooks Range-Herald arch tectonic belts and south of the northern (outboard) margin of the Alaska rift shoulder. Even though only a small part is thoroughly explored, it is one of the most prolific petroleum provinces in North America, with total known resources (cumulative production plus proved reserves) of about 28 billion barrels of oil equivalent. For assessment purposes, the province is divided into a platform assessment unit, comprising the Alaska rift shoulder and its relatively undeformed flanks, and a fold-and-thrust belt assessment unit, comprising the deformed area north of the Brooks Range and Herald arch tectonic belts. Mean estimates of undiscovered, technically recoverable resources include nearly 28 billion barrels of oil and 122 trillion cubic feet of nonassociated gas in the platform assessment unit and 2 billion barrels of oil and 59 trillion cubic feet of nonassociated gas in the fold-and-thrust belt assessment unit.

  14. Study on energy consumption evaluation of mountainous highway based on LCA

    NASA Astrophysics Data System (ADS)

    Fei, Lunlin; Zhang, Qi; Xie, Yongqing

    2017-06-01

    For the system to understand the road construction energy consumption process, this paper selects a typical mountainous highway in the south, using the theory and method of Life Cycle Assessment (LCA) to quantitatively study the energy consumption of the whole process of highway raw materials production, construction and operation. The results show that the energy consumption in the raw material production stage is the highest, followed by the highway operation and construction stage. The energy consumption per unit of tunnel engineering, bridge engineering, roadbed engineering and pavement engineering in the construction phase are 2279.00 tce, 1718.07 tce, 542.19 tce and 34.02 tce, and in operational phase, 85.44% of electricity consumption comes from tunnel ventilation and lighting. Therefore, in the bridge and tunnel construction process, we should promote energy-saving innovation of the construction technology and mechanical equipment, and further strengthen the research and development of tunnel ventilation, lighting energy-saving equipment and intelligent control technology, which will help significantly reduce the energy consumption and greenhouse gas emissions of the life cycle of highway.

  15. Our nation's highways 2008

    DOT National Transportation Integrated Search

    2008-07-01

    he Federal Highway Administrations Office of Highway Policy Information (OHPI) establishes travel monitoring policy and guidelines, facilitates the application of technology, and collects and analyzes highway-related data from throughout the Unite...

  16. Publications - GMC 225 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    following Alaskan arctic White Hills oil and gas wells: ARCO Alaska Inc. Kavik #1 (75' - 9540'); and BP O'Sullivan, P.B., 1994, Apatite fission track data derived from cuttings of the following Alaskan arctic

  17. Addressing historic environmental exposures along the Alaska Highway

    PubMed Central

    Godduhn, Anna; Duffy, Lawrence

    2013-01-01

    Background A World War II defense site at Northway, Alaska, was remediated in the 1990s, leaving complex questions regarding historic exposures to toxic waste. This article describes the context, methods, limitations and findings of the Northway Wild Food and Health Project (NWFHP). Objective The NWFHP comprised 2 pilot studies: the Northway Wild Food Study (NWFS), which investigated contaminants in locally prioritized traditional foods over time, and the Northway Health Study (NHS), which investigated locally suspected links between resource uses and health problems. Design This research employed mixed methods. The NWFS reviewed remedial documents and existing data. The NHS collected household information regarding resource uses and health conditions by questionnaire and interview. NHS data represent general (yes or no) personal knowledge that was often second hand. Retrospective cohort comparisons were made of the reported prevalence of 7 general health problems between groups based on their reported (yes or no) consumption of particular resources, for 3 data sets (existing, historic and combined) with a two-tailed Fisher's Exact Test in SAS (n=325 individuals in 83 households, 24 of which no longer exist). Results The NWFS identified historic pathways of exposure to petroleum, pesticides, herbicides, chlorinated byproducts of disinfection and lead from resources that were consumed more frequently decades ago and are not retrospectively quantifiable. The NHS found complex patterns of association between reported resource uses and cancer and thyroid-, reproductive-, metabolic- and cardiac problems. Conclusion Lack of detail regarding medical conditions, undocumented histories of exposure, time lapsed since the release of pollution and changes to health and health care over the same period make this exploratory research. Rather than demonstrate causation, these results document the legitimacy of local suspicions and warrant additional investigation. This article

  18. A genetic discontinuity in moose (Alces alces) in Alaska corresponds with fenced transportation infrastructure

    USGS Publications Warehouse

    Wilson, Robert E.; Farley, Sean D.; McDonough, Thomas J.; Talbot, Sandra L.; Barboza, Perry S.

    2015-01-01

    The strength and arrangement of movement barriers can impact the connectivity among habitat patches. Anthropogenic barriers (e.g. roads) are a source of habitat fragmentation that can disrupt these resource networks and can have an influence on the spatial genetic structure of populations. Using microsatellite data, we evaluated whether observed genetic structure of moose (Alces alces) populations were associated with human activities (e.g. roads) in the urban habitat of Anchorage and rural habitat on the Kenai Peninsula, Alaska. We found evidence of a recent genetic subdivision among moose in Anchorage that corresponds to a major highway and associated infrastructure. This subdivision is most likely due to restrictions in gene flow due to alterations to the highway (e.g. moose-resistant fencing with one-way gates) and a significant increase in traffic volume over the past 30 years; genetic subdivision was not detected on the Kenai Peninsula in an area not bisected by a major highway. This study illustrates that anthropogenic barriers can substructure wildlife populations within a few generations and highlights the value of genetic assessments to determine the effects on connectivity among habitat patches in conjunction with behavioral and ecological data..

  19. Links | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates Sponsors' Proposals STATEMAP . National Geothermal Data System (NGDS) The National Geothermal Data System (NGDS) is a catalog of documents and datasets that provide information about geothermal resources. Geophysical Institute Seismology

  20. Impact origin of the Avak Structure, Arctic Alaska, and genesis of the Barrow gas fields

    USGS Publications Warehouse

    Kirschner, C.E.; Grantz, A.; Mullen, M.W.

    1992-01-01

    Geophysical and subsurface geologic data suggest that the Avak structure, which underlies the Arctic Coastal Plain 12 km southeast of Barrow, Alaska, is a hypervelocity meteorite or comet impact structure. The structure is a roughly circular area of uplifted, chaotically deformed Upper Triassic to Lower Cretaceous sedimentary rocks 8 km in diameter that is bounded by a ring of anastomosing, inwardly dipping, listric normal faults 12 km in diameter. Examination of cores from the Barrow gas fields and data concerning the age of the Avak structure suggest that the Avak meteorite struck a Late Cretaceous or Tertiary marine shelf or coastal plain between the Cenomanian (ca. 95 Ma), and deposition of the basal beds of the overlying late Pliocene and Quaternary Gubik Formation (ca. 3 Ma). -from Authors

  1. Financing federal-aid highways

    DOT National Transportation Integrated Search

    1999-08-01

    Because of a continuing demand for information concerning the financing of Federal-aid highways, the Federal Highway Administration (FHWA) prepared a report, "Financing Federal-Aid Highways," in January 1974 to describe the basic process involved. Th...

  2. Evaluation of precut transverse cracks for an asphalt concrete pavement in interior Alaska (Moose Creek - Richardson Highway).

    DOT National Transportation Integrated Search

    2015-08-01

    Road-width thermal cracks (major transverse cracks) are perhaps the most noticeable form of crack-related damage on AC pavements : throughout colder areas of Alaska. The main objective of this study is to recommend design strategies and construction ...

  3. Why build limited access highways?.

    DOT National Transportation Integrated Search

    1991-01-01

    This report first explains what a limited access highway is, then describes the benefits and advantages of limited access highways. As compared with highways with no control of access, limited access highways (especially those with full control) have...

  4. Highway infrastructure : FHWA's model for estimating highway needs is generally reasonable, despite limitations

    DOT National Transportation Integrated Search

    2000-06-01

    The Highway Economic Requirements System (HERS) computer model estimates investment requirements for the nation's highways by adding together the costs of highway improvements that the model's benefit-cost analyses indicate are warranted. In making i...

  5. Methodology and Estimates of Scour at Selected Bridge Sites in Alaska

    USGS Publications Warehouse

    Heinrichs, Thomas A.; Kennedy, Ben W.; Langley, Dustin E.; Burrows, Robert L.

    2001-01-01

    The U.S. Geological Survey estimated scour depths at 325 bridges in Alaska as part of a cooperative agreement with the Alaska Department of Transportation and Public Facilities. The department selected these sites from approximately 806 State-owned bridges as potentially susceptible to scour during extreme floods. Pier scour and contraction scour were computed for the selected bridges by using methods recommended by the Federal Highway Administration. The U.S. Geological Survey used a four-step procedure to estimate scour: (1) Compute magnitudes of the 100- and 500-year floods. (2) Determine cross-section geometry and hydraulic properties for each bridge site. (3) Compute the water-surface profile for the 100- and 500-year floods. (4) Compute contraction and pier scour. This procedure is unique because the cross sections were developed from existing data on file to make a quantitative estimate of scour. This screening method has the advantage of providing scour depths and bed elevations for comparison with bridge-foundation elevations without the time and expense of a field survey. Four examples of bridge-scour analyses are summarized in the appendix.

  6. Highways of the future : a strategic plan for highway infrastructure research and development

    DOT National Transportation Integrated Search

    2008-07-01

    This Highways of the FutureA Strategic Plan for Highway Infrastructure Research and Development was developed in response to a need expressed by the staff of the Federal Highway Administration (FHWA) Office of Infrastructure Research and Developme...

  7. Monthly Crude Oil and Natural Gas Production Report

    EIA Publications

    2017-01-01

    Crude oil production (including lease condensate) and natural gas production (gross withdrawals) from data collected on Form EIA-914 (Monthly Crude Oil, Lease Condensate, and Natural Gas Production Report) for Federal Offshore Gulf of Mexico, Texas, Louisiana, New Mexico, Oklahoma, Texas, Wyoming, other states and lower 48 states. Alaska data are from the Alaska state government and included to obtain a U.S. total.

  8. High-resolution well-log derived dielectric properties of gas-hydrate-bearing sediments, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Sun, Y.; Goldberg, D.; Collett, T.; Hunter, R.

    2011-01-01

    A dielectric logging tool, electromagnetic propagation tool (EPT), was deployed in 2007 in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert Well), North Slope, Alaska. The measured dielectric properties in the Mount Elbert well, combined with density log measurements, result in a vertical high-resolution (cm-scale) estimate of gas hydrate saturation. Two hydrate-bearing sand reservoirs about 20 m thick were identified using the EPT log and exhibited gas-hydrate saturation estimates ranging from 45% to 85%. In hydrate-bearing zones where variation of hole size and oil-based mud invasion are minimal, EPT-based gas hydrate saturation estimates on average agree well with lower vertical resolution estimates from the nuclear magnetic resonance logs; however, saturation and porosity estimates based on EPT logs are not reliable in intervals with substantial variations in borehole diameter and oil-based invasion.EPT log interpretation reveals many thin-bedded layers at various depths, both above and below the thick continuous hydrate occurrences, which range from 30-cm to about 1-m thick. Such thin layers are not indicated in other well logs, or from the visual observation of core, with the exception of the image log recorded by the oil-base microimager. We also observe that EPT dielectric measurements can be used to accurately detect fine-scale changes in lithology and pore fluid properties of hydrate-bearing sediments where variation of hole size is minimal. EPT measurements may thus provide high-resolution in-situ hydrate saturation estimates for comparison and calibration with laboratory analysis. ?? 2010 Elsevier Ltd.

  9. Georgia Highway Safety 1997 fact book : a report on highway safety In Georgia

    DOT National Transportation Integrated Search

    1997-01-01

    The goal of this fact book is to present highway safety statistics and fact-based analysis that will increase public awareness on highway safety issues, and to provide information that will assist policy makers and highway safety advocates in making ...

  10. Short Course in Highway Lighting.

    ERIC Educational Resources Information Center

    Federal Highway Administration (DOT), Washington, DC.

    This course guide in highway lighting includes an overview of trends in highway lighting, illustrated information on three light sources for today's luminaires, a reference guide to lamp classification, specifications for highway lighting equipment, and instructions for calculating appropriate use. Maintenance notes on highway illumination and…

  11. Alaska Air National Guard

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska Symbol Visit 168th Wing Website State of Alaska myAlaska My Government Resident Business in Alaska

  12. Geologic studies in Alaska by the U.S. Geological Survey, 1988

    USGS Publications Warehouse

    Dover, James H.; Galloway, John P.

    1989-01-01

    This volume continues the annual series of U.S. Geological Survey (USGS) reports on geologic investigations in Alaska. Since 1975, when the first of these collections of short papers appeared under the title "The United States Geological Survey in Alaska: Accomplishments during 1975," the series has been published as USGS circulars. This bulletin departs from the circular style, in part to provide a more flexible format for longer reports with more depth of content, better documentation, and broader scope than is possible for circular articles.The 13 papers in this bulletin represent a sampling of research activities carried out in Alaska by the USGS over the past few years. The topics addressed range from mineral resource studies (including natural gas) and geochemistry, Quaternary geology, basic stratigraphic and structural problems, and the use of computer graphics in geologic map preparation, to the application of geochronology to regional tectonic problems. Geographic areas represented are numbered on figure 1 and include the North Slope (1) and Brooks Range (2, 3) of Arctic Alaska, Seward Peninsula (4), interior Alaska (5-9), and remote locations of the Alaska Peninsula (10, 11) and southeast Alaska (12, 13).Two bibliographies following the reports of investigations list (1) reports about Alaska in USGS publications released in 1988 and (2) reports about Alaska by USGS authors in publications outside the USGS in 1988. A bibliography and index of the short papers in past USGS circulars devoted to Geological Research and Accomplishments in Alaska (1975-1986) is published as USGS Open-File Report 87-420.

  13. Role of reservoir engineering in the assessment of undiscovered oil and gas resources in the National Petroleum Reserve, Alaska

    USGS Publications Warehouse

    Verma, M.K.; Bird, K.J.

    2005-01-01

    The geology and reservoir-engineering data were integrated in the 2002 U.S. Geological Survey assessment of the National Petroleum Reserve in Alaska (NPRA). VVhereas geology defined the analog pools and fields and provided the basic information on sizes and numbers of hypothesized petroleum accumulations, reservoir engineering helped develop necessary equations and correlations, which allowed the determination of reservoir parameters for better quantification of in-place petroleum volumes and recoverable reserves. Seismic- and sequence-stratigraphic study of the NPRA resulted in identification of 24 plays. Depth ranges in these 24 plays, however, were typically greater than depth ranges of analog plays for which there were available data, necessitating the need for establishing correlations. The basic parameters required were pressure, temperature, oil and gas formation volume factors, liquid/gas ratios for the associated and nonassociated gas, and recovery factors. Finally, the re sults of U.S. Geological Survey deposit simulation were used in carrying out an economic evaluation, which has been separately published. Copyright ?? 2005. The American Association of Petroleum Geologists. All rights reserved.

  14. Fire Effects on Greenhouse Gas Emissions from Wetlands in the Yukon-Kuskokwim Delta, Alaska

    NASA Astrophysics Data System (ADS)

    Peter, D. L.; Bristol, E. M.; Mann, P. J.; Schade, J. D.; Natali, S.; Holmes, R. M.

    2017-12-01

    Climate change in increasing both fire frequency and fire intensity, especially in Arctic regions. Fire often leads to increased soil temperature, which increases the likelihood of permafrost thaw. Permafrost soils in northern latitudes store large amounts of carbon, and thawing of this permafrost will alter carbon cycling processes, which may substantially impact ecosystem processes in aquatic ecosystems. One potential consequence of altered aquatic ecosystem processes is changes in carbon emissions resulting from altered carbon inputs from thawing permafrost. Aquatic ecosystems are known to be hotspots of greenhouse gas emissions, so changes in greenhouse gas fluxes from them may have important impacts on global climate. In this work, we focused on CO2 and CH4 fluxes from peat plateau ponds, fens and bogs in the Yukon-Kuskokwim (YK) Delta in southwest Alaska. The YK Delta experienced unprecedented fires in summer 2015, presenting an opportunity to assess the impacts of fire on greenhouse gas fluxes from aquatic ecosystems. We sampled upland ponds, channel fens, bogs, and lowland ponds in sites that had burned in 2015 as well as from similar sites where there have been no recorded fires in the past 75 years. We found little difference in gas flux between aquatic sites in burned and unburned sites, with the exception of channel fens, which showed substantially higher fluxes of both CH4 and CO2 in burned sites. This is in contrast to similar measurements taken in summer 2016, when burned ponds showed consistently higher GHG fluxes, suggesting these increases were not sustained in sites other than channel fens. These results, if general, indicate the possibility that the response of aquatic ecosystems to fire may lead to positive feedbacks on climate change.

  15. 38. LANDSCAPE HIGHWAY VIEW, OREGON STATE HIGHWAY 199. JOSPHINE COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. LANDSCAPE HIGHWAY VIEW, OREGON STATE HIGHWAY 199. JOSPHINE COUNTY, OREGON. REEVES CREEK (WHERE ROAD WIDENS) 4 MILES NE OF CAVE JUNCTION. LOOKING S. - Redwood National & State Parks Roads, California coast from Crescent City to Trinidad, Crescent City, Del Norte County, CA

  16. State of Alaska

    Science.gov Websites

    Alaska Railroad Alaska Maps Alaska Travel Safety Information Alaska Fish and Game Alaska Facts & Month Services How Do I? Education Health Jobs Safety How Do I? Apply for a Permanent Fund Dividend File Information More Dept. of Commerce, Comm... More Dept. of Labor & Workforce Dev. Safety 511 - Traveler

  17. Publications - GMC 292 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and core chips (13760'-13820') of Union Oil Company of California Clam Gulch Unit #1 Authors: Marathon Oil Company Publication Date: 2000 Publisher: Alaska Division of Geological & Geophysical Surveys information. Bibliographic Reference Marathon Oil Company, 2000, Hydrocarbon extraction gas chromatograph

  18. 30 CFR 250.1166 - What additional reporting is required for developments in the Alaska OCS Region?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Requirements Other Requirements § 250.1166... development in the Alaska OCS Region, you must submit an annual reservoir management report to the Regional... request an MER for each producing sensitive reservoir in the Alaska OCS Region, unless otherwise...

  19. 40 CFR 1051.640 - What special provisions apply for custom off-highway motorcycles that are similar to highway...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... custom off-highway motorcycles that are similar to highway motorcycles? 1051.640 Section 1051.640... apply for custom off-highway motorcycles that are similar to highway motorcycles? You may ask to exempt custom-designed off-highway motorcycles that are substantially similar to highway motorcycles under the...

  20. 40 CFR 1051.640 - What special provisions apply for custom off-highway motorcycles that are similar to highway...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... custom off-highway motorcycles that are similar to highway motorcycles? 1051.640 Section 1051.640... apply for custom off-highway motorcycles that are similar to highway motorcycles? You may ask to exempt custom-designed off-highway motorcycles that are substantially similar to highway motorcycles under the...

  1. 40 CFR 1051.640 - What special provisions apply for custom off-highway motorcycles that are similar to highway...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... custom off-highway motorcycles that are similar to highway motorcycles? 1051.640 Section 1051.640... apply for custom off-highway motorcycles that are similar to highway motorcycles? You may ask to exempt custom-designed off-highway motorcycles that are substantially similar to highway motorcycles under the...

  2. 40 CFR 1051.640 - What special provisions apply for custom off-highway motorcycles that are similar to highway...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... custom off-highway motorcycles that are similar to highway motorcycles? 1051.640 Section 1051.640... apply for custom off-highway motorcycles that are similar to highway motorcycles? You may ask to exempt custom-designed off-highway motorcycles that are substantially similar to highway motorcycles under the...

  3. 40 CFR 1051.640 - What special provisions apply for custom off-highway motorcycles that are similar to highway...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... custom off-highway motorcycles that are similar to highway motorcycles? 1051.640 Section 1051.640... apply for custom off-highway motorcycles that are similar to highway motorcycles? You may ask to exempt custom-designed off-highway motorcycles that are substantially similar to highway motorcycles under the...

  4. 49 CFR 356.13 - Redesignated highways.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Redesignated highways. 356.13 Section 356.13... REGULATIONS § 356.13 Redesignated highways. Where a highway over which a regular route motor common carrier of... designation, the points between which the highway is redesignated, and each place where the highway is...

  5. 49 CFR 356.13 - Redesignated highways.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Redesignated highways. 356.13 Section 356.13... REGULATIONS § 356.13 Redesignated highways. Where a highway over which a regular route motor common carrier of... designation, the points between which the highway is redesignated, and each place where the highway is...

  6. 49 CFR 356.13 - Redesignated highways.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Redesignated highways. 356.13 Section 356.13... REGULATIONS § 356.13 Redesignated highways. Where a highway over which a regular route motor common carrier of... designation, the points between which the highway is redesignated, and each place where the highway is...

