Sample records for alaska ocs region

  1. 30 CFR 250.1166 - What additional reporting is required for developments in the Alaska OCS Region?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Requirements Other Requirements § 250.1166... development in the Alaska OCS Region, you must submit an annual reservoir management report to the Regional... request an MER for each producing sensitive reservoir in the Alaska OCS Region, unless otherwise...

  2. 77 FR 18260 - Outer Continental Shelf (OCS), Alaska OCS Region, Cook Inlet Planning Area, Proposed Oil and Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... OCS Region, Cook Inlet Planning Area, Proposed Oil and Gas Lease Sale 244 for OCS Oil and Gas Leasing...) identifies Sale 244 as a potential special interest sale for the Cook Inlet Planning Area in Alaska. While...-central region of the state, as evidenced by acreage leased in state sales and announced discoveries of...

  3. 30 CFR 250.1166 - What additional reporting is required for developments in the Alaska OCS Region?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and... annual reservoir management report to the Regional Supervisor. The report must contain information... sensitive reservoir in the Alaska OCS Region, unless otherwise instructed by the Regional Supervisor. ...

  4. 76 FR 30956 - Outer Continental Shelf, Alaska OCS Region, Chukchi Sea Planning Area, Oil and Gas Lease Sale 193

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ... Continental Shelf, Alaska OCS Region, Chukchi Sea Planning Area, Oil and Gas Lease Sale 193 AGENCY: Bureau of...: BOEMRE announces the availability of a Revised Draft SEIS, OCS Oil and Gas Lease Sale 193, Chukchi Sea.... The Revised Draft SEIS augments the analysis of the Final EIS, Oil and Gas Lease Sale 193, Chukchi Sea...

  5. 30 CFR 550.251 - If I propose activities in the Alaska OCS Region, what planning information must accompany the DPP?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... production activities in the Alaska OCS Region, the following planning information must accompany your DPP... Region, what planning information must accompany the DPP? 550.251 Section 550.251 Mineral Resources... IN THE OUTER CONTINENTAL SHELF Plans and Information Contents of Development and Production Plans...

  6. 30 CFR 550.251 - If I propose activities in the Alaska OCS Region, what planning information must accompany the DPP?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... production activities in the Alaska OCS Region, the following planning information must accompany your DPP... Region, what planning information must accompany the DPP? 550.251 Section 550.251 Mineral Resources... IN THE OUTER CONTINENTAL SHELF Plans and Information Contents of Development and Production Plans...

  7. 30 CFR 550.251 - If I propose activities in the Alaska OCS Region, what planning information must accompany the DPP?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... production activities in the Alaska OCS Region, the following planning information must accompany your DPP... Region, what planning information must accompany the DPP? 550.251 Section 550.251 Mineral Resources... IN THE OUTER CONTINENTAL SHELF Plans and Information Contents of Development and Production Plans...

  8. 30 CFR 250.220 - If I propose activities in the Alaska OCS Region, what planning information must accompany the EP?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Region, what planning information must accompany the EP? 250.220 Section 250.220 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE... activities in the Alaska OCS Region, what planning information must accompany the EP? If you propose...

  9. 30 CFR 250.251 - If I propose activities in the Alaska OCS Region, what planning information must accompany the DPP?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Region, what planning information must accompany the DPP? 250.251 Section 250.251 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE... Development Operations Coordination Documents (docd) § 250.251 If I propose activities in the Alaska OCS...

  10. 75 FR 63504 - Outer Continental Shelf, Alaska OCS Region, Chukchi Sea Planning Area, Oil and Gas Lease Sale 193

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... Continental Shelf, Alaska OCS Region, Chukchi Sea Planning Area, Oil and Gas Lease Sale 193 AGENCY: Bureau of... development; (2) determine whether missing information identified by BOEMRE in the 193 FEIS was essential or... in the FEIS for Chukchi Sea Lease Sale 193 was essential or relevant under 40 CFR 1502.22; and (3...

  11. 30 CFR 250.251 - If I propose activities in the Alaska OCS Region, what planning information must accompany the DPP?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false If I propose activities in the Alaska OCS Region, what planning information must accompany the DPP? 250.251 Section 250.251 Mineral Resources... AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Plans and Information Contents of...

  12. 30 CFR 250.220 - If I propose activities in the Alaska OCS Region, what planning information must accompany the EP?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false If I propose activities in the Alaska OCS Region, what planning information must accompany the EP? 250.220 Section 250.220 Mineral Resources BUREAU... GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Plans and Information Contents of...

  13. Alaska OCS socioeconomic studies program. Technical report number 30. Northern and western Gulf of Alaska petroleum development scenarios: commercial fishing industry analysis. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terry, J.M.; Gorham, A.H.; Larson, D.M.

    1980-02-01

    The objective of the report is to increase our understanding of the potential relationships between the commercial fishing and Outer Continental Shelf (OCS) petroleum industries and to project the potential impacts on the commercial fishing industry of the Gulf of Alaska that may occur as a result of the proposed OCS lease sales No. 46 and No. 55. To meet this objective, the report consists of: (1) the documentation and examination of the history and current trends of the Gulf of Alaska commercial fishing industry as necessary to develop a basis for projecting fishery development and potential interactions with themore » OCS petroleum industry, (2) the development of models used to forecast the level of commercial fishing industry activity through the year 2000 in the absence of OCS development pursuant to lease sales No. 46 and No. 55, and (3) an analysis of the potential impacts of lease sales No. 46 and No. 55 based on the hypothesized nature and magnitude of the activities of the commercial fishing and OCS petroleum industries. The study concentrates on the commercial fishing industry activities centered in Kodiak, Seward, Cordova, and Yakutat. Both the harvesting and processing sectors of the fishing industry are considered. The sources of impacts considered are the competition for labor, ocean space use, and the infrastructure.« less

  14. Alaska OCS socioeconomic studies program: St. George basin petroleum development scenarios, Anchorage impact analysis. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ender, R.L.; Gorski, S.

    1981-10-01

    The report consists of an update to the Anchorage socioeconomic and physical baseline and infrastructure standards used to forecast impacts with and without OCS oil and gas development in Alaska. This material is found in Technical Report 43, Volumes 1 and 2 entitled 'Gulf of Alaska and Lower Cook Inlet Petroleum Development Scenarios, Anchorage Socioeconomic and Physical Baseline and Anchorage Impact Analysis.' These updates should be read in conjunction with the above report. In addition, the Anchorage base case and petroleum development scenarios for the St. George Basin are given. These sections are written to stand alone without reference.

  15. Publications - GMC 138 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    . OCS Y-0211-1 (Yakutat #1) well Authors: Unknown Publication Date: 1989 Publisher: Alaska Division of of cuttings from the Arco Alaska Inc. OCS Y-0211-1 (Yakutat #1) well: Alaska Division of Geological

  16. 78 FR 59715 - Outer Continental Shelf (OCS), Alaska OCS Region, Chukchi Sea Planning Area, Proposed Oil and Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    ... . An interested party nominating areas for inclusion in the sale must provide a detailed explanation of... for Exclusion Areas, and Other Comments Interested parties who are requesting area(s) for inclusion in..., Anchorage, Alaska 99503-5823. Requests for proposed exclusion areas or general proposed inclusion areas...

  17. Publications - GMC 336 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Oil Company OCS Y-0197-1 (Tern Island #3) at the Alaska GMC Authors: Shell Oil Company, and Alaska information. Quadrangle(s): Alaska Statewide Bibliographic Reference Shell Oil Company, and Alaska Geological Materials Center, 2006, Core Photographs (12915'-13361.5') dated June 2003 of the Shell Oil Company OCS Y

  18. Publications - GMC 266 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ') and of core (7,769-7,788') from the Arco Alaska Inc. OCS Y-0747-1 (Cabot #1) well Authors: Unknown -7,788') from the Arco Alaska Inc. OCS Y-0747-1 (Cabot #1) well: Alaska Division of Geological &

  19. Publications - GMC 139 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a . OCS Y-0113-1 (Ibis #1) well Authors: Unknown Publication Date: 1989 Publisher: Alaska Division of of cuttings from the Arco Alaska Inc. OCS Y-0113-1 (Ibis #1) well: Alaska Division of Geological &

  20. Publications - GMC 118 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Company OCS Y-0849-2 (Hammerhead #2) well Authors: Unknown Publication Date: 1989 Publisher: Alaska reflectance data of cuttings from the Union Oil Company OCS Y-0849-2 (Hammerhead #2) well: Alaska Division of

  1. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    NASA Technical Reports Server (NTRS)

    Zhu, Jiang; Stevens, E.; Zavodsky, B. T.; Zhang, X.; Heinrichs, T.; Broderson, D.

    2014-01-01

    Data assimilation has been demonstrated very useful in improving both global and regional numerical weather prediction. Alaska has very coarser surface observation sites. On the other hand, it gets much more satellite overpass than lower 48 states. How to utilize satellite data to improve numerical prediction is one of hot topics among weather forecast community in Alaska. The Geographic Information Network of Alaska (GINA) at University of Alaska is conducting study on satellite data assimilation for WRF model. AIRS/CRIS sounder profile data are used to assimilate the initial condition for the customized regional WRF model (GINA-WRF model). Normalized standard deviation, RMSE, and correlation statistic analysis methods are applied to analyze one case of 48 hours forecasts and one month of 24-hour forecasts in order to evaluate the improvement of regional numerical model from Data assimilation. The final goal of the research is to provide improved real-time short-time forecast for Alaska regions.

  2. Alaska OCS socioeconomic studies program: St. George basin and North Aleutian Shelf commercial fishing industry analysis. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobolski, J.; Guluka, L.; Trefethen, D.

    1981-10-01

    This report consists of an update of the data base and analysis of the potential impacts to commercial fishing of proposed Outer Continental Shelf oil and gas lease sales in the St. George Basin and North Aleutian Shelf, situated in the Bering Sea off Alaska. Impacts on the Bristol Bay fishery are also discussed. Competition for labor between the fishing and oil industries is examined, as well as an analysis of risk of collision among vessels in the OCS areas. A description of the fisheries resources of the area is followed by an analysis of loss of access to fishingmore » grounds, and loss of or damage to gear. Impacts on the recreational fishery are also discussed.« less

  3. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    NASA Technical Reports Server (NTRS)

    Zhu, Jiang; Stevens, E.; Zhang, X.; Zavodsky, B. T.; Heinrichs, T.; Broderson, D.

    2014-01-01

    A case study and monthly statistical analysis using sounder data assimilation to improve the Alaska regional weather forecast model are presented. Weather forecast in Alaska faces challenges as well as opportunities. Alaska has a large land with multiple types of topography and coastal area. Weather forecast models must be finely tuned in order to accurately predict weather in Alaska. Being in the high-latitudes provides Alaska greater coverage of polar orbiting satellites for integration into forecasting models than the lower 48. Forecasting marine low stratus clouds is critical to the Alaska aviation and oil industry and is the current focus of the case study. NASA AIRS/CrIS sounder profiles data are used to do data assimilation for the Alaska regional weather forecast model to improve Arctic marine stratus clouds forecast. Choosing physical options for the WRF model is discussed. Preprocess of AIRS/CrIS sounder data for data assimilation is described. Local observation data, satellite data, and global data assimilation data are used to verify and/or evaluate the forecast results by the MET tools Model Evaluation Tools (MET).

  4. 75 FR 61511 - Intent To Prepare a Supplemental Environmental Impact Statement: Outer Continental Shelf, Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management, Regulation and Enforcement Intent To Prepare a Supplemental Environmental Impact Statement: Outer Continental Shelf, Alaska OCS Region, Chukchi Sea Planning Area, Oil and Gas Lease Sale 193 AGENCY: Bureau of Ocean Energy Management, Regulation...

  5. Publications - GMC 116 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    hydrocarbon data) of cuttings from OCS Y-0849-1 (Hammerhead #1) well Authors: Unocal Corporation Publication data) of cuttings from OCS Y-0849-1 (Hammerhead #1) well: Alaska Division of Geological &

  6. Publications - GMC 213 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ') of the Shell Western E & P Inc. OCS Y-1275-1 (Popcorn #1) well Authors: Unknown Publication Date E & P Inc. OCS Y-1275-1 (Popcorn #1) well: Alaska Division of Geological & Geophysical

  7. Publications - GMC 349 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    '-4710') from the Tenneco OCS Y-0338-1 (Phoenix #1) well Authors: Humble Geochemical Services Publication cuttings samples (4650'-4710') from the Tenneco OCS Y-0338-1 (Phoenix #1) well: Alaska Division of

  8. Publications - GMC 218 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ') of the Shell Western E & P Inc. OCS Y-1482-1 (Klondike #1) well Authors: Unknown Publication Date Western E & P Inc. OCS Y-1482-1 (Klondike #1) well: Alaska Division of Geological & Geophysical

  9. Palaeomagnetism of lower cretaceous tuffs from Yukon-Kuskokwim delta region, western Alaska

    USGS Publications Warehouse

    Globerman, B.R.; Coe, R.S.; Hoare, J.M.; Decker, J.

    1983-01-01

    During the past decade, the prescient arguments1-3 for the allochthoneity of large portions of southern Alaska have been corroborated by detailed geological and palaeomagnetic studies in south-central Alaska 4-9 the Alaska Peninsula10, Kodiak Island11,12 and the Prince William Sound area13 (Fig. 1). These investigations have demonstrated sizeable northward displacements for rocks of late Palaeozoic, Mesozoic, and early Tertiary age in those regions, with northward motion at times culminating in collision of the allochthonous terranes against the backstop of 'nuclear' Alaska14,15. A fundamental question is which parts of Alaska underwent significantly less latitudinal translation relative to the 'stable' North American continent, thereby serving as the 'accretionary nucleus' into which the displaced 'microplates'16 were eventually incorporated17,18? Here we present new palaeomagnetic results from tuffs and associated volcaniclastic rocks of early Cretaceous age from the Yukon-Kuskokwin delta region in western Alaska. These rocks were probably overprinted during the Cretaceous long normal polarity interval, although a remagnetization event as recent as Palaeocene cannot be ruled out. This overprint direction is not appreciably discordant from the expected late Cretaceous direction for cratonal North America. The implied absence of appreciable northward displacement for this region is consistent with the general late Mesozoic-early Tertiary tectonic pattern for Alaska, based on more definitive studies: little to no poleward displacement for central Alaska, though substantially more northward drift for the 'southern Alaska terranes' (comprising Alaska Peninsula, Kodiak Island, Prince William Sound area, and Matunuska Valley) since late Cretaceous to Palaeocene time. ?? 1983 Nature Publishing Group.

  10. Publications - GMC 119 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a (Corona) well Authors: Unknown Publication Date: 1989 Publisher: Alaska Division of Geological & from OCS Y-0871-1 (Corona) well: Alaska Division of Geological & Geophysical Surveys Geologic

  11. Soil data from fire and permafrost-thaw chronosequences in upland Picea mariana stands near Hess Creek and Tok, interior Alaska

    USGS Publications Warehouse

    O'Donnell, Jonathan A.; Harden, Jennifer W.; Manies, Kristen L.; Jorgenson, M. Torre; Kanevskiy, Mikhail; Xu, Xiaomei

    2013-01-01

    Soils of the Northern Circumpolar Permafrost region harbor 1,672 petagrams (Pg) (1 Pg = 1,000,000,000 kilograms) of organic carbon (OC), nearly 50 percent of the global belowground OC pool (Tarnocai and others, 2009). Of that soil OC, nearly 88 percent is presently stored in perennially frozen ground. Recent climate warming at northern latitudes has resulted in warming and thawing of permafrost in many regions (Osterkamp, 2007), which might mobilize OC stocks from associated soil reservoirs via decomposition, leaching, or erosion. Warming also has increased the magnitude and severity of wildfires in the boreal region (Turetsky and others, 2011), which might exacerbate rates of permafrost degradation relative to warming alone. Given the size and vulnerability of the soil OC pool in permafrost soils, permafrost thaw will likely function as a strong positive feedback to the climate system (Koven and others, 2011; Schaefer and others, 2011). In this report, we report soil OC inventories from two upland fire chronosequences located near Hess Creek and Tok in Interior Alaska. We sampled organic and mineral soils in the top 2 meters (m) across a range of stand ages to evaluate the effects of wildfire and permafrost thaw on soil C dynamics. These data were used to parameterize a simple process-based fire-permafrost-carbon model, which is described in detail by O’Donnell and others (2011a, b). Model simulations examine long-term changes in soil OC storage in response to fire, permafrost thaw, and climate change. These data also have been used in other papers, including Harden and others (2012), which examines C recovery post-fire, and Johnson and others (2011), which synthesizes data within the Alaska Soil Carbon Database. Findings from these studies highlight the importance of climate and disturbance (wildfire, permafrost thaw) on soil C storage, and loss of soil C from high-latitude ecosystems.

  12. Geomorphic controls on floodplain organic carbon storage in sediment along five rivers in interior Alaska

    NASA Astrophysics Data System (ADS)

    Lininger, K.; Wohl, E.; Rose, J. R.

    2016-12-01

    High latitude permafrost regions contain large amounts of organic carbon (OC) in the subsurface, but little work has quantified OC storage in floodplain sediment in the high latitudes. Floodplains influence the export of OC to the ocean by temporarily storing OC at timescales of 101 to 103 years. To fully understand terrestrial carbon cycling, the storage and residence time of OC in floodplains, and the geomorphic controls on OC storage, must be taken into account. Small-scale spatial variations in OC storage within floodplains likely reflect geomorphic processes of deposition and floodplain development. We present results of floodplain OC storage and residence time in sediment along 5 rivers in the Yukon Flats National Wildlife Refuge in interior Alaska, a region with discontinuous permafrost. We collected sediment samples within the active layer along tributaries to the Yukon River and the mainstem Yukon River and analyzed the sediment samples for OC content. We classified sample locations by geomorphic type (filled secondary channels, levees, point bars) and vegetation type (herbaceous, deciduous/shrub, white spruce, and black spruce wetlands), and found that both geomorphology and vegetation influence OC concentration and OC mass per area. Preliminary results suggest that filled secondary channels contain more OC per area compared to other geomorphic types. We present results of radiocarbon dates from river cutbanks associated with our sampling sites, which give a maximum age for residence times of OC in sediment before erosion and transport. The radiocarbon dates also provide estimates of long-term OC accretion within the Yukon Flats floodplains. Small-scale variations within floodplains as a result of floodplain depositional processes and vegetation communities shed light on the geomorphic controls on OC storage. This work will help constrain the spatial variation in OC storage and OC residence time across the landscape in a region experiencing rapid climate

  13. Evaluation of the streamflow-gaging network of Alaska in providing regional streamflow information

    USGS Publications Warehouse

    Brabets, Timothy P.

    1996-01-01

    In 1906, the U.S. Geological Survey (USGS) began operating a network of streamflow-gaging stations in Alaska. The primary purpose of the streamflow- gaging network has been to provide peak flow, average flow, and low-flow characteristics to a variety of users. In 1993, the USGS began a study to evaluate the current network of 78 stations. The objectives of this study were to determine the adequacy of the existing network in predicting selected regional flow characteristics and to determine if providing additional streamflow-gaging stations could improve the network's ability to predict these characteristics. Alaska was divided into six distinct hydrologic regions: Arctic, Northwest, Southcentral, Southeast, Southwest, and Yukon. For each region, historical and current streamflow data were compiled. In Arctic, Northwest, and Southwest Alaska, insufficient data were available to develop regional regression equations. In these areas, proposed locations of streamflow-gaging stations were selected by using clustering techniques to define similar areas within a region and by spatial visual analysis using the precipitation, physiographic, and hydrologic unit maps of Alaska. Sufficient data existed in Southcentral and Southeast Alaska to use generalized least squares (GLS) procedures to develop regional regression equations to estimate the 50-year peak flow, annual average flow, and a low-flow statistic. GLS procedures were also used for Yukon Alaska but the results should be used with caution because the data do not have an adequate spatial distribution. Network analysis procedures were used for the Southcentral, Southeast, and Yukon regions. Network analysis indicates the reduction in the sampling error of the regional regression equation that can be obtained given different scenarios. For Alaska, a 10-year planning period was used. One scenario showed the results of continuing the current network with no additional gaging stations and another scenario showed the results

  14. The Alaska earthquake, March 27, 1964: regional effects

    USGS Publications Warehouse

    McCulloch, David S.; Tuthill, Samuel J.; Laird, Wilson M.; Case, J.E.; Barnes, D.F.; Plafker, George; Robbins, S.L.; Kachadoorian, Reuben; Ferrians, Oscar J.; Foster, Helen L.; Karlstrom, Thor N.V.; Kirkby, M.J.; Kirkby, Anne V.; Stanley, Kirk W.

    1966-01-01

    This is the third in a series of six reports that the U.S. Geological Survey published on the results of a comprehensive geologic study that began, as a reconnaissance survey, within 24 hours after the March 27, 1964, Magnitude 9.2 Great Alaska Earthquake and extended, as detailed investigations, through several field seasons. The 1964 Great Alaska earthquake was the largest earthquake in the U.S. since 1700. Professional Paper 543, in 10 parts, describes the regional geologic effects.

  15. The deep permafrost carbon pool of the Yedoma region in Siberia and Alaska

    PubMed Central

    Strauss, Jens; Schirrmeister, Lutz; Grosse, Guido; Wetterich, Sebastian; Ulrich, Mathias; Herzschuh, Ulrike; Hubberten, Hans-Wolfgang

    2013-01-01

    [1] Estimates for circumpolar permafrost organic carbon (OC) storage suggest that this pool contains twice the amount of current atmospheric carbon. The Yedoma region sequestered substantial quantities of OC and is unique because its deep OC, which was incorporated into permafrost during ice age conditions. Rapid inclusion of labile organic matter into permafrost halted decomposition and resulted in a deep long-term sink. We show that the deep frozen OC in the Yedoma region consists of two distinct major subreservoirs: Yedoma deposits (late Pleistocene ice- and organic-rich silty sediments) and deposits formed in thaw-lake basins (generalized as thermokarst deposits). We quantified the OC pool based on field data and extrapolation using geospatial data sets to 83 + 61/−57 Gt for Yedoma deposits and to 128 + 99/−96 Gt for thermokarst deposits. The total Yedoma region 211 + 160/−153 Gt is a substantial amount of thaw-vulnerable OC that must be accounted for in global models. PMID:26074633

  16. Appendix 1: Regional summaries - Alaska

    Treesearch

    Jane M. Wolken; Teresa N. Hollingsworth

    2012-01-01

    Alaskan forests cover one-third of the state’s 52 million ha of land (Parson et al. 2001), and are regionally and globally significant. Ninety percent of Alaskan forests are classified as boreal, representing 4 percent of the world’s boreal forests, and are located throughout interior and south-central Alaska (fig. A1-1). The remaining 10 percent of Alaskan forests are...

  17. 76 FR 8378 - National Park Service Alaska Region's Subsistence Resource Commission (SRC) Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-AKR-DENA] [9924-PYS] National Park Service Alaska Region's Subsistence Resource Commission (SRC) Program AGENCY: National Park Service, Interior. ACTION: Notice of public meeting for the National Park Service Alaska Region's Subsistence Resource...

  18. Publications - GMC 90 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a -1 (Hammerhead) well Authors: Unknown Publication Date: 1988 Publisher: Alaska Division of Geological for the Union Oil Company OCS-Y-0849-1 (Hammerhead) well: Alaska Division of Geological &

  19. Publications - GMC 76 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a -1 (Antares #1) well Authors: Unknown Publication Date: 1988 Publisher: Alaska Division of Geological for the Exxon corporation OCS-Y-0280-1 (Antares #1) well: Alaska Division of Geological &

  20. Selected 1970 Census Data for Alaska Communities. Part 4 - Bristol Bay-Aleutian Region.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Community and Regional Affairs, Juneau. Div. of Community Planning.

    As 1 of 6 regional reports supplying statistical information on Alaska's incorporated and unincorporated communities (those of 25 or more people), this report on Alaska's Bristol Bay-Aleutian Region presents data derived from the 1970 U.S. Census first-count microfilm. Organized via the 3 Bristol Bay-Aleutian census divisions, data are presented…

  1. OCS National Compendium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gould, G.J.; Karpas, R.M.; Slitor, D.L.

    1991-06-01

    The Minerals Management Service's (MMS) Outer Continental Shelf Information Program (OCSIP) is responsible for making available to affected coastal States, local governments, and other interested parties data and information related to the Outer Continental Shelf (OCS) Oil and Gas Program. Since its establishment through Section 26 of the OCS Lands Act (OCSLA) Amendments of 1978, OCSIP has prepared regional summary reports, updates, and indexes on leasing, exploration, development, and production activities to fulfill the mandates of the OCSLA Amendments. The OCSIP receives many requests for out-of-print summary reports, updates, and indexes. The purpose of the OCS National Compendium is tomore » consolidate these historical data and to present the data on an OCS-wide and regional scale. The single-volume approach allows the reader access to historical information and facilitates regional comparisons. The fold-out chart in the front of this publication provides the reader with a timeline (January 1988--November 1990) of events since publication of the last Compendium. Some of the events are directly related to the 5-year Oil and Gas Program, whereas others may or may not have an effect on the program. A predominantly graphic format is used in the report so that the large accumulation of data can be more readily comprehended. In some cases, it is not possible to update information through October 21, 1990, because of the nature of the data. For example, production data normally lags 3 months. 58 figs., 37 tabs.« less

  2. National Hydroelectric Power Resources Study:Regional Assessment: Volume XXIII: Alaska and Hawaii

    DTIC Science & Technology

    1981-09-01

    amount of recoverable geothermal energy is still unknown, a test well (HGP-A) was drilled 6,450 feet into the eastern rift of Kilauea volcano on...US Army Corps of Engineers National Hydroelectric Power Resources Study Volume XXIII September 1 981 Regional Assessment: Alaska and Hawaii ...National Hydroelectric Power Resources Study: Final Regional Assessment; Alaska and Hawaii IS. PERFORMING ORG. REPORT NUMBER IWR 82-𔃻-23 7. AUTHOR(a) 8

  3. Publications - GMC 214 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Chevron USA Inc. OCS Y-0996-1 (Diamond #1) well Authors: Unknown Publication Date: 1993 Publisher: Alaska see our publication sales page for more information. Bibliographic Reference Unknown, 1993, Vitrinite

  4. 76 FR 59997 - Newspapers To Be Used by the Alaska Region for Publication of Legal Notices of Proposed Actions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ... Register. ADDRESSES: Robin Dale, Alaska Region Group Leader for Appeals, Litigation and FOIA; Forest Service, Alaska Region; P.O. Box 21628; Juneau, Alaska 99802-1628. FOR FURTHER INFORMATION CONTACT: Robin...

  5. Publications - GMC 282 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 282 Publication Details Title: Geochemical analysis of cuttings (11440'-11500') from the Exxon '-11500') from the Exxon Company U.S.A. OCS Y-0191-2 well: Alaska Division of Geological & Geophysical

  6. On the differences between 1.5oC and 2oC of global warming

    NASA Astrophysics Data System (ADS)

    King, A.

    2017-12-01

    The Paris Agreement of 2015 has resulted in a drive to limit global warming to 2oC with an aim for a lower 1.5oC target. It is therefore vital that we understand some of the differences we would expect between these two levels of global warming. My research uses coupled climate model projections to investigate where and for what variables we can differentiate between worlds of 1.5oC and 2oC global warming. I place a particular focus on climate extremes and population exposure to those extremes. I have found that there are perceptible benefits in limiting global warming to 1.5oC as opposed to 2oC through reduced frequency and intensity of heat extremes, both over land and in ocean areas where thermal stress on coral has resulted in bleaching. Differences in high and low precipitation extremes between the 1.5oC and 2oC global warming levels are projected for some regions. I have also examined how "scalable" changes from the 1.5oC to 2oC level are. In areas of the world such as Eastern China I find that changes in anthropogenic aerosol concentrations will influence the level of change projected at 1.5oC and 2oC, such that past warming is likely to be a poor indicator of future changes. Overall, my research finds clear benefits to limiting global warming to 1.5oC relative to higher levels.

  7. U.S. Global Climate Change Impacts Report, Alaska Region

    NASA Astrophysics Data System (ADS)

    McGuire, D.

    2009-12-01

    The assessment of the Global Climate Change Impacts in the United States includes analyses of the potential climate change impacts in Alaska. The resulting findings are discussed in this presentation, with the effects on water resources discussed separately. Major findings include: Summers are getting hotter and drier, with increasing evaporation outpacing increased precipitation. Climate changes are already affecting water, energy, transportation, agriculture, ecosystems, and health. These impacts are different from region to region and will grow under projected climate change. Wildfires and insect problems are increasing. Climate plays a key role in determining the extent and severity of insect outbreaks and wildfire. The area burned in North America’s northern forest that spans Alaska and Canada tripled from the 1960s to the 1990s. During the 1990s, south-central Alaska experienced the largest outbreak of spruce bark beetles in the world because of warmer weather in all seasons of the year. Under changing climate conditions, the average area burned per year in Alaska is projected to double by the middle of this century10. By the end of this century, area burned by fire is projected to triple under a moderate greenhouse gas emissions scenario and to quadruple under a higher emissions scenario. Close-bodied lakes are declining in area. A continued decline in the area of surface water would present challenges for the management of natural resources and ecosystems on National Wildlife Refuges in Alaska. These refuges, which cover over 77 million acres (21 percent of Alaska) and comprise 81 percent of the U.S. National Wildlife Refuge System, provide a breeding habitat for millions of waterfowl and shorebirds that winter in the lower 48 states. Permafrost thawing will damage public and private infrastructure. Land subsidence (sinking) associated with the thawing of permafrost presents substantial challenges to engineers attempting to preserve infrastructure in

  8. Persistent Organochlorine Pesticide Exposure Related to a Formerly Used Defense Site on St. Lawrence Island, Alaska: Data from Sentinel Fish and Human Sera.

    PubMed

    Byrne, Samuel; Miller, Pamela; Waghiyi, Viola; Buck, C Loren; von Hippel, Frank A; Carpenter, David O

    2015-01-01

    St. Lawrence Island, Alaska, is the largest island in the Bering Sea, located 60 km from Siberia. The island is home to approximately 1600 St. Lawrence Island Yupik residents who live a subsistence way of life. Two formerly used defense sites (FUDS) exist on the island, one of which, Northeast Cape, has been the subject of a $123 million cleanup effort. Environmental monitoring demonstrates localized soil and watershed contamination with polychlorinated biphenyls (PCB), organochlorine (OC) pesticides, mercury, and arsenic. This study examined whether the Northeast Cape FUDS is a source of exposure to OC pesticides. In total, 71 serum samples were collected during site remediation from volunteers who represented three geographic regions of the island. In addition, ninespine stickleback (Pungitius pungitius) and Alaska blackfish (Dallia pectoralis) were collected from Northeast Cape after remediation to assess continuing presence of OC pesticides. Chlordane compounds, DDT compounds, mirex, and hexachlorobenzene (HCB) were the most prevalent and present at the highest concentrations in both fish tissues and human serum samples. After controlling for age and gender, activities near the Northeast Cape FUDS were associated with an increase in serum HCB as compared to residents of the farthest village from the site. Positive but nonsignificant relationships for sum-chlordane and sum-DDT were also found. Organochlorine concentrations in fish samples did not show clear geographic trends, but appear elevated compared to other sites in Alaska. Taken together, data suggest that contamination of the local environment at the Northeast Cape FUDS may increase exposure to select persistent OC pesticides.

  9. Persistent organochlorine pesticide exposure related to a formerly used defense site on St. Lawrence Island, Alaska: data from sentinel fish and human sera

    PubMed Central

    Byrne, Samuel; Miller, Pamela; Waghiyi, Viola; Buck, C. Loren; von Hippel, Frank A.; Carpenter, David O.

    2015-01-01

    St. Lawrence Island, Alaska is the largest island in the Bering Sea, located 60 km from Siberia. The island is home to approximately 1600 St. Lawrence Island Yupik residents who live a subsistence lifestyle. Two formerly used defense sites (FUDS) exist on the island, one of which, Northeast Cape, has been the subject of a $123 million cleanup effort. Environmental monitoring demonstrates localized soil and watershed contamination with polychlorinated biphenyls (PCBs), organochlorine (OC) pesticides and arsenic. This study examined whether the Northeast Cape FUDS is a source of exposure to OC pesticides. A total of 71 serum samples were collected during site remediation from volunteers that represented three geographic regions of the island. Additionally, ninespine stickleback (Pungitius pungitius) and Alaska blackfish (Dallia pectoralis) were collected from Northeast Cape after remediation to assess continuing presence of OC pesticides. Chlordane compounds, DDT compounds, mirex and hexachlorobenzene (HCB) were the most prevalent and present at the highest concentrations in both fish tissues and human serum samples. After controlling for age and sex, activities near the Northeast Cape FUDS were associated with an increase in serum HCB as compared to residents of the farthest village from the site. Positive but non-significant relationships for sum-chlordane and sum-DDT were also found. Organochlorine concentrations in fish samples did not show clear geographic trends, but appear elevated compared to other sites in Alaska. Taken together, the results suggest that contamination of the local environment at the Northeast Cape FUDS may increase exposure to select persistent OC pesticides. PMID:26262441

  10. IR photodissociation spectroscopy of (OCS){sub n}{sup +} and (OCS){sub n}{sup −} cluster ions: Similarity and dissimilarity in the structure of CO{sub 2}, OCS, and CS{sub 2} cluster ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inokuchi, Yoshiya, E-mail: y-inokuchi@hiroshima-u.ac.jp; Ebata, Takayuki

    2015-06-07

    Infrared photodissociation (IRPD) spectra of (OCS){sub n}{sup +} and (OCS){sub n}{sup −} (n = 2–6) cluster ions are measured in the 1000–2300 cm{sup −1} region; these clusters show strong CO stretching vibrations in this region. For (OCS){sub 2}{sup +} and (OCS){sub 2}{sup −}, we utilize the messenger technique by attaching an Ar atom to measure their IR spectra. The IRPD spectrum of (OCS){sub 2}{sup +}Ar shows two bands at 2095 and 2120 cm{sup −1}. On the basis of quantum chemical calculations, these bands are assigned to a C{sub 2} isomer of (OCS){sub 2}{sup +}, in which an intermolecular semi-covalent bondmore » is formed between the sulfur ends of the two OCS components by the charge resonance interaction, and the positive charge is delocalized over the dimer. The (OCS){sub n}{sup +} (n = 3–6) cluster ions show a few bands assignable to “solvent” OCS molecules in the 2000–2080 cm{sup −1} region, in addition to the bands due to the (OCS){sub 2}{sup +} ion core at ∼2090 and ∼2120 cm{sup −1}, suggesting that the dimer ion core is kept in (OCS){sub 3–6}{sup +}. For the (OCS){sub n}{sup −} cluster anions, the IRPD spectra indicate the coexistence of a few isomers with an OCS{sup −} or (OCS){sub 2}{sup −} anion core over the cluster range of n = 2–6. The (OCS){sub 2}{sup −}Ar anion displays two strong bands at 1674 and 1994 cm{sup −1}. These bands can be assigned to a C{sub s} isomer with an OCS{sup −} anion core. For the n = 2–4 anions, this OCS{sup −} anion core form is dominant. In addition to the bands of the OCS{sup −} core isomer, we found another band at ∼1740 cm{sup −1}, which can be assigned to isomers having an (OCS){sub 2}{sup −} ion core; this dimer core has C{sub 2} symmetry and {sup 2}A electronic state. The IRPD spectra of the n = 3–6 anions show two IR bands at ∼1660 and ∼2020 cm{sup −1}. The intensity of the latter component relative to that of the former one becomes stronger and

  11. 76 FR 41763 - Proposed Information Collection; Comment Request; Alaska Region Logbook Family of Forms

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... (NMFS) Alaska Region manages the United States (U.S.) groundfish fisheries of the Exclusive Economic... monitoring of the groundfish fisheries of the EEZ off Alaska. II. Method of Collection Paper and electronic logbooks, paper and electronic reports, and telephone calls are required from participants, and methods of...

  12. Regional biomass stores and dynamics in forests of coastal Alaska

    Treesearch

    Mikhaill A. Yatskov; Mark E. Harmon; Olga N. Krankina; Tara M. Barrett; Kevin R. Dobelbower; Andrew N. Gray; Becky Fasth; Lori Trummer; Toni L. Hoyman; Chana M. Dudoit

    2015-01-01

    Coastal Alaska is a vast forested region (6.2 million ha) with the potential to store large amounts of carbon in live and dead biomass thus influencing continental and global carbon dynamics. The main objectives of this study were to assess regional biomass stores, examine the biomass partitioning between live and dead pools, and evaluate the effect of disturbance on...

  13. Hemostatic action of OC-108, a novel agent for hemorrhoids, is associated with regional blood flow arrest induced by acute inflammation.

    PubMed

    Ono, Takashi; Nakagawa, Haruto; Fukunari, Atsushi; Hashimoto, Toshio; Komatsu, Hirotsugu

    2006-11-01

    Clinically, hemorrhoidal bleeding and prolapse disappeared immediately after injection of the sclerosing agent OC-108 into submucosa of hemorrhoids. The aim of this study was to elucidate the mechanism of action responsible for the immediate hemostatic effect of OC-108 using anesthetized rats. Subcutaneous injection of OC-108 in rats decreased blood flow at the injection site within 5 min. Aluminum potassium sulfate, one of the main ingredients of OC-108, reduced the skin blood flow. However, tannic acid, another main ingredient, did not. By perfusion of OC-108 on the mesenteric surface, microcirculatory blood flow was arrested without remarkable change in blood vessel diameter, accompanied by increased vascular permeability and venous hematocrit. These results indicate that OC-108 induces regional blood flow arrest with rapid onset, this effect being attributed to the action of aluminum potassium sulfate, and that hemoconcentration due to increased vascular permeability (plasma extravasation), an acute inflammatory reaction, is involved in the mechanisms of the immediate hemostatic action of OC-108.

  14. 76 FR 59110 - Newspapers To Be Used by the Alaska Region for Publication of Legal Notices of Proposed Hazardous...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-23

    ... Federal Register. ADDRESSES: Robin Dale, Alaska Region Group Leader for Appeals, Litigation and FOIA...: Robin Dale; Alaska Region Group Leader for Appeals, Litigation and FOIA; (907) 586-9344. SUPPLEMENTARY...

  15. A Tree-Ring Temperature Reconstruction from the Wrangell Mountains, Alaska (1593-1992): Evidence for Pronounced Regional Cooling During the Maunder Minimum

    NASA Astrophysics Data System (ADS)

    DArrigo, R.; Davi, N.; Jacoby, G.; Wiles, G.

    2002-05-01

    The Maunder Minimum interval (from the mid-1600s-early 1700s) is believed to have been one of the coldest periods of the past thousand years in the Northern Hemisphere. A maximum latewood density temperature reconstruction for the Wrangell Mountains, southern Alaska (1593-1992) provides information on regional temperature change during the Maunder Minimum and other periods of severe cold over the past four centuries. The Wrangell density record, which reflects warm season (July-September) temperatures, shows an overall cooling over the Maunder Minimum period with annual values reaching as low as -1.8oC below the long-term mean. Ring widths, which can integrate annual as well as summer conditions, also show pronounced cooling at the Wrangell site during this time, as do Arctic and hemispheric-scale temperature reconstructions based on tree rings and other proxy data. Maximum ages of glacial advance based on kill dates from overrun logs (which reflect cooler temperatures) coincide temporally with the cooling seen in the density and ring width records. In contrast, a recent modeling study indicates that during this period there was cold season (November-April) warming over much of Alaska, but cooling over other northern continental regions, as a result of decreased solar irradiance initiating low Arctic Oscillation index conditions. The influence of other forcings on Alaskan climate, the absence of ocean dynamical feedbacks in the model, and the different seasonality represented by the model and the trees may be some of the possible explanations for the different model and proxy results.

  16. Alaska OCS social and economic studies program. Technical report Number 94. Diapir field Anchorage impacts analysis. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-03-01

    The purpose of the study is threefold: (1) to update earlier baseline descriptions of Anchorage region; (2) to revise the community impact-assessment methodology to be applied to the Anchorage region; and (3) to assess the community impacts on the Anchorage region through the year 2010 of a base-case growth forecast and of a scenario for production of 3.0 billion barrels of crude oil from the Diapir Field OCS Sale no.87. Some results of the study are that the Anchorage region, historically and currently, has demonstrated a very resilient capacity to accommodate rapid economic and population growth; and that State expendituremore » of petroleum revenues accounts for much of the region's recent growth.« less

  17. Regional cooperation and transportation planning in Alaska : a regional models of cooperation peer exchange summary report.

    DOT National Transportation Integrated Search

    2017-01-31

    This report summarizes the proceedings of a Regional Models of Cooperation Virtual Peer Exchange Workshop held on March 9 10, 2016 for the State of Alaska. Participants discussed the benefits and challenges of cooperation across jurisdictions and...

  18. 78 FR 4378 - Annual List of Newspapers To Be Used by the Alaska Region for Publication of Legal Notices of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... superceded by a new list, published in the Federal Register. ADDRESSES: Robin Dale, Alaska Region Group... 99802-1628. FOR FURTHER INFORMATION CONTACT: Robin Dale; Alaska Region Group Leader for Appeals...

  19. First Observation and Analysis of OCS-C_4H_2 Dimer and (OCS)_2-C_4H_2 Trimer

    NASA Astrophysics Data System (ADS)

    Sheybani-Deloui, S.; Yousefi, Mahdi; Norooz Oliaee, Jalal; McKellar, Bob; Moazzen-Ahmadi, Nasser

    2014-06-01

    Infrared spectrum of a slipped near parallel isomer of OCS-C_4H_2 was observed in the region of νb{1} fundamental band of OCS monomer (˜2062 wn) using a diode laser to probe the supersonic slit jet expansion. The ab initio calculations at MP2 level indicate that the observed structure is the lowest energy isomer. The OCS-C_4H_2 band is composed of hybrid a/b-type transitions and was simulated by a conventional asymmetric top Hamiltonian with rotational constants of A=2892.15(10) MHz, B=1244.178(84) MHz, and C=868.692(52) MHz. The spectrum shows a relatively large red-shift of ˜6 wn with respect to the OCS monomer band origin. Also, one band for (OCS)_2-C_4H_2 trimer is observed around 2065 wn. This band is blue-shifted by 3 wn relative to the νb{1} fundamental band of OCS monomer. Our analysis shows that this trimer has C2 symmetry with rotational constants of A= 855.854(61) MHz, B=733.15(11) MHz, and C=610.10(38) MHz and c-type transitions. This structure is comparable with that of (OCS)_2-C_2H_2 where the OCS dimer unit within the trimer is non-polar. In addition to the normal isotoplogues, OCS-C_4D_2 and (OCS)_2-C_4D_2 were observed. In this talk, we discuss our observations and analysis on OCS-C_4H_2 dimer and (OCS)_2-C_4H_2 trimer. Mojtaba Rezaei, A. R. W. McKellar, and N. Moazzen-Ahmadi, J. Phys. Chem. A, 115, 10416 (2011).

  20. Publications - GMC 78 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a DGGS GMC 78 Publication Details Title: Vitrinite reflectance data for OCS-Y-0344-1 (Mukluk #1) well ) well: Alaska Division of Geological & Geophysical Surveys Geologic Materials Center Data Report 78

  1. Late quaternary regional geoarchaeology of Southeast Alaska Karst: A progress report

    USGS Publications Warehouse

    Dixon, E.J.; Heaton, T.H.; Fifield, T.E.; Hamilton, T.D.; Putnam, D.E.; Grady, F.

    1997-01-01

    Karst systems, sea caves, and rock shelters within the coastal temperate rain forest of Alaska's Alexander Archipelago preserve important records of regional archaeology, sea level history, glacial and climatic history, and vertebrate paleontology. Two 14C AMS dates on human bone discovered in a remote cave (49-PET-408) on Prince of Wales Island document the oldest reliably dated human in Alaska to ca. 9800 B.P. A series of 14C AMS dates from cave deposits span the past 40,000 years and provide the first evidence of Pleistocene faunas from the northwest coast of North America. Other discoveries include sea caves and marine beach deposits elevated above modern sea level, extensive solution caves, and mammalian remains of species previously undocumented within the region. Records of human activity, including cave art, artifacts, and habitation sites may provide new insights into the early human colonization of the Americas. ??1997 John Wiley & Sons, Inc.

  2. The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: Implications for post-thaw carbon loss

    USGS Publications Warehouse

    O'Donnell, J. A.; Harden, J.W.; McGuire, A.D.; Kanevskiy, M.Z.; Jorgenson, M.T.; Xu, X.

    2011-01-01

    High-latitude regions store large amounts of organic carbon (OC) in active-layer soils and permafrost, accounting for nearly half of the global belowground OC pool. In the boreal region, recent warming has promoted changes in the fire regime, which may exacerbate rates of permafrost thaw and alter soil OC dynamics in both organic and mineral soil. We examined how interactions between fire and permafrost govern rates of soil OC accumulation in organic horizons, mineral soil of the active layer, and near-surface permafrost in a black spruce ecosystem of interior Alaska. To estimate OC accumulation rates, we used chronosequence, radiocarbon, and modeling approaches. We also developed a simple model to track long-term changes in soil OC stocks over past fire cycles and to evaluate the response of OC stocks to future changes in the fire regime. Our chronosequence and radiocarbon data indicate that OC turnover varies with soil depth, with fastest turnover occurring in shallow organic horizons (~60 years) and slowest turnover in near-surface permafrost (>3000 years). Modeling analysis indicates that OC accumulation in organic horizons was strongly governed by carbon losses via combustion and burial of charred remains in deep organic horizons. OC accumulation in mineral soil was influenced by active layer depth, which determined the proportion of mineral OC in a thawed or frozen state and thus, determined loss rates via decomposition. Our model results suggest that future changes in fire regime will result in substantial reductions in OC stocks, largely from the deep organic horizon. Additional OC losses will result from fire-induced thawing of near-surface permafrost. From these findings, we conclude that the vulnerability of deep OC stocks to future warming is closely linked to the sensitivity of permafrost to wildfire disturbance. ?? 2010 Blackwell Publishing Ltd.

  3. The complex Chukchi Borderland region as part of the Arctic Alaska extended margin

    NASA Astrophysics Data System (ADS)

    Saltus, R.; Hutchinson, D. R.; Miller, E. L.

    2017-12-01

    The Chukchi Borderland region (CBR; includes the Chukchi Plateau and its surrounding component elevations) is a physiographically complex and somewhat enigmatic seafloor high adjacent to the broad Chukchi Shelf in the Alaska/Chukotka quadrant of the Amerasian Basin beneath the Arctic Ocean. The CBR includes several physiographic sub-components including the relatively high-standing Northwind Ridge and Northwind Plain as well as a lower-standing northern region (here called the North Chukchi Component Elevation or NCCE) that consists of several un-named knolls, ramps, and benches. The CBR shows numerous N-S physiographic features including ridges and escarpments related to extension. The CBR adjoins the Chukchi Shelf to the south, abuts the Canada Basin to the east, and is separated on the west and north from the Mendeleev and Alpha Ridges by the Chukchi Plain, the Mendeleev Plain, and the Nautilus Basin. Available geophysical data, comparative physiography/geomorphology, and geologic analysis show that the CBR is continuous with Arctic Alaska and the adjoining Chukchi Shelf. CBR, Arctic Alaska, and the Chukchi Shelf share common early Paleozoic basement elements as well as Ellesmerian and younger cover sequences. The CBR owes its complex physiographic and structural character to its central location relative to the multiple extensional domains associated with the multi-stage rift formation of the Amerasian Basin, large igneous province-influenced volcanism associated with the Alpha and Mendeleev regions on the north and west, and hyper-extension of continental crust to the east in the deep Canada Basin. The CBR is often portrayed as an independent tectonic element within Arctic tectonic reconstructions, but we argue that models for the formation of the Amerasian Basin should include the CBR as an integral component of the Arctic Alaska microplate.

  4. Southwest Alaska Regional Geothermal Energy Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holdmann, Gwen

    2015-04-30

    The village of Elim, Alaska is 96 miles west of Nome, on the Seward Peninsula. The Darby Mountains north of the village are rich with hydrothermal systems associated with the Darby granitic pluton(s). In addition to the hot springs that have been recorded and studied over the last 100 years, additional hot springs exist. They are known through a rich oral history of the region, though they are not labeled on geothermal maps. This research primarily focused on Kwiniuk Hot Springs, Clear Creek Hot Springs and Molly’s Hot Springs. The highest recorded surface temperatures of these resources exist at Clearmore » Creek Hot Springs (67°C). Repeated water sampling of the resources shows that maximum temperatures at all of the systems are below boiling.« less

  5. The United States National Climate Assessment - Alaska Technical Regional Report

    USGS Publications Warehouse

    Markon, Carl J.; Trainor, Sarah F.; Chapin, F. Stuart; Markon, Carl J.; Trainor, Sarah F.; Chapin, F. Stuart

    2012-01-01

    The Alaskan landscape is changing, both in terms of effects of human activities as a consequence of increased population, social and economic development and their effects on the local and broad landscape; and those effects that accompany naturally occurring hazards such as volcanic eruptions, earthquakes, and tsunamis. Some of the most prevalent changes, however, are those resulting from a changing climate, with both near term and potential upcoming effects expected to continue into the future. Alaska's average annual statewide temperatures have increased by nearly 4°F from 1949 to 2005, with significant spatial variability due to the large latitudinal and longitudinal expanse of the State. Increases in mean annual temperature have been greatest in the interior region, and smallest in the State's southwest coastal regions. In general, however, trends point toward increases in both minimum temperatures, and in fewer extreme cold days. Trends in precipitation are somewhat similar to those in temperature, but with more variability. On the whole, Alaska saw a 10-percent increase in precipitation from 1949 to 2005, with the greatest increases recorded in winter. The National Climate Assessment has designated two well-established scenarios developed by the Intergovernmental Panel on Climate Change (Nakicenovic and others, 2001) as a minimum set that technical and author teams considered as context in preparing portions of this assessment. These two scenarios are referred to as the Special Report on Emissions Scenarios A2 and B1 scenarios, which assume either a continuation of recent trends in fossil fuel use (A2) or a vigorous global effort to reduce fossil fuel use (B1). Temperature increases from 4 to 22°F are predicted (to 2070-2099) depending on which emissions scenario (A2 or B1) is used with the least warming in southeast Alaska and the greatest in the northwest. Concomitant with temperature changes, by the end of the 21st century the growing season is expected

  6. Global carbonyl sulfide (OCS) measured by MIPAS/Envisat during 2002-2012

    NASA Astrophysics Data System (ADS)

    Glatthor, Norbert; Höpfner, Michael; Leyser, Adrian; Stiller, Gabriele P.; von Clarmann, Thomas; Grabowski, Udo; Kellmann, Sylvia; Linden, Andrea; Sinnhuber, Björn-Martin; Krysztofiak, Gisèle; Walker, Kaley A.

    2017-02-01

    We present a global carbonyl sulfide (OCS) data set covering the period June 2002 to April 2012, derived from FTIR (Fourier transform infrared) limb emission spectra measured with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on the ENVISAT satellite. The vertical resolution is 4-5 km in the height region 6-15 km and 15 at 40 km altitude. The total estimated error amounts to 40-50 pptv between 10 and 20 km and to 120 pptv at 40 km altitude. MIPAS OCS data show no systematic bias with respect to balloon observations, with deviations mostly below ±50 pptv. However, they are systematically higher than the OCS volume mixing ratios of the ACE-FTS instrument on SCISAT, with maximum deviations of up to 100 pptv in the altitude region 13-16 km. The data set of MIPAS OCS exhibits only moderate interannual variations and low interhemispheric differences. Average concentrations at 10 km altitude range from 480 pptv at high latitudes to 500-510 pptv in the tropics and at northern mid-latitudes. Seasonal variations at 10 km altitude amount to up to 35 pptv in the Northern and up to 15 pptv in the Southern Hemisphere. Northern hemispheric OCS abundances at 10 km altitude peak in June in the tropics and around October at high latitudes, while the respective southern hemispheric maxima were observed in July and in November. Global OCS distributions at 250 hPa (˜ 10-11 km) show enhanced values at low latitudes, peaking during boreal summer above the western Pacific and the Indian Ocean, which indicates oceanic release. Further, a region of depleted OCS amounts extending from Brazil to central and southern Africa was detected at this altitude, which is most pronounced in austral summer. This depletion is related to seasonally varying vegetative uptake by the tropical forests. Typical signatures of biomass burning like the southern hemispheric biomass burning plume are not visible in MIPAS data, indicating that this process is only a minor source of upper

  7. Species List of Alaskan Birds, Mammals, Fish, Amphibians, Reptiles, and Invertebrates. Alaska Region Report Number 82.

    ERIC Educational Resources Information Center

    Taylor, Tamra Faris

    This publication contains a detailed list of the birds, mammals, fish, amphibians, reptiles, and invertebrates found in Alaska. Part I lists the species by geographical regions. Part II lists the species by the ecological regions of the state. (CO)

  8. 75 FR 31761 - Proposed Information Collection; Comment Request; Alaska Region Gear Identification Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ... Collection; Comment Request; Alaska Region Gear Identification Requirements AGENCY: National Oceanic and... gear aids law enforcement and enables other fishermen to report on misplaced gear. II. Method of Collection No information is submitted; this is a gear-marking requirement. III. Data OMB Control Number...

  9. UNIT, ALASKA.

    ERIC Educational Resources Information Center

    Louisiana Arts and Science Center, Baton Rouge.

    THE UNIT DESCRIBED IN THIS BOOKLET DEALS WITH THE GEOGRAPHY OF ALASKA. THE UNIT IS PRESENTED IN OUTLINE FORM. THE FIRST SECTION DEALS PRINCIPALLY WITH THE PHYSICAL GEOGRAPHY OF ALASKA. DISCUSSED ARE (1) THE SIZE, (2) THE MAJOR LAND REGIONS, (3) THE MOUNTAINS, VOLCANOES, GLACIERS, AND RIVERS, (4) THE NATURAL RESOURCES, AND (5) THE CLIMATE. THE…

  10. Metamorphic facies map of Southeastern Alaska; distribution, facies, and ages of regionally metamorphosed rocks

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Brew, D.A.; Douglass, S.L.

    1996-01-01

    Nearly all of the bedrock in Southeastern Alaska has been metamorphosed, much of it under medium-grade conditions during metamorphic episodes that were associated with widespread plutonism. The oldest metamorphisms affected probable arc rocks near southern Prince of Wales Island and occurred during early and middle Paleozoic orogenies. The predominant period of metamorphism and associated plutonism occurred during Early Cretaceous to early Tertiary time and resulted in the development of the Coast plutonic-metamorphic complex that extends along the inboard half of Southeastern Alaska. Middle Tertiary regional thermal metamorphism affected a large part of Baranof Island.

