Sample records for alaska range glaciers

  1. Glaciers of North America - Glaciers of Alaska

    USGS Publications Warehouse

    Molnia, Bruce F.

    2008-01-01

    Glaciers cover about 75,000 km2 of Alaska, about 5 percent of the State. The glaciers are situated on 11 mountain ranges, 1 large island, an island chain, and 1 archipelago and range in elevation from more than 6,000 m to below sea level. Alaska's glaciers extend geographically from the far southeast at lat 55 deg 19'N., long 130 deg 05'W., about 100 kilometers east of Ketchikan, to the far southwest at Kiska Island at lat 52 deg 05'N., long 177 deg 35'E., in the Aleutian Islands, and as far north as lat 69 deg 20'N., long 143 deg 45'W., in the Brooks Range. During the 'Little Ice Age', Alaska's glaciers expanded significantly. The total area and volume of glaciers in Alaska continue to decrease, as they have been doing since the 18th century. Of the 153 1:250,000-scale topographic maps that cover the State of Alaska, 63 sheets show glaciers. Although the number of extant glaciers has never been systematically counted and is thus unknown, the total probably is greater than 100,000. Only about 600 glaciers (about 1 percent) have been officially named by the U.S. Board on Geographic Names (BGN). There are about 60 active and former tidewater glaciers in Alaska. Within the glacierized mountain ranges of southeastern Alaska and western Canada, 205 glaciers (75 percent in Alaska) have a history of surging. In the same region, at least 53 present and 7 former large ice-dammed lakes have produced jokulhlaups (glacier-outburst floods). Ice-capped volcanoes on mainland Alaska and in the Aleutian Islands have a potential for jokulhlaups caused by subglacier volcanic and geothermal activity. Because of the size of the area covered by glaciers and the lack of large-scale maps of the glacierized areas, satellite imagery and other satellite remote-sensing data are the only practical means of monitoring regional changes in the area and volume of Alaska's glaciers in response to short- and long-term changes in the maritime and continental climates of the State. A review of the

  2. Malaspina Glacier, Alaska

    NASA Image and Video Library

    2003-05-01

    Malaspina Glacier in southeastern Alaska is considered the classic example of a piedmont glacier. Piedmont glaciers occur where valley glaciers exit a mountain range onto broad lowlands, are no longer laterally confined, and spread to become wide lobes.

  3. Susitna Glacier, Alaska

    NASA Image and Video Library

    2010-09-13

    Folds in the lower reaches of valley glaciers can be caused by powerful surges of tributary ice streams. This phenomenon is spectacularly displayed by the Sustina Glacier in the Alaska Range as seen by NASA Terra spacecraft.

  4. Malaspina Glacier, Alaska

    NASA Image and Video Library

    2002-02-26

    This image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite covers an area of 55 by 40 kilometers (34 by 25 miles) over the southwest part of the Malaspina Glacier and Icy Bay in Alaska. The composite of infrared and visible bands results in the snow and ice appearing light blue, dense vegetation is yellow-orange and green, and less vegetated, gravelly areas are in orange. According to Dr. Dennis Trabant (U.S. Geological Survey, Fairbanks, Alaska), the Malaspina Glacier is thinning. Its terminal moraine protects it from contact with the open ocean; without the moraine, or if sea level rises sufficiently to reconnect the glacier with the ocean, the glacier would start calving and retreat significantly. ASTER data are being used to help monitor the size and movement of some 15,000 tidal and piedmont glaciers in Alaska. Evidence derived from ASTER and many other satellite and ground-based measurements suggests that only a few dozen Alaskan glaciers are advancing. The overwhelming majority of them are retreating. This ASTER image was acquired on June 8, 2001. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next six years to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03475

  5. Alaska Glaciers and Rivers

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image on October 7, 2007, showing the Alaska Mountains of south-central Alaska already coated with snow. Purple shadows hang in the lee of the peaks, giving the snow-clad land a crumpled appearance. White gives way to brown on the right side of the image where the mountains yield to the lower-elevation Susitna River Valley. The river itself cuts a silver, winding path through deep green forests and brown wetlands and tundra. Extending from the river valley, are smaller rivers that originated in the Alaska Mountains. The source of these rivers is evident in the image. Smooth white tongues of ice extend into the river valleys, the remnants of the glaciers that carved the valleys into the land. Most of the water flowing into the Gulf of Alaska from the Susitna River comes from these mountain glaciers. Glacier melt also feeds glacier lakes, only one of which is large enough to be visible in this image. Immediately left of the Kahiltna River, the aquamarine waters of Chelatna Lake stand out starkly against the brown and white landscape.

  6. Malaspina Glacier, Alaska

    NASA Image and Video Library

    2017-12-08

    The ice of a piedmont glacier spills from a steep valley onto a relatively flat plain, where it spreads out unconstrained like pancake batter. Elephant Foot Glacier in northeastern Greenland is an excellent example; it is particularly noted for its symmetry. But the largest piedmont glacier in North America (and possibly the world) is Malaspina in southeastern Alaska. On September 24, 2014, the Operational Land Imager (OLI) on Landsat 8 acquired this image of Malaspina Glacier. The main source of ice comes from Seward Glacier, located at the top-center of this image. The Agassiz and Libbey glaciers are visible on the left side, and the Hayden and Marvine glaciers are on the right. The brown lines on the ice are moraines—areas where soil, rock, and other debris have been scraped up by the glacier and deposited at its sides. Where two glaciers flow together, the moraines merge to form a medial moraine. Glaciers that flow at a steady speed tend to have moraines that are relatively straight. But what causes the dizzying pattern of curves, zigzags, and loops of Malaspina’s moraines? Glaciers in this area of Alaska periodically “surge,”meaning they lurch forward quickly for one to several years. As a result of this irregular flow, the moraines at the edges and between glaciers can become folded, compressed, and sheared to form the characteristic loops seen on Malaspina. For instance, a surge in 1986 displaced moraines on the east side of Malaspina by as much as 5 kilometers (3 miles). NASA Earth Observatory image by Jesse Allen, using Landsat data from the U.S. Geological Survey. Caption by Kathryn Hansen. Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission

  7. Logs and Geologic Data from a Paleoseismic Investigation of the Susitna Glacier fault, Central Alaska Range, Alaska

    USGS Publications Warehouse

    Personius, Stephen F.; Crone, Anthony J.; Burns, Patricia A.C.; Beget, James E.; Seitz, Gordon G.; Bemis, Sean P.

    2010-01-01

    This report contains field and laboratory data from a paleoseismic study of the Susitna Glacier fault, Alaska. The initial M 7.2 subevent of the November 3, 2002, M 7.9 Denali fault earthquake sequence produced a 48-km-long set of complex fault scarps, folds, and aligned landslides on the previously unknown, north-dipping Susitna Glacier thrust fault along the southern margin of the Alaska Range in central Alaska. Most of the 2002 folds and fault scarps are 1-3 m high, implying dip-slip thrust offsets (assuming a near-surface fault dip of approximately 20 degrees)of 3-5 m. Locally, some of the 2002 ruptures were superimposed on preexisting scarps that have as much as 5-10 m of vertical separation and are evidence of previous surface-rupturing earthquakes on the Susitna Glacier fault. In 2003-2005, we focused follow-up studies on several of the large scarps at the 'Wet fan' site in the central part of the 2002 rupture to determine the pre-2002 history of large surface-rupturing earthquakes on the fault. We chose this site for several reasons: (1) the presence of pre-2002 thrust- and normal-fault scarps on a gently sloping, post-glacial alluvial fan; (2) nearby natural exposures of underlying fan sediments revealed fine-grained fluvial silts with peat layers and volcanic ash beds useful for chronological control; and (3) a lack of permafrost to a depth of more than 1 m. Our studies included detailed mapping, fault-scarp profiling, and logging of three hand-excavated trenches. We were forced to restrict our excavations to 1- to 2-m-high splay faults and folds because the primary 2002 ruptures mostly were superimposed on such large scarps that it was impossible to hand dig through the hanging wall to expose the fault plane. Additional complications are the pervasive effects of cryogenic processes (mainly solifluction) that can mask or mimic tectonic deformation. The purpose of this report is to present photomosaics, trench logs, scarp profiles, and fault slip

  8. Malaspina Glacier, Alaska as seen from STS-66 Atlantis

    NASA Image and Video Library

    1994-11-14

    STS066-117-014 (3-14 Nov. 1994) --- Malaspina Glacier can be seen in this north-northeastern photograph taken in November, 1994. The glacier, located in the south shore of Alaska is a classic example of a piedmont glacier lying along the foot of a mountain range. The principal source of ice for the glacier is provided by the Seward Ice Field to the north (top portion of the view) which flows through three narrow outlets onto the coastal plain. The glacier moves in surges that rush earlier-formed moraines outward into the expanding concentric patterns along the flanks of the ice mass.

  9. Surface melt dominates Alaska glacier mass balance

    USGS Publications Warehouse

    Larsen Chris F,; Burgess, E; Arendt, A.A.; O'Neel, Shad; Johnson, A.J.; Kienholz, C.

    2015-01-01

    Mountain glaciers comprise a small and widely distributed fraction of the world's terrestrial ice, yet their rapid losses presently drive a large percentage of the cryosphere's contribution to sea level rise. Regional mass balance assessments are challenging over large glacier populations due to remote and rugged geography, variable response of individual glaciers to climate change, and episodic calving losses from tidewater glaciers. In Alaska, we use airborne altimetry from 116 glaciers to estimate a regional mass balance of −75 ± 11 Gt yr−1 (1994–2013). Our glacier sample is spatially well distributed, yet pervasive variability in mass balances obscures geospatial and climatic relationships. However, for the first time, these data allow the partitioning of regional mass balance by glacier type. We find that tidewater glaciers are losing mass at substantially slower rates than other glaciers in Alaska and collectively contribute to only 6% of the regional mass loss.

  10. Assessing the Response of Alaska's Glaciers to Post-Little Ice Age Climate Change

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.

    2001-12-01

    A comprehensive survey of the eleven mountain ranges and three island areas in Alaska that presently support glaciers was conducted to determine how glaciers in each area have responded to post-Little Ice Age (LIA) climate change. Today, glaciers cover 5 percent of Alaska, about 75,000 sq. km., range in elevation from 6,000 m to below sea level, and span latitudes from south of 55 degrees N to north of 69 degrees N. During the LIA, Alaskan glaciers expanded significantly, covering 10 percent more area than today. Many different types of data were used to construct baselines and determine glacier change. These include: published descriptions of glaciers (1794 - 2000), historic and modern maps (1794 - 2000), aerial photography (1926 - 2001), ground photography (1884 - 2001), airborne radar (1981 - 1991), satellite radar (1978 - 1998), space photography (1984 - 1994), multi-spectral satellite imagery (1972 - 2001), aerial reconnaissance and field observations by the author (1968 - 2001), and various types of proxy data. Data available varied for each region and glacier. Every mountain range and island group investigated is characterized by significant glacier retreat, thinning, and/or stagnation, especially at lower elevations. At some locations, glaciers have completely disappeared during the twentieth century. In other areas, retreat that started as early as the early eighteenth century, has continued into the twenty-first century. Ironically, in several areas, retreat is resulting in the number of glaciers is actually increasing, but the volume and area of ice is decreasing. The key survey findings are: ALEXANDER ARCHIPELAGO, KODIAK ISLAND, ALEUTIAN ISLANDS: every glacier examined showed evidence of thinning and retreat. Some have disappeared since last being mapped in the mid-twentieth century; COAST MOUNTAINS, ST. ELIAS MOUNTAINS, CHUGACH MOUNTAINS, KENAI MOUNTAINS, WRANGELL MOUNTAINS, ALASKA RANGE, AND THE ALEUTIAN RANGE: more than 95 percent of glaciers ending

  11. Airborne Laser Altimetry Measurements of Glacier Wastage in Alaska and NW Canada

    NASA Astrophysics Data System (ADS)

    Larsen, C. F.; Hock, R. M.; Arendt, A. A.; Zirnheld, S. L.

    2009-12-01

    Laser altimetry elevation profiles of glaciers in NW North America (Alaska, Yukon, and NW British Columbia) have been collected by the University of Alaska Geophysical Institute (UAF-GI) beginning in 1993. Since then, more than 200 glaciers throughout NW North America have been measured, many of them multiple times with typical repeat intervals of 3 to 5 years. All of the largest glaciers here have been profiled, including at least some representative glaciers from every major icefield in NW North America. Over 40 glaciers were surveyed again in the summer of 2009, a significant and unusually large annual addition to our database of surface elevation changes. Beginning in August 2009 we flew the surveys using the new UAF-GI swath mapping LiDAR system which records a 0.5 km wide 3-d map of survey points on an approximately 1 m x 1 m grid along the glacier centerlines. Over 40 glaciers and icefields have now been surveyed 3 or more times over the past 15 years, and these regions have been analyzed for changes in their rates of wastage. These regions include the Stikine Icefield of southeast Alaska, the Columbia Glacier, the Bering-Bagley and Seward-Malaspina systems, the Yakutat Icefield, Glacier Bay, the Harding Icefield, and the Alaska Range. Increased melt rates are generally observed over the most recent 3 to 5 year interval when compared to the previous 5 to 10 years, with many glaciers experiencing a factor of two or greater in their recent area-averaged thinning rates. Hypsometry appears to be a significant factor, with those areas that have relatively low average elevation and low accumulation areas showing stronger effects of the accelerated thinning. In particular, those icefields near the Gulf of Alaska coast, such as the Yakutat, Harding and Brady Icefields, are now rapidly wasting. A few areas that have relatively high elevation accumulation areas appear to have steady rates of thinning, such as within the St. Elias Mountains.

  12. Malaspina Glacier, Alaska

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite covers an area of 55 by 40 kilometers (34 by 25 miles) over the southwest part of the Malaspina Glacier and Icy Bay in Alaska. The composite of infrared and visible bands results in the snow and ice appearing light blue, dense vegetation is yellow-orange and green, and less vegetated, gravelly areas are in orange. According to Dr. Dennis Trabant (U.S. Geological Survey, Fairbanks, Alaska), the Malaspina Glacier is thinning. Its terminal moraine protects it from contact with the open ocean; without the moraine, or if sea level rises sufficiently to reconnect the glacier with the ocean, the glacier would start calving and retreat significantly. ASTER data are being used to help monitor the size and movement of some 15,000 tidal and piedmont glaciers in Alaska. Evidence derived from ASTER and many other satellite and ground-based measurements suggests that only a few dozen Alaskan glaciers are advancing. The overwhelming majority of them are retreating.

    This ASTER image was acquired on June 8, 2001. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next six years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and

  13. Hypsometric control on glacier mass balance sensitivity in Alaska

    NASA Astrophysics Data System (ADS)

    McGrath, D.; Sass, L.; Arendt, A. A.; O'Neel, S.; Kienholz, C.; Larsen, C.; Burgess, E. W.

    2015-12-01

    Mass loss from glaciers in Alaska is dominated by strongly negative surface balances, particularly on small, continental glaciers but can be highly variable from glacier to glacier. Glacier hypsometry can exert significant control on mass balance sensitivity, particularly if the equilibrium line altitude (ELA) is in a broad area of low surface slope. In this study, we explore the spatial variability in glacier response to future climate forcings on the basis of hypsometry. We first derive mass balance sensitivities (30-70 m ELA / 1° C and 40-90 m ELA / 50% decrease in snow accumulation) from the ~50-year USGS Benchmark glaciers mass balance record. We subsequently assess mean climate fields in 2090-2100 derived from the IPCC AR5/CMIP5 RCP 6.0 5-model mean. Over glaciers in Alaska, we find 2-4° C warming and 10-20% increase in precipitation relative to 2006-2015, but a corresponding 0-50% decrease in snow accumulation due to rising temperatures. We assess changes in accumulation area ratios (AAR) to a rising ELA using binned individual glacier hypsometries. For an ELA increase of 150 m, the mean statewide AAR drops by 0.45, representing a 70% reduction in accumulation area on an individual glacier basis. Small, interior glaciers are the primary drivers of this reduction and for nearly 25% of all glaciers, the new ELA exceeds the glacier's maximum elevation, portending eventual loss. The loss of small glaciers, particularly in the drier interior of Alaska will significantly modify streamflow properties (flashy hydrographs, earlier and reduced peak flows, increased interannual variability, warmer temperatures) with poorly understood downstream ecosystem and oceanographic impacts.

  14. Studies of Bagley Icefield during surge and Black Rapids Glacier, Alaska, using spaceborne SAR interferometry

    NASA Astrophysics Data System (ADS)

    Fatland, Dennis Robert

    1998-12-01

    This thesis presents studies of two temperate valley glaciers---Bering Glacier in the Chugach-St.Elias Mountains, South Central Alaska, and Black Rapids Glacier in the Alaska Range, Interior Alaska---using differential spaceborne radar interferometry. The first study was centered on the 1993--95 surge of Bering Glacier and the resultant ice dynamics on its accumulation area, the Bagley Icefield. The second study site was chosen for purposes of comparison of the interferometry results with conventional field measurements, particularly camera survey data and airborne laser altimetry. A comprehensive suite of software was written to interferometrically process synthetic aperture radar (SAR) data in order to derive estimates of surface elevation and surface velocity on these subject glaciers. In addition to these results, the data revealed unexpected but fairly common concentric rings called 'phase bull's-eyes', image features typically 0.5 to 4 km in diameter located over the central part of various glaciers. These bull's-eyes led to a hypothetical model in which they were interpreted to indicate transitory instances of high subglacial water pressure that locally lift the glacier from its bed by several centimeters. This model is associated with previous findings about the nature of glacier bed hydrology and glacier surging. In addition to the dynamical analysis presented herein, this work is submitted as a contribution to the ongoing development of spaceborne radar interferometry as a glaciological tool.

  15. Southern Alaska Glaciers: Spatial and Temporal Variations in Ice Volume

    NASA Astrophysics Data System (ADS)

    Sauber, J.; Molnia, B. F.; Luthcke, S.; Rowlands, D.; Harding, D.; Carabajal, C.; Hurtado, J. M.; Spada, G.

    2004-12-01

    footprint returns to estimate glacier ice elevations and surface characteristics. To obtain the optimal ICESat results, we are reprocessing the ICESat data from Alaska to provide a well-calibrated regional ICESat solution. We anticipate that our ICESat results combined with earlier data will provide new constraints on the temporal and spatial variations in ice volume of individual Alaskan mountain ranges. These results allow us to address how recent melting of the southern Alaska glaciers contribute to short-term sea-level rise. Our results will also enable us to quantify crustal stress changes due to ice mass fluctuations and to assess the influence of ice mass changes on the seismically active southern Alaskan plate boundary zone.

  16. A Century of Retreat at Portage Glacier, South-Central Alaska

    USGS Publications Warehouse

    Kennedy, Ben W.; Trabant, Dennis C.; Mayo, Lawrence R.

    2006-01-01

    Introduction: The Portage Glacier, in south-central Alaska, is viewed by thousands of visitors annually who come to the U.S. Forest Service Begich, Boggs Visitor Center located on the road system between Anchorage and Whittier, Alaska. During the past century, the terminus of the glacier has retreated nearly 5 kilometers to its present location (fig. 1). Like other glaciers that terminate in water, such as Columbia Glacier near Valdez or Mendenhall Glacier near Juneau, Portage Glacier has experienced accelerated retreats in recent decades that likely were initially triggered by climate change begun at the end of the Little Ice Age in the mid-1800s and subsequently controlled in recent history primarily by calving of the glacier terminus. Photographic records of the terminus covering 1914 until present day track the patterns of retreat. These data, coupled with USGS climate information collected from the southern end of the ice field, provide insight to the patterns of retreat that might be observed in the future.

  17. Glacier and Climate Studies West Gulkana Glacier and Environs, Alaska

    DTIC Science & Technology

    1988-09-01

    Sauberer and Dirmhirn 1952; Hoinkes 1970; Holiagren 1971; Ambach 1974) have shown that under cloudy conditions, the longwave incoming radiation component...Rapids Glacier, Alaska. Transactions of the American Geophysical Union 34:345. 60 Sauberer , F., and I. Dirmhirn. 1952. Der strahlungshaushalt horizontaler

  18. A new satellite-derived glacier inventory for Western Alaska

    NASA Astrophysics Data System (ADS)

    Le Bris, Raymond; Frey, Holger; Paul, Frank; Bolch, Tobias

    2010-05-01

    Glaciers and ice caps are essential components of studies related to climate change impact assessment. Glacier inventories provide the required baseline data to perform the related analysis in a consistent and spatially representative manner. In particular, the calculation of the current and future contribution to global sea-level rise from heavily glacierized regions is a major demand. One of the regions, where strong mass losses and geometric changes of glaciers have been observed recently is Alaska. Unfortunately, the digitally available data base of glacier extent is quite rough and based on rather old maps from the 1960s. Accordingly, the related calculations and extrapolations are imprecise and an updated glacier inventory is urgently required. Here we present first results of a new glacier inventory for Western Alaska that is prepared in the framework of the ESA project GlobGlacier and is based on freely available orthorectified Landsat TM and ETM+ scenes from USGS. The analysed region covers the Tordrillo, Chigmit and Chugach Mts. as well as the Kenai Peninsula. In total, 8 scenes acquired between 2002 and 2009 were used covering c. 20.420 km2 of glaciers. All glacier types are present in this region, incl. outlet glaciers from icefields, glacier clad volcanoes, and calving glaciers. While well established automated glacier mapping techniques (band rationing) are applied to map clean and slightly dirty glacier ice, many glaciers are covered by debris or volcanic ash and outlines need manual corrections during post-processing. Prior to the calculation of drainage divides from DEM-based watershed analysis, we performed a cross-comparative analysis of DEMs from USGS, ASTER (GDEM) and SRTM 1 for Kenai Peninsula. This resulted in the decision to use the USGS DEM for calculating the drainage divides and most of the topographic inventory parameters, and the more recent GDEM to derive minimum elevation for each glacier. A first statistical analysis of the results

  19. Low-frequency radar sounder over Glaciers in Alaska, Greenland and Antarctica

    NASA Astrophysics Data System (ADS)

    Mouginot, J.; Rignot, E. J.; Gim, Y.; Kirchner, D. L.; Merritt, S.; Robison, W. T.

    2009-12-01

    Ice-thickness and basal layer topography measurements are needed to calculate fluxes through fast-flowing outlet glaciers in Greenland, Alaska, Patagonia and Antarctica. However, relatively high attenuation of radio waves by dielectric absorption and volume scattering from englacial water restrains detection of the bed through warm deep ice. Using a low-frequency (1-5 MHz) airborne radar, we have sounded outlet fast glaciers over Greenland (Store, Upernavik, Hellheim, …), East Antarctica (David, Mertz, Dibble, Byrd, …) and Alaska (Bering, Maslapina, Bagley, …). We will show that we detected the bed through temperate ice up to 1000m thick over Bering and Maslapina Glaciers and also point out difficulty in detecting bed of other Alaska glaciers due to off-nadir returns. We will also make direct comparison of this radar and previous airborne measurements in Greenland and Antarctica in order to discuss a potential improvement of bedrock detectability in temperate ice.

  20. End-of-winter snow depth variability on glaciers in Alaska

    NASA Astrophysics Data System (ADS)

    McGrath, Daniel; Sass, Louis; O'Neel, Shad; Arendt, Anthony; Wolken, Gabriel; Gusmeroli, Alessio; Kienholz, Christian; McNeil, Christopher

    2015-08-01

    A quantitative understanding of snow thickness and snow water equivalent (SWE) on glaciers is essential to a wide range of scientific and resource management topics. However, robust SWE estimates are observationally challenging, in part because SWE can vary abruptly over short distances in complex terrain due to interactions between topography and meteorological processes. In spring 2013, we measured snow accumulation on several glaciers around the Gulf of Alaska using both ground- and helicopter-based ground-penetrating radar surveys, complemented by extensive ground truth observations. We found that SWE can be highly variable (40% difference) over short spatial scales (tens to hundreds of meters), especially in the ablation zone where the underlying ice surfaces are typically rough. Elevation provides the dominant basin-scale influence on SWE, with gradients ranging from 115 to 400 mm/100 m. Regionally, total accumulation and the accumulation gradient are strongly controlled by a glacier's distance from the coastal moisture source. Multiple linear regressions, used to calculate distributed SWE fields, show that robust results require adequate sampling of the true distribution of multiple terrain parameters. Final SWE estimates (comparable to winter balances) show reasonable agreement with both the Parameter-elevation Relationships on Independent Slopes Model climate data set (9-36% difference) and the U.S. Geological Survey Alaska Benchmark Glaciers (6-36% difference). All the glaciers in our study exhibit substantial sensitivity to changing snow-rain fractions, regardless of their location in a coastal or continental climate. While process-based SWE projections remain elusive, the collection of ground-penetrating radar (GPR)-derived data sets provides a greatly enhanced perspective on the spatial distribution of SWE and will pave the way for future work that may eventually allow such projections.

  1. Satellite Observations of Glacier Surface Velocities in Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Elliott, J.; Melkonian, A. K.; Pritchard, M. E.

    2012-12-01

    Glaciers in southeast Alaska are undergoing rapid changes and are significant contributors to sea level rise. A key to understanding the ice dynamics is knowledge of the surface velocities, which can be used with ice thickness measurements to derive mass flux rates. For many glaciers in Alaska, surface velocity estimates either do not exist or are based on data that are at least a decade old. Here we present updated maps of glacier surface velocities in southeast Alaska produced through a pixel tracking technique using synthetic aperture radar data and high-resolution optical imagery. For glaciers with previous velocity estimates, we will compare the results and discuss possible implications for ice dynamics. We focus on Glacier Bay and the Stikine Icefield, which contain a number of fast-flowing tidewater glaciers including LeConte, Johns Hopkins, and La Perouse. For the Johns Hopkins, we will also examine the influence a massive landslide in June 2012 had on flow dynamics. Our velocity maps show that within Glacier Bay, the highest surface velocities occur on the tidewater glaciers. La Perouse, the only Glacier Bay glacier to calve directly into the Pacific Ocean, has maximum velocities of 3.5 - 4 m/day. Johns Hopkins Glacier shows 4 m/day velocities at both its terminus and in its upper reaches, with lower velocities of ~1-3 m/day in between those two regions. Further north, the Margerie Glacier has a maximum velocity of ~ 4.5 m/day in its upper reaches and a velocity of ~ 2 m/day at its terminus. Along the Grand Pacific terminus, the western terminus fed by the Ferris Glacier displays velocities of about 1 m/day while the eastern terminus has lower velocities of < 0.5 m/day. The lake terminating glaciers along the Pacific coast have overall lower surface velocities, but they display complex flow patterns. The Alsek Glacier displays maximum velocities of 2.5 m/day above where it divides into two branches. Velocities at the terminus of the northern branch reach 1

  2. Surge of a Complex Glacier System - The Current Surge of the Bering-Bagley Glacier System, Alaska

    NASA Astrophysics Data System (ADS)

    Herzfeld, U. C.; McDonald, B.; Trantow, T.; Hale, G.; Stachura, M.; Weltman, A.; Sears, T.

    2013-12-01

    Understanding fast glacier flow and glacial accelerations is important for understanding changes in the cryosphere and ultimately in sea level. Surge-type glaciers are one of four types of fast-flowing glaciers --- the other three being continuously fast-flowing glaciers, fjord glaciers and ice streams --- and the one that has seen the least amount of research. The Bering-Bagley Glacier System, Alaska, the largest glacier system in North America, surged in 2011 and 2012. Velocities decreased towards the end of 2011, while the surge kinematics continued to expand. A new surge phase started in summer and fall 2012. In this paper, we report results from airborne observations collected in September 2011, June/July and September/October 2012 and in 2013. Airborne observations include simultaneously collected laser altimeter data, videographic data, GPS data and photographic data and are complemented by satellite data analysis. Methods range from classic interpretation of imagery to analysis and classification of laser altimeter data and connectionist (neural-net) geostatistical classification of concurrent airborne imagery. Results focus on the characteristics of surge progression in a large and complex glacier system (as opposed to a small glacier with relatively simple geometry). We evaluate changes in surface elevations including mass transfer and sudden drawdowns, crevasse types, accelerations and changes in the supra-glacial and englacial hydrologic system. Supraglacial water in Bering Glacier during Surge, July 2012 Airborne laser altimeter profile across major rift in central Bering Glacier, Sept 2011

  3. Simultaneous observations of ice motion, calving and seismicity on the Yahtse Glacier, Alaska. (Invited)

    NASA Astrophysics Data System (ADS)

    Larsen, C. F.; Bartholomaus, T. C.; O'Neel, S.; West, M. E.

    2010-12-01

    We observe ice motion, calving and seismicity simultaneously and with high-resolution on an advancing tidewater glacier in Icy Bay, Alaska. Icy Bay’s tidewater glaciers dominate regional glacier-generated seismicity in Alaska. Yahtse emanates from the St. Elias Range near the Bering-Bagley-Seward-Malaspina Icefield system, the most extensive glacier cover outside the polar regions. Rapid rates of change and fast flow (>16 m/d near the terminus) at Yahtse Glacier provide a direct analog to the disintegrating outlet systems in Greenland. Our field experiment co-locates GPS and seismometers on the surface of the glacier, with a greater network of bedrock seismometers surrounding the glacier. Time-lapse photogrammetry, fjord wave height sensors, and optical survey methods monitor iceberg calving and ice velocity near the terminus. This suite of geophysical instrumentation enables us to characterize glacier motion and geometry changes while concurrently listening for seismic energy release. We are performing a close examination of calving as a seismic source, and the associated mechanisms of energy transfer to seismic waves. Detailed observations of ice motion (GPS and optical surveying), glacier geometry and iceberg calving (direct observations and timelapse photogrammetry) have been made in concert with a passive seismic network. Combined, the observations form the basis of a rigorous analysis exploring the relationship between glacier-generated seismic events and motion, glacier-fiord interactions, calving and hydraulics. Our work is designed to demonstrate the applicability and utility of seismology to study the impact of climate forcing on calving glaciers.

  4. Glacier-volcano interactions in the north crater of Mt. Wrangell, Alaska

    USGS Publications Warehouse

    Abston, Carl; Motyka, Roman J.; McNutt, Stephen; Luthi, Martin; Truffer, Martin

    2007-01-01

    Glaciological and related observations from 1961 to 2005 at the summit of Mt Wrangell (62.008 N, 144.028W; 4317 m a.s.l.), a massive glacier-covered shield volcano in south-central Alaska, show marked changes that appear to have been initiated by the Great Alaska Earthquake (MW = 9.2) of 27 March 1964. The 4 x 6 km diameter, ice-filled Summit Caldera with several post-caldera craters on its rim, comprises the summit region where annual snow accumulation is 1–2 m of water equivalent and the mean annual temperature, measured 10 m below the snow surface, is –20°C. Precision surveying, aerial photogrammetry and measurements of temperature and snow accumulation were used to measure the loss of glacier ice equivalent to about 0.03 km3 of water from the North Crater in a decade. Glacier calorimetry was used to calculate the associated heat flux, which varied within the range 20–140W m–2; total heat flow was in the range 20–100 MW. Seismicity data from the crater’s rim show two distinct responses to large earthquakes at time scales from minutes to months. Chemistry of water and gas from fumaroles indicates a shallow magma heat source and seismicity data are consistent with this interpretation.

  5. Analysis of a GRACE Global Mascon Solution for Gulf of Alaska Glaciers

    NASA Technical Reports Server (NTRS)

    Arendt, Anthony; Luthcke, Scott B.; Gardner, Alex; O'Neel, Shad; Hill, David; Moholdt, Geir; Abdalati, Waleed

    2013-01-01

    We present a high-resolution Gravity Recovery and Climate Experiment (GRACE) mascon solution for Gulf of Alaska (GOA) glaciers and compare this with in situ glaciological, climate and other remote-sensing observations. Our GRACE solution yields a GOA glacier mass balance of -6511 Gt a(exp.-1) for the period December 2003 to December 2010, with summer balances driving the interannual variability. Between October/November 2003 and October 2009 we obtain a mass balance of -6111 Gt a(exp. -1) from GRACE, which compares well with -6512 Gt a(exp. -1) from ICESat based on hypsometric extrapolation of glacier elevation changes. We find that mean summer (June-August) air temperatures derived from both ground and lower-troposphere temperature records were good predictors of GRACE-derived summer mass balances, capturing 59% and 72% of the summer balance variability respectively. Large mass losses during 2009 were likely due to low early melt season surface albedos, measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) and likely associated with the 31 March 2009 eruption of Mount Redoubt, southwestern Alaska. GRACE data compared well with in situ measurements atWolverine Glacier (maritime Alaska), but poorly with those at Gulkana Glacier (interior Alaska). We conclude that, although GOA mass estimates from GRACE are robust over the entire domain, further constraints on subregional and seasonal estimates are necessary to improve fidelity to ground observations.

  6. Evolution of glacier-dammed lakes through space and time; Brady Glacier, Alaska, USA

    NASA Astrophysics Data System (ADS)

    Capps, Denny M.; Clague, John J.

    2014-04-01

    Glacier-dammed lakes and their associated jökulhlaups cause severe flooding in downstream areas and substantially influence glacier dynamics. Brady Glacier in southeast Alaska is well suited for a study of these phenomena because it presently dams 10 large (> 1 km2) lakes. Our objectives are to demonstrate how Brady Glacier and its lakes have co-evolved in the past and to apply this knowledge to predict how the glacier and its lakes will likely evolve in the future. To accomplish these objectives, we georeferenced a variety of maps, airphotos, and optical satellite imagery to characterize the evolution of the glacier and lakes. We also collected bathymetry data and created bathymetric maps of select lakes. Despite small advances and retreats, the main terminus of Brady Glacier has changed little since 1880. However, it downwasted at rates of 2-3 m/y between 1948 and 2000, more than the regional average. The most dramatic retreat (2 km) and downwasting (120 m) have occurred adjacent to glacier-dammed lakes and are primarily the result of calving. Brady Glacier is a former tidewater glacier. With continued downwasting, Brady Glacier may return to a tidewater regime and enter into a phase of catastrophic retreat. The situation at Brady Glacier is not unique, and the lessons learned here can be applied elsewhere to identify future glacier-dammed lakes, jökulhlaups, and glacier instability.

  7. Analysis of Seasonal Variability in Gulf of Alaska Glacier Mass Balance using GRACE

    NASA Astrophysics Data System (ADS)

    Arendt, A. A.; Luthcke, S. B.; Oneel, S.; Gardner, A. S.; Hill, D. F.

    2011-12-01

    Mass variations of glaciers in Alaska/northwestern Canada must be quantified in order to assess impacts on ecosystems, human infrastructure, and global sea level. Here we combine Gravity Recovery and Climate Experiment (GRACE) observations with a wide range of satellite and field data to investigate drivers of these recent changes, with a focus on seasonal variations. Our central focus will be the exceptionally high mass losses of 2009, which do not correlate with weather station temperature and precipitation data, but may be linked to ash fall from the March 31, 2009 eruption of Mt. Redoubt. The eruption resulted in a significant decrease in MODIS-derived surface albedo over many Alaska glacier regions, and likely contributed to some of the 2009 anomalous mass loss observed by GRACE. We also focus on the Juneau and Stikine Icefield regions that are far from the volcanic eruption but experienced the largest mass losses of any region in 2009. Although rapid drawdown of tidewater glaciers was occurring in southeast Alaska during 2009, we show these changes were probably not sufficiently widespread to explain all of the GRACE signal in those regions. We examine additional field and satellite datasets to quantify potential errors in the climate and GRACE fields that could result in the observed discrepancy.

  8. Glaciers along proposed routes extending the Copper River Highway, Alaska

    USGS Publications Warehouse

    Glass, R.L.

    1996-01-01

    Three inland highway routes are being considered by the Alaska Department of Transportation and Public Facilities to connect the community of Cordova in southcentral Alaska to a statewide road system. The routes use part of a Copper River and Northwest Railway alignment along the Copper River through mountainous terrain having numerous glaciers. An advance of any of several glaciers could block and destroy the roadway, whereas retreating glaciers expose large quantities of unconsolidated, unvegetated, and commonly ice-rich sediments. The purpose of this study was to map historical locations of glacier termini near these routes and to describe hazards associated with glaciers and seasonal snow. Historical and recent locations of glacier termini along the proposed Copper River Highway routes were determined by reviewing reports and maps and by interpreting aerial photographs. The termini of Childs, Grinnell, Tasnuna, and Woodworth Glaciers were 1 mile or less from a proposed route in the most recently available aerial photography (1978-91); the termini of Allen, Heney, and Schwan Glaciers were 1.5 miles or less from a proposed route. In general, since 1911, most glaciers have slowly retreated, but many glaciers have had occasional advances. Deserted Glacier and one of its tributary glaciers have surge-type medial moraines, indicating potential rapid advances. The terminus of Deserted Glacier was about 2.1 miles from a proposed route in 1978, but showed no evidence of surging. Snow and rock avalanches and snowdrifts are common along the proposed routes and will periodically obstruct the roadway. Floods from ice-dammed lakes also pose a threat. For example, Van Cleve Lake, adjacent to Miles Glacier, is as large as 4.4 square miles and empties about every 6 years. Floods from drainages of Van Cleve Lake have caused the Copper River to rise on the order of 20 feet at Million Dollar Bridge.

  9. Analysis of a GRACE global mascon solution for Gulf of Alaska glaciers

    USGS Publications Warehouse

    Arendt, Anthony; Luthcke, Scott; Gardner, Alex; O'Neel, Shad; Hill, David; Moholdt, Geir; Abdalati, Waleed

    2013-01-01

    We present a high-resolution Gravity Recovery and Climate Experiment (GRACE) mascon solution for Gulf of Alaska (GOA) glaciers and compare this with in situ glaciological, climate and other remote-sensing observations. Our GRACE solution yields a GOA glacier mass balance of –65 ± 11 Gt a–1 for the period December 2003 to December 2010, with summer balances driving the interannual variability. Between October/November 2003 and October 2009 we obtain a mass balance of –61 ± 11 Gt a–1 from GRACE, which compares well with –65 ± 12 Gt a–1 from ICESat based on hypsometric extrapolation of glacier elevation changes. We find that mean summer (June–August) air temperatures derived from both ground and lower-troposphere temperature records were good predictors of GRACE-derived summer mass balances, capturing 59% and 72% of the summer balance variability respectively. Large mass losses during 2009 were likely due to low early melt season surface albedos, measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) and likely associated with the 31 March 2009 eruption of Mount Redoubt, southwestern Alaska. GRACE data compared well with in situ measurements at Wolverine Glacier (maritime Alaska), but poorly with those at Gulkana Glacier (interior Alaska). We conclude that, although GOA mass estimates from GRACE are robust over the entire domain, further constraints on subregional and seasonal estimates are necessary to improve fidelity to ground observations.

  10. Fifty-Year Record of Glacier Change Reveals Shifting Climate in the Pacific Northwest and Alaska, USA

    USGS Publications Warehouse

    ,

    2009-01-01

    Fifty years of U.S. Geological Survey (USGS) research on glacier change shows recent dramatic shrinkage of glaciers in three climatic regions of the United States. These long periods of record provide clues to the climate shifts that may be driving glacier change. The USGS Benchmark Glacier Program began in 1957 as a result of research efforts during the International Geophysical Year (Meier and others, 1971). Annual data collection occurs at three glaciers that represent three climatic regions in the United States: South Cascade Glacier in the Cascade Mountains of Washington State; Wolverine Glacier on the Kenai Peninsula near Anchorage, Alaska; and Gulkana Glacier in the interior of Alaska (fig. 1).

  11. GLACIER BAY NATIONAL MONUMENT WILDERNESS STUDY AREA, ALASKA.

    USGS Publications Warehouse

    Brew, David A.; Kimball, Arthur L.

    1984-01-01

    Glacier Bay National Monument is a highly scenic and highly mineralized area about 100 mi west of Juneau, Alaska. Four deposits with demonstrated resources of nickel, copper, zinc, and molybdenum have been identified within the monument and eleven areas of probable or substantiated mineral-resource potential have been identified. The monument is highly mineralized in comparison with most areas of similar size elsewhere in southeastern Alaska, and present estimates of mineral resources are considered conservative.

  12. Contribution of glacier runoff to freshwater discharge into the Gulf of Alaska

    USGS Publications Warehouse

    Neal, E.G.; Hood, E.; Smikrud, K.

    2010-01-01

    Watersheds along the Gulf of Alaska (GOA) are undergoing climate warming, glacier volume loss, and shifts in the timing and volume of freshwater delivered to the eastern North Pacific Ocean. We estimate recent mean annual freshwater discharge to the GOA at 870 km3 yr-1. Small distributed coastal drainages contribute 78% of the freshwater discharge with the remainder delivered by larger rivers penetrating coastal ranges. Discharge from glaciers and icefields accounts for 47% of total freshwater discharge, with 10% coming from glacier volume loss associated with rapid thinning and retreat of glaciers along the GOA. Our results indicate the region of the GOA from Prince William Sound to the east, where glacier runoff contributes 371 km3 yr -1, is vulnerable to future changes in freshwater discharge as a result of glacier thinning and recession. Changes in timing and magnitude of freshwater delivery to the GOA could impact coastal circulation as well as biogeochemical fluxes to near-shore marine ecosystems and the eastern North Pacific Ocean. Copyright ?? 2010 by the American Geophysical Union.

  13. Glacierized headwater streams as aquifer recharge corridors, subarctic Alaska

    USGS Publications Warehouse

    Lilledahl, Anna K.; Gadeke, Anne; O'Neel, Shad; Gatesman, T. A.; Douglas, T. A.

    2017-01-01

    Arctic river discharge has increased in recent decades although sources and mechanisms remain debated. Abundant literature documents permafrost thaw and mountain glacier shrinkage over the past decades. Here we link glacier runoff to aquifer recharge via a losing headwater stream in subarctic Interior Alaska. Field measurements in Jarvis Creek (634 km2), a subbasin of the Tanana and Yukon Rivers, show glacier meltwater runoff as a large component (15–28%) of total annual streamflow despite low glacier cover (3%). About half of annual headwater streamflow is lost to the aquifer (38 to 56%). The estimated long-term change in glacier-derived aquifer recharge exceeds the observed increase in Tanana River base flow. Our findings suggest a linkage between glacier wastage, aquifer recharge along the headwater stream corridor, and lowland winter discharge. Accordingly, glacierized headwater streambeds may serve as major aquifer recharge zones in semiarid climates and therefore contributing to year-round base flow of lowland rivers.

  14. Exploring tidewater glacier retreat using past and current observations at Columbia Glacier, Alaska. (Invited)

    NASA Astrophysics Data System (ADS)

    O'Neel, S.; Pfeffer, W. T.; Howat, I. M.; Conway, H.; Columbia Glacier Consortium

    2010-12-01

    Since fulfilling Austin Post’s prediction of impending retreat in the late 1970s, Columbia Glacier has repeatedly surprised both casual and careful observers with its ability for rapid change. Over the last three decades, Columbia Glacier has lost approximately 18 km of its original 66 km length, while thinning by approximately 50% at the present terminus. The total ice volume lost to the Gulf of Alaska Estimates upwards of 120 km3 constrain the total ice volume lost to the Gulf of Alaska. Recently, the terminus supported a ~1.5 km long floating tongue for over than a year, contradicting the common assumption that the mechanical properties of temperate ice prohibit flotation over sustained time intervals. The rich history of study offers an opportunity to better understand tidewater glacier retreat, and a valuable analog to the dynamic instability underway at several ice sheet outlet glaciers. Current research aims to improve processing resolution of existing aerial photographic data, while complimenting the 30-year photogrammetric record with a suite of field observations. Recent instrumentation includes: oblique time lapse and still imagery, semi-permanent GPS, airborne radar, mass balance, passive seismology and LiDAR. This presentation will focus on innovative methods developed in recent field seasons, sharing insight each has provided into the retreat process . 1The Columbia Glacier Consortium consists of: Fabian Walter (SIO), Kenichi Matsuoka (NPI), Ben Smith (UW), Ethan Welty (CU-Boulder), Chris Larsen (UAF), Dave Finnegan (CRREL), Dan McNamara (USGS), Yushin Ahn (OSU), Julie Markus (OSU), Adam LeWinter (EIS).

  15. The Border Ranges fault system in Glacier Bay National Park, Alaska: Evidence for major early Cenozoic dextral strike-slip motion

    USGS Publications Warehouse

    Smart, K.J.; Pavlis, T.L.; Sisson, V.B.; Roeske, S.M.; Snee, L.W.

    1996-01-01

    The Border Ranges fault system of southern Alaska, the fundamental break between the arc basement and the forearc accretionary complex, is the boundary between the Peninsular-Alexander-Wrangellia terrane and the Chugach terrane. The fault system separates crystalline rocks of the Alexander terrane from metamorphic rocks of the Chugach terrane in Glacier Bay National Park. Mylonitic rocks in the zone record abundant evidence for dextral strike-slip motion along north-northwest-striking subvertical surfaces. Geochronologic data together with regional correlations of Chugach terrane rocks involved in the deformation constrain this movement between latest Cretaceous and Early Eocene (???50 Ma). These findings are in agreement with studies to the northwest and southeast along the Border Ranges fault system which show dextral strike-slip motion occurring between 58 and 50 Ma. Correlations between Glacier Bay plutons and rocks of similar ages elsewhere along the Border Ranges fault system suggest that as much as 700 km of dextral motion may have been accommodated by this structure. These observations are consistent with oblique convergence of the Kula plate during early Cenozoic and forearc slivering above an ancient subduction zone following late Mesozoic accretion of the Peninsular-Alexander-Wrangellia terrane to North America.

  16. The slow advance of a calving glacier: Hubbard Glacier, Alaska, U.S.A

    USGS Publications Warehouse

    Trabant, D.C.; Krimmel, R.M.; Echelmeyer, K.A.; Zirnheld, S.L.; Elsberg, D.H.

    2003-01-01

    Hubbard Glacier is the largest tidewater glacier in North America. In contrast to most glaciers in Alaska and northwestern Canada, Hubbard Glacier thickened and advanced during the 20th century. This atypical behavior is an important example of how insensitive to climate a glacier can become during parts of the calving glacier cycle. As this glacier continues to advance, it will close the seaward entrance to 50 km long Russell Fjord and create a glacier-dammed, brackish-water lake. This paper describes measured changes in ice thickness, ice speed, terminus advance and fjord bathymetry of Hubbard Glacier, as determined from airborne laser altimetry, aerial photogrammetry, satellite imagery and bathymetric measurements. The data show that the lower regions of the glacier have thickened by as much as 83 m in the last 41 years, while the entire glacier increased in volume by 14.1 km3. Ice speeds are generally decreasing near the calving face from a high of 16.5 m d-1 in 1948 to 11.5 m d-1 in 2001. The calving terminus advanced at an average rate of about 16 m a-1 between 1895 and 1948 and accelerated to 32 m a-1 since 1948. However, since 1986, the advance of the part of the terminus in Disenchantment Bay has slowed to 28 m a-1. Bathymetric data from the lee slope of the submarine terminal moraine show that between 1978 and 1999 the moraine advanced at an average rate of 32 m a-1, which is the same as that of the calving face.

  17. Earthshots: Satellite images of environmental change – Hubbard Glacier, Alaska, USA

    USGS Publications Warehouse

    Adamson, Thomas

    2015-01-01

    These Landsat images illustrate an unusual event that was observed twice at the terminus of Hubbard Glacier. Hubbard temporarily blocked Russell Fjord (a long, narrow inlet of the sea) from the rest of Disenchantment Bay and the Gulf of Alaska. It’s even possible that the glacier could one day permanently block the fjord.

  18. Studies of contemporary glacier basal ice cryostructures to identify buried basal ice in the permafrost: an example from the Matanuska Glacier, Alaska.

    NASA Astrophysics Data System (ADS)

    Stephani, E.; Fortier, D.; Kanevskiy, M.; Dillon, M.; Shur, Y.

    2007-12-01

    In the permafrost, massive ice bodies occur as buried glacier ice, aufeis ice, recrystalized snow, massive segregated ice, injection ice, ice wedges or ice formed in underground cavities ("pool ice", "thermokarst-cave ice"). The origin of massive ice bodies in the permafrost bears considerable implications for the reconstructions of paleoenvironments and paleoclimates. Our work aims to help the permafrost scientists working on massive icy sediments to distinguish buried basal glacier ice from other types of buried ice. To do so, the properties and structure of contemporary basal ice must be well known. Field investigations at the Matanuska Glacier (Chugach range, South-central Alaska), consisted in descriptions and sampling of natural basal ice exposures. We have used the basal ice facies classification of Lawson (1979) which is simple, easy to use in the field and provides a good framework for the description of basal ice exposures. Cores were extracted and brought back to the laboratory for water and grain-size analyses. The sediments forming the cryostructure were mostly polymodal, poorly sorted gravelly silt to gravelly fine sand, with mud contents generally over 50%. These data will be used to calibrate three-dimensional (3D) models produced from micro-tomographic scans of basal ice which will produce quantitative estimates of volumetric ice and sediments contents of basal ice cryostructures. Ultimately, visual qualitative and quantitative characterization of the basal ice components of 3D models together with field observations and laboratory analysis will allow for a new micro-facies and cryostructures classification of the basal ice. Our work will also have applications in glaciology, glacial geology, geomorphology, Quaternary and paleo-climatological studies based on inferences made from the structure of basal glacier ice. This paper presents the internal composition of the basal ice facies in terms of cryostructures assemblages (Fortier et al.: 2007) and

  19. Glacier Change and Biologic Succession: a new Alaska Summer Research Academy (ASRA) Science Camp Module for Grades 8-12 in Glacier Bay National Park, Alaska

    NASA Astrophysics Data System (ADS)

    Connor, C. L.; Drake, J.; Good, C.; Fatland, R.; Hakala, M.; Woodford, R.; Donohoe, R.; Brenner, R.; Moriarty, T.

    2008-12-01

    During the summer of 2008, university faculty and instructors from southeast Alaska joined the University Alaska Fairbanks(UAF)Alaska Summer Research Academy(ASRA)to initiate a 12-day module on glacier change and biologic succession in Glacier Bay National Park. Nine students from Alaska, Colorado, Massachusetts, and Texas, made field observations and collected data while learning about tidewater glacier dynamics, plant succession, post-glacial uplift, and habitat use of terrestrial and marine vertebrates and invertebrates in this dynamic landscape that was covered by 6,000 km2 of ice just 250 years ago. ASRA students located their study sites using GPS and created maps in GIS and GOOGLE Earth. They deployed salinometers and temperature sensors to collect vertical profiles of seawater characteristics up-bay near active tidewater glacier termini and down-bay in completely deglaciated coves. ASRA student data was then compared with data collected during the same time period by Juneau undergraduates working on the SEAMONSTER project in Mendenhall Lake. ASRA students traversed actively forming, up-bay recessional moraines devoid of vegetation, and the fully reforested Little Ice Age terminal moraine near Park Headquarters in the lower bay region. Students surveyed marine organisms living between supratidal and subtidal zones near glaciers and far from glaciers, and compared up-bay and down-bay communities. Students made observations and logged sightings of bird populations and terrestrial mammals in a linear traverse from the bay's northwestern most fjord near Mt. Fairweather for 120 km to the bay's entrance, south of Park Headquarters at Bartlett Cove. One student constructed an ROV and was able to deploy a video camera and capture changing silt concentrations in the water column as well as marine life on the fjord bottom. Students also observed exhumed Neoglacial spruce forests and visited outcrops of Silurian reef faunas, now fossilized in Alexander terrane

  20. Knik Glacier, Alaska; summary of 1979, 1980, and 1981 data and introduction of new surveying techniques

    USGS Publications Warehouse

    Mayo, L.R.; Trabant, D.C.

    1982-01-01

    Knik Glacier in south-central Alaska has the potential to reform Lake George, Alaska 's largest glacier-dammed lake. Measurements of surface altitude, snow depth, terminus position, glacier speed, and ice depth are being made in an attempt to determine the mechanisms that could cause a significant re-advance of the glacier. New surveying and data reduction techniques were developed by the authors and employed successfully at Knik Glacier. These include precise geodetic surveying by the ' trisection ' technique, calculation of surface altitude at a specially-fixed ' index point ' from three point measurements on a rough, moving glacier surface, and calculation of ice thickness from low frequency radar measurements. In addition, this report summarizes the data collected from 1979 to 1981 in support of this goal. (USGS)

  1. ICESat Observations of Southern Alaska Glaciers

    NASA Technical Reports Server (NTRS)

    Sauber, Jeanne; Molnia, Bruce F.; Mitchell, Darius

    2003-01-01

    In late February and March, 2003, the Ice, Cloud, and land Elevation Satellite (ICESat) measured ice and land elevations along profiles across southern Alaska. During this initial data acquisition stage ICESat observations were made on 8-day repeat tracks to enable calibration and validation of the ICESat data products. Each profile consists of a series of single point values derived from centroid elevations of an $\\approx$70 m diameter laser footprint. The points are s4pakated by $\\approx$172 m along track. Data siets of 8-day observations (an ascending and descending ground track) crossed the Bering and Malaspina Glacier. Following its 1993--1995 surge; the Bering Glacier has undergone major terminus retreat as well as ike thinning in the abtation zone. During the later part of the 20th century, parts of the Malaspina thinned by about 1 m/yr. The multiple observation profiles across the Bering and Malaspina piedmont lobes obtained in February/March are being geolocated on Landsat images and the elevation profiles will be used for a number o scientific objectives. Based on our simulations of ICESat performance over the varied ice surface of the Jakobshavn Glacier of GReenland, 2003, we expect to measure annual, and possibly seasonal, ice elevation changes on the large Alaskan glaciers. Using elevation data obtained from a second laser, we plan to estimate ice elevation changes on the Bering Glacier between March and October 2003.

  2. Glacier ice mass fluctuations and fault instability in tectonically active Southern Alaska

    NASA Astrophysics Data System (ADS)

    Sauber, Jeanne M.; Molnia, Bruce F.

    2004-07-01

    Across the plate boundary zone in south central Alaska, tectonic strain rates are high in a region that includes large glaciers undergoing wastage (glacier retreat and thinning) and surges. For the coastal region between the Bering and Malaspina Glaciers, the average ice mass thickness changes between 1995 and 2000 range from 1 to 5 m/year. These ice changes caused solid Earth displacements in our study region with predicted values of -10 to 50 mm in the vertical and predicted horizontal displacements of 0-10 mm at variable orientations. Relative to stable North America, observed horizontal rates of tectonic deformation range from 10 to 40 mm/year to the north-northwest and the predicted tectonic uplift rates range from approximately 0 mm/year near the Gulf of Alaska coast to 12 mm/year further inland. The ice mass changes between 1995 and 2000 resulted in discernible changes in the Global Positioning System (GPS) measured station positions of one site (ISLE) located adjacent to the Bagley Ice Valley and at one site, DON, located south of the Bering Glacier terminus. In addition to modifying the surface displacements rates, we evaluated the influence ice changes during the Bering glacier surge cycle had on the background seismic rate. We found an increase in the number of earthquakes ( ML≥2.5) and seismic rate associated with ice thinning and a decrease in the number of earthquakes and seismic rate associated with ice thickening. These results support the hypothesis that ice mass changes can modulate the background seismic rate. During the last century, wastage of the coastal glaciers in the Icy Bay and Malaspina region indicates thinning of hundreds of meters and in areas of major retreat, maximum losses of ice thickness approaching 1 km. Between the 1899 Yakataga and Yakutat earthquakes ( Mw=8.1, 8.1) and prior to the 1979 St. Elias earthquake ( Ms=7.2), the plate interface below Icy Bay was locked and tectonic strain accumulated. We used estimated ice mass

  3. Glacier ice mass fluctuations and fault instability in tectonically active Southern Alaska

    USGS Publications Warehouse

    Sauber, J.M.; Molnia, B.F.

    2004-01-01

    Across the plate boundary zone in south central Alaska, tectonic strain rates are high in a region that includes large glaciers undergoing wastage (glacier retreat and thinning) and surges. For the coastal region between the Bering and Malaspina Glaciers, the average ice mass thickness changes between 1995 and 2000 range from 1 to 5 m/year. These ice changes caused solid Earth displacements in our study region with predicted values of -10 to 50 mm in the vertical and predicted horizontal displacements of 0-10 mm at variable orientations. Relative to stable North America, observed horizontal rates of tectonic deformation range from 10 to 40 mm/year to the north-northwest and the predicted tectonic uplift rates range from approximately 0 mm/year near the Gulf of Alaska coast to 12 mm/year further inland. The ice mass changes between 1995 and 2000 resulted in discernible changes in the Global Positioning System (GPS) measured station positions of one site (ISLE) located adjacent to the Bagley Ice Valley and at one site, DON, located south of the Bering Glacier terminus. In addition to modifying the surface displacements rates, we evaluated the influence ice changes during the Bering glacier surge cycle had on the background seismic rate. We found an increase in the number of earthquakes (ML???2.5) and seismic rate associated with ice thinning and a decrease in the number of earthquakes and seismic rate associated with ice thickening. These results support the hypothesis that ice mass changes can modulate the background seismic rate. During the last century, wastage of the coastal glaciers in the Icy Bay and Malaspina region indicates thinning of hundreds of meters and in areas of major retreat, maximum losses of ice thickness approaching 1 km. Between the 1899 Yakataga and Yakutat earthquakes (Mw=8.1, 8.1) and prior to the 1979 St. Elias earthquake (M s=7.2), the plate interface below Icy Bay was locked and tectonic strain accumulated. We used estimated ice mass

  4. Malaspina Glacier, Alaska, Perspective with Landsat Overlay

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Malaspina Glacier in southeastern Alaska is considered the classic example of a piedmont glacier. Piedmont glaciers occur where valley glaciers exit a mountain range onto broad lowlands, are no longer laterally confined, and spread to become wide lobes. Malaspina Glacier is actually a compound glacier, formed by the merger of several valley glaciers, the most prominent of which seen here are Agassiz Glacier (left) and Seward Glacier (right). In total, Malaspina Glacier is up to 65 kilometers (40 miles) wide and extends up to 45 kilometers (28 miles) from the mountain front nearly to the sea.

    This perspective view was created from a Landsat satellite image and an elevation model generated by the Shuttle Radar Topography Mission (SRTM). Landsat views both visible and infrared light, which have been combined here into a color composite that generally shows glacial ice in light blue, snow in white, vegetation in green, bare rock in grays and tans, and the ocean (foreground) in dark blue. The back (northern) edge of the data set forms a false horizon that meets a false sky.

    Glaciers erode rocks, carry them down slope, and deposit them at the edge of the melting ice, typically in elongated piles called moraines. The moraine patterns at Malaspina Glacier are quite spectacular in that they have huge contortions that result from the glacier crinkling as it gets pushed from behind by the faster-moving valley glaciers.

    Glaciers are sensitive indicators of climatic change. They can grow and thicken with increasing snowfall and/or decreased melting. Conversely, they can retreat and thin if snowfall decreases and/or atmospheric temperatures rise and cause increased melting. Landsat imaging has been an excellent tool for mapping the changing geographic extent of glaciers since 1972. The elevation measurements taken by SRTM in February 2000 now provide a near-global baseline against which future non-polar region glacial thinning or thickening can be assessed.

  5. Short-term velocity measurements at Columbia Glacier, Alaska; August-September 1984

    USGS Publications Warehouse

    Vaughn, B.H.; Raymond, C.F.; Rasmussen, Lowell A.; Miller, D.S.; Michaelson, C.A.; Meier, M.F.; Krimmel, R.M.; Fountain, A.G.; Dunlap, W.W.; Brown, C.S.

    1985-01-01

    Ice velocity data are presented for the lower reach of Columbia Glacier, Alaska. The data span a 29 day period and contain 1,072 angle sightings from two survey stations to 22 markers placed on the ice surface, and 1,621 laser measurements of the distance to one of those markers (number 11) from another station. These short-interval observations were made to investigate the dynamics of the glacier and to provide input to models for estimation of future retreat and iceberg discharge. The mean ice velocity (at marker number 11) was approximately 9 m/day and ranged from 8 to < 15 m/day. The data set includes a well defined 2-day, 50% velocity increase and a clear pattern of velocity fluctuations of about 5% with approximately diurnal and semiurnal periods. (Author 's abstract)

  6. Glacier Ice Mass Fluctuations and Fault Instability in Tectonically Active Southern Alaska

    NASA Technical Reports Server (NTRS)

    SauberRosenberg, Jeanne M.; Molnia, Bruce F.

    2003-01-01

    Across southern Alaska the northwest directed subduction of the Pacific plate is accompanied by accretion of the Yakutat terrane to continental Alaska. This has led to high tectonic strain rates and dramatic topographic relief of more than 5000 meters within 15 km of the Gulf of Alaska coast. The glaciers of this area are extensive and include large glaciers undergoing wastage (glacier retreat and thinning) and surges. The large glacier ice mass changes perturb the tectonic rate of deformation at a variety of temporal and spatial scales. We estimated surface displacements and stresses associated with ice mass fluctuations and tectonic loading by examining GPS geodetic observations and numerical model predictions. Although the glacial fluctuations perturb the tectonic stress field, especially at shallow depths, the largest contribution to ongoing crustal deformation is horizontal tectonic strain due to plate convergence. Tectonic forces are thus the primary force responsible for major earthquakes. However, for geodetic sites located < 10-20 km from major ice mass fluctuations, the changes of the solid Earth due to ice loading and unloading are an important aspect of interpreting geodetic results. The ice changes associated with Bering Glacier s most recent surge cycle are large enough to cause discernible surface displacements. Additionally, ice mass fluctuations associated with the surge cycle can modify the short-term seismicity rates in a local region. For the thrust faulting environment of the study region a large decrease in ice load may cause an increase in seismic rate in a region close to failure whereas ice loading may inhibit thrust faulting.

  7. Hypsometric control on glacier mass balance sensitivity in Alaska and northwest Canada

    NASA Astrophysics Data System (ADS)

    McGrath, D.; Sass, L.; O'Neel, S.; Arendt, A.; Kienholz, C.

    2017-03-01

    Glacier hypsometry provides a first-order approach for assessing a glacier's response to climate forcings. We couple the Randolph Glacier Inventory to a suite of in situ observations and climate model output to examine potential change for the ˜27,000 glaciers in Alaska and northwest Canada through the end of the 21st century. By 2100, based on Representative Concentration Pathways (RCPs) 4.5-8.5 forcings, summer temperatures are predicted to increase between +2.1 and +4.6°C, while solid precipitation (snow) is predicted to decrease by -6 to -11%, despite a +9 to +21% increase in total precipitation. Snow is predicted to undergo a pronounced decrease in the fall, shifting the start of the accumulation season back by ˜1 month. In response to these forcings, the regional equilibrium line altitude (ELA) may increase by +105 to +225 m by 2100. The mass balance sensitivity to this increase is highly variable, with the most substantive impact for glaciers with either limited elevation ranges (often small (<1 km2) glaciers, which account for 80% of glaciers in the region) or those with top-heavy geometries, like icefields. For more than 20% of glaciers, future ELAs, given RCP 6.0 forcings, will exceed the maximum elevation of the glacier, resulting in their eventual demise, while for others, accumulation area ratios will decrease by >60%. Our results highlight the first-order control of hypsometry on individual glacier response to climate change, and the variability that hypsometry introduces to a regional response to a coherent climate perturbation.

  8. Columbia Glacier, Alaska, photogrammetry data set, 1981-82 and 1984-85

    USGS Publications Warehouse

    Krimmel, R.M.

    1987-01-01

    Photogrammetric processing of 12 sets of vertical aerial photography of the Columbia Glacier, Alaska, has measured the altitude and velocity fields of the lowest 14,000 m of the glacier during the periods of September 1981 to October 1982 and October 1984 to September 1985. The data set consists of the location of 3,604 points on the glacier, 1,161 points along the glacier terminus, and 1,116 points along the top of the terminus ice cliff. During the 1981 to 1985 period the terminus of the glacier receded 1,350 m, the ice near the terminus thinned at a rate of 18 m/year, and ice velocity near the terminus tripled, reaching as much as 6,000 m/year. (Author 's abstract)

  9. Holocene glacier fluctuations inferred from lacustrine sediment, Emerald Lake, Kenai Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    LaBrecque, Taylor S.; Kaufman, Darrell S.

    2016-01-01

    Physical and biological characteristics of lacustrine sediment from Emerald Lake were used to reconstruct the Holocene glacier history of Grewingk Glacier, southern Alaska. Emerald Lake is an ice-marginal threshold lake, receiving glaciofluvial sediment when Grewingk Glacier overtops the topographic divide that separates it from the lake. Sub-bottom acoustical profiles were used to locate core sites to maximize both the length and resolution of the sedimentary sequence recovered in the 4-m-long cores. The age model for the composite sequence is based on 13 14C ages and a 210Pb profile. A sharp transition from the basal inorganic mud to organic-rich mud at 11.4 ± 0.2 ka marks the initial retreat of Grewingk Glacier below the divide of Emerald Lake. The overlaying organic-rich mud is interrupted by stony mud that records a re-advance between 10.7 ± 0.2 and 9.8 ± 0.2 ka. The glacier did not spill meltwater into the lake again until the Little Ice Age, consistent with previously documented Little Ice Ages advances on the Kenai Peninsula. The retreat of Grewingk Glacier at 11.4 ka took place as temperature increased following the Younger Dryas, and the subsequent re-advance corresponds with a climate reversal beginning around 11 ka across southern Alaska.

  10. Southern Alaska Glaciers: Spatial and Temporal Variations in Ice Volume

    NASA Technical Reports Server (NTRS)

    Sauber, J.; Molnia, B. F.; Lutchke, S.; Rowlands, D.; Harding, D.; Carabajal, C.; Hurtado, J. M.; Spade, G.

    2004-01-01

    Although temperate mountain glaciers comprise less than 1% of the glacier-covered area on Earth, they are important because they appear to be melting rapidly under present climatic conditions and, therefore, make significant contributions to rising sea level. In this study, we use ICESat observations made in the last 1.5 years of southern Alaska glaciers to estimate ice elevation profiles, ice surface slopes and roughness, and bi-annual and/or annual ice elevation changes. We report initial results from the near coastal region between Yakutat Bay and Cape Suckling that includes the Malaspina and Bering Glaciers. We show and interpret ice elevations changes across the lower reaches of the Bagley Ice Valley for the period between October 2003 and May 2004. In addition, we use off-nadir pointing observations to reference tracks over the Bering and Malaspina Glaciers in order to estimate annual ice elevation change. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Shuttle Radar Topography Mission (SRTM) derived DEMs are used to estimate across track regional slopes between ICESat data acquisitions. Although the distribution and quantity of ICESat elevation profiles with multiple, exact repeat data is currently limited in Alaska, individual ICESat data tracks, provide an accurate reference surface for comparison to other elevation data (e.g. ASTER and SRTM X- and C-band derived DEMs). Specifically we report the elevation change over the Malaspina Glacier's piedmont lobe between a DEM derived from SRTM C-band data acquired in Feb. 2000 and ICESat Laser #2b data from Feb.-March 2004. We also report use of ICESat elevation data to enhance ASTER derived absolute DEMs. Mountain glaciers generally have rougher surfaces and steeper regional slopes than the ice sheets for which the ICESat design was optimized. Therefore, rather than averaging ICESat observations over large regions or relying on crossovers, we are working with well-located ICESat

  11. Hydro-sliding and the Springtime Dynamical Evolution of Kennicott Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Armstrong, W. H., Jr.; Anderson, R. S.

    2017-12-01

    Glacier basal motion is a poorly understood aspect of glacier mechanics that is responsible for the majority of ice flux on fast-flowing glaciers, enables rapid changes in glacier motion, and provides the means by which glaciers shape alpine landscapes. We collect hydrometerologic data and GPS-derived ice surface motion to probe the link between subglacial water pressure and the evolution of glacier velocity on Kennicott Glacier, Alaska. We find a chaotic timeseries of >50 m fill-and-drain sequences on the well-connected ice-marginal Donoho Falls Lake. Glacier velocity in the down-glacier reach responds sensitively to lake stage, with high amplitude diurnal velocity fluctuations during high or rising stage. The timing of velocity peaks precedes peak stage by 2-3 hours, and synchronously shifts earlier in the day throughout our observation period. We find the up-glacier station appears to first speed up in response to longitudinal coupling with accelerating down-glacier ice before responding to local variations in basal traction. We find the transition to responding to local basal conditions results in the glacier behaving more uniformly, with similar magnitude diurnal velocity fluctuations, synchronous timing of velocity extrema across the 10 km study reach, and steadier longitudinal strain rates.

  12. Glacier mass-balance fluctuations in the Pacific Northwest and Alaska, USA

    USGS Publications Warehouse

    Josberger, E.G.; Bidlake, W.R.; March, R.S.; Kennedy, B.W.

    2007-01-01

    The more than 40 year record of net and seasonal mass-balance records from measurements made by the United States Geological Survey on South Cascade Glacier, Washington, and Wolverine and Gulkana Glaciers, Alaska, shows annual and interannual fluctuations that reflect changes in the controlling climatic conditions at regional and global scales. As the mass-balance record grows in length, it is revealing significant changes in previously described glacier mass-balance behavior, and both inter-glacier and glacier-climate relationships. South Cascade and Wolverine Glaciers are strongly affected by the warm and wet maritime climate of the northeast Pacific Ocean. Their net balances have generally been controlled by winter accumulation, with fluctuations that are strongly related to the Pacific Decadal Oscillation (PDO). Recently, warm dry summers have begun to dominate the net balance of the two maritime glaciers, with a weakening of the correlation between the winter balance fluctuations and the PDO. Non-synchronous periods of positive and negative net balance for each glacier prior to 1989 were followed by a 1989-2004 period of synchronous and almost exclusively negative net balances that averaged -0.8 m for the three glaciers.

  13. Glacier-specific elevation changes in western Alaska

    NASA Astrophysics Data System (ADS)

    Paul, Frank; Le Bris, Raymond

    2013-04-01

    Deriving glacier-specific elevation changes from DEM differencing and digital glacier outlines is rather straight-forward if the required datasets are available. Calculating such changes over large regions and including glaciers selected for mass balance measurements in the field, provides a possibility to determine the representativeness of the changes observed at these glaciers for the entire region. The related comparison of DEM-derived values for these glaciers with the overall mean avoids the rather error-prone conversion of volume to mass changes (e.g. due to unknown densities) and gives unit-less correction factors for upscaling the field measurements to a larger region. However, several issues have to be carefully considered, such as proper co-registration of the two DEMs, date and accuracy of the datasets compared, as well as source data used for DEM creation and potential artefacts (e.g. voids). In this contribution we present an assessment of the representativeness of the two mass balance glaciers Gulkana and Wolverine for the overall changes of nearly 3200 glaciers in western Alaska over a ca. 50-year time period. We use an elevation change dataset from a study by Berthier et al. (2010) that was derived from the USGS DEM of the 1960s (NED) and a more recent DEM derived from SPOT5 data for the SPIRIT project. Additionally, the ASTER GDEM was used as a more recent DEM. Historic glacier outlines were taken from the USGS digital line graph (DLG) dataset, corrected with the digital raster graph (DRG) maps from USGS. Mean glacier specific elevation changes were derived based on drainage divides from a recently created inventory. Land-terminating, lake-calving and tidewater glaciers were marked in the attribute table to determine their changes separately. We also investigated the impact of handling potential DEM artifacts in three different ways and compared elevation changes with altitude. The mean elevation changes of Gulkana and Wolverine glaciers (about -0

  14. Ice elevations and surface change on the Malaspina Glacier, Alaska

    USGS Publications Warehouse

    Sauber, J.; Molnia, B.; Carabajal, C.; Luthcke, S.; Muskett, R.

    2005-01-01

    Here we use Ice, Cloud and land Elevation Satellite (ICESat)-derived elevations and surface characteristics to investigate the Malaspina Glacier of southern Alaska. Although there is significant elevation variability between ICESat tracks on this glacier, we were able to discern general patterns in surface elevation change by using a regional digital elevation model (DEM) as a reference surface. Specifically, we report elevation differences between ICESat Laser 1-3 observations (February 2003 - November 2004) and a Shuttle Radar Topography Mission (SRTM)-derived DEM from February 2000. Elevation decreases of up to 20-25 m over a 3-4 year time period were observed across the folded loop moraine on the southern portion of the Malaspina Glacier. Copyright 2005 by the American Geophysical Union.

  15. Monitoring population status of sea otters (Enhydra lutris) in Glacier Bay National Park and Preserve, Alaska: options and considerations

    USGS Publications Warehouse

    Esslinger, George G.; Esler, Daniel N.; Howlin, S.; Starcevich, L.A.

    2015-06-25

    After many decades of absence from southeast Alaska, sea otters (Enhydra lutris) are recolonizing parts of their former range, including Glacier Bay, Alaska. Sea otters are well known for structuring nearshore ecosystems and causing community-level changes such as increases in kelp abundance and changes in the size and number of other consumers. Monitoring population status of sea otters in Glacier Bay will help park researchers and managers understand and interpret sea otter-induced ecosystem changes relative to other sources of variation, including potential human-induced impacts such as ocean acidification, vessel disturbance, and oil spills. This report was prepared for the National Park Service (NPS), Southeast Alaska Inventory and Monitoring Network following a request for evaluation of options for monitoring sea otter population status in Glacier Bay National Park and Preserve. To meet this request, we provide a detailed consideration of the primary method of assessment of abundance and distribution, aerial surveys, including analyses of power to detect interannual trends and designs to reduce variation around annual abundance estimates. We also describe two alternate techniques for evaluating sea otter population status—(1) quantifying sea otter diets and energy intake rates, and (2) detecting change in ages at death. In addition, we provide a brief section on directed research to identify studies that would further our understanding of sea otter population dynamics and effects on the Glacier Bay ecosystem, and provide context for interpreting results of monitoring activities.

  16. Malaspina Glacier, Alaska, Anaglyph with Landsat Overlay

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This anaglyph view of Malaspina Glacier in southeastern Alaska was created from a Landsat satellite image and an elevation model generated by the Shuttle Radar Topography Mission (SRTM). Malaspina Glacier is considered the classic example of a piedmont glacier. Piedmont glaciers occur where valley glaciers exit a mountain range onto broad lowlands, are no longer laterally confined, and spread to become wide lobes. Malaspina Glacier is actually a compound glacier, formed by the merger of several valley glaciers, the most prominent of which seen here are Agassiz Glacier (left) and Seward Glacier (right). In total, Malaspina Glacier is up to 65 kilometers (40 miles) wide and extends up to 45 kilometers (28 miles) from the mountain front nearly to the sea.

    Glaciers erode rocks, carry them down slope, and deposit them at the edge of the melting ice, typically in elongated piles called moraines. The moraine patterns at Malaspina Glacier are quite spectacular in that they have huge contortions that result from the glacier crinkling as it gets pushed from behind by the faster-moving valley glaciers.

    Numerous other features of the glaciers and the adjacent terrain are clearly seen when viewing this image at full resolution. The series of tonal arcs on Agassiz Glacier's extension onto the piedmont are called 'ogives.' These arcs are believed to be seasonal features created by deformation of the glacier as it passes over bedrock irregularities at differing speeds through the year. Assuming one light-and-dark ogive pair per year, the rate of motion of the glacial ice can be estimated (in this case, about 200 meters per year where the ogives are most prominent). Just to the west, moraine deposits abut the eroded bedrock terrain, forming a natural dam that has created a lake. Near the northwest corner of the scene, a recent landslide has deposited rock debris atop a small glacier. Sinkholes are common in many areas of the moraine deposits. The sinkholes form when

  17. Comparison of Glaciological and Gravimetric Glacier Mass Balance Measurements of Taku and Lemon Creek Glaciers, Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Vogler, K.; McNeil, C.; Bond, M.; Getraer, B.; Huxley-Reicher, B.; McNamara, G.; Reinhardt-Ertman, T.; Silverwood, J.; Kienholz, C.; Beedle, M. J.

    2017-12-01

    Glacier-wide annual mass balances (Ba) have been calculated for Taku (726 km2) and Lemon Creek glaciers (10.2 km2) since 1946 and 1953 respectively. These are the longest mass balance records in North America, and the only Ba time-series available for Southeast Alaska, making them particularly valuable for the global glacier mass balance monitoring network. We compared Ba time-series from Taku and Lemon Creek glaciers to Gravity Recovery and Climate Experiment (GRACE) mascon solutions (1352 and 1353) during the 2004-2015 period to assess how well these gravimetric solutions reflect individual glaciological records. Lemon Creek Glacier is a challenging candidate for this comparison because it is small compared to the 12,100 km2 GRACE mascon solutions. Taku Glacier is equally challenging because its mass balance is stable compared to the negative balances dominating its neighboring glaciers. Challenges notwithstanding, a high correlation between the glaciological and gravimetrically-derived Ba for Taku and Lemon Creek glaciers encourage future use of GRACE to measure glacier mass balance. Additionally, we employed high frequency ground penetrating radar (GPR) to measure the variability of accumulation around glaciological sites to assess uncertainty in our glaciological measurements, and the resulting impact to Ba. Finally, we synthesize this comparison of glaciological and gravimetric mass balance solutions with a discussion of potential sources of error in both methods and their combined utility for measuring regional glacier change during the 21st century.

  18. Deep-seated gravitational slope deformations near the Trans-Alaska Pipeline, east-central Alaska Range, Alaska, USA

    NASA Astrophysics Data System (ADS)

    Newman, S. D.; Clague, J. J.; Rabus, B.; Stead, D.

    2013-12-01

    Multiple, active, deep-seated gravitational slope deformations (DSGSD) are present near the Trans-Alaska Pipeline and Richardson Highway in the east-central Alaska Range, Alaska, USA. We documented spatial and temporal variations in rates of surface movement of the DSGSDs between 2003 and 2011 using RADARSAT-1 and RADARSAT-2 D-InSAR images. Deformation rates exceed 10 cm/month over very large areas (>1 km2) of many rock slopes. Recent climatic change and strong seismic shaking, especially during the 2002 M 7.9 Denali Fault earthquake, appear to have exacerbated slope deformation. We also mapped DSGSD geological and morphological characteristics using field- and GIS-based methods, and constructed a conceptual 2D distinct-element numerical model of one of the DSGSDs. Preliminary results indicate that large-scale buckling or kink-band slumping may be occurring. The DSGSDs are capable of generating long-runout landslides that might impact the Trans-Alaska Pipeline and Richardson Highway. They could also block tributary valleys, thereby impounding lakes that might drain suddenly. Wrapped 24-day RADARSAT-2 descending spotlight interferogram showing deformation north of Fels Glacier. The interferogram is partially transparent and is overlaid on a 2009 WorldView-1 panchromatic image. Acquisition interval: August 2 - August 26, 2011. UTM Zone 6N.

  19. Methane seeps along boundaries of receding glaciers in Alaska and Greenland

    NASA Astrophysics Data System (ADS)

    Walter Anthony, K. M.; Anthony, P. M.; Grosse, G.; Chanton, J.

    2012-12-01

    Glaciers, ice sheets, and permafrost form a 'cryosphere cap' that traps methane formed in the subsurface, restricting its flow to the Earth's surface and atmosphere. Despite model predictions that glacier melt and degradation of permafrost open conduits for methane's escape, there has been a paucity of field evidence for 'subcap' methane seepage to the atmosphere as a direct result of cryosphere disintegration in the terrestrial Arctic. Here, we document for the first time the release of sub-cryosphere methane to lakes, rivers, shallow marine fjords and the atmosphere from abundant gas seeps concentrated along boundaries of receding glaciers and permafrost thaw in Alaska and Greenland. Through aerial and ground surveys of 6,700 lakes and fjords in Alaska we mapped >150,000 gas seeps identified as bubbling-induced open holes in seasonal ice. Using gas flow rates, stable isotopes, and radiocarbon dating, we distinguished recent ecological methane from subcap, geologic methane. Subcap seeps had anomalously high bubbling rates, 14C-depletion, and stable isotope values matching microbial sources associated with sedimentary deposits and coal beds as well as thermogenic methane accumulations in Alaska. Since differential ice loading can overpressurize fluid reservoirs and cause sediment fracturing beneath ice sheets, and since the loss of glacial ice reduces normal stress on ground, opens joints, and activates faults and fissures, thereby increasing permeability of the crust to fluid flow, we hypothesized that in the previously glaciated region of Southcentral Alaska, where glacial wastage continues presently, subcap seeps should be disproportionately associated with neotectonic faults. Geospatial analysis confirmed that subcap seep sites were associated with faults within a 7 km belt from the modern glacial extent. The majority of seeps were located in areas affected by seismicity from isostatic rebound associated with deglaciation following the Little Ice Age (LIA; ca

  20. A Simple Water Balance Model Adapted for Arctic Hydrology Reveals Glacier and Streamflow Responses to Climate Change in the Copper River, Alaska

    NASA Astrophysics Data System (ADS)

    Valentin, M. M.; Hay, L.; Van Beusekom, A. E.; Viger, R. J.; Hogue, T. S.

    2016-12-01

    Forecasting the hydrologic response to climate change in Alaska's glaciated watersheds remains daunting for hydrologists due to sparse field data and few modeling tools, which frustrates efforts to manage and protect critical aquatic habitat. Approximately 20% of the 64,000 square kilometer Copper River watershed is glaciated, and its glacier-fed tributaries support renowned salmon fisheries that are economically, culturally, and nutritionally invaluable to the local communities. This study adapts a simple, yet powerful, conceptual hydrologic model to simulate changes in the timing and volume of streamflow in the Copper River, Alaska as glaciers change under plausible future climate scenarios. The USGS monthly water balance model (MWBM), a hydrologic tool used for two decades to evaluate a broad range of hydrologic questions in the contiguous U.S., was enhanced to include glacier melt simulations and remotely sensed data. In this presentation we summarize the technical details behind our MWBM adaptation and demonstrate its use in the Copper River Basin to evaluate glacier and streamflow responses to climate change.

  1. Tracing biogeochemical subsidies from glacier runoff into Alaska's coastal marine food webs.

    PubMed

    Arimitsu, Mayumi L; Hobson, Keith A; Webber, D'Arcy N; Piatt, John F; Hood, Eran W; Fellman, Jason B

    2018-01-01

    Nearly half of the freshwater discharge into the Gulf of Alaska originates from landscapes draining glacier runoff, but the influence of the influx of riverine organic matter on the trophodynamics of coastal marine food webs is not well understood. We quantified the ecological impact of riverine organic matter subsidies to glacier-marine habitats by developing a multi-trophic level Bayesian three-isotope mixing model. We utilized large gradients in stable (δ 13 C, δ 15 N, δ 2 H) and radiogenic (Δ 14 C) isotopes that trace riverine and marine organic matter sources as they are passed from lower to higher trophic levels in glacial-marine habitats. We also compared isotope ratios between glacial-marine and more oceanic habitats. Based on isotopic measurements of potential baseline sources, ambient water and tissues of marine consumers, estimates of the riverine organic matter source contribution to upper trophic-level species including fish and seabirds ranged from 12% to 44%. Variability in resource use among similar taxa corresponded to variation in species distribution and life histories. For example, riverine organic matter assimilation by the glacier-nesting seabirds Kittlitz's murrelet (Brachyramphus brevirostris) was greater than that of the forest-nesting marbled murrelet (B. marmoratus). The particulate and dissolved organic carbon in glacial runoff and near surface coastal waters was aged (12100-1500 years BP 14 C-age) but dissolved inorganic carbon and biota in coastal waters were young (530 years BP 14 C-age to modern). Thus terrestrial-derived subsidies in marine food webs were primarily composed of young organic matter sources released from glacier ecosystems and their surrounding watersheds. Stable isotope compositions also revealed a divergence in food web structure between glacial-marine and oceanic sites. This work demonstrates linkages between terrestrial and marine ecosystems, and facilitates a greater understanding of how climate

  2. Tracing biogeochemical subsidies from glacier runoff into Alaska's coastal marine food webs

    USGS Publications Warehouse

    Arimitsu, Mayumi L.; Hobson, Keith A.; Webber, D'Arcy N.; Piatt, John F.; Hood, Eran W.; Fellman, Jason B.