  7. 49 CFR 356.13 - Redesignated highways.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Redesignated highways. 356.13 Section 356.13... REGULATIONS § 356.13 Redesignated highways. Where a highway over which a regular route motor common carrier of... designation, the points between which the highway is redesignated, and each place where the highway is...

  8. 49 CFR 356.13 - Redesignated highways.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Redesignated highways. 356.13 Section 356.13... REGULATIONS § 356.13 Redesignated highways. Where a highway over which a regular route motor common carrier of... designation, the points between which the highway is redesignated, and each place where the highway is...

  9. GeoFORCE Alaska, A Successful Summer Exploring Alaska's Geology

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2012-12-01

    Thirty years old this summer, RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. This summer, in collaboration with the University of Texas Austin, the Rural Alaska Honors Institute launched a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science to entice kids to get excited about dinosaurs, volcanoes and earthquakes, and includes physics, chemistry, math, biology and other sciences. Students were recruited from the Alaska's Arctic North Slope schools, in 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The culmination is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks and Anchorage, Arizona, Oregon and the Appalachians. All trips focus on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska was begun by the University of Alaska Fairbanks in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska is managed by UAF's long-standing Rural Alaska Honors Institute, that has been successfully providing intense STEM educational opportunities for Alaskan high school students for over 30 years. The program will add a new cohort of 9th graders each year for the next four years. By the summer of 2015, GeoFORCE Alaska is targeting a capacity of 160 students in grades 9th through 12th. Join us to find out more about this exciting new initiative, which is enticing young Alaska Native

  10. Oil-spill risk analysis: Outer continental shelf lease sale 158, Gulf of Alaska/Yakutat. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, C.M.; Johnson, W.R.; Marshall, C.F.

    1995-01-01

    The Federal Government has proposed to offer Outer Continental Shelf lands in the Gulf of Alaska/Yakutat for oil and gas leasing. Because oil spills may occur from activities associated with offshore oil production, the Minerals Management Service conducts a formal risk assessment. The report summarizes results of an oil-spill risk analysis conducted for OCS Lease Sale 158, Gulf of Alaska/Yakutat. The objective of this analysis was to estimate relative risks associated with oil and gas production for the proposed lease sale.

  11. Publications - GMC 366 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information DGGS GMC 366 Publication Details Title: Makushin Geothermal Project ST-1R Core 2009 re-sampling and analysis: Analytical results for anomalous precious and base metals associated with geothermal systems

  12. Off-Highway Transportation-Related Fuel Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, S.C.

    2004-05-08

    The transportation sector includes many subcategories--for example, on-highway, off-highway, and non-highway. Use of fuel for off-highway purposes is not well documented, nor is the number of off-highway vehicles. The number of and fuel usage for on-highway and aviation, marine, and rail categories are much better documented than for off-highway land-based use. Several sources document off-highway fuel use under specific conditions--such as use by application (e.g., recreation) or by fuel type (e.g., gasoline). There is, however, no single source that documents the total fuel used off-highway and the number of vehicles that use the fuel. This report estimates the fuel usagemore » and number of vehicles/equipment for the off-highway category. No new data have been collected nor new models developed to estimate the off-highway data--this study is limited in scope to using data that already exist. In this report, unless they are being quoted from a source that uses different terminology, the terms are used as listed below. (1) ''On-highway/on-road'' includes land-based transport used on the highway system or other paved roadways. (2) ''Off-highway/off-road'' includes land-based transport not using the highway system or other paved roadways. (3) ''Non-highway/non-road'' includes other modes not traveling on highways such as aviation, marine, and rail. It should be noted that the term ''transportation'' as used in this study is not typical. Generally, ''transportation'' is understood to mean the movement of people or goods from one point to another. Some of the off-highway equipment included in this study doesn't transport either people or goods, but it has utility in movement (e.g., a forklift or a lawn mower). Along these lines, a chain saw also has utility in movement, but it cannot transport itself (i.e., it must be carried) because it does not have wheels. Therefore, to estimate the transportation-related fuel used off-highway, transportation equipment is defined

  13. Home - Gold mining in Alaska - Libraries, Archives, & Museums at Alaska

    Science.gov Websites

    State Library Skip to main content State of Alaska myAlaska Departments State Employees Statewide Links × Upcoming Holiday Closure for Memorial Day The Alaska State Libraries, Archives, & Tuesday, May 29. Department of Education and Early Development Alaska State Libraries, Archives, and

  14. 40 CFR Appendix I to Part 600 - Highway Fuel Economy Driving Schedule

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Highway Fuel Economy Driving Schedule I Appendix I to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Pt. 600, App. I...

  15. 40 CFR Appendix I to Part 600 - Highway Fuel Economy Driving Schedule

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Highway Fuel Economy Driving Schedule I Appendix I to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Pt. 600, App. I...

  16. 40 CFR Appendix I to Part 600 - Highway Fuel Economy Driving Schedule

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Highway Fuel Economy Driving Schedule I Appendix I to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Pt. 600, App. I...

  17. President's Alaska Natural Gas Transportation Act waiver recommendation. Hearings before the Committee on Energy and Natural Resources, United States Senate, Ninety-Seventh Congress, First Session on S. J. Res. 115, Joint resolution to approve the President's recommendation for a waiver of law pursuant to the Alaska Natural Gas Transportation Act of 1976, October 22-23, 26, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-01-01

    Hearings on the resolution to approve the President's waiver package that will enable private financing of the Alaska natural gas pipeline met for three days in October, 1981. Approval of the package will allow access to proven North Slope gas reserves and make a major contribution to US energy security and economic growth. It is designed to modify legal barriers that prevent producers from participating in pipeline financing. The hearing record contains the President's message to Congress, the text of Senate Joint Resolution 115, the statements of 36 witnesses, and their responses to committee questions. (DCK)

  18. 75 FR 19670 - Marine Highway Projects

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-15

    ... DEPARTMENT OF TRANSPORTATION Maritime Administration Marine Highway Projects ACTION: Solicitation of applications for Marine highway projects. SUMMARY: The Department of Transportation is soliciting applications for Marine Highway Projects as specified in the America's Marine Highway Program Final Rule, MARAD...

  19. Guide to reporting highway statistics

    DOT National Transportation Integrated Search

    1983-11-01

    Previous analyses conducted by the Federal Highway Administration (FHWA) are used to project year-by-year economical impacts of changes in highway performance out to 1995. In the principal scenario examined, highway performance is allowed to deterior...

  20. US North Slope gas and Asian LNG markets

    USGS Publications Warehouse

    Attanasi, E.D.

    1994-01-01

    Prospects for export of liquified natural gas (LNG) from Alaska's North Slope are assessed. Projected market conditions to 2010 show that new LNG capacity beyond announced expansions will be needed to meet regional demand and that supplies will probably come from outside the region. The estimated delivered costs of likely suppliers show that Alaska North Slope gas will not be competitive. The alternative North Slope gas development strategies of transport and sale to the lower 48 states and use on the North Slope for either enhanced oil recovery or conversion to liquids are examined. The alternative options require delaying development until US gas prices increase, exhaustion of certain North Slope oil fields, or advances occur in gas to liquid fuels conversion technology. ?? 1995.

  1. Alaska Tidal Datum Portal - Alaska Tidal Datum Calculator | Alaska Division

    Science.gov Websites

    Coastal Hazards Program Guide to Geologic Hazards in Alaska MAPTEACH Tsunami Inundation Mapping Energy Portal main content Alaska Tidal Datum Portal Unambiguous vertical datums in the coastal environment are projects to ensure protection of human life, property, and the coastal environment. January 2017 - Update

  2. Publications - GMC 383 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information DGGS GMC 383 Publication Details Title: Makushin Geothermal Project ST-1R, A-1, D-2 Core 2009 re -sampling and analysis: Analytical results for anomalous precious and base metals associated with geothermal

  3. Reconnaissance stratigraphic studies in the Susitna basin, Alaska, during the 2014 field season

    USGS Publications Warehouse

    LePain, David L.; Stanley, Richard G.; Harun, Nina T.; Helmold, Kenneth P.; Tsigonis, Rebekah

    2015-01-01

    The Susitna basin is a poorly-understood Cenozoic successor basin immediately north of Cook Inlet in south-central Alaska (Kirschner, 1994). The basin is bounded by the Castle Mountain fault and Cook Inlet basin on the south, the Talkeetna Mountains on the east, the Alaska Range on the north, and the Alaska–Aleutian Range on the west (fig. 2-1). The Cenozoic fill of the basin includes coal-bearing nonmarine rocks that are partly correlative with Paleogene strata in the Matanuska Valley and Paleogene and Neogene formations in Cook Inlet (Stanley and others, 2013, 2014). Mesozoic sedimentary rocks are present in widely-scattered uplifts in and around the margins of the basin; these rocks differ significantly from Mesozoic rocks in the forearc basin to the south. Mesozoic strata in the Susitna region were likely part of a remnant ocean basin that preceded the nonmarine Cenozoic basin (Trop and Ridgway, 2007). The presence of coal-bearing strata similar to units that are proven source rocks for microbial gas in Cook Inlet (Claypool and others, 1980) suggests the possibility of a similar system in the Susitna basin (Decker and others, 2012). In 2011 the Alaska Division of Geological & Geophysical Surveys (DGGS) and Alaska Division of Oil and Gas, in collaboration with the U.S. Geological Survey, initiated a study of the gas potential of the Susitna basin (Gillis and others, 2013). This report presents a preliminary summary of the results from 14 days of helicopter-supported field work completed in the basin in August 2014. The goals of this work were to continue the reconnaissance stratigraphic work begun in 2011 aimed at understanding reservoir and seal potential of Tertiary strata, characterize the gas source potential of coals, and examine Mesozoic strata for source and reservoir potential

  4. Geologic framework and petroleum systems of Cook Inlet basin, south-central Alaska

    USGS Publications Warehouse

    LePain, D.L.; Stanley, Richard G.; Helmold, K.P.; Shellenbaum, D.P.; Stone, D.M.; Hite, D.M.

    2013-01-01

    This report provides a comprehensive overview of the stratigraphy, structure, tectonics, and petroleum systems of the Cook Inlet basin, an important oil- and gas-producing region in south-central Alaska.

  5. Earthquakes in Alaska

    USGS Publications Warehouse

    Haeussler, Peter J.; Plafker, George

    1995-01-01

    Earthquake risk is high in much of the southern half of Alaska, but it is not the same everywhere. This map shows the overall geologic setting in Alaska that produces earthquakes. The Pacific plate (darker blue) is sliding northwestward past southeastern Alaska and then dives beneath the North American plate (light blue, green, and brown) in southern Alaska, the Alaska Peninsula, and the Aleutian Islands. Most earthquakes are produced where these two plates come into contact and slide past each other. Major earthquakes also occur throughout much of interior Alaska as a result of collision of a piece of crust with the southern margin.

  6. 76 FR 29218 - Intent To Prepare an Environmental Impact Statement (EIS) for the Alaska Department of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... oil and gas pipelines. While subsequent efforts by industry to develop infrastructure such as oil and gas pipelines and their associated components are reasonably foreseeable, these elements are not... Highway to Umiat, to increase access to potential oil and gas resources for exploration and development...

  7. 23 CFR 470.113 - National Highway System procedures.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false National Highway System procedures. 470.113 Section 470.113 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PLANNING AND RESEARCH HIGHWAY SYSTEMS Federal-aid Highway Systems § 470.113 National Highway System procedures. (a) Proposals...

  8. 23 CFR 470.113 - National Highway System procedures.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false National Highway System procedures. 470.113 Section 470.113 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PLANNING AND RESEARCH HIGHWAY SYSTEMS Federal-aid Highway Systems § 470.113 National Highway System procedures. (a) Proposals...

  9. 23 CFR 470.113 - National Highway System procedures.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false National Highway System procedures. 470.113 Section 470.113 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PLANNING AND RESEARCH HIGHWAY SYSTEMS Federal-aid Highway Systems § 470.113 National Highway System procedures. (a) Proposals...

  10. 23 CFR 470.113 - National Highway System procedures.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false National Highway System procedures. 470.113 Section 470.113 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PLANNING AND RESEARCH HIGHWAY SYSTEMS Federal-aid Highway Systems § 470.113 National Highway System procedures. (a) Proposals...

  11. 23 CFR 470.113 - National Highway System procedures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false National Highway System procedures. 470.113 Section 470.113 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PLANNING AND RESEARCH HIGHWAY SYSTEMS Federal-aid Highway Systems § 470.113 National Highway System procedures. (a) Proposals...

  12. Alaska and the Alaska Federal Health Care Partnership

    DTIC Science & Technology

    2002-08-01

    SUPPLEMENTARY NOTES The original document contains color images. 14. ABSTRACT The intent of the Alaska Federal Healthcare Partnership is to expand clinical and... intent of the Alaska Federal Healthcare Partnership is to expand clinical and support capabilities of the Alaska Native Medical Center (ANMC), Third...the formation of the Partnership. Although lengthy, the information is essential to appreciate the magnitude of the Partnership and the intent behind

  13. 1996 annual report on Alaska's mineral resources

    USGS Publications Warehouse

    Schneider, Jill L.

    1997-01-01

    This is the fifteenth annual report that has been prepared in response to the Alaska National Interest Lands Conservation Act. Current Alaskan mineral projects and events that occurred during 1995 are summarized. For the purpose of this document, the term 'minerals' encompasses both energy resources (oil and gas, coal and peat, uranium, and geothermal) and nonfuel-mineral resources (metallic and industrial minerals).

  14. Polar bear management in Alaska 1997-2000

    USGS Publications Warehouse

    Schliebe, Scott L.; Bridges, John W.; Evans, Thomas J.; Fischbach, Anthony S.; Kalxdorff, Susanne B.; Lierheimer, Lisa J.; Lunn, Nicholas J.; Schliebe, Scott L.; Born, Erik W.; Lunn, Nicholas J.; Schliebe, Scott L.; Born, Erik W.

    2002-01-01

    Since the Twelfth Working Meeting of the IUCN/SSC Polar Bear Specialist Group in 1997, a number of changes in the management of polar bears have occurred in Alaska. On October 16, 2000, the governments of the United States and the Russian Federation signed the “Agreement on the Conservation and Management of the Alaska-Chukotka Polar Bear Population.” This agreement provides substantial benefits for the effective conservation of polar bears shared between the U.S. and Russia. It will require enactment of enabling legislation by the U.S. Congress and other steps by Russia before the agreement has the force of law. A copy of the agreement is included as Appendix 1 to this report. Also, during this period, regulations were developed to implement 1994 amendments to the Marine Mammal Protection Act (MMPA), which allow polar bear trophies taken in approved Canadian populations by U.S. citizens to be imported into the U.S. A summary of the regulatory actions and a table listing populations approved for importation and the number of polar bears imported into the U.S. since 1997 is included in this report. Regarding oil and gas activities in polar bear habitat, three sets of regulations were published authorizing the incidental, non-intentional, taking of small numbers of polar bears concurrent to oil and gas activities.Cooperation continued with the Alaska Nanuuq Commission, representing the polar bear hunting communities in Alaska, as well as with the North Slope Borough and the Inuvialuit Game Council in their agreement for the management of the Southern Beaufort Sea polar bear population. Harvest summaries and technical assistance in designing and assistance in conducting a National Park Service/Alaska Nanuuq Commission study to collect traditional ecological knowledge of polar bear habitat use in Chukotka were provided. In addition, a long-range plan was developed to address and minimize polar bear-human conflicts in North Slope communities.We continued to monitor

  15. 23 CFR 470.107 - Federal-aid highway systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Federal-aid highway systems. 470.107 Section 470.107 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PLANNING AND RESEARCH HIGHWAY SYSTEMS Federal-aid Highway Systems § 470.107 Federal-aid highway systems. (a) Interstate System. (1) The Dwight D...

  16. 23 CFR 470.107 - Federal-aid highway systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Federal-aid highway systems. 470.107 Section 470.107 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PLANNING AND RESEARCH HIGHWAY SYSTEMS Federal-aid Highway Systems § 470.107 Federal-aid highway systems. (a) Interstate System. (1) The Dwight D...

  17. 23 CFR 470.107 - Federal-aid highway systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false Federal-aid highway systems. 470.107 Section 470.107 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PLANNING AND RESEARCH HIGHWAY SYSTEMS Federal-aid Highway Systems § 470.107 Federal-aid highway systems. (a) Interstate System. (1) The Dwight D...

  18. Geologic Map and Engineering Properties of the Surficial Deposits of the Tok Area, East-Central Alaska

    USGS Publications Warehouse

    Carrara, Paul E.

    2007-01-01

    The Tok area 1:100,000-scale map, through which the Alaska Highway runs, is in east-central Alaska about 160 km west of the Yukon border. The surficial geologic mapping in the map area is in support of the 'Geologic Mapping in support of land, resources, and hazards issues in Alaska' Project of the USGS National Cooperative Geologic Mapping Program. The Tok map area contains parts of three physiographic provinces, the Alaska Range, the Yukon-Tanana Upland, and the Northway-Tanana Lowland. The high, rugged, glaciated landscape of the eastern Alaska Range dominates the southwestern map area. The highest peak, an unnamed summit at the head of Cathedral Rapids Creek No. 2, rises to 2166 m. The gently rolling hills of the Yukon-Tanana Upland, in the northern map area, rise to about 1000 m. The Northway-Tanana Lowland contains the valley of the westerly flowing Tanana River. Elevations along the floor of the lowland generally range between 470 and 520 m. The dominant feature within the map is the Tok fan, which occupies about 20 percent of the map area. This large (450 km2), nearly featureless fan contains a high percentage of volcanic clasts derived from outside the present-day drainage of the Tok River. Because the map area is dominated by various surficial deposits, the map depicts 26 different surficial units consisting of man-made, alluvial, colluvial, eolian, lacustrine, organic, glaciofluvial, glacial, and periglacial deposits. The accompanying table provides information concerning the various units including their properties, characteristics, resource potential, and associated hazards in this area of the upper Tanana valley.

  19. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  20. Highway Repair: A New Silicosis Threat

    PubMed Central

    Valiante, David J.; Schill, Donald P.; Rosenman, Kenneth D.; Socie, Edward

    2004-01-01

    Objectives. We describe an emerging public health concern regarding silicosis in the fast-growing highway repair industry. Methods. We examined highway construction trends, silicosis surveillance case data, and environmental exposure data to evaluate the risk of silicosis among highway repair workers. We reviewed silicosis case data from the construction industry in 3 states that have silicosis registries, and we conducted environmental monitoring for silica at highway repair work sites. Results. Our findings indicate that a large population of highway workers is at risk of developing silicosis from exposure to crystalline silica. Conclusions. Exposure control methods, medical screenings, protective health standards, and safety-related contract language are necessary for preventing future occupational disease problems among highway repair workers. PMID:15117715

  1. Natural gas encasement for highway crossings.

    DOT National Transportation Integrated Search

    2015-03-01

    The University Transportation Center for Alabama researchers examined the Alabama Department of : Transportations current policy regarding the encasement of natural gas and hazardous liquid pipelines at roadway : crossings. The group collected inf...

  2. Resident, State of Alaska

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees State of Alaska Search Home Quick Links Departments Commissioners Employee Whitepages State Government Jobs Federal Jobs Starting a Small Business Living Get a Driver License Get a Hunting

  3. Visitor, State of Alaska

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees State of Alaska Search Home Quick Links Departments Commissioners Employee Whitepages State Government Jobs Federal Jobs Starting a Small Business Living Get a Driver License Get a Hunting

  4. Calibrating the future highway safety manual predictive methods for Oregon state highways.

    DOT National Transportation Integrated Search

    2012-02-01

    The Highway Safety Manual (HSM) was published by the American Association of State Highway and Transportation Officials (AASHTO) in the spring of 2010. Volume 2 (Part C) of the HSM includes safety predictive methods which can be used to quantitativel...