  11. Dental caries in rural Alaska Native children--Alaska, 2008.

    PubMed

    2011-09-23

    In April 2008, the Arctic Investigations Program (AIP) of CDC was informed by the Alaska Department of Health and Social Services (DHSS) of a large number of Alaska Native (AN) children living in a remote region of Alaska who required full mouth dental rehabilitations (FMDRs), including extractions and/or restorations of multiple carious teeth performed under general anesthesia. In this remote region, approximately 400 FMDRs were performed in AN children aged <6 years in 2007; the region has approximately 600 births per year. Dental caries can cause pain, which can affect children's normal growth and development. AIP and Alaska DHSS conducted an investigation of dental caries and associated risk factors among children in the remote region. A convenience sample of children aged 4-15 years in five villages (two with fluoridated water and three without) was examined to estimate dental caries prevalence and severity. Risk factor information was obtained by interviewing parents. Among children aged 4-5 years and 12-15 years who were evaluated, 87% and 91%, respectively, had dental caries, compared with 35% and 51% of U.S. children in those age groups. Among children from the Alaska villages, those aged 4-5 years had a mean of 7.3 dental caries, and those aged 12-15 years had a mean of 5.0, compared with 1.6 and 1.8 dental caries in same-aged U.S. children. Of the multiple factors assessed, lack of water fluoridation and soda pop consumption were significantly associated with dental caries severity. Collaborations between tribal, state, and federal agencies to provide effective preventive interventions, such as water fluoridation of villages with suitable water systems and provision of fluoride varnishes, should be encouraged.

  12. Petroleum exploration plays and resource estimates, 1989, onshore United States; Region 1, Alaska; Region 2, Pacific Coast

    USGS Publications Warehouse

    Powers, Richard B.

    1993-01-01

    This study provides brief discussions of the petroleum geology, play descriptions, and resource estimates of 220 individually assessed exploration plays in all 80 onshore geologic provinces within nine assessment regions of the continental United States in 1989; these 80 onshore provinces were assessed in connection with the determination of the Nation's estimated undiscovered resources of oil and gas. The present report covers the 25 provinces that make up Region 1, Alaska, and Region 2, Pacific Coast. It is our intention to issue Region 3, Colorado Plateau and Basin and Range, and Region 4, Rocky Mountains and Northern Great Plains, in book form as well. Regions 5 through 9 (West Texas and Eastern New Mexico, Gulf Coast, Midcontinent, Eastern Interior and Atlantic Coast) will be released individually, as Open-File Reports.

  13. 75 FR 59687 - Proposed Information Collection; Comment Request; Alaska Region Bering Sea & Aleutian Islands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... among harvesters, processors, and coastal communities and monitors the ``economic stability for... Collection; Comment Request; Alaska Region Bering Sea & Aleutian Islands (BSAI) Crab Economic Data Reports... CR Program's mandatory economic data collection report (EDR) used to assess the efficacy of the CR...

  14. Modeling vulnerability to thermokarst disturbance and its consequences on regional land cover dynamic in boreal Alaska

    NASA Astrophysics Data System (ADS)

    Genet, H.; Lara, M. J.; Bolton, W. R.; McGuire, A. D.

    2016-12-01

    Estimation of the magnitude and consequences of permafrost degradation in high latitude is one of the most urgent research challenges related to contemporary and future climate change. In addition to widespread vertical degradation, ice-rich permafrost can thaw laterally, often triggering abrupt subsidence of the ground surface called thermokart. In this depression, permafrost plateau vegetation will transition to wetlands or lakes, while surface water of the surrounding landscape may drain towards it. These abrupt changes in land cover and hydrology can have dramatic consequences from wildlife habitat and biogeochemical cycles. Although recent studies have documented an acceleration of the rates of thermokarst formation in boreal and arctic peatlands, the importance of thermokarst at the regional level is still poorly understood. To better understand the vulnerability of the landscape to thermokarst disturbance in Alaska, we developed the Alaska Thermokarst Model (ATM), a state-and-transition model designed to simulate land cover change associated with thermokarst disturbance. In boreal regions, the model simulates transitions from permafrost plateau forest to thermokarst lake, bog or fen, as a function of climate and fire dynamics, permafrost characteristics and physiographic information. This model is designed and parameterized based on existing literature and a new repeated imagery analysis we conducted in a major wetland complex in boreal Alaska. We will present simulation and validation of thermokarst dynamic and associated land cover change in two wetland complexes in boreal Alaska, from 2000 to 2100 for six climate scenarios associating three AR5 emission scenarios and two global circulation model simulations. By 2100, ATM is predicting decrease between 3.5 and 9.1 % in the extent of permafrost plateau forest, mostly to the benefit of thermokarst fen, and lake. This analysis allowed us to assess the importance of thermokarst dynamics and landscape evolution

  15. Geology of the Prince William Sound and Kenai Peninsula region, Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Hults, Chad P.

    2012-01-01

    The Prince William Sound and Kenai Peninsula region includes a significant part of one of the world’s largest accretionary complexes and a small part of the classic magmatic arc geology of the Alaska Peninsula. Physiographically, the map area ranges from the high glaciated mountains of the Alaska and Aleutian Ranges and the Chugach Mountains to the coastal lowlands of Cook Inlet and the Copper River delta. Structurally, the map area is cut by a number of major faults and postulated faults, the most important of which are the Border Ranges, Contact, and Bruin Bay Fault systems. The rocks of the map area belong to the Southern Margin composite terrane, a Tertiary and Cretaceous or older subduction-related accretionary complex, and the Alaska Peninsula terrane. Mesozoic rocks between these two terranes have been variously assigned to the Peninsular or the Hidden terranes. The oldest rocks in the map area are blocks of Paleozoic age within the mélange of the McHugh Complex; however, the protolith age of the greenschist and blueschist within the Border Ranges Fault zone is not known. Extensive glacial deposits mantle the Kenai Peninsula and the lowlands on the west side of Cook Inlet and are locally found elsewhere in the map area. This map was compiled from existing mapping, without generalization, and new or revised data was added where available.

  16. Alaska Energy Inventory Project: Consolidating Alaska's Energy Resources

    NASA Astrophysics Data System (ADS)

    Papp, K.; Clough, J.; Swenson, R.; Crimp, P.; Hanson, D.; Parker, P.

    2007-12-01

    Alaska has considerable energy resources distributed throughout the state including conventional oil, gas, and coal, and unconventional coalbed and shalebed methane, gas hydrates, geothermal, wind, hydro, and biomass. While much of the known large oil and gas resources are concentrated on the North Slope and in the Cook Inlet regions, the other potential sources of energy are dispersed across a varied landscape from frozen tundra to coastal settings. Despite the presence of these potential energy sources, rural Alaska is mostly dependent upon diesel fuel for both electrical power generation and space heating needs. At considerable cost, large quantities of diesel fuel are transported to more than 150 roadless communities by barge or airplane and stored in large bulk fuel tank farms for winter months when electricity and heat are at peak demands. Recent increases in the price of oil have severely impacted the price of energy throughout Alaska, and especially hard hit are rural communities and remote mines that are off the road system and isolated from integrated electrical power grids. Even though the state has significant conventional gas resources in restricted areas, few communities are located near enough to these resources to directly use natural gas to meet their energy needs. To address this problem, the Alaska Energy Inventory project will (1) inventory and compile all available Alaska energy resource data suitable for electrical power generation and space heating needs including natural gas, coal, coalbed and shalebed methane, gas hydrates, geothermal, wind, hydro, and biomass and (2) identify locations or regions where the most economic energy resource or combination of energy resources can be developed to meet local needs. This data will be accessible through a user-friendly web-based interactive map, based on the Alaska Department of Natural Resources, Land Records Information Section's (LRIS) Alaska Mapper, Google Earth, and Terrago Technologies' Geo

  17. Reaction of amorphous/crystalline SiOC/Fe interfaces by thermal annealing

    DOE PAGES

    Su, Qing; Zhernenkov, Mikhail; Ding, Hepeng; ...

    2017-06-12

    The development of revolutionary new alloys and composites is crucial to meeting materials requirements for next generation nuclear reactors. The newly developed amorphous silicon oxycarbide (SiOC) and crystalline Fe composite system has shown radiation tolerance over a wide range of temperatures. To advance understanding of this new composite, we investigate the structure and thermal stability of the interface between amorphous SiOC and crystalline Fe by combining various experimental techniques and simulation methods. We show that the SiOC/Fe interface is thermally stable up to at least 400 °C. When the annealing temperature reaches 600 °C, an intermixed region forms at thismore » interface. This region appears to be a crystalline phase that forms an incoherent interface with the Fe layer. Density functional theory (DFT) Molecular dynamics (MD) is performed on the homogeneous SiFeOC phase to study the early stages of 2 formation of the intermixed layer. Both experimental and simulation results suggest this phase has the fayalite crystal structure. As a result, the physical processes involved in the formation of the intermixed region are discussed.« less

  18. Oil-spill risk analysis: Outer continental shelf lease sale 158, Gulf of Alaska/Yakutat. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, C.M.; Johnson, W.R.; Marshall, C.F.

    1995-01-01

    The Federal Government has proposed to offer Outer Continental Shelf lands in the Gulf of Alaska/Yakutat for oil and gas leasing. Because oil spills may occur from activities associated with offshore oil production, the Minerals Management Service conducts a formal risk assessment. The report summarizes results of an oil-spill risk analysis conducted for OCS Lease Sale 158, Gulf of Alaska/Yakutat. The objective of this analysis was to estimate relative risks associated with oil and gas production for the proposed lease sale.

  19. Alaska OCS socioeconomic studies program. Technical report number 44. Lower Cook Inlet petroleum development scenarios: commercial fishing industry analysis. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terry, J.M.; Scoles, R.G.; Larson, D.M.

    1980-07-01

    The objectives of the report are to increase the understanding of the potential relationships between the commercial fishing and Outer Continental Shelf (OCS) petroleum industries and to project the potential impacts on the commercial fishing industry of Cook Inlet and Shelikof Strait that may occur as a result of the proposed OCS Lease Sale Number 60. To meet this objective, the report consists of: (1) the documentation and examination of the history and current trends of the Cook Inlet and Shelikof Strait commercial fishing industry as necessary to develop a basis for projecting fishery development and potential interactions with themore » OCS petroleum industry, (2) the development of models used to forecast the level of commercial fishing industry activity through the year 2000 in the absence of OCS development pursuant to Lease Sale Number 60, and (3) an analysis of the potential impacts of Lease Sale Number 60 based on the hypothesized nature and magnitude of the activities of the commercial fishing and OCS petroleum industries. Both the harvesting and processing sectors of the fishing industry are considered. The sources of impacts considered are the competition for labor, ocean space use, and the infrastructure. Potential impacts due to environmental or biological changes resulting from OCS petroleum development are not considered.« less

  20. Wood and fish residuals composting in Alaska

    Treesearch

    David Nicholls; Thomas Richard; Jesse A. Micales

    2002-01-01

    The unique climates and industrial mix in southeast and south central Alaska are challenges being met by the region's organics recyclers. OMPOSTING wood residuals in Alaska has become increasingly important in recent years as wood processors and other industrial waste managers search for environmentally sound and profitable outlets. Traditionally, Alaska?s...

  1. Dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in fine aerosols over central Alaska: Implications for sources and atmospheric processes

    NASA Astrophysics Data System (ADS)

    Deshmukh, Dhananjay K.; Mozammel Haque, Md.; Kawamura, Kimitaka; Kim, Yongwon

    2018-04-01

    The presence of water-soluble dicarboxylic acids in atmospheric aerosols has a significant influence on the regional radiative forcing through direct aerosol effect and cloud formation process. Fine aerosol (PM2.5) samples collected in central Alaska (Fairbanks: 64.51°N and 147.51°W) during summer of 2009 were measured for water-soluble diacids (C2-C12), oxoacids (C2-C9) and α-dicarbonyls (C2-C3) as well as elemental carbon (EC), organic carbon (OC) and water-soluble OC (WSOC) to assess their sources and formation processes. We found the predominance of oxalic acid (C2) followed by malonic (C3) and succinic acid (C4) in Alaskan aerosols. Higher C3/C4 diacid ratios (ave. 1.2) in Alaskan aerosols than those reported for fresh aerosols emitted from fossil fuel combustion (ave. 0.35) and biomass burning (0.51-0.66) suggest that organic aerosols in central Alaska were photochemically processed. The relatively high correlations of major diacids and related compounds with levoglucosan (r = 0.80-0.99) than those with 2-methylglyceric acid (r = 0.59-0.98) suggest that they were significantly produced from biomass burning emission. Strong correlations of C2 with normal-chain saturated diacids (C3-C9: r = 0.80-0.98), glyoxylic acid (ωC2: r = 0.95) and methylglyoxal (MeGly: r = 0.88), together with strong correlations of solar radiation with ratio of C2 to C2-C12 diacids (r = 0.83), ωC2 (r = 0.80) and MeGly (r = 0.82) suggest that oxalic acid in PM2.5 aerosol was produced by the photooxidation of higher homologous diacids, glyoxylic acid and methylglyoxal in the atmosphere of central Alaska. These results reveal that photochemical processing of organic precursors mainly produced from biomass burning control the water-soluble organic chemical composition of fine aerosols in central Alaska.

  2. Publications - RI 2001-1A | Alaska Division of Geological & Geophysical

    Science.gov Websites

    content DGGS RI 2001-1A Publication Details Title: Bedrock geologic map of the Chulitna region the Chulitna region, southcentral Alaska: Alaska Division of Geological & Geophysical Surveys ; Other Oversized Sheets Sheet 1 Bedrock geologic map of the Chulitna region, southcentral Alaska, scale 1

  3. High-Resolution Laser Photoacoustic Spectroscopy of OCS in the 12 000-13 000 cm -1 Region

    NASA Astrophysics Data System (ADS)

    Tranchart, S.; Hadj Bachir, I.; Huet, T. R.; Olafsson, A.; Destombes, J.-L.; Naı¨m, S.; Fayt, A.

    1999-08-01

    A spectrum of natural OCS has been recorded in the near-infrared region using the laser photoacoustic technique. The source is a titanium-sapphire laser pumped by an Ar+ laser. The tunable 1.5 W beam was sent through the photoacoustic cell. This windowless longitudinal resonant cell was designed with two λ/4 buffer volumes at both ends in order to reduce the noise and so to increase the sensitivity (αmin ≈ 10-9 cm-1). The spectrum of OCS, at a pressure of 90 Torr, has been recorded in the regions 11 953-12 084, 12 829-12 890, and 12 998-13 001 cm-1. In addition to the 0006-0000 band of 16O12C32S recently identified by Ch. Hornberger, B. Boor, R. Stuber, W. Demtröder, S. Naı̈m, and A. Fayt, J. Mol. Spectrosc. 179, 237-245, 1996, new weaker bands have been observed: 0405-0000, 1 1003-0000, 1006-0000, 1405-0000, 0206-0000, and 0116-0110, and also the 0006-0000 band of 16O12C34S. Effective state parameters are deduced from the band-by-band least-squares fits. The new data have also been introduced in the global analysis which takes into account the l-type resonance and the main anharmonic interactions and so allows a full understanding of the perturbations and the intensity transfers.

  4. Estimating regional-scale methane flux and budgets using CARVE aircraft measurements over Alaska

    NASA Astrophysics Data System (ADS)

    Hartery, Sean; Commane, Róisín; Lindaas, Jakob; Sweeney, Colm; Henderson, John; Mountain, Marikate; Steiner, Nicholas; McDonald, Kyle; Dinardo, Steven J.; Miller, Charles E.; Wofsy, Steven C.; Chang, Rachel Y.-W.

    2018-01-01

    Methane (CH4) is the second most important greenhouse gas but its emissions from northern regions are still poorly constrained. In this study, we analyze a subset of in situ CH4 aircraft observations made over Alaska during the growing seasons of 2012-2014 as part of the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE). Net surface CH4 fluxes are estimated using a Lagrangian particle dispersion model which quantitatively links surface emissions from Alaska and the western Yukon with observations of enhanced CH4 in the mixed layer. We estimate that between May and September, net CH4 emissions from the region of interest were 2.2 ± 0.5 Tg, 1.9 ± 0.4 Tg, and 2.3 ± 0.6 Tg of CH4 for 2012, 2013, and 2014, respectively. If emissions are only attributed to two biogenic eco-regions within our domain, then tundra regions were the predominant source, accounting for over half of the overall budget despite only representing 18 % of the total surface area. Boreal regions, which cover a large part of the study region, accounted for the remainder of the emissions. Simple multiple linear regression analysis revealed that, overall, CH4 fluxes were largely driven by soil temperature and elevation. In regions specifically dominated by wetlands, soil temperature and moisture at 10 cm depth were important explanatory variables while in regions that were not wetlands, soil temperature and moisture at 40 cm depth were more important, suggesting deeper methanogenesis in drier soils. Although similar environmental drivers have been found in the past to control CH4 emissions at local scales, this study shows that they can be used to generate a statistical model to estimate the regional-scale net CH4 budget.

  5. 76 FR 303 - Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ...] Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental... modification of its approved Municipal Solid Waste Landfill (MSWLF) permit program. On March 22, 2004, EPA..., Waste, and Toxics, U.S. EPA, Region 10, 1200 Sixth Avenue, Suite 900, Mailstop: AWT-122, Seattle, WA...

  6. Mineral deposits and metallogeny of Alaska

    USGS Publications Warehouse

    Goldfarb, Richard J.; Meighan, Corey J.; Meinert, Lawrence D.; Wilson, Frederic H.

    2016-01-01

    Alaska, the largest State within the United States, and mainly located north of latitude 60°, is an important part of the Circum-Arctic region. Alaska is a richly endowed region with a long and complex geologic history. The mining history is short by world standards but nevertheless there are a number of world-class deposits in Alaska, of which Red Dog and Pebble are among the largest of their respective types in the world. Alaska is a collection of geologic terranes or regions having distinct histories, most of which were tectonically assembled in the period from 400 million years to 50 million years ago (late Paleozoic through early Tertiary). They now occur as numerous fault-bounded blocks in the northernmost part of the North American Cordillera on the western margin of the Laurentian craton. These terranes are comprised of rocks ranging in age from Paleoproterozoic to Recent.

  7. Satellite Boreal Measurements over Alaska and Canada During June-July 2004: Simultaneous Measurements of Upper Tropospheric CO, C2H6, HCN, CH3Cl, CH4, C2H2, CH2OH, HCOOH, OCS, and SF6 Mixing Ratios

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Dufour, Gaelle; Boone, Chris D.; Bernath, Peter F.; Chiou, Linda; Coheur, Pierre-Francois; Turquety, Solene; Clerbaux, Cathy

    2007-01-01

    Simultaneous ACE (Atmospheric Chemistry Experiment) upper tropospheric CO, C2H6, HCN, CH3Cl, CH4 , C2H2 , CH30H, HCOOH, and OCS measurements show plumes up to 185 ppbv (10 (exp -9) per unit volume) for CO, 1.36 ppbv for C2H6, 755 pptv (10(exp -12) per unit volume) for HCN, 1.12 ppbv for CH3C1, 1.82 ppmv, (10(exp -6) per unit volume) for CH4, 0.178 ppbv for C2H2, 3.89 ppbv for CH30H, 0.843 ppbv for HCOOH, and 0.48 ppbv for OCS in western Canada and Alaska at 50 deg N-68 deg N latitude between 29 June and 23 July 2004. Enhancement ratios and emission factors for HCOOH, CH30H, HCN, C2H6, and OCS relative to CO at 250-350 hPa are inferred from measurements of young plumes compared with lower mixing ratios assumed to represent background conditions based on a CO emission factor derived from boreal measurements. Results are generally consistent with the limited data reported for various vegetative types and emission phases measured in extratropical forests including boreal forests. The low correlation between fire product emission mixing ratios and the S176 mixing ratio is consistent with no significant SF6 emissions from the biomass fires.

  8. Does winter region affect spring arrival time and body mass of king eiders in northern Alaska?

    USGS Publications Warehouse

    Oppel, Steffen; Powell, Abby N.

    2009-01-01

    Events during the non-breeding season may affect the body condition of migratory birds and influence performance during the following breeding season. Migratory birds nesting in the Arctic often rely on endogenous nutrients for reproductive efforts, and are thus potentially subject to such carry-over effects. We tested whether king eider (Somateria spectabilis) arrival time and body mass upon arrival at breeding grounds in northern Alaska were affected by their choice of a winter region in the Bering Sea. We captured birds shortly after arrival on breeding grounds in early June 2002–2006 at two sites in northern Alaska and determined the region in which individuals wintered using satellite telemetry or stable isotope ratios of head feathers. We used generalized linear models to assess whether winter region explained variation in arrival body mass among individuals by accounting for sex, site, annual variation, and the date a bird was captured. We found no support for our hypothesis that either arrival time or arrival body mass of king eiders differed among winter regions. We conclude that wintering in different regions in the Bering Sea is unlikely to have reproductive consequences for king eiders in our study areas.

  9. Year-round Regional CO2 Fluxes from Boreal and Tundra Ecosystems in Alaska

    NASA Astrophysics Data System (ADS)

    Commane, R.; Lindaas, J.; Benmergui, J. S.; Luus, K. A.; Chang, R. Y. W.; Daube, B. C.; Euskirchen, E. S.; Henderson, J.; Karion, A.; Miller, J. B.; Miller, S. M.; Parazoo, N.; Randerson, J. T.; Sweeney, C.; Tans, P. P.; Thoning, K. W.; Veraverbeke, S.; Miller, C. E.; Wofsy, S. C.

    2016-12-01

    High-latitude ecosystems could release large amounts of carbon dioxide (CO2) to the atmosphere in a warmer climate. We derive temporally and spatially resolved year-round CO2 fluxes in Alaska from a synthesis of airborne and tower CO2 observations in 2012-2014. We find that tundra ecosystems were net sources of atmospheric CO2. We discuss these flux estimates in the context of long-term CO2 measurements at Barrow, AK, to asses the long term trend in carbon fluxes in the Arctic. Many Earth System Models incorrectly simulate net carbon uptake in Alaska presently. Our results imply that annual net emission of CO2 to the atmosphere may have increased markedly in this region of the Arctic in response to warming climate, supporting the view that climate-carbon feedback is strongly positive in the high Arctic.

  10. Potential for Expanding the Near Real Time ForWarn Regional Forest Monitoring System to Include Alaska

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Gasser, Gerald; Hargrove, William; Smoot, James; Kuper, Philip D.

    2014-01-01

    The on-line near real time (NRT) ForWarn system is currently deployed to monitor regional forest disturbances within the conterminous United States (CONUS), using daily MODIS Aqua and Terra NDVI data to derive monitoring products. The Healthy Forest Restoration Act of 2003 mandated such a system. Work on ForWarn began in 2006 with development and validation of retrospective MODIS NDVI-based forest monitoring products. Subsequently, NRT forest disturbance monitoring products were demonstrated, leading to the actual system deployment in 2010. ForWarn provides new CONUS forest disturbance monitoring products every 8 days, using USGS eMODIS data for current NDVI. ForWarn currently does not cover Alaska, which includes extensive forest lands at risk to multiple biotic and abiotic threats. This poster discusses a case study using Alaska eMODIS Terra data to derive ForWarn like forest change products during the 2010 growing season. The eMODIS system provides current MODIS Terra NDVI products for Alaska. Resulting forest change products were assessed with ground, aerial, and Landsat reference data. When cloud and snow free, these preliminary products appeared to capture regional forest disturbances from insect defoliation and fires; however, more work is needed to mitigate cloud and snow contamination, including integration of eMODIS Aqua data.

  11. 78 FR 10546 - Approval and Promulgation of Implementation Plans; State of Alaska; Regional Haze State...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-14

    ... submittal identifies organic carbon emissions from natural wildfires as the primary contributor to... 20% worst days in Denali National Park were composed of organic carbon from natural fires. Alaska... Organic Matter Carbon (OMC) and Elemental Carbon (EC), it attributes all OMC and EC in the Denali region...

  12. High Resolution Regional Climate Simulations over Alaska

    NASA Astrophysics Data System (ADS)

    Monaghan, A. J.; Clark, M. P.; Arnold, J.; Newman, A. J.; Musselman, K. N.; Barlage, M. J.; Xue, L.; Liu, C.; Gutmann, E. D.; Rasmussen, R.

    2016-12-01

    In order to appropriately plan future projects to build and maintain infrastructure (e.g., dams, dikes, highways, airports), a number of U.S. federal agencies seek to better understand how hydrologic regimes may shift across the country due to climate change. Building on the successful completion of a series of high-resolution WRF simulations over the Colorado River Headwaters and contiguous USA, our team is now extending these simulations over the challenging U.S. States of Alaska and Hawaii. In this presentation we summarize results from a newly completed 4-km resolution WRF simulation over Alaska spanning 2002-2016 at 4-km spatial resolution. Our aim is to gain insight into the thermodynamics that drive key precipitation processes, particularly the extremes that are most damaging to infrastructure.

  13. Integrated resource inventory for southcentral Alaska (INTRISCA)

    NASA Technical Reports Server (NTRS)

    Burns, T.; Carson-Henry, C.; Morrissey, L. A.

    1981-01-01

    The Integrated Resource Inventory for Southcentral Alaska (INTRISCA) Project comprised an integrated set of activities related to the land use planning and resource management requirements of the participating agencies within the southcentral region of Alaska. One subproject involved generating a region-wide land cover inventory of use to all participating agencies. Toward this end, participants first obtained a broad overview of the entire region and identified reasonable expectations of a LANDSAT-based land cover inventory through evaluation of an earlier classification generated during the Alaska Water Level B Study. Classification of more recent LANDSAT data was then undertaken by INTRISCA participants. The latter classification produced a land cover data set that was more specifically related to individual agency needs, concurrently providing a comprehensive training experience for Alaska agency personnel. Other subprojects employed multi-level analysis techniques ranging from refinement of the region-wide classification and photointerpretation, to digital edge enhancement and integration of land cover data into a geographic information system (GIS).

  14. Metabolic syndrome: prevalence among American Indian and Alaska native people living in the southwestern United States and in Alaska.

    PubMed

    Schumacher, Catherine; Ferucci, Elizabeth D; Lanier, Anne P; Slattery, Martha L; Schraer, Cynthia D; Raymer, Terry W; Dillard, Denise; Murtaugh, Maureen A; Tom-Orme, Lillian

    2008-12-01

    Metabolic syndrome occurs commonly in the United States. The purpose of this study was to measure the prevalence of metabolic syndrome among American Indian and Alaska Native people. We measured the prevalence rates of metabolic syndrome, as defined by the National Cholesterol Education Program, among four groups of American Indian and Alaska Native people aged 20 years and older. One group was from the southwestern United States (Navajo Nation), and three groups resided within Alaska. Prevalence rates were age-adjusted to the U.S. adult 2000 population and compared to rates for U.S. whites (National Health and Nutrition Examination Survey [NHANES] 1988-1994). Among participants from the southwestern United States, metabolic syndrome was found among 43.2% of men and 47.3% of women. Among Alaska Native people, metabolic syndrome was found among 26.5% of men and 31.2% of women. In Alaska, the prevalence rate varied by region, ranging among men from 18.9% (western Alaska) to 35.1% (southeast), and among women from 22.0% (western Alaska) to 38.4 % (southeast). Compared to U.S. whites, American Indian/Alaska Native men and women from all regions except western Alaska were more likely to have metabolic syndrome; men in western Alaska were less likely to have metabolic syndrome than U.S. whites, and the prevalence among women in western Alaska was similar to that of U.S. whites. The prevalence rate of metabolic syndrome varies widely among different American Indian and Alaska Native populations. Differences paralleled differences in the prevalence rates of diabetes.

  15. 30 CFR 250.468 - What well records am I required to submit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations... drilling operations in the GOM OCS Region, you must submit form MMS-133, Well Activity Report, to the District Manager on a weekly basis. (c) For drilling operations in the Pacific or Alaska OCS Regions, you...

  16. Trends and Disparities in Stroke Mortality by Region for American Indians and Alaska Natives

    PubMed Central

    Ayala, Carma; Valderrama, Amy L.; Veazie, Mark A.

    2014-01-01

    Objectives. We evaluated trends and disparities in stroke death rates for American Indians and Alaska Natives (AI/ANs) and White people by Indian Health Service region. Methods. We identified stroke deaths among AI/AN persons and Whites (adults aged 35 years or older) using National Vital Statistics System data for 1990 to 2009. We used linkages with Indian Health Service patient registration data to adjust for misclassification of race for AI/AN persons. Analyses excluded Hispanics and focused on Contract Health Service Delivery Area (CHSDA) counties. Results. Stroke death rates among AI/AN individuals were higher than among Whites for both men and women in CHSDA counties and were highest in the youngest age groups. Rates and AI/AN:White rate ratios varied by region, with the highest in Alaska and the lowest in the Southwest. Stroke death rates among AI/AN persons decreased in all regions beginning in 2001. Conclusions. Although stroke death rates among AI/AN populations have decreased over time, rates are still higher for AI/AN persons than for Whites. Interventions that address reducing stroke risk factors, increasing awareness of stroke symptoms, and increasing access to specialty care for stroke may be more successful at reducing disparities in stroke death rates. PMID:24754653

  17. Facts About Alaska, Alaska Kids' Corner, State of Alaska

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees State of Alaska Search Home Quick Links Departments Commissioners Employee Whitepages State Government Jobs Federal Jobs Starting a Small Business Living Get a Driver License Get a Hunting

  18. Gravity survey and regional geology of the Prince William Sound epicentral region, Alaska: Chapter C in The Alaska earthquake, March 27, 1964: regional effects

    USGS Publications Warehouse

    Case, J.E.; Barnes, D.F.; Plafker, George; Robbins, S.L.

    1966-01-01

    Sedimentary and volcanic rocks of Mesozoic and early Tertiary age form a roughly arcuate pattern in and around Prince William Sound, the epicentral region of the Alaska earthquake of 1964. These rocks include the Valdez Group, a predominantly slate and graywacke sequence of Jurassic and Cretaceous age, and the Orca Group, a younger sequence of early Tertiary age. The Orca consists of a lower unit of dense-average 2.87 g per cm3 (grams per cubic centimeter) pillow basalt and greenstone intercalated with sedimentary rocks and an upper unit of lithologically variable sandstone interbedded with siltstone or argillite. Densities of the clastic rocks in both the Valdez and Orca Groups average about 2.69 g per cm3. Granitic rocks of relatively low density (2.62 g per cm3) cut the Valdez and Orca Groups at several localities. Both the Valdez and the Orca Groups were complexly folded and extensively faulted during at least three major episodes of deformation: an early period of Cretaceous or early Tertiary orogeny, a second orogeny that probably culminated in late Eocene or early Oligocene time and was accompanied or closely followed by emplacement of granitic batholiths, and a third episode of deformation that began in late Cenozoic time and continued intermittently to the present. About 500 gravity stations were established in the Prince William Sound region in conjunction with postearthquake geologic investigations. Simple Bouguer anomaly contours trend approximately parallel to the arcuate geologic structure around the sound. Bouguer anomalies decrease northward from +40 mgal (milligals) at the southwestern end of Montague Island to -70 mgal at College and Harriman Fiords. Most of this change may be interpreted as a regional gradient caused by thickening of the continental crust. Superimposed on the gradient is a prominent gravity high of as much as 65 mgal that extends from Elrington Island on the southwest, across Knight and Glacier Islands to the Ellamar Peninsula

  19. 77 FR 4578 - Alaska Region's Subsistence Resource Commission (SRC) Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ... Chignik Lake, Alaska, (907) 442-3890, on Wednesday, February 8, 2012. The meeting will start at 1 p.m. and conclude at 5 p.m. or until business is completed. For Further Information on the Aniakchak National.... Federal Subsistence Board Updates 9. Alaska Board of Game Updates 10. Old Business a. Subsistence...

  20. Forest dynamics in the temperate rainforests of Alaska: from individual tree to regional scales

    Treesearch

    Tara M. Barrett

    2015-01-01

    Analysis of remeasurement data from 1079 Forest Inventory and Analysis (FIA) plots revealed multi-scale change occurring in the temperate rainforests of southeast Alaska. In the western half of the region, including Prince William Sound, aboveground live tree biomass and carbon are increasing at a rate of 8 ( ± 2 ) percent per decade, driven by an increase in Sitka...

  1. Bedrock geologic map of the northern Alaska Peninsula area, southwestern Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Blodgett, Robert B.; Blome, Charles D.; Mohadjer, Solmaz; Preller, Cindi C.; Klimasauskas, Edward P.; Gamble, Bruce M.; Coonrad, Warren L.

    2017-03-03

    The northern Alaska Peninsula is a region of transition from the classic magmatic arc geology of the Alaska Peninsula to a Proterozoic and early Paleozoic carbonate platform and then to the poorly understood, tectonically complex sedimentary basins of southwestern Alaska. Physiographically, the region ranges from the high glaciated mountains of the Alaska-Aleutian Range to the coastal lowlands of Cook Inlet on the east and Bristol Bay on the southwest. The lower Ahklun Mountains and finger lakes on the west side of the map area show strong effects from glaciation. Structurally, a number of major faults cut the map area. Most important of these are the Bruin Bay Fault that parallels the coast of Cook Inlet, the Lake Clark Fault that cuts diagonally northeast to southwest across the eastern part of the map area, and the presently active Holitna Fault to the northwest that cuts surficial deposits.Distinctive rock packages assigned to three provinces are overlain by younger sedimentary rocks and intruded by widely dispersed latest Cretaceous and (or) early Tertiary granitic rocks. Much of the east half of the map area lies in the Alaska-Aleutian Range province; the Jurassic to Tertiary Alaska-Aleutian Range batholith and derivative Jurassic sedimentary rocks form the core of this province, which is intruded and overlain by the Aleutian magmatic arc. The Lime Hills province, the carbonate platform, occurs in the north-central part of the map area. The Paleozoic and Mesozoic Ahklun Mountains province in the western part of the map area includes abundant chert, argillite, and graywacke and lesser limestone, basalt, and tectonic mélange. The Kuskokwim Group, an Upper Cretaceous turbidite sequence, is extensively exposed and bounds all three provinces in the west-central part of the map area.

  2. Life cycle costs for Alaska bridges.

    DOT National Transportation Integrated Search

    2014-08-01

    A study was implemented to assist the Alaska Department of Transportation and Public Facilities (ADOT&PF) with life cycle costs for : the Alaska Highway Bridge Inventory. The study consisted of two parts. Part 1 involved working with regional offices...

  3. Faulting and instability of shelf sediments: eastern Gulf of Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, P.R.; Molnia, B.F.

    1976-04-01

    Faults and submarine slides or slumps are potential environmental hazards on the outer continental shelf of the northern Gulf of Alaska. Submarine slides or slumps have been found in two places in the OCS region: (1) seaward of the Malaspina Glacier and Icy Bay, an area of 1770 square kilometers, that has a slope of less than one-half degree, and (2) across the entire span of the Copper River prodelta, an area of 1730 square kilometers, that has a slope of about one-half degree. Seismic profiles across these areas show disrupted reflectors and irregular topography commonly associated with submarine slidesmore » or slumps. Other potential slide or slum areas have been delineated in areas of thick sediment accumulation and relatively steep slopes. These areas include Kayak Trough, parts of Hinchinbrook Entrance and Sea Valley, parts of the outer shelf and upper slope between Kayak Island and Yakutat Bay and Bering Trough.« less

  4. 15 CFR 930.73 - OCS plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false OCS plan. 930.73 Section 930.73...) Exploration, Development and Production Activities § 930.73 OCS plan. (a) The term “OCS plan” means any plan... described in detail in OCS plans approved by the Secretary of the Interior or designee prior to management...

  5. Functional Assessment of Alaska Peatlands in Cook Inlet Basin, Region 10 Regional Applied Research Effort (RARE)

    EPA Science Inventory

    Peatlands in south central Alaska are the dominant wetland class in the lowlands of the Cook Inlet Basin. Currently Alaska peatlands are extensive and largely pristine but these areas are facing increasing human development. This study focused on obtaining measures of ecologica...

  6. Southwest Alaska Regional Geothermal Energy Projec

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holdmann, Gwen

    2015-04-30

    Drilling and temperature logging campaigns between the late 1970's and early 1980’s measured temperatures at Pilgrim Hot Springs in excess of 90°C. Between 2010 and 2014 the University of Alaska used a variety of methods including geophysical surveys, remote sensing techniques, heat budget modeling, and additional drilling to better understand the resource and estimate the available geothermal energy.

  7. Geomorphic Controls on Floodplain Soil Organic Carbon in the Yukon Flats, Interior Alaska, From Reach to River Basin Scales

    NASA Astrophysics Data System (ADS)

    Lininger, K. B.; Wohl, E.; Rose, J. R.

    2018-03-01

    Floodplains accumulate and store organic carbon (OC) and release OC to rivers, but studies of floodplain soil OC come from small rivers or small spatial extents on larger rivers in temperate latitudes. Warming climate is causing substantial change in geomorphic process and OC fluxes in high latitude rivers. We investigate geomorphic controls on floodplain soil OC concentrations in active-layer mineral sediment in the Yukon Flats, interior Alaska. We characterize OC along the Yukon River and four tributaries in relation to geomorphic controls at the river basin, segment, and reach scales. Average OC concentration within floodplain soil is 2.8% (median = 2.2%). Statistical analyses indicate that OC varies among river basins, among planform types along a river depending on the geomorphic unit, and among geomorphic units. OC decreases with sample depth, suggesting that most OC accumulates via autochthonous inputs from floodplain vegetation. Floodplain and river characteristics, such as grain size, soil moisture, planform, migration rate, and riverine DOC concentrations, likely influence differences among rivers. Grain size, soil moisture, and age of surface likely influence differences among geomorphic units. Mean OC concentrations vary more among geomorphic units (wetlands = 5.1% versus bars = 2.0%) than among study rivers (Dall River = 3.8% versus Teedrinjik River = 2.3%), suggesting that reach-scale geomorphic processes more strongly control the spatial distribution of OC than basin-scale processes. Investigating differences at the basin and reach scale is necessary to accurately assess the amount and distribution of floodplain soil OC, as well as the geomorphic controls on OC.

  8. Aerosols in Alaska

    NASA Astrophysics Data System (ADS)

    Shaw, G. E.; Quinn, P. K.

    2008-12-01

    We are measuring the latitudinal gradient and time variation of aerosol chemical composition across Alaska looking for drifts that might be attributable to alteration in sources and chemical signatures that might allow the identification of sources. Alaska is a very clean region in the sense that the state has a low population density with little polluting emission sources. However it "receives" anthropogenic chemical signals from areas upstream in the westerly's, such as from China, and impacts of Arctic Haze. The region also generates sometime copious amounts of aerosol from wildfire in its boreal forests and condensed compounds from gases emitted by its surrounding oceans. The time series of aerosol composition from this small network goes back about a decade and shows clearly the spring peaking of anthropogenic signal known as Arctic Haze. This signal peaks year after year in spring months at all stations, but is most concentrated at north most stations. On the other hand, a signal indicative of products from the ocean, mainly sulfate with large fractional amounts of MSA peaks, year after year, in the summer and is strongest at the lower latitudes. We have identified not only chemical signatures associated with wildfire smoke from wildfires in Alaska, but the changed signatures from wildfires in far away regions, from Mongolia for example.

  9. Theory vs. experiment for molecular clusters: Spectra of OCS trimers and tetramers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evangelisti, Luca; Dipartimento di Chimica “G. Ciamician,” University of Bologna, Via Selmi 2, Bologna 40126; Perez, Cristobal

    All singly substituted {sup 13}C, {sup 18}O, and {sup 34}S isotopomers of the previously known OCS trimer are observed in natural abundance in a broad-band spectrum measured with a chirped-pulse Fourier transform microwave spectrometer. The complete substitution structure thus obtained critically tests (and confirms) the common assumption that monomers tend to retain their free structure in a weakly bound cluster. A new OCS trimer isomer is also observed, and its structure is determined to be barrel-shaped but with the monomers all approximately aligned, in contrast to the original trimer which is barrel-shaped with two monomers aligned and one anti-aligned. Anmore » OCS tetramer spectrum is assigned for the first time, and the tetramer structure resembles an original trimer with an OCS monomer added at the end with two sulfur atoms. Infrared spectra observed in the region of the OCS ν{sub 1} fundamental (≈2060 cm{sup −1}) are assigned to the same OCS tetramer, and another infrared band is tentatively assigned to a different tetramer isomer. The experimental results are compared and contrasted with theoretical predictions from the literature and from new cluster calculations which use an accurate OCS pair potential and assume pairwise additivity.« less

  10. An investigation of regional tropospheric methane in central interior Alaska using direct-sun FTIR

    NASA Astrophysics Data System (ADS)

    Jacobs, N.; Simpson, W. R.; Strong, K.; Conway, S. A.; Kasai, Y.; Dubey, M. K.; Parker, H. A.; Hase, F.; Blumenstock, T.; Tu, Q.

    2016-12-01

    Observations suggest that a warming climate is causing permafrost degradation in the sub-Arctic to increase and the boundaries of the Boreal Forest to advance Northward. Many low-lying (often wetland) areas that were once frozen are thawing, changing soil processes, which have the potential to alter carbon gas exchange. Possible changes in carbon emissions in subarctic ecosystems, such as those found in central interior Alaska, warrant an investigation of atmospheric methane (CH4) on a regional scale. In a joint US-Japanese project, ground-based direct-sun Fourier Transform Infrared (FTIR) spectra were collected at Poker Flat Research Range, Alaska (65.12ºN, 147.43ºW) from 2000 to 2010 using a Bruker IFS120HR spectrometer. From these spectra, vertical profiles of CH4 volume mixing ratio (VMR), as a function of altitude, were estimated with SFIT4 fitting software. A method for calculating VMRs of tropospheric CH4 proposed by Washenfelder et al. (2003, DOI: 10.1029/2003gl017969) was explored and compared to profile estimates for layers with the lowest altitude. This method uses HF total column measurements as a proxy for CH4 oxidation in the stratosphere to correct for stratospheric methane loss. Comparative timeseries were constructed relating CH4 VMR estimated for the surface layer of SFIT4 profiles, tropospheric CH4 VMR calculated using HF total columns, and in situ data from the NOAA site in Barrow, Alaska. In this presentation, we compare the various methods for tropospheric methane measurements and present a timeseries of methane over the ten-year period. The observations can be used in the future to constrain regional methane budgets in the sub-Arctic/Boreal Forest region. Similar direct-sun FTIR observations with a pair of Bruker EM27/Sun mobile spectromoters are being carried out in August and September 2016, and preliminary results from this campaign will also be presented.

  11. Alaska looks HOT!

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belcher, J.

    Production in Alaska has been sluggish in recent years, with activity in the Prudhoe Bay region in the North Slope on a steady decline. Alaska North Slope (ANS) production topped out in 1988 at 2.037 MMbo/d, with 1.6 MMbo/d from Prudhoe Bay. This year operators expect to produce 788 Mbo/d from Prudhoe Bay, falling to 739 Mbo/d next year. ANS production as a whole should reach 1.3 MMbo/d this year, sliding to 1.29 MMbo/d in 1998. These declining numbers had industry officials and politicians talking about the early death of the Trans-Alaskan Pipeline System-the vital link between ANS crude andmore » markets. But enhanced drilling technology coupled with a vastly improved relationship between the state government and industry have made development in Alaska more economical and attractive. Alaska`s Democratic Gov. Tommy Knowles is fond of telling industry {open_quotes}we`re open for business.{close_quotes} New discoveries on the North Slope and in the Cook Inlet are bringing a renewed sense of optimism to the Alaska exploration and production industry. Attempts by Congress to lift a moratorium on exploration and production activity in the Arctic National Wildlife Refuge (ANWR) have been thwarted thus far, but momentum appears to be with proponents of ANWR drilling.« less

  12. Geography of Alaska Lake Districts: Identification, Description, and Analysis of Lake-Rich Regions of a Diverse and Dynamic State

    USGS Publications Warehouse

    Arp, Christopher D.; Jones, Benjamin M.

    2009-01-01

    Lakes are abundant landforms and important ecosystems in Alaska, but are unevenly distributed on the landscape with expansive lake-poor regions and several lake-rich regions. Such lake-rich areas are termed lake districts and have landscape characteristics that can be considered distinctive in similar respects to mountain ranges. In this report, we explore the nature of lake-rich areas by quantitatively identifying Alaska's lake districts, describing and comparing their physical characteristics, and analyzing how Alaska lake districts are naturally organized and correspond to climatic and geophysical characteristics, as well as studied and managed by people. We use a digital dataset (National Hydrography Dataset) of lakes greater than 1 hectare, which includes 409,040 individual lakes and represents 3.3 percent of the land-surface area of Alaska. The selection criteria we used to identify lake districts were (1) a lake area (termed limnetic ratio, in percent) greater than the mean for the State, and (2) a lake density (number of lakes per unit area) greater than the mean for the State using a pixel size scaled to the area of interest and number of lakes in the census. Pixels meeting these criteria were grouped and delineated and all groups greater than 1,000 square kilometers were identified as Alaska's lake districts. These lake districts were described according to lake size-frequency metrics, elevation distributions, geology, climate, and ecoregions to better understand their similarities and differences. We also looked at where lake research and relevant ecological monitoring has occurred in Alaska relative to lake districts and how lake district lands and waters are currently managed. We identified and delineated 20 lake districts in Alaska representing 16 percent of the State, but including 65 percent of lakes and 75 percent of lake area. The largest lake districts identified are the Yukon-Kuskokwim Delta, Arctic Coastal Plain, and Iliamna lake districts with

  13. Address to Yukon-Kuskokwim Delta Regional Summit on Native Education (Bethel, Alaska, April 24, 2002).

    ERIC Educational Resources Information Center

    Ongtooguk, Paul

    Remarks of Alaska Native researcher and educator Paul Ongtooguk are presented. Alaska Native students perform worse on exit exams than any other population in the state. In the past, formal education was offered to Alaska Natives only if they gave up being Alaska Natives. The current system is not designed to solve the problems of Alaska Native…

  14. Seroprevalence of Brucella antibodies in harbor seals in Alaska, USA, with age, regional, and reproductive comparisons.

    PubMed

    Hoover-Miller, A; Dunn, J L; Field, C L; Blundell, G; Atkinson, S

    2017-09-20

    Populations of harbor seal Phoca vitulina in the Gulf of Alaska have dramatically declined during the past 4 decades. Numbers of seals in Glacier Bay, in southeast Alaska, USA, have also declined despite extensive protection. Causes of the declines and slow recovery are poorly understood. Brucellosis is a zoonotic disease that adversely affects reproduction in many domestic species. We measured the seroprevalence of Brucella antibodies in 554 harbor seals in 3 Alaska locations: Prince William Sound (PWS), Glacier Bay (GB), and Tracy Arm Fords Terror (TAFT) Wilderness Area. Objectives included testing for regional, sex, age, and female reproductive state differences in Brucella antibody seroprevalence, persistence in titers in recaptured seals, and differences in titers between mother seals and their pups. Overall, 52% of adults (AD), 53% of subadults (SA), 77% of yearlings (YRL), and 26% of <5 mo old pups were seropositive. Matched mother-pup samples were consistent with dependent pups acquiring maternal passive immunity to Brucella. Results show higher seroprevalence (64%) for AD and SA seals in the depressed and declining populations in PWS and GB than in TAFT (29%). Lactating females were less likely to be seropositive than other AD females, including pregnant females. Further research is needed to seek evidence of Brucella infection in Alaskan harbor seals, identify effects on neonatal viability, and assess zoonotic implications for Alaska Natives who rely on harbor seals for food.

  15. EarthScope Transportable Array Siting Outreach Activities in Alaska and Western Canada

    NASA Astrophysics Data System (ADS)

    Gardine, L.; Dorr, P. M.; Tape, C.; McQuillan, P.; Taber, J.; West, M. E.; Busby, R. W.

    2014-12-01

    The EarthScopeTransportable Array is working to locate over 260 stations in Alaska and western Canada. In this region, new tactics and partnerships are needed to increase outreach exposure. IRIS and EarthScope are partnering with the Alaska Earthquake Center, part of University of Alaska Geophysical Institute, to spread awareness of Alaska earthquakes and the benefits of the Transportable Array for Alaskans. Nearly all parts of Alaska are tectonically active. The tectonic and seismic variability of Alaska requires focused attention at the regional level, and the remoteness and inaccessibility of most Alaska villages and towns often makes frequent visits difficult. For this reason, Alaska outreach most often occurs at community events. When a community is accessible, every opportunity to engage the residents is made. Booths at state fairs and large cultural gatherings, such as the annual convention of the Alaska Federation of Natives, are excellent venues to distribute earthquake information and to demonstrate a wide variety of educational products and web-based applications related to seismology and the Transportable Array that residents can use in their own communities. Region-specific publications have been developed to tie in a sense of place for residents of Alaska. The Alaska content for IRIS's Active Earth Monitor will emphasize the widespread tectonic and seismic features and offer not just Alaska residents, but anyone interested in Alaska, a glimpse into what is going on beneath their feet. The concerted efforts of the outreach team will have lasting effects on Alaskan understanding of the seismic hazard and tectonics of the region. Efforts to publicize the presence of the Transportable Array in Alaska, western Canada, and the Lower 48 also continue. There have been recent articles published in university, local and regional newspapers; stories appearing in national and international print and broadcast media; and documentaries produced by some of the world

  16. 75 FR 51103 - Notice of Public Meetings for the National Park Service (NPS) Alaska Region's Subsistence...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... SRC and Wrangell-St. Elias SRC plan to meet to develop and continue work on National Park Service (NPS... SRC Meeting Date and Location: The Lake Clark National Park SRC meeting will be held on Tuesday... Alaska Regional Office, at (907) 644- 3603. Aniakchak National Monument SRC Meeting Date and Location...

  17. EarthScope Transportable Array Siting Outreach Activities in Alaska and Western Canada

    NASA Astrophysics Data System (ADS)

    Dorr, P. M.; Gardine, L.; Tape, C.; McQuillan, P.; Cubley, J. F.; Samolczyk, M. A.; Taber, J.; West, M. E.; Busby, R.

    2015-12-01

    The EarthScope Transportable Array is deploying about 260 stations in Alaska and western Canada. IRIS and EarthScope are partnering with the Alaska Earthquake Center, part of the University of Alaska's Geophysical Institute, and Yukon College to spread awareness of earthquakes in Alaska and western Canada and the benefits of the Transportable Array for people living in these regions. We provide an update of ongoing education and outreach activities in Alaska and Canada as well as continued efforts to publicize the Transportable Array in the Lower 48. Nearly all parts of Alaska and portions of western Canada are tectonically active. The tectonic and seismic variability of Alaska, in particular, requires focused attention at the regional level, and the remoteness and inaccessibility of most Alaskan and western Canadian villages and towns often makes frequent visits difficult. When a community is accessible, every opportunity to engage the residents is made. Booths at state fairs and large cultural gatherings, such as the annual convention of the Alaska Federation of Natives, are excellent venues to distribute earthquake information and to demonstrate a wide variety of educational products and web-based applications related to seismology and the Transportable Array that residents can use in their own communities. Meetings and interviews with Alaska Native Elders and tribal councils discussing past earthquakes has led to a better understanding of how Alaskans view and understand earthquakes. Region-specific publications have been developed to tie in a sense of place for residents of Alaska and the Yukon. The Alaska content for IRIS's Active Earth Monitor emphasizes the widespread tectonic and seismic features and offers not just Alaska residents, but anyone interested in Alaska, a glimpse into what is going on beneath their feet. The concerted efforts of the outreach team will have lasting effects on Alaskan and Canadian understanding of the seismic hazard and

  18. Vegetation and Environmental Gradients of the Prudhoe Bay Region, Alaska,

    DTIC Science & Technology

    1985-09-01

    to patterned-ground features , gram (IBP) to examine the tundra biome (Brown and the effects on other soil parameters. A major 1975, Tieszen 1978...ment of Environmental, Population and Organismic Biology. The study was initiat- ed in 1973 under the U.S. Tundra Biome portion of the International...contributions to the University of Alaska’s Tundra Biome Center from the Prudhoe Bay Environmental Subcommit- tee of the Alaska Oil and Gas Association

  19. Project RavenCare: global multimedia telemedicine in Alaska

    NASA Astrophysics Data System (ADS)

    Tohme, Walid G.; Collmann, Jeff R.; Mun, Seong K.; Vastola, David J.

    1995-05-01

    Project RavenCare is a testbed for assessing the utility of teleradiology, telemedicine and electronic patient records systems for delivering health care to Native Alaskans in remote villages. It is being established as a joint project between the department of radiology at Georgetown University Medical Center and the Southeast Alaska Regional Health Corporation (SEARHC) in Sitka, Alaska. This initiative will establish a sustained routine clinical multimedia telemedicine support for a village clinic in Hoonah, Alaska and a regional hospital in Sitka. It will link the village clinic in Hoonah to Mt. Edgecumbe Hospital in Sitka. This regional hospital will in turn be linked to Georgetown University Hospital through the T1- VSAT (very small aperture terminal) of the NASA-ACTS (Advanced Communication Technology Satellite). Regional physicians in Hoonah lack support in providing relatively routine care in areas such as radiology and pathology. This project is an initial step in a general plan to upgrade telecommunications in the health care system of the Southeast Alaska region and will address aspects of two problems; limited communication between the village health clinics and the hospital and lack of subspecialty support for hospital-based physicians in Sitka.

  20. MRSA USA300 at Alaska Native Medical Center, Anchorage, Alaska, USA, 2000–2006

    PubMed Central

    Rudolph, Karen M.; Hennessy, Thomas W.; Zychowski, Diana L.; Asthi, Karthik; Boyle-Vavra, Susan; Daum, Robert S.

    2012-01-01

    To determine whether methicillin-resistant Staphylococcus aureus (MRSA) USA300 commonly caused infections among Alaska Natives, we examined clinical MRSA isolates from the Alaska Native Medical Center, Anchorage, during 2000–2006. Among Anchorage-region residents, USA300 was a minor constituent among MRSA isolates in 2000–2003 (11/68, 16%); by 2006, USA300 was the exclusive genotype identified (10/10). PMID:22264651

  1. Generic OCs bioequivalent, but much maligned.

    PubMed

    1989-06-01

    Although generic oral contraceptives (OCs) are bioequivalent to brand-name formulations, many family planning professionals do not prescribe the significantly lower-priced generics. The Planned Parenthood Federation of America, for example, has refused to approve generic OCs for use in the organization's clinics, presumably because of concerns about their equivalent efficacy and safety. However, much of this skepticism may be fueled by misleading marketing by brand-name OC manufacturers. Sales representatives have reportedly told clinicians that generic OCs can be as much as 20% different from brand-name formulations, despite evidence collected by the US Food and Drug Administration confirming that there is virtually no difference except in terms of inert ingredients. In the case of many formulations, the variability between the generic and brand-name products is no different than the variability found between different lots of the same brand-name drug. Another obstacle to wider use of generic OCs is that discounts for large volume purchases make brand-name OCs the best buy for family planning clinics. Clinicians also note that clients complain of minor side effects whenever OC brands are changed, even if the compounds are the same. As the price of medication continues to rise, the more widespread availability of generic OCs will be especially important for teenagers and other low-income clients.