    2018-01-01

    Nearly half of the freshwater discharge into the Gulf of Alaska originates from landscapes draining glacier runoff, but the influence of the influx of riverine organic matter on the trophodynamics of coastal marine food webs is not well understood. We quantified the ecological impact of riverine organic matter subsidies to glacier-marine habitats by developing a multi-trophic level Bayesian three-isotope mixing model. We utilized large gradients in stable (δ13C, δ15N, δ2H) and radiogenic (Δ14C) isotopes that trace riverine and marine organic matter sources as they are passed from lower to higher trophic levels in glacial-marine habitats. We also compared isotope ratios between glacial-marine and more oceanic habitats. Based on isotopic measurements of potential baseline sources, ambient water and tissues of marine consumers, estimates of the riverine organic matter source contribution to upper trophic-level species including fish and seabirds ranged from 12% to 44%. Variability in resource use among similar taxa corresponded to variation in species distribution and life histories. For example, riverine organic matter assimilation by the glacier-nesting seabirds Kittlitz's murrelet (Brachyramphus brevirostris) was greater than that of the forest-nesting marbled murrelet (B. marmoratus). The particulate and dissolved organic carbon in glacial runoff and near surface coastal waters was aged (12100–1500 years BP 14C-age) but dissolved inorganic carbon and biota in coastal waters were young (530 years BP 14C-age to modern). Thus terrestrial-derived subsidies in marine food webs were primarily composed of young organic matter sources released from glacier ecosystems and their surrounding watersheds. Stable isotope compositions also revealed a divergence in food web structure between glacial-marine and oceanic sites. This work demonstrates linkages between terrestrial and marine ecosystems, and facilitates a greater understanding of how climate-driven changes

  3. Neoglacial fluctuations of terrestrial, tidewater, and calving lacustrine glaciers, Blackstone-Spencer Ice Complex, Kenai Mountains, Alaska

    NASA Astrophysics Data System (ADS)

    Crossen, Kristine June

    1997-12-01

    The glaciers surrounding the Blackstone-Spencer Ice Complex display a variety of termini types: Tebenkov, Spencer, Bartlett, Skookum, Trail, Burns, Shakespeare, Marquette, Lawrence, and Ripon glaciers end in terrestrial margins; Blackstone and Beloit glaciers have tidewater termini; and Portage Glacier has a calving lacustrine margin. In addition, steep temperature and precipitation gradients exist across the ice complex from the maritime environment of Prince William Sound to the colder, drier interior. The Neoglacial history of Tebenkov Glacier, as based on overrun trees near the terminus, shows advances ca. 250- 430 AD (calibrated date), ca. 1215-1275 AD (calibrated date), and ca. 1320-1430 AD (tree ring evidence), all intervals of glacier advance around the Gulf of Alaska. However, two tidewater glaciers in Blackstone Bay retreated from their outermost moraines by 1350 AD, apparently asynchronously with respect to the regional climate signal. The most extensive Kenai Mountain glacier expansions during Neoglaciation occurred in the late Little Ice Age. The outermost moraines are adjacent to mature forest stands and bog peats that yield dates as old as 5,600 BP. Prince William Sound glaciers advanced during two Little Ice Age cold periods, 1380-1680 and 1830-1900 AD. The terrestrial glaciers around the Blackstone-Spencer Ice Complex all built moraines during the 19th century and began retreating between 1875 and 1900 AD. Portage and Burns glaciers began retreating between 1790 and 1810 AD, but their margins remained close to the outermost moraines during the 19th century. Regional glacier fluctuations are broadly synchronous in the Gulf of Alaska region. With the exception of the two tidewater glaciers in Blackstone Bay, all glaciers in the Kenai Mountains, no matter their sizes, altitudes, orientations, or types of margins, retreated at the end of the Little Ice Age. The climate signal, especially temperature, appears to be the strongest control on glacier

  4. Southern Alaska as an Example of the Long-Term Consequences of Mountain Building Under the Influence of Glaciers

    NASA Technical Reports Server (NTRS)

    Meigs, Andrew; Sauber, Jeanne

    2000-01-01

    Southern Alaska is a continent-scale region of ongoing crustal deformation within the Pacific-North American plate boundary zone. Glaciers and glacial erosion have dictated patterns of denudation in the orogen over the last approx. 5 My. The orogen comprises three discrete topographic domains from south to north, respectively: (1) the Chugach/St. Elias Range; (2) the Wrangell Mountains; and (3) the eastern Alaska Range. Although present deformation is distributed across the orogen, much of the shortening and uplift are concentrated in the Chugach/St. Elias Range. A systematic increase in topographic wavelength of the range from east to west reflects east-to-west increases in the width of a shallowly-dipping segment of the plate interface, separation of major upper plate structures, and a decrease in the obliquity of plate motion relative to the plate boundary. Mean elevation decays exponentially from approx. 2500 m to approx. 1100 m from east to west, respectively. Topographic control on the present and past distribution of glaciers is indicated by close correspondence along the range between mean elevation and the modern equilibrium line altitude of glaciers (ELA) and differences in the modern ELA, mean annual precipitation and temperature across the range between the windward, southern and leeward, northern flanks. Net, range- scale erosion is the sum of: (1) primary bedrock erosion by glaciers and (2) erosion in areas of the landscape that are ice-marginal and are deglaciated at glacial minima. Oscillations between glacial and interglacial climates controls ice height and distribution, which, in turn, modulates the locus and mode of erosion in the landscape. Mean topography and the mean position of the ELA are coupled because of the competition between rock uplift, which tends to raise the ELA, and enhanced orographic precipitation accompanying mountain building, which tends to lower the ELA. Mean topography is controlled both by the 60 deg latitude and maritime

  5. Elevation change (2000-2004) on the Malaspina Glacier, Alaska

    NASA Technical Reports Server (NTRS)

    Sauber, J.; Molnia, B.; Carabajal, C.; Luthcke, S.; Muskett, R.

    2005-01-01

    The glaciers of the southeastern Alaska coastal region are the largest temperate glacier meltwater source on Earth and may contribute one third of the total glacier meltwater entering the global ocean. Since melt onset and refreeeze timing in this region show a tendency toward earlier onset and longer ablation seasons, accelerated glacier wastage may be occurring. In this study we focus on one of the largest temperate glacier systems on Earth, the Malaspina Glacier. This glacier, with a length of approximately 110 km and an area of approximately square 5,000 km, has the largest piedmont lobe of any temperate glacier. The entire lobe, which lies at elevations below 600 m, is within the ablation zone. We report and interpret ice elevation change between a digital elevation model (DEM) derived from the Shuttle Radar Topography Mission (SRTM C band) observations in Feb. 2000 and ICESat Laser 1-3 observations between Feb. 2003 and Nov. 2004. We use these elevation change results, along with earlier studies, to address the spatial and temporal variability in wastage of the piedmont lobe. Between 2000 and 2004 ice elevation changes of 10-30 meters occurred across the central Malaspina piedmont lobe. From 1972/73 (USGS DEM) to 1999 (SRTM corrected for estimated winter snow accumulation) Malaspina's (Agassiz, Seward Lobe, and Marvine) mean ice thinning was estimated at -47 m with maximum thinning on parts of the lobes to -160 m. The Malaspina's accumulation area is only slightly larger than its ablation area (2,575 km2 vs. 2,433 km2); unfortunately few glaciological observations are available from this source region. Snow accumulation rates have been largely inferred from low-altitude precipitation and temperature data. Comparing sequential ICESat observations in the Malaspina source region, we estimated short-term elevation increases of up to 5 meters during the winter of 2003/04.

  6. Evaluate ERTS imagery for mapping and detection of changes of snowcover on land and on glaciers. [Washington, Alaska, British Columbia, and U.S.S.R.

    NASA Technical Reports Server (NTRS)

    Meier, M. F. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The standard error of measurement of snow covered areas in major drainage basins in the Cascade Range, Washington, using single measurements of ERTS-1 images, was found to range from 11% to 7% during a typical melt season, but was as high as 32% in midwinter. Many dangerous glacier situations in Alaska, Yukon, and British Columbia were observed on ERTS-1 imagery. Glacier dammed lakes in Alaska are being monitored by ERTS-1. Embayments in tidal glaciers show changes detectable by ERTS-1. Surges of Russell and Tweedsmuir Glaciers, now in progress, are clearly visible. The Tweedsmuir surge is likely to dam the large Alsek River by mid-November, producing major floods down-river next summer. An ERTS-1 image of the Pamir Mountains, Tadjik S.S.R., shows the surging Medvezhii (Bear) Glacier just after its surge of early summer which dammed the Abdukagor Valley creating a huge lake and later a flood in the populous Vanch River Valley. A map was compiled from an ERTS-1 image of the Lowell Glacier after its recent surge, compared with an earlier map compiled from pain-stakingly compiled from a mosaic of many aerial photographs, in a total elapsed time of 1.5 hours. This demonstrates the value of ERTS-1 for rapid mapping of large features.

  7. Distribution and spawning dynamics of capelin (Mallotus villosus) in Glacier Bay, Alaska: A cold water refugium

    USGS Publications Warehouse

    Arimitsu, Mayumi L.; Piatt, John F.; Litzow, Michael A.; Abookire, Alisa A.; Romano, Marc D.; Robards, Martin D.

    2008-01-01

    Pacific capelin (Mallotus villosus) populations declined dramatically in the Northeastern Pacific following ocean warming after the regime shift of 1977, but little is known about the cause of the decline or the functional relationships between capelin and their environment. We assessed the distribution and abundance of spawning, non-spawning adult and larval capelin in Glacier Bay, an estuarine fjord system in southeastern Alaska. We used principal components analysis to analyze midwater trawl and beach seine data collected between 1999 and 2004 with respect to oceanographic data and other measures of physical habitat including proximity to tidewater glaciers and potential spawning habitat. Both spawning and non-spawning adult Pacific capelin were more likely to occur in areas closest to tidewater glaciers, and those areas were distinguished by lower temperature, higher turbidity, higher dissolved oxygen and lower chlorophyll a levels when compared with other areas of the bay. The distribution of larval Pacific capelin was not sensitive to glacial influence. Pre-spawning females collected farther from tidewater glaciers were at a lower maturity state than those sampled closer to tidewater glaciers, and the geographic variation in the onset of spawning is likely the result of differences in the marine habitat among sub-areas of Glacier Bay. Proximity to cold water in Glacier Bay may have provided a refuge for capelin during the recent warm years in the Gulf of Alaska.

  8. A 400-year ice core melt layer record of summertime warming in the Alaska Range

    NASA Astrophysics Data System (ADS)

    Winski, D.; Osterberg, E. C.; Kreutz, K. J.; Wake, C. P.; Ferris, D. G.; Campbell, S. W.; Baum, M.; Raudzens Bailey, A.; Birkel, S. D.; Introne, D.; Handley, M.

    2017-12-01

    Warming in high-elevation regions has socially relevant impacts on glacier mass balance, water resources, and sensitive alpine ecosystems, yet very few high-elevation temperature records exist from the middle or high latitudes. While many terrestrial paleoclimate records provide critical temperature records from low elevations over recent centuries, melt layers preserved in alpine glaciers present an opportunity to develop calibrated, annually-resolved temperature records from high elevations. We present a 400-year temperature record based on the melt-layer stratigraphy in two ice cores collected from Mt. Hunter in the Central Alaska Range. The ice core record shows a 60-fold increase in melt frequency and water equivalent melt thickness between the pre-industrial period (before 1850) and present day. We calibrate the melt record to summer temperatures based on local and regional weather station analyses, and find that the increase in melt production represents a summer warming of at least 2° C, exceeding rates of temperature increase at most low elevation sites in Alaska. The Mt. Hunter melt layer record is significantly (p<0.05) correlated with surface temperatures in the central tropical Pacific through a Rossby-wave like pattern that induces high temperatures over Alaska. Our results show that rapid alpine warming has taken place in the Alaska Range for at least a century, and that conditions in the tropical oceans contribute to this warming.

  9. Susitna Glacier, Alaska

    NASA Image and Video Library

    2017-12-08

    NASA image acquired August 27, 2009 Like rivers of liquid water, glaciers flow downhill, with tributaries joining to form larger rivers. But where water rushes, ice crawls. As a result, glaciers gather dust and dirt, and bear long-lasting evidence of past movements. Alaska’s Susitna Glacier revealed some of its long, grinding journey when the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA’s Terra satellite passed overhead on August 27, 2009. This satellite image combines infrared, red, and green wavelengths to form a false-color image. Vegetation is red and the glacier’s surface is marbled with dirt-free blue ice and dirt-coated brown ice. Infusions of relatively clean ice push in from tributaries in the north. The glacier surface appears especially complex near the center of the image, where a tributary has pushed the ice in the main glacier slightly southward. A photograph taken by researchers from the U.S. Geological Survey (archived by the National Snow and Ice Data Center) shows an equally complicated Susitna Glacier in 1970, with dirt-free and dirt-encrusted surfaces forming stripes, curves, and U-turns. Susitna flows over a seismically active area. In fact, a 7.9-magnitude quake struck the region in November 2002, along a previously unknown fault. Geologists surmised that earthquakes had created the steep cliffs and slopes in the glacier surface, but in fact most of the jumble is the result of surges in tributary glaciers. Glacier surges—typically short-lived events where a glacier moves many times its normal rate—can occur when melt water accumulates at the base and lubricates the flow. This water may be supplied by meltwater lakes that accumulate on top of the glacier; some are visible in the lower left corner of this image. The underlying bedrock can also contribute to glacier surges, with soft, easily deformed rock leading to more frequent surges. NASA Earth Observatory image created by Jesse Allen and Robert

  10. Rapid thinning and collapse of lake calving Yakutat Glacier, Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Trussel, Barbara Lea

    Glaciers around the globe are experiencing a notable retreat and thinning, triggered by atmospheric warming. Tidewater glaciers in particular have received much attention, because they have been recognized to contribute substantially to global sea level rise. However, lake calving glaciers in Alaska show increasingly high thinning and retreat rates and are therefore contributors to sea level rise. The number of such lake calving systems is increasing worldwide as land-terminating glaciers retreat into overdeepened basins and form proglacial lakes. Yakutat Glacier in Southeast Alaska is a low elevation lake calving glacier with an accumulation to total area ratio of 0.03. It experienced rapid thinning of 4.43 +/- 0.06 m w.e. yr-1 between 2000-2010 and terminus retreat of over 15 km since the beginning of the 20th century. Simultaneously, adjacent Yakutat Icefield land-terminating glaciers thinned at lower but still substantial rates (3.54 +/- 0.06 m w.e. yr -1 for the same time period), indicating lake calving dynamics help drive increased mass loss. Yakutat Glacier sustained a ˜3 km long floating tongue for over a decade, which started to disintegrate into large tabular icebergs in 2010. Such floating tongues are rarely seen on temperate tidewater glaciers. The floating ice was weakened by surface ablation, which then allowed rifts to form and intersect. Ice velocity from GPS measurements showed that the ice on the floating tongue was moving substantially faster than grounded ice, which was attributed to rift opening between the floating and grounded ice. Temporal variations of rift opening were determined from time-lapse imagery, and correlated well with variations in ice speeds. Larger rift opening rates occurred during and after precipitation or increased melt episodes. Both of these events increased subglacial discharge and could potentially increase the subaqueous currents towards the open lake and thus increase drag on the ice underside. Simultaneously

  11. Surface Mass Balance of the Columbia Glacier, Alaska, 1978 and 2010 Balance Years

    USGS Publications Warehouse

    O'Neel, Shad

    2012-01-01

    Although Columbia Glacier is one of the largest sources of glacier mass loss in Alaska, surface mass balance measurements are sparse, with only a single data set available from 1978. The dearth of surface mass-balance data prohibits partitioning of the total mass losses between dynamics and surface forcing; however, the accurate inclusion of calving glaciers into predictive models requires both dynamic and climatic forcing of total mass balance. During 2010, the U.S. Geological Survey collected surface balance data at several locations distributed over the surface of Columbia Glacier to estimate the glacier-wide annual balance for balance year 2010 using the 2007 area-altitude distribution. This report also summarizes data collected in 1978, calculates the 1978 annual surface balance, and uses these observations to constrain the 2010 values, particularly the shape of the balance profile. Both years exhibit balances indicative of near-equilibrium surface mass-balance conditions, and demonstrate the importance of dynamic processes during the rapid retreat.

  12. Glacial Lake Growth and Associated Glacier Dynamics: Case Study from the Himalayas, Andes, Alaska and New Zealand

    NASA Astrophysics Data System (ADS)

    Binger, D. J.; Haritashya, U. K.; Kargel, J. S.; Shugar, D. H.

    2016-12-01

    Glacial lake growth and associated glacier dynamics: Case study from the Himalayas, Andes, Alaska and New Zealand David J. Binger1, Umesh K. Haritashya1 and Jeffrey S. Kargel21University of Dayton, Dayton, OH 2University of Arizona, Tucson, AZ As a result of climate change most of the world's alpine glaciers are undergoing measurable retreat and dynamic changes. The result of accelerated melting has led to the formation and growth of potentially dangerous glacial lakes. In this study, alpine glaciers and associated lakes from the Himalayas, Andes, Alaska and New Zealand, showing similar geomorphological settings were analyzed to compare differences in regional proglacial lake growth and its relationship with glacier dynamics. Specifically, we analyzed the surface area growth of the lakes, retreat of glacier terminus, changes in glacier velocity, surface temperature and potential glacial lake outburst flood triggers. Using Landsat and ASTER satellite images, Cosi - Corr software, and in house thermal mapping, 10 glaciers were analyzed and compared. Results show a substantial increase in proglacial lake surface area, accelerated velocity and significant calving of the glaciers. Glacier surface temperatures varied by location, with some remaining constant and others 2°C - 4°C increases; although increased surface temperature did not always show a direct correlation with increasing retreat rate. Lakes with high rates of surface area growth paired with glaciers with increased velocity and calving could prove to be unsustainable and lead to an increased risk for glacial lake outburst floods. Overall, result show the changing dynamics of the alpine glaciers in different mountain regions and the growth of their proglacial lakes.

  13. Bedload component of glacially discharged sediment: Insights from the Matanuska Glacier, Alaska

    USGS Publications Warehouse

    Pearce, J.T.; Pazzaglia, F.J.; Evenson, E.B.; Lawson, D.E.; Alley, R.B.; Germanoski, D.; Denner, J.D.

    2003-01-01

    The flux of glacially derived bedload and the proportions of the suspended and bedload components carried by proglacial streams are highly debated. Published data indicate a large range-from 75%-in the bedload percentage of the total load. Two "vents," where supercooled subglacial meltwater and sediment are discharged, were sampled over the course of an entire melt season in order to quantify the flux of glacially delivered bedload at the Matanuska Glacier, Alaska. The bedload component contributed by these vents, for the one melt season monitored, is negligible. Furthermore, the bedload fluxes appear to be strongly supply limited, as shown by the poorly correlated discharge, bedload-flux magnitude, and grain-size caliber. Thus, in this case, any attempt to employ a predictive quantitative expression for coarse-sediment production based on discharge alone would be inaccurate. A nonglaciated basin proximal to the Matanuska Glacier terminus yielded higher bedload sediment fluxes and larger clast sizes than delivered by the two monitored vents. Such nonglaciated basins should not be overlooked as potentially major sources of coarse bedload that is reworked and incorporated into valley outwash.

  14. Seismic detection and analysis of icequakes at Columbia Glacier, Alaska

    USGS Publications Warehouse

    O'Neel, Shad; Marshall, Hans P.; McNamara, Daniel E.; Pfeffer, William Tad

    2007-01-01

    Contributions to sea level rise from rapidly retreating marine-terminating glaciers are large and increasing. Strong increases in iceberg calving occur during retreat, which allows mass transfer to the ocean at a much higher rate than possible through surface melt alone. To study this process, we deployed an 11-sensor passive seismic network at Columbia Glacier, Alaska, during 2004–2005. We show that calving events generate narrow-band seismic signals, allowing frequency domain detections. Detection parameters were determined using direct observations of calving and validated using three statistical methods and hypocenter locations. The 1–3 Hz detections provide a good measure of the temporal distribution and size of calving events. Possible source mechanisms for the unique waveforms are discussed, and we analyze potential forcings for the observed seismicity.

  15. Sculpted by water, elevated by earthquakes—The coastal landscape of Glacier Bay National Park, Alaska

    USGS Publications Warehouse

    Witter, Robert C.; LeWinter, Adam; Bender, Adrian M.; Glennie, Craig; Finnegan, David

    2017-05-22

    Within Glacier Bay National Park in southeastern Alaska, the Fairweather Fault represents the onshore boundary between two of Earth’s constantly moving tectonic plates: the North American Plate and the Yakutat microplate. Satellite measurements indicate that during the past few decades the Yakutat microplate has moved northwest at a rate of nearly 5 centimeters per year relative to the North American Plate. Motion between the tectonic plates results in earthquakes on the Fairweather Fault during time intervals spanning one or more centuries. For example, in 1958, a 260-kilometer section of the Fairweather Fault ruptured during a magnitude 7.8 earthquake, causing permanent horizontal (as much as 6.5 meters) and vertical (as much as 1 meter) displacement of the ground surface across the fault. Thousands to millions of years of tectonic plate motion, including earthquakes like the one in 1958, raised and shifted the ground surface across the Fairweather Fault, while rivers, glaciers, and ocean waves eroded and sculpted the surrounding landscape along the Gulf of Alaska coast in Glacier Bay National Park.

  16. Photogrammetric Data Set, 1957-2000, and Bathymetric Measurements for Columbia Glacier, Alaska

    USGS Publications Warehouse

    Krimmel, Robert M.

    2001-01-01

    Major changes in the length, speed, surface altitude, and calving rate of Columbia Glacier, Alaska have been recorded with stereo vertical photography acquired on 119 dates from 1957 to 2000. Photogrammetric analysis of this photographic record has resulted in precise measurement of these changes. From 1982 to 2000 Columbia Glacier retreated 12 kilometers, reduced its thickness by as much as 400 meters, increased its speed from about 5 to 30 meters per day, and increased its calving rate from 3 to 18 million cubic meters per day. All photogrammetric data for Columbia Glacier from 1957 to 2000 are included in this report, as well as supplemental data of ice-dammed lake surface levels, stagnant ice ablation rate, forebay bathymetry, ground control, and camera calibrations. These data are contained in 481 files, all preserved on a CD-ROM included with this report.

  17. Evaluating glacier movement fluctuations using remote sensing: A case study of the Baird, Patterson, LeConte, and Shakes glaciers in central Southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Davidson, Robert Howard

    Global Land Survey (GLS) data encompassing Landsat Multispectral Scanner (MSS), Landsat 5's Thematic Mapper (TM), and Landsat 7's Enhanced Thematic Mapper Plus (ETM+) were used to determine the terminus locations of Baird, Patterson, LeConte, and Shakes Glaciers in Alaska in the time period 1975-2010. The sequences of the terminuses locations were investigated to determine the movement rates of these glaciers with respect to specific physical and environmental conditions. GLS data from 1975, 1990, 2000, 2005, and 2010 in false-color composite images enhancing ice-snow differentiation and Iterative Self-Organizing (ISO) Data Cluster Unsupervised Classifications were used to 1) quantify the movement rates of Baird, Patterson, LeConte, and Shakes Glaciers; 2) analyze the movement rates for glaciers with similar terminal terrain conditions and; 3) analyze the movement rates for glaciers with dissimilar terminal terrain conditions. From the established sequence of terminus locations, movement distances were quantified between the glacier locations. Movement distances were then compared to see if any correlation existed between glaciers with similar or dissimilar terminal terrain conditions. The Global Land Ice Measurement from Space (GLIMS) data was used as a starting point from which glacier movement was measured for Baird, Patterson, and LeConte Glaciers only as the Shakes Glacier is currently not included in the GLIMS database. The National Oceanographic and Atmospheric Administration (NOAA) temperature data collected at the Petersburg, Alaska, meteorological station (from January 1, 1973 to December 31, 2009) were used to help in the understanding of the climatic condition in this area and potential impact on glaciers terminus. Results show that glaciers with similar terminal terrain conditions (Patterson and Shakes Glaciers) and glaciers with dissimilar terminal terrain conditions (Baird, Patterson, and LeConte Glaciers) did not exhibit similar movement rates

  18. A 400-Year Ice Core Melt Layer Record of Summertime Warming in the Alaska Range

    NASA Astrophysics Data System (ADS)

    Winski, Dominic; Osterberg, Erich; Kreutz, Karl; Wake, Cameron; Ferris, David; Campbell, Seth; Baum, Mark; Bailey, Adriana; Birkel, Sean; Introne, Douglas; Handley, Mike

    2018-04-01

    Warming in high-elevation regions has societally important impacts on glacier mass balance, water resources, and sensitive alpine ecosystems, yet very few high-elevation temperature records exist from the middle or high latitudes. While a variety of paleoproxy records provide critical temperature records from low elevations over recent centuries, melt layers preserved in alpine glaciers present an opportunity to develop calibrated, annually resolved temperature records from high elevations. Here we present a 400-year temperature proxy record based on the melt layer stratigraphy of two ice cores collected from Mt. Hunter in Denali National Park in the central Alaska Range. The ice core record shows a sixtyfold increase in water equivalent total annual melt between the preindustrial period (before 1850 Common Era) and present day. We calibrate the melt record to summer temperatures based on weather station data from the ice core drill site and find that the increase in melt production represents a summer warming rate of at least 1.92 ± 0.31°C per century during the last 100 years, exceeding rates of temperature increase at most low-elevation sites in Alaska. The Mt. Hunter melt layer record is significantly (p < 0.05) correlated with surface temperatures in the central tropical Pacific through a Rossby wave-like pattern that enhances high temperatures over Alaska. Our results show that rapid alpine warming has taken place in the Alaska Range for at least a century and that conditions in the tropical oceans contribute to this warming.

  19. Stratigraphic reconnaissance of the Middle Jurassic Red Glacier Formation, Tuxedni Group, at Red Glacier, Cook Inlet, Alaska

    USGS Publications Warehouse

    LePain, David L.; Stanley, Richard G.

    2015-01-01

    The Alaska Division of Geological & Geophysical Surveys (DGGS) and U.S. Geological Survey (USGS) are implementing ongoing programs to characterize the petroleum potential of Cook Inlet basin. Since 2009 this program has included work on the Mesozoic stratigraphy of lower Cook Inlet, including the Middle Jurassic Tuxedni Group between Tuxedni and Iniskin bays (LePain and others, 2013; Stanley and others, 2013; fig. 5-1). The basal unit in the group, the Red Glacier Formation (fig. 5-2), is thought to be the principal source rock for oil produced in upper Cook Inlet, and available geochemical data support this contention (Magoon and Anders, 1992; Magoon, 1994). Despite its economic significance very little has been published on the formation since Detterman and Hartsock’s (1966) seminal contribution on the geology of the Iniskin–Tuxedni area nearly 50 years ago. Consequently its stratigraphy, contact relations with bounding formations, and source rock characteristics are poorly known. During the 2014 field season, a nearly continuous stratigraphic section through the Red Glacier Formation in its type area at Red Glacier was located and measured to characterize sedimentary facies and to collect a suite of samples for analyses of biostratigraphy, Rock-Eval pyrolysis, vitrinite reflectance, and sandstone composition (fig. 5-3).The poorly known nature of the Red Glacier Formation is likely due to its remote location, steep terrain, and the fact that the type section is split into two segments that are more than 3 km apart. The lower 375 m segment of the formation is on the ridge between Red Glacier and Lateral Glacier and the upper 1,009 m segment is on the ridge between Red Glacier and Boulder Creek (fig. 5-3). Structural complications in the area add to the difficulty in understanding how these two segments fit together.

  20. Preliminary bathymetry of McCarty Fiord and Neoglacial changes of McCarty Glacier, Alaska

    USGS Publications Warehouse

    Post, Austin

    1980-01-01

    Preliminary bathymetry (at 1:20,000 scale) and other scientific studies of McCarty Fiord, Alaska, Conducted by the Research Vessel Growler in 1978, showed this 15 mile-long waterway to be a narrow, deeply scoured basin enclosed by a terminal-moraine shoal. This valley was formerly filled by McCarty Glacier, which began a drastic retreat shortly after 1909; the glacier reached shallow water at the head of the fiord around 1960. The relative rate of retreat in deep water and on land is disclosed by the slower melting of stagnent ice left in a side valley. Soundings and profiles show the main channel to extend to a depth as great as 957 feet and to have the typical ' U ' shape of a glacier-eroded valley; since the glacier 's retreat, sediments have formed a nearly level deposit in the deepest part of the fiord. Old forest debris dated by carbon-14 indicates that a neoglacial advance of the glacier began before 3,395 years B.P. (before present); by 1,500 B.P. the glacier filled most of the fiord, and before the glacier culminated its advance around 1860 , two glacier-dammed lakes were formed in side valleys. (USGS)

  1. Effects of the March 1964 Alaska earthquake on glaciers: Chapter D in The Alaska earthquake, March 27, 1964: effects on hydrologic regimen

    USGS Publications Warehouse

    Post, Austin

    1967-01-01

    The 1964 Alaska earthquake occurred in a region where there are many hundreds of glaciers, large and small. Aerial photographic investigations indicate that no snow and ice avalanches of large size occurred on glaciers despite the violent shaking. Rockslide avalanches extended onto the glaciers in many localities, seven very large ones occurring in the Copper River region 160 kilometers east of the epicenter. Some of these avalanches traveled several kilometers at low gradients; compressed air may have provided a lubricating layer. If long-term changes in glaciers due to tectonic changes in altitude and slope occur, they will probably be very small. No evidence of large-scale dynamic response of any glacier to earthquake shaking or avalanche loading was found in either the Chugach or Kenai Mountains 16 months after the 1964 earthquake, nor was there any evidence of surges (rapid advances) as postulated by the Earthquake-Advance Theory of Tarr and Martin.

  2. Utility of late summer transient snowline migration rate on Taku Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Pelto, M.

    2011-12-01

    On Taku Glacier, Alaska a combination of field observations of snow water equivalent (SWE) from snowpits and probing in the vicinity of the transient snowline (TSL) are used to quantify the mass balance gradient. The balance gradient derived from the TSL and SWE measured in snowpits at 1000 m from 1998-2010 ranges from 2.6-3.8 mm m-1. Probing transects from 950 m-1100 m directly measure SWE and yield a slightly higher balance gradient of 3.3-3.8 mm m-1. The TSL on Taku Glacier is identified in MODIS and Landsat 4 and 7 Thematic Mapper images for 31 dates during the 2004-2010 period to assess the consistency of its rate of rise and reliability in assessing ablation for mass balance assessment. For example, in 2010, the TSL was 750 m on 28 July, 800 m on 5 August, 875 m on 14 August, 925 m on 30 August, and 975 m on 20 September. The mean observed probing balance gradient was 3.3 mm m-1, combined with the TSL rise of 3.7 m day-1 yields an ablation rate of 12.2 mm day-1 from mid-July to mid-Sept, 2010. The TSL rise in the region from 750-1100 m on Taku Glacier during eleven periods each covering more than 14 days during the ablation season indicates a mean TSL rise of 3.7 m day-1, the rate of rise is relatively consistent ranging from 3.1 to 4.4 m day-1. This rate is useful for ascertaining the final ELA if images or observations are not available near the end of the ablation season. The mean ablation from 750-1100 m during the July-September period determined from the TSL rise and the observed balance gradient is 11-13 mm day-1 on Taku Glacier during the 2004-2010 period. The potential for providing an estimate of bn from TSL observations late in the melt season from satellite images combined with the frequent availability of such images provides a means for efficient mass balance assessment in many years and on many glaciers.

  3. Glacier changes in southeast Alaska and northwest British Columbia and contribution to sea level rise

    USGS Publications Warehouse

    Larsen, C.F.; Motyka, R.J.; Arendt, A.A.; Echelmeyer, K.A.; Geissler, P.E.

    2007-01-01

    The digital elevation model (DEM) from the 2000 Shuttle Radar Topography Mission (SRTM) was differenced from a composite DEM based on air photos dating from 1948 to 1987 to detennine glacier volume changes in southeast Alaska and adjoining Canada. SRTM accuracy was assessed at ??5 in through comparison with airborne laser altimetry and control locations measured with GPS. Glacier surface elevations lowered over 95% of the 14,580 km2 glacier-covered area analyzed, with some glaciers thinning as much as 640 in. A combination of factors have contributed to this wastage, including calving retreats of tidewater and lacustrine glaciers and climate change. Many glaciers in this region are particularly sensitive to climate change, as they have large areas at low elevations. However, several tidewater glaciers that had historically undergone calving retreats are now expanding and appear to be in the advancing stage of the tidewater glacier cycle. The net average rate of ice loss is estimated at 16.7 ?? 4.4 km3/yr, equivalent to a global sea level rise contribution of 0.04 ?? 0.01 mm/yr. Copyright 2007 by the American Geophysical Union.

  4. Preliminary bathymetry of Blackstone Bay and Neoglacial changes of Blackstone Glaciers, Alaska

    USGS Publications Warehouse

    Post, Austin

    1980-01-01

    Preliminary bathymetry (at 1:20,000 scale) and scientific studies of Blackstone Bay Alaska, by the Research Vessel Growler in 1978 disclose that the head of the bay consists of two basins separated by Willard Island and a submarine ridge. Both basins are closed on the north by terminal-moraine bars where Blackstone Glacier and its tributaries terminated as recently as about A.D. 1350; a carbon-14 date of 580 years before present on Badger Point, and old trees farther up the bay, disclose that the glaciers retreated to two narrow inlets at the head of the bay before 1400. The inlets were still glacier-covered until at least 1909. Glaciers in both inlets have continued to retreat; at present they terminate at the head of tidewater, where they discharge small icebergs. Only relatively thin sediments have accumulated in the eastern basin south of the terminal-moraine bar, and most of the bottom is hard and irregular as disclosed by soundings and profiles. The northern part of Blackstone Bay is very deep; at more than 1,100 feet below sea level a large, level accumulation of sediment is present which is presumably as much as 1,000 feet deep and has been accumulating since late Pleistocene glaciers retreated. (USGS)

  5. Isolation of oligotrophic yeasts from supraglacial environments of different altitude on the Gulkana Glacier (Alaska).

    PubMed

    Uetake, Jun; Yoshimura, Yoshitaka; Nagatsuka, Naoko; Kanda, Hiroshi

    2012-11-01

    Psychrophilic yeasts have been isolated from supra- and subglacial ice at many sites worldwide. To understand the ecology of psychrophilic yeasts on glaciers, we focused on their adaptation to wide range of nutrient concentrations and their distribution with altitude on the Gulkana Glacier in Alaska. We found various culturable psychrophilic yeasts on the ice surfaces of the glacier, and 11 species were isolated with incubation at 4 °C in four different dilutions of agar medium. Some of our isolated species (Rhodotorula psychrophenolica, Rhodotorula aff. psychrophenolica, Rhodotorula glacialis, and Basidiomycota sp. 1) can grow on the low dissolved organic matter (DOC) concentrations medium (7.6 mg L(-1)) which is close to the typical level of supraglacial melt water, suggesting that these species can inhabit in any supraglacial meltwater. Otherwise, most of other species were isolated only from higher DOC concentration medium (183 mg L(-1) -18.3 g L(-1)), suggesting that these are inhabitant around the cryoconite, because DOC concentrations in melted surface-ice contained cryoconite is much higher than in melted water. Similarity of altitudinal distribution between culturable yeast and algal biomass suggests that the ecological role played by the cold-adapted yeasts is as organic matter decomposers and nutrient cyclers in glacier ecosystem. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  6. Scaling the Teflon Peaks: Rock type and the generation of extreme relief in the glaciated western Alaska Range

    USGS Publications Warehouse

    Ward, Dylan J.; Anderson, Robert S.; Haeussler, Peter J.

    2012-01-01

    Parts of the Alaska Range (Alaska, USA) stand in prominent exception to the “glacial buzzsaw hypothesis,” which postulates that terrain raised above the ELA is rapidly denuded by glaciers. In this paper, we discuss the role of a strong contrast in rock type in the development of this exceptional terrain. Much of the range is developed on pervasively fractured flysch, with local relief of 1000–1500 m, and mean summit elevations that are similar to modern snow line elevations. In contrast, Cretaceous and Tertiary plutons of relatively intact granite support the range's tallest mountains (including Mt. McKinley, or Denali, at 6194 m), with 2500–5000 m of local relief. The high granitic peaks protrude well above modern snow lines and support many large glaciers. We focus on the plutons of the Denali massif and the Kichatna Mountains, to the west. We use field observations, satellite photos, and digital elevation data to demonstrate how exhumation of these plutons affects glacier longitudinal profiles, the glacial drainage network, and the effectiveness of periglacial processes. In strong granite, steep, smooth valley walls are maintained by detachment of rock slabs along sheeting joints. These steep walls act as low-friction surfaces (“Teflon”), efficiently shedding snow. Simple scaling calculations show that this avalanching may greatly enhance the health of the modern glaciers. We conclude that, in places such as Denali, unusual combinations of rapid tectonic uplift and great rock strength have created the highest relief in North America by enhancing glacial erosion in the valleys while preserving the peaks.

  7. Runoff generation from neighboring headwater basins with differing glacier coverage using the distributed hydrological model WaSiM, Eklutna, Alaska

    NASA Astrophysics Data System (ADS)

    Ostman, J. S.; Loso, M.; Liljedahl, A. K.; Gaedeke, A.; Geck, J. E.

    2017-12-01

    Many Alaska glaciers are thinning and retreating, and glacier wastage is projected to affect runoff processes from glacierized basins. Accordingly, effective resource management in glacierized watersheds requires quantification of a glacier's role on streamflow generation. The Eklutna catchment (311 km2) supplies water and electricity for Anchorage, Alaska (pop. 300,000) via Eklutna Lake. The Eklutna headwaters include the West Fork (64 km2, 46% glacier), and the East Fork (101 km2, 12% glacier). Total average annual discharge (2009-2015) is similar from the West (42,100 m3) and East (42,200 m3) forks, while specific annual runoff from the West Fork (2940 mm) exceeds that of the East Fork (1500 mm). To better understand what controls runoff, we are simulating the Eklutna annual water budget using a distributed watershed-level hydrological model. We force the Water Flow and Balance Simulation Model (WaSiM) using continuous air temperature, precipitation, wind speed, shortwave incoming radiation, and relative humidity primarily measured in the West Fork basin. We use Eklutna Glacier snow accumulation and ablation to calibrate the snowmelt and glacier sub-modules. Melt season discharge from the West and East forks is used for runoff comparison. Preliminary results show 2013-2015 simulated glacier point balances (accumulation and melt) are within 15% of glacier stake observations. Runoff was effectively modeled in the West Fork (NSE=0.80), while being over-predicted in the East Fork , which we attribute to a lack of forcing data in the less-glacierized basin. The simulations suggest that 78% of West Fork total runoff is from glacier melt, compared with <40% in the East Fork where glacier runoff contribution is higher during low-snow years.

  8. The Propagation of a Surge Front on Bering Glacier, Alaska, 2001-2011

    NASA Technical Reports Server (NTRS)

    Turrin, James; Forster, Richard R.; Larsen, Chris; Sauber, Jeanne

    2013-01-01

    Bering Glacier, Alaska, USA, has a 20 year surge cycle, with its most recent surge reaching the terminus in 2011. To study this most recent activity a time series of ice velocity maps was produced by applying optical feature-tracking methods to Landsat-7 ETM+ imagery spanning 2001-11. The velocity maps show a yearly increase in ice surface velocity associated with the down-glacier movement of a surge front. In 2008/09 the maximum ice surface velocity was 1.5 plus or minus 0.017 kilometers per a in the mid-ablation zone, which decreased to 1.2 plus or minus 0.015 kilometers per a in 2009/10 in the lower ablation zone, and then increased to nearly 4.4 plus or minus 0.03 kilometers per a in summer 2011 when the surge front reached the glacier terminus. The surge front propagated down-glacier as a kinematic wave at an average rate of 4.4 plus or minus 2.0 kilometers per a between September 2002 and April 2009, then accelerated to 13.9 plus or minus 2.0 kilometers per a as it entered the piedmont lobe between April 2009 and September 2010. Thewave seems to have initiated near the confluence of Bering Glacier and Bagley Ice Valley as early as 2001, and the surge was triggered in 2008 further down-glacier in the mid-ablation zone after the wave passed an ice reservoir area.

  9. Glaciological and marine geological controls on terminus dynamics of Hubbard Glacier, southeast Alaska

    USGS Publications Warehouse

    Stearns, Leigh A.; Hamilton, Gordon S.; van der Veen, C. J.; Finnegan, D. C.; O'Neel, Shad; Scheick, J. B.; Lawson, D. E.

    2015-01-01

    Hubbard Glacier, located in southeast Alaska, is the world's largest non-polar tidewater glacier. It has been steadily advancing since it was first mapped in 1895; occasionally, the advance creates an ice or sediment dam that blocks a tributary fjord (Russell Fiord). The sustained advance raises the probability of long-term closure in the near-future, which will strongly impact the ecosystem of Russell Fiord and the nearby community of Yakutat. Here, we examine a 43-year record of flow speeds and terminus position to understand the large-scale dynamics of Hubbard Glacier. Our long-term record shows that the rate of terminus advance has increased slightly since 1895, with the exception of a slowed advance between approximately 1972 and 1984. The short-lived closure events in 1986 and 2002 were not initiated by perturbations in ice velocity or environmental forcings, but were likely due to fluctuations in sedimentation patterns at the terminus. This study points to the significance of a coupled system where short-term velocity fluctuations and morainal shoal development control tidewater glacier terminus position.

  10. Geologic strip map along the Hines Creek Fault showing evidence for Cenozoic displacement in the western Mount Hayes and northeastern Healy quadrangles, eastern Alaska Range, Alaska

    USGS Publications Warehouse

    Nokleberg, Warren J.; Aleinikoff, John N.; Bundtzen, Thomas K.; Hanshaw, Maiana N.

    2013-01-01

    Geologic mapping of the Hines Creek Fault and the adjacent Trident Glacier and McGinnis Glacier Faults to the north in the eastern Alaska Range, Alaska, reveals that these faults were active during the Cenozoic. Previously, the Hines Creek Fault, which is considered to be part of the strike-slip Denali Fault system (Ridgway and others, 2002; Nokleberg and Richter, 2007), was interpreted to have been welded shut during the intrusion of the Upper Cretaceous Buchanan Creek pluton (Wahrhaftig and others, 1975; Gilbert, 1977; Sherwood and Craddock, 1979; Csejtey and others, 1992). Our geologic mapping along the west- to west-northwest-striking Hines Creek Fault in the northeastern Healy quadrangle and central to northwestern Mount Hayes quadrangle reveals that (1) the Buchanan Creek pluton is truncated by the Hines Creek Fault and (2) a tectonic collage of fault-bounded slices of various granitic plutons, metagabbro, metabasalt, and sedimentary rock of the Pingston terrane occurs south of the Hines Creek Fault.

  11. Dendrochronology and late Holocene history of Bering piedmont glacier, Alaska

    USGS Publications Warehouse

    Wiles, G.C.; Post, A.; Muller, E.H.; Molnia, B.F.

    1999-01-01

    Fluctuations of the piedmont lobe of Bering Glacier and its sublobe Steller Glacier over the past two millennia are reconstructed using 34 radiocarbon dates and tree-ring data from 16 sites across the glaciers' forelands. The general sequence of glacial activity is consistent with well-dated fluctuations of tidewater and land-terminating glaciers elsewhere along the Gulf of Alaska. Extensive forested areas along 25 km of the Bering ice margin were inundated by glacio-lacustrine and glacio-fluvial sediments during a probable ice advance shortly before 500 cal yr A.D. Regrowth of forests followed the retreating ice as early as the 7th century A.D., with frequent interruptions of tree growth due to outwash aggradation. Forests overrun by ice and buried in outwash indicate readvance about 1080 cal yr A.D. Retreat followed, with ice-free conditions maintained along the distal portions of the forefield until the early 17th century after which the ice advanced to within a few kilometers of its outer Neoglacial moraine. Ice reached this position after the mid-17th century and prior to 200 yr ago. Since the early 20th century, glacial retreat has been punctuated by periodic surges. The record from forests overrun by the nonsurging Steller Lobe shows that this western ice margin was advancing by 1250 A.D., reaching near its outer moraine after 1420 cal yr A.D. Since the late 19th century, the lobe has dominantly retreated.

  12. The length of the glaciers in the world - a straightforward method for the automated calculation of glacier center lines

    NASA Astrophysics Data System (ADS)

    Machguth, H.; Huss, M.

    2014-05-01

    Glacier length is an important measure of glacier geometry but global glacier inventories are mostly lacking length data. Only recently semi-automated approaches to measure glacier length have been developed and applied regionally. Here we present a first global assessment of glacier length using a fully automated method based on glacier surface slope, distance to the glacier margins and a set of trade-off functions. The method is developed for East Greenland, evaluated for the same area as well as for Alaska, and eventually applied to all ∼200 000 glaciers around the globe. The evaluation highlights accurately calculated glacier length where DEM quality is good (East Greenland) and limited precision on low quality DEMs (parts of Alaska). Measured length of very small glaciers is subject to a certain level of ambiguity. The global calculation shows that only about 1.5% of all glaciers are longer than 10 km with Bering Glacier (Alaska/Canada) being the longest glacier in the world at a length of 196 km. Based on model output we derive global and regional area-length scaling laws. Differences among regional scaling parameters appear to be related to characteristics of topography and glacier mass balance. The present study adds glacier length as a central parameter to global glacier inventories. Global and regional scaling laws might proof beneficial in conceptual glacier models.

  13. Latest Pleistocene advance and collapse of the Matanuska - Knik glacier system, Anchorage Lowland, southern Alaska

    NASA Astrophysics Data System (ADS)

    Kopczynski, Sarah E.; Kelley, Samuel E.; Lowell, Thomas V.; Evenson, Edward B.; Applegate, Patrick J.

    2017-01-01

    At the end of the last ice age, glacier systems worldwide underwent dramatic retreat. Here, we document the advance and retreat of a glacier system with adjacent marine- and land-based components during the latter part of the Termination. We utilize three lines of evidence: lithologic provenance, geomorphic mapping, and radiocarbon ages derived from lake cores to reconstruct glacier extent and timing of advance and retreat within our study area centered at N 61.50°, W 149.50°, just north of Anchorage, Alaska. Two glaciers, sourced in the Talkeetna and Chugach Mountains, flowed down the Matanuska and Knik Valleys forming a coalesced lobe that advanced onto the Anchorage Lowlands and terminated at Elmendorf Moraine. We use the presence of lithologies unique to the Matanuska catchment in glacial drift to delineate the paleoflow lines and to estimate the suture line of the two glacier systems. The eastern side of the lobe, attributed to ice flow from the Knik Valley, was in contact with elevated marine waters within the Knik Arm fjord, and thus retreat was likely dominated by calving. Geomorphic evidence suggests the western side of the lobe, attributed to ice flow from Matanuska Valley, retreated due to stagnation. We constrain retreat of the combined Matanuska and Knik lobe with thirteen new radiocarbon ages, in addition to previously published radiocarbon ages, and with geomorphic evidence suggesting the retreat occurred in two phases. Retreat from the Elmendorf Moraine began between 16.8 and 16.4 ka BP. A second, faster retreat phase occurred later and was completed by 13.7 ka BP. With the 140 km of total retreat occurring over ∼3000 years or less. This pattern of glacial advance and retreats agrees well with the deglacial histories from the southern sectors of the Cordilleran Ice Sheet, as well as many other alpine glacier systems in the western U.S. and northern Alaska. This consistent behavior of glacier systems may indicate that climate oscillated over

  14. Role of lake regulation on glacier fed rivers in enhancing salmon productivity: The Cook Inlet watershed south central Alaska, USA

    USGS Publications Warehouse

    Hupp, C.R.

    2000-01-01

    Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet. This paper examines the ways in which the regulation of glacier-fed rivers by proglacial lakes affects salmon productivity, with particular reference to the Kenai River. Salmon escapement per unit channel length on the Kenai River is between two and ten times that found for rain-and-snowmelt dominated rivers and glacier-fed rivers lacking lake regulation. Lakes are shown to influence biological processes in glacier-fed rivers by attenuating peak flows, sustaining high flows throughout the summer, supplementing winter low flows, settling suspended sediment, and increasing river temperatures. Downstream from large lakes, glacier-fed rivers are less disturbed, channels are relatively stable and have well-developed salmonid habitats. The positive influences are indicated by the high diversity and abundances of benthic macroinvertebrates, which are important food resources for juvenile salmonids. High summer flows allow access for up-river salmon runs and lakes also provide both overwintering and rearing habitat. Copyright ?? 2000 John Wiley & Sons, Ltd.Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet

  15. Climate Change Impacts on the Cryosphere of Mountain Regions: Validation of a Novel Model Using the Alaska Range

    NASA Astrophysics Data System (ADS)

    Mosier, T. M.; Hill, D. F.; Sharp, K. V.

    2015-12-01

    Mountain regions are natural water towers, storing water seasonally as snowpack and for much longer as glaciers. Understanding the response of these systems to climate change is necessary in order to make informed decisions about prevention or mitigation measures. Yet, mountain regions are often data sparse, leading many researchers to implement simple or enhanced temperature index (ETI) models to simulate cryosphere processes. These model structures do not account for the thermal inertia of snowpack and glaciers and do not robustly capture differences in system response to climate regimes that differ from those the model was calibrated for. For instance, a temperature index calibration parameter will differ substantially in cold-dry conditions versus warm-wet ones. To overcome these issues, we have developed a cryosphere hydrology model, called the Significantly Enhanced Temperature Index (SETI), which uses an energy balance structure but parameterizes energy balance components in terms of minimum, maximum and mean temperature, precipitation, and geometric inputs using established relationships. Additionally, the SETI model includes a glacier sliding model and can therefore be used to estimate long-term glacier response to climate change. Sensitivity of the SETI model to changing climate is compared with an ETI and a simple temperature index model for several partially-glaciated watersheds within Alaska, including Wolverine glacier where multi-decadal glacier stake measurements are available, to highlight the additional fidelity attributed to the increased complexity of the SETI structure. The SETI model is then applied to the entire Alaska Range region for an ensemble of global climate models (GCMs), using representative concentration pathways 4.5 and 8.5. Comparing model runs based on ensembles of GCM projections to historic conditions, total annual snowfall within the Alaska region is not expected to change appreciably, but the spatial distribution of snow

  16. Monitoring change in the Bering Glacier region, Alaska: Using Landsat TM and ERS-1 imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, J.F.; Coffeen, M.; Macleod, R.D.

    1997-06-01

    The Bering Glacier is the largest (5,180 km{sup 2}) and longest (191 km) glacier in continental North America. This glacier is one of about 200 temperate glaciers in the Alaska/Canada region that are known to surge. Surges at the Bering Glacier typically occur on a 20-30 year cycle. The objective of this project was to extract information regarding the position of the terminus of the glacier from historic aerial photography, early 20{sup th} century ground photography, Landsat Thematic Mapper (TM) satellite data, and European Space Agency, Synthetic Aperture RADAR (ERS-1 SAR) data and integrate it into a single digital databasemore » that would lend itself to change detection analysis. ERS-1 SAR data was acquired from six dates between 1992-95 and was terrain corrected and co-registered A single Landsat TM image from June 1991 was used as the base image for classifying land cover types. Historic locations of the glacier terminus were generated using traditional photo interpretation techniques from aerial and ground photography. The result of this platform combination, along with the historical data, is providing land managers with the unique opportunity to generate complete assessments of glacial movement this century and determine land cover changes which may impact wildlife and recreational opportunities.« less

  17. Hydrologic impacts of changes in climate and glacier extent in the Gulf of Alaska watershed

    NASA Astrophysics Data System (ADS)

    Beamer, J. P.; Hill, D. F.; McGrath, D.; Arendt, A.; Kienholz, C.

    2017-09-01

    High-resolution regional-scale hydrologic models were used to quantify the response of late 21st century runoff from the Gulf of Alaska (GOA) watershed to changes in regional climate and glacier extent. NCEP Climate Forecast System Reanalysis data were combined with five Coupled Model Intercomparison Project Phase 5 general circulation models (GCMs) for two representative concentration pathway (RCP) scenarios (4.5 and 8.5) to develop meteorological forcing for the period 2070-2099. A hypsographic model was used to estimate future glacier extent given assumed equilibrium line altitude (ELA) increases of 200 and 400 m. GCM predictions show an increase in annual precipitation of 12% for RCP 4.5 and 21% for RCP 8.5, and an increase in annual temperature of 2.5°C for RCP 4.5 and 4.3°C for RCP 8.5, averaged across the GOA. Scenarios with perturbed climate and glaciers predict annual GOA-wide runoff to increase by 9% for RCP4.5/ELA200 case and 14% for the RCP8.5/ELA400 case. The glacier runoff decreased by 14% for RCP4.5/ELA200 and by 34% for the RCP8.5/ELA400 case. Intermodel variability in annual runoff was found to be approximately twice the variability in precipitation input. Additionally, there are significant changes in runoff partitioning and increases in snowpack runoff are dominated by increases in rain-on-snow events. We present results aggregated across the entire GOA and also for individual watersheds to illustrate the range in hydrologic regime changes and explore the sensitivities of these results by independently perturbing only climate forcings and only glacier cover.

  18. Oceanography of Glacier Bay, Alaska: Implications for biological patterns in a glacial fjord estuary

    USGS Publications Warehouse

    Etherington, L.L.; Hooge, P.N.; Hooge, Elizabeth Ross; Hill, D.F.

    2007-01-01

    Alaska, U.S.A, is one of the few remaining locations in the world that has fjords that contain temperate idewater glaciers. Studying such estuarine systems provides vital information on how deglaciation affects oceanographic onditions of fjords and surrounding coastal waters. The oceanographic system of Glacier Bay, Alaska, is of particular interest ue to the rapid deglaciation of the Bay and the resulting changes in the estuarine environment, the relatively high oncentrations of marine mammals, seabirds, fishes, and invertebrates, and the Bay’s status as a national park, where ommercial fisheries are being phased out. We describe the first comprehensive broad-scale analysis of physical and iological oceanographic conditions within Glacier Bay based on CTD measurements at 24 stations from 1993 to 2002. easonal patterns of near-surface salinity, temperature, stratification, turbidity, and euphotic depth suggest that freshwater nput was highest in summer, emphasizing the critical role of glacier and snowmelt to this system. Strong and persistent tratification of surface waters driven by freshwater input occurred from spring through fall. After accounting for seasonal nd spatial variation, several of the external physical factors (i.e., air temperature, precipitation, day length) explained a large mount of variation in the physical properties of the surface waters. Spatial patterns of phytoplankton biomass varied hroughout the year and were related to stratification levels, euphotic depth, and day length. We observed hydrographic atterns indicative of strong competing forces influencing water column stability within Glacier Bay: high levels of freshwater ischarge promoted stratification in the upper fjord, while strong tidal currents over the Bay’s shallow entrance sill enhanced ertical mixing. Where these two processes met in the central deep basins there were optimal conditions of intermediate tratification, higher light levels, and potential nutrient renewal

  19. A geochemical sampling technique for use in areas of active alpine glaciation: an application from the central Alaska Range

    USGS Publications Warehouse

    Stephens, G.C.; Evenson, E.B.; Detra, D.E.

    1990-01-01

    In mountainous regions containing extensive glacier systems there is a lack of suitable material for conventional geochemical sampling. As a result, in most geochemical sampling programs a few stream-sediment samples collected at, or near, the terminus of valley glaciers are used to evaluate the mineral potential of the glaciated area. We have developed and tested a technique which utilizes the medial moraines of valley glaciers for systematic geochemical exploration of the glacial catchment area. Moraine sampling provides geochemical information that is site-specific in that geochemical anomalies can be traced directly up-ice to bedrock sources. Traverses were made across the Trident and Susitna glaciers in the central Alaska Range where fine-grained (clay to sand size) samples were collected from each medial moraine. These samples were prepared and chemically analyzed to determine the concentration of specific elements. Fifty pebbles were collected at each moraine for archival purposes and for subsequent lithologic identification. Additionally, fifty cobbles and fifty boulders were examined and described at each sample site to determine the nature and abundance of lithologies present in the catchment area, the extent and nature of visible mineralization, the presence and intensity of hydrothermal alteration and the existence of veins, dikes and other minor structural features. Results from the central Alaska Range have delineated four distinct multi-element anomalies which are a response to potential mineralization up-ice from the medial moraine traverse. By integrating the lithologic, mineralogical and geochemical data the probable geological setting of the geochemical anomalies is determined. ?? 1990.

  20. Glacier Elevation Change in Western Nyainqentanglha Range, Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Kang, S.; Zhang, G.

    2016-12-01

    Glacier retreat is a focus in the world with the global warming, local water resources and sea level rise was influenced greatly. Glacier area in western Nyainqentanglha range have a change of -6.8 to -18.2 percent from 1970 to 2010, the area in the northern slope decreased by larger rate. Changes in glacier area can not be used to estimate glacier mass variation. In this study, we use Landsat OLI images to extract glacier outlines, then glacier elevation change was calculated by Differential interferometry of TerraSAR-X/TanDEM-X and SRTM-C DEM. The decreasing rate of glacier elevation in the western Nyainqentanglha range was -0.28 ±0.11 m yr-1 during 2000 to 2014, the northern slope of -0.44 ±0.11 m yr-1 show a faster annual thinning rate than the southern slope of -0.22 ±0.11 m yr-1, which is conform to the area change trend. Detailed study of the typical glaciers elevation change suggests that , zhadang glacier represent the annual thinning rate of -0.61±0.11 m yr-1, 41 points elevation was measured by RTK-GPS in the field expedition in 2013, this values was used to validate the DInSAR results. The correlation coefficient between them was 0.77. Gurenhekou glacier in the south slope shows glacier elevation change of -0.25 m w.e. yr-1, the value is similar to -0.31 m w.e. yr-1 investigated by stakes and snow pits. Glacier have an elevation change of -0.70 m yr-1 head-ward 500 m from the terminus position along centre line, it approximate to -0.85 m yr-1 measured by RTK-GPS. Otherwise the height difference of zero lies at 5764 m which is close to the average ELA of 5777 m measured by stakes and snow pits. Glacier and climate change interacted with each other. Temperature in western Nyainqentanglha range showed prominent increasing trend from 1964 to 2014, precipitation have increased slowly meanwhile and can not make up the mass loss affected by warming temperature, Glaciers elevation have lowered in recent decades.

  1. Spatio-temporal Variation in Glacier Ice as Habitat for Harbor Seals in an Alaskan Tidewater Glacier Fjord

    NASA Astrophysics Data System (ADS)

    Womble, J. N.; McNabb, R. W.; Gens, R.; Prakash, A.

    2015-12-01

    Some of the largest aggregations of harbor seals (Phoca vitulina richardii) in Alaska occur in tidewater glacier fjords where seals rest upon icebergs that are calved from tidewater glaciers into the marine environment. The distribution, amount, and size of floating ice in fjords are likely important factors influencing the spatial distribution and abundance of harbor seals; however, fine-scale characteristics of ice habitat that are used by seals have not been quantified using automated methods. We quantified the seasonal changes in ice habitat for harbor seals in Johns Hopkins Inlet, a tidewater glacier fjord in Glacier Bay National Park, Alaska, using aerial photography, object-based image analysis, and spatial models. Aerial photographic surveys (n = 53) were conducted of seals and ice during the whelping (June) and molting (August) seasons from 2007-2014. Surveys were flown along a grid of 12 transects and high-resolution digital photos were taken directly under the plane using a vertically aimed camera. Seal abundance and spatial distribution was consistently higher during June (range: 1,672-4,340) than August (range: 1,075-2,582) and corresponded to the spatial distribution and amount of ice. Preliminary analyses from 2007 suggest that the average percent of icebergs (ice ≥ than 1.6m2) and brash ice (ice < 1.6m2) per scene were greater in June (icebergs: 1.8% ± 1.6%; brash ice: 43.8% ± 38.9%) than August (icebergs: 0.2% ± 0.7%; brash ice; 15.8% ± 26.4%). Iceberg angularity (an index of iceberg shape) was also greater in June (1.7 ± 0.9) than August (0.9 ± 0.9). Potential factors that may influence the spatio-temporal variation in ice habitat for harbor seals in tidewater glacier fjords include frontal ablation rates of glaciers, fjord circulation, and local winds. Harbor seals exhibit high seasonal fidelity to tidewater glacier fjords, thus understanding the relationships between glacier dynamics and harbor seal distribution will be critical for

  2. Role of lake regulation on glacier-fed rivers in enhancing salmon productivity: the Cook Inlet watershed, south-central Alaska, USA

    NASA Astrophysics Data System (ADS)

    Dorava, Joseph M.; Milner, Alexander M.

    2000-10-01

    Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet. This paper examines the ways in which the regulation of glacier-fed rivers by proglacial lakes affects salmon productivity, with particular reference to the Kenai River. Salmon escapement per unit channel length on the Kenai River is between two and ten times that found for rain-and-snowmelt dominated rivers and glacier-fed rivers lacking lake regulation.Lakes are shown to influence biological processes in glacier-fed rivers by attenuating peak flows, sustaining high flows throughout the summer, supplementing winter low flows, settling suspended sediment, and increasing river temperatures. Downstream from large lakes, glacier-fed rivers are less disturbed, channels are relatively stable and have well-developed salmonid habitats. The positive influences are indicated by the high diversity and abundances of benthic macroinvertebrates, which are important food resources for juvenile salmonids. High summer flows allow access for up-river salmon runs and lakes also provide both overwintering and rearing habitat.

  3. McCall Glacier record of Arctic climate change: Interpreting a northern Alaska ice core with regional water isotopes

    NASA Astrophysics Data System (ADS)

    Klein, E. S.; Nolan, M.; McConnell, J.; Sigl, M.; Cherry, J.; Young, J.; Welker, J. M.

    2016-01-01

    We explored modern precipitation and ice core isotope ratios to better understand both modern and paleo climate in the Arctic. Paleoclimate reconstructions require an understanding of how modern synoptic climate influences proxies used in those reconstructions, such as water isotopes. Therefore we measured periodic precipitation samples at Toolik Lake Field Station (Toolik) in the northern foothills of the Brooks Range in the Alaskan Arctic to determine δ18O and δ2H. We applied this multi-decadal local precipitation δ18O/temperature regression to ∼65 years of McCall Glacier (also in the Brooks Range) ice core isotope measurements and found an increase in reconstructed temperatures over the late-20th and early-21st centuries. We also show that the McCall Glacier δ18O isotope record is negatively correlated with the winter bidecadal North Pacific Index (NPI) climate oscillation. McCall Glacier deuterium excess (d-excess, δ2H - 8*δ18O) values display a bidecadal periodicity coherent with the NPI and suggest shifts from more southwestern Bering Sea moisture sources with less sea ice (lower d-excess values) to more northern Arctic Ocean moisture sources with more sea ice (higher d-excess values). Northern ice covered Arctic Ocean McCall Glacier moisture sources are associated with weak Aleutian Low (AL) circulation patterns and the southern moisture sources with strong AL patterns. Ice core d-excess values significantly decrease over the record, coincident with warmer temperatures and a significant reduction in Alaska sea ice concentration, which suggests that ice free northern ocean waters are increasingly serving as terrestrial precipitation moisture sources; a concept recently proposed by modeling studies and also present in Greenland ice core d-excess values during previous transitions to warm periods. This study also shows the efficacy and importance of using ice cores from Arctic valley glaciers in paleoclimate reconstructions.

  4. Response of small glaciers to climate change: runoff from glaciers of the Wind River range, Wyoming

    NASA Astrophysics Data System (ADS)

    Bliss, A. K.; Stamper, B.

    2017-12-01

    Runoff from glaciers affects downstream ecosystems by influencing the quantity, seasonality, and chemistry of the water. We describe the present state of glaciers in the Wind River range, Wyoming and consider how these glaciers will change in the future. Wind River glaciers have been losing mass in recent decades, as seen with geodetic techniques and by examining glacier morphology. Interestingly, the 2016/7 winter featured one of the largest snowfalls on record. Our primary focus is the Dinwoody Glacier ( 3 km^2, 3300-4000 m above sea level). We present data collected in mid-August 2017 including glacier ablation rates, snow line elevations, and streamflow. We compare measured glacier mass loss to streamflow at the glacier terminus and at a USGS stream gauge farther downstream. Using a hydrological model, we explore the fate of glacial runoff as it moves into downstream ecosystems and through ranchlands important to local people. The techniques used here can be applied to similar small-glacier systems in other parts of the world.

  5. Alaska: Glaciers of Kenai Fjords National Park and Katmai National Park and Preserve (Chapter 12)

    NASA Technical Reports Server (NTRS)

    Giffen, Bruce A.; Hall, Dorothy K.; Chien, Janet Y.L.

    2007-01-01

    Much recent research points to the shrinkage of the Earth's small glaciers, however, few studies have been performed to quantify the amount of change over time. We measured glacier-extent changes in two national parks in southeastern Alaska. There are hundreds of glaciers in Kenai Fjords National Park (KEFJ) and Katmai National Park and Preserve (KATM) covering over 2373 sq km of parkland. There are two primary areas of glaciation in KEFJ - the Harding Icefield and the Grewingk-Yalik Glacier Complex, and three primary areas of glaciation in KATM - the Mt. Douglas area, the Kukak Volcano to Mt. Katmai area and the Mt. Martin area. We performed glacier mapping using satellite imagery, from the 1970s, 1980s, and from 2000. Results of the analysis show that there has been a reduction in the amount of glacier ice cover in the two parks over the study period, of approximately 22 sq km of ice, approximately - 1.6% from 1986 to 2000 (for KEFJ), and of approximately 76 sq km of glacier ice, or about -7.7% from 1986187 to 2000 (for KATM). In the future, measurements of surface elevation changes of these ice masses should be acquired; together with our extent-change measurements, the volume change of the ice masses can then be determined to estimate their contribution to sea-level rise. The work is a continuation of work done in KEFJ, but in KATM, our measurements represent the first comprehensive study of the glaciers in this remote, little-studied area.

  6. Influence of glacier runoff on ecosystem structure in Gulf of Alaska fjords

    USGS Publications Warehouse

    Arimitsu, Mayumi L.; Piatt, John F.; Mueter, Franz J.

    2016-01-01

    To better understand the influence of glacier runoff on fjord ecosystems, we sampled oceanographic conditions, nutrients, zooplankton, forage fish and seabirds within 4 fjords in coastal areas of the Gulf Alaska. We used generalized additive models and geostatistics to identify the range of glacier runoff influence into coastal waters within fjords of varying estuarine influence and topographic complexity. We also modeled the response of depth-integrated chlorophyll a concentration, copepod biomass, fish and seabird abundance to physical, nutrient and biotic predictor variables. The effects of glacial runoff were traced at least 10 km into coastal fjords by cold, turbid, stratified and generally nutrient-rich near-surface conditions. Glacially modified physical gradients, nutrient availability and among-fjord differences explained 67% of the variation in phytoplankton abundance, which is a driver of ecosystem structure at higher trophic levels. Copepod, euphausiid, fish and seabird distribution and abundance were related to environmental gradients that could be traced to glacial freshwater input, particularly turbidity and temperature. Seabird density was predicted by prey availability and silicate concentrations, which may be a proxy for upwelling areas where this nutrient is in excess. Similarities in ecosystem structure among fjords were attributable to an influx of cold, fresh and sediment-laden water, whereas differences were likely related to fjord topography and local differences in estuarine vs. ocean influence. We anticipate that continued changes in the timing and volume of glacial runoff will ultimately alter coastal ecosystems in the future.

  7. Status and trend of the Kittlitz's Murrelet Brachyramphus brevirostris in Glacier Bay, Alaska

    USGS Publications Warehouse

    Piatt, John F.; Arimitsu, Mayumi L.; Drew, Gary S.; Madison, Erica N.; Bodkin, James L.; Romano, Marc D.

    2011-01-01

    We conducted standardized surveys for marine birds in Glacier Bay in seven years between 1991 and 2008. From our most recent survey, a combination of line- and strip-transect methods completed in 2008, we estimated that 4981 (95% CI 1293–8670) Kittlitz’s Murrelets Brachyramphus brevirostris resided in Glacier Bay during the month of June, together with 12 195 (5607–18 783) Marbled Murrelets B. marmoratus. When counts were prorated to assign unidentified Brachyramphus murrelets to species, population estimates increased to 5641 Kittlitz’s Murrelets and 13 810 Marbled Murrelets. Our surveys of bird numbers in Glacier Bay between 1991 and 2008 revealed that Kittlitz’s Murrelet declined by ≥85% during this period. Trend analysis suggested a rate of decline between -10.7% and -14.4% per year. No direct human impacts (e.g., bycatch, oil pollution, vessel disturbance) in our study area could fully account for a decline of this magnitude. Widespread declines of Brachyramphus murrelets and Harbor Seals Phoca vitulina in the Gulf of Alaska during the 1980s-1990s suggest large-scale influences on these marine predators, perhaps related to climate-mediated cycles in food supply. Other natural factors that may impact Glacier Bay populations include predation by avian and terrestrial predators, widespread glacial retreat and its effect on nesting and foraging habitats, and competition for food with marine predators whose abundance in Glacier Bay has increased markedly in recent years (Humpback Whales Megaptera novaeangliae and Steller Sea Lions Eumetopias jubatus).

  8. Comparison of geodetic and glaciological mass-balance techniques, Gulkana Glacier, Alaska, U.S.A

    USGS Publications Warehouse

    Cox, L.H.; March, R.S.

    2004-01-01

    The net mass balance on Gulkana Glacier, Alaska, U.S.A., has been measured since 1966 by the glaciological method, in which seasonal balances are measured at three index sites and extrapolated over large areas of the glacier. Systematic errors can accumulate linearly with time in this method. Therefore, the geodetic balance, in which errors are less time-dependent, was calculated for comparison with the glaciological method. Digital elevation models of the glacier in 1974, 1993 and 1999 were prepared using aerial photographs, and geodetic balances were computed, giving - 6.0??0.7 m w.e. from 1974 to 1993 and - 11.8??0.7 m w.e. from 1974 to 1999. These balances are compared with the glaciological balances over the same intervals, which were - 5.8??0.9 and -11.2??1.0 m w.e. respectively; both balances show that the thinning rate tripled in the 1990s. These cumulative balances differ by <6%. For this close agreement, the glaciologically measured mass balance of Gulkana Glacier must be largely free of systematic errors and be based on a time-variable area-altitude distribution, and the photography used in the geodetic method must have enough contrast to enable accurate photogrammetry.

  9. Preliminary bathymetry of Aialik Bay and Neoglacial changes of Aialik and Pederson glaciers, Alaska

    USGS Publications Warehouse

    Post, Austin

    1980-01-01

    Preliminary bathymetry (at 1:20,000 scale) and scientific studies of Aialik Bay, Alaska, by the Research Vessel Growler in 1978 disclose that the head of the bay consists of a deep basin enclosed by a terminal-moraine shoal. A much smaller basin, into which Aialik Glacier discharges icebergs, is located west of two islands and a submarine ridge. Comparison of 1978 soundings with U.S. Coast and Geodetic Survey (now National Oceanic and Atmospheric Administration) data obtained in 1912 shows shoaling of about 64 feet in the deepest part of the small basin nearest the glacier and of about 40 feet in the large basin. The time of retreat of Aialik Glacier from the moraine bar is unknown; a faint ' trimline ' is still visible in the forest on the east side of the fiord, and a carbon-14 date suggests the retreat could have taken place as recently as 1800. The time of Aialik Glcier 's neoglacial advance to the moraine is unknown. Pederson Glacier, which terminates in part in a tidal lagoon or lake, has retreated about 0.90 mile from a moraine judged by Grant and Higgins to have been in contact with the ice about 1896. (USGS)

  10. Reconnaissance stratigraphy of the Red Glacier Formation (Middle Jurassic) near Hungryman Creek, Cook Inlet basin, Alaska

    USGS Publications Warehouse

    LePain, D.L.; Stanley, Richard G.; Helmold, K.P.

    2016-01-01

    Geochemical data suggest the source of oil in upper Cook Inlet fields is Middle Jurassic organic-rich shales in the Tuxedni Group (Magoon and Anders, 1992; Lillis and Stanley, 2011; LePain and others, 2012, 2013). Of the six formations in the group (Detterman, 1963), the basal Red Glacier Formation is the only unit that includes fine-grained rocks in outcrop that appear to be organic-rich (fig. 3-1). In an effort to better understand the stratigraphy and source-rock potential of the Red Glacier Formation, the Alaska Division of Geological & Geophysical Surveys, in collaboration with the Alaska Division of Oil and Gas and the U.S. Geological Survey, has been investigating the unit in outcrop between Tuxedni Bay and the type section at Lateral and Red glaciers (Stanley and others, 2013; LePain and Stanley, 2015; Helmold and others, 2016 [this volume]). Fieldwork in 2015 focused on a southeast-trending ridge south of Hungryman Creek, where the lower 60–70 percent of the formation (400–500 m) is exposed and accessible, except for the near-vertical faces of three segments near the southeast end of the ridge (figs. 3-2 and 3-3). Three stratigraphic sections were measured along the ridge to document facies and depositional environments (figs. 3-3 and 3-4). Steep terrain precluded study of the upper part of the formation exposed east of the ridge. This report includes a preliminary summary of findings from the 2015 field season.

  11. Iceberg calving during transition from grounded to floating ice: Columbia Glacier, Alaska

    USGS Publications Warehouse

    Walter, Fabian; O'Neel, Shad; McNamara, Daniel; Pfeffer, W.T.; Bassis, Jeremy N.; Fricker, Helen Amanda

    2010-01-01

    The terminus of Columbia Glacier, Alaska, unexpectedly became ungrounded in 2007 during its prolonged retreat. Visual observations showed that calving changed from a steady release of low-volume bergs, to episodic flow-perpendicular rifting, propagation, and release of very large icebergs - a style reminiscent of calving from ice shelves. Here, we compare passive seismic and photographic observations through this transition to examine changes in calving. Mechanical changes accompany the visible changes in calving style post flotation: generation of seismic energy during calving is substantially reduced. We propose this is partly due to changes in source processes.

  12. Assessing More than a Decade of Alaska/yukon, High Elevation, Glacier Ice/rock Landslides

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.; Angeli, K.

    2017-12-01

    On September 14, 2005, an estimated 5.0x106 m3 of rock, glacier ice, and snow fell from below the summit of 3,236-m-high Mt. Steller, Alaska, onto a tributary of Bering Glacier. Next day photography of the slide and source area suggested that meltwater played a significant role in its origin. Aerial photography and space-based electro-optical imagery collected for months following the event recorded continuing evidence of meltwater flowing from the head-scarp region and continued ice and snow melt. We investigated five similar glacier ice-rock landslides. These originated from the north face of Mt. Steller in late 2005-early 2006, the south side of Waxell Ridge in late 2005-early 2006, Mt. Steele on July 24, 2007, Mt. Lituya on June 11, 2012, and Mt. La Perouse on February 16, 2014. None was triggered by a seismic event. Four were detected based on seismic events they generated. All source areas exhibited failed hanging glaciers and/or failed perennial snowfields. Five had detectable glacier hydrologic features (moulins, conduits, and collapsed englacial stream channels) in near-summit failed ice and snow margins. Four displayed fresh concave bedrock failure surfaces. All originated at locations where mean annual temperatures were below freezing. Our observations support water triggering each event. We propose that abnormally warm summer temperatures or extreme winter precipitation produced unusual volumes of water which saturated summit snow and ice and/or filled summit glacier channels and conduits with liquid water. Water reached the frozen water/bedrock interface, destabilizing the contact. Fresh concave bedrock failure surfaces suggest that glacier beds were adhering to steep bedrock surfaces composed of a mélange of freeze/thaw shattered rock held together by interstitial ice. When the mass of saturated glacier ice failed, the bedrock mélange also failed, exposing fresh bedrock scarp depressions and generating the observed gravel-dominated slide debris.

  13. Enhancement of a parsimonious water balance model to simulate surface hydrology in a glacierized watershed

    USGS Publications Warehouse

    Valentin, Melissa M.; Viger, Roland J.; Van Beusekom, Ashley E.; Hay, Lauren E.; Hogue, Terri S.; Foks, Nathan Leon

    2018-01-01

    The U.S. Geological Survey monthly water balance model (MWBM) was enhanced with the capability to simulate glaciers in order to make it more suitable for simulating cold region hydrology. The new model, MWBMglacier, is demonstrated in the heavily glacierized and ecologically important Copper River watershed in Southcentral Alaska. Simulated water budget components compared well to satellite‐based observations and ground measurements of streamflow, evapotranspiration, snow extent, and total water storage, with differences ranging from 0.2% to 7% of the precipitation flux. Nash Sutcliffe efficiency for simulated and observed streamflow was greater than 0.8 for six of eight stream gages. Snow extent matched satellite‐based observations with Nash Sutcliffe efficiency values of greater than 0.89 in the four Copper River ecoregions represented. During the simulation period 1949 to 2009, glacier ice melt contributed 25% of total runoff, ranging from 12% to 45% in different tributaries, and glacierized area was reduced by 6%. Statistically significant (p < 0.05) decreasing and increasing trends in annual glacier mass balance occurred during the multidecade cool and warm phases of the Pacific Decadal Oscillation, respectively, reinforcing the link between climate perturbations and glacier mass balance change. The simulations of glaciers and total runoff for a large, remote region of Alaska provide useful data to evaluate hydrologic, cryospheric, ecologic, and climatic trends. MWBM glacier is a valuable tool to understand when, and to what extent, streamflow may increase or decrease as glaciers respond to a changing climate.

  14. Hydrography and circulation of ice-marginal lakes at Bering Glacier, Alaska, U.S.A.

    USGS Publications Warehouse

    Josberger, E.G.; Shuchman, R.A.; Meadows, G.A.; Savage, S.; Payne, J.

    2006-01-01

    An extensive suite of physical oceanographic, remotely sensed, and water quality measurements, collected from 2001 through 2004 in two ice-marginal lakes at Bering Glacier, Alaska-Berg Lake and Vitus Lake-show that each has a unique circulation controlled by their specific physical forcing within the glacial system. Conductivity profiles from Berg Lake, perched 135 m a.s.l., show no salt in the lake, but the temperature profiles indicate an apparently unstable situation, the 4??C density maximum is located at 10 m depth, not at the bottom of the lake (90 m depth). Subglacial discharge from the Steller Glacier into the bottom of the lake must inject a suspended sediment load sufficient to marginally stabilize the water column throughout the lake. In Vitus Lake, terminus positions derived from satellite imagery show that the glacier terminus rapidly retreated from 1995 to the present resulting in a substantial expansion of the volume of Vitus Lake. Conductivity and temperature profiles from the tidally influenced Vitus Lake show a complex four-layer system with diluted (???50%) seawater in the bottom of the lake. This lake has a complex vertical structure that is the result of convection generated by ice melting in salt water, stratification within the lake, and freshwater entering the lake from beneath the glacier and surface runoff. Four consecutive years, from 2001 to 2004, of these observations in Vitus Lake show little change in the deep temperature and salinity conditions, indicating limited deep water renewal. The combination of the lake level measurements with discharge measurements, through a tidal cycle, by an acoustic Doppler Current Profiler (ADCP) deployed in the Seal River, which drains the entire Bering system, showed a strong tidal influence but no seawater entry into Vitus Lake. The ADCP measurements combined with lake level measurements established a relationship between lake level and discharge, which when integrated over a tidal cycle, gives a

  15. High-resolution modeling of coastal freshwater discharge and glacier mass balance in the Gulf of Alaska watershed

    NASA Astrophysics Data System (ADS)

    Beamer, J. P.; Hill, D. F.; Arendt, A.; Liston, G. E.

    2016-05-01

    A comprehensive study of the Gulf of Alaska (GOA) drainage basin was carried out to improve understanding of the coastal freshwater discharge (FWD) and glacier volume loss (GVL). Hydrologic processes during the period 1980-2014 were modeled using a suite of physically based, spatially distributed weather, energy-balance snow/ice melt, soil water balance, and runoff routing models at a high-resolution (1 km horizontal grid; daily time step). Meteorological forcing was provided by the North American Regional Reanalysis (NARR), Modern Era Retrospective Analysis for Research and Applications (MERRA), and Climate Forecast System Reanalysis (CFSR) data sets. Streamflow and glacier mass balance modeled using MERRA and CFSR compared well with observations in four watersheds used for calibration in the study domain. However, only CFSR produced regional seasonal and long-term trends in water balance that compared favorably with independent Gravity Recovery and Climate Experiment (GRACE) and airborne altimetry data. Mean annual runoff using CFSR was 760 km3 yr-1, 8% of which was derived from the long-term removal of stored water from glaciers (glacier volume loss). The annual runoff from CFSR was partitioned into 63% snowmelt, 17% glacier ice melt, and 20% rainfall. Glacier runoff, taken as the sum of rainfall, snow, and ice melt occurring each season on glacier surfaces, was 38% of the total seasonal runoff, with the remaining runoff sourced from nonglacier surfaces. Our simulations suggests that existing GRACE solutions, previously reported to represent glacier mass balance alone, are actually measuring the full water budget of land and ice surfaces.

  16. Progression of the 2011-2012 Surge of Bering Glacier and Bagley Ice Field, Alaska

    NASA Astrophysics Data System (ADS)

    Herzfeld, U. C.; McDonald, B.; Stachura, M.; Hale, R.; Trantow, T.; Weltman, A.; Chen, P.

    2012-12-01

    Bering Glacier, Alaska, started a surge in late spring 2011. The surge reached the ice front in May 2011 and extended into Bagley Ice Field by summer 2011. New surge-related crevassing was observed in July 2012. We collected aerial observations, including systematic videographic and photographic imagery, GPS data and laser altimeter data in September 2011 and in July 2012. In this talk, an analysis of surge progression and comparison to the early, mature and late stages of the 1993-1995 surge of Bering Glacier and Bagley Ice Field will be presented. A suite of approaches will be used to this end: Analysis of elevation changes based on CryoSat data, 2009 and 2010 IceBridge data and 2011 and 2012 laser altimeter data collected by our group, geostatistical classification of crevasse types based on imagery, classification of laser altimeter data and analysis of high-resolution satellite imagery (Worldview and GEOS).

  17. Sediments Exposed by Drainage of a Collapsing Glacier-Dammed Lake Show That Contemporary Summer Temperatures and Glacier Retreat Exceed the Medieval Warm Period in Southern Alaska

    NASA Astrophysics Data System (ADS)

    Loso, M. G.; Anderson, R. S.; Anderson, S. P.; Reimer, P. J.

    2007-12-01

    In the mountains of southcentral Alaska, recent and widespread glacier retreat is well-documented, but few instrumental or proxy records of temperature are available to place recent changes in a long-term context. The Medieval Warm Period in particular, is poorly documented because subsequent Little Ice Age glacier advances destroyed much of the existing sedimentary record. In a rare exception, sudden and unexpected catastrophic drainage of a previously stable glacier-dammed lake recently revealed lacustrine stratigraphy that spans over 1500 years. Located near the Bagley Icefield in Wrangell-St. Elias National Park and Preserve, Iceberg Lake first drained in A.D. 1999 and has not regained a stable shoreline since that time. Rapid incision of the exposed lakebed provided subaerial exposure of annual laminations (varves, confirmed by radiogenic evidence) that record continuous sediment deposition from A.D. 442 to A.D. 1998. We present a recalculated master chronology of varve thickness that combines measurements from several sites within the former lake. Varve thickness in this chronology is positively correlated with northern hemisphere temperature trends and also with a local, ~600 year long tree ring width chronology. Varve thickness increases in warm summers because of higher melt, runoff, and sediment transport, and also because shrinkage of the glacier dam allows shoreline regression that concentrates sediment in the smaller lake. Relative to the entire record, varve thicknesses and implied summer temperatures were lowest around A.D. 600, high between A.D. 1000 and A.D. 1300, low between A.D. 1500 and A.D 1850, and highest in the late 20th century. Combined with stratigraphic evidence that contemporary jokulhlaups are unprecedented since at least A.D. 442, this record suggests that late 20th century warming was more intense, and accompanied by more extensive glacier retreat, than the Medieval Warm Period or any other time in the last 1500 years. We emphasize

  18. Changing exhumation patterns during Cenozoic growth and glaciation of the Alaska Range: Insights from detrital thermochronology and geochronology

    USGS Publications Warehouse

    Lease, Richard O.; Haeussler, Peter J.; O'Sullivan, Paul

    2016-01-01

    Cenozoic growth of the Alaska Range created the highest topography in North America, but the space-time pattern and drivers of exhumation are poorly constrained. We analyzed U/Pb and fission-track double dates of detrital zircon and apatite grains from 12 catchments that span a 450 km length of the Alaska Range to illuminate the timing and extent of exhumation during different periods. U/Pb ages indicate a dominant Late Cretaceous to Oligocene plutonic provenance for the detrital grains, with only a small percentage of grains recycled from the Mesozoic and Paleozoic sedimentary cover. Fission-track ages record exhumation during Alaska Range growth and incision and reveal three distinctive patterns. First, initial Oligocene exhumation was focused in the central Alaska Range at ~30 Ma and expanded outward along the entire length of the range until 18 Ma. Oligocene exhumation, coeval with initial Yakutat microplate collision >600 km to the southeast, suggests a far-field response to collision that was localized by the Denali Fault within a weak Mesozoic suture zone. Second, the variable timing of middle to late Miocene exhumation suggests independently evolving histories influenced by local structures. Time-transgressive cooling ages suggest successive rock uplift and erosion of Mounts Foraker (12 Ma) through Denali (6 Ma) as crust was advected through a restraining bend in the Denali Fault and indicate a long-term slip rate ~4 mm/yr. Third, Pliocene exhumation is synchronous (3.7–2.7 Ma) along the length of the Alaska Range but only occurs in high-relief, glacier-covered catchments. Pliocene exhumation may record an acceleration in glacial incision that was coincident with the onset of Northern Hemisphere glaciation.

  19. Increasing Wastage of the Bering and Malaspina Glacier Systems, Alaska-Yukon, 1972 to 2006

    NASA Astrophysics Data System (ADS)

    Muskett, R. R.; Lingle, C. S.; Sauber, J. M.; Tangborn, W. V.; Rabus, B. T.; Echelmeyer, K. A.

    2007-12-01

    Ice dynamics are integral to the net mass balances of the huge Bagley-Bering and Seward-Malaspina Glacier systems of south-central Alaska. Quasi-periodic surging of the main trunks and some large tributaries of these exceptionally active glacier systems are important contributors to their increasing volume losses in the present rapidly-warming climate, because surges rapidly transport ice from higher elevations, where it is "safe," to lower elevations where it subject to increased ablation. New estimates of mass losses from the Bering and Malaspina Glacier systems during 1972-2006 were derived from analysis of (i) digital elevation models (DEMs) synthesized from airborne and spaceborne interferometric synthetic aperture radar (InSAR); (ii) small-aircraft laser altimetry; and (iii) spaceborne laser altimetry acquired by ICESat. Adjustments for estimated seasonal snow accumulation were applied to datasets acquired at times subsequent to late summer. Adjustments for systematic DEM biases were also applied. The area-average lowering rate on the main-trunk of the Bering Glacier system from 1972 to 1995 was 0.9 ± 0.1 m/yr. The major 1993 to '95 surge moved ice rapidly from the surge reservoir into the piedmont lobe where rapid surface melting was facilitated by the heavily crevassed surface. The lowering rate accelerated to 3.0 ± 0.1 m/yr during 1995 to 2000, then moderated to 1.4 ± 0.1 m/yr during 2000 to 2003. On the Malaspina Glacier system, the area-average rate of surface lowering was 1.4 ± 0.1 m/yr during 1972 to 1999. It then increased by 30% to 1.8 ± 0.1 m/yr during 1999 to 2002. Near-concurrent surges of Agassiz Glacier (a west piedmont lobe tributary), lower Seward Glacier (main source for the central Seward lobe), and Marvine Glacier (a detached former tributary of the eastern piedmont lobe) were observed during this 3-year time span of increased surface lowering. Recent ICESat-derived elevation changes from 2003 to 2006 indicate increasing wastage on the

  20. Hubbard Glacier, Alaska: growing and advancing in spite of global climate change and the 1986 and 2002 Russell Lake outburst floods

    USGS Publications Warehouse

    Trabant, Dennis C.; March, Rod S.; Thomas, Donald S.

    2003-01-01

    Hubbard Glacier, the largest calving glacier on the North American Continent (25 percent larger than Rhode Island), advanced across the entrance to 35-mile-long Russell Fiord during June 2002, temporarily turning it into a lake. Hubbard Glacier has been advancing for more than 100 years and has twice closed the entrance to Russell Fiord during the last 16 years by squeezing and pushing submarine glacial sediments across the mouth of the fiord. Water flowing into the cutoff fiord from mountain streams and glacier melt causes the level of Russell Lake to rise. However, both the 1986 and 2002 dams failed before the lake altitude rose enough for water to spill over a low pass at the far end of the fiord and enter the Situk River drainage, a world-class sport and commercial fishery near Yakutat, Alaska.

  1. Hazard assessment of the Tidal Inlet landslide and potential subsequent tsunami, Glacier Bay National Park, Alaska

    USGS Publications Warehouse

    Wieczorek, G.F.; Geist, E.L.; Motyka, R.J.; Jakob, M.

    2007-01-01

    An unstable rock slump, estimated at 5 to 10????????10 6 m3, lies perched above the northern shore of Tidal Inlet in Glacier Bay National Park, Alaska. This landslide mass has the potential to rapidly move into Tidal Inlet and generate large, long-period-impulse tsunami waves. Field and photographic examination revealed that the landslide moved between 1892 and 1919 after the retreat of the Little Ice Age glaciers from Tidal Inlet in 1890. Global positioning system measurements over a 2-year period show that the perched mass is presently moving at 3-4 cm annually indicating the landslide remains unstable. Numerical simulations of landslide-generated waves suggest that in the western arm of Glacier Bay, wave amplitudes would be greatest near the mouth of Tidal Inlet and slightly decrease with water depth according to Green's law. As a function of time, wave amplitude would be greatest within approximately 40 min of the landslide entering water, with significant wave activity continuing for potentially several hours. ?? 2007 Springer-Verlag.

  2. Object-Based Image Classification of Floating Ice Used as Habitat for Harbor Seals in a Tidewater Glacier Fjord in Alaska

    NASA Astrophysics Data System (ADS)

    McNabb, R. W.; Womble, J. N.; Prakash, A.; Gens, R.; Ver Hoef, J.

    2014-12-01

    Tidewater glaciers play an important role in many landscape and ecosystem processes in fjords, terminating in the sea and calving icebergs and discharging meltwater directly into the ocean. Tidewater glaciers provide floating ice for use as habitat for harbor seals (Phoca vitulina richardii) for resting, pupping, nursing, molting, and avoiding predators. Tidewater glaciers are found in high concentrations in Southeast and Southcentral Alaska; currently, many of these glaciers are retreating or have stabilized in a retracted state, raising questions about the future availability of ice in these fjords as habitat for seals. Our primary objective is to investigate the relationship between harbor seal distribution and ice availability at an advancing tidewater glacier in Johns Hopkins Inlet, Glacier Bay National Park, Alaska. To this end, we use a combination of visible and infrared aerial photographs, object-based image analysis (OBIA), and statistical modeling techniques. We have developed a workflow to automate the processing of the imagery and the classification of the fjordscape (e.g., individual icebergs, brash ice, and open water), providing quantitative information on ice coverage as well as properties not typically found in traditional pixel-based classification techniques, such as block angularity and seal density across the fjord. Reflectance variation in the red channel of the optical images has proven to be the most important first-level criterion to separate open water from floating ice. This first-level criterion works well in areas without dense brash ice, but tends to misclassify dense brash ice as single icebergs. Isolating these large misclassified regions and applying a higher reflectance threshold as a second-level criterion helps to isolate individual ice blocks surrounded by dense brash ice. We present classification results from surveys taken during June and August, 2007-2013, as well as preliminary results from statistical modeling of the

  3. Late nineteenth to early twenty-first century behavior of Alaskan glaciers as indicators of changing regional climate

    USGS Publications Warehouse

    Molnia, B.F.

    2007-01-01

    Alaska's climate is changing and one of the most significant indications of this change has been the late 19th to early 21st century behavior of Alaskan glaciers. Weather station temperature data document that air temperatures throughout Alaska have been increasing for many decades. Since the mid-20th century, the average change is an increase of ?????2.0????C. In order to determine the magnitude and pattern of response of glaciers to this regional climate change, a comprehensive analysis was made of the recent behavior of hundreds of glaciers located in the eleven Alaskan mountain ranges and three island areas that currently support glaciers. Data analyzed included maps, historical observations, thousands of ground-and-aerial photographs and satellite images, and vegetation proxy data. Results were synthesized to determine changes in length and area of individual glaciers. Alaskan ground photography dates from 1883, aerial photography dates from 1926, and satellite photography and imagery dates from the early 1960s. Unfortunately, very few Alaskan glaciers have any mass balance observations. In most areas analyzed, every glacier that descends below an elevation of ?????1500??m is currently thinning and/or retreating. Many glaciers have an uninterrupted history of continuous post-Little-Ice-Age retreat that spans more than 250??years. Others are characterized by multiple late 19th to early 21st century fluctuations. Today, retreating and/or thinning glaciers represent more than 98% of the glaciers examined. However, in the Coast Mountains, St. Elias Mountains, Chugach Mountains, and the Aleutian Range more than a dozen glaciers are currently advancing and thickening. Many currently advancing glaciers are or were formerly tidewater glaciers. Some of these glaciers have been expanding for more than two centuries. This presentation documents the post-Little-Ice-Age behavior and variability of the response of many Alaskan glaciers to changing regional climate. ?? 2006.

  4. Ice Surface Morphology and Flow on Malaspina Glacier, Alaska: Implications for Regional Tectonics in the Saint Elias Orogen

    NASA Technical Reports Server (NTRS)

    Cotton, Michelle M.; Bruhn, Ronald L.; Sauber, Jeanne; Burgess, Evan; Forster, Richard R.

    2014-01-01

    The Saint Elias Mountains in southern Alaska are located at a structural syntaxis where the coastal thrust and fold belt of the Fairweather plate boundary intersects thrust faults and folds generated by collision of the Yakutat Terrane. The axial trace of this syntaxis extends southeastward out of the Saint Elias Mountains and beneath Malaspina Glacier where it is hidden from view and cannot be mapped using conventional methods. Here we examine the surface morphology and flow patterns of Malaspina Glacier to infer characteristics of the bedrock topography and organization of the syntaxis. Faults and folds beneath the eastern part of the glacier trend northwest and reflect dextral transpression near the terminus of the Fairweather fault system. Those beneath the western part of the glacier trend northeast and accommodate folding and thrust faulting during collision and accretion of the Yakutat Terrane. Mapping the location and geometry of the structural syntaxis provides important constraints on spatial variations in seismicity, fault kinematics, and crustal shortening beneath Malaspina Glacier, as well as the position of the collisional deformation front within the Yakutat Terrane. We also speculate that the geometrical complexity of intersecting faults within the syntaxis formed a barrier to rupture propagation during two regional Mw 8.1earthquakes in September 1899.

  5. Malaspina Glacier

    NASA Image and Video Library

    2017-12-08

    NASA image captured August 31, 2000 The tongue of the Malaspina Glacier, the largest glacier in Alaska, fills most of this image. The Malaspina lies west of Yakutat Bay and covers 1,500 sq. MI (3,880 sq. km). Credit: NASA/Landsat NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  6. A 30-year record of surface mass balance (1966-95) and motion and surface altitude (1975-95) at Wolverine Glacier, Alaska

    USGS Publications Warehouse

    Mayo, Lawrence R.; Trabant, Dennis C.; March, Rod S.

    2004-01-01

    Scientific measurements at Wolverine Glacier, on the Kenai Peninsula in south-central Alaska, began in April 1966. At three long-term sites in the research basin, the measurements included snow depth, snow density, heights of the glacier surface and stratigraphic summer surfaces on stakes, and identification of the surface materials. Calculations of the mass balance of the surface strata-snow, new firn, superimposed ice, and old firn and ice mass at each site were based on these measurements. Calculations of fixed-date annual mass balances for each hydrologic year (October 1 to September 30), as well as net balances and the dates of minimum net balance measured between time-transgressive summer surfaces on the glacier, were made on the basis of the strata balances augmented by air temperature and precipitation recorded in the basin. From 1966 through 1995, the average annual balance at site A (590 meters altitude) was -4.06 meters water equivalent; at site B (1,070 meters altitude), was -0.90 meters water equivalent; and at site C (1,290 meters altitude), was +1.45 meters water equivalent. Geodetic determination of displacements of the mass balance stake, and glacier surface altitudes was added to the data set in 1975 to detect the glacier motion responses to variable climate and mass balance conditions. The average surface speed from 1975 to 1996 was 50.0 meters per year at site A, 83.7 meters per year at site B, and 37.2 meters per year at site C. The average surface altitudes were 594 meters at site A, 1,069 meters at site B, and 1,293 meters at site C; the glacier surface altitudes rose and fell over a range of 19.4 meters at site A, 14.1 meters at site B, and 13.2 meters at site C.

  7. Assessing streamflow sensitivity to variations in glacier mass balance

    USGS Publications Warehouse

    O'Neel, Shad; Hood, Eran; Arendt, Anthony; Sass, Louis

    2014-01-01

    The purpose of this paper is to evaluate relationships among seasonal and annual glacier mass balances, glacier runoff and streamflow in two glacierized basins in different climate settings. We use long-term glacier mass balance and streamflow datasets from the United States Geological Survey (USGS) Alaska Benchmark Glacier Program to compare and contrast glacier-streamflow interactions in a maritime climate (Wolverine Glacier) with those in a continental climate (Gulkana Glacier). Our overall goal is to improve our understanding of how glacier mass balance processes impact streamflow, ultimately improving our conceptual understanding of the future evolution of glacier runoff in continental and maritime climates.

  8. Differences in dissolved organic matter lability between alpine glaciers and alpine rock glaciers of the American West

    NASA Astrophysics Data System (ADS)

    Hall, E.; Fegel, T. S., II; Baron, J.; Boot, C. M.

    2015-12-01

    While alpine glaciers in montane regions represent the largest flux of dissolved organic matter (DOM) from global ice melt no research has examined the bioavailability of DOM melted out of glacial ice in the western continental United States. Furthermore, rock glaciers are an order of magnitude more abundant than ice glaciers in U.S., yet are not included in budgets for perennial ice carbon stores. Our research aims to understand differences in the bioavailability of carbon from ice glaciers and rock glaciers along the Central Rocky Mountains of Colorado. Identical microbial communities were fed standardized amounts of DOM from four different ice glacier-rock glaciers pairs. Using laboratory incubations, paired with mass spectrometry based metabolomics and 16S gene sequencing; we were able to examine functional definitions of DOM lability in glacial ice. We hypothesized that even though DOM quantities are similar in the outputs of both glacial types in our study area, ice glacial DOM would be more bioavailable than DOM from rock glaciers due to higher proportions of byproducts from microbial metabolism than rock glacier DOM, which has higher amounts of "recalcitrant" plant material. Our results show that DOM from ice glaciers is more labile than DOM from geologically and geographically similar paired rock glaciers. Ice glacier DOM represents an important pool of labile carbon to headwater ecosystems of the Rocky Mountains. Metabolomic analysis shows numerous compounds from varying metabolite pathways, including byproducts of nitrification before and after incubation, meaning that, similar to large maritime glaciers in Alaska and Europe, subglacial environments in the mountain ranges of the United States are hotspots for biological activity and processing of organic carbon.

  9. Medial moraines of glaciers of the Copper River Basin, Alaska: Discrete landslides dominate over other sources

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Fischer, L.; Furfaro, R.; Huggel, C.; Korup, O.; Leonard, G. J.; Uhlmann, M.; Wessels, R. L.; Wolfe, D. F.

    2009-12-01

    Medial moraines are visually dominant structures of most large valley glaciers in the Copper River Basin (CRB), Alaska. Areally extensive but thin (usually <20 cm) accumulations of debris pose challenges for glacier mapping based on multispectral imagery, as done, for instance, in the GLIMS project. The sources of this material include large discrete landslides from wallrocks and from lateral moraines; diffuse contributions from rock falls and talus creep; rocks delivered via snow and ice avalanches; ingestion of lateral moraines along tributary convergences; and basal erosional debris. Evidence indicates that in CRB glaciers, discrete large avalanches predominate as the major contributors of moraine mass. Subglacial erosional debris is predominantly pulverized to small grain sizes and flushed. Many large, young avalanches exist on CRB glaciers. Evidence from colorimetry indicates that many medial moraines actually are landslides that have been sheared and swept downglacier, thus mimicking the form of other types of medial moraines formed where tributaries coalesce and flow down valley. Landcover classification of ASTER imagery, qualitative observations from air photos, and semiquantitative field-based estimations of rock color types indicate that on Allen Glacier, and other CRB glaciers, landslides are the sources of most medial moraines. On Allen and Root Glacier, for example, we see very few boulders with obvious signs of basal abrasion, whereas nearly all boulders exhibit signs of irregular fracture, for example in landslides. Such landslides have large effects on the thermal and mass balance of CRB glaciers, sometimes opposing or in other cases accentuating the effects of global/regional climate change. Considering the link between landslides and seismicity, and that Magnitude 8-9 earthquakes may occur nearby only about once a century, which is also the characteristic response time of large glaciers to climate shifts, seismicity must be considered along with

  10. The dynamic response of Kennicott Glacier, Alaska, USA, to the Hidden Creek Lake outburst flood

    USGS Publications Warehouse

    Anderson, R. Scott; Walder, J.S.; Anderson, S.P.; Trabant, D.C.; Fountain, A.G.

    2005-01-01

    Glacier sliding is commonly linked with elevated water pressure at the glacier bed. Ice surface motion during a 3 week period encompassing an outburst of ice-dammed Hidden Creek Lake (HCL) at Kennicott Glacier, Alaska, USA, showed enhanced sliding during the flood. Two stakes, 1.2 km from HCL, revealed increased speed in two episodes, both associated with uplift of the ice surface relative to the trajectory of bed-parallel motion. Uplift of the surface began 12 days before the flood, initially stabilizing at a value of 0.25 m. Two days after lake drainage began, further uplift (reaching 0.4 m) occurred while surface speed peaked at 1.2 m d-1. Maximum surface uplift coincided with peak discharge from HCL, high water level in a down-glacier ice-marginal basin, and low solute concentrations in the Kennicott River. Each of these records is consistent with high subglacial water pressure. We interpret the ice surface motion as arising from sliding up backs of bumps on the bed, which enlarges cavities and produces bed separation. The outburst increased water pressure over a broad region, promoting sliding, inhibiting cavity closure, and blocking drainage of solute-rich water from the distributed system. Pressure drop upon termination of the outburst drained water from and depressurized the distributed system, reducing sliding speeds. Expanded cavities then collapsed with a 1 day time-scale set by the local ice thickness.

  11. Geomorphology and Ice Content of Glacier - Rock Glacier &ndash; Moraine Complexes in Ak-Shiirak Range (Inner Tien Shan, Kyrgyzstan)

    NASA Astrophysics Data System (ADS)

    Bolch, Tobias; Kutuzov, Stanislav; Rohrbach, Nico; Fischer, Andrea; Osmonov, Azamat

    2015-04-01

    Meltwater originating from the Tien Shan is of high importance for the runoff to the arid and semi-arid region of Central Asia. Previous studies estimate a glaciers' contribution of about 40% for the Aksu-Tarim Catchment, a transboundary watershed between Kyrgyzstan and China. Large parts of the Ak-Shiirak Range drain into this watershed. Glaciers in Central and Inner Tien Shan are typically polythermal or even cold and surrounded by permafrost. Several glaciers terminate into large moraine complexes which show geomorphological indicators of ice content such as thermo-karst like depressions, and further downvalley signs of creep such as ridges and furrows and a fresh, steep rock front which are typical indicators for permafrost creep ("rock glacier"). Hence, glaciers and permafrost co-exist in this region and their interactions are important to consider, e.g. for the understanding of glacial and periglacial processes. It can also be assumed that the ice stored in these relatively large dead-ice/moraine-complexes is a significant amount of the total ice storage. However, no detailed investigations exist so far. In an initial study, we investigated the structure and ice content of two typical glacier-moraine complexes in the Ak-Shiirak-Range using different ground penetrating radar (GPR) devices. In addition, the geomorphology was mapped using high resolution satellite imagery. The structure of the moraine-rock glacier complex is in general heterogeneous. Several dead ice bodies with different thicknesses and moraine-derived rock glaciers with different stages of activities could be identified. Few parts of these "rock glaciers" contain also massive ice but the largest parts are likely characterised by rock-ice layers of different thickness and ice contents. In one glacier forefield, the thickness of the rock-ice mixture is partly more than 300 m. This is only slightly lower than the maximum thickness of the glacier ice. Our measurements revealed that up to 20% of

  12. Model-data comparisons of crevasses in accelerating glaciers exemplified for the 2011-2013 surge of Bering Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Trantow, T.; Herzfeld, U. C.

    2017-12-01

    Glacier acceleration, ubiquitous along the periphery of the major icesheets, presents one of the main uncertainties in modeling future global sea-level rise according to the IPCC 5th Assessment Report (2013). The surge phenomenon is one type of glacial acceleration and is the least understood. During a surge, large-scale elevation change and significant crevassing occurs throughout the entire ice system. Crevasses are the most obvious manifestations of the surge dynamics and provide a source of geophysical information that allows reconstruction of deformation processes. The recent surge of the Bering-Bagley Glacier System (BBGS), Alaska, in 2011-2013 provides an excellent test case to study surging through airborne and satellite observations together with numerical modeling. A 3D full-Stokes finite element model of the BBGS has been created using the Elmer/Ice software for structural and dynamical investigations of the surge. A von Mises condition is applied to modeled surface stresses to predict where crevassing would occur during the surge. The model uses CryoSat-2 derived surface topography (Baseline-C), bedrock topography, Glen's flow law with an isothermal assumption and a uniform linear friction law at the ice/bedrock boundary to represent the surge state in early 2011 when peak velocities were observed. Additionally, geostatistical characterization applied to optical satellite imagery provides an observational data set for model-data comparisons. Observed and modeled crevasse characteristics are compared with respect to their location, magnitude and orientation. Similarity mapping applied to the modeled von Mises stress and observed surface roughness values indicates that the two quantities are correlated. Results indicate that large-scale surface crevasses resulting from a surge are connected to the bedrock topography of the glacier system. The model-data comparisons used in this analysis serve to validate the numerical model and provide insight into the

  13. Guide to Geologic Hazards in Alaska | Alaska Division of Geological &

    Science.gov Websites

    content Guide to Geologic Hazards in Alaska Glossary Coastal and river hazards image Coastal and river Storm surge Tsunami Earthquake related hazards image Earthquake related hazards Earthquake Earthquake Subsidence Surface fault rupture Tsunami Uplift Glacier hazards image Glacier hazards Avalanche Debris flow

  14. The length of the world's glaciers - a new approach for the global calculation of center lines

    NASA Astrophysics Data System (ADS)

    Machguth, H.; Huss, M.

    2014-09-01

    Glacier length is an important measure of glacier geometry. Nevertheless, global glacier inventories are mostly lacking length data. Only recently semi-automated approaches to measure glacier length have been developed and applied regionally. Here we present a first global assessment of glacier length using an automated method that relies on glacier surface slope, distance to the glacier margins and a set of trade-off functions. The method is developed for East Greenland, evaluated for East Greenland as well as for Alaska and eventually applied to all ~ 200 000 glaciers around the globe. The evaluation highlights accurately calculated glacier length where digital elevation model (DEM) quality is high (East Greenland) and limited accuracy on low-quality DEMs (parts of Alaska). Measured length of very small glaciers is subject to a certain level of ambiguity. The global calculation shows that only about 1.5% of all glaciers are longer than 10 km, with Bering Glacier (Alaska/Canada) being the longest glacier in the world at a length of 196 km. Based on the output of our algorithm we derive global and regional area-length scaling laws. Differences among regional scaling parameters appear to be related to characteristics of topography and glacier mass balance. The present study adds glacier length as a key parameter to global glacier inventories. Global and regional scaling laws might prove beneficial in conceptual glacier models.

  15. Preliminary assessment of landslide-induced wave hazards, Tidal Inlet, Glacier Bay National Park, Alaska

    USGS Publications Warehouse

    Wieczorek, Gerald F.; Jakob, Matthias; Motyka, Roman J.; Zirnheld, Sandra L.; Craw, Patricia

    2003-01-01

    A large potential rock avalanche above the northern shore of Tidal Inlet, Glacier Bay National Park, Alaska, was investigated to determine hazards and risks of landslide-induced waves to cruise ships and other park visitors. Field and photographic examination revealed that the 5 to 10 million cubic meter landslide moved between AD 1892 and 1919 after the retreat of Little Ice Age glaciers from Tidal Inlet by AD 1890. The timing of landslide movement and the glacial history suggest that glacial debuttressing caused weakening of the slope and that the landslide could have been triggered by large earthquakes of 1899-1900 in Yakutat Bay. Evidence of recent movement includes fresh scarps, back-rotated blocks, and smaller secondary landslide movements. However, until there is evidence of current movement, the mass is classified as a dormant rock slump. An earthquake on the nearby active Fairweather fault system could reactivate the landslide and trigger a massive rock slump and debris avalanche into Tidal Inlet. Preliminary analyses show that waves induced by such a landslide could travel at speeds of 45 to 50 m/s and reach heights up to 76 m with wave runups of 200 m on the opposite shore of Tidal Inlet. Such waves would not only threaten vessels in Tidal Inlet, but would also travel into the western arm of Glacier Bay endangering large cruise ships and their passengers.

  16. Contributions to Jarvis Creek Watershed, Alaska, from Winter Accumulation and Glacier Melt Inferred Through Airborne and Ground-Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Campbell, S. W.; Liljedahl, A. K.; Douglas, T. A.; Bernsen, S.; Gatesman, T.; Gerbi, C. C.

    2017-12-01

    Glacier meltwater contributions to river discharge has been increasing in much of the Arctic, likely because of higher air temperatures. For small glaciers that provide a large portion of meltwater to downstream discharge, a sustained negative mass balance is concerning to surrounding ecosystems because the water budget will ultimately decline when glacier ice disappears. Separating components of the hydrological budget is important for predicting future discharge, particularly when major inputs such as glacier ice melt are at risk of total loss. Jarvis Glacier in Eastern Alaska offers an example of this potential scenario. It is a 6-km long glacier that has been in retreat since the 1950's, yet it accounts for 15% of the annual downstream discharge into Jarvis Creek (Liljedahl et al., 2017). In March 2012 through April 2017 we completed yearly airborne and ground-penetrating radar surveys over Jarvis Glacier and its surrounding non-glaciated watershed. These surveys were conducted to assess winter snow accumulation and its potential contribution to the hydrological budget of Jarvis Creek. We also surveyed glacier ice thicknesses to estimate ice volume and potential long term future meltwater contributions to Jarvis Creek based on its sustained negative mass balance. High-frequency radar collected across Jarvis Glacier reveal winter accumulation rates between 1.1-1.9 m SWE. Thickness of winter snow in the surrounding glacier-free valleys is highly variable but it tended to accumulate as drifts near ridge tops or low in the valleys. Low-frequency GPR reveals ice thickness reaching 250 m, mid-glacier, tapering to less than 100 m near the debris-rich terminus. Several over-deepened basins exist and an obvious polythermal structure with 20-30 m of cold ice overlaying temperate ice is also evident. Our presentation will summarize further details of these results in relation to current and potential future contributions of glacier ice and winter snowpack melt to Jarvis

  17. Early retreat of the Alaska Peninsula Glacier Complex and the implications for coastal migrations of First Americans

    USGS Publications Warehouse

    Misarti, Nicole; Finney, Bruce P.; Jordan, James W.; Maschner, Herbert D. G.; Addison, Jason A.; Shapley, Mark D.; Krumhardt, Andrea P.; Beget, James E.

    2012-01-01

    The debate over a coastal migration route for the First Americans revolves around two major points: seafaring technology, and a viable landscape and resource base. Three lake cores from Sanak Island in the western Gulf of Alaska yield the first radiocarbon ages from the continental shelf of the Northeast Pacific and record deglaciation nearly 17 ka BP (thousands of calendar years ago), much earlier than previous estimates based on extrapolated data from other sites outside the coastal corridor in the Gulf of Alaska. Pollen data suggest an arid, terrestrial ecosystem by 16.3 ka BP. Therefore glaciers would not have hindered the movement of humans along the southern edge of the Bering Land Bridge for two millennia before the first well-recognized “New World” archaeological sites were inhabited.

  18. UNIT, ALASKA.

    ERIC Educational Resources Information Center

    Louisiana Arts and Science Center, Baton Rouge.

    THE UNIT DESCRIBED IN THIS BOOKLET DEALS WITH THE GEOGRAPHY OF ALASKA. THE UNIT IS PRESENTED IN OUTLINE FORM. THE FIRST SECTION DEALS PRINCIPALLY WITH THE PHYSICAL GEOGRAPHY OF ALASKA. DISCUSSED ARE (1) THE SIZE, (2) THE MAJOR LAND REGIONS, (3) THE MOUNTAINS, VOLCANOES, GLACIERS, AND RIVERS, (4) THE NATURAL RESOURCES, AND (5) THE CLIMATE. THE…

  19. Mapping Bedrock Topography of Taku Glacier with Low Frequency Ground Penetrating RADAR

    NASA Astrophysics Data System (ADS)

    Westhaver, T.; Towell, A. R.; Lois, A.; Kaluzienski, L. M.; Fredrickson, K.; Riverman, K. L.; Kellerman, B.; Otto, D.; Stewart, A.

    2017-12-01

    Taku Glacier is the thickest and deepest temperate glacier so far measured in the world. However, the maximum depth has never been determined and the bed is estimated to be at least 600 meters below sea level. Understanding the shape of the bed topography is essential for predicting how the glacier will respond to climate change and how this will affect the future shoreline of Southeast Alaska. We collected both transverse and longitudinal transects of Taku Glacier using ground penetrating radar (GPR) operating at a frequency of 5 MHz, as well as similar profiles from several tributary glaciers including Demorest Glacier, Matthes Glacier and the Northwest Branch of Taku Glacier. We combined previously collected seismic data, digital elevation models (DEMs), and gravimetric data with in situ GPR profiles to produce a bedrock topography model using ArcGIS and Python. Here we present a bedrock topography model of the retreating Taku Glacier that approximates the future shoreline of Southeast Alaska. This modeled shoreline would have profound implications for local community development, ecology and regional hydrology given current climate warming trends.

  20. Recent Elevation Changes on Bagley Ice Valley, Guyot and Yahtse Glaciers, Alaska, from ICESat Altimetry, Star-3i Airborne, and SRTM Spaceborne DEMs

    NASA Astrophysics Data System (ADS)

    Muskett, R. R.; Sauber, J. M.; Lingle, C. S.; Rabus, B. T.; Tangborn, W. V.; Echelmeyer, K. A.

    2005-12-01

    .5 m at 1562 m altitude, -2.6 ± 2.8 m at 1378 m altitude, 6.1 ± 3.5 m at 1142 m altitude, 1.4 ± 12.1 m at 1232 m altitude, -4.0 ± 4.2 m at 250 m to 1217 m altitude, -1.8 ± 3.3 m at 1200 m altitude, and 8.0 ± 6.4 m at 940 m altitude. One ICESat-derived track-to-DEM comparison on Guyot Glacier indicates a preliminary mean elevation change in the 478 m to 1150 m altitude range of -2.8 ± 14.1 m. Results, including additional comparisons to small-aircraft laser altimeter data, with more fully-corrected for estimated snow and ice accumulation / ablation between acquisitions times, will be presented. [Muskett, R.R., C.S. Lingle, W.V. Tangborn, and B.T. Rabus, Multi-decadal elevation changes on Bagley Ice Valley and Malaspina Glacier, Alaska, GRL, 30 (16), 1857, doi:10.1029/2003GL017707, 2003.

  1. Evaluation of conditions along the grounding line of temperate marine glaciers: An example from Muir Inlet, Glacier Bay, Alaska

    USGS Publications Warehouse

    Seramur, K.C.; Powell, R.D.; Carlson, P.R.

    1997-01-01

    In the marine environment, stability of the glacier terminus and the location of subglacial streams are the dominant controls on the distribution of grounding-line deposits within morainal banks. A morainal bank complex in Muir Inlet, Glacier Bay, SE Alaska, is used to develop a model of terminus stability and location of subglacial streams along the grounding line of temperate marine glaciers. This model can be used to interpret former grounding-line conditions in other glacimarine settings from the facies architecture within morainal bank deposits. The Muir Inlet morainal bank complex was deposited between 1860 A.D. and 1899 A.D., and historical observations provide a record of terminus positions, glacial retreat rates and sedimentary sources. These data are used to reconstruct the depositional environment and to develop a correlation between sedimentary facies and conditions along the grounding line. Four seismic facies identified on the high-resolution seismic-reflection profiles are used to interpret sedimentary facies within the morainal bank complex. Terminus stability is interpreted from the distribution of sedimentary facies within three distinct submarine geomorphic features, a grounding-line fan; stratified ridges, and a field of push ridges. The grounding-line fan was deposited along a stable terminus and is represented on seismic-reflection profiles by two distinct seismic facies, a proximal and a distal fan facies. The proximal fan facies was deposited at the efflux of subglacial streams and indicates the location of former glacifluvial discharges into the sea. Stratified ridges formed as a result of the influence of a quasi-stable terminus on the distribution of sedimentary facies along the grounding line. A field of push ridges formed along the grounding line of an unstable terminus that completely reworked the grounding-line deposits through glacitectonic deformation. Between 1860 A.D. and 1899 A.D. (39 years), 8.96 x 108 m3 of sediment were

  2. Glacial conditioning of stream position and flooding in the braid plain of the Exit Glacier foreland, Alaska

    NASA Astrophysics Data System (ADS)

    Curran, Janet H.; Loso, Michael G.; Williams, Haley B.

    2017-09-01

    Flow spilling out of an active braid plain often signals the onset of channel migration or avulsion to previously occupied areas. In a recently deglaciated environment, distinguishing between shifts in active braid plain location, considered reversible by fluvial processes at short timescales, and more permanent glacier-conditioned changes in stream position can be critical to understanding flood hazards. Between 2009 and 2014, increased spilling from the Exit Creek braid plain in Kenai Fjords National Park, Alaska, repeatedly overtopped the only access road to the popular Exit Glacier visitor facilities and trails. To understand the likely cause of road flooding, we consider recent processes and the interplay between glacier and fluvial system dynamics since the maximum advance of the Little Ice Age, around 1815. Patterns of temperature and precipitation, the variables that drive high streamflow via snowmelt, glacier meltwater runoff, and rainfall, could not fully explain the timing of road floods. Comparison of high-resolution topographic data between 2008 and 2012 showed a strong pattern of braid plain aggradation along 3 km of glacier foreland, not unexpected at the base of mountainous glaciers and likely an impetus for channel migration. Historically, a dynamic zone follows the retreating glacier in which channel positions shift rapidly in response to changes in the glacier margin and fresh morainal deposits. This period of paraglacial adjustment lasts one to several decades at Exit Glacier. Subsequently, as moraine breaches consolidate and lock the channel into position, and as the stream regains the lower-elevation valley center, upper-elevation surfaces are abandoned as terraces inaccessible by fluvial processes for timescales of decades to centuries. Where not constrained by these terraces and moraines, the channel is free to migrate, which in this aggradational setting generates an alluvial fan at the breach of the final prominent moraine. The position of

  3. Monitoring glacier variations in the Urubamba and Vilcabamba Mountain Ranges, Peru, using "Landsat 5" images

    NASA Astrophysics Data System (ADS)

    Suarez, Wilson; Cerna, Marcos; Ordoñez, Julio; Frey, Holger; Giráldez, Claudia; Huggel, Christian

    2013-04-01

    The Urubamba and Vilcabamba mountain ranges are two geological structures belonging to the Andes in the southern part of Peru, which is located in the tropical region. These mountain ranges are especially located within the transition area between the Amazon region (altitudes close to 1'000 m a.s.l.) and the Andes. These mountains, with a maximum height of 6'280 m a.s.l. (Salkantay Snow Peak in the Vilcabamba range), are characterized by glaciers mainly higher than 5000 m a.s.l. Here we present a study on the evolution of the ice cover based on "Landsat 5" images from 1991 and 2011 is presented in this paper. These data are freely available from the USGS in a georeferenced format and cover a time span of more than 25 years. The glacier mapping is based on the Normalized Difference Snow Index (NDSI). In 1991 the Vilcabamba mountain range had 221 km2 of glacier cover, being reduced to 116.4 km2 in 2011, which represents a loss of 48%. In the Urubamba mountain range, the total glacier area was 64.9 km2 in 1991 and 29.4 km2 in 2011, representing a loss of 54.7%. It means that the glacier area was halved during the past two decades although precipitation patterns show an increase in recent years (the wet season lasts from September to April with precipitation peaks in February and March). Glacier changes in these two tropical mountain ranges also impact from an economic point of view due to small local farming common in this region (use of water from the melting glacier). Furthermore, potential glacier related hazards can pose a threat to people and infrastructure in the valleys below these glaciers, where the access routes to Machu Picchu Inca City, Peru's main tourist destination, are located too.

  4. Five 'Supercool' Icelandic Glaciers

    NASA Astrophysics Data System (ADS)

    Knudsen, O.; Roberts, M. J.; Roberts, M. J.; Tweed, F. S.; Russell, A. J.; Lawson, D. E.; Larson, G. J.; Evenson, E. B.; Bjornsson, H.

    2001-12-01

    Sediment entrainment by glaciohydraulic supercooling has recently been demonstrated as an effective process at Matanuska glacier, Alaska. Although subfreezing meltwater temperatures have been recorded at several Alaskan glaciers, the link between supercooling and sediment accretion remains confined to Matanuska. This study presents evidence of glaciohydraulic supercooling and associated basal ice formation from five Icelandic glaciers: Skeidarárjökull, Skaftafellsjökull, Kvíárjökull, Flaájökull, and Hoffellsjökull. These observations provide the best example to-date of glaciohydraulic supercooling and related sediment accretion outside Alaska. Fieldwork undertaken in March, July and August 2001 confirmed that giant terraces of frazil ice, diagnostic of the presence of supercooled water, are forming around subglacial artesian vents. Frazil flocs retrieved from these vents contained localised sandy nodules at ice crystal boundaries. During periods of high discharge, sediment-laden frazil flocs adhere to the inner walls of vents, and continue to trap suspended sediment. Bands of debris-rich frazil ice, representing former vents, are texturally similar to basal ice exposures at the glacier margins, implying a process-form relationship between glaciohydraulic freeze-on and basal ice formation. It is hypothesised that glaciohydraulic supercooling is generating thick sequences of basal ice. Observations also confirm that in situ melting of basal ice creates thick sedimentary sequences, as sediment structures present in the basal ice can be clearly traced into ice-marginal ridges. Glaciohydraulic supercooling is an effective sediment entrainment mechanism at Icelandic glaciers. Supercooling has the capacity to generate thick sequences of basal ice and the sediments present in basal ice can be preserved. These findings are incompatible with established theories of intraglacial sediment entrainment and basal ice formation; instead, they concur with, and extend, the

  5. Glacier microseismicity

    USGS Publications Warehouse

    West, Michael E.; Larsen, Christopher F.; Truffer, Martin; O'Neel, Shad; LeBlanc, Laura

    2010-01-01

    We present a framework for interpreting small glacier seismic events based on data collected near the center of Bering Glacier, Alaska, in spring 2007. We find extremely high microseismicity rates (as many as tens of events per minute) occurring largely within a few kilometers of the receivers. A high-frequency class of seismicity is distinguished by dominant frequencies of 20–35 Hz and impulsive arrivals. A low-frequency class has dominant frequencies of 6–15 Hz, emergent onsets, and longer, more monotonic codas. A bimodal distribution of 160,000 seismic events over two months demonstrates that the classes represent two distinct populations. This is further supported by the presence of hybrid waveforms that contain elements of both event types. The high-low-hybrid paradigm is well established in volcano seismology and is demonstrated by a comparison to earthquakes from Augustine Volcano. We build on these parallels to suggest that fluid-induced resonance is likely responsible for the low-frequency glacier events and that the hybrid glacier events may be caused by the rush of water into newly opening pathways.

  6. Dynamic Change in Glacial Dammed Lake Behavior of Suicide Basin, Mendenhall Glacier, Juneau Alaska

    NASA Astrophysics Data System (ADS)

    Jacobs, A. B.; Moran, T.; Hood, E. W.

    2016-12-01

    Suicide Basin Jökulhlaups, since 2011, have resulted in moderate flooding on the Mendenhall Lake and River in Juneau, AK. At this time, the USGS recorded peak streamflow of 20,000 cfs in 2014, the highest flows officially reported by the USGS which was attributed to a Suicide Basin glacial-dammed lake release. However, the USGS estimated a peak flow of 27,000 cfs in 1961 and we suspect this event is partially the result of a glacial dammed lake release. From 2011 to 2015, data indicates that yearly outburst from Suicide Basin were the norm; however, in 2015 and 2016, multiple outbursts during the summer were observed suggesting a dynamic change in glacial behavior. For public safety and awareness, the University of Alaska Southeast and U.S. Geologic Survey began monitoring real-time Suicide Basin lake levels. A real-time model was developed by the National Weather Service Alaska-Pacific River Forecast Center capable of forecasting potential timing and magnitude of the flood-wave crest from this Suicide Basin release. However, the model now is being modified because data not previously available has become available and adapted to the change in state of glacial behavior. The importance of forecasting time and level of crest on the Mendenhall River system owing to these outbursts floods is an essential aid to emergency managers and the general public to provide impact decision support services (IDSS). The National Weather Service has been able to provide 36 to 24 hour forecasts for these large events, but with the change in glacial state on the Mendenhall Glacier, the success of forecasting these events is getting more challenging. We will show the success of the hydrologic model but at the same time show the challenges we have seen with the changing glacier dynamics.

  7. Mendenhall Glacier Visitor Center vehicular and pedestrian traffic congestion study

    DOT National Transportation Integrated Search

    2007-05-01

    The Mendenhall Glacier Visitor Center of Tongass National Forest in Juneau, Alaska is experiencing vehicular and pedestrian congestion. This study was initiated by the United States Forest Service, Alaska Region, in cooperation with Western Federal L...

  8. The potential for retreating alpine glaciers to alter alpine ecosystems in the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Hall, E.; Baron, J.

    2013-12-01

    Glaciers are retreating at an unprecedented rate. In mid-latitude alpine ecosystems the presence of glaciers and rock glaciers govern rates and ecology of alpine and sub-alpine ecosystems. Changes in the thermal environment due to the loss of isothermal habitat and inputs from glacier melt chemistry are altering alpine ecosystems in unpredictable ways. In particular, glacier may be a source of nitrogen that is altering alpine ecosystem dynamics. Loch Vale Watershed (LVWS) located within Rocky Mountain National Park. LVWS contains a surface glacier (Andrew's glacier) and a rock glacier (Taylor's glacier) at the headwater of each of the two drainages within the watershed. We collected precipitation from a National Atmospheric Deposition Site and surface water from multiple alpine lakes and streams during a particularly high and low snow year in the Colorado Front Range. We also sampled stream and lake sediments at each site to analyze the associated microbial community. Concentrations of nitrate and ammonium, relative abundance of amoA (the gene responsible for a key step in the microbial nitrification pathway), and the dual isotope signal to nitrate all point to snow melt as a key deliverer of nitrogen to ecosystems along the Colorado Front Range. However, late summer surface water chemistry is isotopically similar to the chemistry of glacial ice. This suggests that retreating glacier may be an additional source of N to alpine ecosystems and have the potential to alter microbial community composition, biogeochemical rate processes, and ecosystem function. These dynamics are most likely not unique to the Colorado Front Range and should be globally distributed as glaciers continue to retreat in high altitude ecosystems around the world.

  9. Quantifying periglacial erosion: Insights on a glacial sediment budget, Matanuska Glacier, Alaska

    USGS Publications Warehouse

    O'Farrell, C. R.; Heimsath, A.M.; Lawson, D.E.; Jorgensen, L.M.; Evenson, E.B.; Larson, G.; Denner, J.

    2009-01-01

    Glacial erosion rates are estimated to be among the highest in the world. Few studies have attempted, however, to quantify the flux of sediment from the periglacial landscape to a glacier. Here, erosion rates from the nonglacial landscape above the Matanuska Glacier, Alaska are presented and compare with an 8-yr record of proglacial suspended sediment yield. Non-glacial lowering rates range from 1??8 ?? 0??5 mm yr-1 to 8??5 ?? 3??4 mm yr-1 from estimates of rock fall and debris-flow fan volumes. An average erosion rate of 0??08 ?? 0??04 mm yr-1 from eight convex-up ridge crests was determined using in situ produced cosmogenic 10Be. Extrapolating these rates, based on landscape morphometry, to the Matanuska basin (58% ice-cover), it was found that nonglacial processes account for an annual sediment flux of 2??3 ?? 1??0 ?? 106 t. Suspended sediment data for 8 years and an assumed bedload to estimate the annual sediment yield at the Matanuska terminus to be 2??9 ?? 1??0 ?? 106 t, corresponding to an erosion rate of 1??8 ?? 0??6 mm yr-1: nonglacial sources therefore account for 80 ?? 45% of the proglacial yield. A similar set of analyses were used for a small tributary sub-basin (32% ice-cover) to determine an erosion rate of 12??1 ?? 6??9 mm yr-1, based on proglacial sediment yield, with the nonglacial sediment flux equal to 10 ?? 7% of the proglacial yield. It is suggested that erosion rates by nonglacial processes are similar to inferred subglacial rates, such that the ice-free regions of a glaciated landscape contribute significantly to the glacial sediment budget. The similar magnitude of nonglacial and glacial rates implies that partially glaciated landscapes will respond rapidly to changes in climate and base level through a rapid nonglacial response to glacially driven incision. ?? 2009 John Wiley & Sons, Ltd.

  10. Glaciers and Sea Level Rise

    NASA Image and Video Library

    2017-12-08

    Melt water ponded at surface in the accumulation zone of Columbia Glacier, Alaska, in July 2008. To learn about the contributions of glaciers to sea level rise, visit: www.nasa.gov/topics/earth/features/glacier-sea-rise.html Credit: W. Tad Pfeffer, University of Colorado at Boulder NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Populations and productivity of seabirds at South Marble Island, Glacier Bay, Alaska, during May-July, 1999

    USGS Publications Warehouse

    Zador, Stephani; Piatt, John F.

    1999-01-01

    In the course of directed research on glaucous-winged gulls, we investigated the numbers and activities of all breeding and non-breeding seabirds associated with South Marble Island in Glacier Bay, Alaska, during mid-May to late July, 1999. Most observations were made from the island; additional observations were made during transportation to and from the island. Data were collected on the presence and numbers of all seabirds observed. Detailed information on breeding chronology and productivity were also collected for glaucous-winged gulls (Larus glaucescens), pigeon guillemots (Cepphus columba), black-legged kittiwakes (Rissa tridactyla), and black oystercatchers (Haemantopus bachmani).

  12. Construction and Deployment of Tilt Sensors along the Lateral Margins of Jarvis Glacier, Alaska to improve understanding of the Deformation Regime of Wet-Based Polythermal Glaciers

    NASA Astrophysics Data System (ADS)

    Lee, I. R.; Hawley, R. L.; Clemens-Sewall, D.; Campbell, S. W.; Waszkiewicz, M.; Bernsen, S.; Gerbi, C. C.; Kreutz, K. J.; Koons, P. O.

    2017-12-01

    Most studies of natural ice have been on bodies of ice with frozen beds which experience minimal lateral shear strain, to the exclusion of polythermal ice sheets & glaciers which due to their mixed basal thermal regime have wet-based beds. The deficiency in knowledge and understanding of the operative deformation mechanisms of wet-based bodies of ice results in uncertainty in the constitutive flow law of ice. Given that the flow law was derived experimentally under assumptions more conducive to bodies of ice with frozen-based beds, it is necessary to calibrate the flow law when applied to different bodies of ice such as wet-based polythermal glaciers. To this end, Dartmouth and the University of Maine have collaborated to carry out research on Jarvis Glacier in Alaska, a geometrically simple, wet-based glacier. Here, we constructed and deployed an array of 25 tilt sensors into 3 boreholes drilled along the glacier's shear margin. Our goal is to obtain 3D strain measurements to calculate the full velocity field & create deformation regime maps in the vicinity of the boreholes, as well as to support numerical modeling. The tilt sensors were developed in-lab: Each tilt sensor comes equipped with an LSM303C chip (embedded with a 3-axis accelerometer and magnetometer) and Arduino Pro-Mini mounted on a custom-made printed circuit board encased within a watertight aluminum tube. The design concept was to produce a sensor string, consisting of tilt sensors spaced apart at pre-calculated intervals, to be lowered into a borehole and frozen-in over months to collect strain data through a Campbell Scientific CR1000 datalogger. Three surface-to-bed boreholes were successfully installed with tilt sensor strings. Given the lack of prior in-situ borehole geophysics studies on polythermal glaciers, deliberate consideration on factors such as strain relief and waterproofing electrical components was necessary in the development of the sensor system. On-site challenges also arose due

  13. A glacier runoff extension to the Precipitation Runoff Modeling System

    USGS Publications Warehouse

    Van Beusekom, Ashley E.; Viger, Roland

    2016-01-01

    A module to simulate glacier runoff, PRMSglacier, was added to PRMS (Precipitation Runoff Modeling System), a distributed-parameter, physical-process hydrological simulation code. The extension does not require extensive on-glacier measurements or computational expense but still relies on physical principles over empirical relations as much as is feasible while maintaining model usability. PRMSglacier is validated on two basins in Alaska, Wolverine, and Gulkana Glacier basin, which have been studied since 1966 and have a substantial amount of data with which to test model performance over a long period of time covering a wide range of climatic and hydrologic conditions. When error in field measurements is considered, the Nash-Sutcliffe efficiencies of streamflow are 0.87 and 0.86, the absolute bias fractions of the winter mass balance simulations are 0.10 and 0.08, and the absolute bias fractions of the summer mass balances are 0.01 and 0.03, all computed over 42 years for the Wolverine and Gulkana Glacier basins, respectively. Without taking into account measurement error, the values are still within the range achieved by the more computationally expensive codes tested over shorter time periods.

  14. Monitoring of oceanographic properties of Glacier Bay, Alaska 2004

    USGS Publications Warehouse

    Madison, Erica N.; Etherington, Lisa L.

    2005-01-01

    Glacier Bay is a recently (300 years ago) deglaciated fjord estuarine system that has multiple sills, very deep basins, tidewater glaciers, and many streams. Glacier Bay experiences a large amount of runoff, high sedimentation, and large tidal variations. High freshwater discharge due to snow and ice melt and the presence of the tidewater glaciers makes the bay extremely cold. There are many small- and large-scale mixing and upwelling zones at sills, glacial faces, and streams. The complex topography and strong currents lead to highly variable salinity, temperature, sediment, primary productivity, light penetration, stratification levels, and current patterns within a small area. The oceanographic patterns within Glacier Bay drive a large portion of the spatial and temporal variability of the ecosystem. It has been widely recognized by scientists and resource managers in Glacier Bay that a program to monitor oceanographic patterns is essential for understanding the marine ecosystem and to differentiate between anthropogenic disturbance and natural variation. This year’s sampling marks the 12th continuous year of monitoring the oceanographic conditions at 23 stations along the primary axes within Glacier Bay, AK, making this a very unique and valuable data set in terms of its spatial and temporal coverage.

  15. Effects of Bedrock Lithology and Subglacial Till on the Motion of Ruth Glacier, Alaska, Deduced from Five Pulses from 1973-2012

    NASA Technical Reports Server (NTRS)

    Turrin, J.; Forster, R.; Sauber, Jeanne; Hall, Dorothy K.; Bruhn, R.

    2013-01-01

    A pulse is a type of unstable glacier flow intermediate between normal flow and surging. Using Landsat MSS, TM, and ETM+ imagery and feature tracking software, a time-series of mostly annual velocity maps from 1973 to 2012 was produced that reveals five pulses of Ruth Glacier, Alaska. Peaks in ice velocity were found in the 1981, 1989, 1997, 2003, and 2010; approximately every 7 years. During these peak years the ice velocity increased 300%, from approximately 40 m/yr to 160 m/yr, and occurred in an area of the glacier underlain by sedimentary bedrock. Based on the spatio-temporal behavior of Ruth Glacier during the pulse cycles, we suggest the pulses are due to enhanced basal motion via deformation of a subglacial till. The cyclical nature of the pulses is theorized to be due to a thin till, with low permeability, that causes incomplete drainage of the till between the pulses, followed by eventual recharge and dilation of the till. These findings suggest care is needed when attempting to correlate changes in regional climate with decadal-scale changes in velocity, because in some instances basal conditions may have a greater influence on ice dynamics than climate.

  16. Using GRACE and climate model simulations to predict mass loss of Alaskan glaciers through 2100

    DOE PAGES

    Wahr, John; Burgess, Evan; Swenson, Sean

    2016-05-30

    Glaciers in Alaska are currently losing mass at a rate of ~–50 Gt a –1, one of the largest ice loss rates of any regional collection of mountain glaciers on Earth. Existing projections of Alaska's future sea-level contributions tend to be divergent and are not tied directly to regional observations. Here we develop a simple, regional observation-based projection of Alaska's future sea-level contribution. We compute a time series of recent Alaska glacier mass variability using monthly GRACE gravity fields from August 2002 through December 2014. We also construct a three-parameter model of Alaska glacier mass variability based on monthly ERA-Interimmore » snowfall and temperature fields. When these three model parameters are fitted to the GRACE time series, the model explains 94% of the variance of the GRACE data. Using these parameter values, we then apply the model to simulated fields of monthly temperature and snowfall from the Community Earth System Model, to obtain predictions of mass variations through 2100. Here, we conclude that mass loss rates may increase between –80 and –110 Gt a –1by 2100, with a total sea-level rise contribution of 19 ± 4 mm during the 21st century.« less

  17. The Quaternary thrust system of the northern Alaska Range

    USGS Publications Warehouse

    Bemis, Sean P.; Carver, Gary A.; Koehler, Richard D.

    2012-01-01

    The framework of Quaternary faults in Alaska remains poorly constrained. Recent studies in the Alaska Range north of the Denali fault add significantly to the recognition of Quaternary deformation in this active orogen. Faults and folds active during the Quaternary occur over a length of ∼500 km along the northern flank of the Alaska Range, extending from Mount McKinley (Denali) eastward to the Tok River valley. These faults exist as a continuous system of active structures, but we divide the system into four regions based on east-west changes in structural style. At the western end, the Kantishna Hills have only two known faults but the highest rate of shallow crustal seismicity. The western northern foothills fold-thrust belt consists of a 50-km-wide zone of subparallel thrust and reverse faults. This broad zone of deformation narrows to the east in a transition zone where the range-bounding fault of the western northern foothills fold-thrust belt terminates and displacement occurs on thrust and/or reverse faults closer to the Denali fault. The eastern northern foothills fold-thrust belt is characterized by ∼40-km-long thrust fault segments separated across left-steps by NNE-trending left-lateral faults. Altogether, these faults accommodate much of the topographic growth of the northern flank of the Alaska Range.Recognition of this thrust fault system represents a significant concern in addition to the Denali fault for infrastructure adjacent to and transecting the Alaska Range. Although additional work is required to characterize these faults sufficiently for seismic hazard analysis, the regional extent and structural character should require the consideration of the northern Alaska Range thrust system in regional tectonic models.

  18. Geologic maps of the eastern Alaska Range, Alaska (1:63,360 scale)

    USGS Publications Warehouse

    Nokleberg, Warren J.; Aleinikoff, John N.; Bond, Gerard C.; Ferrians, Oscar J.; Herzon, Paige L.; Lange, Ian M.; Miyaoka, Ronny T.; Richter, Donald H.; Schwab, Carl E.; Silva, Steven R.; Smith, Thomas E.; Zehner, Richard E.

    2015-01-01

    This report provides a description of map units for a suite of 44 inch-to-mile (1:63,360-scale) geologic quadrangle maps of the eastern Alaska Range. This report also contains a geologic and tectonic summary and a comprehensive list of references pertaining to geologic mapping and specialized studies of the region. In addition to the geologic maps of the eastern Alaska Range, this package includes a list of map units and an explanation of map symbols and abbreviations. The geologic maps display detailed surficial and bedrock geology, structural and stratigraphic data, portrayal of the active Denali fault that bisects the core of the east–west-trending range, and portrayal of other young faults along the north and south flanks of the range.

  19. 36 CFR 13.1109 - Off-road vehicle use in Glacier Bay National Preserve.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Glacier Bay National Preserve. 13.1109 Section 13.1109 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Administrative Provisions § 13.1109 Off-road vehicle use in Glacier Bay National...

  20. 36 CFR 13.1109 - Off-road vehicle use in Glacier Bay National Preserve.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Glacier Bay National Preserve. 13.1109 Section 13.1109 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Administrative Provisions § 13.1109 Off-road vehicle use in Glacier Bay National...

  1. 36 CFR 13.1109 - Off-road vehicle use in Glacier Bay National Preserve.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Glacier Bay National Preserve. 13.1109 Section 13.1109 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Administrative Provisions § 13.1109 Off-road vehicle use in Glacier Bay National...

  2. 36 CFR 13.1109 - Off-road vehicle use in Glacier Bay National Preserve.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Glacier Bay National Preserve. 13.1109 Section 13.1109 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Administrative Provisions § 13.1109 Off-road vehicle use in Glacier Bay National...

  3. 36 CFR 13.1109 - Off-road vehicle use in Glacier Bay National Preserve.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Glacier Bay National Preserve. 13.1109 Section 13.1109 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Administrative Provisions § 13.1109 Off-road vehicle use in Glacier Bay National...

  4. Marine benthic habitat mapping of the West Arm, Glacier Bay National Park and Preserve, Alaska

    USGS Publications Warehouse

    Hodson, Timothy O.; Cochrane, Guy R.; Powell, Ross D.

    2013-01-01

    Seafloor geology and potential benthic habitats were mapped in West Arm, Glacier Bay National Park and Preserve, Alaska, using multibeam sonar, groundtruthed observations, and geological interpretations. The West Arm of Glacier Bay is a recently deglaciated fjord system under the influence of glacial and paraglacial marine processes. High glacially derived sediment and meltwater fluxes, slope instabilities, and variable bathymetry result in a highly dynamic estuarine environment and benthic ecosystem. We characterize the fjord seafloor and potential benthic habitats using the recently developed Coastal and Marine Ecological Classification Standard (CMECS) by the National Oceanic and Atmospheric Administration (NOAA) and NatureServe. Due to the high flux of glacially sourced fines, mud is the dominant substrate within the West Arm. Water-column characteristics are addressed using a combination of CTD and circulation model results. We also present sediment accumulation data derived from differential bathymetry. These data show the West Arm is divided into two contrasting environments: a dynamic upper fjord and a relatively static lower fjord. The results of these analyses serve as a test of the CMECS classification scheme and as a baseline for ongoing and future mapping efforts and correlations between seafloor substrate, benthic habitats, and glacimarine processes.

  5. Mendenhall Glacier (Juneau, Alaska) icequake seismicity and its relationship to the 2012 outburst flood and other environmental forcing

    NASA Astrophysics Data System (ADS)

    Morgan, P. M.; Walter, J. I.; Peng, Z.; Amundson, J. M.; Meng, X.

    2013-12-01

    Glacial outburst floods occur when ice-dammed lakes or other reservoirs on the glacier release large volumes of water usually due to the failure of an ice dam. In 2011 and 2012 these types of floods have occurred at Mendenhall Glacier in Southeast Alaska, 15 km northwest of Juneau. The floods emanated from a lake within a remnant branch of Mendenhall Glacier, called Suicide Basin, and rapidly changed the levels of Mendenhall Lake. Homes on the shore of Mendenhall Lake were threatened by rapidly rising lake levels during such floods. We analyze data from a set of 4 short and broadband period seismometers placed in ice-boreholes in an array on Mendenhall Glacier for a period of 4 months in 2012. We also examine the outburst flood that occurred between July 4th and 8th 2012. We first manually pick icequakes as high-frequency bursts recorded by at least two stations. Next, we use a matched-filter technique to help complete the icequake record by detecting missed events with similar waveforms to those hand-picked events. While high-frequency noise was present during the flooding, the impulsive icequake activity did not appear to be modulated significantly during periods of flooding, suggesting that the flooding does not significantly deform the overlying ice. Impulsive icequake activity appears to show strongly diurnal periodicity, indicating that the icequakes were mainly caused by expansion/contraction of ice during daytime. We also analyze the activity in concert with GPS velocity and meteorological data from the area. By analyzing the temporal and spatial patterns of the events we hope to reveal more about the fundamental processes occurring beneath Mendenhall Glacier.

  6. Antarctic Peninsula Tidewater Glacier Dynamics

    NASA Astrophysics Data System (ADS)

    Pettit, E. C.; Scambos, T. A.; Haran, T. M.; Wellner, J. S.; Domack, E. W.; Vernet, M.

    2015-12-01

    The northern Antarctic Peninsula (nAP, north of 66°S) is a north-south trending mountain range extending transverse across the prevailing westerly winds of the Southern Ocean resulting in an extreme west-to-east precipitation gradient. Snowfall on the west side of the AP is one to two orders of magnitude higher than the east side. This gradient drives short, steep, fast-flowing glaciers into narrow fjords on the west side, while longer lower-sloping glaciers flow down the east side into broader fjord valleys. This pattern in ice dynamics affects ice-ocean interaction on timescales of decades to centuries, and shapes the subglacial topography and submarine bathymetry on timescales of glacial cycles. In our study, we calculate ice flux for the western and eastern nAP using a drainage model that incorporates the modern ice surface topography, the RACMO-2 precipitation estimate, and recent estimates of ice thinning. Our results, coupled with observed rates of ice velocity from InSAR (I. Joughin, personal communication) and Landsat 8 -derived flow rates (this study), provide an estimate of ice thickness and fjord depth in grounded-ice areas for the largest outlet glaciers. East-side glaciers either still terminate in or have recently terminated in ice shelves. Sedimentary evidence from the inner fjords of the western glaciers indicates they had ice shelves during LIA time, and may still have transient floating ice tongues (tabular berg calvings are observed). Although direct oceanographic evidence is limited, the high accumulation rate and rapid ice flux implies cold basal ice for the western nAP glaciers and therefore weak subglacial discharge relative to eastern nAP glaciers and or other tidewater fjord systems such as in Alaska. Finally, despite lower accumulation rates on the east side, the large elongate drainage basins result in a greater ice flux funneled through fewer deeper glaciers. Due to the relation between ice flux and erosion, these east-side glaciers

  7. Passive microwave (SSM/I) satellite predictions of valley glacier hydrology, Matanuska Glacier, Alaska

    USGS Publications Warehouse

    Kopczynski, S.E.; Ramage, J.; Lawson, D.; Goetz, S.; Evenson, E.; Denner, J.; Larson, G.

    2008-01-01

    We advance an approach to use satellite passive microwave observations to track valley glacier snowmelt and predict timing of spring snowmelt-induced floods at the terminus. Using 37 V GHz brightness temperatures (Tb) from the Special Sensor Microwave hnager (SSM/I), we monitor snowmelt onset when both Tb and the difference between the ascending and descending overpasses exceed fixed thresholds established for Matanuska Glacier. Melt is confirmed by ground-measured air temperature and snow-wetness, while glacier hydrologic responses are monitored by a stream gauge, suspended-sediment sensors and terminus ice velocity measurements. Accumulation area snowmelt timing is correlated (R2 = 0.61) to timing of the annual snowmelt flood peak and can be predicted within ??5 days. Copyright 2008 by the American Geophysical Union.

  8. Estimates of Glacier Mass Loss and Contribution to Streamflow in the Wind River Range in Wyoming: Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, Jeffrey; Piburn, Jesse; Tootle, Glenn

    2014-09-11

    The Wind River Range is a continuous mountain range, approximately 160 km in length, in west-central Wyoming. The presence of glaciers results in meltwater contributions to streamflow during the late summer (July, August, and September: JAS) when snowmelt is decreasing; temperatures are high; precipitation is low; evaporation rates are high; and municipal, industrial, and irrigation water are at peak demands. Therefore, the quantification of glacier meltwater (e.g., volume and mass) contributions to late summer/early fall streamflow is important, given that this resource is dwindling owing to glacier recession. The current research expands upon previous research efforts and identifies two glaciatedmore » watersheds, one on the east slope (Bull Lake Creek) and one on the west slope (Green River) of the Wind River Range, in which unimpaired streamflow is available from 1966 to 2006. Glaciers were delineated within each watershed and area estimates (with error) were obtained for the years 1966, 1989, and 2006. Glacier volume (mass) loss (with error) was estimated by using empirically based volume-area scaling relationships. For 1966 to 2006, glacier mass contributions to JAS streamflow on the east slope were approximately 8%, whereas those on the west slope were approximately 2%. Furthermore, the volume-area scaling glacier mass estimates compared favorably with measured (stereo pair remote sensed data) estimates of glacier mass change for three glaciers (Teton, Middle Teton, and Teepe) in the nearby Teton Range and one glacier (Dinwoody) in the Wind River Range.« less

  9. Glacier fluctuations in the Kenai Fjords, Alaska, U.S.A.: An evaluation of controls on Iceberg-calving glaciers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiles, G.C.; Calkin, P.E.; Post, A.

    The histories of four iceberg-calving outlet-glacier systems in the Kenai Fjords National Park underscore the importance of fiord depth, sediment supply, and fiord geometry on glacier stability. These parameters, in turn, limit the reliability of calving glacier chronologies as records of climatic change. Tree-ring analysis together with radiocarbon dating show that the Northwestern and McCarty glaciers, with large drainage basins, were advancing in concert with nearby land-terminating glaciers about A.D. 600. After an interval of retreat and possible nonclimatically induced extension during the Medieval Warm Period, these ice margins advanced again through the Little Ice Age and then retreated synchronouslymore » with the surrounding land-terminating glaciers about A.D. 1900. In contrast, Holgate and Aialik glaciers, with deeper fiords and smaller basins, retreated about 300 yr earlier. Reconstructions of Little Ice Age glaciers suggest that equilibrium-line altitudes of Northwestern and McCarty glaciers were, respectively, 270 and 500 m lower than now. Furthermore, the reconstructions show that these two glaciers were climatically sensitive when at their terminal moranies. However, with ice margins at their present recessional positions and accumulation area ratios between 0.8 and 0.9, only McCarty Glacier shows evidence of advance. Aialik and Holgate glaciers were climatically insensitive during the Little Ice Age maxima and remain insensitive to climate. 40 refs., 7 figs., 2 tabs.« less

  10. Increasing rock-avalanche size and mobility in Glacier Bay National Park and Preserve, Alaska detected from 1984 to 2016 Landsat imagery

    USGS Publications Warehouse

    Coe, Jeffrey A.; Bessette-Kirton, Erin; Geertsema, Marten

    2018-01-01

    In the USA, climate change is expected to have an adverse impact on slope stability in Alaska. However, to date, there has been limited work done in Alaska to assess if changes in slope stability are occurring. To address this issue, we used 30-m Landsat imagery acquired from 1984 to 2016 to establish an inventory of 24 rock avalanches in a 5000-km2 area of Glacier Bay National Park and Preserve in southeast Alaska. A search of available earthquake catalogs revealed that none of the avalanches were triggered by earthquakes. Analyses of rock-avalanche magnitude, mobility, and frequency reveal a cluster of large (areas ranging from 5.5 to 22.2 km2), highly mobile (height/length < 0.3) rock avalanches that occurred from June 2012 through June 2016 (near the end of the 33-year period of record). These rock avalanches began about 2  years after the long-term trend in mean annual maximum air temperature may have exceeded 0 °C. Possibly more important, most of these rock avalanches occurred during a multiple-year period of record-breaking warm winter and spring air temperatures. These observations suggested to us that rock avalanches in the study area may be becoming larger because of rock-permafrost degradation. However, other factors, such as accumulating elastic strain, glacial thinning, and increased precipitation, may also play an important role in preconditioning slopes for failure during periods of warm temperatures.

  11. 36 CFR 13.1116 - Do I need a camping permit in Glacier Bay?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Glacier Bay? 13.1116 Section 13.1116 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve General Provisions § 13.1116 Do I need a camping permit in Glacier Bay? From May 1...

  12. 36 CFR 13.1116 - Do I need a camping permit in Glacier Bay?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Glacier Bay? 13.1116 Section 13.1116 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve General Provisions § 13.1116 Do I need a camping permit in Glacier Bay? From May 1...

  13. A range extension for Carex sartwellii in interior Alaska

    Treesearch

    Mark Winterstein; Teresa N Hollingsworth; Carolyn Parker

    2016-01-01

    Our documentation of Sartwell’s Sedge, Carex sartwellii, on nine shrinking lakes during fieldwork in the central Yukon Flats, Alaska, represents a range extension for this species. Previously, its range extended as far northwest as Yukon, Canada, with a reported, but lost collection, from Alaska in 1895. Two earlier collections from the Yukon Flats...

  14. GeoFORCE Alaska, A Successful Summer Exploring Alaska's Geology

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2012-12-01

    and minority students into the geosciences. View them as they explore the permafrost tunnel in Fairbanks, sand dunes in Anchorage, Portage Glacier, Matanuska-Susitna Glacier, and the Trans-Alaska pipeline damage from the earthquake of 2002.

  15. Updated Estimates of Glacier Mass Change for Western North America

    NASA Astrophysics Data System (ADS)

    Menounos, B.; Gardner, A. S.; Howat, I.; Berthier, E.; Dehecq, A.; Noh, M. J.; Pelto, B. M.

    2017-12-01

    Alpine glaciers are critical components in Western North America's hydrologic cycle. We use varied remotely-sensed datasets to provide updated mass change estimates for Region 2 of the Randolf Glacier Inventory (RGI-02 - all North American glaciers outside of Alaska). Our datasets include: i) aerial laser altimetry surveys completed over many thousands of square kilometers; and ii) multiple Terabytes of high resolution optical stereo imagery (World View 1-3 and Pleiades). Our data from the period 2014-2017 includes the majority of glaciers in RGI-02, specifically those ice masses in the Rocky Mountains (US and Canada), Interior Ranges in British Columbia and the Cascade Mountains (Washington). We co-registered and bias corrected the recent surface models to the Shuttle Radar Topographic Mapping (SRTM) data acquired in February, 2000. In British Columbia, our estimates of mass change are within the uncertainty estimates obtained for the period 1985-2000, but estimates from some regions indicate accelerated mass loss. Work is also underway to update glacier mass change estimates for glaciers in Washington and Montana. Finally, we use re-analysis data (ERA interim and ERA5) to evaluate the meteorological drivers that explain the temporal and spatial variability of mass change evident in our analysis.

  16. Ice-proximal sediment dynamics and their effect on the stability of Muir Glacier, Alaska: A case study of non-climatic glacier response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, L.E.; Powell, R.D.

    1992-01-01

    Recent studies have shown that water depth at tidewater termini affect calving rates and, therefore, glacier mass balance and terminus stability. Grounding-line water depths are themselves governed by glacial and marine processes that interact during the formation of morainal bank depocenters. These morainal banks can fluctuate 10s of meters in height within an interval of a few weeks. Recent investigations in Glacier Bay have focused on quantitatively assessing sediment budgets in the ice-proximal environment. The monitoring of morainal banks in upper Muir Inlet has included repeated bathymetric mapping, sediment trap studies, bottom grab sampling, glacier and iceberg sampling, and submersiblemore » ROV investigations within 1 km of the terminus. Such relationships are important in interpreting recent changes in the dynamics of Muir Glacier where a century of retreat has been succeeded by quasi stability. The new glacier regime has accompanied basin infilling from approximately 100 m depth to a maximum of 52 m at the grounding line. Two large grounding-line fans have aggraded to deltas and reduced the length of the calving margin from 900 m to 290 m wide. These effects have reduced the ice flow velocities by 45%. Annual morainal bank growth ranged from 10[sup 6] to 10[sup 7] m[sup 3] and is the result of glacifluvial dumping, suspension settling from turbid overflow plumes, debris dumping from ice-cliff and iceberg melting, glacier squeezing and pushing of morainal bank sediment, and sediment gravity flow processes. Each of these processes are an integral facet of the morainal bank dynamics and glacier response. These studies of Muir Glacier indicate that glacier response to sediment dynamics need to be addresses before climatic implications are made.« less

  17. Columbia Glacier in 1984: disintegration underway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, M.F.; Rasmussen, L.A.; Miller, D.S.

    1985-01-01

    Columbia Glacier is a large, iceberg-calving glacier near Valdez, Alaska. The terminus of this glacier was relatively stable from the time of the first scientific studies in 1899 until 1978. During this period the glacier terminated partly on Heather Island and partly on a submerged moraine shoal. In December, 1978, the glacier terminus retreated from Heather Island, and retreat has accelerated each year since then, except during a period of anomalously low calving in 1980. Although the glacier has not terminated on Heather Island since 1978, a portion of the terminus remained on the crest of the moraine shoal untilmore » the fall of 1983. By December 8, 1983, that feature had receded more than 300 m from the crest of the shoal, and by December 14, 1984, had disappeared completely, leaving most of the terminus more than 2000 meters behind the crest of the shoal. Recession of the glacier from the shoal has placed the terminus in deeper water, although the glacier does not float. The active calving face of the glacier now terminates in seawater that is about 300 meters deep at the glacier centerline. Rapid calving appears to be associated with buoyancy effects due to deep water at the terminus and subglacial runoff. 12 refs., 10 figs.« less

  18. Unusually loud ambient noise in tidewater glacier fjords: a signal of ice melt

    USGS Publications Warehouse

    Pettit, Erin C.; Lee, Kevin M.; Brann, Joel P.; Nystuen, Jeffrey A.; Wilson, Preston S.; O'Neel, Shad

    2015-01-01

    In glacierized fjords, the ice-ocean boundary is a physically and biologically dynamic environment that is sensitive to both glacier flow and ocean circulation. Ocean ambient noise offers insight into processes and change at the ice-ocean boundary. Here we characterize fjord ambient noise and show that the average noise levels are louder than nearly all measured natural oceanic environments (significantly louder than sea ice and non-glacierized fjords). Icy Bay, Alaska has an annual average sound pressure level of 120 dB (re 1 μPa) with a broad peak between 1000 and 3000 Hz. Bubble formation in the water column as glacier ice melts is the noise source, with variability driven by fjord circulation patterns. Measurements from two additional fjords, in Alaska and Antarctica, support that this unusually loud ambient noise in Icy Bay is representative of glacierized fjords. These high noise levels likely alter the behavior of marine mammals.

  19. Partitioning the Water Budget in a Glacierized Basin

    NASA Astrophysics Data System (ADS)

    O'Neel, S.; Sass, L.; McGrath, D.; McNeil, C.; Myers, K. F.; Bergstrom, A.; Koch, J. C.; Ostman, J. S.; Arendt, A. A.; LeWinter, A.; Larsen, C. F.; Marshall, H. P.

    2017-12-01

    Glaciers couple to the ecosystems in which they reside through their mass balance and subsequent runoff. The unique timing and composition of glacier runoff notably impacts ecological and socio-economically important processes, including thermal modulation of streams, nearshore primary production, and groundwater exchange. Predicting how these linkages will evolve as glaciers continue to retreat requires a better understanding of basin- to region-scale water budgets. Here we develop a partitioned water balance for Alaska's Wolverine Glacier basin for 2016. Our presentation will highlight mass-balance forcing and sensitivity, as well as analyses of hydrometric and geochemical partitioning. These observations provide constraints for hypsometry-based regional projections of glacier change, which form the basis of future biogeochemical scenarios. Local climate records show relatively minor warming and drying over the 1967 -2016 interval, yet the impact on the glacier was substantial; the average annual balance rate over the study interval is -0.5 m/yr. We performed a sensitivity experiment that suggests that elevation-independent processes drive first-order variability in glacier-wide mass balance solutions Analysis of runoff and precipitation data suggest that previously ignored components of the hydrologic cycle (groundwater, evapotranspiration, off-glacier snowpack storage, and snow redistribution) may substantially contribute to the basin wide water budget. Initial geochemical assessments (carbon, water isotopes, major ions) highlight unique source signatures (glacier-derived, snow-melt, groundwater), which will be further explored using a mixing model approach. Applying a range of climate forcings over centennial time-scales suggests the regional equilibrium line altitude is likely to increase by more than 100 m, which will result in extensive glacier area losses. Such changes will likely modify the runoff from this basin by increasing inter-annual streamflow

  20. Preliminary hydrodynamic analysis of landslide-generated waves in Tidal Inlet, Glacier Bay National Park, Alaska

    USGS Publications Warehouse

    Geist, Eric L.; Jakob, Matthias; Wieczoreck, Gerald F.; Dartnell, Peter

    2003-01-01

    A landslide block perched on the northern wall of Tidal Inlet, Glacier Bay National Park (Figure 1), has the potential to generate large waves in Tidal Inlet and the western arm of Glacier Bay if it were to fail catastrophically. Landslide-generated waves are a particular concern for cruise ships transiting through Glacier Bay on a daily basis during the summer months. The objective of this study is to estimate the range of wave amplitudes and periods in the western arm of Glacier Bay from a catastrophic landslide in Tidal Inlet. This study draws upon preliminary findings of a field survey by Wieczorek et al. (2003), and evaluates the effects of variations in landslide source parameters on the wave characteristics.

  1. Crevasses as indicators of surge dynamics in the Bering Bagley Glacier System, Alaska: Numerical experiments and comparison to image data analysis

    NASA Astrophysics Data System (ADS)

    Trantow, T.; Herzfeld, U. C.

    2016-12-01

    During a surge, sections of a glacier will accelerate 10-100 times their normal flow velocity resulting in sudden changes in the local stress regime. A glacier surface can fracture when a critical stress threshold is exceeded resulting in surface deformation, i.e. crevassing. During a recent field campaign to Bering Glacier, Alaska, in 2011 (and later in 2012, 2013), large scale deformation of the glacier surface was observed, indicating a major surge phase had recently occurred (Herzfeld et al. 2013). In the current study, geostatistical analysis is applied to satellite imagery to characterize the surge-induced crevasses that were present during the surge phase that began in early 2011. Results are compared to a three-dimensional, isothermal, full-Stokes model of Bering Glacier implemented in the open-source finite element software Elmer/Ice, which predicts locations and orientations of crevassing based on a failure criterion involving the magnitude(s) of the principal stress(es). Since most of the movement during a surge is due to basal sliding from decreased friction at the ice-bedrock interface, a relatively accurate representation of the the basal conditions is required to accurately model the ice dynamics and hence its stress regime. To achieve this, we invert velocity data derived from image correlation to attain estimations of the basal friction coefficient that governs basal sliding in the model. The methods employed here provide a procedure to identify discrepancies between observations and models of ice-flow during acceleration events.

  2. 36 CFR 13.1150 - Is a permit required for a vessel in Glacier Bay?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vessel in Glacier Bay? 13.1150 Section 13.1150 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Vessel Permits § 13.1150 Is a permit required for a vessel in Glacier Bay? A permit from...

  3. 36 CFR 13.1150 - Is a permit required for a vessel in Glacier Bay?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vessel in Glacier Bay? 13.1150 Section 13.1150 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Vessel Permits § 13.1150 Is a permit required for a vessel in Glacier Bay? A permit from...

  4. 36 CFR 13.1150 - Is a permit required for a vessel in Glacier Bay?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vessel in Glacier Bay? 13.1150 Section 13.1150 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Vessel Permits § 13.1150 Is a permit required for a vessel in Glacier Bay? A permit from...

  5. 36 CFR 13.1150 - Is a permit required for a vessel in Glacier Bay?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... vessel in Glacier Bay? 13.1150 Section 13.1150 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Vessel Permits § 13.1150 Is a permit required for a vessel in Glacier Bay? A permit from...

  6. Hydrology and Glacier-Lake-Outburst Floods (1987-2004) and Water Quality (1998-2003) of the Taku River near Juneau, Alaska

    USGS Publications Warehouse

    Neal, Edward G.

    2007-01-01

    The Taku River Basin originates in British Columbia, Canada, and drains an area of 6,600 square miles at the U.S. Geological Survey's Taku River gaging station. Several mines operated within the basin prior to 1957, and mineral exploration has resumed signaling potential for future mining developments. The U.S. Geological Survey in cooperation with the Douglas Indian Association, Alaska Department of Environmental Conservation, and the U.S. Environmental Protection Agency conducted a water-quality and flood-hydrology study of the Taku River. Water-quality sampling of the Taku River from 1998 through 2003 established a baseline for assessing potential effects of future mining operations on water quality. The annual mean discharge of the Taku River is 13,700 cubic feet per second. The monthly mean discharge ranges from a minimum of 1,940 cubic feet per second in February to a maximum of 34,400 cubic feet per second in June. Nearly 90 percent of the annual discharge is from May through November. The highest spring discharges are sourced primarily from snowmelt and moderate discharges are sustained throughout the summer by glacial meltwaters. An ice cover usually forms over the Taku River in December persisting through the winter into March and occasionally into April. Glacier-lake-outburst floods originating from two glacier-dammed lakes along the margin of the Tulsequah Glacier in British Columbia, Canada, are the source of the greatest peak discharges on the Taku River. The largest flood during the period of record was 128,000 cubic feet per second on June 25, 2004, resulting from an outburst of Lake No Lake. Lake No Lake is the larger of the two lakes. The outburst-flood contribution to peak discharge was 80,000 cubic feet per second. The volume discharged from Lake No Lake is relatively consistent indicating drainage may be triggered when the lake reaches a critical stage. This suggests prediction of the timing of these outburst floods might be possible if lake

  7. 2011 Updates on the Long-term Glacier Monitoring Program in Denali National Park and Preserve

    NASA Astrophysics Data System (ADS)

    Burrows, R. A.; Adema, G. W.; Herreid, S. J.; Arendt, A. A.; Larsen, C. F.

    2011-12-01

    +/- 29 m/year with a positive trend. Monitoring glacier behavior and trends using a variety of techniques provides insight to the complexity of glacier change and increases our ability to distinguish local effects from regional and global trends. Parkwide analysis of glacier extent change since the 1950's shows a consistent trend of retreat, except for glaciers that have surged. Longitudinal surface elevation profiling and comparative photography shows relative stability in larger glaciers, but dramatic long-term mass loss on small, relatively low elevation, valley glaciers characteristic of the eastern portion of DENA. These patterns of ice loss are somewhat unique to the Alaska Range and contrast with big losses of ice mass from large glaciers that border the Gulf of Alaska.

  8. Geochemistry and source waters of rock glacier outflow, Colorado Front Range

    USGS Publications Warehouse

    Williams, M.W.; Knauf, M.; Caine, N.; Liu, F.; Verplanck, P.L.

    2006-01-01

    We characterize the seasonal variation in the geochemical and isotopic content of the outflow of the Green Lake 5 rock glacier (RG5), located in the Green Lakes Valley of the Colorado Front Range, USA. Between June and August, the geochemical content of rock glacier outflow does not appear to differ substantially from that of other surface waters in the Green Lakes Valley. Thus, for this alpine ecosystem at this time of year there does not appear to be large differences in water quality among rock glacier outflow, glacier and blockslope discharge, and discharge from small alpine catchments. However, in September concentrations of Mg2+ in the outflow of the rock glacier increased to more than 900 ??eq L-1 compared to values of less than 40 ??eq L-1 at all the other sites, concentrations of Ca2+ were greater than 4,000 ??eq L-1 compared to maximum values of less than 200 ??eq L-1 at all other sites, and concentrations of SO42- reached 7,000 ??eq L-1, compared to maximum concentrations below 120 ??eq L-1 at the other sites. Inverse geochemical modelling suggests that dissolution of pyrite, epidote, chlorite and minor calcite as well as the precipitation of silica and goethite best explain these elevated concentrations of solutes in the outflow of the rock glacier. Three component hydrograph separation using end-member mixing analysis shows that melted snow comprised an average of 30% of RG5 outflow, soil water 32%, and base flow 38%. Snow was the dominant source water in June, soil water was the dominant water source in July, and base flow was the dominant source in September. Enrichment of ?? 18O from - 10??? in the outflow of the rock glacier compared to -20??? in snow and enrichment of deuterium excess from +17.5??? in rock glacier outflow compared to +11??? in snow, suggests that melt of internal ice that had undergone multiple melt/freeze episodes was the dominant source of base flow. Copyright ?? 2005 John Wiley & Sons, Ltd.

  9. Ocean forcing drives glacier retreat sometimes

    NASA Astrophysics Data System (ADS)

    Bassis, J. N.; Ultee, E.; Ma, Y.

    2015-12-01

    Observations show that marine-terminating glaciers respond to climate forcing nonlinearly, with periods of slow or negligible glacier advance punctuated by abrupt, rapid retreat. Once glacier retreat has initiated, glaciers can quickly stabilize with a new terminus position. Alternatively, retreat can be sustained for decades (or longer), as is the case for Columbia Glacier, Alaska where retreat initiated ~1984 and continues to this day. Surprisingly, patterns of glacier retreat show ambiguous or even contradictory correlations with atmospheric temperature and glacier surface mass balance. Despite these puzzles, observations increasingly show that intrusion of warm subsurface ocean water into fjords can lead to glacier erosion rates that can account for a substantial portion of the total mass lost from glaciers. Here we use a simplified flowline model to show that even relatively modest submarine melt rates (~100 m/a) near the terminus of grounded glaciers can trigger large increases in iceberg calving leading to rapid glacier retreat. However, the strength of the coupling between submarine melt and calving is a strong function of the geometry of the glacier (bed topography, ice thickness and glacier width). This can lead to irreversible retreat when the terminus is thick and grounded deeply beneath sea level or result in little change when the glacier is relatively thin, grounded in shallow water or pinned in a narrow fjord. Because of the strong dependence on glacier geometry, small perturbations in submarine melting can trigger glaciers in their most advanced—and geometrically precarious—state to undergo sudden retreat followed by much slower re-advance. Although many details remain speculative, our model hints that some glaciers are more sensitive than others to ocean forcing and that some of the nonlinearities of glacier response to climate change may be attributable to variations in difficult-to-detect subsurface water temperatures that need to be better

  10. Gulkana Glacier, Alaska-Mass balance, meteorology, and water measurements, 1997-2001

    USGS Publications Warehouse

    March, Rod S.; O'Neel, Shad

    2011-01-01

    The measured winter snow, maximum winter snow, net, and annual balances for 1997-2001 in the Gulkana Glacier basin are determined at specific points and over the entire glacier area using the meteorological, hydrological, and glaciological data. We provide descriptions of glacier geometry to aid in estimation of conventional and reference surface mass balances and descriptions of ice motion to aid in the understanding of the glacier's response to its changing geometry. These data provide annual estimates for area altitude distribution, equilibrium line altitude, and accumulation area ratio during the study interval. New determinations of historical area altitude distributions are given for 1900 and annually from 1966 to 2001. As original weather instrumentation is nearing the end of its deployment lifespan, we provide new estimates of overlap comparisons and precipitation catch efficiency. During 1997-2001, Gulkana Glacier showed a continued and accelerated negative mass balance trend, especially below the equilibrium line altitude where thinning was pronounced. Ice motion also slowed, which combined with the negative mass balance, resulted in glacier retreat under a warming climate. Average annual runoff augmentation by glacier shrinkage for 1997-2001 was 25 percent compared to the previous average of 13 percent, in accordance with the measured glacier volume reductions.

  11. Recent Exhumation in the Chugach, St. Elias, and Fairweather Ranges, Alaska

    NASA Astrophysics Data System (ADS)

    Spotila, J. A.; Berger, A. L.; McAleer, R. J.

    2006-12-01

    The motion of the Yakutat block into North America has produced a band of crustal deformation that begins near the tip of the Aleutian megathrust, continues through the eastern Chugach Range and St. Elias Mountains, and wraps southeastward along the Fairweather transform. Because of the extreme climate of the southern Alaska margin, this oblique collision has developed under the intense action of glacial erosion for the past few million years. This makes this orogen suitable for investigating the nature of feedbacks between climate, tectonics, and topography. We have measured the spatial and temporal patterns of exhumation at scales of orogenic evolution using apatite (U-Th)/He dating. In conjunction with previously published (U-Th)/He and fission-track ages (O'Sullivan and Currie, 1996; O'Sullivan et al., 1997; Buscher et al., 2002; Spotila et al., 2004; Johnston, 2005; Meigs et al., 2006; Perry et al., 2006), our new low-temperature cooling ages are beginning to reveal patterns of vertical strain localization on individual structures and in climatic zones, as well as the balance between tectonic influx and erosional efflux in the orogen. Data obtained thus far form a rough bull's eye pattern of concentric rings of cooling ages in the core of the orogen that become older with distance away from focused exhumation near the bend in the plate boundary. A similar bull's eye of young ages occurs along the Fairweather Range southeast of the bend and continuing to Glacier Bay, such that the zone of rapid exhumation is actually boomerang in shape. This is surprising, given that geologic and geodetic data indicate the Fairweather fault is pure strike-slip. Uplift and exhumation of the Fairweather corridor instead implies plate motion is oblique, with a significant component of partitioned shortening. Further west within the core of the Yakutat collision, the youngest apatite helium ages, less than 1 Ma, occur in a band along the coast that extends westwards from Mt. St

  12. Columbia Glacier stake location, mass balance, glacier surface altitude, and ice radar data, 1978 measurement year

    USGS Publications Warehouse

    Mayo, L.R.; Trabant, D.C.; March, Rod; Haeberli, Wilfried

    1979-01-01

    A 1 year data-collection program on Columbia Glacier, Alaska has produced a data set consisting of near-surface ice kinematics, mass balance, and altitude change at 57 points and 34 ice radar soundings. These data presented in two tables, are part of the basic data required for glacier dynamic analysis, computer models, and predictions of the number and size of icebergs which Columbia Glacier will calve into shipping lanes of eastern Prince William Sound. A metric, sea-level coordinate system was developed for use in surveying throughout the basin. Its use is explained and monument coordinates listed. A series of seven integrated programs for calculators were used in both the field and office to reduce the surveying data. These programs are thoroughly documented and explained in the report. (Kosco-USGS)

  13. Sea otter studies in Glacier Bay National Park and Preserve

    USGS Publications Warehouse

    Bodkin, James L.; Kloecker, Kimberly A.; Esslinger, George G.; Monson, Daniel H.; DeGroot, J.D.; Doherty, J.

    2002-01-01

    Following translocations to the outer coast of Southeast Alaska in 1965, sea otters have been expanding their range and increasing in abundance. We began conducting surveys for sea otters in Cross Sound, Icy Strait, and Glacier Bay, Alaska in 1994, following initial reports (in 1993) of their presence in Glacier Bay. Since 1995, the number of sea otters in Glacier Bay proper has increased from around 5 to more than 1500. Between 1993 and 1997 sea otters were apparently only occasional visitors to Glacier Bay, but in 1998 long-term residence was established as indicated by the presence of adult females and their dependent pups. Sea otter distribution is limited to the Lower Bay, south of Sandy Cove, and is not continuous within that area. Concentrations occur in the vicinity of Sita Reef and Boulder Island and between Pt. Carolus and Rush Pt. on the west side of the Bay (Figure 1). We describe the diet of sea otters during 2001 in Glacier Bay based on visual observations of prey during 456 successful forage dives. In Glacier Bay, diet consisted of 62% clam, 15% mussel, 9% crab, 7% unidentified, 4& urchins, and 4% other. Most prey recovered by sea otters are commercially, socially, or ecologically important species. Species of clam include Saxidomus gigantea, Protothaca staminea, and Mya truncata. Urchins are primarily Strongylocentrotus droebachiensis and the mussel is Modiolus modiolus. Crabs include species of three genera: Cancer, Chinoecetes, and Telmessus. Although we characterize diet at broad geographic scales, we found diet to vary between sites separated by as little as several hundred meters. Dietary variation among and within sites can reflect differences in prey availability and individual specialization. We estimated species composition, density, biomass, and sizes of subtidal clams, urchins, and mussels at 9 sites in lower Glacier Bay. All sites were selected based on the presence of abundant clam siphons. Sites were not selected to allow inference to

  14. Inferring glacial flow pathways with DNA-labelled microparticle tracers at the Wolverine Glacier in Alaska

    NASA Astrophysics Data System (ADS)

    McNew, Coy; Dahlke, Helen; O'Neel, Shad; McLaughlin, Seanna

    2017-04-01

    Though recent advances have been made in the understanding of glacial hydrologic pathways, accurate predictions and descriptions of glacial hydrologic processes remain a challenge. The most common method to investigate subglacial pathways tends to be dye tracing. Due to the limited number of unique dye tracers, the photodegradability of some, and the typically long breakthrough times associated with such pathways, dye tracing experiments tend to be restricted to only a few injections, and therefore the contribution of only a few pathways can be investigated at a time. Five uniquely DNA-labelled microparticle tracers were injected in five different locations throughout the Wolverine Glacier ablation zone, one of two "benchmark glaciers" in Alaska and the subject of long term study by the United States Geological Survey. Stream water was sampled several hundred meters downstream at regular intervals and later analyzed for the presence of each tracer. Since each tracer was tagged with a unique sequence of DNA, the contribution of each to the total outflow can be quantified independently. Preliminary results indicate relatively short transit times, suggesting that the ablation zone is characterized by a high-volume (low pressure) subglacial hydrologic network (i.e. conduits). Here we present the results of the study, the challenges faced, and a discussion on the potential of the DNA-labelled microtracer technology.

  15. 36 CFR 13.1134 - Who is eligible for a Glacier Bay commercial fishing lifetime access permit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Commercial Fishing § 13.1134 Who is eligible for a Glacier... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Who is eligible for a Glacier...

  16. Calving of Talyor Glacier, Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Carmichael, J. D.; Pettit, E. C.; Creager, K. C.; Hallet, B.

    2007-12-01

    Calving of tide-water glaciers has received considerable attention, with seismic arrays in Alaska, Greenland, and Antarctica devoted to their observation. In these environments, ice cliffs are directly coupled to oceanic temperatures. The land-based polar glaciers of the McMurdo Dry Valleys in Antarctica represent a simpler environment unaffected directly by water contact where other factors can be isolated. In particular, summer calving events of Taylor Glacier are observed to consist of precursory activity including crack growth, cliff overhang, and active seismicity at least 1 hour before collapse. We propose that collapse occurs only after a stress threshold has been crossed, evident from 'pre-calving' of ice from the cliff base 1-3 days prior to the major event. We provide photographic, seismic, and temperature data to illustrate the thermal and stress landscape for land-based calving of polar glaciers.

  17. An empirical approach for estimating stress-coupling lengths for marine-terminating glaciers

    USGS Publications Warehouse

    Enderlin, Ellyn; Hamilton, Gordon S.; O'Neel, Shad; Bartholomaus, Timothy C.; Morlighem, Mathieu; Holt, John W.

    2016-01-01

    Here we present a new empirical method to estimate the SCL for marine-terminating glaciers using high-resolution observations. We use the empirically-determined periodicity in resistive stress oscillations as a proxy for the SCL. Application of our empirical method to two well-studied tidewater glaciers (Helheim Glacier, SE Greenland, and Columbia Glacier, Alaska, USA) demonstrates that SCL estimates obtained using this approach are consistent with theory (i.e., can be parameterized as a function of the ice thickness) and with prior, independent SCL estimates. In order to accurately resolve stress variations, we suggest that similar empirical stress-coupling parameterizations be employed in future analyses of glacier dynamics.

  18. Dynamic behavior of the Bering Glacier-Bagley icefield system during a surge, and other measurements of Alaskan glaciers with ERS SAR imagery

    NASA Technical Reports Server (NTRS)

    Lingle, Craig S.; Fatland, Dennis R.; Voronina, Vera A.; Ahlnaes, Kristina; Troshina, Elena N.

    1997-01-01

    ERS-1 synthetic aperture radar (SAR) imagery was employed for the measurement of the dynamics of the Bagley icefield during a major surge in 1993-1994, the measurement of ice velocities on the Malaspina piedmont glacier during a quiescent phase between surges, and for mapping the snow lines and the position of the terminus of Nabesna glacier on Mount Wrangell (a 4317 m andesitic shield volcano) in the heavily glacierized Saint Elias and Wrangell Mountains of Alaska. An overview and summary of results is given. The methods used include interferometry, cross-correlation of sequential images, and digitization of boundaries using terrain-corrected SAR imagery.

  19. Glacial runoff strongly influences food webs in Gulf of Alaska fjords

    NASA Astrophysics Data System (ADS)

    Arimitsu, M.; Piatt, J. F.; Mueter, F. J.

    2015-12-01

    Melting glaciers contribute large volumes of freshwater to the Gulf of Alaska coast. Rates of glacier volume loss have increased markedly in recent decades, raising concern about the eventual loss of glaciers as a source of freshwater in coastal waters. To better understand the influence of glacier melt water on fjord ecosystems, we sampled oceanography, nutrients, zooplankton, forage fish, and seabirds within four fjords in the coastal Gulf of Alaska. We used generalized additive models and geostatistics to identify the range of influence of glacier runoff in fjords of varying estuarine and topographic complexity. We also modeled the responses of chlorophyll a concentration, copepod biomass, fish and seabird abundance to physical, nutrient and biotic predictor variables. Physical and nutrient signatures of glacial runoff extended 10-20 km into coastal fjords. Glacially modified physical gradients and among-fjord differences explained 66% of the variation in phytoplankton abundance, which drives ecosystem structure at higher trophic levels. Copepod, euphausiid, fish and seabird distribution and abundance were also related to environmental gradients that could be traced to glacial freshwater input. Seabird density was predicted by prey availability and silica concentrations, which may indicate upwelling areas where this nutrient is in excess. Similarities in ecosystem structure among fjords were due to influx of cold, fresh, sediment and nutrient laden water, while differences were due to fjord topography and the relative importance of estuarine vs. ocean influences. We anticipate continued changes in the volume and magnitude of glacial runoff will affect coastal marine food webs in the future.

  20. 36 CFR 13.1116 - Do I need a camping permit in Glacier Bay?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Do I need a camping permit in Glacier Bay? 13.1116 Section 13.1116 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park...

  1. 36 CFR 13.1116 - Do I need a camping permit in Glacier Bay?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Do I need a camping permit in Glacier Bay? 13.1116 Section 13.1116 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park...

  2. 36 CFR 13.1116 - Do I need a camping permit in Glacier Bay?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Do I need a camping permit in Glacier Bay? 13.1116 Section 13.1116 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park...

  3. Observations and analysis of self-similar branching topology in glacier networks

    USGS Publications Warehouse

    Bahr, D.B.; Peckham, S.D.

    1996-01-01

    Glaciers, like rivers, have a branching structure which can be characterized by topological trees or networks. Probability distributions of various topological quantities in the networks are shown to satisfy the criterion for self-similarity, a symmetry structure which might be used to simplify future models of glacier dynamics. Two analytical methods of describing river networks, Shreve's random topology model and deterministic self-similar trees, are applied to the six glaciers of south central Alaska studied in this analysis. Self-similar trees capture the topological behavior observed for all of the glaciers, and most of the networks are also reasonably approximated by Shreve's theory. Copyright 1996 by the American Geophysical Union.

  4. An integrated geospatial approach to monitoring the Bering Glacier system, Alaska

    USGS Publications Warehouse

    Josberger, E.G.; Payne, J.; Savage, S.; Shuchman, R.; Meadows, G.

    2004-01-01

    The Bering Glacier is the largest and longest glacier in continental North America, with an area of approximately 5,175 km2, and a length of 190 km. It is also the largest surging glacier in America, having surged at least five times during the twentieth century. The last surge of the Bering Glacier occurred in 1993-1995, since then, the glacier has undergone constant and significant retreat thereby expanding the boundaries of Vitus Lake and creating a highly dynamic system, both ecologically and hydrologically. This study utilized GIS to integrate remote sensing observations, with detailed bathymetric, hydrographic and in situ water quality measurements of the rapidly expanding Vitus Lake. Vitus Lake has nearly doubled in surface area from 58.4 km2 to 108.8 km2, with a corresponding increase in water volume from 6.1 km3 to 10.5 km3 over the same period. The remote sensing observations were used to direct a systematic bathymetric, hydrographic and water quality measurement survey in Vitus Lake which revealed a complex three dimensional structure that is the result of sea water inflow, convection generated by ice melting and the injection of fresh water from beneath the glacier.

  5. Estimating Velocities of Glaciers Using Sentinel-1 SAR Imagery

    NASA Astrophysics Data System (ADS)

    Gens, R.; Arnoult, K., Jr.; Friedl, P.; Vijay, S.; Braun, M.; Meyer, F. J.; Gracheva, V.; Hogenson, K.

    2017-12-01

    In an international collaborative effort, software has been developed to estimate the velocities of glaciers by using Sentinel-1 Synthetic Aperture Radar (SAR) imagery. The technique, initially designed by the University of Erlangen-Nuremberg (FAU), has been previously used to quantify spatial and temporal variabilities in the velocities of surging glaciers in the Pakistan Karakoram. The software estimates surface velocities by first co-registering image pairs to sub-pixel precision and then by estimating local offsets based on cross-correlation. The Alaska Satellite Facility (ASF) at the University of Alaska Fairbanks (UAF) has modified the software to make it more robust and also capable of migration into the Amazon Cloud. Additionally, ASF has implemented a prototype that offers the glacier tracking processing flow as a subscription service as part of its Hybrid Pluggable Processing Pipeline (HyP3). Since the software is co-located with ASF's cloud-based Sentinel-1 archive, processing of large data volumes is now more efficient and cost effective. Velocity maps are estimated for Single Look Complex (SLC) SAR image pairs and a digital elevation model (DEM) of the local topography. A time series of these velocity maps then allows the long-term monitoring of these glaciers. Due to the all-weather capabilities and the dense coverage of Sentinel-1 data, the results are complementary to optically generated ones. Together with the products from the Global Land Ice Velocity Extraction project (GoLIVE) derived from Landsat 8 data, glacier speeds can be monitored more comprehensively. Examples from Sentinel-1 SAR-derived results are presented along with optical results for the same glaciers.

  6. Glaciation of alpine valleys: The glacier - debris-covered glacier - rock glacier continuum

    NASA Astrophysics Data System (ADS)

    Anderson, Robert S.; Anderson, Leif S.; Armstrong, William H.; Rossi, Matthew W.; Crump, Sarah E.

    2018-06-01

    Alpine ice varies from pure ice glaciers to partially debris-covered glaciers to rock glaciers, as defined by the degree of debris cover. In many low- to mid-latitude mountain ranges, the few bare ice glaciers that do exist in the present climate are small and are found where snow is focused by avalanches and where direct exposure to radiation is minimized. Instead, valley heads are more likely to be populated by rock glaciers, which can number in the hundreds. These rock-cloaked glaciers represent some of the most identifiable components of the cryosphere today in low- to mid-latitude settings, and the over-steepened snouts pose an often overlooked hazard to travel in alpine terrain. Geomorphically, rock glaciers serve as conveyor belts atop which rock is pulled away from the base of cliffs. In this work, we show how rock glaciers can be treated as an end-member case that is captured in numerical models of glaciers that include ice dynamics, debris dynamics, and the feedbacks between them. Specifically, we focus on the transition from debris-covered glaciers, where the modern equilibrium line altitude (ELA) intersects the topography, to rock glaciers, where the modern ELA lies above the topography. On debris-covered glaciers (i.e., glaciers with a partial rock mantle), rock delivered to the glacier from its headwall, or from sidewall debris swept into the glacier at tributary junctions, travels englacially to emerge below the ELA. There it accumulates on the surface and damps the rate of melt of underlying ice. This allows the termini of debris-covered glaciers to extend beyond debris-free counterparts, thereby decreasing the ratio of accumulation area to total area of the glacier (AAR). In contrast, rock glaciers (i.e., glaciers with a full rock mantle) occur where and when the environmental ELA rises above the topography. They require avalanches and rockfall from steep headwalls. The occurrence of rock glaciers reflects this dependence on avalanche sources

  7. Alaska: Glaciers of Kenai Fjords National Park and Katmai National Park and Preserve

    NASA Technical Reports Server (NTRS)

    Giffens, Bruce A.; Hall, Dorothy K.; Chien, Janet Y. L.

    2014-01-01

    There are hundreds of glaciers in Kenai Fjords National Park (KEFJ) and Katmai National Park and Preserve (KATM) covering over 2,276 sq km of park land (ca. 2000). There are two primary glacierized areas in KEFJ (the Harding Icefield and the Grewingk-Yalik Glacier Complex) and three primary glacierized areas in KATM (the Mt. Douglas area, the Kukak Volcano to Mt. Katmai area, and the Mt. Martin area). Most glaciers in these parks terminate on land, though a few terminate in lakes. Only KEFJ has tidewater glaciers, which terminate in the ocean. Glacier mapping and analysis of the change in glacier extent has been accomplished on a decadal scale using satellite imagery, primarily Landsat data from the 1970s, 1980s, and from2000. Landsat Multispectral Scanner (MSS),Thematic Mapper (TM), and Enhanced Thematic Mapper Plus (ETM) imagery was used to map glacier extent on a park-wide basis. Classification of glacier ice using image-processing software, along with extensive manual editing, was employed to create Geographic Information System (GIS)outlines of the glacier extent for each park. Many glaciers that originate in KEFJ but terminate outside the park boundaries were also mapped. Results of the analysis show that there has been a reduction in the amount of glacier ice cover in the two parks over the study period. Our measurements show a reduction of approximately 21 sq km, or 1.5(from 1986 to 2000), and 76 sq km, or 7.7 (from19861987 to 2000), in KEFJ and KATM, respectively. This work represents the first comprehensive study of glaciers of KATM. Issues that complicate the mapping of glacier extent include debris cover(moraine and volcanic ash), shadows, clouds, fresh snow, lingering snow from the previous season, and differences in spatial resolution between the MSS,TM, or ETM sensors. Similar glacier mapping efforts in western Canada estimate mapping errors of 34. Measurements were also collected from a suite of glaciers in KEFJ and KATM detailing terminus positions

  8. Distribution of ground-nesting marine birds along shorelines in Glacier Bay, southeastern Alaska: An assessment related to potential disturbance by back-country users

    USGS Publications Warehouse

    Arimitsu, Mayumi L.; Piatt, John F.; Romano, Marc D.

    2007-01-01

    With the exception of a few large colonies, the distribution of ground-nesting marine birds in Glacier Bay National Park in southeastern Alaska is largely unknown. As visitor use increases in back-country areas of the park, there is growing concern over the potential impact of human activities on breeding birds. During the 2003–05 breeding seasons, the shoreline of Glacier Bay was surveyed to locate ground-nesting marine birds and their nesting areas, including wildlife closures and historical sites for egg collection by Alaska Native peoples. The nesting distribution of four common ground-nesting marine bird species was determined: Arctic Tern (Sterna paradisaea), Black Oystercatcher (Haematopus bachmani), Mew Gull (Larus canus), and Glaucous-winged Gull (Larus glaucescens). Observations of less abundant species also were recorded, including Herring Gull (Larus argentatus), Red-throated Loon (Gavia stellata), Canada Goose (Branta canadensis), Willow Ptarmigan (Lagopus lagopus), Semipalmated Plover (Charadrius semipalmatus), Spotted Sandpiper (Actitis macularia), Least Sandpiper (Calidris minutilla), Parasitic Jaeger (Stercorarius parasiticus), and Aleutian Tern (Sterna aleutica). Nesting distribution for Arctic Terns was largely restricted to the upper arms of the bay and a few treeless islets in the lower bay, whereas Black Oystercatchers were more widely distributed along shorelines in the park. Mew Gulls nested throughout the upper bay in Geikie Inlet and in Fingers and Berg Bays, and most Glaucous-winged Gull nests were found at wildlife closures in the central and lower bays. Several areas were identified where human disturbance could affect breeding birds. This study comprises the first bay-wide survey for the breeding distribution of ground-nesting marine birds in Glacier Bay National Park, providing a minimum estimate of their numbers and distribution within the park. This information can be used to assess future human disturbance and track natural

  9. Publications - PIR 2015-5-5 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ., 2015, Stratigraphic reconnaissance of the Middle Jurassic Red Glacier Formation, Tuxedni Group, at Red Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska content DGGS PIR 2015-5-5 Publication Details Title: Stratigraphic reconnaissance of the Middle Jurassic

  10. Surface expression of subglacial meltwater movement, Bering Glacier, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadwell, D.H.; Fleisher, P.J.; Bailey, P.K.

    1993-03-01

    Longitudinal topographic profiles (1988--1992) across the thermokarst terminus of the Grindle Hills Ice-tongue and interlobate moraine of the Bering Piedmont Glacier document annual changes in crevasse patterns and fluctuations in surface elevation related to subglacial water movement. A semi-continuous record of aerial photos (1978--1990), plus field observations (1988--1992), reveal the progressive enlargement of two lateral collapse basin on both sides of the thermokarst, connected by a transverse collapse trough. Seasonally generated meltwater at depth rises within the glacier, fills the basins and other depressions and lifts the thermokarst terminus of the ice-tongue a few meters by buoyancy and hydrostatic pressure.more » The resulting surface tension creates a chaotic crevasse pattern unrelated to normal glacier movement. The crevasses open (2 m wide, 8--10 m deep) in response to increased water accumulation at depth and close during subsidence as the ice-tongue settles following evacuation of subglacier water. A network of open conduits (>10 m diameter), exposed by surface ablation, provides evidence for the scale of englacial passageways beneath the thermokarst and represents a form of subglacial ablation that leads to removal of support and collapse in stagnant glacier masses.« less

  11. Spatial distribution of mercury in southeastern Alaskan streams influenced by glaciers, wetlands, and salmon

    USGS Publications Warehouse

    Nagorski, Sonia A.; Engstrom, Daniel R.; Hudson, John P.; Krabbenhoft, David P.; Hood, Eran; DeWild, John F.; Aiken, George R.

    2014-01-01

    Southeastern Alaska is a remote coastal-maritime ecosystem that is experiencing increased deposition of mercury (Hg) as well as rapid glacier loss. Here we present the results of the first reported survey of total and methyl Hg (MeHg) concentrations in regional streams and biota. Overall, streams draining large wetland areas had higher Hg concentrations in water, mayflies, and juvenile salmon than those from glacially-influenced or recently deglaciated watersheds. Filtered MeHg was positively correlated with wetland abundance. Aqueous Hg occurred predominantly in the particulate fraction of glacier streams but in the filtered fraction of wetland-rich streams. Colonization by anadromous salmon in both glacier and wetland-rich streams may be contributing additional marine-derived Hg. The spatial distribution of Hg in the range of streams presented here shows that watersheds are variably, yet fairly predictably, sensitive to atmospheric and marine inputs of Hg.

  12. Seafloor habitat mapping and classification in Glacier Bay, Alaska: Phase 1 & 2 1996-2004

    USGS Publications Warehouse

    Hooge, Philip N.; Carlson, Paul R.; Mondragon, Jennifer; Etherington, Lisa L.; Cochran, G.R.

    2004-01-01

    Glacier Bay is a diverse fjord ecosystem with multiple sills, numerous tidewater glaciers and a highly complex oceanographic system. The Bay was completely glaciated prior to the 1700’s and subsequently experienced the fastest glacial retreat recorded in historical times. Currently, some of the highest sedimentation rates ever observed occur in the Bay, along with rapid uplift (up to 2.5 cm/year) due to a combination of plate tectonics and isostatic rebound. Glacier Bay is the second deepest fjord in Alaska, with depths over 500 meters. This variety of physical processes and bathymetry creates many diverse habitats within a relatively small area (1,255 km2 ). Habitat can be defined as the locality, including resources and environmental conditions, occupied by a species or population of organisms (Morrison et al 1992). Mapping and characterization of benthic habitat is crucial to an understanding of marine species and can serve a variety of purposes including: understanding species distributions and improving stock assessments, designing special management areas and marine protected areas, monitoring and protecting important habitats, and assessing habitat change due to natural or human impacts. In 1996, Congress recognized the importance of understanding benthic habitat for fisheries management by reauthorizing the Magnuson-Stevens Fishery Conservation and Management Act and amending it with the Sustainable Fisheries Act (SFA). This amendment emphasizes the importance of habitat protection to healthy fisheries and requires identification of essential fish habitat in management decisions. Recently, the National Park Service’s Ocean Stewardship Strategy identified the creation of benthic habitat maps and sediment maps as crucial components to complete basic ocean park resource inventories (Davis 2003). Glacier Bay National Park managers currently have very limited knowledge about the bathymetry, sediment types, and various marine habitats of ecological

  13. The Bay in Place of a Glacier.

    ERIC Educational Resources Information Center

    Howell, Wayne

    1997-01-01

    The cultural resource specialist at Glacier Bay National Park (Alaska) explains the collaborative efforts of park staff and the Hoonah Tlingit to overcome language and cultural barriers in documenting park place names and clan oral history and traditions. The new park-community relationship, which follows decades of conflict, includes training…

  14. Passive seismic monitoring of the Bering Glacier during its last surge event

    NASA Astrophysics Data System (ADS)

    Zhan, Z.

    2017-12-01

    The physical causes behind glacier surges are still unclear. Numerous evidences suggest that they probably involve changes in glacier basal conditions, such as switch of basal water system from concentrated large tunnels to a distributed "layer" as "connected cavities". However, most remote sensing approaches can not penetrate to the base to monitor such changes continuously. Here we apply seismic interferometry using ambient noise to monitor glacier seismic structures, especially to detect possible signatures of the hypothesized high-pressure water "layer". As an example, we derive an 11-year long history of seismic structure of the Bering Glacier, Alaska, covering its latest surge event. We observe substantial drops of Rayleigh and Love wavespeeds across the glacier during the surge event, potentially caused by changes in crevasse density, glacier thickness, and basal conditions.

  15. Timing of ore-related magmatism in the western Alaska Range, southwestern Alaska

    USGS Publications Warehouse

    Taylor, Ryan D.; Graham, Garth E.; Anderson, Eric D.; Selby, David

    2014-01-01

    This report presents isotopic age data from mineralized granitic plutons in an area of the Alaska Range located approximately 200 kilometers to the west-northwest of Anchorage in southwestern Alaska. Uranium-lead isotopic data and trace element concentrations of zircons were determined for 12 samples encompassing eight plutonic bodies ranging in age from approximately 76 to 57.4 millions of years ago (Ma). Additionally, a rhenium-osmium age of molybdenite from the Miss Molly molybdenum occurrence is reported (approx. 59 Ma). All of the granitic plutons in this study host gold-, copper-, and (or) molybdenum-rich prospects. These new ages modify previous interpretations regarding the age of magmatic activity and mineralization within the study area. The new ages show that the majority of the gold-quartz vein-hosting plutons examined in this study formed in the Late Cretaceous. Further work is necessary to establish the ages of ore-mineral deposition in these deposits.

  16. 36 CFR 13.1150 - Is a permit required for a vessel in Glacier Bay?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Is a permit required for a vessel in Glacier Bay? 13.1150 Section 13.1150 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park...

  17. The differing biogeochemical and microbial signatures of glaciers and rock glaciers

    USGS Publications Warehouse

    Fegel, Timothy S.; Baron, Jill S.; Fountain, Andrew G.; Johnson, Gunnar F.; Hall, Edward K.

    2016-01-01

    Glaciers and rock glaciers supply water and bioavailable nutrients to headwater mountain lakes and streams across all regions of the American West. Here we present a comparative study of the metal, nutrient, and microbial characteristics of glacial and rock glacial influence on headwater ecosystems in three mountain ranges of the contiguous U.S.: The Cascade Mountains, Rocky Mountains, and Sierra Nevada. Several meltwater characteristics (water temperature, conductivity, pH, heavy metals, nutrients, complexity of dissolved organic matter (DOM), and bacterial richness and diversity) differed significantly between glacier and rock glacier meltwaters, while other characteristics (Ca2+, Fe3+, SiO2 concentrations, reactive nitrogen, and microbial processing of DOM) showed distinct trends between mountain ranges regardless of meltwater source. Some characteristics were affected both by glacier type and mountain range (e.g. temperature, ammonium (NH4+) and nitrate (NO3- ) concentrations, bacterial diversity). Due to the ubiquity of rock glaciers and the accelerating loss of the low latitude glaciers our results point to the important and changing influence that these frozen features place on headwater ecosystems.

  18. Seasonal variabilty of surface velocities and ice discharge of Columbia Glacier, Alaska using high-resolution TanDEM-X satellite time series and NASA IceBridge data

    NASA Astrophysics Data System (ADS)

    Vijay, Saurabh; Braun, Matthias

    2014-05-01

    Columbia Glacier is a grounded tidewater glacier located on the south coast of Alaska. It has lost half of its volume during 1957-2007, more rapidly after 1980. It is now split into two branches, known as Main/East and West branch due to the dramatic retreat of ~ 23 km and calving of iceberg from its terminus in past few decades. In Alaska, a majority of the mass loss from glaciers is due to rapid ice flow and calving icebergs into tidewater and lacustrine environments. In addition, submarine melting and change in the frontal position can accelerate the ice flow and calving rate. We use time series of high-resolution TanDEM-X stripmap satellite imagery during 2011-2013. The active image of the bistatic TanDEM-X acquisitions, acquired over 11 or 22 day repeat intervals, are utilized to derive surface velocity fields using SAR intensity offset tracking. Due to the short temporal baselines, the precise orbit control and the high-resolution of the data, the accuracies of the velocity products are high. We observe a pronounce seasonal signal in flow velocities close to the glacier front of East/Main branch of Columbia Glacier. Maximum values at the glacier front reach up to 14 m/day were recorded in May 2012 and 12 m/day in June 2013. Minimum velocities at the glacier front are generally observed in September and October with lowest values below 2 m/day in October 2012. Months in between those dates show corresponding increase or deceleration resulting a kind of sinusoidal annual course of the surface velocity at the glacier front. The seasonal signal is consistently decreasing with the distance from the glacier front. At a distance of 17.5 km from the ice front, velocities are reduced to 2 m/day and almost no seasonal variability can be observed. We attribute these temporal and spatial variability to changes in the basal hydrology and lubrification of the glacier bed. Closure of the basal drainage system in early winter leads to maximum speeds while during a fully

  19. A World of Changing Glaciers: Hazards, Opportunities, and Measures of Global Climate Change

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Wessels, R.; Kieffer, H. H.

    2002-05-01

    Glaciers around the world are, with rare exceptions, stagnating or in hasty retreat. Whether growing or shrinking, significant changes in the extent of glaciers have major impacts on nature and humanity in their immediate vicinity, because land uses are utterly different depending on whether the land is covered by ice. Upon glacier retreat, new land uses may become possible: (1) Transportation corridors may become feasible where previously there were barriers. (2) Exposure of the lithosphere may yield mineral riches that previously were inaccessible. (3) New wildlife habitat and migration routes may develop, thus promoting genetic diffusion/interbreeding of previously isolated populations. Glacier impacts go well beyond the locality where they occur. Many glaciers regulate water flow, and contribute to annual water availability and hydropower production. In some regions, such in the Hindu Kush-Himlaya (HKH), especially the western provinces of China, the carrying capacity of the land and further economic development and well-being of the populace is partly dependent on melting glaciers. In India, \\8 billion worth of hydroelectric power (at U.S. electric rates) is generated each year; 50% of that is attributable to runoff from Himalayan glaciers and high-altitude snow fields. Nearly \\1 billion worth of hydroelectric power is due to the current negative mass balance of glaciers. In Nepal, glaciogenic hydropower is even more crucial. Although it may be many decades in coming, the ongoing sharp reduction in glacier area in the HKH will eventually be reflected in heightened water shortages in a region where water already is in short supply. Other glaciers store large amounts of meltwater and release it suddenly, causing havoc and taking lives downstream. This is a major problem in the HKH region and is significant locally in other heavily glaciated regions, such as Alaska. Sea level is a global issue impacted significantly by melting glaciers wherever they occur

  20. Geodetic measurements used to estimate ice transfer during Bering Glacier surge

    NASA Astrophysics Data System (ADS)

    Sauber, Jeanne; Plafker, George; Gipson, John

    The application of geodetic measurements to glacial research has found a new testing ground: near a surging Alaskan glacier. A set of geodetic measurements collected adjacent to the Bagley Icefield (Figure 1) and along the Gulf of Alaska (Figure 2) are being used to estimate the effects of the Bering Glacier surge that began in the spring of 1993. When ice is removed from a glacier's reservoir during a surge, its surface lowers by tens or hundreds of meters and ice is added to the receiving area, where it thickens and advances.The dramatic changes in a surging glacier's extent and thickness should result in elastic deformation of the solid Earth. At Bering Glacier, calculations show that ice transfer may have caused up to 17 cm of the solid Earth to subside. Although recent surges at the Bering and Variegated Glaciers have been well documented, little is known about most surges, particularly about what happens in the upper reaches of the glaciers.

  1. Characteristics of sediment discharge in the subarctic Yukon River, Alaska

    USGS Publications Warehouse

    Chikita, K.A.; Kemnitz, R.; Kumai, R.

    2002-01-01

    The characteristics of sediment discharge in the Yukon River, Alaska were investigated by monitoring water discharge, water turbidity and water temperature. The river-transported sediment, 90 wt.% or more, consists of silt and clay (grain size ??? 62.5 ??m), which probably originated in the glacier-covered mountains mostly in the Alaska Range. For early June to late August 1999, we continuously measured water turbidity and temperature near the estuary and in the middle of Yukon River by using self-recording turbidimeters and temperature data loggers. The water turbidity (ppm) was converted to suspended sediment concentration (SSC; mg/l) of river water, using a relation between simultaneous turbidity and SSC at each of the two sites, and then, the suspended sediment discharge, approximately equal to water discharge times SSC, was numerically obtained every 1 or 2 h. It should be noted that the sediment discharge in the Yukon River is controlled by SSC rather than water discharge. As a result, a peak sediment discharge occurred in mid or late August by local sediment runoffs due to glacier-melt (or glacier-melt plus rainfall), while a peak water discharge was produced by snowmelt in late June or early July. Application of the "extended Shields diagram" indicates that almost all the river-transported sediments are under complete suspension. ?? 2002 Elsevier Science B.V. All rights reserved.

  2. Comparative Analysis of Glaciers in the Chugach-St.-Elias Mountains

    NASA Astrophysics Data System (ADS)

    Herzfeld, U. C.; Mayer, H.

    2003-12-01

    The phenomenon of glacier surges has to date been studied for only relatively few examples. 136 of the 204 surge-type glaciers in North America listed by Post (1969) are located in the St. Elias Mountains. In August 2003 we increased our data inventory of observations on surge glaciers by collecting material for 19 glaciers in the Glacier Bay area and neighboring regions in the eastern St. Elias Mountains, including 6 surge-type glaciers (Carroll, Rendu, Ferris, Grand Pacific, Margerie, and Johns Hopkins Glaciers). Analyses utilize digital video and photographic data, satellite data and GPS data. Geostatistical classification parameters and algebraic parameters characteristic of surge motions are derived for selected glaciers. During the 1993-1995 surge of Bering Glacier the entire surface of Alaska's longest glacier was crevassed and could be segmented into several dynamic provinces, where patterns changed as the surge progressed and the affected areas expanded downglacier and upglacier, finally affecting the Bagley Ice Field. The middle moraine of Grand Pacific and Ferris Glaciers is pushed over to the Grand Pacific side, caused by a recent surge of the heavily crevassed Ferris Glacier. The front of Johns Hopkins Glacier advances, as its lower reaches are affected by a surge. The surge history of Bering Glacier goes back to the Holocene, whereas Carroll and Rendu Glaciers have surged only 3-4 times. These observations pose questions on the possible relationship between surge dynamics and climatic changes.

  3. Alexander Archipelago, Southeastern Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    West of British Columbia, Canada, and south of the Yukon Territory, the southeastern coastline of Alaska trails off into the islands of the Alexander Archipelago. The area is rugged and contains many long, U-shaped, glaciated valleys, many of which terminate at tidewater. The Alexander Archipelago is home to Glacier Bay National Park. The large bay that has two forks on its northern end is Glacier Bay itself. The eastern fork is Muir inlet, into which runs the Muir glacier, named for the famous Scottish-born naturalist John Muir. Glacier Bay opens up into the Icy Strait. The large, solid white area to the west is Brady Icefield, which terminates at the southern end in Brady's Glacier. To locate more interesting features from Glacier Bay National Park, take a look at the park service map. As recently as two hundred years ago, a massive ice field extended into Icy Strait and filled the Glacier Bay. Since that time, the area has experienced rapid deglaciation, with many large glaciers retreating 40, 60, even 80 km. While temperatures have increased in the region, it is still unclear whether the rapid recession is part of the natural cycle of tidewater glaciers or is an indicator of longer-term climate change. For more on Glacier Bay and climate change, read an online paper by Dr. Dorothy Hall, a MODIS Associate Science Team Member. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  4. Decrease in glacier coverage contributes to increased winter baseflow of Arctic rivers

    NASA Astrophysics Data System (ADS)

    Liljedahl, A. K.; Gaedeke, A.; Baraer, M.; Chesnokova, A.; Lebedeva, L.; Makarieva, O.; O'Neel, S.

    2016-12-01

    Rising minimum daily flows in northern Eurasian and North American rivers suggest a growing influence of groundwater in the Arctic hydrological cycle, while the impact of a warmer high-latitude climate system is evident in decreased glacier coverage and increasing permafrost temperatures. Multiple mechanisms have been proposed to explain the increased discharge, which is well documented but relatively poorly understood. Here we assess the long-term (up to 88 yrs) linkages between climate, glaciers and hydrology in Alaska, Canadian and Russian glacierized (from 0.3 to 60% glacier cover) and non-glacierized watersheds (31 to 186 000 km2). We are specifically interested in analyzing trends in late winter discharge from larger watersheds to refine our understanding of the regional aquifer status and annual discharge from smaller headwater basins. Field measurements of differential runoff in Interior Alaska show that glaciated headwater streams can lose significant amounts of water in summer to the underlying aquifer. The aquifer is in turn feeding the larger lowland river system throughout the year. Groundwater storage status in Arctic regions is especially prominent through winter river discharge as it is typically the only source of water to the river system for at least 6 months of the year. Our analyses aim to explore the hypothesis that the documented increase in later winter river discharge of larger watersheds can be explained at least partly, by increased glacier melt in summer as observed by long-term decreases in glacier coverage. If true, a decrease in winter freshwater exports to the Arctic Ocean could potentially follow as glaciers retreat to higher (cooler) elevations. Increased Arctic river baseflow can favor sea ice growth and fish habitats, while negatively impacting local communities in their river ice travel.

  5. Bacterial Microbiota Associated with the Glacier Ice Worm Is Dominated by Both Worm-Specific and Glacier-Derived Facultative Lineages

    PubMed Central

    Murakami, Takumi; Segawa, Takahiro; Dial, Roman; Takeuchi, Nozomu; Kohshima, Shiro; Hongoh, Yuichi

    2017-01-01

    The community structure of bacteria associated with the glacier ice worm Mesenchytraeus solifugus was analyzed by amplicon sequencing of 16S rRNA genes and their transcripts. Ice worms were collected from two distinct glaciers in Alaska, Harding Icefield and Byron Glacier, and glacier surfaces were also sampled for comparison. Marked differences were observed in bacterial community structures between the ice worm and glacier surface samples. Several bacterial phylotypes were detected almost exclusively in the ice worms, and these bacteria were phylogenetically affiliated with either animal-associated lineages or, interestingly, clades mostly consisting of glacier-indigenous species. The former included bacteria that belong to Mollicutes, Chlamydiae, Rickettsiales, and Lachnospiraceae, while the latter included Arcicella and Herminiimonas phylotypes. Among these bacteria enriched in ice worm samples, Mollicutes, Arcicella, and Herminiimonas phylotypes were abundantly and consistently detected in the ice worm samples; these phylotypes constituted the core microbiota associated with the ice worm. A fluorescence in situ hybridization analysis showed that Arcicella cells specifically colonized the epidermis of the ice worms. Other bacterial phylotypes detected in the ice worm samples were also abundantly recovered from the respective habitat glaciers; these bacteria may be food for ice worms to digest or temporary residents. Nevertheless, some were overrepresented in the ice worm RNA samples; they may also function as facultative gut bacteria. Our results indicate that the community structure of bacteria associated with ice worms is distinct from that in the associated glacier and includes worm-specific and facultative, glacier-indigenous lineages. PMID:28302989

  6. Bacterial Microbiota Associated with the Glacier Ice Worm Is Dominated by Both Worm-Specific and Glacier-Derived Facultative Lineages.

    PubMed

    Murakami, Takumi; Segawa, Takahiro; Dial, Roman; Takeuchi, Nozomu; Kohshima, Shiro; Hongoh, Yuichi

    2017-03-31

    The community structure of bacteria associated with the glacier ice worm Mesenchytraeus solifugus was analyzed by amplicon sequencing of 16S rRNA genes and their transcripts. Ice worms were collected from two distinct glaciers in Alaska, Harding Icefield and Byron Glacier, and glacier surfaces were also sampled for comparison. Marked differences were observed in bacterial community structures between the ice worm and glacier surface samples. Several bacterial phylotypes were detected almost exclusively in the ice worms, and these bacteria were phylogenetically affiliated with either animal-associated lineages or, interestingly, clades mostly consisting of glacier-indigenous species. The former included bacteria that belong to Mollicutes, Chlamydiae, Rickettsiales, and Lachnospiraceae, while the latter included Arcicella and Herminiimonas phylotypes. Among these bacteria enriched in ice worm samples, Mollicutes, Arcicella, and Herminiimonas phylotypes were abundantly and consistently detected in the ice worm samples; these phylotypes constituted the core microbiota associated with the ice worm. A fluorescence in situ hybridization analysis showed that Arcicella cells specifically colonized the epidermis of the ice worms. Other bacterial phylotypes detected in the ice worm samples were also abundantly recovered from the respective habitat glaciers; these bacteria may be food for ice worms to digest or temporary residents. Nevertheless, some were overrepresented in the ice worm RNA samples; they may also function as facultative gut bacteria. Our results indicate that the community structure of bacteria associated with ice worms is distinct from that in the associated glacier and includes worm-specific and facultative, glacier-indigenous lineages.

  7. Mechanism of the 2016 giant twin glacier collapse in Aru range, Tibet

    NASA Astrophysics Data System (ADS)

    Gilbert, A.; Leinss, S.; Kääb, A.; Kargel, J. S.; Yao, T.; Gascoin, S.; Leonard, G. J.; Berthier, E.; Karki, A.

    2017-12-01

    In northwestern Tibet (34.0°N, 82.2°E) near lake Aru Co, the entire ablation area of two unnamed glaciers (Aru-1 and Aru-2) suddenly collapsed on 17 July 2016 and 21 September 2016 and transformed into a mass flow that ran out over a distance of over several km, killing nine people. These two events are unique and defined a new kind of glacier behavior almost never observed before. The only similar event currently documented is the 2002 Kolka Glacier mass flow (Caucasus Mountains). Using remote sensing observations and 3D thermo-mechanical modeling of the two glaciers, we reconstructed glacier thermal regime, thickness, basal friction evolution and ice damaging state prior to the collapse. We show that frictional change leading to the collapse occurred in the temperate areas of a polythermal structure that is likely close to equilibrium with the local climate. The collapses were driven by a fast and sustained friction change in the temperate part of the glacier for which the glacier shape was not able to adjust due to the cold-based parts providing strong resisting force to sliding. This led to high stresses on the cold margins of the glacier where ice deformation became partially accommodated by fracturing until the final collapse occurred. Field investigations reveal that those two glaciers are flowing on a soft and fine-grained sedimentary lithology prone to landslide activity in the presence of water. This suggests that fast friction change in the temperate part of the glacier is linked to shear strength weakening in the sediment and till underneath the glacier in response to increasing water pore pressure at the glacier base. The Kolka Glacier mass flow also occurred on pyroclastic rocks well known for their landslide activities. This suggests that the three gigantic glacier collapses documented to date involve specific bedrock lithology where failure is driven by shear strength weakening in the glacier till in a landslide-like process. Contrary to a

  8. Soda Creek springs - metamorphic waters in the eastern Alaska Range

    USGS Publications Warehouse

    Richter, D.H.; Donaldson, D.E.; Lamarre, R.A.

    1973-01-01

    The Soda Creek springs are a group of small, cold mineral springs on the southern flank of the eastern Alaska Range. The spring waters contain anomalous concentrations of carbon dioxide, sodium, chlorine, sulfate, boron, and ammonia and are actively precipitating deposits of calcite and aragonite. Sparingly present in these deposits are mixed-layer illite-montmorillonite clays and zeolite minerals. Low-temperaturemetamorphic reactions in subjacent marine sedimentary rocks of Jurassic and Cretaceous age may have produced the fluids and silicate minerals. With only a few exceptions, cool bicarbonate-rich springs in Alaska are concentrated south of the Denali fault system in south-central Alaska, southeastern Alaska, and along the Kaltag-Tintina fault system. These areas are characterized by active or recently activetectonism, major faults and folds, and an abundance of marine sedimentary rocks.

  9. Accessing the inaccessible: making (successful) field observations at tidewater glacier termini

    NASA Astrophysics Data System (ADS)

    Kienholz, C.; Amundson, J. M.; Jackson, R. H.; Motyka, R. J.; Nash, J. D.; Sutherland, D.

    2017-12-01

    Glaciers terminating in ocean water (tidewater glaciers) show complex dynamic behavior driven predominantly by processes at the ice-ocean interface (sedimentation, erosion, iceberg calving, submarine melting). A quantitative understanding of these processes is required, for example, to better assess tidewater glaciers' fate in our rapidly warming environment. Lacking observations close to glacier termini, due to unpredictable risks from calving, hamper this understanding. In an effort to remedy this lack of knowledge, we initiated a large field-based effort at LeConte Glacier, southeast Alaska, in 2016. LeConte Glacier is a regional analog for many tidewater glaciers, but better accessible and observable and thus an ideal target for our multi-disciplinary effort. Our ongoing campaigns comprise measurements from novel autonomous vessels (temperature, salinity and current) in the immediate proximity of the glacier terminus and additional surveys (including multibeam bathymetry) from boats and moorings in the proglacial fjord. These measurements are complemented by iceberg and glacier velocity measurements from time lapse cameras and a portable radar interferometer situated above LeConte Bay. GPS-based velocity observations and melt measurements are conducted on the glacier. These measurements provide necessary input for process-based understanding and numerical modeling of the glacier and fjord systems. In the presentation, we discuss promising initial results and lessons learned from the campaign.

  10. Developing a Validated Long-Term Satellite-Based Albedo Record in the Central Alaska Range to Improve Regional Hydroclimate Reconstructions

    NASA Astrophysics Data System (ADS)

    Kreutz, K. J.; Godaire, T. P.; Burakowski, E. A.; Winski, D.; Campbell, S. W.; Wang, Z.; Sun, Q.; Hamilton, G. S.; Birkel, S. D.; Wake, C. P.; Osterberg, E. C.; Schaaf, C.

    2015-12-01

    Mountain glaciers around the world, particularly in Alaska, are experiencing significant surface mass loss from rapid climatic shifts and constitute a large proportion of the cryosphere's contribution to sea level rise. Surface albedo acts as a primary control on a glacier's mass balance, yet it is difficult to measure and quantify spatially and temporally in steep, mountainous settings. During our 2013 field campaign in Denali National Park to recover two surface to bedrock ice cores, we used an Analytical Spectral Devices (ASD) FieldSpec4 Standard Resolution spectroradiometer to measure incoming solar radiation, outgoing surface reflectance and optical grain size on the Kahiltna Glacier and at the Kahiltna Base Camp. A Campbell Scientific automatic weather station was installed on Mount Hunter (3900m) in June 2013, complementing a longer-term (2008-present) station installed at Kahiltna Base Camp (2100m). Use of our in situ data aids in the validation of surface albedo values derived from Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat satellite imagery. Comparisons are made between ASD FieldSpec4 ground measurements and 500m MODIS imagery to assess the ability of MODIS to capture the variability of surface albedo across the glacier surface. The MODIS MCD43A3 BRDF/Albedo Product performs well at Kahiltna Base Camp (<5% difference from ASD shortwave broadband data), but low biases in MODIS albedo (10-28% relative to ASD data) appear to occur along the Kahiltna Glacier due to the snow-free valley walls being captured in the 500m MODIS footprint. Incorporating Landsat imagery will strengthen our interpretations and has the potential to produce a long-term (1982-present) validated satellite albedo record for steep and mountainous terrain. Once validation is complete, we will compare the satellite-derived albedo record to the Denali ice core accumulation rate, aerosol records (i.e. volcanics and biomass burning), and glacier mass balance data. This

  11. 36 CFR 13.1130 - Is commercial fishing authorized in the marine waters of Glacier Bay National Park?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... authorized in the marine waters of Glacier Bay National Park? 13.1130 Section 13.1130 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Commercial Fishing § 13.1130 Is commercial...

  12. 36 CFR 13.1130 - Is commercial fishing authorized in the marine waters of Glacier Bay National Park?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... authorized in the marine waters of Glacier Bay National Park? 13.1130 Section 13.1130 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Commercial Fishing § 13.1130 Is commercial...

  13. 36 CFR 13.1130 - Is commercial fishing authorized in the marine waters of Glacier Bay National Park?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... authorized in the marine waters of Glacier Bay National Park? 13.1130 Section 13.1130 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Commercial Fishing § 13.1130 Is commercial...

  14. 36 CFR 13.1130 - Is commercial fishing authorized in the marine waters of Glacier Bay National Park?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... authorized in the marine waters of Glacier Bay National Park? 13.1130 Section 13.1130 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Commercial Fishing § 13.1130 Is commercial...

  15. 36 CFR 13.1130 - Is commercial fishing authorized in the marine waters of Glacier Bay National Park?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... authorized in the marine waters of Glacier Bay National Park? 13.1130 Section 13.1130 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Commercial Fishing § 13.1130 Is commercial...

  16. CRN Dating and Numerical Glacier Modeling to Investigate Climate During the Last Glacial Maximum, and the Subsequent Deglaciation, Sawatch Range, Colorado

    NASA Astrophysics Data System (ADS)

    Russell, C.; Leonard, E. M.

    2016-12-01

    The current study employs a combination of cosmogenic radionuclide (CRN) surface-exposure dating and numerical glacier modeling to investigate the climate during and following the last glacial maximum (LGM) in the Sawatch Range of Colorado. A coupled 2-D energy/mass balance and flow model is used to asses the combinations of temperature and precipitation change that could have sustained glaciers in the range at their LGM extents in five valleys along the eastern flank of the range, by matching modeled ice extent to the well-preserved LGM moraines in each valley. In addition, the study couples modeling with CRN geochronology of post-LGM ice recession to try to understand the dynamics of deglaciation and the magnitudes and rates of the climate changes that drove it. Results to date include an equilibrium glacier model that fits LGM moraines in all five valleys with a 5.4°C temperature depression and no change from modern precipitation amounts or seasonality. Modeling of deglaciation indicates, however, that the response of individual glacier systems is strongly influenced by valley hypsometry as was suggested by previous workers. Low-gradient glacier systems in the range, including the Lake Creek and Clear Creek glaciers, respond dramatically to even small temperature increases, while much steeper systems, such as the Pine Creek glacier, experience much more limited retreat in response to the same climate forcing A CRN-based deglaciation chronology is available for the Lake Creek glacier, the largest of five paleoglaciers studied. The ages show that portions of the valley floor were ice-covered for several hundred years longer than the cirques above. The numerical model is currently being used to investigate two possible explanations for this. One possibility is that climate ameliorated and deglaciation proceeded so fast that thin ice in the cirques melted out before much thicker stagnant ice melted in the valley. A second possibility is that cross-divide flow from

  17. Monitoring glacier change: advances in cross-disciplinary research and data sharing methods

    NASA Astrophysics Data System (ADS)

    Arendt, A. A.; O'Neel, S.; Cogley, G.; Hill, D. F.; Hood, E. W.

    2016-12-01

    Recent studies have emphasized the importance of understanding interactions between glacier change and downstream ecosystems, ocean dynamics and human infrastructure. Despite the need for integrated assessments, few in-situ and remote sensing glacier monitoring studies also collect concurrent data on surrounding systems affected by glacier change. In addition, the sharing of glacier datasets across disciplines has often been hampered by limitations in data sharing technologies and a lack of data standardization. Here we provide an overview of recent efforts to facilitate distribution of glacier inventory/change datasets under the framework provided by the Global Terrestrial Network for Glaciers (GTN-G). New, web accessible data products include glacier thickness data and updated glacier extents from the Randolph Glacier Inventory. We also highlight a 2016 data collection effort led by the US Geological Survey on the Wolverine Glacier watershed, Alaska, USA. A large international team collected glaciological, water quality, snow cover, firn composition, vegetation and freshwater ecology data, using remote sensing/in-situ data and model simulations. We summarize preliminary results and outline our use of cloud-computing technologies to coordinate the integration of complex data types across multiple research teams.

  18. Flow instabilities of Alaskan glaciers

    NASA Astrophysics Data System (ADS)

    Turrin, James Bradley

    Over 300 of the largest glaciers in southern Alaska have been identified as either surge-type or pulse-type, making glaciers with flow instabilities the norm among large glaciers in that region. Consequently, the bulk of mass loss due to climate change will come from these unstable glaciers in the future, yet their response to future climate warming is unknown because their dynamics are still poorly understood. To help broaden our understanding of unstable glacier flow, the decadal-scale ice dynamics of 1 surging and 9 pulsing glaciers are investigated. Bering Glacier had a kinematic wave moving down its ablation zone at 4.4 +/- 2.0 km/yr from 2002 to 2009, which then accelerated to 13.9 +/- 2.0 km/yr as it traversed the piedmont lobe. The wave first appeared in 2001 near the confluence with Bagley Ice Valley and it took 10 years to travel ~64 km. A surge was triggered in 2008 after the wave activated an ice reservoir in the midablation zone, and it climaxed in 2011 while the terminus advanced several km into Vitus Lake. Ruth Glacier pulsed five times between 1973 and 2012, with peak velocities in 1981, 1989, 1997, 2003, and 2010; approximately every 7 years. A typical pulse increased ice velocity 300%, from roughly 40 m/yr to 160 m/yr in the midablation zone, and involved acceleration and deceleration of the ice en masse; no kinematic wave was evident. The pulses are theorized to be due to deformation of a subglacial till causing enhanced basal motion. Eight additional pulsing glaciers are identified based on the spatiotemporal pattern of their velocity fields. These glaciers pulsed where they were either constricted laterally or joined by a tributary, and their surface slopes are 1-2°. These traits are consistent with an overdeepening. This observation leads to a theory of ice motion in overdeepenings that explains the cyclical behavior of pulsing glaciers. It is based on the concept of glaciohydraulic supercooling, and includes sediment transport and erosion

  19. Columbia Bay, Alaska: an 'upside down' estuary

    USGS Publications Warehouse

    Walters, R.A.; Josberger, E.G.; Driedger, C.L.

    1988-01-01

    Circulation and water properties within Columbia Bay, Alaska, are dominated by the effects of Columbia Glacier at the head of the Bay. The basin between the glacier terminus and the terminal moraine (sill depth of about 22 m) responds as an 'upside down' estuary with the subglacial discharge of freshwater entering at the bottom of the basin. The intense vertical mixing caused by the bouyant plume of freshwater creates a homogeneous water mass that exchanges with the far-field water through either a two- or a three-layer flow. In general, the glacier acts as a large heat sink and creates a water mass which is cooler than that in fjords without tidewater glaciers. The predicted retreat of Columbia Glacier would create a 40 km long fjord that has characteristics in common with other fjords in Prince William Sound. ?? 1988.

  20. Meltwater Induced Glacier Landslides - Waxell Ridge, AK

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.; Angeli, K. M.; Bratton, D. A.; Keeler, R. H.; Noyles, C.

    2006-12-01

    Within the past year, two large landslides have originated from south-facing peaks on Waxell Ridge, the bedrock massif that separates the Bagley Icefield from Bering Glacier, Alaska. Each involves a near-summit hanging glacier. In each instance, the presence of meltwater appears to be a triggering factor. The largest of the two, which occurred on September 14, 2005, originated from just below the summit of 3,236-m-high Mt Steller and landed on the surface of Bering Glacier, nearly 2,500 m below. The Alaska Volcano Observatory estimated the volume of this landslide, which consisted of rock, glacier ice, and snow, to be approximately 50 million cubic meters. Unlike most large Alaskan glacier-related landslides, this one was not triggered by an earthquake. However, the energy that the slide released was intense enough to generate a seismic signal that was recorded around the world with magnitudes of 3.8 to greater than 5. The slide extended ~10 km down the Bering Glacier from the point of impact. Much of the surface on which the slide occurred had a slope >50 degrees. The second landslide, located ~6 km to the west of Mt Steller, originated from a secondary summit of a 2,500- m-high unnamed peak. The date of its occurrence is unknown, but its toe sits on winter 2005-2006 snow. Both slides have been examined from helicopter and fixed-wing overflights, and with a variety of vertical and oblique aerial photographs. Oblique aerial photographs obtained of the Mt Steller slide on September 15, 2005 depict a 10-15-m-diameter moulin or englacial stream channel in the truncated 30-m-thick glacier ice that comprises the east wall of the landslide scarp. The presence of this unusual glacial-hydrologic feature at an elevation above 3,000 m, suggests that a large volume of water had recently been flowing on Mt Steller's east ridge and that the water might have had a role in triggering the landslide. Similarly, there is evidence of an englacial channel on the west flank of the

  1. Collisional Tectonics of the Saint Elias Orogen, Alaska, Observed by GPS

    NASA Astrophysics Data System (ADS)

    Elliott, J. L.; Freymueller, J. T.; Larsen, C. F.

    2005-12-01

    The Saint Elias orogen of south central Alaska and the adjacent area of Canada is the highest coastal mountain range on earth, with peaks that exceed 6000 meters in elevation. It is located in the complex transition zone between transform motion along the Queen Charlotte-Fairweather fault system and subduction along the Aleutian Megathrust. The Yakutat terrane lies in the gap between the end of the Megathrust and the end of the transform system. Roughly 4 cm/yr of convergence is accommodated within the continental crust, onshore and possibly offshore, as the Yakutat terrane collides with southern Alaska. This collision provides the driving force behind the stunning topographic relief of the orogen. As part of the STEEP project designed to unravel the tectonic complexities of this region, we made GPS measurements at 47 sites in south central Alaska during the summer of 2005. Here we present results from 13 campaign GPS sites that had prior measurements. The span of measurements at these campaign sites range from one to twelve years. All of the sites show northwestward motion and uplift. The highest amounts of uplift occur at several coastal sites near Icy Bay where average rates surpass 24 mm/yr. Further north, sites along the Bagley Icefield display an average uplift rate of about 20 mm/yr. A significant portion of this uplift is caused by the melting of regional icefields and the redistribution of mass in large glacier systems such as the Bering Glacier. We also examine the impact of the Denali Fault earthquake on the rates of motion in this area.

  2. Seismic Monitoring of Ice Generated Events at the Bering Glacier

    NASA Astrophysics Data System (ADS)

    Fitzgerald, K.; Richardson, J.; Pennington, W.

    2008-12-01

    The Bering Glacier, located in southeast Alaska, is the largest glacier in North America with a surface area of approximately 5,175 square kilometers. It extends from its source in the Bagley Icefield to its terminus in tidal Vitus Lake, which drains into the Gulf of Alaska. It is known that the glacier progresses downhill through the mechanisms of plastic crystal deformation and basal sliding. However, the basal processes which take place tens to hundreds of meters below the surface are not well understood, except through the study of sub- glacial landforms and passive seismology. Additionally, the sub-glacial processes enabling the surges, which occur approximately every two decades, are poorly understood. Two summer field campaigns in 2007 and 2008 were designed to investigate this process near the terminus of the glacier. During the summer of 2007, a field experiment at the Bering Glacier was conducted using a sparse array of L-22 short period sensors to monitor ice-related events. The array was in place for slightly over a week in August and consisted of five stations centered about the final turn of the glacier west of the Grindle Hills. Many events were observed, but due to the large distance between stations and the highly attenuating surface ice, few events were large enough to be recorded on sufficient stations to be accurately located and described. During August 2008, six stations were deployed for a similar length of time, but with a closer spacing. With this improved array, events were located and described more accurately, leading to additional conclusions about the surface, interior, and sub-glacial ice processes producing seismic signals. While the glacier was not surging during the experiment, this study may provide information on the non-surging, sub-glacial base level activity. It is generally expected that another surge will take place within a few years, and baseline studies such as this may assist in understanding the nature of surges.

  3. Interpretation of ICESat-Derived Elevation Change on the Malaspina-Seward Glacier

    NASA Astrophysics Data System (ADS)

    Sauber, J.; Ramage, J.; Kopczynski, S.; Muskett, R.

    2005-12-01

    In this study, we report and interpret ICESat-derived short-term variability in surface elevation in the snow accumulation region of the Seward-Malaspina Glacier, one of the largest glacier systems in southern Alaska. The Seward-Malaspina complex consists of an extensive icefield, the upper Seward Glacier, and a narrower lower outlet glacier (lower Seward) through which ice drains to the enormous piedmont of the Malaspina Glacier. Although the upper Seward is just 80 km north of the Gulf of Alaska it has an environment more continental than maritime because of shielding afforded by high mountains to the south [Sharp, 1951]. The Malaspina Glacier by contrast lies completely within the moist maritime environment of the southern Alaska coast. In an earlier study of the Malaspina Glacier, we reported elevation differences between ICESat Laser 1-3 observations (February 2003 - November 2004) and a Shuttle Radar Topography Mission (SRTM)-derived DEM from February 2000 [Sauber et al., 2005]. Elevation decreases of up to 20-25 m over a 3-4 year time period were observed across the folded loop moraine on the southern portion of the piedmont lobe of the Malaspina Glacier. For the western portion of the Upper Seward we will estimate elevation change over a comparable time period by using an X-band InSAR-derived DEM from Intermap Tech. (Sept. 2000) and ICESat-derived elevations. Early field measurements (1945-1949) from the Upper Seward Glacier indicated an average annual net surplus of 75 cm water equivalent in the Upper Seward basin [Sharp, 1951]. However, even over this short time period, Sharp [1951] found large interannual variability in net accumulation of 41-168 cm. To further constrain and understand surface changes, we examined ICESat-derived elevations from a variable set of repeated ICESat upper Seward profiles made between Feb. 2003 and May 2005. Additionally we compared the elevation change profiles to snowmelt timing and ablation season length derived from the

  4. Climate variations and changes in mass of three glaciers in western North America

    USGS Publications Warehouse

    Hodge, S.M.; Trabant, D.C.; Krimmel, R.M.; Heinrichs, T.A.; March, R.S.; Josberger, E.G.

    1998-01-01

    Time series of net and seasonal mass balances for three glaciers in western North America, one in the Pacific Northwest and two in Alaska, show various relationships to Pacific hemisphere climate indexes. During the winter season the two coastal, maritime-regime glaciers, over 2000 km apart, are affected almost identically, albeit inversely, by atmospheric and oceanic conditions in both the tropical and North Pacific. The two Alaska glaciers, only 350 km apart, have almost no coherence. Lag correlations show that in winter the maritime glaciers are influenced by concurrent conditions in the North Pacific, but by conditions in the tropical Pacific in August-September of the prior northern summer. The winter balance variations contain interannual El Nino-Southern Oscillation variability superimposed on North Pacific interdecadal variability; the interdecadal 1976-77 climate regime shift is clearly evident. The summer balances and the continental-regime glacier have a general lack of correlations, with no clear, strong, consistent patterns, probably a result of being influenced more by local processes or by circulation patterns outside the Pacific Ocean basin. The results show the Pacific Northwest is strongly influenced by conditions in the tropical Pacific, but that this teleconnection has broken down in recent years, starting in 1989. During the seven years since then (1989-95), all three glaciers have shown, for the first time, coherent signals, which were net mass loss at the highest rate in the entire record. The authors' results agree with those of other recent studies that suggest these recent years are unusual and may be a signature of climate warming.

  5. Gravimetric determination of the Thickness of Taku Glacier: Impact of Glacier Thickness on Subglacial Hydrology and Potential Erosion

    NASA Astrophysics Data System (ADS)

    Hamm, T. G.; Borthwick, L.; Jarrin, D.; Miller, M.; Wall, R.; Beem, L.; Riverman, K. L.

    2016-12-01

    High resolution measurements of spatial ice thickness variability on the Juneau Icefield are critical to an understanding of current glacial dynamics in the Coast Mountains of Southeast Alaska. In particular, such data are lacking on the Taku Glacier, a tidewater glacier in the Juneau region whose unique advance has slowed in recent years. Significantly, such information is necessary to develop an accurate description of ice dynamics as well as sub-surface hydrology and bedrock erosion. Utilizing relative gravimetry, we sought to modify existing parameterized models of ice thickness with field measurements taken along the centerline of the Taku. Here we present a three-dimensional representation of ice thickness for the Taku, based on in situ observations from July 2016. As the glacier approaches a potential period of rapid terminal retreat, this data gives refined physical information prior to this potential juncture in the tidewater cycle-an observation that may yield insight into marine ice sheet instabilities more broadly.

  6. Evaluating Precipitation Elevation Gradients in the Alaska Range using Ice Core and Alpine Weather Station Records

    NASA Astrophysics Data System (ADS)

    McConnell, E.; Osterberg, E. C.; Winski, D.; Kreutz, K. J.; Wake, C. P.; Campbell, S. W.; Ferris, D. G.; Birkel, S. D.

    2016-12-01

    Precipitation in Alaska is sensitive to the Aleutian Low (ALow) pressure system and North Pacific sea-surface temperatures, as shown by the increase in Alaskan sub-Arctic precipitation associated with the 1976 shift to the positive phase of the Pacific Decadal Oscillation (PDO). Precipitation in the high-elevation accumulation zones of Alaskan alpine glaciers provides critical mass input for glacial mass balance, which has been declining in recent decades from warmer summer temperatures despite the winter precipitation increase. Twin >1500-year ice cores collected from the summit plateau of Mount Hunter in Denali National Park, Alaska show a remarkable doubling of annual snow accumulation over the past 150 years, with most of the change observed in the winter. Other alpine ice cores collected from the Alaska and Saint Elias ranges show similar snowfall increases over recent decades. However, although Alaskan weather stations at low elevation recorded a 7-38% increase in winter precipitation across the 1976 PDO transition, this increase is not as substantial as that recorded in the Mt. Hunter ice core. Weather stations at high-elevation alpine sites are comparatively rare, and reasons for the enhanced precipitation trends at high elevation in Alaska remain unclear. Here we use Automatic Weather Station data from the Mt. Hunter drill site (3,900 m a.s.l) and from nearby Denali climber's Base Camp (2,195 m a.s.l.) to evaluate the relationships between alpine and lowland Alaskan precipitation on annual, seasonal, and storm-event temporal scales from 2008-2016. Both stations are located on snow and have sonic snow depth sounders to record daily precipitation. We focus on the role of variable ALow and North Pacific High strength in influencing Alaskan precipitation elevational gradients, particularly in association with the extreme 2015-2016 El Niño event, the 2009-2010 moderate El Niño event, and the 2010-2011 moderate La Niña event. Our analysis will improve our

  7. High Resolution Modeling of the Water Cycle to Refine GRACE Signal Analysis in the Gulf of Alaska Drainage

    NASA Astrophysics Data System (ADS)

    Beamer, J.; Hill, D. F.; Arendt, A. A.; Luthcke, S. B.; Liston, G. E.

    2015-12-01

    A comprehensive study of the Gulf of Alaska (GOA) drainage basin was carried out to improve understanding of the coastal freshwater discharge (FWD) and surface mass balance (SMB) of glaciers. Coastal FWD and SMB for all glacier surfaces were modeled using a suite of physically based, spatially distributed weather, energy-balance snow/ice melt, soil water balance, and runoff routing models at a high resolution (1 km horizontal grid; daily time step). A 35 year hind cast was performed, providing complete records of precipitation, runoff, snow water equivalent (SWE) depth, evapotranspiration, coastal FWD and glacier SMB. Meteorological forcing was provided by the North American Regional Reanalysis (NARR), Modern Era Retrospective Analysis for Research and Applications (MERRA), and NCEP Climate Forecast System Reanalysis (CFSR) datasets. A fourth dataset was created by bias-correcting the NARR data to recently-developed monthly weather grids based on PRISM climatologies (NARR-BC). Each weather dataset and model combination was individually calibrated using PRISM climatologies, streamflow, and glacier mass balance measurements from four locations in the study domain. Simulated mean annual FWD into the GOA ranged from 600 km3 yr-1 using NARR to 850 km3 yr-1 from NARR-BC. The CFSR-forced simulations with optimized model parameters produced a simulated regional water storage that compared favorably to data from the NASA/DLR Gravity Recovery and Climate Experiment (GRACE) high resolution mascon solutions (Figure). Glacier runoff, taken as the sum of rainfall, snow and ice melt occurring on glacier surfaces, ranged from 260 km3 yr-1 from MERRA to 400 km3 yr-1 from NARR-BC, approximately one half of the signal from both glaciers and surrounding terrain. The large contribution from non-glacier surfaces to the seasonal water balance is likely not being fully removed from GRACE solutions aimed at isolating the glacier signal alone. We will discuss methods to use our simulations

  8. Tropical Glaciers

    NASA Astrophysics Data System (ADS)

    Fountain, Andrew

    The term "tropical glacier" calls to mind balmy nights and palm trees on one hand and cold, blue ice on the other. Certainly author Gabriel Garcia Marqez exploited this contrast in One Hundred Years of Solitude. We know that tropical fish live in warm, Sun-kissed waters and tropical plants provide lush, dense foliage populated by colorful tropical birds. So how do tropical glaciers fit into this scene? Like glaciers everywhere, tropical glaciers form where mass accumulation—usually winter snow—exceeds mass loss, which is generally summer melt. Thus, tropical glaciers exist at high elevations where precipitation can occur as snowfall exceeds melt and sublimation losses, such as the Rwenzori Mountains in east Africa and the Maoke Range of Irian Jaya.

  9. Use of the Coastal and Marine Ecological Classification Standard (CMECS) for Geological Studies in Glacier Bay, Alaska

    NASA Astrophysics Data System (ADS)

    Cochrane, G. R.; Hodson, T. O.; Allee, R.; Cicchetti, G.; Finkbeiner, M.; Goodin, K.; Handley, L.; Madden, C.; Mayer, G.; Shumchenia, E.

    2012-12-01

    The U S Geological Survey (USGS) is one of four primary organizations (along with the National Oceanographic and Atmospheric Administration, the Evironmental Protection Agency, and NatureServe) responsible for the development of the Coastal and Marine Ecological Classification Standard (CMECS) over the past decade. In June 2012 the Federal Geographic Data Committee approved CMECS as the first-ever comprehensive federal standard for classifying and describing coastal and marine ecosystems. The USGS has pioneered the application of CMECS in Glacier Bay, Alaska as part of its Seafloor Mapping and Benthic Habitat Studies Project. This presentation briefly describes the standard and its application as part of geological survey studies in the Western Arm of Glacier Bay. CMECS offers a simple, standard framework and common terminology for describing natural and human influenced ecosystems from the upper tidal reaches of estuaries to the deepest portions of the ocean. The framework is organized into two settings, biogeographic and aquatic, and four components, water column, geoform, substrate, and biotic. Each describes a separate aspect of the environment and biota. Settings and components can be used in combination or independently to describe ecosystem features. The hierarchical arrangement of units of the settings and components allows users to apply CMECS to the scale and specificity that best suits their needs. Modifiers allow users to customize the classification to meet specific needs. Biotopes can be described when there is a need for more detailed information on the biota and their environment. USGS efforts focused primarily on the substrate and geoform components. Previous research has demonstrated three classes of bottom type that can be derived from multibeam data that in part determine the distribution of benthic organisms: soft, flat bottom, mixed bottom including coarse sediment and low-relief rock with low to moderate rugosity, and rugose, hard bottom. The

  10. Status and distribution of the Kittlitz's Murrelet Brachyramphus brevirostris along the Alaska Peninsula and Kodiak and Aleutian Islands, Alaska

    USGS Publications Warehouse

    Madison, Erica N.; Piatt, John F.; Arimitsu, Mayumi L.; Romano, Marc D.; van Pelt, Thomas I.; Nelson, S. Kim; Williams, Jeffrey C.; DeGange, Anthony R.

    2011-01-01

    The Kittlitz's Murrelet Brachyramphus brevirostris is adapted for life in glacial-marine ecosystems, being concentrated in the belt of glaciated fjords in the northern Gulf of Alaska from Glacier Bay to Cook Inlet. Most of the remaining birds are scattered along coasts of the Alaska Peninsula and Aleutian Islands, where they reside in protected bays and inlets, often in proximity to remnant glaciers or recently deglaciated landscapes. We summarize existing information on Kittlitz's Murrelet in this mainly unglaciated region, extending from Kodiak Island in the east to the Near Islands in the west. From recent surveys, we estimated that ~2400 Kittlitz's Murrelets were found in several large embayments along the Alaska Peninsula, where adjacent ice fields feed silt-laden water into the bays. On Kodiak Island, where only remnants of ice remain today, observations of Kittlitz's Murrelets at sea were uncommon. The species has been observed historically around the entire Kodiak Archipelago, however, and dozens of nest sites were found in recent years. We found Kittlitz's Murrelets at only a few islands in the Aleutian chain, notably those with long complex shorelines, high mountains and remnant glaciers. The largest population (~1600 birds) of Kittlitz's Murrelet outside the Gulf of Alaska was found at Unalaska Island, which also supports the greatest concentration of glacial ice in the Aleutian Islands. Significant populations were found at Atka (~1100 birds), Attu (~800) and Adak (~200) islands. Smaller numbers have been reported from Unimak, Umnak, Amlia, Kanaga, Tanaga, Kiska islands, and Agattu Island, where dozens of nest sites have been located in recent years. Most of those islands have not been thoroughly surveyed, and significant pockets of Kittlitz's Murrelets may yet be discovered. Our estimate of ~6000 Kittlitz's Murrelets along the Alaska Peninsula and Aleutian Islands is also likely to be conservative because of the survey protocols we employed (i.e. early

  11. Multi-decadal elevation changes on Bagley Ice Valley and Malaspina Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Muskett, Reginald R.; Lingle, Craig S.; Tangborn, Wendell V.; Rabus, Bernhard T.

    2003-08-01

    Digital elevation models (DEMs) of Bagley Ice Valley and Malaspina Glacier produced by (i) Intermap Technologies, Inc. (ITI) from airborne interferometric synthetic aperture radar (InSAR) data acquired 4-13 September 2000, (ii) the German Aerospace Center (DRL) from spaceborne InSAR data acquired by the Shuttle Radar Topography Mission (SRTM) 11-22 February 2000, and (iii) the US Geological Survey (USGS) from aerial photographs acquired in 1972/73, were differenced to estimate glacier surface elevation changes from 1972 to 2000. Spatially non-uniform thickening, 10 +/- 7 m on average, is observed on Bagley Ice Valley (accumulation area) while non-uniform thinning, 47 +/- 5 m on average, is observed on the glaciers of the Malaspina complex (mostly ablation area). Even larger thinning is observed on the retreating tidewater Tyndall Glacier. These changes have resulted from increased temperature and precipitation associated with climate warming, and rapid tidewater retreat.

  12. 36 CFR 13.1312 - Climbing and walking on Exit Glacier.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Climbing and walking on Exit Glacier. 13.1312 Section 13.1312 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park...

  13. Geology of the Byrd Glacier Discontinuity (Ross Orogen): New survey data from the Britannia Range, Antarctica

    USGS Publications Warehouse

    Carosi, R.; Giacomini, F.; Talarico, F.; Stump, E.

    2007-01-01

    Field activities in the Britannia Range (Transantarctic Mountains, Antarctica) highlighted new geological features around the so-called Byrd Glacier discontinuity. Recent field surveys revealed the occurrence of significant amounts of medium- to high-grade metamorphic rocks, intruded by abundant coarse-grained porphyritic granitoids. Most of the granitoids are deformed, with foliation parallel to the regional foliation in the metamorphics. Two main episodes of deformation are observed. Tight to isoclinal folds and penetrative axial plane foliation are related to the D1 phase, open folds to the D2. The main foliation (D1) trends nearly E-W in agreement with the trend in the southern portion of the Byrd Glacier. In most outcrops, granitic dykes are folded and stretched by the D2 deformation, which shows similar characteristics with the D2 deformation south of the Byrd Glacier. This suggests the occurrence in the Ross orogen of an orogen-normal structure south and north of the Byrd Glacier.

  14. Glaciers of Asia

    USGS Publications Warehouse

    Williams, Richard S.; Ferrigno, Jane G.

    2010-01-01

    This chapter is the ninth to be released in U.S. Geological Survey Professional Paper 1386, Satellite Image Atlas of Glaciers of the World, a series of 11 chapters. In each of the geographic area chapters, remotely sensed images, primarily from the Landsat 1, 2, and 3 series of spacecraft, are used to analyze the specific glacierized region of our planet under consideration and to monitor glacier changes. Landsat images, acquired primarily during the middle to late 1970s and early 1980s, were used by an international team of glaciologists and other scientists to study various geographic regions and (or) to discuss related glaciological topics. In each glacierized geographic region, the present areal distribution of glaciers is compared, wherever possible, with historical information about their past extent. The atlas provides an accurate regional inventory of the areal extent of glacier ice on our planet during the 1970s as part of a growing international scientific effort to measure global environmental change on the Earth?s surface. The chapter is divided into seven geographic parts and one topical part: Glaciers of the Former Soviet Union (F-1), Glaciers of China (F-2), Glaciers of Afghanistan (F?3), Glaciers of Pakistan (F-4), Glaciers of India (F-5), Glaciers of Nepal (F?6), Glaciers of Bhutan (F-7), and the Paleoenvironmental Record Preserved in Middle-Latitude, High-Mountain Glaciers (F-8). Each geographic section describes the glacier extent during the 1970s and 1980s, the benchmark time period (1972-1981) of this volume, but has been updated to include more recent information. Glaciers of the Former Soviet Union are located in the Russian Arctic and various mountain ranges of Russia and the Republics of Georgia, Kyrgyzstan, Tajikistan, and Kazakstun. The Glacier Inventory of the USSR and the World Atlas of Ice and Snow Resources recorded a total of 28,881 glaciers covering an area of 78,938 square kilometers (km2). China includes many of the mountain-glacier

  15. Associations between accelerated glacier mass wastage and increased summer temperature in coastal regions

    USGS Publications Warehouse

    Dyurgerov, M.; McCabe, G.J.

    2006-01-01

    Low-elevation glaciers in coastal regions of Alaska, the Canadian Arctic, individual ice caps around the Greenland ice sheet, and the Patagonia Ice Fields have an aggregate glacier area of about 332 ?? 103 km 2 and account for approximately 42% of all the glacier area outside the Greenland and Antarctic ice sheets. They have shown volume loss, especially since the end of the 1980s, increasing from about 45% in the 1960s to nearly 67% in 2003 of the total wastage from all glaciers on Earth outside those two largest ice sheets. Thus, a disproportionally large contribution of coastal glacier ablation to sea level rise is evident. We examine cumulative standardized departures (1961-2000 reference period) of glacier mass balances and air temperature data in these four coastal regions. Analyses indicate a strong association between increases in glacier volume losses and summer air temperature at regional and global scales. Increases in glacier volume losses in the coastal regions also coincide with an accelerated rate of ice discharge from outlet glaciers draining the Greenland and West Antarctic ice sheets. These processes imply further increases in sea level rise. ?? 2006 Regents of the University of Colorado.

  16. Remote Sensing Observations of Advancing and Surging Tidewater Glaciers

    NASA Astrophysics Data System (ADS)

    McNabb, R. W.; Kääb, A.; Nuth, C.; Girod, L.; Truffer, M.; Fahnestock, M. A.

    2017-12-01

    Progress has been made in understanding the glaciological frontiers of tidewater glacier dynamics and surge dynamics, though many aspects of these topics are not well-understood. Advances in the processing of digital elevation models (DEMs) from ASTER imagery, as well as the increased availability and temporal density of satellite images such as Landsat and the Sentinel missions, provide an unprecedented wealth of satellite data over glaciers, providing new opportunities to learn about these topics. As one of the largest glaciated regions in the world outside of the Greenland and Antarctic ice sheets, glaciers in Alaska and adjacent regions in Canada have been highlighted for their elevated contributions to global sea level rise, through both high levels of melt and frontal ablation/calving from a large number of tidewater glaciers. The region is also home to a number of surging glaciers. We focus on several tidewater glaciers in the region, including Turner, Tsaa, Harvard, and Meares Glaciers. Turner Glacier is a surge-type tidewater glacier with a surge period of approximately eight years, while Tsaa Glacier is a tidwewater glacier that has shown rapid swings in terminus position on the order of a year. Harvard and Meares Glaciers have been steadily advancing since at least the mid-20th century, in contrast with neighboring glaciers that are retreating. Using a combination of ASTER, Landsat, and Sentinel data, we present and examine high-resolution time series of elevation, velocity, and terminus position for these glaciers, as well as updated estimates of volume change and frontal ablation rates, including on sub-annual time scales. Preliminary investigations of elevation change on Turner Glacier show that changes are most pronounced in the lower reaches of the glacier, below a prominent icefall approximately 15km from the head of the glacier. On Harvard and Meares Glaciers, elevation changes in the upper reaches of both glaciers have been generally small or

  17. 20th-century glacial-marine sedimentation in Vitus Lake, Bering Glacier, Alaska, U.S.A.

    USGS Publications Warehouse

    Molnia, B.F.; Post, A.; Carlson, P.R.

    1996-01-01

    Vitus Lake, the ice-marginal basin at the southeastern edge of Bering Glacier, Alaska, U.S.A., is a site of modern, rapid, glacial-marine sedimentation. Rather than being a fresh-water lake, Vitus Lake is a tidally influenced, marine to brackish embayment connected to the Pacific Ocean by an inlet, the Seal River. Vitus Lake consists of five deep bedrock basins, separated by interbasinal highs. Glacial erosion has cut these basins as much as 250 m below sea level. High-resolution seismic reflection surveys conducted in 1991 and 1993 of four of Vitus Lake's basins reveal a complex, variable three-component acoustic stratigraphy. Although not fully sampled, the stratigraphy is inferred to be primarily glacial-marine units of (1) basal contorted and deformed glacial-marine and glacial sediments deposited by basal ice-contact processes and submarine mass-wasting; (2) acoustically well-stratified glacial-marine sediment, which unconformably overlies the basal unit and which grades upward into (3) acoustically transparent or nearly transparent glacial-marine sediment. Maximum thicknesses of conformable glacial-marine sediment exceed 100 m. All of the acoustically transparent and stratified deposits in Vitus Lake are modern in age, having accumulated between 1967 and 1993. The basins where these three-part sequences of "present-day" glacial-marine sediment are accumulating are themselves cut into older sequences of stratified glacial and glacial-marine deposits. These older units outcrop on the islands in Vitus Lake. In 1967, as the result of a major surge, glacier ice completely filled all five basins. Subsequent terminus retreat, which continued through August 1993, exposed these basins, providing new locations for glacial-marine sediment accumulation. A correlation of sediment thicknesses measured from seismic profiles at specific locations within the basins, with the year that each location became ice-free, shows that the sediment accumulation at some locations

  18. Using stereo satellite imagery to account for ablation, entrainment, and compaction in volume calculations for rock avalanches on Glaciers: Application to the 2016 Lamplugh Rock Avalanche in Glacier Bay National Park, Alaska

    USGS Publications Warehouse

    Bessette-Kirton, Erin; Coe, Jeffrey A.; Zhou, Wendy

    2018-01-01

    The use of preevent and postevent digital elevation models (DEMs) to estimate the volume of rock avalanches on glaciers is complicated by ablation of ice before and after the rock avalanche, scour of material during rock avalanche emplacement, and postevent ablation and compaction of the rock avalanche deposit. We present a model to account for these processes in volume estimates of rock avalanches on glaciers. We applied our model by calculating the volume of the 28 June 2016 Lamplugh rock avalanche in Glacier Bay National Park, Alaska. We derived preevent and postevent 2‐m resolution DEMs from WorldView satellite stereo imagery. Using data from DEM differencing, we reconstructed the rock avalanche and adjacent surfaces at the time of occurrence by accounting for elevation changes due to ablation and scour of the ice surface, and postevent deposit changes. We accounted for uncertainties in our DEMs through precise coregistration and an assessment of relative elevation accuracy in bedrock control areas. The rock avalanche initially displaced 51.7 ± 1.5 Mm3 of intact rock and then scoured and entrained 13.2 ± 2.2 Mm3 of snow and ice during emplacement. We calculated the total deposit volume to be 69.9 ± 7.9 Mm3. Volume estimates that did not account for topographic changes due to ablation, scour, and compaction underestimated the deposit volume by 31.0–46.8 Mm3. Our model provides an improved framework for estimating uncertainties affecting rock avalanche volume measurements in glacial environments. These improvements can contribute to advances in the understanding of rock avalanche hazards and dynamics.

  19. Methane seeps along boundaries of arctic permafrost thaw and melting glaciers

    NASA Astrophysics Data System (ADS)

    Anthony, P.; Walter Anthony, K. M.; Grosse, G.; Chanton, J.

    2014-12-01

    Methane, a potent greenhouse gas, accumulates in subsurface hydrocarbon reservoirs. In the Arctic, impermeable icy permafrost and glacial overburden form a 'cryosphere cap' that traps gas leaking from these reservoirs, restricting flow to the atmosphere. We document the release of geologic methane to the atmosphere from abundant gas seeps concentrated along boundaries of permafrost thaw and receding glaciers in Alaska. Through aerial and ground surveys we mapped >150,000 seeps identified as bubbling-induced open holes in lake ice. Subcap methane seeps had anomalously high fluxes, 14C-depletion, and stable isotope values matching known coalbed and thermogenic methane accumulations in Alaska. Additionally, we observed younger subcap methane seeps in Greenland that were associated with ice-sheet retreat since the Little Ice Age. These correlations suggest that in a warming climate, continued disintegration of permafrost, glaciers, and parts of the polar ice sheets will relax pressure on subsurface seals and further open conduits, allowing a transient expulsion of geologic methane currently trapped by the cryosphere cap.

  20. Dramatic increase in the relative abundance of large male dungeness crabs Cancer magister following closure of commercial fishing in Glacier Bay, Alaska

    USGS Publications Warehouse

    Taggart, S. James; Shirley, Thomas C.; O'Clair, Charles E.; Mondragon, Jennifer

    2004-01-01

    The size structure of the population of the Dungeness crab Cancer magister was studied at six sites in or near Glacier Bay, Alaska, before and after the closure of commercial fishing. Seven years of preclosure and 4 years of postclosure data are presented. After the closure of Glacier Bay to commercial fishing, the number and size of legal-sized male Dungeness crabs increased dramatically at the experimental sites. Female and sublegal-sized male crabs, the portions of the population not directly targeted by commercial fishing, did not increase in size or abundance following the closure. There was not a large shift in the size-abundance distribution of male crabs at the control site that is still open to commercial fishing. Marine protected areas are being widely promoted as effective tools for managing fisheries while simultaneously meeting marine conservation goals and maintaining marine biodiversity. Our data demonstrate that the size of male Dungeness crabs can markedly increase in a marine reserve, which supports the concept that marine reserves could help maintain genetic diversity in Dungeness crabs and other crab species subjected to size-limit fisheries and possibly increase the fertility of females. ?? 2004 by the American Fisheries Society.

  1. Alaska: Glaciers of Kenai Fjords National Park and Katmai and Lake Clark National Parks and Preserve

    NASA Technical Reports Server (NTRS)

    Giffen, bruce A.; Hall, Dorothy K.; Chien, Janet Y. L.

    2011-01-01

    There are hundreds of glaciers in Kenai Fjords National Park (KEFJ) and Katmai National Park and Preserve (KATM) covering over 2276 sq km of park land (circa 2000). There are two primary glacierized areas in KEFJ -- the Harding Icefield and the Grewingk-Yalik Glacier Complex, and three primary glacierized areas in KATM - the Mt. Douglas area, the Kukak Volcano to Mt. Katmai area and the Mt. Martin area. Most glaciers in these parks terminate on land, though a few terminate in lakes. Only KEFJ has tidewater glaciers, which terminate in the ocean. Glacier mapping and analysis of the change in glacier extent has been accomplished on a decadal scale using satellite imagery, primarily Landsat data from the 1970s, 1980s, and from 2000. Landsat Multispectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) imagery was used to map glacier extent on a park-wide basis. Classification of glacier ice using image processing software, along with extensive manual editing, was employed to create Geographic Information System (GIS) outlines of the glacier extent for each park. Many glaciers that originate in KEFJ but terminate outside the park boundaries were also mapped. Results of the analysis show that there has been a reduction in the amount of glacier ice cover in the two parks over the study period. Our measurements show a reduction of approximately 21 sq km, or -1.5% (from 1986 to 2000), and 76 sq km, or -7.7% (from 1986/87 to 2000), in KEFJ and KATM, respectively. This work represents the first comprehensive study of glaciers of KATM. Issues that complicate the mapping of glacier extent include: debris-cover (moraine and volcanic ash), shadows, clouds, fresh snow, lingering snow from the previous season, and differences in spatial resolution between the MSS and TM or ETM+ sensors. Similar glacier mapping efforts in western Canada estimate mapping errors of 3-4%. Measurements were also collected from a suite of glaciers in KEFJ and KATM detailing

  2. JPL-20170926-TECHf-0001-Robot Descends into Alaska Moulin

    NASA Image and Video Library

    2017-09-26

    JPL engineer Andy Klesh lowers a robotic submersible into a moulin. Klesh and JPL's John Leichty used robots and probes to explore the Matanuska Glacier in Alaska this past July. Image Credit: NASA/JPL-Caltech

  3. Dissolved and particulate organic carbon in the melt water of Icelandic glaciers

    NASA Astrophysics Data System (ADS)

    Chifflard, Peter; Reiss, Martin

    2017-04-01

    the filtered water samples were measured using a TOC analyzer using high-temperature combustion of organic matter (OM) followed by thermal detection of CO2 (TOC-L, Shimadzu, Japan). POC was measured by determining mass lost upon combustion of the samples. Therefore all glass fiber membranes were dried after sampling at 65°C to a constant weight, reweighed to calculate the total suspended solids (TSS), combusted via heating the filter to 550° C and finally reweighed to calculate the amount of particulate organic matter. Spectroscopic characteristics were detected by using a spectrophotometer (ThermoFisher, Genesys 10S) for UV-VIS analysis and a fluorescence spectrometer (Shimadzu RF-6000) for fluorescence analysis. Spectroscopic indices will be calculated based on these UV-VIS and fluorescence data. First results show that the DOC-concentrations are very low and range from 0.113 mg/l to 0.937 mg/l. These concentrations are comparable with values measured in the melt water in other regions (Alaska, Greenland and European Alps) (Hood et al. 2015). POC concentrations range from 0.667 mg/l to 173.333 mg/l and exceed the DOC-concentration at every sampling location. This differences can be compared with results of the Greenland Ice Sheet, but not with some small glaciers in the European Alps, where the concentrations of DOC and POC more or less equal (Hood et al. 2015). Nevertheless, the export of POC plays a very important factor within the organic carbon export budget of glaciers in Iceland and further measurements are required. Hood, E., Battin, T. J., Fellman, J., O'Neel, S., & Spencer, R. G. (2015). Storage and release of organic carbon from glaciers and ice sheets. Nature Geoscience, 8(2), 91-96.

  4. Topographic context of glaciers and perennial snowfields, Glacier National Park, Montana

    NASA Astrophysics Data System (ADS)

    Allen, Thomas R.

    1998-01-01

    Equilibrium-line altitudes (ELAs) of modem glaciers in the northern Rocky Mountains are known to correspond with regional climate, but strong subregional gradients such as across the Continental Divide in Glacier National Park, Montana, also exert topoclimatic influences on the ELA. This study analyzed the relationships between glacier and snowfield morphology, ELA, and surrounding topography. Glaciers and perennial snowfields were mapped using multitemporal satellite data from the Landsat Thematic Mapper and aerial photography within an integrated Geographic Information System (GIS). Relationships between glacier morphology and ELA were investigated using discriminant analysis. Four morphological categories of perennial snow and ice patches were identified: cirque glacier, niche glacier, ice cap, and snowfield. ELA was derived from overlaid glacier boundaries and Digital Elevation Models (DEMs) within the GIs. DEMs provided topographic variables and models of solar radiation and wind exposure/shelteredness. Regression analysis showed the effects of exposure; on snow accumulation, the strong influence of local topography through upslope zone morphology such as cirque backwalls, and the tendency for glaciers with high ELAs to exhibit compactness in morphology. Results highlight the relatively compact shape and larger area of glaciers adjacent to the Continental Divide. Discriminant analysis correctly predicted the type of glacier morphology in more than half the observations using factored variables of glacier shape, elevation range, and upslope area.

  5. Global glacier and ice sheet surface velocities derived from 31 years of Landsat imagery

    NASA Astrophysics Data System (ADS)

    Gardner, A. S.; Scambos, T. A.; Fahnestock, M. A.

    2016-12-01

    Glaciers and ice sheets are contributing substantial volumes of water to the world's oceans due to enhanced melt resulting from changes in ocean and atmospheric conditions and respective feedbacks. Improving understanding of the processes leading to accelerated rates of ice loss is necessary for reducing uncertainties sea level projections. One key to doing this is to assemble and analyze long records of glacier change that characterize grounded ice response to changes in driving stress, buttressing, and basal conditions. As part of the NASA funded GO_LIVE project we exploit 31 years of Landsat imagery to construct detailed time histories of global glacier velocities. Early exploration of the dataset reveals the diversity of information to be gleaned: sudden tidewater glacier speedups in the Antarctic Peninsula, rifting of Antarctic ice shelves, high variability in velocities near glacier grounding lines, frequent surge activity in the mountainous regions of Alaska and High Mountain Asia, and the slowdown of land-terminating valley glaciers in Arctic Canada and elsewhere.

  6. TRACY ARM-FORDS TERROR WILDERNESS STUDY AREA AND VICINITY, ALASKA.

    USGS Publications Warehouse

    Brew, David A.; Kimball, A.L.

    1984-01-01

    The Tracy Arm-Fords Terror Wilderness study area lies on the southwest flank of the Coast Range about 45 mi southeast of Juneau, Alaska. A mineral-resource survey of the area identified two areas with substantiated mineral-resource potential: the Sumdum Glacier mineral belt with gold, copper, and zinc potential; and the Endicott Peninsula area with zinc, silver, and gold potential. The Sumdum Glacier belt is estimated to contain between 3 and 15 mineral deposits and there are 5 known mining areas in the Endicott Peninsula. Further work, particularly in the southern part of the belt, would be of significant help in refining the evaluation of that area. Relatively little activity has occurred in the Endicott Peninsula area; intense geochemical and geophysical work would remove many of the present uncertainties and probably would refine the present limit of the favorable areas. 2 refs.

  7. Preliminary bathymetry of Northwestern Fiord and Neoglacial changes of Northwestern Glacier

    USGS Publications Warehouse

    Post, Austin

    1980-01-01

    The first preliminary bathymetry (at 1:20,000 scale) and other scientific investigations of Northwestern Fiord, Alaska, were conducted by the Research Vessel Growler in 1978, disclosing this 10.5-mile-long branched waterway to be a deep basin enclosed by a terminal-moraine shoal. The basin was formerly filled by Northwestern Glacier, which began a drastic retreat around 1909 and reached the head of the main arm around 1960. Soundings and profiles show the main channel to be as much as 970 feet deep and to have the typical U shape of a severely glacially eroded valley; since the glacier 's retreat, sediments have formed nearly level deposits in the deepest reaches, while the rest of the basin has a hard, rocky bottom. Preneoglacial forest debris dated by carbon-14 indicates Northwestern Glacier to have advanced into the fiord prior to 1,385 years before present (B.P.); a branch glacier evidently advanced into forest 1,635 years B.P. The combined glaciers from several arms culminated on the present terminal-moraine shoal around 1894. (USGS)

  8. Dynamics and internal structure of an Alaskan debris-covered glacier from repeat airborne photogrammetry and surface geophysics

    NASA Astrophysics Data System (ADS)

    Holt, John; Levy, Joseph; Petersen, Eric; Larsen, Chris; Fahnestock, Mark

    2016-04-01

    Debris-covered glaciers and rock glaciers encompass a range of compositions and activity, and can be useful paleoclimate indicators. They also respond differently to ongoing climate change than glaciers without a protective cover. Their flow dynamics are not well understood, and their unique surface morphologies, including lobate fronts and arcuate ridges, likely result from viscous flow influenced by a combination of composition, structure, and climatic factors. However, basic connections between flow kinematics and surface morphology have not yet been established, limiting our ability to understand these features. In order to begin to address this problem we have undertaken airborne and surface studies of multiple debris-covered glaciers in Alaska and the western U.S. Sourdough Rock Glacier in the St. Elias Mountains, Alaska, is completely debris-covered and exhibits numerous transverse compressional ridges. Its trunk also exhibits highly regular bumps and swales with a wavelength of ~175 m and amplitudes up to 12 m. In the middle trunk, lineations (boulder trains and furrows) bend around a point roughly 200m from the eastern edge. We acquired five high-resolution airborne surveys of Sourdough Rock Glacier between late 2013 and late 2015 using lidar and photogrammetry to assess annual and seasonal change at the sub-meter level. Differencing the DTMs provides vertical change while feature tracking in orthophotos provide horizontal velocities that indicate meters of annual motion. The flow field is highly correlated with surface features; in particular, compressional ridges in the lower lobe. Stranded, formerly active lobes are also apparent. Surface geophysical studies were undertaken to constrain internal structure and composition using a combination of ground-penetrating radar (GPR) at 50 and 100 MHz in six transects, and time-domain electromagnetic (TDEM) measurements at 47 locations, primarily in an along-flow transect and two cross-flow transects. We infer

  9. Icequake Tremors During Glacier Calving (Invited)

    NASA Astrophysics Data System (ADS)

    Walter, F.; O'Neel, S.; Bassis, J. N.; Fricker, H. A.; Pfeffer, W. T.

    2009-12-01

    Calving poses the largest uncertainty in the prediction of sea-level rise in response to global climate changes. A physically-based calving law has yet to be successfully implemented into ice-sheet models in order to adequately describe the mass loss of tidewater glaciers and ice shelves. Observations from a variety of glacial environments are needed in order to develop a theoretical framework for glacier calving. To this end, several recent investigations on glacier calving have involved the recording of seismic waves. In this context, the study of icequakes has been of high value, as it allows for detecting and monitoring of calving activity. However, there are unanswered fundamental questions concerning source aspects of calving-related seismic activity, such as focal depths of icequakes preceding and accompanying calving events, failure mechanisms and the role of fracturing and crevasse formation upstream from the glacier terminus. Icequake sources associated with opening of surface crevasses are well understood. As glacier ice is often homogeneous these waveforms are relatively simple and can be modeled using the moment tensor representation of a seismic point source. Calving-related seismicity, on the other hand, is more complex, and occurs near the terminus of a glacier, which is often highly heterogeneous due to pervasive crevassing. The signals last up to several minutes or even hours and exhibit both low-frequency (1-3Hz) as well as high-frequency (10-20Hz) energy or tremor-like waveforms. These characteristics can be explained by finite source properties, such as connecting and migrating fractures and repeated slip across contact planes between two bodies of ice. In this presentation we discuss sources of calving-related seismicity by comparing seismic calving records from several different glacial settings. We consider icequakes recorded during tidewater calving at Columbia Glacier, Alaska, during lake calving on Gornergletscher, Switzerland, and during

  10. Legacy K/Ar and 40Ar/39Ar geochronologic data from the Alaska-Aleutian Range batholith of south-central Alaska

    USGS Publications Warehouse

    Koeneman, Lisa L.; Wilson, Frederic H.

    2018-04-06

    Sample descriptions and analytical data for more than 200 K/Ar and 40Ar/39Ar analyses from rocks of the Alaska-Aleutian Range batholith of south-central Alaska are reported here. Samples were collected over a period of 20 years by Bruce R. Reed and Marvin A. Lanphere (both U.S. Geological Survey) as part of their studies of the batholith.

  11. Recruiting first generation college students into the Geosciences: Alaska's EDGE project

    NASA Astrophysics Data System (ADS)

    Prakash, A.; Connor, C.

    2008-12-01

    Funded in 2005-2008, by the National Science Foundation's Geoscience Education Division, the Experiential Discoveries in Geoscience Education (EDGE) project was designed to use glacier and watershed field experiences as venues for geospatial data collected by Alaska's grade 6-12 middle and high school teachers and their students. EDGE participants were trained in GIS and learned to analyze geospatial data to answer questions about the warming Alaska environment and to determine rates of ongoing glacier recession. Important emphasis of the program was the recruitment of Alaska Native students of Inupiat, Yup'ik, Athabascan, and Tlingit populations, living in both rural and urban areas around the state. Twelve of Alaska's 55 school districts have participated in the EDGE program. To engage EDGE students in the practice of scientific inquiry, each was required to carry out a semester scale research project using georeferenced data, guided by their EDGE teacher and mentor. Across Alaska students investigated several Earth systems processes including freezing conditions of lake ice; the changes in water quality in storm drains after rainfall events; movements of moose, bears, and bison across Alaskan landscapes; changes in permafrost depth in western Alaska; and the response of migrating waterfowl to these permafrost changes. Students correlated the substrate beneath their schools with known earthquake intensities; measured cutbank and coastal erosion on northern rivers and southeastern shorelines; tracked salmon infiltration of flooded logging roads; noted the changing behavior of eagles during late winter salmon runs; located good areas for the use of tidal power for energy production; tracked the extent and range of invasive plant species with warming; and the change of forests following deglaciation. Each cohort of EDGE students and teachers finished the program by attended a 3-day EDGE symposium at which students presented their research projects first in a

  12. Byrd Glacier, Antarctica

    NASA Image and Video Library

    2008-11-17

    Byrd Glacier is a major glacier in Antarctica; it drains an extensive area of the polar plateau and flows eastward between the Britannia Range and the Churchill Mountains to discharge into the Ross Ice Shelf. This image is from NASA Terra satellite.

  13. The recent glacier changes in Mongolian Altai Mountains

    NASA Astrophysics Data System (ADS)

    Yabuki, H.; Ohata, T.

    2009-12-01

    In the 4th IPCC report (AR-4) is reported that global warming in recent years is a clear thing. Shrinkage of the mountain glacier and two poles is reporting as an observation fact as the actual condition of the cryosphere by warming. There are mass balance reports of the glacier of 80 of world by WGMS (World Glacier Monitoring Service) as a report of the actual condition of glacier mass balance change, and the actual condition of the glacier mass change in world is clarified. In the report of WGMS, after 1980’s the glacier mass balance, in the Europe Alps and the Alaska region are decreases, and in Scandinavia region are increases. On the other hand, the glacier mass balance in the Russia Altai Mountains located in Central Asia has the little change after 1980’s. These are research using the long-term observational data of Russian region of western part of Altai Mountains. The Altai Mountains including Russia, China, and Mongolia Kazakhstan, and there are description to a World Glacier Inventory (WGI) about the glaciers of Russia, China and Kazakhstan area, but the glaciers of a Mongolian area, there are no description to the WGI. There is almost no information on the glacier of a Mongolian Altai region, and there are many unknown points about glacier change of the whole Altai Mountain region. In this research, while research clarified the present condition of glacier distribution of the Mongolia Altai region, the actual condition of a glacier change in recent years was clarified by comparison with the past topographical map. In this research, the glacier area was distinguished based on the satellite image of the Mongolian glacier regions. The used satellite image were 17 Landsat 7 ETM+ in 1999 to 2002. The glacier distinguishes using NDSI (Normalized Difference Snow Index) indexusing Band5 and Band2. The topographical map of the Mongolian area was got based on the distribution information on this satellite glacier area. The topographical map is 1/100,000 which

  14. Airborne and spaceborne DEM- and laser altimetry-derived surface elevation and volume changes of the Bering Glacier system, Alaska, USA, and Yukon, Canada, 1972-2006

    NASA Astrophysics Data System (ADS)

    Muskett, Reginald R.; Lingle, Craig S.; Sauber, Jeanne M.; Post, Austin S.; Tangborn, Wendell V.; Rabus, Bernhard T.; Echelmeyer, Keith A.

    Using airborne and spaceborne high-resolution digital elevation models and laser altimetry, we present estimates of interannual and multi-decadal surface elevation changes on the Bering Glacier system, Alaska, USA, and Yukon, Canada, from 1972 to 2006. We find: (1) the rate of lowering during 1972-95 was 0.9±0.1 m a-1; (2) this rate accelerated to 3.0±0.7 m a-1 during 1995-2000; and (3) during 2000-03 the lowering rate was 1.5±0.4 m a-1. From 1972 to 2003, 70% of the area of the system experienced a volume loss of 191±17 km3, which was an area-average surface elevation lowering of 1.7±0.2 m a-1. From November 2004 to November 2006, surface elevations across Bering Glacier, from McIntosh Peak on the south to Waxell Ridge on the north, rose as much as 53 m. Up-glacier on Bagley Ice Valley about 10 km east of Juniper Island nunatak, surface elevations lowered as much as 28 m from October 2003 to October 2006. NASA Terra/MODIS observations from May to September 2006 indicated muddy outburst floods from the Bering terminus into Vitus Lake. This suggests basal-englacial hydrologic storage changes were a contributing factor in the surface elevation changes in the fall of 2006.

  15. Spatial Pattern Analysis of Cruise Ship-Humpback Whale Interactions in and Near Glacier Bay National Park, Alaska

    NASA Astrophysics Data System (ADS)

    Harris, Karin; Gende, Scott M.; Logsdon, Miles G.; Klinger, Terrie

    2012-01-01

    Understanding interactions between large ships and large whales is important to estimate risks posed to whales by ships. The coastal waters of Alaska are a summer feeding area for humpback whales ( Megaptera novaeangliae) as well as a prominent destination for large cruise ships. Lethal collisions between cruise ships and humpback whales have occurred throughout Alaska, including in Glacier Bay National Park (GBNP). Although the National Park Service (NPS) establishes quotas and operating requirements for cruise ships within GBNP in part to minimize ship-whale collisions, no study has quantified ship-whale interactions in the park or in state waters where ship traffic is unregulated. In 2008 and 2009, an observer was placed on ships during 49 different cruises that included entry into GBNP to record distance and bearing of whales that surfaced within 1 km of the ship's bow. A relative coordinate system was developed in ArcGIS to model the frequency of whale surface events using kernel density. A total of 514 whale surface events were recorded. Although ship-whale interactions were common within GBNP, whales frequently surfaced in front of the bow in waters immediately adjacent to the park (west Icy Strait) where cruise ship traffic is not regulated by the NPS. When ships transited at speeds >13 knots, whales frequently surfaced closer to the ship's midline and ship's bow in contrast to speeds slower than 13 knots. Our findings confirm that ship speed is an effective mitigation measure for protecting whales and should be applied to other areas where ship-whale interactions are common.

  16. Spatial pattern analysis of cruise ship-humpback whale interactions in and near Glacier Bay National Park, Alaska.

    PubMed

    Harris, Karin; Gende, Scott M; Logsdon, Miles G; Klinger, Terrie

    2012-01-01

    Understanding interactions between large ships and large whales is important to estimate risks posed to whales by ships. The coastal waters of Alaska are a summer feeding area for humpback whales (Megaptera novaeangliae) as well as a prominent destination for large cruise ships. Lethal collisions between cruise ships and humpback whales have occurred throughout Alaska, including in Glacier Bay National Park (GBNP). Although the National Park Service (NPS) establishes quotas and operating requirements for cruise ships within GBNP in part to minimize ship-whale collisions, no study has quantified ship-whale interactions in the park or in state waters where ship traffic is unregulated. In 2008 and 2009, an observer was placed on ships during 49 different cruises that included entry into GBNP to record distance and bearing of whales that surfaced within 1 km of the ship's bow. A relative coordinate system was developed in ArcGIS to model the frequency of whale surface events using kernel density. A total of 514 whale surface events were recorded. Although ship-whale interactions were common within GBNP, whales frequently surfaced in front of the bow in waters immediately adjacent to the park (west Icy Strait) where cruise ship traffic is not regulated by the NPS. When ships transited at speeds >13 knots, whales frequently surfaced closer to the ship's midline and ship's bow in contrast to speeds slower than 13 knots. Our findings confirm that ship speed is an effective mitigation measure for protecting whales and should be applied to other areas where ship-whale interactions are common.

  17. Geochemical evidence for a brooks range mineral belt, Alaska

    USGS Publications Warehouse

    Marsh, S.P.; Cathrall, J.B.

    1981-01-01

    Geochemical studies in the central Brooks Range, Alaska, delineate a regional, structurally controlled mineral belt in east-west-trending metamorphic rocks and adjacent metasedimentary rocks. The mineral belt extends eastward from the Ambler River quadrangle to the Chandalar and Philip Smith quadrangles, Alaska, from 147?? to 156??W. longitude, a distance of more than 375 km, and spans a width from 67?? to 69??N. latitude, a distance of more than 222 km. Within this belt are several occurrences of copper and molybdenum mineralization associated with meta-igneous, metasedimentary, and metavolcanic rocks; the geochemical study delineates target areas for additional occurrences. A total of 4677 stream-sediment and 2286 panned-concentrate samples were collected in the central Brooks Range, Alaska, from 1975 to 1979. The -80 mesh ( 2.86) nonmagnetic fraction of the panned concentrates from stream sediment were analyzed by semiquantitative spectrographic methods. Two geochemical suites were recognized in this investigation; a base-metal suite of copper-lead-zinc and a molybdenum suite of molybdenum-tin-tungsten. These suites suggest several types of mineralization within the metamorphic belt. Anomalies in molybdenum with associated Cu and W suggest a potential porphyry molybdenum system associated with meta-igneous rocks. This regional study indicates that areas of metaigneous rocks in the central metamorphic belt are target areas for potential mineralized porphyry systems and that areas of metavolcanic rocks are target areas for potential massive sulfide mineralization. ?? 1981.

  18. Mercury and water-quality data from Rink Creek, Salmon River, and Good River, Glacier Bay National Park and Preserve, Alaska, November 2009-October 2011

    USGS Publications Warehouse

    Nagorski, Sonia A.; Neal, Edward G.; Brabets, Timothy P.

    2013-01-01

    Glacier Bay National Park and Preserve (GBNPP), Alaska, like many pristine high latitude areas, is exposed to atmospherically deposited contaminants such as mercury (Hg). Although the harmful effects of Hg are well established, information on this contaminant in southeast Alaska is scarce. Here, we assess the level of this contaminant in several aquatic components (water, sediments, and biological tissue) in three adjacent, small streams in GBNPP that drain contrasting landscapes but receive similar atmospheric inputs: Rink Creek, Salmon River, and Good River. Twenty water samples were collected from 2009 to 2011 and processed and analyzed for total mercury and methylmercury (filtered and particulate), and dissolved organic carbon quantity and quality. Ancillary stream water parameters (discharge, pH, dissolved oxygen, specific conductance, and temperature) were measured at the time of sampling. Major cations, anions, and nutrients were measured four times. In addition, total mercury was analyzed in streambed sediment in 2010 and in juvenile coho salmon and several taxa of benthic macroinvertebrates in the early summer of 2010 and 2011.

  19. Modeling the Rock Glacier Cycle

    NASA Astrophysics Data System (ADS)

    Anderson, R. S.; Anderson, L. S.

    2016-12-01

    Rock glaciers are common in many mountain ranges in which the ELA lies above the peaks. They represent some of the most identifiable components of today's cryosphere in these settings. Their oversteepened snouts pose often-overlooked hazards to travel in alpine terrain. Rock glaciers are supported by avalanches and by rockfall from steep headwalls. The winter's avalanche cone must be sufficiently thick not to melt entirely in the summer. The spatial distribution of rock glaciers reflects this dependence on avalanche sources; they are most common on lee sides of ridges where wind-blown snow augments the avalanche source. In the absence of rockfall, this would support a short, cirque glacier. Depending on the relationship between rockfall and avalanche patterns, "talus-derived" and "glacier-derived" rock glaciers are possible. Talus-derived: If the spatial distribution of rock delivery is similar to the avalanche pattern, the rock-ice mixture will travel an englacial path that is downward through the short accumulation zone before turning upward in the ablation zone. Advected debris is then delivered to the base of a growing surface debris layer that reduces the ice melt rate. The physics is identical to the debris-covered glacier case. Glacier-derived: If on the other hand rockfall from the headwall rolls beyond the avalanche cone, it is added directly to the ablation zone of the glacier. The avalanche accumulation zone then supports a pure ice core to the rock glacier. We have developed numerical models designed to capture the full range of glacier to debris-covered glacier to rock glacier behavior. The hundreds of meter lengths, tens of meters thicknesses, and meter per year speeds of rock glaciers are well described by the models. The model can capture both "talus-derived" and "glacier-derived" rock glaciers. We explore the dependence of glacier behavior on climate histories. As climate warms, a pure ice debris-covered glacier can transform to a much shorter rock

  20. The Neoglacial landscape and human history of Glacier Bay, Glacier Bay National Park and Preserve, southeast Alaska, USA

    USGS Publications Warehouse

    Connor, C.; Streveler, G.; Post, A.; Monteith, D.; Howell, W.

    2009-01-01

    The Neoglacial landscape of the Huna Tlingit homeland in Glacier Bay is recreated through new interpretations of the lower Bay's fjordal geomorphology, late Quaternary geology and its ethnographic landscape. Geological interpretation is enhanced by 38 radiocarbon dates compiled from published and unpublished sources, as well as 15 newly dated samples. Neoglacial changes in ice positions, outwash and lake extents are reconstructed for c. 5500?????"200 cal. yr ago, and portrayed as a set of three landscapes at 1600?????"1000, 500?????"300 and 300?????"200 cal. yr ago. This history reveals episodic ice advance towards the Bay mouth, transforming it from a fjordal seascape into a terrestrial environment dominated by glacier outwash sediments and ice-marginal lake features. This extensive outwash plain was building in lower Glacier Bay by at least 1600 cal. yr ago, and had filled the lower bay by 500 cal. yr ago. The geologic landscape evokes the human-described landscape found in the ethnographic literature. Neoglacial climate and landscape dynamism created difficult but endurable environmental conditions for the Huna Tlingit people living there. Choosing to cope with environmental hardship was perhaps preferable to the more severely deteriorating conditions outside of the Bay as well as conflicts with competing groups. The central portion of the outwash plain persisted until it was overridden by ice moving into Icy Strait between AD 1724?????"1794. This final ice advance was very abrupt after a prolonged still-stand, evicting the Huna Tlingit from their Glacier Bay homeland. ?? 2009 SAGE Publications.

  1. Geologic characteristics of benthic habitats in Glacier Bay, southeast Alaska

    USGS Publications Warehouse

    Harney, Jodi N.; Cochrane, Guy R.; Etherington, Lisa L.; Dartnell, Pete; Golden, Nadine E.; Chezar, Hank

    2006-01-01

    In April 2004, more than 40 hours of georeferenced submarine digital video was collected in water depths of 15-370 m in Glacier Bay to (1) ground-truth existing geophysical data (bathymetry and acoustic reflectance), (2) examine and record geologic characteristics of the sea floor, and (3) investigate the relation between substrate types and benthic communities, and (4) construct predictive maps of seafloor geomorphology and habitat distribution. Common substrates observed include rock, boulders, cobbles, rippled sand, bioturbated mud, and extensive beds of living horse mussels and scallops. Four principal sea-floor geomorphic types are distinguished by using video observations. Their distribution in lower and central Glacier Bay is predicted using a supervised, hierarchical decision-tree statistical classification of geophysical data.

  2. The use of multi-channel ground penetrating radar and stream monitoring to investigate the seasonal evolution of englacial and subglacial drainage systems at the terminus of Exit Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Kilgore, Susan Marlena

    Concerns regarding the issue of climate change and, in particular, the rapid retreat of glaciers around the world, have placed great importance on glacial monitoring. Some of the methods most commonly used to observe glacial change---direct mass balance measurements and remote sensing---provide valuable information about glacier change. However, these methods do not address the englacial and subglacial environments. Surface meltwater that enters englacial and subglacial hydrological networks can contribute to acceleration of ice flow, increased calving on marine-terminating glaciers, surges or outburst floods, and greater overall ablation rates. Because subsurface drainage systems often freeze during the winter and re-form each summer, examining the seasonal evolution of these networks is crucial for assessing the impact that internal drainage may have on the behavior of a glacier each year. The goal of this study is to determine the role englacial and subglacial drainage system evolution plays in influencing summer ablation and discharge at the terminus of Exit Glacier, a small valley glacier located in South-central Alaska. During the summers of 2010 and 2011, we used ground-penetrating radar (GPR) to locate internal drainage features on the lower 100 meters of the glacier. GPR surveys were conducted in June and August of each year in an effort to observe the evolution of the drainage systems over the course of an ablation season. Three antenna frequencies---250, 500, and 800 MHz---were used on a dual frequency GPR so that various resolutions and depths in the ice could be viewed simultaneously. Stream monitoring was conducted to document discharge in the proglacial stream throughout the 2011 season. These data were compared with weather records to differentiate noticeable meltwater releases from precipitation events. Additionally, morphological changes in the glacier were observed through photographic documentation. Throughout the observation period, significant

  3. Snow cover surveys in Alaska from ERTS-1 data

    NASA Technical Reports Server (NTRS)

    Benson, C. S.

    1973-01-01

    September and October ERTS scenes have been analyzed to delineate snow cover patterns in northern Alaska's Brooks Range and on Mt. Wrangell, and active volcano in South Central Alaska. ERTS images demonstrate that the snow on the northern foothills of the Brooks Range are significantly more affected by katabatic wind action than are the southern foothills. Aufeis deposits along arctic rivers also can be identified in late summer. A survey of such aufeis deposits could identify additional summertime sources of fresh water supplies. Images of Mt. Wrangell permit monitoring of the interaction between volcanic heat and the mass balance of glaciers that exist on active volcanoes. Temporal changes in the areas of bare rock on the rim of the caldera on the summit reveal significant melting of new snow from an extensive storm on August 18. Digital analysis of data from subsequent passes over the summit on September 7, 23 and 24 revealed considerable bare rock exposed by melting, which is virtually impossible from solar heating at this altitude and date.

  4. Future streamflow droughts in glacierized catchments: the impact of dynamic glacier modelling and changing thresholds

    NASA Astrophysics Data System (ADS)

    Van Tiel, Marit; Van Loon, Anne; Wanders, Niko; Vis, Marc; Teuling, Ryan; Stahl, Kerstin

    2017-04-01

    In glacierized catchments, snowpack and glaciers function as an important storage of water and hydrographs of highly glacierized catchments in mid- and high latitudes thus show a clear seasonality with low flows in winter and high flows in summer. Due to the ongoing climate change we expect this type of storage capacity to decrease with resultant consequences for the discharge regime. In this study we focus on streamflow droughts, here defined as below average water availability specifically in the high flow season, and which methods are most suitable to characterize future streamflow droughts as regimes change. Two glacierized catchments, Nigardsbreen (Norway) and Wolverine (Alaska), are used as case study and streamflow droughts are compared between two periods, 1975-2004 and 2071-2100. Streamflow is simulated with the HBV light model, calibrated on observed discharge and seasonal glacier mass balances, for two climate change scenarios (RCP 4.5 & RCP 8.5). In studies on future streamflow drought often the same variable threshold of the past has been applied to the future, but in regions where a regime shift is expected this method gives severe "droughts" in the historic high-flow period. We applied the new alternative transient variable threshold, a threshold that adapts to the changing hydrological regime and is thus better able to cope with this issue, but has never been thoroughly tested in glacierized catchments. As the glacier area representation in the hydrological modelling can also influence the modelled discharge and the derived streamflow droughts, we evaluated in this study both the difference between the historical variable threshold (HVT) and transient variable threshold (TVT) and two different glacier area conceptualisations (constant area (C) and dynamical area (D)), resulting in four scenarios: HVT-C, HVT-D, TVT-C and TVT-D. Results show a drastic decrease in the number of droughts in the HVT-C scenario due to increased glacier melt. The deficit

  5. Alaska Division of Geological and Geophysical Surveys

    Science.gov Websites

    Name Title Gabriel Wolken, Ph.D. Program Manager Katreen Wikstrom Jones M.Sc. Geologist Research flood forecasting) rely on a quantitative assessment of distributed snow thickness and stored water . 2015. End-of-winter snow depth variability on glaciers in Alaska. Journal of Geophysical Research

  6. Satellite image atlas of glaciers of the world

    USGS Publications Warehouse

    Williams, Richard S.; Ferrigno, Jane G.; Williams, Richard S.; Ferrigno, Jane G.

    1988-01-01

    U.S. Geological Survey Professional Paper 1386, Satellite Image Atlas of Glaciers of the World, contains 11 chapters designated by the letters A through K. Chapter A provides a comprehensive, yet concise, review of the "State of the Earth's Cryosphere at the Beginning of the 21st Century: Glaciers, Global Snow Cover, Floating Ice, and Permafrost and Periglacial Environments," and a "Map/Poster of the Earth's Dynamic Cryosphere," and a set of eight "Supplemental Cryosphere Notes" about the Earth's Dynamic Cryosphere and the Earth System. The next 10 chapters, B through K, are arranged geographically and present glaciological information from Landsat and other sources of historic and modern data on each of the geographic areas. Chapter B covers Antarctica; Chapter C, Greenland; Chapter D, Iceland; Chapter E, Continental Europe (except for the European part of the former Soviet Union), including the Alps, the Pyrenees, Norway, Sweden, Svalbard (Norway), and Jan Mayen (Norway); Chapter F, Asia, including the European part of the former Soviet Union, China, Afghanistan, Pakistan, India, Nepal, and Bhutan; Chapter G, Turkey, Iran, and Africa; Chapter H, Irian Jaya (Indonesia) and New Zealand; Chapter I, South America; Chapter J, North America (excluding Alaska); and Chapter K, Alaska. Chapters A–D each include map plates.

  7. Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers

    USGS Publications Warehouse

    Stubbins, Aron; Hood, Eran; Raymond, Peter A.; Aiken, George R.; Sleighter, Rachel L.; Hernes, Peter J.; Butman, David; Hatcher, Patrick G.; Striegl, Robert G.; Schuster, Paul F.; Abdulla, Hussain A.N.; Vermilyea, Andrew W.; Scott, Durelle T.; Spencer, Robert G.M.

    2012-01-01

    Glacier-derived dissolved organic matter represents a quantitatively significant source of ancient, yet highly bioavailable carbon to downstream ecosystems. This finding runs counter to logical perceptions of age–reactivity relationships, in which the least reactive material withstands degradation the longest and is therefore the oldest. The remnants of ancient peatlands and forests overrun by glaciers have been invoked as the source of this organic matter. Here, we examine the radiocarbon age and chemical composition of dissolved organic matter in snow, glacier surface water, ice and glacier outflow samples from Alaska to determine the origin of the organic matter. Low levels of compounds derived from vascular plants indicate that the organic matter does not originate from forests or peatlands. Instead, we show that the organic matter on the surface of the glaciers is radiocarbon depleted, consistent with an anthropogenic aerosol source. Fluorescence spectrophotometry measurements reveal the presence of protein-like compounds of microbial or aerosol origin. In addition, ultrahigh-resolution mass spectrometry measurements document the presence of combustion products found in anthropogenic aerosols. Based on the presence of these compounds, we suggest that aerosols derived from fossil fuel burning are a source of pre-aged organic matter to glacier surfaces. Furthermore, we show that the molecular signature of the organic matter is conserved in snow, glacier water and outflow, suggesting that the anthropogenic carbon is exported relatively unchanged in glacier outflows.

  8. Snow and ice volume on Mount Spurr Volcano, Alaska, 1981

    USGS Publications Warehouse

    March, Rod S.; Mayo, Lawrence R.; Trabant, Dennis C.

    1997-01-01

    Mount Spurr (3,374 meters altitude) is an active volcano 130 kilometers west of Anchorage, Alaska, with an extensive covering of seasonal and perennial snow, and glaciers. Knowledge of the volume and distribution of snow and ice on a volcano aids in assessing hydrologic hazards such as floods, mudflows, and debris flows. In July 1981, ice thickness was measured at 68 locations on the five main glaciers of Mount Spurr: 64 of these measurements were made using a portable 1.7 megahertz monopulse ice-radar system, and 4 measurements were made using the helicopter altimeter where the glacier bed was exposed by ice avalanching. The distribution of snow and ice derived from these measurements is depicted on contour maps and in tables compiled by altitude and by drainage basins. Basal shear stresses at 20 percent of the measured locations ranged from 200 to 350 kilopascals, which is significantly higher than the 50 to 150 kilopascals commonly referred to in the literature as the 'normal' range for glaciers. Basal shear stresses higher than 'normal' have also been found on steep glaciers on volcanoes in the Cascade Range in the western United States. The area of perennial snow and ice coverage on Mount Spurr was 360 square kilometers in 1981, with an average thickness of 190?50 meters. Seasonal snow increases the volume about 1 percent and increases the area about 30 percent with a maximum in May or June. Runoff from Mount Spurr feeds the Chakachatna River and the Chichantna River (a tributary of the Beluga River). The Chakachatna River drainage contains 14 cubic kilometers of snow and ice and the Chichantna River drainage contains 53 cubic kilometers. The snow and ice volume on the mountain was 67?17 cubic kilometers, approximately 350 times more snow and ice than was on Mount St. Helens before its May 18, 1980, eruption, and 15 times more snow and ice than on Mount Rainier, the most glacierized of the measured volcanoes in the Cascade Range. On the basis of these relative

  9. Implications for the dynamic health of a glacier from comparison of conventional and reference-surface balances

    USGS Publications Warehouse

    Harrison, W.D.; Cox, L.H.; Hock, R.; March, R.S.; Pettit, E.C.

    2009-01-01

    Conventional and reference-surface mass-balance data from Gulkana and Wolverine Glaciers, Alaska, USA, are used to address the questions of how rapidly these glaciers are adjusting (or 'responding') to climate, whether their responses are stable, and whether the glaciers are likely to survive in today's climate. Instability means that a glacier will eventually vanish, or at least become greatly reduced in volume, if the climate stabilizes at its present state. A simple non-linear theory of response is presented for the analysis. The response of Gulkana Glacier is characterized by a timescale of several decades, but its stability and therefore its survival in today's climate are uncertain. Wolverine seems to be responding to climate more slowly, on the timescale of one to several centuries. Its stability is also uncertain, but a slower response time would make it more susceptible to climate changes.

  10. Glacimarine Sedimentary Processes and Deposits at Fjord-Terminating Tidewater Glacier Margins

    NASA Astrophysics Data System (ADS)

    Streuff, K.; O'Cofaigh, C.; Lloyd, J. M.; Noormets, R.; Nielsen, T.; Kuijpers, A.

    2016-12-01

    Many fjords along Arctic coasts are influenced by tidewater glaciers, some of them fast-flowing ice sheet outlets. Such glaciers provide important links between terrestrial and marine environments, and, due to their susceptibility to climatic and oceanographic changes, have undergone a complex history of advance and retreat since the last glacial maximum (LGM). Although a growing body of evidence has led to a better understanding of the deglacial dynamics of individual glaciers since the LGM, their overall Holocene glacimarine processes and associated sedimentary and geomorphological products often remain poorly understood. This study addresses this through a detailed analysis of sediment cores, swath bathymetric and sub-bottom profiler data collected from seven fjords in Spitsbergen and west Greenland. The sediment cores preserve a complex set of lithofacies, which include laminated and massive muds in ice-proximal, and bioturbated mud in more ice-distal settings, diamicton in iceberg-dominated areas and massive sand occurring as lenses, laminae and thick beds. These facies record the interplay of three main glacimarine processes, suspension settling, iceberg rafting and sediment gravity flows, and collectively emphasise the dominance of glacial meltwater delivery to sedimentation in high Arctic fjords. The seafloor geomorphology in the fjords shows a range of landforms that include glacial lineations associated with fast ice-flow, terminal moraines and debris lobes marking former maximum glacier extents, and small transverse moraines formed during deglaciation by glaciotectonic deformation at the grounding line and crevasse-squeezing. Additional landforms such as iceberg ploughmarks, submarine channels, pockmarks, and debris lobes formed during or after deglaciation by iceberg calving, erosion by meltwater, and sediment reworking. We present here a new model for sedimentary and geomorphological processes in front of contemporary tidewater glaciers, which

  11. The susitna glacier thrust fault: Characteristics of surface ruptures on the fault that initiated the 2002 denali fault earthquake

    USGS Publications Warehouse

    Crone, A.J.; Personius, S.F.; Craw, P.A.; Haeussler, P.J.; Staft, L.A.

    2004-01-01

    The 3 November 2002 Mw 7.9 Denali fault earthquake sequence initiated on the newly discovered Susitna Glacier thrust fault and caused 48 km of surface rupture. Rupture of the Susitna Glacier fault generated scarps on ice of the Susitna and West Fork glaciers and on tundra and surficial deposits along the southern front of the central Alaska Range. Based on detailed mapping, 27 topographic profiles, and field observations, we document the characteristics and slip distribution of the 2002 ruptures and describe evidence of pre-2002 ruptures on the fault. The 2002 surface faulting produced structures that range from simple folds on a single trace to complex thrust-fault ruptures and pressure ridges on multiple, sinuous strands. The deformation zone is locally more than 1 km wide. We measured a maximum vertical displacement of 5.4 m on the south-directed main thrust. North-directed backthrusts have more than 4 m of surface offset. We measured a well-constrained near-surface fault dip of about 19?? at one site, which is considerably less than seismologically determined values of 35??-48??. Surface-rupture data yield an estimated magnitude of Mw 7.3 for the fault, which is similar to the seismological value of Mw 7.2. Comparison of field and seismological data suggest that the Susitna Glacier fault is part of a large positive flower structure associated with northwest-directed transpressive deformation on the Denali fault. Prehistoric scarps are evidence of previous rupture of the Sustina Glacier fault, but additional work is needed to determine if past failures of the Susitna Glacier fault have consistently induced rupture of the Denali fault.

  12. Progress toward Consensus Estimates of Regional Glacier Mass Balances for IPCC AR5

    NASA Astrophysics Data System (ADS)

    Arendt, A. A.; Gardner, A. S.; Cogley, J. G.

    2011-12-01

    Glaciers are potentially large contributors to rising sea level. Since the last IPCC report in 2007 (AR4), there has been a widespread increase in the use of geodetic observations from satellite and airborne platforms to complement field observations of glacier mass balance, as well as significant improvements in the global glacier inventory. Here we summarize our ongoing efforts to integrate data from multiple sources to arrive at a consensus estimate for each region, and to quantify uncertainties in those estimates. We will use examples from Alaska to illustrate methods for combining Gravity Recovery and Climate Experiment (GRACE), elevation differencing and field observations into a single time series with related uncertainty estimates. We will pay particular attention to reconciling discrepancies between GRACE estimates from multiple processing centers. We will also investigate the extent to which improvements in the glacier inventory affect the accuracy of our regional mass balances.

  13. NASA's DESDynI in Alaska

    NASA Astrophysics Data System (ADS)

    Sauber, J. M.; Hofton, M. A.; Bruhn, R. L.; Forster, R. R.; Burgess, E. W.; Cotton, M. M.

    2010-12-01

    In 2007 the National Research Council Earth Science Decadal Survey, Earth Science Applications from Space, recommended an integrated L-band InSAR and multibeam Lidar mission called DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) and it is scheduled for launch in 2017. The NASA InSAR and Lidar mission is optimized for studying geohazards and global environmental change. The complex plate boundary in southern coastal Alaska provides an excellent setting for testing DESDynI capabilities to recover fundamental parameters of glacio-seismotectonic processes. Also, aircraft and satellites acquisitions of Lidar and L-band SAR have been made in this region in the last decade that can be used for DESDynI performance simulations. Since the Lidar observations would penetrate most vegetation, the accurate bald Earth elevation profiles will give new elevation information beyond the standard 30-m digital elevation models (DEM) and the Lidar-derived elevations will provide an accurate georeferenced surface for local and regional scale studies. In an earlier study we demonstrated how the Lidar observations could be used in combination with SAR to generate an improved InSAR derived DEM in the Barrow, Alaska region [Atwood et al., 2007]; here we discuss how Lidar could be fused with L-band SAR in more rugged, vegetated terrane. Based on simulations of multi-beam Lidar instrument performance over uplifted marine terraces, active faults and folds, uplift associated with the 1899 Yakataga seismic event (M=8), and elevation change on the glaciers in southern, coastal Alaska, we report on the significance of the DESDynI Lidar contiguous 25 m footprint elevation profiles for EarthScope related studies in Alaska. We are using the morphology and dynamics of glaciers derived from L-band SAR ice velocities to infer the large scale sub-ice structures that form the structural framework of the Seward-Bagley Basins. Using primarily winter acquisitions of L-band SAR data from ALOS

  14. Use of a new ultra-long-range terrestrial LiDAR system to monitor the mass balance of very small glaciers in the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Huss, M.; Hoelzle, M.

    2015-12-01

    Measuring glacier mass balance is important as it directly reflects the climatic forcing on the glacier surface. Today, repeated comparison of digital elevation models (DEMs) is a popular and widely used approach to derive surface elevation, volume and mass changes for a large number of glaciers. In high-mountain environments, airborne laser scanning (ALS) techniques currently provide the most accurate and highest resolution DEMs on the catchment scale, allowing the computation of glacier changes on an annual or even semi-annual basis. For monitoring individual glaciers though, terrestrial laser scanning (TLS) is easier and more cost-efficiently applied on the seasonal timescale compared to ALS. Since most recently, the application of the latest generation of ultra-long-range near infrared TLS systems allows the acquisition of surface elevation information over snow and ice of unprecedented quality and over larger zones than with previous near infrared TLS devices. Although very small glaciers represent the majority in number in most mountain ranges on Earth, their response to climatic changes is still not fully understood and field measurements are sparse. Therefore, a programme was set up in 2012 to monitor both the seasonal and annual surface mass balance of six very small glaciers across the Swiss Alps using the direct glaciological method. As often nearly the entire surface is visible from one single location, TLS is a highly promising technique to generate repeated high-resolution DEMs as well as to derive seasonal geodetic mass balances of very small ice masses. In this study, we present seasonal surface elevation, volume and geodetic mass changes for five very small glaciers in Switzerland (Glacier de Prapio, Glacier du Sex Rouge, St. Annafirn, Schwarzbachfirn and Pizolgletscher) derived from the comparison of seasonally repeated high-resolution DEMs acquired since autumn 2013 with the new ultra-long-range TLS device Riegl VZ-6000. We show the different

  15. Digital outlines and topography of the glaciers of the American West

    USGS Publications Warehouse

    Fountain, Andrew G.; Hoffman, Matthew; Jackson, Keith; Basagic, Hassan; Nylen, Thomas; Percy, David

    2007-01-01

    Alpine glaciers have generally receded during the past century (post-“Little Ice Age”) because of climate warming (Oerlemans and others, 1998; Mann and others, 1999; Dyurgerov and Meier, 2000; Grove, 2001). This general retreat has accelerated since the mid 1970s, when a shift in atmospheric circulation occurred (McCabe and Fountain, 1995; Dyurgerov and Meier, 2000). The loss in glacier cover has had several profound effects. First, the shrinkage of glaciers results in a net increase in stream flow, typically in late summer when water supplies are at the lowest levels (Fountain and Tangborn, 1985). This additional water is important to ecosystems (Hall and Fagre, 2003) and to human water needs (Tangborn, 1980). However, if shrinkage continues, the net contribution to stream flow will diminish, and the effect upon these benefactors will be adverse. Glacier shrinkage is also a significant factor in current sea level rise (Meier, 1984; Dyurgerov and Meier, 2000). Second, many of the glaciers in the West Coast States are located on stratovolcanoes, and continued recession will leave oversteepened river valleys. These valleys, once buttressed by ice are now subject to failure, creating conditions for lahars (Walder and Driedger, 1994; O’Connor and others, 2001). Finally, reduction or loss of glaciers reduce or eliminate glacial activity as an important geomorphic process on landscape evolution and alters erosion rates in high alpine areas (Hallet and others, 1996). Because of the importance of glaciers to studies of climate change, hazards, and landscape modification, glacier inventories have been published for Alaska (Manley, in press), China (http://wdcdgg.westgis.ac.cn/DATABASE/Glacier/Glacier.asp), Nepal (Mool and others, 2001), Switzerland (Paul and others, 2002), and the Tyrolian Alps of Austria (Paul, 2002), among other locales. To provide the necessary data for assessing the magnitude and rate of glacier change in the American West, exclusive of Alaska

  16. Isotopic composition of ice cores and meltwater from upper fremont glacier and Galena Creek rock glacier, Wyoming

    USGS Publications Warehouse

    DeWayne, Cecil L.; Green, J.R.; Vogt, S.; Michel, R.; Cottrell, G.

    1998-01-01

    Meltwater runoff from glaciers can result from various sources, including recent precipitation and melted glacial ice. Determining the origin of the meltwater from glaciers through isotopic analysis can provide information about such things as the character and distribution of ablation on glaciers. A 9.4 m ice core and meltwater were collected in 1995 and 1996 at the glacigenic Galena Creek rock glacier in Wyoming's Absaroka Mountains. Measurements of chlorine-36 (36Cl), tritium (3H), sulphur-35 (35S), and delta oxygen-18 (??18O) were compared to similar measurements from an ice core taken from the Upper Fremont Glacier in the Wind River Range of Wyoming collected in 1991-95. Meltwater samples from three sites on the rock glacier yielded 36Cl concentrations that ranged from 2.1 ?? 1.0 X 106 to 5.8??0.3 X 106 atoms/l. The ice-core 36Cl concentrations from Galena Creek ranged from 3.4??0.3 X 105 to 1.0??0.1 X 106 atoms/l. Analysis of an ice core from the Upper Fremont Glacier yielded 36Cl concentrations of 1.2??0.2 X 106 and 5.2??0.2 X 106 atoms/l for pre- 1940 ice and between 2 X 106 and 3 X 106 atoms/l for post-1980 ice. Purdue's PRIME Lab analyzed the ice from the Upper Fremont Glacier. The highest concentration of 36Cl in the ice was 77 ?? 2 X 106 atoms/l and was deposited during the peak of atmospheric nuclear weapons testing in the late 1950s. This is an order of magnitude greater than the largest measured concentration from both the Upper Fremont Glacier ice core that was not affected by weapons testing fallout and the ice core collected from the Galena Creek rock glacier. Tritium concentrations from the rock glacier ranged from 9.2??0.6 to 13.2??0.8 tritium units (TU) in the meltwater to -1.3??1.3 TU in the ice core. Concentrations of 3H in the Upper Fremont Glacier ice core ranged from 0 TU in the ice older than 50 years to 6-12 TU in the ice deposited in the last 10 years. The maximum 3H concentration in ice from the Upper Fremont Glacier deposited in the

  17. Apogean-perigean signals encoded in tidal flats at the fluvio-estuarine transition of Glacier Creek, Turnagain Arm, Alaska; implications for ancient tidal rhythmites

    USGS Publications Warehouse

    Greb, S.F.; Archer, A.W.; Deboer, D.G.

    2011-01-01

    Turnagain Arm is a macrotidal fjord-style estuary. Glacier Creek is a small, glacially fed stream which enters the estuary tangentially near Girdwood, Alaska. Trenches and daily sedimentation measurements were made in a mudflat along the fluvio-estuarine transition of Glacier Creek during several summers since 2003. Each year, the flats appear to erode during the winter and then accrete vertically in the spring and summer. In each of the years studied, tidal laminae in vertically thickening and thinning laminae bundles were deposited by twice daily tides in neap-spring tidal cycles. In 2004, bundles of thickening and thinning laminae couplets were noted in trenches cut into the flats. Five laminae bundles alternated between thicker and thinner bundles, corresponding to the perigean (high spring) and apogean (low spring) tides. Well-preserved apogean-perigean cycles have rarely been documented in modern tidal flat sediments. At this location, vertical accretion of tidal rhythmites with well-developed neap-spring cyclicity is possible because of the near-complete removal of the flat from the previous year, which creates accommodation space for vertical accretion without significant reworking. Macrotidal conditions, no reworking by infaunal invertebrates, protection from the main tidal channel by a gravel bar and protection from storm waves and fluvial erosion by a recess in the sedge marsh that surrounds the flats all aid in preservation of rhythmites during aggradation. The position of the flats relative to tidal range allows for accumulation of complete spring cycles and incomplete neap cycles. In the summer of 2004, apogee and perigee were closely aligned with the new and full moons, resulting in successive strong perigee and apogee tides which probably aided in the accumulation of successive thick-thin spring cycles encoding the apogean and perigean tidal cycle. The apogean-perigean signal was not observed in subsequent years. ?? 2011 The Authors.

  18. Alaska volcanoes guidebook for teachers

    USGS Publications Warehouse

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at

  19. Late-twentieth century changes in glacier extent in the Ak-shirak Range, Central Asia, determined from historical data and ASTER imagery

    NASA Astrophysics Data System (ADS)

    Khromova, T. E.; Dyurgerov, M. B.; Barry, R. G.

    2003-08-01

    Global analysis of glacier regimes reveals widespread wastage since the late 1970s, with a marked acceleration in the late 1980s. We investigate changes in the heavily glacierized Ak-shirak Range, central Tien Shan plateau (43°N, 75°E) using air photo mapping surveys (1943 and 1977), an ASTER imagery (2001), and long term glaciological and meteorological observations. The wasting of the Ak-shirak glacier system features a decrease in average glacier size, and an increase in the area of outcrops. A small shrinkage during 1943-1977 was followed by a greater than 20% reduction during 1977-2001 in response to increases in summer and annual air temperature and decreases in annual precipitation.

  20. Investigating plume dynamics at the ocean-glacier interface with turbulence profiling and autonomous vessels

    NASA Astrophysics Data System (ADS)

    Jackson, R. H.; Nash, J. D.; Sutherland, D. A.; Amundson, J. M.; Kienholz, C.; Skyllingstad, E. D.; Motyka, R. J.

    2017-12-01

    The exchanges of heat and freshwater at tidewater glacier termini are modulated by small-scale turbulent processes. However, few observations have been obtained near the ocean-glacier interface, limiting our ability to quantify turbulent fluxes or test melt parameterizations in ocean-glacier models. Here, we explore the turbulent plume dynamics at LeConte Glacier, Alaska with three extensive field campaigns in May, August and September (2016-17). Two autonomous vessels collected repeat transects of velocity and water properties near the glacier, often within 20 m of the terminus. Concurrent shipboard surveying measured turbulence with a vertical microstructure profiler, along with water properties and velocity. These high-resolution surveys provide a 3D view of the circulation and allow us to quantify turbulent fluxes in the near-glacier region. We observe two regimes at the terminus: an energetic upwelling plume driven by subglacial discharge at a persistent location, and submarine melt-driven convection along other parts of the terminus. We trace the evolution of the subglacial discharge plume as it flows away from the glacier, from an initial stage of vigorous mixing to a more quiescent outflow downstream. Resolving these spatial patterns of upwelling and mixing near glaciers is a key step towards understanding submarine melt rates and glacial fjord circulation.

  1. Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers

    NASA Astrophysics Data System (ADS)

    Walter Anthony, Katey M.; Anthony, Peter; Grosse, Guido; Chanton, Jeffrey

    2012-06-01

    Methane, a potent greenhouse gas, accumulates in subsurface hydrocarbon reservoirs, such as coal beds and natural gas deposits. In the Arctic, permafrost and glaciers form a `cryosphere cap' that traps gas leaking from these reservoirs, restricting flow to the atmosphere. With a carbon store of over 1,200Pg, the Arctic geologic methane reservoir is large when compared with the global atmospheric methane pool of around 5Pg. As such, the Earth's climate is sensitive to the escape of even a small fraction of this methane. Here, we document the release of 14C-depleted methane to the atmosphere from abundant gas seeps concentrated along boundaries of permafrost thaw and receding glaciers in Alaska and Greenland, using aerial and ground surface survey data and in situ measurements of methane isotopes and flux. We mapped over 150,000 seeps, which we identified as bubble-induced open holes in lake ice. These seeps were characterized by anomalously high methane fluxes, and in Alaska by ancient radiocarbon ages and stable isotope values that matched those of coal bed and thermogenic methane accumulations. Younger seeps in Greenland were associated with zones of ice-sheet retreat since the Little Ice Age. Our findings imply that in a warming climate, disintegration of permafrost, glaciers and parts of the polar ice sheets could facilitate the transient expulsion of 14C-depleted methane trapped by the cryosphere cap.

  2. Ecology of selected marine communities in Glacier Bay: Zooplankton, forage fish, seabirds and marine mammals

    USGS Publications Warehouse

    Robards, Martin D.; Drew, Gary S.; Piatt, John F.; Anson, Jennifer Marie; Abookire, Alisa A.; Bodkin, James L.; Hooge, Philip N.; Speckman, Suzann G.

    2003-01-01

    We studied oceanography (including primary production), secondary production, small schooling fish (SSF), and marine bird and mammal predators in Glacier Bay during 1999 and 2000. Results from these field efforts were combined with a review of current literature relating to the Glacier Bay environment. Since the conceptual model developed by Hale and Wright (1979) ‘changes and cycles’ continue to be the underlying theme of the Glacier Bay ecosystem. We found marked seasonality in many of the parameters that we investigated over the two years of research, and here we provide a comprehensive description of the distribution and relative abundance of a wide array of marine biota. Glacier Bay is a tidally mixed estuary that leads into basins, which stratify in summer, with the upper arms behaving as traditional estuaries. The Bay is characterized by renewal and mixing events throughout the year, and markedly higher primary production than in many neighboring southeast Alaska fjords (Hooge and Hooge, 2002). Zooplankton diversity and abundance within the upper 50 meters of the water column in Glacier Bay is similar to communities seen throughout the Gulf of Alaska. Zooplankton in the lower regions of Glacier Bay peak in abundance in late May or early June, as observed at Auke Bay and in the Gulf of Alaska. The key distinction between the lower Bay and other estuaries in the Gulf of Alaska is that a second smaller peak in densities occurs in August. The upper Bay behaved uniformly in temporal trends, peaking in July. Densities had begun to decline in August, but were still more than twice those observed in that region in May. The highest density of zooplankton observed was 17,870 organisms/m3 in Tarr Inlet during July. Trends in zooplankton community abundance and diversity within the lower Bay were distinct from upper-Glacier Bay trends. Whereas the lower Bay is strongly influenced by Gulf of Alaska processes, local processes are the strongest influence in the upper

  3. Glacier-terminus fluctuations in the Wrangell and Chugach mountains resulting from non-climate controls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sturm, M.; Hall, D.K.; Benson, C.S.

    Non-climatically controlled fluctuations of glacier termini were studied in two regions in Alaska. In the Wrangell Mountains, eight glaciers on Mt. Wrangell, an active volcano, have been monitored over the past 30 years using terrestrial surveys, aerial photogrammetry and digitally registered satellite images. Results, which are consistent between different methods of measurement, indicate that the termini of most glaciers were stationary or had retreated slightly. However, the termini of the 30-km-long Ahtna Glacier and the smaller Center and South MacKeith glaciers began to advance in the early 1960s and have advanced steadily at rates between 5 and 18 m yr-1more » since then. These three glaciers flow from the summit caldera of ML Wrangell near the active North Crater, where increased volcanic heating since 1964 has melted over 7 x 107 M3 of ice. The authors suspect that volcanic meltwater has changed the basal conditions for the glaciers, resulting in their advance. In College Fjord, Prince William Sound, the terminus fluctuations of two tidewater glaciers have been monitored since 1931 by terrestrial surveying, photogrammetry, and most recently, from satellite imagery. Harvard Glacier, a 40-kmlong tidewater glacier, has been advancing steadily at nearly 20 m yr-1 since 1931, while the adjacent Yale Glacier has retreated at approximately 50 m yr-1 during the same period, though for short periods, both rates have been much higher.« less

  4. An inventory and estimate of water stored in firn fields, glaciers, debris-covered glaciers, and rock glaciers in the Aconcagua River Basin, Chile

    NASA Astrophysics Data System (ADS)

    Janke, Jason R.; Ng, Sam; Bellisario, Antonio

    2017-11-01

    An inventory of firn fields, glaciers, debris-covered glaciers, and rock glaciers was conducted in the Aconcagua River Basin of the semiarid Andes of central Chile. A total of 916 landforms were identified, of which rock glaciers were the most abundant (669) and occupied the most total area. Glaciers and debris-covered glaciers were less numerous, but were about five times larger in comparison. The total area occupied by glaciers and debris-covered glaciers was roughly equivalent to the total area of rock glaciers. Debris-covered glaciers and rock glaciers were subcategorized into six ice-content classes based on interpretation of surface morphology with high-resolution satellite imagery. Over 50% of rock glaciers fell within a transitional stage; 85% of debris-covered glaciers were either fully covered or buried. Most landforms occupied elevations between 3500 and 4500 m. Glaciers and firn occurred at higher elevations compared to rock glaciers and debris-covered glaciers. Rock glaciers had a greater frequency in the northern part of the study area where arid climate conditions exist. Firn and glaciers were oriented south, debris-covered glaciers west, and rock glaciers southwest. An analysis of water contribution of each landform in the upper Andes of the Aconcagua River Basin was conducted using formulas that associate the size of the landforms to estimates of water stored. Minimum and maximum water storage was calculated based on a range of debris to ice content ratios for debris-covered glaciers and rock glaciers. In the Aconcagua River Basin, rock glaciers accounted for 48 to 64% of the water stored within the landforms analyzed; glaciers accounted for 15 to 25%; debris-covered glaciers were estimated at 15 to 19%; firn fields contained only about 5 to 8% of the water stored. Expansion of agriculture, prolonged drought, and removal of ice-rich landforms for mining have put additional pressure on already scarce water resources. To develop long

  5. Geochronology of plutonic rocks and their tectonic terranes in Glacier Bay National Park and Preserve, southeast Alaska: Chapter E in Studies by the U.S. Geological Survey in Alaska, 2008-2009

    USGS Publications Warehouse

    Brew, David A.; Tellier, Kathleen E.; Lanphere, Marvin A.; Nielsen, Diane C.; Smith, James G.; Sonnevil, Ronald A.

    2014-01-01

    We have identified six major belts and two nonbelt occurrences of plutonic rocks in Glacier Bay National Park and Preserve and characterized them on the basis of geologic mapping, igneous petrology, geochemistry, and isotopic dating. The six plutonic belts and two other occurrences are, from oldest to youngest: (1) Jurassic (201.6–145.5 Ma) diorite and gabbro of the Lituya belt; (2) Late Jurassic (161.0–145.5 Ma) leucotonalite in Johns Hopkins Inlet; (3) Early Cretaceous (145.5–99.6 Ma) granodiorite and tonalite of the Muir-Chichagof belt; (4) Paleocene tonalite in Johns Hopkins Inlet (65.5–55.8 Ma); (5) Eocene granodiorite of the Sanak-Baranof belt; (6) Eocene and Oligocene (55.8–23.0 Ma) granodiorite, quartz diorite, and granite of the Muir-Fairweather felsic-intermediate belt; (7) Eocene and Oligocene (55.8–23.0 Ma) layered gabbros of the Crillon-La Perouse mafic belt; and (8) Oligocene (33.9–23.0 Ma) quartz monzonite and quartz syenite of the Tkope belt. The rocks are further classified into 17 different combination age-compositional units; some younger belts are superimposed on older ones. Almost all these plutonic rocks are related to Cretaceous and Tertiary subduction events. The six major plutonic belts intrude the three southeast Alaska geographic subregions in Glacier Bay National Park and Preserve, from west to east: (1) the Coastal Islands, (2) the Tarr Inlet Suture Zone (which contains the Border Ranges Fault Zone), and (3) the Central Alexander Archipelago. Each subregion includes rocks assigned to one or more tectonic terranes. The various plutonic belts intrude different terranes in different subregions. In general, the Early Cretaceous plutons intrude rocks of the Alexander and Wrangellia terranes in the Central Alexander Archipelago subregion, and the Paleogene plutons intrude rocks of the Chugach, Alexander, and Wrangellia terranes in the Coastal Islands, Tarr Inlet Suture Zone, and Central Alexander Archipelago subregions.

  6. Paleoseismic study of the Cathedral Rapids fault in the northern Alaska Range near Tok, Alaska

    NASA Astrophysics Data System (ADS)

    Koehler, R. D.; Farrell, R.; Carver, G. A.

    2010-12-01

    The Cathedral Rapids fault extends ~40 km between the Tok and Robertson River valleys and is the easternmost fault in a series of active south-dipping imbricate thrust faults which bound the northern flank of the Alaska Range. Collectively, these faults accommodate a component of convergence transferred north of the Denali fault and related to the westward (counterclockwise) rotation of the Wrangell Block driven by relative Pacific/North American plate motion along the eastern Aleutian subduction zone and Fairweather fault system. To the west, the system has been defined as the Northern Foothills Fold and Thrust Belt (NFFTB), a 50-km-wide zone of east-west trending thrust faults that displace Quaternary deposits and have accommodated ~3 mm/yr of shortening since latest Pliocene time (Bemis, 2004). Over the last several years, the eastward extension of the NFFTB between Delta Junction and the Canadian border has been studied by the Alaska Division of Geological & Geophysical Surveys to better characterize faults that may affect engineering design of the proposed Alaska-Canada natural gas pipeline and other infrastructure. We summarize herein reconnaissance field observations along the western part of the Cathedral Rapids fault. The western part of the Cathedral Rapids fault extends 21 km from Sheep Creek to Moon Lake and is characterized by three roughly parallel sinuous traces that offset glacial deposits of the Illinoian to early Wisconsinan Delta glaciations and the late Wisconsinan Donnelly glaciation, as well as, Holocene alluvial deposits. The northern trace of the fault is characterized by an oversteepened, beveled, ~2.5-m-high scarp that obliquely cuts a Holocene alluvial fan and projects into the rangefront. Previous paleoseismic studies along the eastern part of the Cathedral Rapids fault and Dot “T” Johnson fault indicate multiple latest Pleistocene and Holocene earthquakes associated with anticlinal folding and thrust faulting (Carver et al., 2010

  7. Examining a Half Century of Northwestern North American Glacier Behavior

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.; Fahey, M. J.; Friesen, B.; Josberger, E. G.

    2015-12-01

    comparison to the 1950s maps will provide a unique survey of glacier change across western North America from Alaska to northwestern Washington. Each pair of glacier maps will be accompanied with a summary document describing the changes that have occurred at that glacier. From north to south, the nine IGY glaciers span a distance of more than 2,600 km.

  8. The forest ecosystem of southeast Alaska: 8. Water.

    Treesearch

    Donald C. Schmiege; Austin E. Helmers; Daniel M. Bishop

    1974-01-01

    One of the most striking characteristics of southeast Alaska is the abundance of water. Large glaciers, icefields, and thousands of streams result from heavy precipitation throughout the year. Published and unpublished data on water regimen, temperature, sedimentation, and chemistry are combined. These serve as a basis for understanding how this valuable resource may...

  9. Dispersion of adult Cancer magister at Glacier Bay, Alaska: Variation with spatial scale, sex, and reproductive status

    USGS Publications Warehouse

    O'Clair, Charles E.; Shirley, Thomas C.; Taggart, S. James

    1996-01-01

    Patterns of micro- to mesoscale distribution of Dungeness crabs (Cancer magister) in nearshore habitats at five locations in and near Glacier Bay National Park were revealed using subtidal transects. Sampling was conducted in April and September 1992 and 1993 and April 1994. Divers censused crabs by sex and reproductive status (ovigerous/nonovigerous females) along belt transects (2 m x 100 m) perpendicular to shore in the depth range 0 m (mean lower low water) to 18 m. A sample estimator of Morisita's index (Î*Δ) was used to quantify crab dispersion at 10 scales of measurement ranging from 20 m2 to 200 m2 at each location during each sampling period.Values of Î*Δ in ovigerous female C. magister deviated significantly (P < 0.05) from 1.0 (random distribution) toward contagion more frequently than did Î*Δ for nonovigerous female and male crabs. Ovigerous crabs also usually had higher Î*Δ than did nonovigerous female and male crabs, especially at smaller measurement scales (20-80 m2). Morisita's index for all three groups of crabs decreased more frequently than it increased with an increase in measurement scale. We observed no relationship between t and crab density in nonovigerous female and male crabs, whereas Î*Δ was positively correlated with the density of ovigerous crabs. A total of 13 dense aggregations of ovigerous C. magister were observed nearshore (depth range 0-10 m) at the five study locations. About half of these were repeatedly observed at the same microsite over the course of this study. Ovigerous Dungeness crabs at Glacier Bay were usually aggregated, often forming dense aggregations with high site fidelity. These dense aggregations may concentrate a significant proportion of the brood stock of this species in a limited number of patches of optimal brooding habitat at Glacier Bay.

  10. Do Glaciers on Cascade Volcanoes Behave Differently Than Other Glaciers in the Region?

    NASA Astrophysics Data System (ADS)

    Riedel, J. L.; Ryane, C.; Osborn, J.; Davis, T.; Menounos, B.; Clague, J. J.; Koch, J.; Scott, K. M.; Reasoner, M.

    2006-12-01

    It has been suggested that glaciers on two stratovolcanoes in the Cascade Range of Washington state, Mt. Baker and Glacier Peak, achieved their maximum extent of the past 10,000 years during the early Holocene. These findings differ from most evidence in western North America, which indicates that Little Ice Age moraines represent the most extensive glacier advances of the Holocene. Significant early Holocene advances are difficult to reconcile with the documented warm, dry conditions at this time in western North America. Our data indicate that glaciers on these volcanoes responded similarly to Holocene climatic events as glaciers in other areas in Washington and British Columbia. Heavy winter accumulation and favorable hypsometry have been proposed as the explanations for the unusual behavior of glaciers on volcanoes compared to similar-sized glaciers elsewhere in the Cascade Range. However, glacier mass balance on the volcanoes is controlled by not only these factors, but also by glacier geometry, snow erosion and ablation. Accumulation zones of glaciers on isolated Cascade stratovolcanoes are high, but are narrow at the top. For example, the accumulation zone of Deming Glacier on the southwest side of Mt. Baker extends above 3000 m asl, but due to its wedge shape lies largely below 2500 m asl. Furthermore, glaciers on Mt. Baker and other symmetrical volcanoes have high ablation rates because they are not shaded, and south-southwest aspects are subject to erosion of snow by prevailing southwesterly winds. Modern glacier observations in the North Cascades quantify the important influence of aspect and snow erosion on glacier mass balance. For example, average equilibrium line altitude (ELA) of Easton Glacier on the south flank of Mt. Baker is 2160 m, whereas the ELA of a north-facing cirque glacier 25km to the east is 2040m. Our research at Mt. Baker contradicts the claim of extensive early Holocene advances on the south flank of the volcano. Tephra set SC, which

  11. How can we Optimize Global Satellite Observations of Glacier Velocity and Elevation Changes?

    NASA Astrophysics Data System (ADS)

    Willis, M. J.; Pritchard, M. E.; Zheng, W.

    2015-12-01

    We have started a global compilation of glacier surface elevation change rates measured by altimeters and differencing of Digital Elevation Models and glacier velocities measured by Synthetic Aperture Radar (SAR) and optical feature tracking as well as from Interferometric SAR (InSAR). Our goal is to compile statistics on recent ice flow velocities and surface elevation change rates near the fronts of all available glaciers using literature and our own data sets of the Russian Arctic, Patagonia, Alaska, Greenland and Antarctica, the Himalayas, and other locations. We quantify the percentage of the glaciers on the planet that can be regarded as fast flowing glaciers, with surface velocities of more than 50 meters per year, while also recording glaciers that have elevation change rates of more than 2 meters per year. We examine whether glaciers have significant interannual variations in velocities, or have accelerated or stagnated where time series of ice motions are available. We use glacier boundaries and identifiers from the Randolph Glacier Inventory. Our survey highlights glaciers that are likely to react quickly to changes in their mass accumulation rates. The study also identifies geographical areas where our knowledge of glacier dynamics remains poor. Our survey helps guide how frequently observations must be made in order to provide quality satellite-derived velocity and ice elevation observations at a variety of glacier thermal regimes, speeds and widths. Our objectives are to determine to what extent the joint NASA and Indian Space Research Organization Synthetic Aperture Radar mission (NISAR) will be able to provide global precision coverage of ice speed changes and to determine how to optimize observations from the global constellation of satellite missions to record important changes to glacier elevations and velocities worldwide.

  12. Colonization and development of stream communities across a 200-year gradient in Glacier Bay National Park, Alaska

    USGS Publications Warehouse

    Milner, Alexander M.; Knudsen, E. Eric; Soiseth, Chad; Robertson, Anne L.; Schell, Don; Phillips, Ian T.; Magnusson, Katrina

    2000-01-01

    In May 1997, physical and biological variables were studied in 16 streams of different ages and contrasting stages of development following glacial recession in Glacier Bay National Park, southeast Alaska. The number of microcrustacean and macroinvertebrate taxa and juvenile fish abundance and diversity were significantly greater in older streams. Microcrustacean diversity was related to the amount of instream wood and percent pool habitat, while the number of macroinvertebrate taxa was related to bed stability, amount of instream wood, and percent pool habitat. The percent contribution of Ephemeroptera to stream benthic communities increased significantly with stream age and the amount of coarse benthic organic matter. Juvenile Dolly Varden (Salvelinus malma) were dominant in the younger streams, but juvenile coho salmon (Oncorhynchus kisutch) abundance was greater in older streams associated with increased pool habitat. Upstream lakes significantly influenced channel stability, percent Chironomidae, total macroinvertebrate and meiofaunal abundance, and percent fish cover. Stable isotope analyses indicated nitrogen enrichment from marine sources in macroinvertebrates and juvenile fish in older streams with established salmon runs. The findings are encapsulated in a conceptual summary of stream development that proposes stream assemblages to be determined by direct interactions with the terrestrial, marine, and lake ecosystems.

  13. 36 CFR 13.1132 - What types of commercial fishing are authorized in Glacier Bay?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Commercial Fishing § 13.1132 What types of commercial fishing are... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false What types of commercial...

  14. 36 CFR 13.1132 - What types of commercial fishing are authorized in Glacier Bay?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Commercial Fishing § 13.1132 What types of commercial fishing are... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false What types of commercial...

  15. 78 FR 15669 - Marine Mammals: Alaska Harbor Seal Habitats

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... that ship presence could be altering population birth/death rates, which are difficult to measure. A... Alaska are now experiencing high rates of ice loss due to climate change, which is likely to further... Inlet, Glacier Bay, found that vessel presence altered seal haulout patterns by increasing the rate of...

  16. Glacier-derived August runoff in northwest Montana

    USGS Publications Warehouse

    Clark, Adam; Harper, Joel T.; Fagre, Daniel B.

    2015-01-01

    The second largest concentration of glaciers in the U.S. Rocky Mountains is located in Glacier National Park (GNP), Montana. The total glacier-covered area in this region decreased by ∼35% over the past 50 years, which has raised substantial concern about the loss of the water derived from glaciers during the summer. We used an innovative weather station design to collect in situ measurements on five remote glaciers, which are used to parameterize a regional glacier melt model. This model offered a first-order estimate of the summer meltwater production by glaciers. We find, during the normally dry month of August, glaciers in the region produce approximately 25 × 106 m3 of potential runoff. We then estimated the glacier runoff component in five gaged streams sourced from GNP basins containing glaciers. Glacier-melt contributions range from 5% in a basin only 0.12% glacierized to >90% in a basin 28.5% glacierized. Glacier loss would likely lead to lower discharges and warmer temperatures in streams draining basins >20% glacier-covered. Lower flows could even be expected in streams draining basins as little as 1.4% glacierized if glaciers were to disappear.

  17. Mass balance, meteorology, area altitude distribution, glacier-surface altitude, ice motion, terminus position, and runoff at Gulkana Glacier, Alaska, 1996 balance year

    USGS Publications Warehouse

    March, Rod S.

    2003-01-01

    The 1996 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier Basin were evaluated on the basis of meteorological, hydrological, and glaciological data. Averaged over the glacier, the measured winter snow balance was 0.87 meter on April 18, 1996, 1.1 standard deviation below the long-term average; the maximum winter snow balance, 1.06 meters, was reached on May 28, 1996; and the net balance (from August 30, 1995, to August 24, 1996) was -0.53 meter, 0.53 standard deviation below the long-term average. The annual balance (October 1, 1995, to September 30, 1996) was -0.37 meter. Area-averaged balances were reported using both the 1967 and 1993 area altitude distributions (the numbers previously given in this abstract use the 1993 area altitude distribution). Net balance was about 25 percent less negative using the 1993 area altitude distribution than the 1967 distribution. Annual average air temperature was 0.9 degree Celsius warmer than that recorded with the analog sensor used since 1966. Total precipitation catch for the year was 0.78 meter, 0.8 standard deviations below normal. The annual average wind speed was 3.5 meters per second in the first year of measuring wind speed. Annual runoff averaged 1.50 meters over the basin, 1.0 standard deviation below the long-term average. Glacier-surface altitude and ice-motion changes measured at three index sites document seasonal ice-speed and glacier-thickness changes. Both showed a continuation of a slowing and thinning trend present in the 1990s. The glacier terminus and lower ablation area were defined for 1996 with a handheld Global Positioning System survey of 126 locations spread out over about 4 kilometers on the lower glacier margin. From 1949 to 1996, the terminus retreated about 1,650 meters for an average retreat rate of 35 meters per year.

  18. Disruption of Drift glacier and origin of floods during the 1989-1990 eruptions of Redoubt Volcano, Alaska

    USGS Publications Warehouse

    Trabant, D.C.; Waitt, R.B.; Major, J.J.

    1994-01-01

    Melting of snow and glacier ice during the 1989-1990 eruption of Redoubt Volcano caused winter flooding of the Drift River. Drift glacier was beheaded when 113 to 121 ?? 106 m3 of perennial snow and ice were mechanically entrained in hot-rock avalanches and pyroclastic flows initiated by the four largest eruptions between 14 December 1989 and 14 March 1990. The disruption of Drift glacier was dominated by mechanical disaggregation and entrainment of snow and glacier ice. Hot-rock avalanches, debris flows, and pyroclastic flows incised deep canyons in the glacier ice thereby maintaining a large ice-surface area available for scour by subsequent flows. Downvalley flow rheologies were transformed by the melting of snow and ice entrained along the upper and middle reaches of the glacier and by seasonal snowpack incorporated from the surface of the lower glacier and from the river valley. The seasonal snowpack in the Drift River valley contributed to lahars and floods a cumulative volume equivalent to about 35 ?? 106 m3 of water, which amounts to nearly 30% of the cumulative flow volume 22 km downstream from the volcano. The absence of high-water marks in depressions and of ice-collapse features in the glacier indicated that no large quantities of meltwater that could potentially generate lahars were stored on or under the glacier; the water that generated the lahars that swept Drift River valley was produced from the proximal, eruption-induced volcaniclastic flows by melting of snow and ice. ?? 1994.

  19. Geologic map of the Wrangell-Saint Elias National Park and Reserve, Alaska

    USGS Publications Warehouse

    Richter, Donald H.; Preller, Cindi C.; Labay, Keith A.; Shew, Nora B.

    2006-01-01

    Wrangell-Saint Elias National Park and Preserve, the largest national park within the U.S. National Park Service system, extends from the northern Pacific Ocean to beyond the eastern Alaska Range into interior Alaska. It features impressively spectacular scenery such as high and craggy mountains, active and ancient volcanoes, expansive ice fields, immense tidewater glaciers, and a myriad of alpine glaciers. The park also includes the famous Kennecott Mine, a world-class copper deposit that was mined from 1911 to 1938, and remnant ghost town, which is now a National Historic Landmark. Geologic investigations encompassing Wrangell-Saint Elias National Park and Preserve began in 1796, with Dmitriv Tarkhanov, a Russian mining engineer, who unsuccessfully ventured up the Copper River in search of rumored copper. Lieutenant H.T. Allen (1897) of the U.S. Army made a successful epic summer journey with a limited military crew up the Copper River in 1885, across the Alaska Range, and down the Tanana and Yukon Rivers. Allen?s crew was supported by a prospector named John Bremner and local Eyak and Ahtna native guides whose tribes controlled access into the Copper River basin. Allen witnessed the Ahtnas? many uses of the native copper. His stories about the copper prompted prospectors to return to this area in search of the rich copper ore in the years following his journey. The region boasts a rich mining and exploration history prior to becoming a park in 1980. Several U.S. Geological Survey geologists have conducted reconnaissance surveys in the area since Allen?s explorations. This map is the result of their work and is enhanced by more detailed investigations, which began in the late 1950s and are still continuing. For a better understanding of the processes that have shaped the geology of the park and a history of the geologic investigations in the area, we recommend U.S. Geological Survey Professional Paper 1616, ?A Geologic Guide to Wrangell-Saint Elias National Park

  20. Mass-balance measurements in Alaska and suggestions for simplified observation programs

    USGS Publications Warehouse

    Trabant, D.C.; March, R.S.

    1999-01-01

    US Geological Survey glacier fieldwork in Alaska includes repetitious measurements, corrections for leaning or bending stakes, an ability to reliably measure seasonal snow as deep as 10 m, absolute identification of summer surfaces in the accumulation area, and annual evaluation of internal accumulation, internal ablation, and glacier-thickness changes. Prescribed field measurement and note-taking techniques help eliminate field errors and expedite the interpretative process. In the office, field notes are transferred to computerized spread-sheets for analysis, release on the World Wide Web, and archival storage. The spreadsheets have error traps to help eliminate note-taking and transcription errors. Rigorous error analysis ends when mass-balance measurements are extrapolated and integrated with area to determine glacier and basin mass balances. Unassessable errors in the glacier and basin mass-balance data reduce the value of the data set for correlations with climate change indices. The minimum glacier mass-balance program has at least three measurement sites on a glacier and the measurements must include the seasonal components of mass balance as well as the annual balance.

  1. GlacierRocks - Glacier-Headwall Interaction and its Influence on Rockfall Activity

    NASA Astrophysics Data System (ADS)

    Hartmeyer, Ingo; Keuschnig, Markus; Krautblatter, Michael; Helfricht, Kay; Leith, Kerry; Otto, Jan-Christoph

    2017-04-01

    Climate models predict continued climate warming and a decrease of Austrian glaciers to less than 20% of their present area by the end of this century. Rockfall from freshly exposed headwalls has been documented as an increasing risk factor with considerable significance for man and high-alpine infrastructure. Recent findings of a five-year terrestrial laserscanning campaign (2011-2016) monitoring glacial headwalls at the Kitzsteinhorn (3.203 m a.s.l.), Hohe Tauern Range, Austria, show the dramatic impact of glacier thinning on adjacent headwalls: 80 % of the detected rockfall volumes were triggered from areas located less than 20 m above the current glacier surface. Despite these implications, little is known about the thermal, mechanical and hydrological processes that operate at the glacier-headwall interface (randkluft). Systemic in-situ monitoring of stability-relevant parameters are lacking, leaving fundamental gaps in the understanding of rockfall preconditioning in glacial headwalls and the geomorphological evolution of glaciated catchments. In this contribution we introduce the recently approved research project 'GlacierRocks', which starts in 2017 and will run for at least three years. 'GlacierRocks' will establish the worldwide first research site for long-term monitoring of stability-relevant processes inside a randkluft system. Based on the acquired monitoring data 'GlacierRocks' is pursuing three overall aims at (1) gaining a better understanding of rockfall preconditioning in randklufts and related geomorphological shaping of headwalls, (2) analyzing poorly understood glacial thinning dynamics near headwalls, and (3) estimating present and future rockfall hazard potential in headwalls on a regional scale. The three system components (headwall, glacier, randkluft) will be investigated by combining geomorphological, glaciological and meteorological methods. 'GlacierRocks' will continuously monitor rock temperature, rock moisture, frost cracking

  2. Directly measuring melt at a vertical face tidewater glacier: is it possible?

    NASA Astrophysics Data System (ADS)

    Sutherland, D.; Amundson, J. M.; Duncan, D.; Jackson, R. H.; Kienholz, C.; Motyka, R. J.; Nash, J. D.

    2017-12-01

    Direct observations of melt on the underwater portion of tidewater glaciers have proved elusive, mostly due to the inherent dangers of making measurements next to a calving ice front. Additionally, the melting process itself is often masked by large ice speeds, variable calving across the glacier front, and enhanced melting due to rising subglacial discharge plumes. Here, we use repeat multibeam sonar images of LeConte Glacier to assess the possibility of measuring terminus melt in situ. LeConte Glacier is a fast-moving tidewater system in southeast Alaska with ice speeds of 25 m d-1 and previously estimated submarine melting that accounts for 50% of ice loss at the front. In August 2016, May 2017, and September 2017, we conducted intensive fieldwork at the 1.5 km long, 250 m deep glacier front, collecting dozens of repeat multibeam images of the underwater terminus. Combined with coincident time-lapse photography and surface radar measurements, we attempt to disentangle the ambient melt at the glacier face from ice motion and calving. We use a suite of oceanographic observations of the emerging subglacial discharge plume to separate portions of the glacier front that show evidence of enhanced melting versus portions outside of the affected plume areas. We find a complex, time-varying geometry, with regions of undercutting, overcutting, and large discharge channels. Measurements like these are critical to i) improving numerical model parameterizations of coupled glacier-ocean interactions and ii) developing a process-based understanding of how the literal ice-ocean boundary evolves in time and space.

  3. IceTrendr: a linear time-series approach to monitoring glacier environments using Landsat

    NASA Astrophysics Data System (ADS)

    Nelson, P.; Kennedy, R. E.; Nolin, A. W.; Hughes, J. M.; Braaten, J.

    2017-12-01

    Arctic glaciers in Alaska and Canada have experienced some of the greatest ice mass loss of any region in recent decades. A challenge to understanding these changing ecosystems, however, is developing globally-consistent, multi-decadal monitoring of glacier ice. We present a toolset and approach that captures, labels, and maps glacier change for use in climate science, hydrology, and Earth science education using Landsat Time Series (LTS). The core step is "temporal segmentation," wherein a yearly LTS is cleaned using pre-processing steps, converted to a snow/ice index, and then simplified into the salient shape of the change trajectory ("temporal signature") using linear segmentation. Such signatures can be characterized as simple `stable' or `transition of glacier ice to rock' to more complex multi-year changes like `transition of glacier ice to debris-covered glacier ice to open water to bare rock to vegetation'. This pilot study demonstrates the potential for interactively mapping, visualizing, and labeling glacier changes. What is truly innovative is that IceTrendr not only maps the changes but also uses expert knowledge to label the changes and such labels can be applied to other glaciers exhibiting statistically similar temporal signatures. Our key findings are that the IceTrendr concept and software can provide important functionality for glaciologists and educators interested in studying glacier changes during the Landsat TM timeframe (1984-present). Issues of concern with using dense Landsat time-series approaches for glacier monitoring include many missing images during the period 1984-1995 and that automated cloud mask are challenged and require the user to manually identify cloud-free images. IceTrendr is much more than just a simple "then and now" approach to glacier mapping. This process is a means of integrating the power of computing, remote sensing, and expert knowledge to "tell the story" of glacier changes.

  4. Quantifying the Availability of Tidewater Glacial Ice as Habitat for Harbor Seals in a Tidewater Glacial Fjord in Alaska Using Object-Based Image Analysis of Airborne Visible Imagery

    NASA Astrophysics Data System (ADS)

    Prakash, A.; Haselwimmer, C. E.; Gens, R.; Womble, J. N.; Ver Hoef, J.

    2013-12-01

    Tidewater glaciers are prominent landscape features that play a significant role in landscape and ecosystem processes along the southeastern and southcentral coasts of Alaska. Tidewater glaciers calve large icebergs that serve as an important substrate for harbor seals (Phoca vitulina richardii) for resting, pupping, nursing young, molting, and avoiding predators. Many of the tidewater glaciers in Alaska are retreating, which may influence harbor seal populations. Our objectives are to investigate the relationship between ice conditions and harbor seal distributions, which are poorly understood, in John's Hopkins Inlet, Glacier Bay National Park, Alaska, using a combination of airborne remote sensing and statistical modeling techniques. We present an overview of some results from Object-Based Image Analysis (OBIA) for classification of a time series of very high spatial resolution (4 cm pixels) airborne imagery acquired over John's Hopkins Inlet during the harbor seal pupping season in June and during the molting season in August from 2007 - 2012. Using OBIA we have developed a workflow to automate processing of the large volumes (~1250 images/survey) of airborne visible imagery for 1) classification of ice products (e.g. percent ice cover, percent brash ice, percent ice bergs) at a range of scales, and 2) quantitative determination of ice morphological properties such as iceberg size, roundness, and texture that are not found in traditional per-pixel classification approaches. These ice classifications and morphological variables are then used in statistical models to assess relationships with harbor seal abundance and distribution. Ultimately, understanding these relationships may provide novel perspectives on the spatial and temporal variation of harbor seals in tidewater glacial fjords.

  5. Prehistoric Alaska: The land

    USGS Publications Warehouse

    Wilson, Frederic H.; Weber, Florence R.; Rennick, Penny

    1994-01-01

    Many Alaskans know the dynamic nature of Alaska’s landscape firsthand. The 1964 earthquake, the 1989 eruption of Mount Redoubt volcano, the frequent earthquakes in the Aleutians and the ever-shifting meanders of the Yukon and Kuskokwim rivers remind them of constant changes to the land. These changes are part of the continuing story of the geologic growth and development of Alaska during hundreds of millions of years. By geologic time, Alaska has only recently come into existence and the dynamic processes that formed it continue to affect it. The landscape we see today has been shaped by glacier and stream erosion or their indirect effects, and to a lesser extent by volcanoes. Most prominently, if less obviously, Alaska has been built by slow movements of the Earth’s crust we call tectonic or mountain-building.During 5 billion years of geologic time, the Earth’s crust has repeatedly broken apart into plates. These plates have recombined, and have shifted positions relative to each other, to the Earth’s rotational axis and to the equator. Large parts of the Earth’s crust, including Alaska, have been built and destroyed by tectonic forces. Alaska is a collage of transported and locally formed fragments of crusts As erosion and deposition reshape the land surface, climatic changes, brought on partly by changing ocean and atmospheric circulation patterns, alter the location and extent of tropical, temperate and arctic environments. We need to understand the results of these processes as they acted upon Alaska to understand the formation of Alaska. Rocks can provide hints of previous environments because they contain traces of ocean floor and lost lands, bits and pieces of ancient history.

  6. Climate science informs participatory scenario development and applications to decision making in Alaska

    NASA Astrophysics Data System (ADS)

    Welling, L. A.; Winfree, R.; Mow, J.

    2012-12-01

    Climate change presents unprecedented challenges for managing natural and cultural resources into the future. Impacts are expected to be highly consequential but specific effects are difficult to predict, requiring a flexible process for adaptation planning that is tightly coupled to climate science delivery systems. Scenario planning offers a tool for making science-based decisions under uncertainty. The National Park Service (NPS) is working with the Department of the Interior Climate Science Centers (CSCs), the NOAA Regional Integrated Science and Assessment teams (RISAs), and other academic, government, non-profit, and private partners to develop and apply scenarios to long-range planning and decision frameworks. In April 2012, Alaska became the first region of the NPS to complete climate change scenario planning for every national park, preserve, and monument. These areas, which collectively make up two-thirds of the total area of the NPS, are experiencing visible and measurable effects attributable to climate change. For example, thawing sea ice, glaciers and permafrost have resulted in coastal erosion, loss of irreplaceable cultural sites, slope failures, flooding of visitor access routes, and infrastructure damage. With higher temperatures and changed weather patterns, woody vegetation has expanded into northern tundra, spruce and cedar diebacks have occurred in southern Alaska, and wildland fire severity has increased. Working with partners at the Alaska Climate Science Center and the Scenario Network for Alaska Planning the NPS integrates quantitative, model-driven data with qualitative, participatory techniques to scenario creation. The approach enables managers to access and understand current climate change science in a form that is relevant for their decision making. Collaborative workshops conducted over the past two years grouped parks from Alaska's southwest, northwest, southeast, interior and central areas. The emphasis was to identify and connect

  7. Mapping benefits from updated ifsar data in Alaska: improved source data enables better maps

    USGS Publications Warehouse

    Craun, Kari J.

    2015-08-06

    The U.S. Geological Survey (USGS) and partners in other Federal and State agencies are working collaboratively toward Statewide coverage of interferometric synthetic aperture radar (ifsar) elevation data in Alaska. These data will provide many benefits to a wide range of stakeholders and users. Some applications include development of more accurate and highly detailed topographic maps; improvement of surface water information included in the National Hydrography (NHD) and Watershed Boundary Datasets (WBDs); and use in scientific modeling applications such as calculating glacier surface elevation differences over time and estimating tsunami inundation areas.

  8. The Significance of Shifts in Precipitation Patterns: Modelling the Impacts of Climate Change and Glacier Retreat on Extreme Flood Events in Denali National Park, Alaska

    PubMed Central

    Crossman, Jill; Futter, Martyn N.; Whitehead, Paul G.

    2013-01-01

    In glacier-fed systems climate change may have various effects over a range of time scales, including increasing river discharge, flood frequency and magnitude. This study uses a combination of empirical monitoring and modelling to project the impacts of climate change on the glacial-fed Middle Fork Toklat River, Denali National Park, Alaska. We use a regional calibration of the model HBV to account for a paucity of long term observed flow data, validating a local application using glacial mass balance data and summer flow records. Two Global Climate Models (HADCM3 and CGCM2) and two IPCC scenarios (A2 and B2) are used to ascertain potential changes in meteorological conditions, river discharge, flood frequency and flood magnitude. Using remote sensing methods this study refines existing estimates of glacial recession rates, finding that since 2000, rates have increased from 24m per year to 68.5m per year, with associated increases in ablation zone ice loss. GCM projections indicate that over the 21st century these rates will increase still further, most extensively under the CGCM2 model, and A2 scenarios. Due to greater winter precipitation and ice and snow accumulation, glaciers release increasing meltwater quantities throughout the 21st century. Despite increases in glacial melt, results indicate that it is predominantly precipitation that affects river discharge. Three of the four IPCC scenarios project increases in flood frequency and magnitude, events which were primarily associated with changing precipitation patterns, rather than extreme temperature increases or meltwater release. Results suggest that although increasing temperatures will significantly increase glacial melt and winter baseflow, meltwater alone does not pose a significant flood hazard to the Toklat River catchment. Projected changes in precipitation are the primary concern, both through changing snow volumes available for melt, and more directly through increasing catchment runoff. PMID

  9. The significance of shifts in precipitation patterns: modelling the impacts of climate change and glacier retreat on extreme flood events in Denali National Park, Alaska.

    PubMed

    Crossman, Jill; Futter, Martyn N; Whitehead, Paul G

    2013-01-01

    In glacier-fed systems climate change may have various effects over a range of time scales, including increasing river discharge, flood frequency and magnitude. This study uses a combination of empirical monitoring and modelling to project the impacts of climate change on the glacial-fed Middle Fork Toklat River, Denali National Park, Alaska. We use a regional calibration of the model HBV to account for a paucity of long term observed flow data, validating a local application using glacial mass balance data and summer flow records. Two Global Climate Models (HADCM3 and CGCM2) and two IPCC scenarios (A2 and B2) are used to ascertain potential changes in meteorological conditions, river discharge, flood frequency and flood magnitude. Using remote sensing methods this study refines existing estimates of glacial recession rates, finding that since 2000, rates have increased from 24 m per year to 68.5m per year, with associated increases in ablation zone ice loss. GCM projections indicate that over the 21(st) century these rates will increase still further, most extensively under the CGCM2 model, and A2 scenarios. Due to greater winter precipitation and ice and snow accumulation, glaciers release increasing meltwater quantities throughout the 21(st) century. Despite increases in glacial melt, results indicate that it is predominantly precipitation that affects river discharge. Three of the four IPCC scenarios project increases in flood frequency and magnitude, events which were primarily associated with changing precipitation patterns, rather than extreme temperature increases or meltwater release. Results suggest that although increasing temperatures will significantly increase glacial melt and winter baseflow, meltwater alone does not pose a significant flood hazard to the Toklat River catchment. Projected changes in precipitation are the primary concern, both through changing snow volumes available for melt, and more directly through increasing catchment runoff.

  10. A NEW INSAR DERIVED DEM OF BLACK RAPIDS GLACIER

    NASA Astrophysics Data System (ADS)

    Shugar, D. H.; Rabus, B.; Clague, J. J.

    2009-12-01

    We have constructed a new digital elevation model representing the 1995 surface of surge-type Black Rapids Glacier and the surrounding central Alaska Range, using ERS-1/2 repeat-pass interferometry. First, we isolated the topographic phase from three interferograms with contrasting perpendicular baselines. Next we attempted to automatically unwrap this topographic phase but encountered numerous errors due to the terrain containing areas of poor coherence from fringe aliasing, radar layover or shadow. We then consistently corrected these persistent phase-unwrapping errors in all three interferograms using an iterative semi-automated approach that capitalizes on the multi-baseline nature of the data set. Over the surface of Black Rapids Glacier, the accuracy of the new DEM is estimated at better than +/- 12 m. Ground-surveyed spot elevations from 1995 corroborate this accuracy estimate. Comparison of the new DEM with a 1951 U.S. Geological Survey topographic map, and with ground survey data from other years, shows the gradual return of Black Rapids Glacier to pre-surge conditions. In the 44-year period between 1951 and 1995 the observed average steepening of the longitudinal profile is ~0.6°. The maximum elevation changes in the ablation and accumulation zones are -256 m and +75 m, respectively, suggesting corresponding average rates of elevation change of about -5.8 m/yr and +1.7 m/yr. These rates are 1.5-2 times higher than those indicated by the ground survey spot elevation measurements over the period 1975 to 2005. Considering the significant overlap of the two periods of measurement, the inferred average rates for 1951-1975 would have to be very large (-7.5 m/yr and +2.3 m/yr, respectively) for these two findings to be consistent. A second comparison with the recently released ASTER G-DEM (data from 2001) led to no glaciologically usable results due to major artifacts in the ASTER G-DEM. We therefore conclude that the 1951 U.S. Geological Survey map and the

  11. Tsivat Basin conduit system persists through two surges, Bering Piedmont Glacier, Alaska

    USGS Publications Warehouse

    Fleisher, P.J.; Cadwell, D.H.; Muller, E.H.

    1998-01-01

    The 1993-1995 surge of Bering Glacier, Alaska, occurred in two distinct phases. Phase 1 of the surge began on the eastern sector in July, 1993 and ended in July, 1994 after a powerful outburst of subglacial meltwater into Tsivat Lake basin on the north side of Weeping Peat Island. Within days, jokulhlaup discharge built a 1.5 km2 delta of ice blocks (25-30 m) buried in outwash. By late October 1994, discharge temporarily shifted to a vent on Weeping Peat Island, where a second smaller outburst dissected the island and built two new sandar. During phase 2, which began in spring 1995 and ended within five months, continuous discharge issued from several vents along the ice front on Weeping Peat Island before returining to the Tsivat Basin. Surge related changes include a five- to six-fold increase in meltwater turbidity; the redirection of supercooled water in two ice-contact lakes; and an increase in the rate of glaciolacustrine sedimentation. US Geological Survey aerial photos by Austin Post show large ice blocks in braided channels indicating excessive subglacial discharge in a similar position adjacent to Weeping Peat Island during the 1966-1967 surge. During the subsequent three decades of retreat, the location of ice-marginal, subglacial discharge vents remained aligned on a linear trend that describes the position of a persistent subglacial conduit system. The presence of a major conduit system, possibly stabilized by subglacial bedrock topography, is suggested by: 1) high-level subglacial meltwater venting along the northern side of Weeping Peat Island during the 1966-1967 surge, 2) persistent low-level discharge between surges, and 3) the recurrence of localizing meltwater outbursts associated with both phases of the 1993-1005 surge.

  12. Where glaciers meet water: Subaqueous melt and its relevance to glaciers in various settings

    NASA Astrophysics Data System (ADS)

    Truffer, Martin; Motyka, Roman J.

    2016-03-01

    Glacier change is ubiquitous, but the fastest and largest magnitude changes occur in glaciers that terminate in water. This includes the most rapidly retreating glaciers, and also several advancing ones, often in similar regional climate settings. Furthermore, water-terminating glaciers show a large range in morphology, particularly when ice flow into ocean water is compared to that into freshwater lakes. All water-terminating glaciers share the ability to lose significant volume of ice at the front, either through mechanical calving or direct melt from the water in contact. Here we present a review of the subaqueous melt process. We discuss the relevant physics and show how different physical settings can lead to different glacial responses. We find that subaqueous melt can be an important trigger for glacier change. It can explain many of the morphological differences, such as the existence or absence of floating tongues. Subaqueous melting is influenced by glacial runoff, which is largely a function of atmospheric conditions. This shows a tight connection between atmosphere, oceans and lakes, and glaciers. Subaqueous melt rates, even if shown to be large, should always be discussed in the context of ice supply to the glacier front to assess its overall relevance. We find that melt is often relevant to explain seasonal evolution, can be instrumental in shifting a glacier into a different dynamical regime, and often forms a large part of a glacier's mass loss. On the other hand, in some cases, melt is a small component of mass loss and does not significantly affect glacier response.

  13. A 2000 year varve-based climate record from the central Brooks Range, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, BW; Abbott, MB; Finney, BP

    Varved minerogenic sediments from glacial-fed Blue Lake, northern Alaska, are used to investigate late Holocene climate variability. Varve-thickness measurements track summer temperature recorded at Atigun Pass, located 41 km east at a similar elevation (r (2) = 0.31, P = 0.08). Results indicate that climate in the Brooks Range from 10 to 730 AD (varve year) was warm with precipitation inferred to be higher than during the twentieth century. The varvetemperature relationship for this period was likely compromised and not used in our temperature reconstruction because the glacier was greatly reduced, or absent, exposing sub-glacial sediments to erosion from enhancedmore » precipitation. Varve-inferred summer temperatures and precipitation decreased after 730 AD, averaging 0.4A degrees C above the last millennial average (LMA = 4.2A degrees C) from 730 to 850 AD, and 0.1A degrees C above the LMA from 850 to 980 AD. Cooling culminated between 980 and 1030 AD with temperatures 0.7A degrees C below the LMA. Varve-inferred summer temperatures increased between 1030 and 1620 AD to the LMA, though the period between 1260 and 1350 AD was 0.2A degrees C below the LMA. Although there is no equivalent to the European Medieval Warm Period in the Blue Lake record, two warm intervals occurred from 1350 to 1450 AD and 1500 to 1620 AD (0.4 and 0.3A degrees C above the LMA, respectively). During the Little Ice Age (LIA; 1620 to 1880 AD), inferred summer temperature averaged 0.2A degrees C below the LMA. After 1880 AD, inferred summer temperature increased to 0.8A degrees C above the LMA, glaciers retreated, but aridity persisted based on a number of regional paleoclimate records. Despite warming and glacial retreat, varve thicknesses have not achieved pre-730 AD levels. This reflects limited sediment availability and transport due to a less extensive retreat compared to the first millennium, and continued relative aridity. Overall, the Blue Lake record is similar to varve records

  14. Grinnell and Sperry Glaciers, Glacier National Park, Montana: A record of vanishing ice

    USGS Publications Warehouse

    Johnson, Arthur

    1980-01-01

    Grinnell and Sperry Glaciers, in Glacier National Park, Mont., have both shrunk considerably since their discovery in 1887 and 1895, respectively. This shrinkage, a reflection of climatic conditions, is evident when photographs taken at the time of discovery are compared with later photographs. Annual precipitation and terminus-recession measurements, together with detailed systematic topographic mapping since 1900, clearly record the changes in the character and size of these glaciers. Grinnell Glacier decreased in area from 530 acres in 1900 to 315 acres in 1960 and to 298 acres in 1966. Between 1937 and 1969 the terminus receded nearly 1,200 feet. Periodic profile measurements indicate that in 1969 the surface over the main part of the glacier was 25-30 feet lower than in 1950. Observations from 1947 to 1969 indicate annual northeastward movement ranging from 32 to 52 feet and generally averaging 35-45 feet. The annual runoff at the glacier is estimated to be 150 inches, of which approximately 6 inches represents reduction in glacier volume. The average annual runoff at a gaging station on Grinnell Creek 1.5 miles downvalley from the glacier for the 20-year period, 1949-69, was 100 inches. The average annual precipitation over the glacier was probably 120-150 inches. Sperry Glacier occupied 800 acres in 1901; by 1960 it covered only 287 acres, much of its upper part having disappeared from the enclosing cirque. From 1938 to 1969 certain segments of the terminus receded more than 1,000 feet. Profile measurements dating from 1949 indicate a lowering of the glacier surface below an altitude of 7,500 feet, but a fairly constant or slightly increased elevation of the surface above an altitude of 7,500 feet. Along one segment of the 1969 terminus the ice had been more than 100 feet thick in 1950. According to observations during 1949-69, average annual downslope movement was less than 15 feet per year in the central part of the glacier and slightly more rapid toward

  15. Methods for Automating Analysis of Glacier Morphology for Regional Modelling: Centerlines, Extensions, and Elevation Bands

    NASA Astrophysics Data System (ADS)

    Viger, R. J.; Van Beusekom, A. E.

    2016-12-01

    The treatment of glaciers in modeling requires information about their shape and extent. This presentation discusses new methods and their application in a new glacier-capable variant of the USGS PRMS model, a physically-based, spatially distributed daily time-step model designed to simulate the runoff and evolution of glaciers through time. In addition to developing parameters describing PRMS land surfaces (hydrologic response units, HRUs), several of the analyses and products are likely of interest to cryospheric science community in general. The first method is a (fully automated) variation of logic previously presented in the literature for definition of the glacier centerline. Given that the surface of a glacier might be convex, using traditional topographic analyses based on a DEM to trace a path down the glacier is not reliable. Instead a path is derived based on a cost function. Although only a single path is presented in our results, the method can be easily modified to delineate a branched network of centerlines for each glacier. The second method extends the glacier terminus downslope by an arbitrary distance, according to local surface topography. This product is can be used to explore possible, if unlikely, scenarios under which glacier area grows. More usefully, this method can be used to approximate glacier extents from previous years without needing historical imagery. The final method presents an approach for segmenting the glacier into altitude-based HRUs. Successful integration of this information with traditional approaches for discretizing the non-glacierized portions of a basin requires several additional steps. These include synthesizing the glacier centerline network with one developed with a traditional DEM analysis, ensuring that flow can be routed under and beyond glaciers to a basin outlet. Results are presented based on analysis of the Copper River Basin, Alaska.

  16. 3D Thermal/Mechanical Evolution Of The Plate Boundary Corner In SE Alaska

    NASA Astrophysics Data System (ADS)

    Barker, A.; Koons, P.; Upton, P.; Pavlis, T.; Chapman, J.

    2007-12-01

    The St Elias orogen of southeast Alaska forms part of an actively deforming plate boundary corner. The corner accommodates the transition from a strike-slip lateral boundary to a convergent normal boundary. Oblique convergence of the Yakutat microplate into the corner generates early stage tectonic characteristics associated with other corner systems (e.g. Himalayan Eastern Syntaxis). In combination with the high relief, the extreme erosive processes of the region redistribute crustal material, partition tectonic strain, and influence the advection of deep crustal material. The evolution of the convergent corner is investigated using 3D numerical models and sandbox analog models. Preliminary model results indicate the deformation partitions into a narrow two-sided orogen along the lateral boundary. The pattern transitions into a wider zone of shortening bounded by inboard and outboard directed thrusts along the frontal boundary. The inclusion of erosion boundary conditions leads to nascent tectonic aneurysm behavior, involving increased strain localization and focused vertical advection of deep crustal material. Thermal models, using the 3D velocity field from these mechanical solutions, show a vertical deflection (towards the surface) of isotherms beneath the eroding region. Sensitivity of the aneurysm behavior is related to the efficiency of the imposed erosion rate (i.e. greater erosion rates led to greater bedrock uplift rates). Higher erosion rates are localized within zones containing major glacier systems in SE Alaska: Bering Glacier, Bagley Icefield, Malaspina Glacier, and Seward Glacier. Combined thermal/mechanical solutions identify the glacier valleys as rheological weakspots, defined by localized strain and differential advection of deep crustal material.

  17. Glaciers as a source of ancient and labile organic matter to the marine environment.

    Treesearch

    Eran Hood; Jason Fellman; Robert G.M. Spencer; Peter J. Hernes; Rick Edwards; David D' Amore; Durelle Scott

    2009-01-01

    Riverine organic matter supports of the order of one-fifth of estuarine metabolism. Coastal ecosystems are therefore sensitive to alteration of both the quantity and lability of terrigenous dissolved organic matter (DOM) delivered by rivers. Here we characterize streamwater DOM from 11 coastal watersheds on the Gulf of Alaska that vary widely in glacier coverage. In...

  18. Dust storm in Alaska

    NASA Image and Video Library

    2013-11-18

    Dust storm in Alaska captured by Aqua/MODIS on Nov. 17, 2013 at 21:45 UTC. When glaciers grind against underlying bedrock, they produce a silty powder with grains finer than sand. Geologists call it “glacial flour” or “rock flour.” This iron- and feldspar-rich substance often finds its ways into rivers and lakes, coloring the water brown, grey, or aqua. When river or lake levels are low, the flour accumulates on drying riverbanks and deltas, leaving raw material for winds to lift into the air and create plumes of dust. Scientists are monitoring Arctic dust for a number of reasons. Dust storms can reduce visibility enough to disrupt air travel, and they can pose health hazards to people on the ground. Dust is also a key source of iron for phytoplankton in regional waters. Finally, there is the possibility that dust events are becoming more frequent and severe due to ongoing recession of glaciers in coastal Alaska. To read more about dust storm in this region go to: earthobservatory.nasa.gov/IOTD/view.php?id=79518 Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Determining timing of Alaska Range exhumation and glaciation through cosmogenic nuclide burial dating.

    NASA Astrophysics Data System (ADS)

    Sortor, R. N.; Goehring, B. M.; Bemis, S. P.; Ruleman, C.; Nichols, K. A.; Ward, D. J.; Frothingham, M.

    2017-12-01

    The Alaska Range is a transpressional orogen with modern exhumation initiating 6 Ma. The stratigraphic record of unroofing and uplift of the foreland basin is largely preserved along the northern flank of the Alaska Range in the Pliocene-Pleistocene aged Nenana Gravel, an extensive alluvial fan and braidplain deposit. Chronometric control on the Nenana Gravel is largely lacking, with the limited available age control based on a single Ar-Ar tephra date in an underlying unit and via stratigraphic inferences for the upper portions. Higher-resolution dating of the Nenana Gravel unit is imperative in order to quantify deposition rates and the timing of uplift and deformation of the foreland basin. Furthermore, a glacial unit has been found to lie unconformably on top of the unit at Suntrana Creek and may represent the initiation of glacial advances in the Alaska Range. We present a suite of 26Al/10Be cosmogenic nuclide burial ages collected from the lower, middle, and upper sections of the Nenana Gravel at Suntrana Creek, as well as the overlying glacial unit. Three samples from the lower Nenana Gravel yield an isochron burial age of 4.42+0.67/-0.13 Ma, which represents initiation of Nenana Gravel deposition and may equate to early unroofing of the Alaska Range. Two samples collected from the middle of the Nenana Gravel unit produced an average simple burial age of 2.25+/-0.45 Ma, with a single sample stratigraphically above dating to 0.99 +/-1.60. Two samples from the upper-most portion of the Nenana Gravel yielded an average simple burial age of 1.27+/-0.22 Ma, and one sample from the glacial unit overlying the Nenana Gravel was dated to 0.97+/-0.06 Ma, representing one of the earliest glacial advances in the region. In addition, the age of the glacial unit provides a minimum age for inception of foreland basin uplift and abandonment of the Nenana Gravel in this region.

  20. Origin of last-glacial loess in the western Yukon-Tanana Upland, central Alaska, USA

    USGS Publications Warehouse

    Muhs, Daniel; Pigati, Jeffrey S.; Budahn, James R.; Skipp, Gary L.; Bettis, E. Arthur; Jensen, Britta

    2018-01-01

    Loess is widespread over Alaska, and its accumulation has traditionally been associated with glacial periods. Surprisingly, loess deposits securely dated to the last glacial period are rare in Alaska, and paleowind reconstructions for this time period are limited to inferences from dune orientations. We report a rare occurrence of loess deposits dating to the last glacial period, ~19 ka to ~12 ka, in the Yukon-Tanana Upland. Loess in this area is very coarse grained (abundant coarse silt), with decreases in particle size moving south of the Yukon River, implying that the drainage basin of this river was the main source. Geochemical data show, however, that the Tanana River valley to the south is also a likely distal source. The occurrence of last-glacial loess with sources to both the south and north is explained by both regional, synoptic-scale winds from the northeast and opposing katabatic winds that could have developed from expanded glaciers in both the Brooks Range to the north and the Alaska Range to the south. Based on a comparison with recent climate modeling for the last glacial period, seasonality of dust transport may also have played a role in bringing about contributions from both northern and southern sources.

  1. Attribution of glacier fluctuations to climate change

    NASA Astrophysics Data System (ADS)

    Oerlemans, J.

    2012-04-01

    Glacier retreat is a worlwide phenomenon, which started around the middle of the 19th century. During the period 1800-1850 the number of retreating and advancing glaciers was roughly equal (based on 42 records from different continents). During the period 1850-1900 about 92% of all mountain glaciers became shorter (based on 65 records). After this, the percentage of shrinking glaciers has been around 90% until the present time. The glacier signal is rather coherent over the globe, especially when surging and calving glaciers are not considered (for such glaciers the response to climate change is often masked by length changes related to internal dynamics). From theoretical studies as well as extensive meteorological work on glaciers, the processes that control the response of glaciers to climate change are now basically understood. It is useful to make a difference between geometric factors (e.g. slope, altitudinal range, hypsometry) and climatic setting (e.g. seasonal cycle, precipitation). The most sensitive glaciers appear to be flat glaciers in a maritime climate. Characterizing the dynamic properties of a glacier requires at least two quantities: the climate sensitivity, expressing how the equilibrium glacier state depends on the climatic conditions, and the response time, indicating how fast a glacier approaches a new equilibrium state after a stepwise change in the climatic forcing. These quantities can be estimated from relatively simple theory, showing that differences among glaciers are substantial. For larger glaciers, climate sensitivities (in terms of glacier length) vary from 1 to 8 km per 100 m change in the equilibrium-line altitude. Response times are mainly in the range of 20 to 200 years, with most values between 30 and 80 years. Changes in the equilibrium-line altitude or net mass balance of a glacier are mainly driven by fluctuations in air temperature, precipitation, and global radiation. Energy-balance modelling for many glaciers shows that

  2. The role of glacier changes and threshold definition in the characterisation of future streamflow droughts in glacierised catchments

    NASA Astrophysics Data System (ADS)

    Van Tiel, Marit; Teuling, Adriaan J.; Wanders, Niko; Vis, Marc J. P.; Stahl, Kerstin; Van Loon, Anne F.

    2018-01-01

    Glaciers are essential hydrological reservoirs, storing and releasing water at various timescales. Short-term variability in glacier melt is one of the causes of streamflow droughts, here defined as deficiencies from the flow regime. Streamflow droughts in glacierised catchments have a wide range of interlinked causing factors related to precipitation and temperature on short and long timescales. Climate change affects glacier storage capacity, with resulting consequences for discharge regimes and streamflow drought. Future projections of streamflow drought in glacierised basins can, however, strongly depend on the modelling strategies and analysis approaches applied. Here, we examine the effect of different approaches, concerning the glacier modelling and the drought threshold, on the characterisation of streamflow droughts in glacierised catchments. Streamflow is simulated with the Hydrologiska Byråns Vattenbalansavdelning (HBV-light) model for two case study catchments, the Nigardsbreen catchment in Norway and the Wolverine catchment in Alaska, and two future climate change scenarios (RCP4.5 and RCP8.5). Two types of glacier modelling are applied, a constant and dynamic glacier area conceptualisation. Streamflow droughts are identified with the variable threshold level method and their characteristics are compared between two periods, a historical (1975-2004) and future (2071-2100) period. Two existing threshold approaches to define future droughts are employed: (1) the threshold from the historical period; (2) a transient threshold approach, whereby the threshold adapts every year in the future to the changing regimes. Results show that drought characteristics differ among the combinations of glacier area modelling and thresholds. The historical threshold combined with a dynamic glacier area projects extreme increases in drought severity in the future, caused by the regime shift due to a reduction in glacier area. The historical threshold combined with a

  3. Application and validation of long-range terrestrial laser scanning to monitor the mass balance of very small glaciers in the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Fischer, Mauro; Huss, Matthias; Kummert, Mario; Hoelzle, Martin

    2016-06-01

    Due to the relative lack of empirical field data, the response of very small glaciers (here defined as being smaller than 0.5 km2) to current atmospheric warming is not fully understood yet. Investigating their mass balance, e.g. using the direct glaciological method, is a prerequisite to fill this knowledge gap. Terrestrial laser scanning (TLS) techniques operating in the near infrared range can be applied for the creation of repeated high-resolution digital elevation models and consecutive derivation of annual geodetic mass balances of very small glaciers. This method is promising, as laborious and potentially dangerous field measurements as well as the inter- and extrapolation of point measurements can be circumvented. However, it still needs to be validated. Here, we present TLS-derived annual surface elevation and geodetic mass changes for five very small glaciers in Switzerland (Glacier de Prapio, Glacier du Sex Rouge, St. Annafirn, Schwarzbachfirn, and Pizolgletscher) and two consecutive years (2013/14-2014/15). The scans were acquired with a long-range Riegl -6000 especially designed for surveying snow- and ice-covered terrain. Zonally variable conversion factors for firn and bare ice surfaces were applied to convert geodetic volume to mass changes. We compare the geodetic results to direct glaciological mass balance measurements coinciding with the TLS surveys and assess the uncertainties and errors included in both methods. Average glacier-wide mass balances were negative in both years, showing stronger mass losses in 2014/15 (-1.65 m w.e.) compared to 2013/14 (-0.59 m w.e.). Geodetic mass balances were slightly less negative but in close agreement with the direct glaciological ones (R2 = 0.91). Due to the dense in situ measurements, the uncertainties in the direct glaciological mass balances were small compared to the majority of measured glaciers worldwide (±0.09 m w.e. yr-1 on average), and similar to uncertainties in the TLS-derived geodetic mass

  4. Geochemical evidence for the origin of late Quaternary loess in central Alaska

    USGS Publications Warehouse

    Muhs, D.R.; Budahn, J.R.

    2006-01-01

    Loess is extensive in central Alaska, but there are uncertainties about its source and the direction of paleo-winds that deposited it. Both northerly and southerly winds have been inferred. The most likely sources of loess are the Tanana River (south), the Nenana River (southeast), and the Yukon River (north). Late Quaternary loess in central Alaska has immobile trace-element compositions (Cr/Sc, Th/Ta, Th/ Sc, Th/U, Eu/Eu*, GdN/YbN) that indicate derivation mostly from the Tanana River. However, other ratios (As/Sb, Zr/Hf, LaN/YbN) and quantitative modeling indicate that the Yukon River was also a source. During the last glacial period, there may have been a longer residence time of the Siberian and Canadian high-pressure cells, along with a strengthened Aleutian low-pressure cell. This would have generated regional-scale northeasterly winds and explains derivation of loess from the Yukon River. However, superim-posed upon this synoptic-scale circulation, there may have been strong, southerly katabatic winds from expanded glaciers on the northern flank of the Alaska Range. These winds could have provided eolian silt from the Tanana River. Yukon River and Tanana River sediments are highly calcareous, whereas Fairbanks-area loess is not. This suggests that carbonate leaching in loess kept ahead of sedimentation and that late Quaternary loess in central Alaska was deposited relatively slowly. ?? 2006 NRC Canada.

  5. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the northeastern Alaska Range, Healy, Mount Hayes, Nabesna, and Tanacross quadrangles, Alaska

    USGS Publications Warehouse

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 670 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the northeastern Alaska Range, in the Healy, Mount Hayes, Nabesna, and Tanacross quadrangles, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical

  6. A postulated new source for the White River Ash, Alaska: A section in Geologic studies in Alaska by the US. Geological Survey, 1990

    USGS Publications Warehouse

    McGimsey, Robert G.; Richter, Donald H.; DuBois, Gregory D.; Miller, T.P.

    1992-01-01

    The White River Ash (Lerbekmo and others, 1968), product of two of the most voluminous pyroclastic eruptions in North America in the past 2,000 yr, blankets much of the Yukon Terrtory, Canada, and a small part of adjoining eastern Alaska. Lerbekmo and Campbell (1969) narrowed the source of the ash to an area northeast of the Mt. Bona-Mt. Churchill massif in the St. Elias Mountains of southern Alaska. Based on indirect evidence, Lerbekmo and Campbell (1969) further suggested that the vent was beneath the Klutlan Glacier, adjacent to a mound of coarse pumice, 16 km northeast of Mt. Bona. Recently discovered pumice and ash deposits and a possible vent structure near the summit of Mt. Churchill suggest an alternate source area. The White River Ash is a bilobate plinian fallout deposit covering more than 340,000 km2 and containing an estimated 25-50 km3 of tephra (Bostock, 1952; Berger, 1960; fig. 1). Radiocarbon ages indicate that the northern lobe was deposited about 1,887 yr B.P. and the eastern, and larger, lobe about 1,250 yr B.P. (Lerbekmo and others, 1975). The axes of the two lobes converge near Mt. Bona (16,420 ft (5,005 m)) and Mt. Churchill [15,638 ft (4,766 m)], which together form a prominent massif in the St. Elias Mountains. The Klutlan Glacier, a large valley glacier that flows eastward into Canada, has its principal source on the eastern flank of the massif. 

  7. Development of Adygine glacier complex (glacier and proglacial lakes) and its link to outburst hazard

    NASA Astrophysics Data System (ADS)

    Falatkova, Kristyna; Schöner, Wolfgang; Häusler, Hermann; Reisenhofer, Stefan; Neureiter, Anton; Sobr, Miroslav; Jansky, Bohumir

    2017-04-01

    Mountain glacier retreat has a well-known impact on life of local population - besides anxiety over water supply for agriculture, industry, or households, it has proved to have a direct influence on glacier hazard occurrence. The paper focuses on lake outburst hazard specifically, and aims to describe the previous and future development of Adygine glacier complex and identify its relationship to the hazard. The observed glacier is situated in the Northern Tien Shan, with an area of 4 km2 in northern exposition at an elevation range of 3,500-4,200 m a.s.l. The study glacier ranks in the group of small-sized glaciers, therefore we expect it to respond faster to changes of the climate compared to larger ones. Below the glacier there is a three-level cascade of proglacial lakes at different stages of development. The site has been observed sporadically since 1960s, however, closer study has been carried out since 2007. Past development of the glacier-lake complex is analyzed by combination of satellite imagery interpretations and on-site measurements (geodetic and bathymetric survey). A glacier mass balance model is used to simulate future development of the glacier resulting from climate scenarios. We used the simulated future glacier extent and the glacier base topography provided by GPR survey to assess potential for future lake formation. This enables us to assess the outburst hazard for the three selected lakes with an outlook for possible/probable hazard changes linked to further complex succession/progression (originating from climate change scenarios). Considering the proximity of the capital Bishkek, spreading settlements, and increased demand for tourism-related infrastructure within the main valley, it is of high importance to identify the present and possible future hazards that have a potential to affect this region.

  8. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia)

    NASA Astrophysics Data System (ADS)

    Sorg, A. F.; Bolch, T.; Stoffel, M.; Solomina, O.; Beniston, M.

    2012-12-01

    Climate-driven changes in glacier-fed streamflow regimes have direct implications on freshwater supply, irrigation and hydropower potential. Reliable information about current and future glaciation and runoff is crucial for water allocation and, hence, for social and ecological stability. Although the impacts of climate change on glaciation and runoff have been addressed in previous work undertaken in the Tien Shan (known as the 'water tower of Central Asia'), a coherent, regional perspective of these findings has not been presented until now. In our study, we explore the range of changes in glaciation in different climatic regions of the Tien Shan based on existing data. We show that the majority of Tien Shan glaciers experienced accelerated glacier wasting since the mid-1970s and that glacier shrinkage is most pronounced in peripheral, lower-elevation ranges near the densely populated forelands, where summers are dry and where snow and glacial meltwater is essential for water availability. The annual glacier area shrinkage rates since the middle of the twentieth century are 0.38-0.76% per year in the outer ranges, 0.15-0.40% per year in the inner ranges and 0.05-0.31% per year in the eastern ranges. This regionally non-uniform response to climate change implies that glacier shrinkage is less severe in the continental inner ranges than in the more humid outer ranges. Glaciers in the inner ranges react with larger time lags to climate change, because accumulation and thus mass turnover of the mainly cold glaciers are relatively small. Moreover, shrinkage is especially pronounced on small or fragmented glaciers, which are widely represented in the outer regions. The relative insensitivity of glaciers in the inner ranges is further accentuated by the higher average altitude, as the equilibrium line altitude ranges from 3'500 to 3'600 masl in the outer ranges to 4'400 masl in the inner ranges. For our study, we used glacier change assessments based both on direct data

  9. An Analysis of Mass Balance of Chilean Glaciers

    NASA Astrophysics Data System (ADS)

    Ambinakudige, S.; Tetteh, L.

    2013-12-01

    Glaciers in Chile range from very small glacierets found on the isolated volcanoes of northern Chile to the 13,000 sq.km Southern Patagonian Ice Field. Regular monitoring of these glaciers is very important as they are considered as sensitive indicators of climate change. Millions of people's lives are dependent on these glaciers for fresh water and irrigation purpose. In this study, mass balances of several Chilean glaciers were estimated using Aster satellite images between 2007 and 2012. Highly accurate DEMs were created with supplementary information from IceSat data. The result indicated a negative mass balance for many glaciers indicating the need for further monitoring of glaciers in the Andes.

  10. Glacier Dynamics Within a Small Alpine Cirque

    NASA Astrophysics Data System (ADS)

    Sanders, J. W.; Cuffey, K. M.; MacGregor, K. R.; Kavanaugh, J. L.; Dow, C. F.

    2008-12-01

    Cirques, with their steep walls and overdeepened basins, have captivated the imagination of scientists since the mid-1800s. Glaciers in cirques, by generating these spectacular amphitheater-shaped landforms, contribute significantly to erosion in the core of mountain ranges and are one of the principal agents responsible for the relief structure at high elevations. Yet comprehensive studies of the dynamics of cirque glaciers, and their link to erosional processes, have never been undertaken. To this end, we acquired an extensive new set of measurements at the West Washmawapta Glacier, which sits in a cirque on the east side of Helmet Mountain in the Vermillion Range of the Canadian Rockies. Ice thickness surveys with ground penetrating radar revealed that the glacier occupies a classic bowl-shaped depression complete with a nearly continuous riegel. Using GPS-derived surface velocities of a glacier-wide grid network and the tilt of one borehole, we calculated the complete force balance of the glacier. This analysis also produced a map of basal sliding velocity and a value for the viscosity of temperate ice. We will discuss the implications of these findings for the problem of how cirques are formed by glacial erosion.

  11. Source levels and call parameters of harbor seal breeding vocalizations near a terrestrial haulout site in Glacier Bay National Park and Preserve.

    PubMed

    Matthews, Leanna P; Parks, Susan E; Fournet, Michelle E H; Gabriele, Christine M; Womble, Jamie N; Klinck, Holger

    2017-03-01

    Source levels of harbor seal breeding vocalizations were estimated using a three-element planar hydrophone array near the Beardslee Islands in Glacier Bay National Park and Preserve, Alaska. The average source level for these calls was 144 dB RMS re 1 μPa at 1 m in the 40-500 Hz frequency band. Source level estimates ranged from 129 to 149 dB RMS re 1 μPa. Four call parameters, including minimum frequency, peak frequency, total duration, and pulse duration, were also measured. These measurements indicated that breeding vocalizations of harbor seals near the Beardslee Islands of Glacier Bay National Park are similar in duration (average total duration: 4.8 s, average pulse duration: 3.0 s) to previously reported values from other populations, but are 170-220 Hz lower in average minimum frequency (78 Hz).

  12. Combination of UAV and terrestrial photogrammetry to assess rapid glacier evolution and map glacier hazards

    NASA Astrophysics Data System (ADS)

    Fugazza, Davide; Scaioni, Marco; Corti, Manuel; D'Agata, Carlo; Azzoni, Roberto Sergio; Cernuschi, Massimo; Smiraglia, Claudio; Diolaiuti, Guglielmina Adele

    2018-04-01

    Tourists and hikers visiting glaciers all year round face hazards such as sudden terminus collapses, typical of such a dynamically evolving environment. In this study, we analyzed the potential of different survey techniques to analyze hazards of the Forni Glacier, an important geosite located in Stelvio Park (Italian Alps). We carried out surveys in the 2016 ablation season and compared point clouds generated from an unmanned aerial vehicle (UAV) survey, close-range photogrammetry and terrestrial laser scanning (TLS). To investigate the evolution of glacier hazards and evaluate the glacier thinning rate, we also used UAV data collected in 2014 and a digital elevation model (DEM) created from an aerial photogrammetric survey of 2007. We found that the integration between terrestrial and UAV photogrammetry is ideal for mapping hazards related to the glacier collapse, while TLS is affected by occlusions and is logistically complex in glacial terrain. Photogrammetric techniques can therefore replace TLS for glacier studies and UAV-based DEMs hold potential for becoming a standard tool in the investigation of glacier thickness changes. Based on our data sets, an increase in the size of collapses was found over the study period, and the glacier thinning rates went from 4.55 ± 0.24 m a-1 between 2007 and 2014 to 5.20 ± 1.11 m a-1 between 2014 and 2016.

  13. The United States National Climate Assessment - Alaska Technical Regional Report

    USGS Publications Warehouse

    Markon, Carl J.; Trainor, Sarah F.; Chapin, F. Stuart; Markon, Carl J.; Trainor, Sarah F.; Chapin, F. Stuart

    2012-01-01

    , because cold sea water absorbs CO2 more rapidly than warm water, and a decrease in sea ice extent has allowed increased sea surface exposure and more uptake of CO2 into these northern waters. Ocean acidification will likely affect the ability of organisms to produce and maintain shell material, such as aragonite or calcite (calcium carbonate minerals structured from carbonate ions), required by many shelled organism, from mollusks to corals to microscopic organisms at the base of the food chain. Direct biological effects in Alaska further along the food chain have yet to be studied and may vary among organisms. Some of the potentially most significant changes to Alaska that could result from a changing climate are the effects on the terrestrial cryosphere - particularly glaciers and permafrost. Alaskan glaciers are changing at a rapid rate, the primary driver appearing to be temperature. Statewide, glaciers lost 13 cubic miles of ice annually from the 1950s to the 1990s, and that rate doubled in the 2000s. However, like temperature and precipitation, glacier ice loss is not spatially uniform; most glaciers are losing mass, yet some are growing (for example Hubbard Glacier in southeast Alaska). Alaska glaciers with the most rapid loss are those terminating in sea water or lakes. With this increasing rate of melt, the contribution of surplus fresh water entering into the oceans from Alaska's glaciers, as well as those in neighboring British Columbia, Canada, is approximately 20 percent of that contributed by the Greenland Ice Sheet. Permafrost degradation (that is, the thawing of ice-rich soils) is currently (2012) impacting infrastructure and surface-water availability in areas of both discontinuous and continuous ground ice. Over most of the State, the permafrost is warming, with increasing temperatures broadly consistent with increasing air temperatures. On the Arctic coastal plain of Alaska, permafrost temperatures showed some cooling in the 1950s and 1960s but have

  14. The Relationships Between Earthquakes, Faults, and Recent Glacial Fluctuations in Southern Alaska

    NASA Astrophysics Data System (ADS)

    Wiest, K. R.; Sauber, J. M.; Doser, D. I.; Hurtado, J. M.; Velasco, A. A.

    2004-12-01

    In southern Alaska, northwestward-directed subduction of the Pacific plate is accompanied by accretion of the Yakutat terrane to continental Alaska. In the tectonically complex region between the transcurrent Fairweather fault and the Alaska-Aleutian subduction zone, active crustal shortening and strike-slip faulting occurs. Since a series of large earthquakes in 1899 (Mw = 8.1, Yakataga; Mw=8.1 Yakutat), there has been only one large event (1979 St. Elias Mw = 7.4) in the Yakutat region between the aftershock zones of the 1964 Prince William Sound (Mw = 9.2) and 1958 Fairweather (Mw = 8.2) earthquakes. In this region, the glaciers are extensive and many of them have undergone significant retreat in the last 100 years. This study investigates the relationships between small to moderate magnitude events, ongoing crustal deformation, active geological structures in the region, and recent glacial fluctuations. To map earthquake locations with respect to current glacier positions, we will incorporate Ice Cloud and land Elevation Satellite (ICESat) data into an updated Digital Elevation Model (DEM) of key glaciated regions that has been created using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images in conjunction with Shuttle Radar Topography Mission (SRTM) data. For the seismological investigation, we focused on relocating events that have occurred since the last large earthquake at St. Elias in 1979 using data obtained from the Alaska Earthquake Information Center (AEIC). P-wave polarity first motion focal mechanisms were generated for the relocated events and evaluated. Our preliminary relocations suggest a dipping slab in cross-section and also show a number of shallow event clusters around local glaciers. The focal mechanisms are quite variable but, in general, indicate strike-slip and oblique-slip focal mechanisms. Some of our highest quality focal mechanisms show dip-slip faulting and are from shallow events located near glacial

  15. Nearshore distribution and abundance of Dungeness crabs in Glacier Bay National Park, Alaska

    USGS Publications Warehouse

    O'Clair, Charles E.; Freese, J. Lincoln; Stone, Robert P.; Shirley, Thomas C.; Leder, Erica H.; Taggart, S. James; Kruse, Gordon H.; Engstrom, Daniel R.

    1995-01-01

    As part of an ongoing, multi-agency study to determine the effects of closure of the commercial fishery for Dungeness crabs, Cancer magister, on crab population structure we examined patterns of distribution and abundance of crabs in nearshore habitats at five locations in and near Glacier Bay National Park. Sampling was conducted in April and September 1992 and April 1993 prior to the anticipated closure of the fishery in the park. Divers censused crabs by sex and reproductive state (ovigerous/nonovigerous females) along belt transects (2m x 100m) laid perpendicular to shore in the depth range 0 m (mean lower low water) to 18 m.Preliminary results from the first three sampling periods revealed that the average densities of Dungeness crabs at the five locations ranged from 78 to 2012 crabs/ha. Crab densities differed between populations depending on sex, reproductive state of females and sampling period. Male crabs showed reduced densities at Gustavus Flats in April 1992 (P<0.01) and 1993 (P<0.001). Ovigerous females had greater density at Bartlett Cove in April 1993 (P<0.001). Sex ratios were frequently skewed toward females. At Bartlett Cove and Gustavus Flats females outnumbered males in April 1992 and 1993 (P<0.001). Most of the females at Bartlett Cove and Gustavus Flats in April 1992 and 1993 were ovigerous (P-0.001). Males tended to occupy greater depths than females in April 1992 (P<0.05) but not April 1993 (P-005). The mean depth of males shifted from deeper to shallower water between April and September 1992 (P<0.001). The depth distribution of ovigerous crabs did not differ from that of nonovigerous female crabs. Future research prior to the anticipated closure of the commercial Dungeness crab fishery in Glacier Bay will include a tagging study to determine the extent of crab movement and further study of the temporal as well as the spatial variability observed in the structure of these populations.

  16. Simulated peak inflows for glacier dammed Russell Fiord, near Yakutat, Alaska

    USGS Publications Warehouse

    Neal, Edward G.

    2004-01-01

    In June 2002, Hubbard Glacier advanced across the entrance to 35-mile-long Russell Fiord creating a glacier-dammed lake. After closure of the ice and moraine dam, runoff from mountain streams and glacial melt caused the level in ?Russell Lake? to rise until it eventually breached the dam on August 14, 2002. Daily mean inflows to the lake during the period of closure were estimated on the basis of lake stage data and the hypsometry of Russell Lake. Inflows were regressed against the daily mean streamflows of nearby Ophir Creek and Situk River to generate an equation for simulating Russell Lake inflow. The regression equation was used to produce 11 years of synthetic daily inflows to Russell Lake for the 1992-2002 water years. A flood-frequency analysis was applied to the peak daily mean inflows for these 11 years of record to generate a 100-year peak daily mean inflow of 235,000 cubic feet per second. Regional-regression equations also were applied to the Russell Lake basin, yielding a 100-year inflow of 157,000 cubic feet per second.

  17. Comparison of the 2008-2011 and 1993-1995 Surges of Bering Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.; Angeli, K.

    2011-12-01

    The 1993-1995 surge of Bering Glacier, Earth's largest surging temperate glacier, was intensively studied. A new surge, which began prior to March 9, 2009, was still active in early August 2011. As was the 1993-1995 surge, the current surge is being studied using multiple remote sensing and ground-based methodologies. The wealth of observations available of both surges permit comparisons to be drawn about similarities and differences regarding processes, timing, intensities, and related topics. For more than a year prior to each surge, the intensity of calving and the rate of terminus retreat in Tashalich Arm increased dramatically, approaching 4 m/d in late 2010. This was abruptly followed by a significant terminus advance. In the current surge, maximum advance rates exceeded 19 m/d between March 18 and May 10, 2011. Through July 20, maximum terminus advance approached 3.2 km with velocities above 8 m/d. Similar rates applied in the earlier surge. Each surge has resulted in a rapid and significant advance of the central Bering Lobe's terminus into Vitus Lake. The terminus advance results from the transfer of a substantial volume of ice from the Bagley Ice Valley into the expanding piedmont lobe. In both surges, conspicuous evidence of tens of meters of glacier surface lowering is visible on the south wall of Juniper Island. In the 1993-1995 surge, terminus advance between October 17, 1993 and May 16, 1994 was nearly 7.8 km, an average advance rate of more than 36 m/d. With the current surge, between January 8 and 14, 2011, the terminus advanced a maximum of 125 m, averaging nearly 21 m/d. By July 11, 2011, maximum velocities still approached 15 m per day, with maximum ice displacements of nearly 2 km and a maximum terminus advance of 1.7 km. In the 1993-1995 surge, the first evidence of surge activity was observed in April 1993, the development of a fractured ice bulge on the northwest side of the Grindle Hills. The surge front reached Bering's terminus at the end

  18. A foundation of ecology rediscovered: 100 years of succession on the William S. Cooper plots in Glacier Bay, Alaska.

    PubMed

    Buma, Brian; Bisbing, Sarah; Krapek, John; Wright, Glenn

    2017-06-01

    Understanding plant community succession is one of the original pursuits of ecology, forming some of the earliest theoretical frameworks in the field. Much of this was built on the long-term research of William S. Cooper, who established a permanent plot network in Glacier Bay, Alaska, in 1916. This study now represents the longest-running primary succession plot network in the world. Permanent plots are useful for their ability to follow mechanistic change through time without assumptions inherent in space-for-time (chronosequence) designs. After 100-yr, these plots show surprising variety in species composition, soil characteristics (carbon, nitrogen, depth), and percent cover, attributable to variation in initial vegetation establishment first noted by Cooper in the 1916-1923 time period, partially driven by dispersal limitations. There has been almost a complete community composition replacement over the century and general species richness increase, but the effective number of species has declined significantly due to dominance of Salix species which established 100-yr prior (the only remaining species from the original cohort). Where Salix dominates, there is no establishment of "later" successional species like Picea. Plots nearer the entrance to Glacier Bay, and thus closer to potential seed sources after the most recent glaciation, have had consistently higher species richness for 100 yr. Age of plots is the best predictor of soil N content and C:N ratio, though plots still dominated by Salix had lower overall N; soil accumulation was more associated with dominant species. This highlights the importance of contingency and dispersal in community development. The 100-yr record of these plots, including species composition, spatial relationships, cover, and observed interactions between species provides a powerful view of long-term primary succession. © 2017 by the Ecological Society of America.

  19. Collisional Tectonics in the St. Elias Orogen, Alaska Observed by GPS

    NASA Astrophysics Data System (ADS)

    Elliott, J.; Freymueller, J. T.; Larsen, C. F.

    2008-12-01

    The rugged topography of the St. Elias orogen of southern Alaska and the adjacent region of Canada is the result of the on-going collision of the Yakutat block with southern Alaska. Nearly 45 mm/yr of NW-SE directed convergence from the collision is currently accommodated within the St. Elias orogen. A key to understanding this complex collisional boundary is knowing the locations of the structures taking up the convergence. GPS provides a snapshot of the present-day strain field and helps to delineate active structures. As part of the St. Elias Erosion/Tectonics Project (STEEP), we re-surveyed 70 campaign GPS sites across the St. Elias orogen during the summer of 2008. Strain rates derived from our GPS data highlight several areas within the St. Elias orogen. The highest strain rates occur across Icy Bay and the western edge of the Malaspina Glacier. Rates there approach -1 microstrain/yr, a value higher than that observed in the Himalaya. Lower, but still significant, strain rates of about -0.2 microstrain/yr extend north from Icy Bay to the region surrounding Mt. St. Elias. The second major focus of compressive strain in the orogen is centered over the Yakataga fold-and-thrust belt. Strain rates there are in the range of -0.40 to -0.50 microstrain/yr. Little significant strain is seen across the Bagley icefield or to the north of that feature. These results suggest that most of the convergence across the St. Elias orogen is currently accommodated on structures located south of the Bagely icefield, specifically in the Icy Bay, upper Malaspina/Mt. St. Elias, and Yakataga fold-and-thrust belt regions. We use block modeling techniques to describe the tectonic elements of the St. Elias orogen and connect them with the tectonic regime in southeast Alaska. Our preliminary results indicate that a single thrust fault through Icy Bay cannot explain the data there; multiple NW and N directed thrust faults through Icy Bay, along the western edge of the Malaspina Glacier

  20. Communicating Glacier Change and Associated Impacts to Communities and Decision-makers

    NASA Astrophysics Data System (ADS)

    Timm, K.; Hood, E. W.; O'Neel, S.; Wolken, G. J.

    2017-12-01

    A critical, but often overlooked, part of making cryosphere science relevant to decision makers is ensuring that the communication and translation of scientific information is deliberate, dialogic, and the product of careful planning. This presentation offers several lessons learned from a team of scientists and a communication professional who have collaboratively produced several award-winning and repeatedly used communication products. Consisting of illustrations (for presentations, publications, and other uses), posters, and fact sheets, the products communicate how Alaska's glaciers are changing, how changing glaciers influence nearby ecosystems, and the natural hazards that emerge as glaciers recede and thin to a range of audiences, including community members, business owners, resource managers, and other decision makers. The success of these communication products can be attributed in part to six broad characteristics of the development process, which are based on the literature from science communication research and reflections from the team: connect, design, respect, iterate, share, and reflect. For example, connecting with other people is important because effective science communication is usually the product of a team of researchers and communication professionals. Connecting with the audience or stakeholders is also important for developing an understanding of their information needs. In addition, respect is essential, as this process relies on the diverse skills, experience, and knowledge that everyone brings to the endeavor. Also for consideration, developing a shared language and executing a scientifically accurate design takes synthesis and iteration, which must be accounted for in the project timeline. Taken together, these factors and others that will be described in the presentation can help improve the communication of cryosphere science and expand its utility for important societal decisions.

  1. Observed Changes in the Himalayan Glaciers: Multiple Driving Factors

    NASA Astrophysics Data System (ADS)

    Romshoo, Shakil; Rashid, Irfan; Abdullah, Tariq; Fayaz, Midhat

    2017-04-01

    There is lack of credible knowledge about Himalayan cryosphere as is evident from the contradictory reports about the status of the glaciers in the region. Glacier behavior in Himalaya has to be understood and interpreted in light of the multiple driving factors; topography, climate and anthropocene. The observed changes in Himalayan glaciers, determined by studying a few hundred glaciers in the Himalaya, indicated that the glacier response varies across different ranges. Satellite images (1990-2015), DEM, altimetry data supported by selective field campaigns, were used to map the changes in glacier boundaries, snout, ELA, AAR, volume, thickness, debris cover and several other glacier parameters. The glaciers across the six ranges of Pir Panjal (PR), Greater Himalaya (GH), Shamasbari (SR), Zanaskar (ZR), Leh (LR) and Karakorum (KR) showed quite varied changes. It was observed that the glaciers in the KR show the least glacial area recession (1.59%) primarily due to the extreme cold winters with -18oC average temperature. Other glacial parameters like snout, ELA, AAR and glacier volume also showed very little changes in the KR during the period. The glaciers in the LR, with an average winter temperature of -6o C, have shrunk, on an average, by 4.19 % during the period, followed by the glaciers in the ZR showing a loss of 5.46%. The highest glacier retreat of 7.72% and 6.94% was observed in the GH and SR with the average winter temperature of -1.3oc and -6.2oc respectively. In the PR, almost all the glaciers have vanished during the last 6-7 decades due to the increasing winter temperatures. The glaciers in the Kashmir showed an overall recession of 26.40% in area which is one of the highest reported for the Himalayan glaciers. The glaciers in the valley showed the maximum reduction in thickness (2.56m) using the IceSat data from 2000-08 while as the Karakoram glaciers showed the least reduction in thickness (0.53m). It was found that the maximum recession of glacial

  2. New approaches to observation and modeling of fast-moving glaciers and ice streams

    NASA Astrophysics Data System (ADS)

    Herzfeld, U. C.; Trantow, T.; Markle, M. J.; Medley, G.; Markus, T.; Neumann, T.

    2016-12-01

    In this paper, we will give an overview of several new approaches to remote-sensing observations and analysis and to modeling of fast glacier flow. The approaches will be applied in case studies of different types of fast-moving glaciers: (1) The Bering-Bagley Glacier System, Alaska (a surge-type glacier system), (2) Jakobshavn Isbræ, Greenland (a tide-water terminating fjord glacier and outlet of the Greenland Inland Ice), and (3) Icelandic Ice Caps (manifestations of the interaction of volcanic and glaciologic processes). On the observational side, we will compare the capabilities of lidar and radar altimeters, including ICESat's Geoscience Laser Altimeter System (GLAS), CryoSat-2's Synthetic Aperture Interferometric Radar Altimeter (SIRAL) and the future ICESat-2 Advanced Topographic Laser Altimeter System (ATLAS), especially regarding retrieval of surface heights over crevassed regions as typical of spatial and temporal acceleration. Properties that can be expected from ICESat-2 ATLAS data will be illustrated based on analyses of data from ICESat-2 simulator instruments: the Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) and the Multiple Altimeter Beam Experimental Lidar (MABEL). Information from altimeter data will be augmented by an automated surface classification based on image data, which includes satellite imagery such as LANDSAT and WorldView as well as airborne video imagery of ice surfaces. Numerical experiments using Elmer/Ice will be employed to link parameters derived in observations to physical processes during the surge of the Bering Bagley Glacier System. This allows identification of processes that can be explained in an existing framework and processes that may require new concepts for glacier evolution. Topics include zonation of surge progression in a complex glacier system and crevassing as an indication, storage of glacial water, influence of basal topography and the role of friction laws.

  3. Younger Dryas glaciers in the High Atlas, Morocco

    NASA Astrophysics Data System (ADS)

    Hughes, Philip; Fink, David

    2016-04-01

    Twelve cirque glaciers formed during the Younger Dryas on the mountains of Aksoual (3912 m a.s.l.) and Adrar el Hajj (3129 m a.s.l.) in the Marrakesh High Atlas. Moraines in two separate cirques on these mountains have been dated using 10Be and 36Cl exposure dating. In both cirques the age scatter is relatively small (13.8-10.1 ka) and all ages overlap within error with the Younger Dryas (12.9-11.7 ka). The glaciers were small and covered <2 km2 and formed on north-facing slopes. However, the altitudinal range of the glaciers was very large, with equilibrium line altitudes (ELAs) ranging from 2470 and 3560 m. This large range is attributed to local topoclimatic factors with the lowest glacier (confirmed as Younger Dryas in age by 3 exposure ages) occupying a very steep cirque floor where a combination of steep glacier gradient and a large potential avalanche catchment enabled its low-lying position. This indicates that caution should be taken when using single glacier sites for reconstructing regional palaeoclimate, especially those formed in steep catchments that have strong topoclimatic controls. The average ELA of the twelve Younger Dryas glaciers was c. 3109 m a.s.l. (St Dev = 325 m) and this represents an ELA depression of > 1000 m from the modern theoretical regional ELA. Under precipitation values similar to today this would require a mean annual temperature depression of 9°C. Moreover, the glacier-climate modelling indicates that it is very unlikely that climate was drier than today during the Younger Dryas in the Marrakesh High Atlas.

  4. Role of sub-regional variations on melting Response of Indian-Himalayan Glaciers

    NASA Astrophysics Data System (ADS)

    Tayal, S.; Hasnain, S. I.

    2010-12-01

    Glaciers play a crucial role in maintaining ecosystem stability as they act as buffers and regulate the runoff water supply from high mountains to the plains during both dry and wet spells. Retreat of Hindu Kush-Himalaya-Tibetan glaciers is one of the major environmental problems facing the south Asian and south-east Asian region. The Himalayan mountain range spans 2500 km east to west and includes diverse cultures of five countries (Afghanistan, Pakistan, India, Tibet (China), Nepal, Bhutan) and a range of weather patterns, which has been strongly affected by regional climate change. The glaciers of Indian Himalayan ranges covers an area of 19000 km2 contains over 9500 glaciers and feed major perennial river systems like Indus, Ganges, Brahmaputra, and sustain the livelihood of over 0.5 billion south Asians. Glaciers are melting fast but their response time varies from westerly nourished Kashmir Himalaya glaciers to south-west monsoon nourished Sikkim Himalaya glaciers based on regional climatic variations. Changes in mass balance of a glacier are considered as the most direct representative of the impacts of meteorological parameters on the glacier dynamic responses. A comparative study of mass balance, based on field measurements techniques is being conducted on two benchmark glaciers in the Indian Himalaya. The glaciers currently being monitored are Kolahoi glacier (340 07 - 340 12 N: 750 16 - 750 23E), Kashmir Himalaya and E.Rathong glacier (270 33 - 480 36 N: 880 06 - 880 08 E), Sikkim Himalaya. One year mass balance results (2008-2009) for both the benchmark glaciers are now available and are being presented. Mass balance for Kolahoi glacier located in sub-tropical to temperate setting and nourished by westerly system show range from -2.0 m.w.e. to -3.5 m.w.e. per annum. Whereas, the E. Rathong glacier located in tropical climatic settings and nourished by SW monsoon system show range from -2.0 m.w.e. to -5.0 m.w.e. per annum. The (2009/2010) mass balance

  5. Climate-induced glacier and snow loss imperils alpine stream insects

    USGS Publications Warehouse

    Giersch, J. Joseph; Hotaling, Scott; Kovach, Ryan; Jones, Leslie A.; Muhlfeld, Clint C.

    2017-01-01

    Climate warming is causing rapid loss of glaciers and snowpack in mountainous regions worldwide. These changes are predicted to negatively impact the habitats of many range-restricted species, particularly endemic, mountaintop species dependent on the unique thermal and hydrologic conditions found only in glacier-fed and snowmelt-driven alpine streams. Though progress has been made, existing understanding of the status, distribution, and ecology of alpine aquatic species, particularly in North America, is lacking, thereby hindering conservation and management programs. Two aquatic insects – the meltwater stonefly Lednia tumana and the glacier stonefly Zapada glacier – were recently proposed for listing under the U.S. Endangered Species Act due to climate-change-induced habitat loss. Using a large dataset (272 streams, 482 total sites) with high-resolution climate and habitat information, we describe the distribution, status, and key environmental features that limit L. tumana and Z. glacier across the northern Rocky Mountains. Lednia tumana was detected in 113 streams (175 sites) within Glacier National Park (GNP) and surrounding areas. The probability of L. tumana occurrence increased with cold stream temperatures and close proximity to glaciers and permanent snowfields. Similarly, densities of L. tumana declined with increasing distance from stream source. Zapada glacier was only detected in 10 streams (20 sites), six in GNP and four in mountain ranges up to ~600 km southwest. Our results show that both L. tumana and Z. glacier inhabit an extremely narrow distribution, restricted to short sections of cold, alpine streams often below glaciers predicted to disappear over the next two decades. Climate warming-induced glacier and snow loss clearly imperils the persistence of L. tumana and Z. glacier throughout their ranges, highlighting the role of mountaintop aquatic invertebrates as sentinels of climate change in mid-latitude regions.

  6. Observations and modeling of fjord sedimentation during the 30 year retreat of Columbia Glacier, AK

    USGS Publications Warehouse

    Love, Katherine B; Hallet, Bernard; Pratt, Thomas L.; O'Neel, Shad

    2016-01-01

    To explore links between glacier dynamics, sediment yields and the accumulation of glacial sediments in a temperate setting, we use extensive glaciological observations for Columbia Glacier, Alaska, and new oceanographic data from the fjord exposed during its retreat. High-resolution seismic data indicate that 3.2 × 108 m3 of sediment has accumulated in Columbia Fjord over the past three decades, which corresponds to ~5 mm a−1 of erosion averaged over the glaciated area. We develop a general model to infer the sediment-flux history from the glacier that is compatible with the observed retreat history, and the thickness and architecture of the fjord sediment deposits. Results reveal a fivefold increase in sediment flux from 1997 to 2000, which is not correlated with concurrent changes in ice flux or retreat rate. We suggest the flux increase resulted from an increase in the sediment transport capacity of the subglacial hydraulic system due to the retreat-related steepening of the glacier surface over a known subglacial deep basin. Because variations in subglacial sediment storage can impact glacial sediment flux, in addition to changes in climate, erosion rate and glacier dynamics, the interpretation of climatic changes based on the sediment record is more complex than generally assumed.

  7. Arctic Warming and Sea Ice Diminution Herald Changing Glacier and Cryospheric Hazard Regimes

    NASA Astrophysics Data System (ADS)

    Kargel, Jeffrey; Bush, Andrew; Leonard, Gregory

    2013-04-01

    is not the key to future behavior of ice in this region. Hence, as major infrastructural development and population increases, careful consideration must be given to changing dynamics of the cryospheric landscape system. Glacier lake outburst floods never have been important considerations in most of the Canadian Arctic/Greenland region due both to sparseness of population and infrastructure and low frequency and distribution of occurrence of potentially hazardous glacier dynamics. This may no longer be the case; in particular, many lakes are starting to develop where previously they were small, few, or absent; furthermore, the conditions tending toward reduction in ice flow, thinning glaciers, and debris accumulation that commonly precede lake development are now widely present. 20th century maritime glacierized parts of Alaska may be a model for the 21st century Queen Elizabeth Islands and Greenland. In Alaska, the fury and impact of glacier lake outburst floods felt in other parts of the world have largely been mitigated by wise and limited development patterns. This can hold true for Arctic Canada and Greenland this century if consideration is given to the changing crysophere.

  8. Recent acceleration of Thwaites Glacier

    NASA Technical Reports Server (NTRS)

    Ferrigno, J. G.

    1993-01-01

    The first velocity measurements for Thwaites Glacier were made by R. J. Allen in 1977. He compared features of Thwaites Glacier and Iceberg Tongue on aerial photography from 1947 and 1967 with 1972 Landsat images, and measured average annual displacements of 3.7 and 2.3 km/a. Using his photogrammetric experience and taking into consideration the lack of definable features and the poor control in the area, he estimated an average velocity of 2.0 to 2.9 km/a to be more accurate. In 1985, Lindstrom and Tyler also made velocity estimates for Thwaites Glacier. Using Landsat imagery from 1972 and 1983, their estimates of the velocities of 33 points ranged from 2.99 to 4.02 km/a, with an average of 3.6 km/a. The accuracy of their estimates is uncertain, however, because in the absence of fixed control points, they assumed that the velocities of icebergs in the fast ice were uniform. Using additional Landsat imagery in 1984 and 1990, accurate coregistration with the 1972 image was achieved based on fixed rock points. For the period 1972 to 1984, 25 points on the glacier surface ranged in average velocity from 2.47 to 2.76 km/a, with an overall average velocity of 2.62 +/- 0.02 km/a. For the period 1984 to 1990, 101 points ranged in velocity from 2.54 to 3.15 km/a, with an overall average of 2.84 km/a. During both time periods, the velocity pattern showed the same spatial relationship for three longitudinal paths. The 8-percent acceleration in a decade is significant. This recent acceleration may be associated with changes observed in this region since 1986. Fast ice melted and several icebergs calved from the base of the Iceberg Tongue and the terminus of Thwaites Glacier. However, as early as 1972, the Iceberg Tongue had very little contact with the glacier.

  9. Effects of lava-dome emplacement on the Mount St. Helens crater glacier

    NASA Astrophysics Data System (ADS)

    Walder, J. S.; Schilling, S. P.; Denlinger, R. P.; Vallance, J. W.

    2004-12-01

    Since the end of the 1981-1986 episode of lava-dome growth at Mount St. Helens, an unusual glacier has grown rapidly within the crater of the volcano. The glacier, which is fed primarily by avalanching from the crater walls, contains about 30% rock debris by volume, has a maximum thickness of about 220 m and a volume of about 120 million cubic m, and forms a crescent that wraps around the old lava dome on both east and west sides. The new (October 2004) lava dome in the south of the crater began to grow centered roughly on the contact between the old lava dome and the glacier, in the process uplifting both ice and old dome rock. As the new dome is spreading to the south, the adjacent glacier is bulging upward. Firn layers on the outer flank of the glacier bulge have been warped upward almost vertically. In contrast, ice adjacent to the new dome has been thoroughly fractured. The overall style of deformation is reminiscent of that associated with salt-dome intrusion. Drawing an analogy to sand-box experiments, we suggest that the glacier is being deformed by high-angle reverse faults propagating upward from depth. Comparison of Lidar images of the glacier from September 2003 and October 2004 reveals not only the volcanogenic bulge but also elevated domains associated with the passage of kinematic waves, which are caused by glacier-mass-balance perturbations and have nothing to do with volcanic activity. As of 25 October 2004, growth of the new lava dome has had negligible hydrological consequences. Ice-surface cauldrons are common consequences of intense melting caused by either subglacial eruptions (as in Iceland) or subglacial venting of hot gases (as presently taking place at Mount Spurr, Alaska). However, there has been a notable absence of ice-surface cauldrons in the Mount St. Helens crater glacier, aside from a short-lived pond formed where the 1 October eruption pierced the glacier. We suggest that heat transfer to the glacier base is inefficient because

  10. The health of glaciers: Recent changes in glacier regime

    USGS Publications Warehouse

    Meier, M.F.; Dyurgerov, M.B.; McCabe, G.J.

    2003-01-01

    Glacier wastage has been pervasive during the last century; small glaciers and those in marginal environments are disappearing, large mid-latitude glaciers are shrinking slightly, and arctic glaciers are warming. Net mass balances during the last 40 years are predominately negative and both winter and summer balances (accumulation and ablation) and mass turnover are increasing, especially after 1988. Two principal components of winter balance time-series explain about 50% of the variability in the data. Glacier winter balances in north and central Europe correlate with the Arctic Oscillation, and glaciers in western North America correlate with the Southern Oscillation and Northern Hemisphere air temperature. The degree of synchronization for distant glaciers relates to changes in time of atmospheric circulation patterns as well as differing dynamic responses.

  11. Glaciers

    NASA Astrophysics Data System (ADS)

    Hambrey, Michael; Alean, Jürg

    2004-12-01

    Glaciers are among the most beautiful natural wonders on Earth, as well as the least known and understood, for most of us. Michael Hambrey describes how glaciers grow and decay, move and influence human civilization. Currently covering a tenth of the Earth's surface, glacier ice has shaped the landscape over millions of years by scouring away rocks and transporting and depositing debris far from its source. Glacier meltwater drives turbines and irrigates deserts, and yields mineral-rich soils as well as a wealth of valuable sand and gravel. However, glaciers also threaten human property and life. Our future is indirectly connected with the fate of glaciers and their influence on global climate and sea level. Including over 200 stunning photographs, the book takes the reader from the High-Arctic through North America, Europe, Asia, Africa, New Zealand and South America to the Antarctic. Michael Hambrey is Director of the Centre for Glaciology at the University of Wales, Aberystwyth. A past recipient of the Polar Medal, he was also given the Earth Science Editors' Outstanding Publication Award for the first edition of Glaciers (Cambridge, 1995). Hambrey is also the author of Glacial Environments (British Columbia, 1994). JÜrg Alean is Professor of Geography at the Kantonsschule ZÜrcher Unterland in BÜlach, Switzerland.

  12. Glaciers of Europe

    USGS Publications Warehouse

    Williams, Richard S.; Ferrigno, Jane G.

    1993-01-01

    ALPS: AUSTRIAN: An overview is provided on the occurrence of the glaciers in the Eastern Alps of Austria and on the climatic conditions in this area, Historical documents on the glaciers have been available since the Middle Ages. Special glaciological observations and topographic surveys of individual glaciers were initiated as early as 1846. Recent data in an inventory based on aerial photographs taken in 1969 show 925 glaciers in the Austrian Alps with a total area of 542 square kilometers. Present research topics include studies of mass and energy balance, relations of glaciers and climate, physical glaciology, a complete inventory of the glaciers, and testing of remote sensing methods. The location of the glacier areas is shown on Landsat multispectral scanner images; the improved capabilities of the Landsat thematic mapper are illustrated with an example from the Oztaler Alpen group. ALPS: SWISS: According to a glacier inventory published in 1976, which is based on aerial photography of 1973, there are 1,828 glacier units in the Swiss Alps that cover a total area of 1fl42 square kilometers. The Rhonegletscher, currently the ninth largest in the country, was one of the first to be studied in detail. Its surface has been surveyed repeatedly; velocity profiles were measured, and the fluctuations of its terminus were mapped and recorded from 1874 to 1914. Recent research on the glacier has included climatological, hydrological, and massbalance studies. Glaciological research has been conducted on various other glaciers in Switzerland concerning glacier hydrology, glacier hazards, fluctuations of glacier termini, ice mechanics, ice cores, and mass balance. Good maps are available showing the extent of glaciers from the latter decades of the 19th century. More recently, the entire country has been mapped at scales of 1:25,000, 1:50,000, 1:100,000, 1:200,000, and 1:500,000. The 1:25,000-scale series very accurately represents the glaciers as well as locates

  13. Seroprevalence of Brucella antibodies in harbor seals in Alaska, USA, with age, regional, and reproductive comparisons.

    PubMed

    Hoover-Miller, A; Dunn, J L; Field, C L; Blundell, G; Atkinson, S

    2017-09-20

    Populations of harbor seal Phoca vitulina in the Gulf of Alaska have dramatically declined during the past 4 decades. Numbers of seals in Glacier Bay, in southeast Alaska, USA, have also declined despite extensive protection. Causes of the declines and slow recovery are poorly understood. Brucellosis is a zoonotic disease that adversely affects reproduction in many domestic species. We measured the seroprevalence of Brucella antibodies in 554 harbor seals in 3 Alaska locations: Prince William Sound (PWS), Glacier Bay (GB), and Tracy Arm Fords Terror (TAFT) Wilderness Area. Objectives included testing for regional, sex, age, and female reproductive state differences in Brucella antibody seroprevalence, persistence in titers in recaptured seals, and differences in titers between mother seals and their pups. Overall, 52% of adults (AD), 53% of subadults (SA), 77% of yearlings (YRL), and 26% of <5 mo old pups were seropositive. Matched mother-pup samples were consistent with dependent pups acquiring maternal passive immunity to Brucella. Results show higher seroprevalence (64%) for AD and SA seals in the depressed and declining populations in PWS and GB than in TAFT (29%). Lactating females were less likely to be seropositive than other AD females, including pregnant females. Further research is needed to seek evidence of Brucella infection in Alaskan harbor seals, identify effects on neonatal viability, and assess zoonotic implications for Alaska Natives who rely on harbor seals for food.

  14. Mountain permafrost, glacier thinning, and slope stability - a perspective from British Columbia (and Alaska)

    NASA Astrophysics Data System (ADS)

    Geertsema, Marten

    2016-04-01

    The association of landslides with thinning glaciers and mapped, or measured, mountain permafrost is increasing. Glacier thinning debuttresses slopes and promotes joint expansion. It is relatively easy to map. Permafrost, a thermal condition, is generally not visually detectible, and is difficult to map. Much mountain permafrost may have been overlooked in hazard analysis. Identifying, and characterizing mountain permafrost, and its influence on slope instability is crucial for hazard and risk analysis in mountainous terrain. Rock falls in mountains can be the initial event in process chains. They can transform into rock avalanches, debris flows or dam burst floods, travelling many kilometres, placing infrastructure and settlements at risk.

  15. Multi-resolution Changes in the Spatial Extent of Perennial Arctic Alpine Snow and Ice Fields with Potential Archaeological Significance in the Central Brooks Range, Alaska

    NASA Astrophysics Data System (ADS)

    Tedesche, M. E.; Freeburg, A. K.; Rasic, J. T.; Ciancibelli, C.; Fassnacht, S. R.

    2015-12-01

    Perennial snow and ice fields could be an important archaeological and paleoecological resource for Gates of the Arctic National Park and Preserve in the central Brooks Range mountains of Arctic Alaska. These features may have cultural significance, as prehistoric artifacts may be frozen within the snow and ice. Globally significant discoveries have been made recently as ancient artifacts and animal dung have been found in melting alpine snow and ice patches in the Southern Yukon and Northwest Territories in Canada, the Wrangell mountains in Alaska, as well as in other areas. These sites are melting rapidly, which results in quick decay of biological materials. The summer of 2015 saw historic lows in year round snow cover extent for most of Alaska. Twenty mid to high elevation sites, including eighteen perennial snow and ice fields, and two glaciers, were surveyed in July 2015 to quantify their areal extent. This survey was accomplished by using both low flying aircraft (helicopter), as well as with on the ground in-situ (by foot) measurements. By helicopter, visual surveys were conducted within tens of meters of the surface. Sites visited by foot were surveyed for extent of snow and ice coverage, melt water hydrologic parameters and chemistry, and initial estimates of depths and delineations between snow, firn, and ice. Imagery from both historic aerial photography and from 5m resolution IKONOS satellite information were correlated with the field data. Initial results indicate good agreement in permanent snow and ice cover between field surveyed data and the 1985 to 2011 Landsat imagery-based Northwest Alaska snow persistence map created by Macander et al. (2015). The most deviation between the Macander et al. model and the field surveyed results typically occurred as an overestimate of perennial extent on the steepest aspects. These differences are either a function of image classification or due to accelerated ablation rates in perennial snow and ice coverage

  16. Ongoing calving-frontal dynamics of glaciers in the Northern Patagonia Icefield, Chile

    NASA Astrophysics Data System (ADS)

    Bown, F.; Rivera, A.; Burger, F.; Carrión, D.; Cisternas, S.; Gacitúa, G.; Pena, M.; Oberreuter, J.; Silva, R.; Uribe, J. A.; Wendt, A.; Zamora, R.

    2013-05-01

    compared with ongoing thinning rates due to higher ablation. In the long term perspective, San Rafael is a good example of the tidewater calving cycle described for several glaciers in Alaska and Patagonia. At the eastern side glaciers, frontal retreats have been bigger than at San Rafael in recent years, but in the long term (since the Little Ice Age), San Rafael experienced a much stronger frontal recession (more than 12 km). This contrasting calving behavior between eastern and western margin glaciers, is only enhancing ice losses differences, but not changing ongoing receding trends.;

  17. Spatial variations in focused exhumation along a continental-scale strike-slip fault: The Denali fault of the eastern Alaska Range

    USGS Publications Warehouse

    Benowitz, J.A.; Layer, P.W.; Armstrong, P.; Perry, S.E.; Haeussler, Peter J.; Fitzgerald, P.G.; VanLaningham, S.

    2011-01-01

    40Ar/39Ar, apatite fission-track, and apatite (U-Th)/He thermochronological techniques were used to determine the Neogene exhumation history of the topographically asymmetric eastern Alaska Range. Exhumation cooling ages range from ~33 Ma to ~18 Ma for 40Ar/39Ar biotite, ~18 Ma to ~6 Ma for K-feldspar minimum closure ages, and ~15 Ma to ~1 Ma for apatite fission-track ages, and apatite (U-Th)/He cooling ages range from ~4 Ma to ~1 Ma. There has been at least ~11 km of exhumation adjacent to the north side of Denali fault during the Neogene inferred from biotite 40Ar/39Ar thermochronology. Variations in exhumation history along and across the strike of the fault are influenced by both far-field effects and local structural irregularities. We infer deformation and rapid exhumation have been occurring in the eastern Alaska Range since at least ~22 Ma most likely related to the continued collision of the Yakutat microplate with the North American plate. The Nenana Mountain region is the late Pleistocene to Holocene (~past 1 Ma) primary locus of tectonically driven exhumation in the eastern Alaska Range, possibly related to variations in fault geometry. During the Pliocene, a marked increase in climatic instability and related global cooling is temporally correlated with an increase in exhumation rates in the eastern Alaska Range north of the Denali fault system.

  18. Lake-sediment evidence for the date of deglaciation of the Hidden Lake area, Kenai Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Rymer, Michael J.; Sims, John D.

    1982-06-01

    An abrupt environmental change is reflected in a core from Hidden Lake, Alaska, by differences in sediment type, chlorite crystallinity, and content of organic carbon and water of the sediments. This abrupt change in the sedimentary record occurred about 14,500 14C yr ago and probably marks the time of recession of the glacier from the Hidden Lake drainage basin. Deglaciation of the area was then underway, and rock flour was being deposited in the lake. After recession of the glacier from the Hidden Lake drainage basin, rock flour was no longer introduced, and organic-matter content of the sediment increased. By the dating of these changes in sediment type, we show that retreat of glaciers in this area took place significantly earlier than previously estimated; this agrees with the timing of retreat of alpine glaciers elsewhere in western North America.

  19. Co-occurrence of Pacific sleeper sharks Somniosus pacificus and harbor seals Phoca vitulina in Glacier Bay

    USGS Publications Warehouse

    Taggart, S. James; Andrews, A.G.; Mondragon, Jennifer; Mathews, E.A.

    2005-01-01

    We present evidence that Pacific sleeper sharks Somniosus pacificus co-occur with harbor seals Phoca vitulina in Glacier Bay, Alaska, and that these sharks scavenge or prey on marine mammals. In 2002, 415 stations were fished throughout Glacier Bay on a systematic sampling grid. Pacific sleeper sharks were caught at 3 of the 415 stations, and at one station a Pacific halibut Hippoglossus stenolepis was caught with a fresh bite, identified as the bite of a sleeper shark. All 3 sharks and the shark-bitten halibut were caught at stations near the mouth of Johns Hopkins Inlet, a glacial fjord with the highest concentration of seals in Glacier Bay. Using a bootstrap technique, we estimated the probability of sampling the sharks (and the shark-bitten halibut) in the vicinity of Johns Hopkins Inlet. If sharks were randomly distributed in Glacier Bay, the probability of sampling all 4 pots at the mouth of Johns Hopkins Inlet was very low (P = 0.00002). The highly non-random distribution of the sleeper sharks located near the largest harbor seal pupping and breeding colony in Glacier Bay suggests that these 2 species co-occur and may interact ecologically in or near Johns Hopkins Inlet.

  20. Climate-induced glacier and snow loss imperils alpine stream insects.

    PubMed

    Giersch, J Joseph; Hotaling, Scott; Kovach, Ryan P; Jones, Leslie A; Muhlfeld, Clint C

    2017-07-01

    Climate warming is causing rapid loss of glaciers and snowpack in mountainous regions worldwide. These changes are predicted to negatively impact the habitats of many range-restricted species, particularly endemic, mountaintop species dependent on the unique thermal and hydrologic conditions found only in glacier-fed and snow melt-driven alpine streams. Although progress has been made, existing understanding of the status, distribution, and ecology of alpine aquatic species, particularly in North America, is lacking, thereby hindering conservation and management programs. Two aquatic insects - the meltwater stonefly (Lednia tumana) and the glacier stonefly (Zapada glacier) - were recently proposed for listing under the U.S. Endangered Species Act due to climate-change-induced habitat loss. Using a large dataset (272 streams, 482 total sites) with high-resolution climate and habitat information, we describe the distribution, status, and key environmental features that limit L. tumana and Z. glacier across the northern Rocky Mountains. Lednia tumana was detected in 113 streams (175 sites) within Glacier National Park (GNP) and surrounding areas. The probability of L. tumana occurrence increased with cold stream temperatures and close proximity to glaciers and permanent snowfields. Similarly, densities of L. tumana declined with increasing distance from stream source. Zapada glacier was only detected in 10 streams (24 sites), six in GNP and four in mountain ranges up to ~600 km southwest. Our results show that both L. tumana and Z. glacier inhabit an extremely narrow distribution, restricted to short sections of cold, alpine streams often below glaciers predicted to disappear over the next two decades. Climate warming-induced glacier and snow loss clearly imperils the persistence of L. tumana and Z. glacier throughout their ranges, highlighting the role of mountaintop aquatic invertebrates as sentinels of climate change in mid-latitude regions. © 2016

  1. Proceedings of the Fourth Glacier Bay Science Symposium

    USGS Publications Warehouse

    Piatt, John F.; Gende, Scott M.

    2007-01-01

    Foreword Glacier Bay was established as a National Monument in 1925, in part to protect its unique character and natural beauty, but also to create a natural laboratory to examine evolution of the glacial landscape. Today, Glacier Bay National Park and Preserve is still a place of profound natural beauty and dynamic landscapes. It also remains a focal point for scientific research and includes continuing observations begun decades ago of glacial processes and terrestrial ecosystems. In recent years, research has focused on glacial-marine interactions and ecosystem processes that occur below the surface of the bay. In October 2004, Glacier Bay National Park convened the fourth in a series of science symposiums to provide an opportunity for researchers, managers, interpreters, educators, students and the general public to share knowledge about Glacier Bay. The Fourth Glacier Bay Science Symposium was held in Juneau, Alaska, rather than at the Park, reflecting a desire to maximize attendance and communication among a growing and diverse number of stakeholders interested in science in the park. More than 400 people attended the symposium. Participants provided 46 oral presentations and 41 posters covering a wide array of disciplines including geology, glaciology, oceanography, wildlife and fisheries biology, terrestrial and marine ecology, socio-cultural research and management issues. A panel discussion focused on the importance of connectivity in Glacier Bay research, and keynote speakers (Gary Davis and Terry Chapin) spoke of long-term monitoring and ecological processes. These proceedings include 56 papers from the symposium. A summary of the Glacier Bay Science Plan-itself a subject of a meeting during the symposium and the result of ongoing discussions between scientists and resource managers-also is provided. We hope these proceedings illustrate the diversity of completed and ongoing scientific studies, conducted within the Park. To this end, we invited all

  2. Glacier shrinkage and water resources in the Andes

    NASA Astrophysics Data System (ADS)

    Francou, Bernard; Coudrain, Anne

    For more than a century glaciers around the world have been melting as air temperatures rise due to a combination of natural processes and human activity. The disappearance of these glaciers can have wide-ranging effects, such as the creation of new natural hazards or changes in stream flow that could threaten water suppliesSome of the most dramatic melting has occurred in the Andes mountain range in South America. To highlight the climatic and glacial change in the Andes and to encourage the scientific community to strengthen the glacier observation network that stretches from Colombia to the Patagonian ice fields, the Instituto Nacional de Recursos Naturales (INRENA), Perú, and the Institute of Research and Development (IRD), France, recently organized the second Symposium on Mass Balance of Andean Glaciers in Huaráz,Perú.

  3. Annual and seasonal mass balances of Chhota Shigri Glacier (benchmark glacier, Western Himalaya), India

    NASA Astrophysics Data System (ADS)

    Mandal, Arindan; Ramanathan, Alagappan; Farooq Azam, Mohd; Wagnon, Patrick; Vincent, Christian; Linda, Anurag; Sharma, Parmanand; Angchuk, Thupstan; Bahadur Singh, Virendra; Pottakkal, Jose George; Kumar, Naveen; Soheb, Mohd

    2015-04-01

    Several studies on Himalayan glaciers have been recently initiated as they are of particular interest in terms of future water supply, regional climate change and sea-level rise. In 2002, a long-term monitoring program was initiated on Chhota Shigri Glacier (15.7 square km, 9 km long, 6263-4050 m a.s.l.) located in Lahaul and Spiti Valley, Himachal Pradesh, India. This glacier lies in the monsoon-arid transition zone (western Himalaya) and is a representative glacier in Lahaul and Spiti Valley. While annual mass balances have been measured continuously since 2002 using the glaciological method, seasonal scale observations began in 2009. The annual and seasonal mass balances were then analyzed along with meteorological conditions in order to understand the role of winter and summer balances on annual glacier-wide mass balance of Chhota Shigri glacier. During the period 2002-2013, the glacier experienced a negative glacier-wide mass balance of -0.59±0.40 m w.e. a-1 with a cumulative glaciological mass balance of -6.45 m w.e. Annual glacier-wide mass balances were negative except for four years (2004/05, 2008/09, 2009/10 and 2010/11) where it was generally close to balanced conditions. Equilibrium line altitude (ELA) for steady state condition is calculated as 4950 m a.s.l. corresponding to an accumulation area ratio (AAR) of 62% using annual glacier-wide mass balance, ELA and AAR data between 2002 and 2013. The winter glacier-wide mass balance between 2009 and 2013 ranges from a maximum value of 1.38 m w.e. in 2009/10 to a minimum value of 0.89 in 2012/13 year whereas the summer glacier-wide mass balance varies from the highest value of -0.95 m w.e. in 2010/11 to the lowest value of -1.72 m w.e. in 2011/12 year. The mean vertical mass balance gradient between 2002 and 2013 was 0.66 m w.e. (100 m)-1 quite similar to Alps, Nepalese Himalayas etc. Over debris covered area, the gradients are highly variable with a negative mean value of -2.15 m w.e. (100 m)-1 over 2002

  4. Repeat Photography of Alaskan Glaciers and Landscapes as Both Art and as a Means of Communicating Climat Change

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.

    2013-12-01

    For nearly 15 years, I have used repeat photography of Alaskan glaciers and landscapes to communicate to fellow scientists, policymakers, the media, and society that Alaskan glaciers and landscapes have been experiencing significant change in response to post-Little Ice Age climate change. I began this pursuit after being contacted by a U.S. Department of the Interior senior official who requested unequivocal and unambiguous documentation that climate change was real and underway. After considering several options as to how best respond to this challenge, I decided that if a picture is worth a thousand words, then a pair of photographs, both with the same field of view, spanning a century or more, and showing dramatic differences, would speak volumes to documenting that dynamic climate change is occurring over a very broad region of Alaska. To me, understating the obvious with photographic pairs was the best mechanism to present irrefutable, unambiguous, nonjudgmental, as well as unequivocal visual documentation that climate change was both underway and real. To date, more than 150 pairs that meet these criteria have been produced. What has surprised me most is that the many of the photographs contained in the pairs present beautiful images of stark, remote landscapes that convey the majestic nature of this dynamic region with its unique topography and landscapes. Typically, over periods of just several decades, the photographed landscapes change from black and white to blue and green. White ice becomes blue water and dark rock becomes lush vegetation. Repeat photography is a technique in which a historical photograph and a modern photograph, both having the same field of view, are compared and contrasted to quantitatively and qualitatively determine their similarities and differences. I have used this technique from both ground-based photo stations and airborne platforms at Alaskan locations in Kenai Fjords National Park, Glacier Bay National Park and Preserve

  5. 2. HORSESHOE CURVE IN GLACIER POINT ROAD NEAR GLACIER POINT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. HORSESHOE CURVE IN GLACIER POINT ROAD NEAR GLACIER POINT. HALF DOME AT CENTER REAR. LOOKING NNE. GIS N-37 43 44.3 / W-119 34 14.1 - Glacier Point Road, Between Chinquapin Flat & Glacier Point, Yosemite Village, Mariposa County, CA

  6. A summary of ERTS data applications in Alaska

    NASA Technical Reports Server (NTRS)

    Miller, J. M.; Belon, A. E.

    1974-01-01

    ERTS has proven to be an exceedingly useful tool for the preparation of urgently needed resource surveys in Alaska. For this reason the wide utilization of ERTS data by federal, state and industrial agencies in Alaska is increasingly directed toward the solution of operational problems in resource inventories, environmental surveys, and land use planning. Examples of some applications are discussed in connection with surveys of potential agricultural lands; mapping of predicted archaeological sites; permafrost terrain and aufeis mapping; snow melt enhancement from Prudhoe Bay roads; geologic interpretations correlated ith possible new petroleum fields, with earthquake activity, and with plate tectonic motion along the Denali fault system; hydrology in monitoring surging glaciers and the break-up characteristics of the Chena River watershed; sea-ice morphology correlated with marine mammal distribution; and coastal sediment plume circulation patterns.

  7. Glaciers in 21st Century Himalayan Geopolitics

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Wessels, R.; Kieffer, H. H.

    2002-05-01

    Maoist insurgency. (5) Glacier lakes are in many cases very fragile and their natural dams routinely rupture, causing devastating floods. A rising regional terrorist threat in several countries could target these dams and precipitate calamitous and terrifying results. (6) Over the next century, retreating glaciers may open new corridors for trade and human migration across the Himalaya and pave the way for possible new economic, military and political alliances in the region. (7) Glacier retreat might open new sanctuaries for terrorists and open new corridors for possible ground-based military offensive action across the HKH ranges. The documentation of glacier characteristics that may influence their trafficability, and projections of future glacier extent and behavior are relevant to wide ranging concerns of the region's inhabitants. Satellite remote sensing and mapping of glaciers is one approach to defining and monitoring the problems and opportunities presented by HKH glaciers. Global Land Ice Measurements from Space (GLIMS) is a joint USGS/NASA Pathfinder project that has formed a global consortium of glaciologists in several regional centers that are mapping and monitoring the HKH glaciers using repeat-pass ASTER and Landsat ETM+ data. We are currently building a comprehensive satellite multispectral image and GIS database that is providing detailed information on the state and rates of change of each glacier in the HKH region and other areas of the world. Merging these results with DEMs allows a predictive capability that could be useful in policy development and security planning.

  8. Geomorphic Consequences of Volcanic Eruptions in Alaska: A Review

    USGS Publications Warehouse

    Waythomas, Christopher F.

    2015-01-01

    Eruptions of Alaska volcanoes have significant and sometimes profound geomorphic consequences on surrounding landscapes and ecosystems. The effects of eruptions on the landscape can range from complete burial of surface vegetation and preexisting topography to subtle, short-term perturbations of geomorphic and ecological systems. In some cases, an eruption will allow for new landscapes to form in response to the accumulation and erosion of recently deposited volcaniclastic material. In other cases, the geomorphic response to a major eruptive event may set in motion a series of landscape changes that could take centuries to millennia to be realized. The effects of volcanic eruptions on the landscape and how these effects influence surface processes has not been a specific focus of most studies concerned with the physical volcanology of Alaska volcanoes. Thus, what is needed is a review of eruptive activity in Alaska in the context of how this activity influences the geomorphology of affected areas. To illustrate the relationship between geomorphology and volcanic activity in Alaska, several eruptions and their geomorphic impacts will be reviewed. These eruptions include the 1912 Novarupta–Katmai eruption, the 1989–1990 and 2009 eruptions of Redoubt volcano, the 2008 eruption of Kasatochi volcano, and the recent historical eruptions of Pavlof volcano. The geomorphic consequences of eruptive activity associated with these eruptions are described, and where possible, information about surface processes, rates of landscape change, and the temporal and spatial scale of impacts are discussed.A common feature of volcanoes in Alaska is their extensive cover of glacier ice, seasonal snow, or both. As a result, the generation of meltwater and a variety of sediment–water mass flows, including debris-flow lahars, hyperconcentrated-flow lahars, and sediment-laden water floods, are typical outcomes of most types of eruptive activity. Occasionally, such flows can be quite

  9. Geomorphic consequences of volcanic eruptions in Alaska: A review

    USGS Publications Warehouse

    Waythomas, Christopher F.

    2015-01-01

    Eruptions of Alaska volcanoes have significant and sometimes profound geomorphic consequences on surrounding landscapes and ecosystems. The effects of eruptions on the landscape can range from complete burial of surface vegetation and preexisting topography to subtle, short-term perturbations of geomorphic and ecological systems. In some cases, an eruption will allow for new landscapes to form in response to the accumulation and erosion of recently deposited volcaniclastic material. In other cases, the geomorphic response to a major eruptive event may set in motion a series of landscape changes that could take centuries to millennia to be realized. The effects of volcanic eruptions on the landscape and how these effects influence surface processes has not been a specific focus of most studies concerned with the physical volcanology of Alaska volcanoes. Thus, what is needed is a review of eruptive activity in Alaska in the context of how this activity influences the geomorphology of affected areas. To illustrate the relationship between geomorphology and volcanic activity in Alaska, several eruptions and their geomorphic impacts will be reviewed. These eruptions include the 1912 Novarupta–Katmai eruption, the 1989–1990 and 2009 eruptions of Redoubt volcano, the 2008 eruption of Kasatochi volcano, and the recent historical eruptions of Pavlof volcano. The geomorphic consequences of eruptive activity associated with these eruptions are described, and where possible, information about surface processes, rates of landscape change, and the temporal and spatial scale of impacts are discussed.A common feature of volcanoes in Alaska is their extensive cover of glacier ice, seasonal snow, or both. As a result, the generation of meltwater and a variety of sediment–water mass flows, including debris-flow lahars, hyperconcentrated-flow lahars, and sediment-laden water floods, are typical outcomes of most types of eruptive activity. Occasionally, such flows can be quite

  10. HORSESHOE CURVE IN GLACIER POINT ROAD NEAR GLACIER POINT. HALF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HORSESHOE CURVE IN GLACIER POINT ROAD NEAR GLACIER POINT. HALF DOME AT CENTER REAR. SAME VIEW AT CA-157-2. LOOKING NNE. GIS: N-37' 43 44.3 / W-119 34 14.1 - Glacier Point Road, Between Chinquapin Flat & Glacier Point, Yosemite Village, Mariposa County, CA

  11. The Continued Demise of Columbia Glacier: Insights On Dynamic Change

    NASA Astrophysics Data System (ADS)

    Enderlin, E. M.; Hamilton, G. S.; O'Neel, S.; Bartholomaus, T. C.

    2016-12-01

    Columbia Glacier, Alaska, has served as the archetype for the retreat phase of the tidewater glacier cycle for the past three decades. Since the mid-1980s, the terminus has retreated 16 kilometers and the two major tributaries have thinned by > 400 m. This retreat and thinning led to separation of the tributaries in the late 2000s. Since their separation, the tributaries have exhibited strikingly different dynamic behaviors over seasonal to inter-annual time scales as they continue to adjust to the long-term changes in glacier geometry. Here we use a combination of ground, airborne, and satellite remote sensing datasets to characterize the dynamic behavior of the Columbia Glacier system. We focus on the time period following tributary separation, when the observational record is most abundant, but also investigate longer-term changes in dynamics such as the reorganization of ice flow in the eastern tributary (Figure 1). From the mid 2000s through 2012, the tributaries thinned at comparable rates ( 25 m/yr) based on repeat DEM differencing. Their behavior diverged in 2012, when the eastern tributary appeared to stabilize but the western tributary continued its sustained thinning trend. Thinning resumed along the eastern tributary in late 2013, and was accompanied by modest terminus retreat and acceleration. In contrast, the rate of thinning dramatically increased along the western tributary as it began to rapidly retreat in late 2013. These changes coincided with the three-fold increase in flow speed and pronounced increase in iceberg discharge from the western tributary. Although variations in the timing and magnitude of the recent dynamic changes can be at least partially explained by differences in the geometries of the tributaries, the dynamic behavior of Columbia Glacier's major tributaries is unlikely to be totally independent of environmental perturbations (i.e., entirely driven by the long-term dynamic adjustment). To assess the influence of environmental

  12. Geologic Map of the Atlin Quadrangle, Southeastern Alaska

    USGS Publications Warehouse

    Brew, David A.; Himmelberg, Glen R.; Ford, Arthur B.

    2009-01-01

    This map presents the results of U.S. Geological Survey (USGS) geologic bedrock mapping studies in the mostly glacier covered Atlin 1:250,000-scale quadrangle, northern southeastern Alaska. These studies are part of a long-term systematic effort by the USGS to provide bedrock geologic and mineral-resource information for all of southeastern Alaska, covering all of the Tongass National Forest (including Wilderness Areas) and Glacier Bay National Park and Preserve. Some contributions to this effort are those concerned with southwesternmost part of the region, the Craig and Dixon Entrance quadrangles (Brew, 1994; 1996) and with the Wrangell-Petersburg area (Brew, 1997a-m; Brew and Grybeck, 1997; Brew and Koch, 1997). As shown on the index map (fig. 1), the study area is almost entirely in the northern Coast Mountains adjacent to British Columbia, Canada. No previous geologic map has been published for the area, although Brew and Ford (1985) included a small part of it in a preliminary compilation of the adjoining Juneau quadrangle; and Brew and others (1991a) showed the geology at 1:500,000 scale. Areas mapped nearby in British Columbia and the United States are also shown on figure 1. All of the map area is in the Coast Mountains Complex as defined by Brew and others (1995a). A comprehensive bibliography is available for this and adjacent areas (Brew, 1997n).

  13. Afghanistan Glacier Diminution

    NASA Astrophysics Data System (ADS)

    Shroder, J. F.; Bishop, M.; Haritashya, U.; Olsenholler, J.

    2008-12-01

    Glaciers in Afghanistan represent a late summer - early fall source of melt water for late season crop irrigation in a chronically drought-torn region. Precise river discharge figures associated with glacierized drainage basins are generally unavailable because of the destruction of hydrological gauging stations built in pre-war times although historic discharge data and prior (1960s) mapped glacier regions offer some analytical possibilities. The best satellite data sets for glacier-change detection are declassified Cornona and Keyhole satellite data sets, standard Landsat sources, and new ASTER images assessed in our GLIMS (Global Land Ice Measurements from Space) Regional Center for Southwest Asia (Afghanistan and Pakistan). The new hyperspectral remote sensing survey of Afghanistan completed by the US Geological Survey and the Afghanistan Ministry of Mines offers potential for future detailed assessments. Long-term climate change in southwest Asia has decreased precipitation for millennia so that glaciers, rivers and lakes have all declined from prehistoric and historic highs. As many glaciers declined in ice volume, they increased in debris cover until they were entirely debris-covered or became rock glaciers, and the ice was protected thereby from direct solar radiation, to presumably reduce ablation rates. We have made a preliminary assessment of glacier location and extent for the country, with selected, more-detailed, higher-resolution studies underway. In the Great Pamir of the Wakhan Corridor where the largest glaciers occur, we assessed fluctuations of a randomly selected 30 glaciers from 1976 to 2003. Results indicate that 28 glacier-terminus positions have retreated, and the largest average retreat rate was 36 m/yr. High albedo, non-vegetated glacier forefields formed prior to 1976, and geomorphological evidence shows apparent glacier-surface downwasting after 1976. Climatic conditions and glacier retreat have resulted in disconnection of tributary

  14. Trophic ecology of introduced populations of Alaska blackfish (Dallia pectoralis) in the Cook Inlet Basin, Alaska.

    PubMed

    Eidam, Dona M; von Hippel, Frank A; Carlson, Matthew L; Lassuy, Dennis R; López, J Andrés

    2016-07-01

    Introduced non-native fishes have the potential to substantially alter aquatic ecology in the introduced range through competition and predation. The Alaska blackfish ( Dallia pectoralis ) is a freshwater fish endemic to Chukotka and Alaska north of the Alaska Range (Beringia); the species was introduced outside of its native range to the Cook Inlet Basin of Alaska in the 1950s, where it has since become widespread. Here we characterize the diet of Alaska blackfish at three Cook Inlet Basin sites, including a lake, a stream, and a wetland. We analyze stomach plus esophageal contents to assess potential impacts on native species via competition or predation. Alaska blackfish in the Cook Inlet Basin consume a wide range of prey, with major prey consisting of epiphytic/benthic dipteran larvae, gastropods, and ostracods. Diets of the introduced populations of Alaska blackfish are similar in composition to those of native juvenile salmonids and stickleback. Thus, Alaska blackfish may affect native fish populations via competition. Fish ranked third in prey importance for both lake and stream blackfish diets but were of minor importance for wetland blackfish.

  15. Trophic ecology of introduced populations of Alaska blackfish (Dallia pectoralis) in the Cook Inlet Basin, Alaska

    PubMed Central

    Eidam, Dona M.; Carlson, Matthew L.; Lassuy, Dennis R.; López, J. Andrés

    2016-01-01

    Introduced non-native fishes have the potential to substantially alter aquatic ecology in the introduced range through competition and predation. The Alaska blackfish (Dallia pectoralis) is a freshwater fish endemic to Chukotka and Alaska north of the Alaska Range (Beringia); the species was introduced outside of its native range to the Cook Inlet Basin of Alaska in the 1950s, where it has since become widespread. Here we characterize the diet of Alaska blackfish at three Cook Inlet Basin sites, including a lake, a stream, and a wetland. We analyze stomach plus esophageal contents to assess potential impacts on native species via competition or predation. Alaska blackfish in the Cook Inlet Basin consume a wide range of prey, with major prey consisting of epiphytic/benthic dipteran larvae, gastropods, and ostracods. Diets of the introduced populations of Alaska blackfish are similar in composition to those of native juvenile salmonids and stickleback. Thus, Alaska blackfish may affect native fish populations via competition. Fish ranked third in prey importance for both lake and stream blackfish diets but were of minor importance for wetland blackfish. PMID:28082763

  16. Monitoring glacier surface seismicity in time and space using Rayleigh waves

    USGS Publications Warehouse

    Mikesell, T. D.; Van Wijk, K.; Haney, Matthew M.; Bradford, J.H.; Marshall, Hans P.; Harper, J. T.

    2012-01-01

    Sliding glaciers and brittle ice failure generate seismic body and surface wave energy characteristic to the source mechanism. Here we analyze continuous seismic recordings from an array of nine short-period passive seismometers located on Bench Glacier, Alaska (USA) (61.033°N, 145.687°W). We focus on the arrival-time and amplitude information of the dominant Rayleigh wave phase. Over a 46-hour period we detect thousands of events using a cross-correlation based event identification method. Travel-time inversion of a subset of events (7% of the total) defines an active crevasse, propagating more than 200 meters in three hours. From the Rayleigh wave amplitudes, we estimate the amount of volumetric opening along the crevasse as well as an average bulk attenuation (  = 42) for the ice in this part of the glacier. With the remaining icequake signals we establish a diurnal periodicity in seismicity, indicating that surface run-off and subglacial water pressure changes likely control the triggering of these surface events. Furthermore, we find that these events are too weak (i.e., too noisy) to locate individually. However, stacking individual events increases the signal-to-noise ratio of the waveforms, implying that these periodic sources are effectively stationary during the recording period.

  17. Mass balance, meteorological, ice motion, surface altitude, runoff, and ice thickness data at Gulkana Glacier, Alaska, 1995 balance year

    USGS Publications Warehouse

    March, Rod S.

    2000-01-01

    The 1995 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier basin were evaluated on the basis of meteorological, hydrological, and glaciological data obtained in the basin. Averaged over the glacier, the measured winter snow balance was 0.94 meter on April 19, 1995, 0.6 standard deviation below the long-term average; the maximum winter snow balance, 0.94 meter, was reached on April 25, 1995; the net balance (from September 18, 1994 to August 29, 1995) was -0.70 meter, 0.76 standard deviation below the long-term average. The annual balance (October 1, 1994, to September 30, 1995) was -0.86 meter. Ice-surface motion and altitude changes measured at three index sites document seasonal ice speed and glacier-thickness changes. Annual stream runoff was 2.05 meters averaged over the basin, approximately equal to the long-term average. The 1976 ice-thickness data are reported from a single site near the highest measurement site (180 meters thick) and from two glacier cross profiles near the mid-glacier (270 meters thick on centerline) and low glacier (150 meters thick on centerline) measurement sites. A new area-altitude distribution determined from 1993 photogrammetry is reported. Area-averaged balances are reported from both the 1967 and 1993 area-altitude distribution so the reader may directly see the effect of the update. Briefly, loss of ablation area between 1967 and 1993 results in a larger weighting being applied to data from the upper glacier site and hence, increases calculated area-averaged balances. The balance increase is of the order of 15 percent for net balance.

  18. Crustal implications of bedrock geology along the Trans-Alaska Crustal Transect (TACT) in the Brooks Range, northern Alaska

    USGS Publications Warehouse

    Moore, Thomas E.; Wallace, W.K.; Mull, C.G.; Adams, K.E.; Plafker, G.; Nokleberg, W.J.

    1997-01-01

    Geologic mapping of the Trans-Alaska Crustal Transect (TACT) project along the Dalton Highway in northern Alaska indicates that the Endicott Mountains allochthon and the Hammond terrane compose a combined allochthon that was thrust northward at least 90 km in the Early Cretaceous. The basal thrust of the combined allochthon climbs up section in the hanging wall from a ductile shear zone, in the south through lower Paleozoic rocks of the Hammond terrane and into Upper Devonian rocks of the Endicott Mountains allochthon at the Mount Doonerak antiform, culminating in Early Cretaceous shale in the northern foothills of the Brooks Range. Footwall rocks north of the Mount Doonerak antiform are everywhere parautochthonous Permian and Triassic shale of the North Slope terrane rather than Jurassic and Lower Cretaceous strata of the Colville Basin as shown in most other tectonic models of the central Brooks Range. Stratigraphic and structural relations suggest that this thrust was the basal detachment for Early Cretaceous deformation. Younger structures, such as the Tertiary Mount Doonerak antiform, deform the Early Cretaceous structures and are cored by thrusts that root at a depth of about 10 to 30 km along a deeper detachment than the Early Cretaceous detachment. The Brooks Range, therefore, exposes (1) an Early Cretaceous thin-skinned deformational belt developed during arc-continent collision and (2) a mainly Tertiary thick-skinned orogen that is probably the northward continuation of the Rocky Mountains erogenic belt. A down-to-the-south zone of both ductile and brittle normal faulting along the southern margin of the Brooks Range probably formed in the mid-Cretaceous by extensional exhumation of the Early Cretaceous contractional deformation. copyright. Published in 1997 by the American Geophysical Union.

  19. How do glacier inventory data aid global glacier assessments and projections?

    NASA Astrophysics Data System (ADS)

    Hock, R.

    2017-12-01

    Large-scale glacier modeling relies heavily on datasets that are collected by many individuals across the globe, but managed and maintained in a coordinated fashion by international data centers. The Global Terrestrial Network for Glaciers (GTN-G) provides the framework for coordinating and making available a suite of data sets such as the Randolph Glacier Inventory (RGI), the Glacier Thickness Dataset or the World Glacier Inventory (WGI). These datasets have greatly increased our ability to assess global-scale glacier mass changes. These data have also been vital for projecting the glacier mass changes of all mountain glaciers in the world outside the Greenland and Antarctic ice sheet, a total >200,000 glaciers covering an area of more than 700,000 km2. Using forcing from 8 to 15 GCMs and 4 different emission scenarios, global-scale glacier evolution models project multi-model mean net mass losses of all glaciers between 7 cm and 24 cm sea-level equivalent by the end of the 21st century. Projected mass losses vary greatly depending on the choice of the forcing climate and emission scenario. Insufficiently constrained model parameters likely are an important reason for large differences found among these studies even when forced by the same emission scenario, especially on regional scales.

  20. Listening to Glaciers: Passive hydroacoustics near marine-terminating glaciers

    USGS Publications Warehouse

    Pettit, E.C.; Nystuen, J.A.; O'Neel, Shad

    2012-01-01

    The catastrophic breakup of the Larsen B Ice Shelf in the Weddell Sea in 2002 paints a vivid portrait of the effects of glacier-climate interactions. This event, along with other unexpected episodes of rapid mass loss from marine-terminating glaciers (i.e., tidewater glaciers, outlet glaciers, ice streams, ice shelves) sparked intensified study of the boundaries where marine-terminating glaciers interact with the ocean. These dynamic and dangerous boundaries require creative methods of observation and measurement. Toward this effort, we take advantage of the exceptional sound-propagating properties of seawater to record and interpret sounds generated at these glacial ice-ocean boundaries from distances safe for instrument deployment and operation.

  1. Evolving force balance at Columbia Glacier, Alaska, during its rapid retreat

    USGS Publications Warehouse

    O'Neel, S.; Pfeffer, W.T.; Krimmel, R.; Meier, M.

    2005-01-01

    Changes in driving and resistive stresses play an essential role in governing the buoyancy forces that are important controls on the speed and irreversibility of tidewater glacier retreats. We describe changes in geometry, velocity, and strain rate and present a top-down force balance analysis performed over the lower reach of Columbia Glacier. Our analysis uses new measurements and estimates of basal topography and photogrammetric surface velocity measurements made between 1977 and 2001, while assuming depth-independent strain. Sensitivity tests show that the method is robust and insensitive to small changes in the calculation parameters. Spatial distributions of ice speed show little correspondence with driving stress. Instead, spatial patterns of ice speed exhibit a nonlinear correspondence with basal drag. Primary resistance to flow comes from basal drag, but lateral drag becomes increasingly more important throughout the retreat, which may account for observed increases in speed. Maximum basal drag is always located in a prominent constriction located ~12 km upstream from the preretreat terminus. Once the terminus retreated into deep water off the terminal moraine marking the modern maximum extent, the upstream location of this maximum basal drag helped to promote thinning and decrease effective pressure in the lower region by limiting replenishing ice flow from upstream. An increase in both ice velocity and calving resulted, initiating what appears to be an irreversible retreat. Copyright 2005 by the American Geophysical Union.

  2. Controls of air temperature variability over an Alpine Glacier

    NASA Astrophysics Data System (ADS)

    Shaw, Thomas; Brock, Ben; Ayala, Álvaro; Rutter, Nick

    2016-04-01

    Near surface air temperature (Ta) is one of the most important controls on energy exchange between a glacier surface and the overlying atmosphere. However, not enough detail is known about the controls on Ta across a glacier due to sparse data availability. Recent work has provided insights into variability of Ta along glacier centre-lines in different parts of the world, yet there is still a limited understanding of off-centreline variability in Ta and how best to estimate it from distant off-glacier locations. We present a new dataset of distributed 2m Ta records for the Tsanteleina Glacier in Northwest Italy from July-September, 2015. Data provide detailed information of lateral (across-glacier) and centre-line variations in Ta, with ~20,000 hourly observations from 17 locations. The suitability of different vertical temperature gradients (VTGs) in estimating air temperature is considered under a range of meteorological conditions and from different forcing locations. A key finding is that local VTGs account for a lot of Ta variability under a broad range of climatic conditions. However, across-glacier variability is found to be significant, particularly for high ambient temperatures and for localised topographic depressions. The relationship of spatial Ta patterns with regional-scale reanalysis data and alternative Ta estimation methodologies are also presented. This work improves the knowledge of local scale Ta variations and their importance to melt modelling.

  3. Nesting by Golden Eagles on the North Slope of the Brooks Range in Northeastern Alaska

    USGS Publications Warehouse

    Young, Donald D.; McIntyre, Carol L.; Bente, Peter J.; McCabe, Thomas R.; Ambrose, Robert E.

    1995-01-01

    Twenty-two Golden Eagle (Aquila chrysaetos) nesting territories and 31 occupied eagle nests were documented on the north slope of the Brooks Range in northeastern Alaska, 1988-1990, in an area previously thought to be marginal breeding habitat for eagles. The mean number of young/successful nest was 1.25 in 1988, 1.27 in 1989, and 1.13 in 1990; means did not differ significantly among years. Eighty percent (20/25) of the nestlings for which age was estimated were assumed to have successfully fledged. Nesting success was 79% (11/14) in 1989, the only year nesting success could be determined. Laying dates ranged from 23 March (1990) to 11 May (1989) with mean estimated laying dates differing significantly among years. Annual variation in nesting phenology coincided with annual differences in snow accumulations during spring. These results indicate that Golden Eagles consistently and successfully breed at the northern extent of their range in Alaska, although, productivity may be lower than that for eagles at more southern latitudes.

  4. Neoglacial fluctuations of Deming Glacier, Mt. Baker, Washington USA.

    NASA Astrophysics Data System (ADS)

    Osborn, G.; Menounos, B.; Scott, K.; Clague, J. J.; Tucker, D.; Riedel, J.; Davis, P.

    2007-12-01

    Deming Glacier flows from the upper west slopes of Mt. Baker, a stratovolcano in the Cascade Range of Washington, USA. The north and south lateral moraines of Deming Glacier are composed of at least four tills separated by layers of detrital wood and sheared stumps in growth position. The stratigraphy records fluctuations of the glacier during the Holocene. The outer ten rings of an in situ stump from the middle wood layer, which is about 40 m below the north lateral moraine crest and 1.2 km downvalley from the present glacier terminus, yielded an age of 1750 ± 50~~ 14C yr BP [1810-1550 cal yr BP]. The stump revealed at least 300 rings and thus records a period of landscape stability and relatively restricted glaciation for several hundred years prior to ca. 1750 14C yr BP . Samples from the lowest wood layer also have been submitted for radiocarbon dating. Outer rings of detrital wood samples collected from two wood mats exposed in the south lateral moraine, 2.3 km downvalley of the glacier terminus, returned radiocarbon ages of 1600 ± 30~~ 14C yr BP [1550- 1410 cal yr BP] and 430 ± 30~~ 14C yr BP [AD 1420-1620]. These data indicate that Deming Glacier advanced over a vegetated moraine sometime after 1810 cal yr BP to a position less extensive that it achieved at the peak of the Little Ice Age. The glacier then receded before it began its final and most extensive Holocene advance after AD 1420. The older advance is correlative with the 'First Millennium AD' advance, recently recognized throughout western North America. The younger advance coincides with an advance of Mt. Baker's Easton Glacier [AD 1430-1630], and advances of many alpine glaciers elsewhere in western North America. Our data suggest that glaciers on Mt. Baker fluctuated in a similar manner to alpine glaciers in the Coast Mountains of British Columbia and in other mountain ranges of northwest North America during Neoglaciation.

  5. New Methodology for Computing Subaerial Landslide-Tsunamis: Application to the 2015 Tyndall Glacier Landslide, Alaska

    NASA Astrophysics Data System (ADS)

    George, D. L.; Iverson, R. M.; Cannon, C. M.

    2016-12-01

    Landslide-generated tsunamis pose significant hazards to coastal communities and infrastructure, but developing models to assess these hazards presents challenges beyond those confronted when modeling seismically generated tsunamis. We present a new methodology in which our depth-averaged two-phase model D-Claw (Proc. Roy. Soc. A, 2014, doi: 10.1098/rspa.2013.0819 and doi:10.1098/rspa.2013.0820) is used to simulate all stages of landslide dynamics and subsequent tsunami generation and propagation. D-Claw was developed to simulate landslides and debris-flows, but if granular solids are absent, then the D-Claw equations reduce to the shallow-water equations commonly used to model tsunamis. Because the model describes the evolution of solid and fluid volume fractions, it treats both landslides and tsunamis as special cases of a more general class of phenomena, and the landslide and tsunami can be simulated as a single-layer continuum with spatially and temporally evolving solid-grain concentrations. This seamless approach accommodates wave generation via mass displacement and longitudinal momentum transfer, the dominant mechanisms producing impulse waves when large subaerial landslides impact relatively shallow bodies of water. To test our methodology, we used D-Claw to model a large subaerial landslide and resulting tsunami that occurred on October, 17, 2015, in Taan Fjord near the terminus of Tyndall Glacier, Alaska. The estimated landslide volume derived from radiated long-period seismicity (C. Stark (2015), Abstract EP51D-08, AGU Fall Meeting) was about 70-80 million cubic meters. Guided by satellite imagery and this volume estimate, we inferred an approximate landslide basal slip surface, and we used material property values identical to those used in our previous modeling of the 2014 Oso, Washington, landslide. With these inputs the modeled tsunami inundation patterns on shorelines compare well with observations derived from satellite imagery.

  6. Summary of Quaternary geology of the Municipality of Anchorage, Alaska

    USGS Publications Warehouse

    Schmoll, H.R.; Yehle, L.A.; Updike, R.G.

    1999-01-01

    Quaternary geology of the Upper Cook Inlet region is dominated by deposits of glacier retreats that followed repeated advances from both adjacent and more distant mountains. At several levels high on the mountains, there are remnant glacial deposits and other features of middle or older Pleistocene age. Late Pleistocene lateral moraines along the Chugach Mountain front represent successively younger positions of ice retreat from the last glacial maximum. As the trunk glacier retreated northeastward up the Anchorage lowland, Cook Inlet transgressed the area, depositing the Bootlegger Cove Formation and Tudor Road deposits. The glacier then readvanced to form the latest Pleistocene Elmendorf Moraine, a prominent feature that trends across the Anchorage lowland. Extensive alluvium was deposited both concurrently and somewhat later as Cook Inlet regressed. Mountain valleys contain (1) locally preserved moraines possibly of early Holocene age; (2) poorly preserved moraine remnants of older late Holocene age; and (3) well-preserved moraines formed mainly during the Little Ice Age. Glaciers still occupy large parts of the mountains, the upper ends of some mountain valleys, and small cirques. Holocene landslide deposits, including those formed during the great Alaska earthquake of 1964, occur throughout the area, especially along bluffs containing the Bootlegger Cove Formation.

  7. Glaciers of South America

    USGS Publications Warehouse

    Williams, Richard S.; Ferrigno, Jane G.

    1998-01-01

    Landsat images, together with maps and aerial photographs, have been used to produce glacier inventories, define glacier locations, and study glacier dynamics in the countries of South America, along with the Andes Mountains. In Venezuela, Colombia, Ecuador, and Bolivia, the small glaciers have been undergoing extensive glacier recession since the late 1800's. Glacier-related hazards (outburst floods, mud flows, and debris avalanches) occur in Colombia, in Ecuador, and associated with the more extensive (2,600 km2) glaciers of Peru. The largest area of glacier ice is found in Argentina and Chile, including the northern Patagonian ice field (about 4,200 km2) and the southern Patagonian ice field (about 13,000 km2), the largest glacier in the Southern Hemisphere outside Antarctica.

  8. Tectonochemistry of the Brooks Range Ophiolite, Alaska

    NASA Astrophysics Data System (ADS)

    Biasi, J.; Asimow, P. D.; Harris, R. A.

    2017-12-01

    The Brooks Range Ophiolite (BRO), recently estimated to be 1800km2 in area, is the largest ophiolite in the Western Hemisphere. However, due to its remote location, it remains one of the least studied. Mineral exploration and reconnaissance-level mapping of the ophiolite were done in the 1970s and 1980s. Some chemical analyses were also performed, but since that time the BRO has received little attention. Over the subsequent 25+ years, the study of ophiolites has advanced greatly. These early studies found that the BRO lies in the structurally highest position in the Brooks Range, and its obduction probably coincided with the collision between the Koyukuk Arc and the Arctic-Alaska continental margin. It is therefore important to determine the tectonic setting in which the BRO formed if one wants to understand the tectonic history of the Northern Cordillera during the Jurassic/Cretaceous. Here we present new tectonochemistry data from the BRO. This includes whole-rock data (via XRF), trace element data (via XRF and ICP-MS), and mineral chemistries (via Electron Microprobe). Using immobile element fingerprinting, we constrain the tectonic setting in which the BRO formed and how this information ties in with other events in the Northern Cordillera's history. The fingerprinting results are supplemented by Cr-in-spinel data and Al-in-olivine thermometry.

  9. Quantification and Analysis of Icebergs in a Tidewater Glacier Fjord Using an Object-Based Approach.

    PubMed

    McNabb, Robert W; Womble, Jamie N; Prakash, Anupma; Gens, Rudiger; Haselwimmer, Christian E

    2016-01-01

    Tidewater glaciers are glaciers that terminate in, and calve icebergs into, the ocean. In addition to the influence that tidewater glaciers have on physical and chemical oceanography, floating icebergs serve as habitat for marine animals such as harbor seals (Phoca vitulina richardii). The availability and spatial distribution of glacier ice in the fjords is likely a key environmental variable that influences the abundance and distribution of selected marine mammals; however, the amount of ice and the fine-scale characteristics of ice in fjords have not been systematically quantified. Given the predicted changes in glacier habitat, there is a need for the development of methods that could be broadly applied to quantify changes in available ice habitat in tidewater glacier fjords. We present a case study to describe a novel method that uses object-based image analysis (OBIA) to classify floating glacier ice in a tidewater glacier fjord from high-resolution aerial digital imagery. Our objectives were to (i) develop workflows and rule sets to classify high spatial resolution airborne imagery of floating glacier ice; (ii) quantify the amount and fine-scale characteristics of floating glacier ice; (iii) and develop processes for automating the object-based analysis of floating glacier ice for large number of images from a representative survey day during June 2007 in Johns Hopkins Inlet (JHI), a tidewater glacier fjord in Glacier Bay National Park, southeastern Alaska. On 18 June 2007, JHI was comprised of brash ice ([Formula: see text] = 45.2%, SD = 41.5%), water ([Formula: see text] = 52.7%, SD = 42.3%), and icebergs ([Formula: see text] = 2.1%, SD = 1.4%). Average iceberg size per scene was 5.7 m2 (SD = 2.6 m2). We estimate the total area (± uncertainty) of iceberg habitat in the fjord to be 455,400 ± 123,000 m2. The method works well for classifying icebergs across scenes (classification accuracy of 75.6%); the largest classification errors occur in areas with

  10. Quantification and Analysis of Icebergs in a Tidewater Glacier Fjord Using an Object-Based Approach

    PubMed Central

    McNabb, Robert W.; Womble, Jamie N.; Prakash, Anupma; Gens, Rudiger; Haselwimmer, Christian E.

    2016-01-01

    Tidewater glaciers are glaciers that terminate in, and calve icebergs into, the ocean. In addition to the influence that tidewater glaciers have on physical and chemical oceanography, floating icebergs serve as habitat for marine animals such as harbor seals (Phoca vitulina richardii). The availability and spatial distribution of glacier ice in the fjords is likely a key environmental variable that influences the abundance and distribution of selected marine mammals; however, the amount of ice and the fine-scale characteristics of ice in fjords have not been systematically quantified. Given the predicted changes in glacier habitat, there is a need for the development of methods that could be broadly applied to quantify changes in available ice habitat in tidewater glacier fjords. We present a case study to describe a novel method that uses object-based image analysis (OBIA) to classify floating glacier ice in a tidewater glacier fjord from high-resolution aerial digital imagery. Our objectives were to (i) develop workflows and rule sets to classify high spatial resolution airborne imagery of floating glacier ice; (ii) quantify the amount and fine-scale characteristics of floating glacier ice; (iii) and develop processes for automating the object-based analysis of floating glacier ice for large number of images from a representative survey day during June 2007 in Johns Hopkins Inlet (JHI), a tidewater glacier fjord in Glacier Bay National Park, southeastern Alaska. On 18 June 2007, JHI was comprised of brash ice (x¯ = 45.2%, SD = 41.5%), water (x¯ = 52.7%, SD = 42.3%), and icebergs (x¯ = 2.1%, SD = 1.4%). Average iceberg size per scene was 5.7 m2 (SD = 2.6 m2). We estimate the total area (± uncertainty) of iceberg habitat in the fjord to be 455,400 ± 123,000 m2. The method works well for classifying icebergs across scenes (classification accuracy of 75.6%); the largest classification errors occur in areas with densely-packed ice, low contrast between

  11. Relict rock glaciers in alpine catchments: A regional study in Central Austria

    NASA Astrophysics Data System (ADS)

    Kellerer-Pirklbauer, Andreas; Pauritsch, Marcus; Winkler, Gerfried

    2013-04-01

    Alpine catchments represent an important freshwater source in many regions. Catchments in the subalpine to nival altitudinal levels are generally characterised by higher precipitation, lower evapotranspiration and consequently higher discharge rates compared to lower elevated areas of the montane and foothill levels of the same region. Particularly in crystalline mountain regions in the mid- to high latitudes glacial and periglacial sediments cover larger areas and form important aquifers in alpine catchments. Typical periglacial landforms in mountain areas are rock glaciers. Relict rock glaciers consist of sediment accumulations without permafrost at present. This rock glacier type has a strong influence on water storage capacities and discharge behaviour of the catchments. The hydraulic properties of rock glaciers have a positive impact on flood-risk reduction and the riparian ecology below rock glacier springs during dry periods. Furthermore, the exceptional high discharge rates at springs at the front of relict rock glaciers compared to nearby non-rock glacier springs are also of economic interest. Knowledge about morphometric characteristics of rock glacier catchments helps to increase the understanding of the groundwater system and discharge dynamics of rock glaciers. In this context the main objectives of our study are (a) to assess and quantitatively describe rock glacier catchments at a regional scale by analysing different morphometric parameters of the catchments and (b) to combine the rock glacier catchment properties with water balance data. In doing so, at first an inventory of 295 rock glacier catchments was established for the 2440 km² large study area (Niedere Tauern Range, Styria) in Central Austria ranging from 590 to 2862 m a.s.l.. In a second step, the inventory data were combined with area-wide precipitation, discharge and evapotranspiration data. Results reveal that 108 km² or 4.4% of the entire study area belongs to rock glacier catchments

  12. Sea otter studies in Glacier Bay National Park and Preserve: Aerial surveys, foraging observations, and intertidal clam sampling

    USGS Publications Warehouse

    Bodkin, James L.; Kloecker, Kimberly A.; Esslinger, George G.; Monson, Daniel H.; DeGroot, J.D.

    2001-01-01

    Following translocations to the outer coast of Southeast Alaska in 1965, sea otters have been expanding their range and increasing in abundance. We began conducting surveys for sea otters in Cross Sound, Icy Strait and Glacier Bay, Alaska in 1994, following initial reports of their presence in Glacier Bay in 1993. Since 1995, the number of sea otters in Glacier Bay proper has increased from about 5 to more than 500. Between 1993 and 1997 sea otters were apparently only occasional visitors to Glacier Bay, but in 1998 long-term residence was established as indicated by the presence of adult females and their dependent pups. Sea otter distribution is limited to the Lower Bay, south of Sandy Cove, and is not continuous within that area. Concentration occur in the vicinity of Sita Reef and Boulder Island and between Pt. Carolus and Rush Pt. on the west side of the Bay (Figure 1). We describe the diet of sea otters in Glacier Bay and south Icy Strait through visual observations of prey during >4,000 successful forage dives. In 2,399 successful foraging dives observed in Glacier Bay proper, diet consisted of 40% clam, 21% urchins, 18% mussel, 4% crab, 5% other and 12% unidentified. Most prey recovered by sea otters are commercially, socially, or ecological important species. Species of clam are primarily Saxidomus gigantea, Protothaca staminea, and Serripes groenlandicus. Urchins are primarily Strongylocentrotus droebachiensis while both mussles, Modiolus modiolus and Mytilus trossulus, are taken. Crabs include species of Cancer, Chinoecetes, Paralithodes, and Telmessus. Although we characterize diet at broad geographic scales, we found diet to vary between sites separated by as little as several hundred meters. Dietary variation among and within sites can reflect differences in prey availability and individual choice.We estimated species composition, density, biomass, and sizes of intertidal clams at 59 sites in Glacier Bay, 14 sites in Idaho Inlet, 12 sites in Port

  13. Application of photogrammetry to the study of volcano-glacier interactions on Mount Wrangell, Alaska

    NASA Technical Reports Server (NTRS)

    Benson, C. S.; Follett, A. B.

    1986-01-01

    Most Alaskan volcanoes are glacier covered and provide excellent opportunities to study interactions between glaciers and volcanoes. The present paper is concerned with such a study, taking into account the Mt. Wrangell (4317 m) which is the northernmost active volcano (solfatara activity) on the Pacific Rim (62 deg N; 144 deg W). While the first photographs on the summit of Mt. Wrangell were published more than 75 years ago, research there began in 1953 and 1954. Satellite images reveal activity at the summit of Mt. Wrangell. However, the resolution is not sufficient for conducting important measurements regarding ice volume losses. For this reason, vertical aerial photographs of the summit were obtained, and a field trip to the summit was conducted. Aspects of photogrammetry are discussed, taking into account questions of ground control, aerial photography, topographic mapping, digital cross sections, and orthophotos.

  14. The Greater Caucasus Glacier Inventory (Russia, Georgia and Azerbaijan)

    NASA Astrophysics Data System (ADS)

    Tielidze, Levan G.; Wheate, Roger D.

    2018-01-01

    There have been numerous studies of glaciers in the Greater Caucasus, but none that have generated a modern glacier database across the whole mountain range. Here, we present an updated and expanded glacier inventory at three time periods (1960, 1986, 2014) covering the entire Greater Caucasus. Large-scale topographic maps and satellite imagery (Corona, Landsat 5, Landsat 8 and ASTER) were used to conduct a remote-sensing survey of glacier change, and the 30 m resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM; 17 November 2011) was used to determine the aspect, slope and height distribution of glaciers. Glacier margins were mapped manually and reveal that in 1960 the mountains contained 2349 glaciers with a total glacier surface area of 1674.9 ± 70.4 km2. By 1986, glacier surface area had decreased to 1482.1 ± 64.4 km2 (2209 glaciers), and by 2014 to 1193.2 ± 54.0 km2 (2020 glaciers). This represents a 28.8 ± 4.4 % (481 ± 21.2 km2) or 0.53 % yr-1 reduction in total glacier surface area between 1960 and 2014 and an increase in the rate of area loss since 1986 (0.69 % yr-1) compared to 1960-1986 (0.44 % yr-1). Glacier mean size decreased from 0.70 km2 in 1960 to 0.66 km2 in 1986 and to 0.57 km2 in 2014. This new glacier inventory has been submitted to the Global Land Ice Measurements from Space (GLIMS) database and can be used as a basis data set for future studies.

  15. Erosion by an Alpine glacier.

    PubMed

    Herman, Frédéric; Beyssac, Olivier; Brughelli, Mattia; Lane, Stuart N; Leprince, Sébastien; Adatte, Thierry; Lin, Jiao Y Y; Avouac, Jean-Philippe; Cox, Simon C

    2015-10-09

    Assessing the impact of glaciation on Earth's surface requires understanding glacial erosion processes. Developing erosion theories is challenging because of the complex nature of the erosion processes and the difficulty of examining the ice/bedrock interface of contemporary glaciers. We demonstrate that the glacial erosion rate is proportional to the ice-sliding velocity squared, by quantifying spatial variations in ice-sliding velocity and the erosion rate of a fast-flowing Alpine glacier. The nonlinear behavior implies a high erosion sensitivity to small variations in topographic slope and precipitation. A nonlinear rate law suggests that abrasion may dominate over other erosion processes in fast-flowing glaciers. It may also explain the wide range of observed glacial erosion rates and, in part, the impact of glaciation on mountainous landscapes during the past few million years. Copyright © 2015, American Association for the Advancement of Science.

  16. Evaluate ERTS imagery for mapping and detection of changes of snowcover on land and on glaciers. [Alaska and Washington

    NASA Technical Reports Server (NTRS)

    Meier, M. F. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A new procedure to determine snowcovered areas has been devised. Aside from problems in heavily forested areas this method shows promise in predicting snowmelt runoff from mountain areas and will also assist in energy balance modeling of large snowfields. Snowcover results compare favorably with measurements made by high altitude aircraft photography. Changes in snowcover in areas as small as 3 x 5 km can be determined from ERTS-1 images by both optical and electronic methods. Snowcover changes determined by these two methods in the experimental South Cascade Glacier Basin were verified by field mapping. Image enahancement techniques on ERTS-1 images of large Alaskan glaciers (the Hubbard, Yentna, and Kahiltna) have given new insights into the large-scale structures and flow dynamics of these potentially hazardous glaciers. The Hubbard Glacier, in particular, is one which poses a threat to man and should be monitored for future changes.

  17. Internationally coordinated glacier monitoring: strategy and datasets

    NASA Astrophysics Data System (ADS)

    Hoelzle, Martin; Armstrong, Richard; Fetterer, Florence; Gärtner-Roer, Isabelle; Haeberli, Wilfried; Kääb, Andreas; Kargel, Jeff; Nussbaumer, Samuel; Paul, Frank; Raup, Bruce; Zemp, Michael

    2014-05-01

    (c) the Randolph Glacier Inventory (RGI), a new and globally complete digital dataset of outlines from about 180,000 glaciers with some meta-information, which has been used for many applications relating to the IPCC AR5 report. Concerning glacier changes, a database (Fluctuations of Glaciers) exists containing information about mass balance, front variations including past reconstructed time series, geodetic changes and special events. Annual mass balance reporting contains information for about 125 glaciers with a subset of 37 glaciers with continuous observational series since 1980 or earlier. Front variation observations of around 1800 glaciers are available from most of the mountain ranges world-wide. This database was recently updated with 26 glaciers having an unprecedented dataset of length changes from from reconstructions of well-dated historical evidence going back as far as the 16th century. Geodetic observations of about 430 glaciers are available. The database is completed by a dataset containing information on special events including glacier surges, glacier lake outbursts, ice avalanches, eruptions of ice-clad volcanoes, etc. related to about 200 glaciers. A special database of glacier photographs contains 13,000 pictures from around 500 glaciers, some of them dating back to the 19th century. A key challenge is to combine and extend the traditional observations with fast evolving datasets from new technologies.

  18. Evaluate ERTS imagery for mapping and detection of changes of snowcover on land and on glaciers

    NASA Technical Reports Server (NTRS)

    Meier, M. F. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Preliminary results on the feasibility of mapping snow cover extent have been obtained from a limited number of ERTS-1 images of mountains in Alaska, British Columbia, and Washington. The snowline on land can be readily distinguished, except in heavy forest where such distinction appears to be virtually impossible. The snowline on very large glaciers can also be distinguished remarkably easily, leading to a convenient way to measure glacier accumulation area ratios or equilibrium line altitude. Monitoring of large surging glaciers appears to be possible, but only through observation of a change in area and/or medial moraine extent. Under certain conditions, ERTS-1 imagery appears to have high potential for mapping snow cover in mountainous areas. Distinction between snow and clouds appears to require use of the human eye, but in a cloud-free scene the snow cover is sufficiently distinct to allow use of automated techniques. This technique may prove very useful as an aid in the monitoring of the snowpack water resource and the prediction of summer snowmelt runoff volume.

  19. Mercury distribution and deposition in glacier snow over western China.

    PubMed

    Zhang, Qianggong; Huang, Jie; Wang, Feiyue; Mark, Loewen; Xu, Jianzhong; Armstrong, Debbie; Li, Chaoliu; Zhang, Yulan; Kang, Shichang

    2012-05-15

    Western China is home to the largest aggregate of glaciers outside the polar regions, yet little is known about how the glaciers in this area affect the transport and cycling of mercury (Hg) regionally and globally. From 2005 to 2010, extensive glacier snow sampling campaigns were carried out in 14 snowpits from 9 glaciers over western China, and the vertical distribution profiles of Hg were obtained. The Total Hg (THg) concentrations in the glacier snow ranged from <1 to 43.6 ng L(-1), and exhibited clear seasonal variations with lower values in summer than in winter. Spatially, higher THg concentrations were typically observed in glacier snows from the northern region where atmospheric particulate loading is comparably high. Glacier snowpit Hg was largely dependent on particulate matters and was associated with particulate Hg, which is less prone to postdepositional changes, thus providing a valuable record of atmospheric Hg deposition. Estimated atmospheric Hg depositional fluxes ranged from 0.74 to 7.89 μg m(-2) yr(-1), agreeing very well with the global natural values, but are one to two orders of magnitude lower than that of the neighboring East Asia. Elevated Hg concentrations were observed in refrozen ice layers in several snowpits subjected to intense melt, indicating that Hg can be potentially released to meltwater.

  20. Pluri-decadal (1955-2014) evolution of glacier-rock glacier transitional landforms in the central Andes of Chile (30-33° S)

    NASA Astrophysics Data System (ADS)

    Monnier, Sébastien; Kinnard, Christophe

    2017-08-01

    Three glacier-rock glacier transitional landforms in the central Andes of Chile are investigated over the last decades in order to highlight and question the significance of their landscape and flow dynamics. Historical (1955-2000) aerial photos and contemporary (> 2000) Geoeye satellite images were used together with common processing operations, including imagery orthorectification, digital elevation model generation, and image feature tracking. At each site, the rock glacier morphology area, thermokarst area, elevation changes, and horizontal surface displacements were mapped. The evolution of the landforms over the study period is remarkable, with rapid landscape changes, particularly an expansion of rock glacier morphology areas. Elevation changes were heterogeneous, especially in debris-covered glacier areas with large heaving or lowering up to more than ±1 m yr-1. The use of image feature tracking highlighted spatially coherent flow vector patterns over rock glacier areas and, at two of the three sites, their expansion over the studied period; debris-covered glacier areas are characterized by a lack of movement detection and/or chaotic displacement patterns reflecting thermokarst degradation; mean landform displacement speeds ranged between 0.50 and 1.10 m yr-1 and exhibited a decreasing trend over the studied period. One important highlight of this study is that, especially in persisting cold conditions, rock glaciers can develop upward at the expense of debris-covered glaciers. Two of the studied landforms initially (prior to the study period) developed from an alternation between glacial advances and rock glacier development phases. The other landform is a small debris-covered glacier having evolved into a rock glacier over the last half-century. Based on these results it is proposed that morphological and dynamical interactions between glaciers and permafrost and their resulting hybrid landscapes may enhance the resilience of the mountain cryosphere

  1. Early and late Holocene glacial fluctuations and tephrostratigraphy, Cabin Lake, Alaska

    USGS Publications Warehouse

    Zander, Paul D.; Kaufman, Darrell S.; Kuehn, Stephen C.; Wallace, Kristi L.; Anderson, R. Scott

    2013-01-01

    Marked changes in sediment types deposited in Cabin Lake, near Cordova, Alaska, represent environmental shifts during the early and late Holocene, including fluctuations in the terminal position of Sheridan Glacier. Cabin Lake is situated to receive meltwater during periods when the outwash plain of the advancing Sheridan Glacier had aggraded. A brief early Holocene advance from 11.2 to 11.0 cal ka is represented by glacial rock flour near the base of the sediment core. Non-glacial lake conditions were restored for about 1000 years before the water level in Cabin Lake lowered and the core site became a fen. The fen indicates drier-than-present conditions leading up to the Holocene thermal maximum. An unconformity spanning 5400 years during the mid-Holocene is overlain by peat until 1110 CE when meltwater from Sheridan Glacier returned to the basin. Three intervals of an advanced Sheridan Glacier are recorded in the Cabin Lake sediments during the late Holocene: 1110–1180, 1260–1540 and 1610–1780 CE. The sedimentary sequence also contains the first five reported tephra deposits from the Copper River delta region, and their geochemical signatures suggest that the sources are the Cook Inlet volcanoes Redoubt, Augustine and Crater Peak, and possibly Mt Churchill in the Wrangell Volcanic field.

  2. Partitioning GRACE ice loss for the Juneau Icefield using modeling, airborne and ground observations

    NASA Astrophysics Data System (ADS)

    Young, J. C.; Arendt, A. A.; Pettit, E. C.

    2017-12-01

    Glaciers of Alaska and Northwestern Canada are losing mass at one of the highest rates of any mountain glacier system globally. High-precision measurements from NASA's Gravity Recovery and Climate Experiment (GRACE) satellites have revealed changes in the local gravitational field along the Gulf of Alaska due to changes in these ice masses since 2003. In previous studies on Alaska glaciers, mass change estimates derived from GRACE compare well to time series' of Gulf of Alaska runoff from mass balance modeling. However, these studies did not adequately partition glacier and terrestrial snow pack mass change signals due to limited modeling capabilities and lack of sufficient ground observations. Our study focuses on the Juneau Icefield, one of the best-monitored areas in Alaska in terms of glacier mass balance, as a case study for partitioning GRACE glacier mass changes from terrestrial water storage changes both seasonally and in long-term trends. We leverage the modeling tool SnowModel to generate a time series of mass changes using assimilated field observations and airborne laser altimetry, and we compare to an iterated mass concentration GRACE solution from the NASA Goddard Space Flight Center Geodesy Laboratory ( 30-day intervals and 12,390 km2 resolution). The GRACE solution forward-models all mass signals other than those due to terrestrial water storage and the cryosphere, therefore requiring additional analysis to partition glacier mass balance and water storage signals. Our approach is one of the first to analyze GRACE at the sub-mountain range scale, and to examine terrestrial water storage trends at a smaller scale than the full Gulf of Alaska. Ultimately, this study points to refinements in the forward-modeling of terrestrial water storage in the GRACE processing chain, and provides best estimates for the timing and magnitude of subannual and long-term changes of the Juneau Icefield from 2003 to present.

  3. “Our vanishing glaciers”: One hundred years of glacier retreat in Three Sisters Area, Oregon Cascade Range

    USGS Publications Warehouse

    O'Connor, James E.

    2014-01-01

    In August 1910, thirty-nine members of the Mazamas Mountaineering Club ascended the peaks of the Three Sisters in central Oregon. While climbing, geologist Ira A. Williams photographed the surrounding scenery, including images of Collier Glacier. One hundred years later, U.S. Geological Survey research hydrologist Jim E. O’Connor matched those documented photographs with present day images — the result of which is a stunning lapse of glacial change in the Three Sister region. O’Connor asserts that “glaciers exist by the grace of climate,” and through a close examination of the history of the region’s glaciers, he provides an intriguing glimpse into the history of geological surveys and glacial studies in the Pacific Northwest, including their connection to significant scientific advances of the nineteenth century. The work of scientists and mountaineers who have monitored and recorded glacier changes for over a century allows us to see dramatic changes in a landscape that is especially sensitive to ongoing climate change.

  4. Glaciers. Attribution of global glacier mass loss to anthropogenic and natural causes.

    PubMed

    Marzeion, Ben; Cogley, J Graham; Richter, Kristin; Parkes, David

    2014-08-22

    The ongoing global glacier retreat is affecting human societies by causing sea-level rise, changing seasonal water availability, and increasing geohazards. Melting glaciers are an icon of anthropogenic climate change. However, glacier response times are typically decades or longer, which implies that the present-day glacier retreat is a mixed response to past and current natural climate variability and current anthropogenic forcing. Here we show that only 25 ± 35% of the global glacier mass loss during the period from 1851 to 2010 is attributable to anthropogenic causes. Nevertheless, the anthropogenic signal is detectable with high confidence in glacier mass balance observations during 1991 to 2010, and the anthropogenic fraction of global glacier mass loss during that period has increased to 69 ± 24%. Copyright © 2014, American Association for the Advancement of Science.

  5. Late Mesozoic and Cenozoic thermotectonic evolution of the central Brooks Range and adjacent North Slope foreland basin, Alaska: Including fission track results from the Trans-Alaska Crustal Transect (TACT)

    USGS Publications Warehouse

    O'Sullivan, P. B.; Murphy, J.M.; Blythe, A.E.

    1997-01-01

    Apatite fission track data are used to evaluate the thermal and tectonic history of the central Brooks Range and the North Slope foreland basin in northern Alaska along the northern leg of the Trans-Alaska Crustal Transect (TACT). Fission track analyses of the detrital apatite grains in most sedimentary units resolve the timing of structures and denudation within the Brooks Range, ranging in scale from the entire mountain range to relatively small-scale folds and faults. Interpretation of the results indicates that rocks exposed within the central Brooks Range cooled rapidly from paleotemperatures 110?? to 50??C during discrete episodes at ???100??5 Ma, ???60??4 Ma, and ???24??3 Ma, probably in response to kilometer-scale denudation. North of the mountain front, rocks in the southern half of the foreland basin were exposed to maximum paleotemperatures 110??C in the Late Cretaceous to early Paleocene as a result of burial by Upper Jurassic and Cretaceous sedimentary rocks. Rapid cooling from these elevated paleotemperatures also occurred due to distinct episodes of kilometer-scale denudation at ???60??4 Ma, 46??3 Ma, 35??2 Ma, and ???24??3 Ma. Combined, the apatite analyses indicate that rocks exposed along the TACT line through the central Brooks Range and foreland basin experienced episodic rapid cooling throughout the Late Cretaceous and Cenozoic in response to at least three distinct kilometer-scale denudation events. Future models explaining orogenic events in northern Alaska must consider these new constraints from fission track thermochronology. Copyright 1997 by the American Geophysical Union.

  6. Identification and assessment of groundwater flow and storage components of the relict Schöneben Rock Glacier, Niedere Tauern Range, Eastern Alps (Austria)

    NASA Astrophysics Data System (ADS)

    Winkler, Gerfried; Wagner, Thomas; Pauritsch, Marcus; Birk, Steffen; Kellerer-Pirklbauer, Andreas; Benischke, Ralf; Leis, Albrecht; Morawetz, Rainer; Schreilechner, Marcellus G.; Hergarten, Stefan

    2016-06-01

    More than 2,600 relict rock glaciers are known in the Austrian Alps but the knowledge of their hydraulic properties is severely limited. The relict Schöneben Rock Glacier (Niedere Tauern Range, Austria), with an extension of 0.17 km2, was investigated based on spring data (2006-2014) and seismic refraction survey. Spring-discharge hydrographs and natural and artificial tracer data suggest a heterogeneous aquifer with a layered internal structure for the relict rock glacier. The discharge behavior exhibits a fast and a delayed flow component. The spring discharge responds to recharge events within a few hours but a mean residence time of several months can also be observed. The internal structure of the rock glacier (up to several tens of meters thick) consists of: an upper blocky layer with a few meters of thickness, which lacks fine-grained sediments; a main middle layer with coarse and finer-grained sediments, allowing for fast flow; and an approximately 10-m-thick basal till layer as the main aquifer body responsible for the base flow. The base-flow component is controlled by (fine) sandy to silty sediments with low hydraulic conductivity and high storage capacity, exhibiting a difference in hydraulic conductivity to the upper layer of about three orders of magnitude. The high storage capacity of relict rock glaciers has an impact on water resources management in alpine catchments and potentially regulates the risk of natural hazards such as floods and related debris flows. Thus, the results highlight the importance of such aquifer systems in alpine catchments.

  7. Geospatial compilation of results from field sample collection in support of mineral resource investigations, Western Alaska Range, Alaska, July 2013

    USGS Publications Warehouse

    Johnson, Michaela R.; Graham, Garth E.; Hubbard, Bernard E.; Benzel, William M.

    2015-07-16

    This Data Series summarizes results from July 2013 sampling in the western Alaska Range near Mount Estelle, Alaska. The fieldwork combined in situ and camp-based spectral measurements of talus/soil and rock samples. Five rock and 48 soil samples were submitted for quantitative geochemi­cal analysis (for 55 major and trace elements), and the 48 soils samples were also analyzed by x-ray diffraction to establish mineralogy and geochemistry. The results and sample photo­graphs are presented in a geodatabase that accompanies this report. The spectral, mineralogical, and geochemical charac­terization of these samples and the sites that they represent can be used to validate existing remote-sensing datasets (for example, ASTER) and future hyperspectral studies. Empiri­cal evidence of jarosite (as identified by x-ray diffraction and spectral analysis) corresponding with gold concentrations in excess of 50 parts per billion in soil samples suggests that surficial mapping of jarosite in regional surveys may be use­ful for targeting areas of prospective gold occurrences in this sampling area.

  8. Virtual Globes and Glacier Research: Integrating research, collaboration, logistics, data archival, and outreach into a single tool

    NASA Astrophysics Data System (ADS)

    Nolan, M.

    2006-12-01

    Virtual Globes are a paradigm shift in the way earth sciences are conducted. With these tools, nearly all aspects of earth science can be integrated from field science, to remote sensing, to remote collaborations, to logistical planning, to data archival/retrieval, to PDF paper retriebal, to education and outreach. Here we present an example of how VGs can be fully exploited for field sciences, using research at McCall Glacier, in Arctic Alaska.

  9. Hydro-chemical Characterization of Glacier Melt Water of Ponkar Glacier, Manang, Nepal.

    NASA Astrophysics Data System (ADS)

    Shrestha, R.; Sandeep, S.

    2017-12-01

    The study was carried out in Ponkar Glacier, representing Himalayan glacier of Nepal. The study aims in determining the physical-chemical properties of the glacier melt water. The sampling sites included moraine dammed, Ponkar Lake at 4100 m a.s.l to the downstream glaciated stream at 3580 m a.s.l. The water samples were collected from the seven different sites. Temperature was recorded by digital multi-thermometer on site. The samples were brought to the laboratory and the parameters were analyzed according to the APHA, AWWA and WEF standards. The glacier meltwater was slightly basic with pH 7.44 (±0.307). The meltwater was found to be in the range 30-60 which implies the water is moderately soft resulting value of concentration 36.429±8.664 mg CaCO3 L-1 and the electrical conductivity was found to be 47.14 (±11.18) µS/cm. The concentration of anion was in the order of HCO3 - > Cl- > SO42- > NO3- > TP-PO43- with the concentration 194.286±40.677, 55.707±30.265, 11.533±1.132 mgL-1, 1.00±0.7 mgL-1 and 0.514±0.32 mgL-1 respectively. Calcium carbonate weathering was found out to be the major source of dissolved ions in the region. The heavy metals were found in the order Al>Fe>Mn>Zn with concentration 1.34±0.648, 1.103±0.917, 0.08±0.028 and 0.023±0.004 mgL-1 respectively. The concentration of iron, manganese and zinc in some sites were below the detection limit. These results represent baseline data for the physical-chemical properties of the glacier meltwater

  10. Antarctic glacier-tongue velocities from Landsat images: First results

    USGS Publications Warehouse

    Lucchitta, Baerbel K.; Mullins, K.F.; Allison, A.L.; Ferrigno, Jane G.

    1993-01-01

    We measured the velocities of six glacier tongues and a few tongues within ice shelves distributed around the Antarctic coastline by determining the displacement of crevasse patterns seen on sequential Landsat images. The velocities range from less than 0.2 km a−1 for East Antarctic ice-shelf tongues to more than 2.5 km a−1 for the Thwaites Glacier Tongue. All glacier tongues show increases in velocity toward their distal margins. In general, the tongues of glaciers draining the West Antarctic ice sheet have moved significantly faster than those in East Antarctica. This observation may be significant in light of the hypothesized possible disintegration of the West Antarctic ice sheet.

  11. Effects of recent volcanic eruptions on aquatic habitat in the Drift River, Alaska, USA: Implications at other Cook Inlet region volcanoes

    USGS Publications Warehouse

    Dorava, J.M.; Milner, A.M.

    1999-01-01

    Numerous drainages supporting productive salmon habitat are surrounded by active volcanoes on the west side of Cook Inlet in south-central Alaska. Eruptions have caused massive quantities of flowing water and sediment to enter the river channels emanating from glaciers and snowfields on these volcanoes. Extensive damage to riparian and aquatic habitat has commonly resulted, and benthic macroinvertebrate and salmonid communities can be affected. Because of the economic importance of Alaska's fisheries, detrimental effects on salmonid habitat can have significant economic implications. The Drift River drains glaciers on the northern and eastern flanks of Redoubt Volcano: During and following eruptions in 1989-1990, severe physical disturbances to the habitat features of the river adversely affected the fishery. Frequent eruptions at other Cook Inlet region volcanoes exemplify the potential effects of volcanic activity on Alaska's important commercial, sport, and subsistence fisheries. Few studies have documented the recovery of aquatic habitat following volcanic eruptions. The eruptions of Redoubt Volcano in 1989-1990 offered an opportunity to examine the recovery of the macroinvertebrate community. Macroinvertebrate community composition and structure in the Drift River were similar in both undisturbed and recently disturbed sites. Additionally, macroinvertebrate samples from sites in nearby undisturbed streams were highly similar to those from some Drift River sites. This similarity and the agreement between the Drift River macroinvertebrate community composition and that predicted by a qualitative model of typical macroinvertebrate communities in glacier-fed rivers indicate that the Drift River macroinvertebrate community is recovering five years after the disturbances associated with the most recent eruptions of Redoubt Volcano.

  12. Modeled climate-induced glacier change in Glacier National Park, 1850-2100

    USGS Publications Warehouse

    Hall, M.H.P.; Fagre, D.B.

    2003-01-01

    The glaciers in the Blackfoot-Jackson Glacier Basin of Glacier National Park, Montana, decreased in area from 21.6 square kilometers (km2) in 1850 to 7.4 km2 in 1979. Over this same period global temperatures increased by 0.45??C (?? 0. 15??C). We analyzed the climatic causes and ecological consequences of glacier retreat by creating spatially explicit models of the creation and ablation of glaciers and of the response of vegetation to climate change. We determined the melt rate and spatial distribution of glaciers under two possible future climate scenarios, one based on carbon dioxide-induced global warming and the other on a linear temperature extrapolation. Under the former scenario, all glaciers in the basin will disappear by the year 2030, despite predicted increases in precipitation; under the latter, melting is slower. Using a second model, we analyzed vegetation responses to variations in soil moisture and increasing temperature in a complex alpine landscape and predicted where plant communities are likely to be located as conditions change.

  13. A semi-automated approach to derive elevation time-series and calculate glacier mass balance from historical aerial imagery

    NASA Astrophysics Data System (ADS)

    Whorton, E.; Headman, A.; Shean, D. E.; McCann, E.

    2017-12-01

    Understanding the implications of glacier recession on water resources in the western U.S. requires quantifying glacier mass change across large regions over several decades. Very few glaciers in North America have long-term continuous field measurements of glacier mass balance. However, systematic aerial photography campaigns began in 1957 on many glaciers in the western U.S. and Alaska. These historical, vertical aerial stereo-photographs documenting glacier evolution have recently become publically available. Digital elevation models (DEM) of the transient glacier surface preserved in each imagery timestamp can be derived, then differenced to calculate glacier volume and mass change to improve regional geodetic solutions of glacier mass balance. In order to batch process these data, we use Python-based algorithms and Agisoft Photoscan structure from motion (SfM) photogrammetry software to semi-automate DEM creation, and orthorectify and co-register historical aerial imagery in a high-performance computing environment. Scanned photographs are rotated to reduce scaling issues, cropped to the same size to remove fiducials, and batch histogram equalization is applied to improve image quality and aid pixel-matching algorithms using the Python library OpenCV. Processed photographs are then passed to Photoscan through the Photoscan Python library to create DEMs and orthoimagery. To extend the period of record, the elevation products are co-registered to each other, airborne LiDAR data, and DEMs derived from sub-meter commercial satellite imagery. With the exception of the placement of ground control points, the process is entirely automated with Python. Current research is focused on: one, applying these algorithms to create geodetic mass balance time series for the 90 photographed glaciers in Washington State and two, evaluating the minimal amount of positional information required in Photoscan to prevent distortion effects that cannot be addressed during co

  14. Glacier monitoring and glacier-climate interactions in the tropical Andes: A review

    NASA Astrophysics Data System (ADS)

    Veettil, Bijeesh Kozhikkodan; Wang, Shanshan; Florêncio de Souza, Sergio; Bremer, Ulisses Franz; Simões, Jefferson Cardia

    2017-08-01

    In this review, we summarized the evolution of glacier monitoring in the tropical Andes during the last few decades, particularly after the development of remote sensing and photogrammetry. Advantages and limitations of glacier mapping, applied so far, in Venezuela, Colombia, Ecuador, Peru and Bolivia are discussed in detail. Glacier parameters such as the equilibrium line altitude, snowline and mass balance were given special attention in understanding the complex cryosphere-climate interactions, particularly using remote sensing techniques. Glaciers in the inner and the outer tropics were considered separately based on the precipitation and temperature conditions within a new framework. The applicability of various methods to use glacier records to understand and reconstruct the tropical Andean climate between the Last Glacial Maximum (11,700 years ago) and the present is also explored in this paper. Results from various studies published recently were analyzed and we tried to understand the differences in the magnitudes of glacier responses towards the climatic perturbations in the inner tropics and the outer tropics. Inner tropical glaciers, particularly those in Venezuela and Colombia near the January Intertropical Convergence Zone (ITCZ), are more vulnerable to increase in temperature. Surface energy balance experiments show that outer tropical glaciers respond to precipitation variability very rapidly in comparison with the temperature variability, particularly when moving towards the subtropics. We also analyzed the gradients in glacier response to climate change from the Pacific coast towards the Amazon Basin as well as with the elevation. Based on the current trends synthesised from recent studies, it is hypothesized that the glaciers in the inner tropics and the southern wet outer tropics will disappear first as a response to global warming whereas glaciers in the northern wet outer tropics and dry outer tropics show resistance to warming trends due to

  15. Latest Pleistocene and Holocene Glacier Fluctuations in southernmost Patagonia

    NASA Astrophysics Data System (ADS)

    Menounos, B.; Maurer, M.; Clague, J. J.; osborn, G.; Ponce, F.; Davis, P. T.; Rabassa, J.; Coronato, A.; Marr, R.

    2011-12-01

    Summer insolation has been proposed to explain long-term glacier fluctuations during the Holocene. If correct, the record of glacier fluctuations at high latitudes in the Southern Hemisphere should differ from that in the Northern Hemisphere. Testing this insolation hypothesis has been hampered by dating uncertainties of many Holocene glacier chronologies from Patagonia. We report on our ongoing research aimed at developing a regional glacier chronology at the southern end of the Andes north and west of Ushuaia, Argentina. We have found evidence for an advance of cirque glaciers at the end of the Pleistocene; one or locally two closely spaced moraines extend up to 2 km beyond Little Ice Age moraines. Radiocarbon dating of terrestrial macrofossils recovered from basal sediments behind two of these moraines yielded ages of 10,320 ± 25 and 10,330 ± 30 14C yr BP. These moraines may record glacier advances coeval with the Antarctic Cold Reversal; surface exposure dating of these moraines is currently in progress to test this hypothesis. We find no evidence of Holocene moraines older than 6800 14C yr BP, based on the distribution of Hudson tephra of that age. At some sites, there is evidence for an early Neoglacial advance of glaciers slightly beyond (< 0.5 km) Little Ice Age limits. Terrestrial macrofossils at the upper contact of basal till from one site yielded an age of 4505 ± 30 14C yr BP; this age overlaps the most probable age range of early Neoglacial ice expansion in southern Patagonia reported by Porter (2000) and the age of plants killed by expansion of the Quelccaya Ice Cap in Peru. We have documented multiple wood mats with stumps in growth position separated by till units in a 100 m section of the northeast lateral moraine at Stoppani Glacier (54.78 S, 68.98 W), 50 km west of Ushuaia. Ten radiocarbon ages on these wood mats range in age from 3510 ± 15 to 135 ± 15 14C yr BP. The mats decrease in age up-section; many overlap with published age ranges for

  16. A moderate resolution inventory of small glaciers and ice caps surrounding Greenland and the Antarctic peninsula

    NASA Astrophysics Data System (ADS)

    Chen, C.; Box, J. E.; Hock, R. M.; Cogley, J. G.

    2011-12-01

    Current estimates of global Mountain Glacier and Ice Caps (MG&IC) mass changes are subject to large uncertainties due to incomplete inventories and uncertainties in land surface classification. This presentation features mitigative efforts through the creation of a MODIS dependent land ice classification system and its application for glacier inventory. Estimates of total area of mountain glaciers [IPCC, 2007] and ice caps (including those in Greenland and Antarctica) vary 15%, that is, 680 - 785 10e3 sq. km. To date only an estimated 40% of glaciers (by area) is inventoried in the World Glacier Inventory (WGI) and made available through the World Glacier Monitoring System (WGMS) and the National Snow and Ice Data Center [NSIDC, 1999]. Cogley [2009] recently compiled a more complete version of WGI, called WGI-XF, containing records for just over 131,000 glaciers, covering approximately half of the estimated global MG&IC area. The glaciers isolated from the conterminous Antarctic and Greenland ice sheets remain incompletely inventoried in WGI-XF but have been estimated to contribute 35% to the MG&IC sea-level equivalent during 1961-2004 [Hock et al., 2009]. Together with Arctic Canada and Alaska these regions alone make up almost 90% of the area that is missing in the global WGI-XF inventory. Global mass balance projections tend to exclude ice masses in Greenland and Antarctica due to the paucity of data with respect to basic inventory base data such as area, number of glaciers or size distributions. We address the need for an accurate Greenland and Antarctic peninsula land surface classification with a novel glacier surface classification and inventory based on NASA Moderate Resolution Imaging Spectroradiometer (MODIS) data gridded at 250 m pixel resolution. The presentation includes a sensitivity analysis for surface mass balance as it depends on the land surface classification. Works Cited +Cogley, J. G. (2009), A more complete version of the World Glacier

  17. Evaluation of Existing Image Matching Methods for Deriving Glacier Surface Displacements Globally from Optical Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Heid, T.; Kääb, A.

    2011-12-01

    Automatic matching of images from two different times is a method that is often used to derive glacier surface velocity. Nearly global repeat coverage of the Earth's surface by optical satellite sensors now opens the possibility for global-scale mapping and monitoring of glacier flow with a number of applications in, for example, glacier physics, glacier-related climate change and impact assessment, and glacier hazard management. The purpose of this study is to compare and evaluate different existing image matching methods for glacier flow determination over large scales. The study compares six different matching methods: normalized cross-correlation (NCC), the phase correlation algorithm used in the COSI-Corr software, and four other Fourier methods with different normalizations. We compare the methods over five regions of the world with different representative glacier characteristics: Karakoram, the European Alps, Alaska, Pine Island (Antarctica) and southwest Greenland. Landsat images are chosen for matching because they expand back to 1972, they cover large areas, and at the same time their spatial resolution is as good as 15 m for images after 1999 (ETM+ pan). Cross-correlation on orientation images (CCF-O) outperforms the three similar Fourier methods, both in areas with high and low visual contrast. NCC experiences problems in areas with low visual contrast, areas with thin clouds or changing snow conditions between the images. CCF-O has problems on narrow outlet glaciers where small window sizes (about 16 pixels by 16 pixels or smaller) are needed, and it also obtains fewer correct matches than COSI-Corr in areas with low visual contrast. COSI-Corr has problems on narrow outlet glaciers and it obtains fewer correct matches compared to CCF-O when thin clouds cover the surface, or if one of the images contains snow dunes. In total, we consider CCF-O and COSI-Corr to be the two most robust matching methods for global-scale mapping and monitoring of glacier

  18. Himalayan glaciers: understanding contrasting patterns of glacier behavior using multi-temporal satellite imagery

    NASA Astrophysics Data System (ADS)

    Racoviteanu, A.