  5. The green highway forum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2006-07-01

    In late 2004, as part of American Coal Ash Association's (ACAA) strategic planning process, a plan was approved by its Board of Directors implementing a 'green highways' concept which emphasized use of coal combustion products (CCPs) in highways in a variety of ways including being used alone, in combination with other forms of CCPs, and combined with non ash materials. The incentives behind the developed concept were the derived advantages from beneficial technical economic and environmental impacts. Although the primary use of fly ash is concrete, other forms of CCPs could be considered for more non-traditional highway applications. For example,more » these might include soils stabilization, binders for in-place pavement recycling, use in flowable fills, aggregates, source materials for structural fills and embankments, components in manufactured soils, and for granular base courses beneath pavements. At this same time, unknown to ACCA, EPA Region 3 in Philadelphia was working with the Wetlands and Watershed Work Group, a non-profit organization involved in wetlands policy and management along with the Federal Highway Administration (FHWA) on their own Green Highways initiative. These groups were planning a conference, the 'Green Highway Forum'. This was held in College Park, Maryland at the University of Maryland, Nov 8-10 2005. At the conference a draft 'roadmap' was presented as a guide to executive level participants bringing the diverse viewpoints of many agencies and interest groups together. Ten guiding principals were considered. The 'Green Highways' is a new effort to recognize the 'greenness' of many projects already completed and those to be initiated. 2 photos.« less

  6. National highway user survey

    DOT National Transportation Integrated Search

    1996-01-01

    The National Quality Initiative Steering Committee commissioned a survey, funded by the Federal Highway Administration, to determine the general public's satisfaction with the nation's highway system and to identify the public's priorities for highwa...

  7. Assessment of the Coal-Bed Gas Total Petroleum System in the Cook Inlet-Susitna region, south-central Alaska

    USGS Publications Warehouse

    Rouse, William A.; Houseknecht, David W.

    2012-01-01

    The Cook Inlet-Susitna region of south-central Alaska contains large quantities of gas-bearing coal of Tertiary age. The U.S. Geological Survey in 2011 completed an assessment of undiscovered, technically recoverable coal-bed gas resources underlying the Cook Inlet-Susitna region based on the total petroleum system (TPS) concept. The Cook Inlet Coal-Bed Gas TPS covers about 9,600,000 acres and comprises the Cook Inlet basin, Matanuska Valley, and Susitna lowland. The TPS contains one assessment unit (AU) that was evaluated for coal-bed gas resources between 1,000 and 6,000 feet in depth over an area of about 8,500,000 acres. Coal beds, which serve as both the source and reservoir for natural gas in the AU, were deposited during Paleocene-Pliocene time in mires associated with a large trunk-tributary fluvial system. Thickness of individual coal beds ranges from a few inches to more than 50 feet, with cumulative coal thickness of more than 800 feet in the western part of the basin. Coal rank ranges from lignite to subbituminous, with vitrinite reflectance values less than 0.6 percent throughout much of the AU. The AU is considered hypothetical because only a few wells in the Matanuska Valley have tested the coal-bed reservoirs, so the use of analog coal-bed gas production data was necessary for this assessment. In order to estimate reserves that might be added in the next 30 years, coal beds of the Upper Fort Union Formation in the Powder River Basin of Wyoming and Montana were selected as the production analog for Tertiary coal beds in the Cook Inlet-Susitna region. Upper Fort Union coal beds have similar rank (lignite to subbituminous), range of thickness, and coal-quality characteristics as coal beds of the Tertiary Kenai Group. By use of this analog, the mean total estimate of undiscovered coal-bed gas in the Tertiary Coal-Bed Gas AU is 4.674 trillion cubic feet (TCF) of gas.

  8. Structural health monitoring and condition assessment of Chulitna River Bridge : sensor selection and field installation report.

    DOT National Transportation Integrated Search

    2012-12-01

    The Chulitna River Bridge, built in 1970, is located at Historic Mile Post 132.7 on the Alaska Parks Highway between Fairbanks and Anchorage, Alaska. The Parks : Highway is the most direct route connecting Anchorage, Fairbanks, and Prudhoe Bay. Heavy...

  9. Caltrans : highway design manual

    DOT National Transportation Integrated Search

    2008-07-01

    The Highway Design Manual establishes uniform policies and procedures to carry out the highway design functions of the California Department of Transportation (Caltrans). The policies established herein are for the information and guidance of the off...

  10. Alaska Seismic Hazards Safety Commission

    Science.gov Websites

    State Employees ASHSC State of Alaska search Alaska Seismic Hazards Safety Commission View of Anchorage and Commissions Alaska Seismic Hazards Safety Commission (ASHSC) main contant Alaska Seismic Hazards Safety Commission logo Alaska Seismic Hazards Safety Commission (ASHSC) - Mission The Alaska Seismic

  11. Countermeasures that work : a highway safety countermeasure guide for state highway safety offices

    DOT National Transportation Integrated Search

    2007-01-01

    This guide is a basic reference to assist State Highway Safety Offices (SHSOs) in selecting : effective, science-based traffic safety countermeasures for major highway safety problem areas. : The guide describes major strategies and countermeasures t...

  12. Countermeasures that work : a highway safety countermeasure guide for state highway safety offices

    DOT National Transportation Integrated Search

    2005-01-01

    This guide is a basic reference to assist State Highway Safety Offices (SHSOs) in selecting effective, science-based traffic safety countermeasures for major highway safety problem areas. The guide: describes major strategies and countermeasures that...

  13. Countermeasures that work : a highway safety countermeasure guide for state highway safety offices

    DOT National Transportation Integrated Search

    2009-01-01

    This guide is a basic reference to assist State Highway Safety Offices (SHSOs) in selecting effective, science-based traffic safety countermeasures for major highway safety problem areas. The guide: describes major strategies and countermeasures that...

  14. Countermeasures that work : a highway safety countermeasure guide for state highway safety offices

    DOT National Transportation Integrated Search

    2008-01-01

    This guide is a basic reference to assist State Highway Safety Offices (SHSOs) in selecting effective, science-based traffic safety countermeasures for major highway safety problem areas. The guide: describes major strategies and countermeasures that...

  15. 78 FR 9771 - Federal Highway Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ... DEPARTMENT OF TRANSPORTATION Federal Highway Administration Notice of Final Federal Agency Action on Proposed Transportation Project in Illinois and Indiana AGENCY: Federal Highway Administration...., Acting Division Administrator, Federal Highway Administration, 3250 Executive Park Drive, Springfield...

  16. Highway safety design workshops.

    DOT National Transportation Integrated Search

    2010-11-01

    Highway safety is an ongoing concern for the Texas Department of Transportation (TxDOT). As part of its : proactive commitment to improving highway safety, TxDOT is moving toward including quantitative safety : analyses earlier in the project develop...

  17. Our nation's highways 2000

    DOT National Transportation Integrated Search

    2002-04-29

    The information in this publication provides a condensed overview of facts and figures about the Nation's Highways. This publication is designed to be of interest to the average citizen. The Federal Highway Administration (FHWA) is the source of the ...

  18. Alaska exceptionality hypothesis: Is Alaska wilderness really different?

    Treesearch

    Gregory Brown

    2002-01-01

    The common idiom of Alaska as “The Last Frontier” suggests that the relative remoteness and unsettled character of Alaska create a unique Alaskan identity, one that is both a “frontier” and the “last” of its kind. The frontier idiom portrays the place and people of Alaska as exceptional or different from the places and people who reside in the Lower Forty- Eight States...

  19. Highway Fuel Economy Study

    DOT National Transportation Integrated Search

    1981-06-01

    In 1979, the National Highway Traffic Safety Administration (NHTSA) with support from the Federal Highway Administration (FHWA), convened a Task Force to develop a base of information on the effects of the 55 MPH speed limit. This report addresses th...

  20. Our nation's highways 2010

    DOT National Transportation Integrated Search

    2010-01-01

    With over 4 million miles of public roads, including more than 163,000 miles of the National Highway System roadways, our nation is connected coasts to coasts and communities to communities. The 2010 edition of Our Nations Highways includes update...

  1. Highway fog warning system

    DOT National Transportation Integrated Search

    1999-04-01

    The need for a highway fog warning system has long been internationally recognized. With such a system, motorists can avoid tragic pile-up accidents caused by dense or patchy fog. The development of a cost-effective highway visibility sensor that mea...

  2. Highways and your land.

    DOT National Transportation Integrated Search

    2011-01-01

    For most people, highway engineering, design and right of way acquisition are not of immediate concern. However, when you own or rent property that will be affected by highway construction, you begin to consider road building from a different and per...

  3. 75 FR 18014 - Federal Highway Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ... DEPARTMENT OF TRANSPORTATION Federal Highway Administration AGENCY: Federal Highway Administration (FHWA), DOT. ACTION: Notice of Availability regarding a Finding of No Significant Impact (FONSI): U.S.... FOR FURTHER INFORMATION CONTACT: Federal Highway Administration, Kentucky Division: Mr. Greg Rawlings...

  4. Effects of the earthquake of March 27, 1964, on air and water transport, communications, and utilities systems in south-central Alaska: Chapter B in The Alaska earthquake, March 27, 1964: effects on transportation, communications, and utilities

    USGS Publications Warehouse

    Eckel, Edwin B.

    1967-01-01

    The earthquake of March 27, 1964, wrecked or severely hampered all forms of transportation, all utilities, and all communications systems over a very large part of south-central Alaska. Effects on air transportation were minor as compared to those on the water, highway, and railroad transport systems. A few planes were damaged or wrecked by seismic vibration or by flooding. Numerous airport facilities were damaged by vibration or by secondary effects of the earthquake, notably seismic sea and landslide-generated waves, tectonic subsidence, and compaction. Nearly all air facilities were partly or wholly operational within a few hours after the earthquake. The earthquake inflicted enormous damage on the shipping industry, which is indispensable to a State that imports fully 90 percent of its requirements—mostly by water—and whose largest single industry is fishing. Except for those of Anchorage, all port facilities in the earthquake-affected area were destroyed or made inoperable by submarine slides, waves, tectonic uplift, and fire. No large vessels were lost, but more than 200 smaller ones (mostly crab or salmon boats) were lost or severely damaged. Navigation aids were destroyed, and hitherto well-known waterways were greatly altered by uplift or subsidence. All these effects wrought far-reaching changes in the shipping economy of Alaska, many of them to its betterment. Virtually all utilities and communications in south-central Alaska were damaged or wrecked by the earthquake, but temporary repairs were effected in remarkably short times. Communications systems were silenced almost everywhere by loss of power or by downed lines; their place was quickly taken by a patchwork of self-powered radio transmitters. A complex power-generating system that served much of the stricken area from steam, diesel, and hydrogenerating plants was disrupted in many places by vibration damage to equipment and by broken transmission lines. Landslides in Anchorage broke gas

  5. Phenological mismatch in coastal western Alaska may increase summer season greenhouse gas uptake

    NASA Astrophysics Data System (ADS)

    Kelsey, Katharine C.; Leffler, A. Joshua; Beard, Karen H.; Choi, Ryan T.; Schmutz, Joel A.; Welker, Jeffery M.

    2018-04-01

    High latitude ecosystems are prone to phenological mismatches due to climate change- driven advances in the growing season and changing arrival times of migratory herbivores. These changes have the potential to alter biogeochemical cycling and contribute to feedbacks on climate change by altering greenhouse gas (GHG) emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) through large regions of the Arctic. Yet the effects of phenological mismatches on gas fluxes are currently unexplored. We used a three-year field experiment that altered the start of the growing season and timing of grazing to investigate how phenological mismatch affects GHG exchange. We found early grazing increased mean GHG emission to the atmosphere despite lower CH4 emissions due to grazing-induced changes in vegetation structure that increased uptake of CO2. In contrast, late grazing reduced GHG emissions because greater plant productivity led to an increase in CO2 uptake that overcame the increase in CH4 emission. Timing of grazing was an important control on both CO2 and CH4 emissions, and net GHG exchange was the result of opposing fluxes of CO2 and CH4. N2O played a negligible role in GHG flux. Advancing the growing season had a smaller effect on GHG emissions than changes to timing of grazing in this study. Our results suggest that a phenological mismatch that delays timing of grazing relative to the growing season, a change which is already developing along in western coastal Alaska, will reduce GHG emissions to the atmosphere through increased CO2 uptake despite greater CH4 emissions.

  6. Phenological mismatch in coastal western Alaska may increase summer season greenhouse gas uptake

    USGS Publications Warehouse

    Kelsey, Katharine C.; Leffler, A. Joshua; Beard, Karen H.; Choi, Ryan T.; Schmutz, Joel A.; Welker, Jeffery M.

    2018-01-01

    High latitude ecosystems are prone to phenological mismatches due to climate change- driven advances in the growing season and changing arrival times of migratory herbivores. These changes have the potential to alter biogeochemical cycling and contribute to feedbacks on climate change by altering greenhouse gas (GHG) emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) through large regions of the Arctic. Yet the effects of phenological mismatches on gas fluxes are currently unexplored. We used a three-year field experiment that altered the start of the growing season and timing of grazing to investigate how phenological mismatch affects GHG exchange. We found early grazing increased mean GHG emission to the atmosphere despite lower CH4 emissions due to grazing-induced changes in vegetation structure that increased uptake of CO2. In contrast, late grazing reduced GHG emissions because greater plant productivity led to an increase in CO2 uptake that overcame the increase in CH4 emission. Timing of grazing was an important control on both CO2 and CH4 emissions, and net GHG exchange was the result of opposing fluxes of CO2 and CH4. N2O played a negligible role in GHG flux. Advancing the growing season had a smaller effect on GHG emissions than changes to timing of grazing in this study. Our results suggest that a phenological mismatch that delays timing of grazing relative to the growing season, a change which is already developing along in western coastal Alaska, will reduce GHG emissions to the atmosphere through increased CO2 uptake despite greater CH4 emissions.

  7. Alaska telemedicine: growth through collaboration.

    PubMed

    Patricoski, Chris

    2004-12-01

    The last thirty years have brought the introduction and expansion of telecommunications to rural and remote Alaska. The intellectual and financial investment of earlier projects, the more recent AFHCAN Project and the Universal Service Administrative Company Rural Health Care Division (RHCD) has sparked a new era in telemedicine and telecommunication across Alaska. This spark has been flamed by the dedication and collaboration of leaders at he highest levels of organizations such as: AFHCAN member organizations, AFHCAN Office, Alaska Clinical Engineering Services, Alaska Federal Health Care Partnership, Alaska Federal Health Care Partnership Office, Alaska Native health Board, Alaska Native Tribal health Consortium, Alaska Telehealth Advisory Council, AT&T Alascom, GCI Inc., Health care providers throughout the state of Alaska, Indian Health Service, U.S. Department of Health and Human Services, Office of U.S. Senator Ted Steens, State of Alaska, U.S. Department of Homeland Security--United States Coast Guard, United States Department of Agriculture, United States Department of Defense--Air Force and Army, United States Department of Veterans Affairs, University of Alaska, and University of Alaska Anchorage. Alaska now has one of the largest telemedicine programs in the world. As Alaska moves system now in place become self-sustaining, and 2) collaborating with all stakeholders in promoting the growth of an integrated, state-wide telemedicine network.

  8. Publications - GMC 406 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 406 Publication Details Title: Carbon isotope and total organic carbon (TOC) analysis of organic carbon (TOC) analysis of washed and unwashed cuttings from the South Barrow Test #3 well: Alaska Table(s) gmc406_toc.xls (196.0 K) gmc406_samples.xls (144.0 K) Keywords Isotopes; Oil and Gas; Organic

  9. Map and digital database of sedimentary basins and indications of petroleum in the Central Alaska Province

    USGS Publications Warehouse

    Troutman, Sandra M.; Stanley, Richard G.

    2003-01-01

    This database and accompanying text depict historical and modern reported occurrences of petroleum both in wells and at the surface within the boundaries of the Central Alaska Province. These data were compiled from previously published and unpublished sources and were prepared for use in the 2002 U.S. Geological Survey petroleum assessment of Central Alaska, Yukon Flats region. Indications of petroleum are described as oil or gas shows in wells, oil or gas seeps, or outcrops of oil shale or oil-bearing rock and include confirmed and unconfirmed reports. The scale of the source map limits the spatial resolution (scale) of the database to 1:2,500,000 or smaller.

  10. 76 FR 6690 - Highway Systems; Technical Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ...-2011-0003] RIN 2125-AF35 Highway Systems; Technical Correction AGENCIES: Federal Highway Administration... correction to the regulations that govern the designation of routes on the National Highway System and the Dwight D. Eisenhower System of Interstate and Defense Highways. The amendments contained herein make no...

  11. Evolution of aerosol downwind of a major highway

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Staebler, R. M.; Brook, J.; Li, S.; Vlasenko, A. L.; Sjostedt, S. J.; Gordon, M.; Makar, P.; Mihele, C.; Evans, G. J.; Jeong, C.; Wentzell, J. J.; Lu, G.; Lee, P.

    2010-12-01

    Primary aerosol from traffic emissions can have a considerable impact local and regional scale air quality. In order to assess the effect of these emissions and of future emissions scenarios, air quality models are required which utilize emissions representative of real world conditions. Often, the emissions processing systems which provide emissions input for the air quality models rely on laboratory testing of individual vehicles under non-ambient conditions. However, on the sub-grid scale particle evolution may lead to changes in the primary emitted size distribution and gas-particle partitioning that are not properly considered when the emissions are ‘instantly mixed’ within the grid volume. The affect of this modeling convention on model results is not well understood. In particular, changes in organic gas/particle partitioning may result in particle evaporation or condensation onto pre-existing aerosol. The result is a change in the particle distribution and/or an increase in the organic mass available for subsequent gas-phase oxidation. These effects may be missing from air-quality models, and a careful analysis of field data is necessary to quantify their impact. A study of the sub-grid evolution of aerosols (FEVER; Fast Evolution of Vehicle Emissions from Roadways) was conducted in the Toronto area in the summer of 2010. The study included mobile measurements of particle size distributions with a Fast mobility particle sizer (FMPS), aerosol composition with an Aerodyne aerosol mass spectrometer (AMS), black carbon (SP2, PA, LII), VOCs (PTR-MS) and other trace gases. The mobile laboratory was used to measure the concentration gradient of the emissions at perpendicular distances from the highway as well as the physical and chemical evolution of the aerosol. Stationary sites at perpendicular distances and upwind from the highway also monitored the particle size distribution. In addition, sonic anemometers mounted on the mobile lab provided measurements of

  12. 23 CFR 200.9 - State highway agency responsibilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false State highway agency responsibilities. 200.9 Section 200.9 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CIVIL RIGHTS TITLE VI PROGRAM AND RELATED STATUTES-IMPLEMENTATION AND REVIEW PROCEDURES § 200.9 State highway agency...

  13. Principal Facts for 463 Gravity Stations in the Vicinity of Tangle Lakes, East-Central Alaska

    USGS Publications Warehouse

    Morin, Robert L.; Glen, Jonathan M.G.

    2002-01-01

    During the summer of 2001, a gravity survey was conducted in the vicinity of Tangle Lakes, east-central Alaska. Measurements of 87 gravity stations were made. The Tangle Lakes area is located about 25 km west of Paxson and north of the Denali Highway. The gravity survey is located on the southwest corner of the Mt. Hayes and the northwest corner of the Gulkana 1:250,000 scale USGS topographic maps. The boundaries of the study area are 62 deg 30' to 63 deg 30' N. latitude and 145 deg 30' to 147 deg 00' W. longitude. A map showing the location of the study area is shown in figure 1. One gravity base station was used for control for this survey. This base station, TLIN is located at the Tangle Lakes Inn. The observed gravity of this station was calculated based on multiple ties to base stations ANCU in Anchorage, PALH in Palmer, BD27 in Gulkana, and base stations D42, and D57 along the Denali Highway.

  14. A comparison of gas geochemistry of fumaroles in the 1912 ash-flow sheet and on active stratovolcanoes, Katmai National Park, Alaska

    USGS Publications Warehouse

    Sheppard, D.S.; Janik, C.J.; Keith, T.E.C.

    1992-01-01

    Fumarolic gas samples collected in 1978 and 1979 from the stratovolcanoes Mount Griggs, Mount Mageik, and the 1953-68 SW Trident cone in Katmai National Park, Alaska, have been analysed and the results presented here. Comparison with recalculated analyses of samples collected from the Valley of Ten Thousand Smokes (VTTS) in 1917 and 1919 demonstrates differences between gases from the short-lived VTTS fumaroles, which were not directly magma related, and the fumaroles on the volcanic peaks. Fumarolic gases of Mount Griggs have an elevated total He content, suggesting a more direct deep crustal or mantle source for these gases than those from the other volcanoes. ?? 1992.

  15. 23 CFR 1.28 - Diversion of highway revenues.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false Diversion of highway revenues. 1.28 Section 1.28 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GENERAL MANAGEMENT AND ADMINISTRATION GENERAL § 1.28 Diversion of highway revenues. (a) Reduction in apportionment. If the Secretary shall find...