  2. Crustal structure of the St. Elias Mountains region, southern Alaska, from regional earthquakes and ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Ruppert, N. A.; Stachnik, J. C.; Hansen, R. A.

    2011-12-01

    STEEP (SainT Elias TEctonics and Erosion Project) is a multi-disciplinary research project that took place in southern Alaska between 2005 and 2010. An important component of this undertaking was installation and operation of a dense array of 22 broadband seismometers to augment and improve the existing regional seismic network in the St. Elias Mountains. This allowed for a lower detection threshold and better accuracy for local seismicity and also provided a rich dataset of teleseismic recordings. While the seismic stations were designed to transmit the data in real time, due to harsh weather and difficult terrain conditions some data were recorded only on site and had to be post-processed months and years later. Despite these difficulties, the recorded dataset detected and located regional earthquakes as small as magnitude 0.5 in the network core area. The recorded seismicity shows some clear patterns. A majority of the earthquakes are concentrated along the coast in a distributed area up to 100 km wide. The coastal seismicity can be further subdivided into 3 distinct clusters: Icy Bay, Bering Glacier, and the Copper River delta. This coastal seismicity is abutted by a somewhat aseismic zone that roughly follows the Bagley Ice Field. Farther inland another active region of seismicity is associated with the Denali Fault system. All this seismicity is concentrated in the upper 25 km of the crust. The only region where earthquakes as deep as 100 km occur is beneath the Wrangell volcanoes in the northwestern corner of the study area. The earthquake focal mechanisms are predominately reverse, with some areas of strike-slip faulting also present. The seismicity patterns and faulting mechanisms indicate a high concentration of thrust faulting in the coastal region. The ambient noise cross correlations from the stations in the STEEP region reveal Rayleigh wave packets with good signal-to-noise ratios yielding well-defined interstation phase velocity dispersion curves

  3. Native timber harvests in southeast Alaska.

    Treesearch

    G. Knapp

    1992-01-01

    The Alaska Native Claims Settlement Act established 13 Native corporations in southeast Alaska. There are 12 "village" corporations and 1 "regional" corporation (Sealaska Corporation). The Native corporations were entitled to select about 540,000 acres of land out of the Tongass National Forest; about 95 percent have been conveyed. This study...

  4. Catalogue of polar bear (Ursus maritimus) maternal den locations in the Beaufort Sea and neighboring regions, Alaska, 1910-2010

    USGS Publications Warehouse

    Durner, George M.; Fischbach, Anthony S.; Amstrup, Steven C.; Douglas, David C.

    2010-01-01

    This report presents data on the approximate locations and methods of discovery of 392 polar bear (Ursus maritimus) maternal dens found in the Beaufort Sea and neighboring regions between 1910 and 2010 that are archived by the U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska. A description of data collection methods, biases associated with collection method, primary time periods, and spatial resolution are provided. Polar bears in the Beaufort Sea and nearby regions den on both the sea ice and on land. Standardized VHF surveys and satellite radio telemetry data provide a general understanding of where polar bears have denned in this region over the past 3 decades. Den observations made during other research activities and anecdotal reports from other government agencies, coastal residents, and industry personnel also are reported. Data on past polar bear maternal den locations are provided to inform the public and to provide information for natural resource agencies in planning activities to avoid or minimize interference with polar bear maternity dens.

  5. 2006 Compilation of Alaska Gravity Data and Historical Reports

    USGS Publications Warehouse

    Saltus, Richard W.; Brown, Philip J.; Morin, Robert L.; Hill, Patricia L.

    2008-01-01

    Gravity anomalies provide fundamental geophysical information about Earth structure and dynamics. To increase geologic and geodynamic understanding of Alaska, the U.S. Geological Survey (USGS) has collected and processed Alaska gravity data for the past 50 years. This report introduces and describes an integrated, State-wide gravity database and provides accompanying gravity calculation tools to assist in its application. Additional information includes gravity base station descriptions and digital scans of historical USGS reports. The gravity calculation tools enable the user to reduce new gravity data in a consistent manner for combination with the existing database. This database has sufficient resolution to define the regional gravity anomalies of Alaska. Interpretation of regional gravity anomalies in parts of the State are hampered by the lack of local isostatic compensation in both southern and northern Alaska. However, when filtered appropriately, the Alaska gravity data show regional features having geologic significance. These features include gravity lows caused by low-density rocks of Cenozoic basins, flysch belts, and felsic intrusions, as well as many gravity highs associated with high-density mafic and ultramafic complexes.

  6. Volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory 1993

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Doukas, Michael P.

    1996-01-01

    During 1993, the Alaska Volcano Observatory (AVO) responded to episodes of eruptive activity or false alarms at nine volcanic centers in the state of Alaska. Additionally, as part of a formal role in KVERT (the Kamchatkan Volcano Eruption Response Team), AVO staff also responded to eruptions on the Kamchatka Peninsula, details of which are summarized in Miller and Kurianov (1993). In 1993, AVO maintained seismic instrumentation networks on four volcanoes of the Cook Inlet region--Spurr, Redoubt, Iliamna, and Augustine--and two stations at Dutton Volcano near King Cove on the Alaska Peninsula. Other routine elements of AVO's volcano monitoring program in Alaska include periodic airborne measurement of volcanic SO2 and CO2 at Cook Inlet volcanoes (Doukas, 1995) and maintenance of a lightning detection system in Cook Inlet (Paskievitch and others, 1995).

  7. Bioaccumulation of organochlorine contaminants in bowhead whales (Balaena mysticetus) from Barrow, Alaska.

    PubMed

    Hoekstra, P F; O'Hara, T M; Pallant, S J; Solomon, K R; Muir, D C G

    2002-05-01

    Bowhead whale (Balaena mysticetus) blubber (n = 72) and liver (n = 23) samples were collected during seven consecutive subsistence harvests (1997-2000) at Barrow, Alaska, to investigate the bioaccumulation of organochlorine contaminants (OCs) by this long-lived mysticete. The rank order of OC group concentrations (geometric mean, wet weight) in bowhead blubber samples were toxaphene (TOX; 455 ng/g) > polychlorinated biphenyls (SigmaPCBs; 410 ng/g) > dichlorodiphenyltrichloroethane-related compounds (SigmaDDT; 331 ng/g) >or= hexachlorocyclohexane isomers (SigmaHCHs; 203 ng/g) >or= chlordanes and related isomers (SigmaCHLOR; 183 ng/g) > chlorobenzenes (SigmaCIBz; 106 ng/g). In liver, SigmaHCH (9.5 ng/g; wet weight) was the most abundant SigmaOC group, followed by SigmaPCBs (9.1 ng/g) >or= TOX (8.8 ng/g) > SigmaCHLOR (5.5 ng/g) > SigmaCIBz (4.2 ng/g) >or= SigmaDDT (3.7 ng/g). The dominant analyte in blubber and liver was p,p'-DDE and alpha-HCH, respectively. Total TOX, SigmaPCBs, SigmaDDT, and SigmaCHLOR concentrations in blubber generally increased with age of male whales (as interpreted by body length), but this relationship was not significant for adult female whales. Biomagnification factor (BMF) values (0.1-45.5) for OCs from zooplankton (Calanus sp.) to bowhead whale were consistent with findings for other mysticetes. Tissue-specific differences in OC patterns in blubber and liver may be attributed to variation of tissue composition and the relatively low capacity of this species to biotransform various OCs. Principal component analysis of contaminants levels in bowhead blubber samples suggest that proportions of OCs, such as beta-HCH, fluctuate with seasonal migration of this species between the Bering, Chukchi, and Beaufort Seas.

  8. Regional District Attorney's Offices - Alaska Department of Law

    Science.gov Websites

    not provide legal advice to private citizens or organizations. Please contact an attorney if you need legal advice. The Alaska Lawyer Referral Service or your local bar association may be able to assist you

  9. Alaska Department of Revenue - Alaska Film Office

    Science.gov Websites

    State Employees Alaska Film Office Alaska Film Office State of Alaska HOME CREDIT PROGRAM PUBLIC REPORTING CPA ECONOMIC DEVELOPMENT CONTACT US State of Alaska > Department of Revenue > Alaska Film Office > Text Size: A+ | A- | A Text Only Effective July 1, 2015, the film production incentive

  10. A Decade of Shear-Wave Splitting Observations in Alaska

    NASA Astrophysics Data System (ADS)

    Bellesiles, A. K.; Christensen, D. H.; Abers, G. A.; Hansen, R. A.; Pavlis, G. L.; Song, X.

    2010-12-01

    Over the last decade four PASSCAL experiments have been conducted in different regions of Alaska. ARCTIC, BEAAR and MOOS form a north-south transect across the state, from the Arctic Ocean to Price Williams Sound, while the STEEP experiment is currently deployed to the east of that line in the St Elias Mountains of Southeastern Alaska. Shear-wave splitting observations from these networks in addition to several permanent stations of the Alaska Earthquake Information Center were determined in an attempt to understand mantle flow under Alaska in a variety of different geologic settings. Results show two dominant splitting patterns in Alaska, separated by the subducted Pacific Plate. North of the subducted Pacific Plate fast directions are parallel to the trench (along strike of the subducted Pacific Plate) indicating large scale mantle flow in the northeast-southwest direction with higher anisotropy (splitting times) within the mantle wedge. Within or below the Pacific Plate fast directions are normal to the trench in the direction of Pacific Plate convergence. In addition to these two prominent splitting patterns there are several regions that do not match either of these trends. These more complex regions which include the results from STEEP could be due to several factors including effects from the edge of the Pacific Plate. The increase of station coverage that Earthscope will bring to Alaska will aid in developing a more complete model for anisotropy and mantle flow in Alaska.

  11. Glaciers of North America - Glaciers of Alaska

    USGS Publications Warehouse

    Molnia, Bruce F.

    2008-01-01

    Glaciers cover about 75,000 km2 of Alaska, about 5 percent of the State. The glaciers are situated on 11 mountain ranges, 1 large island, an island chain, and 1 archipelago and range in elevation from more than 6,000 m to below sea level. Alaska's glaciers extend geographically from the far southeast at lat 55 deg 19'N., long 130 deg 05'W., about 100 kilometers east of Ketchikan, to the far southwest at Kiska Island at lat 52 deg 05'N., long 177 deg 35'E., in the Aleutian Islands, and as far north as lat 69 deg 20'N., long 143 deg 45'W., in the Brooks Range. During the 'Little Ice Age', Alaska's glaciers expanded significantly. The total area and volume of glaciers in Alaska continue to decrease, as they have been doing since the 18th century. Of the 153 1:250,000-scale topographic maps that cover the State of Alaska, 63 sheets show glaciers. Although the number of extant glaciers has never been systematically counted and is thus unknown, the total probably is greater than 100,000. Only about 600 glaciers (about 1 percent) have been officially named by the U.S. Board on Geographic Names (BGN). There are about 60 active and former tidewater glaciers in Alaska. Within the glacierized mountain ranges of southeastern Alaska and western Canada, 205 glaciers (75 percent in Alaska) have a history of surging. In the same region, at least 53 present and 7 former large ice-dammed lakes have produced jokulhlaups (glacier-outburst floods). Ice-capped volcanoes on mainland Alaska and in the Aleutian Islands have a potential for jokulhlaups caused by subglacier volcanic and geothermal activity. Because of the size of the area covered by glaciers and the lack of large-scale maps of the glacierized areas, satellite imagery and other satellite remote-sensing data are the only practical means of monitoring regional changes in the area and volume of Alaska's glaciers in response to short- and long-term changes in the maritime and continental climates of the State. A review of the

  12. Biomarker-indicated extent of oxidation of plant-derived organic carbon (OC) in relation to geomorphology in an arsenic contaminated Holocene aquifer, Cambodia.

    PubMed

    Magnone, Daniel; Richards, Laura A; Polya, David A; Bryant, Charlotte; Jones, Merren; van Dongen, Bart E

    2017-10-12

    The poisoning of rural populations in South and Southeast Asia due to high groundwater arsenic concentrations is one of the world's largest ongoing natural disasters. It is important to consider environmental processes related to the release of geogenic arsenic, including geomorphological and organic geochemical processes. Arsenic is released from sediments when iron-oxide minerals, onto which arsenic is adsorbed or incorporated, react with organic carbon (OC) and the OC is oxidised. In this study we build a new geomorphological framework for Kandal Province, a highly studied arsenic affected region of Cambodia, and tie this into wider regional environmental change throughout the Holocene. Analyses shows that the concentration of OC in the sediments is strongly inversely correlated to grainsize. Furthermore, the type of OC is also related to grain size with the clay containing mostly (immature) plant derived OC and sand containing mostly thermally mature derived OC. Finally, analyses indicate that within the plant derived OC relative oxidation is strongly grouped by stratigraphy with the older bound OC more oxidised than younger OC.

  13. Climate Change Impacts on the Cryosphere of Mountain Regions: Validation of a Novel Model Using the Alaska Range

    NASA Astrophysics Data System (ADS)

    Mosier, T. M.; Hill, D. F.; Sharp, K. V.

    2015-12-01

    Mountain regions are natural water towers, storing water seasonally as snowpack and for much longer as glaciers. Understanding the response of these systems to climate change is necessary in order to make informed decisions about prevention or mitigation measures. Yet, mountain regions are often data sparse, leading many researchers to implement simple or enhanced temperature index (ETI) models to simulate cryosphere processes. These model structures do not account for the thermal inertia of snowpack and glaciers and do not robustly capture differences in system response to climate regimes that differ from those the model was calibrated for. For instance, a temperature index calibration parameter will differ substantially in cold-dry conditions versus warm-wet ones. To overcome these issues, we have developed a cryosphere hydrology model, called the Significantly Enhanced Temperature Index (SETI), which uses an energy balance structure but parameterizes energy balance components in terms of minimum, maximum and mean temperature, precipitation, and geometric inputs using established relationships. Additionally, the SETI model includes a glacier sliding model and can therefore be used to estimate long-term glacier response to climate change. Sensitivity of the SETI model to changing climate is compared with an ETI and a simple temperature index model for several partially-glaciated watersheds within Alaska, including Wolverine glacier where multi-decadal glacier stake measurements are available, to highlight the additional fidelity attributed to the increased complexity of the SETI structure. The SETI model is then applied to the entire Alaska Range region for an ensemble of global climate models (GCMs), using representative concentration pathways 4.5 and 8.5. Comparing model runs based on ensembles of GCM projections to historic conditions, total annual snowfall within the Alaska region is not expected to change appreciably, but the spatial distribution of snow

  14. Thermal evolution of sedimentary basins in Alaska

    USGS Publications Warehouse

    Johnsson, Mark J.; Howell, D.G.

    1996-01-01

    The complex tectonic collage of Alaska is reflected in the conjunction of rocks of widely varying thermal maturity. Indicators of the level of thermal maturity of rocks exposed at the surface, such as vitrinite reflectance and conodont color alteration index, can help constrain the tectonic evolution of such complex regions and, when combined with petrographic, modern heat flow, thermogeochronologic, and isotopic data, allow for the detailed evaluation of a region?s burial and uplift history. We have collected and assembled nearly 10,000 vitrinite-reflectance and conodont-color-alteration index values from the literature, previous U.S. Geological Survey investigations, and our own studies in Alaska. This database allows for the first synthesis of thermal maturity on a broadly regional scale. Post-accretionary sedimentary basins in Alaska show wide variability in terms of thermal maturity. The Tertiary interior basins, as well as some of the forearc and backarc basins associated with the Aleutian Arc, are presently at their greatest depth of burial, with immature rocks exposed at the surface. Other basins, such as some backarc basins on the Alaska Peninsula, show higher thermal maturities, indicating modest uplift, perhaps in conjunction with higher geothermal gradients related to the arc itself. Cretaceous ?flysch? basins, such as the Yukon-Koyukuk basin, are at much higher thermal maturity, reflecting great amounts of uplift perhaps associated with compressional regimes generated through terrane accretion. Many sedimentary basins in Alaska, such as the Yukon-Koyukuk and Colville basins, show higher thermal maturity at basin margins, perhaps reflecting greater uplift of the margins in response to isostatic unloading, owing to erosion of the hinterland adjacent to the basin or to compressional stresses adjacent to basin margins.

  15. The LSST OCS scheduler design

    NASA Astrophysics Data System (ADS)

    Delgado, Francisco; Schumacher, German

    2014-08-01

    The Large Synoptic Survey Telescope (LSST) is a complex system of systems with demanding performance and operational requirements. The nature of its scientific goals requires a special Observatory Control System (OCS) and particularly a very specialized automatic Scheduler. The OCS Scheduler is an autonomous software component that drives the survey, selecting the detailed sequence of visits in real time, taking into account multiple science programs, the current external and internal conditions, and the history of observations. We have developed a SysML model for the OCS Scheduler that fits coherently in the OCS and LSST integrated model. We have also developed a prototype of the Scheduler that implements the scheduling algorithms in the simulation environment provided by the Operations Simulator, where the environment and the observatory are modeled with real weather data and detailed kinematics parameters. This paper expands on the Scheduler architecture and the proposed algorithms to achieve the survey goals.

  16. Southeast Alaska economics: a resource-abundant region competing in a global marketplace.

    Treesearch

    Lisa K. Crone

    2005-01-01

    Questions related to economics figured prominently in the priority information needs identified in the 1997 Tongass Land Management Plan. Follow-on studies in economics werc designed to improve understanding of aspects of the competitiveness of the Alaska forest sector, links between Alaska timber markets and other markets as evident in prices, and the relationship...

  17. 77 FR 72880 - Information Collection Activities: Notice to Lessees and/or Operators (NTL)-Gulf of Mexico OCS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-06

    ... Offshore Drilling Units). OMB Control Number: 1014-0013. Abstract: The Outer Continental Shelf (OCS) Lands.... The subject of this ICR is an NTL, GPS (Global Positioning System) for MODUs (Mobile Offshore Drilling... Operators (NTL)--Gulf of Mexico OCS Region--GPS (Global Positioning System) for MODUs (Mobile Offshore...

  18. An analysis of using semi-permeable membrane devices to assess persistent organic pollutants in ambient air of Alaska

    NASA Astrophysics Data System (ADS)

    Wu, Ted Hsin-Yeh

    A region of concern for persistent organic pollutants (POPS) contamination is the Arctic, because of POPs' ability to migrate long distances through the atmosphere toward cold regions, condense out of the atmosphere in those region, deposit in sensitive arctic ecosystems and bioaccumulate in Arctic species. Thus, monitoring of POP concentrations in the Arctic is necessary. However, traditional active air monitoring techniques for POPs may not be feasible in the Arctic, because of logistics and cost. While these issues may be overcome using passive air sampling devices, questions arise about the interpretation of the contaminant concentrations detected using the passive air samplers. In this dissertation semi-permeable membrane devices (SPMDs) containing triolein were characterized and evaluated for use in sampling the ambient air of Alaska for three classes of POPS (organochlorines [OCs], polychlorinated biphenyls [PCBs] and polyaromatic hydrocarbons [PAHs]). In addition, a SPMD-based sampling campaign for POPS was conducted simultaneously at five sites in Alaska during a one-year period. The POP concentrations obtained from the SPMDs were examined to determine the spatial and seasonal variability at the locations. POP concentrations detected in SPMDs were influenced by exposure to sunlight, concentrations of particulate-bound contaminants and changes in temperature. PAH concentrations in a SPMD mounted in a sunlight-blocking deployment unit were higher than in a SPMD exposed to sunlight (P = 0.007). PCB concentrations in SPMD exposed to filtered and non-filtered air were significantly different (P < 0.0001). Derived PAH air concentrations measured using SPMD were within a factor of approximately 7 of those obtained from an air sampler in Barrow, Alaska. The field study showed three distinct groups of samples. Barrow was separated from the sub-Arctic samples and a Homer sample (September-December) was distinct from the sub-Arctic samples. The separations suggest

  19. Tourism and its effects on southeast Alaska communities and resources: case studies from Haines, Craig, and Hoonah, Alaska.

    Treesearch

    Lee K. Cerveny

    2005-01-01

    Tourism has become integral to southeast Alaska’s regional economy and has resulted in changes to the social and cultural fabric of community life as well as to natural resources used by Alaskans. This study incorporates an ethnographic approach to trace tourism development in three rural southeast Alaska communities featuring different levels and types of tourism. In...

  20. Might generic OCs create contraceptive price war?

    PubMed

    1987-02-01

    Genora 1/35 and 1/50, the 1st generic oral contraceptives (OCs) in the world, are now being marketed in the US. Clinicians interviewed by "Contraceptive Technology Update" (CTU) offer differing opinions as to what this new OC may mean in the marketplace. Products of Rugby Laboratories, the pills are copy products of Ortho Pharmaceutical's ON 1/35 and ON 1/50 formulations. Most clinicians believe that Genora's success or failure in the OC market depends on its eventual retail price. The price difference of $3-$4 may be sufficiently substantial for retailers to charge less for the generic OCs. If that is the case, many doctors may prescribe a pill which will save their patients $4/month. Dr. Mildred Hanson, a Minneapolis gynecologist/obstetrician, feels any cost savings from Genora will have a significant impact on the OC market. She suggests that the less expensive OCs will catch the attention of health maintenance organizations (HMOs) and the business of women who participate in such health plans. Yet James Burns, director of family planning services for the Hartford City Health Department, thinks that even a full-scale retail price war won't have much effect from a clinic standpoint. He reports that clinics are able to obtain contraceptive supplies rather inexpensively through the contracting system. Hanson also expressed doubt over the potential popularity of Genora 1/50 as clinical concerns about the effects of combined OCs on serum lipid levels and carbohydrate metabolism have resulted in a nationwide push toward OCs containing less than 50 micrograms of estrogen. He indicated concern that declines in pharmaceutical house products from pricing competition with generic pills might have a negative impact on contraceptive research and development. Dick Haskitt, director of business planning for Syntex Laboratories, Inc., who will produce the OCs for Rugby, reports that their market research shows that people are very interested in having a generic OC available

  1. Assessment of undiscovered oil and gas resources of the Cook Inlet region, south-central Alaska, 2011

    USGS Publications Warehouse

    Stanley, Richard G.; Charpentier, Ronald R.; Cook, Troy A.; Houseknecht, David W.; Klett, Timothy R.; Lewis, Kristen A.; Lillis, Paul G.; Nelson, Philip H.; Phillips, Jeffrey D.; Pollastro, Richard M.; Potter, Christopher J.; Rouse, William A.; Saltus, Richard W.; Schenk, Christopher J.; Shah, Anjana K.; Valin, Zenon C.

    2011-01-01

    The U.S. Geological Survey (USGS) recently completed a new assessment of undiscovered, technically recoverable oil and gas resources in the Cook Inlet region of south-central Alaska. Using a geology-based assessment methodology, the USGS estimates that mean undiscovered volumes of nearly 600 million barrels of oil, about 19 trillion cubic feet of natural gas, and 46 million barrels of natural gas liquids remain to be found in this area.

  2. Tectonics of the March 27, 1964, Alaska earthquake: Chapter I in The Alaska earthquake, March 27, 1964: regional effects

    USGS Publications Warehouse

    Plafker, George

    1969-01-01

    The March 27, 1964, earthquake was accomp anied by crustal deformation-including warping, horizontal distortion, and faulting-over probably more than 110,000 square miles of land and sea bottom in south-central Alaska. Regional uplift and subsidence occurred mainly in two nearly parallel elongate zones, together about 600 miles long and as much as 250 miles wide, that lie along the continental margin. From the earthquake epicenter in northern Prince William Sound, the deformation extends eastward 190 miles almost to long 142° and southwestward slightly more than 400 miles to about long 155°. It extends across the two zones from the chain of active volcanoes in the Aleutian Range and Wrangell Mountains probably to the Aleutian Trench axis. Uplift that averages 6 feet over broad areas occurred mainly along the coast of the Gulf of Alaska, on the adjacent Continental Shelf, and probably on the continental slope. This uplift attained a measured maximum on land of 38 feet in a northwest-trending narrow belt less than 10 miles wide that is exposed on Montague Island in southwestern Prince William Sound. Two earthquake faults exposed on Montague Island are subsidiary northwest-dipping reverse faults along which the northwest blocks were relatively displaced a maximum of 26 feet, and both blocks were upthrown relative to sea level. From Montague Island, the faults and related belt of maximum uplift may extend southwestward on the Continental Shelf to the vicinity of the Kodiak group of islands. To the north and northwest of the zone of uplift, subsidence forms a broad asymmetrical downwarp centered over the Kodiak-Kenai-Chugach Mountains that averages 2½ feet and attains a measured maximum of 7½ feet along the southwest coast of the Kenai Peninsula. Maximum indicated uplift in the Alaska and Aleutian Ranges to the north of the zone of subsidence was l½ feet. Retriangulation over roughly 25,000 square miles of the deformed region in and around Prince William Sound

  3. U.S. Geological Survey (USGS) Western Region: Alaska Coastal and Ocean Science

    USGS Publications Warehouse

    Holland-Bartels, Leslie

    2009-01-01

    The U.S. Geological Survey (USGS), a bureau of the Department of the Interior (DOI), is the Nation's largest water, earth, and biological science and mapping agency. The bureau's science strategy 'Facing Tomorrow's Challenges - U.S. Geological Survey Science in the Decade 2007-2017' describes the USGS vision for its science in six integrated areas of societal concern: Understanding Ecosystems and Predicting Ecosystem Change; Climate Variability and Change; Energy and Minerals; Hazards, Risk, and Resilience; Environment and Wildlife in Human Health; and Water Census of the United States. USGS has three Regions that encompass nine geographic Areas. This fact sheet describes examples of USGS science conducted in coastal, nearshore terrestrial, and ocean environments in the Alaska Area.

  4. IMPROVING SCIENCE EDUCATION AND CAREER OPPORTUNITIES IN RURAL ALASKA:The Synergistic Connection between Educational Outreach Efforts in the Copper Valley, Alaska.

    NASA Astrophysics Data System (ADS)

    Solie, D. J.; McCarthy, S.

    2004-12-01

    The objective of the High frequency Active Auroral Research Program (HAARP) Education Outreach is to enhance the science education opportunities in the Copper Valley region in Alaska. In the process, we also educate local residents about HAARP and its research. Funded jointly by US Air Force and Navy, HAARP is located at Gakona Alaska, a very rural region of central Alaska with a predominantly Native population. The main instrument at HAARP is a vertically directed, phased array RF transmitter which is primarily an ionospheric research tool, however, its geophysical research applications range from terrestrial to near-space. Research is conducted at HAARP in collaboration with scientists and institutions world-wide. The HAARP Education Outreach Program, run through the University of Alaska Geophysical Institute has been active for over six years and in that time has become an integral part of science education in the Copper Valley for residents of all ages. HAARP education outreach efforts are through direct involvement in local schools in the Copper River School District (CRSD) and the Prince William Sound Community College (PWSCC), as well as public lectures and workshops, and intern and student research programs. These outreach efforts require cooperation and coordination between the CRSD, PWSCC, the University of Alaska Fairbanks Physics Department and the NSF sponsored Alaska Native Science & Engineering Program (ANSEP) and HAARP researchers. The HAARP Outreach program also works with other organizations promoting science education in the region, such as the National Park Service (Wrangell- St. Elias National Park) and the Wrangell Institute for Science and Environment (WISE) a newly formed regional non-profit organization. We work closely with teachers in the schools, adapting to their needs and the particular scientific topic they are covering at the time. Because of time and logistic constraints, outreach visits to schools are episodic, occurring roughly

  5. The Alaska Arctic Vegetation Archive (AVA-AK)

    Treesearch

    Donald A. Walker; Amy L. Breen; Lisa A. Druckenmiller; Lisa W. Wirth; Will Fisher; Martha K. Raynolds; Jozef Šibík; Marilyn D. Walker; Stephan Hennekens; Keith Boggs; Tina Boucher; Marcel Buchhorn; Helga Bültmann; David J. Cooper; Fred J.A Daniëls; Scott J. Davidson; James J. Ebersole; Sara C. Elmendorf; Howard E. Epstein; William A. Gould; Robert D. Hollister; Colleen M. Iversen; M. Torre Jorgenson; Anja Kade; Michael T. Lee; William H. MacKenzie; Robert K. Peet; Jana L. Peirce; Udo Schickhoff; Victoria L. Sloan; Stephen S. Talbot; Craig E. Tweedie; Sandra Villarreal; Patrick J. Webber; Donatella Zona

    2016-01-01

    The Alaska Arctic Vegetation Archive (AVA-AK, GIVD-ID: NA-US-014) is a free, publically available database archive of vegetation-plot data from the Arctic tundra region of northern Alaska. The archive currently contains 24 datasets with 3,026 non-overlapping plots. Of these, 74% have geolocation data with 25-m or better precision. Species cover data and header data are...

  6. Economic growth and change in southeast Alaska.

    Treesearch

    Rhonda Mazza

    2004-01-01

    This report focuses on economic trends since the 1970s in rural southeast Alaska. These trends are compared with those in the Nation and in nonmetropolitan areas of the country to determine the extent to which the economy in rural southeast Alaska is affected by regional activity and by larger market forces. Many of the economic changes occurring in rural southeast...

  7. Correlates of Alaska Native Fatal and Nonfatal Suicidal Behaviors 1990-2001

    ERIC Educational Resources Information Center

    Wexler, Lisa; Hill, Ryan; Bertone-Johnson, Elizabeth; Fenaughty, Andrea

    2008-01-01

    Factors correlated with suicidal behavior in a predominately Alaska Native region of Alaska are described, and the correlates relating to fatal and nonfatal suicide behaviors in this indigenous population are distinguished. Suicide data from the region (1990-2001) were aggregated and compared to 2000 U.S. Census Data using chi-squared tests.…

  8. Alaska: A twenty-first-century petroleum province

    USGS Publications Warehouse

    Bird, K.J.

    2001-01-01

    Alaska, the least explored of all United States regions, is estimated to contain approximately 40% of total U.S. undiscovered, technically recoverable oil and natural-gas resources, based on the most recent U.S. Department of the Interior (U.S. Geological Survey and Minerals Management Service) estimates. Northern Alaska, including the North Slope and adjacent Beaufort and Chukchi continental shelves, holds the lion's share of the total Alaskan endowment of more than 30 billion barrels (4.8 billion m3) of oil and natural-gas liquids plus nearly 200 trillion cubic feet (5.7 trillion m3) of natural gas. This geologically complex region includes prospective strata within passive-margin, rift, and foreland-basin sequences. Multiple source-rock zones have charged several regionally extensive petroleum systems. Extensional and compressional structures provide ample structural objectives. In addition, recent emphasis on stratigraphic traps has demonstrated significant resource potential in shelf and turbidite systems in Jurassic to Tertiary strata. Despite robust potential, northern Alaska remains a risky exploration frontier - a nexus of geologic complexity, harsh economic conditions, and volatile policy issues. Its role as a major petroleum province in this century will depend on continued technological innovations, not only in exploration and drilling operations, but also in development of huge, currently unmarketable natural-gas resources. Ultimately, policy decisions will determine whether exploration of arctic Alaska will proceed.

  9. An overview of paleogene molluscan biostratigraphy and paleoecology of the Gulf of Alaska region

    USGS Publications Warehouse

    Marincovich, L.; McCoy, S.

    1984-01-01

    Paleogene marine strata in the Gulf of Alaska region occur in three geographic areas and may be characterized by their molluscan faunal composition and paleoecology: a western area consisting of the Alaska Peninsula, Kodiak Island, and adjacent islands; a central area encompassing Prince William Sound; and an eastern area extending from the mouth of the Copper River to Icy Point in the Lituya district. Strata in the western area include the Ghost Rocks, Narrow Cape (in part), Sitkalidak, Stepovak, Belkofski, and Tolstoi Formations; in the central area Paleogene strata are assigned entirely to the Orca Group; Paleogene strata in the eastern area include the Kulthieth and Poul Creek Formations and several coeval units. Environments ranging from marginal marine to bathyal and from subtropical to cool-temperate are inferred for the various molluscan faunas. Sediments range from interbedded coal and marine sands to deep-water turbidites. The known Paleogene molluscan faunas of these three southern Alaskan areas permit recognition of biostratigraphic schemes within each area, preliminary correlations between faunas of the three areas, and more general correlations with faunas of the Pacific Northwest, the Far Eastern U.S.S.R., and northern Japan. ?? 1984.

  10. Gap winds and their effects on regional oceanography Part II: Kodiak Island, Alaska

    NASA Astrophysics Data System (ADS)

    Ladd, Carol; Cheng, Wei; Salo, Sigrid

    2016-10-01

    Frequent gap winds, defined here as offshore-directed flow channeled through mountain gaps, have been observed near Kodiak Island in the Gulf of Alaska (GOA). Gap winds from the Iliamna Lake gap were investigated using QuikSCAT wind data. The influence of these wind events on the regional ocean was examined using satellite and in situ data combined with Regional Ocean Modeling System (ROMS) model runs. Gap winds influence the entire shelf width (> 200 km) northeast of Kodiak Island and extend an additional 150 km off-shelf. Due to strong gradients in the along-shelf direction, they can result in vertical velocities in the ocean of over 20 m d-1 due to Ekman pumping. The wind events also disrupt flow of the Alaska Coastal Current (ACC), resulting in decreased flow down Shelikof Strait and increased velocities on the outer shelf. This disruption of the ACC has implications for freshwater transport into the Bering Sea. The oceanographic response to gap winds may influence the survival of larval fishes as Arrowtooth Flounder recruitment is negatively correlated with the interannual frequency of gap-wind events, and Pacific Cod recruitment is positively correlated. The frequency of offshore directed winds exhibits a strong seasonal cycle averaging 7 days per month during winter and 2 days per month during summer. Interannual variability is correlated with the Pacific North America Index and shows a linear trend, increasing by 1.35 days per year. An accompanying paper discusses part I of our study (Ladd and Cheng, 2016) focusing on gap-wind events flowing out of Cross Sound in the eastern GOA.

  11. Seasonal and spatial variability of the OM/OC mass ratios and high regional correlation between oxalic acid and zinc in Chinese urban organic aerosols

    NASA Astrophysics Data System (ADS)

    Xing, L.; Fu, T.-M.; Cao, J. J.; Lee, S. C.; Wang, G. H.; Ho, K. F.; Cheng, M.-C.; You, C.-F.; Wang, T. J.

    2013-04-01

    We calculated the organic matter to organic carbon mass ratios (OM/OC mass ratios) in PM2.5 collected from 14 Chinese cities during summer and winter of 2003 and analyzed the causes for their seasonal and spatial variability. The OM/OC mass ratios were calculated two ways. Using a mass balance method, the calculated OM/OC mass ratios averaged 1.92 ± 0.39 year-round, with no significant seasonal or spatial variation. The second calculation was based on chemical species analyses of the organic compounds extracted from the PM2.5 samples using dichloromethane/methanol and water. The calculated OM/OC mass ratio in summer was relatively high (1.75 ± 0.13) and spatially-invariant due to vigorous photochemistry and secondary organic aerosol (OA) production throughout the country. The calculated OM/OC mass ratio in winter (1.59 ± 0.18) was significantly lower than that in summer, with lower values in northern cities (1.51 ± 0.07) than in southern cities (1.65 ± 0.15). This likely reflects the wider usage of coal for heating purposes in northern China in winter, in contrast to the larger contributions from biofuel and biomass burning in southern China in winter. On average, organic matter constituted 36% and 34% of Chinese urban PM2.5 mass in summer and winter, respectively. We report, for the first time, a high regional correlation between Zn and oxalic acid in Chinese urban aerosols in summer. This is consistent with the formation of stable Zn oxalate complex in the aerosol phase previously proposed by Furukawa and Takahashi (2011). We found that many other dicarboxylic acids were also highly correlated with Zn in the summer Chinese urban aerosol samples, suggesting that they may also form stable organic complexes with Zn. Such formation may have profound implications for the atmospheric abundance and hygroscopic properties of aerosol dicarboxylic acids.

  12. 30 CFR 581.14 - OCS mining area identification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false OCS mining area identification. 581.14 Section 581.14 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE... § 581.14 OCS mining area identification. The Secretary, after considering the available OCS mineral...

  13. 30 CFR 581.14 - OCS mining area identification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false OCS mining area identification. 581.14 Section 581.14 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE... § 581.14 OCS mining area identification. The Secretary, after considering the available OCS mineral...

  14. 30 CFR 581.14 - OCS mining area identification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false OCS mining area identification. 581.14 Section 581.14 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE... § 581.14 OCS mining area identification. The Secretary, after considering the available OCS mineral...

  15. The Quaternary thrust system of the northern Alaska Range

    USGS Publications Warehouse

    Bemis, Sean P.; Carver, Gary A.; Koehler, Richard D.

    2012-01-01

    The framework of Quaternary faults in Alaska remains poorly constrained. Recent studies in the Alaska Range north of the Denali fault add significantly to the recognition of Quaternary deformation in this active orogen. Faults and folds active during the Quaternary occur over a length of ∼500 km along the northern flank of the Alaska Range, extending from Mount McKinley (Denali) eastward to the Tok River valley. These faults exist as a continuous system of active structures, but we divide the system into four regions based on east-west changes in structural style. At the western end, the Kantishna Hills have only two known faults but the highest rate of shallow crustal seismicity. The western northern foothills fold-thrust belt consists of a 50-km-wide zone of subparallel thrust and reverse faults. This broad zone of deformation narrows to the east in a transition zone where the range-bounding fault of the western northern foothills fold-thrust belt terminates and displacement occurs on thrust and/or reverse faults closer to the Denali fault. The eastern northern foothills fold-thrust belt is characterized by ∼40-km-long thrust fault segments separated across left-steps by NNE-trending left-lateral faults. Altogether, these faults accommodate much of the topographic growth of the northern flank of the Alaska Range.Recognition of this thrust fault system represents a significant concern in addition to the Denali fault for infrastructure adjacent to and transecting the Alaska Range. Although additional work is required to characterize these faults sufficiently for seismic hazard analysis, the regional extent and structural character should require the consideration of the northern Alaska Range thrust system in regional tectonic models.

  16. Long-term observations of Alaska Coastal Current in the northern Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Stabeno, Phyllis J.; Bell, Shaun; Cheng, Wei; Danielson, Seth; Kachel, Nancy B.; Mordy, Calvin W.

    2016-10-01

    The Alaska Coastal Current is a continuous, well-defined system extending for 1700 km along the coast of Alaska from Seward, Alaska to Samalga Pass in the Aleutian Islands. The currents in this region are examined using data collected at >20 mooring sites and from >400 satellite-tracked drifters. While not continuous, the mooring data span a 30 year period (1984-2014). Using current meter data collected at a dozen mooring sites spread over four lines (Seward, Gore Point, Kennedy and Stevenson Entrances, and the exit to Shelikof Strait) total transport was calculated. Transport was significantly correlated with alongshore winds, although the correlation at the Seward Line was weak. The largest mean transport in the Alaska Coastal Current occurred at Gore Point (1.4×106 m3 s-1 in winter and 0.6×106 m3 s-1 in summer), with the transport at the exit to Shelikof Strait (1.3×106 m3 s-1 in winter and 0.6×106 m3 s-1 in summer) only slightly less. The transport was modified at the Seward Line in late summer and fall by frontal undulations associated with strong river discharge that enters onto the shelf at that time of year. The interaction of the Alaska Coastal Current and tidal currents with shallow banks in the vicinity of Kodiak Archipeligo and in Kennedy-Stevenson Entrance results in mixing and prolonged primary production throughout the summer.

  17. Infrared spectra and tunneling dynamics of the N2-D2O and OC-D2O complexes in the v2 bend region of D2O.

    PubMed

    Zhu, Yu; Zheng, Rui; Li, Song; Yang, Yu; Duan, Chuanxi

    2013-12-07

    The rovibrational spectra of the N2-D2O and OC-D2O complexes in the v2 bend region of D2O have been measured in a supersonic slit jet expansion using a rapid-scan tunable diode laser spectrometer. Both a-type and b-type transitions were observed for these two complexes. All transitions are doubled, due to the heavy water tunneling within the complexes. Assuming the tunneling splittings are the same in K(a) = 0 and K(a) = 1, the band origins, all three rotational and several distortion constants of each tunneling state were determined for N2-D2O in the ground and excited vibrational states, and for OC-D2O in the excited vibrational state, respectively. The averaged band origin of OC-D2O is blueshifted by 2.241 cm(-1) from that of the v2 band of the D2O monomer, compared with 1.247 cm(-1) for N2-D2O. The tunneling splitting of N2-D2O in the ground state is 0.16359(28) cm(-1), which is about five times that of OC-D2O. The tunneling splittings decrease by about 26% for N2-D2O and 23% for OC-D2O, respectively, upon excitation of the D2O bending vibration, indicating an increase of the tunneling barrier in the excited vibrational state. The tunneling splittings are found to have a strong dependence on intramolecular vibrational excitation as well as a weak dependence on quantum number K(a).

  18. An oilspill risk analysis for the Beaufort Sea, Alaska (proposed sale 71)outer continental shelf lease area

    USGS Publications Warehouse

    Samuels, W.B.; Hopkins, Dorothy; Lanfear, K.J.

    1981-01-01

    An oilspill risk analysis was conducted to determine the relative environmental hazards of developing oil in different regions of the Beaufort Sea, Alaska, (Proposed Sale 71) Outer Continental Shelf (OCS) lease area. The probability of spill occurrences, likely movement of oil slicks, and locations of resources vulnerable to spilled oil were analyzed. The model predicted movement of the center of spill mass and estimated the times between spill occurrence and contact with various resources, to allow a qualitative assessment of oil characteristics at the time of contact; no direct computation was made of weathering and cleanup. The model also assumed that any oil spilled under ice would remain in place, unchanged, until spring breakup. Ice movements, or travel of oil under ice, if occurring, would affect the results in a manner not directly predictable at this time. The combined results of spill occurrence and spill movement predictions yielded estimates of the overall risks associated with development of the proposed lease area. Assuming that oil exists in the lease area (a 99.3-percent chance) it is estimated that the leasing of the tracts proposed for OCS Sale 71 will result in an expected 9.2 oilspills (of 1,000 barrels or larger) over the lease lifetime of 25 years. This estimate is based on historic oilspill accident data for platforms and pipelines on the U.S. OCS (Gulf of Mexico and California). The estimated probability that land will be contacted by one or more oilspills (of 1,000 barrels or larger) that have been at sea less than 30 days (not counting any time trapped under ice) is greater than 99.5 percent. If oilspill accident data for Prudhoe Bay, Alaska, is used in the analysis, it is estimated that 5.6 oilspills (1,000 barrels or larger) will occur over the lease lifetime. The estimated probability that one or more oilspills (1,000 barrels or larger)will occur and contact land is99 percent. The results of a recent experimental cleanup operation for

  19. 33 CFR 203.16 - Federally recognized Indian Tribes and the Alaska Native Corporations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Tribes and the Alaska Native Corporations. 203.16 Section 203.16 Navigation and Navigable Waters CORPS OF..., NATURAL DISASTER PROCEDURES Introduction § 203.16 Federally recognized Indian Tribes and the Alaska Native... recognized Indian Tribe or Alaska Native Corporation, or through the appropriate regional representative of...

  20. 33 CFR 203.16 - Federally recognized Indian Tribes and the Alaska Native Corporations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Tribes and the Alaska Native Corporations. 203.16 Section 203.16 Navigation and Navigable Waters CORPS OF..., NATURAL DISASTER PROCEDURES Introduction § 203.16 Federally recognized Indian Tribes and the Alaska Native... recognized Indian Tribe or Alaska Native Corporation, or through the appropriate regional representative of...

  1. 33 CFR 203.16 - Federally recognized Indian Tribes and the Alaska Native Corporations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Tribes and the Alaska Native Corporations. 203.16 Section 203.16 Navigation and Navigable Waters CORPS OF..., NATURAL DISASTER PROCEDURES Introduction § 203.16 Federally recognized Indian Tribes and the Alaska Native... recognized Indian Tribe or Alaska Native Corporation, or through the appropriate regional representative of...

  2. 33 CFR 203.16 - Federally recognized Indian Tribes and the Alaska Native Corporations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Tribes and the Alaska Native Corporations. 203.16 Section 203.16 Navigation and Navigable Waters CORPS OF..., NATURAL DISASTER PROCEDURES Introduction § 203.16 Federally recognized Indian Tribes and the Alaska Native... recognized Indian Tribe or Alaska Native Corporation, or through the appropriate regional representative of...

  3. Alaska Air National Guard

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska Symbol Visit 168th Wing Website State of Alaska myAlaska My Government Resident Business in Alaska

  4. Establishing a baseline for regional scale monitoring of eelgrass (Zostera marina) habitat on the lower Alaska Peninsula

    USGS Publications Warehouse

    Hogrefe, Kyle R.; Ward, David H.; Donnelly, Tyrone F.; Dau, Niels

    2014-01-01

    Seagrass meadows, one of the world’s most widespread and productive ecosystems, provide a wide range of services with real economic value. Worldwide declines in the distribution and abundance of seagrasses and increased threats to coastal ecosystems from climate change have prompted a need to acquire baseline data for monitoring and protecting these important habitats. We assessed the distribution and abundance of eelgrass (Zostera marina) along nearly 1200 km of shoreline on the lower Alaska Peninsula, a region of expansive eelgrass meadows whose status and trends are poorly understood. We demonstrate the effectiveness of a multi-scale approach by using Landsat satellite imagery to map the total areal extent of eelgrass while integrating field survey data to improve map accuracy and describe the physical and biological condition of the meadows. Innovative use of proven methods and processing tools was used to address challenges inherent to remote sensing in high latitude, coastal environments. Eelgrass was estimated to cover ~31,000 ha, 91% of submerged aquatic vegetation on the lower Alaska Peninsula, nearly doubling the known spatial extent of eelgrass in the region. Mapping accuracy was 80%–90% for eelgrass distribution at locations containing adequate field survey data for error analysis.

  5. 77 FR 12477 - Subsistence Management Regulations for Public Lands in Alaska-Subpart C-Board Determinations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ....gov . For questions specific to National Forest System lands, contact Steve Kessler, Regional... or more on the economy or adversely affect an economic sector, productivity, jobs, the environment...; Jerry Berg, Alaska Regional Office, U.S. Fish and Wildlife Service; and Steve Kessler, Alaska Regional...

  6. JSpOC Cognitive Task Analysis

    NASA Astrophysics Data System (ADS)

    Aleva, D.; McCracken, J.

    This paper will overview a Cognitive Task Analysis (CTA) of the tasks accomplished by space operators in the Combat Operations Division (COD) of the Joint Space Operations Center (JSpOC). The methodology used to collect data will be presented. The work was performed in support of the AFRL Space Situation Awareness Fusion Intelligent Research Environment (SAFIRE) effort. SAFIRE is a multi-directorate program led by Air Force Research Laboratory (AFRL), Space Vehicles Directorate (AFRL/RV) and supporting Future Long Term Challenge 2.6.5. It is designed to address research areas identified from completion of a Core Process 3 effort for Joint Space Operations Center (JSpOC). The report is intended to be a resource for those developing capability in support of SAFIRE, the Joint Functional Component Command (JFCC) Space Integrated Prototype (JSIP) User-Defined Operating Picture (UDOP), and other related projects. The report is under distribution restriction; our purpose here is to expose its existence to a wider audience so that qualified individuals may access it. The report contains descriptions of the organization, its most salient products, tools, and cognitive tasks. Tasks reported are derived from the data collected and presented at multiple levels of abstraction. Recommendations for leveraging the findings of the report are presented. The report contains a number of appendices that amplify the methodology, provide background or context support, and includes references in support of cognitive task methodology. In a broad sense, the CTA is intended to be the foundation for relevant, usable capability in support of space warfighters. It presents, at an unclassified level, introductory material to familiarize inquirers with the work of the COD; this is embedded in a description of the broader context of the other divisions of the JSpOC. It does NOT provide guidance for the development of Tactics, Techniques, and Procedures (TT&Ps) in the development of JSpOC processes

  7. Mitochondrial DNA phylogeography of least cisco Coregonus sardinella in Alaska.

    PubMed

    Padula, V M; Causey, D; López, J A

    2017-03-01

    This study presents the first detailed analysis of the mitochondrial DNA diversity of least cisco Coregonus sardinella in Alaska using a 678 bp segment of the control region (D-loop) of the mitochondrial genome. Findings suggest that the history of C. sardinella in Alaska differs from that of other species of Coregonus present in the state and surrounding regions. The examined populations of C. sardinella are genetically diverse across Alaska. Sixty-eight distinct mitochondrial haplotypes were identified among 305 individuals sampled from nine locations. The haplotype minimum spanning network and phylogeny showed a modest level of geographic segregation among haplotypes, suggesting high levels of on-going or recent connectivity among distant populations. Observed Φ ST values and the results of homogeneity and AMOVAs indicate incipient genetic differentiation between aggregations in three broad regional groups. Sites north of the Brooks Range formed one group, sites in the Yukon and Selawik Rivers formed a second group and sites south of the Yukon drainage formed the third group. Overall, the sequence data showed that a large proportion of mtDNA genetic variation in C. sardinella is shared across Alaska, but this variation is not homogeneously distributed across all regions and for all haplotype groups. © 2017 The Fisheries Society of the British Isles.

  8. Historical Trends and Regional Differences in All-Cause and Amenable Mortality Among American Indians and Alaska Natives Since 1950

    PubMed Central

    Kunitz, Stephen J.; Veazie, Mark; Henderson, Jeffrey A.

    2014-01-01

    American Indian and Alaska Native (AI/AN) death rates declined over most of the 20th century, even before the Public Health Service became responsible for health care in 1956. Since then, rates have declined further, although they have stagnated since the 1980s. These overall patterns obscure substantial regional differences. Most significant, rates in the Northern and Southern Plains have declined far less since 1949 to 1953 than those in the East, Southwest, or Pacific Coast. Data for Alaska are not available for the earlier period, so its trajectory of mortality cannot be ascertained. Socioeconomic measures do not adequately explain the differences and rates of change, but migration, changes in self-identification as an AI/AN person, interracial marriage, and variations in health care effectiveness all appear to be implicated. PMID:24754651

  9. NASA SPoRT JPSS PG Activities in Alaska

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Molthan, Andrew; Fuell, Kevin; McGrath, Kevin; Smith, Matt; LaFontaine, Frank; Leroy, Anita; White, Kris

    2018-01-01

    SPoRT (NASA's Short-term Prediction Research and Transition Center) has collaboratively worked with Alaska WFOs (Weather Forecast Offices) to introduce RGB (Red/Green/Blue false color image) imagery to prepare for NOAA-20 (National Oceanic and Atmospheric Administration, JPSS (Joint Polar Satellite System) series-20 satellite) VIIRS (Visible Infrared Imaging Radiometer Suite) and improve forecasting aviation-related hazards. Last R2O/O2R (Research-to-Operations/Operations-to-Research) steps include incorporating NOAA-20 VIIRS in RGB suite and fully transitioning client-side RGB processing to GINA (Geographic Information Network of Alaska) and Alaska Region. Alaska Region WFOs have been part of the successful R2O/O2R story to assess the use of NESDIS (National Environmental Satellite, Data, and Information Service) Snowfall Rate product in operations. SPoRT introduced passive microwave rain rate and IMERG (Integrated Multi-satellitE Retrievals for GPM (Global Precipitation Measurement)) (IMERG) to Alaska WFOs for use in radar-void areas and assessing flooding potential. SPoRT has been part of the multi-organization collaborative effort to introduce Gridded NUCAPS (NOAA Unique CrIS/ATMS (Crosstrack Infrared Sounder/Advanced Technology Microwave Sounder) Processing System) to the Anchorage CWSU (Center Weather Service Unit) to assess Cold Air Aloft events, [and as part of NOAA's PG (Product Generation) effort].

  10. 30 CFR 251.5 - Applying for permits or filing Notices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... application form (Form MMS-327). The form includes names of persons; the type, location, purpose, and dates of... nonexclusive use agreement for scientific research attachment to Form 327. (d) Filing locations. You must apply... Alaska—the Regional Supervisor for Resource Evaluation, Minerals Management Service, Alaska OCS Region...

  11. Outer continental shelf, Beaufort Sea, oil and gas lease sale 170 (proposed notice of sale)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-31

    The Minerals Management Service (MMS) is issuing this proposed Notice of Sale under the Outer Continental Shelf (OCS) Lands Act (43 U.S.C. 1331-1356, as amended) and the regulations issued thereunder (30 CFR Part 256). A `Sale Notice Package,` containing this Notice and several supporting and essential documents referenced in the Notice, is available from the MMS Alaska OCS Regional Office Public Information Unit.

  12. ENANTIOMERIC RATIOS AS SOURCE TRACERS OF OC PESTICIDES IN GREAT LAKES AIR

    EPA Science Inventory

    Organochlorine (OC) pesticides were used heavily in the cornbelt regions during the 60's and 70's. Volatilization of these pesticides from agricultural soils may be a significant source of contaminants to the atmosphere which may later be deposited in the Great Lakes. Pesticide...

  13. 78 FR 4377 - Annual List of Newspapers To Be Used by the Alaska Region for Publication of Legal Notices of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... hazardous fuel reduction project subject to this process shall be based on the date of publication of the legal notice of the project in the newspaper of record identified in this notice. The newspapers to be... List of Newspapers To Be Used by the Alaska Region for Publication of Legal Notices of Proposed...

  14. State of Alaska

    Science.gov Websites

    Alaska Railroad Alaska Maps Alaska Travel Safety Information Alaska Fish and Game Alaska Facts & Month Services How Do I? Education Health Jobs Safety How Do I? Apply for a Permanent Fund Dividend File Information More Dept. of Commerce, Comm... More Dept. of Labor & Workforce Dev. Safety 511 - Traveler

  15. GeoFORCE Alaska, A Successful Summer Exploring Alaska's Geology

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2012-12-01

    Thirty years old this summer, RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. This summer, in collaboration with the University of Texas Austin, the Rural Alaska Honors Institute launched a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science to entice kids to get excited about dinosaurs, volcanoes and earthquakes, and includes physics, chemistry, math, biology and other sciences. Students were recruited from the Alaska's Arctic North Slope schools, in 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The culmination is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks and Anchorage, Arizona, Oregon and the Appalachians. All trips focus on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska was begun by the University of Alaska Fairbanks in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska is managed by UAF's long-standing Rural Alaska Honors Institute, that has been successfully providing intense STEM educational opportunities for Alaskan high school students for over 30 years. The program will add a new cohort of 9th graders each year for the next four years. By the summer of 2015, GeoFORCE Alaska is targeting a capacity of 160 students in grades 9th through 12th. Join us to find out more about this exciting new initiative, which is enticing young Alaska Native

  16. Provisional tree seed zones and transfer guidelines for Alaska.

    Treesearch

    John N. Alden

    1991-01-01

    Four hundred and eighty-six provisional tree seed zones were delineated within 24 physiographic and climatic regions of Alaska and western Yukon Territory Estimated forest and potential forest land within altitudinal limits of tree species in Alaska was 51,853,000 hectares (128,130,000 acres) Seed transfer guidelines and standard labeling of seed collections are...