    2014-12-01

    High rates of glacier retreat for the last decades are often reported, and believed to be induced by 20th century climate changes. However, regional glacier fluctuations are complex, and depend on a combination of climate and local topography. Furthermore, in ares such as the Hindu-Kush Himalaya, there are concerns about warming, decreasing monsoon precipitation and their impact on local glacier regimes. Currently, the challenge is in understanding the magnitude of feedbacks between large-scale climate forcing and small-scale glacier behavior. Spatio-temporal patterns of glacier distribution are still llimited in some areas of the high Hindu-Kush Himalaya, but multi-temporal satellite imagery has helped fill spatial and temporal gaps in regional glacier parameters in the last decade. Here I present a synopsis of the behavior of glaciers across the Himalaya, following a west to east gradient. In particular, I focus on spatial patterns of glacier parameters in the eastern Himalaya, which I investigate at multi-spatial scales using remote sensing data from declassified Corona, ASTER, Landsat ETM+, Quickbird and Worldview2 sensors. I also present the use of high-resolution imagery, including texture and thermal analysis for mapping glacier features at small scale, which are particularly useful in understanding surface trends of debris-covered glaciers, which are prevalent in the Himalaya. I compare and contrast spatial patterns of glacier area and élévation changes in the monsoon-influenced eastern Himalaya (the Everest region in the Nepal Himalaya and Sikkim in the Indian Himalaya) with other observations from the dry western Indian Himalaya (Ladakh and Lahul-Spiti), both field measurements and remote sensing-based. In the eastern Himalaya, results point to glacier area change of -0.24 % ± 0.08% per year from the 1960's to the 2006's, with a higher rate of retreat in the last decade (-0.43% /yr). Debris-covered glacier tongues show thinning trends of -30.8 m± 39 m

  19. Internationally coordinated glacier monitoring - a timeline since 1894

    NASA Astrophysics Data System (ADS)

    Nussbaumer, Samuel U.; Armstrong, Richard; Fetterer, Florence; Gärtner-Roer, Isabelle; Hoelzle, Martin; Machguth, Horst; Mölg, Nico; Paul, Frank; Raup, Bruce H.; Zemp, Michael

    2016-04-01

    glacier retreat and mass loss is a global phenomenon. Glaciological and geodetic observations show that the rates of the 21st-century mass loss are unprecedented on a global scale, for the time period observed, and probably also for recorded history, as indicated in glacier reconstructions from written and illustrated documents. The databases are supplemented by specific index datasets (e.g., glacier thickness data) and a dataset containing information on special events including glacier surges, glacier lake outbursts, ice avalanches, eruptions of ice-clad volcanoes, etc. related to about 200 glaciers. A special database of glacier photographs (GPC - Glacier Photograph Collection) contains more than 15,000 pictures from around 500 glaciers, some of them dating back to the mid-19th century. Current efforts are to close remaining observational gaps regarding data both from in-situ measurements and remote sensing, to establish a well-distributed baseline for sound estimates of climate-related glacier changes and their impacts. Within the framework of dedicated capacity building and twinning activities, disrupted long-term mass balance programmes in Central Asia have recently been resumed, and the continuation of mass balance measurements in the Tropical Andes has been supported. New data also emerge from several research projects using NASA and ESA sensors and are actively integrated into the GTN-G databases. Key tasks for the future include the quantitative assessment of uncertainties of available measurements, and their representativeness for changes in the respective mountain ranges. For this, a well-considered integration of in-situ measurements, remotely sensed observations, and numerical modelling is required.

  20. Glacier Erosion and Response to Climate in Chilean Patagonia

    NASA Astrophysics Data System (ADS)

    Koppes, M.; Hallet, B.; Stewart, R.

    2006-12-01

    A vibrant dimension in current research on landscape evolution is the potential impact of climate change on erosion rates due to differences in efficiency of glacial and non-glacial erosion processes. The climate-sensitive rate and spatial distribution of erosion can be as important as the tectonic environment in determining the development of mountain ranges. To evaluate properly how glacial erosion influences orogenic processes and reflects climate variability, it is necessary to understand how ice dynamics control erosion rates. The Patagonian Andes are a unique laboratory for documenting glacial erosion in a range of precipitation and thermal regimes, as zonal atmospheric circulation in the region creates strong latitudinal gradients. We will present relevant findings from two tidewater glaciers in Chilean Patagonia: San Rafael glacier, which drains the northern portion of the North Patagonian Icefield (46.6S, 74W), and Marinelli glacier, the largest glacier in the Cordillera Darwin of Tierra del Fuego (54.6S, 69W). Both glaciers have been in steady retreat during the latter half of the 20th century, and both calve into a fjord or lagoon, which provides an efficient trap for the sediment eroded by the glacier and deposited at the calving front. The reconstructed flux of ice into the glaciers is compared to the retreat of the ice fronts and to the sediment flux to examine the influence of ice dynamics on the rate of glacier erosion. NCEP-NCAR Reanalysis climate data, adjusted to local conditions by correlation with automatic weather stations installed at the glacier termini and coupled to a model of orographic enhancement of precipitation over the glacier basin, were used to reconstruct the daily precipitation input into and ablation output from the glaciers during the last 50 years. The sediment flux out of the glaciers during this period was calculated from acoustic reflection profiles of the sediments accumulated in the proglacial fjords, and used to infer

  1. Recent Observations and Structural Analysis of Surge-Type Glaciers in the Glacier Bay Area

    NASA Astrophysics Data System (ADS)

    Mayer, H.; Herzfeld, U. C.

    2003-12-01

    The Chugach-St.-Elias Mountains in North America hold the largest non-polar connected glaciated area of the world. Most of its larger glaciers are surge-type glaciers. In the summer of 2003, we collected aerial photographic and GPS data over numerous glaciers in the eastern St. Elias Mountains, including the Glacier Bay area. Observed glaciers include Davidson, Casement, McBride, Riggs, Cushing, Carroll, Rendu, Tsirku, Grand Pacific, Melbern, Ferris, Margerie, Johns Hopkins, Lamplugh, Reid, Burroughs, Morse, Muir and Willard Glaciers, of which Carroll, Rendu, Ferris, Grand Pacific, Johns Hopkins and Margerie Glaciers are surge-type glaciers. Our approach utilizes a quantitative analysis of surface patterns, following the principles of structural geology for the analysis of brittle-deformation patterns (manifested in crevasses) and ductile deformation patterns (visible in folded moraines). First results will be presented.

  2. Reconstruction of late Holocene glacier retreat and relevant climatic and topographic patterns in southeastern Tibet by glacier mapping and equilibrium line altitude calculation

    NASA Astrophysics Data System (ADS)

    Loibl, David; Lehmkuhl, Frank

    2014-05-01

    Temperate glaciers in the eastern Nyainqêntanglha range, southeastern Tibet, are highly sensitive to climate change and are therefore of particular high interest for research on late Holocene changes of the monsoonal climate in High Asia. However, due to the remoteness of the area, the scarcity of empirical data, and the challenges to remote sensing work posed by cloud and snow cover, knowledge about the glacier dynamics and changes is still very limited. We applied a remote sensing approach that allowed a comprehensive regional glacier survey despite the few available data. Geomorphologic characteristics, distribution and late Holocene changes of 1964 glaciers were mapped from one of the few appropriate late summer satellite images: a Landsat ETM+ scene from September 23, 1999. The glacier dataset was subsequently parameterized by DEM supported measurements. Complex climate-relief-glacier interactions were studied in detail for three large glaciers in neighboring valleys. Despite their spatial proximity, these display strong heterogeneity in terms of catchment morphology, debris cover, and glacier characteristics. The results of this case study then provided the conceptual basis to use geomorphological evidence, i.e. trimlines and latero-frontal moraines, to obtain quantitative data on the changes since the Little Ice Age (LIA) maximum glacier advance. Statistical analysis of glacier length change revealed an average retreat of ~ 40 % and a trend towards stronger retreat for smaller glaciers. An evaluation of different methods to calculate equilibrium line altitudes (ELAs) indicates that an optimized toe-to-ridge altitude method (TRAM) outperforms other methods in settings with complex topography and a lack of mass-balance measurements. However, a large number of glacier measurements is crucial for high quality TRAM results and special attention has to be paid to different morphological glacier characteristics: debris-cover, reconstitution, valley floor

  3. Glacier variability in the conterminous United States during the twentieth century

    USGS Publications Warehouse

    McCabe, Gregory J.; Fountain, Andrew G.

    2013-01-01

    Glaciers of the conterminous United States have been receding for the past century. Since 1900 the recession has varied from a 24 % loss in area (Mt. Rainier, Washington) to a 66 % loss in the Lewis Range of Montana. The rates of retreat are generally similar with a rapid loss in the early decades of the 20th century, slowing in the 1950s–1970s, and a resumption of rapid retreat starting in the 1990s. Decadal estimates of changes in glacier area for a subset of 31 glaciers from 1900 to 2000 are used to test a snow water equivalent model that is subsequently employed to examine the effects of temperature and precipitation variability on annual glacier area changes for these glaciers. Model results indicate that both winter precipitation and winter temperature have been important climatic factors affecting the variability of glacier variability during the 20th Century. Most of the glaciers analyzed appear to be more sensitive to temperature variability than to precipitation variability. However, precipitation variability is important, especially for high elevation glaciers. Additionally, glaciers with areas greater than 1 km2 are highly sensitive to variability in temperature.

  4. Changes in the Surface Area of Glaciers in Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Khromova, T.; Nosenko, G.

    2012-12-01

    Glaciers are widely recognized as key indicators of climate change. Recent evidence suggests an acceleration of glacier mass loss in several key mountain regions. Glacier recession implies the landscape changes in the glacial zone, origin of new lakes and activation of natural disaster processes, catastrophic mudflows, ice avalanches, outburst floods, and etc. The presence of glaciers in itself threats to human life, economic activity and growing infrastructure. Economical and recreational human activity in mountain regions requires relevant information on snow and ice objects. Absence or inadequacy of such information results in financial and human losses. A more comprehensive evaluation of glacier changes is imperative to assess ice contributions to global sea level rise and the future of water resources from glacial basins. One of the urgent steps is a full inventory of all ice bodies, their volume and changes The first estimation of glaciers state and glaciers distribution in the big part of Northern Eurasia has been done in the USSR Glacier Inventory published in 1966 -1980 as a part of IHD activity. The Inventory is based on topographic maps and air photos and reflects the status of the glaciers in 1957-1970y. There is information about 23796 glaciers with area of 78222.3 km2 in the Inventory. It covers 23 glacier systems on Northern Eurasia. In the 80th the USSR Glacier Inventory has been transformed in the digital form as a part of the World Glacier Inventory. Recent satellite data provide a unique opportunity to look again at these glaciers and to evaluate changes in glacier extent for the second part of XX century. In the paper we report about 15 000 glaciers outlines for Caucasus, Pamir, Tien-Shan, Altai, Syntar-Khayata, Cherskogo Range, Kamchatka and Russian Arctic which have been derived from ASTER and Landsat imagery and could be used for glacier changes evaluation. The results show that glaciers are retreating in all these regions. There is, however

  5. Lithofacies and seismic-reflection interpretation of temperate glacimarine sedimentation in Tarr Inlet, Glacier Bay, Alaska

    USGS Publications Warehouse

    Cai, J.; Powell, R.D.; Cowan, E.A.; Carlson, P.R.

    1997-01-01

    High-resolution seismic-reflection profiles of sediment fill within Tart Inlet of Glacier Bay, Alaska, show seismic facies changes with increasing distance from the glacial termini. Five types of seismic facies are recognized from analysis of Huntec and minisparker records, and seven lithofacies are determined from detailed sedimentologic study of gravity-, vibro- and box-cores, and bottom grab samples. Lithofacies and seismic facies associations, and fjord-floor morphology allow us to divide the fjord into three sedimentary environments: ice-proximal, iceberg-zone and ice-distal. The ice-proximal environment, characterized by a morainal-bank depositional system, can be subdivided into bank-back, bank-core and bank-front subenvironments, each of which is characterized by a different depositional subsystem. A bank-back subsystem shows chaotic seismic facies with a mounded surface, which we infer consists mainly of unsorted diamicton and poorly sorted coarse-grained sediments. A bank-core depositional subsystem is a mixture of diamicton, rubble, gravel, sand and mud. Seismic-reflection records of this subsystem are characterized by chaotic seismic facies with abundant hyperbolic diffractions and a hummocky surface. A bank-front depositional subsystem consists of mainly stratified and massive sand, and is characterized by internal hummocky facies on seismic-reflection records with significant surface relief and sediment gravity flow channels. The depositional system formed in the iceberg-zone environment consists of rhythmically laminated mud interbedded with thin beds of weakly stratified diamicton and stratified or massive sand and silt. On seismic-reflection profiles, this depositional system is characterized by discontinuously stratified facies with multiple channels on the surface in the proximal zone and a single channel on the largely flat sediment surface in the distal zone. The depositional system formed in the ice-distal environment consists of interbedded

  6. Estimation of glacier surface motion by robust phase correlation and point like features of SAR intensity images

    NASA Astrophysics Data System (ADS)

    Fang, Li; Xu, Yusheng; Yao, Wei; Stilla, Uwe

    2016-11-01

    For monitoring of glacier surface motion in pole and alpine areas, radar remote sensing is becoming a popular technology accounting for its specific advantages of being independent of weather conditions and sunlight. In this paper we propose a method for glacier surface motion monitoring using phase correlation (PC) based on point-like features (PLF). We carry out experiments using repeat-pass TerraSAR X-band (TSX) and Sentinel-1 C-band (S1C) intensity images of the Taku glacier in Juneau icefield located in southeast Alaska. The intensity imagery is first filtered by an improved adaptive refined Lee filter while the effect of topographic reliefs is removed via SRTM-X DEM. Then, a robust phase correlation algorithm based on singular value decomposition (SVD) and an improved random sample consensus (RANSAC) algorithm is applied to sequential PLF pairs generated by correlation using a 2D sinc function template. The approaches for glacier monitoring are validated by both simulated SAR data and real SAR data from two satellites. The results obtained from these three test datasets confirm the superiority of the proposed approach compared to standard correlation-like methods. By the use of the proposed adaptive refined Lee filter, we achieve a good balance between the suppression of noise and the preservation of local image textures. The presented phase correlation algorithm shows the accuracy of better than 0.25 pixels, when conducting matching tests using simulated SAR intensity images with strong noise. Quantitative 3D motions and velocities of the investigated Taku glacier during a repeat-pass period are obtained, which allows a comprehensive and reliable analysis for the investigation of large-scale glacier surface dynamics.

  7. Bedrock geologic map of the northern Alaska Peninsula area, southwestern Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Blodgett, Robert B.; Blome, Charles D.; Mohadjer, Solmaz; Preller, Cindi C.; Klimasauskas, Edward P.; Gamble, Bruce M.; Coonrad, Warren L.

    2017-03-03

    The northern Alaska Peninsula is a region of transition from the classic magmatic arc geology of the Alaska Peninsula to a Proterozoic and early Paleozoic carbonate platform and then to the poorly understood, tectonically complex sedimentary basins of southwestern Alaska. Physiographically, the region ranges from the high glaciated mountains of the Alaska-Aleutian Range to the coastal lowlands of Cook Inlet on the east and Bristol Bay on the southwest. The lower Ahklun Mountains and finger lakes on the west side of the map area show strong effects from glaciation. Structurally, a number of major faults cut the map area. Most important of these are the Bruin Bay Fault that parallels the coast of Cook Inlet, the Lake Clark Fault that cuts diagonally northeast to southwest across the eastern part of the map area, and the presently active Holitna Fault to the northwest that cuts surficial deposits.Distinctive rock packages assigned to three provinces are overlain by younger sedimentary rocks and intruded by widely dispersed latest Cretaceous and (or) early Tertiary granitic rocks. Much of the east half of the map area lies in the Alaska-Aleutian Range province; the Jurassic to Tertiary Alaska-Aleutian Range batholith and derivative Jurassic sedimentary rocks form the core of this province, which is intruded and overlain by the Aleutian magmatic arc. The Lime Hills province, the carbonate platform, occurs in the north-central part of the map area. The Paleozoic and Mesozoic Ahklun Mountains province in the western part of the map area includes abundant chert, argillite, and graywacke and lesser limestone, basalt, and tectonic mélange. The Kuskokwim Group, an Upper Cretaceous turbidite sequence, is extensively exposed and bounds all three provinces in the west-central part of the map area.

  8. Sediment delivery to the Gulf of Alaska: source mechanisms along a glaciated transform margin

    USGS Publications Warehouse

    Dobson, M.R.; O'Leary, D.; Veart, M.

    1998-01-01

    Sediment delivery to the Gulf of Alaska occurs via four areally extensive deep-water fans, sourced from grounded tidewater glaciers. During periods of climatic cooling, glaciers cross a narrow shelf and discharge sediment down the continental slope. Because the coastal terrain is dominated by fjords and a narrow, high-relief Pacific watershed, deposition is dominated by channellized point-source fan accumulations, the volumes of which are primarily a function of climate. The sediment distribution is modified by a long-term tectonic translation of the Pacific plate to the north along the transform margin. As a result, the deep-water fans are gradually moved away from the climatically controlled point sources. Sets of abandoned channels record the effect of translation during the Plio-Pleistocene.

  9. Characterization of Dust Emissions from an Actively Retreating Glacier

    NASA Astrophysics Data System (ADS)

    King, J.

    2017-12-01

    The Kaskawulsh glacier in Yukon, Canada, part of the St. Elias Mountain Glacier system, is experiencing increased ablation from rising air temperatures and in 2016 changed its main fluvial outlet (the Slims River and Kluane Lake) for the first time in over 300 years to drain into the Gulf of Alaska. In the recent earth history, changes in temperature within glaciated valleys have produced large amounts of wind-blown dust, evident in layers of loess within surrounding soils. Mineral aerosols in the atmosphere affect the environment of the earth through their direct effect on solar radiation, modifying cloud processes, and ground insolation, while the deposition of mineral aerosols can provide essential nutrients for ocean and terrestrial productivity. This potential drastic reduction in fluvial inputs into Kluane Lake will result in the rapid exposure of deltaic sediments and extended periods of dust emissions, similar to those suggested to occur during the rapid warming in the early Holocene. This drastic change already starting to occur makes this system an excellent natural laboratory for investigating the impact of dust storms under past and future climates. This research is focused on analyzing the connections between proglacial valley dust emissions and glacier dynamics, within ancient and modern climates. Measurements made directly in the valley of dust emission frequency, local climatological data analysis, and a remote sensing analysis approach in 2016 and 2017, have been combined to provide an insight into the effects that rapid changes in proglacial systems can have on dust dynamics. Strong interdependencies exist between glacier mass and diurnal winds, as well as air temperature and river levels, that combine to control the magnitude and frequency of dust emissions. The methodology utilized in this study could be applied to similar regions to produce estimates of dust emissions where direct measurements are minimal or difficult to attain, and can be fed

  10. Climatic controls on the pace of glacier erosion

    NASA Astrophysics Data System (ADS)

    Koppes, Michele; Hallet, Bernard; Rignot, Eric; Mouginot, Jeremie; Wellner, Julia; Love, Katherine

    2016-04-01

    Mountain ranges worldwide have undergone large-scale modification due the erosive action of ice, yet the mechanisms that control the timing of this modification and the rate by which ice erodes remain poorly understood. Available data report a wide range of erosion rates from individual ice masses over varying timescales, suggesting that modern erosion rates exceed orogenic rates by 2-3 orders of magnitude. These modern rates are presumed to be due to dynamic acceleration of the ice masses during deglaciation and retreat. Recent numerical models have focused on replicating the processes that produce the geomorphic signatures of glacial landscapes. Central to these models is a simple quantitative index that relates erosion rate to ice dynamics and to climate. To provide such an index, we examined explicitly the factors controlling modern glacier erosion rates across climatic regimes. Holding tectonic history, bedrock lithology and glacier hypsometries relatively constant across a latitudinal transect from Patagonia to the Antarctic Peninsula, we find that modern, basin-averaged erosion rates vary by three orders of magnitude, from 1->10 mm yr-1 for temperate tidewater glaciers to 0.01-<0.1 mm yr-1 for polar outlet glaciers, largely as a function of temperature and basal thermal regime. Erosion rates also increase non-linearly with both the sliding speed and the ice flux through the ELA, in accord with theory. The general relationship between ice dynamics and erosion suggests that the erosion rate scales non-linearly with basal sliding speed, with an exponent n ≈ 2-2.62. Notably, erosion rates decrease by over two orders of magnitude between temperate and polar glaciers with similar ice discharge rates. The difference in erosion rates between temperate and colder glaciers of similar shape and size is primarily related to the abundance of meltwater accessing the bed. Since all glaciers worldwide have experienced colder than current climatic conditions, the 100-fold

  11. Factors Affecting Haul-Out Behavior of Harbor Seals (Phoca vitulina) in Tidewater Glacier Inlets in Alaska: Can Tourism Vessels and Seals Coexist?

    PubMed Central

    2015-01-01

    Large numbers of harbor seals (Phoca vitulina) use habitat in tidewater glaciers in Alaska for pupping, breeding, and molting. Glacial fjords are also popular tourist destinations; however, visitation by numerous vessels can result in disturbance of seals during critical life-history phases. We explored factors affecting haul-out behavior of harbor seals at a glacial site frequented by tourism vessels. In 2008-10, we deployed VHF transmitters on 107 seals in Endicott Arm, Alaska. We remotely monitored presence and haul-out behavior of tagged seals and documented vessel presence with time-lapse cameras. We evaluated the influence of environmental and physical factors on the probability of being hauled out, duration of haul-out bouts, and as factors associated with the start and end of a haulout. Location, season, hour, and interactions of location by year, season, hour, and sex significantly influenced haul-out probability, as did ice, weather, and vessels. Seals were more likely to be hauled out with greater ice availability during the middle of the day, and less likely to be hauled out if vessels were present. Cruise ships had the strongest negative effect; however, most vessel types negatively affected haul-out probability. Haul-out duration was longest in association with starting on incoming tides, clear skies, no precipitation, occurring in the middle of the day, and ending in the late afternoon or evening. End of haulouts was associated with increasing cloud cover, low ice availability, and vessel presence; large-sized tourism vessels or all-vessel-types combined were significant predictors of ending a haul-out bout. Probability of being hauled out was highest in June, during pupping season. Potential disturbances of harbor seals could be reduced, enabling longer resting times for seals and fewer interruptions for nursing pups, if vessels focused the majority of visits to glacial habitat to before or after the hours of 08:00-17:00 or, less optimally, 09

  12. Factors Affecting Haul-Out Behavior of Harbor Seals (Phoca vitulina) in Tidewater Glacier Inlets in Alaska: Can Tourism Vessels and Seals Coexist?

    PubMed

    Blundell, Gail M; Pendleton, Grey W

    2015-01-01

    Large numbers of harbor seals (Phoca vitulina) use habitat in tidewater glaciers in Alaska for pupping, breeding, and molting. Glacial fjords are also popular tourist destinations; however, visitation by numerous vessels can result in disturbance of seals during critical life-history phases. We explored factors affecting haul-out behavior of harbor seals at a glacial site frequented by tourism vessels. In 2008-10, we deployed VHF transmitters on 107 seals in Endicott Arm, Alaska. We remotely monitored presence and haul-out behavior of tagged seals and documented vessel presence with time-lapse cameras. We evaluated the influence of environmental and physical factors on the probability of being hauled out, duration of haul-out bouts, and as factors associated with the start and end of a haulout. Location, season, hour, and interactions of location by year, season, hour, and sex significantly influenced haul-out probability, as did ice, weather, and vessels. Seals were more likely to be hauled out with greater ice availability during the middle of the day, and less likely to be hauled out if vessels were present. Cruise ships had the strongest negative effect; however, most vessel types negatively affected haul-out probability. Haul-out duration was longest in association with starting on incoming tides, clear skies, no precipitation, occurring in the middle of the day, and ending in the late afternoon or evening. End of haulouts was associated with increasing cloud cover, low ice availability, and vessel presence; large-sized tourism vessels or all-vessel-types combined were significant predictors of ending a haul-out bout. Probability of being hauled out was highest in June, during pupping season. Potential disturbances of harbor seals could be reduced, enabling longer resting times for seals and fewer interruptions for nursing pups, if vessels focused the majority of visits to glacial habitat to before or after the hours of 08:00-17:00 or, less optimally, 09:00-16:00.

  13. 40 Years of Glacier Change across the Himalayas

    NASA Astrophysics Data System (ADS)

    Maurer, J. M.; Schaefer, J. M.; Rupper, S.

    2017-12-01

    Himalayan glaciers are central to societies, ecologies, and landscapes in South Asia. Retreating glaciers have been observed in the Himalayas from in-situ and satellite remote sensing measurements, yet different approaches provide a wide range of mass budget estimates. As glaciers respond dynamically to climate over decades and centuries, more observations of past glacier states are needed to gain perspective on existing shorter-timespan ice loss estimates, minimize effects of interannual variability, and to robustly evaluate glacier dynamics. Here we use a new suite of DEMs (digital elevation models) to estimate geodetic mass balance for over 1000 Himalayan glaciers spanning a 2000 km transect, during the years 1975-2000 and 2001-2016. Recent advances in DEM extraction from declassified Hexagon filmstrips, along with new public access to the global ASTER database have allowed for this large-scale analysis of regional ice loss. An average trendline (using a 30-glacier moving-window) reveals a spatially coherent ice loss signal across the entire transect during both periods, consistent with atmospheric warming as the primary Himalaya-wide driver of change. Our estimate of mean annual ice losses during the more recent period is approximately twice as negative (-0.39 ± 0.1 m.w.e. a-1) compared to the 1975-2000 baseline (-0.18 ± 0.1 m.w.e. a-1). This two-fold acceleration of ice loss during the 21st century agrees with the global average, parallel with recent observations of increasing rates of sea level rise. These surface-integrated geodetic mass balances are negligibly influenced by ice flow dynamics, thus are indicative of climate-driven glacier responses. Further analyses utilizing satellite-derived ice surface velocities will afford deconvolution of the surface mass balance and ice fluxes, providing additional insights into the dynamic responses of the glaciers.

  14. Extending Glacier Monitoring into the Little Ice Age and Beyond

    NASA Astrophysics Data System (ADS)

    Nussbaumer, S. U.; Gärtner-Roer, I.; Zemp, M.; Zumbühl, H. J.; Masiokas, M. H.; Espizua, L. E.; Pitte, P.

    2011-12-01

    Glaciers are among the best natural proxies of climatic changes and, as such, a key variable within the international climate observing system. The worldwide monitoring of glacier distribution and fluctuations has been internationally coordinated for more than a century. Direct measurements of seasonal and annual glacier mass balance are available for the past six decades. Regular observations of glacier front variations have been carried out since the late 19th century. Information on glacier fluctuations before the onset of regular in situ measurements have to be reconstructed from moraines, historical evidence, and a wide range of dating methods. The majority of corresponding data is not available to the scientific community which challenges the reproducibility and direct comparison of the results. Here, we present a first approach towards the standardization of reconstructed Holocene glacier front variations as well as the integration of the corresponding data series into the database of the World Glacier Monitoring Service (www.wgms.ch), within the framework of the Global Terrestrial Network for Glaciers (www.gtn-g.org). The concept for the integration of these reconstructed front variations into the relational glacier database of the WGMS was jointly elaborated and tested by experts of both fields (natural and historical sciences), based on reconstruction series of 15 glaciers in Europe (western/central Alps and southern Norway) and 9 in southern South America. The reconstructed front variation series extend the direct measurements of the 20th century by two centuries in Norway and by four in the Alps and in South America. The storage of the records within the international glacier databases guarantees the long-term availability of the data series and increases the visibility of the scientific research which - in historical glaciology - is often the work of a lifetime. The standardized collection of reconstructed glacier front variations from southern Norway

  15. Glacier loss and emerging hydrologic vulnerabilities in the Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Mark, B. G.; McKenzie, J. M.; Baraer, M.; Lagos, P.; Lautz, L.; Carey, M.; Bury, J.; Crumley, R.; Wigmore, O.; Somers, L. D.

    2015-12-01

    Accelerating glacier recession in the tropical Andes is transforming downstream hydrology, while increasing demands for water by end-users (even beyond the watershed limits) is complicating the assessment of vulnerability. Future scenarios of hydro-climatic vulnerability require a better understanding of coupled hydrologic and human systems, involving both multiscale process studies and more robust models of glacier-climate interactions. We synthesize research in two proglacial valleys of glacierized mountain ranges in different regions of Peru that are both in proximity to growing water usage from urban sectors, agriculture, hydroelectric generation, and mining. In both the Santa River watershed draining the Cordillera Blanca and the Shullcas River watershed below Hyuatapallana Mountain in Junin, glaciers have receded over 25% since the 1980s. Historical runoff and glacier data, combined with glacier-climate modeling, show a long-term decrease in discharge resulting from a net loss of stored water. We find evidence that this altered hydrology is transforming proglacial wetland ecology and water quality, even while water resource use has intensified. Beyond glaciers, our results show that over 60% of the dry season base flow in each watershed is groundwater sourced from heterogeneous aquifers. Municipal water supply in Huancayo already relies on 18 groundwater wells. Perceptions of water availability and actual water use practices remain relatively divorced from the actual water resources provided from each mountain range. Critical changes in glacier volume and water supply are not perceived or acknowledged consistently amongst different water users, nor reflected in water management decisions. In order to identify, understand, model, and adapt to climate-glacier-water changes, it is vital to integrate the analysis of water availability and groundwater processes (the domain of hydrologists) with that of water use (the focus for social scientists). Attention must be

  16. Bed-Deformation Experiments Beneath a Temperate Glacier

    NASA Astrophysics Data System (ADS)

    Iverson, N. R.; Hooyer, T. S.; Fischer, U. H.; Cohen, D.; Jackson, M.; Moore, P. L.; Lappegard, G.; Kohler, J.

    2002-12-01

    Fast flow of glaciers and genesis of glacial landforms are commonly attributed to shear deformation of subglacial sediment. Although models of this process abound, data gathered subglacially on the kinematics and mechanics of such deformation are difficult to interpret. Major difficulties stem from the necessity of either measuring deformation near glacier margins, where conditions may be abnormal, or at the bottoms of boreholes, where the scope of instrumentation is limited, drilling disturbs sediment, and local boundary conditions are poorly known. A different approach is possible at the Svartisen Subglacial Laboratory, where tunnels melted in the ice provide temporary human access to the bed of Engabreen, a temperate outlet glacier of the Svartisen Ice Cap in Norway. A trough (2 m x 1.5 m x 0.5 m deep) was blasted in the rock bed, where the glacier is 220 m thick and sliding at 0.1-0.2 m/d. During two spring field seasons, this trough was filled with 2.5 tons of simulated till. Instruments in the till recorded shear (tiltmeters), volume change, total normal stress, and pore-water pressure as ice moved across the till surface. Pore pressure was brought to near the total normal stress by feeding water to the base of the till with a high-pressure pump, operated in a rock tunnel 4 m below the bed surface. Results illustrate some fundamental aspects of bed deformation. Permanent shear deformation requires low effective normal stress and hence high pore-water pressure, owing to the frictional nature of till. Shear strain generally increases upward in the bed toward the glacier sole, consistent with previous measurements beneath thinner ice at glacier margins. At low effective normal stresses, ice sometimes decouples from underlying till. Overall, bed deformation accounts for 10-35 % of basal motion, although this range excludes shear in the uppermost 0.05 m of till where shear was not measured. Pump tests with durations ranging from seconds to hours highlight the need

  17. Predicting the response of seven Asian glaciers to future climate scenarios using a simple linear glacier model

    NASA Astrophysics Data System (ADS)

    Ren, Diandong; Karoly, David J.

    2008-03-01

    Observations from seven Central Asian glaciers (35-55°N; 70-95°E) are used, together with regional temperature data, to infer uncertain parameters for a simple linear model of the glacier length variations. The glacier model is based on first order glacier dynamics and requires the knowledge of reference states of forcing and glacier perturbation magnitude. An adjoint-based variational method is used to optimally determine the glacier reference states in 1900 and the uncertain glacier model parameters. The simple glacier model is then used to estimate the glacier length variations until 2060 using regional temperature projections from an ensemble of climate model simulations for a future climate change scenario (SRES A2). For the period 2000-2060, all glaciers are projected to experience substantial further shrinkage, especially those with gentle slopes (e.g., Glacier Chogo Lungma retreats ˜4 km). Although nearly one-third of the year 2000 length will be reduced for some small glaciers, the existence of the glaciers studied here is not threatened by year 2060. The differences between the individual glacier responses are large. No straightforward relationship is found between glacier size and the projected fractional change of its length.

  18. High sensitivity of tidewater outlet glacier dynamics to shape

    NASA Astrophysics Data System (ADS)

    Enderlin, E. M.; Howat, I. M.; Vieli, A.

    2013-02-01

    Variability in tidewater outlet glacier behavior under similar external forcing has been attributed to differences in outlet shape (i.e. bed elevation and width), but this dependence has not been investigated in detail. Here we use a numerical ice flow model to show that the dynamics of tidewater outlet glaciers under external forcing are highly sensitive to width and bed topography. Our sensitivity tests indicate that for glaciers with similar discharge, the trunks of wider glaciers and those grounded over deeper basal depressions tend to be closer to flotation, so that less dynamically induced thinning results in rapid, unstable retreat following a perturbation. The lag time between the onset of the perturbation and unstable retreat varies with outlet shape, which may help explain intra-regional variability in tidewater outlet glacier behavior. Further, because the perturbation response is dependent on the thickness relative to flotation, varying the bed topography within the range of observational uncertainty can result in either stable or unstable retreat due to the same perturbation. Thus, extreme care must be taken when interpreting the future behavior of actual glacier systems using numerical ice flow models that are not accompanied by comprehensive sensitivity analyses.

  19. High sensitivity of tidewater outlet glacier dynamics to shape

    NASA Astrophysics Data System (ADS)

    Enderlin, E. M.; Howat, I. M.; Vieli, A.

    2013-06-01

    Variability in tidewater outlet glacier behavior under similar external forcing has been attributed to differences in outlet shape (i.e., bed elevation and width), but this dependence has not been investigated in detail. Here we use a numerical ice flow model to show that the dynamics of tidewater outlet glaciers under external forcing are highly sensitive to width and bed topography. Our sensitivity tests indicate that for glaciers with similar discharge, the trunks of wider glaciers and those grounded over deeper basal depressions tend to be closer to flotation, so that less dynamically induced thinning results in rapid, unstable retreat following a perturbation. The lag time between the onset of the perturbation and unstable retreat varies with outlet shape, which may help explain intra-regional variability in tidewater outlet glacier behavior. Further, because the perturbation response is dependent on the thickness relative to flotation, varying the bed topography within the range of observational uncertainty can result in either stable or unstable retreat due to the same perturbation. Thus, extreme care must be taken when interpreting the future behavior of actual glacier systems using numerical ice flow models that are not accompanied by comprehensive sensitivity analyses.

  20. Debris-covered Himalayan glaciers under a changing climate: observations and modelling of Khumbu Glacier, Nepal

    NASA Astrophysics Data System (ADS)

    Rowan, Ann; Quincey, Duncan; Egholm, David; Gibson, Morgan; Irvine-Fynn, Tristram; Porter, Philip; Glasser, Neil

    2016-04-01

    Many mountain glaciers are characterised in their lower reaches by thick layers of rock debris that insulate the glacier surface from solar radiation and atmospheric warming. Supraglacial debris modifies the response of these glaciers to climate change compared to glaciers with clean-ice surfaces. However, existing modelling approaches to predicting variations in the extent and mass balance of debris-covered glaciers have relied on numerical models that represent the processes governing glaciers with clean-ice surfaces, and yield conflicting results. Moreover, few data exist describing the mass balance of debris-covered glaciers and many observations are only made over short periods of time, but these data are needed to constrain and validate numerical modelling experiments. To investigate the impact of supraglacial debris on the response of a glacier to climate change, we developed a numerical model that couples the flow of ice and debris to include important feedbacks between mass balance, ice flow and debris accumulation. We applied this model to a large debris-covered Himalayan glacier - Khumbu Glacier in the Everest region of Nepal. Our results demonstrate that supraglacial debris prolongs the response of the glacier to warming air temperatures and causes lowering of the glacier surface in situ, concealing the magnitude of mass loss when compared with estimates based on glacierised area. Since the Little Ice Age, the volume of Khumbu Glacier has reduced by 34%, while glacier area has reduced by only 6%. We predict a further decrease in glacier volume of 8-10% by AD2100 accompanied by dynamic and physical detachment of the debris-covered tongue from the active glacier within the next 150 years. For five months during the 2014 summer monsoon, we measured temperature profiles through supraglacial debris and proglacial discharge on Khumbu Glacier. We found that temperatures at the ice surface beneath 0.4-0.7 m of debris were sufficient to promote considerable

  1. Matusevich Glacier

    NASA Image and Video Library

    2017-12-08

    NASA image acquired September 6, 2010 The Matusevich Glacier flows toward the coast of East Antarctica, pushing through a channel between the Lazarev Mountains and the northwestern tip of the Wilson Hills. Constrained by surrounding rocks, the river of ice holds together. But stresses resulting from the glacier’s movement make deep crevasses, or cracks, in the ice. After passing through the channel, the glacier has room to spread out as it floats on the ocean. The expanded area and the jostling of ocean waves prompts the ice to break apart, which it often does along existing crevasses. On September 6, 2010, the Advanced Land Imager (ALI) on NASA’s Earth Observing-1 (EO-1) satellite captured this natural-color image of the margin of Matusevich Glacier. Shown here just past the rock-lined channel, the glacier is calving large icebergs. Low-angled sunlight illuminates north-facing surfaces and casts long shadows to the south. Fast ice anchored to the shore surrounds both the glacier tongue and the icebergs it has calved. Compared to the glacier and icebergs, the fast ice is thinner with a smoother surface. Out to sea (image left), the sea ice is even thinner and moves with winds and currents. Matusevich Glacier does not drain a significant amount of ice off of the Antarctic continent, so the glacier’s advances and retreats lack global significance. Like other Antarctic glaciers, however, Matusevich helps glaciologists form a larger picture of Antarctica’s glacial health and ice sheet volume. NASA Earth Observatory image created by Jesse Allen and Robert Simmon, using EO-1 ALI data provided courtesy of the NASA EO-1 team. Caption by Michon Scott based on image interpretation by Robert Bindschadler, NASA Goddard Space Flight Center, and Walt Meier, National Snow and Ice Data Center. Instrument: EO-1 - ALI Credit: NASA Earth Observatory NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar

  2. Subglacial drainage effects on surface motion on a small surge type alpine glacier on the St. Elias range, Yukon Territory, Canada.

    NASA Astrophysics Data System (ADS)

    Rada, C.; Schoof, C.; King, M. A.; Flowers, G. E.; Haber, E.

    2017-12-01

    Subglacial drainage is known to play an important role in glacier dynamics trough its influence on basal sliding. However, drainage is also one of the most poorly understood process in glacier flow due to the difficulties of observing, identifying and modeling the physics involved. In an effort to improve understanding of subglacial processes, we have monitored a small, approximately 100 m thick surge-type alpine glacier for nine years. Over 300 boreholes were instrumented with pressure transducers over a 0.5 km² in its upper ablation area, in addition to a weather station and a permanent GPS array consisting on 16 dual-frequency receivers within the study area. We study the influence of the subglacial drainage system on the glacier surface velocity. However, pressure variations in the drainage system during the melt season are dominated by diurnal oscillations.Therefore, GPS solutions have to be computed at sub-diurnal time intervals in order to explore the effects of transient diurnal pressure variations. Due to the small displacements of the surface of the glacier over those periods (4-10 cm/day), sub-diurnal solutions are dominated by errors, making it impossible to observe the diurnal variations in glacier motion. We have found that the main source of error is GPS multipath. This error source does largely cancel out when solutions are computed over 24 hour periods (or more precisely, over a sidereal day), but solution precisions decrease quickly when computed over shorter periods of time. Here we present an inverse problem approach to remove GPS multipath errors on glaciers, and use the reconstructed glacier motion to explore how the subglacial drainage morphology and effective pressure influence glacier dynamics at multiple time scales.

  3. Monitoring of land-based glaciers on James Ross Island, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Laska, Kamil; Nyvlt, Daniel; Engel, Zbynek; Stachon, Zdenek

    2015-04-01

    Antarctic Peninsula has been considered one of the most rapidly warming parts of our planet during the second half of the 20th century. Therefore, James Ross Island located near the northern tip of the Antarctic Peninsula, represents a unique place to study the sensitivity of glacier systems to regional atmospheric warming. Since 2006, an integrated multidisciplinary study of glaciers and terrestrial ecosystems has been carried out in the northern part of Ulu Peninsula, James Ross Island. In this contribution, glacier monitoring network consisting of four dominant land-based glaciers at the Ulu Peninsula is presented. Davies Dome (DD) is an ice dome, which originates on the surface of a flat volcanic mesa at >400 m a.s.l. and terminates as a single 700 m wide outlet in Whisky Bay. In 2006, Davies Dome had an area of 6.5 km2 and lay in the altitude range 0-514 m a.s.l. Whisky Glacier (WG) is a cold-based land-terminating valley glacier, which is surrounded by an extensive area of debris-covered ice. WG covered an area of 2.4 km2 and ranged from 215 to 520 m a.s.l. Triangular Glacier (TG) is a southwest-facing land-terminating glacier with an area of 0.6 km2 ranging from 302 to 107 m a.s.l. with well-developed ice-cored terminal moraine. San Jose Glacier (SJG) is a south-facing land-terminating piedmont glacier rejuvenated from the above lying Lachman Crags Dome (~640 m a.s.l.). SJG covers an area of 0.6 km2 and extends between 138 and 310 m a.s.l. Moreover, monitoring network consists of five automatic weather stations (AWS) placed in the central and marginal parts of the selected glaciers. Each AWS was equipped with the EMS33 air temperature and humidity probes placed inside the radiation shields. Apart from that, additional instruments, e.g. albedometer, propeller anemometer, snow depth sensors were installed on the central part of DD and WG. Since 2009, annual mass balance measurements have been realized on the DD, WG and TG glaciers. In 2010, ice thickness and

  4. Mechanisms that Amplify, Attenuate and Deviate Glacier Response to Climate Change in Central East Greenland. (Invited)

    NASA Astrophysics Data System (ADS)

    Jiskoot, H.

    2013-12-01

    A multidecadal review of glacier fluctuations and case-studies of glacier processes and environments in central East Greenland will be used to demonstrate Mechanisms that Amplify, Attenuate and Deviate glacier response to climate forcings (MAAD). The different spatial and temporal scales at which MAAD affect mass balance and ice flow may complicate interpretation and longterm extrapolation of glacier response to climate change. A framework of MAAD characterisation and best-practice for interpreting climate signals while taking into account MAAD will be proposed. Glaciers in the Watkins Bjerge, Geikie Plateau and Stauning Alps regions of central East Greenland (68°-72°N) contain about 50000 km2 of glacierized area peripheral to the Greenland Ice Sheet. Within the region, large north-south and coast-inland climatic gradients, as well as complicated topography and glacier dynamics, result in discrepant glacier behaviour. Average retreat rates have doubled from about 2 to 4 km2 a-1 between the late 20th and early 21st centuries. However, glaciers terminating along the Atlantic coast display two times the retreat, thinning, and acceleration rates compared to glaciers terminating in inland fjords or on land. Despite similar climatic forcing variable glacier behaviour is apparent: individual glacier length change ranges from +57 m a-1 to -428 m a-1, though most retreat -20 to -100 m a-1. Interacting dynamic, mass balance and glacio-morphological mechanisms can amplify, attenuate or deviate glacier response (MAAD) to climate change, thus complicating the climatological interpretation of glacier length, area, and thickness changes. East Greenland MAAD include a range of common positive and negative feedback mechanisms in surface mass balance and terminus and subglacial boundary conditions affecting ice flow, but also mechanisms that have longterm or delayed effects. Certain MAAD may affect glacier change interpretation on multiple timescales: e.g. surging glaciers do not

  5. Measurements of Velocity and Ablation from Bering Glacier During the Recent Surge

    NASA Astrophysics Data System (ADS)

    Shuchman, R. A.; Roussi, C.; Endsley, K. A.; Josberger, E. G.; Hart, B. E.

    2011-12-01

    Bering Glacier, in south central Alaska, the largest and longest glacier in continental North America, is once again surging. The last surge occurred in the 1993-1995 time period; the current surge was first documented by satellite observations in January 2011. In mid-May 2011 we deployed Glacier Ablation Sensing System (GASS) units at six sites from the terminus (sea level) to the Bagley Ice field (1200m). At each GASS site the date, time, GPS WAAS enabled location, air temperature, melt, wind speed, upward and downward looking light intensity are measured and recorded on an hourly basis. The melt is determined by measuring acoustically the distance between the sensor's housing which is mounted on an aluminum pole stream drilled approximately 10 m in to the ice or snow surface. Two of the GASS sites nearest the terminus transmit data back via the iridium network and are reported on the web (www.beringglacier.org - click on 2011 ablation monitoring). As of late July 2011, the glacier had moved approximately 785m at the terminus (B1) and 858m at B2 approximately 15 km up glacier at an altitude of approximately 340m. B1 total melt from mid-May was 494 cm, while B2 melted 383 cm. From previous observations, the average daily melt at Bering in the summer is approximately 5cm/day, and the velocity at B2 was 4.5 m/day, with a total displacement in 2010 of approximately 280m. B2 is presently moving 12m/day down from its peak observed displacement of 18m/day in late May. In late July, B1 at the terminus is moving approximately 7m/day, slower than its maximum daily displacement of over 15m/day observed in late May. In contrast, the 2010 GASS unit measurement at the glacier terminus observed a daily movement of only .14m/day with a total displacement of only approximately 10 meters. The hourly observations for all six GASS units will be presented along with interpretation as to why the melts and displacements vary over the observation period.

  6. Alaska Synthetic Aperture Radar (SAR) Facility science data processing architecture

    NASA Technical Reports Server (NTRS)

    Hilland, Jeffrey E.; Bicknell, Thomas; Miller, Carol L.

    1991-01-01

    The paper describes the architecture of the Alaska SAR Facility (ASF) at Fairbanks, being developed to generate science data products for supporting research in sea ice motion, ice classification, sea-ice-ocean interaction, glacier behavior, ocean waves, and hydrological and geological study areas. Special attention is given to the individual substructures of the ASF: the Receiving Ground Station (RGS), the SAR Processor System, and the Interactive Image Analysis System. The SAR data will be linked to the RGS by the ESA ERS-1 and ERS-2, the Japanese ERS-1, and the Canadian Radarsat.

  7. RESEARCH: Effects of Recent Volcanic Eruptions on Aquatic Habitat in the Drift River, Alaska, USA: Implications at Other Cook Inlet Region Volcanoes.

    PubMed

    DORAVA; MILNER

    1999-02-01

    / Numerous drainages supporting productive salmon habitat are surrounded by active volcanoes on the west side of Cook Inlet in south-central Alaska. Eruptions have caused massive quantities of flowing water and sediment to enter the river channels emanating from glaciers and snowfields on these volcanoes. Extensive damage to riparian and aquatic habitat has commonly resulted, and benthic macroinvertebrate and salmonid communities can be affected. Because of the economic importance of Alaska's fisheries, detrimental effects on salmonid habitat can have significant economic implications. The Drift River drains glaciers on the northern and eastern flanks of Redoubt Volcano. During and following eruptions in 1989-1990, severe physical disturbances to the habitat features of the river adversely affected the fishery. Frequent eruptions at other Cook Inlet region volcanoes exemplify the potential effects of volcanic activity on Alaska's important commercial, sport, and subsistence fisheries. Few studies have documented the recovery of aquatic habitat following volcanic eruptions. The eruptions of Redoubt Volcano in 1989-1990 offered an opportunity to examine the recovery of the macroinvertebrate community. Macroinvertebrate community composition and structure in the Drift River were similar in both undisturbed and recently disturbed sites. Additionally, macroinvertebrate samples from sites in nearby undisturbed streams were highly similar to those from some Drift River sites. This similarity and the agreement between the Drift River macroinvertebrate community composition and that predicted by a qualitative model of typical macroinvertebrate communities in glacier-fed rivers indicate that the Drift River macroinvertebrate community is recovering five years after the disturbances associated with the most recent eruptions of Redoubt Volcano. KEY WORDS: Aquatic habitat; Volcanoes; Lahars; Lahar-runout flows; Macroinvertebrates; Community structure; Community composition

  8. Modeling and Understanding the Mass Balance of Himalayan Glaciers

    NASA Astrophysics Data System (ADS)

    Rengaraju, S.; Achutarao, K. M.

    2017-12-01

    suitable models to study future response of the glaciers in this region. We also quantify the range and sources of uncertainty in projected changes.

  9. Investigating the nature of the GPR antenna orientation effect on temperate glaciers

    NASA Astrophysics Data System (ADS)

    Langhammer, Lisbeth; Rabenstein, Lasse; Bauder, Andreas; Lathion, Patrick; Maurer, Hansruedi

    2015-04-01

    In the recent years the bedrock topography of the Swiss Alpine Glaciers has been mapped by ground-based and helicopter-borne GPR (Ground Penetrating Radar) as part of an ongoing comprehensive inventory initiated by the ETH Zürich, the Swiss Competence Center for Energy Research (SCCER) and the Swiss Geophysical Commission (SGPK). Our recorded GPR data of glacier bedrock topography highlights the need of a better understanding of the interaction between GPR systems and the glacierized subsurface in high mountain terrain. The Otemma glacier in the Pennine Alps, Valais, has been subject to repeated profiling with commercial GPR ground units (pulseEKKO and GSSI) operating at frequencies ranging from 15-67 MHz deployed at the surface and mounted on a helicopter. Our data shows significant quality differences between similar GPR profiles, which could not be explained by system failure or technical discrepancies. To investigate the issue, we conducted antenna rotation experiments at several locations on the glacier surface. The results indicate a strong relationship between the orientation of the bistatic antennas and the flow direction of the glacier. Possible explanation for our observations range from anisotropy effects in glacier ice, the influence of directional characteristics of the GPR antennas or distinctive features of the bedrock topography. To explain our results, we perform 3D GPR modeling of the glacier body with the FDTD electromagnetic simulator gprMax. A basic homogenous three-dimensional model of the glacier will be replaced by varying bedrock topography along a transect. Internal structures such as water layers and inclusion will be imbedded in the simulations. Currently ground based GPR surveys produce higher quality data with respect to the visibility of glacier bed reflections. We intent to enhance our operating system and antenna installation on the helicopter based on the results of the simulations to achieve similar quality standards. The

  10. Air temperature, radiation budget and area changes of Quisoquipina glacier in the Cordillera Vilcanota (Peru)

    NASA Astrophysics Data System (ADS)

    Suarez, Wilson; Macedo, Nicolás; Montoya, Nilton; Arias, Sandro; Schauwecker, Simone; Huggel, Christian; Rohrer, Mario; Condom, Thomas

    2015-04-01

    The Peruvian Andes host about 71% of all tropical glaciers. Although several studies have focused on glaciers of the largest glaciered mountain range (Cordillera Blanca), other regions have received little attention to date. In 2011, a new program has been initiated with the aim of monitoring glaciers in the centre and south of Peru. The monitoring program is managed by the Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI) and it is a joint project together with the Universidad San Antonio Abad de Cusco (UNSAAC) and the Autoridad Nacional del Agua (ANA). In Southern Peru, the Quisoquipina glacier has been selected due to its representativeness for glaciers in the Cordillera Vilcanota considering area, length and orientation. The Cordillera Vilcanota is the second largest mountain range in Peru with a glaciated area of approximately 279 km2 in 2009. Melt water from glaciers in this region is partly used for hydropower in the dry season and for animal breeding during the entire year. Using Landsat 5 images, we could estimate that the area of Quisoquipina glacier has decreased by approximately 11% from 3.66 km2 in 1990 to 3.26 km2 in 2010. This strong decrease is comparable to observations of other tropical glaciers. In 2011, a meteorological station has been installed on the glacier at 5180 m asl., measuring air temperature, wind speed, relative humidity, net short and longwave radiation and atmospheric pressure. Here, we present a first analysis of air temperature and the radiation budget at the Quisoquipina glacier for the first three years of measurements. Additionally, we compare the results from Quisoquipina glacier to results obtained by the Institut de recherche pour le développement (IRD) for Zongo glacier (Bolivia) and Antizana glacier (Ecuador). For both, Quisoquipina and Zongo glacier, net shortwave radiation may be the most important energy source, thus indicating the important role of albedo in the energy balance of the glacier

  11. Localized Glacier Deformation Associated with Filling and Draining of a Glacier-Dammed Lake and Implications for Outburst Flood Hydraulics

    NASA Astrophysics Data System (ADS)

    Cunico, M. L.; Walder, J. S.; Fountain, A. G.; Trabant, D. C.

    2001-12-01

    During the summer of 2000, we measured displacements of 22 survey targets on the surface of Kennicott Glacier, Alaska, in the vicinity of Hidden Creek Lake, an ice-dammed lake in a tributary valley that fills and drains annually. Targets were distributed over a domain about equal in width to the lake, from near the glacier/lake margin to a distance of about 1 km from the margin. Targets were surveyed over a 24-day period as the lake filled and then drained. Lake stage was independently monitored. Vertical movement of targets generally fell off with distance d from the lake. As the lake filled, targets with d < 300 to 400 m rose at nearly the same rate as the lake--typically about 0.5 m/d--with a few targets rising slightly faster than the lake. The rate of vertical movement fell off rapidly with distance from the lake: for d = ca. 600 m--roughly twice the local ice thickness--targets moved upward only about 10% as fast as lake stage. Vertical movement of targets with d > ca. 1 km seemed to be uncorrelated with lake stage. The general pattern is consistent with the idea that a wedge of water extended beneath the glacier to a distance of perhaps 300 to 400 m from the visible margin of the lake and exerts buoyant stresses on the ice that were transmitted into the main body of the glacier and caused flexure. This scenario bears some resemblance to tidal deflections of ice shelves or tidewater glaciers. For a given value of lake stage, target elevations were invariably higher as the lake drained than as the lake filled. Moreover, survey targets at a distance of about 400 m or more from the lake continued to rise for some time even after the lake began to drain. The lag time between the beginning of lake drainage and the beginning of target downdrop increased with distance from the lake, with the lag being about 14 hours at a distance of 400 m from the lake. (The lake drained completely in approximately 75 hours.) The likeliest explanations for the departure from

  12. Glacialmorphological reconstruction of glacier advances and glacial lake outburst floods at the Cachapoal glacier in the Dry Central Andes of Chile (34°S)

    NASA Astrophysics Data System (ADS)

    Iturrizaga, Lasafam; Charrier, Reynaldo

    2013-04-01

    Throughout the Andes Mountain range of South America a general trend of glacier shrinkage has taken place in the last century. Only a few glaciers have shown a rather non-continuous trend of glacier retreat and temporally advanced or even surged during the mid-19th to 20th century. One of the earliest assumed glacier surges has occurred in the upper Cachapoal catchment area at the homonymous glacier. In climatic respect the Cachapoal glacier is located in the transition zone from the most southern part of the Dry Central Andes of Chile to the more humid zone of the Wet Andes. The region is affected mainly by winter precipitation deriving from the Westerlies. The debris-covered, 12 km-long Cachapoal glacier represents one of the largest valley glaciers in the Central Andes. It is an avalanche-fed glacier with an almost 1500 m-high head wall in its upper catchment area flowing down from Picos del Barroso (5180 m) and terminates at an elevation of 2630 m a.s.l. with a bifurcated glacier tongue. A large moraine complex, almost 2 km in length and 500 m in width, separates the two glacier lobes. During times of advanced glacier tongue positions the Ríos Molina and Cachapoal may be have blocked independently at two distinct localities which are situated about 2300 m apart from each other. A blockage with temporal lake formation has occurred at least in the years 1848, 1955 and 1981 (cf. Plagemann 1887, Peña 1981), from which the rupture of the earliest glacier barrier has been the most devastating. This event is locally reminded as "la gran avenida en seco" in the historical record. Geomorphological evidence of the past historical and modern glacier expansions is given in the proglacial area by a fresh dead-ice hummocky topography and glacial trimlines at the valley flanks. More down valley broad outwash plains and boulder clusters indicate past high energy floods produced by glacier lake outbursts. Regarding the small size of the catchment area of the Río Molina

  13. Recent thinning of Bowdoin Glacier, a marine terminating outlet glacier in northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Tsutaki, S.; Sugiyama, S.; Sakakibara, D.; Sawagaki, T.; Maruyama, M.

    2014-12-01

    Ice discharge from calving glaciers has increased in the Greenland ice sheet (GrIS), and this increase plays important roles in the volume change of GrIS and its contribution to sea level rise. Thinning of GrIS calving glaciers has been studied by the differentiation of digital elevation models (DEMs) derived by satellite remote-sensing (RS). Such studies rely on the accuracy of DEMs, but calibration of RS data with ground based data is difficult. This is because field data on GrIS calving glaciers are few. In this study, we combined field and RS data to measure surface elevation change of Bowdoin Glacier, a marine terminating outlet glacier in northwestern Greenland (77°41'18″N, 68°29'47″W). The fast flowing part of the glacier is approximately 3 km wide and 10 km long. Ice surface elevation within 6 km from the glacier terminus was surveyed in the field in July 2013 and 2014, by using the global positioning system. We also measured the surface elevation over the glacier on August 20, 2007 and September 4, 2010, by analyzing Advanced Land Observing Satellite (ALOS), Panchromatic remote-sensing Instrument for Stereo Mapping (PRISM) images. We calibrated the satellite derived elevation data with our field measurements, and generated DEM for each year with a 25 m grid mesh. The field data and DEMs were compared to calculate recent glacier elevation change. Mean surface elevation change along the field survey profiles were -16.3±0.2 m (-5.3±0.1 m yr-1) in 2007-2010 and -10.8±0.2 m (-3.8±0.1 m yr-1) in 2010-2013. These rates are much greater than those observed on non-calving ice caps in the region, and similar to those reported for other calving glaciers in northwestern Greenland. Loss of ice was greater near the glacier terminus, suggesting the importance of ice dynamics and/or interaction with the ocean.

  14. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...

  15. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...

  16. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...

  17. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...

  18. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...

  19. Assessing glacier melt contribution to streamflow at Universidad Glacier, central Andes of Chile

    NASA Astrophysics Data System (ADS)

    Bravo, Claudio; Loriaux, Thomas; Rivera, Andrés; Brock, Ben W.

    2017-07-01

    Glacier melt is an important source of water for high Andean rivers in central Chile, especially in dry years, when it can be an important contributor to flows during late summer and autumn. However, few studies have quantified glacier melt contribution to streamflow in this region. To address this shortcoming, we present an analysis of meteorological conditions and ablation for Universidad Glacier, one of the largest valley glaciers in the central Andes of Chile at the head of the Tinguiririca River, for the 2009-2010 ablation season. We used meteorological measurements from two automatic weather stations installed on the glacier to drive a distributed temperature-index and runoff routing model. The temperature-index model was calibrated at the lower weather station site and showed good agreement with melt estimates from an ablation stake and sonic ranger, and with a physically based energy balance model. Total modelled glacier melt is compared with river flow measurements at three sites located between 0.5 and 50 km downstream. Universidad Glacier shows extremely high melt rates over the ablation season which may exceed 10 m water equivalent in the lower ablation area, representing between 10 and 13 % of the mean monthly streamflow at the outlet of the Tinguiririca River Basin between December 2009 and March 2010. This contribution rises to a monthly maximum of almost 20 % in March 2010, demonstrating the importance of glacier runoff to streamflow, particularly in dry years such as 2009-2010. The temperature-index approach benefits from the availability of on-glacier meteorological data, enabling the calculation of the local hourly variable lapse rate, and is suited to high melt regimes, but would not be easily applicable to glaciers further north in Chile where sublimation is more significant.

  20. Surface elevation and mass changes of all Swiss glaciers 1980-2010

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Huss, M.; Hoelzle, M.

    2015-03-01

    Since the mid-1980s, glaciers in the European Alps have shown widespread and accelerating mass losses. This article presents glacier-specific changes in surface elevation, volume and mass balance for all glaciers in the Swiss Alps from 1980 to 2010. Together with glacier outlines from the 1973 inventory, the DHM25 Level 1 digital elevation models (DEMs) for which the source data over glacierized areas were acquired from 1961 to 1991 are compared to the swissALTI3D DEMs from 2008 to 2011 combined with the new Swiss Glacier Inventory SGI2010. Due to the significant differences in acquisition dates of the source data used, mass changes are temporally homogenized to directly compare individual glaciers or glacierized catchments. Along with an in-depth accuracy assessment, results are validated against volume changes from independent photogrammetrically derived DEMs of single glaciers. Observed volume changes are largest between 2700 and 2800 m a.s.l. and remarkable even above 3500 m a.s.l. The mean geodetic mass balance is -0.62 ± 0.07 m w.e. yr-1 for the entire Swiss Alps over the reference period 1980-2010. For the main hydrological catchments, it ranges from -0.52 to -1.07 m w.e. yr-1. The overall volume loss calculated from the DEM differencing is -22.51 ± 1.76 km3.

  1. Surface elevation and mass changes of all Swiss glaciers 1980-2010

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Huss, M.; Hoelzle, M.

    2014-08-01

    Since the mid-1980s, glaciers in the European Alps have shown widespread and accelerating mass losses. This article presents glacier-specific changes in surface elevation, volume and mass balance for all glaciers in the Swiss Alps from 1980 to 2010. Together with glacier outlines from the 1973 inventory, the DHM25 Level 1 Digital Elevation Models (DEMs) for which the source data over glacierized areas was acquired from 1961 to 1991 are compared to the swissALTI3D DEMs from 2008-2011 combined with the new Swiss Glacier Inventory SGI2010. Due to the significant differences in acquisition date of the source data used, resulting mass changes are temporally homogenized to directly compare individual glaciers or glacierized catchments. Along with an in-depth accuracy assessment, results are validated against volume changes from independent photogrammetrically derived DEMs of single glaciers. Observed volume changes are largest between 2700-2800 m a.s.l. and remarkable even above 3500 m a.s.l. The mean geodetic mass balance is -0.62 ± 0.03 m w.e. yr-1 for the entire Swiss Alps over the reference period 1980-2010. For the main hydrological catchments, it ranges from -0.52 to -1.07 m w.e. yr-1. The overall volume loss calculated from the DEM differencing is -22.51 ± 0.97 km3.

  2. Enhanced ASTER DEMs for Decadal Measurements of Glacier Elevation Changes

    NASA Astrophysics Data System (ADS)

    Girod, L.; Nuth, C.; Kääb, A.

    2016-12-01

    Elevation change data is critical to the understanding of a number of geophysical processes, including glaciers through the measurement their volume change. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) system on-board the Terra (EOS AM-1) satellite has been a unique source of systematic stereoscopic images covering the whole globe at 15m resolution and at a consistent quality for over 15 years. While satellite stereo sensors with significantly improved radiometric and spatial resolution are available today, the potential of ASTER data lies in its long consistent time series that is unrivaled, though not fully exploited for change analysis due to lack of data accuracy and precision. ASTER data are strongly affected by attitude jitter, mainly of approximately 4 and 30 km wavelength, and improving the generation of ASTER DEMs requires removal of this effect. We developed MMASTER, an improved method for ASTER DEM generation and implemented it in the open source photogrammetric library and software suite MicMac. The method relies on the computation of a rational polynomial coefficients (RPC) model and the detection and correction of cross-track sensor jitter in order to compute DEMs. Our sensor modeling does not require ground control points and thus potentially allows for automatic processing of large data volumes. When compared to ground truth data, we have assessed a ±5m accuracy in DEM differencing when using our processing method, improved from the ±30m when using the AST14DMO DEM product. We demonstrate and discuss this improved ASTER DEM quality for a number of glaciers in Greenland (See figure attached), Alaska, and Svalbard. The quality of our measurements promises to further unlock the underused potential of ASTER DEMs for glacier volume change time series on a global scale. The data produced by our method will thus help to better understand the response of glaciers to climate change and their influence on runoff and sea level.

  3. Surge of Bering Glacier and Bagley Ice Field: Parameterization of surge characteristics based on automated analysis of crevasse image data and laser altimeter data

    NASA Astrophysics Data System (ADS)

    Stachura, M.; Herzfeld, U. C.; McDonald, B.; Weltman, A.; Hale, G.; Trantow, T.

    2012-12-01

    The dynamical processes that occur during the surge of a large, complex glacier system are far from being understood. The aim of this paper is to derive a parameterization of surge characteristics that captures the principle processes and can serve as the basis for a dynamic surge model. Innovative mathematical methods are introduced that facilitate derivation of such a parameterization from remote-sensing observations. Methods include automated geostatistical characterization and connectionist-geostatistical classification of dynamic provinces and deformation states, using the vehicle of crevasse patterns. These methods are applied to analyze satellite and airborne image and laser altimeter data collected during the current surge of Bering Glacier and Bagley Ice Field, Alaska.

  4. Publications - RI 2009-3 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska , northeastern Brooks Range, Alaska, scale 1:63,360 (129.0 M) Digital Geospatial Data Digital Geospatial Data Resident Business in Alaska Visiting Alaska State Employees

  5. Malaspina Glacier: a modern analog to the Laurentide Glacier in New England

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavson, T.C.; Boothroyd, J.C.

    1985-01-01

    The land-based temperate Malaspina Glacier is a partial analog to the late Wisconsinan Laurentide Ice Sheet that occupied New England and adjacent areas. The Malaspina occupies a bedrock basin similar to basins occupied by the margin of the Laurentide Ice Sheet. Ice lobes of the Malaspina are similar in size to end moraine lobes in southern New England and Long Island,New York. Estimated ice temperature, ablation rates, surface slopes and meltwater discharge per unit of surface area for the Laurentide Ice Sheet are similar to those for the Malaspina Glacier. In a simple hydrologic-fluvial model for the Malaspina Glacier meltwatermore » moves towards the glacier bed and down-glacier along intercrystalline pathways, crevasses and moulins, and a series of tunnels. Regolith and bedrock at the glacier floor, which are eroded and transported by subglacial and englacial streams, are the sources of essentially all fluvio-lacustrine sediment on the Malaspina Foreland. Supraglacial eskers containing coarse gravels occur as much as 100 m above the glacier bed and are evidence that bedload can be lifted hydraulically. Subordinant amounts of sediment are contributed to outwash by small surface streams draining the ice margin. By analogy a similar hydrologic-fluvial system existed along the southeastern margin of the Laurentide Ice Sheet. Subglacial regolith and bedrock eroded from beneath the Laurentide Ice Sheet by meltwater was also the source of most glaciofluvial and glaciolacustrine deposits in southern New England, not sediment carried to the surface of the ice sheet along shear planes and washed off the glacier by meltwater.« less

  6. Modeled and measured glacier change and related glaciological, hydrological, and meteorological conditions at South Cascade Glacier, Washington, balance and water years 2006 and 2007

    USGS Publications Warehouse

    Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.

    2010-01-01

    Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass balance quantities for balance years 2006 and 2007. Mass balances were computed with assistance from a new model that was based on the works of other glacier researchers. The model, which was developed for mass balance practitioners, coupled selected meteorological and glaciological data to systematically estimate daily mass balance at selected glacier sites. The North Cascade Range in the vicinity of South Cascade Glacier accumulated approximately average to above average winter snow packs during 2006 and 2007. Correspondingly, the balance years 2006 and 2007 maximum winter snow mass balances of South Cascade Glacier, 2.61 and 3.41 meters water equivalent, respectively, were approximately equal to or more positive (larger) than the average of such balances since 1959. The 2006 glacier summer balance, -4.20 meters water equivalent, was among the four most negative since 1959. The 2007 glacier summer balance, -3.63 meters water equivalent, was among the 14 most negative since 1959. The glacier continued to lose mass during 2006 and 2007, as it commonly has since 1953, but the loss was much smaller during 2007 than during 2006. The 2006 glacier net balance, -1.59 meters water equivalent, was 1.02 meters water equivalent more negative (smaller) than the average during 1953-2005. The 2007 glacier net balance, -0.22 meters water equivalent, was 0.37 meters water equivalent less negative (larger) than the average during 1953-2006. The 2006 accumulation area ratio was less than 0.10, owing to isolated patches of accumulated snow that endured the 2006 summer season. The 2006 equilibrium line altitude was higher than the glacier. The 2007 accumulation area ratio and equilibrium line altitude were 0.60 and 1,880 meters, respectively. Accompanying the glacier mass losses were retreat of the terminus and reduction of total glacier area. The

  7. Khurdopin Glacier, Pakistan

    NASA Image and Video Library

    2018-03-26

    In October 2016, the Khurdopin Glacier in Pakistan began a rapid surge after 20 years of little movement. By March, 2017, a large lake had formed in the Shimshal River, where the glacier had formed a dam. Fortunately, the river carved an outlet through the glacier before the lake could empty catastrophically. In this pair of ASTER images, acquired August 20, 2015 and May 21, 2017, the advance of the Khurdopin Glacier (dark gray and white "river" in lower right quarter of image) is obvious by comparing the before and after images. The images cover an area of 25 by 27.8 km, and are located at 36.3 degrees north, 75.5 degrees east. https://photojournal.jpl.nasa.gov/catalog/PIA22304

  8. Initial Results from a Study of Climatic Changes and the Effect on Wild Sheep Habitat in Selected Study Areas of Alaska

    USGS Publications Warehouse

    Pfeifer, Edwin; Ruhlman, Jana; Middleton, Barry; Dye, Dennis; Acosta, Alex

    2010-01-01

    Climate change theorists have projected striking changes in local weather on earth due to increases in temperature. These predicted changes may cause melting glaciers and ice caps, rising sea levels, increasing desertification and other environmental changes which seem likely to affect presumed indicator species as harbingers of more significant changes. Wild sheep, even though they are one of the more successful mammalian taxa since Pleistocene times, exhibit a suite of adaptations to glacier driven environments which may be presumed to render them sensitive to environmental changes. The authors began investigation with these assumptions by comparing changes, as determined by satellite imagery, in glacier extent in our study areas in Denali National Park, Alaska, during the last 30 years. Our findings showed the extent of glacial retreat in Alaska during this time period was approximately 40-50 percent as measured by ablation zone and retreat of terminal moraines. During the first half of this 30-year period, Dall sheep (Ovis dalli dalli) populations were stable at historically recorded highs. In the early to mid-1990s, Dall sheep populations in Alaska declined from an historical estimated high of 75,000 sheep to the presently estimated 40-50,000. The declines seemed to be weather related, on the basis of the presumption that lamb survival rates are primarily weather-mediated in Alaska. Changes in local weather appear, at this point, to be correlated with oscillation in the Pacific Current in the Northern Pacific ocean. Of course, changes in local weather affect forage abundance and quality seasonally. In investigating a possible linkage of weather to seasonal forage abundance and quality, we also investigated changes in snow and ice extent and distribution, as well as increased water runoff associated with permafrost and depleted glaciers. Databases were assembled from a wide variety of remotely sensed satellite data, ground-based observations, and historical

  9. The Mobile Margin of (Far) North America: GPS Constraints on Active Deformation in Alaska and the Role of the Yakutat Block

    NASA Astrophysics Data System (ADS)

    Elliott, J.; Freymueller, J. T.; Larsen, C. F.; Motyka, R. J.

    2010-12-01

    a main thrust instead of cutting through the lithosphere. In contrast with the region to the east, relative convergence is accommodated over a fairly short distance across the St. Elias Mountains. West of the deformation front, the en echelon blocks and faults continue until the vicinity of the Bering Glacier, where the GPS data reveal a rotation towards the north as the tectonic regime transitions from the collision and accretion of the Yakutat block to subduction along the Aleutian Megathrust. North of the Chugach and St. Elias Ranges, the Southern Alaska block rotates counterclockwise.

  10. Summer temperatures inferred from varved lacustrine sediment at Iceberg Lake in southcentral Alaska

    NASA Astrophysics Data System (ADS)

    Diedrich, K.; Loso, M. G.

    2010-12-01

    Iceberg Lake, a glacier-dammed lake in southcentral Alaska, has been previously shown to record over 1,500 years of continuous laminated lacustrine sediment deposition. Because previous work was based on examination of subaerial outcrops exposed by stream incision in the bed of the jökulhlaup-drained lake, the length of the record was limited by the extent of the outcrops. In August of 2010, we returned to core the remote lake; our goal was recovery of the complete sedimentary record in the lake, extending perhaps back to the onset of late Holocene glaciation—around 3-5 ka in this region. We used a Vibarcorer system to recover sediment cores from two locations, one near the site of previous work and another at the distal end of the lake. The longest cores recovered were 5.2 meters and 6.2 meters at the proximal and distal sites, respectively. Based on the average lamination thickness established previously at the proximal site (4.7 mm), these cores should each represent over 1000 years of sediment accumulation, and likely much longer at the distal site, where laminations are expected to be thinner. Having established previously that the lake’s laminations are annual varves and that they are positively correlated with summer (melt-season) temperatures, our analysis is focused on documenting a long time-series of annual sediment accumulation and summer-layer particle size. Both measurements will be used to interpret the history of summer temperatures. The cores may also provide sedimentary evidence of the timing of advances/retreats of nearby glaciers, including the Tana Glacier and Bagley Icefield, helping to clarify the poorly-constrained timing of neoglaciation in Southern Alaska. The paleoclimate record produced at Iceberg Lake will be included in the Arctic System Science 8ka project

  11. Spatial variability in patterns of glacier change across the Manaslu region, Central Himalaya

    NASA Astrophysics Data System (ADS)

    Robson, Benjamin A.; Nuth, Christopher; Nielsen, Pål R.; Girod, Luc; Hendrickx, Marijn; Dahl, Svein Olaf

    2018-02-01

    This study assesses changes in glacier area, velocity and geodetic mass balance for the glaciers in the Manaslu region of Nepal, a previously undocumented region of the Himalayas. We studied changes between 1970 (for select glaciers), 2000, 2005 and 2013 using freely available Landsat satellite imagery, the SRTM Digital Elevation Model (DEM) and a DEM based on Worldview imagery. Our results show a complex pattern of mass changes across the region, with glaciers lowering on average by -0.25 ± 0.08 m a-1 between 2000 and 2013 which equates to a negative geodetic mass balance of -0.21 ± 0.16 m w.e.a-1. Over approximately the same time period (1999 to 2013) the glaciers underwent a -16.0% decrease in mean surface velocity over their debris-covered tongues as well as a reduction in glacier area of -8.2%. The rates of glacier change appear to vary between the different time periods, with glacier losses increasing in most cases. The glaciers on Manaslu itself underwent a change in surface elevation of -0.46 ± 0.03 m a-1 between 1970 and 2000 and -0.99 ± 0.08 m a-1 between 2000 and 2013. Rates of glacier area shrinkage for the same glaciers increased from -0.36 km2 a-1 between 1970 and 2001 to -2.28 km2 a-1 between 2005 and 2013. Glacier change varies across the region and seems to relate to a combination of glacier hypsometry, glacier elevation range and the presence and distribution of supraglacial debris. Lower-elevation, debris-free glaciers with bottom-heavy hypsometries are losing most mass. As the glaciers in the Manaslu region continue to stagnate, an accumulation and thickening of the debris-cover is likely, thereby insulating the glacier and further complicating future glacier responses to climate.

  12. Microbial community development on the surface of Hans and Werenskiold Glaciers (Svalbard, Arctic): a comparison.

    PubMed

    Grzesiak, Jakub; Górniak, Dorota; Świątecki, Aleksander; Aleksandrzak-Piekarczyk, Tamara; Szatraj, Katarzyna; Zdanowski, Marek K

    2015-09-01

    Surface ice and cryoconite holes of two types of polythermal Svalbard Glaciers (Hans Glacier--grounded tidewater glacier and Werenskiold Glacier-land-based valley glacier) were investigated in terms of chemical composition, microbial abundance and diversity. Gathered data served to describe supraglacial habitats and to compare microbe-environment interactions on those different type glaciers. Hans Glacier samples displayed elevated nutrient levels (DOC, nitrogen and seston) compared to Werenskiold Glacier. Adjacent tundra formations, bird nesting sites and marine aerosol were candidates for allochtonic enrichment sources. Microbial numbers were comparable on both glaciers, with surface ice containing cells in the range of 10(4) mL(-1) and cryoconite sediment 10(8) g(-1) dry weight. Denaturating gradient gel electrophoresis band-based clustering revealed differences between glaciers in terms of dominant bacterial taxa structure. Microbial community on Werenskiold Glacier benefited from the snow-released substances. On Hans Glacier, this effect was not as pronounced, affecting mainly the photoautotrophs. Over-fertilization of Hans Glacier surface was proposed as the major factor, desensitizing the microbial community to the snow melt event. Nitrogen emerged as a limiting factor in surface ice habitats, especially to Eukaryotic algae.

  13. Potential sources of bacteria colonizing the cryoconite of an Alpine glacier

    PubMed Central

    Franzetti, Andrea; Navarra, Federico; Tagliaferri, Ilario; Gandolfi, Isabella; Bestetti, Giuseppina; Minora, Umberto; Azzoni, Roberto Sergio; Diolaiuti, Guglielmina; Smiraglia, Claudio

    2017-01-01

    We investigated the potential contribution of ice-marginal environments to the microbial communities of cryoconite holes, small depressions filled with meltwater that form on the surface of Forni Glacier (Italian Alps). Cryoconite holes are considered the most biologically active environments on glaciers. Bacteria can colonize these environments by short-range transport from ice-marginal environments or by long-range transport from distant areas. We used high throughput DNA sequencing to identify Operational Taxonomic Units (OTUs) present in cryoconite holes and three ice-marginal environments, the moraines, the glacier forefield, and a large (> 3 m high) ice-cored dirt cone occurring on the glacier surface. Bacterial communities of cryoconite holes were different from those of ice-marginal environments and hosted fewer OTUs. However, a network analysis revealed that the cryoconite holes shared more OTUs with the moraines and the dirt cone than with the glacier forefield. Ice-marginal environments may therefore act as sources of bacteria for cryoconite holes, but differences in environmental conditions limit the number of bacterial strains that may survive in them. At the same time, cryoconite holes host a few OTUs that were not found in any ice-marginal environment we sampled, thus suggesting that some bacterial populations are positively selected by the specific environmental conditions of the cryoconite holes. PMID:28358872

  14. Potential sources of bacteria colonizing the cryoconite of an Alpine glacier.

    PubMed

    Franzetti, Andrea; Navarra, Federico; Tagliaferri, Ilario; Gandolfi, Isabella; Bestetti, Giuseppina; Minora, Umberto; Azzoni, Roberto Sergio; Diolaiuti, Guglielmina; Smiraglia, Claudio; Ambrosini, Roberto

    2017-01-01

    We investigated the potential contribution of ice-marginal environments to the microbial communities of cryoconite holes, small depressions filled with meltwater that form on the surface of Forni Glacier (Italian Alps). Cryoconite holes are considered the most biologically active environments on glaciers. Bacteria can colonize these environments by short-range transport from ice-marginal environments or by long-range transport from distant areas. We used high throughput DNA sequencing to identify Operational Taxonomic Units (OTUs) present in cryoconite holes and three ice-marginal environments, the moraines, the glacier forefield, and a large (> 3 m high) ice-cored dirt cone occurring on the glacier surface. Bacterial communities of cryoconite holes were different from those of ice-marginal environments and hosted fewer OTUs. However, a network analysis revealed that the cryoconite holes shared more OTUs with the moraines and the dirt cone than with the glacier forefield. Ice-marginal environments may therefore act as sources of bacteria for cryoconite holes, but differences in environmental conditions limit the number of bacterial strains that may survive in them. At the same time, cryoconite holes host a few OTUs that were not found in any ice-marginal environment we sampled, thus suggesting that some bacterial populations are positively selected by the specific environmental conditions of the cryoconite holes.

  15. Patagonia Glacier, Chile

    NASA Image and Video Library

    2001-07-21

    This ASTER image was acquired on May 2, 2000 over the North Patagonia Ice Sheet, Chile near latitude 47 degrees south, longitude 73 degrees west. The image covers 36 x 30 km. The false color composite displays vegetation in red. The image dramatically shows a single large glacier, covered with crevasses. A semi-circular terminal moraine indicates that the glacier was once more extensive than at present. ASTER data are being acquired over hundreds of glaciers worldwide to measure their changes over time. Since glaciers are sensitive indicators of warming or cooling, this program can provide global data set critical to understand climate change. This image is located at 46.5 degrees south latitude and 73.9 degrees west longitude. http://photojournal.jpl.nasa.gov/catalog/PIA02670

  16. Water, ice, and meteorological measurements at South Cascade Glacier, Washington, balance year 2002

    USGS Publications Warehouse

    Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.

    2004-01-01

    Winter snow accumulation and summer snow and ice ablation were measured at South Cascade Glacier, Washington, to estimate glacier mass balance quantities for balance year 2002. The 2002 glacier-average maximum winter snow balance was 4.02 meters, the second largest since 1959. The 2002 glacier summer, net, and annual (water year) balances were -3.47, 0.55, and 0.54 meters, respectively. The area of the glacier near the end of the balance year was 1.92 square kilometers, and the equilibrium-line altitude and the accumulation area ratio were 1,820 meters and 0.84, respectively. During September 20, 2001 to September 13, 2002, the terminus retreated 4 meters, and computed average ice speeds in the ablation area ranged from 7.8 to 20.7 meters per year. Runoff from the subbasin containing the glacier and from an adjacent non-glacierized basin were measured during part of the 2002 water year. Air temperature, precipitation, atmospheric water-vapor pressure, wind speed and incoming solar radiation were measured at selected locations near the glacier.

  17. Estimating Glacier Retreat through Satellite Based Observation In the Beas Basin, Himachal Pradesh, India

    NASA Astrophysics Data System (ADS)

    Dutta, Shruti; Ramanathan, Al.; Linda, Anurag

    2010-05-01

    Glaciers are now well recognized as the most reliable indicators of climate (IPCC, 2007), more particularly in the regions where there is an acute paucity in the availability of meteorological database. Subsequently it can be said that monitoring the glaciers is important to assess the overall reservoir health (Kulkarni et al., 2007). Almost negligible studies have been conducted to investigate the deglaciation status in the Indian Himalaya. A change detection analysis of the areal cover of glaciers in the Beas basin, India with the aid of remote sensing techniques in the present study concludes that the Beas basin has witnessed a loss of about 22.49 km2in the last four decades which is about 22% of the area. Another major aspect of this study is the noticeable retreat of the glaciers in the period 1972-1989. The glaciers in the Beas basin show larger area loss in this period as compared to the loss in area during the 1990s and later. Thus, it can be said that in spite of the alarming scenario of a continued recession of the glaciated terrain in the Beas basin, the pace of retreat has been observed to slow down after the 1990s. The loss has been more significant in the glaciers comprising of the area of 2-5 km2range as compared to the other categories. Glaciers in the area range more than 5 km2and less than 2 km2show less variation reflecting not much of significant loss. The total number of glaciers increased in the period of last four decades although not very significantly, indicating fragmentation. The glaciers in the range 0.5-2 km2 show a higher tendency towards fragmentation. The average elevation of the glaciers in the basin underwent an upward shift from 4565 m in the year 1972 to 4629 m in the year 2006 which is a reason for concern. The gradual upward shifting of contours over a period of almost four decades can be a consequence of a shift in Equilibrium Line Altitude (ELA) which has been constantly moving upwards showing a retreat of glaciers in the

  18. Crustal Structure beneath Alaska from Receiver Functions

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Li, A.

    2017-12-01

    The crustal structure in Alaska has not been well resolved due to the remote nature of much of the state. The USArray Transportable Array (TA), which is operating in Alaska and northwestern Canada, significantly increases the coverage of broadband seismic stations in the region and allows for a more comprehensive study of the crust. We have analyzed P-receiver functions from earthquake data recorded by 76 stations of the TA and AK networks. Both common conversion point (CCP) and H-K methods are used to estimate the mean crustal thickness. The results from the CCP stacking method show that the Denali fault marks a sharp transition from thick crust in the south to thin crust in the north. The thickest crust up to 52 km is located in the St. Elias Range, which has been formed by oblique collision between the Yakutat microplate and North America. A thick crust of 48 km is also observed beneath the eastern Alaska Range. These observations suggest that high topography in Alaska is largely compensated by the thick crust root. The Moho depth ranges from 28 km to 35 km beneath the northern lowlands and increases to 40-45 km under the Books Range. The preliminary crustal thickness from the H-K method generally agrees with that from the CCP stacking with thicker crust beneath high mountain ranges and thinner crust beneath lowlands and basins. However, the offshore part is not well constrained due to the limited coverage of stations. The mean Vp/Vs ratio is around 1.7 in the Yukon-Tanana terrane and central-northern Alaska. The ratio is about 1.9 in central and southern Alaska with higher values at the Alaska Range, Wrangell Mountains, and St. Elias Range. Further data analyses are needed for obtaining more details of the crustal structure in Alaska to decipher the origin and development of different tectonic terranes.

  19. Glaciers and Sea Level Rise

    NASA Image and Video Library

    2017-12-08

    Calving front of the Perito Moreno Glacier (Argentina). Contrary to the majority of the glaciers from the southern Patagonian ice field, the Perito Moreno Glacier is currently stable. It is also one of the most visited glaciers in the world. To learn about the contributions of glaciers to sea level rise, visit: www.nasa.gov/topics/earth/features/glacier-sea-rise.html Credit: Etienne Berthier, Université de Toulouse NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Tapping the full potential of geodetic glacier change assessment with air and space borne sensors

    NASA Astrophysics Data System (ADS)

    Zemp, M.; Paul, F.; Machguth, H.; Fischer, M.

    2016-12-01

    Glacier changes are recognized as independent and high-confidence natural indicators of climate change. Past, current, and future glacier changes impact on global sea level, the regional water cycle, and local hazard situations. In the 5th Assessment Report of the IPCC, glacier mass budgets were reconciled by combining traditional observations (i.e. results from glaciological and geodetic measurements) with satellite altimetry and gravimetry to fill regional gaps and obtain global coverage. However, this approach is challenged by the relatively small number and inhomogeneous distribution of in-situ measurement series and their often unknown representativeness for the respective mountain range as well as by scale issues of current satellite altimetry (only point data) and gravimetry (coarse resolution) missions. In this presentation, we highlight the potential of air and space borne sensors for (i) validation and calibration of direct measurements using the glaciological method, (ii) assessing glacier volume changes over entire mountain ranges, and for (iii) determination of the representativeness of the field measurements for respective mountain ranges. Whereas long-term in-situ measurements provide the temporal variability of glacier mass changes with annual or seasonal resolution, differencing of high-resolution digital elevation models, such as from airborne (national) surveys or TanDEM-X, bear the potential to assess thickness and volume changes for thousands of individual glaciers over entire mountain ranges on a decadal time scale. In combination, the calibrated field measurements can be used to determine volume and mass changes over entire mountain ranges at high confidence. The spatial-temporal extrapolation can be supported using dense temporal series of snow cover evolution derived from optical satellite data such as Sentinel 2. Finally, these results can be used to reconcile satellite altimetry and gravimetry products. Provided that resources for