  16. Factors associated with pilot fatalities in work-related aircraft crashes--Alaska, 1990-1999.

    PubMed

    2002-04-26

    Despite its large geographic area, Alaska has only 12,200 miles of public roads, and 90% of the state's communities are not connected to a highway system. Commuter and air-taxi flights are essential for transportation of passengers and delivery of goods, services, and mail to outlying communities (Figure 1). Because of the substantial progress in decreasing fatalities in the fishing and logging industries, aviation crashes are the leading cause of occupational death in Alaska. During 1990-1999, aircraft crashes in Alaska caused 107 deaths among workers classified as civilian pilots. This is equivalent to 410 fatalities per 100,000 pilots each year, approximately five times the death rate for all U.S. pilots and approximately 100 times the death rate for all U.S. workers. As part of a collaborative aviation safety initiative that CDC's National Institute for Occupational Safety and Health (NIOSH) is implementing with the Federal Aviation Administration (FAA), the National Transportation Safety Board (NTSB), and the National Weather Service, CDC analyzed data from NTSB crash reports to determine factors associated with pilot fatalities in work-related aviation crashes in Alaska. This report summarizes the result of this analysis, which found that the following factors were associated with pilot fatalities: crashes involving a post-crash fire, flights in darkness or weather conditions requiring instrument use, crashes occurring away from an airport, and crashes in which the pilot was not using a shoulder restraint. Additional pilot training, improved fuel systems that are less likely to ignite in crashes, and company policies that discourage flying in poor weather conditions might help decrease pilot fatalities. More detailed analyses of crash data, collaborations with aircraft operators to improve safety, and evaluation of new technologies are needed.

  17. 78 FR 53137 - Flint Hills Resources Alaska, LLC, BP Pipelines (Alaska) Inc., ConocoPhillips Transportation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. OR13-31-000] Flint Hills Resources Alaska, LLC, BP Pipelines (Alaska) Inc., ConocoPhillips Transportation Alaska, Inc., ExxonMobil... (Alaska) Inc., ConocoPhillips Transportation Alaska, Inc., and ExxonMobil Pipeline Company (collectively...

  18. Summary of 2012 reconnaissance field studies related to the petroleum geology of the Nenana Basin, interior Alaska

    USGS Publications Warehouse

    Wartes, Marwan A.; Gillis, Robert J.; Herriott, Trystan M.; Stanley, Richard G.; Helmold, Kenneth P.; Peterson, C. Shaun; Benowitz, Jeffrey A.

    2013-01-01

    The Alaska Division of Geological & Geophysical Surveys (DGGS) recently initiated a multi-year review of the hydrocarbon potential of frontier sedimentary basins in Alaska (Swenson and others, 2012). In collaboration with the Alaska Division of Oil & Gas and the U.S. Geological Survey we conducted reconnaissance field studies in two basins with recognized natural gas potential—the Susitna basin and the Nenana basin (LePain and others, 2012). This paper summarizes our initial work on the Nenana basin; a brief summary of our work in the Susitna basin can be found in Gillis and others (in press). During early May 2012, we conducted ten days of helicopter-supported fieldwork and reconnaissance sampling along the northern Alaska Range foothills and Yukon–Tanana upland near Fairbanks (fig. 1). The goal of this work was to improve our understanding of the geologic development of the Nenana basin and to collect a suite of samples to better evaluate hydrocarbon potential. Most laboratory analyses have not yet been completed, so this preliminary report serves as a summary of field data and sets the framework for future, more comprehensive analysis to be presented in later publications.

  19. 23 CFR 200.9 - State highway agency responsibilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false State highway agency responsibilities. 200.9 Section 200.9 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CIVIL RIGHTS TITLE VI... Administration. (2) Section 162a of the Federal-Aid Highway Act of 1973 (section 324, title 23 U.S.C.) requires...

  20. 23 CFR 200.9 - State highway agency responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false State highway agency responsibilities. 200.9 Section 200.9 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CIVIL RIGHTS TITLE VI... Administration. (2) Section 162a of the Federal-Aid Highway Act of 1973 (section 324, title 23 U.S.C.) requires...

  1. 23 CFR 200.9 - State highway agency responsibilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false State highway agency responsibilities. 200.9 Section 200.9 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CIVIL RIGHTS TITLE VI... Administration. (2) Section 162a of the Federal-Aid Highway Act of 1973 (section 324, title 23 U.S.C.) requires...

  2. Deformation and the timing of gas generation and migration in the eastern Brooks Range foothills, Arctic National Wildlife Refuge, Alaska

    USGS Publications Warehouse

    Parris, T.M.; Burruss, R.C.; O'Sullivan, P. B.

    2003-01-01

    Along the southeast border of the 1002 Assessment Area in the Arctic National Wildlife Refuge, Alaska, an explicit link between gas generation and deformation in the Brooks Range fold and thrust belt is provided through petrographic, fluid inclusion, and stable isotope analyses of fracture cements integrated with zircon fission-track data. Predominantly quartz-cemented fractures, collected from thrusted Triassic and Jurassic rocks, contain crack-seal textures, healed microcracks, and curved crystals and fluid inclusion populations, which suggest that cement growth occurred before, during, and after deformation. Fluid inclusion homogenization temperatures (175-250??C) and temperature trends in fracture samples suggest that cements grew at 7-10 km depth during the transition from burial to uplift and during early uplift. CH4-rich (dry gas) inclusions in the Shublik Formation and Kingak Shale are consistent with inclusion entrapment at high thermal maturity for these source rocks. Pressure modeling of these CH4-rich inclusions suggests that pore fluids were overpressured during fracture cementation. Zircon fission-track data in the area record postdeposition denudation associated with early Brooks Range deformation at 64 ?? 3 Ma. With a closure temperature of 225-240??C, the zircon fission-track data overlap homogenization temperatures of coeval aqueous inclusions and inclusions containing dry gas in Kingak and Shublik fracture cements. This critical time-temperature relationship suggests that fracture cementation occurred during early Brooks Range deformation. Dry gas inclusions suggest that Shublik and Kingak source rocks had exceeded peak oil and gas generation temperatures at the time structural traps formed during early Brooks Range deformation. The timing of hydrocarbon generation with respect to deformation therefore represents an important exploration risk for gas exploration in this part of the Brooks Range fold and thrust belt. The persistence of gas high at

  3. 32 CFR 644.421 - Highway purposes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Highway purposes. 644.421 Section 644.421... ESTATE HANDBOOK Disposal Disposal of Fee-Owned Real Property and Easement Interests § 644.421 Highway... highway adjacent to a Government installation. If, within a period of four months after such application...

  4. 32 CFR 644.421 - Highway purposes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Highway purposes. 644.421 Section 644.421... ESTATE HANDBOOK Disposal Disposal of Fee-Owned Real Property and Easement Interests § 644.421 Highway... highway adjacent to a Government installation. If, within a period of four months after such application...

  5. 32 CFR 644.421 - Highway purposes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Highway purposes. 644.421 Section 644.421... ESTATE HANDBOOK Disposal Disposal of Fee-Owned Real Property and Easement Interests § 644.421 Highway... highway adjacent to a Government installation. If, within a period of four months after such application...

  6. 32 CFR 644.421 - Highway purposes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Highway purposes. 644.421 Section 644.421... ESTATE HANDBOOK Disposal Disposal of Fee-Owned Real Property and Easement Interests § 644.421 Highway... highway adjacent to a Government installation. If, within a period of four months after such application...

  7. 32 CFR 644.421 - Highway purposes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Highway purposes. 644.421 Section 644.421... ESTATE HANDBOOK Disposal Disposal of Fee-Owned Real Property and Easement Interests § 644.421 Highway... highway adjacent to a Government installation. If, within a period of four months after such application...

  8. Off-highway vehicle technology roadmap.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2002-02-07

    The off-highway sector is under increasing pressure to reduce operating costs (including fuel costs) and to reduce emissions. Recognizing this, the Society of Automotive Engineers and the U.S. Department of Energy (DOE) convened a workshop in April 2001 (ANL 2001) to (1) determine the interest of the off-highway sector (consisting of agriculture, construction, surface mining, inland marine) in crafting a shared vision of off-highway, heavy machines of the future and (2) identify critical research and development (R&D) needs for minimizing off-highway vehicle emissions while cost-effectively maintaining or enhancing system performance. The workshop also enabled government and industry participants to exchangemore » information. During the workshop, it became clear that the challenges facing the heavy, surface-based off-highway sector can be addressed in three major machine categories: (1) engine/aftertreatment and fuels/lubes, (2) machine systems, and (3) thermal management. Working groups convened to address these topical areas. The status of off-highway technologies was determined, critical technical barriers to achieving future emission standards were identified, and strategies and technologies for reducing fuel consumption were discussed. Priority areas for R&D were identified. Given the apparent success of the discussions at the workshop, several participants from industry agreed to help in the formation of a joint industry/government ''roadmap'' team. The U.S. Department of Energy's Office of Heavy Vehicle Technologies has an extensive role in researching ways to make heavy-duty trucks and trains more efficient, with respect to both fuel usage and air emissions. The workshop participants felt that a joint industry/government research program that addresses the unique needs of the off-highway sector would complement the current research program for highway vehicles. With industry expertise, in-kind contributions, and federal government funding (coupled with

  9. Geologic framework of the Alaska Peninsula, southwest Alaska, and the Alaska Peninsula terrane

    USGS Publications Warehouse

    Wilson, Frederic H.; Detterman, Robert L.; DuBois, Gregory D.

    2015-01-01

    The boundaries separating the Alaska Peninsula terrane from other terranes are commonly indistinct or poorly defined. A few boundaries have been defined at major faults, although the extensions of these faults are speculative through some areas. The west side of the Alaska Peninsula terrane is overlapped by Tertiary sedimentary and volcanic rocks and Quaternary deposits.

  10. Avian mortality associated with a volcanic gas seep at Kiska Island, Aleutian Islands, Alaska

    USGS Publications Warehouse

    Bond, Alexander L.; Evans, William C.; Jones, Ian L.

    2012-01-01

    We identified natural pits associated with avian mortality at the base of Kiska Volcano in the western Aleutian Islands, Alaska in 2007. Living, moribund, and dead birds were regularly found at low spots in a canyon between two lava flows during 2001–2006, but the phenomenon was attributed to natural trapping and starvation of fledgling seabirds (mostly Least Auklets, Aethia pusilla) at a colony site with >1 million birds present. However, 302 birds of eight species, including passerines, were found dead at the site during 2007–2010, suggesting additional factors were involved. Most carcasses showed no signs of injury and concentrations of dead birds had accumulated in a few distinctive low pits in the canyon. Gas samples from these locations showed elevated CO2 concentrations in late 2010. Analysis of carcasses indicated no evidence of blunt trauma or internal bleeding. Volcanic gases accumulating at these poorly ventilated sites may have caused the observed mortality, but are temporally variable. Most auklets breeding in the Aleutian Islands do so in recent lava flows that provide breeding habitat; our study documents a cost of this unusual habitat selection.

  11. Indicate severe toxicity of highway runoff.

    PubMed

    Dorchin, Achik; Shanas, Uri

    2013-09-01

    Road runoff is recognized as a substantial nonpoint source of contamination to the aquatic environment. Highway seasonal first flushes contain particularly high concentrations of pollutants. To fully account for the toxicity potential of the runoff, the cumulative effects of the pollutants should be assessed, ideally by biological analyses. Acute toxicity tests with were used to measure the toxicity of runoff from three major highway sections in Israel for 2 yr. Highway first flushes resulted in the mortality of all tested individuals within 24 to 48 h. A first flush collected from Highway 4 (traffic volume: 81,200 cars d) remained toxic even after dilution to <5% (48 h EC <5%). Synthetic solutions with metal concentrations corresponding to highways' first flushes revealed a synergistic adverse effect on survival and a potential additive effect of nonmetal pollutants in the runoff. Because daphnids and other invertebrates constitute the base of the aquatic food chain, detrimental effects of highway runoff may propagate to higher levels of biological organization. The observed high potential of environmental contamination warrants the control of highway runoff in proximity to natural watercourses. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. 25 CFR 169.28 - Public highways.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Public highways. 169.28 Section 169.28 Indians BUREAU OF... highways. (a) The appropriate State or local authorities may apply under the regulations in this part 169 for authority to open public highways across tribal and individually owned lands in accordance with...

  13. 25 CFR 169.28 - Public highways.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Public highways. 169.28 Section 169.28 Indians BUREAU OF... highways. (a) The appropriate State or local authorities may apply under the regulations in this part 169 for authority to open public highways across tribal and individually owned lands in accordance with...

  14. 25 CFR 169.28 - Public highways.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Public highways. 169.28 Section 169.28 Indians BUREAU OF... highways. (a) The appropriate State or local authorities may apply under the regulations in this part 169 for authority to open public highways across tribal and individually owned lands in accordance with...

  15. 25 CFR 169.28 - Public highways.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Public highways. 169.28 Section 169.28 Indians BUREAU OF... highways. (a) The appropriate State or local authorities may apply under the regulations in this part 169 for authority to open public highways across tribal and individually owned lands in accordance with...

  16. 25 CFR 169.28 - Public highways.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Public highways. 169.28 Section 169.28 Indians BUREAU OF... highways. (a) The appropriate State or local authorities may apply under the regulations in this part 169 for authority to open public highways across tribal and individually owned lands in accordance with...

  17. Comprehensive highway corridor planning with sustainability indicators.

    DOT National Transportation Integrated Search

    2011-10-01

    "The Maryland State Highway Administration (SHA) has initiated major planning efforts to improve transportation : efficiency, safety, and sustainability on critical highway corridors through its Comprehensive Highway Corridor : (CHC) program. This pr...

  18. Comprehensive highway corridor planning with sustainability indicators.

    DOT National Transportation Integrated Search

    2013-04-01

    The Maryland State Highway Administration (SHA) has initiated major planning efforts to improve transportation : efficiency, safety, and sustainability on critical highway corridors through its Comprehensive Highway Corridor : (CHC) program. This pro...

  19. Federal Aid Highway Program: Impact of the District of Columbia Emergency Highway Relief Act

    DOT National Transportation Integrated Search

    1997-06-01

    The District of Columbia Emergency Highway Relief Act provided a temporary waiver of the matching share requirement for funds expended for eligible federal-aid highway projects from August 4, 1995, through September 30, 1996. The act requires the Dis...

  20. Highway bridges in the United States--an overview

    DOT National Transportation Integrated Search

    2007-09-01

    Bridges are an integral part of the U.S. highway network, providing links across natural barriers, passage over railroads and highways, and freeway connections. The Federal Highway Administration (FHWA) maintains a database of our nations highway ...

  1. Highways and Population Change

    ERIC Educational Resources Information Center

    Voss, Paul R.; Chi, Guangqing

    2006-01-01

    In this paper we return to an issue often discussed in the literature regarding the relationship between highway expansion and population change. Typically it simply is assumed that this relationship is well established and understood. We argue, following a thorough review of the relevant literature, that the notion that highway expansion leads to…

  2. Alaska Geothermal Sites Map and Database: Bringing together legacy and new geothermal data for research, exploration and development

    NASA Astrophysics Data System (ADS)

    Clough, J. G.; Harun, N. T.; Hughes, C. A.; Weakland, J. R.; Cameron, C. E.

    2013-12-01

    , and information source. Aqueous geochemistry, a compilation of aqueous chemistry, free gas and isotopes analyses. Aqueous geochemical analyses consist of 407 aqueous geochemical analyses from 85 geothermal sites throughout Alaska. This template also includes 106 free gas analyses from 31 geothermal sites. Isotopic analyses (285) of waters from 42 geothermal sites are also contained in this geochemical data. Borehole temperature data from geothermal, and oil and gas wells are presented along with thermal depth profiles where available. Earthquakes in proximity to hot springs consists of 1,975 earthquakes that are within 5 km of thermal hot springs and may be used to detect underground movement of thermal waters. Active faults comprises active faults across Alaska (1,527) including fault type, location, orientation and slip rate. Additionally, a new comprehensive and searchable Alaska geothermal bibliography, with links to downloadable reference sources was created during this study. The completed Alaska geothermal sites map and database will be accessible to the public and industry and will enable research and development of geothermal sites in Alaska.

  3. Stream stability at highway structures.

    DOT National Transportation Integrated Search

    1995-11-01

    This document provides guidelines for identifying stream instability problems at highway stream crossings and for the selection and design of appropriate countermeasures to mitigate potential damages to bridges and other highway components at stream ...

  4. FHWA highway construction noise handbook

    DOT National Transportation Integrated Search

    2006-08-01

    The John A. Volpe National Transportation Systems Center Acoustics Facility (VCAF), in support of the Federal Highway Administration (FHWA) Office of Natural and Human Environment, has developed the Highway Construction Noise Handbook (the Handbook)....

  5. Highway Effects on Vehicle Performance

    DOT National Transportation Integrated Search

    2001-01-01

    A user-friendly model for personal computers, "Vehicle/Highway Performance Predictor," was developed to estimate fuel consumption and exhaust emissions related to modes of vehicle operations on highways of various configurations and traffic controls ...

  6. Illinois highway statistics sheet : 1999

    DOT National Transportation Integrated Search

    2000-01-01

    Data available on Population, Licensed Drivers, Vehciles registered, Annual Vehicle Miles of Travel, Gallons of Fuel Consumed, Miles of Highways & Streets, Highway Structures Greater Than 20', Public Railroad Grade Crossings, and Private Railroad Gra...

  7. 2013-2017 highway program summary.

    DOT National Transportation Integrated Search

    2012-06-01

    The Iowa Transportation Commission (Commission) and the Iowa Department of : Transportation (DOT) develop Iowas Five Year Highway Program (Program) to : inform you of planned investments in our states primary and interstate highway : system. Th...

  8. Highway Cost Index Estimator Tool

    DOT National Transportation Integrated Search

    2017-10-01

    To plan and program highway construction projects, the Texas Department of Transportation requires accurate construction cost data. However, due to the number of, and uncertainty of, variables that affect highway construction costs, estimating future...

  9. Illinois highway statistics sheet : 2004

    DOT National Transportation Integrated Search

    2005-01-01

    Data available on Population, Licensed Drivers, Vehciles Registered, Annual Vehicle Miles of Travel, Gallons of Fuel Consumed, Miles of Highways & Streets, Highway Structures Greater Than 20', Public Railroad Grade Crossings, and Private Railroad Gra...

  10. Illinois highway statistics sheet : 2003

    DOT National Transportation Integrated Search

    2004-01-01

    Data available on Population, Licensed Drivers, Vehciles Registered, Annual Vehicle Miles of Travel, Gallons of Fuel Consumed, Miles of Highways & Streets, Highway Structures Greater Than 20', Public Railroad Grade Crossings, and Private Railroad Gra...

  11. Illinois highway statistics sheet : 2002

    DOT National Transportation Integrated Search

    2003-01-01

    Data available on Population, Licensed Drivers, Vehciles Registered, Annual Vehicle Miles of Travel, Gallons of Fuel Consumed, Miles of Highways & Streets, Highway Structures Greater Than 20', Public Railroad Grade Crossings, and Private Railroad Gra...

  12. Alaska GeoFORCE, A New Geologic Adventure in Alaska

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2011-12-01

    RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. A program of rigorous academic activity combines with social, cultural, and recreational activities. Students are purposely stretched beyond their comfort levels academically and socially to prepare for the big step from home or village to a large culturally western urban campus. This summer RAHI is launching a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science as the hook because most kids get excited about dinosaurs, volcanoes and earthquakes, but it includes physics, chemistry, math, biology and other sciences. Students will be recruited, initially from the Arctic North Slope schools, in the 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The carrot on the end of the stick is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks, Arizona, Oregon and the Appalachians. All trips are focused on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska is being launched by UAF in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska will be managed by UAF's long-standing Rural Alaska Honors Insitute (RAHI) that has been successfully providing intense STEM educational opportunities for Alaskan high school students for almost 30 years. The Texas program, with adjustments for differences in culture and environment, will be

  13. Highway Surveying. Instructor's Guide for an Adult Course. Highway Technicians Program Unit III.

    ERIC Educational Resources Information Center

    Fimmano, Ralph; Kacharian, John C.

    The revised instructor's guide, which is part of the New York State Highway Technician's Program to provide needed technicians and engineers by upgrading people in the lower-level technician jobs, is geared toward the improvement of technical skills and knowledge in highway surveying. In view of the shortage of qualified technicians and engineers…

  14. Federal-aid highways : federal requirements for highways may influence funding decisions and create challenges, but benefits and costs are not tracked.

    DOT National Transportation Integrated Search

    2009-12-01

    As highway congestion continues to be a problem in many areas, states are looking to construct or expand highway projects. When a state department of transportation (DOT) receives federal funding for highway projects from the Federal Highway Administ...

  15. Financing Federal-Aid Highways. August 1999 Edition

    DOT National Transportation Integrated Search

    1999-08-01

    Because of a continuing demand for information concerning the financing of Federal-aid highways, the Federal Highway Administration (FHWA) prepared a report, "Financing Federal-Aid Highways," in January 1974 to describe the basic process involved. Th...

  16. Research notes : monitoring water quality along highways.

    DOT National Transportation Integrated Search

    2006-12-01

    Runoff from highways typically picks up a variety of pollutants from the roadway. These pollutants include sediment, trash, residue from petroleum products, and heavy metals. Depending on the highway and its geographic setting, highway runoff can eva...