  17. Geologic maps of the eastern Alaska Range, Alaska (1:63,360 scale)

    USGS Publications Warehouse

    Nokleberg, Warren J.; Aleinikoff, John N.; Bond, Gerard C.; Ferrians, Oscar J.; Herzon, Paige L.; Lange, Ian M.; Miyaoka, Ronny T.; Richter, Donald H.; Schwab, Carl E.; Silva, Steven R.; Smith, Thomas E.; Zehner, Richard E.

    2015-01-01

    This report provides a description of map units for a suite of 44 inch-to-mile (1:63,360-scale) geologic quadrangle maps of the eastern Alaska Range. This report also contains a geologic and tectonic summary and a comprehensive list of references pertaining to geologic mapping and specialized studies of the region. In addition to the geologic maps of the eastern Alaska Range, this package includes a list of map units and an explanation of map symbols and abbreviations. The geologic maps display detailed surficial and bedrock geology, structural and stratigraphic data, portrayal of the active Denali fault that bisects the core of the east–west-trending range, and portrayal of other young faults along the north and south flanks of the range.

  18. Density and magnetic suseptibility values for rocks in the Talkeetna Mountains and adjacent region, south-central Alaska

    USGS Publications Warehouse

    Sanger, Elizabeth A.; Glen, Jonathan M.G.

    2003-01-01

    This report presents a compilation and statistical analysis of 306 density and 706 magnetic susceptibility measurements of rocks from south-central Alaska that were collected by U.S. Geological Survey (USGS) and Alaska Division of Geological and Geophysical Surveys (ADGGS) scientists between the summers of 1999 and 2002. This work is a product of the USGS Talkeetna Mountains Transect Project and was supported by USGS projects in the Talkeetna Mountains and Iron Creek region, and by Bureau of Land Management (BLM) projects in the Delta River Mining District that aim to characterize the subsurface structures of the region. These data were collected to constrain potential field models (i.e., gravity and magnetic) that are combined with other geophysical methods to identify and model major faults, terrane boundaries, and potential mineral resources of the study area. Because gravity and magnetic field anomalies reflect variations in the density and magnetic susceptibility of the underlying lithology, these rock properties are essential components of potential field modeling. In general, the average grain density of rocks in the study region increases from sedimentary, felsic, and intermediate igneous rocks, to mafic igneous and metamorphic rocks. Magnetic susceptibility measurements performed on rock outcrops and hand samples from the study area also reveal lower magnetic susceptibilities for sedimentary and felsic intrusive rocks, moderate susceptibility values for metamorphic, felsic extrusive, and intermediate igneous rocks, and higher susceptibility values for mafic igneous rocks. The density and magnetic properties of rocks in the study area are generally consistent with general trends expected for certain rock types.

  19. Home - Gold mining in Alaska - Libraries, Archives, & Museums at Alaska

    Science.gov Websites

    State Library Skip to main content State of Alaska myAlaska Departments State Employees Statewide Links × Upcoming Holiday Closure for Memorial Day The Alaska State Libraries, Archives, & Tuesday, May 29. Department of Education and Early Development Alaska State Libraries, Archives, and

  20. Molluscan evidence for early middle Miocene marine glaciation in southern Alaska

    USGS Publications Warehouse

    Marincovich, L.

    1990-01-01

    Profound cooling of Miocene marine climates in southern Alaska culminated in early middle Miocene coastal marine glaciation in the northeastern Gulf of Alaska. This climatic change resulted from interaction of the Yakutat terrane with southern Alaska beginning in late Oligocene time. The ensuing extreme uplift of the coastal Chugach and St. Elias Mountains resulted in progressive regional cooling that culminated in coastal marine glaciation beginning in the early middle Miocene (15-16 Ma) and continuing to the present. The counterclockwise flow of surface water from the frigid northeastern Gulf of Alaska resulted in a cold-temperate shallow-marine environment in the western Gulf of Alaska, as it does today. Ironically, dating of Gulf of Alaska marine glaciation as early middle Miocene is strongly reinforced by the presence of a few tropical and subtropical mollusks in western Gulf of Alaska faunas. Shallow-marine waters throughout the Gulf of Alaska were cold-temperate to cold in the early middle Miocene, when the world ocean was undergoing peak Neogene warming. -Author

  1. Net emissions of CH4 and CO2 in Alaska: Implications for the region's greenhouse gas budget

    USGS Publications Warehouse

    Zhuang, Q.; Melillo, J.M.; McGuire, A.D.; Kicklighter, D.W.; Prinn, R.G.; Steudler, P.A.; Felzer, B.S.; Hu, S.

    2007-01-01

    We used a biogeochemistry model, the Terrestrial Ecosystem Model (TEM), to study the net methane (CH4) fluxes between Alaskan ecosystems and the atmosphere. We estimated that the current net emissions of CH4 (emissions minus consumption) from Alaskan soils are ???3 Tg CH 4/yr. Wet tundra ecosystems are responsible for 75% of the region's net emissions, while dry tundra and upland boreal forests are responsible for 50% and 45% of total consumption over the region, respectively. In response to climate change over the 21st century, our simulations indicated that CH 4 emissions from wet soils would be enhanced more than consumption by dry soils of tundra and boreal forests. As a consequence, we projected that net CH4 emissions will almost double by the end of the century in response to high-latitude warming and associated climate changes. When we placed these CH4 emissions in the context of the projected carbon budget (carbon dioxide [CO2] and CH4) for Alaska at the end of the 21st century, we estimated that Alaska will be a net source of greenhouse gases to the atmosphere of 69 Tg CO2 equivalents/yr, that is, a balance between net methane emissions of 131 Tg CO2 equivalents/yr and carbon sequestration of 17 Tg C/yr (62 Tg CO2 equivalents/yr). ?? 2007 by the Ecological Society of America.

  2. 33 CFR 143.120 - Floating OCS facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT OCS Facilities § 143.120 Floating OCS facilities... (Marine Engineering) and J (Electrical Engineering) of 46 CFR chapter I and 46 CFR part 108 (Design and Equipment). Where unusual design or equipment needs make compliance impracticable, alternative proposals...

  3. Increasing insect reactions in Alaska: is this related to changing climate?

    PubMed

    Demain, Jeffrey G; Gessner, Bradford D; McLaughlin, Joseph B; Sikes, Derek S; Foote, J Timothy

    2009-01-01

    In 2006, Fairbanks, AK, reported its first cases of fatal anaphylaxis as a result of Hymenoptera stings concurrent with an increase in insect reactions observed throughout the state. This study was designed to determine whether Alaska medical visits for insect reactions have increased. We conducted a retrospective review of three independent patient databases in Alaska to identify trends of patients seeking medical care for adverse reactions after insect-related events. For each database, an insect reaction was defined as a claim for the International Classification of Diseases, Ninth Edition (ICD-9), codes E9053, E906.4, and 989.5. Increases in insect reactions in each region were compared with temperature changes in the same region. Each database revealed a statistically significant trend in patients seeking care for insect reactions. Fairbanks Memorial Hospital Emergency Department reported a fourfold increase in patients in 2006 compared with previous years (1992-2005). The Allergy, Asthma, and Immunology Center of Alaska reported a threefold increase in patients from 1999 to 2002 to 2003 to 2007. A retrospective review of the Alaska Medicaid database from 1999 to 2006 showed increases in medical claims for insect reactions among all regions, with the largest percentage of increases occurring in the most northern areas. Increases in insect reactions in Alaska have occurred after increases in annual and winter temperatures, and these findings may be causally related.

  4. Alaska Tidal Datum Portal - Alaska Tidal Datum Calculator | Alaska Division

    Science.gov Websites

    Coastal Hazards Program Guide to Geologic Hazards in Alaska MAPTEACH Tsunami Inundation Mapping Energy Portal main content Alaska Tidal Datum Portal Unambiguous vertical datums in the coastal environment are projects to ensure protection of human life, property, and the coastal environment. January 2017 - Update

  5. A Multi-Biomarker Biogeochemical Investigation of a Permafrost Core from Interior Alaska Dating to 40,000 Years Before Present: Insight Into Millenial-Scale Carbon Accumulation and Degradation Status

    NASA Astrophysics Data System (ADS)

    Hutchings, J.; Bianchi, T. S.; Schuur, E.; Kaufman, D. S.; Kholodov, A. L.; Vaughn, D.

    2017-12-01

    High latitude regions that were not directly glaciated have accumulated permafrost organic C (OC) throughout and prior to the last glacial period. Climate warming is expected to thaw these relict soils through expansion of the seasonally frozen active layer and re-expose them to active C cycling. Past climate perturbations also expanded the active layer and their effects were subsequently recorded in the bulk and molecular character of the now-buried permafrost soils. Here, we analyze a 5.4 m long permafrost core taken from an interior Alaska tundra site to assess its deep OC stock and molecular composition. OC stocks were quantified using elemental analysis and accumulation rates were estimated using 14C dating of 11 plant macrofossil samples. Organic matter source was indicated using lignin (overall plant contribution), amino acids (microbial contributions), and n-alkanes (vascular to non-vascular plant contributions), degradation status was indicated using lignin acid to aldehyde ratios (Ad:Al) and amino acid composition, and temperature was estimated via the branched glycerol dialkyl glycerol (GDGT) thermometer. Soil ages extended to 40,000 years, although a gap in 14C ages spanning from about 33 to 13 ka coincides with a 1.5 m thick, low OC (< 1 %OC) section of the core. We estimated a Holocene accumulation rate of 2.9 g OC m-2 yr-1, while mid-Wisconsin (40-30 ka) soils had a rate of 20.4 g OC m-2 yr-1, driven in part by the seven-fold higher sedimentation rate of the latter (0.4 mm yr-1). Lignin vannilyl Ad:Al indicated that mid-Wisconsin OC (mean Ad:Al 0.37) is well preserved compared to the Holocene section (mean Ad:Al 0.60), consistent with the older soils experiencing shorter residence times within the active layer due to faster sedimentation as well as potentially cooler temperatures. GDGT-derived temperatures were complicated by anomalously warm values in mid-Wisconsin soils (average mean annual temperature of 5.3°C compared to -1°C currently) and

  6. Age, distribution and style of deformation in Alaska north of 60°N: Implications for assembly of Alaska

    USGS Publications Warehouse

    Moore, Thomas; Box, Stephen E.

    2016-01-01

    The structural architecture of Alaska is the product of a complex history of deformation along both the Cordilleran and Arctic margins of North America involving oceanic plates, subduction zones and strike-slip faults and with continental elements of Laurentia, Baltica, and Siberia. We use geological constraints to assign regions of deformation to 14 time intervals and to map their distributions in Alaska. Alaska can be divided into three domains with differing deformational histories. Each domain includes a crustal fragment that originated near Early Paleozoic Baltica. The Northern domain experienced the Early Cretaceous Brookian orogeny, an oceanic arc-continent collision, followed by mid-Cretaceous extension. Early Cretaceous opening of the oceanic Canada Basin rifted the orogen from the Canadian Arctic margin, producing the bent trends of the orogen. The second (Southern) domain consists of Neoproterozoic and younger crust of the amalgamated Peninsular-Wrangellia-Alexander arc terrane and its paired Mesozoic accretionary prism facing the Pacific Ocean basin. The third (Interior) domain, situated between the first two domains and roughly bounded by the Cenozoic dextral Denali and Tintina faults, includes the large continental Yukon Composite and Farewell terranes having different Permian deformational episodes. Although a shared deformation that might mark their juxtaposition by collisional processes is unrecognized, sedimentary linkage between the two terranes and depositional overlap of the boundary with the Northern domain occurred by early Late Cretaceous. Late Late Cretaceous deformation is the first deformation shared by all three domains and correlates temporally with emplacement of the Southern domain against the remainder of Alaska. Early Cenozoic shortening is mild across interior Alaska but is significant in the Brooks Range, and correlates in time with dextral faulting, ridge subduction and counter-clockwise rotation of southern Alaska. Late Cenozoic

  7. Home, Alaska Oil and Gas Conservation Commission, State of Alaska

    Science.gov Websites

    State logo Alaska Department of Administration Alaska Oil and Gas Conservation Commission Administration AOGCC Alaska Oil and Gas Conservation Commission Javascript is required to run this webpage

  8. Earthquakes in Alaska

    USGS Publications Warehouse

    Haeussler, Peter J.; Plafker, George

    1995-01-01

    Earthquake risk is high in much of the southern half of Alaska, but it is not the same everywhere. This map shows the overall geologic setting in Alaska that produces earthquakes. The Pacific plate (darker blue) is sliding northwestward past southeastern Alaska and then dives beneath the North American plate (light blue, green, and brown) in southern Alaska, the Alaska Peninsula, and the Aleutian Islands. Most earthquakes are produced where these two plates come into contact and slide past each other. Major earthquakes also occur throughout much of interior Alaska as a result of collision of a piece of crust with the southern margin.

  9. Surface melt dominates Alaska glacier mass balance

    USGS Publications Warehouse

    Larsen Chris F,; Burgess, E; Arendt, A.A.; O'Neel, Shad; Johnson, A.J.; Kienholz, C.

    2015-01-01

    Mountain glaciers comprise a small and widely distributed fraction of the world's terrestrial ice, yet their rapid losses presently drive a large percentage of the cryosphere's contribution to sea level rise. Regional mass balance assessments are challenging over large glacier populations due to remote and rugged geography, variable response of individual glaciers to climate change, and episodic calving losses from tidewater glaciers. In Alaska, we use airborne altimetry from 116 glaciers to estimate a regional mass balance of −75 ± 11 Gt yr−1 (1994–2013). Our glacier sample is spatially well distributed, yet pervasive variability in mass balances obscures geospatial and climatic relationships. However, for the first time, these data allow the partitioning of regional mass balance by glacier type. We find that tidewater glaciers are losing mass at substantially slower rates than other glaciers in Alaska and collectively contribute to only 6% of the regional mass loss.

  10. Alaska volcanoes guidebook for teachers

    USGS Publications Warehouse

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at

  11. Regional Geochemical Results from the Reanalysis of NURE Stream Sediment Samples - Eagle 3? Quadrangle, East-Central Alaska

    USGS Publications Warehouse

    Crock, J.G.; Briggs, P.H.; Gough, L.P.; Wanty, R.B.; Brown, Z.A.

    2007-01-01

    This report presents reconnaissance geochemical data for a cooperative study in the Fortymile Mining District, east-central Alaska, initiated in 1997. This study has been funded by the U.S. Geological Survey (USGS) Mineral Resources Program. Cooperative funds were provided from various State of Alaska sources through the Alaska Department of Natural Resources. Results presented here represent the initial reconnaissance phase for this multidisciplinary cooperative study. In this phase, 239 sediment samples from the Eagle 3? Quadrangle of east-central Alaska, which had been collected and analyzed for the U.S. Department of Energy's National Uranium Resource Evaluation program (NURE) of the 1970's (Hoffman and Buttleman, 1996; Smith, 1997), are reanalyzed by newer analytical methods that are more sensitive, accurate, and precise (Arbogast, 1996; Taggart, 2002). The main objectives for the reanalysis of these samples were to establish lower limits of determination for some elements and to confirm the NURE data as a reliable predictive reconnaissance tool for future studies in Alaska's Eagle 3? Quadrangle. This study has wide implications for using the archived NURE samples and data throughout Alaska for future studies.

  12. Tobacco cessation intervention during pregnancy among Alaska Native women.

    PubMed

    Patten, Christi A

    2012-04-01

    This paper describes a community-based participatory research program with Alaska Native people addressing a community need to reduce tobacco use among pregnant women and children. Tobacco use during pregnancy among Alaska Native women is described along with development of a community partnership, findings from a pilot tobacco cessation intervention, current work, and future directions. Among Alaska Native women residing in the Yukon Kuskokwim Delta region of western Alaska, the prevalence of tobacco use (cigarette smoking and/or use of smokeless tobacco) during pregnancy is 79%. Results from a pilot intervention study targeting pregnant women indicated low rates of participation and less than optimal tobacco abstinence outcomes. Developing alternative strategies to reach pregnant women and to enhance the efficacy of interventions is a community priority, and future directions are offered.

  13. Tobacco Cessation Intervention During Pregnancy Among Alaska Native Women

    PubMed Central

    2014-01-01

    This paper describes a community-based participatory research program with Alaska Native people addressing a community need to reduce tobacco use among pregnant women and children. Tobacco use during pregnancy among Alaska Native women is described along with development of a community partnership, findings from a pilot tobacco cessation intervention, current work, and future directions. Among Alaska Native women residing in the Yukon Kuskokwim Delta region of western Alaska, the prevalence of tobacco use (cigarette smoking and/or use of smokeless tobacco) during pregnancy is 79%. Results from a pilot intervention study targeting pregnant women indicated low rates of participation and less than optimal tobacco abstinence outcomes. Developing alternative strategies to reach pregnant women and to enhance the efficacy of interventions is a community priority, and future directions are offered. PMID:22311690

  14. Volcanoes of the Wrangell Mountains and Cook Inlet region, Alaska: selected photographs

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Diggles, Michael F.

    2001-01-01

    Alaska is home to more than 40 active volcanoes, many of which have erupted violently and repeatedly in the last 200 years. This CD-ROM contains 97 digitized color 35-mm images which represent a small fraction of thousands of photographs taken by Alaska Volcano Observatory scientists, other researchers, and private citizens. The photographs were selected to portray Alaska's volcanoes, to document recent eruptive activity, and to illustrate the range of volcanic phenomena observed in Alaska. These images are for use by the interested public, multimedia producers, desktop publishers, and the high-end printing industry. The digital images are stored in the 'images' folder and can be read across Macintosh, Windows, DOS, OS/2, SGI, and UNIX platforms with applications that can read JPG (JPEG - Joint Photographic Experts Group format) or PCD (Kodak's PhotoCD (YCC) format) files. Throughout this publication, the image numbers match among the file names, figure captions, thumbnail labels, and other references. Also included on this CD-ROM are Windows and Macintosh viewers and engines for keyword searches (Adobe Acrobat Reader with Search). At the time of this publication, Kodak's policy on the distribution of color-management files is still unresolved, and so none is included on this CD-ROM. However, using the Universal Ektachrome or Universal Kodachrome transforms found in your software will provide excellent color. In addition to PhotoCD (PCD) files, this CD-ROM contains large (14.2'x19.5') and small (4'x6') screen-resolution (72 dots per inch; dpi) images in JPEG format. These undergo downsizing and compression relative to the PhotoCD images.

  15. Alaska and the Alaska Federal Health Care Partnership

    DTIC Science & Technology

    2002-08-01

    SUPPLEMENTARY NOTES The original document contains color images. 14. ABSTRACT The intent of the Alaska Federal Healthcare Partnership is to expand clinical and... intent of the Alaska Federal Healthcare Partnership is to expand clinical and support capabilities of the Alaska Native Medical Center (ANMC), Third...the formation of the Partnership. Although lengthy, the information is essential to appreciate the magnitude of the Partnership and the intent behind

  16. Revisiting Notable Earthquakes and Seismic Patterns of the Past Decade in Alaska

    NASA Astrophysics Data System (ADS)

    Ruppert, N. A.; Macpherson, K. A.; Holtkamp, S. G.

    2015-12-01

    Alaska, the most seismically active region of the United States, has produced five earthquakes with magnitudes greater than seven since 2005. The 2007 M7.2 and 2013 M7.0 Andreanof Islands earthquakes were representative of the most common source of significant seismic activity in the region, the Alaska-Aleutian megathrust. The 2013 M7.5 Craig earthquake, a strike-slip event on the Queen-Charlotte fault, occurred along the transform plate boundary in southeast Alaska. The largest earthquake of the past decade, the 2014 M7.9 Little Sitkin event in the western Aleutians, occurred at an intermediate depth and ruptured along a gently dipping fault through nearly the entire thickness of the subducted Pacific plate. Along with these major earthquakes, the Alaska Earthquake Center reported over 250,000 seismic events in the state over the last decade, and its earthquake catalog surpassed 500,000 events in mid-2015. Improvements in monitoring networks and processing techniques allowed an unprecedented glimpse into earthquake patterns in Alaska. Some notable recent earthquake sequences include the 2008 Kasatochi eruption, the 2006-2008 M6+ crustal earthquakes in the central and western Aleutians, the 2010 and 2015 Bering Sea earthquakes, the 2014 Noatak swarm, and the 2014 Minto earthquake sequence. In 2013, the Earthscope USArray project made its way into Alaska. There are now almost 40 new Transportable Array stations in Alaska along with over 20 upgraded sites. This project is changing the earthquake-monitoring scene in Alaska, lowering magnitude of completeness across large, newly instrumented parts of the state.

  17. Triggered tremor sweet spots in Alaska

    NASA Astrophysics Data System (ADS)

    Gomberg, Joan; Prejean, Stephanie

    2013-12-01

    To better understand what controls fault slip along plate boundaries, we have exploited the abundance of seismic and geodetic data available from the richly varied tectonic environments composing Alaska. A search for tremor triggered by 11 large earthquakes throughout all of seismically monitored Alaska reveals two tremor "sweet spots"—regions where large-amplitude seismic waves repeatedly triggered tremor between 2006 and 2012. The two sweet spots locate in very different tectonic environments—one just trenchward and between the Aleutian islands of Unalaska and Akutan and the other in central mainland Alaska. The Unalaska/Akutan spot corroborates previous evidence that the region is ripe for tremor, perhaps because it is located where plate-interface frictional properties transition between stick-slip and stably sliding in both the dip direction and laterally. The mainland sweet spot coincides with a region of complex and uncertain plate interactions, and where no slow slip events or major crustal faults have been noted previously. Analyses showed that larger triggering wave amplitudes, and perhaps lower frequencies (< 0.03 Hz), may enhance the probability of triggering tremor. However, neither the maximum amplitude in the time domain or in a particular frequency band, nor the geometric relationship of the wavefield to the tremor source faults alone ensures a high probability of triggering. Triggered tremor at the two sweet spots also does not occur during slow slip events visually detectable in GPS data, although slow slip below the detection threshold may have facilitated tremor triggering.

  18. Triggered tremor sweet spots in Alaska

    USGS Publications Warehouse

    Gomberg, Joan; Prejean, Stephanie

    2013-01-01

    To better understand what controls fault slip along plate boundaries, we have exploited the abundance of seismic and geodetic data available from the richly varied tectonic environments composing Alaska. A search for tremor triggered by 11 large earthquakes throughout all of seismically monitored Alaska reveals two tremor “sweet spots”—regions where large-amplitude seismic waves repeatedly triggered tremor between 2006 and 2012. The two sweet spots locate in very different tectonic environments—one just trenchward and between the Aleutian islands of Unalaska and Akutan and the other in central mainland Alaska. The Unalaska/Akutan spot corroborates previous evidence that the region is ripe for tremor, perhaps because it is located where plate-interface frictional properties transition between stick-slip and stably sliding in both the dip direction and laterally. The mainland sweet spot coincides with a region of complex and uncertain plate interactions, and where no slow slip events or major crustal faults have been noted previously. Analyses showed that larger triggering wave amplitudes, and perhaps lower frequencies (<~0.03 Hz), may enhance the probability of triggering tremor. However, neither the maximum amplitude in the time domain or in a particular frequency band, nor the geometric relationship of the wavefield to the tremor source faults alone ensures a high probability of triggering. Triggered tremor at the two sweet spots also does not occur during slow slip events visually detectable in GPS data, although slow slip below the detection threshold may have facilitated tremor triggering.

  19. Large CH4 production fueled by autochthonous OC in an anoxic sediment

    NASA Astrophysics Data System (ADS)

    Grasset, Charlotte; Mendonça, Raquel; Villamor Saucedo, Gabriella; Sobek, Sebastian

    2017-04-01

    River damming and human-induced eutrophication both affect river and lake functioning, increase organic carbon (OC) sedimentation rates and generate anoxic conditions in bottom waters. Under these conditions, OC in sediments is decomposed into CO2 and CH4, a high potential greenhouse gas. It has been shown that the decomposition of land-derived (allochthonous) OC is inhibited at anoxic conditions, compared to OC internally produced (autochthonous). However, the overall extent and end products (CO2 or CH4) of anoxic decomposition remain poorly known for different types of OC, making it difficult to judge the effect of river damming and eutrophication on greenhouse gas emissions from inland waters. We incubated different types of allochthonous OC (terrestrial plants) and autochthonous OC (phytoplankton and aquatic vascular plants) in an anoxic sediment during 130 days. We aimed to test 1) if this addition of relatively fresh OC resulted in an increase of CH4 production and 2) if autochthonous OC would produce more CH4 than allochthonous OC. We assessed the contribution to CH4 production of the different OC sources (i.e. sediment or added OC) with stable isotope measurements. We found that the addition of relatively fresh OC greatly increased CH4 production. Autochthonous OC generally produced more CH4 than allochthonous OC, but the overall extent of CH4 production was highly variable between the different autochthonous OC types. The d13C-CH4 measurements indicated that CH4 originated exclusively from the added OC. We conclude that the production of CH4 is likely to to be high in eutrophic as well as in artificial lakes, especially when these systems have anoxic bottom waters and high internal primary productivity and thus a high supply of autochthonous OC to the sediment. The current expansion of reservoir construction in concert with almost globally prevalent anthropogenic eutrophication are therefore likely to increase CH4 production in inland waters.

  20. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  1. Resident, State of Alaska

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees State of Alaska Search Home Quick Links Departments Commissioners Employee Whitepages State Government Jobs Federal Jobs Starting a Small Business Living Get a Driver License Get a Hunting

  2. Visitor, State of Alaska

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees State of Alaska Search Home Quick Links Departments Commissioners Employee Whitepages State Government Jobs Federal Jobs Starting a Small Business Living Get a Driver License Get a Hunting

  3. 78 FR 60892 - Outer Continental Shelf (OCS), Alaska OCS Region, Chukchi Sea Planning Area, Proposed Oil and Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ..., concerning the importance of these areas or associated activities. 6. Submissions of Nominations, Requests... range of interest classifications and anticipated activity regarding the nominated area(s). Interested... on the importance of Hanna Shoal and Herald Shoal. While already excluded from the Program Area...

  4. Unified Ecoregions of Alaska: 2001

    USGS Publications Warehouse

    Nowacki, Gregory J.; Spencer, Page; Fleming, Michael; Brock, Terry; Jorgenson, Torre

    2003-01-01

    Major ecosystems have been mapped and described for the State of Alaska and nearby areas. Ecoregion units are based on newly available datasets and field experience of ecologists, biologists, geologists and regional experts. Recently derived datasets for Alaska included climate parameters, vegetation, surficial geology and topography. Additional datasets incorporated in the mapping process were lithology, soils, permafrost, hydrography, fire regime and glaciation. Thirty two units are mapped using a combination of the approaches of Bailey (hierarchial), and Omernick (integrated). The ecoregions are grouped into two higher levels using a 'tri-archy' based on climate parameters, vegetation response and disturbance processes. The ecoregions are described with text, photos and tables on the published map.

  5. Organic carbon biolabilty increases with depth in a yedoma permafrost profile in Interior Alaska

    NASA Astrophysics Data System (ADS)

    Heslop, J. K.; Walter Anthony, K. M.; Spencer, R.; Winkel, M.; Zhang, M.; Liebner, S.; Podgorski, D. C.; Zito, P.; Kholodov, A. L.

    2017-12-01

    Permafrost organic carbon (OC) biolability is known to be controlled by both the OC molecular composition and redox state and the microbial community structure and its response to permafrost thaw. However, due to their complexity, both these mechanisms remain poorly understood. A substantial portion ( 16%) of global permafrost OC is stored in particularly deep, ice-rich permafrost deposits known as yedoma. We anaerobically incubated sediment from four depths in a 12-m yedoma profile in Interior Alaska with three treatments: control without amendment, inoculated with sediment from an adjacent thermokarst lake, and inoculated with sterilized lake sediment. We quantified CO2 and CH4 as end products of C mineralization, used qPCR to characterize the initial methanogenic communities, and used FT-ICR-MS to characterize the molecular composition of water-extractable organic matter at the beginning and end of the 154-d incubation. Proportions of aliphatics and peptides increased with depth in the permafrost profile, which would be consistent with long-term accumulation of anaerobic fermentation end products in yedoma-type permafrost. Moreover, these compounds positively correlated with anaerobic CO2 and CH4 production and their degradation rates corresponded to high proportions (53.3 ±41.9%) of OC mineralization, suggesting increasing proportions of these compounds with depth correspond to increasing OC quality and increased C mineralization per unit OC. Methanogenic communities were below detection limits in all controls. Following exposure to modern lake sediment microbial communities with detectable methanogens, we observed increases in anaerobic CO2 (65.1% ±75.2%) and CH4 (1,197% ±914%) production. The treatments with sterilized lake sediment did not contain detectable methanogens, and had increased anaerobic CO2 (52.6% ±69.2%) production but decreased CH4 (-74.1% ±33.8%) production. These preliminary results suggest anaerobic CH4 production is limited by ancient

  6. Alaska Native Rural Development: The NANA Experience. Occasional Paper No. 2.

    ERIC Educational Resources Information Center

    Gaffney, Michael J.

    Faced with the need to build new social and economic institutions following the 1971 Alaska Native Claims Settlement Act, Alaska Natives formed 12 regional non-profit making corporations. One of these, Northwest Arctic Inupiat (NANA), is bringing a human resources development approach to the area in an effort to develop enduring economic and…

  7. FY10 RARE Final Report to Region 10: The functional Assessment of Alaska Peatlands in Cook Inlet Basin - report

    EPA Science Inventory

    Peatlands in south central Alaska form the predominant wetland class in the lowlands that encompass Cook Inlet. These peatlands are also in areas of increasing human development in Alaska. Currently Alaska peatlands are extensive and largely pristine. This study focused onobtaini...

  8. A conceptual model for the impact of climate change on fox rabies in Alaska, 1980-2010.

    PubMed

    Kim, B I; Blanton, J D; Gilbert, A; Castrodale, L; Hueffer, K; Slate, D; Rupprecht, C E

    2014-02-01

    The direct and interactive effects of climate change on host species and infectious disease dynamics are likely to initially manifest\\ at latitudinal extremes. As such, Alaska represents a region in the United States for introspection on climate change and disease. Rabies is enzootic among arctic foxes (Vulpes lagopus) throughout the northern polar region. In Alaska, arctic and red foxes (Vulpes vulpes) are reservoirs for rabies, with most domestic animal and wildlife cases reported from northern and western coastal Alaska. Based on passive surveillance, a pronounced seasonal trend in rabid foxes occurs in Alaska, with a peak in winter and spring. This study describes climatic factors that may be associated with reported cyclic rabies occurrence. Based upon probabilistic modelling, a stronger seasonal effect in reported fox rabies cases appears at higher latitudes in Alaska, and rabies in arctic foxes appear disproportionately affected by climatic factors in comparison with red foxes. As temperatures continue a warming trend, a decrease in reported rabid arctic foxes may be expected. The overall epidemiology of rabies in Alaska is likely to shift to increased viral transmission among red foxes as the primary reservoir in the region. Information on fox and lemming demographics, in addition to enhanced rabies surveillance among foxes at finer geographic scales, will be critical to develop more comprehensive models for rabies virus transmission in the region. © 2013 Blackwell Verlag GmbH.

  9. Phytophthora species in forest streams in Oregon and Alaska.

    PubMed

    Reeser, Paul W; Sutton, Wendy; Hansen, Everett M; Remigi, Philippe; Adams, Gerry C

    2011-01-01

    Eighteen Phytophthora species and one species of Halophytophthora were identified in 113 forest streams in Alaska, western Oregon and southwestern Oregon that were sampled by baiting or filtration of stream water with isolation on selective media. Species were identified by morphology and DNA characterization with single strand conformational polymorphism, COX spacer sequence and ITS sequence. ITS Clade 6 species were most abundant overall, but only four species, P. gonapodyides (37% of all isolates), P. taxon Salixsoil, P. taxon Oaksoil and P. pseudosyringae, were found in all three regions. The species assemblages were similar in the two Oregon regions, but P. taxon Pgchlamydo was absent in Alaska and one new species present in Alaska was absent in Oregon streams. The number of Phytophthora propagules in Oregon streams varied by season and in SW Oregon, where sampling continued year round, P. taxon Salixsoil, P. nemorosa and P. siskiyouensis were recovered only in some seasons.

  10. Autism and ADHD Symptoms in Patients with OCD: Are They Associated with Specific OC Symptom Dimensions or OC Symptom Severity?

    ERIC Educational Resources Information Center

    Anholt, Gideon E.; Cath, Danielle C.; van Oppen, Patricia; Eikelenboom, Merijn; Smit, Johannes H.; van Megen, Harold; van Balkom, Anton J. L. M.

    2010-01-01

    In obsessive-compulsive disorder (OCD), the relationship between autism spectrum disorders (ASD), attention-deficit/hyperactivity disorder (ADHD) symptom, and obsessive-compulsive (OC) symptom dimensions and severity has scarcely been studied. Therefore, 109 adult outpatients with primary OCD were compared to 87 healthy controls on OC, ADHD and…

  11. 76 FR 56109 - Subsistence Management Regulations for Public Lands in Alaska-Subpart B, Federal Subsistence Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ... questions specific to National Forest System lands, contact Steve Kessler, Subsistence Program Leader, USDA..., productivity, jobs, the environment, or other units of the government. (b) Whether the rule will create...; Jerry Berg, Alaska Regional Office, U.S. Fish and Wildlife Service; and Steve Kessler, Alaska Regional...

  12. 78 FR 35149 - Addresses of Regional Offices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-12

    ..., and Texas), 500 Gold Avenue SW., Room 9018 (P.O. Box 1306), Albuquerque, New Mexico 87102. (c) Midwest... 01035. (f) Mountain-Prairie Regional Office (Region 6--comprising the States of Colorado, Kansas...), Lakewood, Colorado 80228. (g) Alaska Regional Office (Region 7--comprising the State of Alaska), 1011 E...

  13. Level III Ecoregions of Alaska

    EPA Pesticide Factsheets

    Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. The ecoregions of Alaska are a framework for organizing and interpreting environmental data for State, national, and international level inventory, monitoring, and research efforts. The map and descriptions for 20 ecological regions were derived by synthesizing information on the geographic distribution of environmental factors such as climate, physiography, geology, permafrost, soils, and vegetation. A qualitative assessment was used to interpret the distributional patterns and relative importance of these factors from place to place (Gallant and others, 1995). Numeric identifiers assigned to the ecoregions are coordinated with those used on the map of Ecoregions of the Conterminous United States (Omernik 1987, U.S. EPA 2010) as a continuation of efforts to map ecoregions for the United States. Additionally, the ecoregions for Alaska and the conterminous United States, along with ecological regions for Canada (Wiken 1986) and Mexico, have been combined for maps at three hierarchical levels for North America (Omernik 1995, Commission for Environmental Cooperation, 1997, 2006). A Roman numeral hierarchical scheme has been adopted for different levels of ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions. At Level III, there are currently 182

  14. 77 FR 4581 - Alaska Region's Subsistence Resource Commission (SRC) Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ..., Port Alsworth, Alaska, (907) 781-2218, on Wednesday, February 22, 2012. The meeting will start at 11 a.m. and conclude at 4 p.m. or until business is completed. For Further Information On the Lake Clark... Member Status 8. Public and Other Agency Comments 9. Old Business a. Subsistence Collections and Uses of...

  15. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Alaska Region (Version 2.0)

    DTIC Science & Technology

    2007-09-01

    07-24 102 Viereck, L. A., K. Van Cleve, and C. T. Dyrness. 1986. Forest ecosystem distribution in the Taiga environment, Chapter 3. In Forest...ecosystems in the Alaska Taiga : A synthesis of structure and function. ed. K. Van Cleve, F. S. Chapin III, P. W. Flanagan, L. A. Viereck, and C. T

  16. Alaska Seismic Hazards Safety Commission

    Science.gov Websites

    State Employees ASHSC State of Alaska search Alaska Seismic Hazards Safety Commission View of Anchorage and Commissions Alaska Seismic Hazards Safety Commission (ASHSC) main contant Alaska Seismic Hazards Safety Commission logo Alaska Seismic Hazards Safety Commission (ASHSC) - Mission The Alaska Seismic

  17. NASA's DESDynI in Alaska

    NASA Astrophysics Data System (ADS)

    Sauber, J. M.; Hofton, M. A.; Bruhn, R. L.; Forster, R. R.; Burgess, E. W.; Cotton, M. M.

    2010-12-01

    In 2007 the National Research Council Earth Science Decadal Survey, Earth Science Applications from Space, recommended an integrated L-band InSAR and multibeam Lidar mission called DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) and it is scheduled for launch in 2017. The NASA InSAR and Lidar mission is optimized for studying geohazards and global environmental change. The complex plate boundary in southern coastal Alaska provides an excellent setting for testing DESDynI capabilities to recover fundamental parameters of glacio-seismotectonic processes. Also, aircraft and satellites acquisitions of Lidar and L-band SAR have been made in this region in the last decade that can be used for DESDynI performance simulations. Since the Lidar observations would penetrate most vegetation, the accurate bald Earth elevation profiles will give new elevation information beyond the standard 30-m digital elevation models (DEM) and the Lidar-derived elevations will provide an accurate georeferenced surface for local and regional scale studies. In an earlier study we demonstrated how the Lidar observations could be used in combination with SAR to generate an improved InSAR derived DEM in the Barrow, Alaska region [Atwood et al., 2007]; here we discuss how Lidar could be fused with L-band SAR in more rugged, vegetated terrane. Based on simulations of multi-beam Lidar instrument performance over uplifted marine terraces, active faults and folds, uplift associated with the 1899 Yakataga seismic event (M=8), and elevation change on the glaciers in southern, coastal Alaska, we report on the significance of the DESDynI Lidar contiguous 25 m footprint elevation profiles for EarthScope related studies in Alaska. We are using the morphology and dynamics of glaciers derived from L-band SAR ice velocities to infer the large scale sub-ice structures that form the structural framework of the Seward-Bagley Basins. Using primarily winter acquisitions of L-band SAR data from ALOS

  18. Effect of root strength and soil saturation on hillslope stability in forests with natural cedar decline in headwater regions of SE Alaska.

    Treesearch

    Adelaide C. Johnson; Peter Wilcock

    1998-01-01

    A natural decline in the population of yellow-cedar (Chamaecyparis nootkatensis) is occurring in pristine southeast Alaska forests and may be the most significant forest decline in the western United States. The frequency of landslides in cedar decline areas is three times larger than in areas of healthy forest. Three regions are investigated in...

  19. Reconnaissance sedimentology of selected tertiary exposures in the upland region bordering the Yukon Flats basin, east-central Alaska

    USGS Publications Warehouse

    LePain, David L.; Stanley, Richard G.

    2017-01-01

    This report summarizes reconnaissance sedimentologic and stratigraphic observations made during six days of helicopter-supported fieldwork in 2002 on Tertiary sedimentary rocks exposed in the upland region around the flanks of the Yukon Flats basin in east-central Alaska (fig. 1). This project was a cooperative effort between the Alaska Division of Geological & Geophysical Surveys (DGGS) and the U.S. Geological Survey (USGS) to investigate the geology of the basin in preparation for an assessment of the undiscovered, technically recoverable hydrocarbon resources (Stanley and others, 2004). Field observations and interpretations summarized in this report are reconnaissance level. At most, no more than a few hours were spent on the ground at any location. Measured sections included in this report are sketch sec- tions and thicknesses shown are approximate. Relatively detailed observations were made by the authors at only three locations, including The Mudbank (Hodzana River), Rampart (east bank of the Yukon River), and Bryant Creek (along the Tintina fault near the Canada border). These three locations are described first in relative detail, then followed by general descriptions of other locations.

  20. Phylogeography of brown bears (Ursus arctos) of Alaska and paraphyly within the Ursidae.

    PubMed

    Talbot, S L; Shields, G F

    1996-06-01

    Complete nucleotide sequences of the mitochondrial cytochrome b, tRNA(prolime), and tRNA(threonine) genes were described for 166 brown bears (Ursus arctos) from 10 geographic regions of Alaska to describe natural genetic variation, construct a molecular phylogeny, and evaluate classical taxonomies. DNA sequences of brown bears were compared to homologous sequences of the polar bear (maritimus) and of the sun bear (Helarctos malayanus), which was used as an outgroup. Parsimony and neighbor-joining methods each produced essentially identical phylogenetic trees that suggest two distinct clades of mtDNA for brown bears in Alaska: one composed only of bears that now reside on some of the islands of southeastern Alaska and the other which includes bears from all other regions of Alaska. The very close relationship of the polar bear to brown bears of the islands of southeastern Alaska as previously reported by us and the paraphyletic association of polar bears to brown bears reported by others have been reaffirmed with this much larger data set. A weak correlation is suggested between types of mtDNA and habitat preference by brown bears in Alaska. Our mtDNA data support some, but not all, of the currently designated subspecies of brown bears whose descriptions have been based essentially on morphology.

  1. 77 FR 4579 - Alaska Region's Subsistence Resource Commission (SRC) Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ..., Alaska, (907) 683-4500, on Thursday, February 23, 2012. The meeting will start at 9 a.m. and conclude at 5 p.m. or until business is completed. Should a quorum of members not be available on Thursday... 25, 2012. This meeting will start at 9 a.m. and conclude at 5 p.m. For Further Information on the...

  2. 30 CFR 281.14 - OCS mining area identification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false OCS mining area identification. 281.14 Section 281.14 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF... mining area identification. The Secretary, after considering the available OCS mineral resources and...

  3. Case study comparison of two pellet heating facilities in southeastern Alaska

    Treesearch

    David Nicholls; Allen Brackley; Robert Deering; Daniel Parrent; Brian Kleinhenz; Craig. Moore

    2016-01-01

    Over the past decade, wood-energy use in Alaska has grown dramatically. Since 2000, several dozen new wood-energy installations have been established, with numerous others in the design or construction phase. This case study report compares two wood-pellet heating systems in Juneau, Alaska. The Tlingit-Haida Regional Housing Authority, a native housing authority that...

  4. Alaska exceptionality hypothesis: Is Alaska wilderness really different?

    Treesearch

    Gregory Brown

    2002-01-01

    The common idiom of Alaska as “The Last Frontier” suggests that the relative remoteness and unsettled character of Alaska create a unique Alaskan identity, one that is both a “frontier” and the “last” of its kind. The frontier idiom portrays the place and people of Alaska as exceptional or different from the places and people who reside in the Lower Forty- Eight States...

  5. Multi-year Estimates of Methane Fluxes in Alaska from an Atmospheric Inverse Model

    NASA Astrophysics Data System (ADS)

    Miller, S. M.; Commane, R.; Chang, R. Y. W.; Miller, C. E.; Michalak, A. M.; Dinardo, S. J.; Dlugokencky, E. J.; Hartery, S.; Karion, A.; Lindaas, J.; Sweeney, C.; Wofsy, S. C.

    2015-12-01

    We estimate methane fluxes across Alaska over a multi-year period using observations from a three-year aircraft campaign, the Carbon Arctic Reservoirs Vulnerability Experiment (CARVE). Existing estimates of methane from Alaska and other Arctic regions disagree in both magnitude and distribution, and before the CARVE campaign, atmospheric observations in the region were sparse. We combine these observations with an atmospheric particle trajectory model and a geostatistical inversion to estimate surface fluxes at the model grid scale. We first use this framework to estimate the spatial distribution of methane fluxes across the state. We find the largest fluxes in the south-east and North Slope regions of Alaska. This distribution is consistent with several estimates of wetland extent but contrasts with the distribution in most existing flux models. These flux models concentrate methane in warmer or more southerly regions of Alaska compared to the estimate presented here. This result suggests a discrepancy in how existing bottom-up models translate wetland area into methane fluxes across the state. We next use the inversion framework to explore inter-annual variability in regional-scale methane fluxes for 2012-2014. We examine the extent to which this variability correlates with weather or other environmental conditions. These results indicate the possible sensitivity of wetland fluxes to near-term variability in climate.

  6. Climate Drivers of Alaska Summer Stream Temperature

    NASA Astrophysics Data System (ADS)

    Bieniek, P.; Bhatt, U. S.; Plumb, E. W.; Thoman, R.; Trammell, E. J.

    2016-12-01

    The temperature of the water in lakes, rivers and streams has wide ranging impacts from local water quality and fish habitats to global climate change. Salmon fisheries in Alaska, a critical source of food in many subsistence communities, are sensitive to large-scale climate variability and river and stream temperatures have also been linked with salmon production in Alaska. Given current and projected climate change, understanding the mechanisms that link the large-scale climate and river and stream temperatures is essential to better understand the changes that may occur with aquatic life in Alaska's waterways on which subsistence users depend. An analysis of Alaska stream temperatures in the context of reanalysis, downscaled, station and other climate data is undertaken in this study to fill that need. Preliminary analysis identified eight stream observation sites with sufficiently long (>15 years) data available for climate-scale analysis in Alaska with one station, Terror Creek in Kodiak, having a 30-year record. Cross-correlation of summer (June-August) water temperatures between the stations are generally high even though they are spread over a large geographic region. Correlation analysis of the Terror Creek summer observations with seasonal sea surface temperatures (SSTs) in the North Pacific broadly resembles the SST anomaly fields typically associated with the Pacific Decadal Oscillation (PDO). A similar result was found for the remaining stations and in both cases PDO-like correlation patterns also occurred in the preceding spring. These preliminary results demonstrate that there is potential to diagnose the mechanisms that link the large-scale climate system and Alaska stream temperatures.

  7. Rare Clear View of Alaska [annotated

    NASA Image and Video Library

    2017-12-08

    On most days, relentless rivers of clouds wash over Alaska, obscuring most of the state’s 6,640 miles (10,690 kilometers) of coastline and 586,000 square miles (1,518,000 square kilometers) of land. The south coast of Alaska even has the dubious distinction of being the cloudiest region of the United States, with some locations averaging more than 340 cloudy days per year. That was certainly not the case on June 17, 2013, the date that the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite acquired this rare, nearly cloud-free view of the state. The absence of clouds exposed a striking tapestry of water, ice, land, forests, and even wildfires. Snow-covered mountains such as the Alaska Range and Chugach Mountains were visible in southern Alaska, while the arc of mountains that make up the Brooks Range dominated the northern part of the state. The Yukon River—the longest in Alaska and the third longest in the United States—wound its way through the green boreal forests that inhabit the interior of the state. Plumes of sediment and glacial dust poured into the Gulf of Alaska from the Copper River. And Iliamna Lake, the largest in Alaska, was ice free. The same ridge of high pressure that cleared Alaska’s skies also brought stifling temperatures to many areas accustomed to chilly June days. Talkeetna, a town about 100 miles north of Anchorage, saw temperatures reach 96°F (36°C) on June 17. Other towns in southern Alaska set all-time record highs, including Cordova, Valez, and Seward. The high temperatures also helped fuel wildfires and hastened the breakup of sea ice in the Chukchi Sea. NASA image courtesy Jeff Schmaltz, LANCE MODIS Rapid Response Team at NASA GSFC. Caption by Adam Voiland. Instrument: Terra - MODIS More info: 1.usa.gov/102MAEj Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar

  8. 30 CFR 281.14 - OCS mining area identification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false OCS mining area identification. 281.14 Section 281.14 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF... SHELF Leasing Procedures § 281.14 OCS mining area identification. The Secretary, after considering the...

  9. Preservation of labile organic matter in soils of drained thaw lakes in Northern Alaska

    NASA Astrophysics Data System (ADS)

    Mueller, Carsten W.; Rethemeyer, Janet; Kao-Kniffin, Jenny; Löppmann, Sebastian; Hinkel, Kenneth; Bockheim, James

    2014-05-01

    A large number of studies predict changing organic matter (OM) dynamics in arctic soils due to global warming. In contrast to rather slowly altering bulk soil properties, single soil organic matter (SOM) fractions can provide a more detailed picture of the dynamics of differently preserved SOM pools in climate sensitive arctic regions. By the study of the chemical composition of such distinctive SOM fractions using nuclear magnetic resonance spectroscopy (NMR) together with radiocarbon analyses it is possible to evaluate the stability of the major OM pools. Approximately 50-75% of Alaska's Arctic Coastal Plain is covered with thaw lakes and drained thaw lakes that follow a 5,000 yr cycle of development (between creation and final drainage), thus forming a natural soil chronosequence. The drained thaw lakes offer the possibility to study SOM dynamics affected by permafrost processes over millennial timescales. In April 2010 we sampled 16 soil cores (including the active and permanent layer) reaching from young drained lakes (0-50 years since drainage) to ancient drained lakes (3000-5500 years since drainage). Air dried soil samples from soil horizons of the active and permanent layer were subjected to density fractionation in order to differentiate particulate OM and mineral associated OM. The chemical composition of the SOM fractions was analyzed by 13C CPMAS NMR spectroscopy. For a soil core of a young and an ancient drained thaw lake basin we also analyzed the 14C content. For the studied soils we can show that up to over 25 kg OC per square meter are stored mostly as labile, easily degradable organic matter rich in carbohydrates. In contrast only 10 kg OC per square meter were sequestered as presumably more stable mineral associated OC dominated by aliphatic compounds. Comparable to soils of temperate regions, we found small POM (< 20 µm) occluded in aggregated soil structures which differed in the chemical composition from larger organic particles. This was

  10. Alaska telemedicine: growth through collaboration.

    PubMed

    Patricoski, Chris

    2004-12-01

    The last thirty years have brought the introduction and expansion of telecommunications to rural and remote Alaska. The intellectual and financial investment of earlier projects, the more recent AFHCAN Project and the Universal Service Administrative Company Rural Health Care Division (RHCD) has sparked a new era in telemedicine and telecommunication across Alaska. This spark has been flamed by the dedication and collaboration of leaders at he highest levels of organizations such as: AFHCAN member organizations, AFHCAN Office, Alaska Clinical Engineering Services, Alaska Federal Health Care Partnership, Alaska Federal Health Care Partnership Office, Alaska Native health Board, Alaska Native Tribal health Consortium, Alaska Telehealth Advisory Council, AT&T Alascom, GCI Inc., Health care providers throughout the state of Alaska, Indian Health Service, U.S. Department of Health and Human Services, Office of U.S. Senator Ted Steens, State of Alaska, U.S. Department of Homeland Security--United States Coast Guard, United States Department of Agriculture, United States Department of Defense--Air Force and Army, United States Department of Veterans Affairs, University of Alaska, and University of Alaska Anchorage. Alaska now has one of the largest telemedicine programs in the world. As Alaska moves system now in place become self-sustaining, and 2) collaborating with all stakeholders in promoting the growth of an integrated, state-wide telemedicine network.

  11. 40 CFR 52.71 - Classification of regions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Classification of regions. 52.71... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Alaska § 52.71 Classification of regions. The Alaska plan was evaluated on the basis of the following classifications: Air quality control Region...

  12. 40 CFR 52.71 - Classification of regions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Classification of regions. 52.71... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Alaska § 52.71 Classification of regions. The Alaska plan was evaluated on the basis of the following classifications: Air quality control Region...

  13. 40 CFR 52.71 - Classification of regions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Alaska § 52.71 Classification of regions. The Alaska plan was evaluated on the basis of the following classifications: Air quality control Region... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Classification of regions. 52.71...

  14. 40 CFR 52.71 - Classification of regions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Alaska § 52.71 Classification of regions. The Alaska plan was evaluated on the basis of the following classifications: Air quality control Region... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Classification of regions. 52.71...

  15. Earthquake Hazard and Risk in Alaska

    NASA Astrophysics Data System (ADS)

    Black Porto, N.; Nyst, M.

    2014-12-01

    Alaska is one of the most seismically active and tectonically diverse regions in the United States. To examine risk, we have updated the seismic hazard model in Alaska. The current RMS Alaska hazard model is based on the 2007 probabilistic seismic hazard maps for Alaska (Wesson et al., 2007; Boyd et al., 2007). The 2015 RMS model will update several key source parameters, including: extending the earthquake catalog, implementing a new set of crustal faults, updating the subduction zone geometry and reoccurrence rate. First, we extend the earthquake catalog to 2013; decluster the catalog, and compute new background rates. We then create a crustal fault model, based on the Alaska 2012 fault and fold database. This new model increased the number of crustal faults from ten in 2007, to 91 faults in the 2015 model. This includes the addition of: the western Denali, Cook Inlet folds near Anchorage, and thrust faults near Fairbanks. Previously the subduction zone was modeled at a uniform depth. In this update, we model the intraslab as a series of deep stepping events. We also use the best available data, such as Slab 1.0, to update the geometry of the subduction zone. The city of Anchorage represents 80% of the risk exposure in Alaska. In the 2007 model, the hazard in Alaska was dominated by the frequent rate of magnitude 7 to 8 events (Gutenberg-Richter distribution), and large magnitude 8+ events had a low reoccurrence rate (Characteristic) and therefore didn't contribute as highly to the overall risk. We will review these reoccurrence rates, and will present the results and impact to Anchorage. We will compare our hazard update to the 2007 USGS hazard map, and discuss the changes and drivers for these changes. Finally, we will examine the impact model changes have on Alaska earthquake risk. Consider risk metrics include average annual loss, an annualized expected loss level used by insurers to determine the costs of earthquake insurance (and premium levels), and the

  16. A conceptual model for the impact of climate change on fox rabies in Alaska, 1980–2010

    PubMed Central

    Kim, Bryan I.; Blanton, Jesse D.; Gilbert, Amy; Castrodale, Louisa; Hueffer, Karsten; Slate, Dennis; Rupprecht, Charles E.