  17. 78 FR 33103 - Call For Nominations and Comments for the 2013 National Petroleum Reserve in Alaska Oil and Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-03

    ... available areas is online at http://www.blm.gov/ak . DATES: BLM-Alaska must receive all nominations and...-Alaska Web site at http://www.blm.gov/ak . Authority: 43 CFR 3131.2. Bud Cribley, State Director. [FR Doc...

  18. 2007 Oregon state highway accident rate tables

    DOT National Transportation Integrated Search

    2008-09-01

    State highway crash rate tables present crash frequencies in relation to traffic volume and : highway mileage. The four major sections of this publication are: : I Results of Analysis : II State Highway Crash Rates : III Fatal Traffic Crash Summaries...

  19. 2009 Oregon state highway accident rate tables

    DOT National Transportation Integrated Search

    2010-08-01

    State highway crash rate tables present crash frequencies in relation to traffic volume and : highway mileage. The four major sections of this publication are: : I Results of Analysis : II State Highway Crash Rates : III Fatal Traffic Crash Summaries...

  20. 2004 Oregon state highway accident rate tables

    DOT National Transportation Integrated Search

    2005-08-01

    State highway crash rate tables present crash frequencies in relation to traffic volume and : highway mileage. The four major sections of this publication are: : I Results of Analysis : II State Highway Crash Rates : III Fatal Traffic Crash Summaries...

  1. 2008 Oregon state highway accident rate tables

    DOT National Transportation Integrated Search

    2009-08-01

    State highway crash rate tables present crash frequencies in relation to traffic volume and : highway mileage. The four major sections of this publication are: : I Results of Analysis : II State Highway Crash Rates : III Fatal Traffic Crash Summaries...

  2. 2006 Oregon state highway accident rate tables

    DOT National Transportation Integrated Search

    2007-07-01

    State highway crash rate tables present crash frequencies in relation to traffic volume and : highway mileage. The four major sections of this publication are: : I Results of Analysis : II State Highway Crash Rates : III Fatal Traffic Crash Summaries...

  3. 2010 Oregon state highway accident rate tables

    DOT National Transportation Integrated Search

    2011-11-01

    State highway crash rate tables present crash frequencies in relation to traffic volume and : highway mileage. The four major sections of this publication are: I. Results of Analysis, II. State Highway Crash Rates, III. Fatal Traffic Crash Summaries,...

  4. Missouri Highway Safety Manual Recalibration

    DOT National Transportation Integrated Search

    2018-05-01

    The Highway Safety Manual (HSM) is a national manual for analyzing the highway safety of various facilities, including rural roads, urban arterials, freeways, and intersections. The HSM was first published in 2010, and a 2014 supplement addressed fre...

  5. Railroad-highway grade crossing handbook

    DOT National Transportation Integrated Search

    2007-08-01

    The purpose of this handbook is to provide a single reference document on prevalent and best practices as well as adopted standards relative to highway-rail grade crossings. The handbook provides general information on highway-rail crossings; charact...

  6. 2005 Oregon state highway accident rate tables

    DOT National Transportation Integrated Search

    2006-08-01

    State highway crash rate tables present crash frequencies in relation to traffic volume and highway mileage. The four major sections of this publication are: I Results of Analysis II State Highway Crash Rates III Fatal Traffic Crash Summaries IV Appe...

  7. Well log analysis to assist the interpretation of 3-D seismic data at Milne Point, north slope of Alaska

    USGS Publications Warehouse

    Lee, Myung W.

    2005-01-01

    In order to assess the resource potential of gas hydrate deposits in the North Slope of Alaska, 3-D seismic and well data at Milne Point were obtained from BP Exploration (Alaska), Inc. The well-log analysis has three primary purposes: (1) Estimate gas hydrate or gas saturations from the well logs; (2) predict P-wave velocity where there is no measured P-wave velocity in order to generate synthetic seismograms; and (3) edit P-wave velocities where degraded borehole conditions, such as washouts, affected the P-wave measurement significantly. Edited/predicted P-wave velocities were needed to map the gas-hydrate-bearing horizons in the complexly faulted upper part of 3-D seismic volume. The estimated gas-hydrate/gas saturations from the well logs were used to relate to seismic attributes in order to map regional distribution of gas hydrate inside the 3-D seismic grid. The P-wave velocities were predicted using the modified Biot-Gassmann theory, herein referred to as BGTL, with gas-hydrate saturations estimated from the resistivity logs, porosity, and clay volume content. The effect of gas on velocities was modeled using the classical Biot-Gassman theory (BGT) with parameters estimated from BGTL.

  8. Retaining Quality Teachers for Alaska.

    ERIC Educational Resources Information Center

    McDiarmid, G. Williamson; Larson, Eric; Hill, Alexandra

    This report examines the demand for teachers, teacher turnover, and teacher education in Alaska. Surveys were conducted with school district personnel directors, directors of Alaska teacher education programs, teachers who exited Alaska schools in 2001, and rural and urban instructional aides. Alaska is facing teacher shortages, but these are…

  9. Methods for Allocating Highway Costs

    DOT National Transportation Integrated Search

    1981-04-01

    Microeconomic theory and other concepts related to pricing are reviewed and applied to the problem of designing highway user charges. In view of the emphasis in the Congressional request for the Highway Cost Allocation Study on setting charges in acc...

  10. Highway-rail intersection user service

    DOT National Transportation Integrated Search

    1996-02-26

    As a result of the Federal Register announcement at the end of 1994 which sought a : broad review of the third draft of the NPP, Mr. Hoy Richards prepared a responsive : statement to the Federal Highway Administration's Intelligent Vehicle-Highway Sy...

  11. Fisheries Education in Alaska. Conference Report. Alaska Sea Grant Report 82-4.

    ERIC Educational Resources Information Center

    Smoker, William W., Ed.

    This conference was an attempt to have the fishing industry join the state of Alaska in building fisheries education programs. Topics addressed in papers presented at the conference include: (1) fisheries as a part of life in Alaska, addressing participation of Alaska natives in commercial fisheries and national efforts; (2) the international…

  12. 23 CFR 1.28 - Diversion of highway revenues.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Diversion of highway revenues. 1.28 Section 1.28 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GENERAL MANAGEMENT AND ADMINISTRATION..., secondary and urban funds made to the State after the date of such finding. In any such reduction, each of...

  13. Surficial Geologic Map of the Tanacross B-4 Quadrangle, East-Central Alaska

    USGS Publications Warehouse

    Carrara, Paul E.

    2006-01-01

    The Tanacross B-4 1:63,360-scale quadrangle, through which the Alaska Highway runs, is in east-central Alaska about 100 mi west of the Yukon border. The surficial geologic mapping in the quadrangle is in support of the 'Geologic Mapping in support of land, resources, and hazards issues in Alaska' Project of the USGS National Cooperative Geologic Mapping Program. The Tanacross B-4 quadrangle contains parts of two physiographic provinces, the Yukon-Tanana Upland and the Northway-Tanana Lowland. The gently rolling hills of the Yukon-Tanana Upland, in the northern and eastern map area, rise to about 3,100 ft. The Northway-Tanana Lowland, in the western and southern map area, contains the westerly flowing Tanana River. Elevations along the floor of the lowland generally range between 1,540 and 1,700 ft. The dominant feature within the map is the Tok fan, which occupies about 20 percent of the map area. This large, nearly featureless fan contains a high percentage of volcanic clasts derived from outside the present-day drainage of the Tok River. The map provides interpretations of the Quaternary surficial deposits and associated geologic hazards in this area of the upper Tanana valley. Because the map area is dominated by various surficial deposits, the map depicts 13 different Quaternary surficial units consisting of man-made, alluvial, colluvial, organic, lacustrine, and eolian deposits. Deposits shown on this map are generally greater than 1 m thick. The map is accompanied by a text containing unit descriptions incorporating information pertaining to material type, location, associated hazards, resource use (if any), and thickness.

  14. Identification of Geostructures of the Continental Crust Particularly as They Relate to Mineral Resource Evaluation. [Alaska

    NASA Technical Reports Server (NTRS)

    Lathram, E. H. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. A pattern of very old geostructures was recognized, reflecting structures in the crust. This pattern is not peculiar to Alaska, but can be recognized throughout the northern cordillera. A new metallogenic hypothesis for Alaska was developed, based on the relationship of space image linears to known mineral deposits. Using image linear analysis, regional geologic features were also recognized; these features may be used to guide in the location of undiscovered oil and/or gas accumulations in northern Alaska. The effectiveness of ERTS data in enhancing medium and small scale mapping was demonstrated. ERTS data were also used to recognize and monitor the state of large scale vehicular scars on Arctic tundra.

  15. Rapid movement of frozen debris-lobes: implications for permafrost degradation and slope instability in the south-central Brooks Range, Alaska

    USGS Publications Warehouse

    Daanen, R.P.; Grosse, G.; Darrow, M.M.; Hamilton, T.D.; Jones, Benjamin M.

    2012-01-01

    We present the results of a reconnaissance investigation of unusual debris mass-movement features on permafrost slopes that pose a potential infrastructure hazard in the south-central Brooks Range, Alaska. For the purpose of this paper, we describe these features as frozen debris-lobes. We focus on the characterisation of frozen debris-lobes as indicators of various movement processes using ground-based surveys, remote sensing, field and laboratory measurements, and time-lapse observations of frozen debris-lobe systems along the Dalton Highway. Currently, some frozen debris-lobes exceed 100 m in width, 20 m in height and 1000 m in length. Our results indicate that frozen debris-lobes have responded to climate change by becoming increasingly active during the last decades, resulting in rapid downslope movement. Movement indicators observed in the field include toppling trees, slumps and scarps, detachment slides, striation marks on frozen sediment slabs, recently buried trees and other vegetation, mudflows, and large cracks in the lobe surface. The type and diversity of observed indicators suggest that the lobes likely consist of a frozen debris core, are subject to creep, and seasonally unfrozen surface sediment is transported in warm seasons by creep, slumping, viscous flow, blockfall and leaching of fines, and in cold seasons by creep and sliding of frozen sediment slabs. Ground-based measurements on one frozen debris-lobe over three years (2008–2010) revealed average movement rates of approximately 1 cm day−1, which is substantially larger than rates measured in historic aerial photography from the 1950s to 1980s. We discuss how climate change may further influence frozen debris-lobe dynamics, potentially accelerating their movement. We highlight the potential direct hazard that one of the studied frozen debris-lobes may pose in the coming years and decades to the nearby Trans Alaska Pipeline System and the Dalton Highway, the main artery for transportation

  16. Alaska Mental Health Board

    Science.gov Websites

    State Employees Alaska Mental Health Board DHSS State of Alaska Home Divisions and Agencies Alaska Pioneer Homes Behavioral Health Office of Children's Services Office of the Commissioner Office of Substance Misuse and Addiction Prevention Finance & Management Services Health Care Services Juvenile

  17. 23 CFR 810.208 - Action by the Federal Highway Administrator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Action by the Federal Highway Administrator. 810.208 Section 810.208 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass...

  18. 23 CFR 1200.40 - Expiration of the Highway Safety Plan.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Expiration of the Highway Safety Plan. 1200.40 Section 1200.40 Highways NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION AND FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURES FOR STATE HIGHWAY SAFETY PROGRAMS UNIFORM PROCEDURES FOR STATE...

  19. 23 CFR 810.208 - Action by the Federal Highway Administrator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Action by the Federal Highway Administrator. 810.208 Section 810.208 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass...

  20. 23 CFR 810.208 - Action by the Federal Highway Administrator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false Action by the Federal Highway Administrator. 810.208 Section 810.208 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass...

  1. 23 CFR 1200.40 - Expiration of the Highway Safety Plan.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Expiration of the Highway Safety Plan. 1200.40 Section 1200.40 Highways NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION AND FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURES FOR STATE HIGHWAY SAFETY PROGRAMS UNIFORM PROCEDURES FOR STATE...

  2. 49 CFR 1.84 - The Federal Highway Administration.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... environment. (e) Surveying and constructing forest highway system roads, defense highways and access roads... surveillance of accident locations; highway design, construction, and maintenance, including context sensitive...

  3. Analysis of Restricted Natural Gas Supply Cases

    EIA Publications

    2004-01-01

    The four cases examined in this study have progressively greater impacts on overall natural gas consumption, prices, and supply. Compared to the Annual Energy Outlook 2004 reference case, the no Alaska pipeline case has the least impact; the low liquefied natural gas case has more impact; the low unconventional gas recovery case has even more impact; and the combined case has the most impact.

  4. Pleistocene ice-rich yedoma in Interior Alaska

    NASA Astrophysics Data System (ADS)

    Kanevskiy, M. Z.; Shur, Y.; Jorgenson, T. T.; Sturm, M.; Bjella, K.; Bray, M.; Harden, J. W.; Dillon, M.; Fortier, D.; O'Donnell, J.

    2011-12-01

    Yedoma, or the ice-rich syngenetic permafrost with large ice wedges, widely occurs in parts of Alaska that were unglaciated during the last glaciation including Interior Alaska, Foothills of Brooks Range and Seward Peninsula. A thick layer of syngenetic permafrost was formed by simultaneous accumulation of silt and upward permafrost aggradation. Until recently, yedoma has been studied mainly in Russia. In Interior Alaska, we have studied yedoma at several field sites (Erickson Creek area, Boot Lake area, and several sites around Fairbanks, including well-known CRREL Permafrost tunnel). All these locations are characterized by thick sequences of ice-rich silt with large ice wedges up to 30 m deep. Our study in the CRREL Permafrost tunnel and surrounding area revealed a yedoma section up to 18 m thick, whose formation began about 40,000 yr BP. The volume of wedge-ice (about 10-15%) is not very big in comparison with other yedoma sites (typically more than 30%), but soils between ice wedges are extremely ice-rich - an average value of gravimetric moisture content of undisturbed yedoma silt with micro-cryostructures is about 130%. Numerous bodies of thermokarst-cave ice were detected in the tunnel. Geotechnical investigations along the Dalton Highway near Livengood (Erickson Creek area) provided opportunities for studies of yedoma cores from deep boreholes. The radiocarbon age of sediments varies from 20,000 to 45,000 yr BP. Most of soils in the area are extremely ice-rich. Thickness of ice-rich silt varies from 10 m to more than 26 m, and volume of wedge-ice reaches 35-45%. Soil between ice wedges has mainly micro-cryostructures and average gravimetric moisture content from 80% to 100%. Our studies have shown that the top part of yedoma in many locations was affected by deep thawing during the Holocene, which resulted in formation of the layer of thawed and refrozen soils up to 6 m thick on top of yedoma deposits. Thawing of the upper permafrost could be related to

  5. 23 CFR 810.206 - Review by the State Highway Agency.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Review by the State Highway Agency. 810.206 Section 810.206 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass Transit Projects...

  6. 23 CFR 810.206 - Review by the State Highway Agency.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Review by the State Highway Agency. 810.206 Section 810.206 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass Transit Projects...

  7. 23 CFR 810.206 - Review by the State Highway Agency.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false Review by the State Highway Agency. 810.206 Section 810.206 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass Transit Projects...

  8. 23 CFR 810.206 - Review by the State Highway Agency.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Review by the State Highway Agency. 810.206 Section 810.206 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass Transit Projects...

  9. Geochemical Monitoring Of The Gas Hydrate Production By CO2/CH4 Exchange In The Ignik Sikumi Gas Hydrate Production Test Well, Alaska North Slope

    NASA Astrophysics Data System (ADS)

    Lorenson, T. D.; Collett, T. S.; Ignik Sikumi, S.

    2012-12-01

    Hydrocarbon gases, nitrogen, carbon dioxide and water were collected from production streams at the Ignik Sikumi gas hydrate production test well (TD, 791.6 m), drilled on the Alaska North Slope. The well was drilled to test the feasibility of producing methane by carbon dioxide injection that replaces methane in the solid gas hydrate. The Ignik Sikumi well penetrated a stratigraphically-bounded prospect within the Eileen gas hydrate accumulation. Regionally, the Eileen gas hydrate accumulation overlies the more deeply buried Prudhoe Bay, Milne Point, and Kuparuk River oil fields and is restricted to the up-dip portion of a series of nearshore deltaic sandstone reservoirs in the Sagavanirktok Formation. Hydrate-bearing sandstones penetrated by Ignik Sikumi well occur in three primary horizons; an upper zone, ("E" sand, 579.7 - 597.4 m) containing 17.7 meters of gas hydrate-bearing sands, a middle zone ("D" sand, 628.2 - 648.6 m) with 20.4 m of gas hydrate-bearing sands and a lower zone ("C" sand, 678.8 - 710.8 m), containing 32 m of gas hydrate-bearing sands with neutron porosity log-interpreted average gas hydrate saturations of 58, 76 and 81% respectively. A known volume mixture of 77% nitrogen and 23% carbon dioxide was injected into an isolated section of the upper part of the "C" sand to start the test. Production flow-back part of the test occurred in three stages each followed by a period of shut-in: (1) unassisted flowback; (2) pumping above native methane gas hydrate stability conditions; and (3) pumping below the native methane gas hydrate stability conditions. Methane production occurred immediately after commencing unassisted flowback. Methane concentration increased from 0 to 40% while nitrogen and carbon dioxide concentrations decreased to 48 and 12% respectively. Pumping above the hydrate stability phase boundary produced gas with a methane concentration climbing above 80% while the carbon dioxide and nitrogen concentrations fell to 2 and 18

  10. Evaluation of cores from Jefferson Highway near Airline Highway : technical assistance report 16-03TA-C.

    DOT National Transportation Integrated Search

    2016-09-01

    This technical assistance report documents the investigation conducted by the Louisiana Transportation Research Center (LTRC) of the cored concrete from Westbound Jefferson Highway near Airline Highway in Baton Rouge, LA. The petrographic analysis sh...

  11. Off-Highway Gasoline Consuption Estimation Models Used in the Federal Highway Administration Attribution Process: 2008 Updates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Ho-Ling; Davis, Stacy Cagle

    2009-12-01

    This report is designed to document the analysis process and estimation models currently used by the Federal Highway Administration (FHWA) to estimate the off-highway gasoline consumption and public sector fuel consumption. An overview of the entire FHWA attribution process is provided along with specifics related to the latest update (2008) on the Off-Highway Gasoline Use Model and the Public Use of Gasoline Model. The Off-Highway Gasoline Use Model is made up of five individual modules, one for each of the off-highway categories: agricultural, industrial and commercial, construction, aviation, and marine. This 2008 update of the off-highway models was the secondmore » major update (the first model update was conducted during 2002-2003) after they were originally developed in mid-1990. The agricultural model methodology, specifically, underwent a significant revision because of changes in data availability since 2003. Some revision to the model was necessary due to removal of certain data elements used in the original estimation method. The revised agricultural model also made use of some newly available information, published by the data source agency in recent years. The other model methodologies were not drastically changed, though many data elements were updated to improve the accuracy of these models. Note that components in the Public Use of Gasoline Model were not updated in 2008. A major challenge in updating estimation methods applied by the public-use model is that they would have to rely on significant new data collection efforts. In addition, due to resource limitation, several components of the models (both off-highway and public-us models) that utilized regression modeling approaches were not recalibrated under the 2008 study. An investigation of the Environmental Protection Agency's NONROAD2005 model was also carried out under the 2008 model update. Results generated from the NONROAD2005 model were analyzed, examined, and compared, to the extent

  12. Bridge Structure, Foundation and Approach Embankment Performance for the October-November 2002 Earthquake Sequence on the Denali Fault, Alaska

    NASA Astrophysics Data System (ADS)

    Vinson, T. S.; Hulsey, L.; Ma, J.; Connor, B.; Brooks, T. E.

    2002-12-01

    More than two dozen major bridges were subjected to severe ground motions during the October-November 2002 Earthquake Sequence on the Denali Fault, Alaska. The bridges represented a number of conventional designs constructed over the past three to four decades. The objective of the field investigation presented herein was to determine the extent of the damage, if any, to the bridge structures, foundations and approach embankments. This was accomplished by direct inspection of the bridges by the authors (or employees of their organizations) along the Richardson, Alaska, Parks, and Denali Highways, the Tok Cutoff, and the railroad bridges for the railroad alignment between Trapper Creek and Fairbanks. More specifically, the members of the investigation team (represented by the authors) conducted more than three days of field inspections of bridges within the zone of severe ground shaking during the M6.7 and M7.9 Denali fault events. The primary conclusion noted was that while a substantial number of bridges were subjected to intense shaking they all performed very well and were not damaged to the extent that remedial repairs to the bridge structure were necessary. There were occurrences of lateral spreading/liquefaction related damage to the approach embankments and slight separation of the approach embankment from the abutment foundation systems. Overall, considering the severity of ground shaking, much greater damage to the bridge structures, foundations and approach embankments would be predicted. Had the earthquakes occurred during winter when the ground was frozen and the ductility of the structures was substantially reduced events comparable to the October-November 2002 Earthquake Sequence on the Denali Fault, Alaska could have resulted in significant damage to bridges. This reconnaissance was supported by the National Science Foundation, Alaska Dept. of Transportation and Public Facilities, and the Alaska Railroad Corporation.

  13. Epidemiology of Invasive Group A Streptococcal Disease in Alaska, 2001 to 2013

    PubMed Central

    Bruce, Michael G.; Bruden, Dana; Zulz, Tammy; Reasonover, Alisa; Hurlburt, Debby; Hennessy, Thomas

    2015-01-01

    The Arctic Investigations Program (AIP) began surveillance for invasive group A streptococcal (GAS) infections in Alaska in 2000 as part of the invasive bacterial diseases population-based laboratory surveillance program. Between 2001 and 2013, there were 516 cases of GAS infection reported, for an overall annual incidence of 5.8 cases per 100,000 persons with 56 deaths (case fatality rate, 10.7%). Of the 516 confirmed cases of invasive GAS infection, 422 (82%) had isolates available for laboratory analysis. All isolates were susceptible to penicillin, cefotaxime, and levofloxacin. Resistance to tetracycline, erythromycin, and clindamycin was seen in 11% (n = 8), 5.8% (n = 20), and 1.2% (n = 4) of the isolates, respectively. A total of 51 emm types were identified, of which emm1 (11.1%) was the most prevalent, followed by emm82 (8.8%), emm49 (7.8%), emm12 and emm3 (6.6% each), emm89 (6.2%), emm108 (5.5%), emm28 (4.7%), emm92 (4%), and emm41 (3.8%). The five most common emm types accounted for 41% of isolates. The emm types in the proposed 26-valent and 30-valent vaccines accounted for 56% and 78% of all cases, respectively. GAS remains an important cause of invasive bacterial disease in Alaska. Continued surveillance of GAS infections will help improve understanding of the epidemiology of invasive disease, with an impact on disease control, notification of outbreaks, and vaccine development. PMID:26560536

  14. Countermeasures that work : a highway safety countermeasure guide for state highway safety offices, fifth edition, 2010.

    DOT National Transportation Integrated Search

    2010-01-01

    This guide is a basic reference to assist State Highway Safety Offices (SHSOs) in selecting : effective, science-based traffic safety countermeasures for major highway safety problem areas. : The guide: : o describes major strategies and countermeasu...

  15. Alaska's Economy: What's Ahead?

    ERIC Educational Resources Information Center

    Alaska Review of Social and Economic Conditions, 1987

    1987-01-01

    This review describes Alaska's economic boom of the early 1980s, the current recession, and economic projections for the 1990s. Alaska's economy is largely influenced by oil prices, since petroleum revenues make up 80% of the state government's unrestricted general fund revenues. Expansive state spending was responsible for most of Alaska's…

  16. Cooperative Alaska Forest Inventory

    Treesearch

    Thomas Malone; Jingjing Liang; Edmond C. Packee

    2009-01-01

    The Cooperative Alaska Forest Inventory (CAFI) is a comprehensive database of boreal forest conditions and dynamics in Alaska. The CAFI consists of field-gathered information from numerous permanent sample plots distributed across interior and south-central Alaska including the Kenai Peninsula. The CAFI currently has 570 permanent sample plots on 190 sites...

  17. Methane seeps along boundaries of receding glaciers in Alaska and Greenland

    NASA Astrophysics Data System (ADS)

    Walter Anthony, K. M.; Anthony, P. M.; Grosse, G.; Chanton, J.

    2012-12-01

    Glaciers, ice sheets, and permafrost form a 'cryosphere cap' that traps methane formed in the subsurface, restricting its flow to the Earth's surface and atmosphere. Despite model predictions that glacier melt and degradation of permafrost open conduits for methane's escape, there has been a paucity of field evidence for 'subcap' methane seepage to the atmosphere as a direct result of cryosphere disintegration in the terrestrial Arctic. Here, we document for the first time the release of sub-cryosphere methane to lakes, rivers, shallow marine fjords and the atmosphere from abundant gas seeps concentrated along boundaries of receding glaciers and permafrost thaw in Alaska and Greenland. Through aerial and ground surveys of 6,700 lakes and fjords in Alaska we mapped >150,000 gas seeps identified as bubbling-induced open holes in seasonal ice. Using gas flow rates, stable isotopes, and radiocarbon dating, we distinguished recent ecological methane from subcap, geologic methane. Subcap seeps had anomalously high bubbling rates, 14C-depletion, and stable isotope values matching microbial sources associated with sedimentary deposits and coal beds as well as thermogenic methane accumulations in Alaska. Since differential ice loading can overpressurize fluid reservoirs and cause sediment fracturing beneath ice sheets, and since the loss of glacial ice reduces normal stress on ground, opens joints, and activates faults and fissures, thereby increasing permeability of the crust to fluid flow, we hypothesized that in the previously glaciated region of Southcentral Alaska, where glacial wastage continues presently, subcap seeps should be disproportionately associated with neotectonic faults. Geospatial analysis confirmed that subcap seep sites were associated with faults within a 7 km belt from the modern glacial extent. The majority of seeps were located in areas affected by seismicity from isostatic rebound associated with deglaciation following the Little Ice Age (LIA; ca

  18. Appellate Courts - Alaska Court System

    Science.gov Websites

    Court Cases Appellate Case Management System Oral Argument Supreme Court Calendar, Court of Appeals , which contains the Alaska cases excerpted from P.2d and P.3d. The Pacific Reporter or the Alaska the Alaska cases excerpted from P.2d and P.3d. The Pacific Reporter or the Alaska Reporter is

  19. Alaska looks HOT!

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belcher, J.

    Production in Alaska has been sluggish in recent years, with activity in the Prudhoe Bay region in the North Slope on a steady decline. Alaska North Slope (ANS) production topped out in 1988 at 2.037 MMbo/d, with 1.6 MMbo/d from Prudhoe Bay. This year operators expect to produce 788 Mbo/d from Prudhoe Bay, falling to 739 Mbo/d next year. ANS production as a whole should reach 1.3 MMbo/d this year, sliding to 1.29 MMbo/d in 1998. These declining numbers had industry officials and politicians talking about the early death of the Trans-Alaskan Pipeline System-the vital link between ANS crude andmore » markets. But enhanced drilling technology coupled with a vastly improved relationship between the state government and industry have made development in Alaska more economical and attractive. Alaska`s Democratic Gov. Tommy Knowles is fond of telling industry {open_quotes}we`re open for business.{close_quotes} New discoveries on the North Slope and in the Cook Inlet are bringing a renewed sense of optimism to the Alaska exploration and production industry. Attempts by Congress to lift a moratorium on exploration and production activity in the Arctic National Wildlife Refuge (ANWR) have been thwarted thus far, but momentum appears to be with proponents of ANWR drilling.« less

  20. Alaska Tidal Datum Portal | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Engineering Geology Alaska Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Portal Unambiguous vertical datums in the coastal environment are critical to the evaluation of natural human life, property, and the coastal environment. January 2017 - Update Summary Alaska Tidal Datum

  1. Feasibility study of Northeast Thailand Gas Pipeline Project. Final report. Part 2. Compressed natural gas. Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The volume is the second part of a three part study submitted to the Petroleum Authority of Thailand. Part II analyzes the potential use of compressed natural gas (CNG) as a transportation fuel for high mileage vehicles traveling the highway system of Thailand. The study provides an initial estimate of buses and trucks that are potential candidates for converting to natural gas vehicles (NGV). CNG technology is briefly reviewed. The types of refueling stations that may be sited along the highway are discussed. The estimated capital investments and typical layouts are presented. The report also discusses the issues involved inmore » implementing a CNG program in Thailand, such as safety, user acceptability and the government's role.« less

  2. Alaska Job Center Network

    Science.gov Websites

    Job Centers Toll-free in Alaska (877)724-2539 *Workshop Schedules are linked under participating Job : midtown.jobcenter@alaska.gov Employers: anchorage.employers@alaska.gov Toll free Anchorage Employer Phone: 1-888-830 -1149 Phone: 842-5579 Fax: 842-5679, Toll Free: 1-800-478-5579 Job Seekers & Employers

  3. Highway safety attitudes of Virginians : Results of the 1977 highway safety public opinion poll, final Report.

    DOT National Transportation Integrated Search

    1978-01-01

    In October 1977, the Highway Safety Division of Virginia sponsored a statewide public opinion poll conducted by the Virginia Highway and Transportation Research Council. From the first through the twenty-second of October, approximately 1,700 randoml...

  4. Alaska Natives & the Land.

    ERIC Educational Resources Information Center

    Arnold, Robert D.; And Others

    Pursuant to the Native land claims within Alaska, this compilation of background data and interpretive materials relevant to a fair resolution of the Alaska Native problem seeks to record data and information on the Native peoples; the land and resources of Alaska and their uses by the people in the past and present; land ownership; and future…

  5. Alaska Women: A Databook.

    ERIC Educational Resources Information Center

    White, Karen; Baker, Barbara

    This data book uses survey and census information to record social and economic changes of the past three decades and their effects upon the role of Alaska women in society. Results show Alaska women comprise 47% of the state population, an increase of 9% since 1950. Marriage continues as the predominant living arrangement for Alaska women,…

  6. Alaska Board of Forestry

    Science.gov Websites

    Natural Resources / Division of Forestry Alaska Board of Forestry The nine-member Alaska Board of Forestry advises the state on forest practices issues and provides a forum for discussion and resolution of forest management issues on state land. The board also reviews all proposed changes to the Alaska Forest Resources

  7. Alaska Interagency Ecosystem Health Work Group

    USGS Publications Warehouse

    Shasby, Mark

    2009-01-01

    The Alaska Interagency Ecosystem Health Work Group is a community of practice that recognizes the interconnections between the health of ecosystems, wildlife, and humans and meets to facilitate the exchange of ideas, data, and research opportunities. Membership includes the Alaska Native Tribal Health Consortium, U.S. Geological Survey, Alaska Department of Environmental Conservation, Alaska Department of Health and Social Services, Centers for Disease Control and Prevention, U.S. Fish and Wildlife Service, Alaska Sea Life Center, U.S. Environmental Protection Agency, and Alaska Department of Fish and Game.

  8. UNIT, ALASKA.

    ERIC Educational Resources Information Center

    Louisiana Arts and Science Center, Baton Rouge.

    THE UNIT DESCRIBED IN THIS BOOKLET DEALS WITH THE GEOGRAPHY OF ALASKA. THE UNIT IS PRESENTED IN OUTLINE FORM. THE FIRST SECTION DEALS PRINCIPALLY WITH THE PHYSICAL GEOGRAPHY OF ALASKA. DISCUSSED ARE (1) THE SIZE, (2) THE MAJOR LAND REGIONS, (3) THE MOUNTAINS, VOLCANOES, GLACIERS, AND RIVERS, (4) THE NATURAL RESOURCES, AND (5) THE CLIMATE. THE…

  9. Highway Safety Manual applied in Missouri - freeway/software.

    DOT National Transportation Integrated Search

    2016-06-01

    AASHTOs Highway Safety Manual (HSM) facilitates the quantitative safety analysis of highway facilities. In a 2014 : supplement, freeway facilities were added to the original HSM manual which allows the modeling of highway : interchanges. This repo...

  10. Alaska's renewable energy potential.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  11. Crustal implications of bedrock geology along the Trans-Alaska Crustal Transect (TACT) in the Brooks Range, northern Alaska

    USGS Publications Warehouse

    Moore, Thomas E.; Wallace, W.K.; Mull, C.G.; Adams, K.E.; Plafker, G.; Nokleberg, W.J.

    1997-01-01

    Geologic mapping of the Trans-Alaska Crustal Transect (TACT) project along the Dalton Highway in northern Alaska indicates that the Endicott Mountains allochthon and the Hammond terrane compose a combined allochthon that was thrust northward at least 90 km in the Early Cretaceous. The basal thrust of the combined allochthon climbs up section in the hanging wall from a ductile shear zone, in the south through lower Paleozoic rocks of the Hammond terrane and into Upper Devonian rocks of the Endicott Mountains allochthon at the Mount Doonerak antiform, culminating in Early Cretaceous shale in the northern foothills of the Brooks Range. Footwall rocks north of the Mount Doonerak antiform are everywhere parautochthonous Permian and Triassic shale of the North Slope terrane rather than Jurassic and Lower Cretaceous strata of the Colville Basin as shown in most other tectonic models of the central Brooks Range. Stratigraphic and structural relations suggest that this thrust was the basal detachment for Early Cretaceous deformation. Younger structures, such as the Tertiary Mount Doonerak antiform, deform the Early Cretaceous structures and are cored by thrusts that root at a depth of about 10 to 30 km along a deeper detachment than the Early Cretaceous detachment. The Brooks Range, therefore, exposes (1) an Early Cretaceous thin-skinned deformational belt developed during arc-continent collision and (2) a mainly Tertiary thick-skinned orogen that is probably the northward continuation of the Rocky Mountains erogenic belt. A down-to-the-south zone of both ductile and brittle normal faulting along the southern margin of the Brooks Range probably formed in the mid-Cretaceous by extensional exhumation of the Early Cretaceous contractional deformation. copyright. Published in 1997 by the American Geophysical Union.

  12. Geomorphology and river dynamics of the lower Copper River, Alaska

    USGS Publications Warehouse

    Brabets, Timothy P.; Conaway, Jeffrey S.

    2009-01-01

    Located in south-central Alaska, the Copper River drains an area of more than 24,000 square miles. The average annual flow of the river near its mouth is 63,600 cubic feet per second, but is highly variable between winter and summer. In the winter, flow averages approximately 11,700 cubic feet per second, and in the summer, due to snowmelt, rainfall, and glacial melt, flow averages approximately 113,000 cubic feet per second, an order of magnitude higher. About 15 miles upstream of its mouth, the Copper River flows past the face of Childs Glacier and enters a large, broad, delta. The Copper River Highway traverses this flood plain, and in 2008, 11 bridges were located along this section of the highway. The bridges cross several parts of the Copper River and in recent years, the changing course of the river has seriously damaged some of the bridges.Analysis of aerial photography from 1991, 1996, 2002, 2006, and 2007 indicates the eastward migration of a channel of the Copper River that has resulted in damage to the Copper River Highway near Mile 43.5. Migration of another channel in the flood plain has resulted in damage to the approach of Bridge 339. As a verification of channel change, flow measurements were made at bridges along the Copper River Highway in 2005–07. Analysis of the flow measurements indicate that the total flow of the Copper River has shifted from approximately 50 percent passing through the bridges at Mile 27, near the western edge of the flood plain, and 50 percent passing through the bridges at Mile 36–37 to approximately 5 percent passing through the bridges at Mile 27 and 95 percent through the bridges at Mile 36–37 during average flow periods.The U.S. Geological Survey’s Multi-Dimensional Surface-Water Modeling System was used to simulate water-surface elevation and velocity, and to compute bed shear stress at two areas where the Copper River is affecting the Copper River Highway. After calibration, the model was used to examine the

  13. College Persistence of Alaska Native Students: An Assessment of the Rural Alaska Honors Institute, 1983-88.

    ERIC Educational Resources Information Center

    Gaylord, Thomas A.; Kaul, Gitanjali

    Despite efforts by educators, full participation by Alaska native students in the state's colleges and universities has not yet been achieved. Alaska Natives are the state's only racial group that is underrepresented in enrollments at the University of Alaska (UA). This report examines the contribution of the Rural Alaska Honors Institute (RAHI)…

  14. 36 CFR 14.56 - Concurrence by Federal Highway Administration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Highway Administration. 14.56 Section 14.56 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR RIGHTS-OF-WAY Under Title 23, U.S.C. (Interstate and Defense Highway System) § 14.56 Concurrence by Federal Highway Administration. The appropriate State highway department will...

  15. 36 CFR 14.56 - Concurrence by Federal Highway Administration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Highway Administration. 14.56 Section 14.56 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR RIGHTS-OF-WAY Under Title 23, U.S.C. (Interstate and Defense Highway System) § 14.56 Concurrence by Federal Highway Administration. The appropriate State highway department will...

  16. 36 CFR 14.56 - Concurrence by Federal Highway Administration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Highway Administration. 14.56 Section 14.56 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR RIGHTS-OF-WAY Under Title 23, U.S.C. (Interstate and Defense Highway System) § 14.56 Concurrence by Federal Highway Administration. The appropriate State highway department will...

  17. 36 CFR 14.56 - Concurrence by Federal Highway Administration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Highway Administration. 14.56 Section 14.56 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR RIGHTS-OF-WAY Under Title 23, U.S.C. (Interstate and Defense Highway System) § 14.56 Concurrence by Federal Highway Administration. The appropriate State highway department will...

  18. 36 CFR 14.56 - Concurrence by Federal Highway Administration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Highway Administration. 14.56 Section 14.56 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR RIGHTS-OF-WAY Under Title 23, U.S.C. (Interstate and Defense Highway System) § 14.56 Concurrence by Federal Highway Administration. The appropriate State highway department will...

  19. The Maryland strategic highway safety plan 2006-2010

    DOT National Transportation Integrated Search

    2006-09-01

    When the American Association of State Highway Transportation Officials (AASHTO) led the development of a strategic highway safety plan in 1997, targeting the nations most serious highway safety problems, Maryland was one of the few states in the ...

  20. 23 CFR 1.5 - Information furnished by State highway departments.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Information furnished by State highway departments. 1.5 Section 1.5 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GENERAL MANAGEMENT AND ADMINISTRATION GENERAL § 1.5 Information furnished by State highway departments. At the request of the...

  1. 23 CFR 1.5 - Information furnished by State highway departments.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Information furnished by State highway departments. 1.5 Section 1.5 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GENERAL MANAGEMENT AND ADMINISTRATION GENERAL § 1.5 Information furnished by State highway departments. At the request of the...

  2. 23 CFR 1.5 - Information furnished by State highway departments.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Information furnished by State highway departments. 1.5 Section 1.5 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GENERAL MANAGEMENT AND ADMINISTRATION GENERAL § 1.5 Information furnished by State highway departments. At the request of the...

  3. 23 CFR 1.5 - Information furnished by State highway departments.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false Information furnished by State highway departments. 1.5 Section 1.5 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GENERAL MANAGEMENT AND ADMINISTRATION GENERAL § 1.5 Information furnished by State highway departments. At the request of the...

  4. Alcohol and highway safety : a bibliography

    DOT National Transportation Integrated Search

    1976-05-15

    This bibliography represents literature acquired since the establishment of the National Highway Traffic Safety Administration (NHTSA) in 1967, as related to alcohol and highway safety. It is comprised of NHTSA contract reports, reports of other orga...

  5. Trophic ecology of introduced populations of Alaska blackfish (Dallia pectoralis) in the Cook Inlet Basin, Alaska.

    PubMed

    Eidam, Dona M; von Hippel, Frank A; Carlson, Matthew L; Lassuy, Dennis R; López, J Andrés

    2016-07-01

    Introduced non-native fishes have the potential to substantially alter aquatic ecology in the introduced range through competition and predation. The Alaska blackfish ( Dallia pectoralis ) is a freshwater fish endemic to Chukotka and Alaska north of the Alaska Range (Beringia); the species was introduced outside of its native range to the Cook Inlet Basin of Alaska in the 1950s, where it has since become widespread. Here we characterize the diet of Alaska blackfish at three Cook Inlet Basin sites, including a lake, a stream, and a wetland. We analyze stomach plus esophageal contents to assess potential impacts on native species via competition or predation. Alaska blackfish in the Cook Inlet Basin consume a wide range of prey, with major prey consisting of epiphytic/benthic dipteran larvae, gastropods, and ostracods. Diets of the introduced populations of Alaska blackfish are similar in composition to those of native juvenile salmonids and stickleback. Thus, Alaska blackfish may affect native fish populations via competition. Fish ranked third in prey importance for both lake and stream blackfish diets but were of minor importance for wetland blackfish.