    2013-01-01

    The direct and interactive effects of climate change on host species and infectious disease dynamics are likely to initially manifest at latitudinal extremes. As such, Alaska represents a region in the United States for introspection on climate change and disease. Rabies is enzootic among arctic foxes (Vulpes lagopus) throughout the northern polar region. In Alaska, arctic and red foxes (Vulpes vulpes) are reservoirs for rabies, with most domestic animal and wildlife cases reported from northern and western coastal Alaska. Based on passive surveillance, a pronounced seasonal trend in rabid foxes occurs in Alaska, with a peak in winter and spring. This study describes climatic factors that may be associated with reported cyclic rabies occurrence. Based upon probabilistic modeling, a stronger seasonal effect in reported fox rabies cases appears at higher latitudes in Alaska, and rabies in arctic foxes appear disproportionately affected by climatic factors in comparison to red foxes. As temperatures continue a warming trend a decrease in reported rabid arctic foxes may be expected. The overall epidemiology of rabies in Alaska is likely to shift to increased viral transmission among red foxes as the primary reservoir in the region. Information on fox and lemming demographics, in addition to enhanced rabies surveillance among foxes at finer geographic scales, will be critical to develop more comprehensive models for rabies virus transmission in the region. PMID:23452510

  17. New ichnological, paleobotanical and detrital zircon data from an unnamed rock unit in Yukon-Charley Rivers National Preserve (Cretaceous: Alaska): Stratigraphic implications for the region

    USGS Publications Warehouse

    Fiorillo, Anthony R.; Fanti, Federico; Hults, Chad; Hasiotis, Stephen T

    2014-01-01

    A paleontological reconnaissance survey on Cretaceous and Paleogene terrestrial units along the Yukon River drainage through much of east-central Alaska has provided new chronostratigraphic constraints, paleoclimatological data, and the first information on local biodiversity within an ancient, high-latitude ecosystem. The studied unnamed rock unit is most notable for its historic economic gold placer deposits, but our survey documents its relevance as a source rock for Mesozoic terrestrial vertebrates, invertebrates, and associated flora. Specifically, new U-Pb ages from detrital zircons combined with ichnological data are indicative of a Late Cretaceous age for at least the lower section of the studied rock unit, previously considered to be representative of nearly exclusively Paleogene deposition. Further, the results of our survey show that this sedimentary rock unit preserves the first record of dinosaurs in the vast east-central Alaska region. Lastly, paleobotanical data, when compared to correlative rock units, support previous interpretations that the Late Cretaceous continental ecosystem of Alaska was heterogeneous in nature and seasonal.

  18. Stable estimate of primary OC/EC ratios in the EC tracer method

    NASA Astrophysics Data System (ADS)

    Chu, Shao-Hang

    In fine particulate matter studies, the primary OC/EC ratio plays an important role in estimating the secondary organic aerosol contribution to PM2.5 concentrations using the EC tracer method. In this study, numerical experiments are carried out to test and compare various statistical techniques in the estimation of primary OC/EC ratios. The influence of random measurement errors in both primary OC and EC measurements on the estimation of the expected primary OC/EC ratios is examined. It is found that random measurement errors in EC generally create an underestimation of the slope and an overestimation of the intercept of the ordinary least-squares regression line. The Deming regression analysis performs much better than the ordinary regression, but it tends to overcorrect the problem by slightly overestimating the slope and underestimating the intercept. Averaging the ratios directly is usually undesirable because the average is strongly influenced by unrealistically high values of OC/EC ratios resulting from random measurement errors at low EC concentrations. The errors generally result in a skewed distribution of the OC/EC ratios even if the parent distributions of OC and EC are close to normal. When measured OC contains a significant amount of non-combustion OC Deming regression is a much better tool and should be used to estimate both the primary OC/EC ratio and the non-combustion OC. However, if the non-combustion OC is negligibly small the best and most robust estimator of the OC/EC ratio turns out to be the simple ratio of the OC and EC averages. It not only reduces random errors by averaging individual variables separately but also acts as a weighted average of ratios to minimize the influence of unrealistically high OC/EC ratios created by measurement errors at low EC concentrations. The median of OC/EC ratios ranks a close second, and the geometric mean of ratios ranks third. This is because their estimations are insensitive to questionable extreme

  19. Crustal Structure beneath Alaska from Receiver Functions

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Li, A.

    2017-12-01

    The crustal structure in Alaska has not been well resolved due to the remote nature of much of the state. The USArray Transportable Array (TA), which is operating in Alaska and northwestern Canada, significantly increases the coverage of broadband seismic stations in the region and allows for a more comprehensive study of the crust. We have analyzed P-receiver functions from earthquake data recorded by 76 stations of the TA and AK networks. Both common conversion point (CCP) and H-K methods are used to estimate the mean crustal thickness. The results from the CCP stacking method show that the Denali fault marks a sharp transition from thick crust in the south to thin crust in the north. The thickest crust up to 52 km is located in the St. Elias Range, which has been formed by oblique collision between the Yakutat microplate and North America. A thick crust of 48 km is also observed beneath the eastern Alaska Range. These observations suggest that high topography in Alaska is largely compensated by the thick crust root. The Moho depth ranges from 28 km to 35 km beneath the northern lowlands and increases to 40-45 km under the Books Range. The preliminary crustal thickness from the H-K method generally agrees with that from the CCP stacking with thicker crust beneath high mountain ranges and thinner crust beneath lowlands and basins. However, the offshore part is not well constrained due to the limited coverage of stations. The mean Vp/Vs ratio is around 1.7 in the Yukon-Tanana terrane and central-northern Alaska. The ratio is about 1.9 in central and southern Alaska with higher values at the Alaska Range, Wrangell Mountains, and St. Elias Range. Further data analyses are needed for obtaining more details of the crustal structure in Alaska to decipher the origin and development of different tectonic terranes.

  20. Publications - RI 2001-1C | Alaska Division of Geological & Geophysical

    Science.gov Websites

    map of the Chulitna region, southcentral Alaska, scale 1:63,360 (7.5 M) Digital Geospatial Data Digital Geospatial Data Chulitna region surficial geology Data File Format File Size Info Download

  1. An Efficient Method for Co-purification of Eggshell Matrix Proteins OC-17, OC-116, and OCX-36

    PubMed Central

    2016-01-01

    In this study, we improved the eggshell-membrane separation process by separating the shell and membrane with EDTA solution, evaluating effects of three different extraction solutions (acetic acid, EDTA, and phosphate solution), and co-purifying multiple eggshell proteins with two successive ion-exchange chromatography procedures (CM Sepharose Fast Flow and DEAE Sepharose Fast Flow). The recovery and residual rates of eggshell and membrane separated by the modified method with added EDTA solution were 93.88%, 91.15% and 1.01%, 2.87%, respectively. Ovocleidin-116 (OC-116) and ovocalyxin-36 (OCX-36) were obtained by loading 50 mM Na-Hepes, pH 7.5, 2 mM DTT and 350 mM NaCl buffer onto the DEAE-FF column at a flow rate of 1 mL/min, ovocleidin-17 (OC-17) was obtained by loading 100 mM NaCl, 50 mM Tris, pH 8.0 on the CM-FF column at a flow rate of 0.5 mL/min. The purities of OCX-36, OC-17 and OC-116 were 96.82%, 80.15% and 73.22%, and the recovery rates were 55.27%, 53.38% and 36.34%, respectively. Antibacterial activity test suggested that phosphate solution extract exhibited significantly higher activity against the tested bacterial strains than the acetic acid or EDTA extract, probably due to more types of proteins in the extract. These results demonstrate that this separation method is feasible and efficient. PMID:28115888

  2. Publications - RI 2001-1D | Alaska Division of Geological & Geophysical

    Science.gov Websites

    -geologic map of the Chulitna region, southcentral Alaska, scale 1:63,360 (16.0 M) Digital Geospatial Data Digital Geospatial Data Chulitna region engineering geology Data File Format File Size Info Download

  3. 78 FR 53137 - Flint Hills Resources Alaska, LLC, BP Pipelines (Alaska) Inc., ConocoPhillips Transportation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. OR13-31-000] Flint Hills Resources Alaska, LLC, BP Pipelines (Alaska) Inc., ConocoPhillips Transportation Alaska, Inc., ExxonMobil... (Alaska) Inc., ConocoPhillips Transportation Alaska, Inc., and ExxonMobil Pipeline Company (collectively...

  4. Gold placers of the historical Fortymile River region, Alaska

    USGS Publications Warehouse

    Yeend, Warren E.

    1996-01-01

    The Fortymile River region in east-central Alaska has a long and colorful history as the site of the first major gold discovery in interior Alaska. Placer gold has been mined in the region nearly every year since its original discovery in 1886. Total gold production is approximately 500,000 troy ounces. Although many of the rich deposits have been mined, there still exist areas that contain gold. Areas of mined and unmined gold-bearing creek and terrace gravels are outlined on the accompanying geologic map. The early history of the Fortymile area centered on the small frontier settlement of Fortymile City located at the junction of the Fortymile and Yukon Rivers in Canadian territory. This was the supply and jumping-off point for prospectors who worked their way into Alaska up the Fortymile River and found gold on many of its tributaries. Hand mining, both underground and surface, using sluice boxes and (or) rockers were the earliest methods; later, hydraulicking, dredging, and draglining methods were used. More recently, bulldozers and elevated trammels have been used, as well as very portable floating suction dredges. The rich mining lore of the area is closely associated with events of the nearby world-famous Klondike District. Bedrock and placer geology and mining history of individual gold-rich creeks are herein updated. The Fortymile area, which is part of the Yukon-Tanana Upland, contains quartzite, schist, gneiss, amphibolite, marble, serpentinite, and granite overlain by basalt, sandstone, conglomerate, shale, tuff, and coal; overlying these rocks are several deposits of varying ages consisting of gold-bearing gravel and colluvium. The close spatial association of creeks containing placer gold and the gneiss, schist, amphibolite, and marble unit strongly suggests this metamorphic unit is the gold source. High terrace gravels record a time from the late Tertiary to early Pleistocene when the ancestral Fortymile River and its major tributaries, the North and

  5. 77 FR 29961 - Fisheries of the Exclusive Economic Zone off Alaska and Pacific Halibut Fisheries; Observer Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... Science Center, 7600 Sand Point Way NE., Building 4, Observer Training Room (1055), Seattle, WA 98115..., Sustainable Fisheries Division, Alaska Region NMFS, Attn: Ellen Sebastian. Mail comments to P.O. Box 21668..., Sustainable Fisheries Division, Alaska Region NMFS, Attn: Ellen Sebastian. Fax comments to 907-586-7557. Hand...

  6. Geologic studies in Alaska by the U.S. Geological Survey, 1988

    USGS Publications Warehouse

    Dover, James H.; Galloway, John P.

    1989-01-01

    This volume continues the annual series of U.S. Geological Survey (USGS) reports on geologic investigations in Alaska. Since 1975, when the first of these collections of short papers appeared under the title "The United States Geological Survey in Alaska: Accomplishments during 1975," the series has been published as USGS circulars. This bulletin departs from the circular style, in part to provide a more flexible format for longer reports with more depth of content, better documentation, and broader scope than is possible for circular articles.The 13 papers in this bulletin represent a sampling of research activities carried out in Alaska by the USGS over the past few years. The topics addressed range from mineral resource studies (including natural gas) and geochemistry, Quaternary geology, basic stratigraphic and structural problems, and the use of computer graphics in geologic map preparation, to the application of geochronology to regional tectonic problems. Geographic areas represented are numbered on figure 1 and include the North Slope (1) and Brooks Range (2, 3) of Arctic Alaska, Seward Peninsula (4), interior Alaska (5-9), and remote locations of the Alaska Peninsula (10, 11) and southeast Alaska (12, 13).Two bibliographies following the reports of investigations list (1) reports about Alaska in USGS publications released in 1988 and (2) reports about Alaska by USGS authors in publications outside the USGS in 1988. A bibliography and index of the short papers in past USGS circulars devoted to Geological Research and Accomplishments in Alaska (1975-1986) is published as USGS Open-File Report 87-420.

  7. Petroleum exploration and the Atlantic OCS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edson, G.; Adinolfi, F.; Gray, F.

    1993-08-01

    The largest Atlantic outer continental shelf (OCS) lease sale was the first one, Sale 40 in 1976. Ninety-three Baltimore Canyon Trough petroleum leases were issued, and industry's winning bids total $1.1 billion. The highest bonus bids were for leases overlying the Schlee Dome, then called Great Stone Dome, a large structure with a very large fetch area. By 1981, seven dry wells on the dome moderated this initial flush of optimism. However, subeconomic quantities of gas and light oil were discovered on the nearby Hudson Canyon Block 598-642 structure. Now after 9 lease sales, 410 lease awards, and 46 explorationmore » wells, United States Atlantic petroleum exploration activity is in a hiatus. Fifty-three leases remain active under suspensions of operation. Twenty-one lease blocks, about 50 mi offshore from Cape Hatteras, have been combined as the Manteo Exploration Unit. Mobil and partners submitted an exploration plant for the unit in 1989. The Atlantic OCS has petroleum potential, especially for gas. With only 46 exploration wells, entire basins and plays remain untested. During the present exploration inactivity, some petroleum evaluation of the Atlantic OCS continues by the Minerals Management Service and others. Similarities and differences are being documented between United States basins and the Canadian Scotian Basin, which contains oil and gas in commercial quantities. Other initiatives include geochemical, thermal history, seismic stratigraphic, and petroleum system modeling studies. The gas-prone Atlantic OCS eventually may make an energy contribution, especially to nearby East Coast markets.« less

  8. 78 FR 35572 - Fisheries of the Exclusive Economic Zone Off Alaska; Northern Rockfish in the Bering Sea and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ... Administrator, Sustainable Fisheries Division, Alaska Region NMFS, Attn: Ellen Sebastian. Mail comments to P.O... Administrator, Sustainable Fisheries Division, Alaska Region NMFS, Attn: Ellen Sebastian. Fax comments to 907-586-7557. Hand delivery to the Federal Building: Address written comments to Glenn Merrill, Assistant...

  9. Regional Fluid Flow and Basin Modeling in Northern Alaska

    USGS Publications Warehouse

    Kelley, Karen D.

    2007-01-01

    INTRODUCTION The foothills of the Brooks Range contain an enormous accumulation of zinc (Zn) in the form of zinc sulfide and barium (Ba) in the form of barite in Carboniferous shale, chert, and mudstone. Most of the resources and reserves of Zn occur in the Red Dog deposit and others in the Red Dog district; these resources and reserves surpass those of most deposits worldwide in terms of size and grade. In addition to zinc and lead sulfides (which contain silver, Ag) and barite, correlative strata host phosphate deposits. Furthermore, prolific hydrocarbon source rocks of Carboniferous and Triassic to Early Jurassic age generated considerable amounts of petroleum that may have contributed to the world-class petroleum resources of the North Slope. Deposits of Zn-Pb-Ag or barite as large as those in the Brooks Range are very rare on a global basis and, accordingly, multiple coincident favorable factors must be invoked to explain their origins. To improve our understanding of these factors and to contribute to more effective assessments of resources in sedimentary basins of northern Alaska and throughout the world, the Mineral Resources Program and the Energy Resources Program of the U.S. Geological Survey (USGS) initiated a project that was aimed at understanding the petroleum maturation and mineralization history of parts of the Brooks Range that were previously poorly characterized. The project, titled ?Regional Fluid Flow and Basin Modeling in Northern Alaska,? was undertaken in collaboration with industry, academia, and other government agencies. This Circular contains papers that describe the results of the recently completed project. The studies that are highlighted in these papers have led to a better understanding of the following: *The complex sedimentary facies relationships and depositional settings and the geochemistry of the sedimentary rocks that host the deposits (sections 2 and 3). *The factors responsible for formation of the barite and zinc deposits

  10. Technology and Engineering Advances Supporting EarthScope's Alaska Transportable Array

    NASA Astrophysics Data System (ADS)

    Miner, J.; Enders, M.; Busby, R.

    2015-12-01

    EarthScope's Transportable Array (TA) in Alaska and Canada is an ongoing deployment of 261 high quality broadband seismographs. The Alaska TA is the continuation of the rolling TA/USArray deployment of 400 broadband seismographs in the lower 48 contiguous states and builds on the success of the TA project there. The TA in Alaska and Canada is operated by the IRIS Consortium on behalf of the National Science Foundation as part of the EarthScope program. By Sept 2015, it is anticipated that the TA network in Alaska and Canada will be operating 105 stations. During the summer of 2015, TA field crews comprised of IRIS and HTSI station specialists, as well as representatives from our partner agencies the Alaska Earthquake Center and the Alaska Volcano Observatory and engineers from the UNAVCO Plate Boundary Observatory will have completed a total of 36 new station installations. Additionally, we will have completed upgrades at 9 existing Alaska Earthquake Center stations with borehole seismometers and the adoption of an additional 35 existing stations. Continued development of battery systems using LiFePO4 chemistries, integration of BGAN, Iridium, Cellular and VSAT technologies for real time data transfer, and modifications to electronic systems are a driving force for year two of the Alaska Transportable Array. Station deployment utilizes custom heliportable drills for sensor emplacement in remote regions. The autonomous station design evolution include hardening the sites for Arctic, sub-Arctic and Alpine conditions as well as the integration of rechargeable Lithium Iron Phosphate batteries with traditional AGM batteries We will present new design aspects, outcomes, and lessons learned from past and ongoing deployments, as well as efforts to integrate TA stations with other existing networks in Alaska including the Plate Boundary Observatory and the Alaska Volcano Observatory.

  11. Malaspina Glacier, Alaska

    NASA Image and Video Library

    2002-02-26

    This image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite covers an area of 55 by 40 kilometers (34 by 25 miles) over the southwest part of the Malaspina Glacier and Icy Bay in Alaska. The composite of infrared and visible bands results in the snow and ice appearing light blue, dense vegetation is yellow-orange and green, and less vegetated, gravelly areas are in orange. According to Dr. Dennis Trabant (U.S. Geological Survey, Fairbanks, Alaska), the Malaspina Glacier is thinning. Its terminal moraine protects it from contact with the open ocean; without the moraine, or if sea level rises sufficiently to reconnect the glacier with the ocean, the glacier would start calving and retreat significantly. ASTER data are being used to help monitor the size and movement of some 15,000 tidal and piedmont glaciers in Alaska. Evidence derived from ASTER and many other satellite and ground-based measurements suggests that only a few dozen Alaskan glaciers are advancing. The overwhelming majority of them are retreating. This ASTER image was acquired on June 8, 2001. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next six years to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03475

  12. Sub-glacial Origin of the Hot Springs Bay Valley hydrothermal System, Akutan, Alaska

    NASA Astrophysics Data System (ADS)

    Stelling, P. L.; Tobin, B.; Knapp, P.

    2015-12-01

    Exploration for geothermal energy in Hot Springs Bay Valley (HSBV) on Akutan Island, Alaska, has revealed a rich hydrothermal history, including what appears to be a stage of peak activity during a significant glacial period. Alteration mineralogy observed in 754 m of drill core recovered from the outflow zone is dominated by chlorite and includes minor smectite clays, a suite of zeolite species and several moderately high-temperature hydrothermal minerals (epidote/clinozoisite, prehnite, adularia and wairakite). The latter minerals each have minimum formation temperatures exceeding 200 oC, and fluid inclusion results in related calcite crystals indicate temperatures of formation to be as high as 275 oC, some 100 oC hotter than the modern boiling point with depth (BPD) curve at that depth (>62 m). In order to maintain liquid temperatures this high, the pressure during mineralization must have been substantially greater (~680 bar), a pressure change equivalent to erosion of ~280 m of rock (ρ=2.5 g/cm3). Although glacial erosion rates are too low (0.034 mm/yr; Bekele et al., 2003) for this amount of erosion to occur in a single glaciation, glacial melting and ablation are substantially more rapid (~100 mm/yr; Bekele et al., 2003; Person et al., 2012). Thus, a more probable scenario than pure erosion is that peak hydrothermal conditions occurred during a large glacial event, with the added pressure from the overlying ice allowing the high temperature minerals to form closer to the ground surface. Subsequent melting of the ice eroded upper tributary valleys and upper levels of the originally smectite-rich alteration assemblage, explaining the paucity of swelling clays in the region. We present mineralogical, fluid inclusion and geochronologic evidence to support these conclusions, and discuss the general implications of sub-glacial hydrothermal system formation and geothermal resource potential. References: Bekele, E., Rostron, B. and Person, M. (2003) Fluid pressure

  13. Ecological niche modeling of rabies in the changing Arctic of Alaska.

    PubMed

    Huettmann, Falk; Magnuson, Emily Elizabeth; Hueffer, Karsten

    2017-03-20

    Rabies is a disease of global significance including in the circumpolar Arctic. In Alaska enzootic rabies persist in northern and western coastal areas. Only sporadic cases have occurred in areas outside of the regions considered enzootic for the virus, such as the interior of the state and urbanized regions. Here we examine the distribution of diagnosed rabies cases in Alaska, explicit in space and time. We use a geographic information system (GIS), 20 environmental data layers and provide a quantitative non-parsimonious estimate of the predicted ecological niche, based on data mining, machine learning and open access data. We identify ecological correlates and possible drivers that determine the ecological niche of rabies virus in Alaska. More specifically, our models show that rabies cases are closely associated with human infrastructure, and reveal an ecological niche in remote northern wilderness areas. Furthermore a model utilizing climate modeling suggests a reduction of the current ecological niche for detection of rabies virus in Alaska, a state that is disproportionately affected by a changing climate. Our results may help to better inform public health decisions in the future and guide further studies on individual drivers of rabies distribution in the Arctic.

  14. Geologic framework of the Alaska Peninsula, southwest Alaska, and the Alaska Peninsula terrane

    USGS Publications Warehouse

    Wilson, Frederic H.; Detterman, Robert L.; DuBois, Gregory D.

    2015-01-01

    The boundaries separating the Alaska Peninsula terrane from other terranes are commonly indistinct or poorly defined. A few boundaries have been defined at major faults, although the extensions of these faults are speculative through some areas. The west side of the Alaska Peninsula terrane is overlapped by Tertiary sedimentary and volcanic rocks and Quaternary deposits.

  15. Pliocene terrace gravels of the ancestral Yukon River near Circle, Alaska: Palynology, paleobotany, paleoenvironmental reconstruction and regional correlation

    USGS Publications Warehouse

    Ager, T.A.; Matthews, J.V.; Yeend, W.

    1994-01-01

    Gravels deposited by the ancestral Yukon River are preserved in terrace remnants on the margins of the Yukon River valley near the village of Circle in east-central Alaska. Plant fossils recovered from sandy silt lenses within these gravels include cones and needles of Picea and Larix and a variety of seeds. Seed types include several taxa which no longer grow in Alaska, such as Epipremnum, Prunus and Weigela. Pollen types recovered from these deposits represent tree and shrub taxa that grow in interior Alaska today, such as Picea, Larix, Betula and Alnus, as well as several taxa that no longer grow in interior Alaska today, such as Pinus, Tsuga, Abies and Corylus. Pollen of herb taxa identified include Gramineae, Cyperaceae, Caryophyllaceae, Compositae, Polemonium and Epilobium. The fossil flora from the gravels near Circle are similar and probably age-equivalent to the flora recovered from the Nenana Gravel in the Alaska Range 250 km to the south. Palynological and tectonic evidence summarized in this paper now suggests that the Nenana Gravel was deposited during the early and middle Pliocene. The presence of plant fossils of Tsuga, Abies, Pinus, Weigela and Prunus suggests that the mean annual temperature (MAT) of eastern interior Alaska during the early and middle Pliocene was perhaps 7-9??C warmer and less continental than today's MAT of -6.4??C. ?? 1994.

  16. Basement Structure and Styles of Active Tectonic Deformation in Central Interior Alaska

    NASA Astrophysics Data System (ADS)

    Dixit, N.; Hanks, C.

    2017-12-01

    Central Interior Alaska is one of the most seismically active regions in North America, exhibiting a high concentration of intraplate earthquakes approximately 700 km away from the southern Alaska subduction zone. Based on increasing seismological evidence, intraplate seismicity in the region does not appear to be uniformly distributed, but concentrated in several discrete seismic zones, including the Nenana basin and the adjacent Tanana basin. Recent seismological and neotectonics data further suggests that these seismic zones operate within a field of predominantly pure shear driven primarily by north-south crustal shortening. Although the location and magnitude of the seismic activity in both basins are well defined by a network of seismic stations in the region, the tectonic controls on intraplate earthquakes and the heterogeneous nature of Alaska's continental interior remain poorly understood. We investigated the current crustal architecture and styles of tectonic deformation of the Nenana and Tanana basins using existing geological, geophysical and geochronological datasets. The results of our study demonstrate that the basements of the basins show strong crustal heterogeneity. The Tanana basin is a relatively shallow (up to 2 km) asymmetrical foreland basin with its southern, deeper side controlled by the northern foothills of the central Alaska Range. Northeast-trending strike-slip faults within the Tanana basin are interpreted as a zone of clockwise crustal block rotation. The Nenana basin has a fundamentally different geometry; it is a deep (up to 8 km), narrow transtensional pull-apart basin that is deforming along the left-lateral Minto Fault. This study identifies two distinct modes of tectonic deformation in central Interior Alaska at present, and provides a basis for modeling the interplay between intraplate stress fields and major structural features that potentially influence the generation of intraplate earthquakes in the region.

  17. Rotational spectra of the van der Waals complexes of molecular hydrogen and OCS.

    PubMed

    Yu, Zhenhong; Higgins, Kelly J; Klemperer, William; McCarthy, Michael C; Thaddeus, Patrick; Liao, Kristine; Jäger, Wolfgang

    2007-08-07

    The a- and b-type rotational transitions of the weakly bound complexes formed by molecular hydrogen and OCS, para-H2-OCS, ortho-H2-OCS, HD-OCS, para-D2-OCS, and ortho-D2-OCS, have been measured by Fourier transform microwave spectroscopy. All five species have ground rotational states with total rotational angular momentum J=0, regardless of whether the hydrogen rotational angular momentum is j=0 as in para-H2, ortho-D2, and HD or j=1 as in ortho-H2 and para-D2. This indicates quenching of the hydrogen angular momentum for the ortho-H2 and para-D2 species by the anisotropy of the intermolecular potential. The ground states of these complexes are slightly asymmetric prolate tops, with the hydrogen center of mass located on the side of the OCS, giving a planar T-shaped molecular geometry. The hydrogen spatial distribution is spherical in the three j=0 species, while it is bilobal and oriented nearly parallel to the OCS in the ground state of the two j=1 species. The j=1 species show strong Coriolis coupling with unobserved low-lying excited states. The abundance of para-H2-OCS relative to ortho-H2-OCS increases exponentially with decreasing normal H2 component in H2He gas mixtures, making the observation of para-H2-OCS in the presence of the more strongly bound ortho-H2-OCS dependent on using lower concentrations of H2. The determined rotational constants are A=22 401.889(4) MHz, B=5993.774(2) MHz, and C=4602.038(2) MHz for para-H2-OCS; A=22 942.218(6) MHz, B=5675.156(7) MHz, and C=4542.960(7) MHz for ortho-H2-OCS; A=15 970.010(3) MHz, B=5847.595(1) MHz, and C=4177.699(1) MHz for HD-OCS; A=12 829.2875(9) MHz, B=5671.3573(7) MHz, and C=3846.7041(6) MHz for ortho-D2-OCS; and A=13 046.800(3) MHz, B=5454.612(2) MHz, and C=3834.590(2) MHz for para-D2-OCS.

  18. Hindcast storm events in the Bering Sea for the St. Lawrence Island and Unalakleet Regions, Alaska

    USGS Publications Warehouse

    Erikson, Li H.; McCall, Robert T.; van Rooijen, Arnold; Norris, Benjamin

    2015-01-01

    This study provides viable estimates of historical storm-induced water levels in the coastal communities of Gambell and Savoonga situated on St. Lawrence Island in the Bering Sea, as well as Unalakleet located at the head of Norton Sound on the western coast of Alaska. Gambell, Savoonga, and Unalakleet are small Native Villages that are regularly impacted by coastal storms but where little quantitative information about these storms exists. The closest continuous water-level gauge is at Nome, located more than 200 kilometers from both St. Lawrence Island and Unalakleet. In this study, storms are identified and quantified using historical atmospheric and sea-ice data and then used as boundary conditions for a suite of numerical models. The work includes storm-surge (temporary rise in water levels due to persistent strong winds and low atmospheric pressures) modeling in the Bering Strait region, as well as modeling of wave runup along specified sections of the coast in Gambell and Unalakleet. Modeled historical water levels are used to develop return periods of storm surge and storm surge plus wave runup at key locations in each community. It is anticipated that the results will fill some of the data void regarding coastal flood data in western Alaska and be used for production of coastal vulnerability maps and community planning efforts.

  19. Menstrual cyclicity post OC withdrawal in PCOS: Use of non-hormonal options.

    PubMed

    Kulshreshtha, Bindu; Arora, Arpita; Pahuja, Isha; Sharma, Neera; Pant, Shubhi

    2016-08-01

    There is no data on menstrual cyclicity post oral contraceptive (OC) withdrawal with nonhormonal options in PCOS patients. OC could affect obesity, insulin and gonadotropins factors integral to pathogenesis of PCOS, thereby adversely affecting the HPG axis. Menstrual cycles of PCOS patients were retrospectively studied post OCP. Patients developing regular versus irregular cycles post OC were compared. Forty-eight PCOS patients were followed for an average of 1.9 years post OC. Thirty-six (75%) achieved regular cycles over a period of one year with other nonhormonal options like spironolactone and metformin. Seven patients required no treatment. Patients who continued to have irregular cycles had a longer pre OC cycle length (p < 0.01) and a greater duration of menstrual irregularity (p < 0.02), though age, BMI and hormones were similar in the two groups. In conclusion, spironolactone and metformin are effective nonhormonal options for regular periods post OC. Around 15% PCOS may not require any treatment post OC.

  20. Alaska GeoFORCE, A New Geologic Adventure in Alaska

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2011-12-01

    RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. A program of rigorous academic activity combines with social, cultural, and recreational activities. Students are purposely stretched beyond their comfort levels academically and socially to prepare for the big step from home or village to a large culturally western urban campus. This summer RAHI is launching a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science as the hook because most kids get excited about dinosaurs, volcanoes and earthquakes, but it includes physics, chemistry, math, biology and other sciences. Students will be recruited, initially from the Arctic North Slope schools, in the 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The carrot on the end of the stick is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks, Arizona, Oregon and the Appalachians. All trips are focused on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska is being launched by UAF in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska will be managed by UAF's long-standing Rural Alaska Honors Insitute (RAHI) that has been successfully providing intense STEM educational opportunities for Alaskan high school students for almost 30 years. The Texas program, with adjustments for differences in culture and environment, will be

  1. 46 CFR 32.15-30 - Radar-T/OC.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Radar-T/OC. 32.15-30 Section 32.15-30 Shipping COAST... Navigation Equipment § 32.15-30 Radar—T/OC. All tankships of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar...

  2. 46 CFR 32.15-30 - Radar-T/OC.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Radar-T/OC. 32.15-30 Section 32.15-30 Shipping COAST... Navigation Equipment § 32.15-30 Radar—T/OC. All tankships of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar...

  3. 46 CFR 32.15-30 - Radar-T/OC.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Radar-T/OC. 32.15-30 Section 32.15-30 Shipping COAST... Navigation Equipment § 32.15-30 Radar—T/OC. All tankships of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar...

  4. 46 CFR 32.15-30 - Radar-T/OC.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Radar-T/OC. 32.15-30 Section 32.15-30 Shipping COAST... Navigation Equipment § 32.15-30 Radar—T/OC. All tankships of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar...

  5. 46 CFR 32.15-30 - Radar-T/OC.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Radar-T/OC. 32.15-30 Section 32.15-30 Shipping COAST... Navigation Equipment § 32.15-30 Radar—T/OC. All tankships of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar...

  6. Evaluation of a wetland classification system devised for management in a region with a high cover of peatlands: an example from the Cook Inlet Basin, Alaska

    EPA Science Inventory

    The manuscript is part of an FY14 RAP product: "Functional Assessment of Alaska Peatlands in Cook Inlet Basin: A report to Region 10". This report included this technical information product which is a manuscript that has now been fully revised, reviewed and published...

  7. Kaltag fault, northern Yukon, Canada: Constraints on evolution of Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Lane, Larry S.

    1992-07-01

    The Kaltag fault has been linked to several strike-slip models of evolution of the western Arctic Ocean. Hundreds of kilometres of Cretaceous-Tertiary displacement have been hypothesized in models that emplace Arctic Alaska into its present position by either left- or right-lateral strike slip. However, regional-scale displacement is precluded by new potential-field data. Postulated transform emplacement of Arctic Alaska cannot be accommodated by motion on the Kaltag fault or adjacent structures. The Kaltag fault of the northern Yukon is an eastward extrapolation of its namesake in west-central Alaska; however, a connection cannot be demonstrated. Cretaceous-Tertiary displacement on the Alaskan Kaltag fault is probably accommodated elsewhere.

  8. Alaska softwood market price arbitrage.

    Treesearch

    James A. Stevens; David J. Brooks

    2003-01-01

    This study formally tests the hypothesis that markets for Alaska lumber and logs are integrated with those of similar products from the U.S. Pacific Northwest and Canada. The prices from these three supply regions are tested in a common demand market (Japan). Cointegration tests are run on paired log and lumber data. Our results support the conclusion that western...

  9. Rare Clear View of Alaska [high res

    NASA Image and Video Library

    2017-12-08

    On most days, relentless rivers of clouds wash over Alaska, obscuring most of the state’s 6,640 miles (10,690 kilometers) of coastline and 586,000 square miles (1,518,000 square kilometers) of land. The south coast of Alaska even has the dubious distinction of being the cloudiest region of the United States, with some locations averaging more than 340 cloudy days per year. That was certainly not the case on June 17, 2013, the date that the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite acquired this rare, nearly cloud-free view of the state. The absence of clouds exposed a striking tapestry of water, ice, land, forests, and even wildfires. Snow-covered mountains such as the Alaska Range and Chugach Mountains were visible in southern Alaska, while the arc of mountains that make up the Brooks Range dominated the northern part of the state. The Yukon River—the longest in Alaska and the third longest in the United States—wound its way through the green boreal forests that inhabit the interior of the state. Plumes of sediment and glacial dust poured into the Gulf of Alaska from the Copper River. And Iliamna Lake, the largest in Alaska, was ice free. The same ridge of high pressure that cleared Alaska’s skies also brought stifling temperatures to many areas accustomed to chilly June days. Talkeetna, a town about 100 miles north of Anchorage, saw temperatures reach 96°F (36°C) on June 17. Other towns in southern Alaska set all-time record highs, including Cordova, Valez, and Seward. The high temperatures also helped fuel wildfires and hastened the breakup of sea ice in the Chukchi Sea. NASA image courtesy Jeff Schmaltz, LANCE MODIS Rapid Response Team at NASA GSFC. Caption by Adam Voiland. Instrument: Terra - MODIS More info: 1.usa.gov/102MAEj Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar

  10. Topographic soil wetness index derived from combined Alaska-British Columbia datasets for the Gulf of Alaska region

    NASA Astrophysics Data System (ADS)

    D'Amore, D. V.; Biles, F. E.

    2016-12-01

    The flow of water is often highlighted as a priority in land management planning and assessments related to climate change. Improved measurement and modeling of soil moisture is required to develop predictive estimates for plant distributions, soil moisture, and snowpack, which all play important roles in ecosystem planning in the face of climate change. Drainage indexes are commonly derived from GIS tools with digital elevation models. Soil moisture classes derived from these tools are useful digital proxies for ecosystem functions associated with the concentration of water on the landscape. We developed a spatially explicit topographically derived soil wetness index (TWI) across the perhumid coastal temperate rainforest (PCTR) of Alaska and British Columbia. Developing applicable drainage indexes in complex terrain and across broad areas required careful application of the appropriate DEM, caution with artifacts in GIS covers and mapping realistic zones of wetlands with the indicator. The large spatial extent of the model has facilitated the mapping of forest habitat and the development of water table depth mapping in the region. A key element of the TWI is the merging of elevation datasets across the US-Canada border where major rivers transect the international boundary. The unified TWI allows for seemless mapping across the international border and unified ecological applications. A python program combined with the unified DEM allows end users to quickly apply the TWI to all areas of the PCTR. This common platform can facilitate model comparison and improvements to local soil moisture conditions, generation of streamflow, and ecological site conditions. In this presentation we highlight the application of the TWI for mapping risk factors related to forest decline and the development of a regional water table depth map. Improved soil moisture maps are critical for deriving spatial models of changes in soil moisture for both plant growth and streamflow across

  11. Periglacial Landforms and Processes in the Southern Kenai Mountains, Alaska.

    DTIC Science & Technology

    1985-04-01

    RD-RI57 459 PERIGLACIAL LANDFOR;S AND PROCESSES IN THE SOUTHERN i/i KENAI MOUNTAINS ALASKA(U) COLD REGIONS RESEARCH AND ENGINEERING LAB HANOVER NH P...PERIOD COVERED PERIGLACIAL LANDFORMS AND PROCESSES IN THE SOUTHERN KE’AI MOUNTAINS, ALASKA S. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(a) S. CONTRACT OR...Gelifluction Patterned ground Geomorphology Periglacial Kenai Mountains Permafrost Nunatak 2&, ABST’RAC (T Ve nf, en revee n esee~7miy and idmy b block numabet

  12. Characterisation of an OCS-dependent severe asthma population treated with mepolizumab.

    PubMed

    Prazma, C M; Wenzel, S; Barnes, N; Douglass, J A; Hartley, B F; Ortega, H

    2014-12-01

    A subpopulation of patients with asthma treated with maximal inhaled treatments is unable to maintain asthma control and requires additional therapy with oral corticosteroids (OCS); a subset of this population continues to have frequent exacerbations. Alternate treatment options are needed as daily use of OCS is associated with significant systemic adverse effects that affect many body systems and have a direct association with the dose and duration of OCS use. We compared the population demographics, medical conditions and efficacy responses of the OCS-dependent group from the DREAM study of mepolizumab with the group not managed with daily OCS. NCT01000506. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. Regional Geochemical Results from Analyses of Stream-Water, Stream-Sediment, Soil, Soil-Water, Bedrock, and Vegetation Samples, Tangle Lakes District, Alaska

    USGS Publications Warehouse

    Wang, Bronwen; Gough, L.P.; Wanty, R.B.; Lee, G.K.; Vohden, James; O'Neill, J. M.; Kerin, L.J.

    2008-01-01

    We report chemical analyses of stream-water, stream-sediment, soil, soil-water, bedrock, and vegetation samples collected from the headwaters of the Delta River (Tangle Lakes District, Mount Hayes 1:250,000-scale quadrangle) in east-central Alaska for the period June 20-25, 2006. Additionally, we present mineralogic analyses of stream sediment, concentrated by panning. The study area includes the southwestward extent of the Bureau of Land Management (BLM) Delta River Mining District (Bittenbender and others, 2007), including parts of the Delta River Archeological District, and encompasses an area of about 500 km2(approximately bordered by the Denali Highway to the south, near Round Tangle Lake, northward to the foothills of the Alaska Range (fig. 1). The primary focus of this study was the chemical characterization of native materials, especially surface-water and sediment samples, of first-order streams from the headwaters of the Delta River. The impetus for this work was the need, expressed by the Alaska Department of Natural Resources (ADNR), for an inventory of geochemical and hydrogeochemical baseline information about the Delta River Mining District. This information is needed because of a major upturn in exploration, drilling, and general mineral-resources assessments in the region since the late 1990s. Currently, the study area, called the 'MAN Project' area is being explored by Pure Nickel, Inc. (http://www.purenickel.com/s/MAN_Alaska.asp), and includes both Cu-Au-Ag and Ni-Cu-PGE (Pt-Pd-Au-Ag) mining claims. Geochemical data on surface-water, stream-sediment, soil, soil-water, grayleaf willow (Salix glauca L.), and limited bedrock samples are provided along with the analytical methodologies used and panned-concentrate mineralogy. We are releasing the data at this time with only minimal interpretation.

  14. Applications of ERTS-1 imagery to terrestrial and marine environmental analyses in Alaska

    NASA Technical Reports Server (NTRS)

    Anderson, D. M.; Mckim, H. L.; Crowder, W. K.; Haugen, R. K.; Gatto, L. W.; Marlar, T. L.

    1974-01-01

    ERTS-1 imagery provides a means of distinguishing and monitoring estuarine surface water circulation patterns and changes in the relative sediment load of discharging rivers on a regional basis. It also will aid local fishing industries by augmenting currently available hydrologic and navigation charts. The interpretation of geologic and vegetation features resulted in preparation of improved surficial geology, vegetation and permafrost terrain maps at a scale of 1:1 million utilizing ERTS-1 band 7 imagery. This information will be further utilized in a route and site selection study for the Nome to Kobuk Road in central Alaska. Large river icings along the proposed Alaska pipeline route have been monitored. Sea ice deformation and drift northeast of Point Barrow, Alaska has been measured and shorefast ice accumulation and ablation along the west coast of Alaska is being mapped for the spring and early summer seasons. These data will be used for route and site selection, regional environmental analysis, identification and inventory of natural resources, land use planning, and in land use regulation and management.

  15. Quaternary geology of the Kenai Lowland and glacial history of the Cook Inlet region, Alaska

    USGS Publications Warehouse

    Karlstrom, Thor N.V.

    1964-01-01

    The Kenai Lowland is part of the Cook Inlet Lowland physiographic subprovince that borders Cook Inlet, a major marine reentrant along the Pacific Ocean coastline of south-central Alaska. The Cook Inlet Lowland occupies a structural trough underlain by rocks of Tertiary age and mantled by Quaternary deposits of varying thicknesses. The bordering high alpine mountains—the Aleutian and Alaska Ranges to the northwest and north and the Talkeetna, Chugach, and Kenai Mountains to the northeast and southeast—are underlain by rocks of Mesozoic and older ages.

  16. Publications - GMC 333 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    following six wells from the North Slope region, Alaska: Amethyst State #1, Awuna #1, Oumalik Test #1, Susie ., 2006, Apatite Fission Track analysis of cutting samples from the following six wells from the North

  17. Alaska Center for Climate Assessment and Policy: Partnering with Decision-Makers in Climate Change Adaptation

    NASA Astrophysics Data System (ADS)

    White, D.; Trainor, S.; Walsh, J.; Gerlach, C.

    2008-12-01

    The Alaska Center for Climate Assessment and Policy (ACCAP; www.uaf.edu/accap) is one of several, NOAA funded, Regional Integrated Science and Policy (RISA) programs nation-wide (http://www.climate.noaa.gov/cpo_pa/risa/). Our mission is to assess the socio-economic and biophysical impacts of climate variability in Alaska, make this information available to local and regional decision-makers, and improve the ability of Alaskans to adapt to a changing climate. We partner with the University of Alaska?s Scenario Network for Alaska Planning (SNAP; http://www.snap.uaf.edu/), state and local government, state and federal agencies, industry, and non-profit organizations to communicate accurate and up-to-date climate science and assist in formulating adaptation and mitigation plans. ACCAP and SNAP scientists are members of the Governor?s Climate Change Sub-Cabinet Adaptation and Mitigation Advisory and Technical Working Groups (http://www.climatechange.alaska.gov/), and apply their scientific expertise to provide down-scaled, state-wide maps of temperature and precipitation projections for these groups. An ACCAP scientist also serves as co-chair for the Fairbanks North Star Borough Climate Change Task Force, assisting this group as they work through the five-step model for climate change planning put forward by the International Council for Local Environmental Initiatives (http://www.investfairbanks.com/Taskforces/climate.php). ACCAP scientists work closely with federal resource managers in on a range of projects including: partnering with the U.S. Fish and Wildlife Service to analyze hydrologic changes associated with climate change and related ecological impacts and wildlife management and development issues on Alaska?s North Slope; partnering with members of the Alaska Interagency Wildland Fire Coordinating Group in statistical modeling to predict seasonal wildfire activity and coordinate fire suppression resources state-wide; and working with Alaska Native Elders and

  18. Thermal Properties of SiOC Glasses and Glass Ceramics at Elevated Temperatures

    PubMed Central

    Stabler, Christina; Reitz, Andreas; Stein, Peter; Albert, Barbara; Riedel, Ralf

    2018-01-01

    In the present study, the effect of the chemical and phase composition on the thermal properties of silicon oxide carbides (SiOC) has been investigated. Dense monolithic SiOC materials with various carbon contents were prepared and characterized with respect to their thermal expansion, as well as thermal conductivity. SiOC glass has been shown to exhibit low thermal expansion (e.g., ca. 3.2 × 10−6 K−1 for a SiOC sample free of segregated carbon) and thermal conductivity (ca. 1.5 W/(m∙K)). Furthermore, it has been observed that the phase separation, which typically occurs in SiOC exposed to temperatures beyond 1000–1200 °C, leads to a decrease of the thermal expansion (i.e., to 1.83 × 10−6 K−1 for the sample above); whereas the thermal conductivity increases upon phase separation (i.e., to ca. 1.7 W/(m∙K) for the sample mentioned above). Upon adjusting the amount of segregated carbon content in SiOC, its thermal expansion can be tuned; thus, SiOC glass ceramics with carbon contents larger than 10–15 vol % exhibit similar coefficients of thermal expansion to that of the SiOC glass. Increasing the carbon and SiC content in the studied SiOC glass ceramics leads to an increase in their thermal conductivity: SiOC with relatively large carbon and silicon carbides (SiC) volume fractions (i.e., 12–15 and 20–30 vol %, respectively) were shown to possess thermal conductivities in the range from 1.8 to 2.7 W/(m∙K). PMID:29439441

  19. Retaining Quality Teachers for Alaska.

    ERIC Educational Resources Information Center

    McDiarmid, G. Williamson; Larson, Eric; Hill, Alexandra

    This report examines the demand for teachers, teacher turnover, and teacher education in Alaska. Surveys were conducted with school district personnel directors, directors of Alaska teacher education programs, teachers who exited Alaska schools in 2001, and rural and urban instructional aides. Alaska is facing teacher shortages, but these are…

  20. Portable Cathode-Air Vapor-Feed Electrochemical Medical Oxygen Concentrator (OC)

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Ashwin

    2015-01-01

    Missions on the International Space Station and future space exploration will present significant challenges to crew health care capabilities, particularly in the efficient utilization of onboard oxygen resources. Exploration vehicles will require lightweight, compact, and portable oxygen concentrators that can provide medical-grade oxygen from the ambient cabin air. Current pressure-swing adsorption OCs are heavy and bulky, require significant start-up periods, operate in narrow temperature ranges, and require a liquid water feed. Lynntech, Inc., has developed an electrochemical OC that operates with a cathode-air vapor feed, eliminating the need for a bulky onboard water supply. Lynntech's OC is smaller and lighter than conventional pressure-swing OCs, is capable of instant start-up, and operates over a temperature range of 5-80 C. Accomplished through a unique nanocomposite proton exchange membrane and catalyst technology, the unit delivers 4 standard liters per minute of humidified oxygen at 60 percent concentration. The technology enables both ambient-pressure operating devices for portable applications and pressurized (up to 3,600 psi) OC devices for stationary applications.

  1. Spatial variation of slip behavior beneath the Alaska Peninsula along Alaska-Aleutian Subduction Zone

    NASA Astrophysics Data System (ADS)

    Li, S.; Freymueller, J. T.

    2017-12-01

    The Alaska Peninsula, including the Shumagin and Semidi segments in the Alaska-Aleutian subduction zone, is one of the best places in the world to study along-strike variations in the seismogenic zone. Understanding the cause of along-strike variations on the plate interface and seismic potential is significant for better understanding of the dynamic mechanical properties of faults and the rheology of the lower crust and lithospheric mantle in subduction zones. GPS measurements can be used to study these properties and estimate the slip deficit distribution on the plate interface. We re-surveyed pre-existing (1992-2001) campaign GPS sites in 2016 and estimated a new dense and highly precise GPS velocity field for the Alaska Peninsula. We find evidence for only minimal time variations in the slip distribution in the region. We used the TDEFNODE software package to invert for the slip deficit distribution from the new velocities. There are long-wavelength systematic misfits to the vertical velocities from the optimal model that fits the horizontal velocities well, which cannot be explained by altering the slip distribution on the subduction plate interface. Possible explanations for the systematic misfit are still under investigation since the plate geometry, GIA effect and reference frame errors do not explain the misfits. In this study, we use only the horizontal velocities. We divided the overall Alaska Peninsula area into three sub-areas, which have strong differences in the pattern of the observed deformation, and explored optimal models for each sub-area. The width of the locked region decreases step-wise from NE to SW along strike. Then we compared each of these models to all of the data to identify the locations of the along-strike boundaries that mark the transition from strongly to weakly coupled segments of the margin. We identified three sharp boundaries separating segments with different fault slip deficit rate distributions. Significant change in fault

  2. Fisheries Education in Alaska. Conference Report. Alaska Sea Grant Report 82-4.

    ERIC Educational Resources Information Center

    Smoker, William W., Ed.

    This conference was an attempt to have the fishing industry join the state of Alaska in building fisheries education programs. Topics addressed in papers presented at the conference include: (1) fisheries as a part of life in Alaska, addressing participation of Alaska natives in commercial fisheries and national efforts; (2) the international…

  3. Presentations - Herriott, T.M. and others, 2015 | Alaska Division of

    Science.gov Websites

    fieldwork and subsurface data in a region of known oil and gas accumulations (poster): Geological Society of data in a region of known oil and gas accumulations (poster): Geological Society of America Slope, Alaska - Integration of fieldwork and subsurface data in a region of known oil and gas

  4. Alaska Mental Health Board

    Science.gov Websites

    State Employees Alaska Mental Health Board DHSS State of Alaska Home Divisions and Agencies Alaska Pioneer Homes Behavioral Health Office of Children's Services Office of the Commissioner Office of Substance Misuse and Addiction Prevention Finance & Management Services Health Care Services Juvenile

  5. Publications - STATEMAP Project | Alaska Division of Geological &

    Science.gov Websites

    ., 2008, Surficial-geologic map of the Salcha River-Pogo area, Big Delta Quadrangle, Alaska: Alaska , Engineering - geologic map, Alaska Highway corridor, Delta Junction to Dot Lake, Alaska: Alaska Division of geologic map of the Salcha River-Pogo area, Big Delta Quadrangle, Alaska: Alaska Division of Geological

  6. Genetic characterization of Kenai brown bears (Ursus arctos): Microsatellite and mitochondrial DNA control region variation in brown bears of the Kenai Peninsula, south central Alaska

    USGS Publications Warehouse

    Jackson, J.V.; Talbot, S.L.; Farley, S.

    2008-01-01

    We collected data from 20 biparentally inherited microsatellite loci, and nucleotide sequence from the maternally inherited mitochondrial DNA (mtDNA) control region, to determine levels of genetic variation of the brown bears (Ursus arctos L., 1758) of the Kenai Peninsula, south central Alaska. Nuclear genetic variation was similar to that observed in other Alaskan peninsular populations. We detected no significant inbreeding and found no evidence of population substructuring on the Kenai Peninsula. We observed a genetic signature of a bottleneck under the infinite alleles model (IAM), but not under the stepwise mutation model (SMM) or the two-phase model (TPM) of microsatellite mutation. Kenai brown bears have lower levels of mtDNA haplotypic diversity relative to most other brown bear populations in Alaska. ?? 2008 NRC.

  7. Differences in cigarette and smokeless tobacco use among American Indian and Alaska Native people living in Alaska and the Southwest United States

    PubMed Central

    Lanier, Anne P.; Renner, Caroline; Smith, Julia; Tom-Orme, Lillian; Slattery, Martha L.

    2010-01-01

    Introduction: This study analyzed self-reported tobacco use among American Indian and Alaska Native (AI/AN) people enrolled in the Education and Research Towards Health Study in Alaska (n = 3,821) and the Southwest United States (n = 7,505) from 2004 to 2006. Methods: Participants (7,060 women and 4,266 men) completed a computer-assisted self-administered questionnaire on cigarette and smokeless tobacco (ST) use. Results: Current use of cigarettes was considerably higher in Alaska than in the Southwest United States (32% vs. 8%). Current ST use was also more common in Alaska than in the Southwest United States (18% vs. 8%). Additionally, smoking was more common among men, younger age, those who were not married, and who only spoke English at home, while ST use was more common among men, those with lower educational attainment and those who spoke an AI/AN language at home (p < .01). Compared with the U.S. general population, AI/AN people living in Alaska were more likely and those living in the Southwest United States were less likely to be current smokers. Rates of ST use, including homemade ST, in both regions were much higher than the U.S. general population. Discussion: Tobacco use among AI/AN people in the Southwest United States, who have a tradition of ceremonial tobacco use, was far lower than among Alaska Native people, who do not have a tribal tradition. Tobacco use is a key risk factor for multiple diseases. Reduction of tobacco use is a critical prevention measure to improve the health of AI/AN people. PMID:20525781

  8. Differences in cigarette and smokeless tobacco use among American Indian and Alaska Native people living in Alaska and the Southwest United States.

    PubMed

    Redwood, Diana; Lanier, Anne P; Renner, Caroline; Smith, Julia; Tom-Orme, Lillian; Slattery, Martha L

    2010-07-01

    This study analyzed self-reported tobacco use among American Indian and Alaska Native (AI/AN) people enrolled in the Education and Research Towards Health Study in Alaska (n = 3,821) and the Southwest United States (n = 7,505) from 2004 to 2006. Participants (7,060 women and 4,266 men) completed a computer-assisted self-administered questionnaire on cigarette and smokeless tobacco (ST) use. Current use of cigarettes was considerably higher in Alaska than in the Southwest United States (32% vs. 8%). Current ST use was also more common in Alaska than in the Southwest United States (18% vs. 8%). Additionally, smoking was more common among men, younger age, those who were not married, and who only spoke English at home, while ST use was more common among men, those with lower educational attainment and those who spoke an AI/AN language at home (p < .01). Compared with the U.S. general population, AI/AN people living in Alaska were more likely and those living in the Southwest United States were less likely to be current smokers. Rates of ST use, including homemade ST, in both regions were much higher than the U.S. general population. Tobacco use among AI/AN people in the Southwest United States, who have a tradition of ceremonial tobacco use, was far lower than among Alaska Native people, who do not have a tribal tradition. Tobacco use is a key risk factor for multiple diseases. Reduction of tobacco use is a critical prevention measure to improve the health of AI/AN people.

  9. Using Integrated Ecosystem Observations from Gulf Watch Alaska to Assess the Effects of the 2014/2015 Pacific Warm Anomaly in the Northern Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Holderied, K.; Neher, T. H.; McCammon, M.; Hoffman, K.; Hopcroft, R. R.; Lindeberg, M.; Ballachey, B.; Coletti, H.; Esler, D.; Weingartner, T.

    2016-02-01

    The response of nearshore and coastal pelagic ecosystems in the northern Gulf of Alaska to the 2014-2015 Pacific Ocean warm anomaly is being assessed with multi-disciplinary observations of the Gulf Watch Alaska long-term ecosystem monitoring program. Gulf Watch Alaska is an integrated, multi-agency program, funded by the Exxon Valdez oil spill Trustee Council to track populations of nearshore and pelagic species injured by the 1989 oil spill, as well as the marine conditions that affect those species. While the primary program goals are to support management and sustained recovery of species injured directly and indirectly by the spill, the integration of oceanographic observations with monitoring of nearshore and pelagic food webs also facilitates detection and assessment of ecosystem changes. The initial 5-year phase of the Gulf Watch Alaska program was started in 2012 and has provided marine ecosystem observations through the transition in late 2013 from anomalously cool to anomalously warm ocean conditions in the Gulf of Alaska. We review results from and linkages between oceanographic, whale, seabird, intertidal, and plankton monitoring projects in Prince William Sound, Cook Inlet and the northern Gulf of Alaska shelf. We also assess the different ecosystem responses observed between the summers of 2014 and 2015, with the region experiencing unusual amounts of seabird and marine mammal mortalities and harmful algal bloom events in 2015.