  6. Trophic ecology of introduced populations of Alaska blackfish (Dallia pectoralis) in the Cook Inlet Basin, Alaska

    PubMed Central

    Eidam, Dona M.; Carlson, Matthew L.; Lassuy, Dennis R.; López, J. Andrés

    2016-01-01

    Introduced non-native fishes have the potential to substantially alter aquatic ecology in the introduced range through competition and predation. The Alaska blackfish (Dallia pectoralis) is a freshwater fish endemic to Chukotka and Alaska north of the Alaska Range (Beringia); the species was introduced outside of its native range to the Cook Inlet Basin of Alaska in the 1950s, where it has since become widespread. Here we characterize the diet of Alaska blackfish at three Cook Inlet Basin sites, including a lake, a stream, and a wetland. We analyze stomach plus esophageal contents to assess potential impacts on native species via competition or predation. Alaska blackfish in the Cook Inlet Basin consume a wide range of prey, with major prey consisting of epiphytic/benthic dipteran larvae, gastropods, and ostracods. Diets of the introduced populations of Alaska blackfish are similar in composition to those of native juvenile salmonids and stickleback. Thus, Alaska blackfish may affect native fish populations via competition. Fish ranked third in prey importance for both lake and stream blackfish diets but were of minor importance for wetland blackfish. PMID:28082763

  7. Electrifying Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinemer, V.

    Alaska's diverse systems for electric power include only 4% by private utilities. Large distances and small markets make transmission impractical for the most part. Rates are variable, although the state average is low. Energy sources, except nuclear, are abundant: half the US coal reserves are in Alaska. In addition, it has geothermal, tidal, biomass, solar, wind, and hydroelectric power. Energy construction and study programs are centered in the Alaska Power Authority and include using waste heat from village diesel generators. Hydro potential is good, but access, distances, and environmental effects must be considered. The Terror Lake, Tyee Lake, Swan Lake,more » and Susitna projects are described and transmission construction, including the 345-kW Railbelt intertie, is discussed. 1 figure.« less

  8. Formation pressure testing at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Operational summary, history matching, and interpretations

    USGS Publications Warehouse

    Anderson, B.; Hancock, S.; Wilson, S.; Enger, C.; Collett, T.; Boswell, R.; Hunter, R.

    2011-01-01

    In February 2007, the U.S. Department of Energy, BP Exploration (Alaska), and the U.S. Geological Survey, collected open-hole pressure-response data, as well as gas and water sample collection, in a gas hydrate reservoir (the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well) using Schlumberger's Modular Dynamics Formation Tester (MDT) wireline tool. Four such MDT tests, ranging from six to twelve hours duration, and including a series of flow, sampling, and shut-in periods of various durations, were conducted. Locations for the testing were selected based on NMR and other log data to assure sufficient isolation from reservoir boundaries and zones of excess free water. Test stages in which pressure was reduced sufficiently to mobilize free water in the formation (yet not cause gas hydrate dissociation) produced readily interpretable pressure build-up profiles. Build-ups following larger drawdowns consistently showed gas-hydrate dissociation and gas release (as confirmed by optical fluid analyzer data), as well as progressive dampening of reservoir pressure build-up during sequential tests at a given MDT test station.History matches of one multi-stage, 12-h test (the C2 test) were accomplished using five different reservoir simulators: CMG-STARS, HydrateResSim, MH21-HYDRES, STOMP-HYD, and TOUGH. +. HYDRATE. Simulations utilized detailed information collected across the reservoir either obtained or determined from geophysical well logs, including thickness (11.3. m, 37 ft.), porosity (35%), hydrate saturation (65%), both mobile and immobile water saturations, intrinsic permeability (1000 mD), pore water salinity (5 ppt), and formation temperature (3.3-3.9 ??C). This paper will present the approach and preliminary results of the history-matching efforts, including estimates of initial formation permeability and analyses of the various unique features exhibited by the MDT results. ?? 2010 Elsevier Ltd.

  9. Assessing biological effects from highway-runoff constituents

    USGS Publications Warehouse

    Buckler, Denny R.; Granato, Gregory E.

    1999-01-01

    Increased emphasis on evaluation of nonpoint-source pollution has intensified the need for techniques that can be used to discern the toxicological effects of complex chemical mixtures. In response, the use of biological assessment techniques is receiving increased regulatory emphasis. When applied with documented habitat assessment and chemical analysis, these techniques can increase our understanding of the influence of environmental contaminants on the biological integrity and ecological function of aquatic communities.The contaminants of greatest potential concern in highway runoff are those that arise from highway construction, maintenance, and use. The major contaminants of interest are deicers; nutrients; metals; petroleum-related organic compounds, such as polycyclic aromatic hydrocarbons (PAHs), benzene, toluene, ethylbenzene, and xylene (BTEX), and methyl tert -butyl ether (MTBE); sediment washed off the road surface; and agricultural chemicals used in highway maintenance. Hundreds, if not thousands, of biological endpoints (measurable responses of living organisms) may be either directly or associatively affected by contaminant exposure. Measurable effects can occur throughout ecosystem processes across the wide range of biological complexity, ranging from responses at the biochemical level to the community level. The challenge to the environmental scientist is to develop an understanding of the relationship of effects at various levels of biological organization in order to determine whether a causal relationship exists between chemical exposure and substantial ecological impairment. This report provides a brief history of the evolution of biological assessment techniques, a description of the major classes of contaminants that are of particular interest in highway runoff, an overview of representative biological assessment techniques, and a discussion of data-quality considerations. Published reports with a focus on the effects of highway runoff on the

  10. 49 CFR 212.231 - Highway-rail grade crossing inspector.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Highway-rail grade crossing inspector. 212.231... § 212.231 Highway-rail grade crossing inspector. (a) The highway-rail grade crossing inspector is required, at a minimum, to be able to conduct independent inspections of all types of highway-rail grade...

  11. 49 CFR 212.231 - Highway-rail grade crossing inspector.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Highway-rail grade crossing inspector. 212.231... § 212.231 Highway-rail grade crossing inspector. (a) The highway-rail grade crossing inspector is required, at a minimum, to be able to conduct independent inspections of all types of highway-rail grade...

  12. 49 CFR 212.231 - Highway-rail grade crossing inspector.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Highway-rail grade crossing inspector. 212.231... § 212.231 Highway-rail grade crossing inspector. (a) The highway-rail grade crossing inspector is required, at a minimum, to be able to conduct independent inspections of all types of highway-rail grade...

  13. Highway Safety Program Manual: Volume 13: Traffic Engineering Services.

    ERIC Educational Resources Information Center

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    Volume 13 of the 19-volume Highway Safety Program Manual (which provides guidance to State and local governments on preferred highway safety practices) focuses on traffic engineering services. The introduction outlines the purposes and objectives of Highway Safety Program Standard 13 and the Highway Safety Program Manual. Program development and…

  14. Updating a Strategic Highway Safety Plan : Learning from the Idaho Transportation Department (ITD) - Proceedings from the Federal Highway Administration's (FHWA) Highway Safety Peer-to-Peer Exchange Program

    DOT National Transportation Integrated Search

    2009-10-01

    On November 4, 2009, ITDs Office of Highway Operations and Safety partnered with the FHWA Office of Safety to host a one-day peer exchange. This event focused on the update of Idahos Strategic Highway Safety Plan (SHSP), entitled Toward Zero...

  15. 23 CFR 470.105 - Urban area boundaries and highway functional classification.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Urban area boundaries and highway functional classification. 470.105 Section 470.105 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PLANNING AND RESEARCH HIGHWAY SYSTEMS Federal-aid Highway Systems § 470.105 Urban area boundaries and...

  16. 23 CFR 470.105 - Urban area boundaries and highway functional classification.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Urban area boundaries and highway functional classification. 470.105 Section 470.105 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PLANNING AND RESEARCH HIGHWAY SYSTEMS Federal-aid Highway Systems § 470.105 Urban area boundaries and...

  17. 23 CFR 470.105 - Urban area boundaries and highway functional classification.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Urban area boundaries and highway functional classification. 470.105 Section 470.105 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PLANNING AND RESEARCH HIGHWAY SYSTEMS Federal-aid Highway Systems § 470.105 Urban area boundaries and...

  18. 23 CFR 470.105 - Urban area boundaries and highway functional classification.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false Urban area boundaries and highway functional classification. 470.105 Section 470.105 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PLANNING AND RESEARCH HIGHWAY SYSTEMS Federal-aid Highway Systems § 470.105 Urban area boundaries and...

  19. 49 CFR 1.84 - The Federal Highway Administration.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... environment. (e) Surveying and constructing forest highway system roads, defense highways and access roads... surveillance of accident locations; highway design, construction, and maintenance, including context sensitive...-to-infrastructure research. (i) Managing TIFIA funds, 23 U.S.C. 601-609, in conjunction with the...

  20. 49 CFR 1.84 - The Federal Highway Administration.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... environment. (e) Surveying and constructing forest highway system roads, defense highways and access roads... surveillance of accident locations; highway design, construction, and maintenance, including context sensitive...-to-infrastructure research. (i) Managing TIFIA funds, 23 U.S.C. 601-609, in conjunction with the...

  1. 49 CFR 172.507 - Special placarding provisions: Highway.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Special placarding provisions: Highway. 172.507..., TRAINING REQUIREMENTS, AND SECURITY PLANS Placarding § 172.507 Special placarding provisions: Highway. (a) Each motor vehicle used to transport a package of highway route controlled quantity Class 7...

  2. 49 CFR 172.507 - Special placarding provisions: Highway.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Special placarding provisions: Highway. 172.507..., TRAINING REQUIREMENTS, AND SECURITY PLANS Placarding § 172.507 Special placarding provisions: Highway. (a) Each motor vehicle used to transport a package of highway route controlled quantity Class 7...

  3. 49 CFR 172.507 - Special placarding provisions: Highway.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Special placarding provisions: Highway. 172.507..., TRAINING REQUIREMENTS, AND SECURITY PLANS Placarding § 172.507 Special placarding provisions: Highway. (a) Each motor vehicle used to transport a package of highway route controlled quantity Class 7...

  4. 49 CFR 325.39 - Measurement procedure; highway operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Measurement procedure; highway operations. 325.39... MOTOR CARRIER NOISE EMISSION STANDARDS Measurement of Noise Emissions; Highway Operations § 325.39 Measurement procedure; highway operations. (a) In accordance with the rules in this subpart, a measurement...

  5. 49 CFR 325.39 - Measurement procedure; highway operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Measurement procedure; highway operations. 325.39... MOTOR CARRIER NOISE EMISSION STANDARDS Measurement of Noise Emissions; Highway Operations § 325.39 Measurement procedure; highway operations. (a) In accordance with the rules in this subpart, a measurement...

  6. 49 CFR 172.507 - Special placarding provisions: Highway.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Special placarding provisions: Highway. 172.507..., TRAINING REQUIREMENTS, AND SECURITY PLANS Placarding § 172.507 Special placarding provisions: Highway. (a) Each motor vehicle used to transport a package of highway route controlled quantity Class 7...

  7. 49 CFR 172.507 - Special placarding provisions: Highway.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Special placarding provisions: Highway. 172.507..., TRAINING REQUIREMENTS, AND SECURITY PLANS Placarding § 172.507 Special placarding provisions: Highway. (a) Each motor vehicle used to transport a package of highway route controlled quantity Class 7...

  8. 49 CFR 325.39 - Measurement procedure; highway operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Measurement procedure; highway operations. 325.39... MOTOR CARRIER NOISE EMISSION STANDARDS Measurement of Noise Emissions; Highway Operations § 325.39 Measurement procedure; highway operations. (a) In accordance with the rules in this subpart, a measurement...

  9. Publications - GMC 193 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical materials: Alaska State F #1, washed cuttings (13,980' - 13,990'); West Mikkelsen State #1, Canning River

  10. Highway Funding: The Federal Highway Administration's Funding Apportionment Model

    DOT National Transportation Integrated Search

    1997-06-01

    The Federal Highway Administration (FHWA) has developed and is operating, through the use of a contractor, a new apportionment model to estimate the expected distribution of federal-aid funds under various legislative proposals. Because of the import...

  11. 76 FR 7116 - Approval and Promulgation of Implementation Plans; Alaska: Prevention of Significant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... revision updates Alaska's Prevention of Significant Deterioration (PSD) program to reflect changes to the Federal PSD program relating to the permitting of greenhouse gas (GHG) emissions. DATES: This action is... Federal PSD program as of August 2, 2010 relating to the permitting of GHGs. In the proposal, EPA made the...

  12. 77 FR 50712 - Information Collection: Southern Alaska Sharing Network and Subsistence Study; Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... Analysis at (703) 787-1025. You may also request a free copy of the study description. [[Page 50713... meeting of DOI/BOEM information needs on subsistence food harvest and sharing activities in various... southern Alaska as to the potential effects of offshore oil and gas development on subsistence food harvest...

  13. Alaska's State Forests

    Science.gov Websites

    Conservation Education Timber Management Wildland Fire & Aviation Burn Permits Firewise Alaska Brochure (PDF) Fire Management Plans Fire Assignments Annual Fire Statistics Fire Terms Glossary Incident Business Management Grants Become an Alaska Firewise Community Community Wildland Fire Protection Plans

  14. 23 CFR 470.107 - Federal-aid highway systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PLANNING AND RESEARCH HIGHWAY SYSTEMS... industrial centers, including important routes into, through, and around urban areas, serve the national... importance in Canada and Mexico. (2) The portion of the Interstate System designated under 23 U.S.C. 103 (e...

  15. 49 CFR 325.35 - Ambient conditions; highway operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Ambient conditions; highway operations. 325.35... MOTOR CARRIER NOISE EMISSION STANDARDS Measurement of Noise Emissions; Highway Operations § 325.35 Ambient conditions; highway operations. (a)(1) Sound. The ambient A-weighted sound level at the microphone...

  16. 49 CFR 325.35 - Ambient conditions; highway operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Ambient conditions; highway operations. 325.35... MOTOR CARRIER NOISE EMISSION STANDARDS Measurement of Noise Emissions; Highway Operations § 325.35 Ambient conditions; highway operations. (a)(1) Sound. The ambient A-weighted sound level at the microphone...

  17. Sub-pixel localization of highways in AVIRIS images

    NASA Technical Reports Server (NTRS)

    Salu, Yehuda

    1995-01-01

    Roads and highways show up clearly in many bands of AVIRIS images. A typical lane in the U.S. is 12 feet wide, and the total width of a four lane highway, including 18 feet of paved shoulders, is 19.8 m. Such a highway will cover only a portion of any 20x20 m AVIRIS pixel that it traverses. The other portion of these pixels wil be usually covered by vegetation. An interesting problem is to precisely determine the location of a highway within the AVIRIS pixels that it traverses. This information may be used for alignment and spatial calibration of AVIRIS images. Also, since the reflection properties of highway surfaces do not change with time, and they can be determined once and for all, such information can be of help in calculating and filtering out the atmospheric noise that contaminates AVIRIS measurements. The purpose of this report is to describe a method for sub-pixel localization of highways.

  18. 49 CFR 71.11 - Alaska zone.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Alaska zone. 71.11 Section 71.11 Transportation Office of the Secretary of Transportation STANDARD TIME ZONE BOUNDARIES § 71.11 Alaska zone. The sixth zone, the Alaska standard time zone, includes the entire State of Alaska, except as provided in § 71.12...

  19. Nationwide Desert Highway Assessment: A Case Study in China

    PubMed Central

    Mao, Xuesong; Wang, Fuchun; Wang, Binggang

    2011-01-01

    The natural environment affects the construction of desert highways. Conversely, highway construction affects the natural environment and puts the ecological environment at a disadvantage. To satisfy the variety and hierarchy of desert highway construction and discover the spatio-temporal distribution of the natural environment and its effect on highway construction engineering, an assessment of the natural regional divisions of desert highways in China is carried out for the first time. Based on the general principles and method for the natural region division, the principles, method and index system for desert highway assessment is put forward by combining the desert highway construction features and the azonal differentiation law. The index system combines the dominant indicator and four auxiliary indicators. The dominant indicator is defined by the desert’s comprehensive state index and the auxiliary indicators include the sand dune height, the blown sand strength, the vegetation coverage ratio and the annual average temperature difference. First the region is divided according to the dominant indicator. Then the region boundaries are amended according to the four auxiliary indicators. Finally the natural region division map for desert highway assessment is presented. The Chinese desert highways can be divided into three sections: the east medium effect region, the middle medium-severe effect region, and the west slight-medium effect region. The natural region division map effectively paves the way for the route planning, design, construction, maintenance and ongoing management of desert highways, and further helps environmental protection. PMID:21845155

  20. Nationwide desert highway assessment: a case study in China.

    PubMed

    Mao, Xuesong; Wang, Fuchun; Wang, Binggang

    2011-07-01

    The natural environment affects the construction of desert highways. Conversely, highway construction affects the natural environment and puts the ecological environment at a disadvantage. To satisfy the variety and hierarchy of desert highway construction and discover the spatio-temporal distribution of the natural environment and its effect on highway construction engineering, an assessment of the natural regional divisions of desert highways in China is carried out for the first time. Based on the general principles and method for the natural region division, the principles, method and index system for desert highway assessment is put forward by combining the desert highway construction features and the azonal differentiation law. The index system combines the dominant indicator and four auxiliary indicators. The dominant indicator is defined by the desert's comprehensive state index and the auxiliary indicators include the sand dune height, the blown sand strength, the vegetation coverage ratio and the annual average temperature difference. First the region is divided according to the dominant indicator. Then the region boundaries are amended according to the four auxiliary indicators. Finally the natural region division map for desert highway assessment is presented. The Chinese desert highways can be divided into three sections: the east medium effect region, the middle medium-severe effect region, and the west slight-medium effect region. The natural region division map effectively paves the way for the route planning, design, construction, maintenance and ongoing management of desert highways, and further helps environmental protection.

  1. 75 FR 61511 - Intent To Prepare a Supplemental Environmental Impact Statement: Outer Continental Shelf, Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management, Regulation and Enforcement Intent To Prepare a Supplemental Environmental Impact Statement: Outer Continental Shelf, Alaska OCS Region, Chukchi Sea Planning Area, Oil and Gas Lease Sale 193 AGENCY: Bureau of Ocean Energy Management, Regulation...

  2. Motor vehicle speeds on Connecticut highways

    DOT National Transportation Integrated Search

    1936-01-01

    The research study described in the following pages was undertaken to determine the actual speed of vehicles on Connecticut Highways. It was made in connection with a general survey of highway traffic in the State, carried on jointly by the United St...

  3. Geologic Model for Oil and Gas Assessment of the Kemik-Thomson Play, Central North Slope, Alaska

    USGS Publications Warehouse

    Schenk, Christopher J.; Houseknecht, David W.

    2008-01-01

    A geologic model was developed to assess undiscovered oil and gas resources in the Kemik-Thomson Play of the Central North Slope, Alaska. In this model, regional erosion during the Early Cretaceous produced an incised valley system on the flanks and crest of the Mikkelsen High and formed the Lower Cretaceous unconformity. Locally derived, coarse-grained siliciclastic and carbonate detritus from eroded Franklinian-age basement rocks, Carboniferous Kekiktuk Conglomerate (of the Endicott Group), Lisburne Group, and Permian-Triassic Sadlerochit Group may have accumulated in the incised valleys during lowstand and transgression, forming potential reservoirs in the Lower Cretaceous Kemik Sandstone and Thomson sandstone (informal term). Continued transgression resulted in the deposition of the mudstones of the over-lying Cretaceous pebble shale unit and Hue Shale, which form top seals to the potential reservoirs. Petroleum from thermally mature facies of the Triassic Shublik Formation, Jurassic Kingak Shale, Hue Shale (and pebble shale unit), and the Cretaceous-Tertiary Canning Formation might have charged Thomson and Kemik sandstone reservoirs in this play during the Tertiary. The success of this play depends largely upon the presence of reservoir-quality units in the Kemik Sandstone and Thomson sandstone.

  4. Paleoseismic study of the Cathedral Rapids fault in the northern Alaska Range near Tok, Alaska

    NASA Astrophysics Data System (ADS)

    Koehler, R. D.; Farrell, R.; Carver, G. A.

    2010-12-01

    The Cathedral Rapids fault extends ~40 km between the Tok and Robertson River valleys and is the easternmost fault in a series of active south-dipping imbricate thrust faults which bound the northern flank of the Alaska Range. Collectively, these faults accommodate a component of convergence transferred north of the Denali fault and related to the westward (counterclockwise) rotation of the Wrangell Block driven by relative Pacific/North American plate motion along the eastern Aleutian subduction zone and Fairweather fault system. To the west, the system has been defined as the Northern Foothills Fold and Thrust Belt (NFFTB), a 50-km-wide zone of east-west trending thrust faults that displace Quaternary deposits and have accommodated ~3 mm/yr of shortening since latest Pliocene time (Bemis, 2004). Over the last several years, the eastward extension of the NFFTB between Delta Junction and the Canadian border has been studied by the Alaska Division of Geological & Geophysical Surveys to better characterize faults that may affect engineering design of the proposed Alaska-Canada natural gas pipeline and other infrastructure. We summarize herein reconnaissance field observations along the western part of the Cathedral Rapids fault. The western part of the Cathedral Rapids fault extends 21 km from Sheep Creek to Moon Lake and is characterized by three roughly parallel sinuous traces that offset glacial deposits of the Illinoian to early Wisconsinan Delta glaciations and the late Wisconsinan Donnelly glaciation, as well as, Holocene alluvial deposits. The northern trace of the fault is characterized by an oversteepened, beveled, ~2.5-m-high scarp that obliquely cuts a Holocene alluvial fan and projects into the rangefront. Previous paleoseismic studies along the eastern part of the Cathedral Rapids fault and Dot “T” Johnson fault indicate multiple latest Pleistocene and Holocene earthquakes associated with anticlinal folding and thrust faulting (Carver et al., 2010

  5. Mitigation measures for highway-caused impacts to birds

    Treesearch

    Sandra L. Jacobson

    Highways cause significant impacts to birds in four ways: direct mortality, indirect mortality, habitat fragmentation, and disturbance. In this paper I discuss highway-related impacts, and suggest solutions from a highway management perspective. Non-flying birds (either behaviorally or structurally) such as gallinaceous birds and ducklings; waterbirds such as terns;...