  10. 77 FR 72297 - Fisheries of the Exclusive Economic Zone Off Alaska; Gulf of Alaska; Proposed 2013 and 2014...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-05

    ... from http://www.regulations.gov or from the Alaska Region Web site at http://alaskafisheries.noaa.gov...) at 605 West 4th Avenue, Suite 306, Anchorage, AK 99501, phone 907-271-2809, or from the Council's Web... biomass trends for the following species are relatively stable: shallow-water flatfish, deep-water...

  11. Bringing It All Together: The Southeast Alaska Music Festival.

    ERIC Educational Resources Information Center

    Howey, Brad

    2003-01-01

    Describes the Southeast Alaska Music Festival discussing topics such as the role of the host school, the communities and schools within the region, and scoring procedures at the Festival. Includes a festival schedule. (CMK)

  12. Evaluation of the retail market potential for locally produced paper birch lumber in Alaska.

    Treesearch

    David L. Nicholls

    2002-01-01

    An evaluation of the retail market potential for random-width paper birch ( Betula papyrifera Marsh.) lumber in Alaska was conducted. Information from lumber manufacturers and retail managers was used to identify current barriers to customer acceptance of locally produced paper birch lumber. Major retail markets and paper birch producing regions throughout Alaska were...

  13. Climate Change Impact Assessment for Surface Transportation in the Pacific Northwest and Alaska

    DOT National Transportation Integrated Search

    2012-01-01

    The states in the Pacific Northwest and Alaska region share interconnected transportation networks for people, goods, and services that support the : regional economy, mobility, and human safety. Regional weather has and will continue to affect the p...

  14. Publications - RI 2001-1B | Alaska Division of Geological & Geophysical

    Science.gov Websites

    content DGGS RI 2001-1B Publication Details Title: Geologic map of the Chulitna region, southcentral , M.L., Reifenstuhl, R.R., and Clough, J.G., 2001, Geologic map of the Chulitna region, southcentral of the Chulitna region, southcentral Alaska, scale 1:63,360 (12.0 M) Digital Geospatial Data Digital

  15. 46 CFR 35.20-40 - Maneuvering characteristics-T/OC.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Maneuvering characteristics-T/OC. 35.20-40 Section 35.20-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Navigation § 35.20-40 Maneuvering characteristics—T/OC. For each ocean and coastwise tankship of 1,600 gross tons or...

  16. Space Weather Forecasting at the Joint Space Operations Center (JSpOC)

    NASA Astrophysics Data System (ADS)

    Nava, O.

    2012-12-01

    The Joint Space Operations Center (JSpOC) at Vandenberg Air Force Base is the command and control focal point for the operational employment of worldwide joint space forces. The JSpOC focuses on planning and executing US Strategic Command's Joint Functional Component Command for Space (JFCC SPACE) mission. Through the JSpOC, the Weather Specialty Team (WST) monitors space and terrestrial weather effects, plans and assesses weather impacts on military operations, and provides reach-back support for deployed theater solar and terrestrial needs. This presentation will detail how space weather affects the JSpOC mission set and how the scientific community can enhance the WST's capabilities and effectiveness.

  17. Field-free molecular orientation of nonadiabatically aligned OCS

    NASA Astrophysics Data System (ADS)

    Sonoda, Kotaro; Iwasaki, Atsushi; Yamanouchi, Kaoru; Hasegawa, Hirokazu

    2018-02-01

    We investigate an enhancement of the orientation of OCS molecules by irradiating them with a near IR (ω) ultrashort laser pulse for alignment followed by another ultrashort laser pulse for orientation, which is synthesized by a phase-locked coherent superposition of the near IR laser pulse and its second harmonic (2ω). On the basis of the asymmetry in the ejection direction of S3+ fragment ions generated by the Coulomb explosion of multiply charged OCS, we show that the extent of the orientation of OCS is significantly enhanced when the delay between the alignment pulse and the orientation pulse is a quarter or three quarters of the rotational period. The recorded enhanced orientation was interpreted well by a numerical simulation of the temporal evolution of a rotational wave packet prepared by the alignment and orientation pulses.

  18. 76 FR 3653 - Alaska Region's Subsistence Resource Commission (SRC) Program; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... subsistence management issues. The NPS SRC program is authorized under Title VIII, Section 808 of the Alaska...: 1. Call to order. 2. SRC Roll Call and Confirmation of Quorum. 3. Welcome and Introductions. 4.... c. Resource Management Program Update. 14. Public and other Agency Comments. 15. SRC Work Session...

  19. The Relative Contributions of Experiential Avoidance and Distress Tolerance to OC Symptoms.

    PubMed

    Blakey, Shannon M; Jacoby, Ryan J; Reuman, Lillian; Abramowitz, Jonathan S

    2016-07-01

    Obsessive beliefs account for substantial (but not all) obsessive-compulsive (OC) symptoms. Intolerance of internal experiences (IIE), which encompasses the constructs of experiential avoidance (EA) and distress tolerance (DT), refers to difficulty managing unwanted thoughts, emotions, and other internal states, and might add to current explanatory models. Although IIE appears to be conceptually relevant to obsessive-compulsive (OC) symptoms, scant research has examined this relationship empirically. The present study examined the relative contributions of EA and DT as predictors of OC symptom dimensions. A nonclinical sample (n = 496) completed self-report questionnaires measuring general distress, EA, DT and OC symptom dimensions. All variables of interest were significantly (all ps ≤ .001) correlated with one another, such that higher general distress, higher EA, and lower DT were associated with greater OC symptom severity for all symptom dimensions; however, only EA independently predicted obsessional symptoms, but not other OC symptom dimensions. One's willingness to endure (i.e. EA), rather than their ability to tolerate (i.e. DT) unpleasant internal experiences best predicts obsessional symptoms (i.e. obsessing) above and beyond general distress. Potential implications for understanding, assessing, and treating OC symptoms are discussed.

  20. Impact of coastal processes on resource development with an example from Icy Bay, Alaska

    USGS Publications Warehouse

    Molnia, Bruce F.

    1978-01-01

    The coastline of Alaska is dynamic and continually readjusting to changes in the many processes that operate in the coastal zone. Because of this dynamic nature, special consideration must be made in planning for development, and. caution must be exercised in site selection for facilities to be emplaced in the coastal zone. All types of coastal processes from continuously active normal processes to the low frequency-high intensity rare event must be considered. Site-specific evaluation-s considering the broad range of possible processes must precede initiation of development. An example of the relation between coastal processes and a proposed resource treatment facility is presented for Icy Bay, Alaska. Icy Bay is the only sheltered bay near many of the offshore tracts leased for petroleum exploration in the 1976 northern Gulf of Alaska OCS (Outer Continental Shelf) lease sale. Consequently, it has been selected as a primary onshore staging site for the support of offshore exploration and development. The environment of Icy Bay has many potentially hazardous features, including a submarine moraine at the bay mouth and actively calving glaciers at the bay's head which produce many icebergs. But most significant from the point of view of locating onshore facilities and pipeline corridors are the high rates of shoreline erosion and sediment deposition. If pipelines or any onshore staging facilities are to be placed in the coastal areas of Icy Bay, then the dynamic changes in shoreline position must be considered so that man-made structures will not be eroded away or be silted in before the completion of development.

  1. Recreation and tourism in south-central Alaska: synthesis of recent trends and prospects.

    Treesearch

    David J. Brooks; Richard W. Haynes

    2001-01-01

    Tourism has been the fastest growing component of Alaska’s economy for the past decade and is an important export sector for the regional economy. Opportunities to participate in outdoor recreation are also an important component of the quality of life for residents of Alaska. Successful planning for the Chugach National Forest therefore will require an understanding...

  2. Alaska's Economy: What's Ahead?

    ERIC Educational Resources Information Center

    Alaska Review of Social and Economic Conditions, 1987

    1987-01-01

    This review describes Alaska's economic boom of the early 1980s, the current recession, and economic projections for the 1990s. Alaska's economy is largely influenced by oil prices, since petroleum revenues make up 80% of the state government's unrestricted general fund revenues. Expansive state spending was responsible for most of Alaska's…

  3. Cooperative Alaska Forest Inventory

    Treesearch

    Thomas Malone; Jingjing Liang; Edmond C. Packee

    2009-01-01

    The Cooperative Alaska Forest Inventory (CAFI) is a comprehensive database of boreal forest conditions and dynamics in Alaska. The CAFI consists of field-gathered information from numerous permanent sample plots distributed across interior and south-central Alaska including the Kenai Peninsula. The CAFI currently has 570 permanent sample plots on 190 sites...

  4. Appellate Courts - Alaska Court System

    Science.gov Websites

    Court Cases Appellate Case Management System Oral Argument Supreme Court Calendar, Court of Appeals , which contains the Alaska cases excerpted from P.2d and P.3d. The Pacific Reporter or the Alaska the Alaska cases excerpted from P.2d and P.3d. The Pacific Reporter or the Alaska Reporter is

  5. Alaska Tidal Datum Portal | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Engineering Geology Alaska Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Portal Unambiguous vertical datums in the coastal environment are critical to the evaluation of natural human life, property, and the coastal environment. January 2017 - Update Summary Alaska Tidal Datum

  6. Integrated evaluation of the vulnerability to thermokarst disturbance and its implications for the regional carbon balance in boreal Alaska

    NASA Astrophysics Data System (ADS)

    Helene, G.; Lara, M. J.; McGuire, A. D.; Euskirchen, E. S.; Bolton, W. R.; Romanovsky, V. E.

    2017-12-01

    Our capacity to project future ecosystem trajectories in northern permafrost regions depends on our ability to characterize complex interactions between climatic and ecological processes at play in the soil, the vegetation, and the atmosphere. We present a study that uses remote sensing analyses, field observations, and data synthesis to inform models for the prediction of ecosystem responses to climate change in the boreal zone of Alaska. Recent warming, altered precipitation and fire regimes are driving permafrost degradation, threatening to mobilize vast reservoirs of ancient carbon previously protected from decomposition. Although large scale, progressive, top-down permafrost thaw have been well studied and represented in high-latitude ecosystem models, the consequences of abrupt and local thermokarst disturbances (TK) are less well understood. To fill this gap, we conducted a detection analysis characterizing 60 years of land cover change in the Tanana Flats, a wetland complex subjected to TK disturbance in Interior Alaska, using aerial and satellite images. We observed a nonlinear loss of permafrost plateau forest associated with TK and driven by precipitation and forest fragmentation. The results of this analysis were integrated into the Alaska Thermokarst Model (ATM), a state-and-transition model that simulates land cover change associated with TK disturbance. Thermokarst-related land cover change was simulated from 2000 to 2100 across the Tanana Flats. By 2100, the model predicts a mean decrease of 7.4% (sd 1.8%) in permafrost plateau forests associated with an increase in TK fens and bogs. Transitions from permafrost plateau forests to TK wetlands are accompanied with changes in physical and biogeochemical processes affecting ecosystem carbon balance. We evaluated the consequences of TK disturbances on the regional carbon balance by coupling outputs from the ATM and from a process-based biogeochemical model. We used long-term field observations of

  7. 33 CFR 147.815 - ExxonMobil Hoover Floating OCS Facility safety zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false ExxonMobil Hoover Floating OCS... HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.815 ExxonMobil Hoover Floating OCS Facility safety zone. (a) Description. The ExxonMobil Hoover Floating OCS Facility, Alaminos...

  8. 33 CFR 147.815 - ExxonMobil Hoover Floating OCS Facility safety zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false ExxonMobil Hoover Floating OCS... HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.815 ExxonMobil Hoover Floating OCS Facility safety zone. (a) Description. The ExxonMobil Hoover Floating OCS Facility, Alaminos...

  9. 33 CFR 147.815 - ExxonMobil Hoover Floating OCS Facility safety zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false ExxonMobil Hoover Floating OCS... HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.815 ExxonMobil Hoover Floating OCS Facility safety zone. (a) Description. The ExxonMobil Hoover Floating OCS Facility, Alaminos...

  10. 33 CFR 147.815 - ExxonMobil Hoover Floating OCS Facility safety zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false ExxonMobil Hoover Floating OCS... HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.815 ExxonMobil Hoover Floating OCS Facility safety zone. (a) Description. The ExxonMobil Hoover Floating OCS Facility, Alaminos...

  11. Prevalence of Hypertension and Associated Risk Factors in Western Alaska Native People: The Western Alaska Tribal Collaborative for Health (WATCH) Study.

    PubMed

    Jolly, Stacey E; Koller, Kathryn R; Metzger, Jesse S; Day, Gretchen M; Silverman, Angela; Hopkins, Scarlett E; Austin, Melissa A; Boden-Albala, Bernadette; Ebbesson, Sven O E; Boyer, Bert B; Howard, Barbara V; Umans, Jason G

    2015-10-01

    Hypertension is a common chronic disease and a key risk factor in the development of cardiovascular disease. The Western Alaska Tribal Collaborative for Health study consolidates baseline data from four major cohorts residing in the Norton Sound and Yukon-Kuskokwim regions of western Alaska. This consolidated cohort affords an opportunity for a systematic analysis of high blood pressure and its correlates in a unique population with high stroke rates over a wide age range. While the prevalence of hypertension among western Alaska Native people (30%, age-standardized) is slightly less than that of the US general population (33%), cardiovascular disease is a leading cause of mortality in this rural population. The authors found that improvement is needed in hypertension awareness as about two thirds (64%) of patients reported awareness and only 39% with hypertension were controlled on medication. Future analyses assessing risk and protective factors for incident hypertension in this population are indicated. © 2015 Wiley Periodicals, Inc.

  12. Prevalence of Hypertension and Associated Risk Factors in Western Alaska Native People: The Western Alaska Tribal Collaborative for Health (WATCH) Study

    PubMed Central

    Jolly, Stacey E.; Koller, Kathryn R.; Metzger, Jesse S.; Day, Gretchen M.; Silverman, Angela; Hopkins, Scarlett E.; Austin, Melissa A.; Boden-Albala, Bernadette; Ebbesson, Sven O.E.; Boyer, Bert B.; Howard, Barbara V.; Umans, Jason G.

    2014-01-01

    Hypertension is a common chronic disease and a key risk factor in the development of cardiovascular disease. The Western Alaska Tribal Collaborative for Health Study consolidates baseline data from four major cohorts residing in the Norton Sound and Yukon-Kuskokwim regions of western Alaska. This consolidated cohort affords an opportunity for a systematic analysis of high blood pressure and its correlates in a unique population that has high stroke rates over a wide age range. While the prevalence of hypertension among western Alaska Native people (30%, age-standardized) is slightly less than that of the U.S. general population (33%), cardiovascular disease is a leading cause of mortality in this rural population. We found that improvement is needed in hypertension awareness as about two-thirds (64%) reported awareness and only 39% with hypertension were controlled on medication. Future analyses assessing risk and protective factors for incident hypertension in this population are indicated. PMID:25644577

  13. Alaska Job Center Network

    Science.gov Websites

    Job Centers Toll-free in Alaska (877)724-2539 *Workshop Schedules are linked under participating Job : midtown.jobcenter@alaska.gov Employers: anchorage.employers@alaska.gov Toll free Anchorage Employer Phone: 1-888-830 -1149 Phone: 842-5579 Fax: 842-5679, Toll Free: 1-800-478-5579 Job Seekers & Employers

  14. The recent warming of permafrost in Alaska

    NASA Astrophysics Data System (ADS)

    Osterkamp, T. E.

    2005-12-01

    This paper reports results of an experiment initiated in 1977 to determine the effects of climate on permafrost in Alaska. Permafrost observatories with boreholes were established along a north-south transect of Alaska in undisturbed permafrost terrain. The analysis and interpretation of annual temperature measurements in the boreholes and daily temperature measurements of the air, ground and permafrost surfaces made with automated temperature loggers are reported. Permafrost temperatures warmed along this transect coincident with a statewide warming of air temperatures that began in 1977. At two sites on the Arctic Coastal Plain, the warming was seasonal, greatest during "winter" months (October through May) and least during "summer" months (June through September). Permafrost temperatures peaked in the early 1980s and then decreased in response to slightly cooler air temperatures and thinner snow covers. Arctic sites began warming again typically about 1986 and Interior Alaska sites about 1988. Gulkana, the southernmost site, has been warming slowly since it was drilled in 1983. Air temperatures were relatively warm and snow covers were thicker-than-normal from the late 1980s into the late 1990s allowing permafrost temperatures to continue to warm. Temperatures at some sites leveled off or cooled slightly at the turn of the century. Two sites (Yukon River Bridge and Livengood) cooled during the period of observations. The magnitude of the total warming at the surface of the permafrost (through 2003) was 3 to 4 °C for the Arctic Coastal Plain, 1 to 2 °C for the Brooks Range including its northern and southern foothills, and 0.3 to 1 °C south of the Yukon River. While the data are sparse, permafrost is warming throughout the region north of the Brooks Range, southward along the transect from the Brooks Range to the Chugach Mountains (except for Yukon River and Livengood), in Interior Alaska throughout the Tanana River region, and in the region south of the

  15. Demography of Dall's sheep in northwestern Alaska

    USGS Publications Warehouse

    Kleckner, Christopher; Udevitz, Mark S.; Adams, Layne G.; Shults, Brad S.

    2003-01-01

    Dall’s sheep in northwestern Alaska declined in the early 1990s following the severe 1989-90 and 1990-91 winters. In the Baird Mountains of Noatak National Preserve, estimates of adult sheep declined by 50% from 800 in 1989 to under 400 in 1991. Population counts remained low throughout 1991 to 1996, reaching a minimum of 244 adult sheep in 1996. Few lambs were observed during annual midsummer aerial surveys in 1991 to 1994. We suspect that these declines resulted from a combination of poorer nutritional condition and increased vulnerability of sheep to predation resulting from severe winter conditions.As a result of these declines, both subsistence and sport hunting seasons were closed by emergency order in 1991, resulting in substantial management controversy. The affected publics, although willing to accept the closures, questioned the validity of the sheep survey data and strongly emphasized their interest in restoring harvests as soon as populations increased sufficiently. In 1995 the Northwest Arctic Regional Advisory Council, the local advisory committee for the Federal Subsistence Board, passed a motion supporting efforts to initiate research on sheep populations in the region to better understand the factors limiting sheep populations and to evaluate sheep survey methodologies.Currently estimates of Dall’s sheep population size and composition in the western Brooks Range are based on intensive fixed-wing aerial surveys conducted annually since 1986 in areas including the Baird Mountains. The annual variation in recent Baird Mountains aerial counts cannot be explained with reasonable assumptions about reproduction and survival, suggesting that there is some variability in the proportion of the population observed each year or that a substantial number of sheep move during the survey. Prior to our research, no attempt had been made to estimate visibility bias or precision for these surveys.Our understanding of Dall’s sheep population biology comes

  16. Can a Week Make a Difference? Changing Perceptions about Teaching and Living in Rural Alaska

    ERIC Educational Resources Information Center

    Munsch, T. R.; Boylan, Colin R.

    2008-01-01

    Many Alaskan schools are located in extremely remote or "fly-in" places. These geographical extremes affect the recruitment and retention of teachers to remote rural schools. Through a partnership between the Southwest Region School District of Alaska and the Department of Education at Alaska Pacific University (APU), 14 pre-service…

  17. Alaska Natives & the Land.

    ERIC Educational Resources Information Center

    Arnold, Robert D.; And Others

    Pursuant to the Native land claims within Alaska, this compilation of background data and interpretive materials relevant to a fair resolution of the Alaska Native problem seeks to record data and information on the Native peoples; the land and resources of Alaska and their uses by the people in the past and present; land ownership; and future…

  18. Alaska Women: A Databook.

    ERIC Educational Resources Information Center

    White, Karen; Baker, Barbara

    This data book uses survey and census information to record social and economic changes of the past three decades and their effects upon the role of Alaska women in society. Results show Alaska women comprise 47% of the state population, an increase of 9% since 1950. Marriage continues as the predominant living arrangement for Alaska women,…

  19. Alaska Board of Forestry

    Science.gov Websites

    Natural Resources / Division of Forestry Alaska Board of Forestry The nine-member Alaska Board of Forestry advises the state on forest practices issues and provides a forum for discussion and resolution of forest management issues on state land. The board also reviews all proposed changes to the Alaska Forest Resources

  20. Alaska Interagency Ecosystem Health Work Group

    USGS Publications Warehouse

    Shasby, Mark

    2009-01-01

    The Alaska Interagency Ecosystem Health Work Group is a community of practice that recognizes the interconnections between the health of ecosystems, wildlife, and humans and meets to facilitate the exchange of ideas, data, and research opportunities. Membership includes the Alaska Native Tribal Health Consortium, U.S. Geological Survey, Alaska Department of Environmental Conservation, Alaska Department of Health and Social Services, Centers for Disease Control and Prevention, U.S. Fish and Wildlife Service, Alaska Sea Life Center, U.S. Environmental Protection Agency, and Alaska Department of Fish and Game.

  1. Tunneling Characteristics Depending on Schottky Barriers and Diffusion Current in SiOC.

    PubMed

    Oh, Teresa; Kim, Chy Hyung

    2016-02-01

    To obtain a diffusion current in SiOC, the aluminum doped zinc oxide films were deposited on SiOC/Si wafer by a RF magnetron sputtering. All the X-ray patterns of the SiOC films showed amorphous phases. The level of binding energy of Si atoms will lead to an additional potential modulation by long range Coulombic and covalent interactions with oxygen ions. The growth of the AZO film was affected by the characteristics of SiOC, resulting in similar trends in XPS spectra and a shift to higher AZO lattice d values than the original AZO d values in XRD analyses. The charges trapped by the defects at the interlayer between AZO and SiOC films induced the decreased mobility of carriers. In the absence of trap charges, AZO grown on SiOC film such as the sample prepared at O2 = 25 or 30 sccm, which has low charge carrier concentration and high mobility, showed high mobility in an ambipolar characteristic of oxide semiconductor due to the tunneling effect and diffusion current. The structural matching of an interface between AZO and amorphous SiOC enhanced the height of Schottky Barrier (SB), and then the mobility was increased by the tunneling effect from band to band through the high SB.

  2. 33 CFR 147.815 - ExxonMobil Hoover Floating OCS Facility safety zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false ExxonMobil Hoover Floating OCS... Floating OCS Facility safety zone. (a) Description. The ExxonMobil Hoover Floating OCS Facility, Alaminos... (1640.4 feet) from each point on the structure's outer edge is a safety zone. (b) Regulation. No vessel...

  3. Alaska's renewable energy potential.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  4. Influence of life-history parameters on organochlorine concentrations in free-ranging killer whales (Orcinus orca) from Prince William Sound, AK.

    PubMed

    Ylitalo, G M; Matkin, C O; Buzitis, J; Krahn, M M; Jones, L L; Rowles, T; Stein, J E

    2001-12-17

    Certain populations of killer whales (Orcinus orca) have been extensively studied over the past 30 years, including populations that use Puget Sound, WA, the inside waters of British Columbia, Southeastern Alaska and Kenai Fjords/Prince William Sound, Alaska. Two eco-types of killer whales, 'transient' and 'resident', occur in all of these regions. These eco-types are genetically distinct and differ in various aspects of morphology, vocalization patterns, diet and habitat use. Various genetic and photo-identification studies of eastern North Pacific killer whales have provided information on the male-female composition of most of these resident pods and transient groups, as well as the approximate ages, reproductive status and putative recruitment order (birth order) of the individual whales. Biopsy blubber samples of free-ranging resident and transient killer whales from the Kenai Fjords/Prince William Sound, AK region were acquired during the 1994-1999 field seasons and analyzed for selected organochlorines (OCs), including dioxin-like CB congeners and DDTs. Concentrations of OCs in transient killer whales (marine mammal-eating) were much higher than those found in resident animals (fish-eating) apparently due to differences in diets of these two killer whale eco-types. Certain life-history parameters such as sex, age and reproductive status also influenced the concentrations of OCs in the Alaskan killer whales. Reproductive female whales contained much lower levels of OCs than sexually immature whales or mature male animals in the same age class likely due to transfer of OCs from the female to her offspring during gestation and lactation. Recruitment order also influenced the concentrations of OCs in the Alaskan killer whales. In adult male residents, first-recruited whales contained much higher OC concentrations than those measured in non-first-recruited (e.g. second recruited, third recruited) resident animals in the same age group. This study provides

  5. Sources and perceptions of indoor and ambient air pollution in rural Alaska.

    PubMed

    Ware, Desirae; Lewis, Johnnye; Hopkins, Scarlett; Boyer, Bert; Noonan, Curtis; Ward, Tony

    2013-08-01

    Even though Alaska is the largest state in the United States, much of the population resides in rural and underserved areas with documented disparities in respiratory health. This is especially true in the Yukon-Kuskokwim (southwest) and Ahtna (southcentral) Regions of Alaska. In working with community members, the goal of this study was to identify the air pollution issues (both indoors and outdoors) of concern within these two regions. Over a two-year period, 328 air quality surveys were disseminated within seven communities in rural Alaska. The surveys focused on understanding the demographics, home heating practices, indoor activities, community/outdoor activities, and air quality perceptions within each community. Results from these surveys showed that there is elevated potential for PM10/PM2.5 exposures in rural Alaska communities. Top indoor air quality concerns included mold, lack of ventilation or fresh air, and dust. Top outdoor air pollution concerns identified were open burning/smoke, road dust, and vehicle exhaust (e.g., snow machines, ATVs, etc.). These data can now be used to seek additional funding for interventions, implementing long-term, sustainable solutions to the identified problems. Further research is needed to assess exposures to PM10/PM2.5 and the associated impacts on respiratory health, particularly among susceptible populations such as young children.

  6. Geospatial analysis identifies critical mineral-resource potential in Alaska

    USGS Publications Warehouse

    Karl, Susan M.; Labay, Keith A.; Jacques, Katherine; Landowski, Claire

    2017-03-03

    Alaska consists of more than 663,000 square miles (1,717,000 square kilometers) of land—more than a sixth of the total area of the United States—and large tracts of it have not been systematically studied or sampled for mineral-resource potential. Many regions of the State are known to have significant mineral-resource potential, and there are currently six operating mines in the State along with numerous active mineral exploration projects. The U.S. Geological Survey and the Alaska Division of Geological & Geophysical Surveys have developed a new geospatial tool that integrates and analyzes publicly available databases of geologic information and estimates the mineral-resource potential for critical minerals, which was recently used to evaluate Alaska. The results of the analyses highlight areas that have known mineral deposits and also reveal areas that were not previously considered to be prospective for these deposit types. These results will inform land management decisions by Federal, State, and private landholders, and will also help guide future exploration activities and scientific investigations in Alaska.

  7. Teleseismic P and S wave attenuation constraints on temperature and melt of the upper mantle in the Alaska Subduction Zone.

    NASA Astrophysics Data System (ADS)

    Soto Castaneda, R. A.; Abers, G. A.; Eilon, Z.; Christensen, D. H.

    2017-12-01

    Recent broadband deployments in Alaska provide an excellent opportunity to advance our understanding of the Alaska-Aleutians subduction system, with implications for subduction processes worldwide. Seismic attenuation, measured from teleseismic body waves, provides a strong constraint on thermal structure as well as an indirect indication of ground shaking expected from large intermediate-depth earthquakes. We measure P and S wave attenuation from pairwise amplitude and phase spectral ratios for teleseisms recorded at 204 Transportable Array, Alaska Regional, and Alaska Volcano Observatory, SALMON (Southern Alaska Lithosphere & Mantle Observation Network) and WVLF (Wrangell Volcanics & subducting Lithosphere Fate) stations in central Alaska. The spectral ratios are inverted in a least squares sense for differential t* (path-averaged attenuation operator) and travel time anomalies at every station. Our preliminary results indicate a zone of low attenuation across the forearc and strong attenuation beneath arc and backarc in the Cook Inlet-Kenai region where the Aleutian-Yakutat slab subducts, similar to other subduction zones. This attenuation differential is observed in both the volcanic Cook Inlet segment and amagmatic Denali segments of the Aleutian subduction zone. By comparison, preliminary results for the Wrangell-St. Elias region past the eastern edge of the Aleutian slab show strong attenuation beneath the Wrangell Volcanic Field, as well as much further south than in the Cook Inlet-Kenai region. This pattern of attenuation seems to indicate a short slab fragment in the east of the subduction zone, though the picture is complex. Results also suggest the slab may focus or transmit energy with minimal attenuation, adding to the complexity. To image the critical transition between the Alaska-Aleutian slab and the region to its east, we plan to incorporate new broadband data from the WVLF array, an ongoing deployment of 37 PASSCAL instruments installed in 2016

  8. College Persistence of Alaska Native Students: An Assessment of the Rural Alaska Honors Institute, 1983-88.

    ERIC Educational Resources Information Center

    Gaylord, Thomas A.; Kaul, Gitanjali

    Despite efforts by educators, full participation by Alaska native students in the state's colleges and universities has not yet been achieved. Alaska Natives are the state's only racial group that is underrepresented in enrollments at the University of Alaska (UA). This report examines the contribution of the Rural Alaska Honors Institute (RAHI)…

  9. Automated system for smoke dispersion prediction due to wild fires in Alaska

    NASA Astrophysics Data System (ADS)

    Kulchitsky, A.; Stuefer, M.; Higbie, L.; Newby, G.

    2007-12-01

    Community climate models have enabled development of specific environmental forecast systems. The University of Alaska (UAF) smoke group was created to adapt a smoke forecast system to the Alaska region. The US Forest Service (USFS) Missoula Fire Science Lab had developed a smoke forecast system based on the Weather Research and Forecasting (WRF) Model including chemistry (WRF/Chem). Following the successful experience of USFS, which runs their model operationally for the contiguous U.S., we develop a similar system for Alaska in collaboration with scientists from the USFS Missoula Fire Science Lab. Wildfires are a significant source of air pollution in Alaska because the climate and vegetation favor annual summer fires that burn huge areas. Extreme cases occurred in 2004, when an area larger than Maryland (more than 25000~km2) burned. Small smoke particles with a diameter less than 10~μm can penetrate deep into lungs causing health problems. Smoke also creates a severe restriction to air transport and has tremendous economical effect. The smoke dispersion and forecast system for Alaska was developed at the Geophysical Institute (GI) and the Arctic Region Supercomputing Center (ARSC), both at University of Alaska Fairbanks (UAF). They will help the public and plan activities a few days in advance to avoid dangerous smoke exposure. The availability of modern high performance supercomputers at ARSC allows us to create and run high-resolution, WRF-based smoke dispersion forecast for the entire State of Alaska. The core of the system is a Python program that manages the independent pieces. Our adapted Alaska system performs the following steps \\begin{itemize} Calculate the medium-resolution weather forecast using WRF/Met. Adapt the near real-time satellite-derived wildfire location and extent data that are received via direct broadcast from UAF's "Geographic Information Network of Alaska" (GINA) Calculate fuel moisture using WRF forecasts and National Fire Danger

  10. Trophic ecology of introduced populations of Alaska blackfish (Dallia pectoralis) in the Cook Inlet Basin, Alaska.

    PubMed

    Eidam, Dona M; von Hippel, Frank A; Carlson, Matthew L; Lassuy, Dennis R; López, J Andrés

    2016-07-01

    Introduced non-native fishes have the potential to substantially alter aquatic ecology in the introduced range through competition and predation. The Alaska blackfish ( Dallia pectoralis ) is a freshwater fish endemic to Chukotka and Alaska north of the Alaska Range (Beringia); the species was introduced outside of its native range to the Cook Inlet Basin of Alaska in the 1950s, where it has since become widespread. Here we characterize the diet of Alaska blackfish at three Cook Inlet Basin sites, including a lake, a stream, and a wetland. We analyze stomach plus esophageal contents to assess potential impacts on native species via competition or predation. Alaska blackfish in the Cook Inlet Basin consume a wide range of prey, with major prey consisting of epiphytic/benthic dipteran larvae, gastropods, and ostracods. Diets of the introduced populations of Alaska blackfish are similar in composition to those of native juvenile salmonids and stickleback. Thus, Alaska blackfish may affect native fish populations via competition. Fish ranked third in prey importance for both lake and stream blackfish diets but were of minor importance for wetland blackfish.

  11. Trophic ecology of introduced populations of Alaska blackfish (Dallia pectoralis) in the Cook Inlet Basin, Alaska

    PubMed Central

    Eidam, Dona M.; Carlson, Matthew L.; Lassuy, Dennis R.; López, J. Andrés

    2016-01-01

    Introduced non-native fishes have the potential to substantially alter aquatic ecology in the introduced range through competition and predation. The Alaska blackfish (Dallia pectoralis) is a freshwater fish endemic to Chukotka and Alaska north of the Alaska Range (Beringia); the species was introduced outside of its native range to the Cook Inlet Basin of Alaska in the 1950s, where it has since become widespread. Here we characterize the diet of Alaska blackfish at three Cook Inlet Basin sites, including a lake, a stream, and a wetland. We analyze stomach plus esophageal contents to assess potential impacts on native species via competition or predation. Alaska blackfish in the Cook Inlet Basin consume a wide range of prey, with major prey consisting of epiphytic/benthic dipteran larvae, gastropods, and ostracods. Diets of the introduced populations of Alaska blackfish are similar in composition to those of native juvenile salmonids and stickleback. Thus, Alaska blackfish may affect native fish populations via competition. Fish ranked third in prey importance for both lake and stream blackfish diets but were of minor importance for wetland blackfish. PMID:28082763

  12. Alaska, Naturally Occurring Asbestos: Experiences, Policy and 2012 Limitation of Liability Legislation

    NASA Astrophysics Data System (ADS)

    Hargesheimer, J.; Perkins, R.

    2012-12-01

    Naturally Occurring Asbestos (NOA) occurs in mineral deposits in Alaska. There are many regions in Alaska that have minerals in surface rocks that may contain asbestos and asbestos has been discovered in many locations in Alaska. Gravel is constantly in demand for heavy construction projects, but some remote localities in Alaska do not have gravel sources that are NOA-free. Determining if NOA can be safely used in heavy construction materials and what can or should be done with NOA materials that are already in place are complex questions. Answers will depend on the amount and type of asbestos mineral, how it is handled in processing, and how it is maintained - all subject to regulation and control of operations. The State of Alaska recently enacted legislation (HB 258) providing, among other things, "… immunity for the state and for landowners, extractors, suppliers, transporters, and contractors for certain actions or claims arising in connection with the use of gravel or aggregate material containing naturally occurring asbestos in certain areas." Implementation of the law and interim regulations and guidance should enable use of NOA for heavy construction materials in Alaska, but as with any new law, it will take some time to understand its full scope and effect.

  13. Electrifying Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinemer, V.

    Alaska's diverse systems for electric power include only 4% by private utilities. Large distances and small markets make transmission impractical for the most part. Rates are variable, although the state average is low. Energy sources, except nuclear, are abundant: half the US coal reserves are in Alaska. In addition, it has geothermal, tidal, biomass, solar, wind, and hydroelectric power. Energy construction and study programs are centered in the Alaska Power Authority and include using waste heat from village diesel generators. Hydro potential is good, but access, distances, and environmental effects must be considered. The Terror Lake, Tyee Lake, Swan Lake,more » and Susitna projects are described and transmission construction, including the 345-kW Railbelt intertie, is discussed. 1 figure.« less

  14. The Relationships Between Earthquakes, Faults, and Recent Glacial Fluctuations in Southern Alaska

    NASA Astrophysics Data System (ADS)

    Wiest, K. R.; Sauber, J. M.; Doser, D. I.; Hurtado, J. M.; Velasco, A. A.

    2004-12-01

    In southern Alaska, northwestward-directed subduction of the Pacific plate is accompanied by accretion of the Yakutat terrane to continental Alaska. In the tectonically complex region between the transcurrent Fairweather fault and the Alaska-Aleutian subduction zone, active crustal shortening and strike-slip faulting occurs. Since a series of large earthquakes in 1899 (Mw = 8.1, Yakataga; Mw=8.1 Yakutat), there has been only one large event (1979 St. Elias Mw = 7.4) in the Yakutat region between the aftershock zones of the 1964 Prince William Sound (Mw = 9.2) and 1958 Fairweather (Mw = 8.2) earthquakes. In this region, the glaciers are extensive and many of them have undergone significant retreat in the last 100 years. This study investigates the relationships between small to moderate magnitude events, ongoing crustal deformation, active geological structures in the region, and recent glacial fluctuations. To map earthquake locations with respect to current glacier positions, we will incorporate Ice Cloud and land Elevation Satellite (ICESat) data into an updated Digital Elevation Model (DEM) of key glaciated regions that has been created using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images in conjunction with Shuttle Radar Topography Mission (SRTM) data. For the seismological investigation, we focused on relocating events that have occurred since the last large earthquake at St. Elias in 1979 using data obtained from the Alaska Earthquake Information Center (AEIC). P-wave polarity first motion focal mechanisms were generated for the relocated events and evaluated. Our preliminary relocations suggest a dipping slab in cross-section and also show a number of shallow event clusters around local glaciers. The focal mechanisms are quite variable but, in general, indicate strike-slip and oblique-slip focal mechanisms. Some of our highest quality focal mechanisms show dip-slip faulting and are from shallow events located near glacial

  15. 76 FR 44605 - Alaska Region's Subsistence Resource Commission (SRC) Program; Public Meeting and Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ... Uses of Bones, Horn, Antlers and Plants Environmental Assessment Update. 12. New Business. 13. Public... Board Update. 10. Alaska Board of Game Update. 11. Old Business: a. Subsistence Uses of Bones, Horn...

  16. Coastal Resilience and Adaptation:Working Together to go from Information to Action on Alaska's Coasts

    NASA Astrophysics Data System (ADS)

    Holman, A.; Poe, A.; Murphy, K.; Littell, J. S.; Pletnikoff, K.; Holen, D.

    2016-12-01

    The phrases "coastal resilience" and "climate adaptation" appear everywhere now—but how do they meet the needs of communities and natural resource managers on Alaska's coast? A regional consortium of The Aleutian Pribilof Islands Association, four of Alaska's Landscape Conservation Cooperatives (LCCs), NOAA, University of Alaska Fairbanks and the Alaska Climate Science Center joined numerous local partners including several Tribes and Alaska Native Organizations to host workshops in five regions to find out.The project brought together audiences from Tribal and local government, State and Federal agencies, scientists and local experts to share the state of existing knowledge on current and anticipated environmental changes and impacts and discuss potential response actions. Targeting information and tools needed for decision making and resource management, the hundreds of workshop participants identified gaps in available data, information and knowledge that needs to be filled to help communities and managers better respond to climate change. Each of the workshops built upon the other and connected stakeholders and increase resiliency by bringing local decision makers together with the researchers who can fill their needs, consolidating and leveraging research being done in the region by many different parties (western and traditional) and ensuring those results get to those who need them, and creating an adaptive, collaborative process of identifying needs, conducting work, gathering the latest science from local to national sources, presenting results for evaluation and feedback, and using that information to drive future research and management investments. The resulting "toolbox" will help management agencies and others to better understand the dynamic changes Alaska is experiencing, their impacts on communities and habitats, as well as tools and information that can help managers and community leaders work better together to adapt to climate change.

  17. A Storm-by-Storm Analysis of Alpine and Regional Precipitation Dynamics at the Mount Hunter Ice Core Site, Denali National Park, Central Alaska Range

    NASA Astrophysics Data System (ADS)

    Saylor, P. L.; Osterberg, E. C.; Kreutz, K. J.; Wake, C. P.; Winski, D.

    2014-12-01

    In May-June 2013, an NSF-funded team from Dartmouth College and the Universities of Maine and New Hampshire collected two 1000-year ice cores to bedrock from the summit plateau of Mount Hunter in Denali National Park, Alaska (62.940291, -151.087616, 3912 m). The snow accumulation record from these ice cores will provide key insight into late Holocene precipitation variability in central Alaska, and compliment existing precipitation paleorecords from the Mt. Logan and Eclipse ice cores in coastal SE Alaska. However, correct interpretation of the Mt. Hunter accumulation record requires an understanding of the relationships between regional meteorological events and micrometeorological conditions at the Mt. Hunter ice core collection site. Here we analyze a three-month window of snow accumulation and meteorological conditions recorded by an Automatic Weather Station (AWS) at the Mt. Hunter site during the summer of 2013. Snow accumulation events are identified in the Mt. Hunter AWS dataset, and compared on a storm-by-storm basis to AWS data collected from the adjacent Kahiltna glacier 2000 m lower in elevation, and to regional National Weather Service (NWS) station data. We also evaluate the synoptic conditions associated with each Mt. Hunter accumulation event using NWS surface maps, NCEP-NCAR Reanalysis data, and the NOAA HYSPLIT back trajectory model. We categorize each Mt. Hunter accumulation event as pure snow accumulation, drifting, or blowing snow events based on snow accumulation, wind speed and temperature data using the method of Knuth et al (2009). We analyze the frequency and duration of events within each accumulation regime, in addition to the overall contribution of each event to the snowpack. Preliminary findings indicate that a majority of Mt. Hunter accumulation events are of pure accumulation nature (55.5%) whereas drifting (28.6%) and blowing (15.4%) snow events play a secondary role. Our results will characterize the local accumulation dynamics on

  18. The O.C.: Our Guide to ALA in Anaheim

    ERIC Educational Resources Information Center

    Hardstark, Georgia

    2008-01-01

    For those who grew up in Orange County (O.C.), Disneyland is the metaphoric morsel of food that gets stuck between the teeth of someone one does not like. While D-land is a must-see for millions of visitors each year, there is much more to Anaheim. Although O.C. is portrayed on numerous reality TV shows as a mecca for rich white people with…

  19. New Insights on the Geologic Framework of Alaska and Potential Targets of Opportunity for Future Research

    NASA Astrophysics Data System (ADS)

    Ridgway, K.; Trop, J. M.; Finzel, E.; Brennan, P. R.; Gilbert, H. J.; Flesch, L. M.

    2015-12-01

    Studies the past decade have fundamentally changed our perspective on the Mesozoic and Cenozoic tectonic configuration of Alaska. New concepts include: 1) A link exists between Mesozoic collisional zones, Cenozoic strike-slip fault systems, and active deformation that is related to lithospheric heterogeneities that remain over geologic timescales. The location of the active Denali fault and high topography, for example, is within a Mesozoic collisional zone. Rheological differences between juxtaposed crustal blocks and crustal thickening in this zone have had a significant influence on deformation and exhumation in south-central Alaska. In general, the original configuration of the collisional zone appears to set the boundary conditions for long-term and active deformation. 2) Subduction of a spreading ridge has significantly modified the convergent margin of southern Alaska. Paleocene-Eocene ridge subduction resulted in surface uplift, unconformity development and changes in deposystems in the forearc region, and magmatism that extended from the paleotrench to the retroarc region. 3) Oligocene to Recent shallow subduction of an oceanic plateau has markedly reconfigured the upper plate of the southern Alaska convergent margin. This ongoing process has prompted growth of some of the largest mountain ranges on Earth, exhumation of the forearc and backarc regions above the subducted slab, development of a regional gap in arc magmatism above the subducted slab as well as slab-edge magmatism, and displacement on the Denali fault system. In the light of these new tectonic concepts for Alaska, we will discuss targets of opportunity for future integrated geologic and geophysical studies. These targets include regional strike-slip fault systems, the newly recognized Bering plate, and the role of spreading ridge and oceanic plateau subduction on the location and pace of exhumation, sedimentary basin development, and magmatism in the upper plate.

  20. Alaska digital aeromagnetic database description

    USGS Publications Warehouse

    Connard, G.G.; Saltus, R.W.; Hill, P.L.; Carlson, L.; Milicevic, B.

    1999-01-01

    Northwest Geophysical Associates, Inc. (NGA) was contracted by the U.S. Geological Survey (USGS) to construct a database containing original aeromagnotic data (in digital form) from surveys, maps and grids for the State of Alaska from existing public-domain magnetic data. This database facilitates thedetailed study and interpretation of aeromagnetic data along flightline profiles and allows construction of custom grids for selected regions of Alaska. The database is linked to and reflect? the work from the statewide gridded compilation completed under a prior contract. The statewide gridded compilation is also described in Saltus and Simmons (1997) and in Saltus and others (1999). The database area generally covers the on-shore portion of the State of Alaska and the northern Gulf of Alaska excluding the Aleutian Islands. The area extends from 54'N to 72'N latitude and 129'W to 169'W longitude. The database includes the 85 surveys that were included in the previous statewide gridded compilation. Figure (1) shows the extents of the 85 individual data sets included in the statewide grids. NGA subcontracted a significant portion of the work described in this report to Paterson, Grant, and Watson Limited (PGW). Prior work by PGW (described in Meyer and Saltus, 1995 and Meyer and others, 1998) for the interior portion of Alrska (INTAK) is included in this present study. The previous PGW project compiled 25 of the 85 surveys included in the statewide grids. PGW also contributed 10 additional data sets that were not included in either of the prior contracts or the statewide grids. These additional data sets are included in the current project in the interest of making the database as complete as possible. Figure (2) shows the location of the additional data sets.

  1. Occupational safety and health training in Alaska.

    PubMed

    Hild, C M

    1992-01-01

    We have eleven years of experience delivering a wide variety of worker education programs in cross-cultural settings to reduce the levels of occupational fatalities and injuries in Alaska. We published an instructional manual and informational poster for workers, on Alaska's "Right-To-Know" law regarding chemical and physical hazards. The "Job Hazard Recognition Program" curriculum for high school students has received national acclaim for being proactive in dealing with worker safety education before the student becomes a member of the work force. Adult educational programs and materials have been designed to include less lecture and formal presentation, and more practical "hands on" and on-the-job experience for specific trades and hazards. New industry specific manuals deal with hazardous waste reduction as a method to reduce harm to the employee. Difficulty in getting instructors and training equipment to rural locations is dealt with by becoming creative in scheduling classes, using locally available equipment, and finding regional contacts who support the overall program. Alternative approaches to funding sources include building on regional long-term plans and establishing complementary program objectives.

  2. Effects of recent volcanic eruptions on aquatic habitat in the Drift River, Alaska, USA: Implications at other Cook Inlet region volcanoes

    USGS Publications Warehouse

    Dorava, J.M.; Milner, A.M.

    1999-01-01

    Numerous drainages supporting productive salmon habitat are surrounded by active volcanoes on the west side of Cook Inlet in south-central Alaska. Eruptions have caused massive quantities of flowing water and sediment to enter the river channels emanating from glaciers and snowfields on these volcanoes. Extensive damage to riparian and aquatic habitat has commonly resulted, and benthic macroinvertebrate and salmonid communities can be affected. Because of the economic importance of Alaska's fisheries, detrimental effects on salmonid habitat can have significant economic implications. The Drift River drains glaciers on the northern and eastern flanks of Redoubt Volcano: During and following eruptions in 1989-1990, severe physical disturbances to the habitat features of the river adversely affected the fishery. Frequent eruptions at other Cook Inlet region volcanoes exemplify the potential effects of volcanic activity on Alaska's important commercial, sport, and subsistence fisheries. Few studies have documented the recovery of aquatic habitat following volcanic eruptions. The eruptions of Redoubt Volcano in 1989-1990 offered an opportunity to examine the recovery of the macroinvertebrate community. Macroinvertebrate community composition and structure in the Drift River were similar in both undisturbed and recently disturbed sites. Additionally, macroinvertebrate samples from sites in nearby undisturbed streams were highly similar to those from some Drift River sites. This similarity and the agreement between the Drift River macroinvertebrate community composition and that predicted by a qualitative model of typical macroinvertebrate communities in glacier-fed rivers indicate that the Drift River macroinvertebrate community is recovering five years after the disturbances associated with the most recent eruptions of Redoubt Volcano.

  3. Publications - GMC 193 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical materials: Alaska State F #1, washed cuttings (13,980' - 13,990'); West Mikkelsen State #1, Canning River

  4. Analysis of Seasonal Variability in Gulf of Alaska Glacier Mass Balance using GRACE

    NASA Astrophysics Data System (ADS)

    Arendt, A. A.; Luthcke, S. B.; Oneel, S.; Gardner, A. S.; Hill, D. F.

    2011-12-01

    Mass variations of glaciers in Alaska/northwestern Canada must be quantified in order to assess impacts on ecosystems, human infrastructure, and global sea level. Here we combine Gravity Recovery and Climate Experiment (GRACE) observations with a wide range of satellite and field data to investigate drivers of these recent changes, with a focus on seasonal variations. Our central focus will be the exceptionally high mass losses of 2009, which do not correlate with weather station temperature and precipitation data, but may be linked to ash fall from the March 31, 2009 eruption of Mt. Redoubt. The eruption resulted in a significant decrease in MODIS-derived surface albedo over many Alaska glacier regions, and likely contributed to some of the 2009 anomalous mass loss observed by GRACE. We also focus on the Juneau and Stikine Icefield regions that are far from the volcanic eruption but experienced the largest mass losses of any region in 2009. Although rapid drawdown of tidewater glaciers was occurring in southeast Alaska during 2009, we show these changes were probably not sufficiently widespread to explain all of the GRACE signal in those regions. We examine additional field and satellite datasets to quantify potential errors in the climate and GRACE fields that could result in the observed discrepancy.

  5. Alternatives to clearcutting in the old-growth forests of southeast Alaska: study plan and establishment report.

    Treesearch

    Michael H. McClellan; Douglas N. Swanston; Paul E. Hennon; Robert L. Deal; Toni L. de Santo; Mark S. Wipfli

    2000-01-01

    Much is known about the ecological effects, economics, and social impacts of clearcutting, but little documented experience with other silvicultural systems exists in southeast Alaska. The Pacific Northwest Research Station and the Alaska Region of the USDA Forest Service have cooperatively established an interdisciplinary study of ecosystem and social responses to...

  6. New Insights into Tectonics of the Saint Elias, Alaska, Region Based on Local Seismicity and Tomography

    NASA Astrophysics Data System (ADS)

    Ruppert, N. A.; Zabelina, I.; Freymueller, J. T.

    2013-12-01

    Saint Elias Mountains in southern Alaska are manifestation of ongoing tectonic processes that include collision of the Yakutat block with and subduction of the Yakutat block and Pacific plate under the North American plate. Interaction of these tectonic blocks and plates is complex and not well understood. In 2005 and 2006 a network of 22 broadband seismic sites was installed in the region as part of the SainT Elias TEctonics and Erosion Project (STEEP), a five-year multi-disciplinary study that addressed evolution of the highest coastal mountain range on Earth. High quality seismic data provides unique insights into earthquake occurrence and velocity structure of the region. Local earthquake data recorded between 2005 and 2010 became a foundation for detailed study of seismotectonic features and crustal velocities. The highest concentration of seismicity follows the Chugach-St.Elias fault, a major on land tectonic structure in the region. This fault is also delineated in tomographic images as a distinct contrast between lower velocities to the south and higher velocities to the north. The low-velocity region corresponds to the rapidly-uplifted and exhumed sediments on the south side of the range. Earthquake source parameters indicate high degree of compression and undertrusting processes along the coastal area, consistent with multiple thrust structures mapped from geological studies in the region. Tomographic inversion reveals velocity anomalies that correlate with sedimentary basins, volcanic features and subducting Yakutat block. We will present precise earthquake locations and source parameters recorded with the STEEP and regional seismic network along with the results of P- and S-wave tomographic inversion.

  7. Operational Draft Regional Guidebook for the Rapid Assessment of Wetlands in the North Slope Region of Alaska

    DTIC Science & Technology

    2017-08-31

    U.S. Department of Agriculture – Natural Resources Conservation Service (USDA-NRCS); Richard Darden, USACE Alaska District; and representatives from...Slope Science Initiative USDA-NRCS U.S. Department of Agriculture – Natural Resources Conservation Service USDOI-BLM U.S. Department of the Interior... Agriculture , Forest Service, Pacific Southwest Research Station. Reddy, K. R., and R. D. DeLaune. 2008. Biogeochemistry of wetlands: Science and

  8. Alaska's State Forests

    Science.gov Websites

    Conservation Education Timber Management Wildland Fire & Aviation Burn Permits Firewise Alaska Brochure (PDF) Fire Management Plans Fire Assignments Annual Fire Statistics Fire Terms Glossary Incident Business Management Grants Become an Alaska Firewise Community Community Wildland Fire Protection Plans

  9. Soil organic carbon stabilization by iron in permafrost regions of the Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Mu, C. C.; Zhang, T. J.; Zhao, Q.; Guo, H.; Zhong, W.; Su, H.; Wu, Q. B.

    2016-10-01

    A close relationship exists between soil organic carbon (SOC) and reactive iron; however, little is known about the role of iron in SOC preservation in permafrost regions. We determined the amount of SOC associated with reactive iron phases (OC-Fe) in the permafrost regions of the Qinghai-Tibetan Plateau (QTP). The results showed that the percentage of OC-Fe ranged between 0.9% and 59.5% in the upper 30 cm of soil and that the OC-Fe represented 19.5 ± 12.3% of the total SOC pool. No clear vertical distribution pattern in OC-Fe was present in the upper 1 m of soil. Throughout the year, the OC-Fe accounted for relatively stable proportions of the total SOC pool. This study suggests that approximately 20% of SOC is a potential rusty OC pool in the permafrost regions of the QTP. Biogeochemical processes related to the reaction of iron may play important roles in soil carbon cycles in permafrost regions.

  10. 49 CFR 71.11 - Alaska zone.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Alaska zone. 71.11 Section 71.11 Transportation Office of the Secretary of Transportation STANDARD TIME ZONE BOUNDARIES § 71.11 Alaska zone. The sixth zone, the Alaska standard time zone, includes the entire State of Alaska, except as provided in § 71.12...

  11. The Alaska Arctic Vegetation Archive (AVA-AK)

    DOE PAGES

    Walker, Donald; Breen, Amy; Druckenmiller, Lisa; ...

    2016-05-17

    The Alaska Arctic Vegetation Archive (AVA-AK, GIVD-ID: NA-US-014) is a free, publically available database archive of vegetation-plot data from the Arctic tundra region of northern Alaska. The archive currently contains 24 datasets with 3,026 non-overlapping plots. Of these, 74% have geolocation data with 25-m or better precision. Species cover data and header data are stored in a Turboveg database. A standardized Pan Arctic Species List provides a consistent nomenclature for vascular plants, bryophytes, and lichens in the archive. A web-based online Alaska Arctic Geoecological Atlas (AGA-AK) allows viewing and downloading the species data in a variety of formats, and providesmore » access to a wide variety of ancillary data. We conducted a preliminary cluster analysis of the first 16 datasets (1,613 plots) to examine how the spectrum of derived clusters is related to the suite of datasets, habitat types, and environmental gradients. Here, we present the contents of the archive, assess its strengths and weaknesses, and provide three supplementary files that include the data dictionary, a list of habitat types, an overview of the datasets, and details of the cluster analysis.« less

  12. The Alaska Arctic Vegetation Archive (AVA-AK)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Donald; Breen, Amy; Druckenmiller, Lisa

    The Alaska Arctic Vegetation Archive (AVA-AK, GIVD-ID: NA-US-014) is a free, publically available database archive of vegetation-plot data from the Arctic tundra region of northern Alaska. The archive currently contains 24 datasets with 3,026 non-overlapping plots. Of these, 74% have geolocation data with 25-m or better precision. Species cover data and header data are stored in a Turboveg database. A standardized Pan Arctic Species List provides a consistent nomenclature for vascular plants, bryophytes, and lichens in the archive. A web-based online Alaska Arctic Geoecological Atlas (AGA-AK) allows viewing and downloading the species data in a variety of formats, and providesmore » access to a wide variety of ancillary data. We conducted a preliminary cluster analysis of the first 16 datasets (1,613 plots) to examine how the spectrum of derived clusters is related to the suite of datasets, habitat types, and environmental gradients. Here, we present the contents of the archive, assess its strengths and weaknesses, and provide three supplementary files that include the data dictionary, a list of habitat types, an overview of the datasets, and details of the cluster analysis.« less

  13. The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: implications for post-thaw carbon loss

    Treesearch

    Jonathan A. O' Donnell; Jennifer W. Harden; A. David McGuire; Mikhail Z. Kanevskiy; M. Torre Jorgenson; Xiaomei Xu

    2010-01-01

    High-latitude regions store large amounts of organic carbon (OC) in active-layer soils and permafrost, accounting for nearly half of the global belowground OC pool. In the boreal region, recent warming has promoted changes in the fire regime, which may exacerbate rates of permafrost thaw and alter soil OC dynamics in both organic and mineral soil. We examined how...

  14. Oil-Spill Analysis: Gulf of Mexico Outer Continental Shelf (OCS) Lease Sales, Eastern Planning Area, 2003-2007 and Gulfwide OCS Program, 2003-2042

    NASA Astrophysics Data System (ADS)

    2002-09-01

    The Federal Government plans to offer U.S. Outer Continental Shelf (OCS) lands in the Eastern Planning Area of the Gulf of Mexico (GOM) for oil and gas leasing. This report summarizes results of that analysis, the objective of which was to estimate the risk of oil-spill contact to sensitive offshore and onshore environmental resources and socioeconomic features from oil spills accidentally occurring from the OCS activities.

  15. The geophysical character of southern Alaska - Implications for crustal evolution

    USGS Publications Warehouse

    Saltus, R.W.; Hudson, T.L.; Wilson, Frederic H.

    2007-01-01

    The southern Alaska continental margin has undergone a long and complicated history of plate convergence, subduction, accretion, and margin-parallel displacements. The crustal character of this continental margin is discernible through combined analysis of aeromagnetic and gravity data with key constraints from previous seismic interpretation. Regional magnetic data are particularly useful in defining broad geophysical domains. One of these domains, the south Alaska magnetic high, is the focus of this study. It is an intense and continuous magnetic high up to 200 km wide and ∼1500 km long extending from the Canadian border in the Wrangell Mountains west and southwest through Cook Inlet to the Bering Sea shelf. Crustal thickness beneath the south Alaska magnetic high is commonly 40–50 km. Gravity analysis indicates that the south Alaska magnetic high crust is dense. The south Alaska magnetic high spatially coincides with the Peninsular and Wrangellia terranes. The thick, dense, and magnetic character of this domain requires significant amounts of mafic rocks at intermediate to deep crustal levels. In Wrangellia these mafic rocks are likely to have been emplaced during Middle and (or) Late Triassic Nikolai Greenstone volcanism. In the Peninsular terrane, the most extensive period of mafic magmatism now known was associated with the Early Jurassic Talkeetna Formation volcanic arc. Thus the thick, dense, and magnetic character of the south Alaska magnetic high crust apparently developed as the response to mafic magmatism in both extensional (Wrangellia) and subduction-related arc (Peninsular terrane) settings. The south Alaska magnetic high is therefore a composite crustal feature. At least in Wrangellia, the crust was probably of average thickness (30 km) or greater prior to Triassic mafic magmatism. Up to 20 km (40%) of its present thickness may be due to the addition of Triassic mafic magmas. Throughout the south Alaska magnetic high, significant crustal growth

  16. Dust storm in Alaska

    NASA Image and Video Library

    2013-11-18

    Dust storm in Alaska captured by Aqua/MODIS on Nov. 17, 2013 at 21:45 UTC. When glaciers grind against underlying bedrock, they produce a silty powder with grains finer than sand. Geologists call it “glacial flour” or “rock flour.” This iron- and feldspar-rich substance often finds its ways into rivers and lakes, coloring the water brown, grey, or aqua. When river or lake levels are low, the flour accumulates on drying riverbanks and deltas, leaving raw material for winds to lift into the air and create plumes of dust. Scientists are monitoring Arctic dust for a number of reasons. Dust storms can reduce visibility enough to disrupt air travel, and they can pose health hazards to people on the ground. Dust is also a key source of iron for phytoplankton in regional waters. Finally, there is the possibility that dust events are becoming more frequent and severe due to ongoing recession of glaciers in coastal Alaska. To read more about dust storm in this region go to: earthobservatory.nasa.gov/IOTD/view.php?id=79518 Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Identification of unrecognized tundra fire events on the north slope of Alaska

    USGS Publications Warehouse

    Jones, Benjamin M.; Breen, Amy L.; Gaglioti, Benjamin V.; Mann, Daniel H.; Rocha, Adrian V.; Grosse, Guido; Arp, Christopher D.; Kunz, Michael L.; Walker, Donald A.

    2013-01-01

    Characteristics of the natural fire regime are poorly resolved in the Arctic, even though fire may play an important role cycling carbon stored in tundra vegetation and soils to the atmosphere. In the course of studying vegetation and permafrost-terrain characteristics along a chronosequence of tundra burn sites from AD 1977, 1993, and 2007 on the North Slope of Alaska, we discovered two large, previously unrecognized tundra fires. The Meade River fire burned an estimated 500 km2 and the Ketik River fire burned an estimated 1200 km2. Based on radiocarbon dating of charred twigs, analysis of historic aerial photography, and regional climate proxy data, these fires likely occurred between AD 1880 and 1920. Together, these events double the estimated burn area on the North Slope of Alaska over the last ~100 to 130 years. Assessment of vegetation succession along the century-scale chronosequence of tundra fire disturbances demonstrates for the first time on the North Slope of Alaska that tundra fires can facilitate the invasion of tundra by shrubs. Degradation of ice-rich permafrost was also evident at the fire sites and likely aided in the presumed changes of the tundra vegetation postfire. Other previously unrecognized tundra fire events likely exist in Alaska and other Arctic regions and identification of these sites is important for better understanding disturbance regimes and carbon cycling in Arctic tundra.

  18. Contaminants and sea ducks in Alaska and the circumpolar region

    USGS Publications Warehouse

    Henny, Charles J.; Rudis, Deborah D.; Roffe, Thomas J.; Robinson-Wilson, Everett

    1995-01-01

    We review nesting sea duck population declines in Alaska during recent decades and explore the possibility that contaminants may be implicated. Aerial surveys of the surf scoter (Melanitta perspicillata), white-winged scoter (M. fusca), black scoter (M. nigra), oldsquaw (Clangula hyemalis), spectacled eider (Somateria fischeri), and Steller's eider (Polysticta stelleri) show long-term breeding population declines, especially the latter three species. The spectacled eider was recently classified threatened under the Endangered Species Act. In addition, three other diving ducks, which commonly winter in coastal areas, have declined from unknown causes. Large die-offs of all three species of scoters during molt, a period of high energy demand, were documented in August 1990, 1991, and 1992 at coastal reefs in southeastern Alaska. There was no evidence of infectious diseases in those scoters. The die-offs may or may not be associated with the long-term declines. Many scoters had elevated renal concentrations of cadmium (high of 375 μg/g dry weight [dw]). Effects of cadmium in sea ducks are not well understood. Selenium concentrations in livers of nesting white-winged scoters were high; however, the eggs they laid contained less selenium than expected based on relationships for freshwater bird species. Histological evaluation found a high prevalence of hepatocellular vacuolation (49%), a degenerative change frequently associated with sublethal toxic insult. Cadmium and selenium mean liver concentrations were generally higher in those birds with more severe vacuolation; however, relationships were not statistically significant. We do not know if sea duck population declines are related to metals or other contaminants.

  19. Contaminants and sea ducks in Alaska and the circumpolar region

    USGS Publications Warehouse

    Henny, C.J.; Rudis, D.D.; Roffe, T.J.; Robinson-Wilson, E.

    1995-01-01

    We review nesting sea duck population declines in Alaska during recent decades and explore the possibility that contaminants may be implicated. Aerial surveys of the surf scoter (Melanitta perspicillata) , white-winged scoter (M. fusca) , black scoter (M. nigra) , oldsquaw (Clangula hyemalis) , spectacled eider (Somateria fischeri) , and Steller's eider (Polysticta stelleri) show long-term breeding population declines, especially the latter three species. The spectacled eider was recently classified threatened under the Endangered Species Act. In addition, three other diving ducks, which commonly winter in coastal areas, have declined from unknown causes. Large die-offs of all three species of scoters during molt, a period of high energy demand, were documented in August 1990, 1991, and 1992 at coastal reefs in southeastern Alaska. There was no evidence of infectious diseases in those scoters. The die-offs may or may not be associated with the long-term declines. Many scoters had elevated renal concentrations of cadmium (high of 375 ?g/g dry weight [dw]). Effects of cadmium in sea ducks are not well understood. Selenium concentrations in livers of nesting white-winged scoters were high ; however, the eggs they laid contained less selenium than expected based on relationships for freshwater bird species. Histological evaluation found a high prevalence of hepatocellular vacuolation (49%) , a degenerative change frequently associated with sublethal toxic insult. Cadmium and selenium mean liver concentrations were generally higher in those birds with more severe vacuolation ; however, relationships were not statistically significant. We do not know if sea duck population declines are related to metals or other contaminants.

  20. Effects of Intensified 21st Century Drought on the Boreal Forest of Alaska

    NASA Astrophysics Data System (ADS)

    Juday, G. P.; Alix, C. M.; Jess, R.; Grant, T. A., III

    2014-12-01

    A long term perspective on several quasi-decadal cycles of intensifying drought stress across boreal Alaska has been synthesized from monitoring of forest reference stands at Bonanza Creek LTER, Interior Alaska Research Natural Areas, and tree ring sampling across Alaska. The Alaska boreal forest is largely made up of tree populations with two growth responses to temperature increases. Negative responders are more common, and found across the warm, dry Interior. Positive responders are largely in western Alaska, a maritime climate region near the Bering Sea, and at high elevation of the Brooks and Alaska Ranges. Following the North Pacific climate regime shift in 1976-77, negative responder Interior white and black spruce, aspen, and birch all experienced major growth reductions, particularly in warm drought years. Elevated summer temperatures and low annual precipitation of recent decades at low elevations of the Tanana and central Yukon Valleys were outside the values which previously defined the species distributions limits, Long term survival prospects are questionable. Simultaneously, recent elevated temperatures were associated with growth increases of positive responders. On fertile floodplain sites of the lower Yukon and Kuskokwim Rivers, the growth rate of positive responding white spruce is now greater than negative responders for the first time in centuries. NDVI trends in recent decades confirm these opposite growth trends in their respective regions. During peak warm/dry anomalies, forest disturbance, an important process for tree regeneration over the long term, intensified in boreal Alaska. Several insect outbreaks of wood-boring and defoliating species associated with warm temperature/drought stress anomalies appeared, many of them severe, and some not previously known to outbreak. Significant tree injury (e.g. top dieback) and mortality resulted. Wildfire extent and severity increased and reached record levels. The overall pattern has been

  1. Expression of Aleutian Low variations by a proxy record of precipitation oxygen isotopes in the Matanuska-Susitna region on Cook Inlet, south central Alaska

    NASA Astrophysics Data System (ADS)

    Finney, B.; Anderson, L.; Engstrom, D. R.

    2017-12-01

    North Pacific ocean-atmosphere processes strongly influence the climatology of Alaska by altering the strength and position of the Aleutian Low. During the past decade, the development of oxygen isotope proxy records that reflect the isotope composition of precipitation has provided substantial evidence of hydroclimatic variability in Alaska in response to Aleutian Low variations during the Holocene. However, a clear understanding of how the isotopic composition of precipitation reflects Aleutian Low variations remains uncertain because modern and proxy observations and modeling studies provide different predictions for regions (coastal and interior), elevations (0 to 5000 m), and time-scales (seasonal to century) that cannot be adequately tested by existing data. Precipitation isotope proxy records from Mount Logan, Denali, Jellybean Lake and Horse Trail Fen provide valuable perspectives at high elevation and interior (leeward) locations but no data has been available from near sea level on the coastal (windward) side of the Alaska and Chugach Mountain Ranges. Here we present newly recovered marl lake sediment cores from the Matanuska-Susitna region of Knik Arm on Cook Inlet, near Wasilla, 50 km north of Anchorage, AK that provide complete de-glacial and Holocene records of precipitation oxygen isotopes. Geochronology is underway based on identification of known tephras and AMS radiocarbon dating of terrestrial macrofossils. Modern and historic sediments are dated by 210Pb. The groundwater fed site is hydrologically open, unaffected by evaporation, has exceptionally high rates of marl sedimentation and preliminary results indicate clearly defined oxygen isotope excursions in the late 1970's and early 1940's, periods when North Pacific ocean-atmosphere forcing of the Aleutian Low is known to have undergone shifts. These results help to evaluate contrasting models of atmospheric circulation and associated isotope fractionation which is critical for proxy

  2. Use of SAR data to study active volcanoes in Alaska

    USGS Publications Warehouse

    Dean, K.G.; Engle, K.; Lu, Z.; Eichelberger, J.; Near, T.; Doukas, M.

    1996-01-01

    Synthetic Aperture Radar (SAR) data of the Westdahl, Veniaminof, and Novarupta volcanoes in the Aleutian Arc of Alaska were analysed to investigate recent surface volcanic processes. These studies support ongoing monitoring and research by the Alaska Volcano Observatory (AVO) in the North Pacific Ocean Region. Landforms and possible crustal deformation before, during, or after eruptions were detected and analysed using data from the European Remote Sensing Satellites (ERS), the Japanese Earth Resources Satellite (JERS) and the US Seasat platforms. Field observations collected by scientists from the AVO were used to verify the results from the analysis of SAR data.

  3. Spatial and temporal variation in winter condition of juvenile Pacific herring (Clupea pallasii) in Prince William Sound, Alaska: Oceanographic exchange with the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Gorman, Kristen B.; Kline, Thomas C.; Roberts, Megan E.; Sewall, Fletcher F.; Heintz, Ron A.; Pegau, W. Scott

    2018-01-01

    Spatial variability in early and late winter measures of whole body energy density of juvenile (age-0) Pacific herring (Clupea pallasii) of Prince William Sound (PWS), Alaska was examined over nine years of study. Pacific herring in this region remain considered as an injured resource over the 25 years following the Exxon Valdez oil spill, however factors responsible for the lack of recovery by herring in PWS are a source of ongoing debate. Given the species' key ecological role in energy transfer to higher predators, and its economic role in a historical commercial fishery within the region, significant research effort has focused on understanding environmental factors that shape nutritional processes and the quality of these young forage fish. During November (early winter), factors such as juvenile herring body size, hydrological region of PWS, year, and the interaction between carbon (δ13C‧) or nitrogen (δ15N) stable isotope signature and hydrological region were all important predictors of juvenile herring energy density. In particular, analyses indicated that in the northern and western regions of PWS, juvenile herring with more depleted δ13C‧ values (which reflect a Gulf of Alaska carbon source) were more energy dense. Results suggest that intrusion of water derived from the Gulf of Alaska enhances the condition of age-0 herring possibly through alterations in zooplankton community structure and abundance, particularly in the northern and western regions of PWS in the fall, which is consistent with regional circulation. During March (late winter), factors such as juvenile herring body size, year, and the interaction between δ13C‧ or δ15N isotope signature and year were all important predictors of juvenile herring energy density. Results differed for early and late winter regarding the interaction between stable isotope signatures and region or year, suggesting important seasonal aspects of circulation contribute to variation in PWS juvenile

  4. Are you prepared for the next big earthquake in Alaska?

    USGS Publications Warehouse

    2006-01-01

    Scientists have long recognized that Alaska has more earthquakes than any other region of the United States and is, in fact, one of the most seismically active areas of the world. The second-largest earthquake ever recorded shook the heart of southern Alaska on March 27th, 1964. The largest strike-slip slip earthquake in North America in almost 150 years occurred on the Denali Fault in central Alaska on November 3rd, 2002. “Great” earthquakes (larger than magnitude 8) have rocked the state on an average of once every 13 years since 1900. It is only a matter of time before another major earthquake will impact a large number of Alaskans.Alaska has changed significantly since the damaging 1964 earthquake, and the population has more than doubled. Many new buildings are designed to withstand intense shaking, some older buildings have been reinforced, and development has been discouraged in some particularly hazardous areas. Despite these precautions, future earthquakes may still cause damage to buildings, displace items within buildings, and disrupt the basic utilities that we take for granted. We must take every reasonable action to prepare for damaging earthquakes in order to lower these risks.

  5. Publications - RDF 2015-5 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  6. Publications - RI 2009-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  7. Publications - RDF 2016-3 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  8. Publications - RDF 2016-5 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  9. Publications - RDF 2014-22 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  10. Publications - RDF 2015-8 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    from the Tonsina area, Valdez Quadrangle, Alaska: Alaska Division of Geological & Geophysical Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  11. Marine cycling of the climate relevant trace gases carbonyl sulfide (OCS) and carbon disulfide (CS2) in the Peruvian upwelling regime

    NASA Astrophysics Data System (ADS)

    Lennartz, Sinikka; von Hobe, Marc; Booge, Dennis; Gonçalves-Araujo, Rafael; Bracher, Astrid; Röttgers, Rüdiger; Ksionzek, Kerstin B.; Koch, Boris P.; Fischer, Tim; Bittig, Henry; Quack, Birgit; Krüger, Kirstin; Marandino, Christa A.

    2017-04-01

    The ocean is a major source for the climate relevant trace gases carbonyl sulfide (OCS) and carbon disulfide (CS2). While the greenhouse gas CS2 quickly oxidizes to OCS in the atmosphere, the atmospheric lifetime of OCS of 2-7 years leads to an accumulation of this gas and makes it the most abundant reduced sulfur compound in the atmosphere. OCS has a counteracting effect on the climate: in the troposphere, it acts as a greenhouse gas causing warming, whereas it also sustains the stratospheric aerosol layer, and thus increases Earth's albedo causing cooling. To better constrain the important oceanic source of these trace gases, the marine cycling needs to be well understood and quantified. For OCS, the production and consumption processes are identified, but photoproduction and light-independent production rates remain to be quantified across different regions. In contrast, the processes that influence the oceanic cycling of CS2 are less well understood. Here we present new data from a cruise to the Peruvian upwelling regime and relate measurements of OCS and CS2 to key parameters, such as dissolved organic sulfur, chromophoric and fluorescent dissolved organic matter. We use a 1D water column model to further constrain their production and degradation rates. A focus is set on the influence of oxygen on the marine cycling of these two gases in oxygen depleted zones in the ocean, which are expected to expand in the future.

  12. U.S. Geological Survey 2011 assessment of undiscovered oil and gas resources of the Cook Inlet region, south-central Alaska

    USGS Publications Warehouse

    Stanley, Richard G.; Pierce, Brenda S.; Houseknecht, David W.

    2011-01-01

    The U.S. Geological Survey (USGS) has completed an assessment of the volumes of undiscovered, technically recoverable oil and gas resources in conventional and continuous accumulations in Cook Inlet. The assessment used a geology-based methodology and results from new scientific research by the USGS and the State of Alaska, Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas (DOG). In the Cook Inlet region, the USGS estimates mean undiscovered volumes of nearly 600 million barrels of oil, about 19 trillion cubic feet of gas, and about 46 million barrels of natural gas liquids.

  13. 46 CFR 35.20-5 - Draft of tankships-T/OC.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Draft of tankships-T/OC. 35.20-5 Section 35.20-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Navigation § 35.20-5 Draft of tankships—T/OC. The master of every tankship shall, whenever leaving port, enter the maximum draft of his...

  14. 46 CFR 35.20-5 - Draft of tankships-T/OC.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Draft of tankships-T/OC. 35.20-5 Section 35.20-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Navigation § 35.20-5 Draft of tankships—T/OC. The master of every tankship shall, whenever leaving port, enter the maximum draft of his...

  15. 46 CFR 35.20-5 - Draft of tankships-T/OC.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Draft of tankships-T/OC. 35.20-5 Section 35.20-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Navigation § 35.20-5 Draft of tankships—T/OC. The master of every tankship shall, whenever leaving port, enter the maximum draft of his...

  16. 46 CFR 35.20-5 - Draft of tankships-T/OC.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Draft of tankships-T/OC. 35.20-5 Section 35.20-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Navigation § 35.20-5 Draft of tankships—T/OC. The master of every tankship shall, whenever leaving port, enter the maximum draft of his...

  17. 46 CFR 35.20-5 - Draft of tankships-T/OC.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Draft of tankships-T/OC. 35.20-5 Section 35.20-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Navigation § 35.20-5 Draft of tankships—T/OC. The master of every tankship shall, whenever leaving port, enter the maximum draft of his...

  18. Publications - RDF 2015-16 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    rocks collected in 2015 in the Wrangellia mineral assessment area, Alaska: Alaska Division of Geological Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  19. Publications - RDF 2015-9 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    samples from the Zane Hills, Hughes and Shungnak quadrangles, Alaska: Alaska Division of Geological & Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  20. Reminder card helps patients remember OCs.

    PubMed

    1999-11-01

    Organon has developed the Reminder Card to help women patients remember their regular intake of oral contraceptive (OC) pills. About 50% of women take birth control pills as prescribed, 25% miss a pill per month, and 25% miss two or more pills in the same time frame. The plastic card, about the size and shape of a credit card, contains a microchip timer. Reminder cards are available to providers who use the Starter Kits issued by the company for new-start patients on the Mircette OC. When patients begin their first pack of pills, they select the time of day they prefer to have the Reminder Card emit its tiny beep. The time is set into the microchip timer and the card is programmed to sound automatically at the pre-set time each day for the next three months. The direction for using the Reminder Card is outlined.

  1. Alaska geology revealed

    USGS Publications Warehouse

    Wilson, Frederic H.; Labay, Keith A.

    2016-11-09

    This map shows the generalized geology of Alaska, which helps us to understand where potential mineral deposits and energy resources might be found, define ecosystems, and ultimately, teach us about the earth history of the State. Rock units are grouped in very broad categories on the basis of age and general rock type. A much more detailed and fully referenced presentation of the geology of Alaska is available in the Geologic Map of Alaska (http://dx.doi.org/10.3133/sim3340). This product represents the simplification of thousands of individual rock units into just 39 broad groups. Even with this generalization, the sheer complexity of Alaskan geology remains evident.

  2. Publications - PDF 96-17 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska the Fairbanks Mining District, Alaska, scale 1:63,360 (15.0 M) Digital Geospatial Data Digital © 2010 Webmaster State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State

  3. Publications - MP 156 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska /29446 Publication Products Report Report Information mp156.pdf (126.0 K) Digital Geospatial Data Digital State of Alaska © 2010 Webmaster State of Alaska myAlaska My Government Resident Business in Alaska

  4. Regional patterns of Mesozoic-Cenozoic magmatism in western Alaska revealed by new U-Pb and 40Ar/39Ar ages: Chapter D in Studies by the U.S. Geological Survey in Alaska, vol. 15

    USGS Publications Warehouse

    Bradley, Dwight C.; Miller, Marti L.; Friedman, Richard M.; Layer, Paul W.; Bleick, Heather A.; Jones, James V.; Box, Steven E.; Karl, Susan M.; Shew, Nora B.; White, Timothy S.; Till, Alison B.; Dumoulin, Julie A.; Bundtzen, Thomas K.; O'Sullivan, Paul B.; Ullrich, Thomas D.

    2017-03-02

    In support of regional geologic framework studies, we obtained 50 new argon-40/argon-39 (40Ar/39Ar) ages and 33 new uranium-lead (U-Pb) ages from igneous rocks of southwestern Alaska. Most of the samples are from the Sleetmute and Taylor Mountains quadrangles; smaller collections or individual samples are from the Bethel, Candle, Dillingham, Goodnews Bay, Holy Cross, Iditarod, Kantishna River, Lake Clark, Lime Hills, McGrath, Medfra, Talkeetna, and Tanana quadrangles.A U-Pb zircon age of 317.7±0.6 million years (Ma) reveals the presence of Pennsylvanian intermediate igneous (probably volcanic) rocks in the Tikchik terrane, Bethel quadrangle. A U-Pb zircon age of 229.5±0.2 Ma from gabbro intruding the Rampart Group of the Angayucham-Tozitna terrane, Tanana quadrangle, confirms and tightens a previously cited Triassic age for this intrusive suite. A fresh mafic dike in Goodnews Bay quadrangle yielded a 40Ar/39Ar whole rock age of 155.0±1.9 Ma; this establishes a Jurassic or older age for the previously unconstrained (Paleozoic? to Mesozoic?) sandstone unit that it intrudes. A thick felsic tuff in the Gemuk Group in Taylor Mountains quadrangle yielded a U-Pb zircon age of 153.0±2.0 Ma, extending the age of magmatism in this part of the Togiak terrane back into the Late Jurassic. We report three new U-Pb zircon ages between 120 and 110 Ma—112.0±0.9 Ma from syenite in the Candle quadrangle, 114.9±0.3 Ma from orthogneiss assigned to the Ruby terrane in Iditarod quadrangle, and 116.6±0.1 Ma from a gabbro of the Dishna River mafic-ultramafic complex in Iditarod quadrangle. The latter result requires a substantial age revision, from Triassic to Cretaceous, for at least some rocks that have been mapped as the Dishna River mafic-ultramafic complex. A tuff in the Upper Cretaceous Kuskokwim Group yielded a U-Pb zircon (sensitive high-resolution ion microprobe, SHRIMP) age of 88.3±1.0 Ma; we speculate that the eruptive source was an arc along the trend of the Pebble

  5. Alaska Administrative Manual

    Science.gov Websites

    Search the Division of Finance site DOF State of Alaska Finance Home Content Area Accounting Charge Cards Administrative Manual Table of Contents Contains State of Alaska accounting/payroll policies and information clarifying accounting and payroll procedures. Policies are carried out through standard statewide procedures

  6. Publications - GMC 410 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ) Keywords Geochemistry; Rare Earth Elements Top of Page Department of Natural Resources, Division of Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  7. Publications - GMC 409 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ) Keywords Geochemistry; Rare Earth Elements Top of Page Department of Natural Resources, Division of Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  8. Publications - GMC 183 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical materials: AK State C #1, Bush Federal #1, Echooka Unit #1, Fin Creek Unit #1, E. De K. Leffingwell #1, Nora

  9. Alaska Native Education: Issues in the Nineties. Alaska Native Policy Papers.

    ERIC Educational Resources Information Center

    Kleinfeld, Judith

    This booklet identifies several crucial problems in Alaska Native education, for example: (1) Fetal Alcohol Syndrome (FAS) and Fetal Alcohol Effects (FAE) occur in Alaska Native populations at relatively high rates and can produce mental retardation, hyperactivity, attention deficits, and learning disabilities; (2) while many Native rural school…

  10. Economics of wild salmon ecosystems: Bristol Bay, Alaska

    Treesearch

    John W. Duffield; Christopher J. Neher; David A. Patterson; Oliver S. Goldsmith

    2007-01-01

    This paper provides an estimate of the economic value of wild salmon ecosystems in the major watershed of Bristol Bay, Alaska. The analysis utilizes both regional economic and social benefit-cost accounting frameworks. Key sectors analyzed include subsistence, commercial fishing, sport fishing, hunting, and nonconsumptive wildlife viewing and tourism. The mixed cash-...

  11. Alaska Public Offices Commission, Department of Administration, State of

    Science.gov Websites

    Visiting Alaska State Employees State of Alaska Department of Administration Alaska Public Offices Commission Alaska Department of Administration, Alaska Public Offices Commission APOC Home Commission Filer ; AO's Contact Us Administration > Alaska Public Offices Commission Alaska Public Offices Commission

  12. Prehistoric Alaska: The land

    USGS Publications Warehouse

    Wilson, Frederic H.; Weber, Florence R.; Rennick, Penny

    1994-01-01

    Many Alaskans know the dynamic nature of Alaska’s landscape firsthand. The 1964 earthquake, the 1989 eruption of Mount Redoubt volcano, the frequent earthquakes in the Aleutians and the ever-shifting meanders of the Yukon and Kuskokwim rivers remind them of constant changes to the land. These changes are part of the continuing story of the geologic growth and development of Alaska during hundreds of millions of years. By geologic time, Alaska has only recently come into existence and the dynamic processes that formed it continue to affect it. The landscape we see today has been shaped by glacier and stream erosion or their indirect effects, and to a lesser extent by volcanoes. Most prominently, if less obviously, Alaska has been built by slow movements of the Earth’s crust we call tectonic or mountain-building.During 5 billion years of geologic time, the Earth’s crust has repeatedly broken apart into plates. These plates have recombined, and have shifted positions relative to each other, to the Earth’s rotational axis and to the equator. Large parts of the Earth’s crust, including Alaska, have been built and destroyed by tectonic forces. Alaska is a collage of transported and locally formed fragments of crusts As erosion and deposition reshape the land surface, climatic changes, brought on partly by changing ocean and atmospheric circulation patterns, alter the location and extent of tropical, temperate and arctic environments. We need to understand the results of these processes as they acted upon Alaska to understand the formation of Alaska. Rocks can provide hints of previous environments because they contain traces of ocean floor and lost lands, bits and pieces of ancient history.

  13. Publications - GMC 370 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    (249.0 K) Keywords Rare Earth Elements Top of Page Department of Natural Resources, Division of Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  14. Publications - GMC 159 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical State #1, Kuparuk Unit #1, Mikkelsen Bay State 13-09-19, Ravik State #1, Pt. Thomson Unit #2, West

  15. LearnAlaska Portal

    Science.gov Websites

    ESS (Employee Self Service) E-Travel Online Login IRIS FIN/PROC Login IRIS HRM Login LearnAlaska SFOA SharePoint Site TRIPS (Traveler Integrated Profile System) Vendor Self Service (VSS) Resources Alaska & Resources Manuals Payment Detail Report Salary Schedules SFOA SharePoint Site (SOA Only) Training

  16. Deep-seated gravitational slope deformations near the Trans-Alaska Pipeline, east-central Alaska Range, Alaska, USA

    NASA Astrophysics Data System (ADS)

    Newman, S. D.; Clague, J. J.; Rabus, B.; Stead, D.

    2013-12-01

    Multiple, active, deep-seated gravitational slope deformations (DSGSD) are present near the Trans-Alaska Pipeline and Richardson Highway in the east-central Alaska Range, Alaska, USA. We documented spatial and temporal variations in rates of surface movement of the DSGSDs between 2003 and 2011 using RADARSAT-1 and RADARSAT-2 D-InSAR images. Deformation rates exceed 10 cm/month over very large areas (>1 km2) of many rock slopes. Recent climatic change and strong seismic shaking, especially during the 2002 M 7.9 Denali Fault earthquake, appear to have exacerbated slope deformation. We also mapped DSGSD geological and morphological characteristics using field- and GIS-based methods, and constructed a conceptual 2D distinct-element numerical model of one of the DSGSDs. Preliminary results indicate that large-scale buckling or kink-band slumping may be occurring. The DSGSDs are capable of generating long-runout landslides that might impact the Trans-Alaska Pipeline and Richardson Highway. They could also block tributary valleys, thereby impounding lakes that might drain suddenly. Wrapped 24-day RADARSAT-2 descending spotlight interferogram showing deformation north of Fels Glacier. The interferogram is partially transparent and is overlaid on a 2009 WorldView-1 panchromatic image. Acquisition interval: August 2 - August 26, 2011. UTM Zone 6N.

  17. Geotechnical reconnaissance of the 2002 Denali fault, Alaska, earthquake

    USGS Publications Warehouse

    Kayen, R.; Thompson, E.; Minasian, D.; Moss, R.E.S.; Collins, B.D.; Sitar, N.; Dreger, D.; Carver, G.

    2004-01-01

    The 2002 M7.9 Denali fault earthquake resulted in 340 km of ruptures along three separate faults, causing widespread liquefaction in the fluvial deposits of the alpine valleys of the Alaska Range and eastern lowlands of the Tanana River. Areas affected by liquefaction are largely confined to Holocene alluvial deposits, man-made embankments, and backfills. Liquefaction damage, sparse surrounding the fault rupture in the western region, was abundant and severe on the eastern rivers: the Robertson, Slana, Tok, Chisana, Nabesna and Tanana Rivers. Synthetic seismograms from a kinematic source model suggest that the eastern region of the rupture zone had elevated strong-motion levels due to rupture directivity, supporting observations of elevated geotechnical damage. We use augered soil samples and shear-wave velocity profiles made with a portable apparatus for the spectral analysis of surface waves (SASW) to characterize soil properties and stiffness at liquefaction sites and three trans-Alaska pipeline pump station accelerometer locations. ?? 2004, Earthquake Engineering Research Institute.

  18. An evaluation of the science needs to inform decisions on Outer Continental Shelf energy development in the Chukchi and Beaufort Seas, Alaska

    USGS Publications Warehouse

    Holland-Bartels, Leslie; Pierce, Brenda

    2011-01-01

    The U. S. Geological Survey (USGS) was asked to conduct an initial, independent evaluation of the science needs that would inform the Administration's consideration of the right places and the right ways in which to develop oil and gas resources in the Arctic Outer Continental Shelf (OCS), particularly focused on the Beaufort and Chukchi Seas. Oil and gas potential is significant in Arctic Alaska. Beyond petroleum potential, this region supports unique fish and wildlife resources and ecosystems, and indigenous people who rely on these resources for subsistence. This report summarizes key existing scientific information and provides initial guidance of what new and (or) continued research could inform decision making. This report is presented in a series of topical chapters and various appendixes each written by a subset of the USGS OCS Team based on their areas of expertise. Three chapters (Chapters 2, 3, and 4) provide foundational information on geology; ecology and subsistence; and climate settings important to understanding the conditions pertinent to development in the Arctic OCS. These chapters are followed by three chapters that examine the scientific understanding, science gaps, and science sufficiency questions regarding oil-spill risk, response, and impact (Chapter 5), marine mammals and anthropogenic noise (Chapter 6), and cumulative impacts (Chapter 7). Lessons learned from the 1989 Exxon Valdez Oil Spill are included to identify valuable "pre-positioned" science and scientific approaches to improved response and reduced uncertainty in damage assessment and restoration efforts (appendix D). An appendix on Structured Decision Making (appendix C) is included to illustrate the value of such tools that go beyond, but incorporate, science in looking at what can/should be done about policy and implementation of Arctic development. The report provides a series of findings and recommendations for consideration developed during the independent examination of

  19. Feasibility analysis of a smart grid photovoltaics system for the subarctic rural region in Alaska

    NASA Astrophysics Data System (ADS)

    Yao, Lei

    A smart grid photovoltaics system was developed to demonstrate that the system is feasible for a similar off-grid rural community in the subarctic region in Alaska. A system generation algorithm and a system business model were developed to determine feasibility. Based on forecasts by the PV F-Chart software, a 70° tilt angle in winter, and a 34° tilt angle in summer were determined to be the best angles for electrical output. The proposed system's electricity unit cost was calculated at 32.3 cents/kWh that is cheaper than current unsubsidized electricity price (46.8 cents/kWh) in off-grid rural communities. Given 46.8 cents/kWh as the electricity unit price, the system provider can break even when 17.3 percent of the total electrical revenue through power generated by the proposed system is charged. Given these results, the system can be economically feasible during the life-cycle period. With further incentives, the system may have a competitive advantage.

  20. Publications - MP 142 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  1. Publications - SR 70 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  2. Publications - MP 38 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  3. Publications - SR 45 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  4. Publications - MP 43 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  5. Publications - MP 149 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  6. Presentations - Wypych, Alicja and others, 2015 | Alaska Division of

    Science.gov Websites

    Geological & Geophysical Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of (AVO) Mineral Resources Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem

  7. Geologic framework and petroleum systems of Cook Inlet basin, south-central Alaska

    USGS Publications Warehouse

    LePain, D.L.; Stanley, Richard G.; Helmold, K.P.; Shellenbaum, D.P.; Stone, D.M.; Hite, D.M.

    2013-01-01

    This report provides a comprehensive overview of the stratigraphy, structure, tectonics, and petroleum systems of the Cook Inlet basin, an important oil- and gas-producing region in south-central Alaska.

  8. OCS, stratospheric aerosols and climate

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Whitten, R. C.; Toon, O. B.; Pollack, J. B.; Hamill, P.

    1980-01-01

    The carbonyl sulfide budget in the atmosphere is examined, and the effects of stratospheric sulfate aerosol particles, formed in part from atmospheric carbonyl sulfate, on global climate are considered. From tropospheric measurements of carbon disulfide and the rate constant for the conversion of carbon disulfide to carbonyl sulfide, it is estimated that five Tg of carbonyl sulfide/year could be generated from carbon disulfide in the atmosphere. Direct sources of OCS include the refining and combustion of fossil fuels (1 Tg/year), natural and agricultural fires (0.2 to 0.3 Tg/year), and soils (0.5 Tg/year), yielding a total influx of from 1 to 10 Tg/year, up to 50% of which may be anthropogenic. Considerations of carbonyl sulfide sinks and concentrations indicate an atmospheric lifetime of one year, with OCS the major atmospheric sulfur compound. It is estimated that a ten-fold increase in atmospheric carbonyl sulfide would cause an optical depth perturbation comparable to that of a modest volcanic eruption, leading to an average global surface temperature decrease of 0.1 K, in addition to a possible greenhouse effect.

  9. Deformation Styles Along the Southern Alaska Margin Constrained by GPS

    NASA Astrophysics Data System (ADS)

    Elliott, J.; Freymueller, J. T.; Larsen, C. F.

    2009-12-01

    The present-day deformation observed in southcentral and southeast Alaska and the adjacent region of Canada is controlled by two main factors: ~ 50 mm/yr relative motion between the Pacific plate and North America and the Yakutat block’s collision with and accretion to southern Alaska. Over 45 mm/yr of NW-SE directed convergence from the collision is currently accommodated within the St. Elias orogen. The Fairweather, St. Elias, and Chugach ranges show the spectacular consequences of the relative tectonic motions, but the details of the plate interactions have not been well understood. Here we present GPS data from a network of over 170 campaign sites across the region. We use the data to constrain block models and forward models that characterize the nature and extent of the tectonic deformation along the Pacific-Yakutat-North America boundary. Tectonics in southeast Alaska can be described by block motion, with the Pacific plate bounding the region to the west. The fastest block motions occur along the coastal regions. The Yakutat block has a velocity of 51 ± 2.7 mm/yr towards N22 ± 2.5 deg W relative to North America. This velocity has a magnitude almost identical to that of the Pacific plate, but the azimuth is more westerly. The northeastern edge of the Yaktuat block is deforming, represented in our model by two small blocks outboard of the Fairweather fault. East of that fault, the Fairweather block rotates clockwise relative to North America, resulting in transpression along the Duke River and Eastern Denali faults. There is a clear transfer of strain from the coastal region hundreds of kilometers eastward into the Northern Cordillera block, confirming earlier suggestions that the effects of the Yakutat collision are far-reaching along its eastern margin. In contrast, deformation along the leading edge of the Yakutat collision is relatively narrowly focused within the southern half of the St. Elias orogen. The current deformation front of the Yakutat

  10. Definition of the Floating System for Phase IV of OC3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonkman, J.

    Phase IV of the IEA Annex XXIII Offshore Code Comparison Collaboration (OC3) involves the modeling of an offshore floating wind turbine. This report documents the specifications of the floating system, which are needed by the OC3 participants for building aero-hydro-servo-elastic models.

  11. Sections | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    State Employees DGGS State of Alaska search Department of Natural Resources, Division of Geological & Communications Alaska Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates Sponsors' Proposals STATEMAP

  12. Publications - RDF 2015-7 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    , Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the northeastern Alaska Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  13. Regional seismic lines reprocessed using post-stack processing techniques; National Petroleum Reserve, Alaska

    USGS Publications Warehouse

    Miller, John J.; Agena, W.F.; Lee, M.W.; Zihlman, F.N.; Grow, J.A.; Taylor, D.J.; Killgore, Michele; Oliver, H.L.

    2000-01-01

    This CD-ROM contains stacked, migrated, 2-Dimensional seismic reflection data and associated support information for 22 regional seismic lines (3,470 line-miles) recorded in the National Petroleum Reserve ? Alaska (NPRA) from 1974 through 1981. Together, these lines constitute about one-quarter of the seismic data collected as part of the Federal Government?s program to evaluate the petroleum potential of the Reserve. The regional lines, which form a grid covering the entire NPRA, were created by combining various individual lines recorded in different years using different recording parameters. These data were reprocessed by the USGS using modern, post-stack processing techniques, to create a data set suitable for interpretation on interactive seismic interpretation computer workstations. Reprocessing was done in support of ongoing petroleum resource studies by the USGS Energy Program. The CD-ROM contains the following files: 1) 22 files containing the digital seismic data in standard, SEG-Y format; 2) 1 file containing navigation data for the 22 lines in standard SEG-P1 format; 3) 22 small scale graphic images of each seismic line in Adobe Acrobat? PDF format; 4) a graphic image of the location map, generated from the navigation file, with hyperlinks to the graphic images of the seismic lines; 5) an ASCII text file with cross-reference information for relating the sequential trace numbers on each regional line to the line number and shotpoint number of the original component lines; and 6) an explanation of the processing used to create the final seismic sections (this document). The SEG-Y format seismic files and SEG-P1 format navigation file contain all the information necessary for loading the data onto a seismic interpretation workstation.

  14. Geology of the central Copper River region, Alaska

    USGS Publications Warehouse

    Mendenhall, Walter C.

    1905-01-01

    It is an interesting evidence of the prompt responsiveness of our governmental organization to popular needs that the year 1898, which saw the first rush of argonauts to Alaska as a result of the discovery of the Klondike in 1986, saw also several well-equipped Federal parties at work in the Territory, mapping its great waterways and mountain ranges, investigating the feasible means of transportation within it, laying out routes for future lines of communication, and studying the mineral resources and the plant and animal life. It is true that before that year, in which the general attention of the world was fixed upon our heretofore lightly regarded northern province, fur traders, adventurous travelers, and hardy prospectors had made little-heralded journeys through the interior, and that one or another of the governmental departments had had representatives on special errands within its borders, but the amount of private and public energy expended there in 1898 probably exceeded that of any ten previous years.

  15. Rayleigh Wave Phase Velocities in Alaska from Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Pepin, K. S.; Li, A.; Yao, Y.

    2016-12-01

    We have analyzed ambient noise data recorded at 136 broadband stations from the USArray Transportable Array and other permanent seismic networks in Alaska and westernmost Canada. Daily cross-correlations are obtained using vertical component seismograms and are stacked to form a single trace for each station pair. Rayleigh wave signals are extracted from the stacked traces and are used to calculate phase velocities in the Alaska region. Preliminary phase velocity maps show similar trends to those from previous studies, but also yield new anomalies given the wider geographical range provided by the Transportable Array. At short periods (6-12s), a high velocity anomaly is observed directly northeast of the Fairweather-Queen Charlotte fault, and a high velocity trend appears in the eastern Yukon terrane between the Denali and Tintina fault, probably reflecting mafic igneous crustal rocks. Significantly slow anomalies are present at the Prince William Sound, Cook Inlet, and the basins in southwestern and central Alaska, indicating sediment effects. The slow anomalies gradually shift to southeastern and south-central Alaska with increasing period (up to 40s), corresponding to the Wrangell volcano belt and the volcano arc near Cook Inlet. A broad high-velocity zone is also observed in central Alaska to the north of the Denali fault at long periods (30-40s). The Yakutat terrane is characterized as a high-velocity anomaly from period 14s to 25s but not imaged at longer periods due to poor resolution.

  16. Presentations - Twelker, Evan and others, 2014 | Alaska Division of

    Science.gov Websites

    magmatic Ni-Cu-Co-PGE system in the Talkeetna Mountains, central Alaska (poster): Society of Economic Geological & Geophysical Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of

  17. Characteristics of size-segregated carbonaceous aerosols in the Beijing-Tianjin-Hebei region.

    PubMed

    Guo, Yuhong

    2016-07-01

    Mass concentrations of organic carbon (OC) and elemental carbon (EC) in size-resolved aerosols were investigated at four sites (three cities and one country) in the Beijing-Tianjin-Hebei region from September 2009 to August 2011. The size distributions of OC and EC presented large evolutions among rural and urban sites, and among four seasons, with highest peaks of OC and EC in fine mode in urban areas during winter. Geometric mean diameters (GMDs) of OC and EC in fine particles at urban sites during winter were lower than those at rural site mainly due to effects of fine particle coagulation and organic compound repartitioning. Fossil fuel emissions were a dominant source of OC and EC in urban areas, while biomass burning was a major source of OC and EC at rural site. Trajectory clustering and CWT analysis showed that regional transport was an important contributor to OC and EC in Beijing.

  18. 76 FR 81247 - Fisheries of the Exclusive Economic Zone Off Alaska; Groundfish of the Gulf of Alaska; Amendment 88

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... Atmospheric Administration 50 CFR Part 679 Fisheries of the Exclusive Economic Zone Off Alaska; Groundfish of... Exclusive Economic Zone Off Alaska; Groundfish of the Gulf of Alaska; Amendment 88 AGENCY: National Marine... conservation, management, safety, and economic gains realized under the Central Gulf of Alaska Rockfish Pilot...

  19. 78 FR 11988 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ...-management process involving the Service, the Alaska Department of Fish and Game, and Alaska Native... developed under a co-management process involving the Service, the Alaska Department of Fish and Game, and... Fish and Game's request to expand the Fairbanks North Star Borough excluded area to include the Central...

  20. Alaska North Slope regional gas hydrate production modeling forecasts

    USGS Publications Warehouse

    Wilson, S.J.; Hunter, R.B.; Collett, T.S.; Hancock, S.; Boswell, R.; Anderson, B.J.

    2011-01-01

    A series of gas hydrate development scenarios were created to assess the range of outcomes predicted for the possible development of the "Eileen" gas hydrate accumulation, North Slope, Alaska. Production forecasts for the "reference case" were built using the 2002 Mallik production tests, mechanistic simulation, and geologic studies conducted by the US Geological Survey. Three additional scenarios were considered: A "downside-scenario" which fails to identify viable production, an "upside-scenario" describes results that are better than expected. To capture the full range of possible outcomes and balance the downside case, an "extreme upside scenario" assumes each well is exceptionally productive.Starting with a representative type-well simulation forecasts, field development timing is applied and the sum of individual well forecasts creating the field-wide production forecast. This technique is commonly used to schedule large-scale resource plays where drilling schedules are complex and production forecasts must account for many changing parameters. The complementary forecasts of rig count, capital investment, and cash flow can be used in a pre-appraisal assessment of potential commercial viability.Since no significant gas sales are currently possible on the North Slope of Alaska, typical parameters were used to create downside, reference, and upside case forecasts that predict from 0 to 71??BM3 (2.5??tcf) of gas may be produced in 20 years and nearly 283??BM3 (10??tcf) ultimate recovery after 100 years.Outlining a range of possible outcomes enables decision makers to visualize the pace and milestones that will be required to evaluate gas hydrate resource development in the Eileen accumulation. Critical values of peak production rate, time to meaningful production volumes, and investments required to rule out a downside case are provided. Upside cases identify potential if both depressurization and thermal stimulation yield positive results. An "extreme upside

  1. 76 FR 62090 - Public Meeting for the National Park Service (NPS) Alaska Region's Subsistence Resource...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... Arctic Heritage Center, 171 Third Avenue in Kotzebue, Alaska, (907) 442-3890, on Thursday, November 17...' Workshop. 12. New Business. a. Gates of the Arctic National Park SRC Draft Hunting Plan Recommendation 10...

  2. Migration and wintering areas of glaucous-winged Gulls from south-central Alaska

    USGS Publications Warehouse

    Hatch, Shyla A.; Gill, V.A.; Mulcahy, D.M.

    2011-01-01

    We used satellite telemetry to investigate the migration patterns and wintering areas of Glaucouswinged Gulls (Larus glaucescens) from Middleton Island, Alaska, where this species' population increased tenfold from the 1970s to the 1990s. Fall migration spanned 11 weeks, including numerous stopovers en route, apparently for feeding. Spring migration from wintering sites to Middleton Island was shorter (4 weeks) and more direct. One juvenile spent several months in southern Prince William Sound. An adult spent several months near Craig, southeast Alaska, while three others overwintered in southern British Columbia. For all four wintering adults use of refuse-disposal sites was evident or strongly suggested. Commensalism with humans may have contributed to the increase on Middleton, but a strong case can also be made for a competing explanation-regional recruitment of gulls to high-quality nesting habitat in Alaska created after the earthquake of 1964. An analysis of band returns reveals broad overlap in the wintering grounds of gulls from different Alaska colonies and of gulls banded on the west coast from British Columbia to California. The seasonal movement of many gulls from Alaska is decidedly migratory, whereas gulls from British Columbia, Washington, and Oregon disperse locally in winter. ?? The Cooper Ornithological Society 2011.

  3. Migration And wintering areas Of Glaucous-winged Gulls From south-central Alaska

    USGS Publications Warehouse

    Hatch, Scott A.; Gill, V.A.; Mulcahy, Daniel M.

    2011-01-01

    We used satellite telemetry to investigate the migration patterns and wintering areas of Glaucous-winged Gulls (Larus glaucescens) from Middleton Island, Alaska, where this species' population increased tenfold from the 1970s to the 1990s. Fall migration spanned 11 weeks, including numerous stopovers en route, apparently for feeding. Spring migration from wintering sites to Middleton Island was shorter (4 weeks) and more direct. One juvenile spent several months in southern Prince William Sound. An adult spent several months near Craig, southeast Alaska, while three others overwintered in southern British Columbia. For all four wintering adults use of refuse-disposal sites was evident or strongly suggested. Commensalism with humans may have contributed to the increase on Middleton, but a strong case can also be made for a competing explanation-regional recruitment of gulls to high-quality nesting habitat in Alaska created after the earthquake of 1964. An analysis of band returns reveals broad overlap in the wintering grounds of gulls from different Alaska colonies and of gulls banded on the west coast from British Columbia to California. The seasonal movement of many gulls from Alaska is decidedly migratory, whereas gulls from British Columbia, Washington, and Oregon disperse locally in winter.

  4. Publications - GMC 53C | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Paleozoic through Tertiary sandstones, North Slope, Alaska Authors: Alaska Research Associates Publication through Tertiary sandstones, North Slope, Alaska: Alaska Division of Geological & Geophysical Surveys

  5. Ground breakage and associated effects in the Cook Inlet area, Alaska, resulting from the March 27, 1964 earthquake: Chapter F in The Alaska earthquake, March 27, 1964: regional effects

    USGS Publications Warehouse

    Foster, Helen L.; Karlstrom, Thor N.V.

    1967-01-01

    The great 1964 Alaska earthquake caused considerable ground breakage in the Cook Inlet area of south-central Alaska. The breakage occurred largely in thick deposits of unconsolidated sediments. The most important types of ground breakage were (1) fracturing or cracking and the extrusion of sand and gravel with ground water along fractures in various types of landforms, and (2) slumping and lateral extension of unconfined faces, particularly along delta fronts. The principal concentration of ground breakage within the area covered by this report was in a northeast-trending zone about 60 miles long and 6 miles wide in the northern part of the Kenai Lowland. The zone cut across diverse topography and stratigraphy. Cracks were as much as 30 feet across and 25 feet deep. Sand, gravel, and pieces of coal and lignite were extruded along many fissures. It is suggested that the disruption in this zone may be due to movement along a fault in the underlying Tertiary rocks. The outwash deltas of Tustumena and Skilak Lakes in the Kenai Lowland, of Eklutna Lake and Lake George in the Chugach Mountains, of Bradley Lake in the Kenai Mountains, and at the outlet of upper Beluga Lake at the base of the Alaska Range showed much slumping, as did the delta of the Susitna River. Parts of the flood plains of the Skilak River, Fox River, and Eagle River were extensively cracked. A few avalanches and slumps occurred along the coast of Cook Inlet in scattered localities. Some tidal flats were cracked. However, in view of the many thick sections of unconsolidated sediments and the abundance of steep slopes, the cracking was perhaps less than might have been expected. Observations along the coasts indicated changes in sea level which, although caused partly by compaction of unconsolidated sediments, may largely be attributed to crus1tal deformation accompanying the earthquake. Most of the Cook Inlet area was downwarped, although the northwest side of Cook Inlet may have been slightly unwarped

  6. Publications - MP 150 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska larger work. Please see DDS 3 for more information. Digital Geospatial Data Digital Geospatial Data Business in Alaska Visiting Alaska State Employees

  7. Publications - RI 2011-4 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska district, Circle Quadrangle, Alaska, scale 1:50,000 (16.0 M) Digital Geospatial Data Digital Geospatial Business in Alaska Visiting Alaska State Employees

  8. Dose dependence of radiation damage in nano-structured amorphous SiOC/crystalline Fe composite

    DOE PAGES

    Su, Qing; Price, Lloyd; Shao, Lin; ...

    2015-10-29

    Here, through examination of radiation tolerance properties of amorphous silicon oxycarbide (SiOC) and crystalline Fe composite to averaged damage levels, from approximately 8 to 30 displacements per atom (dpa), we demonstrated that the Fe/SiOC interface and the Fe/amorphous Fe xSi yO z interface act as efficient defect sinks and promote the recombination of vacancies and interstitials. For thick Fe/SiOC multilayers, a clear Fe/SiOC interface remained and no irradiation-induced mixing was observed even after 32 dpa. For thin Fe/SiOC multilayers, an amorphous Fe xSi yO z intermixed layer was observed to form at 8 dpa, but no further layer growth wasmore » observed for higher dpa levels.« less

  9. Timber resource statistics of south-central Alaska, 2003.

    Treesearch

    Willem W.S. van Hees

    2005-01-01

    Estimates of timber resources for south-central Alaska are presented. Data collection began in 2000 and was completed in 2003. All forest lands over all ownerships were considered for sampling. The inventory unit was, roughly, the region between Icy Bay to the east and Kodiak Island to the west. Forest lands within national forest wilderness study areas and recommended...

  10. Publications - AR 2010 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical DGGS AR 2010 Publication Details Title: Alaska Division of Geological & Geophysical Surveys Annual Report Authors: DGGS Staff Publication Date: Jan 2011 Publisher: Alaska Division of Geological &

  11. A multi-year estimate of methane fluxes in Alaska from CARVE atmospheric observations

    PubMed Central

    Miller, Scot M.; Miller, Charles E.; Commane, Roisin; Chang, Rachel Y.-W.; Dinardo, Steven J.; Henderson, John M.; Karion, Anna; Lindaas, Jakob; Melton, Joe R.; Miller, John B.; Sweeney, Colm; Wofsy, Steven C.; Michalak, Anna M.

    2016-01-01

    Methane (CH4) fluxes from Alaska and other arctic regions may be sensitive to thawing permafrost and future climate change, but estimates of both current and future fluxes from the region are uncertain. This study estimates CH4 fluxes across Alaska for 2012–2014 using aircraft observations from the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) and a geostatistical inverse model (GIM). We find that a simple flux model based on a daily soil temperature map and a static map of wetland extent reproduces the atmospheric CH4 observations at the state-wide, multi-year scale more effectively than global-scale, state-of-the-art process-based models. This result points to a simple and effective way of representing CH4 flux patterns across Alaska. It further suggests that contemporary process-based models can improve their representation of key processes that control fluxes at regional scales, and that more complex processes included in these models cannot be evaluated given the information content of available atmospheric CH4 observations. In addition, we find that CH4 emissions from the North Slope of Alaska account for 24% of the total statewide flux of 1.74 ± 0.44 Tg CH4 (for May–Oct.). Contemporary global-scale process models only attribute an average of 3% of the total flux to this region. This mismatch occurs for two reasons: process models likely underestimate wetland area in regions without visible surface water, and these models prematurely shut down CH4 fluxes at soil temperatures near 0°C. As a consequence, wetlands covered by vegetation and wetlands with persistently cold soils could be larger contributors to natural CH4 fluxes than in process estimates. Lastly, we find that the seasonality of CH4 fluxes varied during 2012–2014, but that total emissions did not differ significantly among years, despite substantial differences in soil temperature and precipitation; year-to-year variability in these environmental conditions did not affect

  12. A multi-year estimate of methane fluxes in Alaska from CARVE atmospheric observations.

    PubMed

    Miller, Scot M; Miller, Charles E; Commane, Roisin; Chang, Rachel Y-W; Dinardo, Steven J; Henderson, John M; Karion, Anna; Lindaas, Jakob; Melton, Joe R; Miller, John B; Sweeney, Colm; Wofsy, Steven C; Michalak, Anna M

    2016-10-01

    Methane (CH 4 ) fluxes from Alaska and other arctic regions may be sensitive to thawing permafrost and future climate change, but estimates of both current and future fluxes from the region are uncertain. This study estimates CH 4 fluxes across Alaska for 2012-2014 using aircraft observations from the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) and a geostatistical inverse model (GIM). We find that a simple flux model based on a daily soil temperature map and a static map of wetland extent reproduces the atmospheric CH 4 observations at the state-wide, multi-year scale more effectively than global-scale, state-of-the-art process-based models. This result points to a simple and effective way of representing CH 4 flux patterns across Alaska. It further suggests that contemporary process-based models can improve their representation of key processes that control fluxes at regional scales, and that more complex processes included in these models cannot be evaluated given the information content of available atmospheric CH 4 observations. In addition, we find that CH 4 emissions from the North Slope of Alaska account for 24% of the total statewide flux of 1.74 ± 0.44 Tg CH 4 ( for May-Oct.). Contemporary global-scale process models only attribute an average of 3% of the total flux to this region. This mismatch occurs for two reasons: process models likely underestimate wetland area in regions without visible surface water, and these models prematurely shut down CH 4 fluxes at soil temperatures near 0°C. As a consequence, wetlands covered by vegetation and wetlands with persistently cold soils could be larger contributors to natural CH 4 fluxes than in process estimates. Lastly, we find that the seasonality of CH 4 fluxes varied during 2012-2014, but that total emissions did not differ significantly among years, despite substantial differences in soil temperature and precipitation; year-to-year variability in these environmental conditions did not

  13. Publications - RI 2009-3 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska , northeastern Brooks Range, Alaska, scale 1:63,360 (129.0 M) Digital Geospatial Data Digital Geospatial Data Resident Business in Alaska Visiting Alaska State Employees

  14. Satellite monitoring of remote volcanoes improves study efforts in Alaska

    NASA Astrophysics Data System (ADS)

    Dean, K.; Servilla, M.; Roach, A.; Foster, B.; Engle, K.

    Satellite monitoring of remote volcanoes is greatly benefitting the Alaska Volcano Observatory (AVO), and last year's eruption of the Okmok Volcano in the Aleutian Islands is a good case in point. The facility was able to issue and refine warnings of the eruption and related activity quickly, something that could not have been done using conventional seismic surveillance techniques, since seismometers have not been installed at these locations.AVO monitors about 100 active volcanoes in the North Pacific (NOPAC) region, but only a handful are observed by costly and logistically complex conventional means. The region is remote and vast, about 5000 × 2500 km, extending from Alaska west to the Kamchatka Peninsula in Russia (Figure 1). Warnings are transmitted to local communities and airlines that might be endangered by eruptions. More than 70,000 passenger and cargo flights fly over the region annually, and airborne volcanic ash is a threat to them. Many remote eruptions have been detected shortly after the initial magmatic activity using satellite data, and eruption clouds have been tracked across air traffic routes. Within minutes after eruptions are detected, information is relayed to government agencies, private companies, and the general public using telephone, fax, and e-mail. Monitoring of volcanoes using satellite image data involves direct reception, real-time monitoring, and data analysis. Two satellite data receiving stations, located at the Geophysical Institute, University of Alaska Fairbanks (UAF), are capable of receiving data from the advanced very high resolution radiometer (AVHRR) on National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites and from synthetic aperture radar (SAR) equipped satellites.

  15. Alaska State Legislature

    Science.gov Websites

    The Alaska State Legislature search menu Home Senate Current Members Past Members By Session search Home Get Started About the Legislative Branch Legislative Branch The Legislative Branch is responsible for enacting the laws of the State of Alaska and appropriating the money necessary to operate the

  16. Climatic Atlas of the Outer Continental Shelf Waters and Coastal Regions of Alaska. Volume 1. Gulf of Alaska, Revision

    DTIC Science & Technology

    1988-01-01

    SOO , . 978 Kilometers 972 ’ 1,r 1ni gc g March April 1-21 Tides Tides in the Gulf of Alaska are generally of the mixed type with two high waters and...good does not breathe the liquid into his lungs. the clothing. Keeping clothing dry preserves its indicators. The pulse is generally slow and Alcohol ...7 9 11 13 15 17 19 21 23 25 27 29 2 Precipitation types - graphs 30 32 34 36 38 40 42 44 46 48 50 52 54 Wind / visibility / cloudiness - maps 33 35

  17. Use of the micro-deval test for assessing Alaska aggregates : [summary].

    DOT National Transportation Integrated Search

    2012-12-01

    Choosing the right material is half the battle in building roads for Alaska. The extreme conditions typical to cold regions require a : durable, abrasion resistant and freeze-thaw resistant aggregate. Recently the state has been wondering exactly how...

  18. Climate Variations and Alaska Tundra Vegetation Productivity Declines in Spring

    NASA Astrophysics Data System (ADS)

    Bhatt, U. S.; Walker, D. A.; Bieniek, P.; Raynolds, M. K.; Epstein, H. E.; Comiso, J. C.; Pinzon, J. E.; Tucker, C. J.

    2015-12-01

    While sea ice has continued to decline, vegetation productivity increases have declined particularly during spring in Alaska as well as many parts of the Arctic tundra. To understand the processes behind these features we investigate spring climate variations that includes temperature, circulation patterns, and snow cover to determine how these may be contributing to spring browning. This study employs remotely sensed weekly 25-km sea ice concentration, weekly surface temperature, and bi-weekly NDVI from 1982 to 2014. Maximum NDVI (MaxNDVI, Maximum Normalized Difference Vegetation Index), Time Integrated NDVI (TI-NDVI), Summer Warmth Index (SWI, sum of degree months above freezing during May-August), atmospheric reanalysis data, dynamically downscaled climate data, meteorological station data, and snow water equivalent (GlobSnow, assimilated snow data set). We analyzed the data for the full period (1982-2014) and for two sub-periods (1982-1998 and 1999-2014), which were chosen based on the declining Alaska SWI since 1998. MaxNDVI has increased from 1982-2014 over most of the Arctic but has declined from 1999 to 2014 southwest Alaska. TI-NDVI has trends that are similar to those for MaxNDVI for the full period but display widespread declines over the 1999-2014 period. Therefore, as the MaxNDVI has continued to increase overall for the Arctic, TI-NDVI has been declining since 1999 and these declines are particularly noteworthy during spring in Alaska. Spring declines in Alaska have been linked to increased spring snow cover that can delay greenup (Bieniek et al. 2015) but recent ground observations suggest that after an initial warming and greening, late season freezing temperature are damaging the plants. The late season freezing temperature hypothesis will be explored with meteorological climate/weather data sets for Alaska tundra regions. References P.A. Bieniek, US Bhatt, DA Walker, MK Raynolds, JC Comiso, HE Epstein, JE Pinzon, CJ Tucker, RL Thoman, H Tran, N M

  19. Spatiotemporal remote sensing of ecosystem change and causation across Alaska.

    PubMed

    Pastick, Neal J; Jorgenson, M Torre; Goetz, Scott J; Jones, Benjamin M; Wylie, Bruce K; Minsley, Burke J; Genet, Hélène; Knight, Joseph F; Swanson, David K; Jorgenson, Janet C

    2018-05-28

    Contemporary climate change in Alaska has resulted in amplified rates of press and pulse disturbances that drive ecosystem change with significant consequences for socio-environmental systems. Despite the vulnerability of Arctic and boreal landscapes to change, little has been done to characterize landscape change and associated drivers across northern high-latitude ecosystems. Here we characterize the historical sensitivity of Alaska's ecosystems to environmental change and anthropogenic disturbances using expert knowledge, remote sensing data, and spatiotemporal analyses and modeling. Time-series analysis of moderate-and high-resolution imagery was used to characterize land- and water-surface dynamics across Alaska. Some 430,000 interpretations of ecological and geomorphological change were made using historical air photos and satellite imagery, and corroborate land-surface greening, browning, and wetness/moisture trend parameters derived from peak-growing season Landsat imagery acquired from 1984 to 2015. The time series of change metrics, together with climatic data and maps of landscape characteristics, were incorporated into a modeling framework for mapping and understanding of drivers of change throughout Alaska. According to our analysis, approximately 13% (~174,000 ± 8700 km 2 ) of Alaska has experienced directional change in the last 32 years (±95% confidence intervals). At the ecoregions level, substantial increases in remotely sensed vegetation productivity were most pronounced in western and northern foothills of Alaska, which is explained by vegetation growth associated with increasing air temperatures. Significant browning trends were largely the result of recent wildfires in interior Alaska, but browning trends are also driven by increases in evaporative demand and surface-water gains that have predominately occurred over warming permafrost landscapes. Increased rates of photosynthetic activity are associated with stabilization and recovery

  20. Summary appraisals of the Nation's ground-water resources; Alaska

    USGS Publications Warehouse

    Zenone, Chester; Anderson, Gary S.

    1978-01-01

    Present deficiencies in the ground-water information base are obvious limiting factors to ground-water development in Alaska. There is a need to extend the ground-water data-collection network and to pursue special research into the quantitative aspects of ground-water hydrology in cold regions, particularly the continuous permafrost zone.

  1. Traces of Old Glaciations in East-central Alaska

    NASA Astrophysics Data System (ADS)

    Duk-Rodkin, A.; Barendregt, R. W.; Weber, F.

    2001-12-01

    The East-central Alaska record of glaciations is similar to that preserved in the west-central Yukon. Surficial geologic mapping of the Yukon-Tanana upland has indicated at least 5 glacial periods including at least one early Holocene. The two earliest glaciations are of pre-Mid Pleistocene age and followed regional erosion and renewed uplift ca.4 Ma. The earliest glaciation of west-central Yukon occurred between 2.6 and 2.9 Ma, forming a continuous carapace of ice covering all the mountain ranges except for a small part of the Dawson Range. This first glaciation was also the most extensive in the region, and resulted in the NW diversion of Yukon River into Alaska by the Cordilleran Ice Sheet. Stratigraphic evidence of 6 glaciations of pre-Mid Pleistocene age is preserved in the western Canadian sector of the Tintina Trench. The limits of these glaciations have been mapped in Yukon on the basis of glacial landforms and the distribution of erratics. Although morphological features of older glaciations (Plio-Pleistocene) are generally not well preserved, there is relatively good control on the distribution of glacial features for two of the older glaciations in Mt.Harper, Alaska. Stratigraphic evidence of at least 3 older glaciations is found in the Goodpastor River. An initial magnetostratigraphic study of three sites in east-central Alaska have yielded normal magnetic polarities only. The sites are:(1) a relatively weathered lowermost till outcropping along Goodpastor River on the Yukon-Tanana upland,(2) an extremely weathered high level moraine (609m) on the western side of the Gerstle River, near Granite Mt.in the Alaska Range and (3)ca.914m pediment containing glacial erratics and a luvisol at its surface, located on Tok River, Tanana Valley, Alaska Range. The normal polarity of the first site likely indicates a Brunhes age rather than a normal subchron within the Matuyama Reversed Chron based on the modest degree of weathering of the till and lack of any

  2. Alaska Workforce Investment Board

    Science.gov Websites

    ! Looking for a job? Click here. About Us Board Member Documents Phone: (907) 269-7485 Toll Free: (888) 412 : 907-269-7485 Toll Free: 888-412-4742 Fax: 907-269-7489 State of Alaska myAlaska My Government Resident

  3. The evolving Alaska mapping program.

    USGS Publications Warehouse

    Brooks, P.D.; O'Brien, T. J.

    1986-01-01

    This paper describes the development of mapping in Alaska, the current status of the National Mapping Program, and future plans for expanding and improving the mapping coverage. Research projects with Landsat Multispectral Scanner and Return Vidicon imagery and real- and synthetic-aperture radar; image mapping programs; digital mapping; remote sensing projects; the Alaska National Interest Lands Conservation Act; and the Alaska High-Altitude Aerial Photography Program are also discussed.-from Authors

  4. Publications - GMC 16 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska's Mineral and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a

  5. Publications - RDF 2010-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Prospect; Trace Elements; Trace Metals; Triassic; Wrangellia Terrane; geoscientificInformation Top of Page Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  6. Publications - RDF 2015-6 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Sediments; Trace Elements; Trace Geochemical; Trace Metals; geoscientificInformation Top of Page Department Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  7. 33 CFR 146.202 - Notice of arrival or relocation of MODUs on the OCS.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES OPERATIONS Mobile Offshore Drilling Units § 146.202 Notice of arrival or relocation of MODUs on the OCS. (a) The owner of any mobile offshore drilling unit engaged in OCS activities shall, 14 days before arrival of the unit on the OCS or as...

  8. How are your berries? Perspectives of Alaska's environmental managers on trends in wild berry abundance.

    PubMed

    Hupp, Jerry; Brubaker, Michael; Wilkinson, Kira; Williamson, Jennifer

    2015-01-01

    Wild berries are a valued traditional food in Alaska. Phytochemicals in wild berries may contribute to the prevention of vascular disease, cancer and cognitive decline, making berry consumption important to community health in rural areas. Little was known regarding which species of berries were important to Alaskan communities, the number of species typically picked in communities and whether recent environmental change has affected berry abundance or quality. To identify species of wild berries that were consumed by people in different ecological regions of Alaska and to determine if perceived berry abundance was changing for some species or in some regions. We asked tribal environmental managers throughout Alaska for their views on which among 12 types of wild berries were important to their communities and whether berry harvests over the past decade were different than in previous years. We received responses from 96 individuals in 73 communities. Berries that were considered very important to communities differed among ecological regions of Alaska. Low-bush blueberry (Vaccinium uliginosum and V. caespitosum), cloudberry (Rubus chamaemorus) and salmonberry (Rubus spectabilis) were most frequently identified as very important berries for communities in the boreal, polar and maritime ecoregions, respectively. For 7 of the 12 berries on the survey, a majority of respondents indicated that in the past decade abundance had either declined or become more variable. Our study is an example of how environmental managers and participants in local observer networks can report on the status of wild resources in rural Alaska. Their observations suggest that there have been changes in the productivity of some wild berries in the past decade, resulting in greater uncertainty among communities regarding the security of berry harvests. Monitoring and experimental studies are needed to determine how environmental change may affect berry abundance.

  9. How are your berries? Perspectives of Alaska's environmental managers on trends in wild berry abundance.

    PubMed

    Hupp, Jerry; Brubaker, Michael; Wilkinson, Kira; Williamson, Jennifer

    2015-01-01

    Background Wild berries are a valued traditional food in Alaska. Phytochemicals in wild berries may contribute to the prevention of vascular disease, cancer and cognitive decline, making berry consumption important to community health in rural areas. Little was known regarding which species of berries were important to Alaskan communities, the number of species typically picked in communities and whether recent environmental change has affected berry abundance or quality. Objective To identify species of wild berries that were consumed by people in different ecological regions of Alaska and to determine if perceived berry abundance was changing for some species or in some regions. Design We asked tribal environmental managers throughout Alaska for their views on which among 12 types of wild berries were important to their communities and whether berry harvests over the past decade were different than in previous years. We received responses from 96 individuals in 73 communities. Results Berries that were considered very important to communities differed among ecological regions of Alaska. Low-bush blueberry (Vaccinium uliginosum and V. caespitosum), cloudberry (Rubus chamaemorus) and salmonberry (Rubus spectabilis) were most frequently identified as very important berries for communities in the boreal, polar and maritime ecoregions, respectively. For 7 of the 12 berries on the survey, a majority of respondents indicated that in the past decade abundance had either declined or become more variable. Conclusions Our study is an example of how environmental managers and participants in local observer networks can report on the status of wild resources in rural Alaska. Their observations suggest that there have been changes in the productivity of some wild berries in the past decade, resulting in greater uncertainty among communities regarding the security of berry harvests. Monitoring and experimental studies are needed to determine how environmental change may affect

  10. How are your berries? Perspectives of Alaska's environmental managers on trends in wild berry abundance

    PubMed Central

    Hupp, Jerry; Brubaker, Michael; Wilkinson, Kira; Williamson, Jennifer

    2015-01-01

    Background Wild berries are a valued traditional food in Alaska. Phytochemicals in wild berries may contribute to the prevention of vascular disease, cancer and cognitive decline, making berry consumption important to community health in rural areas. Little was known regarding which species of berries were important to Alaskan communities, the number of species typically picked in communities and whether recent environmental change has affected berry abundance or quality. Objective To identify species of wild berries that were consumed by people in different ecological regions of Alaska and to determine if perceived berry abundance was changing for some species or in some regions. Design We asked tribal environmental managers throughout Alaska for their views on which among 12 types of wild berries were important to their communities and whether berry harvests over the past decade were different than in previous years. We received responses from 96 individuals in 73 communities. Results Berries that were considered very important to communities differed among ecological regions of Alaska. Low-bush blueberry (Vaccinium uliginosum and V. caespitosum), cloudberry (Rubus chamaemorus) and salmonberry (Rubus spectabilis) were most frequently identified as very important berries for communities in the boreal, polar and maritime ecoregions, respectively. For 7 of the 12 berries on the survey, a majority of respondents indicated that in the past decade abundance had either declined or become more variable. Conclusions Our study is an example of how environmental managers and participants in local observer networks can report on the status of wild resources in rural Alaska. Their observations suggest that there have been changes in the productivity of some wild berries in the past decade, resulting in greater uncertainty among communities regarding the security of berry harvests. Monitoring and experimental studies are needed to determine how environmental change may affect

  11. Alaska Natives assessing the health of their environment.

    PubMed

    Garza, D

    2001-11-01

    The changes in Alaska's ecosystems caused by pollution, contaminants and global climate change are negatively impacting Alaska Natives and rural residents who rely on natural resources for food, culture and community identity. While Alaska commerce has contributed little to these global changes and impacts, Alaska and its resources are nonetheless affected by the changes. While Alaska Natives have historically relied on Alaska's land, water and animals for survival and cultural identity, today their faith in the safety and quality of these resources has decreased. Alaska Natives no longer believe that these wild resources are the best and many are turning to alternative store-bought foods. Such a change in diet and activity may be contributing to a decline in traditional activities and a decline in general health. Contaminants are showing up in the animals, fish and waters that Alaska Natives use. Efforts need to be expanded to empower Alaska Native Tribes to collect and analyze local wild foods for various contaminants. In addition existing information on contaminants and pollution should be made readily available to Alaska residents. Armed with this type of information Alaska Native residents will be better prepared to make informed decisions on using wild foods and materials.

  12. The Late Triassic bivalve Monotis in accreted terranes of Alaska

    USGS Publications Warehouse

    Silberling, Norman J.; Grant-Mackie, J. A.; Nichols, K.M.

    1997-01-01

    Late Triassic bivalves of the genus Monotis occur in at least 16 of the lithotectonic terranes and subterranes that together comprise nearly all of Alaska, and they also occur in the Upper Yukon region of Alaska where Triassic strata are regarded as representing non-accretionary North America. On the basis of collections made thus far, 14 kinds of Monotis that differ at the species or subspecies level can be recognized from alaska. These are grouped into the subgenera Monotis (Monotis), M. (Pacimonotis), M. (Entomonotis), and M. (Eomonotis). In places, Monotis shells of one kind or another occur in rock-forming abundance. On the basis of superpositional data from Alaska, as well as from elsewhere in North America and Far Eastern Russia, at least four distince biostratigraphic levels can be discriminated utilizing Monotis species. Different species of M. (Eomonotis) characterize two middle Norian levels, both probably within the supper middle Norian Columbianus Ammonite Zone. Two additional levels are recognized in the lower upper Norian Cordilleranus Ammonite Zone utilizing species of M. (Monotis) or M. (Entomonotis), both of which subgenera are restricted to the late Norian. An attached-floating mode of life is commonly attributed to Monotis; thus, these bivalves would have been pseudoplanktonic surface dwellers that were sensitive to surface-water temperature and paleolatitude. Distinctly different kinds of Monotis occur at different paleolatitudes along the Pacific and Arctic margins of the North American craton inboard of the accreted terranes. Comparison between thse craton-bound Monotis faunas and those of the Alaskan terranes in southern Alaska south of the Denali fault were paleoequatorial in latitude during Late Triassic time. Among these terranes, the Alexander terrane was possibly in the southern hemisphere at that time. Terranes of northern Alaska, on the other hand, represent middle, possibly high-middle, northern paleolatitudes.

  13. Geochemical evidence for a brooks range mineral belt, Alaska

    USGS Publications Warehouse

    Marsh, S.P.; Cathrall, J.B.

    1981-01-01

    Geochemical studies in the central Brooks Range, Alaska, delineate a regional, structurally controlled mineral belt in east-west-trending metamorphic rocks and adjacent metasedimentary rocks. The mineral belt extends eastward from the Ambler River quadrangle to the Chandalar and Philip Smith quadrangles, Alaska, from 147?? to 156??W. longitude, a distance of more than 375 km, and spans a width from 67?? to 69??N. latitude, a distance of more than 222 km. Within this belt are several occurrences of copper and molybdenum mineralization associated with meta-igneous, metasedimentary, and metavolcanic rocks; the geochemical study delineates target areas for additional occurrences. A total of 4677 stream-sediment and 2286 panned-concentrate samples were collected in the central Brooks Range, Alaska, from 1975 to 1979. The -80 mesh ( 2.86) nonmagnetic fraction of the panned concentrates from stream sediment were analyzed by semiquantitative spectrographic methods. Two geochemical suites were recognized in this investigation; a base-metal suite of copper-lead-zinc and a molybdenum suite of molybdenum-tin-tungsten. These suites suggest several types of mineralization within the metamorphic belt. Anomalies in molybdenum with associated Cu and W suggest a potential porphyry molybdenum system associated with meta-igneous rocks. This regional study indicates that areas of metaigneous rocks in the central metamorphic belt are target areas for potential mineralized porphyry systems and that areas of metavolcanic rocks are target areas for potential massive sulfide mineralization. ?? 1981.

  14. Publications - GMC 171 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Arco Alaska Inc. Delta State #2 well Authors: Pawlewicz, Mark Publication Date: 1990 Publisher: Alaska , Vitrinite reflectance data of cuttings (3270'-10760') from the Arco Alaska Inc. Delta State #2 well: Alaska

  15. Publications - RDF 2012-3 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Assessment Project; Trace Elements; geoscientificInformation Top of Page Department of Natural Resources Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  16. Publications - RDF 2005-4 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    District; Trace Elements; Trace Metals; Tungsten; Uranium; Vanadium; Yttrium; Zinc; Zirconium Top of Page Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  17. Publications - RDF 2016-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    , Major-oxide and trace-element geochemistry of mafic rocks in the Carboniferous Lisburne Group, Ivishak Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  18. Publications - RDF 2000-4 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Oxides; Palladium; Platinum; Rare Earth Elements; STATEMAP Project; Trace Metals Top of Page Department Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  19. Trends in Alaska's People and Economy.

    ERIC Educational Resources Information Center

    Leask, Linda; Killorin, Mary; Martin, Stephanie

    This booklet provides data on Alaska's population, economy, health, education, government, and natural resources, including specific information on Alaska Natives. Since 1960, Alaska's population has tripled and become more diverse, more stable, older, less likely to be male or married, and more concentrated. About 69 percent of the population…

  20. 46 CFR 32.15-35 - Magnetic Compass and Gyrocompass-T/OC.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., MACHINERY, AND HULL REQUIREMENTS Navigation Equipment § 32.15-35 Magnetic Compass and Gyrocompass—T/OC. (a) All tankships in ocean or coastwise service must be fitted with a magnetic compass. (b) All tankships... 46 Shipping 1 2012-10-01 2012-10-01 false Magnetic Compass and Gyrocompass-T/OC. 32.15-35 Section...

  1. 46 CFR 32.15-35 - Magnetic Compass and Gyrocompass-T/OC.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Magnetic Compass and Gyrocompass-T/OC. 32.15-35 Section..., MACHINERY, AND HULL REQUIREMENTS Navigation Equipment § 32.15-35 Magnetic Compass and Gyrocompass—T/OC. (a) All tankships in ocean or coastwise service must be fitted with a magnetic compass. (b) All tankships...

  2. 46 CFR 32.15-35 - Magnetic Compass and Gyrocompass-T/OC.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Magnetic Compass and Gyrocompass-T/OC. 32.15-35 Section..., MACHINERY, AND HULL REQUIREMENTS Navigation Equipment § 32.15-35 Magnetic Compass and Gyrocompass—T/OC. (a) All tankships in ocean or coastwise service must be fitted with a magnetic compass. (b) All tankships...

  3. Status and distribution of the Kittlitz's Murrelet Brachyramphus brevirostris along the Alaska Peninsula and Kodiak and Aleutian Islands, Alaska

    USGS Publications Warehouse

    Madison, Erica N.; Piatt, John F.; Arimitsu, Mayumi L.; Romano, Marc D.; van Pelt, Thomas I.; Nelson, S. Kim; Williams, Jeffrey C.; DeGange, Anthony R.

    2011-01-01

    The Kittlitz's Murrelet Brachyramphus brevirostris is adapted for life in glacial-marine ecosystems, being concentrated in the belt of glaciated fjords in the northern Gulf of Alaska from Glacier Bay to Cook Inlet. Most of the remaining birds are scattered along coasts of the Alaska Peninsula and Aleutian Islands, where they reside in protected bays and inlets, often in proximity to remnant glaciers or recently deglaciated landscapes. We summarize existing information on Kittlitz's Murrelet in this mainly unglaciated region, extending from Kodiak Island in the east to the Near Islands in the west. From recent surveys, we estimated that ~2400 Kittlitz's Murrelets were found in several large embayments along the Alaska Peninsula, where adjacent ice fields feed silt-laden water into the bays. On Kodiak Island, where only remnants of ice remain today, observations of Kittlitz's Murrelets at sea were uncommon. The species has been observed historically around the entire Kodiak Archipelago, however, and dozens of nest sites were found in recent years. We found Kittlitz's Murrelets at only a few islands in the Aleutian chain, notably those with long complex shorelines, high mountains and remnant glaciers. The largest population (~1600 birds) of Kittlitz's Murrelet outside the Gulf of Alaska was found at Unalaska Island, which also supports the greatest concentration of glacial ice in the Aleutian Islands. Significant populations were found at Atka (~1100 birds), Attu (~800) and Adak (~200) islands. Smaller numbers have been reported from Unimak, Umnak, Amlia, Kanaga, Tanaga, Kiska islands, and Agattu Island, where dozens of nest sites have been located in recent years. Most of those islands have not been thoroughly surveyed, and significant pockets of Kittlitz's Murrelets may yet be discovered. Our estimate of ~6000 Kittlitz's Murrelets along the Alaska Peninsula and Aleutian Islands is also likely to be conservative because of the survey protocols we employed (i.e. early

  4. Alaska Native Participation in the Civilian Conservation Corps. Alaska Historical Commission Studies in History No. 206.

    ERIC Educational Resources Information Center

    Sorensen, Connor; And Others

    The report is a finding aid to the sources which document the 1937 federal policy decision mandating that 50% of the enrollees in the Civilian Conservation Corps (CCC) in Alaska must be Alaska Natives and provides a list of the Native CCC projects in Alaska. The finding aid section is organized according to the location of the collections and…

  5. 78 FR 4435 - BLM Director's Response to the Alaska Governor's Appeal of the BLM Alaska State Director's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... Bureau of Land Management (BLM) is publishing this notice to explain why the BLM Director is rejecting... Director's Response to the Alaska Governor's Appeal of the BLM Alaska State Director's Governor's... the BLM Alaska State Director. The State Director determined the Governor's Finding was outside the...

  6. Agro-climate Projections for a Warming Alaska

    NASA Astrophysics Data System (ADS)

    Lader, R.; Walsh, J. E.; Bhatt, U. S.; Bieniek, P.

    2017-12-01

    In the context of greenhouse warming, agro-meteorological indices suggest widespread disruption to current food supply chains during the coming decades. Much of the western United States is projected to have more dry days, and the southern states are likely to experience greater plant heat stress. Considering these difficulties, it could become necessary for more northerly locations, including Alaska, to increase agricultural production to support local communities and offset supply shortages. This study employs multiple dynamically downscaled regional climate model simulations from the CMIP5 to investigate projected changes to agro-climate conditions across Alaska. The metric used here, the start-of-field operations index (SFO), identifies the date during which the sum of daily average temperature, starting from January 1st and excluding negative values, exceeds 200 ˚C. Using the current trajectory of greenhouse radiative forcing, RCP 8.5, this study indicates a doubling to 71,960 km2 of Alaska land area that meets the required thermal accumulation for crop production when comparing a historical period (1981-2010) to the future (2071-2100). The SFO shows a correlation coefficient of 0.91 with the independently produced green-up index for Fairbanks from 1981-2010. Among the land areas that currently reach the necessary thermal accumulation, there is a projected increase in growing season length (63-82 days), earlier date of last spring frost (28-48 days), and later date of first autumn frost (24-47 days) across the five USDA Census of Agriculture areas for Alaska. Both an average statewide decrease of annual frost days (71 fewer), and an increase in days with extreme warmth (28 more) are also projected.

  7. Publications - SR 37 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska Section; Resource Assessment; Tyonek Formation; Type Section Top of Page Department of Natural Resources State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home

  8. Presentations - Twelker, Evan and others, 2014 | Alaska Division of

    Science.gov Websites

    Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Details Title: Preliminary results from 2014 geologic mapping in the Talkeetna Mountains, Alaska Lande, Lauren, 2014, Preliminary results from 2014 geologic mapping in the Talkeetna Mountains, Alaska

  9. Publications - RDF 2004-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ; Trace Elements; Trace Metals; Tungsten; Vanadium; Yttrium; Zinc; Zirconium Top of Page Department of Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  10. Publications - SR 32 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS SR 32 Publication Details Title: Oil and gas basins map of Alaska Authors: Ehm, Arlen Publication ): Alaska Statewide Bibliographic Reference Ehm, Arlen, 1983, Oil and gas basins map of Alaska: Alaska Sheets Sheet 1 Oil and gas basins map of Alaska, scale 1:2,500,000 (21.0 M) Keywords Alaska Statewide

  11. RESEARCH: Effects of Recent Volcanic Eruptions on Aquatic Habitat in the Drift River, Alaska, USA: Implications at Other Cook Inlet Region Volcanoes.

    PubMed

    DORAVA; MILNER

    1999-02-01

    / Numerous drainages supporting productive salmon habitat are surrounded by active volcanoes on the west side of Cook Inlet in south-central Alaska. Eruptions have caused massive quantities of flowing water and sediment to enter the river channels emanating from glaciers and snowfields on these volcanoes. Extensive damage to riparian and aquatic habitat has commonly resulted, and benthic macroinvertebrate and salmonid communities can be affected. Because of the economic importance of Alaska's fisheries, detrimental effects on salmonid habitat can have significant economic implications. The Drift River drains glaciers on the northern and eastern flanks of Redoubt Volcano. During and following eruptions in 1989-1990, severe physical disturbances to the habitat features of the river adversely affected the fishery. Frequent eruptions at other Cook Inlet region volcanoes exemplify the potential effects of volcanic activity on Alaska's important commercial, sport, and subsistence fisheries. Few studies have documented the recovery of aquatic habitat following volcanic eruptions. The eruptions of Redoubt Volcano in 1989-1990 offered an opportunity to examine the recovery of the macroinvertebrate community. Macroinvertebrate community composition and structure in the Drift River were similar in both undisturbed and recently disturbed sites. Additionally, macroinvertebrate samples from sites in nearby undisturbed streams were highly similar to those from some Drift River sites. This similarity and the agreement between the Drift River macroinvertebrate community composition and that predicted by a qualitative model of typical macroinvertebrate communities in glacier-fed rivers indicate that the Drift River macroinvertebrate community is recovering five years after the disturbances associated with the most recent eruptions of Redoubt Volcano. KEY WORDS: Aquatic habitat; Volcanoes; Lahars; Lahar-runout flows; Macroinvertebrates; Community structure; Community composition

  12. Flutamide-metformin plus an oral contraceptive (OC) for young women with polycystic ovary syndrome: switch from third- to fourth-generation OC reduces body adiposity.

    PubMed

    Ibáñez, Lourdes; De Zegher, Francis

    2004-08-01

    Low-dose flutamide-metformin has been developed as a background therapy for non-obese adolescents and young women with hyperinsulinaemic hyperandrogenism, a variant of polycystic ovary syndrome (PCOS). We verified whether the lipolytic efficacy of flutamide-metformin in women with PCOS is enhanced by giving an oral contraceptive (OC) co-therapy that contains drospirenone, instead of gestodene, as progestin. An open-labelled study was carried out in which non-obese women with PCOS (n = 29; age approximately 20 years), who had been on a combination of flutamide (62.5 mg/day), metformin (850 mg/day) and ethinylestradiol-gestodene for 8-15 months, were randomized for replacement of the gestodene OC by a drospirenone OC. Assessments of endocrine-metabolic state and body composition (by dual-energy X-ray absorptiometry) were performed at randomization and after 6 months. The switch to drospirenone OC was accompanied by a reduction of total and abdominal fat (mean -0.8 and -0.5 kg) and by an increment of lean body mass (+0.6 kg; all P < 0.01), so that body adiposity was strikingly reduced without changing body weight. In non-obese women with PCOS, low-dose flutamide-metformin reduces total and abdominal fat excess more effectively if contraceptive co-therapy contains drospirenone, instead of gestodene, as progestin. Copyright 2004 European Society of Human Reproduction and Embryology

  13. Geospatial analysis of lake and landscape interactions within the Toolik Lake region, North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Pathak, Prasad A.

    The Arctic region of Alaska is experiencing severe impacts of climate change. The Arctic lakes ecosystems are bound to undergo alterations in its trophic structure and other chemical properties. However, landscape factors controlling the lake influxes were not studied till date. This research has examined the currently existing lake landscape interactions using Remote Sensing and GIS technology. The statistical modeling was carried out using Regression and CART methods. Remote sensing data was applied to derive the required landscape indices. Remote sensing in the Arctic Alaska faces many challenges including persistent cloud cover, low sun angle and limited snow free period. Tundra vegetation types are interspersed and intricate to classify unlike managed forest stands. Therefore, historical studies have remained underachieved with respect thematic accuracies. However, looking at vegetation communities at watershed level and the implementation of expert classification system achieved the accuracies up to 90%. The research has highlighted the probable role of interactions between vegetation root zones, nutrient availability within active zone, as well as importance of permafrost thawing. Multiple regression analyses and Classification Trees were developed to understand relationships between landscape factors with various chemical parameters as well as chlorophyll readings. Spatial properties of Shrubs and Riparian complexes such as complexity of individual patches at watershed level and within proximity of water channels were influential on Chlorophyll production of lakes. Till-age had significant impact on Total Nitrogen contents. Moreover, relatively young tills exhibited significantly positive correlation with concentration of various ions and conductivity of lakes. Similarly, density of patches of Heath complexes was found to be important with respect to Total Phosphorus contents in lakes. All the regression models developed in this study were significant at 95

  14. 30 CFR 281.12 - Request for OCS mineral information and interest.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Request for OCS mineral information and interest. 281.12 Section 281.12 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF MINERALS OTHER THAN OIL, GAS, AND SULPHUR IN THE OUTER CONTINENTAL SHELF Leasing Procedures § 281.12 Request for OCS mineral...

  15. Publications - GMC 395 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    investigations of the diatom stratigraphy of Borehole TA8, Portage Alaska: Alaska Division of Geological & Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical DGGS GMC 395 Publication Details Title: Preliminary investigations of the diatom stratigraphy of

  16. 76 FR 45217 - Fisheries of the Exclusive Economic Zone Off Alaska; Central Gulf of Alaska Rockfish Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ..., management, safety, and economic gains realized under the Rockfish Pilot Program and viability of the Gulf of...-BA97 Fisheries of the Exclusive Economic Zone Off Alaska; Central Gulf of Alaska Rockfish Program... available for public review and comment. The groundfish fisheries in the exclusive economic zone of Alaska...

  17. Exchange of carbonyl sulfide (OCS) between soils and atmosphere under various CO2 concentrations

    NASA Astrophysics Data System (ADS)

    Bunk, Rüdiger; Behrendt, Thomas; Yi, Zhigang; Andreae, Meinrat O.; Kesselmeier, Jürgen

    2017-06-01

    A new continuous integrated cavity output spectroscopy analyzer and an automated soil chamber system were used to investigate the exchange processes of carbonyl sulfide (OCS) between soils and the atmosphere under laboratory conditions. The exchange patterns of OCS between soils and the atmosphere were found to be highly dependent on soil moisture and ambient CO2 concentration. With increasing soil moisture, OCS exchange ranged from emission under dry conditions to an uptake within an optimum moisture range, followed again by emission at high soil moisture. Elevated CO2 was found to have a significant impact on the exchange rate and direction as tested with several soils. There is a clear tendency toward a release of OCS at higher CO2 levels (up to 7600 ppm), which are typical for the upper few centimeters within soils. At high soil moisture, the release of OCS increased sharply. Measurements after chloroform vapor application show that there is a biotic component to the observed OCS exchange. Furthermore, soil treatment with the fungi inhibitor nystatin showed that fungi might be the dominant OCS consumers in the soils we examined. We discuss the influence of soil moisture and elevated CO2 on the OCS exchange as a change in the activity of microbial communities. Physical factors such as diffusivity that are governed by soil moisture also play a role. Comparing KM values of the enzymes to projected soil water CO2 concentrations showed that competitive inhibition is unlikely for carbonic anhydrase and PEPCO but might occur for RubisCO at higher CO2 concentrations.

  18. The forest ecosystem of southeast Alaska: 1. The setting.

    Treesearch

    Arland S. Harris; O. Keith Hutchison; William R. Meehan; Douglas N. Swanston; Austin E. Helmers; John C. Hendee; Thomas M. Collins

    1974-01-01

    A description of the discovery and exploration of southeast Alaska sets the scene for a discussion of the physical and biological features of this region. Subjects discussed include geography, climate, vegetation types, geology, minerals, forest products, soils, fish, wildlife, water, recreation, and aesthetic values. This is the first of a series of publications...

  19. Alaska Department of Labor and Workforce Development

    Science.gov Websites

    Market Information Alaska Job Centers Hot Topics Get Paid to Learn a Trade! Apprenticeship Alaska Career USAJOBS - Federal Gov. Jobs Apprenticeship Alaska Career Information System Veterans' Services Youth

  20. Tourism in rural Alaska

    Treesearch

    Katrina Church-Chmielowski

    2007-01-01

    Tourism in rural Alaska is an education curriculum with worldwide relevance. Students have started small businesses, obtained employment in the tourism industry and gotten in touch with their people. The Developing Alaska Rural Tourism collaborative project has resulted in student scholarships, workshops on website development, marketing, small...

  1. Carbonyl sulfide (OCS) as a proxy for GPP: Complications derived from studies on the impact of CO2, soil humidity and sterilization on the OCS exchange between soils and atmosphere

    NASA Astrophysics Data System (ADS)

    Bunk, Rüdiger; Behrendt, Thomas; Yi, Zhigang; Kesselmeier, Jürgen

    2016-04-01

    Carbonyl sulfide is discussed to be used as a proxy for gross primary productivity (GPP) of forest ecosystems. However, soils may interfere. Soils play an important role in budgeting global and local carbonyl sulfide (OCS) fluxes, yet the available data on the uptake and emission behavior of soils in conjunction with environmental factors is limited. The work of many authors has shown that the OCS exchange of soils depends on various factors, such as soil type, atmospheric OCS concentrations, temperature or soil water content (Kesselmeier et al., J. Geophys. Res., 104, No. D9, 11577-11584, 1999; Van Diest & Kesselmeier, Biogeosciences, 5, 475-483, 2008; Masyek et al., PNAS, 111, No 25, 9064-9069, doi: 10.1073/pnas.1319132111, 2014; Whelan and Rhew, J. Geophys. Res. Biogeosciences., 120, 54-62, doi: 10.1002/2014JG002661, 2015) and the light dependent and obviously abiotic OCS production as reported by Whelan and Rhew (2015). To get a better constraint on the impact of some environmental factors on the OCS exchange of soils we used a new laser based integrated cavity output spectroscopy instrument (LGR COS/CO Analyzer Model 907-0028, Los Gatos, Mountain View, California, USA) in conjunction with an automated soil chamber system (as described in Behrendt et al, Biogeosciences, 11, 5463-5492, doi: 10.5194/bg-11-5463-2014, 2014). The OCS exchange of various soils under the full range of possible soil humidity and various CO2 mixing ratios was examined. Additionally OCS exchange of chloroform sterilized subsamples was compared to their live counterparts to illuminate the influence of microorganisms. Results were quite heterogeneous between different soils. With few exceptions, all examined soils show dependence between OCS exchange and soil humidity, usually with strongest uptake at a certain humidity range and less uptake or even emission at higher and lower humidity. Differences in CO2 mixing ratio also clearly impacts on OCS exchange, but trends for different soils

  2. 76 FR 270 - Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ...] Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved Municipal Solid Waste Landfill (MSWLF) permit program. The approved modification allows the State..., EPA issued a final rule (69 FR 13242) amending the Municipal Solid Waste Landfill (MSWLF) criteria in...

  3. Operational experience of the OC-OTEC experiments at NELH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, H

    1989-02-01

    The Solar Energy Research Institute, under funding and program direction from the US Department of Energy, has been operating a small-scale test apparatus to investigate key components of open- cycle ocean thermal energy conversion (OC-OTEC). The apparatus started operations in October 1987 and continues to provide valuable information on heat-and mass-transfer processes in evaporators and condensers, gas sorption processes as seawater is depressurized and repressurized, and control and instrumentation characteristics of open-cycle systems. Although other test facilities have been used to study some of these interactions, this is the largest apparatus of its kind to use seawater since Georges Claude`smore » efforts in 1926. The information obtained from experiments conducted in this apparatus is being used to design a larger scale experiment in which a positive net power production is expected to be demonstrated for the first time with OC-OTEC. This paper describes the apparatus, the major tests conducted during its first 18 months of operation, and the experience gained in OC-OTEC system operation. 13 refs., 8 figs.« less

  4. Presentations - Twelker, Evan and Lande, Lauren, 2015 | Alaska Division of

    Science.gov Websites

    Geological & Geophysical Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of (AVO) Mineral Resources Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem

  5. AERONET-OC: Strengths and Weaknesses of a Network for the Validation of Satellite Coastal Radiometric Products

    NASA Technical Reports Server (NTRS)

    Zibordi, Giuseppe; Holben, Brent; Slutsker, Ilya; Giles, David; D'Alimonte, Davide; Melin, Frederic; Berthon, Jean-Francois; Vandemark, Doug; Feng, Hui; Schuster, Gregory; hide

    2008-01-01

    The Ocean Color component of the Aerosol Robotic Network (AERONET-OC) has been implemented to support long-term satellite ocean color investigations through cross-site consistent and accurate measurements collected by autonomous radiometer systems deployed on offshore fixed platforms. The ultimate purpose of AERONET-OC is the production of standardized measurements performed at different sites with identical measuring systems and protocols, calibrated using a single reference source and method, and processed with the same code. The AERONET-OC primary data product is the normalized water leaving radiance determined at center-wavelengths of interest for satellite ocean color applications, with an uncertainty lower than 5% in the blue-green spectral regions and higher than 8% in the red. Measurements collected at 6 sites counting the northern Adriatic Sea, the Baltic Proper, the Gulf of Finland, the Persian Gulf, and, the northern and southern margins of the Middle Atlantic Bay, have shown the capability of producing quality assured data over a wide range of bio-optical conditions including Case-2 yellow substance- and sedimentdominated waters. This work briefly introduces network elements like: deployment sites, measurement method, instrument calibration, processing scheme, quality-assurance, uncertainties, data archive and products accessibility. Emphases is given to those elements which underline the network strengths (i.e., mostly standardization of any network element) and its weaknesses (i.e., the use of consolidated, but old-fashioned technology). The work also addresses the application of AERONET-OC data to the validation of primary satellite radiometric products over a variety of complex coastal waters and finally provides elements for the identification of new deployment sites most suitable to support satellite ocean color missions.

  6. Feasibility of a tobacco cessation intervention for pregnant Alaska Native women

    PubMed Central

    Windsor, Richard A.; Renner, Caroline C.; Enoch, Carrie; Hochreiter, Angela; Nevak, Caroline; Smith, Christina A.; Decker, Paul A.; Bonnema, Sarah; Hughes, Christine A.; Brockman, Tabetha

    2010-01-01

    Background: Among Alaska Native women residing in the Yukon-Kuskokwim (Y-K) Delta region of Western Alaska, about 79% smoke cigarettes or use smokeless tobacco during pregnancy. Treatment methods developed and evaluated among Alaska Native pregnant tobacco users do not exist. This pilot study used a randomized two-group design to assess the feasibility and acceptability of a targeted cessation intervention for Alaska Native pregnant women. Methods: Recruitment occurred over an 8-month period. Enrolled participants were randomly assigned to the control group (n = 18; brief face-to-face counseling at the first visit and written materials) or to the intervention group (n = 17) consisting of face-to-face counseling at the first visit, four telephone calls, a video highlighting personal stories, and a cessation guide. Interview-based assessments were conducted at baseline and follow-up during pregnancy (≥60 days postrandomization). Feasibility was determined by the recruitment and retention rates. Results: The participation rate was very low with only 12% of eligible women (35/293) enrolled. Among enrolled participants, the study retention rates were high in both the intervention (71%) and control (94%) groups. The biochemically confirmed abstinence rates at follow-up were 0% and 6% for the intervention and control groups, respectively. Discussion: The low enrollment rate suggests that the program was not feasible or acceptable. Alternative approaches are needed to improve the reach and efficacy of cessation interventions for Alaska Native women. PMID:20018946

  7. Volcanogenic massive sulphide and orogenic gold deposits of northern southeast Alaska

    USGS Publications Warehouse

    Sack, Patrick J; Karl, Susan M.; Steeves, Nathan; Gemmell, J Bruce

    2016-01-01

    This five-day field trip visits the most significant mineral deposits in northern southeast Alaska. The trip begins and ends with regional transects in the interior Intermontane terranes around Whitehorse, Yukon, and the Insular terranes along the northern Chatham Strait region of southeast Alaska (Fig. A-1 and Fig. A-2; Plate-1). To put the deposits in a regional tectonic framework, the guidebook begins with an introduction to northern Cordilleran geology, tectonics and metallogeny. The foci of the deposit portion of the field trip are Late Triassic volcanogenic massive sulphide (VMS) deposits of the Alexander Triassic metallogenic belt and Paleogene orogenic gold deposits of the Juneau gold belt. Details of the local geology are further elaborated in each segment of the guide book (Days 1-5). The data that provide the basis for the VMS deposit interpretations come from a series of PhD and MSc studies by the Centre of Excellence in Ore Deposit Research (CODES) at the University of Tasmania and the University of Ottawa. These deposit-scale studies are complimented by a long history of regional mapping and research by the U.S. Geological Survey (USGS).

  8. Publications - Geospatial Data | Alaska Division of Geological &

    Science.gov Websites

    from rocks collected in the Richardson mining district, Big Delta Quadrangle, Alaska: Alaska Division , 40Ar/39Ar data, Alaska Highway corridor from Delta Junction to Canada border, parts of Mount Hayes

  9. Publications - DDS 7 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Alaska DGGS DDS 7 Publication Details Title: Alaska Coastal Profile Tool (ACPT) Authors: DGGS Staff ): Alaska Statewide Bibliographic Reference DGGS Staff, 2014, Alaska Coastal Profile Tool (ACPT): Alaska

  10. The forest ecosystem of Southeast Alaska: 4. Wildlife habitats.

    Treesearch

    William R. Meehan

    1974-01-01

    The effects of logging and associated activities on the habitat of the major forest wildlife species in southeast Alaska are discussed and research results applicable to this region are summarized. Big game, furbearers, and non-game species are considered with respect to their habitat requirements and behavior. Recommendations are made for habitat management with...

  11. Conservation assessment for the northern goshawk in southeast Alaska.

    Treesearch

    George C. Iverson; Gregory D. Hayward; Kimberly Titus; Eugene DeGayner; Richard E. Lowell; D. Coleman Crocker-Bedford; Philip F. Schempf; John Lindell

    1996-01-01

    The conservation status of northern goshawks in southeast Alaska is examined through developing an understanding of goshawk ecology in relation to past, present, and potential future habitat conditions in the region under the current Tongass land management plan. Forest ecosystem dynamics are described, and a history of forest and goshawk management in the Tongass...

  12. Soggy soils and sustainability: forested wetlands in southeast Alaska.

    Treesearch

    Sally Duncan

    2002-01-01

    The question has risen over whether forested wetlands in southeast Alaska are suitable for sustainable timber production. A significant factor limiting forest productivity in this region is excess soil moisture. Very little is known about the soil conditions that influence tree growth on forested wetlands. A research study was completed to provide information on the...

  13. Harvesting morels after wildfire in Alaska.

    Treesearch

    Tricia L. Wurtz; Amy L. Wiita; Nancy S. Weber; David Pilz

    2005-01-01

    Morels are edible, choice wild mushrooms that sometimes fruit prolifically in the years immediately after an area has been burned by wildfire. Wildfires are common in interior Alaska; an average of 708,700 acres burned each year in interior Alaska between 1961 and 2000, and in major fire years, over 2 million acres burned. We discuss Alaska's boreal forest...

  14. The State of Alaska Agency Directory

    Science.gov Websites

    State Government Jobs Federal Jobs Starting a Small Business Living Get a Driver License Get a Hunting /Fishing License Get a Birth Certificate, Marriage License, etc. Alaska Permanent Fund Dividend Statewide Highway Conditions Take a University Class Look up Alaska Laws Recreation Find a Recreational Area Alaska

  15. Publications - AR 2006 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2006 main content DGGS AR 2006 Publication Details Title: Alaska Division of Geological & Geophysical Surveys Annual

  16. Publications - AR 2000 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2000 main content DGGS AR 2000 Publication Details Title: Alaska Division of Geological & Geophysical Surveys Annual

  17. Publications - AR 2003 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2003 main content DGGS AR 2003 Publication Details Title: Alaska Division of Geological & Geophysical Surveys Annual

  18. Publications - AR 2004 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2004 main content DGGS AR 2004 Publication Details Title: Alaska Division of Geological & Geophysical Surveys Annual

  19. Effects of relativity for atomization and isomerization energies of seaborgium carbonyl SgCO and seaborgium isocarbonyl SgOC: Relativity predicts SgOC to be more stable than SgCO

    DOE PAGES

    Malli, Gulzari L.

    2015-12-31

    Our ab initio all-electron fully relativistic Dirac-Fock (DF) and nonrelativistic Hartree-Fock (NR) calculations for seaborgium isocarbonyl SgOC predict atomization energy (AE) of 13.04 and 11.05 eV, respectively. However, the corresponding DF and NR atomization energies for the seaborgium carbonyl SgCO are predicted as 12.75 and 12.45 eV, respectively. This is the first such result in Chemistry where an isocarbonyl (and especially for a system of superheavy element Sg) is predicted to be more stable at the DF level of theory than the corresponding carbonyl. The predicted energy for the formation of the carbonyl SgCO at the relativistic DF and NRmore » levels of theory is -54.90 and -50.95 kJ /mol, whereas the corresponding energy of formation of the isocarbonyl SgOC is -64.44 and -18.64 kJ/mol, respectively. Ours are the first results of relativistic effects for isomerization and atomization energies of the superheavy seaborgium isocarbonyl SgOC and its isomer SgCO. Lastly, the formation of isocarbonyl SgOC, should be favored over the carbonyl isomer SgCO in the first step of the reaction Sg+CO →SgOC.« less

  20. Long-term intensive management increased carbon occluded in phytolith (PhytOC) in bamboo forest soils

    NASA Astrophysics Data System (ADS)

    Huang, Zhang-Ting; Li, Yong-Fu; Jiang, Pei-Kun; Chang, Scott X.; Song, Zhao-Liang; Liu, Juan; Zhou, Guo-Mo

    2014-01-01

    Carbon (C) occluded in phytolith (PhytOC) is highly stable at millennium scale and its accumulation in soils can help increase long-term C sequestration. Here, we report that soil PhytOC storage significantly increased with increasing duration under intensive management (mulching and fertilization) in Lei bamboo (Phyllostachys praecox) plantations. The PhytOC storage in 0-40 cm soil layer in bamboo plantations increased by 217 Mg C ha-1, 20 years after being converted from paddy fields. The PhytOC accumulated at 79 kg C ha-1 yr-1, a rate far exceeding the global mean long-term soil C accumulation rate of 24 kg C ha-1 yr-1 reported in the literature. Approximately 86% of the increased PhytOC came from the large amount of mulch applied. Our data clearly demonstrate the decadal scale management effect on PhytOC accumulation, suggesting that heavy mulching is a potential method for increasing long-term organic C storage in soils for mitigating global climate change.