  6. 49 CFR 397.69 - Highway routing designations; preemption.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Highway routing designations; preemption. 397.69... § 397.69 Highway routing designations; preemption. (a) Any State or Indian tribe that establishes or modifies a highway routing designation over which NRHM may or may not be transported on or after November...

  7. 49 CFR 397.69 - Highway routing designations; preemption.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Highway routing designations; preemption. 397.69... § 397.69 Highway routing designations; preemption. (a) Any State or Indian tribe that establishes or modifies a highway routing designation over which NRHM may or may not be transported on or after November...

  8. 49 CFR 397.69 - Highway routing designations; preemption.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Highway routing designations; preemption. 397.69... § 397.69 Highway routing designations; preemption. (a) Any State or Indian tribe that establishes or modifies a highway routing designation over which NRHM may or may not be transported on or after November...

  9. 49 CFR 397.69 - Highway routing designations; preemption.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Highway routing designations; preemption. 397.69... § 397.69 Highway routing designations; preemption. (a) Any State or Indian tribe that establishes or modifies a highway routing designation over which NRHM may or may not be transported on or after November...

  10. Comprehensive highway corridor planning with sustainability indicators : [research summary].

    DOT National Transportation Integrated Search

    2013-04-01

    The Maryland State Highway Administration (SHA) has initiated major planning : efforts to improve transportation efficiency, safety and sustainability on critical : highway corridors through its Comprehensive Highway Corridor (CHC) program. : It is i...

  11. The Face of Alaska: A Look at Land Cover and the Potential Drivers of Change

    USGS Publications Warehouse

    Jones, Benjamin M.

    2008-01-01

    The purpose of this report is to provide statewide baseline information on the status and potential drivers of land-cover change in Alaska. The information gathered for this report is based on a review and analysis of published literature and consists of prominent factors contributing to the current state of the land surface of Alaska as well as a synthesis of information about the status and trends of the factors affecting the land surface of Alaska. The land surface of Alaska is sparsely populated and the impacts from humans are far less extensive when compared to the contiguous United States. The changes in the population and the economy of Alaska have historically been driven by boom and bust cycles, primarily from mineral discoveries, logging, military expansion, and oil and gas development; however, the changes as a result of these factors have occurred in relatively small, localized areas. Many of the large-scale statewide changes taking place in the land surface however, are a result of natural or climate driven processes as opposed to direct anthropogenic activities. In recent times, reports such as this have become increasingly useful as a means of synthesizing information about the magnitude and frequency of changes imparted by natural and anthropogenic forces. Thus, it is essential to assess the current state of the land surface of Alaska and identify apparent trends in the surficial changes that are occurring in order to be prepared for the future.

  12. Publications - RDF 2015-5 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  13. Publications - RI 2009-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  14. Publications - RDF 2016-3 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  15. Publications - RDF 2016-5 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  16. Publications - RDF 2014-22 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  17. Publications - RDF 2015-8 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    from the Tonsina area, Valdez Quadrangle, Alaska: Alaska Division of Geological & Geophysical Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  18. 26 CFR 1.46-11 - Commuter highway vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 1 2011-04-01 2009-04-01 true Commuter highway vehicles. 1.46-11 Section 1.46... Rules for Computing Credit for Investment in Certain Depreciable Property § 1.46-11 Commuter highway... investment under section 46(c)(1) for a qualifying commuter highway vehicle is 100 percent. A qualifying...

  19. 26 CFR 1.46-11 - Commuter highway vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 1 2010-04-01 2010-04-01 true Commuter highway vehicles. 1.46-11 Section 1.46... Rules for Computing Credit for Investment in Certain Depreciable Property § 1.46-11 Commuter highway... investment under section 46(c)(1) for a qualifying commuter highway vehicle is 100 percent. A qualifying...

  20. 26 CFR 1.46-11 - Commuter highway vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 1 2014-04-01 2013-04-01 true Commuter highway vehicles. 1.46-11 Section 1.46... Rules for Computing Credit for Investment in Certain Depreciable Property § 1.46-11 Commuter highway... investment under section 46(c)(1) for a qualifying commuter highway vehicle is 100 percent. A qualifying...

  1. Highway Safety Program Manual: Volume 3: Motorcycle Safety.

    ERIC Educational Resources Information Center

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    Volume 3 of the 19-volume Highway Safety Program Manual (which provides guidance to State and local governments on preferred highway safety practices) concentrates on aspects of motorcycle safety. The purpose and specific objectives of a State motorcycle safety program are outlined. Federal authority in the highway safety area and general policies…

  2. 23 CFR 810.206 - Review by the State Highway Agency.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....206 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass Transit Projects...-owned mass transit authority the land needed for the proposed facility. A request shall be accompanied...

  3. Publications - RDF 2015-16 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    rocks collected in 2015 in the Wrangellia mineral assessment area, Alaska: Alaska Division of Geological Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  4. Publications - RDF 2015-9 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    samples from the Zane Hills, Hughes and Shungnak quadrangles, Alaska: Alaska Division of Geological & Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  5. El Paso Natural Gas Mines Fact Sheets

    EPA Pesticide Factsheets

    These fact sheets contain information about El Paso Natural Gas Mines and the Western Abandoned Uranium Mine Region, 19 abandoned uranium mine claims generally located along the Little Colorado River or Highway 89 near Cameron, AZ.

  6. Alaska geology revealed

    USGS Publications Warehouse

    Wilson, Frederic H.; Labay, Keith A.

    2016-11-09

    This map shows the generalized geology of Alaska, which helps us to understand where potential mineral deposits and energy resources might be found, define ecosystems, and ultimately, teach us about the earth history of the State. Rock units are grouped in very broad categories on the basis of age and general rock type. A much more detailed and fully referenced presentation of the geology of Alaska is available in the Geologic Map of Alaska (http://dx.doi.org/10.3133/sim3340). This product represents the simplification of thousands of individual rock units into just 39 broad groups. Even with this generalization, the sheer complexity of Alaskan geology remains evident.

  7. Publications - PDF 96-17 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska the Fairbanks Mining District, Alaska, scale 1:63,360 (15.0 M) Digital Geospatial Data Digital © 2010 Webmaster State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State

  8. Publications - MP 156 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska /29446 Publication Products Report Report Information mp156.pdf (126.0 K) Digital Geospatial Data Digital State of Alaska © 2010 Webmaster State of Alaska myAlaska My Government Resident Business in Alaska

  9. Alaska Administrative Manual

    Science.gov Websites

    Search the Division of Finance site DOF State of Alaska Finance Home Content Area Accounting Charge Cards Administrative Manual Table of Contents Contains State of Alaska accounting/payroll policies and information clarifying accounting and payroll procedures. Policies are carried out through standard statewide procedures

  10. Publications - GMC 410 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ) Keywords Geochemistry; Rare Earth Elements Top of Page Department of Natural Resources, Division of Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  11. Publications - GMC 409 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ) Keywords Geochemistry; Rare Earth Elements Top of Page Department of Natural Resources, Division of Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  12. Publications - GMC 183 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical materials: AK State C #1, Bush Federal #1, Echooka Unit #1, Fin Creek Unit #1, E. De K. Leffingwell #1, Nora

  13. 23 CFR 810.208 - Action by the Federal Highway Administrator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Section 810.208 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass... agency under § 810.206 is satisfactory; (b) The public interest will be served thereby; and (c) The...

  14. Trends in the highway market for wood products

    Treesearch

    Robert G. Knutson

    1975-01-01

    Forty-eight million cubic feet of wood products, about 50 million dollars worth, were used in the Nation's highway construction program in 1972. Expenditures for highway construction increased 2½ times from 1954 to 1972. The volume of wood products used in highway construction changed little during this period because other materials were substituted for...

  15. Quality of stormwater runoff discharged from Massachusetts highways, 2005-07

    USGS Publications Warehouse

    Smith, Kirk P.; Granato, Gregory E.

    2010-01-01

    The U.S. Geological Survey (USGS), in cooperation with U.S. Department of Transportation Federal Highway Administration and the Massachusetts Department of Transportation, conducted a field study from September 2005 through September 2007 to characterize the quality of highway runoff for a wide range of constituents. The highways studied had annual average daily traffic (AADT) volumes from about 3,000 to more than 190,000 vehicles per day. Highway-monitoring stations were installed at 12 locations in Massachusetts on 8 highways. The 12 monitoring stations were subdivided into 4 primary, 4 secondary, and 4 test stations. Each site contained a 100-percent impervious drainage area that included two or more catch basins sharing a common outflow pipe. Paired primary and secondary stations were located within a few miles of each other on a limited-access section of the same highway. Most of the data were collected at the primary and secondary stations, which were located on four principal highways (Route 119, Route 2, Interstate 495, and Interstate 95). The secondary stations were operated simultaneously with the primary stations for at least a year. Data from the four test stations (Route 8, Interstate 195, Interstate 190, and Interstate 93) were used to determine the transferability of the data collected from the principal highways to other highways characterized by different construction techniques, land use, and geography. Automatic-monitoring techniques were used to collect composite samples of highway runoff and make continuous measurements of several physical characteristics. Flowweighted samples of highway runoff were collected automatically during approximately 140 rain and mixed rain, sleet, and snowstorms. These samples were analyzed for physical characteristics and concentrations of 6 dissolved major ions, total nutrients, 8 total-recoverable metals, suspended sediment, and 85 semivolatile organic compounds (SVOCs), which include priority polyaromatic

  16. Alaska Native Education: Issues in the Nineties. Alaska Native Policy Papers.

    ERIC Educational Resources Information Center

    Kleinfeld, Judith

    This booklet identifies several crucial problems in Alaska Native education, for example: (1) Fetal Alcohol Syndrome (FAS) and Fetal Alcohol Effects (FAE) occur in Alaska Native populations at relatively high rates and can produce mental retardation, hyperactivity, attention deficits, and learning disabilities; (2) while many Native rural school…

  17. Greenhouse gas emissions versus forest sequestration in temperate rain forests—a southeast Alaska analysis

    Treesearch

    David Nicholls; Trista Patterson

    2015-01-01

    Sitka, Alaska, has substantial hydroelectric resources, limited driving distances, and a conservation-minded community, all suggesting strong opportunities for achieving a low community carbon footprint. In this research we evaluate the level of carbon dioxide (CO2) emissions from Sitka and compare this to the estimated CO2...

  18. 49 CFR 212.233 - Apprentice highway-rail grade crossing inspector.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Apprentice highway-rail grade crossing inspector... Inspection Personnel § 212.233 Apprentice highway-rail grade crossing inspector. (a) An apprentice highway... Administrator for Safety leading to qualification as a highway-rail grade crossing inspector. The apprentice...

  19. 49 CFR 212.233 - Apprentice highway-rail grade crossing inspector.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Apprentice highway-rail grade crossing inspector... Inspection Personnel § 212.233 Apprentice highway-rail grade crossing inspector. (a) An apprentice highway... Administrator for Safety leading to qualification as a highway-rail grade crossing inspector. The apprentice...

  20. 49 CFR 212.233 - Apprentice highway-rail grade crossing inspector.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Apprentice highway-rail grade crossing inspector... Inspection Personnel § 212.233 Apprentice highway-rail grade crossing inspector. (a) An apprentice highway... Administrator for Safety leading to qualification as a highway-rail grade crossing inspector. The apprentice...

  1. 49 CFR 212.233 - Apprentice highway-rail grade crossing inspector.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Apprentice highway-rail grade crossing inspector... Inspection Personnel § 212.233 Apprentice highway-rail grade crossing inspector. (a) An apprentice highway... Administrator for Safety leading to qualification as a highway-rail grade crossing inspector. The apprentice...

  2. 49 CFR 212.233 - Apprentice highway-rail grade crossing inspector.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Apprentice highway-rail grade crossing inspector... Inspection Personnel § 212.233 Apprentice highway-rail grade crossing inspector. (a) An apprentice highway... Administrator for Safety leading to qualification as a highway-rail grade crossing inspector. The apprentice...

  3. Improving highway advisory radio predictability and performance

    DOT National Transportation Integrated Search

    2011-01-01

    Highway Advisory Radio (HAR) stations, sometimes referred to as Travelers Information Stations (TIS), : allow highway agencies to broadcast important messages about traffic, weather and roadway conditions to : motorists. Caltrans has deployed HAR ...

  4. Alaska Public Offices Commission, Department of Administration, State of

    Science.gov Websites

    Visiting Alaska State Employees State of Alaska Department of Administration Alaska Public Offices Commission Alaska Department of Administration, Alaska Public Offices Commission APOC Home Commission Filer ; AO's Contact Us Administration > Alaska Public Offices Commission Alaska Public Offices Commission

  5. Regulations for Greenhouse Gas Emissions from Aircraft

    EPA Pesticide Factsheets

    EPA and the National Highway Traffic Safety Administration (NHTSA) are taking coordinated steps to enable the production of a new generation of clean vehicles, through reduced greenhouse gas (GHG) emissions and improved fuel use from onroad vehicles.

  6. Prehistoric Alaska: The land

    USGS Publications Warehouse

    Wilson, Frederic H.; Weber, Florence R.; Rennick, Penny

    1994-01-01

    Many Alaskans know the dynamic nature of Alaska’s landscape firsthand. The 1964 earthquake, the 1989 eruption of Mount Redoubt volcano, the frequent earthquakes in the Aleutians and the ever-shifting meanders of the Yukon and Kuskokwim rivers remind them of constant changes to the land. These changes are part of the continuing story of the geologic growth and development of Alaska during hundreds of millions of years. By geologic time, Alaska has only recently come into existence and the dynamic processes that formed it continue to affect it. The landscape we see today has been shaped by glacier and stream erosion or their indirect effects, and to a lesser extent by volcanoes. Most prominently, if less obviously, Alaska has been built by slow movements of the Earth’s crust we call tectonic or mountain-building.During 5 billion years of geologic time, the Earth’s crust has repeatedly broken apart into plates. These plates have recombined, and have shifted positions relative to each other, to the Earth’s rotational axis and to the equator. Large parts of the Earth’s crust, including Alaska, have been built and destroyed by tectonic forces. Alaska is a collage of transported and locally formed fragments of crusts As erosion and deposition reshape the land surface, climatic changes, brought on partly by changing ocean and atmospheric circulation patterns, alter the location and extent of tropical, temperate and arctic environments. We need to understand the results of these processes as they acted upon Alaska to understand the formation of Alaska. Rocks can provide hints of previous environments because they contain traces of ocean floor and lost lands, bits and pieces of ancient history.

  7. Publications - GMC 370 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    (249.0 K) Keywords Rare Earth Elements Top of Page Department of Natural Resources, Division of Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  8. Publications - GMC 159 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical State #1, Kuparuk Unit #1, Mikkelsen Bay State 13-09-19, Ravik State #1, Pt. Thomson Unit #2, West

  9. Highway Security: Filling the Void

    DTIC Science & Technology

    2011-09-01

    continuation of lifestyles they support. (p. 1) Our military personnel, who are actively engaged abroad in the fight against terrorism, have witnessed...centric, generally accomplished through education and enforcement of the law. Highway safety is a natural extension of this public safety mission...prevent terrorism on our highways? • What is law enforcement’s role in educating the public with regard to terrorism prevention? • Is a multi

  10. LearnAlaska Portal

    Science.gov Websites

    ESS (Employee Self Service) E-Travel Online Login IRIS FIN/PROC Login IRIS HRM Login LearnAlaska SFOA SharePoint Site TRIPS (Traveler Integrated Profile System) Vendor Self Service (VSS) Resources Alaska & Resources Manuals Payment Detail Report Salary Schedules SFOA SharePoint Site (SOA Only) Training

  11. Improving Safety Data Collection, Access, and Analysis for California's Strategic Highway Safety Plan (SHSP): Proceedings from the Federal Highway Administration's Highway Safety Improvement Program (HSIP) Peer-to-Peer Exchange Program

    DOT National Transportation Integrated Search

    2010-09-28

    This report provides a summary of a peer exchange sponsored by the California Office of Traffic Safety (OTS), California Department of Transportation (Caltrans), the California Highway Patrol (CHP), and the Federal Highway Administration (FHWA). The ...

  12. Initial development of prototype performance model for highway design

    DOT National Transportation Integrated Search

    1997-12-01

    The Federal Highway Administration (FHWA) has undertaken a multiyear project to develop the Interactive Highway Safety Design Model (IHSDM), which is a CADD-based integrated set of software tools to analyze a highway design to identify safety issues ...

  13. Calibration of the Louisiana Highway Safety Manual.

    DOT National Transportation Integrated Search

    2015-02-01

    The application of the American Association of State Highway and Transportation Officials (AASHTO) : Highway Safety Manual (HSM) to Louisiana roads is a key component to the Louisiana Department of : Transportation and Developments (DOTD) plan ...

  14. Highway runoff quality in Ireland.

    PubMed

    Berhanu Desta, Mesfin; Bruen, Michael; Higgins, Neil; Johnston, Paul

    2007-04-01

    Highway runoff has been identified as a significant source of contaminants that impact on the receiving aquatic environment. Several studies have been completed documenting the characteristics of highway runoff and its implication to the receiving water in the UK and elsewhere. However, very little information is available for Ireland. The objective of this study was to determine the quality of highway runoff from major Irish roads under the current road drainage design and maintenance practice. Four sites were selected from the M4 and the M7 motorways outside Dublin. Automatic samplers and continuous monitoring devices were deployed to sample and monitor the runoff quality and quantity. More than 42 storm events were sampled and analysed for the heavy metals Cd, Cu, Pb, and Zn, 16 US EPA specified PAHs, volatile organic compounds including MTBE, and a number of conventional pollutants. All samples were analysed based on the Standard Methods. Significant quantities of solids and heavy metals were detected at all sites. PAHs were not detected very often, but when detected the values were different from quantities observed in UK highways. The heavy metal concentrations were strongly related to the total suspended solids concentrations, which has a useful implication for runoff management strategies. No strong relationship was discovered between pollutant concentrations and event characteristics such as rainfall intensity, antecedent dry days (ADD), or rainfall depth (volume). This study has demonstrated that runoff from Irish motorways was not any cleaner than in the UK although the traffic volume at the monitored sites was relatively smaller. This calls for a site specific investigation of highway runoff quality before adopting a given management strategy.

  15. 23 CFR 1.5 - Information furnished by State highway departments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Information furnished by State highway departments. 1.5... ADMINISTRATION GENERAL § 1.5 Information furnished by State highway departments. At the request of the Administrator the State highway department shall furnish to him such information as the Administrator shall deem...

  16. 26 CFR 41.4482(a)-1 - Definition of highway motor vehicle.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Definition of highway motor vehicle. 41.4482(a... (CONTINUED) MISCELLANEOUS EXCISE TAXES EXCISE TAX ON USE OF CERTAIN HIGHWAY MOTOR VEHICLES Tax on Use of Certain Highway Motor Vehicles § 41.4482(a)-1 Definition of highway motor vehicle. (a) Highway motor...

  17. 26 CFR 41.4482(a)-1 - Definition of highway motor vehicle.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Definition of highway motor vehicle. 41.4482(a... (CONTINUED) MISCELLANEOUS EXCISE TAXES EXCISE TAX ON USE OF CERTAIN HIGHWAY MOTOR VEHICLES Tax on Use of Certain Highway Motor Vehicles § 41.4482(a)-1 Definition of highway motor vehicle. (a) Highway motor...

  18. 26 CFR 41.4482(a)-1 - Definition of highway motor vehicle.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Definition of highway motor vehicle. 41.4482(a... (CONTINUED) MISCELLANEOUS EXCISE TAXES EXCISE TAX ON USE OF CERTAIN HIGHWAY MOTOR VEHICLES Tax on Use of Certain Highway Motor Vehicles § 41.4482(a)-1 Definition of highway motor vehicle. (a) Highway motor...

  19. Publications - MP 142 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  20. Publications - SR 70 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum