Sample records for alaskan sockeye salmon

  1. Competition between Asian pink salmon (Oncorhynchus gorbuscha) and Alaskan sockeye salmon (O. nerka) in the North Pacific Ocean

    USGS Publications Warehouse

    Ruggerone, G.T.; Zimmermann, M.; Myers, K.W.; Nielsen, J.L.; Rogers, D.E.

    2003-01-01

    The importance of interspecific competition as a mechanism regulating population abundance in offshore marine communities is largely unknown. We evaluated offshore competition between Asian pink salmon and Bristol Bay (Alaska) sockeye salmon, which intermingle in the North Pacific Ocean and Bering Sea, using the unique biennial abundance cycle of Asian pink salmon from 1955 to 2000. Sockeye salmon growth during the second and third growing seasons at sea, as determined by scale measurements, declined significantly in odd-numbered years, corresponding to years when Asian pink salmon are most abundant. Bristol Bay sockeye salmon do not interact with Asian pink salmon during their first summer and fall seasons and no difference in first year scale growth was detected. The interaction with odd-year pink salmon led to significantly smaller size at age of adult sockeye salmon, especially among younger female salmon. Examination of sockeye salmon smolt to adult survival rates during 1977-97 indicated that smolts entering the ocean during even-numbered years and interacting with abundant odd-year pink salmon during the following year experienced 26% (age-2 smolt) to 45% (age-1 smolt) lower survival compared with smolts migrating during odd-numbered years. Adult sockeye salmon returning to Bristol Bay from even-year smolt migrations were 22% less abundant (reduced by 5.9 million fish per year) compared with returns from odd-year migrations. The greatest reduction in adult returns occurred among adults spending 2 compared with 3 years at sea. Our new evidence for interspecific competition highlights the need for multispecies, international management of salmon production, including salmon released from hatcheries into the ocean.

  2. Linkages between Alaskan sockeye salmon abundance, growth at sea, and climate, 1955-2002

    USGS Publications Warehouse

    Ruggerone, G.T.; Nielsen, J.L.; Bumgarner, J.

    2007-01-01

    We tested the hypothesis that increased growth of salmon during early marine life contributed to greater survival and abundance of salmon following the 1976/1977 climate regime shift and that this, in turn, led to density-dependent reductions in growth during late marine stages. Annual measurements of Bristol Bay (Bering Sea) and Chignik (Gulf of Alaska) sockeye salmon scale growth from 1955 to 2002 were used as indices of body growth. During the first and second years at sea, growth of both stocks tended to be higher after the 1976-1977 climate shift, whereas growth during the third year and homeward migration was often below average. Multiple regression models indicated that return per spawner of Bristol Bay sockeye salmon and adult abundance of western and central Alaska sockeye salmon were positively correlated with growth during the first 2 years at sea and negatively correlated with growth during later life stages. After accounting for competition between Bristol Bay sockeye and Asian pink salmon, age-specific adult length of Bristol Bay salmon increased after the 1976-1977 regime shift, then decreased after the 1989 climate shift. Late marine growth and age-specific adult length of Bristol Bay salmon was exceptionally low after 1989, possibly reducing their reproductive potential. These findings support the hypothesis that greater marine growth during the first 2 years at sea contributed to greater salmon survival and abundance, which in turn led to density-dependent growth during later life stages when size-related mortality was likely lower. Our findings provide new evidence supporting the importance of bottom-up control in marine ecosystems and highlight the complex dynamics of species interactions that continually change as salmon grow and mature in the ocean. ?? 2007 Elsevier Ltd. All rights reserved.

  3. Sockeye salmon evolution, ecology, and management

    USGS Publications Warehouse

    Woody, Carol Ann

    2007-01-01

    This collection of articles and photographs gives managers a good idea of recent research into what the sockeye salmon is and does, covering such topics as the vulnerability and value of sockeye salmon ecotypes, their homing ability, using new technologies to monitor reproduction, DNA and a founder event in the Lake Clark sockeye salmon, marine-derived nutrients, the exploitation of large prey, dynamic lake spawning migrations by females, variability of sockeye salmon residence, expression profiling using cDNA microarray technology, learning from stable isotropic records of native otolith hatcheries, the amount of data needed to manage sockeye salmon and estimating salmon "escapement." 

  4. Single nucleotide polymorphisms unravel hierarchical divergence and signatures of selection among Alaskan sockeye salmon (Oncorhynchus nerka) populations.

    PubMed

    Gomez-Uchida, Daniel; Seeb, James E; Smith, Matt J; Habicht, Christopher; Quinn, Thomas P; Seeb, Lisa W

    2011-02-18

    Disentangling the roles of geography and ecology driving population divergence and distinguishing adaptive from neutral evolution at the molecular level have been common goals among evolutionary and conservation biologists. Using single nucleotide polymorphism (SNP) multilocus genotypes for 31 sockeye salmon (Oncorhynchus nerka) populations from the Kvichak River, Alaska, we assessed the relative roles of geography (discrete boundaries or continuous distance) and ecology (spawning habitat and timing) driving genetic divergence in this species at varying spatial scales within the drainage. We also evaluated two outlier detection methods to characterize candidate SNPs responding to environmental selection, emphasizing which mechanism(s) may maintain the genetic variation of outlier loci. For the entire drainage, Mantel tests suggested a greater role of geographic distance on population divergence than differences in spawn timing when each variable was correlated with pairwise genetic distances. Clustering and hierarchical analyses of molecular variance indicated that the largest genetic differentiation occurred between populations from distinct lakes or subdrainages. Within one population-rich lake, however, Mantel tests suggested a greater role of spawn timing than geographic distance on population divergence when each variable was correlated with pairwise genetic distances. Variable spawn timing among populations was linked to specific spawning habitats as revealed by principal coordinate analyses. We additionally identified two outlier SNPs located in the major histocompatibility complex (MHC) class II that appeared robust to violations of demographic assumptions from an initial pool of eight candidates for selection. First, our results suggest that geography and ecology have influenced genetic divergence between Alaskan sockeye salmon populations in a hierarchical manner depending on the spatial scale. Second, we found consistent evidence for diversifying

  5. Single nucleotide polymorphisms unravel hierarchical divergence and signatures of selection among Alaskan sockeye salmon (Oncorhynchus nerka) populations

    PubMed Central

    2011-01-01

    Background Disentangling the roles of geography and ecology driving population divergence and distinguishing adaptive from neutral evolution at the molecular level have been common goals among evolutionary and conservation biologists. Using single nucleotide polymorphism (SNP) multilocus genotypes for 31 sockeye salmon (Oncorhynchus nerka) populations from the Kvichak River, Alaska, we assessed the relative roles of geography (discrete boundaries or continuous distance) and ecology (spawning habitat and timing) driving genetic divergence in this species at varying spatial scales within the drainage. We also evaluated two outlier detection methods to characterize candidate SNPs responding to environmental selection, emphasizing which mechanism(s) may maintain the genetic variation of outlier loci. Results For the entire drainage, Mantel tests suggested a greater role of geographic distance on population divergence than differences in spawn timing when each variable was correlated with pairwise genetic distances. Clustering and hierarchical analyses of molecular variance indicated that the largest genetic differentiation occurred between populations from distinct lakes or subdrainages. Within one population-rich lake, however, Mantel tests suggested a greater role of spawn timing than geographic distance on population divergence when each variable was correlated with pairwise genetic distances. Variable spawn timing among populations was linked to specific spawning habitats as revealed by principal coordinate analyses. We additionally identified two outlier SNPs located in the major histocompatibility complex (MHC) class II that appeared robust to violations of demographic assumptions from an initial pool of eight candidates for selection. Conclusions First, our results suggest that geography and ecology have influenced genetic divergence between Alaskan sockeye salmon populations in a hierarchical manner depending on the spatial scale. Second, we found consistent

  6. Etiology of sockeye salmon 'virus' disease

    USGS Publications Warehouse

    Guenther, Raymond W.; Watson, S.W.; Rucker, R.R.; Ross, A.J.

    1959-01-01

    Violent epizootics among hatchery reared sockeye salmon fingerlings (Oncorhynchus nerka) caused by a filterable agent have occurred. In 1954, one source of this infectious, filterable agent was found to be adult sockeye viscera used in the diet for the fingerlings. The results of observations on an epizootic in 1958 indicate that the infection may be transmitted to fingerlings from a water supply to which adult sockeye salmon have access.

  7. Pattern of shoreline spawning by sockeye salmon in a glacially turbid lake: evidence for subpopulation differentiation

    USGS Publications Warehouse

    Burger, C.V.; Finn, J.E.; Holland-Bartels, L.

    1995-01-01

    Alaskan sockeye salmon typically spawn in lake tributaries during summer (early run) and along clear-water lake shorelines and outlet rivers during fall (late run). Production at the glacially turbid Tustumena Lake and its outlet, the Kasilof River (south-central Alaska), was thought to be limited to a single run of sockeye salmon that spawned in the lake's clear-water tributaries. However, up to 40% of the returning sockeye salmon enumerated by sonar as they entered the lake could not be accounted for during lake tributary surveys, which suggested either substantial counting errors or that a large number of fish spawned in the lake itself. Lake shoreline spawning had not been documented in a glacially turbid system. We determined the distribution and pattern of sockeye salmon spawning in the Tustumena Lake system from 1989 to 1991 based on fish collected and radiotagged in the Kasilof River. Spawning areas and time were determined for 324 of 413 sockeye salmon tracked upstream into the lake after release. Of these, 224 fish spawned in tributaries by mid-August and 100 spawned along shoreline areas of the lake during late August. In an additional effort, a distinct late run was discovered that spawned in the Kasilof River at the end of September. Between tributary and shoreline spawners, run and spawning time distributions were significantly different. The number of shoreline spawners was relatively stable and independent of annual escapement levels during the study, which suggests that the shoreline spawning component is distinct and not surplus production from an undifferentiated run. Since Tustumena Lake has been fully deglaciated for only about 2,000 years and is still significantly influenced by glacier meltwater, this diversification of spawning populations is probably a relatively recent and ongoing event.

  8. Sea Louse Infection of Juvenile Sockeye Salmon in Relation to Marine Salmon Farms on Canada's West Coast

    PubMed Central

    Price, Michael H. H.; Proboszcz, Stan L.; Routledge, Rick D.; Gottesfeld, Allen S.; Orr, Craig; Reynolds, John D.

    2011-01-01

    Background Pathogens are growing threats to wildlife. The rapid growth of marine salmon farms over the past two decades has increased host abundance for pathogenic sea lice in coastal waters, and wild juvenile salmon swimming past farms are frequently infected with lice. Here we report the first investigation of the potential role of salmon farms in transmitting sea lice to juvenile sockeye salmon (Oncorhynchus nerka). Methodology/Principal Findings We used genetic analyses to determine the origin of sockeye from Canada's two most important salmon rivers, the Fraser and Skeena; Fraser sockeye migrate through a region with salmon farms, and Skeena sockeye do not. We compared lice levels between Fraser and Skeena juvenile sockeye, and within the salmon farm region we compared lice levels on wild fish either before or after migration past farms. We matched the latter data on wild juveniles with sea lice data concurrently gathered on farms. Fraser River sockeye migrating through a region with salmon farms hosted an order of magnitude more sea lice than Skeena River populations, where there are no farms. Lice abundances on juvenile sockeye in the salmon farm region were substantially higher downstream of farms than upstream of farms for the two common species of lice: Caligus clemensi and Lepeophtheirus salmonis, and changes in their proportions between two years matched changes on the fish farms. Mixed-effects models show that position relative to salmon farms best explained C. clemensi abundance on sockeye, while migration year combined with position relative to salmon farms and temperature was one of two top models to explain L. salmonis abundance. Conclusions/Significance This is the first study to demonstrate a potential role of salmon farms in sea lice transmission to juvenile sockeye salmon during their critical early marine migration. Moreover, it demonstrates a major migration corridor past farms for sockeye that originated in the Fraser River, a complex of

  9. Sea louse infection of juvenile sockeye salmon in relation to marine salmon farms on Canada's west coast.

    PubMed

    Price, Michael H H; Proboszcz, Stan L; Routledge, Rick D; Gottesfeld, Allen S; Orr, Craig; Reynolds, John D

    2011-02-09

    Pathogens are growing threats to wildlife. The rapid growth of marine salmon farms over the past two decades has increased host abundance for pathogenic sea lice in coastal waters, and wild juvenile salmon swimming past farms are frequently infected with lice. Here we report the first investigation of the potential role of salmon farms in transmitting sea lice to juvenile sockeye salmon (Oncorhynchus nerka). We used genetic analyses to determine the origin of sockeye from Canada's two most important salmon rivers, the Fraser and Skeena; Fraser sockeye migrate through a region with salmon farms, and Skeena sockeye do not. We compared lice levels between Fraser and Skeena juvenile sockeye, and within the salmon farm region we compared lice levels on wild fish either before or after migration past farms. We matched the latter data on wild juveniles with sea lice data concurrently gathered on farms. Fraser River sockeye migrating through a region with salmon farms hosted an order of magnitude more sea lice than Skeena River populations, where there are no farms. Lice abundances on juvenile sockeye in the salmon farm region were substantially higher downstream of farms than upstream of farms for the two common species of lice: Caligus clemensi and Lepeophtheirus salmonis, and changes in their proportions between two years matched changes on the fish farms. Mixed-effects models show that position relative to salmon farms best explained C. clemensi abundance on sockeye, while migration year combined with position relative to salmon farms and temperature was one of two top models to explain L. salmonis abundance. This is the first study to demonstrate a potential role of salmon farms in sea lice transmission to juvenile sockeye salmon during their critical early marine migration. Moreover, it demonstrates a major migration corridor past farms for sockeye that originated in the Fraser River, a complex of populations that are the subject of conservation concern.

  10. Genetic differentiation of sockeye salmon subpopulations from a geologically young Alaskan lake system

    USGS Publications Warehouse

    Burger, C.V.; Spearman, William J.; Cronin, M.A.

    1997-01-01

    The Tustumena lake drainage in southcentral Alaska is glacially turbid and geologically young (<2,000 years old). Previous field studies identified at least three subpopulations of sockeye salmon Oncorhynchus nerka at Tustumena Lake, based on the distribution and timing of spawners. The subpopulations included early-run salmon that spawned in six clearwater tributaries of the lake (mid August), lake shoreline spawners (late August), and late-run fish that spawned in the lake's outlet, the Kasilof River (late September). Our objective was to determine the degree of genetic differentiation among these subpopulations based on restriction enzyme analyses of the cytochrome b gene of mitochondrial DNA and analyses of four polymorphic allozyme loci. Mitochondrial DNA haplotype frequencies for outlet-spawning sockeye salmon differed significantly from those of all other subpopulations. The most common (36%) haplotype in the outlet subpopulation did not occur elsewhere, thus suggesting little or no gene flow between outlet spawners and other spatially close subpopulations at Tustumena Lake. Allele frequencies at two allozyme loci also indicated a degree of differentiation of the outlet subpopulation from the shoreline and tributary subpopulations. Allele frequencies for three tributary subpopulations were temporally stable over approximately 20 years (based on a comparison to previously published results) despite initiation of a hatchery program in two of the tributaries during the intervening period. Collectively, our results are consistent with the hypothesis that significant genetic differentiation has occurred within the Tustumena Lake drainage since deglaciation approximately 2,000 years ago.

  11. Snake River Sockeye Salmon Habitat and Limnological Research : 2008 Annual Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Andre E.; Griswold, Robert G.; Taki, Doug

    2009-07-31

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Project was implemented. This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of Snake River sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: the immediate goal is to increase the population of Snake Rivermore » sockeye salmon while preserving the unique genetic characteristics of the evolutionarily significant unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency Recovery effort. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2008 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit and Alturas lakes; (3) reduce the number of mature kokanee salmon spawning in Alturas Lake Creek; (4) monitor, enumerate, and evaluate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee salmon escapement and estimate fry recruitment in Fishhook and Alturas Lake creeks; (6) conduct sockeye and kokanee salmon population surveys; (7) evaluate potential competition and predation between stocked juvenile sockeye salmon and a variety of fish

  12. Snake River Sockeye Salmon (Oncorhynchus Nerka) Habitat/Limnologic Research : Annual Report 1992.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spaulding, Scott

    1993-05-01

    This report outlines long-term planning and monitoring activities that occurred in 1991 and 1992 in the Stanley Basin Lakes of the upper Salmon River, Idaho for the purpose of sockeye salmon nerka) recovery. Limnological monitoring and experimental sampling protocol, designed to establish a limnological baseline and to evaluate sockeye salmon production capability of the lakes, are presented. Also presented are recommended passage improvements for current fish passage barriers/impediments on migratory routes to the lakes. We initiated O. nerka population evaluations for Redfish and Alturas lakes; this included population estimates of emerging kokanee fry entering each lake in the spring andmore » adult kokanee spawning surveys in tributary streams during the fall. Gill net evaluations of Alturas, Pettit, and Stanley lakes were done in September, 1992 to assess the relative abundance of fish species among the Stanley Basin lakes. Fish population data will be used to predict sockeye salmon production potential within a lake, as well as a baseline to monitor long-term fish community changes as a result of sockeye salmon recovery activities. Also included is a paper that reviews sockeye salmon enhancement activities in British Columbia and Alaska and recommends strategies for the release of age-0 sockeye salmon that will be produced from the current captive broodstock.« less

  13. Snake River Sockeye Salmon Captive Broodstock Program; Research Element, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willard, Catherine; Hebdon, J. Lance; Castillo, Jason

    2004-06-01

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes and Idaho Department of Fish and Game initiated the Snake River Sockeye Salmon Sawtooth Valley Project to conserve and rebuild populations in Idaho. Restoration efforts are focusing on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced juvenile sockeye salmon from the captive broodstock program occurred in 1994. The first anadromous adult returns from the captive broodstock program were recorded in 1999 when six jacksmore » and one jill were captured at IDFG's Sawtooth Fish Hatchery. In 2002, progeny from the captive broodstock program were released using four strategies: age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in August and to Pettit and Redfish lakes in October, age-1 smolts were released to Redfish Lake Creek in May, eyed-eggs were planted in Pettit Lake in December, and hatchery-produced and anadromous adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2002. Age-0, age-1, and age-2 O. nerka were captured in Redfish Lake, and population abundance was estimated at 50,204 fish. Age-0, age-1, age-2, and age-3 kokanee were captured in Alturas Lake, and population abundance was estimated at 24,374 fish. Age-2 and age-3 O. nerka were captured in Pettit Lake, and population abundance was estimated at 18,328 fish. The ultimate goal of the Idaho Department of Fish and Game (IDFG) captive broodstock development and evaluation efforts is to recover sockeye salmon runs in Idaho waters. Recovery is defined as reestablishing sockeye salmon runs and providing for utilization of sockeye salmon and kokanee resources by

  14. Cle Elum Lake Sockeye Salmon Restoration Feasibility Study, 1987-1989 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flagg, Thomas A.

    1990-02-01

    This report summarizes research activities conducted by the National Marine Fisheries Service (NMFS) from July 1988 through March 1989 relating to the Cle Elum Lake sockeye salmon restoration feasibility study. During this period, efforts focused on collection and spawning of adult sockeye salmon from the Wenatchee River, incubation of eggs from the 1988-brood, and the rearing of juveniles from the 1987-brood. In late July and early August 1988, 520 adult sockeye salmon were captured at fishways on the Wenatchee River and transferred to net-pens in Lake Wenatchee. Fish were held to maturity in late September and early October, spawned, andmore » eggs incubated at a quarantine hatchery in Seattle, WA. The 336 sockeye salmon successfully spawned from the net-pens at Lake Wenatchee were surveyed for the presence of infectious hematopoietic necrosis (IHN) and other replicating viruses. In addition, 13 and 5 sockeye salmon spawners were surveyed from spawning grounds on the White and Little Wenatchee Rivers, respectively, from within the Lake Wenatchee system. 12 refs., 4 figs., 6 tabs.« less

  15. Evaluating Relationships between Wild Skeena River Sockeye Salmon Productivity and the Abundance of Spawning Channel Enhanced Sockeye Smolts

    PubMed Central

    Price, Michael H. H.; Connors, Brendan M.

    2014-01-01

    The enhancement of salmon populations has long been used to increase the abundance of salmon returning to spawn and/or to be captured in fisheries. However, in some instances enhancement can have adverse impacts on adjacent non-enhanced populations. In Canada's Skeena watershed, smolt-to-adult survival of Babine Lake sockeye from 1962–2002 was inversely related to the abundance of sockeye smolts leaving Babine Lake. This relationship has led to the concern that Babine Lake smolt production, which is primarily enhanced by spawning channels, may depress wild Skeena (Babine and non-Babine) sockeye populations as a result of increased competition between wild and enhanced sockeye smolts as they leave their natal lakes and co-migrate to sea. To test this hypothesis we used data on Skeena sockeye populations and oceanographic conditions to statistically examine the relationship between Skeena sockeye productivity (adult salmon produced per spawner) and an index of Babine Lake enhanced smolt abundance while accounting for the potential influence of early marine conditions. While we had relatively high power to detect large effects, we did not find support for the hypothesis that the productivity of wild Skeena sockeye is inversely related to the abundance of enhanced sockeye smolts leaving Babine Lake in a given year. Importantly, life-time productivity of Skeena sockeye is only partially explained by marine survival, and likely is an unreliable measure of the influence of smolt abundance. Limitations to our analyses, which include: (1) the reliance upon adult salmon produced per spawner (rather than per smolt) as an index of marine survival, and (2) incomplete age structure for most of the populations considered, highlight uncertainties that should be addressed if understanding relationships between wild and enhanced sockeye is a priority in the Skeena. PMID:24760007

  16. Evaluating relationships between wild Skeena river sockeye salmon productivity and the abundance of spawning channel enhanced sockeye smolts.

    PubMed

    Price, Michael H H; Connors, Brendan M

    2014-01-01

    The enhancement of salmon populations has long been used to increase the abundance of salmon returning to spawn and/or to be captured in fisheries. However, in some instances enhancement can have adverse impacts on adjacent non-enhanced populations. In Canada's Skeena watershed, smolt-to-adult survival of Babine Lake sockeye from 1962-2002 was inversely related to the abundance of sockeye smolts leaving Babine Lake. This relationship has led to the concern that Babine Lake smolt production, which is primarily enhanced by spawning channels, may depress wild Skeena (Babine and non-Babine) sockeye populations as a result of increased competition between wild and enhanced sockeye smolts as they leave their natal lakes and co-migrate to sea. To test this hypothesis we used data on Skeena sockeye populations and oceanographic conditions to statistically examine the relationship between Skeena sockeye productivity (adult salmon produced per spawner) and an index of Babine Lake enhanced smolt abundance while accounting for the potential influence of early marine conditions. While we had relatively high power to detect large effects, we did not find support for the hypothesis that the productivity of wild Skeena sockeye is inversely related to the abundance of enhanced sockeye smolts leaving Babine Lake in a given year. Importantly, life-time productivity of Skeena sockeye is only partially explained by marine survival, and likely is an unreliable measure of the influence of smolt abundance. Limitations to our analyses, which include: (1) the reliance upon adult salmon produced per spawner (rather than per smolt) as an index of marine survival, and (2) incomplete age structure for most of the populations considered, highlight uncertainties that should be addressed if understanding relationships between wild and enhanced sockeye is a priority in the Skeena.

  17. Limnology and fish ecology of sockeye salmon nursery lakes of the world

    USGS Publications Warehouse

    Hartman, Wilbur L.; Burgner, R.L.

    1972-01-01

    Many important, recently glaciated oligotrophic lakes that lie in coastal regions around the northern rim of the Pacific Ocean produce anadromous populations of sockeye salmon, Oncorhynchus nerka. This paper describes the limnology and fish ecology of two such lakes in British Columbia, five in Alaska, and one in Kamchatka. Then we discuss the following general topics: the biogenic eutrophication of nursery lakes from the nutrients released from salmon carcasses wherein during years of highest numbers of spawners, lake phosphate balances in Lakes Babine, Iliamna, and Dalnee are significantly affected; the use of nursery lakes by young sockeye that reveals five patterns related to size and configuration of lake basins and the distribution of spawning areas; the interactions between various life history stages of sockeye salmon and such resident predators, competitors, and prey as Arctic char, lake trout, Dolly Varden, cutthroat trout, lake whitefish, pygmy whitefish, pond smelt, sticklebacks, and sculpins; the self-regulation of sockeye salmon abundance in these nursery lakes as controlled by density-dependent processes; the interrelations between young sockeye salmon biomass and growth rates, and zooplankton abundance in Babine Lake; and finally, the diel, vertical, pelagial migratory behavior of young sockeye in Babine Lake and the new hypothesis dealing with bioenergetic conservation.

  18. Snake River Sockeye Salmon Captive Broodstock Program Hatchery Element : Project Progress Report 2007 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Dan J.; Heindel, Jeff A.; Green, Daniel G.

    2008-12-17

    Numbers of Snake River sockeye salmon Oncorhynchus nerka have declined dramatically in recent years. In Idaho, only the lakes of the upper Salmon River (Sawtooth Valley) remain as potential sources of production (Figure 1). Historically, five Sawtooth Valley lakes (Redfish, Alturas, Pettit, Stanley, and Yellowbelly) supported sockeye salmon (Bjornn et al. 1968; Chapman et al. 1990). Currently, only Redfish Lake receives a remnant anadromous run. On April 2, 1990, the National Oceanic and Atmospheric Administration Fisheries Service (NOAA - formerly National Marine Fisheries Service) received a petition from the Shoshone-Bannock Tribes (SBT) to list Snake River sockeye salmon as endangeredmore » under the United States Endangered Species Act (ESA) of 1973. On November 20, 1991, NOAA declared Snake River sockeye salmon endangered. In 1991, the SBT, along with the Idaho Department of Fish & Game (IDFG), initiated the Snake River Sockeye Salmon Sawtooth Valley Project (Sawtooth Valley Project) with funding from the Bonneville Power Administration (BPA). The goal of this program is to conserve genetic resources and to rebuild Snake River sockeye salmon populations in Idaho. Coordination of this effort is carried out under the guidance of the Stanley Basin Sockeye Technical Oversight Committee (SBSTOC), a team of biologists representing the agencies involved in the recovery and management of Snake River sockeye salmon. National Oceanic and Atmospheric Administration Fisheries Service ESA Permit Nos. 1120, 1124, and 1481 authorize IDFG to conduct scientific research on listed Snake River sockeye salmon. Initial steps to recover the species involved the establishment of captive broodstocks at the Eagle Fish Hatchery in Idaho and at NOAA facilities in Washington State (for a review, see Flagg 1993; Johnson 1993; Flagg and McAuley 1994; Kline 1994; Johnson and Pravecek 1995; Kline and Younk 1995; Flagg et al. 1996; Johnson and Pravecek 1996; Kline and Lamansky 1997

  19. [Seasonal and interannual variations of sockeye salmon (Oncorhynchus nerka) microsatellite DNA in two Kamchatka lake-river systems].

    PubMed

    Khrustaleva, A M; Zelenina, D A

    2008-07-01

    Seasonal and interannual variations in the sockeye salmon populations from two lake-river systems of the East and West Kamchatka were studied. Stability of allele and genotypic frequencies of six microsatellite DNA loci in the adjacent generations and spawning populations of the sockeye salmon of the Bol'shaya River was confirmed experimentally. The pairwise intersample differentiation (F(st)) of the local sockeye salmon populations from the southwestern Kamchatka coast (Ozernaya and Bol'shaya Rivers)was almost 7 times higher than the corresponding values for the spawning populations of the Bol'shaya River sockeye salmon of the adjacent years; 15 times, for the adjacent Bol'shaya River sockeye salmon generations; and four times, for the seasonal races within the Kamchatka River.

  20. [Single-nucleotide polymorphism in populations of sockeye salmon Oncorhynchus nerka from Kamchatka Peninsula].

    PubMed

    Khrustaleva, A M; Gritsenko, O F; Klovach, N V

    2013-11-01

    The genetic polymorphism of 45 single-nucleotide polymorphism loci was examined in the four largest wild populations of sockeye salmon Oncorhynchusnerka from drainages of the Asian coast of the Pacific Ocean (Eastern and Western Kamchatka). It was demonstrated that sockeye salmon from the Palana River were considerably different from all other populations examined. The most probable explanation of the observed differences is the suggestion on possible demographic events in the history of this population associated with the decrease in its effective number. To study the origin, colonization patterns, and evolution of Asian sockeye salmon, as well as to resolve some of the applied tasks, like population assignment and genetic identification, a differentiation approach to SNP-marker selection was suggested. Adaptively important loci that evolve under the pressure of balancing (stabilizing) selection were identified, thanks to which the number of loci that provide the baseline classification error rates in the population assignment tests was reduced to 30. It was demonstrated that SNPs located in the MHC2 and GPH genes were affected by diversifying selection. Procedures for selecting single-nucleotide polymorphisms for phylogenetic studies of Asian sockeye salmon were suggested. Using principal-component analysis, 17 loci that adequately reproduce genetic differentiation within arid among the regions of the origin of Kamchatka sockeye salmon, were selected.

  1. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Dan J.; Heindel, Jeff A.; Redding, Jeremy

    2006-05-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Oceanic and Atmospheric Administration at two locations adjacent to Puget Sound inmore » Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Oceanic and Atmospheric Administration are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported separately. Captive broodstock program activities conducted between January 1, 2004 and December 31, 2004 for the hatchery element of the program are presented in this report. In 2004, twenty-seven anadromous sockeye salmon returned to the Sawtooth Valley. Traps on Redfish Lake Creek and the upper Salmon River at the Sawtooth Fish Hatchery intercepted one and four adults, respectively. Additionally, one adult sockeye salmon was collected at the East Fork Salmon River weir, 18 were seined from below the Sawtooth Fish Hatchery weir, one adult sockeye salmon was observed below the Sawtooth Fish Hatchery weir but not captured, and two adult sockeye salmon were observed in Little Redfish Lake but not captured. Fish were captured/collected between July 24 and September 14, 2004. The captured/collected adult sockeye salmon (12 females and 12 males) originated from a variety of release strategies and were transferred

  2. 77 FR 60631 - Fraser River Sockeye Salmon Fisheries; Inseason Orders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ...-XC222 Fraser River Sockeye Salmon Fisheries; Inseason Orders AGENCY: National Marine Fisheries Service...; inseason orders. SUMMARY: NMFS publishes Fraser River salmon inseason orders to regulate treaty and non-treaty (all citizen) commercial salmon fisheries in U.S. waters. The orders were issued by the Fraser...

  3. 75 FR 78929 - Fraser River Sockeye Salmon Fisheries; Inseason Orders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ...-XZ20 Fraser River Sockeye Salmon Fisheries; Inseason Orders AGENCY: National Marine Fisheries Service...; inseason orders; request for comments. SUMMARY: NMFS publishes Fraser River salmon inseason orders to regulate salmon fisheries in U.S. waters. The orders were issued by the Fraser River Panel (Panel) of the...

  4. Spawning sockeye salmon fossils in Pleistocene lake beds of Skokomish Valley, Washington

    NASA Astrophysics Data System (ADS)

    Smith, Gerald R.; Montgomery, David R.; Peterson, N. Phil; Crowley, Bruce

    2007-09-01

    An assemblage of fossil sockeye salmon was discovered in Pleistocene lake sediments along the South Fork Skokomish River, Olympic Peninsula, Washington. The fossils were abundant near the head of a former glacial lake at 115 m elevation. Large adult salmon are concentrated in a sequence of death assemblages that include individuals with enlarged breeding teeth and worn caudal fins indicating migration, nest digging, and spawning prior to death. The specimens were 4 yr old and 45-70 cm in total length, similar in size to modern sockeye salmon, not landlocked kokanee. The fossils possess most of the characteristics of sockeye salmon, Oncorhynchus nerka, but with several minor traits suggestive of pink salmon, O. gorbuscha. This suggests the degree of divergence of these species at about 1 million yr ago, when geological evidence indicates the salmon were deposited at the head of a proglacial lake impounded by the Salmon Springs advance of the Puget lobe ice sheet. Surficial geology and topography record a complicated history of glacial damming and river diversion that implies incision of the modern gorge of the South Fork Skokomish River after deposition of the fossil-bearing sediments.

  5. Radio tag retention and tag-related mortality among adult sockeye salmon

    USGS Publications Warehouse

    Ramstad, Kristina M.; Woody, Carol Ann

    2003-01-01

    Tag retention and tag-related mortality are concerns for any tagging study but are rarely estimated. We assessed retention and mortality rates for esophageal radio tag implants in adult sockeye salmon Oncorhynchus nerka. Migrating sockeye salmon captured at the outlet of Lake Clark, Alaska, were implanted with one of four different radio tags (14.5 × 43 mm (diameter × length), 14.5 × 49 mm, 16 × 46 mm, and 19 × 51 mm). Fish were observed for 15 to 35 d after tagging to determine retention and mortality rates. The overall tag retention rate was high (0.98; 95% confidence interval (CI), 0.92-1.00; minimum, 33 d), with one loss of a 19-mm × 51- mm tag. Mortality of tagged sockeye salmon (0.02; 95% CI, 0-0.08) was similar to that of untagged controls (0.03 (0-0.15)). Sockeye salmon with body lengths (mid-eye to tail fork) of 585-649 mm retained tags as large as 19 × 51 mm and those with body lengths of 499-628 mm retained tags as small as 14.5 × 43 mm for a minimum of 33 d with no increase in mortality. The tags used in this study represent a suite of radio tags that vary in size, operational life, and cost but that are effective in tracking adult anadromous salmon with little tag loss or increase in fish mortality.

  6. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Part 226—Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon Hydrologic unit name Hydrologic unit number Sockeye salmon Spring...

  7. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Part 226—Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon Hydrologic unit name Hydrologic unit number Sockeye salmon Spring...

  8. Unlocking the secrets of Lake Clark sockeye salmon

    USGS Publications Warehouse

    Woody, Carol Ann

    2003-01-01

    Sockeye salmon are a cornerstone species in many Alaska watersheds. Each summer, adults lay eggs in rocky nests called “redds,” and they die soon after. In spring, their fry emerge from gravels and then rear in a nearby freshwater lake for one year or more before migrating as smolt to the sea. During this smolt phase, an olfactory map of their route is imprinted on their memories. Sockeye salmon spend one to four years in the ocean feeding and growing. Then, some innate cue sends them back in a mass migration to their natal lake systems, which they find using the olfactory map made years before. They complete their life cycle by spawning, then dying in habitats of their birth.

  9. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook... River salmon (except reaches above impassable natural falls, and Dworshak and Hells Canyon Dams...

  10. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook... River salmon (except reaches above impassable natural falls, and Dworshak and Hells Canyon Dams...

  11. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook... River salmon (except reaches above impassable natural falls, and Dworshak and Hells Canyon Dams...

  12. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. The following areas consisting of the water, waterway bottom, and adjacent riparian zone of...

  13. Founding events influence genetic population structure of sockeye salmon (Oncorhynchus nerka) in Lake Clark, Alaska

    USGS Publications Warehouse

    Ramstad, K.M.; Woody, C.A.; Sage, G.K.; Allendorf, F.W.

    2004-01-01

    Bottlenecks can have lasting effects on genetic population structure that obscure patterns of contemporary gene flow and drift. Sockeye salmon are vulnerable to bottleneck effects because they are a highly structured species with excellent colonizing abilities and often occupy geologically young habitats. We describe genetic divergence among and genetic variation within spawning populations of sockeye salmon throughout the Lake Clark area of Alaska. Fin tissue was collected from sockeye salmon representing 15 spawning populations of Lake Clark, Six-mile Lake, and Lake Iliamna. Allele frequencies differed significantly at 11 microsatellite loci in 96 of 105 pairwise population comparisons. Pairwise estimates of FST ranged from zero to 0.089. Six-mile Lake and Lake Clark populations have historically been grouped together for management purposes and are geographically proximate. However, Six-mile Lake populations are genetically similar to Lake Iliamna populations and are divergent from Lake Clark populations. The reduced allelic diversity and strong divergence of Lake Clark populations relative to Six-mile Lake and Lake Iliamna populations suggest a bottleneck associated with the colonization of Lake Clark by sockeye salmon. Geographic distance and spawning habitat differences apparently do not contribute to isolation and divergence among populations. However, temporal isolation based on spawning time and founder effects associated with ongoing glacial retreat and colonization of new spawning habitats contribute to the genetic population structure of Lake Clark sock-eye salmon. Nonequilibrium conditions and the strong influence of genetic drift caution against using estimates of divergence to estimate gene flow among populations of Lake Clark sockeye salmon.

  14. Characterization of a Value-Added Salmon Product: Infant/Toddler Food

    ERIC Educational Resources Information Center

    De Santos, Felicia Ann

    2009-01-01

    Salmon are rich sources of omega-3 fatty acids. These are important in the human diet and especially for young children in the first two years of life. Wild Alaskan salmon was utilized in a novel way by development and investigation of basic baby food product formulations from sockeye and pink salmon. Thus, physical and sensory properties of baby…

  15. Doubling sockeye salmon production in the Fraser River—Is this sustainable development?

    NASA Astrophysics Data System (ADS)

    Henderson, Michael A.; Healey, Michael C.

    1993-11-01

    We evaluate a proposal to double sockeye salmon production from the Fraser River and conclude that significant changes will be required to current management processes, particularly the way available catch is allocated, if the plan is to be consistent with five major principles embodied in the concept of sustainable development. Doubling sockeye salmon production will not, in itself, increase economic equity either regionally or globally. Developing nations may actually be hindered in their attempts to institute other, nonsalmon fisheries in the North Pacific Ocean as a result of the possible interception of salmon. Further, other users of the Fraser River basin will have to forgo opportunities so that salmon habitat can be conserved. If doubling sockeye salmon production is to meet the goal of doing more with less, it will be necessary to develop more efficient technologies to harvest the fish. If increasing salmon production is to reflect the integration of environmental and economic decision making at the highest level, then a serious attempt must be made to incorporate environmental assets into national economic accounting. Finally, to promote biodiversity and cultural self-sufficiency within the Fraser River basin, it will be important to safeguard the small, less-productive salmon stocks as well as the large ones and to allocate a substantial portion of the increased production to the Native Indian community.

  16. Early marine growth in relation to marine-stage survival rates for Alaska sockeye salmon (Oncorhynchus nerka)

    USGS Publications Warehouse

    Farley, Edward V.; Murphy, J.M.; Adkison, Milo D.; Eisner, Lisa B.; Helle, J.H.; Moss, J.H.; Nielsen, Jennifer L.

    2007-01-01

    We tested the hypothesis that larger juvenile sockeye salmon (Oncorhynchus nerka) in Bristol Bay, Alaska, have higher marine-stage survival rates than smaller juvenile salmon. We used scales from returning adults (33 years of data) and trawl samples of juveniles (n= 3572) collected along the eastern Bering Sea shelf during August through September 2000−02. The size of juvenile sockeye salmon mirrored indices of their marine-stage survival rate (e.g., smaller fish had lower indices of marine-stage survival rate). However, there was no relationship between the size of sockeye salmon after their first year at sea, as estimated from archived scales, and brood-year survival size was relatively uniform over the time series, possibly indicating size-selective mortality on smaller individuals during their marine residence. Variation in size, relative abundance, and marine-stage survival rate of juvenile sockeye salmon is likely related to ocean conditions affecting their early marine migratory pathways along the eastern Bering Sea shelf.

  17. 40 CFR 408.170 - Applicability; description of the Alaskan mechanized salmon processing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Alaskan mechanized salmon processing subcategory. 408.170 Section 408.170 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Alaskan Mechanized Salmon Processing Subcategory § 408.170 Applicability; description of the Alaskan mechanized salmon processing subcategory. The provisions of this subpart are...

  18. 40 CFR 408.170 - Applicability; description of the Alaskan mechanized salmon processing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Alaskan mechanized salmon processing subcategory. 408.170 Section 408.170 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Alaskan Mechanized Salmon Processing Subcategory § 408.170 Applicability; description of the Alaskan mechanized salmon processing subcategory. The provisions of this subpart are...

  19. Aniakchak sockeye salmon investigations

    USGS Publications Warehouse

    Hamon, Troy R.; Pavey, Scott A.; Miller, Joe L.; Nielsen, Jennifer L.

    2005-01-01

    Aniakchak National Monument and Preserve provides unusual and dramatic landscapes shaped by numerous volcanic eruptions, a massive flood, enormous landslides, and ongoing geological change. The focal point of the monument is Aniakchak Caldera, a restless volcano that embodies the instability of the Alaska Peninsula. This geological instability creates a dynamic and challenging environment for the biological occupants of Aniakchak and unparalleled opportunities for scientists to measure the adaptability of organisms and ecosystems to change. The sockeye salmon (Oncorhynchus nerka) is one member of the Aniakchak ecosystem that has managed to adapt to geologic upheaval and is now thriving in the park. Aside from just surviving in the harsh environment, these salmon are also noteworthy for providing essential marinederived nutrients to plants and animals and as a source of food for historic and present day people in the region.

  20. Global assessment of extinction risk to populations of Sockeye salmon Oncorhynchus nerka.

    PubMed

    Rand, Peter S; Goslin, Matthew; Gross, Mart R; Irvine, James R; Augerot, Xanthippe; McHugh, Peter A; Bugaev, Victor F

    2012-01-01

    Concern about the decline of wild salmon has attracted the attention of the International Union for the Conservation of Nature (IUCN). The IUCN applies quantitative criteria to assess risk of extinction and publishes its results on the Red List of Threatened Species. However, the focus is on the species level and thus may fail to show the risk to populations. The IUCN has adapted their criteria to apply to populations but there exist few examples of this type of assessment. We assessed the status of sockeye salmon Oncorhynchus nerka as a model for application of the IUCN population-level assessments and to provide the first global assessment of the status of an anadromous Pacific salmon. We found from demographic data that the sockeye salmon species is not presently at risk of extinction. We identified 98 independent populations with varying levels of risk within the species' range. Of these, 5 (5%) are already extinct. We analyzed the risk for 62 out of 93 extant populations (67%) and found that 17 of these (27%) are at risk of extinction. The greatest number and concentration of extinct and threatened populations is in the southern part of the North American range, primarily due to overfishing, freshwater habitat loss, dams, hatcheries, and changing ocean conditions. Although sockeye salmon are not at risk at the species-level, about one-third of the populations that we analyzed are at risk or already extinct. Without an understanding of risk to biodiversity at the level of populations, the biodiversity loss in salmon would be greatly underrepresented on the Red List. We urge government, conservation organizations, scientists and the public to recognize this limitation of the Red List. We also urge recognition that about one-third of sockeye salmon global population diversity is at risk of extinction or already extinct.

  1. Global Assessment of Extinction Risk to Populations of Sockeye Salmon Oncorhynchus nerka

    PubMed Central

    Rand, Peter S.; Goslin, Matthew; Gross, Mart R.; Irvine, James R.; Augerot, Xanthippe; McHugh, Peter A.; Bugaev, Victor F.

    2012-01-01

    Background Concern about the decline of wild salmon has attracted the attention of the International Union for the Conservation of Nature (IUCN). The IUCN applies quantitative criteria to assess risk of extinction and publishes its results on the Red List of Threatened Species. However, the focus is on the species level and thus may fail to show the risk to populations. The IUCN has adapted their criteria to apply to populations but there exist few examples of this type of assessment. We assessed the status of sockeye salmon Oncorhynchus nerka as a model for application of the IUCN population-level assessments and to provide the first global assessment of the status of an anadromous Pacific salmon. Methods/Principal Findings We found from demographic data that the sockeye salmon species is not presently at risk of extinction. We identified 98 independent populations with varying levels of risk within the species' range. Of these, 5 (5%) are already extinct. We analyzed the risk for 62 out of 93 extant populations (67%) and found that 17 of these (27%) are at risk of extinction. The greatest number and concentration of extinct and threatened populations is in the southern part of the North American range, primarily due to overfishing, freshwater habitat loss, dams, hatcheries, and changing ocean conditions. Conclusions/Significance Although sockeye salmon are not at risk at the species-level, about one-third of the populations that we analyzed are at risk or already extinct. Without an understanding of risk to biodiversity at the level of populations, the biodiversity loss in salmon would be greatly underrepresented on the Red List. We urge government, conservation organizations, scientists and the public to recognize this limitation of the Red List. We also urge recognition that about one-third of sockeye salmon global population diversity is at risk of extinction or already extinct. PMID:22511930

  2. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Spring/Summer and Fall Chinook Salmon Hydrologic unit name Hydrologic unit number Sockeye salmon Spring/summer chinook salmon Fall chinook salmon Hells Canyon 17060101 17060101 Imnaha 17060102 17060102 Lower...

  3. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Spring/Summer and Fall Chinook Salmon Hydrologic unit name Hydrologic unit number Sockeye salmon Spring/summer chinook salmon Fall chinook salmon Hells Canyon 17060101 17060101 Imnaha 17060102 17060102 Lower...

  4. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Spring/Summer and Fall Chinook Salmon Hydrologic unit name Hydrologic unit number Sockeye salmon Spring/summer chinook salmon Fall chinook salmon Hells Canyon 17060101 17060101 Imnaha 17060102 17060102 Lower...

  5. 76 FR 70062 - Fraser River Sockeye and Pink Salmon Fisheries; Inseason Orders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-10

    ...-XA803 Fraser River Sockeye and Pink Salmon Fisheries; Inseason Orders AGENCY: National Marine Fisheries...; inseason orders. SUMMARY: NMFS publishes Fraser River salmon inseason orders to regulate treaty and non-treaty (all citizen) commercial salmon fisheries in U.S. waters. The orders were issued by the Fraser...

  6. 78 FR 69002 - Fraser River Sockeye and Pink Salmon Fisheries; Inseason Orders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-18

    ...-XC965 Fraser River Sockeye and Pink Salmon Fisheries; Inseason Orders AGENCY: National Marine Fisheries...; inseason orders. SUMMARY: NMFS publishes Fraser River salmon inseason orders to regulate treaty and non-treaty (all citizen) commercial salmon fisheries in U.S. waters. The orders were issued by the Fraser...

  7. Snake River Sockeye Salmon Captive Broodstock Program Research Elements : 2007 Annual Project Progess Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Mike; Plaster, Kurtis; Redfield, Laura

    2008-12-17

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes (SBT) and Idaho Department of Fish and Game (IDFG) initiated the Snake River Sockeye Salmon Captive Broodstock Program to conserve and rebuild populations in Idaho. Restoration efforts are focused on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced adults occurred in 1993. The first release of juvenile sockeye salmon from the captive broodstock program occurred in 1994. In 1999, the first anadromous adult returnsmore » from the captive broodstock program were recorded when six jacks and one jill were captured at the IDFG Sawtooth Fish Hatchery. In 2007, progeny from the captive broodstock program were released using four strategies: (1) eyed-eggs were planted in Pettit Lake in November; (2) age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in October; (3) age-1 smolts were released into Redfish Lake Creek and the upper Salmon River in May; and (4) hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2007. Population abundances were estimated at 73,702 fish for Redfish Lake, 124,073 fish for Alturas Lake, and 14,746 fish for Pettit Lake. Angler surveys were conducted from May 26 through August 7, 2007 on Redfish Lake to estimate kokanee harvest. On Redfish Lake, we interviewed 102 anglers and estimated that 56 kokanee were harvested. The calculated kokanee catch rate was 0.03 fish/hour for each kokanee kept. The juvenile out-migrant trap on Redfish Lake Creek was operated from April 14 to June 13, 2007. We estimated that 5,280 natural origin and 14,256 hatchery origin sockeye salmon smolts out

  8. Prey partitioning and use of insects by juvenile sockeye salmon and a potential competitor, threespine stickleback, in Afognak Lake, Alaska

    USGS Publications Warehouse

    Richardson, Natura; Beaudreau, Anne H.; Wipfli, Mark S.; Finkle, Heather

    2017-01-01

    Freshwater growth of juvenile sockeye salmon (Oncorhynchus nerka) depends upon the quality and quantity of prey and interactions with potential competitors in the foraging environment. To a large extent, knowledge about the ecology of lake-rearing juvenile sockeye salmon has emerged from studies of commercially important runs returning to deep nursery lakes, yet information from shallow nursery lakes (mean depth ≤ 10 m) is limited. We examined seasonal and ontogenetic variation in diets of juvenile sockeye salmon (N = 219, 30–85 mm) and an abundant potential competitor, threespine stickleback (Gasterosteus aculeatus; N = 198, 42–67 mm), to understand their foraging ecology and potential trophic interactions in a shallow Alaska lake. This study revealed that adult insects made up 74% of all sockeye salmon diets by weight and were present in 98% of all stomachs in Afognak Lake during the summer of 2013. Diets varied temporally for all fishes, but small sockeye salmon (<60 mm) showed a distinct shift in consumption from zooplankton in early summer to adult insects in late summer. We found significant differences in diet composition between sockeye salmon and threespine stickleback and the origin of their prey indicated that they also separated their use of habitat on a fine scale; however, the two species showed overlap in size selectivity of zooplankton prey. Considering that aquatic insects can be a primary resource for juvenile sockeye salmon in Afognak Lake, we encourage the development of nursery lake carrying capacity models that include aquatic insects as a prey source for sockeye salmon.

  9. Enzymatic Digestion of Eye and Brain Tissues of Sockeye and Coho Salmon, and Dusky Rockfish Commercially Harvested in Alaska

    USDA-ARS?s Scientific Manuscript database

    Potential feed ingredients with high lipid content were made by enzymatic digestion followed by centrifugation of eye tissue from dusky rockfish (Sebastes ciliatos), coho salmon (Oncorhynchus kisutch), and sockeye salmon (Oncorhynchus nerka) and brain tissue from sockeye salmon. Materials with high ...

  10. 40 CFR 408.160 - Applicability; description of the Alaskan hand-butchered salmon processing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Alaskan hand-butchered salmon processing subcategory. 408.160 Section 408.160 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Alaskan Hand-Butchered Salmon Processing Subcategory § 408.160 Applicability; description of the Alaskan hand-butchered salmon processing subcategory. The provisions of this subpart are...

  11. 40 CFR 408.160 - Applicability; description of the Alaskan hand-butchered salmon processing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Alaskan hand-butchered salmon processing subcategory. 408.160 Section 408.160 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Alaskan Hand-Butchered Salmon Processing Subcategory § 408.160 Applicability; description of the Alaskan hand-butchered salmon processing subcategory. The provisions of this subpart are...

  12. Migration trends of Sockeye Salmon at the northern edge of their distribution

    USGS Publications Warehouse

    Carey, Michael P.; Zimmerman, Christian E.; Keith, Kevin D.; Schelske, Merlyn; Lean, Charles; Douglas, David C.

    2017-01-01

    Climate change is affecting arctic and subarctic ecosystems, and anadromous fish such as Pacific salmon Oncorhynchus spp. are particularly susceptible due to the physiological challenge of spawning migrations. Predicting how migratory timing will change under Arctic warming scenarios requires an understanding of how environmental factors drive salmon migrations. Multiple mechanisms exist by which environmental conditions may influence migrating salmon, including altered migration cues from the ocean and natal river. We explored relationships between interannual variability and annual migration timing (2003–2014) of Sockeye Salmon O. nerka in a subarctic watershed with environmental conditions at broad, intermediate, and local spatial scales. Low numbers of Sockeye Salmon have returned to this high-latitude watershed in recent years, and run size has been a dominant influence on the migration duration and the midpoint date of the run. The duration of the migration upriver varied by as much as 25 d across years, and shorter run durations were associated with smaller run sizes. The duration of the migration was also extended with warmer sea surface temperatures in the staging area and lower values of the North Pacific Index. The midpoint date of the total run was earlier when the run size was larger, whereas the midpoint date was delayed during years in which river temperatures warmed earlier in the season. Documenting factors related to the migration of Sockeye Salmon near the northern limit of their range provides insights into the determinants of salmon migrations and suggests processes that could be important for determining future changes in arctic and subarctic ecosystems.

  13. Geomagnetic imprinting predicts spatio-temporal variation in homing migration of pink and sockeye salmon

    PubMed Central

    Putman, Nathan F.; Jenkins, Erica S.; Michielsens, Catherine G. J.; Noakes, David L. G.

    2014-01-01

    Animals navigate using a variety of sensory cues, but how each is weighted during different phases of movement (e.g. dispersal, foraging, homing) is controversial. Here, we examine the geomagnetic and olfactory imprinting hypotheses of natal homing with datasets that recorded variation in the migratory routes of sockeye (Oncorhynchus nerka) and pink (Oncorhynchus gorbuscha) salmon returning from the Pacific Ocean to the Fraser River, British Columbia. Drift of the magnetic field (i.e. geomagnetic imprinting) uniquely accounted for 23.2% and 44.0% of the variation in migration routes for sockeye and pink salmon, respectively. Ocean circulation (i.e. olfactory imprinting) predicted 6.1% and 0.1% of the variation in sockeye and pink migration routes, respectively. Sea surface temperature (a variable influencing salmon distribution but not navigation, directly) accounted for 13.0% of the variation in sockeye migration but was unrelated to pink migration. These findings suggest that geomagnetic navigation plays an important role in long-distance homing in salmon and that consideration of navigation mechanisms can aid in the management of migratory fishes by better predicting movement patterns. Finally, given the diversity of animals that use the Earth's magnetic field for navigation, geomagnetic drift may provide a unifying explanation for spatio-temporal variation in the movement patterns of many species. PMID:25056214

  14. Redfish Lake Sockeye Salmon Captive Broodstock Rearing and Research, Annual Report 2001-2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frost, Deborah; McAuley, W.; Maynard, Desmond

    2003-04-01

    The National Marine Fisheries Service (NMFS) Northwest Fisheries Science Center, in cooperation with the Idaho Department of Fish and Game and the Bonneville Power Administration, has established captive broodstock programs to aid recovery of Snake River sockeye salmon (Oncorhynchus nerka) listed as endangered under the U.S. Endangered Species Act (ESA). Captive broodstock and captive rearing programs are a form of artificial propagation that are emerging as an important component of restoration efforts for ESA-listed salmon populations that are at critically low numbers. Captive broodstocks, reared in captivity for the entire life cycle, couple the salmon's high fecundity with potentially highmore » survival in protective culture to produce large numbers of juveniles in a single generation for supplementation of natural populations. The captive broodstocks discussed in this report were intended to protect the last known remnants of sockeye salmon that return to Redfish Lake in the Sawtooth Basin of Idaho at the headwaters of the Salmon River. This report addresses NMFS activities from 1 September 2001 to 31 August 2002 on the Redfish Lake sockeye salmon captive broodstock and captive rearing program. NMFS currently has broodstocks in culture from year classes 1997, 1998, 1999, 2000, and 2001 in both the captive breeding and captive rearing programs. Offspring from these programs are being returned to Idaho to aid recovery efforts for the species.« less

  15. Simulated growth and production of endangered Snake River Sockeye Salmon: Assessing management strategies for the nursery lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luecke, C.; Wurtsbaugh, W.A.; Budy, P.

    1996-06-01

    This document examines the potential of employing a series of lake management strategies to enhance production of endangered Snake River sockeye salmon (Oncorhynchus nerka) in its historical nursery lakes in central Idaho. A combination of limnological sampling, experimentation, and simulation modeling was used to assess effects of lake fertilization and kokanee reduction on growth and survival of juvenile sockeye salmon. Juvenile sockeye salmon from a broodstock of this endangered species are being introduced into the lakes from 1995 to 1998. Results of our analyses indicated that several lakes were suitable for receiving broodstock progeny. Field experimentation and simulation modeling indicatedmore » that lake fertilization, coupled with a program of kokanee reduction, provided the management option most likely to enhance the survival of stocked juvenile sockeye salmon. Simulation models that encompass physiological requirements, ecological interactions, and life-history consequences could be used as templates to help develop recovery plans for other endangered fishes. 4 figs., 2 tabs.« less

  16. Snake River Sockeye Salmon Habitat and Limnological Research; 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Andre E.; Taki, Doug; Griswold, Robert G.

    2004-08-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Shoshone-Bannock Tribal goal for this project ismore » two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2002 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake (3) conduct kokanee salmon (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation between stocked juvenile O. nerka

  17. Spawning distribution of sockeye salmon in a glacially influenced watershed: The importance of glacial habitats

    USGS Publications Warehouse

    Young, Daniel B.; Woody, C.A.

    2007-01-01

    The spawning distribution of sockeye salmon Oncorhynchus nerka was compared between clear and glacially turbid habitats in Lake Clark, Alaska, with the use of radiotelemetry. Tracking of 241 adult sockeye salmon to 27 spawning locations revealed both essential habitats and the relationship between spawn timing and seasonal turbidity cycles. Sixty-six percent of radio-tagged sockeye salmon spawned in turbid waters (???5 nephelometric turbidity units) where visual observation was difficult. Spawning in turbid habitats coincided with seasonal temperature declines and associated declines in turbidity and suspended sediment concentration. Because spawn timing is heritable and influenced by temperature, the observed behavior suggests an adaptive response to glacier-fed habitats, as it would reduce embryonic exposure to the adverse effects of fine sediments. ?? Copyright by the American Fisheries Society 2007.

  18. Geomagnetic imprinting predicts spatio-temporal variation in homing migration of pink and sockeye salmon.

    PubMed

    Putman, Nathan F; Jenkins, Erica S; Michielsens, Catherine G J; Noakes, David L G

    2014-10-06

    Animals navigate using a variety of sensory cues, but how each is weighted during different phases of movement (e.g. dispersal, foraging, homing) is controversial. Here, we examine the geomagnetic and olfactory imprinting hypotheses of natal homing with datasets that recorded variation in the migratory routes of sockeye (Oncorhynchus nerka) and pink (Oncorhynchus gorbuscha) salmon returning from the Pacific Ocean to the Fraser River, British Columbia. Drift of the magnetic field (i.e. geomagnetic imprinting) uniquely accounted for 23.2% and 44.0% of the variation in migration routes for sockeye and pink salmon, respectively. Ocean circulation (i.e. olfactory imprinting) predicted 6.1% and 0.1% of the variation in sockeye and pink migration routes, respectively. Sea surface temperature (a variable influencing salmon distribution but not navigation, directly) accounted for 13.0% of the variation in sockeye migration but was unrelated to pink migration. These findings suggest that geomagnetic navigation plays an important role in long-distance homing in salmon and that consideration of navigation mechanisms can aid in the management of migratory fishes by better predicting movement patterns. Finally, given the diversity of animals that use the Earth's magnetic field for navigation, geomagnetic drift may provide a unifying explanation for spatio-temporal variation in the movement patterns of many species. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Population structure of sea-type and lake-type sockeye salmon and kokanee in the Fraser River and Columbia River drainages

    PubMed Central

    Withler, Ruth E.

    2017-01-01

    Population structure of three ecotypes of Oncorhynchus nerka (sea-type Sockeye Salmon, lake-type Sockeye Salmon, and Kokanee) in the Fraser River and Columbia River drainages was examined with microsatellite variation, with the main focus as to whether Kokanee population structure within the Fraser River drainage suggested either a monophyletic or polyphyletic origin of the ecotype within the drainage. Variation at 14 microsatellite loci was surveyed for sea-type and lake-type Sockeye Salmon and Kokanee sampled from 121 populations in the two river drainages. An index of genetic differentiation, FST, over all populations and loci was 0.087, with individual locus values ranging from 0.031 to 0.172. Standardized to an ecotype sample size of 275 individuals, the least genetically diverse ecotype was sea-type Sockeye Salmon with 203 alleles, whereas Kokanee displayed the greatest number of alleles (260 alleles), with lake-type Sockeye Salmon intermediate (241 alleles). Kokanee populations from the Columbia River drainage (Okanagan Lake, Kootenay Lake), the South Thompson River (a major Fraser River tributary) drainage populations, and the mid-Fraser River populations all clustered together in a neighbor-joining analysis, indicative of a monophyletic origin of the Kokanee ecotype in these regions, likely reflecting the origin of salmon radiating from a refuge after the last glaciation period. However, upstream of the mid-Fraser River populations, there were closer relationships between the lake-type Sockeye Salmon ecotype and the Kokanee ecotype, indicative of the Kokanee ecotype evolving independently from the lake-type Sockeye Salmon ecotype in parallel radiation. Kokanee population structure within the entire Fraser River drainage suggested a polyphyletic origin of the ecotype within the drainage. Studies employing geographically restricted population sampling may not outline accurately the phylogenetic history of salmonid ecotypes. PMID:28886033

  20. Piscine reovirus, but not Jaundice Syndrome, was transmissible to Chinook Salmon, Oncorhynchus tshawytscha (Walbaum), Sockeye Salmon, Oncorhynchus nerka (Walbaum), and Atlantic Salmon, Salmo salar L.

    USGS Publications Warehouse

    Garver, Kyle A.; Marty, Gary D.; Cockburn, Sarah N.; Richard, Jon; Hawley, Laura M.; Müller, Anita; Thompson, Rachel L.; Purcell, Maureen K.; Saksida, Sonja M.

    2015-01-01

    A Jaundice Syndrome occurs sporadically among sea-pen-farmed Chinook Salmon in British Columbia, the westernmost province of Canada. Affected salmon are easily identified by a distinctive yellow discolouration of the abdominal and periorbital regions. Through traditional diagnostics, no bacterial or viral agents were cultured from tissues of jaundiced Chinook Salmon; however, piscine reovirus (PRV) was identified via RT-rPCR in all 10 affected fish sampled. By histopathology, Jaundice Syndrome is an acute to peracute systemic disease, and the time from first clinical signs to death is likely <48 h; renal tubular epithelial cell necrosis is the most consistent lesion. In an infectivity trial, Chinook Salmon, Sockeye Salmon and Atlantic Salmon, intraperitoneally inoculated with a PRV-positive organ homogenate from jaundiced Chinook Salmon, developed no gross or microscopic evidence of jaundice despite persistence of PRV for the 5-month holding period. The results from this study demonstrate that the Jaundice Syndrome was not transmissible by injection of material from infected fish and that PRV was not the sole aetiological factor for the condition. Additionally, these findings showed the Pacific coast strain of PRV, while transmissible, was of low pathogenicity for Atlantic Salmon, Chinook Salmon and Sockeye Salmon.

  1. A hematopoietic virus disease of rainbow trout and sockeye salmon

    USGS Publications Warehouse

    Amend, Donald F.; Yasutake, William T.; Mead, Robert W.

    1969-01-01

    A previously undescribed virus disease epizootic of hatchery rainbow trout (Salmo gairdneri) in British Columbia, Canada is presented. In the same locality, a similar virus disease was experienced among hatchery sockeye salmon (Oncorhynchus nerka). Typical symptoms included flashing, fecal casts, hemorrhagic areas at the base of fins, and petechial hemorrhages on the visceral fat and membranes in the abdominal cavity. Histopathologic changes were typified by extensive degeneration and necrosis in the hematopoietic tissues of the kidney and spleen. A virus was isolated from both species of fish on tissue culture and the viruses showed cross-infectivity. Based upon the pathological changes in the hematopoietic tissue and the demonstration of a vital infection, a tentative descriptive name was designated Infectious Hematopoietic Necrosis. The isolated viruses were distinctly different from the infectious pancreatic necrosis or viral hemorrhagic septicemia viruses of trout, but did show similarities to the Oregon sockeye and Sacramento River chinook viruses. Positive identification awaits further tests. The significance of these observations is the reporting of a new viral disease of rainbow trout and the extension of the geographic range of sockeye salmon viruses.

  2. Snake River Sockeye Salmon Captive Broodstock Program; Research Element, 2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willard, Catherine; Plaster, Kurtis; Castillo, Jason

    2005-01-01

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes (SBT) and Idaho Department of Fish and Game (IDFG) initiated the Snake River Sockeye Salmon Captive Broodstock Program to conserve and rebuild populations in Idaho. Restoration efforts are focused on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced adults occurred in 1993. The first release of juvenile sockeye salmon from the captive broodstock program occurred in 1994. In 1999, the first anadromous adult returnsmore » from the captive broodstock program were recorded when six jacks and one jill were captured at the IDFG Sawtooth Fish Hatchery. In 2003, progeny from the captive broodstock program were released using three strategies: eyed-eggs were planted in Pettit and Alturas lakes in November and December, age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in October, and hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2003. Age-0 through age-4 O. nerka were captured in Redfish Lake, and population abundance was estimated at 81,727 fish. Age-0 through age-3 O. nerka were captured in Alturas Lake, and population abundance was estimated at 46,234 fish. Age-0 through age-3 O. nerka were captured in Pettit Lake, and population abundance was estimated at 11,961 fish. Angler surveys were conducted from May 25 through August 7, 2003 on Redfish Lake to estimate kokanee harvest. On Redfish Lake, we interviewed 179 anglers and estimated that 424 kokanee were harvested. The calculated kokanee catch rate was 0.09 fish/hour. The juvenile out-migrant trap on Redfish Lake Creek was operated from April 15 to

  3. Piscine reovirus, but not Jaundice Syndrome, was transmissible to Chinook Salmon, Oncorhynchus tshawytscha (Walbaum), Sockeye Salmon, Oncorhynchus nerka (Walbaum), and Atlantic Salmon, Salmo salar L.

    PubMed

    Garver, K A; Marty, G D; Cockburn, S N; Richard, J; Hawley, L M; Müller, A; Thompson, R L; Purcell, M K; Saksida, S

    2016-02-01

    A Jaundice Syndrome occurs sporadically among sea-pen-farmed Chinook Salmon in British Columbia, the westernmost province of Canada. Affected salmon are easily identified by a distinctive yellow discolouration of the abdominal and periorbital regions. Through traditional diagnostics, no bacterial or viral agents were cultured from tissues of jaundiced Chinook Salmon; however, piscine reovirus (PRV) was identified via RT-rPCR in all 10 affected fish sampled. By histopathology, Jaundice Syndrome is an acute to peracute systemic disease, and the time from first clinical signs to death is likely <48 h; renal tubular epithelial cell necrosis is the most consistent lesion. In an infectivity trial, Chinook Salmon, Sockeye Salmon and Atlantic Salmon, intraperitoneally inoculated with a PRV-positive organ homogenate from jaundiced Chinook Salmon, developed no gross or microscopic evidence of jaundice despite persistence of PRV for the 5-month holding period. The results from this study demonstrate that the Jaundice Syndrome was not transmissible by injection of material from infected fish and that PRV was not the sole aetiological factor for the condition. Additionally, these findings showed the Pacific coast strain of PRV, while transmissible, was of low pathogenicity for Atlantic Salmon, Chinook Salmon and Sockeye Salmon. © 2015 John Wiley & Sons Ltd.

  4. Predation of Karluk River sockeye salmon by coho salmon and char

    USGS Publications Warehouse

    McIntyre, J.D.; Reisenbichler, R.R.; Emlen, J.M.; Wilmot, R.L.; Finn, J.E.

    1988-01-01

    The number of sockeye salmon, Oncorhynchus nerka, in Alaska's Karluk River (Fig. 1) declined from millions to thousands during the early part of the present century. Rounsefell (1958) discussed alternative explanations for the decline including a general loss offertility ofthe system as the number of salmon carcasses declined, competition, overfishing, subtle changes in climate, and predation; he concluded that the combined effect of predation and fishing was the most probable explanation. Later, Van Cleave and Bevan (1973) suggested that the weir constructed in the river each year to facilitate counting the fish as they entered the system was the most probable cause ofthe decline. Itprevented free movement of both adults and juveniles in the river. All of these hypotheses remain as potential explanations for the decline

  5. Revisiting evolutionary dead ends in sockeye salmon ( Oncorhynchus nerka) life history

    USGS Publications Warehouse

    Pavey, S.A.; Hamon, T.R.; Nielsen, J.L.

    2007-01-01

    This study challenges recent hypotheses about sockeye salmon (Oncorhynchus nerka) colonization based on life history and broadens the pathways that investigators should consider when studying sockeye colonization of novel habitats. Most sockeye populations exhibit lake-type life histories. Riverine populations are thought to be more likely to stray from their natal stream to spawn and therefore colonize new habitat. We examined genetic relationships among five geographically proximate sockeye populations from the Aniakchak region of the Alaska Peninsula, Alaska. Specifically, we sought to determine if the genetic population structure was consistent with the hypothesis that a riverine population colonized a recently available upriver volcanic caldera lake, and whether recent volcanism led to genetic bottlenecks in these sockeye populations. Heterozygosity and allelic richness were not higher in the riverine population. Patterns of genetic divergence suggested that the geographically proximate riverine sockeye population did not colonize the lake; the caldera populations were more genetically divergent from the downstream riverine population (FST  =  0.047) than a lake-type population in a different drainage (FST  =  0.018). Our results did not suggest the presence of genetic bottlenecks in the caldera populations.

  6. Olfactory gene expression in migrating adult sockeye salmon Oncorhynchus nerka.

    PubMed

    Bett, N N; Hinch, S G; Kaukinen, K H; Li, S; Miller, K M

    2018-04-16

    Expression of 12 olfactory genes was analysed in adult sockeye salmon Oncorhynchus nerka nearing spawning grounds and O. nerka that had strayed from their natal migration route. Variation was found in six of these genes, all of which were olfc olfactory receptors and had lower expression levels in salmon nearing spawning grounds. The results may reflect decreased sensitivity to natal water olfactory cues as these fish are no longer seeking the correct migratory route. The expression of olfactory genes during the olfactory-mediated spawning migration of Pacific salmon Oncorhynchus spp. is largely unexplored and these findings demonstrate a link between migratory behaviours and olfactory plasticity that provides a basis for future molecular research on salmon homing. © 2018 The Fisheries Society of the British Isles.

  7. Climate change and potential impacts on bristol bay sockeye salmon populations

    EPA Science Inventory

    Scientific research has shown that climate change has already caused detectable changes to ecosystems throughout Alaska. As warming is predicted to continue, it is likely to lead to changes in marine and freshwater aquatic ecosystems and impact sockeye salmon populations in Brist...

  8. Sequential tests for infectious hematopoietic necrosis virus in individuals and populations of sockeye salmon

    USGS Publications Warehouse

    Mulcahy, Daniel M.; Pascho, Ron

    1986-01-01

    The incidence and titer distribution of infectious hematopoietic necrosis virus in cavity fluid from spent female sockeye salmon (Oncorhynchus nerka) varied little when fish from a naturally spawning population were sampled three times on alternate days. However, when prespawning female sockeye salmon from a second population were individually tagged, penned, and sampled daily, the incidence and proportion of fish with high virus titer rose over a 6-d period. In 10 instances, consecutive cavity fluid samples from the same fish reverted from virus-positive to virus-negative. We suggest that spent fish should be sampled when accurate and quantitative data on the incidence and level of the virus are required.

  9. Clove oil as an anaesthetic for adult sockeye salmon: Field trials

    USGS Publications Warehouse

    Woody, C.A.; Nelson, Jack L.; Ramstad, K.

    2002-01-01

    Wild migrating sockeye salmon Oncorhynchus nerka exposed to 20, 50 and 80 mg 1-1 of clove oil could be handled within 3 min, recovered within 10 min, and survived 15 min exposure trials. Fish tested at 110 mg 1-1 did not recover from 15 min exposure trials. Response curves developed for induction and recovery time considered the following predictors: clove oil concentration, sex, fish length and depth. A significant positive dependence was observed between induction time and fish length for 20, 50 and 80 mg 1-1 test concentrations; no dependence was observed between induction time and length at 110 and 140 mg 1-1. Recovery time differed as a function of clove oil concentration, but not fish size. A concentration of 50 mg 1-1 is recommended for anaesthetizing sockeye salmon ranging in length from 400 to 550 mm at water temperatures averaging 9-10??C.

  10. Recovery of sockeye salmon in the Elwha River, Washington, after dam removal: Dependence of smolt production on the resumption of anadromy by landlocked kokanee

    USGS Publications Warehouse

    Hansen, Adam G.; Gardner, Jennifer R.; Beauchamp, David A.; Paradis, Rebecca; Quinn, Thomas P.

    2016-01-01

    Pacific salmon Oncorhynchus spp. are adept at colonizing habitat that has been reopened to anadromous passage. Sockeye Salmon O. nerka are unique in that most populations require lakes to fulfill their life history. Thus, for Sockeye Salmon to colonize a system, projects like dam removals must provide access to lakes. However, if the lakes contain landlocked kokanee (lacustrine Sockeye Salmon), the recovery of Sockeye Salmon could be mediated by interactions between the two life history forms and the processes associated with the resumption of anadromy. Our objective was to evaluate the extent to which estimates of Sockeye Salmon smolt production and recovery are sensitive to the resumption of anadromy by kokanee after dam removal. We informed the analysis based on the abiotic and biotic features of Lake Sutherland, which was recently opened to passage after dam removal on the Elwha River, Washington. We first developed maximum expectations for the smolt-producing capacity of Lake Sutherland by using two predictive models developed from Sockeye Salmon populations in Alaska and British Columbia: one model was based on the mean seasonal biomass of macrozooplankton, and the other was based on the euphotic zone volume of the lake. We then constructed a bioenergetics-based simulation model to evaluate how the capacity of Lake Sutherland to rear yearling smolts could change with varying degrees of anadromy among O. nerka fry. We demonstrated that (1) the smolt-producing capacity of a nursery lake for juvenile Sockeye Salmon changes in nonlinear ways with changes in smolt growth, mortality, and the extent to which kokanee resume anadromy after dam removal; (2) kokanee populations may be robust to changes in abundance after dam removal, particularly if lakes are located higher in the watershed on tributaries separate from where dams were removed; and (3) the productivity of newly establishing Sockeye Salmon can vary considerably depending on whether the population becomes

  11. Comparison of polyunsaturated fatty acids content in filets of anadromous and landlocked sockeye salmon Oncorhynchus nerka.

    PubMed

    Gladyshev, Michail I; Lepskaya, Ekaterina V; Sushchik, Nadezhda N; Makhutova, Olesia N; Kalachova, Galina S; Malyshevskaya, Kseniya K; Markevich, Grigory N

    2012-12-01

    Fatty acid composition and content of 2 forms of sockeye salmon Oncorhynchus nerka from lakes in Kamchatka Peninsula (Russia) were compared. One form of sockeye salmon was anadromous ("marine"), that is, adult fish migrated in ocean to feed and grow and than return in the lake to breed. Fish of another form, kokanee, never migrate in the ocean. Per cent levels of the main indicators of nutritive value, eicosapentaenoic acid (EPA, 20:5n-3), and docosahexaenoic acid (DHA, 22:6n-3), were significantly higher in the landlocked O. nerka. However, concentrations of EPA and DHA per wet weight of filets were higher in the marine form, because of the relatively higher content of sum of fatty acids in their muscle tissue. As concluded, fish fed in marine environment had higher contents of long-chain n-3 fatty acids per wet weight than fish of the same species, fed in fresh waters. In general, both the anadromous sockeye salmon and the landlocked kokanee salmon can be recommended for human diet as a valuable product concerning contents of EPA and DHA. © 2012 Institute of Food Technologists®

  12. Concurrent natural and sexual selection in wild male sockeye salmon, Oncorhynchus nerka.

    PubMed

    Hamon, Troy R; Foote, Chris J

    2005-05-01

    Concurrent natural and sexual selection have been inferred from laboratory and comparative studies in a number of taxa, but are rarely measured in natural populations. Because the interaction of these two general categories of selection may be complex when they occur simultaneously, empirical evidence from natural populations would help us to understand this interaction and probably give us greater insight into each separate episode as well. In male sockeye salmon, sexual selection for larger body size has been indicated in both deep and shallow water habitats. However, in shallow habitats male sockeye are generally smaller and less deep-bodied than in deep habitats, a difference that has been ascribed to natural selection. We measured concurrent natural and sexual selection in two years on breeding male sockeye salmon with respect to body size, body shape, and time of arrival to the breeding grounds. Natural selection was variable in effect and sexual selection was variable in intensity in these two years. The patterns of selection also appear to be interdependent; areas where predation on spawning adults is not intense have yielded different patterns of sexual selection than those measured here. It appears that some of the body shape differences in sockeye salmon associated with different spawning habitats, which were previously attributed to selective mortality, may be a result of different patterns of sexual selection in the different habitats. Total selection resulting from the combination of both natural and sexual selection was less intense than either natural or sexual selection in most cases. Measurement of concurrent selection episodes in nature may help us to understand whether the pattern of differential sexual selection is common, and whether observed patterns of habitat-related differentiation may be due to differences in sexual selection.

  13. Recurrent evolution of life history ecotypes in sockeye salmon: implications for conservation and future evolution

    PubMed Central

    Wood, Chris C; Bickham, John W; John Nelson, R; Foote, Chris J; Patton, John C

    2008-01-01

    We examine the evolutionary history and speculate about the evolutionary future of three basic life history ecotypes that contribute to the biocomplexity of sockeye salmon (Oncorhynchus nerka). The ‘recurrent evolution’ (RE) hypothesis claims that the sea/river ecotype is ancestral, a ‘straying’ form with poorly differentiated (meta)population structure, and that highly structured populations of lake-type sockeye and kokanee have evolved repeatedly in parallel adaptive radiations between recurrent glaciations of the Pleistocene Epoch. Basic premises of this hypothesis are consistent with new, independent evidence from recent surveys of genetic variation in mitochondrial and microsatellite DNA: (1) sockeye salmon are most closely related to pink (O. gorbuscha) and chum (O. keta) salmon with sea-type life histories; (2) the sockeye life history ecotypes exist as polyphyletic lineages within large drainages and geographic regions; (3) the sea/river ecotype exhibits less genetic differentiation among populations than the lake or kokanee ecotypes both within and among drainages; and (4) genetic diversity is typically higher in the sea/river ecotype than in the lake and kokanee ecotypes. Anthropogenic modification of estuarine habitat and intensive coastal fisheries have likely reduced and fragmented historic metapopulations of the sea/river ecotype, particularly in southern areas. In contrast, the kokanee ecotype appears to be favoured by marine fisheries and predicted changes in climate. PMID:25567627

  14. Cardiorespiratory collapse at high temperature in swimming adult sockeye salmon

    PubMed Central

    Eliason, Erika J.; Clark, Timothy D.; Hinch, Scott G.; Farrell, Anthony P.

    2013-01-01

    Elevated summer river temperatures are associated with high in-river mortality in adult sockeye salmon (Oncorhynchus nerka) during their once-in-a-lifetime spawning migration up the Fraser River (British Columbia, Canada). However, the mechanisms underlying the decrease in whole-animal performance and cardiorespiratory collapse above optimal temperatures for aerobic scope (Topt) remain elusive for aquatic ectotherms. This is in part because all the relevant cardiorespiratory variables have rarely been measured directly and simultaneously during exercise at supra-optimal temperatures. Using the oxygen- and capacity-limited thermal tolerance hypothesis as a framework, this study simultaneously and directly measured oxygen consumption rate (MO2), cardiac output , heart rate (fH), and cardiac stroke volume (Vs), as well as arterial and venous blood oxygen status in adult sockeye salmon swimming at temperatures that bracketed Topt to elucidate possible limitations in oxygen uptake into the blood or internal delivery through the oxygen cascade. Above Topt, the decline in MO2max and aerobic scope was best explained by a cardiac limitation, triggered by reduced scope for fH. The highest test temperatures were characterized by a negative scope for fH, dramatic decreases in maximal and maximal Vs, and cardiac dysrhythmias. In contrast, arterial blood oxygen content and partial pressure were almost insensitive to supra-optimal temperature, suggesting that oxygen delivery to and uptake by the gill were not a limiting factor. We propose that the high-temperature-induced en route mortality in migrating sockeye salmon may be at least partly attributed to physiological limitations in aerobic performance due to cardiac collapse via insufficient scope for fH. Furthermore, this improved mechanistic understanding of cardiorespiratory collapse at high temperature is likely to have broader application to other salmonids and perhaps other aquatic ectotherms. PMID:27293592

  15. Cardiorespiratory collapse at high temperature in swimming adult sockeye salmon.

    PubMed

    Eliason, Erika J; Clark, Timothy D; Hinch, Scott G; Farrell, Anthony P

    2013-01-01

    Elevated summer river temperatures are associated with high in-river mortality in adult sockeye salmon (Oncorhynchus nerka) during their once-in-a-lifetime spawning migration up the Fraser River (British Columbia, Canada). However, the mechanisms underlying the decrease in whole-animal performance and cardiorespiratory collapse above optimal temperatures for aerobic scope (T opt) remain elusive for aquatic ectotherms. This is in part because all the relevant cardiorespiratory variables have rarely been measured directly and simultaneously during exercise at supra-optimal temperatures. Using the oxygen- and capacity-limited thermal tolerance hypothesis as a framework, this study simultaneously and directly measured oxygen consumption rate (MO2), cardiac output [Formula: see text], heart rate (f H), and cardiac stroke volume (V s), as well as arterial and venous blood oxygen status in adult sockeye salmon swimming at temperatures that bracketed T opt to elucidate possible limitations in oxygen uptake into the blood or internal delivery through the oxygen cascade. Above T opt, the decline in MO2max and aerobic scope was best explained by a cardiac limitation, triggered by reduced scope for f H. The highest test temperatures were characterized by a negative scope for f H, dramatic decreases in maximal [Formula: see text] and maximal V s, and cardiac dysrhythmias. In contrast, arterial blood oxygen content and partial pressure were almost insensitive to supra-optimal temperature, suggesting that oxygen delivery to and uptake by the gill were not a limiting factor. We propose that the high-temperature-induced en route mortality in migrating sockeye salmon may be at least partly attributed to physiological limitations in aerobic performance due to cardiac collapse via insufficient scope for f H. Furthermore, this improved mechanistic understanding of cardiorespiratory collapse at high temperature is likely to have broader application to other salmonids and perhaps other

  16. Seasonal marine growth of Bristol Bay sockeye salmon (Oncorhynchus nerka) in relation to competition with Asian pink salmon (O. gorbuscho) and the 1977 ocean regime shift

    USGS Publications Warehouse

    Ruggerone, Gregory T.; Farley, Ed; Nielsen, Jennifer L.; Hagen, Peter

    2005-01-01

    Recent research demonstrated significantly lower growth and survival of Bristol Bay sockeye salmon (Oncorhynchus nerka) during odd-numbered years of their second or third years at sea (1975, 1977, etc.), a trend that was opposite that of Asian pink salmon (O. gorbuscha) abundance. Here we evaluated seasonal growth trends of Kvichak and Egegik river sockeye salmon (Bristol Bay stocks) during even- and odd-numbered years at sea by measuring scale circuli increments within each growth zone of each major salmon age group between 1955 and 2000. First year scale growth was not significantly different between odd- and even-numbered years, but peak growth of age-2. smolts was significantly higher than age-1 smolts. Total second and third year scale growth of salmon was significantly lower during odd- than during even-numbered years. However, reduced scale growth in odd-numbered years began after peak growth in spring and continued through summer and fall even though most pink salmon had left the high seas by late July (10-18% growth reduction in odd vs. even years). The alternating odd and even year growth pattern was consistent before and after the 1977 ocean regime shift. During 1977-2000, when salmon abundance was relatively great, sockeye salmon growth was high during specific seasons compared with that during 1955-1976, that is to say, immediately after entry to Bristol Bay, after peak growth in the first year, during the middle of the second growing season, and during spring of the third season. Growth after the spring peak in the third year at sea was relatively low during 1977-2000. We hypothesize that high consumption rates of prey by pink salmon during spring through mid-July of odd-numbered years, coupled with declining zooplankton biomass during summer and potentially cyclic abundances of squid and other prey, contributed to reduced prey availability and therefore reduced growth of Bristol Bay sockeye salmon during late spring through fall of odd-numbered years.

  17. Snake River Sockeye Salmon Habitat and Limnological Research; 2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Andre E.; Taki, Doug; Griswold, Robert G.

    2004-08-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon Oncorhynchus nerka as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding formore » this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (Council). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2001 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake, fertilization of Pettit and Alturas lakes was suspended for this year; (3) conduct kokanee (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.« less

  18. Distinctive metabolite profiles in in-migrating Sockeye salmon suggest sex-linked endocrine perturbation.

    PubMed

    Benskin, Jonathan P; Ikonomou, Michael G; Liu, Jun; Veldhoen, Nik; Dubetz, Cory; Helbing, Caren C; Cosgrove, John R

    2014-10-07

    The health of Skeena River Sockeye salmon (Onchorhychus nerka) has been of increasing concern due to declining stock returns over the past decade. In the present work, in-migrating Sockeye from the 2008 run were evaluated using a mass spectrometry-based, targeted metabolomics platform. Our objectives were to (a) investigate natural changes in a subset of the hepatic metabolome arising from migration-associated changes in osmoregulation, locomotion, and gametogenesis, and (b) compare the resultant profiles with animals displaying altered hepatic vitellogenin A (vtg) expression at the spawning grounds, which was previously hypothesized as a marker of xenobiotic exposure. Of 203 metabolites monitored, 95 were consistently observed in Sockeye salmon livers and over half of these changed significantly during in-migration. Among the most dramatic changes in both sexes were a decrease in concentrations of taurine (a major organic osmolyte), carnitine (involved in fatty acid transport), and two major polyunsaturated fatty acids (eicosapentaenoic acid and docosahexaenoic acid). In females, an increase in amino acids was attributed to protein catabolism associated with vitellogenesis. Animals with atypical vtg mRNA expression demonstrated unusual hepatic amino acid, fatty acid, taurine, and carnitine profiles. The cause of these molecular perturbations remains unclear, but may include xenobiotic exposure, natural senescence, and/or interindividual variability. These data provide a benchmark for further investigation into the long-term health of migrating Skeena Sockeye.

  19. [Intra- and interpopulation variability of southwestern Kamchatka sockeye salmon Oncorhynchus nerka inferred from the data on single nucleotide polymorphism].

    PubMed

    Khrustaleva, A M; Klovach, N V; Gritsenko, O F; Seeb, J E

    2014-07-01

    The variability of 45 single nucleotide polymorphism (SNP) loci was studied in nine samples of the sockeye salmon Oncorhynchus nerka from the rivers of southwestern Kamchatka. The Wahlund effect, gametic disequilibrium at some loci, and a decrease in interpopulation genetic diversity estimates observed in samples from the Bolshaya River outlet are explained in terms of the samples' heterogeneity. Partitioning of mixed samples using some biological characteristics of the individuals led to a noticeable decrease in the frequency of these phenomena. It was demonstrated that the allelic diversity between the populations within the river Plotnikovs accounted for the larger part of genetic variation, as compared to the differentiation between the basins. The SNP loci responsible for intra- and interpopulation differentiation of sockeye salmon from the rivers of southwestern Kamchatka were identified. Some recommendations for field population genetic studies of Asian sockeye salmon were formulated.

  20. Development of the salmon louse Lepeophtheirus salmonis and its effects on juvenile sockeye salmon Oncorhynchus nerka.

    PubMed

    Jakob, E; Sweeten, T; Bennett, W; Jones, S R M

    2013-11-06

    Responses of sockeye salmon Oncorhynchus nerka during infection with Lepeophtheirus salmonis were assessed in controlled laboratory trials. Juvenile salmon were exposed to 100 copepodids fish-1 (Trials 1 and 2) or 300 copepodids fish-1 (Trial 3) at mean weights of approximately 40, 80 and 135 g, respectively. Infections occurred on all salmon in all trials, and mean abundances (infection densities) ranged between 3.3 and 19.4 lice fish-1 (0.08 and 0.44 lice g-1 fish) in Trial 1, between 7.2 and 18.3 (0.09 and 0.22) in Trial 2 and between 19.5 and 60.7 (0.15 and 0.46) in Trial 3. A cumulative mortality of 24.4% occurred in Trial 3. At attachment sites on gills, we observed hyperplasia of basal epithelial cells and fusion of secondary lamellae occasionally associated with a cellular infiltrate. At attachment sites on fins, partial to complete skin erosion occurred, with limited evidence of hyperplasia or inflammation. Scale loss and abrasions coincided with pre-adult lice around 20 d post infection (dpi). Plasma osmolality was significantly elevated in exposed fish in Trials 1 (21 dpi), 2 (15 and 36 dpi) and 3 (20 dpi), whereas haematocrit was significantly depressed in exposed fish in Trials 1 (21 and 28 dpi) and 3 (20 dpi). Plasma cortisol was significantly elevated in exposed fish at 20 dpi (Trial 3). Physiological changes and mortality were related to the intensity of infection and became most prominent with pre-adult stages, suggesting patterns of infection and response in sockeye salmon similar to those reported for Atlantic and Chinook salmon.

  1. RECENT ECOLOGICAL DIVERGENCE DESPITE MIGRATION IN SOCKEYE SALMON (ONCORHYNCHUS NERKA)

    PubMed Central

    Pavey, Scott A; Nielsen, Jennifer L; Hamon, Troy R

    2010-01-01

    Ecological divergence may result when populations experience different selection regimes, but there is considerable discussion about the role of migration at the beginning stages of divergence before reproductive isolating mechanisms have evolved. However, detection of past migration is difficult in current populations and tools to differentiate genetic similarities due to migration versus recent common ancestry are only recently available. Using past volcanic eruption times as a framework, we combine morphological analyses of traits important to reproduction with a coalescent-based genetic analysis of two proximate sockeye salmon (Oncorhynchus nerka) populations. We find that this is the most recent (∼500 years, 100 generations) natural ecological divergence recorded in a fish species, and report that this divergence is occurring despite migration. Although studies of fish divergence following the retreat of glaciers (10,000–15,000 years ago) have contributed extensively to our understanding of speciation, the Aniakchak system of sockeye salmon provides a rare example of the initial stages of ecological divergence following natural colonization. Our results show that even in the face of continued migration, populations may diverge in the absence of a physical barrier. PMID:20030707

  2. Recent ecological divergence despite migration in sockeye salmon (Oncorhynchus nerka).

    PubMed

    Pavey, Scott A; Nielsen, Jennifer L; Hamon, Troy R

    2010-06-01

    Ecological divergence may result when populations experience different selection regimes, but there is considerable discussion about the role of migration at the beginning stages of divergence before reproductive isolating mechanisms have evolved. However, detection of past migration is difficult in current populations and tools to differentiate genetic similarities due to migration versus recent common ancestry are only recently available. Using past volcanic eruption times as a framework, we combine morphological analyses of traits important to reproduction with a coalescent-based genetic analysis of two proximate sockeye salmon (Oncorhynchus nerka) populations. We find that this is the most recent (approximately 500 years, 100 generations) natural ecological divergence recorded in a fish species, and report that this divergence is occurring despite migration. Although studies of fish divergence following the retreat of glaciers (10,000-15,000 years ago) have contributed extensively to our understanding of speciation, the Aniakchak system of sockeye salmon provides a rare example of the initial stages of ecological divergence following natural colonization. Our results show that even in the face of continued migration, populations may diverge in the absence of a physical barrier.

  3. Recent ecological divergence despite migration in sockeye salmon (Oncorhynchus nerka)

    USGS Publications Warehouse

    Pavey, Scott A.; Nielsen, Jennifer L.; Hamon, Troy R.

    2010-01-01

    Ecological divergence may result when populations experience different selection regimes, but there is considerable discussion about the role of migration at the beginning stages of divergence before reproductive isolating mechanisms have evolved. However, detection of past migration is difficult in current populations and tools to differentiate genetic similarities due to migration versus recent common ancestry are only recently available. Using past volcanic eruption times as a framework, we combine morphological analyses of traits important to reproduction with a coalescent-based genetic analysis of two proximate sockeye salmon (Oncorhynchus nerka) populations. We find that this is the most recent (~500 years, 100 generations) natural ecological divergence recorded in a fish species, and report that this divergence is occurring despite migration. Although studies of fish divergence following the retreat of glaciers (10,000–15,000 years ago) have contributed extensively to our understanding of speciation, the Aniakchak system of sockeye salmon provides a rare example of the initial stages of ecological divergence following natural colonization. Our results show that even in the face of continued migration, populations may diverge in the absence of a physical barrier.

  4. Testing of male sockeye salmon (Oncorhynchus nerka) and steelhead trout (Salmo gairdneri) for infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Mulcahy, D.; Pascho, R.J.; Batts, W.N.

    1987-01-01

    Infectious hematopoietic necrosis (IHN) virus has been isolated only rarely from whole milt samples of male sockeye salmon (Oncorhynchus nerka). In 3 yr of testing, virus incidences in males ranged from 0 to 13% when milt was sampled but were 60–100% with spleen or kidney. When IHN virus was isolated from sockeye salmon milt at titers less than 3.00 log10 plaque-forming units (pfu)/mL, the level of virus in the kidney or spleen exceeded 7.00 log10 pfu/g. Higher rates of IHN virus isolation from kidney or spleen than from milt were also generally found in steelhead trout (Salmo gairdneri), although the differences were less pronounced than in sockeye salmon. Furthermore, virus was sometimes isolated from steelhead trout milt when the level of virus in kidney or spleen samples was very low, and was recovered from some milt samples when none was isolated from the corresponding spleen sample. When male salmonids are tested for IHN virus, kidney or spleen samples are superior to whole milt, but milt should be included for critical examinations.

  5. Snake River Sockeye Salmon Habitat and Limnological Research; 1999 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griswold, Robert G.; Taki, Doug; Lewis, Bert

    2001-01-15

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991 the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding formore » this inter-agency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 1999 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Pettit, and Alturas lakes, fertilization of Redfish Lake was suspended for this year; (3) conduct kokanee (nonanadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) examine diet of emigrating O. nerka smolts; (7) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.« less

  6. Snake River Sockeye Salmon Habitat and Limnological Research; 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Andre E.; Griswold, Robert G.; Taki, Doug

    2002-12-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991 the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding formore » this inter-agency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2000 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Pettit, and Alturas lakes, fertilization of Redfish Lake was suspended for this year; (3) conduct kokanee (nonanadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) examine diet of emigrating O. nerka smolts; (7) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.« less

  7. Virulence comparisons of infectious hematopoietic necrosis virus U and M genogroups in sockeye salmon and rainbow trout

    USGS Publications Warehouse

    Garver, K.A.; Batts, W.N.; Kurath, G.

    2006-01-01

    Infectious hematopoietic necrosis virus (IHNV) is an aquatic rhabdovirus that infects salmonids in the Pacific Northwest of the United States, Europe, and Asia. Isolates of IHNV have been phylogenetically classified into three major viral genogroups, designated U, M, and L. To characterize virulence of IHNV in the context of these three viral genogroups, seven strains of IHNV (three U genogroup strains, three M strains, and one L strain) were compared for their pathogenicity in juvenile sockeye salmon Oncorhynchus nerka, kokanee (lacustrine sockeye salmon), and rainbow trout O. mykiss. Fish were waterborne-exposed to the different viral strains, and virulence was assessed by comparing mortality curves and final cumulative percent mortality (CPM) in both species of fish at 10??C and 15??C. In sockeye salmon and kokanee, the U genogroup virus types were extremely virulent, causing average CPMs of 69-100%, while the M genogroup virus types caused very little or no mortality (CPM = 0-4%). The endangered Redfish Lake sockeye salmon stock exhibited extreme differences in susceptibility to the U and M genogroups. Conversely, in two stocks of rainbow trout, the M genogroup virus types were more virulent, inducing average CPMs of 25-85%, while the U genogroup viruses caused lower mortality (CPM = 5-41%). In both fish species, the single L genogroup strain caused low to intermediate mortality (CPM = 13-53%). Viral glycoprotein sequence comparisons of the seven challenge strains revealed three amino acid sites (247, 256, and 270) that consistently differed between the U and M genogroups, possibly contributing to pathogenicity differences. ?? Copyright by the American Fisheries Society 2006.

  8. Ecological transcriptomics of lake-type and riverine sockeye salmon (Oncorhynchus nerka).

    PubMed

    Pavey, Scott A; Sutherland, Ben J G; Leong, Jong; Robb, Adrienne; von Schalburg, Kris; Hamon, Troy R; Koop, Ben F; Nielsen, Jennifer L

    2011-12-02

    There are a growing number of genomes sequenced with tentative functions assigned to a large proportion of the individual genes. Model organisms in laboratory settings form the basis for the assignment of gene function, and the ecological context of gene function is lacking. This work addresses this shortcoming by investigating expressed genes of sockeye salmon (Oncorhynchus nerka) muscle tissue. We compared morphology and gene expression in natural juvenile sockeye populations related to river and lake habitats. Based on previously documented divergent morphology, feeding strategy, and predation in association with these distinct environments, we expect that burst swimming is favored in riverine population and continuous swimming is favored in lake-type population. In turn we predict that morphology and expressed genes promote burst swimming in riverine sockeye and continuous swimming in lake-type sockeye. We found the riverine sockeye population had deep, robust bodies and lake-type had shallow, streamlined bodies. Gene expression patterns were measured using a 16 k microarray, discovering 141 genes with significant differential expression. Overall, the identity and function of these genes was consistent with our hypothesis. In addition, Gene Ontology (GO) enrichment analyses with a larger set of differentially expressed genes found the "biosynthesis" category enriched for the riverine population and the "metabolism" category enriched for the lake-type population. This study provides a framework for understanding sockeye life history from a transcriptomic perspective and a starting point for more extensive, targeted studies determining the ecological context of genes.

  9. In vivo fitness correlates with host-specific virulence of Infectious hematopoietic necrosis virus (IHNV) in sockeye salmon and rainbow trout

    USGS Publications Warehouse

    Penaranda, M.M.D.; Wargo, A.R.; Kurath, G.

    2011-01-01

    The relationship between virulence and overall within-host fitness of the fish rhabdovirus Infectious hematopoietic necrosis virus (IHNV) was empirically investigated in vivo for two virus isolates belonging to different IHNV genogroups that exhibit opposing host-specific virulence. U group isolates are more virulent in sockeye salmon and M group isolates are more virulent in rainbow trout. In both single and mixed infections in the two fish hosts, the more virulent IHNV type exhibited higher prevalence and higher viral load than the less virulent type. Thus, a positive correlation was observed between higher in vivo fitness and higher host-specific virulence in sockeye salmon and rainbow trout. Comparisons of mean viral loads in single and mixed infections revealed no evidence for limitation due to competition effects between U and M viruses in either rainbow trout or sockeye salmon co-infections.

  10. Ecological transcriptomics of lake-type and riverine sockeye salmon (Oncorhynchus nerka)

    PubMed Central

    2011-01-01

    Background There are a growing number of genomes sequenced with tentative functions assigned to a large proportion of the individual genes. Model organisms in laboratory settings form the basis for the assignment of gene function, and the ecological context of gene function is lacking. This work addresses this shortcoming by investigating expressed genes of sockeye salmon (Oncorhynchus nerka) muscle tissue. We compared morphology and gene expression in natural juvenile sockeye populations related to river and lake habitats. Based on previously documented divergent morphology, feeding strategy, and predation in association with these distinct environments, we expect that burst swimming is favored in riverine population and continuous swimming is favored in lake-type population. In turn we predict that morphology and expressed genes promote burst swimming in riverine sockeye and continuous swimming in lake-type sockeye. Results We found the riverine sockeye population had deep, robust bodies and lake-type had shallow, streamlined bodies. Gene expression patterns were measured using a 16K microarray, discovering 141 genes with significant differential expression. Overall, the identity and function of these genes was consistent with our hypothesis. In addition, Gene Ontology (GO) enrichment analyses with a larger set of differentially expressed genes found the "biosynthesis" category enriched for the riverine population and the "metabolism" category enriched for the lake-type population. Conclusions This study provides a framework for understanding sockeye life history from a transcriptomic perspective and a starting point for more extensive, targeted studies determining the ecological context of genes. PMID:22136247

  11. Consequences of high temperatures and premature mortality on the transcriptome and blood physiology of wild adult sockeye salmon (Oncorhynchus nerka)

    PubMed Central

    Jeffries, Ken M; Hinch, Scott G; Sierocinski, Thomas; Clark, Timothy D; Eliason, Erika J; Donaldson, Michael R; Li, Shaorong; Pavlidis, Paul; Miller, Kristi M

    2012-01-01

    Elevated river water temperature in the Fraser River, British Columbia, Canada, has been associated with enhanced mortality of adult sockeye salmon (Oncorhynchus nerka) during their upriver migration to spawning grounds. We undertook a study to assess the effects of elevated water temperatures on the gill transcriptome and blood plasma variables in wild-caught sockeye salmon. Naturally migrating sockeye salmon returning to the Fraser River were collected and held at ecologically relevant temperatures of 14°C and 19°C for seven days, a period representing a significant portion of their upstream migration. After seven days, sockeye salmon held at 19°C stimulated heat shock response genes as well as many genes associated with an immune response when compared with fish held at 14°C. Additionally, fish at 19°C had elevated plasma chloride and lactate, suggestive of a disturbance in osmoregulatory homeostasis and a stress response detectable in the blood plasma. Fish that died prematurely over the course of the holding study were compared with time-matched surviving fish; the former fish were characterized by an upregulation of several transcription factors associated with apoptosis and downregulation of genes involved in immune function and antioxidant activity. Ornithine decarboxylase (ODC1) was the most significantly upregulated gene in dying salmon, which suggests an association with cellular apoptosis. We hypothesize that the observed decrease in plasma ions and increases in plasma cortisol that occur in dying fish may be linked to the increase in ODC1. By highlighting these underlying physiological mechanisms, this study enhances our understanding of the processes involved in premature mortality and temperature stress in Pacific salmon during migration to spawning grounds. PMID:22957178

  12. Consequences of high temperatures and premature mortality on the transcriptome and blood physiology of wild adult sockeye salmon (Oncorhynchus nerka).

    PubMed

    Jeffries, Ken M; Hinch, Scott G; Sierocinski, Thomas; Clark, Timothy D; Eliason, Erika J; Donaldson, Michael R; Li, Shaorong; Pavlidis, Paul; Miller, Kristi M

    2012-07-01

    Elevated river water temperature in the Fraser River, British Columbia, Canada, has been associated with enhanced mortality of adult sockeye salmon (Oncorhynchus nerka) during their upriver migration to spawning grounds. We undertook a study to assess the effects of elevated water temperatures on the gill transcriptome and blood plasma variables in wild-caught sockeye salmon. Naturally migrating sockeye salmon returning to the Fraser River were collected and held at ecologically relevant temperatures of 14°C and 19°C for seven days, a period representing a significant portion of their upstream migration. After seven days, sockeye salmon held at 19°C stimulated heat shock response genes as well as many genes associated with an immune response when compared with fish held at 14°C. Additionally, fish at 19°C had elevated plasma chloride and lactate, suggestive of a disturbance in osmoregulatory homeostasis and a stress response detectable in the blood plasma. Fish that died prematurely over the course of the holding study were compared with time-matched surviving fish; the former fish were characterized by an upregulation of several transcription factors associated with apoptosis and downregulation of genes involved in immune function and antioxidant activity. Ornithine decarboxylase (ODC1) was the most significantly upregulated gene in dying salmon, which suggests an association with cellular apoptosis. We hypothesize that the observed decrease in plasma ions and increases in plasma cortisol that occur in dying fish may be linked to the increase in ODC1. By highlighting these underlying physiological mechanisms, this study enhances our understanding of the processes involved in premature mortality and temperature stress in Pacific salmon during migration to spawning grounds.

  13. Studying levels of Fukushima-derived radioactivity in sockeye salmon collected on the west coast of Vancouver Island

    NASA Astrophysics Data System (ADS)

    Domingo, T.; Starosta, K.; Chester, A.; Williams, J.; Ross, P. S.

    2017-11-01

    To investigate potential radioisotope contamination from the Fukushima nuclear accident, measurements of 10 sockeye salmon (Oncorhynchus nerka) collected on June 21 and June 31, 2014 in the Alberni Inlet on the west coast of Vancouver Island, British Columbia, Canada were performed using low-background gamma-ray spectroscopy. Activity concentrations of the anthropogenic radioisotopes 134Cs and 137Cs as well as the naturally occurring radioisotope 40K were measured. Detection of 137Cs occurred in half of the sockeye with activity concentrations ranging from 0.23 to 1.43 Bq/kg dry weight. The 134Cs isotope was detected in a single sockeye salmon with activity concentrations (±σ) measured in the two subsamples of 0.31(8) and 0.37(10) Bq/kg dry weight. The dose contribution from each of the measured radionuclides was calculated. In the sockeye salmon with the greatest radiocesium concentrations, the dose contribution from anthropogenic radiocesium (134Cs+137Cs) was found to be 450 times less than the dose from naturally occurring radionuclides in the same sample. In conclusion, the total radiocesium activity concentration in every sample is at least 500 times lower than Health Canada's action levels for radioactively contaminated food following a nuclear emergency. Assuming all seafood has as much radiocesium as the most contaminated sample measured, the added annual dose from radiocesium to an adult individual with an average Canadian level of seafood consumption would be 0.046 μSv per year.

  14. Parvicapsula minibicornis in anadromous sockeye (Oncorhynchus nerka) and coho (Oncorhynchus kisutch) salmon from tributaries of the Columbia River.

    PubMed

    Jones, Simon; Prosperi-Porta, Gina; Dawe, Sheila; Taylor, Kimberley; Goh, Benjamin

    2004-08-01

    The myxosporean parasite Parvicapsula minibicornis is described from adult sockeye and coho salmon during spawning migrations in tributaries of the Columbia River in Canada and the United States. These observations extend the known distribution of this parasite from the Fraser River drainage basin. The parasite was identified in Columbia River salmonids using polymerase chain reaction (PCR) and by in situ hybridization, but unlike in Fraser River salmon, it was not observed in conventional histological preparations of the kidney. Prevalence of the parasite determined by PCR was higher in spawning sockeye from the Fraser River than in those from the Okanagan River. Our ability to explain the relatively low prevalence and absence of clinical P. minibicornis infections in Columbia River salmon is hampered by our poor understanding of the life cycle of this parasite.

  15. Thermal adaptation and phenotypic plasticity in a warming world: Insights from common garden experiments on Alaskan sockeye salmon.

    PubMed

    Sparks, Morgan M; Westley, Peter A H; Falke, Jeffrey A; Quinn, Thomas P

    2017-12-01

    An important unresolved question is how populations of coldwater-dependent fishes will respond to rapidly warming water temperatures. For example, the culturally and economically important group, Pacific salmon (Oncorhynchus spp.), experience site-specific thermal regimes during early development that could be disrupted by warming. To test for thermal local adaptation and heritable phenotypic plasticity in Pacific salmon embryos, we measured the developmental rate, survival, and body size at hatching in two populations of sockeye salmon (Oncorhynchus nerka) that overlap in timing of spawning but incubate in contrasting natural thermal regimes. Using a split half-sibling design, we exposed embryos of 10 families from each of two populations to variable and constant thermal regimes. These represented both experienced temperatures by each population, and predicted temperatures under plausible future conditions based on a warming scenario from the downscaled global climate model (MIROC A1B scenario). We did not find evidence of thermal local adaptation during the embryonic stage for developmental rate or survival. Within treatments, populations hatched within 1 day of each other, on average, and among treatments, did not differ in survival in response to temperature. We did detect plasticity to temperature; embryos developed 2.5 times longer (189 days) in the coolest regime compared to the warmest regime (74 days). We also detected variation in developmental rates among families within and among temperature regimes, indicating heritable plasticity. Families exhibited a strong positive relationship between thermal variability and phenotypic variability in developmental rate but body length and mass at hatching were largely insensitive to temperature. Overall, our results indicated a lack of thermal local adaptation, but a presence of plasticity in populations experiencing contrasting conditions, as well as family-specific heritable plasticity that could facilitate

  16. Thermal adaptation and phenotypic plasticity in a warming world: Insights from common garden experiments on Alaskan sockeye salmon

    USGS Publications Warehouse

    Sparks, Morgan M.; Westley, Peter A. H.; Falke, Jeffrey A.; Quinn, Thomas P.

    2017-01-01

    An important unresolved question is how populations of coldwater-dependent fishes will respond to rapidly warming water temperatures. For example, the culturally and economically important group, Pacific salmon (Oncorhynchus spp.), experience site-specific thermal regimes during early development that could be disrupted by warming. To test for thermal local adaptation and heritable phenotypic plasticity in Pacific salmon embryos, we measured the developmental rate, survival, and body size at hatching in two populations of sockeye salmon (Oncorhynchus nerka) that overlap in timing of spawning but incubate in contrasting natural thermal regimes. Using a split half-sibling design, we exposed embryos of 10 families from each of two populations to variable and constant thermal regimes. These represented both experienced temperatures by each population, and predicted temperatures under plausible future conditions based on a warming scenario from the downscaled global climate model (MIROC A1B scenario). We did not find evidence of thermal local adaptation during the embryonic stage for developmental rate or survival. Within treatments, populations hatched within 1 day of each other, on average, and amongtreatments, did not differ in survival in response to temperature. We did detect plasticity to temperature; embryos developed 2.5 times longer (189 days) in the coolest regime compared to the warmest regime (74 days). We also detected variation in developmental rates among families within and among temperature regimes, indicating heritable plasticity. Families exhibited a strong positive relationship between thermal variability and phenotypic variability in developmental rate but body length and mass at hatching were largely insensitive to temperature. Overall, our results indicated a lack of thermal local adaptation, but a presence of plasticity in populations experiencing contrasting conditions, as well as family-specific heritable plasticity that could

  17. [Postspawning survival in lacustrine sock-eyed salmon Oncorhynchus nerka Walb].

    PubMed

    Markevich, G N; Ivashkin, E G; Pavlov, E D

    2011-01-01

    The state of gonads, age, structure of scales, and size of specimens of the resident lacustrine form of sock-eyed salmon--kokanee Onchorhynchus nerka--are analyzed. In stocked, previously fishless, lakes, there are specimens that have survived spawning and have remained active for a year or several years. No evidence was found of the possibility of repeated spawning. Thus, such fish do not belong to the spawning stock of the population, and their ecological function is not clear.

  18. Effects of diluted bitumen exposure on juvenile sockeye salmon: From cells to performance.

    PubMed

    Alderman, Sarah L; Lin, Feng; Farrell, Anthony P; Kennedy, Christopher J; Gillis, Todd E

    2017-02-01

    Diluted bitumen (dilbit; the product of oil sands extraction) is transported through freshwater ecosystems critical to Pacific salmon. This is concerning, because crude oil disrupts cardiac development, morphology, and function in embryonic fish, and cardiac impairment in salmon can have major consequences on migratory success and fitness. The sensitivity of early life-stage salmon to dilbit and its specific cardiotoxic effects are unknown. Sockeye salmon parr were exposed to environmentally relevant concentrations of the water-soluble fraction (WSF) of dilbit for 1 wk and 4 wk, followed by an examination of molecular, morphological, and organismal endpoints related to cardiotoxicity. We show that parr are sensitive to WSF of dilbit, with total polycyclic aromatic hydrocarbon (PAH) concentrations of 3.5 µg/L sufficient to induce a liver biomarker of PAH exposure, and total PAH of 16.4 µg/L and 66.7 µg/L inducing PAH biomarkers in the heart. Furthermore, WSF of dilbit induces concentration-dependent cardiac remodeling coincident with performance effects: fish exposed to 66.7 µg/L total PAH have relatively fewer myocytes and more collagen in the compact myocardium and impaired swimming performance at 4 wk, whereas the opposite changes occur in fish exposed to 3.5 µg/L total PAH. The results demonstrate cardiac sensitivity to dilbit exposure that could directly impact sockeye migratory success. Environ Toxicol Chem 2017;36:354-360. © 2016 SETAC. © 2016 SETAC.

  19. Fraser River sockeye salmon productivity and climate: A re-analysis that avoids an undesirable property of Ricker’s curve

    NASA Astrophysics Data System (ADS)

    McKinnell, Skip

    2008-05-01

    In descending order of importance, artificial spawning channels, density-dependent mortality, carryover mortality, and climate have significant influences on the average productivity of Fraser River sockeye salmon ( Oncorhynchus nerka). When factors that are known or have been hypothesized to affect Fraser River sockeye salmon productivity are included in a single analytical framework, no significant change in average productivity occurred in 1976/1977, however, beginning in 1989 average productivity was significantly lower. In the one lake (Chilko) in the Fraser River basin where pre-smolt survival can be distinguished from post-smolt survival, this decline arose from freshwater causes. After accounting for other factors that have a greater influence, Fraser River sockeye salmon productivity tends to be slightly lower in years when the intensity of the Aleutian low pressure region is stormier in winter, although the effect is not strongly expressed in any particular population. A footnote to the study was the realization that estimates of Ricker’s density-dependent mortality parameter, β, are influenced by both the numerical properties of the equation and by population biology; density-dependent and density-independent influences on the estimates of the parameter are confounded.

  20. [Comparative analysis of STR and SNP polymorphism in the populations of sockeye salmon (Oncorhynchus nerka) from Eastern and Western Kamchatka].

    PubMed

    Khrustaleva, A M; Volkov, A A; Stoklitskaia, D S; Miuge, N S; Zelenina, D A

    2010-11-01

    Sockeye salmon samples from five largest lacustrine-riverine systems of Kamchatka Peninsula were tested for polymorphism at six microsatellite (STR) and five single nucleotide polymorphism (SNP) loci. Statistically significant genetic differentiation among local populations from this part of the species range examined was demonstrated. The data presented point to pronounced genetic divergence of the populations from two geographical regions, Eastern and Western Kamchatka. For sockeye salmon, the individual identification test accuracy was higher for microsatellites compared to similar number of SNP markers. Pooling of the STR and SNP allele frequency data sets provided the highest accuracy of the individual fish population assignment.

  1. Adaptive capacity at the northern front: sockeye salmon behaviourally thermoregulate during novel exposure to warm temperatures

    PubMed Central

    Armstrong, Jonathan B.; Ward, Eric J.; Schindler, Daniel E.; Lisi, Peter J.

    2016-01-01

    As climate change increases maximal water temperatures, behavioural thermoregulation may be crucial for the persistence of coldwater fishes, such as salmonids. Although myriad studies have documented behavioural thermoregulation in southern populations of salmonids, few if any have explored this phenomenon in northern populations, which are less likely to have an evolutionary history of heat stress, yet are predicted to experience substantial warming. Here, we treated a rare heat wave as a natural experiment to test whether wild sockeye salmon (Oncorhynchus nerka) at the northern extent of their primary range (60° latitude) can thermoregulate in response to abnormally high thermal conditions. We tagged adult sockeye salmon with temperature loggers as they staged in a lake epilimnion prior to spawning in small cold streams (n = 40 recovered loggers). As lake surface temperatures warmed to physiologically suboptimal levels (15–20°C), sockeye salmon thermoregulated by moving to tributary plumes or the lake metalimnion. A regression of fish body temperature against lake surface temperature indicated that fish moved to cooler waters when the epilimnion temperature exceeded ~12°C. A bioenergetics model suggested that the observed behaviour reduced daily metabolic costs by as much as ~50% during the warmest conditions (18–20°C). These results provide rare evidence of cool-seeking thermoregulation at the poleward extent of a species range, emphasizing the potential ubiquity of maximal temperature constraints and the functional significance of thermal heterogeneity for buffering poikilotherms from climate change. PMID:27729980

  2. Predator avoidance during reproduction: diel movements by spawning sockeye salmon between stream and lake habitats.

    PubMed

    Bentley, Kale T; Schindler, Daniel E; Cline, Timothy J; Armstrong, Jonathan B; Macias, Daniel; Ciepiela, Lindsy R; Hilborn, Ray

    2014-11-01

    Daily movements of mobile organisms between habitats in response to changing trade-offs between predation risk and foraging gains are well established; however, less in known about whether similar tactics are used during reproduction, a time period when many organisms are particularly vulnerable to predators. We investigated the reproductive behaviour of adult sockeye salmon (Oncorhynchus nerka) and the activity of their principal predator, brown bears (Ursus arctos), on streams in south-western Alaska. Specifically, we continuously monitored movements of salmon between lake habitat, where salmon are invulnerable to bears, and three small streams, where salmon spawn and are highly vulnerable to bears. We conducted our study across 2 years that offered a distinct contrast in bear activity and predation rates. Diel movements by adult sockeye salmon between stream and lake habitat were observed in 51.3% ± 17.7% (mean ± SD) of individuals among years and sites. Fish that moved tended to hold in the lake for most of the day and then migrated into spawning streams during the night, coincident with when bear activity on streams tended to be lowest. Additionally, cyclic movements between lakes and spawning streams were concentrated earlier in the spawning season. Individuals that exhibited diel movements had longer average reproductive life spans than those who made only one directed movement into a stream. However, the relative effect was dependent on the timing of bear predation, which varied between years. When predation pressure primarily occurred early in the spawning run (i.e., during the height of the diel movements), movers lived 120-310% longer than non-movers. If predation pressure was concentrated later in the spawning run (i.e. when most movements had ceased), movers only lived 10-60% longer. Our results suggest a dynamic trade-off in reproductive strategies of sockeye salmon; adults must be in the stream to reproduce, but must also avoid predation long

  3. Temporal variation in phenotypic and genotypic traits in two sockeye salmon populations, Tustumena Lake, Alaska

    USGS Publications Warehouse

    Woody, Carol Ann; Olsen, Jeffrey B.; Reynolds, Joel H.; Bentzen, Paul

    2000-01-01

    Sockeye salmon Oncorhynchus nerka in two tributary streams (about 20 km apart) of the same lake were compared for temporal variation in phenotypic (length, depth adjusted for length) and genotypic (six microsatellite loci) traits. Peak run time (July 16 versus 11 August) and run duration (43 versus 26 d) differed between streams. Populations were sampled twice, including an overlapping point in time. Divergence at microsatellite loci followed a temporal cline: Population sample groups collected at the same time were not different (F ST = 0), whereas those most separated in time were different (F ST = 0.011, P = 0.001). Although contemporaneous sample groups did not differ significantly in microsatellite genotypes (F ST = 0), phenotypic traits did differ significantly (MANOVA, P < 0.001). Fish from the larger stream were larger; fish from the smaller stream were smaller, suggesting differential fitness related to size. Results indicate run time differences among and within sockeye salmon populations may strongly influence levels of gene flow.

  4. Physiological and molecular endocrine changes in maturing wild sockeye salmon, Oncorhynchus nerka, during ocean and river migration.

    PubMed

    Flores, A M; Shrimpton, J M; Patterson, D A; Hills, J A; Cooke, S J; Yada, T; Moriyama, S; Hinch, S G; Farrell, A P

    2012-01-01

    Maturing adult sockeye salmon Oncorhynchus nerka were intercepted while migrating in the ocean and upstream in freshwater over a combined distance of more than 1,300 km to determine physiological and endocrine changes associated with ionoregulation. Sockeye migrating through seawater and freshwater showed consistent declines in gill Na+/K+ -ATPase (NKA) activity, plasma osmolality and plasma chloride concentration. In contrast, plasma sodium concentration became elevated in seawater as fish approached the river mouth and was then restored after sockeye entered the river. Accompanying the movement from seawater to freshwater was a significant increase in mRNA for the NKA α1a subunit in the gill, with little change in the α1b subunit. Potential endocrine signals stimulating the physiological changes during migration were assessed by measuring plasma cortisol and prolactin (Prl) concentrations and quantifying mRNA extracted from the gill for glucocorticoid receptors 1 and 2 (GR1 and GR2), mineralocorticoid receptor (MR), growth hormone 1 receptor (GH1R), and prolactin receptor (PrlR). Plasma cortisol and prolactin concentrations were high in seawater suggesting a preparatory endocrine signal before freshwater entry. Generally, the mRNA expression for GR1, GR2 and MR declined during migration, most notably after fish entered freshwater. In contrast, PrlR mRNA increased throughout migration, particularly as sockeye approached the spawning grounds. A highly significant association existed between gill PrlR mRNA and gill NKA α1a mRNA. GH1R mRNA also increased significantly, but only after sockeye had migrated beyond tidal influence in the river and then again just before the fish reached the spawning grounds. These findings suggest that cortisol and prolactin stimulate ionoregulation in the gill as sockeye salmon adapt to freshwater.

  5. Temperature-associated population diversity in salmon confers benefits to mobile consumers

    USGS Publications Warehouse

    Ruff, Casey P.; Schindle, Daniel E.; Armstrong, Jonathan B.; Bentle, Kale T.; Brooks, Gabriel T.; Holtgrieve, Gordon W.; McGlauflin, Molly T.; Torgersen, Christian E.; Seeb, James E.

    2011-01-01

    Habitat heterogeneity can generate intraspecific diversity through local adaptation of populations. While it is becoming increasingly clear that population diversity can increase stability in species abundance, less is known about how population diversity can benefit consumers that can integrate across population diversity in their prey. Here we demonstrate cascading effects of thermal heterogeneity on trout–salmon interactions in streams where rainbow trout rely heavily on the seasonal availability of anadromous salmon eggs. Water temperature in an Alaskan stream varied spatially from 5°C to 17.5°C, and spawning sockeye salmon showed population differentiation associated with this thermal heterogeneity. Individuals that spawned early in cool regions of the 5 km long stream were genetically differentiated from those spawning in warmer regions later in the season. Sockeye salmon spawning generates a pulsed resource subsidy that supports the majority of seasonal growth in stream-dwelling rainbow trout. The spatial and temporal structuring of sockeye salmon spawn timing in our focal stream extended the duration of the pulsed subsidy compared to a thermally homogeneous stream with a single population of salmon. Further, rainbow trout adopted movement strategies that exploited the multiple pulses of egg subsidies in the thermally heterogeneous stream. Fish that moved to track the resource pulse grew at rates about 2.5 times higher than those that remained stationary or trout in the reference stream with a single seasonal pulse of eggs. Our results demonstrate that habitat heterogeneity can have important effects on the population diversity of dominant species, and in turn, influence their value to species that prey upon them. Therefore, habitat homogenization may have farther-reaching ecological effects than previously considered.

  6. Examining the relationships between egg cortisol and oxidative stress in developing wild sockeye salmon (Oncorhynchus nerka).

    PubMed

    Taylor, Jessica J; Sopinka, Natalie M; Wilson, Samantha M; Hinch, Scott G; Patterson, David A; Cooke, Steven J; Willmore, William G

    2016-10-01

    Maternally-derived hormones in oocytes, such as glucocorticoids (GCs), play a crucial role in embryo development in oviparous taxa. In fishes, maternal stressor exposure increases circulating and egg cortisol levels, the primary GC in fishes, as well as induces oxidative stress. Elevated egg cortisol levels modify offspring traits but whether maternal oxidative stress correlates with circulating and egg cortisol levels, and whether maternal/egg cortisol levels correlate with offspring oxidative stress have yet to be determined. The objective of this study was to examine the relationships among maternal and egg cortisol, and maternal and offspring oxidative stress to provide insight into the potential intergenerational effects of stressor exposure in sockeye salmon (Oncorhynchus nerka). Antioxidant concentration and oxidative stress were measured in maternal tissues (plasma, brain, heart and liver) as well as offspring developmental stages (pre-fertilization, 24h post-fertilization, eyed, and hatch), and were compared to both naturally-occurring and experimentally-elevated (via cortisol egg bath) levels of cortisol in eggs. Oxygen radical absorptive capacity of tissues from maternal sockeye salmon was measured spectrophotometrically and was not correlated with maternal or egg cortisol concentrations. Also, naturally-occurring and experimentally-elevated cortisol levels in eggs (to mimic maternal stress) did not affect oxidative stress or antioxidant capacity of the offspring. We conclude that the metrics of maternal stress examined in sockeye salmon (i.e., maternal/egg cortisol, maternal oxidative stress) are independent of each other, and that egg cortisol content does not influence offspring oxidative stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Molecular characterization and histochemical demonstration of salmon olfactory marker protein in the olfactory epithelium of lacustrine sockeye salmon (Oncorhynchus nerka).

    PubMed

    Kudo, H; Doi, Y; Ueda, H; Kaeriyama, M

    2009-09-01

    Despite the importance of olfactory receptor neurons (ORNs) for homing migration, the expression of olfactory marker protein (OMP) is not well understood in ORNs of Pacific salmon (genus Oncorhynchus). In this study, salmon OMP was characterized in the olfactory epithelia of lacustrine sockeye salmon (O. nerka) by molecular biological and histochemical techniques. Two cDNAs encoding salmon OMP were isolated and sequenced. These cDNAs both contained a coding region encoding 173 amino acid residues, and the molecular mass of the two proteins was calculated to be 19,581.17 and 19,387.11Da, respectively. Both amino acid sequences showed marked homology (90%). The protein and nucleotide sequencing demonstrates the existence of high-level homology between salmon OMPs and those of other teleosts. By in situ hybridization using a digoxigenin-labeled salmon OMP cRNA probe, signals for salmon OMP mRNA were observed preferentially in the perinuclear regions of the ORNs. By immunohistochemistry using a specific antibody to salmon OMP, OMP-immunoreactivities were noted in the cytosol of those neurons. The present study is the first to describe cDNA cloning of OMP in salmon olfactory epithelium, and indicate that OMP is a useful molecular marker for the detection of the ORNs in Pacific salmon.

  8. Infectious haematopoietic necrosis virus genogroup-specific virulence mechanisms in sockeye salmon, Oncorhynchus nerka (Walbaum), from Redfish Lake, Idaho

    USGS Publications Warehouse

    Purcell, M.K.; Garver, K.A.; Conway, C.; Elliott, D.G.; Kurath, G.

    2009-01-01

    Characterization of infectious haematopoietic necrosis virus (IHNV) field isolates from North America has established three main genogroups (U, M and L) that differ in host-specific virulence. In sockeye salmon, Oncorhynchus nerka, the U genogroup is highly virulent, whereas the M genogroup is nearly non-pathogenic. In this study, we sought to characterize the virus-host dynamics that contribute to genogroup-specific virulence in a captive stock of sockeye salmon from Redfish Lake in Idaho. Juvenile sockeye salmon were challenged by immersion and injection with either a representative U or M viral strain and sampled periodically until 14 days post-infection (p.i.). Fish challenged with each strain had positive viral titre by day 3, regardless of challenge route, but the fish exposed to the M genogroup virus had significantly lower virus titres than fish exposed to the U genogroup virus. Gene expression analysis by quantitative reverse transcriptase PCR was used to simultaneously assess viral load and host interferon (IFN) response in the anterior kidney. Viral load was significantly higher in the U-challenged fish relative to M-challenged fish. Both viruses induced expression of the IFN-stimulated genes (ISGs), but expression was usually significantly lower in the M-challenged group, particularly at later time points (7 and 14 days p.i.). However, ISG expression was comparable with 3 days post-immersion challenge despite a significant difference in viral load. Our data indicated that the M genogroup virus entered the host, replicated and spread in the sockeye salmon tissues, but to a lesser extent than the U genogroup. Both virus types induced a host IFN response, but the high virulence strain (U) continued to replicate in the presence of this response, whereas the low virulence strain (M) was cleared below detectable levels. We hypothesize that high virulence is associated with early in vivo replication allowing the virus to achieve a threshold level, which the

  9. Infectious haematopoietic necrosis virus genogroup-specific virulence mechanisms in sockeye salmon, Oncorhynchus nerka (Walbaum), from Redfish Lake, Idaho.

    PubMed

    Purcell, M K; Garver, K A; Conway, C; Elliott, D G; Kurath, G

    2009-07-01

    Characterization of infectious haematopoietic necrosis virus (IHNV) field isolates from North America has established three main genogroups (U, M and L) that differ in host-specific virulence. In sockeye salmon, Oncorhynchus nerka, the U genogroup is highly virulent, whereas the M genogroup is nearly non-pathogenic. In this study, we sought to characterize the virus-host dynamics that contribute to genogroup-specific virulence in a captive stock of sockeye salmon from Redfish Lake in Idaho. Juvenile sockeye salmon were challenged by immersion and injection with either a representative U or M viral strain and sampled periodically until 14 days post-infection (p.i.). Fish challenged with each strain had positive viral titre by day 3, regardless of challenge route, but the fish exposed to the M genogroup virus had significantly lower virus titres than fish exposed to the U genogroup virus. Gene expression analysis by quantitative reverse transcriptase PCR was used to simultaneously assess viral load and host interferon (IFN) response in the anterior kidney. Viral load was significantly higher in the U-challenged fish relative to M-challenged fish. Both viruses induced expression of the IFN-stimulated genes (ISGs), but expression was usually significantly lower in the M-challenged group, particularly at later time points (7 and 14 days p.i.). However, ISG expression was comparable with 3 days post-immersion challenge despite a significant difference in viral load. Our data indicated that the M genogroup virus entered the host, replicated and spread in the sockeye salmon tissues, but to a lesser extent than the U genogroup. Both virus types induced a host IFN response, but the high virulence strain (U) continued to replicate in the presence of this response, whereas the low virulence strain (M) was cleared below detectable levels. We hypothesize that high virulence is associated with early in vivo replication allowing the virus to achieve a threshold level, which the

  10. Dynamic in-lake spawning migrations by female sockeye salmon

    USGS Publications Warehouse

    Young, Daniel B.; Woody, C.A.

    2007-01-01

    Precise homing by salmon to natal habitats is considered the primary mechanism in the evolution of population-specific traits, yet few studies have focused on this final phase of their spawning migration. We radio tagged 157 female sockeye salmon (Oncorhynchus nerka) as they entered Lake Clark, Alaska, and tracked them every 1-10 days to their spawning locations. Contrary to past research, no specific shoreline migration pattern was observed (e.g., clockwise) nor did fish enter a tributary unless they spawned in that tributary. Tributary spawning fish migrated faster (mean = 4.7 km??day-1, SD = 2.7, vs. 1.6 km??day-1, SD = 2.1) and more directly (mean linearity = 0.8, SD = 0.2, vs. 0.4, SD = 0.2) than Lake Clark beach spawning fish. Although radio-tagged salmon migrated to within 5 km of their final spawning location in an average of 21.2 days (SD = 13.2), some fish migrated five times the distance necessary and over 50 days to reach their spawning destination. These results demonstrate the dynamic nature of this final phase of migration and support studies indicating a higher degree of homing precision by tributary spawning fish. ?? Journal compilation 2007 Blackwell Munksgaard No claim to original US government works.

  11. Oxbow Fish Hatchery Snake River Sockeye Salmon Smolt Program, 2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banks, Duane D.

    2009-11-14

    This contract proposal is in response to the Federal Columbia River Power System Biological Opinion Implementation Plan/Update Proposed Action (UPA) associated with increasing the number of Snake River sockeye smolts by 150,000. To accomplish this proposal the cooperation and efforts of three government entities has been planned (e.g., Idaho Department of Fish and Game (IDFG), Oregon Department of Fish and Wildlife (ODFW), and the National Marine Fisheries Service (NMFS)). Improvements at the IDFG Eagle Fish Hatchery and NMFS Burley Creek Hatchery will focus on increasing sockeye salmon captive broodstock and egg production. Improvements at the ODFW Oxbow Fish Hatchery willmore » be made to accommodate the incubation, hatching and rearing of 150,000 sockeye salmon smolts for release into Idaho's Sawtooth Valley, Upper Salmon River near IDFG's Sawtooth Fish Hatchery and/or Redfish Lake Creek 1.4 km downstream of Redfish Lake. Modifications to Oxbow Fish Hatchery (ODFW) will include retro-fit existing pond drains so pond cleaning effluent water can be routed to the pollution abatement pond, and modifications to the abatement pond. Also included in this project as an added phase, was the rerouting of the hatchery building effluent water to meet state DEQ guidelines for the use of formalin to treat salmonid eggs. Some additional funding for the described Oxbow Hatchery modifications will come from Mitchell Act Funding. All personnel costs associated with this project will come from Mitchell Act funding. Due to heavy work load issues, being under staffed, and two emergency projects in the spring and summer of 2006, ODFW engineers were not able to complete all plans and get them out for bid in 2006. As a result of these circumstances retro-fitting pond drains and modifications to the abatement pond was carried over into fiscal year 2007-2008. A no cost time extension to the contract was approved by BPA. The format for this report will follow the standard format for

  12. Life history reconstruction of modern and fossil sockeye salmon ( Oncorhynchus nerka) by oxygen isotopic analysis of otoliths, vertebrae, and teeth: Implication for paleoenvironmental reconstructions

    NASA Astrophysics Data System (ADS)

    Zazzo, A.; Smith, G. R.; Patterson, W. P.; Dufour, E.

    2006-09-01

    We evaluate the use of oxygen isotope values of biogenic apatite for tracking freshwater to marine migration in modern and fossil Pacific sockeye salmon. Oxygen isotope analyses of otoliths, vertebrae, and teeth of three anadromous modern sockeye salmon from Alaska establish a basis for the interpretation of fossil vertebrae and tooth apatite from Pleistocene sockeye salmon of the Skokomish River Valley, Washington. High resolution δ18O profiles in salmon otoliths provide, at a monthly resolution, a detailed record of individual history including continental rearing, migration to sea, seasonal variation in sea surface temperatures during marine life, and spawning migration before capture. Pacific salmon teeth are constantly renewed with the last set of teeth forming under the influence of freshwater. Therefore, they do not allow inference concerning sea-run versus landlocked life history in fossil salmon. Salmon vertebrae are also ambiguous indicators of life history regarding fresh versus marine water because centra are minimally ossified in the freshwater stages of life and the outermost layer of vertebral bone might be resorbed to provide nutrients during the non-feeding phase of the spawning migration. Therefore, δ18O values of accretionary growth rings in sea-run salmon vertebrae are dominated by the marine signal only if they are not diagenetically altered in freshwater deposits. In Pleistocene sockeye reported here, neither the teeth nor vertebral apatite present clear marine δ18O values due to the combined effects of tooth replacement and diagenetic alteration of bone and dentine. δ18O(PO 4) values of fossil vertebrae are intermediate between δ18O(PO 4) values of enamel and basal tooth dentin. Assuming a similar rate of isotope exchange of vertebrae and dentine with freshwater during diagenesis, these results are interpreted to reflect formation of the teeth under the influence of freshwater, and formation of the vertebrae under the influence of

  13. Efficacy of an infectious hematopoietic necrosis (IHN) virus DNA vaccine in Chinook Oncorhynchus tshawytscha and sockeye O. nerka salmon.

    PubMed

    Garver, Kyle A; LaPatra, Scott E; Kurath, Gael

    2005-04-06

    The level of protective immunity was determined for Chinook Oncorhynchus tshawytscha and sockeye/kokanee salmon (anadromous and landlocked) O. nerka following intramuscular vaccination with a DNA vaccine against the aquatic rhabdovirus, infectious hematopoietic necrosis virus (IHNV). A DNA vaccine containing the glycoprotein gene of IHNV protected Chinook and sockeye/kokanee salmon against waterborne or injection challenge with IHNV, and relative percent survival (RPS) values of 23 to 86% were obtained under a variety of lethal challenge conditions. Although this is significant protection, it is less than RPS values obtained in previous studies with rainbow trout (O. mykiss). In addition to the variability in the severity of the challenge and inherent host susceptibility differences, it appears that use of a cross-genogroup challenge virus strain may lead to reduced efficacy of the DNA vaccine. Neutralizing antibody titers were detected in both Chinook and sockeye that had been vaccinated with 1.0 and 0.1 pg doses of the DNA vaccine, and vaccinated fish responded to viral challenges with higher antibody titers than mock-vaccinated control fish.

  14. Efficacy of an infectious hematopoietic necrosis (IHN) virus DNA vaccine in Chinook Oncorhynchus tshawytscha and sockeye O. nerka salmon

    USGS Publications Warehouse

    Garver, K.A.; LaPatra, S.E.; Kurath, G.

    2005-01-01

    The level of protective immunity was determined for Chinook Oncorhynchus tshawytscha and sockeye/kokanee salmon (anadromous and landlocked) O. nerka following intramuscular vaccination with a DNA vaccine against the aquatic rhabdovirus, infectious hematopoietic necrosis virus (IHNV). A DNA vaccine containing the glycoprotein gene of IHNV protected Chinook and sockeye/kokanee salmon against waterborne or injection challenge with IHNV, and relative percent survival (RPS) values of 23 to 86% were obtained under a variety of lethal challenge conditions. Although this is significant protection, it is less than RPS values obtained in previous studies with rainbow trout (O. mykiss). In addition to the variability in the severity of the challenge and inherent host susceptibility differences, it appears that use of a cross-genogroup challenge virus strain may lead to reduced efficacy of the DNA vaccine. Neutralizing antibody titers were detected in both Chinook and sockeye that had been vaccinated with 1.0 and 0.1 ??g doses of the DNA vaccine, and vaccinated fish responded to viral challenges with higher antibody titers than mock-vaccinated control fish. ?? Inter-Research 2005.

  15. [Genetic Differentiation of Sockeye Salmon Oncorhynchus nerka from Kamchatka River Basin and the Lake-River Systems of the West Coast of the Bering Sea as Inferred from Data on Single Nucleotide Polymorphism].

    PubMed

    Khrustaleva, A M; Klovach, N V; Vedischeva, E V; Seeb, J E

    2015-10-01

    The variability of 45 single nucleotide polymorphism loci (SNP) was studied in sockeye salmon from the Kamchatka River basin and four lake-river systems of the west coast of the Bering Sea. Based on the genetic differentiation estimates for the largest sockeye salmon populations of Eastern Kamchatka and Chukotka, the examined samples were combined into two regional groups represented by the population of the Kamchatka River drainage, which included numerous local subpopulations and seasonal races, and the northern population grouping from the rivers of Olutorsko-Navarinsky raion, wherein the sockeye salmon from Maynypilginskaya Lake-River system was relatively isolated. Considerable divergence was observed between the island (Sarannoe Lake, Bering Island) and continental populations. Genetic heterogeneity was revealed and groups of early- and late-maturing individuals were isolated in the sample of late-run sockeye salmon from Kamchatka River. In Apuka River, subdivision of the spawning run into two genetically distinct spatial and temporal groupings was also observed. The results suggest that the differentiation of sockeye salmon samples by single nucleotide substitution frequencies was largely due to differences in the direction and strength of local selection at some loci in the population complexes and intrapopulation groupings from the examined river basins of Eastern Kamchatka, Chukotka, and Commander Islands.

  16. Specific PCR for Myxobolus arcticus SSU rDNA in juvenile sockeye salmon Oncorhynchus nerka from British Columbia, Canada.

    PubMed

    Mahony, Amelia; Fraser, Sarah; Groman, David B; Jones, Simon R M

    2015-06-29

    A PCR for the specific detection of the salmon brain parasite Myxobolus arcticus (Pugachev and Khokhlov, 1979) was developed using primers designed to amplify a 1363 base pair fragment of the small subunit rDNA. The assay did not amplify DNA from 5 other Myxobolus species or from 7 other myxozoan species belonging to 5 other genera. For juvenile sockeye salmon Oncorhynchus nerka (Walbaum) collected from Chilko Lake, British Columbia (BC), Canada, in 2011, the prevalence by PCR was 96%, in contrast to 71% by histological examination of brain tissue. In 2010, the histological prevalence was 52.5%. Sequence identity between M. arcticus from Chilko Lake and other sites in BC ranged from 99.7 to 99.8% and was 99.6% for a Japanese sequence. In contrast, an M. arcticus sequence from Norway shared 95.3% identity with the Chilko Lake sequence, suggesting misidentification of the parasite. Chilko Lake sockeye salmon were previously reported free of infection with M. arcticus, and more research is required to understand the processes involved in the local and global dispersion of this parasite.

  17. Pathogenesis of infectious hematopoietic necrosis virus in adult sockeye salmon (Oncorhynchus nerka)

    USGS Publications Warehouse

    Mulcahy, D.M.; Burke, J.; Pascho, R.J.; Jenes, C.K.

    1982-01-01

    The concentration of infectious hematopoietic necrosis (IHN) virus was determined in eight organs and two body fluids from each of 60 adult sockeye salmon (Oncorhynchus nerka). Included in the sample were 4 males and 56 prespawning, spawning, or spent female fish. All fish were infected, and virus was present in nearly all organs. There was an overall tendency for the mean concentration to increase in many of the organs over time as the fish progressed in ripeness. In prespawning females, IHN virus could be detected in all organs and in ovarian fluid but not in serum; the incidences were highest in the gills, spleen, and pyloric ceca, and the titers were highest in the pyloric ceca and liver. Incidences of infection in the organs were higher in spawning than in prespawning females and higher still in spent females in which the incidence of virus was 100% in all organs except brains (78%) and sera (67%). Virus concentrations in organs or fluids ranged from 5 to 4.0 × 109 plaque-forming units per millilitre. In males, the highest incidences of virus were found in gills, pyloric ceca, and liver. The gills were the only organ in which the virus concentration in males exceeded that of females.Key words: infectious hematopoietic necrosis, IHN, fish virus, viral pathogenesis, sockeye salmon

  18. Lipid reserve dynamics and magnification of persistent organic pollutants in spawning sockeye salmon (Oncorhynchus nerka) from the Fraser River, British Columbia.

    PubMed

    Kelly, Barry C; Gray, Samantha L; Ikonomou, Michael G; Macdonald, J Steve; Bandiera, Stelvio M; Hrycay, Eugene G

    2007-05-01

    Pacific sockeye salmon (Oncorhynchus nerka) can travel several hundred kilometers to reach native spawning grounds and fulfill semelparous reproduction. The dramatic changes in lipid reserves during upstream migration can greatly affect internal toxicokinetics of persistent organic pollutants (POPs) such as PCBs, PCDDs, and PCDFs. We measured lipid content changes and contaminant concentrations in tissues (liver, muscle, roe/gonads) and biomarker responses (ethoxyresorufin O-deethylase or EROD activity and CYP1A levels) in two Pacific sockeye salmon stocks sampled at several locations along their spawning migration in the Fraser River, British Columbia. Muscle lipid contents declined significantly with increasing upstream migration distance and corresponded to elevated lipid normalized concentrations of PCBs and PCDD/Fs in spawning sockeye. Post-migration magnification factors (MFs) in spawning sockeye ranged between 3 and 12 and were comparable to model-predicted MFs. sigmaPCBs(150-500 ng x g(-1) lipid), sigmaPCDD/Fs (1-1000 pg x g(-1) lipid) and 2,3,7,8-TCDD toxic equivalent or TEQ levels (0.1-15 pg x g(-1) lipid) in spawning sockeye were relatively low and did not affect hepatic EROD activity/CYP1A induction. Despite a 3-fold magnification, TEQ levels in eggs of spawning Fraser River sockeye did not exceed 0.3 pg x g(-1) wet wt, a threshold level associated with 30% egg mortality in salmonids. PCBs in Fraser River sockeye are comparable to previous levels in Pacific sockeye. In contrast to Pacific sockeye from more remote coastal locations, PCDDs and PCDFs in Fraser River sockeye were generally minor components (<25%) of TEQ levels, compared to dioxin like PCB contributions (>75%). The data suggest that (i) the Fraser River is not a major contamination source of PCBs or PCDD/Fs and (ii) marine contaminant distribution, food-chain dynamics, and ocean-migration pathway are likely important factors controlling levels and patterns of POPs in returning Pacific

  19. Effect of loading density of sockeye salmon, Oncorhynchus nerka (Walbaum), eggs in incubation boxes on mortality caused by infectious haematopoietic necrosis

    USGS Publications Warehouse

    Mulcahy, D.; Bauersfeld, K.

    1983-01-01

    Infectious haematopoietic necrosis (IHN) can cause massive mortalities of sockeye salmon, Oncorhynchus nerka (Walbaum), cultured in hatcheries. One method of enhancing sockeye salmon populations is to use a streamside egg incubation box from which the fry are automatically released into the stream as they emerge from the gravel. In this system, however, IHN epizootics occur as the fry emerge and continue for up to two months after the fry leave the box (Mulcahy, unpublished data). In as much as the high density of eggs and alevins in incubation boxes might be conducive to the fulmination of an IHN epizootic, we varied the egg density in incubation boxes and studied the cffect on mortality caused by IHN.

  20. Lack of circadian regulation of melatonin rhythms in the sockeye salmon (Oncorhynchus nerka) in vivo and in vitro.

    PubMed

    Iigo, Masayuki; Azuma, Teruo; Iwata, Munehico

    2007-01-01

    Melatonin profiles were determined in the plasma in vivo and in the pineal organ in vitro of the sockeye salmon (Oncorhynchus nerka) under various light conditions to test whether they are under circadian regulation. When serial blood samples were taken at 4-h intervals for 3 days via a cannula inserted into the dorsal aorta, plasma melatonin exhibited significant fluctuation under a light-dark cycle, with higher levels during the dark phase than during the light phase. No rhythmic fluctuations persisted under either constant dark or constant light, with constant low and high levels, respectively. Melatonin release from the pineal organ in flow-through culture exhibited a similar pattern in response to the change in light conditions, with high and low release associated with the dark and light phases, respectively. These results indicate that melatonin production in the sockeye salmon is driven by light and darkness but lacks circadian regulation.

  1. Brain aging phenomena in migrating sockeye salmon Oncorhynchus nerka nerka.

    PubMed

    Götz, M E; Malz, C R; Dirr, A; Blum, D; Gsell, W; Schmidt, S; Burger, R; Pohli, S; Riederer, P

    2005-09-01

    Aging, a process occurring in all vertebrates, is closely related to a loss in physical and functional abilities. There is widespread interest in clarifying the relevance of environmental, metabolic, and genetic factors for vertebrate aging. In the Pacific salmon a dramatic example of aging is known. Looking for changes in the salmon brain, perhaps even in the role of initiating the aging processes, we investigated several biochemical parameters that should reflect brain functional activity and stress response such as the neurotransmitters dopamine, and serotonin, and two of their respective metabolites 3,4-dihydroxyphenylacetic acid, and 5-hydroxyindole acetic acid, as well as glutathione, glutathione disulfide, and the extent of terminal deoxynucleotidyltransferase-mediated dUTP nick end-labelling. The aging of migrating sockeye salmon (Oncorhynchus nerka nerka) is accompanied by gradual increase in dopamine and serotonin turnover and a gradual decrease of brain total protein and glutathione levels. There appears to be an increased need for detoxification of reactive biological intermediates since activities of superoxide dismutase and catalase increase with age. However, our data do not support a major increase in apoptotic cell death during late aging but rather implicate an age related downward regulation of protein and glutathione synthesis and proteolysis increasing the need for autophagocytosis or heterophagocytosis in the course of cell death.

  2. Ecological relationship between freshwater sculpins (Genus cottus) and beach-spawning sockeye salmon (Oncorhynchus nerka) in Iliamna Lake, Alaska

    USGS Publications Warehouse

    Foote, C.J.; Brown, G.S.

    1998-01-01

    The interaction between two sculpin species, Cottus cognatus and Cottus aleuticus, and island beach spawning sockeye salmon (Oncorhynchus nerka) was examined in Iliamna Lake, Alaska. We conclude that sculpins actively move to specific spawning beaches and that the initiation of their movements precedes the start of spawning. Sculpin predation on sockeye eggs is positively dependent on sculpin size and on the state of the eggs (fresh versus water hardened), with the largest sculpins able to consume nearly 50 fresh eggs at a single feeding and 130 over a 7-day period. The number of sculpins in sockeye nests is greatest at the beginning of the spawning run, lowest in the middle, and high again at the end, with peak numbers of over 100 sculpins per nest (1 m2). We discuss the results in terms of energy flow of marine-derived nutrients into an oligotrophic system and in terms of the coevolution of sockeye spawning behavior and the predatory behavior of sculpins.

  3. Cle Elum Lake Sockeye Salmon Restoration Feasibility Study, 1986-1988 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flagg, Thomas A.

    1988-10-01

    In 1986, a multi-year project to evaluate the biological feasibility of reestablishing anadromous sockeye salmon (Oncorhynchus nerka) runs to Cle Elum Lake in the Yakima River Basin was established between the Bonneville Power Administration (BPA) and the National Marine Fisheries Service (NMFS). This program involves the capture, spawning, and rearing of disease-free donor stock in 1987 and 1988 and assessment of juvenile outmigration and survival from Cle Elum Lake in 1989 and 1990. Work in 1987--1988 involved collection of adult sockeye salmon from the Lake Wenatchee run and incubation and rearing of progeny as donor stock. In July 1987, 263more » adults were captured at the Dryden fishway on the Wenatchee River and transferred to net-pens in Lake Wenatchee. Adults were held approximately 90 days and spawned, and the eggs were transferred to a quarantine hatchery. Pre-spawning survival was 95.1%, and all spawners were certified as being free of Infectious Hematopoietic Necrosis (IHN) and other replicating viruses. Egg viability averaged about 40%; however, eyed egg to hatch survival was over 99%. Juveniles are being reared in quarantine, and survival to date is about 92%. The NMFS currently has over 131,000 fry (0.7 g average weight) in culture. Fry have been certified twice (at 0.12 g and 0.25 g average weight) as being free of IHN and other replicating viruses. Viral certification will continue throughout rearing. 13 refs., 4 figs., 3 tabs.« less

  4. Sex-specific differences in cardiac control and hematology of sockeye salmon (Oncorhynchus nerka) approaching their spawning grounds.

    PubMed

    Sandblom, Erik; Clark, Timothy D; Hinch, Scott G; Farrell, Anthony P

    2009-10-01

    Some male salmonids (e.g., rainbow trout) display profound cardiovascular adjustments during sexual maturation, including cardiac growth and hypertension, and tachycardia has been observed in free-ranging male salmonids near their spawning grounds. In the present study, we investigated cardiac control, dorsal aortic blood pressure, cardiac morphometrics, and hematological variables in wild, sexually maturing sockeye salmon (Oncorhynchus nerka) with a particular aim to decipher any sex-specific differences. Routine heart rate (f(H)) was significantly higher in females (52 vs. 43 beats/min), which was due to significantly lower cholinergic tone (28 vs. 46%), because there were no differences in adrenergic tone or intrinsic heart rate between sexes. No differences in blood pressure were observed despite males possessing an 11% greater relative ventricular mass. Concomitant with higher routine heart rates, female sockeye had significantly higher levels of cortisol, testosterone, and 17beta-estradiol, whereas the level of 11-ketotestosterone was higher in males. There were no differences in hematocrit or hemoglobin concentration between the sexes. The findings of this study highlight the importance of considering sex as a variable in research fields such as conservation biology and when modeling the consequences of local and global climate change. Indeed, this study helps to provide a mechanistic basis for the significantly higher rates of female mortality observed in previous studies of wild-caught sockeye salmon.

  5. Sockeye salmon (Oncorhynchus nerka) return after an absence of nearly 90 years: A case of reversion to anadromy

    USGS Publications Warehouse

    Godbout, L.; Wood, C.C.; Withler, R.E.; Latham, S.; Nelson, R.J.; Wetzel, L.; Barnett-Johnson, R.; Grove, M.J.; Schmitt, A.K.; McKeegan, K.D.

    2011-01-01

    We document the recent reappearance of anadromous sockeye salmon (Oncorhynchus nerka) that were thought to have been extirpated by the construction of hydroelectric dams on the Coquitlam and Alouette rivers in British Columbia, Canada, in 1914 and 1927, respectively. Unexpected downstream migrations of juveniles during experimental water releases into both rivers in 2005 and 2006 preceded upstream return migrations of adults in 2007 and 2008. Genetic (microsatellite and mitochondrial DNA) markers and stable isotope (??34S and 87Sr/86Sr) patterns in otoliths confirm that both the juvenile downstream migrants and adult upstream migrants were progeny of nonanadromous sockeye salmon (kokanee) that inhabit Coquitlam and Alouette reservoirs. Low genetic diversity and evidence of genetic bottlenecks suggest that the kokanee populations in both reservoirs originated from relatively few anadromous individuals that residualized after downstream migration was largely prevented by the construction of dams. Once given an opportunity for upstream and downstream migration, both populations appear capable of reverting to a successful anadromous form, even after 25 generations.

  6. Histopathology of yearling sockeye salmon (Oncorhynchus nerka) infected with infectious hematopoietic necrosis (IHN)

    USGS Publications Warehouse

    1979-01-01

    Infectious hematopoietic necrosis (IHN) is generally believed to be a virus disease of very young salmonids. In recent years there have been increasing numbers of unpublished reports that this disease has been occurring uncharacteristically in fish as old as 7-14 months. Sockeye salmon (Oncorhynchus nerka) of this age the histological changes were not severe. Intestinal tract granular cells thought to be pathognomic in young fish were conspicuously absent. Kidney imprints showed necrobiotic bodies however, and subtle changes were observed in the spleen and kidney hematopoietic tissue.

  7. Genomic and metabolic preparation of muscle in sockeye salmon Oncorhynchus nerka for spawning migration.

    PubMed

    Morash, Andrea J; Yu, Wilson; Le Moine, Christophe M R; Hills, Jayme A; Farrell, Anthony P; Patterson, David A; McClelland, Grant B

    2013-01-01

    Prolonged endurance exercise and fasting are two major metabolic challenges facing Pacific salmon during spawning migrations that often occur over 1,000 km. Because both prolonged exercise and fasting stimulate the oxidation of lipids, particularly in heavily recruited tissues such as muscle, we sought to investigate the regulatory mechanisms that establish and maintain the capacity for substrate oxidation at four separate locations during the final 750 km of nonfeeding migration in sockeye salmon Oncorhynchus nerka. Transcript levels of multiple genes encoding for important regulators of lipid, carbohydrate, and protein oxidation as well as the activity of several important enzymes involved in lipid and carbohydrate oxidation were examined in red and white muscle. We found in both muscle types that the messenger RNA (mRNA) expression of carnitine palmitoyltransferase I isoforms, peroxisome proliferator-activated receptors α and β, and adenosine monophosphate-activated protein kinase β1 were all significantly higher at the onset compared to later stages of nonfeeding migration. However, the activities of β-hydroxyacyl-CoA dehydrogenase and citrate synthase were higher only early in migration and only in red muscle. Later in the migration and as muscle lipid stores were greatly depleted, the mRNA levels of hexokinase I and aspartate aminotransferase increased in white muscle. Overall, at the onset of migration, high transcript and metabolic enzyme activity levels in skeletal muscle of sockeye salmon may help support the high rates of lipid oxidation needed for endurance swimming. Furthermore, we suggest that the muscle capacity to use carbohydrates and proteins may be adjusted throughout migration on an as-needed basis to fuel burst exercise through very difficult hydraulic passages in the river and perhaps during mating activities.

  8. How stock of origin affects performance of individuals across a meta-ecosystem: an example from sockeye salmon.

    PubMed

    Griffiths, Jennifer R; Schindler, Daniel E; Seeb, Lisa W

    2013-01-01

    Connectivity among diverse habitats can buffer populations from adverse environmental conditions, influence the functioning of meta-ecosystems, and ultimately affect the reliability of ecosystem services. This stabilizing effect on populations is proposed to derive from complementarity in growth and survival conditions experienced by individuals in the different habitats that comprise meta-ecosystems. Here we use the fine scale differentiation of salmon populations between diverse lake habitats to assess how rearing habitat and stock of origin affect the body condition of juvenile sockeye salmon. We use genetic markers (single nucleotide polymorphisms) to assign individuals of unknown origin to stock group and in turn characterize ecologically relevant attributes across habitats and stocks. Our analyses show that the body condition of juvenile salmon is related to the productivity of alternative habitats across the watershed, irrespective of their stock of origin. Emigrants and residents with genetic origins in the high productivity lake were also differentiated by their body condition, poor and high respectively. These emigrants represented a substantial proportion of juvenile sockeye salmon rearing in the lower productivity lake habitat. Despite emigrants originating from the more productive lake, they did not differ in body condition from the individuals spawned in the lower productivity, recipient habitat. Genetic tools allowed us to assess the performance of different stocks groups across the diverse habitats comprising their meta-ecosystem. The ability to characterize the ecological consequences of meta-ecosystem connectivity can help develop strategies to protect and restore ecosystems and the services they provide to humans.

  9. How Stock of Origin Affects Performance of Individuals across a Meta-Ecosystem: An Example from Sockeye Salmon

    PubMed Central

    Griffiths, Jennifer R.; Schindler, Daniel E.; Seeb, Lisa W.

    2013-01-01

    Connectivity among diverse habitats can buffer populations from adverse environmental conditions, influence the functioning of meta-ecosystems, and ultimately affect the reliability of ecosystem services. This stabilizing effect on populations is proposed to derive from complementarity in growth and survival conditions experienced by individuals in the different habitats that comprise meta-ecosystems. Here we use the fine scale differentiation of salmon populations between diverse lake habitats to assess how rearing habitat and stock of origin affect the body condition of juvenile sockeye salmon. We use genetic markers (single nucleotide polymorphisms) to assign individuals of unknown origin to stock group and in turn characterize ecologically relevant attributes across habitats and stocks. Our analyses show that the body condition of juvenile salmon is related to the productivity of alternative habitats across the watershed, irrespective of their stock of origin. Emigrants and residents with genetic origins in the high productivity lake were also differentiated by their body condition, poor and high respectively. These emigrants represented a substantial proportion of juvenile sockeye salmon rearing in the lower productivity lake habitat. Despite emigrants originating from the more productive lake, they did not differ in body condition from the individuals spawned in the lower productivity, recipient habitat. Genetic tools allowed us to assess the performance of different stocks groups across the diverse habitats comprising their meta-ecosystem. The ability to characterize the ecological consequences of meta-ecosystem connectivity can help develop strategies to protect and restore ecosystems and the services they provide to humans. PMID:23505539

  10. Are there intergenerational and population-specific effects of oxidative stress in sockeye salmon (Oncorhynchus nerka)?

    PubMed

    Taylor, Jessica J; Wilson, Samantha M; Sopinka, Natalie M; Hinch, Scott G; Patterson, David A; Cooke, Steven J; Willmore, William G

    2015-06-01

    Intergenerational effects of stress have been reported in a wide range of taxa; however, few researchers have examined the intergenerational consequences of oxidative stress. Oxidative stress occurs in living organisms when reactive oxygen species remain unquenched by antioxidant defense systems and become detrimental to cells. In fish, it is unknown how maternal oxidative stress and antioxidant capacity influence offspring quality. The semelparous, migratory life history of Pacific salmon (Oncorhynchus spp.) provides a unique opportunity to explore intergenerational effects of oxidative stress. This study examined the effects of population origin on maternal and developing offspring oxidative stress and antioxidant capacity, and elucidated intergenerational relationships among populations of sockeye salmon (Oncorhynchus nerka) with varying migration effort. For three geographically distinct populations of Fraser River sockeye salmon (British Columbia, Canada), antioxidant capacity and oxidative stress were measured in adult female plasma, heart, brain, and liver, as well as in developing offspring until time of emergence. Maternal and offspring oxidative stress and antioxidant capacity varied among populations but patterns were not consistent across tissue/developmental stage. Furthermore, maternal oxidative stress and antioxidant capacity did not affect offspring oxidative stress and antioxidant capacity across any of the developmental stages or populations sampled. Our results revealed that offspring develop their endogenous antioxidant systems at varying rates across populations; however, this variability is overcome by the time of emergence. While offspring may be relying on maternally derived antioxidants in the initial stages of development, they rapidly develop their own antioxidant systems (mainly glutathione) during later stages of development. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Sex differences in circulatory oxygen transport parameters of sockeye salmon (Oncorhynchus nerka) on the spawning ground.

    PubMed

    Clark, Timothy Darren; Hinch, S G; Taylor, B D; Frappell, P B; Farrell, A P

    2009-07-01

    Upon reaching sexual maturity, several species of male salmonids possess a relative ventricular mass (rM(V)) that may be up to 90% larger than females. This can increase maximum cardiac stroke volume and power output, which may be beneficial to increasing the oxygen transport capacity of male salmonids during the spawning period. It may be further hypothesized, therefore, that other variables within the circulatory oxygen transport cascade, such as blood oxygen-carrying capacity and heart rate, are similarly enhanced in reproductively mature male salmonids. To test this idea, the present study measured a range of circulatory oxygen transport variables in wild male and female sockeye salmon (Oncorhynchus nerka) during their spawning period, following a 150 km migration from the ocean. The rM(V) of male fish was 13% greater than females. Conversely, the haemoglobin concentration ([Hb]) of female fish was 19% higher than males, indicative of a greater blood oxygen-carrying capacity (138 vs. 116 ml O2 l(-1), respectively). Surgically implanted physiological data loggers revealed a similar range in heart rate for both sexes on the spawning ground (20-80 beats min(-1) at 10 degrees C), with a tendency for male fish to spend a greater percentage of time (64%) than females (49%) at heart rates above 50 beats min(-1). Male fish on average consumed significantly more oxygen than females during a 13-h respirometry period. However, routine oxygen consumption rates (.)MO2 ranged between 1.5 and 8.5 mg min(-1) kg(-1) for both sexes, which implies that males did not inherently possess markedly higher routine aerobic energy demands, and suggests that the higher [Hb] of female fish may compensate for the smaller rM(V). These findings reject the hypothesis that all aspects of the circulatory oxygen transport cascade are inherently superior in male sockeye salmon. Instead, it is suggested that any differences in (.)MO2 between sexually mature male and female sockeye salmon can likely

  12. [Effective size of the early-run sockeye salmon Oncorhynchus nerka population of Lake Azabach'e, Kamchatka Peninsula evaluation of the effect of interaction between subpopulations within a subdivided population].

    PubMed

    Efremov, V V

    2005-05-01

    The effect of subdivision on the effective size (Ne) of the early-run sockeye salmon Oncorhynchus nerka population of Lake Azabach'e (Kamchatka Peninsula) has been studied. The mode of this effect is determined by the relative productivity of the subpopulations and its magnitude, by the rate of individual migration among subpopulations and genetic differentiation. If the contributions of subpopulations (offspring numbers) are different, genetic differentiation can reduce the Ne of the subdivided population. At equal subpopulation contributions, genetic differentiation always increases the Ne of the subdivided population in comparison with a panmictic population. We have found that all sockeye salmon subpopulations of Azabach'e Lake produce equal offspring numbers contributing to the next generation. The genetic differentiation between sockeye salmon subpopulations is low, and the subdivision increases the Ne of the early-run race with reference to the sum of the effective sizes of the subpopulations by as little as 2%.

  13. Mechanisms influencing the timing and success of reproductive migration in a capital breeding semelparous fish species, the sockeye salmon.

    PubMed

    Crossin, Glenn T; Hinch, Scott G; Cooke, Steven J; Cooperman, Michael S; Patterson, David A; Welch, David W; Hanson, Kyle C; Olsson, Ivan; English, Karl K; Farrell, Anthony P

    2009-01-01

    Two populations of homing sockeye salmon (Oncorhynchus nerka; Adams and Chilko) were intercepted in the marine approaches around the northern and southern ends of Vancouver Island (British Columbia, Canada) en route to a natal river. More than 500 salmon were nonlethally biopsied for blood plasma, gill filament tips, and gross somatic energy (GSE) and were released with either acoustic or radio transmitters. At the time of capture, GSE, body length, and circulating testosterone ([T]) differed between populations, differences that reflected known life-history variations. Within-population analyses showed that in Adams sockeye salmon, plasma glucose ([glu]), lactate ([lactate]), and ion concentrations were higher in the northern approach than in the southern approach, suggesting that the former was more stressful. GSE, [T], and gill Na(+),K(+)-ATPase activities also differed between the two locales, and each varied significantly with Julian date, suggesting seasonality. Despite these relative geographic differences, the timing of river entry and the ability to reach spawning areas were strongly correlated with energetic, reproductive, and osmoregulatory state. Salmon that delayed river entry and reached spawning areas had relatively high GSE and low [T] and gill ATPase. In contrast, salmon that entered the river directly but that ultimately failed to reach spawning areas had lower GSE and higher [T] and gill ATPase, and they also swam at significantly faster rates (failed fish approximately 20.0 km d(-1) vs. successful fish approximately 15.5 km d(-1)). Physiologically, salmon that did not enter the river at all but that presumably died in the marine environment exhibited high stress (plasma [glu] and [lactate]) and ionoregulatory measures (plasma [Na(+)], [Cl(-)], osmolality).

  14. Review of potential interactions between stocked rainbow trout and listed Snake River sockeye salmon in Pettit Lake Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teuscher, D.

    1996-05-01

    The objective of this study was to determine if hatchery rainbow trout compete with or prey on juvenile Snake River sockeye salmon Oncorhynchus nerka in Pettit Lake, Idaho. In 1995, a total of 8,570 age-0 sockeye and 4,000 hatchery rainbow trout were released in Pettit Lake. After releasing the fish, gillnets were set in the pelagic and littoral zones to collected diet and spatial distribution data. Interactions were assessed monthly from June 1995 through March 1996. Competition for food was discounted based on extremely low diet overlap results observed throughout the sample period. Conversely, predation interactions were more significant. Amore » total of 119 rainbow trout stomachs were analyzed, two contained O. nerka. The predation was limited to one sample period, but when extrapolated to the whole rainbow trout populations results in significant losses. Total consumption of O. nerka by rainbow trout ranged from an estimated 10 to 23% of initial stocking numbers. Predation results contradict earlier findings that stocked rainbow trout do not prey on wild kokanee or sockeye in the Sawtooth Lakes. The contradiction may be explained by a combination of poorly adapted hatchery sockeye and a littoral release site that forced spatial overlap that was not occurring in the wild populations. Releasing sockeye in the pelagic zone may have reduced or eliminated predation losses to rainbow trout.« less

  15. Use of female nest characteristics in the sexual behaviour of male sockeye salmon

    USGS Publications Warehouse

    Hamon, T.R.; Foote, C.J.; Brown, G.S.

    1999-01-01

    On three island beaches in Iliamna Lake, Alaska, large numbers of male sockeye salmon gathered and spawned in artificial excavations that mimicked a female's nest immediately prior to spawning, while apparently ignoring the control site. The number of males attracted was correlated positively with changes in the operational sex ratio. In contrast, on the mainland beach examined, no reaction to the artificial nests was apparent. The results are discussed in terms of mate searching behaviour by males, the duration of the spawning period, and associated selection pressures on males to use characteristics of their environment that provide information on availability of females.

  16. Reduced growth in wild juvenile sockeye salmon Oncorhynchus nerka infected with sea lice.

    PubMed

    Godwin, S C; Dill, L M; Krkošek, M; Price, M H H; Reynolds, J D

    2017-07-01

    Daily growth rings were examined in the otoliths of wild juvenile sockeye salmon Oncorhynchus nerka to determine whether infection by ectoparasitic sea lice Caligus clemensi and Lepeophtheirus salmonis was associated with reduced host body growth, an important determinant of survival. Over 98% of the sea lice proved to be C. clemensi and the fish that were highly infected grew more slowly than uninfected individuals. Larger fish also grew faster than smaller fish. Finally, there was evidence of an interaction between body size and infection status, indicating the potential for parasite-mediated growth divergence. © 2017 The Fisheries Society of the British Isles.

  17. Time to Evolve? Potential Evolutionary Responses of Fraser River Sockeye Salmon to Climate Change and Effects on Persistence

    PubMed Central

    Reed, Thomas E.; Schindler, Daniel E.; Hague, Merran J.; Patterson, David A.; Meir, Eli; Waples, Robin S.; Hinch, Scott G.

    2011-01-01

    Evolutionary adaptation affects demographic resilience to climate change but few studies have attempted to project changes in selective pressures or quantify impacts of trait responses on population dynamics and extinction risk. We used a novel individual-based model to explore potential evolutionary changes in migration timing and the consequences for population persistence in sockeye salmon Oncorhynchus nerka in the Fraser River, Canada, under scenarios of future climate warming. Adult sockeye salmon are highly sensitive to increases in water temperature during their arduous upriver migration, raising concerns about the fate of these ecologically, culturally, and commercially important fish in a warmer future. Our results suggest that evolution of upriver migration timing could allow these salmon to avoid increasingly frequent stressful temperatures, with the odds of population persistence increasing in proportion to the trait heritability and phenotypic variance. With a simulated 2°C increase in average summer river temperatures by 2100, adult migration timing from the ocean to the river advanced by ∼10 days when the heritability was 0.5, while the risk of quasi-extinction was only 17% of that faced by populations with zero evolutionary potential (i.e., heritability fixed at zero). The rates of evolution required to maintain persistence under simulated scenarios of moderate to rapid warming are plausible based on estimated heritabilities and rates of microevolution of timing traits in salmon and related species, although further empirical work is required to assess potential genetic and ecophysiological constraints on phenological adaptation. These results highlight the benefits to salmon management of maintaining evolutionary potential within populations, in addition to conserving key habitats and minimizing additional stressors where possible, as a means to build resilience to ongoing climate change. More generally, they demonstrate the importance and

  18. Does among-population variation in burst swimming performance of sockeye salmon Oncorhynchus nerka fry reflect early life migrations?

    PubMed

    Sopinka, N M; Hinch, S G; Lotto, A G; Whitney, C K; Patterson, D A

    2013-11-01

    Using a fixed-speed test, burst swimming performance was found to vary among nine populations of emergent sockeye salmon Oncorhynchus nerka fry reared in a common-garden environment. No consistent relationship was, however, detected between difficulty of fry migration (upstream v. downstream) to rearing areas and total burst swimming duration or bursting rate. © 2013 The Fisheries Society of the British Isles.

  19. Comparative anatomy of the dorsal hump in mature Pacific salmon.

    PubMed

    Susuki, Kenta; Ban, Masatoshi; Ichimura, Masaki; Kudo, Hideaki

    2017-07-01

    Mature male Pacific salmon (Genus Oncorhynchus) demonstrate prominent morphological changes, such as the development of a dorsal hump. The degree of dorsal hump formation depends on the species in Pacific salmon. It is generally accepted that mature males of sockeye (O. nerka) and pink (O. gorbuscha) salmon develop most pronounced dorsal humps. The internal structure of the dorsal hump in pink salmon has been confirmed in detail. In this study, the dorsal hump morphologies were analyzed in four Pacific salmon species inhabiting Japan, masu (O. masou), sockeye, chum (O. keta), and pink salmon. The internal structure of the dorsal humps also depended on the species; sockeye and pink salmon showed conspicuous development of connective tissue and growth of bone tissues in the dorsal tissues. Masu and chum salmon exhibited less-pronounced increases in connective tissues and bone growth. Hyaluronic acid was clearly detected in dorsal hump connective tissue by histochemistry, except for in masu salmon. The lipid content in dorsal hump connective tissue was richer in masu and chum salmon than in sockeye and pink salmon. These results revealed that the patterns of dorsal hump formation differed among species, and especially sockeye and pink salmon develop pronounced dorsal humps through both increases in the amount of connective tissue and the growth of bone tissues. In contrast, masu and chum salmon develop their dorsal humps by the growth of bone tissues, rather than the development of connective tissue. © 2017 Wiley Periodicals, Inc.

  20. Effects of post-capture ventilation assistance and elevated water temperature on sockeye salmon in a simulated capture-and-release experiment

    PubMed Central

    Robinson, Kendra A.; Hinch, Scott G.; Gale, Marika K.; Clark, Timothy D.; Wilson, Samantha M.; Donaldson, Michael R.; Farrell, Anthony P.; Cooke, Steven J.; Patterson, David A.

    2013-01-01

    The live release of wild adult Pacific salmon (Oncorhynchus spp.) following capture is a management tactic often used in commercial, aboriginal, and recreational fisheries. Fisheries capture and handling can be both exhausting and stressful to fish, which can limit their ability to swim and survive after release. As a result, researchers have assessed methods intended to improve post-release survival by assisting the flow of water over the gills of fish prior to release. Such approaches use recovery bags or boxes that direct water over the gills of restrained fish. This study evaluated a method of assisting ventilation that mimics one often employed by recreational anglers (i.e. holding fish facing into a current). Under laboratory conditions, wild Fraser River sockeye salmon (Oncorhynchus nerka) either received manual ventilation assistance for 1 min using a jet of water focused at the mouth or were left to recover unassisted following a capture-and-release simulation. A control group consisted of fish that were not exposed to the simulation or ventilation assistance. The experiment was conducted at 16 and 21°C, average and peak summer water temperatures for the Fraser River, and fish survival was monitored for 33 days. At 21°C, all fish perished within 3 days after treatment in all experimental groups, highlighting the consequences of handling adult sockeye salmon during elevated migration temperatures. Survival was higher at 16°C, with fish surviving on average 15–20 days after treatment. At 16°C, the capture-and-release simulation and ventilation assistance did not affect the survival of males; however, female survival was poor after the ventilation assistance compared with the unassisted and control groups. Our results suggest that the method of ventilation assistance tested in this study may not enhance the post-release survival of adult Fraser River sockeye salmon migrating in fresh water. PMID:27293599

  1. Sequence analysis of MHC class I α2 from sockeye salmon (Oncorhynchus nerka).

    PubMed

    McClelland, Erin K; Ming, Tobi J; Tabata, Amy; Miller, Kristina M

    2011-09-01

    Most studies assessing adaptive MHC diversity in salmon populations have focused on the classical class II DAB or DAA loci, as these have been most amenable to single PCR amplifications due to their relatively low level of sequence divergence. Herein, we report the characterization of the classical class I UBA α2 locus based on collections taken throughout the species range of sockeye salmon (Oncorhynchus nerka). Through use of multiple lineage-specific primer sets, denaturing gradient gel electrophoresis and sequencing, we identified thirty-four alleles from three highly divergent lineages. Sequence identity between lineages ranged from 30.0% to 56.8% but was relatively high within lineages. Allelic identity within the antigen recognition site (ARS) was greater than for the longer sequence. Global positive selection on UBA was seen at the sequence level (dN:dS = 1.012) with four codons under positive selection and 12 codons under negative selection. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  2. Effects of rearing temperature on immune functions in sockeye salmon (Oncorhynchus nerka)

    USGS Publications Warehouse

    Alcorn, S.W.; Murray, A.L.; Pascho, R.J.

    2002-01-01

    To determine if the defences of sockeye salmon (Oncorhynchus nerka) raised in captivity are affected by the rearing temperature or their life-cycle stage, various indices of the humoral and cellular immune functions were measured in fish reared at either 8 or 12??C for their entire life-cycle. Measures of humoral immunity included the commonly used haematological parameters, as well as measurements of complement, and lysozyme activity. Cellular assays quantified the ability of macrophages from the anterior kidney to phagocytise Staphylococcus aureus cells, or the activities of certain bactericidal systems of those cells. The T-dependent antibody response to a recombinant 57 kDa protein of Renibacterium salmoninarum was used to quantify the specific immune response. Fish were sampled during the spring and fall of their second, third and fourth years, corresponding to a period that began just before smolting and ended at sexual maturation. Fish reared at 8??C tended to have a greater percentage of phagocytic kidney macrophages during the first 2 years of sampling than the fish reared at 12??C. During the last half of the study the complement activity of the fish reared at 8??C was greater than that of the 12??C fish. Conversely, a greater proportion of the blood leucocytes were lymphocytes in fish reared at 12??C compared to the fish reared at 8??C. Fish reared at 12??C also produced a greater antibody response than those reared at 8??C. Results suggested that the immune apparatus of sockeye salmon reared at 8??C relied more heavily on the non-specific immune response, while the specific immune response was used to a greater extent when the fish were reared at 12??C. Although a seasonal effect was not detected in any of the indices measured, varying effects were observed in some measurements during sexual maturation of fish in both temperature groups. At that time there were dramatic decreases in complement activity and lymphocyte numbers. This study was unique in

  3. Resistance and Protective Immunity in Redfish Lake Sockeye Salmon Exposed to M Type Infectious Hematopoietic Necrosis Virus (IHNV)

    USGS Publications Warehouse

    Kurath, Gael; Garver, Kyle; Purcell, Maureen K.; LaPatra, Scott E.

    2010-01-01

    Differential virulence of infectious hematopoietic necrosis virus (IHNV) isolates from the U and M phylogenetic subgroups is clearly evident in the Redfish Lake (RFL) strain of sockeye salmon Oncorhynchus nerka. In these fish, experimental immersion challenges with U isolates cause extremely high mortality and M isolates cause low or no mortality. When survivors of M virus immersion challenges were exposed to a secondary challenge with virulent U type virus they experienced high mortality, indicating that the primary M challenge did not elicit protective immunity. Delivery of a moderate dose (2 × 104 plaque-forming units [PFU]/fish) of virus by intraperitoneal injection challenge did not overcome RFL sockeye salmon resistance to M type IHNV. Injection challenge with a high dose (5 × 106 PFU/fish) of M type virus caused 10% mortality, and in this case survivors did develop protective immunity against a secondary U type virus challenge. Thus, although it is possible for M type IHNV to elicit cross-protective immunity in this disease model, it does not develop after immersion challenge despite entry, transient replication of M virus to low levels, stimulation of innate immune genes, and development of neutralizing antibodies in some fish.

  4. Directional selection by fisheries and the timing of sockeye salmon (Oncorhynchus nerka) migrations.

    PubMed

    Quinn, Thomas P; Hodgson, Sayre; Flynn, Lucy; Hilborn, Ray; Rogers, Donald E

    2007-04-01

    The timing of migration from feeding to breeding areas is a critical link between the growth and survival of adult animals, their reproduction, and the fitness of their progeny. Commercial fisheries often catch a large fraction of the migrants (e.g., salmon), and exploitation rates can vary systematically over the fishing season. We examined daily records of sockeye salmon (Oncorhynchus nerka) in the Egegik and Ugashik management districts in Bristol Bay, Alaska (USA), for evidence of such temporally selective fishing. In recent years, the early migrants have experienced lower fishing rates than later migrants, especially in the Egegik district, and the median migration date of the fish escaping the fisheries has been getting progressively earlier in both districts. Moreover, the overall runs (catch and escapement) in the Egegik district and, to a lesser extent the Ugashik district, have been getting earlier, as predicted in response to the selection on timing. The trends in timing were not correlated with sea surface temperature in the region of the North Pacific Ocean where the salmon tend to concentrate, but the trends in the two districts were correlated with each other, indicating that there may be some common environmental influence in addition to the effect of selection. Despite the selection, both groups of salmon have remained productive. We hypothesize that this resilience may result from representation of all component populations among the early and late migrants, so that the fisheries have not eliminated entire populations, and from density-dependent processes that may have helped maintain the productivity of these salmon populations.

  5. Influence of breeding habitat on bear predation and age at maturity and sexual dimorphism of sockeye salmon populations

    USGS Publications Warehouse

    Quinn, Thomas P.; Wetzel, Lisa A.; Bishop, Susan; Overberg, Kristi; Rogers, Donald E.

    2001-01-01

    Age structure and morphology differ among Pacific salmon (Oncorhynchus spp.) populations. Sexual selection and reproductive capacity (fecundity and egg size) generally favor large (old), deep-bodied fish. We hypothesized that natural selection from physical access to spawning grounds and size-biased predation by bears, Ursus spp., opposes such large, deep-bodied salmon. Accordingly, size and shape of salmon should vary predictably among spawning habitats. We tested this hypothesis by measuring the age composition and body depth of sockeye salmon, Oncorhynchus nerka, and the intensity of predation in a range of breeding habitats in southwestern Alaska. Stream width was positively correlated with age at maturity and negatively correlated with predation level. However, salmon spawning on lake beaches were not consistently old, indicating that different factors affect age in riverine- and beach-spawning populations. Body depths of male and female salmon were positively correlated with water depth across all sites, as predicted. However, the mouths of some streams were so shallow that they might select against large or deep-bodied salmon, even in the absence of bear predation. Taken together, the results indicated that habitat has direct and indirect effects (via predation) on life history and morphology of mature salmon.

  6. It's a bear market: evolutionary and ecological effects of predation on two wild sockeye salmon populations.

    PubMed

    Lin, J E; Hard, J J; Naish, K A; Peterson, D; Hilborn, R; Hauser, L

    2016-05-01

    Predation can affect both phenotypic variation and population productivity in the wild, but quantifying evolutionary and demographic effects of predation in natural environments is challenging. The aim of this study was to estimate selection differentials and coefficients associated with brown bear (Ursus arctos) predation in wild sockeye salmon (Oncorhynchus nerka) populations spawning in pristine habitat that is often subject to intense predation pressure. Using reconstructed genetic pedigrees, individual reproductive success (RS) was estimated in two sockeye salmon populations for two consecutive brood years with very different predation intensities across brood years. Phenotypic data on individual adult body length, body depth, stream entry timing and reproductive lifespan were used to calculate selection coefficients based on RS, and genetic variance components were estimated using animal models. Bears consistently killed larger and more recently arrived adults, although selection differentials were small. In both populations, mean RS was higher in the brood year experiencing lower predation intensity. Selection coefficients were similar across brood years with different levels of predation, often indicating stabilizing selection on reproductive lifespan as well as directional selection for longer reproductive lifespan. Despite these selection pressures, genetic covariation of morphology, phenology and lifespan appears to have maintained variation in spawner body size and stream entry timing in both populations. Our results therefore suggest considerable demographic but limited evolutionary effects of bear predation in the two study populations.

  7. It's a bear market: evolutionary and ecological effects of predation on two wild sockeye salmon populations

    PubMed Central

    Lin, J E; Hard, J J; Naish, K A; Peterson, D; Hilborn, R; Hauser, L

    2016-01-01

    Predation can affect both phenotypic variation and population productivity in the wild, but quantifying evolutionary and demographic effects of predation in natural environments is challenging. The aim of this study was to estimate selection differentials and coefficients associated with brown bear (Ursus arctos) predation in wild sockeye salmon (Oncorhynchus nerka) populations spawning in pristine habitat that is often subject to intense predation pressure. Using reconstructed genetic pedigrees, individual reproductive success (RS) was estimated in two sockeye salmon populations for two consecutive brood years with very different predation intensities across brood years. Phenotypic data on individual adult body length, body depth, stream entry timing and reproductive lifespan were used to calculate selection coefficients based on RS, and genetic variance components were estimated using animal models. Bears consistently killed larger and more recently arrived adults, although selection differentials were small. In both populations, mean RS was higher in the brood year experiencing lower predation intensity. Selection coefficients were similar across brood years with different levels of predation, often indicating stabilizing selection on reproductive lifespan as well as directional selection for longer reproductive lifespan. Despite these selection pressures, genetic covariation of morphology, phenology and lifespan appears to have maintained variation in spawner body size and stream entry timing in both populations. Our results therefore suggest considerable demographic but limited evolutionary effects of bear predation in the two study populations. PMID:26860201

  8. Myxobolus arcticus and Parvicapsula minibicornis infections in sockeye salmon Oncorhynchus nerka following downstream migration in British Columbia.

    PubMed

    Mahony, A M; Johnson, S C; Neville, C M; Thiess, M E; Jones, S R M

    2017-10-18

    Factors influencing the health of sockeye salmon Oncorhynchus nerka in British Columbia, Canada, are important for fisheries management and conservation. Juvenile salmon originating from the Fraser River were screened for 3 enzootic parasites (Myxobolus arcticus, Parvicapsula minibicornis, Ceratonova shasta) and the bacterium Renibacterium salmoninarum. Fish were collected from the Strait of Georgia in 2010, 2011 and 2012 and genotyped to stock of origin. Trends in infection status were estimated by year, spawning zone and catch area. The annual prevalences of P. minibicornis (n = 1448) were 23.3, 6.5 and 8.1%, and for M. arcticus (n = 1343), annual prevalences were 40.4, 66.3 and 27.4%, respectively. Logistic regression showed that P. minibicornis was most strongly associated with salmon from the lower Fraser River spawning zone and increased with distance caught from the mouth of the Fraser River. In contrast, infection with M. arcticus was most strongly associated with salmon from the middle Fraser River spawning zone, and there was no trend related to distance from the Fraser River. Neither R. salmoninarum nor C. shasta were detected. These observations are discussed in the context of salmon life history and pathogen biology.

  9. Isolation of infectious hematopoietic necrosis virus from a leech (Piscicola salmositica) and a copepod (Salmincola sp.), ectoparasites of sockeye salmon Oncorhynchus nerka

    USGS Publications Warehouse

    Mulcahy, Daniel M.; Klaybor, D.; Batts, W.N.

    1990-01-01

    Infectious haematopoietic necrosis (IHN) virus was isolated from freshwater leeches Piscicola salmositica and copepods Salmincola sp. removed from the gills of spawning sockeye salmon, Oncorhynchus nerka. This is the first report of the isolation of IHN virus from an animal other than salmonid fishes. High levels of IHN virus were also found in leeches taken from the bottom gravel of the spawning area. The prevalence of IHN virus in samples of individual leeches was as high as 100% and the virus was isolated from 95% of pooled samples of copepod and 1.5 × 108 pfu/g in the leech. The level of virus in leeches removed from fish gills was sometimes higher than the level of virus in the gill tissue itself. Virus persisted for at least 16 d in leeches held in the laboratory without feeding. Transmission of IHN virus by leeches probably increases the infection rate of spawning sockeye salmon.

  10. Habitat Utilization by Juvenile Pink and Chum Salmon in Upper Resurrection Bay, Alaska

    DTIC Science & Technology

    1989-11-01

    salmon Oncorhynchus kotez Chum salmon Untcorhynchua kisutch Coho salmon Orncorhynchus nerka Sockeye salmon Oncorhynchus tohawytacha Kink salmon...coho salmon, 40 Dolly Varden, 31 sculpin, 8 tomcod (Microgadus proxins), 17 starry flounder, and 10 sockeye salmon (0. nerka ) stomachs from Cliff and...AK. Godin, J. G. J. 1981. "Daily Patterns of Feeding Behavior, Daily Rations, and Diets of Juvenile Pink Salmon ( Oncorhynchus go’buscha) in Two

  11. Evaluation of an Experimental Re-introduction of Sockeye Salmon into Skaha Lake; Year 2 of 3, 2001 Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, Christopher; Machin, Deanna; Wright, Howie

    This report summarizes the findings from YEAR 2 of a three-year disease risk assessment. The Okanagan Nation Fisheries Commission (ONFC) and the Colville Confederated Tribes (CCT) are investigating the risks involved in re-introducing sockeye salmon into Skaha Lake, part of their historical range (Ernst and Vedan 2000). The disease risk assessment compares the disease and infection status of fish above and below McIntyre Dam (the present limit of sockeye migration). The disease agents identified that are of a particular concern are: infectious pancreatic necrosis virus (IPNV), infectious haematopoietic necrosis virus type 2 (IHNV type2), erythrocytic inclusion body syndrome virus (EIBSV),more » the whirling disease agent (Myxobolus cerebralis), and the ceratomyxosis agent (Ceratomyxa shasta).« less

  12. Survey for infectious hematopoietic necrosis (IHN) virus in Washington salmon

    USGS Publications Warehouse

    Amend, Donald F.; Wood, James W.

    1972-01-01

    A virus disease of juvenile sockeye salmon (Oncorhynchus nerka) has been a problem in Washington hatcheries since first reported by Rucker [9] in 1953. Presumably, the same disease has occurred in Oregon, and it is now referred to as the Oregon, and it is now referred to as the Oregon sockeye disease (OSD) or the sockeye salmon virus (SSV) [8,12]. The primary source of the disease was thought to be from the feeding of raw sockeye salmon viscera, and the incidence decreased when pasteurized diets were used [5]. However, sporadic attacks continue to occur even though pelleted diets containing pasteurized fish products are fed.  

  13. The effect of acute temperature increases on the cardiorespiratory performance of resting and swimming sockeye salmon (Oncorhynchus nerka).

    PubMed

    Steinhausen, M F; Sandblom, E; Eliason, E J; Verhille, C; Farrell, A P

    2008-12-01

    The mechanism underlying the decrease in aerobic scope in fish at warm temperatures is not fully understood and is the focus of this research. Our study examined oxygen uptake and delivery in resting, swimming and recovering sockeye salmon while water temperature was acutely increased from 15 degrees C to 24 degrees C in 2 degrees C h(-1) increments. Fish swam at a constant speed during the temperature change. By simultaneously measuring oxygen consumption (M(O(2))), cardiac output (Q) and the blood oxygen status of arterial and venous blood, we were able to determine where in the oxygen cascade a limitation appeared when fish stopped sustained swimming as temperature increased. High temperature fatigue of swimming sockeye salmon was not a result of a failure of either oxygen delivery to the gills or oxygen diffusion at the gills because oxygen partial pressure (P(O(2))) and oxygen content (C(O(2))) in arterial blood did not decrease with increasing temperature, as would be predicted for such limitations. Instead, arterial oxygen delivery (Ta(O(2))) was initially hampered due to a failure to adequately increase Q with increasing temperature. Subsequently, lactate appeared in the blood and venous P(O(2)) remained constant.

  14. Routine and active metabolic rates of migrating adult wild sockeye salmon (Oncorhynchus nerka Walbaum) in seawater and freshwater.

    PubMed

    Wagner, G N; Kuchel, L J; Lotto, A; Patterson, D A; Shrimpton, J M; Hinch, S G; Farrell, A P

    2006-01-01

    We present the first data on the differences in routine and active metabolic rates for sexually maturing migratory adult sockeye salmon (Oncorhynchus nerka) that were intercepted in the ocean and then held in either seawater or freshwater. Routine and active oxygen uptake rates (MO2) were significantly higher (27%-72%) in seawater than in freshwater at all swimming speeds except those approaching critical swimming speed. During a 45-min recovery period, the declining postexercise oxygen uptake remained 58%-73% higher in seawater than in freshwater. When fish performed a second swim test, active metabolic rates again remained 28%-81% higher for fish in seawater except at the critical swimming speed. Despite their differences in metabolic rates, fish in both seawater and freshwater could repeat the swim test and reach a similar maximum oxygen uptake and critical swimming speed as in the first swim test, even without restoring routine metabolic rate between swim tests. Thus, elevated MO2 related to either being in seawater as opposed to freshwater or not being fully recovered from previous exhaustive exercise did not present itself as a metabolic loading that limited either critical swimming performance or maximum MO2. The basis for the difference in metabolic rates of migratory sockeye salmon held in seawater and freshwater is uncertain, but it could include differences in states of nutrition, reproduction, and restlessness, as well as ionic differences. Regardless, this study elucidates some of the metabolic costs involved during the migration of adult salmon from seawater to freshwater, which may have applications for fisheries conservation and management models of energy use.

  15. The influence of life history trade-offs and the size of the incubation gravels on egg size variation in sockeye salmon Onchorhynchus nerka

    USGS Publications Warehouse

    Quinn, Thomas P.; Hendry , Andrew P.; Wetzel, Lisa A.

    1995-01-01

    Egg size is a critical life history trait, reflecting female investment and affecting off- spring fitness. We investigated several factors which may influence variation in egg weight for sockeye salmon (Oncorhynchus nerka). Comparisons were based on col- lections from 18 Alaskan populations, among which adult migration distance and ju- venile rearing habitat were similar but the size composition of incubation gravels was different. Among populations, most of the variation in egg weight could be explained by a positive correlation with different measures of the size composition of incubation gravels (Pearson's r = 0.45-0.91). In contrast, egg weight was poorly correlated with female body length and with female snout length, a morphological feature used during intra-sexual competition. Within each of the Alaskan populations, however, egg weight and snout length were positively correlated with female body length and hence with each other. A positive association between snout length and egg weight was still evident even after the effects of covariance with body size were removed using resid- uals analysis: for all of the fish pooled and within 6 of the 16 populations. A signifi- cant relationship was not detected in the other populations but the trend was neverthe- less positive in 8 of the other 10. Examination of reproductive traits (gonad weight, egg weight, egg number, snout length and hump size) within another population iden- tified a trade-off between egg weight and egg number for females of a given body length. In contrast, positive correlations between reproductive traits were more com- mon, suggesting that energy-rich individuals produce large eggs and large secondary sexual characteristics rather than sacrificing one for the other.

  16. Dance of denial. [The decline of Snake River chinook and sockeye

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, J.

    The numbers of Snake River chinook and sockeye successfully completing their spawning migration to their home waters have declined drastically. In the summer of 1992, exactly one sockeye returned to its ancestral home. Grazing, stream diversions, dams, filling of wetlands, and pollution have all played a part in the decline, but dams remain the main cause. The Northwest Power Planning Council in 1992 approved a two-part strategy to save the salmon population: fish transport and drawing down Snake River reservoirs. Fish transport is not restoring the original salmon runs and drawdowns have not been done. The salmon continue to gomore » extinct and the economy of fishing towns and industries is being ruined.« less

  17. Low cardiac and aerobic scope in a coastal population of sockeye salmon Oncorhynchus nerka with a short upriver migration.

    PubMed

    Eliason, E J; Wilson, S M; Farrell, A P; Cooke, S J; Hinch, S G

    2013-06-01

    This study showed that a coastal population (Harrison) of Fraser River sockeye salmon Oncorhynchus nerka had a lower aerobic and cardiac scope compared with interior populations with more challenging upriver spawning migrations, providing additional support to the idea that Fraser River O. nerka populations have adapted physiologically to their local migratory environment. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.

  18. Discovering Alaska's Salmon: A Children's Activity Book.

    ERIC Educational Resources Information Center

    Devaney, Laurel

    This children's activity book helps students discover Alaska's salmon. Information is provided about salmon and where they live. The salmon life cycle and food chains are also discussed. Different kinds of salmon such as Chum Salmon, Chinook Salmon, Coho Salmon, Sockeye Salmon, and Pink Salmon are introduced, and various activities on salmon are…

  19. Juvenile salmon usage of the Skeena River estuary.

    PubMed

    Carr-Harris, Charmaine; Gottesfeld, Allen S; Moore, Jonathan W

    2015-01-01

    Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2-8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations that

  20. Ecological, morphological, genetic and life history characteristics of two sockeye salmon populations, Tustumena Lake, Alaska

    USGS Publications Warehouse

    Woody, Carol Ann

    1998-01-01

    Populations can differ in both phenotypic and molecular genetic traits. Phenotypic differences likely result from differential selection pressures in the environment, whereas differences in neutral molecular markers result from genetic drift associated with some degree of reproductive isolation. Two sockeye salmon, Oncorhynchus nerka, populations were compared using both phenotypic and genotypic characters, and causal factors were examined. Salmon spawning in a short (<3 km), shallow (<21 cm), clear, homogenous spring-fed study site spawned later, were younger, smaller, and produced fewer and smaller eggs than salmon spawning in a longer (∼80 km), deeper, stained, diverse, precipitation-dominated stream. Run timing differences were associated with differences in stream thermal regimes. Age and size at maturity differences are likely due to differences in age-specific mortality rates. Fish in the shallow spring-fed system suffered higher adult predation rates and exhibited greater egg to fry survival compared to fish in the precipitation-fed system. Salmon in both streams exhibited non-random nest site selection for deeper habitats and smaller substrates (≥2 to <64 mm mean diameter) relative to available habitat; fish from the precipitation system avoided low velocity habitats containing fine (<2 mm) substrates. Genetic comparisons of six microsatellite loci indicated that run time was a more effective reproductive isolating mechanism than geographical distance. Differences between and within the tributary spawning populations are discussed in terms of selection, genetic drift, and the homogenizing effects of gene flow. This study indicates important adaptive differences may exist between proximate spawning groups of salmon which should be considered when characterizing populations for conservation or management purposes.

  1. Echo characteristics of two salmon species

    NASA Astrophysics Data System (ADS)

    Nealson, Patrick A.; Horne, John K.; Burwen, Debby L.

    2005-04-01

    The Alaska Department of Fish and Game relies on split-beam hydroacoustic techniques to estimate Chinook salmon (Oncorhynchus tshawytscha) returns to the Kenai River. Chinook counts are periodically confounded by large numbers of smaller sockeye salmon (O. nerka). Echo target-strength has been used to distinguish fish length classes, but was too variable to separate Kenai River chinook and sockeye distributions. To evaluate the efficacy of alternate echo metrics, controlled acoustic measurements of tethered chinook and sockeye salmon were collected at 200 kHz. Echo returns were digitally sampled at 48 kHz. A suite of descriptive metrics were collected from a series of 1,000 echoes per fish. Measurements of echo width were least variable at the -3 dB power point. Initial results show echo elongation and ping-to-ping variability in echo envelope width were significantly greater for chinook than for sockeye salmon. Chinook were also observed to return multiple discrete peaks from a single broadcast echo. These characteristics were attributed to the physical width of chinook exceeding half of the broadcast echo pulse width at certain orientations. Echo phase variability, correlation coefficient and fractal dimension distributions did not demonstrate significant discriminatory power between the two species. [Work supported by ADF&G, ONR.

  2. Predictability of Bristol Bay, Alaska, sockeye salmon returns one to four years in the future

    USGS Publications Warehouse

    Adkison, Milo D.; Peterson, R.M.

    2000-01-01

    Historically, forecast error for returns of sockeye salmon Oncorhynchus nerka to Bristol Bay, Alaska, has been large. Using cross-validation forecast error as our criterion, we selected forecast models for each of the nine principal Bristol Bay drainages. Competing forecast models included stock-recruitment relationships, environmental variables, prior returns of siblings, or combinations of these predictors. For most stocks, we found prior returns of siblings to be the best single predictor of returns; however, forecast accuracy was low even when multiple predictors were considered. For a typical drainage, an 80% confidence interval ranged from one half to double the point forecast. These confidence intervals appeared to be appropriately wide.

  3. Transcriptomics of environmental acclimatization and survival in wild adult Pacific sockeye salmon (Oncorhynchus nerka) during spawning migration.

    PubMed

    Evans, Tyler G; Hammill, Edd; Kaukinen, Karia; Schulze, Angela D; Patterson, David A; English, Karl K; Curtis, Janelle M R; Miller, Kristina M

    2011-11-01

    Environmental shifts accompanying salmon spawning migrations from ocean feeding grounds to natal freshwater streams can be severe, with the underlying stress often cited as a cause of increased mortality. Here, a salmonid microarray was used to characterize changes in gene expression occurring between ocean and river habitats in gill and liver tissues of wild migrating sockeye salmon (Oncorhynchus nerka Walbaum) returning to spawn in the Fraser River, British Columbia, Canada. Expression profiles indicate that the transcriptome of migrating salmon is strongly affected by shifting abiotic and biotic conditions encountered along migration routes. Conspicuous shifts in gene expression associated with changing salinity, temperature, pathogen exposure and dissolved oxygen indicate that these environmental variables most strongly impact physiology during spawning migrations. Notably, transcriptional changes related to osmoregulation were largely preparatory and occurred well before salmon encountered freshwater. In the river environment, differential expression of genes linked with elevated temperatures indicated that thermal regimes within the Fraser River are approaching tolerance limits for adult salmon. To empirically correlate gene expression with survival, biopsy sampling of gill tissue and transcriptomic profiling were combined with telemetry. Many genes correlated with environmental variables were differentially expressed between premature mortalities and successful migrants. Parametric survival analyses demonstrated a broad-scale transcriptional regulator, cofactor required for Sp1 transcriptional activation (CRSP), to be significantly predictive of survival. As the environmental characteristics of salmon habitats continue to change, establishing how current environmental conditions influence salmon physiology under natural conditions is critical to conserving this ecologically and economically important fish species. © 2011 Blackwell Publishing Ltd.

  4. De novo assembly of Sockeye salmon kidney transcriptomes reveal a limited early response to piscine reovirus with or without infectious hematopoietic necrosis virus superinfection.

    PubMed

    Polinski, Mark P; Bradshaw, Julia C; Inkpen, Sabrina M; Richard, Jon; Fritsvold, Camilla; Poppe, Trygve T; Rise, Matthew L; Garver, Kyle A; Johnson, Stewart C

    2016-11-02

    Piscine reovirus (PRV) has been associated with the serious disease known as Heart and Skeletal Muscle Inflammation (HSMI) in cultured Atlantic salmon Salmo salar in Norway. PRV is also prevalent in wild and farmed salmon without overt disease manifestations, suggesting multifactorial triggers or PRV variant-specific factors are required to initiate disease. In this study, we explore the head kidney transcriptome of Sockeye salmon Oncorhynchus nerka during early PRV infection to identify host responses in the absence of disease in hopes of elucidating mechanisms by which PRV may directly alter host functions and contribute to the development of a disease state. We further investigate the role of PRV as a coinfecting agent following superinfection with infectious hematopoietic necrosis virus (IHNV) - a highly pathogenic rhabdovirus endemic to the west coast of North America. Challenge of Sockeye salmon with PRV resulted in high quantities of viral transcripts to become present in the blood and kidney of infected fish without manifestations of disease. De novo transcriptome assembly of over 2.3 billion paired RNA-seq reads from the head kidneys of 36 fish identified more than 320,000 putative unigenes, of which less than 20 were suggested to be differentially expressed in response to PRV at either 2 or 3 weeks post challenge by DESeq2 and edgeR analysis. Of these, only one, Ependymin, was confirmed to be differentially expressed by qPCR in an expanded sample set. In contrast, IHNV induced substantial transcriptional changes (differential expression of > 20,000 unigenes) which included transcripts involved in antiviral and inflammatory response pathways. Prior infection with PRV had no significant effect on host responses to superinfecting IHNV, nor did host responses initiated by IHNV exposure influence increasing PRV loads. PRV does not substantially alter the head kidney transcriptome of Sockeye salmon during early (2 to 3 week) infection and dissemination in

  5. Ionoregulatory changes in different populations of maturing sockeye salmon Oncorhynchus nerka during ocean and river migration.

    PubMed

    Shrimpton, J M; Patterson, D A; Richards, J G; Cooke, S J; Schulte, P M; Hinch, S G; Farrell, A P

    2005-11-01

    We present the first data on changes in ionoregulatory physiology of maturing, migratory adult sockeye salmon Oncorhynchus nerka. Fraser River sockeye were intercepted in the ocean as far away as the Queen Charlotte Islands (approximately 850 km from the Fraser River) and during freshwater migration to the spawning grounds; for some populations this was a distance of over 700 km. Sockeye migrating in seawater toward the mouth of the Fraser River and upriver to spawning grounds showed a decline in gill Na+,K+-ATPase activity. As a result, gill Na+,K+-ATPase activity of fish arriving at the spawning grounds was significantly lower than values obtained from fish captured before entry into freshwater. Plasma osmolality and chloride levels also showed significant decreases from seawater values during the freshwater migration to spawning areas. Movement from seawater to freshwater increased mRNA expression of a freshwater-specific Na+,K+-ATPase isoform (alpha1a) while having no effect on the seawater-specific isoform (alpha1b). In addition, gill Na+,K+-ATPase activity generally increased in active spawners compared with unspawned fish on the spawning grounds and this was associated with a marked increase in Na+,K+-ATPase alpha1b mRNA. Increases in gill Na+,K+-ATPase activities observed in spawners suggests that the fish may be attempting to compensate for the osmotic perturbation associated with the decline in plasma chloride concentration and osmolality.

  6. Titre distribution patterns of infectious haematopoietic necrosis virus in ovarian fluids of hatchery and feral salmon populations

    USGS Publications Warehouse

    Mulcahy, D.; Pascho, R.J.; Jenes, C.K.

    1983-01-01

    Infectious haematopoietic mecrosis virus (IHNV) is enzootic in virtually all populations of sockeye salmon, Oncorhynchus nerka (Walbaum), and in populations of chinook salmon, O. tshawytscha (Walbaum), of the Sacramento River drainage in California. This disease is an obstacle in hatcheries using brood stocks from these populations. However, naturally spawning sockeye salmon are highly successful and are the most important commercially fished salmon species in the United States. Most of the commercial landings of sockeye salmon are of feral fish originating in Alaska. The success of natural populations of salmon in which IHNV is enzootic, and the recurrent outbreaks of the disease in hatchery fish, led us to compare IHNW prevalence rates in hatchery and feral salmon populations.

  7. Juvenile Salmon Usage of the Skeena River Estuary

    PubMed Central

    Carr-Harris, Charmaine; Gottesfeld, Allen S.; Moore, Jonathan W.

    2015-01-01

    Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2–8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations

  8. Antigen-binding cells in the peripheral blood of sockeye salmon, Oncorhynchus nerka Walbaum, induced by immersion or intraperitoneal injection of Vibrio languilarum bacterin

    USGS Publications Warehouse

    1981-01-01

    We used an immunocytoadherence assay to monitor the response of antigen-binding cells (ABC) in the peripheral blood of sockeye salmon, Oncorhynchus nerka, after immersion in, or intraperitoneal injection of, Vibrio anguillarum LS 1–74 bacterin. Both methods initiated an elevated ABC response in less than one day; this response persisted one week longer in the injected than in the immersed fish.

  9. Application of AN Empirically Scaled Digital Echo Integrator for Assessment of Juvenile Sockeye Salmon (oncorhynchus Nerka Walbaum) Populations.

    NASA Astrophysics Data System (ADS)

    Nunnallee, Edmund Pierce, Jr.

    1980-03-01

    This dissertation consists of an investigation into the empirical scaling of a digital echo integrator for assessment of a population of juvenile sockeye salmon in Cultus Lake, British Columbia, Canada. The scaling technique was developed over the last ten years for use with totally uncalibrated but stabilized data collection and analysis equipment, and has been applied to populations of fish over a wide geographical range. This is the first investigation into the sources of bias and the accuracy of the technique, however, and constitutes a verification of the method. The initial section of the investigation describes hydroacoustic data analysis methods for estimation of effective sampling volume which is necessary for estimation of fish density. The second section consists of a computer simulation of effective sample volume estimation by this empirical method and is used to investigate the degree of bias introduced by electronic and physical parameters such as boat speed -fish depth interaction effects, electronic thresholding and saturation, transducer beam angle, fish depth stratification by size and spread of the target strength distribution of the fish. Comparisons of simulation predictions of sample volume estimation bias to actual survey results are given at the end of this section. A verification of the scaling method is then presented by comparison of a hydroacoustically derived estimation of the Cultus Lake smolt population to an independent and concurrent estimate made by counting the migrant fish as they passed through a weir in the outlet stream of the lake. Finally, the effect on conduct and accuracy of hydroacoustic assessment of juvenile sockeye salmon due to several behavioral traits are discussed. These traits include movements of presmolt fish in a lake just prior to their outmigration, daily vertical migrations and the emergence and dispersal of sockeye fry in Cultus Lake. In addition, a comparison of the summer depth preferences of the fish

  10. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Northwest). Coho Salmon.

    DTIC Science & Technology

    1986-04-01

    method in fingerlinqs prey on sockeye salmon Puqet Sound to predict coho salmon fry ( Oncorhynchus nerka ); 30% of catches from stream discharqe data, coho...numbers of males distinguish it from chinook salmon and females in a soawninq run are sim- ( Oncorhynchus tshawytscha), which have ilar males may...behind sockeye salmon (qnco- qoal is te umber of spawners rhynchus nerka ), pink salmon (. necesar) to majinta1n the run of a -orhuscha), and chum salmon

  11. Immunization of sockeye salmon (Oncorhynchus nerka) against vibriosis using the hyperosmotic infiltration technique

    USGS Publications Warehouse

    Croy, Thomas R.; Amend, Donald F.

    1977-01-01

    Various procedures of hyperosmotic infiltration (HI) and intraperitoneal injection were used to vaccinate sockeye salmon (Oncorhynchus nerka) with killed Vibrio anguillarum. Excellent protection was evident against experimentally induced vibriosis in the groups immunized by HI with 10 × Hanks' balanced salt solution (HBSS), 1 × HBSS with 8.0% NaCl and 5.3% NaCl, as well as in the injected groups. Comparisons were made among the various immunization methods by vaccinating fish with ten-fold serial dilutions of bacterin, then challenging them by the water contact method after 6 or 9 weeks. Protection was somewhat better with 10 × HBSS than with 5.3% NaCl, and 1 × HBSS containing 8.0% NaCl was markedly superior to the vaccination of fish without hyperosmotic treatment. Agglutinin titers did not exceed 1 : 8 in any group.

  12. Genetic Analysis of Snake River Sockeye Salmon (Oncorhynchus Nerka), 2003 Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faler, Joyce; Powell, Madison

    2003-12-01

    A total of 1720 Oncorhynchus nerka tissue samples from 40 populations were characterized using mitochondrial DNA RFLPs (Restriction Fragment Length Polymorphisms). Analysis of anadromous sockeye populations indicated the historical presence of four major maternal lineages. Thirty-five composite mitochondrial haplotypes were observed from the 40 populations of O. nerka sampled throughout the Pacific Northwest. Six of these composite haplotypes ranged in frequency from 7-26% overall and were commonly observed in most populations. The six haplotypes together comprised 90% of the sampled O. nerka. An average of 4.6 composite haplotypes were observed per population. Genetic markers used were satisfactory in separating Redfishmore » Lake anadromous sockeye, residual sockeye and outmigrants from the sympatric kokanee population that spawns in the Fishhook Creek tributary. Outmigrants appear to be primarily composed of progeny from resident residual sockeye, and captively-reared progeny of the captive broodstock program. Thus, residual sockeye may be considered a suitable source of genetic variation to maintain genetic diversity among captive broodstocks of anadromous sockeye. Fishhook Creek kokanee are genetically diverse and during spawning, are temporally and spatially isolated from the residual sockeye population. Eleven composite haplotypes were observed in the kokanee population. The unusually high number of haplotypes is most likely a consequence of periodic stocking of Redfish Lake with kokanee from other sources. Genetic data from Redfish Lake creel samples taken during 1996-1999 putatively indicate the incidental take of a listed resident sockeye.« less

  13. Alternative models of climatic effects on sockeye salmon (Oncorhynchus nerka) productivity in Bristol Bay, Alaska, and the Fraser River, British Columbia

    USGS Publications Warehouse

    Adkison, M.; Peterman, R.; Lapointe, M.; Gillis, D.; Korman, J.

    1996-01-01

    We compare alternative models of sockeye salmon (Oncorhynchus nerka) productivity (returns per spawner) using more than 30 years of catch and escapement data for Bristol Bay, Alaska, and the Fraser River, British Columbia. The models examined include several alternative forms of models that incorporate climatic influences as well as models not based on climate. For most stocks, a stationary stock-recruitment relationship explains very little of the interannual variation in productivity. In Bristol Bay, productivity co-varies among stocks and appears to be strongly related to fluctuations in climate. The best model for Bristol Bay sockeye involved a change in the 1970s in the parameters of the Ricker stock-recruitment curve; the stocks generally became more productive. In contrast, none of the models of Fraser River stocks that we examined explained much of the variability in their productivity.

  14. Assignment of sockeye salmon (Oncorhynchus nerka) to spawning sites using DNA markers.

    PubMed

    Corley-Smith, Graham E; Wennerberg, Liv; Schembri, Joy A; Lim, Chinten J; Cooper, Karen L; Brandhorst, Bruce P

    2005-01-01

    Randomly amplified polymorphic DNA (RAPD) markers were used to assign individual adult sockeye salmon to their spawning sites using a genotype assignment test. Six primers were selected for use by screening bulked DNA samples for markers missing in fish from one or more of 5 sites in British Columbia or Alaska. Of 73 markers scored, 54 showed variation between or within sites among the sampled fish. Thirty-seven of the variable markers were not detected in any fish from one or more sites; 18 variable markers were detected in all fish from one or more other sites. Thus 25% of markers scored were found in all fish of some sites and in no fish of some other sites. An assignment test placed all 70 fish tested into their correct populations. Principal coordinate analysis of genetic variation produced clusters of fish corresponding to each sampling site. No sex-specific RAPD markers were detected among more than 1300 screened.

  15. Uptake of erythromycin by first-feeding sockeye salmon, Oncorhynchus nerka (Walbaum), fed live or freeze-dried enriched adult Artemia or medicated pellets.

    PubMed

    Cook, M A; Rust, M B; Massee, K; Majack, T; Peterson, M E

    2003-05-01

    The potential to use adult Artemia to deliver erythromycin to first-feeding sockeye salmon, Oncorhynchus nerka (Walbaum), was investigated in three trials. In the first trial, first-feeding sockeye were fed live erythromycin enriched adult Artemia or pellets containing equal amounts of erythromycin for 35 days. At the end of the trial, tissue erythromycin concentration of the fish fed the live Artemia was significantly greater (P < 0.05, 25.52 +/- 1.29 microg mL(-1); mean +/- SEM), than the tissue concentration of the fish fed the pellets (0.72 +/- 0.01 microg mL(-1)). In the second trial, first-feeding sockeye were fed either live or freeze-dried bioencapsulated erythromycin (adult Artemia) or pellets containing erythromycin daily for 21 days. Mean daily erythromycin concentration in fish fed the freeze-dried Artemia, live Artemia, or pellets did not differ significantly. In the third trial, apparent erythromycin digestibility was determined. Significantly more (P < 0.05) erythromycin was retained by juvenile sockeye fed freeze-dried bioencapsulated erythromycin (98.3 +/- 1.0%) compared with medicated pellets (89.2 +/- 1.7%). Uptake of bioencapsulated erythromycin from adult Artemia (live or freeze-dried) appears to be greater than uptake from pellets. Freeze-dried and live Artemia were equally effective at delivery suggesting enriched freeze-dried adult Artemia could be produced into a highly palatable, consistent, off-the-shelf product.

  16. Deposition Form and Bioaccessibility of Keto-carotenoids from Mamey Sapote (Pouteria sapota), Red Bell Pepper (Capsicum annuum), and Sockeye Salmon (Oncorhynchus nerka) Filet.

    PubMed

    Chacón-Ordóñez, Tania; Esquivel, Patricia; Jiménez, Víctor M; Carle, Reinhold; Schweiggert, Ralf M

    2016-03-09

    The ultrastructure and carotenoid-bearing structures of mamey sapote (Pouteria sapota) chromoplasts were elucidated using light and transmission electron microscopy and compared to carotenoid deposition forms in red bell pepper (Capsicum annuum) and sockeye salmon (Oncorhynchus nerka). Globular-tubular chromoplasts of sapote contained numerous lipid globules and tubules embodying unique provitamin A keto-carotenoids in a lipid-dissolved and presumably liquid-crystalline form, respectively. Bioaccessibility of sapotexanthin and cryptocapsin was compared to that of structurally related keto-carotenoids from red bell pepper and salmon. Capsanthin from bell pepper was the most bioaccessible pigment, followed by sapotexanthin and cryptocapsin esters from mamey sapote. In contrast, astaxanthin from salmon was the least bioaccessible keto-carotenoid. Thermal treatment and fat addition consistently enhanced bioaccessibility, except for astaxanthin from naturally lipid-rich salmon, which remained unaffected. Although the provitamin A keto-carotenoids from sapote were highly bioaccessible, their qualitative and quantitative in vivo bioavailability and their conversion to vitamin A remains to be confirmed.

  17. Validation of daily increments and a marine-entry check in the otoliths of sockeye salmon Oncorhynchus nerka post-smolts.

    PubMed

    Freshwater, C; Trudel, M; Beacham, T D; Neville, C-E; Tucker, S; Juanes, F

    2015-07-01

    Juvenile sockeye salmon Oncorhynchus nerka that were reared and smolted in laboratory conditions were found to produce otolith daily increments, as well as a consistently visible marine-entry check formed during their transition to salt water. Field-collected O. nerka post-smolts of an equivalent age also displayed visible checks; however, microchemistry estimates of marine-entry date using Sr:Ca ratios differed from visual estimates by c. 9 days suggesting that microstructural and microchemical processes occur on different time scales. © 2015 The Fisheries Society of the British Isles.

  18. Defining biophysical reference conditions for dynamics river systems: an Alaskan example

    NASA Astrophysics Data System (ADS)

    Pess, G. R.

    2008-12-01

    Defining reference conditions for dynamic river ecosystems is difficult for two reasons. First long-term, persistent anthropogenic influences such as land development, harvest of biological resources, and invasive species have resulted in degraded, reduced, and simplified ecological communities and associated habitats. Second, river systems that have not been altered through human disturbance rarely have a long-term dataset on ecological conditions. However there are exceptions which can help us define the dynamic nature of river ecosystems. One large-scale exception is the Wood River system in Bristol Bay, Alaska, where habitat and salmon populations have not been altered by anthropogenic influences such as land development, hatchery production, and invasive species. In addition, the one major anthropogenic disturbance, salmon (Oncorhynchus spp.) harvest, has been quantified and regulated since its inception. First, we examined the variation in watershed and stream habitat characteristics across the Wood River system. We then compared these stream habitat characteristics with data that was collected in the 1950s. Lastly, we examined the correlation between pink (Oncorhynchus gorbuscha), chum (O. keta), and Chinook (O. tshawytscha), and sockeye salmon (O. nerka), and habitat characteristics in the Wood River system using four decades of data on salmon. We found that specific habitat attributes such as stream channel wetted width, depth, cover type, and the proportion of spawnable area were similar to data collected in the 1950s. Greater stream habitat variation occurred among streams than over time. Salmon occurrence and abundance, however was more temporal and spatially variable. The occurrence of pink and chum salmon increased from the 1970's to the present in the Wood River system, while sockeye abundance has fluctuated with changes in ocean conditions. Pink, Chinook and chum salmon ranged from non-existent to episodic to abundantly perennial, while sockeye

  19. Enhanced transcriptomic responses in the Pacific salmon louse Lepeophtheirus salmonis oncorhynchi to the non-native Atlantic Salmon Salmo salar suggests increased parasite fitness.

    PubMed

    Braden, Laura M; Sutherland, Ben J G; Koop, Ben F; Jones, Simon R M

    2017-01-30

    Outcomes of infections with the salmon louse Lepeophtheirus salmonis vary considerably among its natural hosts (Salmo, Oncorhynchus spp.). Host-parasite interactions range from weak to strong host responses accompanied by high to low parasite abundances, respectively. Parasite behavioral studies indicate that the louse prefers the host Atlantic Salmon (Salmo salar), which is characterized by a weak immune response, and that this results in enhanced parasite reproduction and growth rates. Furthermore, parasite-derived immunosuppressive molecules (e.g., proteases) have been detected at higher amounts in response to the mucus of Atlantic Salmon relative to Coho Salmon (Oncorhynchus kisutch). However, the host-specific responses of the salmon louse have not been well characterized in either of the genetically distinct sub-species that occur in the Atlantic and Pacific Oceans. We assessed and compared the transcriptomic feeding response of the Pacific salmon louse (L. salmonis oncorhynchi,) while parasitizing the highly susceptible Atlantic Salmon and Sockeye Salmon (Oncorhynchus nerka) or the more resistant Coho Salmon (Oncorhynchus kisutch) using a 38 K oligonucleotide microarray. The response of the louse was enhanced both in the number of overexpressed genes and in the magnitude of expression while feeding on the non-native Atlantic Salmon, compared to either Coho or Sockeye Salmon. For example, putative virulence factors (e.g., cathepsin L, trypsin, carboxypeptidase B), metabolic enzymes (e.g., cytochrome B, cytochrome C), protein synthesis enzymes (e.g., ribosomal protein P2, 60S ribosomal protein L7), and reproduction-related genes (e.g., estrogen sulfotransferase) were overexpressed in Atlantic-fed lice, indicating heightened parasite fitness with this host species. In contrast, responses in Coho- or Sockeye-fed lice were more similar to those of parasites deprived of a host. To test for host acclimation by the parasite, we performed a reciprocal host transfer

  20. Resurrecting an extinct salmon evolutionarily significant unit: archived scales, historical DNA and implications for restoration.

    PubMed

    Iwamoto, Eric M; Myers, James M; Gustafson, Richard G

    2012-04-01

    Archival scales from 603 sockeye salmon (Oncorhynchus nerka), sampled from May to July 1924 in the lower Columbia River, were analysed for genetic variability at 12 microsatellite loci and compared to 17 present-day O. nerka populations-exhibiting either anadromous (sockeye salmon) or nonanadromous (kokanee) life histories-from throughout the Columbia River Basin, including areas upstream of impassable dams built subsequent to 1924. Statistical analyses identified four major genetic assemblages of sockeye salmon in the 1924 samples. Two of these putative historical groupings were found to be genetically similar to extant evolutionarily significant units (ESUs) in the Okanogan and Wenatchee Rivers (pairwise F(ST)  = 0.004 and 0.002, respectively), and assignment tests were able to allocate 77% of the fish in these two historical groupings to the contemporary Okanogan River and Lake Wenatchee ESUs. A third historical genetic grouping was most closely aligned with contemporary sockeye salmon in Redfish Lake, Idaho, although the association was less robust (pairwise F(ST)  = 0.060). However, a fourth genetic grouping did not appear to be related to any contemporary sockeye salmon or kokanee population, assigned poorly to the O. nerka baseline, and had distinctive early return migration timing, suggesting that this group represents a historical ESU originating in headwater lakes in British Columbia that was probably extirpated sometime after 1924. The lack of a contemporary O. nerka population possessing the genetic legacy of this extinct ESU indicates that efforts to reestablish early-migrating sockeye salmon to the headwater lakes region of the Columbia River will be difficult. © 2012 Blackwell Publishing Ltd.

  1. [The effect of reproduction biotopes on the genetic differentiation of populations of sockeye salmon Oncorhynchus nerka].

    PubMed

    Brykov, V A; Poliakova, N E; Podlesnykh, A V; Golub', E V; Golub', A P; Zhdanova, O L

    2005-05-01

    Variation of mitochondrial DNA (mtDNA) was examined in nine populations from three lake-river systems of Chukotka and Kamchatka. Significant differences were found between most of the sockeye salmon samples studied. The genetic differences among populations were not high and often did not correlate with the geographical distances between them. The low population divergence is explained by a short time of existence of most of them, having been formed after the recession of the upper Pleistocene glacier. When the populations were grouped according to their spawning biotopes (river or lake), they in general appeared more genetically similar than upon their grouping by geographical location (the lake-river systems). The differences between the river and lake populations in the lake--river systems increased from north to south.

  2. Do Spawning Salmon Contribute Marine-Derived Contaminants to Southeast Alaskan Streams?

    NASA Astrophysics Data System (ADS)

    Nagorski, S. A.; Hudson, J. P.; Fellman, J.; Hood, E. W.; Vermilyea, A.; Krabbenhoft, D. P.; Ylitalo, G.

    2016-12-01

    Pacific salmon are well known contributors of marine-derived nutrients and carbon to freshwater systems where they spawn and die. A potentially negative side effect of their freshwater spawning legacy is their additional contribution of pollutants accumulated during the marine phase of their life cycle. Alaskan salmon, which undergo the majority of their bodily growth in the North Pacific, are being exposed to rising concentrations of pollutants in the waters and foodwebs of the north Pacific. In this study we investigated the contribution of mercury and persistent organic pollutants (POPs) by spawning Pacific salmon to five streams in the vicinity of Juneau, Alaska. Using a nested experimental design inherent in streams with natural migration barriers or steep density gradients, we collected samples from stream reaches with and without spawning salmon. We measured total and methyl mercury in filtered water, suspended particulates, streambed sediment, biofilm on incubated leaf packs, two taxa of benthic macroinvertebrate larvae, and rearing and/or resident fishes. The benthic macroinvertebrates and fishes were also analyzed for a suite of POPs, consisting of historic and current use pesticides and historic and urban use chemicals. For most parameters, contaminant concentrations were higher in the lower reaches where salmon spawners were present, with stronger effects in the streams with higher spawner densities. For example, in the two streams with the highest spawner densities, filtered methylmercury was an order of magnitude higher in the lower stream reach and comprised up to 33% of the total mercury. Alder leaf packs resulted in particularly consistent spatial patterns, while benthic macroinvertebrate larvae results were the least spatially consistent for both mercury and POPs. Although fish tissue mercury concentrations were not uniformly higher in lower stream reaches across our 5 study streams due to upstream sources of mercury and different fish species and

  3. Excess post-exercise oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon following critical speed swimming.

    PubMed

    Lee, C G; Farrell, A P; Lotto, A; Hinch, S G; Healey, M C

    2003-09-01

    The present study measured the excess post-exercise oxygen cost (EPOC) following tests at critical swimming speed (Ucrit) in three stocks of adult, wild, Pacific salmon (Oncorhynchus sp.) and used EPOC to estimate the time required to return to their routine level of oxygen consumption (recovery time) and the total oxygen cost of swimming to Ucrit. Following exhaustion at Ucrit, recovery time was 42-78 min, depending upon the fish stock. The recovery times are several-fold shorter than previously reported for juvenile, hatchery-raised salmonids. EPOC varied fivefold among the fish stocks, being greatest for Gates Creek sockeye salmon (O. nerka), which was the salmon stock that had the longest in-river migration, experienced the warmest temperature and achieved the highest maximum oxygen consumption compared with the other salmon stocks that were studied. EPOC was related to Ucrit, which in turn was directly influenced by ambient test temperature. The non-aerobic cost of swimming to Ucrit was estimated to add an additional 21.4-50.5% to the oxygen consumption measured at Ucrit. While these non-aerobic contributions to swimming did not affect the minimum cost of transport, they were up to three times higher than the value used previously for an energetic model of salmon migration in the Fraser River, BC, Canada. As such, the underestimate of non-aerobic swimming costs may require a reevaluation of the importance of how in-river barriers like rapids and bypass facilities at dams, and year-to-year changes in river flows and temperatures, affect energy use and hence migration success.

  4. Appearance and quantification of infectious hematopoietic necrosis virus in female sockeye salmon (Oncorhynchus nerka) during their spawning migration

    USGS Publications Warehouse

    Mulcahy, D.; Jenes, C.K.; Pascho, R.J.

    1984-01-01

    The incidence and amount of infectious hematopoietic necrosis (IHN) virus was determined in 10 organs and body fluids from each of 100 female sockeye salmon(Oncorhynchus nerka) before, during, and after their spawning migration into freshwater. Virus was found in high concentrations only in fish sampled during and after spawning. Infection rates increased from nil to 100 percent within 2 weeks. In spawning fish, incidences of IHN virus were high in all organs and fluids except brain and serum, and the highest concentrations were in the pyloric caeca and lower gut. Immediately before spawning, IHN virus was found most frequently in the gills, less frequently in the pyloric caeca and spleen, and rarely in other organs.

  5. The effect of temperature on swimming performance and oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon stocks.

    PubMed

    Lee, C G; Farrell, A P; Lotto, A; MacNutt, M J; Hinch, S G; Healey, M C

    2003-09-01

    Our knowledge of the swimming capabilities and metabolic rates of adult salmon, and particularly the influence of temperature on them, is extremely limited, and yet this information is critical to understanding the remarkable upstream migrations that these fish can make. To remedy this situation, we examined the effects of temperature on swimming performance and metabolic rates of 107 adult fish taken from three stocks of sockeye salmon Oncorhynchus nerka and one stock of coho salmon O. kisutch at various field and laboratory locations, using large, portable, swim tunnels. The salmon stocks were selected because of differences in their ambient water temperature (ranging from 5 degrees C to 20 degrees C) and the total distance of their in-river migrations (ranging from approximately 100 km for coastal stocks to approximately 1100 km for interior stocks). As anticipated, differences in routine metabolic rate observed among salmon stocks were largely explained by an exponential dependence on ambient water temperature. However, the relationship between water temperature and maximum oxygen consumption (MO2max), i.e. the MO2 measured at the critical swimming speed (Ucrit), revealed temperature optima for MO2max that were stock-specific. These temperature optima were very similar to the average ambient water temperatures for the natal stream of a given stock. Furthermore, at a comparable water temperature, the salmon stocks that experienced a long and energetically costly in-river migration were characterized by a higher MO2max, a higher scope for activity, a higher Ucrit and, in some cases, a higher cost of transport, relative to the coastal salmon stocks that experience a short in-river migration. We conclude that high-caliber respirometry can be performed in a field setting and that stock-specific differences in swimming performance of adult salmon may be important for understanding upstream migration energetics and abilities.

  6. Simultaneous biologging of heart rate and acceleration, and their relationships with energy expenditure in free-swimming sockeye salmon (Oncorhynchus nerka).

    PubMed

    Clark, Timothy Darren; Sandblom, E; Hinch, S G; Patterson, D A; Frappell, P B; Farrell, A P

    2010-06-01

    Monitoring the physiological status and behaviour of free-swimming fishes remains a challenging task, although great promise stems from techniques such as biologging and biotelemetry. Here, implanted data loggers were used to simultaneously measure heart rate (f (H)), visceral temperature, and a derivation of acceleration in two groups of wild adult sockeye salmon (Oncorhynchus nerka) held at two different water speeds (slow and fast). Calibration experiments performed with individual fish in a swim tunnel respirometer generated strong relationships between acceleration, f (H), tail beat frequency and energy expenditure over a wide range of swimming velocities. The regression equations were then used to estimate the overall energy expenditure of the groups of fish held at different water speeds. As expected, fish held at faster water speeds exhibited greater f (H) and acceleration, and correspondingly a higher estimated energy expenditure than fish held at slower water speeds. These estimates were consistent with gross somatic energy density of fish at death, as determined using proximate analyses of a dorsal tissue sample. Heart rate alone and in combination with acceleration, rather than acceleration alone, provided the most accurate proxies for energy expenditure in these studies. Even so, acceleration provided useful information on the behaviour of fish and may itself prove to be a valuable proxy for energy expenditure under different environmental conditions, using a different derivation of the acceleration data, and/or with further calibration experiments. These results strengthen the possibility that biologging or biotelemetry of f (H) and acceleration may be usefully applied to migrating sockeye salmon to monitor physiology and behaviour, and to estimate energy use in the natural environment.

  7. The relationships between fish health, metabolic rate, swimming performance and recovery in return-run sockeye salmon, Oncorhynchus nerka (Walbaum).

    PubMed

    Tierney, K B; Farrell, A P

    2004-11-01

    The repeat swimming ability and oxygen uptake (Mo2) of adult sockeye salmon, Oncorhynchus nerka (Walbaum), were assessed at ambient water temperatures at three field locations along their migration route. Following these measurements, internal and external fish condition was evaluated according to United States Environmental Protection Agency guidelines. Here we report on the physiological characteristics of fish having either moderate or severe levels of disease and injury. Routine oxygen uptake (Mo2) did not differ between healthy fish and those with indices of ill health. In contrast, fish classified as sick, which included conditions of damaged internal organs, an Ichthyophonus spp. heart infection, a Saprolegnia spp. gill infection, and skin wounds, had a lower post-exercise Mo2 and were unable to repeat their critical swim speed (U(crit)) on the second swim test. Moderate levels of disease or injury did not significantly affect either U(crit) or post-exercise Mo2. We conclude that the ability of adult salmon to recover quickly from exercise may be a useful indicator of sublethal pathologies.

  8. Is fishing selective for physiological and energetic characteristics in migratory adult sockeye salmon?

    PubMed Central

    Cooke, Steven J; Donaldson, Michael R; Hinch, Scott G; Crossin, Glenn T; Patterson, David A; Hanson, Kyle C; English, Karl K; Shrimpton, J Mark; Farrell, Anthony P

    2009-01-01

    There is extensive evidence that fishing is often selective for specific phenotypic characteristics, and that selective harvest can thus result in genotypic change. To date, however, there are no studies that evaluate whether fishing is selective for certain physiological or energetic characteristics that may influence fish behaviour and thus vulnerability to capture. Here, adult sockeye salmon (Oncorhynchus nerka) were used as a model to test the null hypothesis that fishing is not selective for specific physiological or energetic traits. Fish were intercepted during their spawning migrations, implanted with a gastric radio transmitter, and biopsied (i.e., non-lethally sampled for blood, gill tissue and quantification of energetic status). In both 2003 and 2006, we tagged and biopsied 301 and 770 sockeye salmon, respectively, in the marine environment en route to their natal river system to spawn. In 2006 an additional 378 individuals were tagged and biopsied in freshwater. We found that 23 (7.6%) of the marine fish tagged in 2003, 78 (10.1%) of the marine fish tagged in 2006 and 57 (15.1%) of the freshwater fish tagged in 2006 were harvested by one of three fisheries sectors that operate in the coastal marine environment and the Fraser River (i.e. commercial, recreational or First Nations fisheries between the site of release and Hell's Gate in the Fraser River, approximately 250 km upriver and 465 km from the ocean tagging site). However, fisheries were not open continually or consistently in different locations and for different fisheries sectors necessitating a paired analytical approach. As such, for statistical analyses we paired individual fish that were harvested with another fish of the same genetic stock that was released on the same date and exhibited similar migration behaviour, except that they successfully evaded capture and reached natal spawning grounds. Using two-tailed Wilcoxon matched pairs signed-rank tests, we revealed that the physiological

  9. Long-term Records of Pacific Salmon Abundance From Sediment Core Analysis: Relationships to Past Climatic Change, and Implications for the Future

    NASA Astrophysics Data System (ADS)

    Finney, B.

    2002-12-01

    The response of Pacific salmon to future climatic change is uncertain, but will have large impacts on the economy, culture and ecology of the North Pacific Rim. Relationships between sockeye salmon populations and climatic change can be determined by analyzing sediment cores from lakes where sockeye return to spawn. Sockeye salmon return to their natal lake system to spawn and subsequently die following 2 - 3 years of feeding in the North Pacific Ocean. Sockeye salmon abundance can be reconstructed from stable nitrogen isotope analysis of lake sediment cores as returning sockeye transport significant quantities of N, relatively enriched in N-15, from the ocean to freshwater systems. Temporal changes in the input of salmon-derived N, and hence salmon abundance, can be quantified through downcore analysis of N isotopes. Reconstructions of sockeye salmon abundance from lakes in several regions of Alaska show similar temporal patterns, with variability occurring on decadal to millennial timescales. Over the past 2000 years, shifts in sockeye salmon abundance far exceed the historical decadal-scale variability. A decline occurred from about 100 BC - 800 AD, but salmon were consistently more abundant 1200 - 1900 AD. Declines since 1900 AD coincide with the period of extensive commercial fishing. Correspondence between these records and paleoclimatic data suggest that changes in salmon abundance are related to large scale climatic changes over the North Pacific. For example, the increase in salmon abundance c.a. 1200 AD corresponds to a period of glacial advance in southern Alaska, and a shift to drier conditions in western North America. Although the regionally coherent patterns in reconstructed salmon abundance are consistent with the hypothesis that climate is an important driver, the relationships do not always follow patterns observed in the 20th century. A main feature of recorded climate variability in this region is the alternation between multi-decade periods of

  10. Impacts of climatic change and fishing on Pacific salmon abundance over the past 300 years.

    PubMed

    Finney, B P; Gregory-Eaves, I; Sweetman, J; Douglas, M S; Smol, J P

    2000-10-27

    The effects of climate variability on Pacific salmon abundance are uncertain because historical records are short and are complicated by commercial harvesting and habitat alteration. We use lake sediment records of delta15N and biological indicators to reconstruct sockeye salmon abundance in the Bristol Bay and Kodiak Island regions of Alaska over the past 300 years. Marked shifts in populations occurred over decades during this period, and some pronounced changes appear to be related to climatic change. Variations in salmon returns due to climate or harvesting can have strong impacts on sockeye nursery lake productivity in systems where adult salmon carcasses are important nutrient sources.

  11. Monitoring and Evaluation of Smolt Migration in the Columbia River Basin : Volume VI : Evaluation of the 2000 Predictions of the Run-Timing of Wild Migrant Chinook Salmon and Steelhead Trout, and Hatchery Sockeye Salmon in the Snake River Basin, and Combined Wild Hatchery Salminids Migrating to Rock Island and McNary Dams using Program RealTime.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, Caitlin

    1998-07-01

    Program RealTime provided tracking and forecasting of the 2000 in season outmigration via the internet for stocks of wild PIT-tagged spring/summer chinook salmon. These stocks were ESUs from nineteen release sites above Lower Granite dam, including Bear Valley Creek, Big Creek, Camas Creek (new), Cape Horn Creek, Catherine Creek, Elk Creek, Herd Creek, Imnaha River, Johnson Creek (new), Lake Creek, Loon Creek, Lostine River, Marsh Creek, Minam River, East Fork Salmon River (new), South Fork Salmon River, Secesh River, Sulfur Creek and Valley Creek. Forecasts were also provided for two stocks of hatchery-reared PIT-tagged summer-run sockeye salmon, from Redfish Lakemore » and Alturas Lake (new); for a subpopulation of the PIT-tagged wild Snake River fall subyearling chinook salmon; for all wild Snake River PIT-tagged spring/summer yearling chinook salmon (new) and steelhead trout (new)detected at Lower Granite Dam during the 2000 outmigration. The 2000 RealTime project began making forecasts for combined wild- and hatchery-reared runs-at-large of subyearling and yearling chinook, coho, and sockeye salmon, and steelhead trout migrating to Rock Island and McNary Dams on the mid-Columbia River and the mainstem Columbia River. Due to the new (in 1999-2000) Snake River basin hatchery protocol of releasing unmarked hatchery-reared fish, the RealTime forecasting project no longer makes run-timing forecasts for wild Snake River runs-at-large using FPC passage indices, as it has done for the previous three years (1997-1999). The season-wide measure of Program RealTime performance, the mean absolute difference (MAD) between in-season predictions and true (observed) passage percentiles, improved relative to previous years for nearly all stocks. The average season-wide MAD of all (nineteen) spring/summer yearling chinook salmon ESUs dropped from 5.7% in 1999 to 4.5% in 2000. The 2000 MAD for the hatchery-reared Redfish Lake sockeye salmon ESU was the lowest recorded, at 6

  12. Piscine Orthoreovirus from Western North America Is Transmissible to Atlantic Salmon and Sockeye Salmon but Fails to Cause Heart and Skeletal Muscle Inflammation.

    PubMed

    Garver, Kyle A; Johnson, Stewart C; Polinski, Mark P; Bradshaw, Julia C; Marty, Gary D; Snyman, Heindrich N; Morrison, Diane B; Richard, Jon

    2016-01-01

    Heart and skeletal muscle inflammation (HSMI) is a significant and often fatal disease of cultured Atlantic salmon in Norway. The consistent presence of Piscine orthoreovirus (PRV) in HSMI diseased fish along with the correlation of viral load and antigen with development of lesions has supported the supposition that PRV is the etiologic agent of this condition; yet the absence of an in vitro culture system to demonstrate disease causation and the widespread prevalence of this virus in the absence of disease continues to obfuscate the etiological role of PRV with regard to HSMI. In this study, we explore the infectivity and disease causing potential of PRV from western North America-a region now considered endemic for PRV but without manifestation of HSMI-in challenge experiments modeled upon previous reports associating PRV with HSMI. We identified that western North American PRV is highly infective by intraperitoneal injection in Atlantic salmon as well as through cohabitation of both Atlantic and Sockeye salmon. High prevalence of viral RNA in peripheral blood of infected fish persisted for as long as 59 weeks post-challenge. Nevertheless, no microscopic lesions, disease, or mortality could be attributed to the presence of PRV, and only a minor transcriptional induction of the antiviral Mx gene occurred in blood and kidney samples during log-linear replication of viral RNA. Comparative analysis of the S1 segment of PRV identified high similarity between this North American sequence and previous sequences associated with HSMI, suggesting that factors such as viral co-infection, alternate PRV strains, host condition, or specific environmental circumstances may be required to cause this disease.

  13. Piscine Orthoreovirus from Western North America Is Transmissible to Atlantic Salmon and Sockeye Salmon but Fails to Cause Heart and Skeletal Muscle Inflammation

    PubMed Central

    Polinski, Mark P.; Bradshaw, Julia C.; Marty, Gary D.; Snyman, Heindrich N.; Morrison, Diane B.; Richard, Jon

    2016-01-01

    Heart and skeletal muscle inflammation (HSMI) is a significant and often fatal disease of cultured Atlantic salmon in Norway. The consistent presence of Piscine orthoreovirus (PRV) in HSMI diseased fish along with the correlation of viral load and antigen with development of lesions has supported the supposition that PRV is the etiologic agent of this condition; yet the absence of an in vitro culture system to demonstrate disease causation and the widespread prevalence of this virus in the absence of disease continues to obfuscate the etiological role of PRV with regard to HSMI. In this study, we explore the infectivity and disease causing potential of PRV from western North America—a region now considered endemic for PRV but without manifestation of HSMI—in challenge experiments modeled upon previous reports associating PRV with HSMI. We identified that western North American PRV is highly infective by intraperitoneal injection in Atlantic salmon as well as through cohabitation of both Atlantic and Sockeye salmon. High prevalence of viral RNA in peripheral blood of infected fish persisted for as long as 59 weeks post-challenge. Nevertheless, no microscopic lesions, disease, or mortality could be attributed to the presence of PRV, and only a minor transcriptional induction of the antiviral Mx gene occurred in blood and kidney samples during log-linear replication of viral RNA. Comparative analysis of the S1 segment of PRV identified high similarity between this North American sequence and previous sequences associated with HSMI, suggesting that factors such as viral co-infection, alternate PRV strains, host condition, or specific environmental circumstances may be required to cause this disease. PMID:26730591

  14. Effects of atrazine and chlorothalonil on the reproductive success, development, and growth of early life stage sockeye salmon (Oncorhynchus nerka).

    PubMed

    Du Gas, Lindsay M; Ross, Peter S; Walker, Janessa; Marlatt, Vicki L; Kennedy, Christopher J

    2017-05-01

    The effects of 2 currently used commercial pesticide formulations on Pacific sockeye salmon (Oncorhynchus nerka), from fertilization to emergence, were evaluated in a gravel-bed flume incubator that simulated a natural streambed. Embryos were exposed to atrazine at 25 µg/L (low atrazine) or atrazine at 250 µg/L (high atrazine) active ingredient (a.i.), and chlorothalonil at 0.5 µg/L (low chlorothalonil) or chlorothalonil at 5 µg/L a.i. (high chlorothalonil) and examined for effects on developmental success and timing, as well as physical and biochemical growth parameters. Survival to hatch was reduced in the high chlorothalonil group (55% compared with 83% in controls), accompanied by a 24% increase in finfold deformity incidence. Reduced alevin condition factor (2.9-5.4%) at emergence and elevated triglyceride levels were seen in chlorothalonil-exposed fish. Atrazine exposure caused premature hatch (average high atrazine time to 50% hatch [H50] = 100 d postfertilization [dpf]), and chlorothalonil exposure caused delayed hatch (high chlorothalonil H50 = 108 dpf; controls H50 = 102 dpf). All treatments caused premature emergence (average time to 50% emergence [E50]: control E50 = 181 dpf, low chlorothalonil E50 = 175 dpf, high chlorothalonil E50 = 174 dpf, high atrazine E50 = 175 dpf, low atrazine E50 = 174 dpf), highlighting the importance of using a gravel-bed incubator to examine this subtle, but critical endpoint. These alterations indicate that atrazine and chlorothalonil could affect survival of early life stages of sockeye salmon in the wild. Environ Toxicol Chem 2017;36:1354-1364. © 2017 SETAC. © 2017 SETAC.

  15. The influence of maternal condition on offspring performance in sockeye salmon Oncorhynchus nerka.

    PubMed

    Tierney, K B; Patterson, D A; Kennedy, C J

    2009-10-01

    Eggs were taken from adult sockeye salmon Oncorhynchus nerka that had reached their journey's end in spawn-ready and moribund condition, and fertilized by healthy males. Egg number, size, hatching success and offspring growth did not differ with maternal condition, which suggests the absence of any persisting physiological maternal effects. Differences were noted in the swimming behaviour and physiology of the offspring at parr stage. In a 30 min schooling test conducted using groups of five in a flume, parr from moribund females were more likely to fatigue, were not as tightly schooled, and had a diminished startle response, both in the per cent responding and the burst distance. In individual, confined swimming tests conducted within a tube, post-exercise plasma lactate concentration, which is an indicator of white muscle use, was greater for parr from moribund adult females. The moribund females also had elevated lactate following exercise (their migration), which suggests heritable differences may exist in muscle use. This study shows that juvenile O. nerka artificially propagated from females exhausted by their return migration can exhibit swimming performance differences, indicating that maternal condition may need to be considered in breeding programmes.

  16. [Effective size of subpopulation of the early run sockeye salmon Oncorhynchus nerka from Azabach's Lake (Kamchatka): effect of density on variance of reproductive success].

    PubMed

    Efremov, V V; Parenskiĭ, V A

    2004-04-01

    Using Parensky's approach for estimating the number of breeding pairs, we determined effective subpopulation size Ne in early-run sockeye salmon Oncorhynchus nerka from Azabach'e Lake (Kamchatka) in 1977 through 1981. On average (over years and populations), biased sex ratio decreased Ne by 7% as compared to the number of fish on the spawning sites (Ni). High density reduced the Ne/Ni ratio by 62-66% because some fish were excluded from spawning. Dominance polygyny as compared to monogamy and random union of gametes could reduce Ne by about 17%.

  17. Tracing salmon-derived nutrients and contaminants in freshwater food webs across a pronounced spawner density gradient.

    PubMed

    Gregory-Eaves, Irene; Demers, J Marc J; Kimpe, Lynda; Krümmel, Eva M; Macdonald, Robie W; Finney, Bruce P; Blais, Jules M

    2007-06-01

    Many have demonstrated that anadromous Pacific salmon are significant vectors of nutrients from the ocean to freshwaters. Recently. however, it has been recognized that salmon spawners also input significant quantities of contaminants. The objectives of this paper are to delineate the extent to which salmon-derived nutrients are integrated into the freshwater food web using delta(15)N and delta(13)C and to assess the influence of the salmon pathway in the accumulation of contaminants in rainbow trout (Oncorhynchus mykiss). We found that the delta(15)N and delta(13)C of food web components were related positively and significantly to sockeye salmon (Oncorhynchus nerka) spawner density. Contaminant concentrations in rainbow trout also positively and significantly were related to sockeye salmon spawner density. These data suggest that the anadromous salmon nutrient and contaminant pathways are related and significantly impact the contaminant burden of resident fish.

  18. Modelling the Future Hydroclimatology of the Lower Fraser River and its Impacts on the Spawning Migration Survival of Sockeye Salmon

    NASA Technical Reports Server (NTRS)

    Hague, M. J.; Ferrari, M. R.; Miller, J. R.; Patterson, D. A.; Russell, G. L.; Farrell, A.P.; Hinch, S. G.

    2010-01-01

    Short episodic high temperature events can be lethal for migrating adult Pacific salmon (Oncorhynchus spp.). We downscaled temperatures for the Fraser River, British Columbia to evaluate the impact of climate warming on the frequency of exceeding thermal thresholds associated with salmon migratory success. Alarmingly, a modest 1.0 C increase in average summer water temperature over 100 years (1981-2000 to 2081-2100) tripled the number of days per year exceeding critical salmonid thermal thresholds (i.e. 19.0 C). Refined thresholds for two populations (Gates Creek and Weaver Creek) of sockeye salmon (Oncorhynchus nerka) were defined using physiological constraint models based on aerobic scope. While extreme temperatures leading to complete aerobic collapse remained unlikely under our warming scenario, both populations were increasingly forced to migrate upriver at reduced levels of aerobic performance (e.g. in 80% of future simulations, => 90% of salmon encountered temperatures exceeding population specific thermal optima for maximum aerobic scope; T(sub opt)) = 16.3 C for Gates Creek and T(sub sopt)=14.5 C for Weaver Creek). Assuming recent changes to river entry timing persist, we also predicted dramatic increases in the probability of freshwater mortality for Weaver Creek salmon due to reductions in aerobic, and general physiological, performance (e.g. in 42% of future simulations =>50% of Weaver Creek fish exceeded temperature thresholds associated with 0 - 60% of maximum aerobic scope). Potential for adaptation via directional selection on run-timing was more evident for the Weaver Creek population. Early entry Weaver Creek fish experienced 25% (range: 15 - 31%) more suboptimal temperatures than late entrants, compared with an 8% difference (range: 0 - 17%) between early and late Gates Creek fish. Our results emphasize the need to consider daily temperature variability in association with population-specific differences in behaviour and physiological

  19. Effect of Inclusion of Salmon Roe on Characteristics of Salmon Baby Food Products

    USDA-ARS?s Scientific Manuscript database

    Baby food was formulated from sockeye salmon (puree alone, puree +chunks, puree +pink row, puree +pink row +chunks, puree +red row, puree +red roe +chunks). In the 1st study, physical (pH, instrumental color, water activity) and descriptive sensory (odor, flavor, texture, visual color) characteristi...

  20. Quantifying six decades of fishery selection for size and age at maturity in sockeye salmon

    PubMed Central

    Kendall, Neala W; Hard, Jeffrey J; Quinn, Thomas P

    2009-01-01

    Life history traits of wild animals can be strongly influenced, both phenotypically and evolutionarily, by hunting and fishing. However, few studies have quantified fishery selection over long time periods. We used 57 years of catch and escapement data to document the magnitude of and trends in gillnet selection on age and size at maturity of a commercially and biologically important sockeye salmon stock. Overall, the fishery has caught larger fish than have escaped to spawn, but selection has varied over time, becoming weaker and less consistent recently. Selection patterns were strongly affected by fish age and sex, in addition to extrinsic factors including fish abundance, mesh size regulations, and fish length variability. These results revealed a more complex and changing pattern of selective harvest than the ‘larger is more vulnerable’ model, emphasizing the need for quantified, multi-year studies before conclusions can be drawn about potential evolutionary and ecological effects of fishery selection. Furthermore, the results indicate that biologically robust escapement goals and prevention of harvest of the largest individuals may help prevent negative effects of size-selective harvest. PMID:25567896

  1. Genetic diversity of sockeye salmon (`oncorhynchus nerka`) of Cook Inlet, Alaska, and its application to restoration of injured populations of the Kenai River. Exxon Valdez Oil Spill Restoration Project 93012 and 94255-2. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seeb, L.W.; Habicht, C.; Templin, W.D.

    1995-11-01

    Genetic data from sockeye salmon (Oncorhynchus nerka) were collected from all significant spawning populations contributing to mixed-stock harvests in Cook Inlet. A total of 68 allozyme loci were resolved from 37 populations. Mitochondrial DNA data from the NADH subunits 5 and 6 were collected from 19 of the populations. Mixed-stock analyses using maximum likelihood methods with 27 loci were evaluated to estimate the proportion of Kenai River populations in Central District drift fisheries. Simulations indicate that Kenai River populations can be identified in mixtures at a level of precision and accuracy useful for restoration and fishery management. Mixed-stock samples frommore » Cook Inlet drift net fisheries were analyzed both inseason (48 hr) and post-season. Samples from fish wheels from the Kenai, Kasilof, Yentna, and Susitna River systems were also analyzed. Inclusion of mtDNA data in the analysis is being investigated to determine if it improves precision and accuracy. Results from this study are currently being used in the management and restoration of Kenai River sockeye salmon injured in the 1989 Exxon Valdex oil spill.« less

  2. Immersion vaccination of sockeye salmon (Oncorhynchus nerka) with two pathogenic strains of Vibrio anguillarum

    USGS Publications Warehouse

    Gould, R.W.; Antipa, R.; Amend, D.F.

    1979-01-01

    Sockeye salmon (Oncorhynchus nerka) were immersion-vaccinated in suspensions containing 5 × 107, 5 × 106, 5 × 105, or 5 × 104 bacteria/mL of bivalent or monovalent, formalin-killedVibrio anguillarum, Types I and II. The fish were split into two lots and held for 54 d. At that time one lot was challenged with living, virulent V. anguillarum, Type I, and one with living, virulent V.anguillarum, Type II. Immunization with bivalent bacterin effectively protected the fish from vibriosis, but monovalent vaccine was effective only against the homologous challenge. Immunization with the highest concentration of Type I monovalent bacterin resulted in 0% Type I and 58% Type II challenge mortality. Immunization with the highest concentration of Type II monovalent bacterin resulted in 41% Type I and 0% Type II challenge mortality. Immunization with the highest concentration of bivalent Type I/Type II bacterin resulted in 2% mortality in both challenges. Protective bacterins were effective at concentrations down to 5 × 105 bacteria/mL.Key words: immersion vaccination, bivalent vaccines, Vibrio anguillarum, vibriosis.

  3. Immersion vaccination of sockeye salmon (Oncorhynchus kisutch) with two pathogenic strains of Vibrio anguillarum

    USGS Publications Warehouse

    Gould, R.W.; Antipa, R.; Amend, D.F.

    1979-01-01

    Sockeye salmon (Oncorhynchus nerka) were immersion-vaccinated in suspensions containing 5 × 107, 5 × 106, 5 × 105, or 5 × 104 bacteria/mL of bivalent or monovalent, formalin-killed Vibrio anguillarum, Types I and II. The fish were split into two lots and held for 54 d. At that time one lot was challenged with living, virulent V. anguillarum, Type I, and one with living, virulent V. anguillarum, Type II. Immunization with bivalent bacterin effectively protected the fish from vibriosis, but monovalent vaccine was effective only against the homologous challenge. Immunization with the highest concentration of Type I monovalent bacterin resulted in 0% Type I and 58% Type II challenge mortality. Immunization with the highest concentration of Type II monovalent bacterin resulted in 41% Type I and 0% Type II challenge mortality. Immunization with the highest concentration of bivalent Type I/Type II bacterin resulted in 2% mortality in both challenges. Protective bacterins were effective at concentrations down to 5 × 105 bacteria/mL. Key words: immersion vaccination, bivalent vaccines, Vibrio anguillarum, vibriosis.

  4. Juvenile habitat partitioning and relative productivity in allochronically isolated sockeye salmon (Oncorhynchus nerka).

    PubMed

    Miller, Ek Fillatre; Bradbury, Ir; Heath, Dd

    2011-12-01

    Allochronic divergence, like spatial isolation, may contribute to population diversity and adaptation, however the challenges for tracking habitat utilization in shared environments are far greater. Adult Klukshu River (Yukon, Canada) sockeye salmon, Oncorhynchus nerka, return as genetically distinct "early" and "late" runs. Early and late adult spawning populations (1999 and 2000) and their subsequent fry (sampled at 7 sites in 2000 and at 8 sites in 2001 throughout Klukshu Lake and River) were genotyped at eight microsatellite loci. Bayesian assignment was used to determine the spatial distribution of early versus late fry; although intermixed, the distribution of fry significantly differed in Klukshu Lake and in the Klukshu River in 2001, based on crosstab analyses. Late-run fry predominated in Klukshu Lake at all sites, while early-run fry were most common in the north and south of Klukshu Lake and in Klukshu River. Early-run spawners had significantly higher relative productivity (early life survival) than late-run fish (2.9 times more fry produced per early-run adult in 2000, and 9.2 times more in 2001). This study demonstrates spatial habitat partitioning and differences in the contribution of allochronically isolated populations to fry abundance, and highlights annual variability that likely contributes to recruitment variation.

  5. Juvenile habitat partitioning and relative productivity in allochronically isolated sockeye salmon (Oncorhynchus nerka)

    PubMed Central

    Miller, EK Fillatre; Bradbury, IR; Heath, DD

    2011-01-01

    Allochronic divergence, like spatial isolation, may contribute to population diversity and adaptation, however the challenges for tracking habitat utilization in shared environments are far greater. Adult Klukshu River (Yukon, Canada) sockeye salmon, Oncorhynchus nerka, return as genetically distinct “early” and “late” runs. Early and late adult spawning populations (1999 and 2000) and their subsequent fry (sampled at 7 sites in 2000 and at 8 sites in 2001 throughout Klukshu Lake and River) were genotyped at eight microsatellite loci. Bayesian assignment was used to determine the spatial distribution of early versus late fry; although intermixed, the distribution of fry significantly differed in Klukshu Lake and in the Klukshu River in 2001, based on crosstab analyses. Late-run fry predominated in Klukshu Lake at all sites, while early-run fry were most common in the north and south of Klukshu Lake and in Klukshu River. Early-run spawners had significantly higher relative productivity (early life survival) than late-run fish (2.9 times more fry produced per early-run adult in 2000, and 9.2 times more in 2001). This study demonstrates spatial habitat partitioning and differences in the contribution of allochronically isolated populations to fry abundance, and highlights annual variability that likely contributes to recruitment variation. PMID:22393527

  6. Genomic Changes Associated with Reproductive and Migratory Ecotypes in Sockeye Salmon (Oncorhynchus nerka)

    PubMed Central

    Veale, Andrew J.

    2017-01-01

    Mechanisms underlying adaptive evolution can best be explored using paired populations displaying similar phenotypic divergence, illuminating the genomic changes associated with specific life history traits. Here, we used paired migratory [anadromous vs. resident (kokanee)] and reproductive [shore- vs. stream-spawning] ecotypes of sockeye salmon (Oncorhynchus nerka) sampled from seven lakes and two rivers spanning three catchments (Columbia, Fraser, and Skeena) in British Columbia, Canada to investigate the patterns and processes underlying their divergence. Restriction-site associated DNA sequencing was used to genotype this sampling at 7,347 single nucleotide polymorphisms, 334 of which were identified as outlier loci and candidates for divergent selection within at least one ecotype comparison. Sixty-eight of these outliers were present in two or more comparisons, with 33 detected across multiple catchments. Of particular note, one locus was detected as the most significant outlier between shore and stream-spawning ecotypes in multiple comparisons and across catchments (Columbia, Fraser, and Snake). We also detected several genomic islands of divergence, some shared among comparisons, potentially showing linked signals of differential selection. The single nucleotide polymorphisms and genomic regions identified in our study offer a range of mechanistic hypotheses associated with the genetic basis of O. nerka life history variation and provide novel tools for informing fisheries management. PMID:29045601

  7. Concordance of nuclear and mitochondrial DNA markers in detecting a founder event in Lake Clark sockeye salmon

    USGS Publications Warehouse

    Ramstad, Kristina M.; Woody, Carol Ann; Habicht, Chris; Sage, G. Kevin; Seeb, James E.; Allendorf, Fred W.

    2007-01-01

    Genetic bottleneck effects can reduce genetic variation, persistence probability, and evolutionary potential of populations. Previous microsatellite analysis suggested a bottleneck associated with a common founding of sock-eye salmon Oncorhynchus nerka populations of Lake Clark, Alaska, about 100 to 400 generations ago. The common foundingevent occurred after the last glacial recession and resulted in reduced allelic diversity and strong divergence of Lake Clarksockeye salmon relative to neighboring Six Mile Lake and LakeIliamna populations. Here we used two additional genetic marker types (allozymes and mtDNA) to examine these patterns further. Allozyme and mtDNA results were congruent with the microsatellite data in suggesting a common founder event in LakeClark sockeye salmon and confirmed the divergence of Lake Clarkpopulations from neighboring Six Mile Lake and Lake Iliamna populations. The use of multiple marker types provided better understanding of the bottleneck in Lake Clark. For example, the Sucker Bay Lake population had an exceptionally severe reduction in allelic diversity at microsatellite loci, but not at mtDNA. This suggests that the reduced microsatellite variation in Sucker Bay Lake fish is due to consistently smaller effective population size than other Lake Clark populations, rather than a more acute or additional bottleneck since founding. Caution is urged in using reduced heterozygosity as a measure of genetic bottleneck effects because stochastic variance among loci resulted in an overall increase in allozyme heterozygosity within bottlenecked Lake Clark populations. However, heterozygosity excess, which assesses heterozygosity relative to allelic variation, detected genetic bottleneck effects in both allozyme and microsatellite loci. 

  8. Differential use of salmon by vertebrate consumers: implications for conservation

    PubMed Central

    Wheat, Rachel E.; Allen, Jennifer M.; Wilmers, Christopher C.

    2015-01-01

    Salmon and other anadromous fish are consumed by vertebrates with distinct life history strategies to capitalize on this ephemeral pulse of resource availability. Depending on the timing of salmon arrival, this resource may be in surplus to the needs of vertebrate consumers if, for instance, their populations are limited by food availability during other times of year. However, the life history of some consumers enables more efficient exploitation of these ephemeral resources. Bears can deposit fat and then hibernate to avoid winter food scarcity, and highly mobile consumers such as eagles, gulls, and other birds can migrate to access asynchronous pulses of salmon availability. We used camera traps on pink, chum, and sockeye salmon spawning grounds with various run times and stream morphologies, and on individual salmon carcasses, to discern potentially different use patterns among consumers. Wildlife use of salmon was highly heterogeneous. Ravens were the only avian consumer that fed heavily on pink salmon in small streams. Eagles and gulls did not feed on early pink salmon runs in streams, and only moderately at early sockeye runs, but were the dominant consumers at late chum salmon runs, particularly on expansive river flats. Brown bears used all salmon resources far more than other terrestrial vertebrates. Notably, black bears were not observed on salmon spawning grounds despite being the most frequently observed vertebrate on roads and trails. From a conservation and management perspective, all salmon species and stream morphologies are used extensively by bears, but salmon spawning late in the year are disproportionately important to eagles and other highly mobile species that are seasonally limited by winter food availability. PMID:26339539

  9. Capture severity, infectious disease processes and sex influence post-release mortality of sockeye salmon bycatch.

    PubMed

    Teffer, Amy K; Hinch, Scott G; Miller, Kristi M; Patterson, David A; Farrell, Anthony P; Cooke, Steven J; Bass, Arthur L; Szekeres, Petra; Juanes, Francis

    2017-01-01

    Bycatch is a common occurrence in heavily fished areas such as the Fraser River, British Columbia, where fisheries target returning adult Pacific salmon ( Oncorhynchus spp.) en route to spawning grounds. The extent to which these encounters reduce fish survival through injury and physiological impairment depends on multiple factors including capture severity, river temperature and infectious agents. In an effort to characterize the mechanisms of post-release mortality and address fishery and managerial concerns regarding specific regulations, wild-caught Early Stuart sockeye salmon ( Oncorhynchus nerka ) were exposed to either mild (20 s) or severe (20 min) gillnet entanglement and then held at ecologically relevant temperatures throughout their period of river migration (mid-late July) and spawning (early August). Individuals were biopsy sampled immediately after entanglement and at death to measure indicators of stress and immunity, and the infection intensity of 44 potential pathogens. Biopsy alone increased mortality (males: 33%, females: 60%) when compared with non-biopsied controls (males: 7%, females: 15%), indicating high sensitivity to any handling during river migration, especially among females. Mortality did not occur until 5-10 days after entanglement, with severe entanglement resulting in the greatest mortality (males: 62%, females: 90%), followed by mild entanglement (males: 44%, females: 70%). Infection intensities of Flavobacterium psychrophilum and Ceratonova shasta measured at death were greater in fish that died sooner. Physiological indicators of host stress and immunity also differed depending on longevity, and indicated anaerobic metabolism, osmoregulatory failure and altered immune gene regulation in premature mortalities. Together, these results implicate latent effects of entanglement, especially among females, resulting in mortality days or weeks after release. Although any entanglement is potentially detrimental, reducing entanglement

  10. Incubation temperature, developmental biology, and the divergence of sockeye salmon (Oncorhynchus nerka) within Lake Washington

    USGS Publications Warehouse

    Hendry, A.P.; Hensleigh, J.E.; Reisenbichler, R.R.

    1998-01-01

    Sockeye salmon (Oncorhynchus nerka) introduced into Lake Washington in the 1930s and 1940s now spawn at several different sites and over a period of more than 3 months. To test for evolutionary divergence within this derived lineage, embryos that would have incubated in different habitats (Cedar River or Pleasure Point Beach) or at different times (October, November, or December in the Cedar River) were reared in the laboratory at 5, 9, and 12.5??C. Some developmental variation mirrored predictions of adaptive divergence: (i) survival at 12.5??C was highest for embryos most likely to experience such temperatures in the wild (Early Cedar), (ii) development rate was fastest for progeny of late spawners (Late Cedar), and (iii) yolk conversion efficiency was matched to natural incubation temperatures. These patterns likely had a genetic basis because they were observed in a common environment and could not be attributed to differences in egg size. The absolute magnitude of divergence in development rates was moderate (Late Cedar embryos emerged only 6 days earlier at 9??C) and some predictions regarding development rates were not supported. Nonetheless our results provide evidence of adaptive divergence in only 9-14 generations.

  11. Associations of stream geomorphic conditions and prevalence of alternative reproductive tactics among sockeye salmon populations

    USGS Publications Warehouse

    DeFilippo, L. B.; Schindler, D.E.; Carter, J.L.; Walsworth, Timothy E.; Cline, T. J.; Larson, Wesley; Buehrens, T.

    2018-01-01

    In many species, males may exhibit alternative life histories to circumvent the costs of intrasexual competition and female courtship. While the evolution and underlying genetic and physiological mechanisms behind alternative reproductive tactics are well studied, there has been less consideration of the ecological factors that regulate their prevalence. Here, we examine six decades of age composition records from thirty‐six populations of sockeye salmon (Oncorhynchus nerka) to quantify associations between spawning habitat characteristics and the prevalence of precocious sneakers known as ‘jacks’. Jack prevalence was independent of neutral genetic structure among stream populations, but varied among habitat types and as a function of continuous geomorphic characteristics. Jacks were more common in streams relative to beaches and rivers, and their prevalence was negatively associated with stream width, depth, elevation, slope and area, but positively related to bank cover. Behavioural observations showed that jacks made greater use of banks, wood and shallows than guard males, indicating that their reproductive success depends on the availability of such refuges. Our results emphasize the role of the physical habitat in shaping reproductive tactic frequencies among populations, likely through local adaptation in response to variable fitness expectations under different geomorphic conditions.

  12. Behavioral tactics of male sockeye salmon (Oncorhynchus nerka) under varying operating sex ratios

    USGS Publications Warehouse

    Quinn, Thomas P.; Adkison, Milo D.; Ward, Michael B.

    1996-01-01

    Previous studies have demonstrated several reproductive-behavior patterns in male salmon, including competitive and sneaking tactics, the formation of hierarchies, and non-hierarchical aggregations around ripe females. Through behavioral observations at varying spatial and temporal scales, we examined the hypothesis that operational sex ratio (OSR) determines male sockeye salmon (Oncorhynchus nerka) distribution and breeding tactics. Patterns of male distribution and behavior varied over both coarse and fine scales, associated with apparent shifts in reproductive opportunities, the physical characteristics of the breeding sites, and the deterioration of the fish as they approached death. Females spawned completely within a few days of arriving on the spawning grounds, whereas males courted the available ripe females from the date of their arrival on the spawning ground until their death. This difference in reproductive lifespans tended to elevate late-season OSRs but was partially counterbalanced by male departures and the arrival of other ripe females. The proportion of males able to dominate access to ripe females decreased and the number of large courting groups increased over the course of the season, apparently related to both increasing OSR and the deteriorating physical condition of males. However, great variation in OSR was observed within the spawning sites on a given day. OSRs were generally higher in shallow than in deep water, perhaps because larger females or more desirable breeding sites were concentrated in shallow water. The aggregations of males courting females were not stable (i.e. many arrivals and departures took place) and male aggression varied with group size. Aggression was most frequent at low OSRs and in groups of intermediate size (2–4 males per female), and much less frequent in larger groups, consistent with the needs of maximizing reproductive opportunities while minimizing unproductive energy expenditure. These results indicate

  13. [Effective size of subpopulations in early-run sockeye salmon Oncorhynchus nerka from Azabach'e Lake (Kamchatka): the effect of relative reproductive success of different-year cohorts].

    PubMed

    Efremov, V V

    2004-05-01

    The effect of variation in reproductive success of cohorts of different year of birth (within generation) on the effective subpopulation (breeding group) size in early-run sockeye salmon Oncorhynchus nerka from Azabach'e Lake (Kamchatka). The annual variation in census size and overlapping of year classes reduced the ratio of the effective subpopulation size to the census size by 7 to 88% in different subpopulations. The total effect of the variance of reproductive success in individual years and the variance of reproductive success of different cohorts reduced the effective size/census size ratio by 68-96%.

  14. Genomic Changes Associated with Reproductive and Migratory Ecotypes in Sockeye Salmon (Oncorhynchus nerka).

    PubMed

    Veale, Andrew J; Russello, Michael A

    2017-10-01

    Mechanisms underlying adaptive evolution can best be explored using paired populations displaying similar phenotypic divergence, illuminating the genomic changes associated with specific life history traits. Here, we used paired migratory [anadromous vs. resident (kokanee)] and reproductive [shore- vs. stream-spawning] ecotypes of sockeye salmon (Oncorhynchus nerka) sampled from seven lakes and two rivers spanning three catchments (Columbia, Fraser, and Skeena) in British Columbia, Canada to investigate the patterns and processes underlying their divergence. Restriction-site associated DNA sequencing was used to genotype this sampling at 7,347 single nucleotide polymorphisms, 334 of which were identified as outlier loci and candidates for divergent selection within at least one ecotype comparison. Sixty-eight of these outliers were present in two or more comparisons, with 33 detected across multiple catchments. Of particular note, one locus was detected as the most significant outlier between shore and stream-spawning ecotypes in multiple comparisons and across catchments (Columbia, Fraser, and Snake). We also detected several genomic islands of divergence, some shared among comparisons, potentially showing linked signals of differential selection. The single nucleotide polymorphisms and genomic regions identified in our study offer a range of mechanistic hypotheses associated with the genetic basis of O. nerka life history variation and provide novel tools for informing fisheries management. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Thermal regime, predation danger and the early marine exit of sockeye salmon Oncorhynchus nerka.

    PubMed

    Katinic, P J; Patterson, D A; Ydenberg, R C

    2015-01-01

    Marine exit timing of sockeye salmon Oncorhynchus nerka populations on the Haida Gwaii Archipelago, British Columbia, Canada, is described, with specific focus on Copper Creek. Marine exit in Copper Creek occurs > 130 days prior to spawning, one of the longest adult freshwater residence periods recorded for any O. nerka population. Copper Creek presents an easy upstream migration, with mild water temperatures (7 to 14°  C), short distance (13·1 km) and low elevation gain (41 m) to the lake where fish hold prior to spawning. An energetic model estimates that <1% of the initial energy reserve is required for upstream migration, compared with 62% for lake holding and 38% for reproductive development. Historical records suggest that it is unlikely that water temperature in any of the O.nerka streams in Haida Gwaii has ever exceeded the presumed temperature threshold (19° C) for early marine exit. Although it is not impossible that the thermal tolerance of Copper Creek O.nerka is very low, the data presented here appear inconsistent with thermal avoidance as an explanation for the early marine exit timing in Copper Creek and in three other populations on the archipelago with early marine exit. © 2014 The Fisheries Society of the British Isles.

  16. Effect of salmon type and presence/absence of bone on color, sensory characteristics, and consumer acceptability of pureed and chunked infant food products.

    PubMed

    DeSantos, F A; Ramamoorthi, L; Bechtel, P; Smiley, S; Brewer, M S

    2010-08-01

    Salmon-based infant food (puree) and toddler food (puree plus chunks) were manufactured from pink salmon, with and without bone, and from Sockeye salmon, with and without bone, to contain 45% salmon, 55% water, and 5% starch. Products were retort processed at 118 to 121 degrees C for 55 min in a steam-jacketed still retort. A trained descriptive panel (n = 7) evaluated infant and toddler foods separately. Instrumental color, pH, and water activity were also determined. Infant and toddler foods were also evaluated by a consumer panel (n = 104) of parents for product acceptability. During the manufacturing process (cooking, homogenization, retort processing), salmon infant food from pink salmon lost much of its characteristic pink color while that from sockeye salmon retained a greater amount. Bitterness was more evident in samples with bones. In the toddler food formulation containing chunks, the odor and flavor characteristics were influenced primarily by the type of salmon. The presence of bone affected visual pink color and lightness, and salmon odor only. Consumers scored products made with sockeye salmon as more acceptable despite the fact that they had more off-flavor than products from pink salmon. The appearance and thickness of the pureed infant food was more acceptable than the toddler food with chunks despite the chunky toddler product having more acceptable salmon flavor. This indicates that the color and appearance of the prototypes were the main drivers for liking. Of the total number of parents surveyed, 73% would feed this salmon product to their children.

  17. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Northwest) Pink Salmon

    DTIC Science & Technology

    1989-01-01

    methodology weight in the sockeye salmon for determining instream flow re- ( Oncorhynchus nerka ) and the pink quirements for fish. Pages 72-86 in salmon (0...Scientific name ........... Oncorhynchus jor pink salmon runs. Migration gorbuscha (Walbaum) (Figure a patterns of fish entering British Preferred...A dominant male guards the considered the most specialized of the female during the digging process, salmon in the genus Oncorhynchus be- attacking

  18. Capture severity, infectious disease processes and sex influence post-release mortality of sockeye salmon bycatch

    PubMed Central

    Hinch, Scott G.; Miller, Kristi M.; Patterson, David A.; Farrell, Anthony P.; Cooke, Steven J.; Bass, Arthur L.; Szekeres, Petra; Juanes, Francis

    2017-01-01

    Abstract Bycatch is a common occurrence in heavily fished areas such as the Fraser River, British Columbia, where fisheries target returning adult Pacific salmon (Oncorhynchus spp.) en route to spawning grounds. The extent to which these encounters reduce fish survival through injury and physiological impairment depends on multiple factors including capture severity, river temperature and infectious agents. In an effort to characterize the mechanisms of post-release mortality and address fishery and managerial concerns regarding specific regulations, wild-caught Early Stuart sockeye salmon (Oncorhynchus nerka) were exposed to either mild (20 s) or severe (20 min) gillnet entanglement and then held at ecologically relevant temperatures throughout their period of river migration (mid–late July) and spawning (early August). Individuals were biopsy sampled immediately after entanglement and at death to measure indicators of stress and immunity, and the infection intensity of 44 potential pathogens. Biopsy alone increased mortality (males: 33%, females: 60%) when compared with non-biopsied controls (males: 7%, females: 15%), indicating high sensitivity to any handling during river migration, especially among females. Mortality did not occur until 5–10 days after entanglement, with severe entanglement resulting in the greatest mortality (males: 62%, females: 90%), followed by mild entanglement (males: 44%, females: 70%). Infection intensities of Flavobacterium psychrophilum and Ceratonova shasta measured at death were greater in fish that died sooner. Physiological indicators of host stress and immunity also differed depending on longevity, and indicated anaerobic metabolism, osmoregulatory failure and altered immune gene regulation in premature mortalities. Together, these results implicate latent effects of entanglement, especially among females, resulting in mortality days or weeks after release. Although any entanglement is potentially detrimental, reducing

  19. On-site Direct Detection of Astaxanthin from Salmon Fillet Using Raman Spectroscopy.

    PubMed

    Hikima, Jun-Ichi; Ando, Masahiro; Hamaguchi, Hiro-O; Sakai, Masahiro; Maita, Masashi; Yazawa, Kazunaga; Takeyama, Haruko; Aoki, Takashi

    2017-04-01

    A new technology employing Raman spectroscopy is attracting attention as a powerful biochemical technique for the detection of beneficial and functional food nutrients, such as carotenoids and unsaturated fatty acids. This technique allows for the dynamic characterization of food nutrient substances for the rapid determination of food quality. In this study, we attempt to detect and measure astaxanthin from salmon fillets using this technology. The Raman spectra showed specific bands corresponding to the astaxanthin present in salmon and the value of astaxanthin (Raman band, 1518 cm -1 ) relative to those of protein/lipid (Raman band, 1446 cm -1 ) in the spectra increased in a dose-dependent manner. A standard curve was constructed by the standard addition method using astaxanthin as the reference standard for its quantification by Raman spectroscopy. The calculation formula was established using the Raman bands typically observed for astaxanthin (i.e., 1518 cm -1 ). In addition, we examined salmon fillets of different species (Atlantic salmon, coho salmon, and sockeye salmon) and five fillets obtained from the locations (from the head to tail) of an entire Atlantic salmon. Moreover, the sockeye salmon fillet exhibited the highest astaxanthin concentration (14.2 mg/kg), while coho salmon exhibited an intermediate concentration of 7.0 mg/kg. The Raman-based astaxanthin concentration in the five locations of Atlantic salmon was more strongly detected from the fillet closer to the tail. From the results, a rapid, convenient Raman spectroscopic method was developed for the detection of astaxanthin in salmon fillets.

  20. Disentangling the roles of air exposure, gill net injury, and facilitated recovery on the postcapture and release mortality and behavior of adult migratory sockeye salmon (Oncorhynchus nerka) in freshwater.

    PubMed

    Nguyen, Vivian M; Martins, Eduardo G; Robichaud, Dave; Raby, Graham D; Donaldson, Michael R; Lotto, Andrew G; Willmore, William G; Patterson, David A; Farrell, Anthony P; Hinch, Scott G; Cooke, Steven J

    2014-01-01

    We sought to improve the understanding of delayed mortality in migrating sockeye salmon (Oncorhynchus nerka) captured and released in freshwater fisheries. Using biotelemetry, blood physiology, and reflex assessments, we evaluated the relative roles of gill net injury and air exposure and investigated whether using a recovery box improved survival. Fish (n=238), captured by beach seine, were allocated to four treatment groups: captured only, air exposed, injured, and injured and air exposed. Only half of the fish in each group were provided with a 15-min facilitated recovery. After treatment, fish were radio-tagged and released to resume their migration. Blood status was assessed in 36 additional untagged fish sampled after the four treatments. Compared with fish sampled immediately on capture, all treatments resulted in elevated plasma lactate and cortisol concentrations. After air exposure, plasma osmolality was elevated and reflexes were significantly impaired relative to the control and injured treatments. Injured fish exhibited reduced short-term migration speed by 3.2 km/d and had a 14.5% reduced survival to subnatal watersheds compared to controls. The 15-min facilitated recovery improved reflex assessment relative to fish released immediately but did not affect survival. We suggest that in sockeye salmon migrating in cool water temperatures (∼13°-16°C), delayed mortality can result from injury and air exposure, perhaps through sublethal stress, and that injury created additive delayed mortality likely via secondary infections.

  1. Performance of salmon fishery portfolios across western North America.

    PubMed

    Griffiths, Jennifer R; Schindler, Daniel E; Armstrong, Jonathan B; Scheuerell, Mark D; Whited, Diane C; Clark, Robert A; Hilborn, Ray; Holt, Carrie A; Lindley, Steven T; Stanford, Jack A; Volk, Eric C

    2014-12-01

    Quantifying the variability in the delivery of ecosystem services across the landscape can be used to set appropriate management targets, evaluate resilience and target conservation efforts. Ecosystem functions and services may exhibit portfolio-type dynamics, whereby diversity within lower levels promotes stability at more aggregated levels. Portfolio theory provides a framework to characterize the relative performance among ecosystems and the processes that drive differences in performance. We assessed Pacific salmon Oncorhynchus spp. portfolio performance across their native latitudinal range focusing on the reliability of salmon returns as a metric with which to assess the function of salmon ecosystems and their services to humans. We used the Sharpe ratio (e.g. the size of the total salmon return to the portfolio relative to its variability (risk)) to evaluate the performance of Chinook and sockeye salmon portfolios across the west coast of North America. We evaluated the effects on portfolio performance from the variance of and covariance among salmon returns within each portfolio, and the association between portfolio performance and watershed attributes. We found a positive latitudinal trend in the risk-adjusted performance of Chinook and sockeye salmon portfolios that also correlated negatively with anthropogenic impact on watersheds (e.g. dams and land-use change). High-latitude Chinook salmon portfolios were on average 2·5 times more reliable, and their portfolio risk was mainly due to low variance in the individual assets. Sockeye salmon portfolios were also more reliable at higher latitudes, but sources of risk varied among the highest performing portfolios. Synthesis and applications . Portfolio theory provides a straightforward method for characterizing the resilience of salmon ecosystems and their services. Natural variability in portfolio performance among undeveloped watersheds provides a benchmark for restoration efforts. Locally and regionally

  2. Performance of salmon fishery portfolios across western North America

    PubMed Central

    Griffiths, Jennifer R; Schindler, Daniel E; Armstrong, Jonathan B; Scheuerell, Mark D; Whited, Diane C; Clark, Robert A; Hilborn, Ray; Holt, Carrie A; Lindley, Steven T; Stanford, Jack A; Volk, Eric C

    2014-01-01

    Quantifying the variability in the delivery of ecosystem services across the landscape can be used to set appropriate management targets, evaluate resilience and target conservation efforts. Ecosystem functions and services may exhibit portfolio-type dynamics, whereby diversity within lower levels promotes stability at more aggregated levels. Portfolio theory provides a framework to characterize the relative performance among ecosystems and the processes that drive differences in performance. We assessed Pacific salmon Oncorhynchus spp. portfolio performance across their native latitudinal range focusing on the reliability of salmon returns as a metric with which to assess the function of salmon ecosystems and their services to humans. We used the Sharpe ratio (e.g. the size of the total salmon return to the portfolio relative to its variability (risk)) to evaluate the performance of Chinook and sockeye salmon portfolios across the west coast of North America. We evaluated the effects on portfolio performance from the variance of and covariance among salmon returns within each portfolio, and the association between portfolio performance and watershed attributes. We found a positive latitudinal trend in the risk-adjusted performance of Chinook and sockeye salmon portfolios that also correlated negatively with anthropogenic impact on watersheds (e.g. dams and land-use change). High-latitude Chinook salmon portfolios were on average 2·5 times more reliable, and their portfolio risk was mainly due to low variance in the individual assets. Sockeye salmon portfolios were also more reliable at higher latitudes, but sources of risk varied among the highest performing portfolios. Synthesis and applications. Portfolio theory provides a straightforward method for characterizing the resilience of salmon ecosystems and their services. Natural variability in portfolio performance among undeveloped watersheds provides a benchmark for restoration efforts. Locally and regionally

  3. Estimation of Acoustic Particle Motion and Source Bearing Using a Drifting Hydrophone Array Near a River Current Turbine to Assess Disturbances to Fish

    NASA Astrophysics Data System (ADS)

    Murphy, Paul G.

    River hydrokinetic turbines may be an economical alternative to traditional energy sources for small communities on Alaskan rivers. However, there is concern that sound from these turbines could affect sockeye salmon (Oncorhynchus nerka), an important resource for small, subsistence based communities, commercial fisherman, and recreational anglers. The hearing sensitivity of sockeye salmon has not been quantified, but behavioral responses to sounds at frequencies less than a few hundred Hertz have been documented for Atlantic salmon (Salmo salar), and particle motion is thought to be the primary mode of stimulation. Methods of measuring acoustic particle motion are well-established, but have rarely been necessary in energetic areas, such as river and tidal current environments. In this study, the acoustic pressure in the vicinity of an operating river current turbine is measured using a freely drifting hydrophone array. Analysis of turbine sound reveals tones that vary in frequency and magnitude with turbine rotation rate, and that may sockeye salmon may sense. In addition to pressure, the vertical components of particle acceleration and velocity are estimated by calculating the finite difference of the pressure signals from the hydrophone array. A method of determining source bearing using an array of hydrophones is explored. The benefits and challenges of deploying drifting hydrophone arrays for marine renewable energy converter monitoring are discussed.

  4. An Assessment of Potential Mining Impacts on Salmon ...

    EPA Pesticide Factsheets

    The Bristol Bay watershed in southwestern Alaska supports the largest sockeye salmon fishery in the world, is home to 25 federally recognized tribal governments, and contains large mineral resources. The potential for large-scale mining activities in the watershed has raised concerns about the impact of mining on the sustainability of Bristol Bay’s world-class commercial, recreational and subsistence fisheries and the future of Alaska Native tribes in the watershed who have maintained a salmon-based culture and subsistence-based way of life for at least 4,000 years. The purpose of this assessment is to provide a characterization of the biological and mineral resources of the Bristol Bay watershed, increase understanding of the potential impacts of large-scale mining on the region’s fish resources, and inform future government decisions related to protecting and maintaining the chemical, physical, and biological integrity of the watershed. It will also serve as a technical resource for the public, tribes, and governments who must consider how best to address the challenges of mining and ecological protection in the Bristol Bay watershed. The purpose of this assessment is to understand how future large-scale mining may affect water quality and the Bristol Bay salmon fisheries, which includes the largest wild sockeye salmon fishery in the world. Bristol Bay, Alaska, is home to a salmon fishery that is of significant economic and subsistence value to the peopl

  5. Genomic signatures among Oncorhynchus nerka ecotypes to inform conservation and management of endangered Sockeye Salmon.

    PubMed

    Nichols, Krista M; Kozfkay, Christine C; Narum, Shawn R

    2016-12-01

    Conservation of life history variation is an important consideration for many species with trade-offs in migratory characteristics. Many salmonid species exhibit both resident and migratory strategies that capitalize on benefits in freshwater and marine environments. In this study, we investigated genomic signatures for migratory life history in collections of resident and anadromous Oncorhynchus nerka (Kokanee and Sockeye Salmon, respectively) from two lake systems, using ~2,600 SNPs from restriction-site-associated DNA sequencing (RAD-seq). Differing demographic histories were evident in the two systems where one pair was significantly differentiated (Redfish Lake, F ST  = 0.091 [95% confidence interval: 0.087 to 0.095]) but the other pair was not (Alturas Lake, F ST  = -0.007 [-0.008 to -0.006]). Outlier and association analyses identified several candidate markers in each population pair, but there was limited evidence for parallel signatures of genomic variation associated with migration. Despite lack of evidence for consistent markers associated with migratory life history in this species, candidate markers were mapped to functional genes and provide evidence for adaptive genetic variation within each lake system. Life history variation has been maintained in these nearly extirpated populations of O. nerka, and conservation efforts to preserve this diversity are important for long-term resiliency of this species.

  6. Associations of stream geomorphic conditions and prevalence of alternative reproductive tactics among sockeye salmon populations.

    PubMed

    DeFilippo, L B; Schindler, D E; Carter, J L; Walsworth, T E; Cline, T J; Larson, W A; Buehrens, T

    2018-02-01

    In many species, males may exhibit alternative life histories to circumvent the costs of intrasexual competition and female courtship. While the evolution and underlying genetic and physiological mechanisms behind alternative reproductive tactics are well studied, there has been less consideration of the ecological factors that regulate their prevalence. Here, we examine six decades of age composition records from thirty-six populations of sockeye salmon (Oncorhynchus nerka) to quantify associations between spawning habitat characteristics and the prevalence of precocious sneakers known as 'jacks'. Jack prevalence was independent of neutral genetic structure among stream populations, but varied among habitat types and as a function of continuous geomorphic characteristics. Jacks were more common in streams relative to beaches and rivers, and their prevalence was negatively associated with stream width, depth, elevation, slope and area, but positively related to bank cover. Behavioural observations showed that jacks made greater use of banks, wood and shallows than guard males, indicating that their reproductive success depends on the availability of such refuges. Our results emphasize the role of the physical habitat in shaping reproductive tactic frequencies among populations, likely through local adaptation in response to variable fitness expectations under different geomorphic conditions. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  7. Gene expression profiling and environmental contaminant assessment of migrating Pacific salmon in the Fraser River watershed of British Columbia.

    PubMed

    Veldhoen, Nik; Ikonomou, Michael G; Dubetz, Cory; Macpherson, Nancy; Sampson, Tracy; Kelly, Barry C; Helbing, Caren C

    2010-05-05

    The health and physiological condition of anadromous salmon is of concern as their upriver migration requires navigation of human-impacted waterways and metabolism of stored energy reserves containing anthropogenic contaminants. Such factors may affect reproductive success of fish stocks. This study investigates chemical contaminant burdens and select gene expression profiles in Pacific Sockeye (Oncorhynchus nerka) and Chinook (Oncorhynchus tshawytscha) salmon which traverse the Fraser River watershed during their spawning migration. Chemical analyses of muscle tissue and eggs of salmon collected from the lower Fraser River (pre-migration) and from upstream spawning grounds (post-migration) during the 2007 migration revealed the presence of numerous chemical contaminants, including PCBs, dioxins/furans, pesticides, and heavy metals. However, muscle tissue residue concentrations were well below human health consumption guidelines and 2,3,7,8 TCDD toxic equivalents (SigmaTEQs) in salmon eggs, calculated using WHO toxic equivalency factors (WHO-TEFs) for fish health, did not exceed the 0.3pgg(-1) wet weight toxicological threshold level previously associated with 30% egg mortality in salmon populations. Quantitative real-time PCR probes were generated and used to assess differences in abundance of key mRNA transcripts encoding nine gene products associated with reproduction, stress, metal toxicity, and exposure to environmental contaminants. Gene expression profiles were characterized in liver and muscle tissue of pre- and post-migration Sockeye and Chinook salmon. The results of stock-matched animals indicate that dynamic changes in mRNA levels occur for a number of genes in both species during migration and suggest that Sockeye salmon exhibit a greater level of biological stress compared to the Chinook salmon population. Using a male-specific genotypic marker, we found that out of the 154 animals examined, one Sockeye was genotypically male but phenotypically female

  8. Compendium of Low-Cost Pacific Salmon and Steelhead Trout Production Facilities and Practices in the Pacific Northwest.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senn, Harry G.

    1984-09-01

    The purpose was to research low capital cost salmon and steelhead trout production facilities and identify those that conform with management goals for the Columbia Basin. The species considered were chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), sockeye salmon (O. nerka), and steelhead trout (Salmo gairdneri). This report provides a comprehensive listing of the facilities, techniques, and equipment used in artificial production in the Pacific Northwest. (ACR)

  9. Identification of Multiple QTL Hotspots in Sockeye Salmon (Oncorhynchus nerka) Using Genotyping-by-Sequencing and a Dense Linkage Map.

    PubMed

    Larson, Wesley A; McKinney, Garrett J; Limborg, Morten T; Everett, Meredith V; Seeb, Lisa W; Seeb, James E

    2016-03-01

    Understanding the genetic architecture of phenotypic traits can provide important information about the mechanisms and genomic regions involved in local adaptation and speciation. Here, we used genotyping-by-sequencing and a combination of previously published and newly generated data to construct sex-specific linkage maps for sockeye salmon (Oncorhynchus nerka). We then used the denser female linkage map to conduct quantitative trait locus (QTL) analysis for 4 phenotypic traits in 3 families. The female linkage map consisted of 6322 loci distributed across 29 linkage groups and was 4082 cM long, and the male map contained 2179 loci found on 28 linkage groups and was 2291 cM long. We found 26 QTL: 6 for thermotolerance, 5 for length, 9 for weight, and 6 for condition factor. QTL were distributed nonrandomly across the genome and were often found in hotspots containing multiple QTL for a variety of phenotypic traits. These hotspots may represent adaptively important regions and are excellent candidates for future research. Comparing our results with studies in other salmonids revealed several regions with overlapping QTL for the same phenotypic trait, indicating these regions may be adaptively important across multiple species. Altogether, our study demonstrates the utility of genomic data for investigating the genetic basis of important phenotypic traits. Additionally, the linkage map created here will enable future research on the genetic basis of phenotypic traits in salmon. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Sphaerospora elwhaiensis sp.n. (Myxosporea: Sphaerosporidae) from landlocked sockeye salmon Oncorhynchus nerka (Salmoniformes: Salmonidae) in Washington State, USA.

    PubMed

    Jones, Simon; Fiala, Ivan; Prosperi-Porta, Gina; House, Marcia; Mumford, Sonia

    2011-06-01

    A new species of sphaerosporid myxosporean, Sphaerospora elwhaiensis sp. n., is described from kidney of non-anadromous sockeye salmon (kokanee) Oncorhynchus nerka (Walbaum) from Lake Sutherland in the northern Olympic Peninsula, Washington, USA. Infection with the parasite was detected in 45% of 177 kokanee examined over 5 years. While conforming to the morphological criteria by which members of the genus are defined, the parasite is distinguished from congeners in salmonids of western North America by a unique combination of valvular sculpting of the myxospore, the relatively large size of the myxospore and monosporous development within the pseudoplasmodium. In addition, nucleotide sequences of the parasite's small and large subunit ribosomal RNA gene are unique. Phylogenetic analyses of these sequences suggested that the parasite is most closely related to freshwater Myxidium spp. and Zschokkella spp. The molecular data have provided further evidence for a polyphyletic association previously recognized among members of the genus and emphasize the need for a taxonomic revision of Sphaerospora Thélohan, 1892 and related genera.

  11. Discrimination among populations of sockeye salmon fry with Fourier analysis of otolith banding patterns formed during incubation

    USGS Publications Warehouse

    Finn, James E.; Burger, Carl V.; Holland-Bartels, Leslie E.

    1997-01-01

    We used otolith banding patterns formed during incubation to discriminate among hatchery- and wild-incubated fry of sockeye salmon Oncorhynchus nerka from Tustumena Lake, Alaska. Fourier analysis of otolith luminance profiles was used to describe banding patterns: the amplitudes of individual Fourier harmonics were discriminant variables. Correct classification of otoliths to either hatchery or wild origin was 83.1% (cross-validation) and 72.7% (test data) with the use of quadratic discriminant function analysts on 10 Fourier amplitudes. Overall classification rates among the six test groups (one hatchery and five wild groups) were 46.5% (cross-validation) and 39.3% (test data) with the use of linear discriminant function analysis on 16 Fourier amplitudes. Although classification rates for wild-incubated fry from any one site never exceeded 67% (cross-validation) or 60% (test data), location-specific information was evident for all groups because the probability of classifying an individual to its true incubation location was significantly greater than chance. Results indicate phenotypic differences in otolith microstructure among incubation sites separated by less than 10 km. Analysis of otolith luminance profiles is a potentially useful technique for discriminating among and between various populations of hatchery and wild fish.

  12. Expression of Fushi tarazu factor 1 homolog and Pit-1 genes in the pituitaries of pre-spawning chum and sockeye salmon.

    PubMed

    Higa, M; Ando, H; Urano, A

    2001-06-01

    Fushi tarazu factor-1 (FTZ-F1) and Pit-1 are major pituitary transcription factors, controlling expression of genes coding for gonadotropin (GTH) subunits and growth hormone/prolactin/somatolactin family hormone, respectively. As a first step to investigate physiological factors regulating gene expression of these transcription factors, we determined their mRNA levels in the pituitaries of chum salmon (Oncorhynchus keta) at different stages of sexual maturation. FTZ-F1 gene expression was increased in males at the stage before spermiation, where the levels of GTH alpha and IIbeta subunit mRNAs were elevated. Pit-1 mRNA showed maximum levels at the final stage of sexual maturation in both sexes, when expression of somatolactin gene peaked. To clarify whether gonadotropin-releasing hormone (GnRH) is involved in these increases in FTZ-F1 and Pit-1 gene expression, we examined effects of GnRH analog (GnRHa) administration on their gene expression in maturing sockeye salmon (Oncorhynchus nerka). GnRHa stimulated Pit-1 gene expression in females only, but failed to stimulate FTZ-F1 gene expression in both sexes. The up-regulated expression of FTZ-F1 and Pit-1 genes at the pre-spawning stages suggest that the two transcription factors have roles in sexual maturation of salmonids. Physiological factors regulating gene expression of FTZ-F1 and Pit-1 are discussed in this review.

  13. Migrational Characteristics of Columbia Basin Salmon and Steelhead Trout, Part II, Smolt Monitoring Program, 1984 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnaha, Willis E.

    1985-07-01

    The report describes the travel time of marked yearling and sub-yearling chinook salmon (Oncorhynchus tshawytscha), sockeye salmon (O. nerka), and steelhead trout (Salmo gairdneri) between points within the system, and reports the arrival timing and duration of the migrations for these species as well as coho salmon (O. kisutch). A final listing of 1984 hatchery releases is also included. 8 refs., 26 figs., 20 tabs.

  14. Basis of acoustic discrimination of Chinook salmon from other salmons by echolocating Orcinus orca.

    PubMed

    Au, Whitlow W L; Horne, John K; Jones, Christopher

    2010-10-01

    The "resident" ecotype of killer whales (Orcinus orca) in the waters of British Columbia and Washington State have a strong preference for Chinook salmon even in months when Chinook comprise less than about 10% of the salmon population. The foraging behavior of killer whales suggests that they depend on echolocation to detect and recognize their prey. In order to determine possible cues in echoes from salmon species, a series of backscatter measurements were made at the Applied Physics Laboratory (Univ. of Wash.) Facility on Lake Union, on three different salmon species using simulated killer whale echolocation signals. The fish were attached to a monofilament net panel and rotated while echoes were collected, digitized and stored on a laptop computer. Three transducer depths were used; same depth, 22° and 45° above the horizontal plane of the fish. Echoes were collected from five Chinook, three coho and one sockeye salmon. Radiograph images of all specimens were obtained to examine the swimbladder shape and orientation. The results show that echo structure from similar length but different species of salmon were different and probably recognizable by foraging killer whales.

  15. Extensive feeding on sockeye salmon Oncorhynchus nerka smolts by bull trout Salvelinus confluentus during initial outmigration into a small, unregulated and inland British Columbia river

    USGS Publications Warehouse

    Furey, Nathan B.; Hinch, Scott G.; Lotto, A.G.; Beauchamp, David A.

    2015-01-01

    Stomach contents were collected and analysed from 22 bull trout Salvelinus confluentus at the edge of the Chilko Lake and Chilko River in British Columbia, Canada, during spring outmigration of sockeye salmon Oncorhynchus nerka smolts. Twenty of the 22 (>90%) stomachs contained prey items, virtually all identifiable prey items were outmigrant O. nerka smolts and stomach contents represented a large portion (0·0–12·6%) of estimated S. confluentus mass. The results demonstrate nearly exclusive and intense feeding by S. confluentus on outmigrant smolts, and support recent telemetry observations of high disappearance rates of O. nerka smolts leaving large natural lake systems prior to entering high-order unregulated river systems.

  16. Extensive feeding on sockeye salmon Oncorhynchus nerka smolts by bull trout Salvelinus confluentus during initial outmigration into a small, unregulated and inland British Columbia river.

    PubMed

    Furey, N B; Hinch, S G; Lotto, A G; Beauchamp, D A

    2015-01-01

    Stomach contents were collected and analysed from 22 bull trout Salvelinus confluentus at the edge of the Chilko Lake and Chilko River in British Columbia, Canada, during spring outmigration of sockeye salmon Oncorhynchus nerka smolts. Twenty of the 22 (>90%) stomachs contained prey items, virtually all identifiable prey items were outmigrant O. nerka smolts and stomach contents represented a large portion (0·0-12·6%) of estimated S. confluentus mass. The results demonstrate nearly exclusive and intense feeding by S. confluentus on outmigrant smolts, and support recent telemetry observations of high disappearance rates of O. nerka smolts leaving large natural lake systems prior to entering high-order unregulated river systems. © 2014 The Fisheries Society of the British Isles.

  17. Maternal programming of offspring hypothalamic-pituitary-interrenal axis in wild sockeye salmon (Oncorhynchus nerka).

    PubMed

    Sopinka, N M; Jeffrey, J D; Burnett, N J; Patterson, D A; Gilmour, K M; Hinch, S G

    2017-02-01

    In fishes, maternal exposure to a stressor can influence offspring size and behavior. However, less is known about how maternal stress influences physiological processes in offspring, such as function of the hypothalamic-pituitary-interrenal (HPI) axis. We examined the impact of chronic maternal exposure to an acute chase stressor on the stress response/HPI activity of progeny in wild sockeye salmon (Oncorhynchus nerka). Resting plasma cortisol and brain preoptic area (POA) corticotropin-releasing factor (CRF) mRNA levels did not vary between offspring reared from undisturbed, control females and offspring reared from females exposed to the stressor. However, resting levels of POA glucocorticoid receptors (GR1 and GR2), and head kidney melanocortin 2 receptor (MC2R), steroidogenic acute regulatory protein (StAR), and cytochrome P450 side chain cleavage enzyme (P450scc) were elevated in offspring reared from stressor-exposed females. Offspring reared from stressor-exposed females had lower plasma cortisol levels 1-h after an acute chase stressor compared to cortisol levels in offspring reared from control females. In offspring reared from chased females, mRNA levels of genes associated with cortisol biosynthesis were reduced in the head kidney post-chase. In offspring reared from control females, mRNA levels in the head kidney did not vary pre- to post-chase. Together, the results of the present study suggest maternal programming of progeny with respect to baseline and stressor-induced mediators of HPI axis activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Provenance matters: thermal reaction norms for embryo survival among sockeye salmon Oncorhynchus nerka populations.

    PubMed

    Whitney, C K; Hinch, S G; Patterson, D A

    2013-04-01

    Differences in thermal tolerance during embryonic development in Fraser River sockeye salmon Oncorhynchus nerka were examined among nine populations in a controlled common-garden incubation experiment. Forcing embryonic development at an extreme temperature (relative to current values) of 16° C, representing a future climate change scenario, significantly reduced survival compared to the more ecologically moderate temperature of 10° C (55% v. 93%). Survival at 14° C was intermediate between the other two temperatures (85%). More importantly, this survival response varied by provenance within and between temperature treatments. Thermal reaction norms showed an interacting response of genotype and environment (temperature), suggesting that populations of O. nerka may have adapted differentially to elevated temperatures during incubation and early development. Moreover, populations that historically experience warmer incubation temperatures at early development displayed a higher tolerance for warm temperatures. In contrast, thermal tolerance does not appear to transcend life stages as adult migration temperatures were not related to embryo thermal tolerance. The intra-population variation implies potential for thermal tolerance at the species level. The differential inter-population variation in thermal tolerance that was observed suggests, however, limited adaptive potential to thermal shifts for some populations. This infers that the intergenerational effects of increasing water temperatures may affect populations differentially, and that such thermally mediated adaptive selection may drive population, and therefore species, persistence. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.

  19. Influences of spawning timing, water temperature, and climatic warming on early life history phenology in western Alaska sockeye salmon

    USGS Publications Warehouse

    Sparks, Morgan M.; Falke, Jeffrey A.; Quinn, Thomas P.; Adkison, Milo D.; Schindler, Daniel E.; Bartz, Krista K.; Young, Daniel B.; Westley, Peter A. H.

    2018-01-01

    We applied an empirical model to predict hatching and emergence timing for 25 western Alaska sockeye salmon (Oncorhynchus nerka) populations in four lake-nursery systems to explore current patterns and potential responses of early life history phenology to warming water temperatures. Given experienced temperature regimes during development, we predicted hatching to occur in as few as 58 d to as many as 260 d depending on spawning timing and temperature. For a focal lake spawning population, our climate-lake temperature model predicted a water temperature increase of 0.7 to 1.4 °C from 2015 to 2099 during the incubation period, which translated to a 16 d to 30 d earlier hatching timing. The most extreme scenarios of warming advanced development by approximately a week earlier than historical minima and thus climatic warming may lead to only modest shifts in phenology during the early life history stage of this population. The marked variation in the predicted timing of hatching and emergence among populations in close proximity on the landscape may serve to buffer this metapopulation from climate change.

  20. Distribution of FMRFamide-like immunoreactivity in the brain, retina and nervus terminalis of the sockeye salmon parr, Oncorhynchus nerka.

    PubMed

    Ostholm, T; Ekström, P; Ebbesson, S O

    1990-09-01

    Neurons displaying FMRFamide(Phe - Met - Arg - Phe - NH2)-like immunoreactivity have recently been implicated in neural plasticity in salmon. We now extend these findings by describing the extent of the FMRF-like immunoreactive (FMRF-IR) system in the brain, retina and olfactory system of sockeye salmon parr using the indirect peroxidase anti-peroxidase technique. FMRF-IR perikarya were found in the periventricular hypothalamus, mesencephalic laminar nucleus, nucleus nervi terminalis and retina (presumed amacrine cells), and along the olfactory nerves. FMRF-IR fibers were distributed throughout the brain with highest densities in the ventral area of the telencephalon, in the medial forebrain bundle, and at the borders between layers III/IV and IV/V in the optic tectum. High densities of immunoreactive fibers were also observed in the area around the torus semicircularis, in the medial hypothalamus, median raphe, ventromedial tegmentum, and central gray. In the retina, immunopositive fibers were localized to the inner plexiform layer, but several fiber elements were also found in the outer plexiform layer. The olfactory system displayed FMRF-IR fibers in the epithelium and along the olfactory nerves. These findings differ from those reported in other species as follows: (i) FMRF-IR cells in the retina have not previously been reported in teleosts; (ii) the presence of FMRF-IR fibers in the outer plexiform layer of the retina is a new finding for any species; (iii) the occurrence of immunopositive cells in the mesencephalic laminar nucleus has to our knowledge not been demonstrated previously.

  1. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XV : Evaluation of the 2007 Predictions of the Run-Timing of Wild and Hatchery-Reared Salmon and Steelhead Smolts to Rock Island, Lower Granite, McNary, John Day, and Bonneville Dams using Program RealTime.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griswold, Jim; Townsend, Richard L.; Skalski, John R.

    Program RealTime provided monitoring and forecasting of the 2007 inseason outmigrations via the internet for 26 PIT-tagged stocks of wild ESU Chinook salmon and steelhead to Lower Granite and/or McNary dams, one PIT-tagged hatchery-reared ESU of sockeye salmon to Lower Granite Dam, one PIT-tagged wild stock of sockeye salmon to McNary Dam, and 20 passage-indexed runs-at-large, five each to Rock Island, McNary, John Day, and Bonneville dams. Nineteen stocks are of wild yearling Chinook salmon which were captured, PIT-tagged, and released at sites above Lower Granite Dam in 2007 and have at least one year's historical migration data previous tomore » the 2007 migration. These stocks originate in 19 tributaries of the Salmon, Grande Ronde and Clearwater Rivers, all tributaries to the Snake River, and are subsequently detected through tag identification and monitored at Lower Granite Dam. Seven wild PIT-tagged runs-at-large of Snake or Upper Columbia River ESU salmon and steelhead were monitored at McNary Dam. Three wild PIT-tagged runs-at-large were monitored at Lower Granite Dam, consisting of the yearling and subyearling Chinook salmon and the steelhead runs. The hatchery-reared PIT-tagged sockeye salmon stock from Redfish Lake was monitored outmigrating through Lower Granite Dam. Passage-indexed stocks (stocks monitored by FPC passage indices) included combined wild and hatchery runs-at-large of subyearling and yearling Chinook, coho, and sockeye salmon, and steelhead forecasted to Rock Island, McNary, John Day, and Bonneville dams.« less

  2. Bioaccumulation of HCHs and DDTs in organs of Pacific salmon (genus Oncorhynchus) from the Sea of Okhotsk and the Bering Sea.

    PubMed

    Lukyanova, Olga N; Tsygankov, Vasiliy Yu; Boyarova, Margarita D; Khristoforova, Nadezhda K

    2016-08-01

    Concentrations of isomers of hexachlorocyclohexane (α-, β-, γ-HCH) and dichlorodiphenyltrichloroethane (DDT) and its metabolites (dichlorodiphenyldichloroethane (DDD) and dichlorodiphenyldichloroethylene (DDE) were assessed in organs of the pink (Oncorhynchus gorbuscha), chum (Oncorhynchus keta), chinook (Oncorhynchus tshawytscha), and sockeye salmon (Oncorhynchus nerka), caught near the Kuril Islands (the northern-western part of the Pacific Ocean), in the Sea of Okhotsk and the Bering Sea. Pesticides have been found to accumulate in fish organs in the following: muscles < liver < eggs < male gonads. The highest concentrations in muscles and liver have been recorded from sockeye. Of the DDT group, only DDE has been detected. The average concentration of HCHs + DDE in the muscles of pink, chum, chinook, and sockeye was 141, 125, 1241, 1641 ng/g lipids, respectively; and in the liver, 279, 183, 1305, 3805 ng/g lipids, respectively. The total concentration of HCHs isomers was higher than that of DDE. Average HCHs + DDE concentration in organs of salmon from study area is lower than that in salmon from Pacific coast of North America. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Persistent parental effects on the survival and size, but not burst swimming performance of juvenile sockeye salmon Oncorhynchus nerka.

    PubMed

    Nadeau, P S; Hinch, S G; Pon, L B; Patterson, D A

    2009-08-01

    Sockeye salmon Oncorhynchus nerka were used as a model in an artificial fertilization experiment to investigate the relationships between individual adult O. nerka and their offspring. Survival, size and burst swimming ability were assessed in fry of known parentage (adult spawners from the Weaver Creek population, British Columbia, Canada). Maternal identity significantly affected the survival rate of eggs at hatch time, though this effect did not extend to fry life stages. The results were also suggestive of a paternal effect on both egg and fry survival, though this could not be separated from the experimental block design. After 4 months of exogenous feeding, fry mass remained under significant maternal influence, though fork length did not, despite having a high correlation with mass. Burst swimming performance was highly variable among individuals, and was not significantly influenced by maternal identity or individual fry size. Collectively, the findings presented here suggest that maternal, and possibly paternal, effects can be integral components of population dynamics in the early life stages of O. nerka. A good understanding of these factors will be essential for scientists and fisheries managers in developing a more holistic view of population-level spawning success and fry survival.

  4. Development of a Method to Produce Freeze-Dried Cubes from 3 Pacific Salmon Species

    USDA-ARS?s Scientific Manuscript database

    Freeze-dried boneless skinless cubes of pink (Oncorhynchus gorbuscha), sockeye (Oncorhynchus nerka), and chum (Oncorhynchus keta) salmon were prepared and physical properties evaluated. To minimize freeze-drying time, the kinetics of dehydration and processing yields were investigated. The physical ...

  5. Parental identity influences progeny responses to incubation thermal stress in sockeye salmon Onchorhynchus nerka.

    PubMed

    Burt, J M; Hinch, S G; Patterson, D A

    2012-02-01

    The influence of individual parentage on progeny responses to early developmental temperature stress was examined in a cross-fertilization experiment using sockeye salmon Oncorhynchus nerka. Differences in survival, hatch timing and size were examined among five paternally linked and five maternally linked offspring families (Weaver Creek population, British Columbia, Canada) incubated at 12, 14 and 16° C from just after fertilization to hatch. Mean embryonic survival was significantly lower at 14 and 16° C; however, offspring families had substantially different survival responses across the thermal gradient (crossing reaction norms). Within temperature treatments, substantial variation in embryonic survival, alevin mass, time-to-hatch and hatch duration were attributable to family identity; however, most traits were governed by significant temperature-family interactions. For embryonic survival, large differences between families at 16° C were due to both female and male spawner influence, whereas inter-family differences were obscured at 14° C (high intra-family variation), and minimal at 12° C (only maternal influence detected). Despite post-hatch rearing under a common cool thermal regime, persistent effects of both temperature and parentage were detected in alevin and 3 week-old fry. Collectively, these findings highlight the crucial role that parental influences on offspring may have in shaping future selection within salmonid populations exposed to elevated thermal regimes. An increased understanding of parental and temperature influences and their persistence in early development will be essential to developing a more comprehensive view of population spawning success and determining the adaptive capacity of O. nerka populations in the face of environmental change. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  6. Distinct effects of 4-nonylphenol and estrogen-17β on expression of estrogen receptor α gene in smolting sockeye salmon

    USGS Publications Warehouse

    Luo, Qiong; Ban, Massatoshi; Ando, Hironori; Kitahashi, Takashi; Bhandari, Ramji K.; McCormick, Stephen D.; Urano, Akihisa

    2005-01-01

    Xenoestrogens such as 4-nonylphenol (4-NP) have been shown to affect the parr–smolt transformation, but their mechanisms of action are not known. We therefore examined effects of 4-NP and estradiol-17β (E2) on expression of estrogen receptor (ER) α gene in the liver, gill, pituitary and brain of sockeye salmon to elucidate molecular mechanisms of 4-NP and E2 and developmental differences in response during smolting. Fish were treated twice within a week with 4-NP (15 and 150 mg/kg BW), E2 (2 mg/kg BW) or only vehicle at three stages of smolting, pre-smolting in March, early smolting in April and late smolting in May. The absolute amounts of ERα mRNA were determined by real-time PCR. The basal amounts of ERα mRNA peaked in April in the liver, gill and pituitary. In March, E2 extensively increased the amounts in the liver, while 4-NP had no effects at this stage. In contrast, 4-NP (but not E2) decreased liver ERα mRNA in April. 4-NP also decreased the amount of ERα mRNA in the gill in April. In the pituitary, 4-NP increased ERα mRNA in March but decreased it in May. There were no significant effects in the brain. Changes in basal ERα mRNA observed in this study indicate that estrogen responsiveness of tissues may change during salmon smolting. Furthermore, 4-NP and E2 have different effects on expression of ERα gene in the liver and gill during smolting, and the response is dependent on smolt stage.

  7. In vitro fertilization experiments using sockeye salmon reveal that bigger eggs are more fertilizable under sperm limitation

    PubMed Central

    Macfarlane, Christopher P.; Hoysak, Drew J.; Liley, N. Robin; Gage, Matthew J.G.

    2009-01-01

    Although theory and widespread evidence show that the evolution of egg size is driven primarily by offspring and maternal fitness demands, an additional explanation invokes sperm limitation as a selective force that could also influence egg size optima. Levitan proposed that constraints from gamete encounter in external fertilization environments could select for enlargement of ova to increase the physical size of the fertilization target. We test this theory using in vitro fertilization experiments in an externally fertilizing fish. Sockeye salmon (Onchorhyncus nerka) females show considerable between-individual variation in ovum size, and we explored the consequences of this natural variation for the fertilization success of individual eggs under conditions of sperm limitation. By engineering consistent conditions where in vitro fertilization rate was always intermediate, we were able to compare the sizes of fertilized and unfertilized eggs across 20 fertilization replicates. After controlling for any changes in volume through incubation, results showed that successfully fertilized eggs were significantly larger than the eggs that failed to achieve fertilization. Under conditions without sperm limitation, fertility was unaffected by egg size. Our findings therefore support Levitan's theory, demonstrating empirically that some element of egg size variation could be selected by fertilization demands under sperm limitation. However, further research on sperm limitation in natural spawnings is required to assess the selective importance of these results. PMID:19364734

  8. In vitro fertilization experiments using sockeye salmon reveal that bigger eggs are more fertilizable under sperm limitation.

    PubMed

    Macfarlane, Christopher P; Hoysak, Drew J; Liley, N Robin; Gage, Matthew J G

    2009-07-07

    Although theory and widespread evidence show that the evolution of egg size is driven primarily by offspring and maternal fitness demands, an additional explanation invokes sperm limitation as a selective force that could also influence egg size optima. Levitan proposed that constraints from gamete encounter in external fertilization environments could select for enlargement of ova to increase the physical size of the fertilization target. We test this theory using in vitro fertilization experiments in an externally fertilizing fish. Sockeye salmon (Onchorhyncus nerka) females show considerable between-individual variation in ovum size, and we explored the consequences of this natural variation for the fertilization success of individual eggs under conditions of sperm limitation. By engineering consistent conditions where in vitro fertilization rate was always intermediate, we were able to compare the sizes of fertilized and unfertilized eggs across 20 fertilization replicates. After controlling for any changes in volume through incubation, results showed that successfully fertilized eggs were significantly larger than the eggs that failed to achieve fertilization. Under conditions without sperm limitation, fertility was unaffected by egg size. Our findings therefore support Levitan's theory, demonstrating empirically that some element of egg size variation could be selected by fertilization demands under sperm limitation. However, further research on sperm limitation in natural spawnings is required to assess the selective importance of these results.

  9. A physiological comparison of three techniques for reviving sockeye salmon exposed to a severe capture stressor during upriver migration

    PubMed Central

    Raby, Graham D.; Wilson, Samantha M.; Patterson, David A.; Hinch, Scott G.; Clark, Timothy D.; Farrell, Anthony P.; Cooke, Steven J.

    2015-01-01

    Capture of fish in commercial and recreational fisheries causes disruption to their physiological homeostasis and can result in delayed mortality for fish that are released. For fish that are severely impaired, it may be desirable to attempt revival prior to release to reduce the likelihood of post-release mortality. In this study, male sockeye salmon (Oncorhynchus nerka) undergoing their upriver migration were used to examine short-term physiological changes during the following three revival treatments after beach seine capture and air exposure: a pump-powered recovery box that provided ram ventilation at one of two water flow rates; and a cylindrical, in-river recovery bag, which ensured that fish were oriented into the river flow. Beach seine capture followed by a 3 min air exposure resulted in severe impairment of reflexes such that fish could not maintain positive orientation or properly ventilate. All three revival treatments resulted in significant reductions in reflex impairment within 15 min, with full recovery of reflex responses observed within 60–120 min. For most variables measured, including plasma lactate, cortisol and osmolality, there were no significant differences among revival treatments. There was some evidence for impaired recovery in the low-flow recovery box, in the form of higher haematocrit and plasma sodium. These data mirror published recovery profiles for a recovery box study in the marine environment where a survival benefit occurred, suggesting that the methods tested here are viable options for reviving salmon caught in freshwater. Importantly, with most of the benefit to animal vitality accrued in the first 15 min, prolonging recovery when fish become vigorous may not provide added benefit because the confinement itself is likely to serve as a stressor. PMID:27293700

  10. Transcriptomic responses to high water temperature in two species of Pacific salmon

    PubMed Central

    Jeffries, Ken M; Hinch, Scott G; Sierocinski, Thomas; Pavlidis, Paul; Miller, Kristi M

    2014-01-01

    Characterizing the cellular stress response (CSR) of species at ecologically relevant temperatures is useful for determining whether populations and species can successfully respond to current climatic extremes and future warming. In this study, populations of wild-caught adult pink (Oncorhynchus gorbuscha) and sockeye (Oncorhynchus nerka) salmon from the Fraser River, British Columbia, Canada, were experimentally treated to ecologically relevant ‘cool’ or ‘warm’ water temperatures to uncover common transcriptomic responses to elevated water temperature in non-lethally sampled gill tissue. We detected the differential expression of 49 microarray features (29 unique annotated genes and one gene with unknown function) associated with protein folding, protein synthesis, metabolism, oxidative stress and ion transport that were common between populations and species of Pacific salmon held at 19°C compared with fish held at a cooler temperature (13 or 14°C). There was higher mortality in fish held at 19°C, which suggests a possible relationship between a temperature-induced CSR and mortality in these species. Our results suggest that frequently encountered water temperatures ≥19°C, which are capable of inducing a common CSR across species and populations, may increase risk of upstream spawning migration failure for pink and sockeye salmon. PMID:24567748

  11. An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska (Final Report)

    EPA Science Inventory

    The Bristol Bay watershed in southwestern Alaska supports the largest sockeye salmon fishery in the world, is home to 25 federally recognized tribal governments, and contains large mineral resources. The potential for large-scale mining activities in the watershed has raised conc...

  12. The effects of thyroxine or a GnRH analogue on thyroid hormone deiodination in the olfactory epithelium and retina of rainbow trout, Oncorhynchus mykiss, and sockeye salmon, Oncorhynchus nerka.

    PubMed

    Plate, E M; Adams, B A; Allison, W T; Martens, G; Hawryshyn, C W; Eales, J G

    2002-06-01

    Using low (0.5nM) substrate levels we determined the activities of thyroxine (T4) outer-ring deiodination (ORD), T4 inner-ring deiodination (T4IRD) and 3,5,3(')-triiodothyronine (T3) IRD activities in the olfactory epithelium (OLF) and retina (RET) of laboratory-held immature 1-year-old rainbow trout and immature 2.5-year-old sockeye salmon. In both species all three deiodination activities were detected in OLF and RET. For OLF, no particular pathway predominated and activities were similar to those of brain. For RET, T3IRD activity was greater than T4ORD activity and in sockeye RET T3IRD activity exceeded that of liver. Trout immersion for 6 weeks in 100ppm T4 increased plasma T4 levels 3-fold and plasma T3 levels by 50% and caused the anticipated autoregulatory responses in brain and liver deiodination ( downward arrow T4ORD, upward arrow T4IRD, and upward arrow T3IRD); OLF deiodination and RET T4ORD activity were unaltered but RET T4IRD and T3IRD activities increased dramatically. Two injections of a GnRH analogue (20 microgkg(-1)) into sockeye increased plasma T3 levels but not T4 levels and decreased RET T4IRD and T3IRD activities without changing liver, brain, or OLF deiodination. We conclude that in salmonids the main TH deiodination pathways occur in OLF but show no regulation by T4 or GnRH. In contrast, T3IRD activity predominates in RET and can be regulated by T4 and GnRH, suggesting that for RET plasma may be the major T3 source. These findings have implications for thyroidal regulation of sensory functions during salmonid diadromous migrations.

  13. Alaskan Fish Gelatin Films: Thermal, Tensile, and Barrier Properties and Effects of Cross-linking

    USDA-ARS?s Scientific Manuscript database

    Gelatin was extracted from the skins of Alaska pollock (Theragra chalcogramma) and Alaska pink salmon (Oncorhynchus gorbuscha). These skins were by-products generated from the Alaskan fishing industry. Films were then cast from the fish gelatin and their thermal, tensile, water vapor permeability, o...

  14. On signals of phase transitions in salmon population dynamics

    PubMed Central

    Krkošek, Martin; Drake, John M.

    2014-01-01

    Critical slowing down (CSD) reflects the decline in resilience of equilibria near a bifurcation and may reveal early warning signals (EWS) of ecological phase transitions. We studied CSD in the recruitment dynamics of 120 stocks of three Pacific salmon (Oncorhynchus spp.) species in relation to critical transitions in fishery models. Pink salmon (Oncorhynchus gorbuscha) exhibited increased variability and autocorrelation in populations that had a growth parameter, r, close to zero, consistent with EWS of extinction. However, models and data for sockeye salmon (Oncorhynchus nerka) indicate that portfolio effects from heterogeneity in age-at-maturity may obscure EWS. Chum salmon (Oncorhynchus keta) show intermediate results. The data do not reveal EWS of Ricker-type bifurcations that cause oscillations and chaos at high r. These results not only provide empirical support for CSD in some ecological systems, but also indicate that portfolio effects of age structure may conceal EWS of some critical transitions. PMID:24759855

  15. Stable isotope analysis of Pacific salmon: insight into trophic status and oceanographic conditions over the last 30 years

    NASA Astrophysics Data System (ADS)

    Satterfield, Franklin R.; Finney, Bruce P.

    Food web interactions and the response of Pacific salmon to physical processes in the North Pacific Ocean over interannual and interdecadal timescales are explored using naturally occurring stable isotope ratios of carbon ( 13C/ 12C) and nitrogen ( 15N/ 14N). Stable isotope analyses of five species of sexually mature North Pacific salmon from Alaska ( Oncorhynchus spp.) cluster into three groups: chinook salmon ( O. tshawytscha) have the highest values, followed by coho ( O. kisutch), with chum ( O. keta), sockeye ( O. nerka), and pink ( O. gorbuscha) together having the lowest values. Although detailed isotopic data on salmon prey are lacking, there are limited data on relevant prey items from areas in which they are found in high abundance. These data suggest that the characteristics of the sockeye, pink and chum we have analyzed are compatible with their diets including open ocean squid and zooplankton, which are in general agreement with stomach content analyses. Isotope relationships between muscle and scale show consistent relationships for both δ13C ( R2=0.98) and δ 15N ( R2=0.90). Thus, scales, which have been routinely archived for many systems, can be used for retrospective analyses. Archived sockeye salmon scales spanning 1966-1999 from Red Lake, Kodiak Island, Alaska were analyzed for their stable isotope ratios of carbon and nitrogen. The δ15N record displays a decreasing trend of ~3‰ from 1969-1982 and an increasing trend of ~3‰ from 1982-1992, while the variations in δ13C are relatively minor. These trends may result from factors such as shifts in trophic level of feeding and/or feeding location, or may originate at the base of the food web via changes in processes such as nutrient cycling or primary productivity. Detailed studies on prey isotopic variability and its controls are needed to distinguish between these factors, and thus to improve the use of stable isotope analysis as a tool to learn more about present and past ecosystem change

  16. Infection of gill and kidney of Fraser River sockeye salmon, Oncorhynchus nerka (Walbaum), by Parvicapsula minibicornis and its effect on host physiology.

    PubMed

    Bradford, M J; Lovy, J; Patterson, D A

    2010-09-01

    Adult sockeye salmon, Oncorhynchus nerka (Walbaum), migrating upstream in the Fraser River, British Columbia, are exposed to the myxozoan parasite Parvicapsula minibicornis when they enter the river from the ocean. Infections are initially localized in the kidney but have recently been associated with branchitis in one population. Adult fish from five locations in the watershed were sampled to determine whether branchitis was widespread. P. minibicornis infections in kidney glomeruli were prevalent in all samples except for a sample of fish that had just entered the Fraser River from the ocean. For fish captured in spawning streams, parasites were observed in the renal tubules and gill, and branchitis was observed in 70% of fish. Plasma osmolality was negatively correlated with the number of parasites in the kidney tubules, which we hypothesize to be caused by the breach of glomerular membranes as the parasite leaves the fish. Plasma lactate values increased with increasing levels of pathology in gills. These findings support the hypothesis that P. minibicornis impacts the physiology of migrating fish, which may in turn affect the likelihood that adults will be able to migrate and spawn successfully.

  17. Patterns of selection and allele diversity of class I and class II major histocompatibility loci across the species range of sockeye salmon (Oncorhynchus nerka).

    PubMed

    McClelland, Erin K; Ming, Tobi J; Tabata, Amy; Kaukinen, Karia H; Beacham, Terry D; Withler, Ruth E; Miller, Kristina M

    2013-09-01

    The major histocompatibility complex (MHC), an important component of the vertebrate immune system, provides an important suite of genes to examine the role of genetic diversity at non-neutral loci for population persistence. We contrasted patterns of diversity at the two classical MHC loci in sockeye salmon (Oncorhynchus nerka), MHC class I (UBA) and MHC class II (DAB), and neutral microsatellite loci across 70 populations spanning the species range from Washington State to Japan. There was no correlation in allelic richness or heterozygosity between MHC loci or between MHC loci and microsatellites. The two unlinked MHC loci may be responding to different selective pressures; the distribution of FST values for the two loci was uncorrelated, and evidence for both balancing and directional selection on alleles and lineages of DAB and UBA was observed in populations throughout the species range but rarely on both loci within a population. These results suggest that fluctuating selection has resulted in the divergence of MHC loci in contemporary populations. © 2013 John Wiley & Sons Ltd.

  18. [Comparative study of the population structure and population assignment of sockeye salmon Oncorhynchus nerka from West Kamchatka based on RAPD-PCR and microsatellite polymorphism].

    PubMed

    Zelenina, D A; Khrustaleva, A M; Volkov, A A

    2006-05-01

    Using two types of molecular markers, a comparative analysis of the population structure of sockeye salmon from West Kamchatka as well as population assignment of each individual fish were carried out. The values of a RAPD-PCR-based population assignment test (94-100%) were somewhat higher than those based on microsatellite data (74-84%). However, these results seem quite satisfactory because of high polymorphism of the microsatellite loci examined. The UPGMA dendrograms of genetic similarity of three largest spawning populations, constructed using each of the methods, were highly reliable, which was demonstrated by high bootstrap indices (100% in the case of RAPD-PCR; 84 and 100%, in the case of microsatellite analysis), though the resultant trees differed from one another. The different topology of the trees, in our view, is explained by the fact that the employed methods explored different parts of the genome; hence, the obtained results, albeit valid, may not correlate. Thus, to enhance reliability of the results, several methods of analysis should be used concurrently.

  19. Age-related thermal habitat use by Pacific salmon Oncorhynchus spp.

    PubMed

    Morita, K; Fukuwaka, M; Tanimata, N

    2010-09-01

    Age-related thermal habitat use by sockeye Oncorhynchus nerka, chum Oncorhynchus keta and pink Oncorhynchus gorbuscha salmon was examined using trawl data obtained in spring in the North Pacific Ocean. Thermal habitat use differed by species and age. Larger and older fishes inhabited cooler areas, whereas smaller and younger fishes inhabited warmer areas. © 2010 The Authors. Journal compilation © 2010 The Fisheries Society of the British Isles.

  20. Monitoring and Evaluation of Smolt Migration in the Columbia Basin, Volume XIV; Evaluation of 2006 Prediction of the Run-Timing of Wild and Hatchery-Reared Salmon and Steelhead at Rock Island, Lower Granite, McNary, John Day and Bonneville Dams using Program Real Time, Technical Report 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griswold, Jim

    Program RealTime provided monitoring and forecasting of the 2006 inseason outmigrations via the internet for 32 PIT-tagged stocks of wild ESU chinook salmon and steelhead to Lower Granite and/or McNary dams, one PIT-tagged hatchery-reared ESU of sockeye salmon to Lower Granite Dam, and 20 passage-indexed runs-at-large, five each to Rock Island, McNary, John Day, and Bonneville Dams. Twenty-four stocks are of wild yearling chinook salmon which were captured, PIT-tagged, and released at sites above Lower Granite Dam in 2006, and have at least one year's historical migration data previous to the 2006 migration. These stocks originate in drainages of themore » Salmon, Grande Ronde and Clearwater Rivers, all tributaries to the Snake River, and are subsequently detected through the tag identification and monitored at Lower Granite Dam. In addition, seven wild PIT-tagged runs-at-large of Snake or Upper Columbia River ESU salmon and steelhead were monitored at McNary Dam. Three wild PIT-tagged runs-at-large were monitored at Lower Granite Dam, consisting of the yearling and subyearling chinook salmon and the steelhead trout runs. The hatchery-reared PIT-tagged sockeye salmon stock from Redfish Lake was monitored outmigrating through Lower Granite Dam. Passage-indexed stocks (stocks monitored by FPC passage indices) included combined wild and hatchery runs-at-large of subyearling and yearling chinook, coho, and sockeye salmon, and steelhead trout forecasted to Rock Island, McNary, John Day, and Bonneville Dams.« less

  1. [Incomplete congruence between morphobiological characters and sex-specific molecular markers in Pacific salmons: 1. Analysis of discrepancy in five species of the genus Oncorhynchus].

    PubMed

    Brykov, Vl A; Kukhlevskiĭ, A D; Podlesnykh, A V

    2010-07-01

    The congruence between molecular markers, identifying the presence of the Y chromosome, and secondary sexual characters was examined in Asian populations of five Pacific salmon species: pink salmon (Oncorhynchus gorbuscha), chum salmon (O. keta), sockeye salmon (O. nerka), chinook salmon (O. tschawytsha), and sima (O. masou). It was demonstrated that in all species examined, the presence or absence of sex-specific molecular markers was to a considerable degree congruent with secondary sexual characters, but in some cases, an incongruence was found. These findings suggested that the mechanism underlying this phenomenon was similar or identical in all species examined. Possible genetic and physiological explanations of this phenomenon are discussed.

  2. Physiological, energetic and behavioural correlates of successful fishway passage of adult sockeye salmon Oncorhynchus nerka in the Seton River, British Columbia.

    PubMed

    Pon, L B; Hinch, S G; Cooke, S J; Patterson, D A; Farrell, A P

    2009-04-01

    Electromyogram (EMG) radio telemetry was used in conjunction with physiological biopsy to relate prior physiological condition and subsequent swimming energetics and behaviours to passage success of 13 wild adult sockeye salmon Oncorhynchus nerka at a vertical-slot fishway on the Seton River, British Columbia. At the time of capture, plasma lactate, glucose and cortisol levels indicated that fish were not exhibiting unusually high levels of physiological stress. Very few differences existed between successful and unsuccessful fish in body size, initial plasma physiology and energy state and mean swim speed and energy use during passage. Generally, fish did not employ burst swimming during successful or failed attempts at passage, indicating that failure was probably not related to metabolic acidosis. Plasma Na(+) concentration was significantly lower in unsuccessful fish (P < 0.05), which is suggestive of a depressed ionic state or a possible stress component, although values in all fish were within an expected range for migrant adult O. nerka. Nevertheless, six of 13 fish failed to reascend the fishway and remained in the tailrace of the dam for more than a day on average before moving downstream and away from the dam. During this time, fish were observed actively seeking a means of passage, suggesting that there may have been other, undetermined causes of passage failure.

  3. Telemetry link for an automatic salmon migration monitor

    NASA Technical Reports Server (NTRS)

    Baldwin, H. A.; Freyman, R. W.

    1973-01-01

    The antenna and transmitter described in this report were designed for integration into the remote acoustic assessment system for detection of sockeye salmon in the Bristol Bay region of the Bering Sea. The assessment system configuration consists of an upward directed sonar buoy anchored 150 ft below the surface and attached by cable to a spar buoy tethered some 300 ft laterally. The spar buoy contains a telemetry transmitter, power supply, data processing electronics, an antenna and a beacon light.

  4. 50 CFR 300.94 - Prohibitions and restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REGULATIONS Fraser River Sockeye and Pink Salmon Fisheries § 300.94 Prohibitions and restrictions. In addition... sockeye and pink salmon fishing in the Fraser River Panel Area (U.S.): (1) The Fraser River Panel Area (U.S.) is closed to sockeye and pink salmon fishing, unless opened by Fraser River Panel regulations or...

  5. 50 CFR 300.94 - Prohibitions and restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... REGULATIONS Fraser River Sockeye and Pink Salmon Fisheries § 300.94 Prohibitions and restrictions. In addition... sockeye and pink salmon fishing in the Fraser River Panel Area (U.S.): (1) The Fraser River Panel Area (U.S.) is closed to sockeye and pink salmon fishing, unless opened by Fraser River Panel regulations or...

  6. Using image analysis to predict the weight of Alaskan salmon of different species.

    PubMed

    Balaban, Murat O; Unal Sengör, Gülgün F; Gil Soriano, Mario; Guillén Ruiz, Elena

    2010-04-01

    After harvesting, salmon is sorted by species, size, and quality. This is generally manually done by operators. Automation would bring repeatability, objectivity, and record-keeping capabilities to these tasks. Machine vision (MV) and image analysis have been used in sorting many agricultural products. Four salmon species were tested: pink (Oncorhynchus gorbuscha), red (Oncorhynchus nerka), silver (Oncorhynchus kisutch), and chum (Oncorhynchus keta). A total of 60 whole fish from each species were first weighed, then placed in a light box to take their picture. Weight compared with view area as well as length and width correlations were developed. In addition the effect of "hump" development (see text) of pink salmon on this correlation was investigated. It was possible to predict the weight of a salmon by view area, regardless of species, and regardless of the development of a hump for pinks. Within pink salmon there was a small but insignificant difference between predictive equations for the weight of "regular" fish and "humpy" fish. Machine vision can accurately predict the weight of whole salmon for sorting.

  7. Temporal changes in blood variables during final maturation and senescence in male sockeye salmon Oncorhynchus nerka: reduced osmoregulatory ability can predict mortality.

    PubMed

    Jeffries, K M; Hinch, S G; Donaldson, M R; Gale, M K; Burt, J M; Thompson, L A; Farrell, A P; Patterson, D A; Miller, K M

    2011-08-01

    This study is the first to characterize temporal changes in blood chemistry of individuals from one population of male sockeye salmon Oncorhynchus nerka during the final 6 weeks of sexual maturation and senescence in the freshwater stage of their spawning migration. Fish that died before the start of their historic mean spawning period (c. 5 November) were characterized by a 20-40% decrease in plasma osmolality, chloride and sodium, probably representing a complete loss of osmoregulatory ability. As fish became moribund, they were further characterized by elevated levels of plasma cortisol, lactate and potassium. Regressions between time to death and plasma chloride (8 October: P < 0·001; 15 October: P < 0·001) indicate that plasma chloride was a strong predictor of longevity in O. nerka. That major plasma ion levels started to decline 2-10 days (mean of 6 days) before fish became moribund, and before other stress, metabolic or reproductive hormone variables started to change, suggests that a dysfunctional osmoregulatory system may initiate rapid senescence and influence other physiological changes (i.e. elevated stress and collapsed reproductive hormones) which occur as O. nerka die on spawning grounds. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  8. Molecular cloning, molecular evolution and gene expression of cDNAs encoding thyrotropin-releasing hormone receptor subtypes in a teleost, the sockeye salmon (Oncorhynchus nerka).

    PubMed

    Saito, Yuichi; Mekuchi, Miyuki; Kobayashi, Noriaki; Kimura, Makoto; Aoki, Yasuhiro; Masuda, Tomohiro; Azuma, Teruo; Fukami, Motohiro; Iigo, Masayuki; Yanagisawa, Tadashi

    2011-11-01

    Molecular cloning of thyrotropin-releasing hormone receptors (TRHR) was performed in a teleost, the sockeye salmon (Oncorhynchus nerka). Four different TRHR cDNAs were cloned and named TRHR1, TRHR2a, TRHR2b and TRHR3 based on their similarity to known TRHR subtypes in vertebrates. Important residues for TRH binding were conserved in deduced amino acid sequences of the three TRHR subtypes except for the TRHR2b. Seven transmembrane domains were predicted for TRHR1, TRHR2a and TRHR3 proteins but only five for TRHR2b which appears to be truncated. In silico database analysis identified putative TRHR sequences including invertebrate TRHR and reptilian, avian and mammalian TRHR3. Phylogenetic analyses predicted the molecular evolution of TRHR in vertebrates: from the common ancestral TRHR (i.e. invertebrate TRHR), the TRHR2 subtype diverged first and then TRHR1 and TRHR3 diverged. Reverse transcription-polymerase chain reaction analyses revealed TRHR1 transcripts in the brain (hypothalamus), retina, pituitary gland and large intestine; TRHR2a in the brain (telencephalon and hypothalamus); and TRHR3 in the brain (olfactory bulbs) and retina. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Pacific salmon (Oncorhynchus spp.) runs and consumer fitness: growth and energy storage in stream-dwelling salmonids increase with salmon spawner density

    USGS Publications Warehouse

    Rinella, Daniel J.; Wipfli, Mark S.; Stricker, Craig A.; Heintz, Ron A.; Rinella, Matthew J.

    2012-01-01

    We examined how marine-derived nutrients (MDN), in the form of spawning Pacific salmon, influenced the nutritional status and δ15N of stream-dwelling fishes. We sampled juvenile coho salmon (Oncorhynchus kisutch) and Dolly Varden (Salvelinus malma) during spring and fall from 11 south-central Alaskan streams that ranged widely in spawning salmon biomass (0.1–4.7 kg·m–2). Growth rate (as indexed by RNA–DNA ratios), energy density, and δ15N enrichment in spring-sampled fishes increased with spawner biomass, indicating the persistence of spawner effects more than 6 months after salmon spawning. Point estimates suggest that spawner effects on nutrition were substantially greater for coho salmon than Dolly Varden (268% and 175% greater for growth and energy, respectively), indicating that both species benefitted physiologically, but that juvenile coho salmon accrued more benefits than Dolly Varden. Although the data were less conclusive for fall- than spring-sampled fish, they do suggest spawner effects were also generally positive during fall, soon after salmon spawned. In a follow-up analysis where growth rate and energy density were modeled as a function of δ15N enrichment, results suggested that both increased with MDN assimilation, especially in juvenile coho salmon. Our results support the importance of salmon runs to the nutritional ecology of stream-dwelling fishes.

  10. Smolt Monitoring Program, Part II, Volume II, Migrational Characteristics of Columbia Basin Salmon and Steelhead Trout, 1985 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fish Passage Center

    1986-02-01

    Volume I of this report describes the results of travel time monitoring and other migrational characteristics of yearling and sub-yearling chinook salmon (Oncorhynchus tshawytscha), sockeye salmon (Oncorhynchus nerka), and steelhead trout (Salmo gairdneri). This volume presents the freeze brand data used in the analysis of travel time for Lower Granite, Rock Island, McNary, and John Day dams. Brand recoveries for Lower Monumental dam also are presented. Summary of data collection procedures and explanation of data listings are presented in conjunction with the mark recapture data.

  11. Evaluations of alternative methods for monitoring and estimating responses of salmon productivity in the North Pacific to future climatic change and other processes: A simulation study

    EPA Science Inventory

    Estimation of the relative influence of climate change, compared to other human activities, on dynamics of Pacific salmon (Oncorhynchus spp.) populations can help management agencies take appropriate management actions. We used empirically based simulation modelling of 48 sockeye...

  12. An empirical comparison of SNPs and microsatellites for parentage and kinship assignment in a wild sockeye salmon (Oncorhynchus nerka) population.

    PubMed

    Hauser, Lorenz; Baird, Melissa; Hilborn, Ray; Seeb, Lisa W; Seeb, James E

    2011-03-01

    Because of their high variability, microsatellites are still considered the marker of choice for studies on parentage and kinship in wild populations. Nevertheless, single nucleotide polymorphisms (SNPs) are becoming increasing popular in many areas of molecular ecology, owing to their high-throughput, easy transferability between laboratories and low genotyping error. An ongoing discussion concerns the relative power of SNPs compared to microsatellites-that is, how many SNP loci are needed to replace a panel of microsatellites? Here, we evaluate the assignment power of 80 SNPs (H(E) = 0.30, 80 independent alleles) and 11 microsatellites (H(E) = 0.85, 192 independent alleles) in a wild population of about 400 sockeye salmon with two commonly used software packages (Cervus3, Colony2) and, for SNPs only, a newly developed software (SNPPIT). Assignment success was higher for SNPs than for microsatellites, especially for parent pairs, irrespective of the method used. Colony2 assigned a larger proportion of offspring to at least one parent than the other methods, although Cervus and SNPPIT detected more parent pairs. Identification of full-sib groups without parental information from relatedness measures was possible using both marker systems, although explicit reconstruction of such groups in Colony2 was impossible for SNPs because of computation time. Our results confirm the applicability of SNPs for parentage analyses and refute the predictability of assignment success from the number of independent alleles. © 2011 Blackwell Publishing Ltd.

  13. Alaskan Salmon and Gen R: hunting, fishing to cultivate ecological mindfulness

    NASA Astrophysics Data System (ADS)

    Mueller, Michael P.

    2015-03-01

    Can mining and fisheries co-exist in Bristol Bay, Alaska? To delve into this interesting tension, I expand on Clay Pierce's (this special issue) thoughtful analysis of genetically modified salmon and AquaBounty Technologies, where he explores actor-network theory in relation to scientific literacy and schooling. Further, my essay explores the idea of embodied knowledge as paramount to the next generation of youth engaged with scientific literacy. I demonstrate the problems associated with using hegemonic science to normalize biocapitalism and the subjugated knowledges in relation. Ultimately, I provide justifications for strengthening an ecologically mindful scientific literacy, working towards what might be called "Neptunian democracy" in science education, including salmon and other nonhuman actors as integral for youth wrestling with ecojustice issues. To do this, I highlight the significance of renewing fishing, hunting, and salmon eating. These things ought to become an intimate characteristic of the imagined literacy of the next generation of youth (what I've been calling Generation R for responsibility).

  14. Evidence for a carrier state of infectious hematopoietic necrosis virus in chinook salmon Oncorhynchus tshawytscha.

    PubMed

    St Hilaire, S; Ribble, C; Traxler, G; Davies, T; Kent, M L

    2001-10-08

    In British Columbia, Canada, infectious hematopoietic necrosis virus (IHNV) is prevalent in wild sockeye salmon Oncorhynchus nerka and has caused disease in seawater net-pen reared Atlantic salmon Salmo salar. In this study, chinook salmon Oncorhynchus tshawytscha experimentally exposed to an isolate of IHNV found in British Columbia became carriers of the virus. When Atlantic salmon were cohabited with these virus-exposed chinook salmon, IHNV was isolated from the Atlantic salmon. Identification of chinook salmon populations that have been exposed to IHNV may be difficult, as virus isolation was successful only in fish that were concurrently infected with either Renibacterium salmoninarum or Piscirickettisia salmonis. Also, IHNV-specific antibodies were detected in only 2 of the 70 fish experimentally exposed to the virus. Two samples collected from chinook salmon exposed to IHNV while at a salt water net-pen site had a seroprevalence of 19 and 22%; however, the inconsistencies between our laboratory and field data suggest that further research is required before we can rely on serological analysis for identifying potential carrier populations. Because of the difficulty in determining the exposure status of populations of chinook salmon, especially if there is no concurrent disease, it may be prudent not to cohabit Atlantic salmon with chinook salmon on a farm if there is any possibility that the latter have been exposed to the virus.

  15. Variability in Migration Routes Influences Early Marine Survival of Juvenile Salmon Smolts

    PubMed Central

    Furey, Nathan B.; Vincent, Stephen P.; Hinch, Scott G.; Welch, David W.

    2015-01-01

    Variability in animal migratory behavior is expected to influence fitness, but few empirical examples demonstrating this relationship exist. The initial marine phase in the migration of juvenile salmon smolts has been identified as a potentially critical life history stage to overall population productivity, yet how fine-scale migration routes may influence survival are unknown. Large-scale acoustic telemetry studies have estimated survival rates of outmigrant Pacific salmon smolts through the Strait of Georgia (SOG) along the British Columbian coastline to the Pacific Ocean, but these data have not been used to identify and characterize fine-scale movements. Data collected on over 850 sockeye salmon (Oncorhynchus nerka) and steelhead (Oncorhynchus mykiss) smolts detected at an array in the Strait of Georgia in 2004–2008 and 2010–2013 were analyzed to characterize migration routes and link movements to subsequent survival at an array 250 km further along the marine migration pathway. Both species exhibited disproportionate use of the most eastern route in the Strait of Georgia (Malaspina Strait). While many smolts moved across the northern Strait of Georgia acoustic array with no indication of long-term milling or large-scale east-to-west movements, large proportions (20–40% of sockeye and 30–50% of steelhead) exhibited a different behavior, apparently moving in a westward or counterclockwise pattern. Variability in migratory behavior for both species was linked to subsequent survival through the Strait of Georgia. Survival for both species was influenced by initial east-to-west location, and sockeye were further influenced by migration timing and duration of time spent near the northern Strait of Georgia array. Westward movements result in a net transport of smolts from Malaspina Strait to the Strait of Georgia, particularly for steelhead. Counterclockwise movements may be due to the currents in this area during the time of outmigration, and the higher

  16. Management Plan for Experimental Reintroduction of Sockeye into Skaha Lake; Proposed Implementation, Monitoring, and Evaluation, 2004 Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Howie; Smith, Howard

    2004-01-01

    Okanagan River sockeye salmon, which spawn near the town of Oliver, B.C., have their farther upstream migration limited by several water control and diversion dams. Stock numbers have been declining for many years and the Okanagan Native Alliance Fisheries Department (ONAFD) has been the principal advocate of a program to restore their numbers and range by reintroducing them into upstream waters where they may once have occurred in substantial numbers Some investigators have warned that without effective intervention Okanagan sockeye are at considerable risk of extinction. Among a host of threats, the quality of water in the single nursery areasmore » in Osoyoos Lake. is deteriorating and a sanctuary such as that afforded in larger lakes higher in the system could be essential. Because the proposed reintroduction upstream has implications for other fish species, (particularly kokanee, the so-called ''landlocked sockeye'' which reside in many Okanagan lakes), the proponents undertook a three-year investigation, with funding from the Bonneville Power Administration and the Confederated Tribes of the Colville Reservation, to identify possible problem areas, and they committed to an interim experimental reintroduction to Skaha Lake where any problems could be worked out before a more ambitious reintroduction, (e.g. to Okanagan Lake) could be formally considered. The three-year investigation was completed in the spring of 2003. It included an assessment of risks from disease or the possible introduction of unwanted exotic species. It also considered the present quality and quantity of sockeye habitat, and opportunities for expanding or improving it. Finally ecological complexity encouraged the development of a life history model to examine interactions of sockeye with other fishes and their food organisms. While some problem areas were exposed in the course of these studies, they appeared to be manageable and the concept of an experimental reintroduction was largely

  17. Salmon escapement estimates into the Togiak River using sonar, Togiak National Wildlife Refuge, Alaska, 1987, 1988, and 1990

    USGS Publications Warehouse

    Irving, David B.; Finn, James E.; Larson, James P.

    1995-01-01

    We began a three year study in 1987 to test the feasibility of using sonar in the Togiak River to estimate salmon escapements. Current methods rely on periodic aerial surveys and a counting tower at river kilometer 97. Escapement estimates are not available until 10 to 14 days after the salmon enter the river. Water depth and turbidity preclude relocating the tower to the lower river and affect the reliability of aerial surveys. To determine whether an alternative method could be developed to improve the timeliness and accuracy of current escapement monitoring, Bendix sonar units were operated during 1987, 1988, and 1990. Two sonar stations were set up opposite each other at river kilometer 30 and were operated 24 hours per day, seven days per week. Catches from gill nets with 12, 14, and 20 cm stretch mesh, a beach seine, and visual observations were used to estimate species composition. Length and sex data were collected from salmon caught in the nets to assess sampling bias.In 1987, sonar was used to select optimal sites and enumerate coho salmon. In 1988 and 1990, the sites identified in 1987 were used to estimate the escapement of five salmon species. Sockeye salmon escapement was estimated at 512,581 and 589,321, chinook at 7,698 and 15,098, chum at 246,144 and 134,958, coho at 78,588 and 28,290, and pink at 96,167 and 131,484. Sonar estimates of sockeye salmon were two to three times the Alaska Department of Fish and Game's escapement estimate based on aerial surveys and tower counts. The source of error was probably a combination of over-estimating the total number of targets counted by the sonar and by incorrectly estimating species composition.Total salmon escapement estimates using sonar may be feasible but several more years of development are needed. Because of the overlapped salmon run timing, estimating species composition appears the most difficult aspect of using sonar for management. Possible improvements include using a larger beach seine or

  18. Evidence for geomagnetic imprinting as a homing mechanism in Pacific salmon.

    PubMed

    Putman, Nathan F; Lohmann, Kenneth J; Putman, Emily M; Quinn, Thomas P; Klimley, A Peter; Noakes, David L G

    2013-02-18

    In the final phase of their spawning migration, Pacific salmon use chemical cues to identify their home river, but how they navigate from the open ocean to the correct coastal area has remained enigmatic. To test the hypothesis that salmon imprint on the magnetic field that exists where they first enter the sea and later seek the same field upon return, we analyzed a 56-year fisheries data set on Fraser River sockeye salmon, which must detour around Vancouver Island to approach the river through either a northern or southern passageway. We found that the proportion of salmon using each route was predicted by geomagnetic field drift: the more the field at a passage entrance diverged from the field at the river mouth, the fewer fish used the passage. We also found that more fish used the northern passage in years with warmer sea surface temperature (presumably because fish were constrained to more northern latitudes). Field drift accounted for 16% of the variation in migratory route used, temperature 22%, and the interaction between these variables 28%. These results provide the first empirical evidence of geomagnetic imprinting in any species and imply that forecasting salmon movements is possible using geomagnetic models. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Northwest), Chum Salmon

    DTIC Science & Technology

    1988-03-01

    respect, they are considerably unlike (J. Ames, 1984, WDF; pers. comm.). In sockeye, Oncorhynchus nerka , coho, Southern British Columbia, the average...NOMENCLATURE/TAXONOMY/RANGE MORPHOLOGY/IDENTIFICATION AIDS Scientific name.. Oncorhynchus keta Dorsal fin 10-13 rays; adipose . (Walbaum 1792) (Figure 1) fin... Oncorhynchus gorbuscha, spend minimal salmon that spawn in large river 1, time rearing in freshwater. In this systems is sometimes twice that long f

  20. Adult Pacific Lamprey Migration in the Lower Columbia River: 2007 Radiotelemetry and Half-duplex Pit Tag Studies

    DTIC Science & Technology

    2009-01-01

    L. C. Stuehrenberg, and C. A. Peery. 2005. Late-season mortality during migration of radio-tagged sockeye salmon ( Oncorhynchus nerka ) in the...were 3-5 times longer than those recorded for radio-tagged summer Chinook salmon (O. tshawytscha) and sockeye salmon (O. nerka ) migrating during the

  1. Lake-specific variation in growth, migration timing and survival of juvenile sockeye salmon Oncorhynchus nerka: separating environmental from genetic influences.

    PubMed

    Reed, T E; Martinek, G; Quinn, T P

    2010-08-01

    Time series on juvenile life-history traits obtained from sockeye salmon Oncorhynchus nerka were analysed to assess lake-specific environmental influences on juvenile migration timing, size and survival of fish from a common gene pool. Every year for the past two decades, O. nerka have been spawned at a hatchery facility, and the progeny released into two lakes that differ in average summer temperatures, limnological attributes and growth opportunities. Juveniles reared in the warmer, more productive Crosswind Lake were larger and heavier as smolts compared to those from the cooler, less productive Summit Lake and had higher in-lake and subsequent marine survival. Crosswind Lake smolts migrated from the lake to sea slightly earlier in the season but the migration timing distributions overlapped considerably across years. Fry stocking density had a negative effect on smolt length for both lakes, and a negative effect on in-lake survival in Summit Lake. Taken together, the results revealed a strong effect of lake-rearing environment on the expression of life-history variation in O. nerka. The stocking of these lakes each year with juveniles from a single mixed-source population provided a large-scale reverse common-garden experiment, where the same gene pool was exposed to different environments, rather than the different gene pools in the same environment approach typical of evolutionary ecology studies. Other researchers are encouraged to seek and exploit similar serendipitous situations, which might allow environmental and genetic influences on ecologically important traits to be distinguished in natural or semi-natural settings.

  2. A Markov chain analysis of the movements of juvenile salmonids, including sockeye salmon, in the forebay of McNary Dam, Washington and Oregon, 2006-09

    USGS Publications Warehouse

    Adams, Noah S.; Hatton, Tyson W.

    2012-01-01

    Passage and survival data were collected at McNary Dam between 2006 and 2009. These data have provided critical information for resource managers to implement structural and operational changes designed to improve the survival of juvenile salmonids as they migrate past the dam. Much of the valuable information collected at McNary Dam was in the form of three-dimensional (hereafter referred to as 3-D) tracks of fish movements in the forebay. These data depicted the behavior of multiple species (in three dimensions) during different diel periods, spill conditions, powerhouse operations, and testing of the surface bypass structures (temporary spillway weirs; TSWs). One of the challenges in reporting 3-D results is presenting the information in a manner that allows interested parties to summarize the behavior of many fish over many different conditions across multiple years. To accomplish this, we used a Markov chain analysis to characterize fish movement patterns in the forebay of McNary Dam. The Markov chain analysis allowed us to numerically summarize the behavior of fish in the forebay. This report is the second report published in 2012 that uses this analytical method. The first report included only fish released as part of the annual studies conducted at McNary Dam. This second report includes sockeye salmon that were released as part of studies conducted by the Chelan and Grant County Public Utility Districts at mid-Columbia River dams. The studies conducted in the mid-Columbia used the same transmitters as were used for McNary Dam studies, but transmitter pulse width was different between studies. Additionally, no passive integrated transponder tags were implanted in sockeye salmon. Differences in transmitter pulse width resulted in lower detection probabilities for sockeye salmon at McNary Dam. The absence of passive integrated transponder tags prevented us from determining if fish passed the powerhouse through the juvenile bypass system (JBS) or turbines. To

  3. Using Grizzly Bears to Assess Harvest-Ecosystem Tradeoffs in Salmon Fisheries

    PubMed Central

    MacDuffee, Misty; Mangel, Marc; Paquet, Paul; Wilmers, Christopher C.

    2012-01-01

    Implementation of ecosystem-based fisheries management (EBFM) requires a clear conceptual and quantitative framework for assessing how different harvest options can modify benefits to ecosystem and human beneficiaries. We address this social-ecological need for Pacific salmon fisheries, which are economically valuable but intercept much of the annual pulse of nutrient subsidies that salmon provide to terrestrial and aquatic food webs. We used grizzly bears, vectors of salmon nutrients and animals with densities strongly coupled to salmon abundance, as surrogates for “salmon ecosystem” function. Combining salmon biomass and stock-recruitment data with stable isotope analysis, we assess potential tradeoffs between fishery yields and bear population densities for six sockeye salmon stocks in Bristol Bay, Alaska, and British Columbia (BC), Canada. For the coastal stocks, we find that both bear densities and fishery yields would increase substantially if ecosystem allocations of salmon increase from currently applied lower to upper goals and beyond. This aligning of benefits comes at a potential cost, however, with the possibility of forgoing harvests in low productivity years. In contrast, we detect acute tradeoffs between bear densities and fishery yields in interior stocks within the Fraser River, BC, where biomass from other salmon species is low. There, increasing salmon allocations to ecosystems would benefit threatened bear populations at the cost of reduced long-term yields. To resolve this conflict, we propose an EBFM goal that values fisheries and bears (and by extension, the ecosystem) equally. At such targets, ecosystem benefits are unexpectedly large compared with losses in fishery yields. To explore other management options, we generate tradeoff curves that provide stock-specific accounting of the expected loss to fishers and gain to bears as more salmon escape the fishery. Our approach, modified to suit multiple scenarios, provides a generalizable

  4. Using grizzly bears to assess harvest-ecosystem tradeoffs in salmon fisheries.

    PubMed

    Levi, Taal; Darimont, Chris T; Macduffee, Misty; Mangel, Marc; Paquet, Paul; Wilmers, Christopher C

    2012-01-01

    Implementation of ecosystem-based fisheries management (EBFM) requires a clear conceptual and quantitative framework for assessing how different harvest options can modify benefits to ecosystem and human beneficiaries. We address this social-ecological need for Pacific salmon fisheries, which are economically valuable but intercept much of the annual pulse of nutrient subsidies that salmon provide to terrestrial and aquatic food webs. We used grizzly bears, vectors of salmon nutrients and animals with densities strongly coupled to salmon abundance, as surrogates for "salmon ecosystem" function. Combining salmon biomass and stock-recruitment data with stable isotope analysis, we assess potential tradeoffs between fishery yields and bear population densities for six sockeye salmon stocks in Bristol Bay, Alaska, and British Columbia (BC), Canada. For the coastal stocks, we find that both bear densities and fishery yields would increase substantially if ecosystem allocations of salmon increase from currently applied lower to upper goals and beyond. This aligning of benefits comes at a potential cost, however, with the possibility of forgoing harvests in low productivity years. In contrast, we detect acute tradeoffs between bear densities and fishery yields in interior stocks within the Fraser River, BC, where biomass from other salmon species is low. There, increasing salmon allocations to ecosystems would benefit threatened bear populations at the cost of reduced long-term yields. To resolve this conflict, we propose an EBFM goal that values fisheries and bears (and by extension, the ecosystem) equally. At such targets, ecosystem benefits are unexpectedly large compared with losses in fishery yields. To explore other management options, we generate tradeoff curves that provide stock-specific accounting of the expected loss to fishers and gain to bears as more salmon escape the fishery. Our approach, modified to suit multiple scenarios, provides a generalizable method

  5. Variation in mitochondrial DNA and allozymes discriminates early and late forms of Chinook salmon Oncorhynchus tshawytscha in the Kenai and Kasilof Rivers, AK

    USGS Publications Warehouse

    Adams, Noah S.; Spearman, William J.; Burger, Carl V.; Currens, Kenneth P.; Schreck, Carl B.; Li, Hiram W.

    1994-01-01

    Genetic differences between early and late forms of Alaskan chinook salmon (Oncorhynchus tshawytscha) were identified using two genetic approaches: mitochondrial DNA (mtDNA) analysis, and protein electrophoresis. Study populations consisted of early and late runs in each of the Kenai and Kasilof rivers in Alaska, and a population from the Minam River, Oregon. Two segments of mtDNA were amplified using the polymerase chain reaction (PCR) and digested with 14–16 restriction enzymes. Results showed that early runs were genetically similar to each other but different from the late runs. The late runs were different from each other based on the frequency of the common haplotypes. Frequency differences in shared haplotypes together with the presence of a unique haplotype separated the Minam River stock from those in Alaska. In the protein analysis, each population was examined at 30 allozyme loci. Based on 14 polymorphic loci, Minam River salmon were genetically distinct from the Alaskan populations. Within the Alaskan populations, early runs were most similar to each other but different from the late runs; the late runs were also genetically most similar to each other. Both mtDNA and allozyme analysis suggest that chinook salmon may segregate into genetically different early and late forms within a drainage.

  6. Estuarine Ecology of Juvenile Salmon in Western Alaska: a Review

    USGS Publications Warehouse

    Zimmerman, Christian E.; Hillgruber, Nicola

    2009-01-01

    In the late 1990s and early 2000s, large declines in numbers of chum salmon Oncorhynchus keta and Chinook salmon O. tshawytscha returning to the Arctic-YukonKuskokwim (AYK) region (Alaska, USA) illuminated the need for an improved understanding of the variables controlling salmon abundance at all life stages. In addressing questions about salmon abundance, large gaps in our knowledge of basic salmon life history and the critical early marine life stage were revealed. In this paper, results from studies conducted on the estuarine ecology of juvenile salmon in western Alaska are summarized and compared, emphasizing timing and distribution during outmigration, environmental conditions, age and growth, feeding, and energy content of salmon smolts. In western Alaska, water temperature dramatically changes with season, ranging from 0°C after ice melt in late spring/early summer to 19°C in July. Juvenile salmon were found in AYK estuaries from early May until August or September, but to date no information is available on their residence duration or survival probability. Chum salmon were the most abundant juvenile salmon reported, ranging in percent catch from <0.1% to 4.7% and most research effort has focused on this species. Abundances of Chinook salmon, sockeye salmon O. nerka, and pink salmon O. gorbuscha varied among estuaries, while coho salmon O. kisutch juveniles were consistently rare, never amounting to more than 0.8% of the catch. Dietary composition of juvenile salmon was highly variable and a shift was commonly reported from epibenthic and neustonic prey in lower salinity water to pelagic prey in higher salinity water. Gaps in the knowledge of AYK salmon estuarine ecology are still evident. For example, data on outmigration patterns and residence timing and duration, rearing conditions and their effect on diet, growth, and survival are often completely lacking or available only for few selected years and sites. Filling gaps in knowledge concerning salmon

  7. 50 CFR 300.93 - Reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REGULATIONS Fraser River Sockeye and Pink Salmon Fisheries § 300.93 Reporting requirements. Any person fishing for sockeye or pink salmon within the Fraser River Panel Area (U.S.) and any person receiving or...

  8. 50 CFR 300.93 - Reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... REGULATIONS Fraser River Sockeye and Pink Salmon Fisheries § 300.93 Reporting requirements. Any person fishing for sockeye or pink salmon within the Fraser River Panel Area (U.S.) and any person receiving or...

  9. Calibrating acoustic acceleration transmitters for estimating energy use by wild adult Pacific salmon.

    PubMed

    Wilson, S M; Hinch, S G; Eliason, E J; Farrell, A P; Cooke, S J

    2013-03-01

    This study is the first to calibrate acceleration transmitters with energy expenditure using a vertebrate model species. We quantified the relationship between acoustic accelerometer output and oxygen consumption across a range of swim speeds and water temperatures for Harrison River adult sockeye salmon (Oncorhynchus nerka). First, we verified that acceleration transmitters with a sampling frequency of 10 Hz could be used as a proxy for movement in sockeye salmon. Using a mixed effects model, we determined that tailbeat frequency and acceleration were positively correlated (p<0.0001), independent of tag ID. Acceleration (p<0.0001) was positively related to swim speed while fork length (p=0.051) was negatively related to swim speed. Oxygen consumption and accelerometer output (p<0.0001) had a positive linear relationship and were temperature dependent (p<0.0001). There were no differences in swim performance (F(2,12)=1.023, p=0.820) or oxygen consumption (F(1,12)=0.054, p=0.332) between tagged and untagged individuals. Five tagged fish were released into the Fraser River estuary and manually tracked. Of the five fish, three were successfully tracked for 1h. The above relationships were used to determine that the average swim speed was 1.25±0.03 body lengths s(-1) and cost of transport was 3.39±0.17 mg O(2) kg(-1)min(-1), averaged across the three detected fish. Acceleration transmitters can be effectively used to remotely evaluate fine-scale behavior and estimate energy consumption of adult Pacific salmon throughout their homeward spawning migration. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Research on Captive Broodstock Programs for Pacific Salmon, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berejikian, Barry A.; Athos, Jaime I.; Dittman, Andrew H.

    The success of captive broodstock programs depends on high in-culture survival, appropriate development of the reproductive system, and the behavior and survival of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. We were able to develop an analytical method for optimizing the detection of spawning events in Chinook salmon using EMG signals. The method developed essentially captured the consistently greater frequency of higher EMG values associated with females cover digging immediately following spawning. However, females implanted with EMGmore » tags retained the majority of their eggs, which significantly reduced their reproductive success compared to non-tagged females. Future work will include increased sample sizes, and modified tagging methods to reduce negative effects on reproductive success. Upper Columbia River sockeye salmon exposed to the odorants PEA, L-threonine, Larginine and L-glutamate were able to learn and remember these odorants as maturing adults up to 2.5 years after exposure. These results suggest that the alevin and smolt stages are both important developmental periods for successful olfactory imprinting. Furthermore, the period of time that fish are exposed to imprinting odors may be important for successful imprinting. Experimental fish exposed to imprinting odors as smolts for six or one weeks successfully imprinted to these odors but imprinting could not be demonstrated in smolts exposed to odors for only one day. A 2-3 C reduction in seawater rearing temperature during the fall and winter prior to final maturation had little effect on reproductive development of spring Chinook salmon. Body size at spawning and total ovary mass were similar between temperature treatments. The percentage of fertilized eggs was significantly higher for females exposed to the ambient temperature

  11. 50 CFR 300.95 - Treaty Indian fisheries.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REGULATIONS Fraser River Sockeye and Pink Salmon Fisheries § 300.95 Treaty Indian fisheries. (a) Any treaty Indian must comply with this section when fishing for sockeye and pink salmon at the treaty Indian tribe...

  12. 50 CFR 300.95 - Treaty Indian fisheries.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... REGULATIONS Fraser River Sockeye and Pink Salmon Fisheries § 300.95 Treaty Indian fisheries. (a) Any treaty Indian must comply with this section when fishing for sockeye and pink salmon at the treaty Indian tribe...

  13. Adaptive strategies and life history characteristics in a warming climate: salmon in the Arctic?

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Ruggerone, Gregory T.; Zimmerman, Christian E.

    2013-01-01

    In the warming Arctic, aquatic habitats are in flux and salmon are exploring their options. Adult Pacific salmon, including sockeye (Oncorhynchus nerka), coho (O. kisutch), Chinook (O. tshawytscha), pink (O. gorbuscha) and chum (O. keta) have been captured throughout the Arctic. Pink and chum salmon are the most common species found in the Arctic today. These species are less dependent on freshwater habitats as juveniles and grow quickly in marine habitats. Putative spawning populations are rare in the North American Arctic and limited to pink salmon in drainages north of Point Hope, Alaska, chum salmon spawning rivers draining to the northwestern Beaufort Sea, and small populations of chum and pink salmon in Canada’s Mackenzie River. Pacific salmon have colonized several large river basins draining to the Kara, Laptev and East Siberian seas in the Russian Arctic. These populations probably developed from hatchery supplementation efforts in the 1960’s. Hundreds of populations of Arctic Atlantic salmon (Salmo salar) are found in Russia, Norway and Finland. Atlantic salmon have extended their range eastward as far as the Kara Sea in central Russian. A small native population of Atlantic salmon is found in Canada’s Ungava Bay. The northern tip of Quebec seems to be an Atlantic salmon migration barrier for other North American stocks. Compatibility between life history requirements and ecological conditions are prerequisite for salmon colonizing Arctic habitats. Broad-scale predictive models of climate change in the Arctic give little information about feedback processes contributing to local conditions, especially in freshwater systems. This paper reviews the recent history of salmon in the Arctic and explores various patterns of climate change that may influence range expansions and future sustainability of salmon in Arctic habitats. A summary of the research needs that will allow informed expectation of further Arctic colonization by salmon is given.

  14. ALASKAN RTMA GRAPHICS

    Science.gov Websites

    Alaskan RTMA Graphics This page displays Alaskan Real-Time Mesoscale Analyses and compares them to DISCLAIMER: The Alaskan Real-Time Mesoscale Analysis tool is in its developmental stage, and there is much

  15. Evaluating signals of oil spill impacts, climate, and species interactions in Pacific herring and Pacific salmon populations in Prince William Sound and Copper River, Alaska.

    PubMed

    Ward, Eric J; Adkison, Milo; Couture, Jessica; Dressel, Sherri C; Litzow, Michael A; Moffitt, Steve; Hoem Neher, Tammy; Trochta, John; Brenner, Rich

    2017-01-01

    The Exxon Valdez oil spill occurred in March 1989 in Prince William Sound, Alaska, and was one of the worst environmental disasters on record in the United States. Despite long-term data collection over the nearly three decades since the spill, tremendous uncertainty remains as to how significantly the spill affected fishery resources. Pacific herring (Clupea pallasii) and some wild Pacific salmon populations (Oncorhynchus spp.) in Prince William Sound declined in the early 1990s, and have not returned to the population sizes observed in the 1980s. Discerning if, or how much of, this decline resulted from the oil spill has been difficult because a number of other physical and ecological drivers are confounded temporally with the spill; some of these drivers include environmental variability or changing climate regimes, increased production of hatchery salmon in the region, and increases in populations of potential predators. Using data pre- and post-spill, we applied time-series methods to evaluate support for whether and how herring and salmon productivity has been affected by each of five drivers: (1) density dependence, (2) the EVOS event, (3) changing environmental conditions, (4) interspecific competition on juvenile fish, and (5) predation and competition from adult fish or, in the case of herring, humpback whales. Our results showed support for intraspecific density-dependent effects in herring, sockeye, and Chinook salmon, with little overall support for an oil spill effect. Of the salmon species, the largest driver was the negative impact of adult pink salmon returns on sockeye salmon productivity. Herring productivity was most strongly affected by changing environmental conditions; specifically, freshwater discharge into the Gulf of Alaska was linked to a series of recruitment failures-before, during, and after EVOS. These results highlight the need to better understand long terms impacts of pink salmon on food webs, as well as the interactions between

  16. Evaluating signals of oil spill impacts, climate, and species interactions in Pacific herring and Pacific salmon populations in Prince William Sound and Copper River, Alaska

    PubMed Central

    Adkison, Milo; Couture, Jessica; Dressel, Sherri C.; Litzow, Michael A.; Moffitt, Steve; Hoem Neher, Tammy; Trochta, John

    2017-01-01

    The Exxon Valdez oil spill occurred in March 1989 in Prince William Sound, Alaska, and was one of the worst environmental disasters on record in the United States. Despite long-term data collection over the nearly three decades since the spill, tremendous uncertainty remains as to how significantly the spill affected fishery resources. Pacific herring (Clupea pallasii) and some wild Pacific salmon populations (Oncorhynchus spp.) in Prince William Sound declined in the early 1990s, and have not returned to the population sizes observed in the 1980s. Discerning if, or how much of, this decline resulted from the oil spill has been difficult because a number of other physical and ecological drivers are confounded temporally with the spill; some of these drivers include environmental variability or changing climate regimes, increased production of hatchery salmon in the region, and increases in populations of potential predators. Using data pre- and post-spill, we applied time-series methods to evaluate support for whether and how herring and salmon productivity has been affected by each of five drivers: (1) density dependence, (2) the EVOS event, (3) changing environmental conditions, (4) interspecific competition on juvenile fish, and (5) predation and competition from adult fish or, in the case of herring, humpback whales. Our results showed support for intraspecific density-dependent effects in herring, sockeye, and Chinook salmon, with little overall support for an oil spill effect. Of the salmon species, the largest driver was the negative impact of adult pink salmon returns on sockeye salmon productivity. Herring productivity was most strongly affected by changing environmental conditions; specifically, freshwater discharge into the Gulf of Alaska was linked to a series of recruitment failures—before, during, and after EVOS. These results highlight the need to better understand long terms impacts of pink salmon on food webs, as well as the interactions between

  17. Research on Captive Broodstock Programs for Pacific Salmon, 2001-2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berejikian, Barry A.; Tezak, E.P.; Endicott, Rick

    In the 2000 Federal Columbia River Power System (FCRPS) Biological Opinion, NMFS identified six populations of steelhead and several salmon populations that had dropped to critically low levels and continue to decline. Following thorough risk-benefit analyses, captive propagation programs for some or all of the steelhead (Oncorhynchus mykiss) populations may be required to reduce the risk of extinction, and more programs may be required in the future. Thus, captive propagation programs designed to maintain or rebuild steelhead populations require intensive and rigorous scientific evaluation, much like the other objectives of BPA Project 1993-056-00 currently underway for chinook (O. tshawytscha) andmore » sockeye salmon (O. nerka). Pacific salmon reared to the adult stage in captivity exhibit poor reproductive performance when released to spawn naturally. Poor fin quality and swimming performance, incomplete development of secondary sex characteristics, changes in maturation timing, and other factors may contribute to reduced spawning success. Improving natural reproductive performance is critical for the success of captive broodstock programs in which adult-release is a primary reintroduction strategy for maintaining ESA-listed populations.« less

  18. Physiological mechanisms of imprinting and homing migration in Pacific salmon Oncorhynchus spp.

    PubMed

    Ueda, H

    2012-07-01

    After several years of feeding at sea, salmonids have an amazing ability to migrate long distances from the open ocean to their natal stream to spawn. Three different research approaches from behavioural to molecular biological studies have been used to elucidate the physiological mechanisms underpinning salmonid imprinting and homing migration. The study was based on four anadromous Pacific salmon Oncorhynchus spp., pink salmon Oncorhynchus gorbuscha, chum salmon Oncorhynchus keta, sockeye salmon Oncorhynchus nerka and masu salmon Oncorhynchus masou, migrating from the North Pacific Ocean to the coast of Hokkaido, Japan, as well as lacustrine O. nerka and O. masou in Lake Toya, Hokkaido, where the lake serves as the model oceanic system. Behavioural studies using biotelemetry techniques showed swimming profiles from the Bering Sea to the coast of Hokkaido in O. keta as well as homing behaviours of lacustrine O. nerka and O. masou in Lake Toya. Endocrinological studies on hormone profiles in the brain-pituitary-gonad axis of O. keta, and lacustrine O. nerka identified the hormonal changes during homing migration. Neurophysiological studies revealed crucial roles of olfactory functions on imprinting and homing during downstream and upstream migration, respectively. These findings are discussed in relation to the physiological mechanisms of imprinting and homing migration in anadromous and lacustrine salmonids. © 2012 The Author. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  19. Spatial and temporal variability of macroinvertebrates in spawning and non-spawning habitats during a salmon run in Southeast Alaska.

    PubMed

    Campbell, Emily Y; Merritt, Richard W; Cummins, Kenneth W; Benbow, M Eric

    2012-01-01

    Spawning salmon create patches of disturbance through redd digging which can reduce macroinvertebrate abundance and biomass in spawning habitat. We asked whether displaced invertebrates use non-spawning habitats as refugia in streams. Our study explored how the spatial and temporal distribution of macroinvertebrates changed during a pink salmon (Oncorhynchus gorbuscha) spawning run and compared macroinvertebrates in spawning (riffle) and non-spawning (refugia) habitats in an Alaskan stream. Potential refugia included: pools, stream margins and the hyporheic zone, and we also sampled invertebrate drift. We predicted that macroinvertebrates would decline in riffles and increase in drift and refugia habitats during salmon spawning. We observed a reduction in the density, biomass and taxonomic richness of macroinvertebrates in riffles during spawning. There was no change in pool and margin invertebrate communities, except insect biomass declined in pools during the spawning period. Macroinvertebrate density was greater in the hyporheic zone and macroinvertebrate density and richness increased in the drift during spawning. We observed significant invertebrate declines within spawning habitat; however in non-spawning habitat, there were less pronounced changes in invertebrate density and richness. The results observed may be due to spawning-related disturbances, insect phenology, or other variables. We propose that certain in-stream habitats could be important for the persistence of macroinvertebrates during salmon spawning in a Southeast Alaskan stream.

  20. Spatial and Temporal Variability of Macroinvertebrates in Spawning and Non-Spawning Habitats during a Salmon Run in Southeast Alaska

    PubMed Central

    Campbell, Emily Y.; Merritt, Richard W.; Cummins, Kenneth W.; Benbow, M. Eric

    2012-01-01

    Spawning salmon create patches of disturbance through redd digging which can reduce macroinvertebrate abundance and biomass in spawning habitat. We asked whether displaced invertebrates use non-spawning habitats as refugia in streams. Our study explored how the spatial and temporal distribution of macroinvertebrates changed during a pink salmon (Oncorhynchus gorbuscha) spawning run and compared macroinvertebrates in spawning (riffle) and non-spawning (refugia) habitats in an Alaskan stream. Potential refugia included: pools, stream margins and the hyporheic zone, and we also sampled invertebrate drift. We predicted that macroinvertebrates would decline in riffles and increase in drift and refugia habitats during salmon spawning. We observed a reduction in the density, biomass and taxonomic richness of macroinvertebrates in riffles during spawning. There was no change in pool and margin invertebrate communities, except insect biomass declined in pools during the spawning period. Macroinvertebrate density was greater in the hyporheic zone and macroinvertebrate density and richness increased in the drift during spawning. We observed significant invertebrate declines within spawning habitat; however in non-spawning habitat, there were less pronounced changes in invertebrate density and richness. The results observed may be due to spawning-related disturbances, insect phenology, or other variables. We propose that certain in-stream habitats could be important for the persistence of macroinvertebrates during salmon spawning in a Southeast Alaskan stream. PMID:22745724

  1. Advances in the Visualization and Analysis of Boundary Layer Flow in Swimming Fish

    DTIC Science & Technology

    2005-02-01

    caudal-fin amputation on the kinematics and metabolic rate of underyearling sockeye salmon ( Oncorhynchus nerka ) at steady swimming speeds. J. Exp. Biol...caudal-fin amputation on the kinematics and metabolic rate of underyearling sockeye salmon ( Oncorhynchus nerka ) at steady swimming speeds. J. Exp. Biol

  2. Beyond Correlation in the Detection of Climate Change Impacts: Testing a Mechanistic Hypothesis for Climatic Influence on Sockeye Salmon (Oncorhynchus nerka) Productivity.

    PubMed

    Tillotson, Michael D; Quinn, Thomas P

    2016-01-01

    Detecting the biological impacts of climate change is a current focus of ecological research and has important applications in conservation and resource management. Owing to a lack of suitable control systems, measuring correlations between time series of biological attributes and hypothesized environmental covariates is a common method for detecting such impacts. These correlative approaches are particularly common in studies of exploited fish species because rich biological time-series data are often available. However, the utility of species-environment relationships for identifying or predicting biological responses to climate change has been questioned because strong correlations often deteriorate as new data are collected. Specifically stating and critically evaluating the mechanistic relationship(s) linking an environmental driver to a biological response may help to address this problem. Using nearly 60 years of data on sockeye salmon from the Kvichak River, Alaska we tested a mechanistic hypothesis linking water temperatures experienced during freshwater rearing to population productivity by modeling a series of intermediate, deterministic relationships and evaluating temporal trends in biological and environmental time-series. We found that warming waters during freshwater rearing have profoundly altered patterns of growth and life history in this population complex yet there has been no significant correlation between water temperature and metrics of productivity commonly used in fisheries management. These findings demonstrate that pairing correlative approaches with careful consideration of the mechanistic links between populations and their environments can help to both avoid spurious correlations and identify biologically important, but not statistically significant relationships, and ultimately producing more robust conclusions about the biological impacts of climate change.

  3. Beyond Correlation in the Detection of Climate Change Impacts: Testing a Mechanistic Hypothesis for Climatic Influence on Sockeye Salmon (Oncorhynchus nerka) Productivity

    PubMed Central

    Tillotson, Michael D.; Quinn, Thomas P.

    2016-01-01

    Detecting the biological impacts of climate change is a current focus of ecological research and has important applications in conservation and resource management. Owing to a lack of suitable control systems, measuring correlations between time series of biological attributes and hypothesized environmental covariates is a common method for detecting such impacts. These correlative approaches are particularly common in studies of exploited fish species because rich biological time-series data are often available. However, the utility of species-environment relationships for identifying or predicting biological responses to climate change has been questioned because strong correlations often deteriorate as new data are collected. Specifically stating and critically evaluating the mechanistic relationship(s) linking an environmental driver to a biological response may help to address this problem. Using nearly 60 years of data on sockeye salmon from the Kvichak River, Alaska we tested a mechanistic hypothesis linking water temperatures experienced during freshwater rearing to population productivity by modeling a series of intermediate, deterministic relationships and evaluating temporal trends in biological and environmental time-series. We found that warming waters during freshwater rearing have profoundly altered patterns of growth and life history in this population complex yet there has been no significant correlation between water temperature and metrics of productivity commonly used in fisheries management. These findings demonstrate that pairing correlative approaches with careful consideration of the mechanistic links between populations and their environments can help to both avoid spurious correlations and identify biologically important, but not statistically significant relationships, and ultimately producing more robust conclusions about the biological impacts of climate change. PMID:27123845

  4. Temporal patterns in adult salmon migration timing across southeast Alaska

    USGS Publications Warehouse

    Kovach, Ryan P.; Ellison, Stephen; Pyare, Sanjay; Tallmon, David

    2015-01-01

    Pacific salmon migration timing can drive population productivity, ecosystem dynamics, and human harvest. Nevertheless, little is known about long-term variation in salmon migration timing for multiple species across broad regions. We used long-term data for five Pacific salmon species throughout rapidly warming southeast Alaska to describe long-term changes in salmon migration timing, interannual phenological synchrony, relationships between climatic variation and migratory timing, and to test whether long-term changes in migration timing are related to glaciation in headwater streams. Temporal changes in the median date of salmon migration timing varied widely across species. Most sockeye populations are migrating later over time (11 of 14), but pink, chum, and especially coho populations are migrating earlier than they did historically (16 of 19 combined). Temporal trends in duration and interannual variation in migration timing were highly variable across species and populations. The greatest temporal shifts in the median date of migration timing were correlated with decreases in the duration of migration timing, suggestive of a loss of phenotypic variation due to natural selection. Pairwise interannual correlations in migration timing varied widely but were generally positive, providing evidence for weak region-wide phenological synchrony. This synchrony is likely a function of climatic variation, as interannual variation in migration timing was related to climatic phenomenon operating at large- (Pacific decadal oscillation), moderate- (sea surface temperature), and local-scales (precipitation). Surprisingly, the presence or the absence of glaciers within a watershed was unrelated to long-term shifts in phenology. Overall, there was extensive heterogeneity in long-term patterns of migration timing throughout this climatically and geographically complex region, highlighting that future climatic change will likely have widely divergent impacts on salmon

  5. A time-lapse photography method for monitoring salmon (Oncorhynchus spp.) passage and abundance in streams

    PubMed Central

    Leacock, William B.; Eby, Lisa A.; Stanford, Jack A.

    2016-01-01

    Accurately estimating population sizes is often a critical component of fisheries research and management. Although there is a growing appreciation of the importance of small-scale salmon population dynamics to the stability of salmon stock-complexes, our understanding of these populations is constrained by a lack of efficient and cost-effective monitoring tools for streams. Weirs are expensive, labor intensive, and can disrupt natural fish movements. While conventional video systems avoid some of these shortcomings, they are expensive and require excessive amounts of labor to review footage for data collection. Here, we present a novel method for quantifying salmon in small streams (<15 m wide, <1 m deep) that uses both time-lapse photography and video in a model-based double sampling scheme. This method produces an escapement estimate nearly as accurate as a video-only approach, but with substantially less labor, money, and effort. It requires servicing only every 14 days, detects salmon 24 h/day, is inexpensive, and produces escapement estimates with confidence intervals. In addition to escapement estimation, we present a method for estimating in-stream salmon abundance across time, data needed by researchers interested in predator--prey interactions or nutrient subsidies. We combined daily salmon passage estimates with stream specific estimates of daily mortality developed using previously published data. To demonstrate proof of concept for these methods, we present results from two streams in southwest Kodiak Island, Alaska in which high densities of sockeye salmon spawn. PMID:27326378

  6. Growth of enterotoxigenic Bacillus cereus on salmon (Oncorhynchus nerka).

    PubMed

    Labbé, Ronald; Rahmati, Talat

    2012-06-01

    We previously demonstrated the widespread presence of enterotoxigenic Bacillus cereus in marine foods. In view of the widespread consumption of raw fish, we sought to determine the ability of this organism to grow on the surface of wild Alaskan salmon at abusive temperatures (12, 16, and 20°C), using an isolate able to produce elevated levels of hemolysin BL enterotoxin and nonhemolytic enterotoxin. An incubation temperature of 37°C for colony formation was found to be selective for B. cereus grown on salmon held for up to 24 h at each temperature. A fivefold increase in log CFU per gram was observed after 26 and 22 h at 16 and 20°C, respectively, while a >4-log CFU/g increase occurred on salmon held at 12°C for 48 h. Generation times of 169.7, 53.5, and 45.6 min were observed at 12, 16, and 20°C. Nonhemolytic enterotoxin was detected when levels of B. cereus were in excess of 10(8) CFU/g. Nisin, at concentrations of 1 and 15 m g/g of salmon, reduced levels of B. cereus 2.5- and 25-fold, respectively. Our results indicate that fresh salmon can serve as an excellent substrate for enterotoxigenic B. cereus and that this organism can reach levels associated with foodborne illness following moderate temperature abuse.

  7. Research on Captive Broodstock Programs for Pacific Salmon, 2001-2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berejikian, Barry; Tezak, E.; Endicott, Rick

    The efficacy of captive broodstock programs depends on high in-culture survival and the fitness of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. The following summarizes some of the work performed and results from the FY 2001 performance period: (1) The incidence of male maturation of age-1 chinook salmon was significantly reduced by reducing growth in the first year of rearing. (2) Experimentally manipulated growth rates of captively-reared coho salmon had significant effects on female maturation rate, eggmore » size, and fecundity, and the effects were stage-specific (i.e., pre-smolt vs. post-smolt). (3) A combination of Renogen and MT239 vaccination of yearling chinook salmon given an acute R. salmoninarum challenge had a significantly longer survival time than the mock-vaccinated group. The survival time was marginally higher than was seen in acutely challenged fish vaccinated with either Renogen or MT239 alone and suggests that a combination vaccine of Renogen and MT239 may be useful as both a prophylactic and therapeutic agent against BKD. (4) Full-sib (inbred) groups of chinook salmon have thus far exhibited lower ocean survival than half-sib and non-related groups. Effects of inbreeding on fluctuating asymmetry did not follow expected patterns. (5) Sockeye salmon were exposed to specific odorants at either the alevin/emergent fry stage or the smolt stage to determine the relative importance of odorant exposure during key developmental periods and the importance of exposure duration. (6) Experimental studies to determine the effects of exercise conditioning on steelhead reproductive behavior and the effects of male body size on chinook salmon fertilization success during natural spawning were completed.« less

  8. Regional-Scale Declines in Productivity of Pink and Chum Salmon Stocks in Western North America

    PubMed Central

    Malick, Michael J.; Cox, Sean P.

    2016-01-01

    Sockeye salmon (Oncorhynchus nerka) stocks throughout the southern part of their North American range have experienced declines in productivity over the past two decades. In this study, we tested the hypothesis that pink (O. gorbuscha) and chum (O. keta) salmon stocks have also experienced recent declines in productivity by investigating temporal and spatial trends in productivity of 99 wild North American pink and chum salmon stocks. We used a combination of population dynamics and time series models to quantify individual stock trends as well as common temporal trends in pink and chum salmon productivity across local, regional, and continental spatial scales. Our results indicated widespread declines in productivity of wild chum salmon stocks throughout Washington (WA) and British Columbia (BC) with 81% of stocks showing recent declines in productivity, although the exact form of the trends varied among regions. For pink salmon, the majority of stocks in WA and BC (65%) did not have strong temporal trends in productivity; however, all stocks that did have trends in productivity showed declining productivity since at least brood year 1996. We found weaker evidence of widespread declines in productivity for Alaska pink and chum salmon, with some regions and stocks showing declines in productivity (e.g., Kodiak chum salmon stocks) and others showing increases (e.g., Alaska Peninsula pink salmon stocks). We also found strong positive covariation between stock productivity series at the regional spatial scale for both pink and chum salmon, along with evidence that this regional-scale positive covariation has become stronger since the early 1990s in WA and BC. In general, our results suggest that common processes operating at the regional or multi-regional spatial scales drive productivity of pink and chum salmon stocks in western North America and that the effects of these process on productivity may change over time. PMID:26760510

  9. Alaskan Salmon and Gen R: Hunting, Fishing to Cultivate Ecological Mindfulness

    ERIC Educational Resources Information Center

    Mueller, Michael P.

    2015-01-01

    Can mining and fisheries co-exist in Bristol Bay, Alaska? To delve into this interesting tension, I expand on Clay Pierce's (this special issue) thoughtful analysis of genetically modified salmon and AquaBounty Technologies, where he explores actor-network theory in relation to scientific literacy and schooling. Further, my essay explores the idea…

  10. 50 CFR 300.95 - Treaty Indian fisheries.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 11 2013-10-01 2013-10-01 false Treaty Indian fisheries. 300.95 Section... REGULATIONS Fraser River Sockeye and Pink Salmon Fisheries § 300.95 Treaty Indian fisheries. (a) Any treaty Indian must comply with this section when fishing for sockeye and pink salmon at the treaty Indian tribe...

  11. 50 CFR 300.95 - Treaty Indian fisheries.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 11 2012-10-01 2012-10-01 false Treaty Indian fisheries. 300.95 Section... REGULATIONS Fraser River Sockeye and Pink Salmon Fisheries § 300.95 Treaty Indian fisheries. (a) Any treaty Indian must comply with this section when fishing for sockeye and pink salmon at the treaty Indian tribe...

  12. 50 CFR 300.95 - Treaty Indian fisheries.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 11 2014-10-01 2014-10-01 false Treaty Indian fisheries. 300.95 Section... REGULATIONS Fraser River Sockeye and Pink Salmon Fisheries § 300.95 Treaty Indian fisheries. (a) Any treaty Indian must comply with this section when fishing for sockeye and pink salmon at the treaty Indian tribe...

  13. Phenological synchronization disrupts trophic interactions between Kodiak brown bears and salmon

    PubMed Central

    Deacy, William W.; Armstrong, Jonathan B.; Leacock, William B.; Robbins, Charles T.; Gustine, David D.; Ward, Eric J.; Erlenbach, Joy A.; Stanford, Jack A.

    2017-01-01

    Climate change is altering the seasonal timing of life cycle events in organisms across the planet, but the magnitude of change often varies among taxa [Thackeray SJ, et al. (2016) Nature 535:241–245]. This can cause the temporal relationships among species to change, altering the strength of interaction. A large body of work has explored what happens when coevolved species shift out of sync, but virtually no studies have documented the effects of climate-induced synchronization, which could remove temporal barriers between species and create novel interactions. We explored how a predator, the Kodiak brown bear (Ursus arctos middendorffi), responded to asymmetric phenological shifts between its primary trophic resources, sockeye salmon (Oncorhynchus nerka) and red elderberry (Sambucus racemosa). In years with anomalously high spring air temperatures, elderberry fruited several weeks earlier and became available during the period when salmon spawned in tributary streams. Bears departed salmon spawning streams, where they typically kill 25–75% of the salmon [Quinn TP, Cunningham CJ, Wirsing AJ (2016) Oecologia 183:415–429], to forage on berries on adjacent hillsides. This prey switching behavior attenuated an iconic predator–prey interaction and likely altered the many ecological functions that result from bears foraging on salmon [Helfield JM, Naiman RJ (2006) Ecosystems 9:167–180]. We document how climate-induced shifts in resource phenology can alter food webs through a mechanism other than trophic mismatch. The current emphasis on singular consumer-resource interactions fails to capture how climate-altered phenologies reschedule resource availability and alter how energy flows through ecosystems. PMID:28827339

  14. Abundance, Timing of Migration, and Egg-to-Smolt Survival of Juvenile Chum Salmon, Kwethluk River, Alaska, 2007 and 2008

    USGS Publications Warehouse

    Burril, Sean E.; Zimmerman, Christian E.; Finn, James E.; ,; Gillikin, Daniel; ,

    2010-01-01

    To better understand and partition mortality among life stages of chum salmon (Oncorhynchus keta), we used inclined-plane traps to monitor the migration of juveniles in the Kwethluk River, Alaska in 2007 and 2008. The migration of juvenile chum salmon peaked in mid-May and catch rates were greatest when water levels were rising. Movement of chum salmon was diurnal with highest catch rates occurring during the hours of low light (that is, 22:00 to 10:00). Trap efficiency ranged from 0.37 to 4.04 percent (overall efficiency = 1.94 percent). Total abundance of juvenile chum salmon was estimated to be 2.0 million fish in 2007 and 2.9 million fish in 2008. On the basis of the estimate of chum salmon females passing the Kwethluk River weir and age-specific fecundity, we estimated the potential egg deposition (PED) upstream of the weir and trapping site. Egg-to-smolt survival, calculated by dividing the estimate of juvenile chum salmon emigrating past the weir site by the estimate of PED, was 4.6 percent in 2007 and 5.2 percent in 2008. In addition to chum salmon, Chinook salmon O. tshawytscha), coho salmon (O. kisutch), sockeye salmon (O. nerka), and pink salmon (O. gorbuscha), as well as ten other fish species, were captured in the traps. As with chum salmon, catch of these species increased during periods of increasing discharge and peaked during hours of low light. This study successfully determined the characteristics of juvenile salmon migrations and estimated egg-to-smolt survival for chum salmon. This is the first estimate of survival for any juvenile salmon in the Arctic-Yukon-Kuskokwim region of Alaska and demonstrates an approach that can help to partition mortality between freshwater and marine life stages, information critical to understanding the dynamics of salmon in this region.

  15. A perspective on physiological studies supporting the provision of scientific advice for the management of Fraser River sockeye salmon (Oncorhynchus nerka)

    PubMed Central

    Patterson, David A.; Cooke, Steven J.; Hinch, Scott G.; Robinson, Kendra A.; Young, Nathan; Farrell, Anthony P.; Miller, Kristina M.

    2016-01-01

    The inability of physiologists to effect change in fisheries management has been the source of frustration for many decades. Close collaboration between fisheries managers and researchers has afforded our interdisciplinary team an unusual opportunity to evaluate the emerging impact that physiology can have in providing relevant and credible scientific advice to assist in management decisions. We categorize the quality of scientific advice given to management into five levels based on the type of scientific activity and resulting advice (notions, observations, descriptions, predictions and prescriptions). We argue that, ideally, both managers and researchers have concomitant but separate responsibilities for increasing the level of scientific advice provided. The responsibility of managers involves clear communication of management objectives to researchers, including exact descriptions of knowledge needs and researchable problems. The role of the researcher is to provide scientific advice based on the current state of scientific information and the level of integration with management. The examples of scientific advice discussed herein relate to physiological research on the impact of high discharge and water temperature, pathogens, sex and fisheries interactions on in-river migration success of adult Fraser River sockeye salmon (Oncorhynchus nerka) and the increased understanding and quality of scientific advice that emerges. We submit that success in increasing the quality of scientific advice is a function of political motivation linked to funding, legal clarity in management objectives, collaborative structures in government and academia, personal relationships, access to interdisciplinary experts and scientific peer acceptance. The major challenges with advancing scientific advice include uncertainty in results, lack of integration with management needs and institutional caution in adopting new research. We hope that conservation physiologists can learn from

  16. A perspective on physiological studies supporting the provision of scientific advice for the management of Fraser River sockeye salmon (Oncorhynchus nerka).

    PubMed

    Patterson, David A; Cooke, Steven J; Hinch, Scott G; Robinson, Kendra A; Young, Nathan; Farrell, Anthony P; Miller, Kristina M

    2016-01-01

    The inability of physiologists to effect change in fisheries management has been the source of frustration for many decades. Close collaboration between fisheries managers and researchers has afforded our interdisciplinary team an unusual opportunity to evaluate the emerging impact that physiology can have in providing relevant and credible scientific advice to assist in management decisions. We categorize the quality of scientific advice given to management into five levels based on the type of scientific activity and resulting advice (notions, observations, descriptions, predictions and prescriptions). We argue that, ideally, both managers and researchers have concomitant but separate responsibilities for increasing the level of scientific advice provided. The responsibility of managers involves clear communication of management objectives to researchers, including exact descriptions of knowledge needs and researchable problems. The role of the researcher is to provide scientific advice based on the current state of scientific information and the level of integration with management. The examples of scientific advice discussed herein relate to physiological research on the impact of high discharge and water temperature, pathogens, sex and fisheries interactions on in-river migration success of adult Fraser River sockeye salmon ( Oncorhynchus nerka ) and the increased understanding and quality of scientific advice that emerges. We submit that success in increasing the quality of scientific advice is a function of political motivation linked to funding, legal clarity in management objectives, collaborative structures in government and academia, personal relationships, access to interdisciplinary experts and scientific peer acceptance. The major challenges with advancing scientific advice include uncertainty in results, lack of integration with management needs and institutional caution in adopting new research. We hope that conservation physiologists can learn from

  17. Women and Minorities in Alaskan Aviation. Alaskan Equity Publication.

    ERIC Educational Resources Information Center

    Dordan, Mary Lou; Nicholson, Deborah

    This resource guide tells the story of Alaskan women and minority aviators and those in aviation-related businesses, from the early 20th century to the present. Developed for secondary students but also suitable for younger students, the guide combines six accounts of Alaskan women and minority aviators with classroom activities centered around…

  18. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume IX : Evaluation of the 2001 Predictions of the Run-Timing of Wild and Hatchery-Reared Migrant Salmon and Steelhead Trout Migrating to Lower Granite, Rock Island, McNary, and John Day Dams using Program RealTime.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, Caitlin; Skalski, John R.

    2001-12-01

    Program RealTime provided tracking and forecasting of the 2001 inseason outmigration via the internet for eighteen PIT-tagged stocks of wild salmon and steelhead to Lower Granite and/or McNary dams and eleven passage-indexed stocks to Rock Island, McNary, or John Day dams. Nine of the PIT-tagged stocks tracked this year were new to the project. Thirteen ESUs of wild subyearling and yearling chinook salmon and steelhead, and one ESU of hatchery-reared sockeye salmon were tracked and forecasted to Lower Granite Dam. Eight wild ESUs of subyearling and yearling chinook salmon, sockeye salmon and steelhead were tracked to McNary Dam for themore » first time this year. Wild PIT-tagged ESUs tracked to Lower Granite Dam included yearling spring/summer chinook salmon release-recovery stocks (from Bear Valley Creek, Catherine Creek, Herd Creek, Imnaha River, Johnson Creek, Lostine River, Minam River, South Fork Salmon River, Secesh River, and Valley Creek), PIT-tagged wild runs-at-large of yearling chinook salmon and steelhead, and a PIT-tagged stock of subyearling fall chinook salmon. The stock of hatchery-reared PIT-tagged summer-run sockeye salmon smolts outmigrating to Lower Granite Dam, consisted this year of a new stock of fish from Alturas Lake Creek, Redfish Lake Creek Trap and Sawtooth Trap. The passage-indexed stocks, counted using FPC passage indices, included combined wild- and hatchery-reared runs-at-large of subyearling and yearling chinook, coho, and sockeye salmon, and steelhead migrating to Rock Island and McNary dams, and, new this year, combined wild and hatchery subyearling chinook salmon to John Day Dam. Unusual run-timing and fish passage characteristics were observed in this low-flow, negligible-spill migration year. The period for the middle 80% of fish passage (i.e., progress from the 10th to the 90th percentiles) was unusually short for nine out of ten PIT-tagged yearling spring/summer chinook salmon stocks tracked to Lower Granite Dam. It was the

  19. Expression of aquaporin-3 and -8 mRNAs in the parr and smolt stages of sockeye salmon, Oncorhynchus nerka: effects of cortisol treatment and seawater acclimation.

    PubMed

    Choi, Young Jae; Shin, Hyun Suk; Kim, Na Na; Cho, Sung Hwoan; Yamamoto, Yuzo; Ueda, Hiroshi; Lee, Jehee; Choi, Cheol Young

    2013-06-01

    This study aimed to examine the role of 2 aquaporin (AQP) isoforms (AQP3, and -8) in sockeye salmon (Oncorhynchus nerka) in response to a hyperosmotic challenge from freshwater to seawater (SW) during the parr and smoltification (smolt) stages. AQP3 mRNA was primarily detected in the osmoregulatory organs, such as gills, while AQP8 mRNA was primarily found in the intestine. These results suggested that AQP isoforms play a role in osmoregulation in specific osmoregulatory organs. Similarly, AQP3 mRNA expression in the gills (mean values:1.06 ± 0.05 [parr] and 1.29 ± 0.07 [smolt]) was significantly higher than AQP8 mRNA levels (parr: 0.04 ± 0.003; smolt: 0.14 ± 0.004), and in the intestine, AQP8 mRNA expression (parr: 0.89 ± 0.007; smolt: 1.91 ± 0.03) was significantly higher than AQP3 mRNA levels (parr: 0.24 ± 0.006; smolt: 0.83 ± 0.005); these expression patterns were similar in vivo and in vitro. Additionally, AQP mRNA levels were lower in cortisol treated than in control groups. Therefore, these results suggest that AQPs play important roles in the water absorption mechanisms associated with multiple AQP isoforms, and that cortisol enhances the hypo-osmoregulatory capacity of fish in SW, and also controls the expression of AQPs in a hyperosmotic environment. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. 50 CFR 660.402 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (dog) salmon, Oncorhynchus keta Sockeye (red) salmon, Oncorhynchus nerka Steelhead (rainbow trout... Region, NMFS. Salmon means any anadromous species of the family Salmonidae and genus Oncorhynchus, commonly known as Pacific salmon, including, but not limited to: Chinook (king) salmon, Oncorhynchus...

  1. Seasonal persistence of marine-derived nutrients in south-central Alaskan salmon streams

    USGS Publications Warehouse

    Rinella, Daniel J.; Wipfi, Mark S.; Walker, Coowe M.; Stricker, Craig A.; Heintz, Ron A.

    2013-01-01

    Spawning salmon deliver annual pulses of marine-derived nutrients (MDN) to riverine ecosystems around the Pacific Rim, leading to increased growth and condition in aquatic and riparian biota. The influence of pulsed resources may last for extended periods of time when recipient food webs have effective storage mechanisms, yet few studies have tracked the seasonal persistence of MDN. With this as our goal, we sampled stream water chemistry and selected stream and riparian biota spring through fall at 18 stations (in six watersheds) that vary widely in spawner abundance and at nine stations (in three watersheds) where salmon runs were blocked by waterfalls. We then developed regression models that related dissolved nutrient concentrations and biochemical measures of MDN assimilation to localized spawner density across these 27 stations. Stream water ammonium-N and orthophosphate-P concentrations increased with spawner density during the summer salmon runs, but responses did not persist into the following fall. The effect of spawner density on δ15N in generalist macroinvertebrates and three independent MDN metrics (δ15N, δ34S, and ω3:ω6 fatty acids) in juvenile Dolly Varden (Salvelinus malma) was positive and similar during each season, indicating that MDN levels in biota increased with spawner abundance and were maintained for at least nine months after inputs. Delta 15N in a riparian plant, horsetail (Equisetum fluviatile), and scraper macroinvertebrates did not vary with spawner density in any season, suggesting a lack of MDN assimilation by these lower trophic levels. Our results demonstrate the ready assimilation of MDN by generalist consumers and the persistence of this pulsed subsidy in these organisms through the winter and into the next growing season.

  2. California salmon and steelhead: Beyond the crossroads

    USGS Publications Warehouse

    Mills, Terry J.; McEwan, Dennis R.; Jennings, Mark R.; Stouder, Deanna J.; Bisson, Peter A.; Naiman, Robert J.

    1997-01-01

    trout (O. clarki), which are restricted to lowland drainages from the Eel River northward, are greatly depleted. Coho salmon (O. kisutch),which once probably numbered close to 1,000,000 fish per year in coastal California streams, have dwindled to —5,000 natural spawners per year. Chum salmon (O. keta), never a significant part of the state’s native fish fauna, are currently restricted to <10 spawners in three different streams in the Sacramento River basin and occasionally in the South Fork of the Trinity River. The historically small runs of pink salmon (O. gorbuscha) in the Sacramento and Russian rivers are probably now extirpated. Anadromous sockeye salmon (O. nerka) are only recorded as strays.In response to serious declines in salmon and steelhead stocks, numerous legislative and congressional actions have been undertaken and California has embarked on an ambitious planto restore riparian habitats, improve fish passage, and increase natural production. Additionally, many currently unlisted California salmon and steelhead stocks are potential candidates for protection under the Endangered Species Act. These include coho, chum, spring-run chinook, and San Joaquin fall-run chinook salmon, as well as summer steelhead and the southern race of winter steelhead.

  3. Marine-derived nutrients, bioturbation, and ecosystem metabolism: reconsidering the role of salmon in streams.

    PubMed

    Holtgrieve, Gordon W; Schindler, Daniel E

    2011-02-01

    In coastal areas of the North Pacific Ocean, annual returns of spawning salmon provide a substantial influx of nutrients and organic matter to streams and are generally believed to enhance the productivity of recipient ecosystems. Loss of this subsidy from areas with diminished salmon runs has been hypothesized to limit ecosystem productivity in juvenile salmon rearing habitats (lakes and streams), thereby reinforcing population declines. Using five to seven years of data from an Alaskan stream supporting moderate salmon densities, we show that salmon predictably increased stream water nutrient concentrations, which were on average 190% (nitrogen) and 390% (phosphorus) pre-salmon values, and that primary producers incorporated some of these nutrients into tissues. However, benthic algal biomass declined by an order of magnitude despite increased nutrients. We also measured changes in stream ecosystem metabolic properties, including gross primary productivity (GPP) and ecosystem respiration (ER), from three salmon streams by analyzing diel measurements of oxygen concentrations and stable isotopic ratios (delta O-O2) within a Bayesian statistical model of oxygen dynamics. Our results do not support a shift toward higher primary productivity with the return of salmon, as is expected from a nutrient fertilization mechanism. Rather, net ecosystem metabolism switched from approximately net autotrophic (GPP > or = ER) to a strongly net heterotrophic state (GPP < ER) in response to bioturbation of benthic habitats by salmon. Following the seasonal arrival of salmon, GPP declined to <12% of pre-salmon rates, while ER increased by over threefold. Metabolism by live salmon could not account for the observed increase in ER early in the salmon run, suggesting salmon nutrients and disturbance enhanced in situ heterotrophic respiration. Salmon also changed the physical properties of the stream, increasing air-water gas exchange by nearly 10-fold during peak spawning. We suggest

  4. Alaskan Natives and Other Minorities in the Special Education Programs of Four Alaskan School Districts.

    ERIC Educational Resources Information Center

    Pilla, Thomas V.

    This report provides information on the percentages of Native Alaskans and other minorities in the special education programs of four Alaskan school districts. It was prompted by a civil rights complaint by parents in the Juneau School District alleging that Native Alaskans were overrepresented in special education programs. The complaint was…

  5. Test Excavation and Evaluation of 45-FR-317, on the Middle Columbia River, Near Pasco, Washington.

    DTIC Science & Technology

    1984-01-01

    present in the area, the most important of which, for humans, were chinook salmon ( Oncorhynchus tshawtscha), coho salmon (0. kisutch), and steelhead...trout (Salmo gairderi); sockeye salmon (0. nerka ), chum salmon (0. keta), and pink salmon (0. gorbuscha) were more limited and of lesser importance

  6. Can intense predation by bears exert a depensatory effect on recruitment in a Pacific salmon population?

    PubMed

    Quinn, Thomas P; Cunningham, Curry J; Randall, Jessica; Hilborn, Ray

    2014-10-01

    It has long been recognized that, as populations increase in density, ecological processes affecting growth and survival reduce per capita recruitment in the next generation. In contrast to the evidence for such "compensatory" density dependence, the alternative "depensatory" process (reduced per capita recruitment at low density) has proven more difficult to demonstrate in the field. To test for such depensation, we measured the spawner-recruit relationship over five decades for a sockeye salmon (Oncorhynchus nerka) population in Alaska breeding in high-quality, unaltered habitat. Twenty-five years of detailed estimates of predation by brown bears, Ursus arctos, revealed strong density dependence in predation rate; the bears killed ca. 80% of the salmon in years of low salmon spawning abundance. Nevertheless, the reconstructed spawner-recruit relationship, adjusted to include salmon intercepted in the commercial fishery, provided no evidence of demographic depensation. That is, in years when few salmon returned and the great majority were killed by bears, the few that spawned were successful enough that the population remained highly productive, even when those killed by bears were included as potential spawners. We conclude that the high quality of breeding habitat at this site and the productive nature of semelparous Pacific salmon allowed this population to avoid the hypothesized depressed recruitment from depensatory processes expected at low density. The observed lack of demographic depensation is encouraging from a conservation standpoint because it implies that depleted populations may have the potential to rebound successfully given suitable spawning and rearing habitat, even in the presence of strong predation pressure.

  7. Oxygen removal from water versus arterial oxygen delivery: calibrating the Fick equation in Pacific salmon.

    PubMed

    Farrell, Anthony P; Eliason, Erika J; Clark, Timothy D; Steinhausen, Maria F

    2014-10-01

    While it is well known that O2 is directly removed from the water by skin and gill tissues of fish, the mismatch between O2 removal from water (O2 uptake; [Formula: see text]) and the O2 delivered to tissues by the primary circulation (O2 consumption; [Formula: see text]) has never been measured directly. Using data from four recent studies that simultaneously measured [Formula: see text] and [Formula: see text] in 2-5 kg Pacific salmon, our analysis revealed that sockeye salmon can remove an additional 12-48 % more O2 from the water than the primary circulation delivers to the systemic tissues. This percentage did not change significantly during swimming activity, a result that contradicts an earlier prediction that the difference should decrease when [Formula: see text] increases during exercise. In resting Chinook salmon, a similar percentage difference in simultaneously measured [Formula: see text] and [Formula: see text] was observed, yet the difference tended to disappear during acute heat stress to a near lethal temperature. These results emphasize that caution should be exercised when using the Fick equation to estimate cardiac output because the overestimate of cardiac output that results from using the Fick equation in Pacific salmon is not small, may not be fixed and may exist in other teleosts.

  8. 50 CFR 660.402 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Sockeye (red) salmon, Oncorhynchus nerka Steelhead (rainbow trout), Oncorhynchus mykiss Total length of... anadromous species of the family Salmonidae and genus Oncorhynchus, commonly known as Pacific salmon, including, but not limited to: Chinook (king) salmon, Oncorhynchus tshawytscha Coho (silver) salmon...

  9. 50 CFR 660.402 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Sockeye (red) salmon, Oncorhynchus nerka Steelhead (rainbow trout), Oncorhynchus mykiss Total length of... anadromous species of the family Salmonidae and genus Oncorhynchus, commonly known as Pacific salmon, including, but not limited to: Chinook (king) salmon, Oncorhynchus tshawytscha Coho (silver) salmon...

  10. Linking climate change projections for an Alaskan watershed to future coho salmon production.

    PubMed

    Leppi, Jason C; Rinella, Daniel J; Wilson, Ryan R; Loya, Wendy M

    2014-06-01

    Climate change is predicted to dramatically change hydrologic processes across Alaska, but estimates of how these impacts will influence specific watersheds and aquatic species are lacking. Here, we linked climate, hydrology, and habitat models within a coho salmon (Oncorhynchus kisutch) population model to assess how projected climate change could affect survival at each freshwater life stage and, in turn, production of coho salmon smolts in three subwatersheds of the Chuitna (Chuit) River watershed, Alaska. Based on future climate scenarios and projections from a three-dimensional hydrology model, we simulated coho smolt production over a 20-year span at the end of the century (2080-2100). The direction (i.e., positive vs. negative) and magnitude of changes in smolt production varied substantially by climate scenario and subwatershed. Projected smolt production decreased in all three subwatersheds under the minimum air temperature and maximum precipitation scenario due to elevated peak flows and a resulting 98% reduction in egg-to-fry survival. In contrast, the maximum air temperature and minimum precipitation scenario led to an increase in smolt production in all three subwatersheds through an increase in fry survival. Other climate change scenarios led to mixed responses, with projected smolt production increasing and decreasing in different subwatersheds. Our analysis highlights the complexity inherent in predicting climate-change-related impacts to salmon populations and demonstrates that population effects may depend on interactions between the relative magnitude of hydrologic and thermal changes and their interactions with features of the local habitat. © 2013 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  11. Evidence for competitive dominance of Pink salmon (Oncorhynchus gorbuscha) over other Salmonids in the North Pacific Ocean

    USGS Publications Warehouse

    Ruggerone, G.T.; Nielsen, J.L.

    2004-01-01

    Relatively little is known about fish species interactions in offshore areas of the world's oceans because adequate experimental controls are typically unavailable in such vast areas. However, pink salmon (Oncorhynchus gorbuscha) are numerous and have an alternating-year pattern of abundance that provides a natural experimental control to test for interspecific competition in the North Pacific Ocean and Bering Sea. Since a number of studies have recently examined pink salmon interactions with other salmon, we reviewed them in an effort to describe patterns of interaction over broad regions of the ocean. Research consistently indicated that pink salmon significantly altered prey abundance of other salmon species (e.g., zooplankton, squid), leading to altered diet, reduced total prey consumption and growth, delayed maturation, and reduced survival, depending on species and locale. Reduced survival was observed in chum salmon (O. keta) and Chinook salmon (O. tshawytscha) originating from Puget Sound and in Bristol Bay sockeye salmon (O. nerka). Growth of pink salmon was not measurably affected by other salmon species, but their growth was sometimes inversely related to their own abundance. In all marine studies, pink salmon affected other species through exploitation of prey resources rather than interference. Interspecific competition was observed in nearshore and offshore waters of the North Pacific Ocean and Bering Sea, and one study documented competition between species originating from different continents. Climate change had variable effects on competition. In the North Pacific Ocean, competition was observed before and after the ocean regime shift in 1977 that significantly altered abundances of many marine species, whereas a study in the Pacific Northwest reported a shift from predation- to competition-based mortality in response to the 1982/1983 El Nino. Key traits of pink salmon that influenced competition with other salmonids included great abundance, high

  12. Linking oceanic food webs to coastal production and growth rates of Pacific salmon ( Oncorhynchus spp.), using models on three scales

    NASA Astrophysics Data System (ADS)

    Aydin, Kerim Y.; McFarlane, Gordon A.; King, Jacquelynne R.; Megrey, Bernard A.; Myers, Katherine W.

    2005-03-01

    Three independent modeling methods—a nutrient-phytoplankton-zooplankton (NPZ) model (NEMURO), a food web model (Ecopath/Ecosim), and a bioenergetics model for pink salmon ( Oncorhynchus gorbuscha)—were linked to examine the relationship between seasonal zooplankton dynamics and annual food web productive potential for Pacific salmon feeding and growing in the Alaskan subarctic gyre ecosystem. The linked approach shows the importance of seasonal and ontogenetic prey switching for zooplanktivorous pink salmon, and illustrates the critical role played by lipid-rich forage species, especially the gonatid squid Berryteuthis anonychus, in connecting zooplankton to upper trophic level production in the subarctic North Pacific. The results highlight the need to uncover natural mechanisms responsible for accelerated late winter and early spring growth of salmon, especially with respect to climate change and zooplankton bloom timing. Our results indicate that the best match between modeled and observed high-seas pink salmon growth requires the inclusion of two factors into bioenergetics models: (1) decreasing energetic foraging costs for salmon as zooplankton are concentrated by the spring shallowing of pelagic mixed-layer depth and (2) the ontogenetic switch of salmon diets from zooplankton to squid. Finally, we varied the timing and input levels of coastal salmon production to examine effects of density-dependent coastal processes on ocean feeding; coastal processes that place relatively minor limitations on salmon growth may delay the seasonal timing of ontogenetic diet shifts and thus have a magnified effect on overall salmon growth rates.

  13. Salmon fishing by bears and the dawn of cooperative predation.

    PubMed

    Stringham, Stephen F

    2012-11-01

    Although bears are an epitome of solitary predation, black (Ursus americanus) and brown bears (U. arctos) occasionally act in pairs to capture salmon (Onchorynchous spp.). I sought to identify conditions that promote pairing and how this relates to optimal foraging. This study on Alaskan black bears assessed whether each mode of fishing (solo vs. paired) occurs mainly where it is most efficient at harvesting salmon--that is, whether modal group size (1 vs. 2) is also optimal size. Not in this case. Pairing increased captures per attempt (benefit/cost ratio = profitability) by up to 47% and captures per minute by up to 5.2-fold. Yet, the ratio of paired versus solo fishing was significantly lower than either profitability or chance explains. Modal group size was 1, optimal size was 2. This discrepancy did not result from intervention by other current benefits and costs, but from unnecessary defensiveness toward any rapidly approaching conspecific, even though it was chasing salmon, not threatening. For bears to regularly hunt cooperatively, they would have to more readily habituate to agonistic-like predatory actions, communicate intentions from > 10 m apart, and assess situational variations in benefit/cost ratios for solo versus paired hunting. It would be revealing to discover how social carnivores overcame these challenges.

  14. Optimal reproduction in salmon spawning substrates linked to grain size and fish length

    NASA Astrophysics Data System (ADS)

    Riebe, Clifford S.; Sklar, Leonard S.; Overstreet, Brandon T.; Wooster, John K.

    2014-02-01

    Millions of dollars are spent annually on revitalizing salmon spawning in riverbeds where redd building by female salmon is inhibited by sediment that is too big for fish to move. Yet the conditions necessary for productive spawning remain unclear. There is no gauge for quantifying how grain size influences the reproductive potential of coarse-bedded rivers. Hence, managers lack a quantitative basis for optimizing spawning habitat restoration for reproductive value. To overcome this limitation, we studied spawning by Chinook, sockeye, and pink salmon (Oncorhynchus tshawytscha, O. nerka, and O. gorbuscha) in creeks and rivers of California and the Pacific Northwest. Our analysis shows that coarse substrates have been substantially undervalued as spawning habitat in previous work. We present a field-calibrated approach for estimating the number of redds and eggs a substrate can accommodate from measurements of grain size and fish length. Bigger fish can move larger sediment and thus use more riverbed area for spawning. They also tend to have higher fecundity, and so can deposit more eggs per redd. However, because redd area increases with fish length, the number of eggs a substrate can accommodate is maximized for moderate-sized fish. This previously unrecognized tradeoff raises the possibility that differences in grain size help regulate river-to-river differences in salmon size. Thus, population diversity and species resilience may be linked to lithologic, geomorphic, and climatic factors that determine grain size in rivers. Our approach provides a tool for managing grain-size distributions in support of optimal reproductive potential and species resilience.

  15. Spatial distribution of mercury in southeastern Alaskan streams influenced by glaciers, wetlands, and salmon

    USGS Publications Warehouse

    Nagorski, Sonia A.; Engstrom, Daniel R.; Hudson, John P.; Krabbenhoft, David P.; Hood, Eran; DeWild, John F.; Aiken, George R.

    2014-01-01

    Southeastern Alaska is a remote coastal-maritime ecosystem that is experiencing increased deposition of mercury (Hg) as well as rapid glacier loss. Here we present the results of the first reported survey of total and methyl Hg (MeHg) concentrations in regional streams and biota. Overall, streams draining large wetland areas had higher Hg concentrations in water, mayflies, and juvenile salmon than those from glacially-influenced or recently deglaciated watersheds. Filtered MeHg was positively correlated with wetland abundance. Aqueous Hg occurred predominantly in the particulate fraction of glacier streams but in the filtered fraction of wetland-rich streams. Colonization by anadromous salmon in both glacier and wetland-rich streams may be contributing additional marine-derived Hg. The spatial distribution of Hg in the range of streams presented here shows that watersheds are variably, yet fairly predictably, sensitive to atmospheric and marine inputs of Hg.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggerone, G.T.; Rogers, D.E.

    Adult sockeye salmon scales, which provide an index of annual salmon growth in fresh and marine waters during 1965--1997, were measured to examine the effects on growth and adult returns of large spawning escapements influenced by the Exxon Valdez oil spill. Scale growth in freshwater was significantly reduced by the large 1989 spawning escapements in the Kenai River system, Red Lake, and Akalura Lake, but not in Chignik Lake. These data suggest that sockeye growth in freshwater may be less stable following the large escapement. Furthermore, the observations of large escapement adversely affecting growth of adjacent brood years of salmonmore » has important implications for stock-recruitment modeling. In Prince William Sound, Coghill Lake sockeye salmon that migrated through oil-contaminated waters did not exhibit noticeably reduced marine growth, but a model was developed that might explain low adult returns in recent years.« less

  17. 50 CFR 300.91 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Fraser River Sockeye and Pink Salmon Fisheries § 300.91 Definitions. In addition to the terms defined in... fishing regulations. Commission means the Pacific Salmon Commission established by the Pacific Salmon... impound salmon passing over the net, the net must be raised to the surface. (4) Troll fishing gear means...

  18. 50 CFR 300.91 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Fraser River Sockeye and Pink Salmon Fisheries § 300.91 Definitions. In addition to the terms defined in... fishing regulations. Commission means the Pacific Salmon Commission established by the Pacific Salmon... impound salmon passing over the net, the net must be raised to the surface. (4) Troll fishing gear means...

  19. Sockeye: A 3D Environment for Comparative Genomics

    PubMed Central

    Montgomery, Stephen B.; Astakhova, Tamara; Bilenky, Mikhail; Birney, Ewan; Fu, Tony; Hassel, Maik; Melsopp, Craig; Rak, Marcin; Robertson, A. Gordon; Sleumer, Monica; Siddiqui, Asim S.; Jones, Steven J.M.

    2004-01-01

    Comparative genomics techniques are used in bioinformatics analyses to identify the structural and functional properties of DNA sequences. As the amount of available sequence data steadily increases, the ability to perform large-scale comparative analyses has become increasingly relevant. In addition, the growing complexity of genomic feature annotation means that new approaches to genomic visualization need to be explored. We have developed a Java-based application called Sockeye that uses three-dimensional (3D) graphics technology to facilitate the visualization of annotation and conservation across multiple sequences. This software uses the Ensembl database project to import sequence and annotation information from several eukaryotic species. A user can additionally import their own custom sequence and annotation data. Individual annotation objects are displayed in Sockeye by using custom 3D models. Ensembl-derived and imported sequences can be analyzed by using a suite of multiple and pair-wise alignment algorithms. The results of these comparative analyses are also displayed in the 3D environment of Sockeye. By using the Java3D API to visualize genomic data in a 3D environment, we are able to compactly display cross-sequence comparisons. This provides the user with a novel platform for visualizing and comparing genomic feature organization. PMID:15123592

  20. Biodiveristy and Stability of Aboriginal Salmon Fisheries in the Fraser River Watershed

    NASA Astrophysics Data System (ADS)

    Nesbitt, H. K.; Moore, J.

    2015-12-01

    Natural watersheds are hierarchical networks that may confer stability to ecosystem functions through integration of upstream biodiversity, whereby upstream asset diversification stabilizes the aggregate downstream through the portfolio effect. Here we show that riverine structure and its associated diversity confer stability of salmon catch and lengthened fishing seasons for Aboriginal fisheries on the Fraser River (1370km) in BC, Canada, the second longest dam-free salmon migration route in North America. In Canada, Aboriginal people have rights to fish for food, social, and ceremonial (FSC) purposes. FSC fisheries are located throughout the Fraser watershed and have access to varying levels of salmon diversity based on their location. For instance, fisheries at the mouth of the river have access to all of the salmon that spawn throughout the entire watershed, thus integrating across the complete diversity profile of the entire river. In contrast, fisheries in the headwaters have access to fewer salmon species and populations and thus fish from a much less diverse portfolio. These spatial gradients of diversity within watersheds provide a natural contrast for quantifying the effects of different types of diversity on interannual resource stability and seasonal availability. We acquired weekly and yearly catch totals from 1983 to 2012 (30 years) for Chinook, chum, coho, pink, and sockeye salmon for 21 FSC fishing sites throughout the Fraser River watershed from Fisheries and Oceans Canada. We examined how both population- and species-level diversity affects catch stability and season length at each site by quantifying year-to-year variability and within-year season length respectively. Salmon species diversity made fisheries up to 28% more stable in their catch than predicted with 3.7 more weeks to fish on average. Fisheries with access to high population diversity had up to 3.8 times more stable catch and 3 times longer seasons than less diverse fisheries. We

  1. 50 CFR 300.91 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... in one mesh of a net. Pink salmon means Oncorhynchus gorbuscha. Sockeye salmon means the anadromous form of Oncorhynchus nerka. Treaty fishing places (of an Indian tribe) means locations within the...

  2. 50 CFR 300.91 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... in one mesh of a net. Pink salmon means Oncorhynchus gorbuscha. Sockeye salmon means the anadromous form of Oncorhynchus nerka. Treaty fishing places (of an Indian tribe) means locations within the...

  3. 50 CFR 300.91 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... in one mesh of a net. Pink salmon means Oncorhynchus gorbuscha. Sockeye salmon means the anadromous form of Oncorhynchus nerka. Treaty fishing places (of an Indian tribe) means locations within the...

  4. 50 CFR 300.97 - Inseason orders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Fraser River Sockeye and Pink Salmon Fisheries § 300.97 Inseason orders. (a) During the fishing season... management measures for West Coast Salmon Fisheries, published in the Federal Register; Treaty Indian...

  5. 50 CFR 300.97 - Inseason orders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Fraser River Sockeye and Pink Salmon Fisheries § 300.97 Inseason orders. (a) During the fishing season... management measures for West Coast Salmon Fisheries, published in the Federal Register; Treaty Indian...

  6. 50 CFR Table 18 to Part 679 - Required Buying and Production Forms for use With State of Alaska Commercial Operator's Annual...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Operator's Annual Report (COAR) Fishery Form Number and Name Salmon Salmon Buying (A)(1) Seine gear (A)(1) Gillnet gear (A)(2) Troll gear (A)(2) Hatchery (A)(3) Miscellaneous gear King Salmon Production (B)(1) Production (B)(1) Canned Production Sockeye Salmon Production: (B)(2)(i) Production (B)(2)(ii) Canned...

  7. Cardiovascular Deaths among Alaskan Natives, 1980-86.

    ERIC Educational Resources Information Center

    Middaugh, John P.

    1990-01-01

    Analyzes death certificate data to discover the number of deaths of Alaskan natives caused by cardiovascular disease. Rates from cardiovascular diseases and atherosclerosis from 1980-86 among Alaskan natives were lower than rates among other Alaskans, while death rates from other causes were higher. Discusses the possible impact of diet. (JS)

  8. Integrating subsistence practice and species distribution modeling: assessing invasive elodea’s potential impact on Native Alaskan subsistence of Chinook salmon and whitefish

    USGS Publications Warehouse

    Luizza, Matthew; Evangelista, Paul; Jarnevich, Catherine S.; West, Amanda; Stewart, Heather

    2016-01-01

    Alaska has one of the most rapidly changing climates on earth and is experiencing an accelerated rate of human disturbance, including resource extraction and transportation infrastructure development. Combined, these factors increase the state’s vulnerability to biological invasion, which can have acute negative impacts on ecological integrity and subsistence practices. Of growing concern is the spread of Alaska’s first documented freshwater aquatic invasive plant Elodea spp. (elodea). In this study, we modeled the suitable habitat of elodea using global and state-specific species occurrence records and environmental variables, in concert with an ensemble of model algorithms. Furthermore, we sought to incorporate local subsistence concerns by using Native Alaskan knowledge and available statewide subsistence harvest data to assess the potential threat posed by elodea to Chinook salmon (Oncorhynchus tshawytscha) and whitefish (Coregonus nelsonii) subsistence. State models were applied to future climate (2040–2059) using five general circulation models best suited for Alaska. Model evaluations indicated that our results had moderate to strong predictability, with area under the receiver-operating characteristic curve values above 0.80 and classification accuracies ranging from 66 to 89 %. State models provided a more robust assessment of elodea habitat suitability. These ensembles revealed different levels of management concern statewide, based on the interaction of fish subsistence patterns, known spawning and rearing sites, and elodea habitat suitability, thus highlighting regions with additional need for targeted monitoring. Our results suggest that this approach can hold great utility for invasion risk assessments and better facilitate the inclusion of local stakeholder concerns in conservation planning and management.

  9. 78 FR 28805 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ...) by the Bonneville Power Administration (BPA) for its funding of the Snake River sockeye salmon hatchery program, including modifications to the Springfield Hatchery. Because the BPA action is... submitted HGMP and the Springfield Sockeye Hatchery Master Plan, NMFS proposes to adopt the BPA...

  10. Potential responses to climate change in organisms with complex life histories: evolution and plasticity in Pacific salmon.

    PubMed

    Crozier, L G; Hendry, A P; Lawson, P W; Quinn, T P; Mantua, N J; Battin, J; Shaw, R G; Huey, R B

    2008-05-01

    Salmon life histories are finely tuned to local environmental conditions, which are intimately linked to climate. We summarize the likely impacts of climate change on the physical environment of salmon in the Pacific Northwest and discuss the potential evolutionary consequences of these changes, with particular reference to Columbia River Basin spring/summer Chinook (Oncorhynchus tshawytscha) and sockeye (Oncorhynchus nerka) salmon. We discuss the possible evolutionary responses in migration and spawning date egg and juvenile growth and development rates, thermal tolerance, and disease resistance. We know little about ocean migration pathways, so cannot confidently suggest the potential changes in this life stage. Climate change might produce conflicting selection pressures in different life stages, which will interact with plastic (i.e. nongenetic) changes in various ways. To clarify these interactions, we present a conceptual model of how changing environmental conditions shift phenotypic optima and, through plastic responses, phenotype distributions, affecting the force of selection. Our predictions are tentative because we lack data on the strength of selection, heritability, and ecological and genetic linkages among many of the traits discussed here. Despite the challenges involved in experimental manipulation of species with complex life histories, such research is essential for full appreciation of the biological effects of climate change.

  11. Potential responses to climate change in organisms with complex life histories: evolution and plasticity in Pacific salmon

    PubMed Central

    Crozier, L G; Hendry, A P; Lawson, P W; Quinn, T P; Mantua, N J; Battin, J; Shaw, R G; Huey, R B

    2008-01-01

    Salmon life histories are finely tuned to local environmental conditions, which are intimately linked to climate. We summarize the likely impacts of climate change on the physical environment of salmon in the Pacific Northwest and discuss the potential evolutionary consequences of these changes, with particular reference to Columbia River Basin spring/summer Chinook (Oncorhynchus tshawytscha) and sockeye (Oncorhynchus nerka) salmon. We discuss the possible evolutionary responses in migration and spawning date egg and juvenile growth and development rates, thermal tolerance, and disease resistance. We know little about ocean migration pathways, so cannot confidently suggest the potential changes in this life stage. Climate change might produce conflicting selection pressures in different life stages, which will interact with plastic (i.e. nongenetic) changes in various ways. To clarify these interactions, we present a conceptual model of how changing environmental conditions shift phenotypic optima and, through plastic responses, phenotype distributions, affecting the force of selection. Our predictions are tentative because we lack data on the strength of selection, heritability, and ecological and genetic linkages among many of the traits discussed here. Despite the challenges involved in experimental manipulation of species with complex life histories, such research is essential for full appreciation of the biological effects of climate change. PMID:25567630

  12. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Northwest). Sea-Run Cutthroat Trout

    DTIC Science & Technology

    1989-01-01

    sockeye salmon ( Oncorhynchus nerka ), patterns in their home streams, and and coho salmon (Lowery 1966, significant abrupt deviations from the Armstrong...and cutthroat trout from the same stream, coho salmon ( Oncorhynchus kisutch) but varies widely by geographical (Cramer 1940; Sumner 1952; DeWTtt...salmon cutthroat trout diets (Dimick and Mote ( Oncorhynchus keta), pink salmon 1934; Lowery 1966; Allen 1969; ( Oncorhynchus gorbuscha), and Pacific

  13. Detection of infectious haematopoietic necrosis virus in river water and demonstration of waterborne transmission

    USGS Publications Warehouse

    Mulcahy, D.; Pascho, R.J.; Jenes, C.K.

    1983-01-01

    In a study of the possible role of waterborne infectious haematopoietic necrosis virus in transmission of the disease among spawning sockeye salmon, Oncorhynchus nerka (Walbaum), both infection rates and virus titres were higher in fish held at high density in a side channel than in fish in the adjacent river. Virus was never isolated from river water, but was found in water from the side channel at levels ranging from 32.5 to 1600 plaque-forming units (p.f.u.)/ml. Uninfected yearling sockeye salmon held in a box in the side channel developed localized gill infections with IHN virus. The disease did not progress to the viscera until a threshold titre of about 105 p.f.u./g was reached in the gill. The effectiveness of the gill as a barrier limiting development of systemic infections means that waterborne IHN virus probably does not greatly increase the infection rate in a sockeye salmon population during spawning.

  14. Detection of infectious hematopoietic necrosis virus in river water and demonstration of waterborne transmission

    USGS Publications Warehouse

    Mulcahy, Daniel M.; Pascho, Ronald J.; Jenes, C.K.

    1983-01-01

    In a study of the possible role of waterborne infectious haematopoietic necrosis virus in transmission of the disease among spawning sockeye salmon, Oncorhynchus nerka (Walbaum), both infection rates and virus titres were higher in fish held at high density in a side channel than in fish in the adjacent river. Virus was never isolated from river water, but was found in water from the side channel at levels ranging from 32.5 to 1600 plaque-forming units (p.f.u.)/ml. Uninfected yearling sockeye salmon held in a box in the side channel developed localized gill infections with IHN virus. The disease did not progress to the viscera until a threshold titre of about 105 p.f.u./g was reached in the gill. The effectiveness of the gill as a barrier limiting development of systemic infections means that waterborne IHN virus probably does not greatly increase the infection rate in a sockeye salmon population during spawning.

  15. 78 FR 25954 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... Act (NEPA) by the Bonneville Power Administration (BPA) for its funding of the Snake River sockeye salmon hatchery program, including modifications to the Springfield Hatchery. Because the BPA action is... submitted HGMP and the Springfield Sockeye Hatchery Master Plan, NMFS proposes to adopt the BPA...

  16. 50 CFR 300.92 - Relation to other laws.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REGULATIONS Fraser River Sockeye and Pink Salmon Fisheries § 300.92 Relation to other laws. (a) Insofar as.... Federal regulations governing salmon fishing in the EEZ, which includes a portion of the Fraser River...

  17. 50 CFR 300.92 - Relation to other laws.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... REGULATIONS Fraser River Sockeye and Pink Salmon Fisheries § 300.92 Relation to other laws. (a) Insofar as.... Federal regulations governing salmon fishing in the EEZ, which includes a portion of the Fraser River...

  18. Genomic signatures of fine-scale local selection in Atlantic salmon suggest involvement of sexual maturation, energy homeostasis and immune defence-related genes.

    PubMed

    Pritchard, Victoria L; Mäkinen, Hannu; Vähä, Juha-Pekka; Erkinaro, Jaakko; Orell, Panu; Primmer, Craig R

    2018-06-01

    Elucidating the genetic basis of adaptation to the local environment can improve our understanding of how the diversity of life has evolved. In this study, we used a dense SNP array to identify candidate loci potentially underlying fine-scale local adaptation within a large Atlantic salmon (Salmo salar) population. By combining outlier, gene-environment association and haplotype homozygosity analyses, we identified multiple regions of the genome with strong evidence for diversifying selection. Several of these candidate regions had previously been identified in other studies, demonstrating that the same loci could be adaptively important in Atlantic salmon at subdrainage, regional and continental scales. Notably, we identified signals consistent with local selection around genes associated with variation in sexual maturation, energy homeostasis and immune defence. These included the large-effect age-at-maturity gene vgll3, the known obesity gene mc4r, and major histocompatibility complex II. Most strikingly, we confirmed a genomic region on Ssa09 that was extremely differentiated among subpopulations and that is also a candidate for local selection over the global range of Atlantic salmon. This region colocalized with a haplotype strongly associated with spawning ecotype in sockeye salmon (Oncorhynchus nerka), with circumstantial evidence that the same gene (six6) may be the selective target in both cases. The phenotypic effect of this region in Atlantic salmon remains cryptic, although allelic variation is related to upstream catchment area and covaries with timing of the return spawning migration. Our results further inform management of Atlantic salmon and open multiple avenues for future research. © 2018 John Wiley & Sons Ltd.

  19. The hydrology of four streams in western Washington as related to several Pacific salmon species

    USGS Publications Warehouse

    Collings, Michael R.; Smith, Ronald W.; Higgins, G.T.

    1972-01-01

    Enhancement-or possibly even preservation-of the Pacific salmon hinges on the careful planning and proper management of the streamflow upon which they depend for spawning. Most spawning activity occurs on reaches of streams where specific hydraulic conditions exist and where stream-channel characteristics and water-quality criteria are met. The present report is the first of a series and is used to present the method of determining preferred spawning conditions and results of the investigation of 129 measurements on 14 study reaches of the Dewatto, Cedar, Kalama, and North 'Fork Nooksack Rivers. Subsequent reports, using the same method will present analyses and preferred spawning and rearing discharges for other streams used by salmon. The method consists of measuring water depth and velocities to designate, from area-(spawnable) discharge curves, peak, preferred spawning discharges for fall chinook, spring chinook, sockeye, and coho salmon at each reach on each river. Also, streambed gravels, water temperature, suspended sediment, dissolved oxygen, and specific conductance are used to help evaluate river conditions during spawning. In examining the repeatability of the method, tested by analyzing independently each of selected pairs of adjacent reaches on the Cedar River, it was found that the preferred peak discharges from the comparisons varied 4.6 percent for the average of four species and two pairs of reaches. Peak spawning discharges ranged, for the four salmon species on each of the three study reaches of each river, from 50 to 140 cfs (cubic feet per second) on Dewatto River, from 230 to 510 cfs on Cedar River, from 245 to 800 cfs on Kalama River, and from 195 to 710 cfs on North Fork Nooksack River. The results indicate that the methods used and the probable discharge values determined are reasonable and, if economically justified, may be used to select discharges, for salmon spawning and rearing.

  20. Understanding the Complexities of Communicating Management Decisions on the Subsistence Use of Yukon River Salmon

    NASA Astrophysics Data System (ADS)

    Brooks, J. F.; Trainor, S.

    2017-12-01

    Over 20,000 residents in Alaska and Yukon Territory rely upon the Yukon River to provide them harvests of Pacific salmon each year. Salmon are a highly valued food resource and the practice of salmon fishing along the Yukon is deep rooted in local cultures and traditions. Potential future impacts of climate change on the health of Yukon River salmon stocks could be significant. Collaborative managerial processes which incorporate the viewpoints of subsistence stakeholders will be crucial in enabling communities and managerial institutions to adapt and manage these impacts. However, the massive extent of the Yukon River makes it difficult for communities rich with highly localized knowledge to situate themselves within a drainage-wide context of resource availability, and to fully understand the implications that management decisions may have for their harvest. Differences in salmon availability and abundance between the upper and lower Yukon, commercial vs. subsistence fishery interests, and enforcement of the international Pacific Salmon Treaty further complicate understanding and makes the topic of salmon as a subsistence resource a highly contentious issue. A map which synthesizes the presence and absence of Pacific salmon throughout the entire Yukon River drainage was requested by both subsistence fishers and natural resource managers in Alaska in order to help facilitate productive conversations about salmon management decisions. Interviews with Alaskan stakeholders with managerial, biological, and subsistence harvest backgrounds were carried out and a literature review was conducted in order to understand what such a map should and could accomplish. During the research process, numerous data gaps concerning the distribution of salmon along the Yukon River were discovered, and insights about the complexities involved in translating science when it is situated within a charged political, economic, and cultural context were revealed. Preliminary maps depicting

  1. Host specificity and ecology of infectious hematopoietic necrosis virus (IHNV) in Pacific salmonids

    USGS Publications Warehouse

    Kurath, G.; Garver, A.; Purcell, M.K.; Penaranda, Ma.; Rudakova,; Cipriano, R.C.; Bruckner, A.W.; Shchelkunov, I.S.

    2011-01-01

    Some circumstances IHNV infection can cause acute disease with mortality ranging from 5-90% in host populations. Genetic typing of IHNV field isolates has shown that three major genetic groups of the virus occur in North America. These groups are designated the U, M, and L virus genogroups because they occur in the upper, middle, and lower portions of the geographic range of IHNV in western North America. Among field isolates there is some indication of host specificity: most IHNV isolated from sockeye salmon (Oncorhynchus nerka) is in the U genogroup, and most IHNV isolated from rainbow and steelhead trout (Oncorhynchus mykiss) is in the M genogroup. Experimental challenges confirm that U isolates are highly virulent for sockeye salmon, but not rainbow trout. In contrast, M isolates are virulent in rainbow trout but not in sockeye salmon. Studies comparing U and M virus infections show that virulence is associated with more rapid virus replication in the first few days after infection. In addition, high virulence isolates persist at higher viral loads in the host, while low virulence isolates do not persist. These host-specific aspects of the different IHNV genogroups are important for understanding the ecology of IHNV emergence events in the field. The recent emergence of U IHNV in Russian sockeye salmon of the Kamchatka Peninsula, and the emergence of M IHNV in steelhead trout on the Olympic Peninsula in the U.S.A, serve as examples of the relevance of IHNV host specificity.

  2. Aquatic community responses to salmon carcass analog and wood bundle additions in restored floodplain habitats in an Alaskan stream

    USGS Publications Warehouse

    Martin, Aaron E.; Wipfli, Mark S.; Spangler, Robert E.

    2010-01-01

    Land use activities often directly and indirectly limit the capacity of freshwater habitats to produce fish. Consequently, habitat creation and enhancement actions are often undertaken to increase the quantity and quality of resources available to aquatic communities within these impaired systems, with the intent to increase fish production. The objectives of this study were to (1) determine whether aquatic community colonization and development could be accelerated through additions of woody debris bundles and marine-derived nutrients (via salmon carcass analog pellets) and (2) measure how aquatic communities (biofilm, invertebrates, and fish) respond to these additions after the creation of off-channel (alcove) fish habitat in a stream in south-central Alaska. Biofilm, invertebrates, and juvenile coho salmon Oncorhynchus kisutch were sampled in four treatments (control, wood, analog, and analog plus wood). Biofilm chlorophyll-aconcentrations were 4–10 times higher in analog-enriched treatments than in the control and wood treatments. No treatment effects were detected in benthic invertebrate density; however, treatment differences were detected in coho salmon diets, with nearly twice the amount of invertebrate abundance and biomass (primarily various dipteran, ephemeropteran, and plecopteran larvae) in the analog and analog plus wood treatments compared with the control and wood treatments. Juvenile coho salmon density and biomass were significantly higher in the wood treatment than in the analog plus wood treatment, and fish in the control showed possible signs of density-dependent limitation. Further, body condition of juvenile coho salmon was highest in the two analog-enriched treatments at the end of the study; juveniles in these habitats showed nearly two times the condition increase of fish inhabiting the control and wood treatment alcoves. These results demonstrate that the combination of salmon carcass analog and woody debris bundle additions aids in

  3. Centennial-scale fluctuations and regional complexity characterize Pacific salmon population dynamics over the past five centuries.

    PubMed

    Rogers, Lauren A; Schindler, Daniel E; Lisi, Peter J; Holtgrieve, Gordon W; Leavitt, Peter R; Bunting, Lynda; Finney, Bruce P; Selbie, Daniel T; Chen, Guangjie; Gregory-Eaves, Irene; Lisac, Mark J; Walsh, Patrick B

    2013-01-29

    Observational data from the past century have highlighted the importance of interdecadal modes of variability in fish population dynamics, but how these patterns of variation fit into a broader temporal and spatial context remains largely unknown. We analyzed time series of stable nitrogen isotopes from the sediments of 20 sockeye salmon nursery lakes across western Alaska to characterize temporal and spatial patterns in salmon abundance over the past ∼500 y. Although some stocks varied on interdecadal time scales (30- to 80-y cycles), centennial-scale variation, undetectable in modern-day catch records and survey data, has dominated salmon population dynamics over the past 500 y. Before 1900, variation in abundance was clearly not synchronous among stocks, and the only temporal signal common to lake sediment records from this region was the onset of commercial fishing in the late 1800s. Thus, historical changes in climate did not synchronize stock dynamics over centennial time scales, emphasizing that ecosystem complexity can produce a diversity of ecological responses to regional climate forcing. Our results show that marine fish populations may alternate between naturally driven periods of high and low abundance over time scales of decades to centuries and suggest that management models that assume time-invariant productivity or carrying capacity parameters may be poor representations of the biological reality in these systems.

  4. Centennial-scale fluctuations and regional complexity characterize Pacific salmon population dynamics over the past five centuries

    PubMed Central

    Rogers, Lauren A.; Schindler, Daniel E.; Lisi, Peter J.; Holtgrieve, Gordon W.; Leavitt, Peter R.; Bunting, Lynda; Finney, Bruce P.; Selbie, Daniel T.; Chen, Guangjie; Gregory-Eaves, Irene; Lisac, Mark J.; Walsh, Patrick B.

    2013-01-01

    Observational data from the past century have highlighted the importance of interdecadal modes of variability in fish population dynamics, but how these patterns of variation fit into a broader temporal and spatial context remains largely unknown. We analyzed time series of stable nitrogen isotopes from the sediments of 20 sockeye salmon nursery lakes across western Alaska to characterize temporal and spatial patterns in salmon abundance over the past ∼500 y. Although some stocks varied on interdecadal time scales (30- to 80-y cycles), centennial-scale variation, undetectable in modern-day catch records and survey data, has dominated salmon population dynamics over the past 500 y. Before 1900, variation in abundance was clearly not synchronous among stocks, and the only temporal signal common to lake sediment records from this region was the onset of commercial fishing in the late 1800s. Thus, historical changes in climate did not synchronize stock dynamics over centennial time scales, emphasizing that ecosystem complexity can produce a diversity of ecological responses to regional climate forcing. Our results show that marine fish populations may alternate between naturally driven periods of high and low abundance over time scales of decades to centuries and suggest that management models that assume time-invariant productivity or carrying capacity parameters may be poor representations of the biological reality in these systems. PMID:23322737

  5. Invasive European bird cherry disrupts stream-riparian linkages: effects on terrestrial invertebrate prey subsidies for juvenile coho salmon

    USGS Publications Warehouse

    Roon, David A.; Wipfli, Mark S.; Wurtz, Tricia L.; Blanchard, Arny L.

    2016-01-01

    The spread of invasive species in riparian forests has the potential to affect both terrestrial and aquatic organisms linked through cross-ecosystem resource subsidies. However, this potential had not been explored in regards to terrestrial prey subsidies for stream fishes. To address this, we examined the effects of an invasive riparian tree, European bird cherry (EBC, Prunus padus), spreading along urban Alaskan salmon streams, by collecting terrestrial invertebrates present on the foliage of riparian trees, their subsidies to streams, and their consumption by juvenile coho salmon (Oncorhynchus kisutch). Riparian EBC supported four to six times less terrestrial invertebrate biomass on its foliage and contributed two to three times lower subsidies relative to native deciduous trees. This reduction in terrestrial invertebrate biomass was consistent between two watersheds over 2 years. In spite of this reduction in terrestrial prey resource input, juvenile coho salmon consumed similar levels of terrestrial invertebrates in stream reaches bordered by EBC. Although we did not see ecological effects extending to stream salmonids, reduced terrestrial prey subsidies to streams are likely to have negative consequences as EBC continues to spread.

  6. Spatio-Temporal Migration Patterns of Pacific Salmon Smolts in Rivers and Coastal Marine Waters

    PubMed Central

    Melnychuk, Michael C.; Welch, David W.; Walters, Carl J.

    2010-01-01

    Background Migrations allow animals to find food resources, rearing habitats, or mates, but often impose considerable predation risk. Several behavioural strategies may reduce this risk, including faster travel speed and taking routes with shorter total distance. Descriptions of the natural range of variation in migration strategies among individuals and populations is necessary before the ecological consequences of such variation can be established. Methodology/Principal Findings Movements of tagged juvenile coho, steelhead, sockeye, and Chinook salmon were quantified using a large-scale acoustic tracking array in southern British Columbia, Canada. Smolts from 13 watersheds (49 watershed/species/year combinations) were tagged between 2004–2008 and combined into a mixed-effects model analysis of travel speed. During the downstream migration, steelhead were slower on average than other species, possibly related to freshwater residualization. During the migration through the Strait of Georgia, coho were slower than steelhead and sockeye, likely related to some degree of inshore summer residency. Hatchery-reared smolts were slower than wild smolts during the downstream migration, but after ocean entry, average speeds were similar. In small rivers, downstream travel speed increased with body length, but in the larger Fraser River and during the coastal migration, average speed was independent of body length. Smolts leaving rivers located towards the northern end of the Strait of Georgia ecosystem migrated strictly northwards after ocean entry, but those from rivers towards the southern end displayed split-route migration patterns within populations, with some moving southward. Conclusions/Significance Our results reveal a tremendous diversity of behavioural migration strategies used by juvenile salmon, across species, rearing histories, and habitats, as well as within individual populations. During the downstream migration, factors that had strong effects on travel

  7. Low productivity of Chinook salmon strongly correlates with high summer stream discharge in two Alaskan rivers in the Yukon drainage

    USGS Publications Warehouse

    Neuswanger, Jason R.; Wipfli, Mark S.; Evenson, Matthew J.; Hughes, Nicholas F.; Rosenberger, Amanda E.

    2015-01-01

    Yukon River Chinook salmon (Oncorhynchus tshawytscha) populations are declining for unknown reasons, creating hardship for thousands of stakeholders in subsistence and commercial fisheries. An informed response to this crisis requires understanding the major sources of variation in Chinook salmon productivity. However, simple stock–recruitment models leave much of the variation in this system’s productivity unexplained. We tested adding environmental predictors to stock–recruitment models for two Yukon drainage spawning streams in interior Alaska — the Chena and Salcha rivers. Low productivity was strongly associated with high stream discharge during the summer of freshwater residency for young-of-the-year Chinook salmon. This association was more consistent with the hypothesis that sustained high discharge negatively affects foraging conditions than with acute mortality during floods. Productivity may have also been reduced in years when incubating eggs experienced major floods or cold summers and falls. These freshwater effects — especially density dependence and high discharge — helped explain population declines in both rivers. They are plausible as contributors to the decline of Chinook salmon throughout the Yukon River drainage.

  8. Conservation physiology in practice: how physiological knowledge has improved our ability to sustainably manage Pacific salmon during up-river migration.

    PubMed

    Cooke, Steven J; Hinch, Scott G; Donaldson, Michael R; Clark, Timothy D; Eliason, Erika J; Crossin, Glenn T; Raby, Graham D; Jeffries, Ken M; Lapointe, Mike; Miller, Kristi; Patterson, David A; Farrell, Anthony P

    2012-06-19

    Despite growing interest in conservation physiology, practical examples of how physiology has helped to understand or to solve conservation problems remain scarce. Over the past decade, an interdisciplinary research team has used a conservation physiology approach to address topical conservation concerns for Pacific salmon. Here, we review how novel applications of tools such as physiological telemetry, functional genomics and laboratory experiments on cardiorespiratory physiology have shed light on the effect of fisheries capture and release, disease and individual condition, and stock-specific consequences of warming river temperatures, respectively, and discuss how these findings have or have not benefited Pacific salmon management. Overall, physiological tools have provided remarkable insights into the effects of fisheries capture and have helped to enhance techniques for facilitating recovery from fisheries capture. Stock-specific cardiorespiratory thresholds for thermal tolerances have been identified for sockeye salmon and can be used by managers to better predict migration success, representing a rare example that links a physiological scope to fitness in the wild population. Functional genomics approaches have identified physiological signatures predictive of individual migration mortality. Although fisheries managers are primarily concerned with population-level processes, understanding the causes of en route mortality provides a mechanistic explanation and can be used to refine management models. We discuss the challenges that we have overcome, as well as those that we continue to face, in making conservation physiology relevant to managers of Pacific salmon.

  9. Conservation physiology in practice: how physiological knowledge has improved our ability to sustainably manage Pacific salmon during up-river migration

    PubMed Central

    Cooke, Steven J.; Hinch, Scott G.; Donaldson, Michael R.; Clark, Timothy D.; Eliason, Erika J.; Crossin, Glenn T.; Raby, Graham D.; Jeffries, Ken M.; Lapointe, Mike; Miller, Kristi; Patterson, David A.; Farrell, Anthony P.

    2012-01-01

    Despite growing interest in conservation physiology, practical examples of how physiology has helped to understand or to solve conservation problems remain scarce. Over the past decade, an interdisciplinary research team has used a conservation physiology approach to address topical conservation concerns for Pacific salmon. Here, we review how novel applications of tools such as physiological telemetry, functional genomics and laboratory experiments on cardiorespiratory physiology have shed light on the effect of fisheries capture and release, disease and individual condition, and stock-specific consequences of warming river temperatures, respectively, and discuss how these findings have or have not benefited Pacific salmon management. Overall, physiological tools have provided remarkable insights into the effects of fisheries capture and have helped to enhance techniques for facilitating recovery from fisheries capture. Stock-specific cardiorespiratory thresholds for thermal tolerances have been identified for sockeye salmon and can be used by managers to better predict migration success, representing a rare example that links a physiological scope to fitness in the wild population. Functional genomics approaches have identified physiological signatures predictive of individual migration mortality. Although fisheries managers are primarily concerned with population-level processes, understanding the causes of en route mortality provides a mechanistic explanation and can be used to refine management models. We discuss the challenges that we have overcome, as well as those that we continue to face, in making conservation physiology relevant to managers of Pacific salmon. PMID:22566681

  10. 50 CFR 300.90 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Fraser River Sockeye and Pink Salmon Fisheries § 300.90 Purpose and scope. This subpart implements the Pacific Salmon Treaty Act of 1985 (16 U.S.C. 3631-3644) (Act) and is intended to supplement, not conflict... Government of the United States of America and the Government of Canada Concerning Pacific Salmon, signed at...

  11. 50 CFR 300.90 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Fraser River Sockeye and Pink Salmon Fisheries § 300.90 Purpose and scope. This subpart implements the Pacific Salmon Treaty Act of 1985 (16 U.S.C. 3631-3644) (Act) and is intended to supplement, not conflict... Government of the United States of America and the Government of Canada Concerning Pacific Salmon, signed at...

  12. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon in the Grande Ronde Riiver Basin : Fish Research Project Oregon : Annual Progress Report 1 September 1995 to 1 August 1996.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonasson, Brian C.; Carmichael, Richard W.; Keefe, MaryLouise

    1997-09-01

    Historically, the Grande Ronde River produced an abundance of salmonids including stocks of spring, summer and fall chinook salmon, sockeye salmon, coho salmon, and summer steelhead. During the past century, numerous factors have caused the reduction of salmon stocks such that only sustainable stocks of spring chinook salmon and summer steelhead remain. The sizes of spring chinook salmon populations in the Grande Ronde River basin also have been declining steadily and are substantially depressed from estimates of historic levels. In addition to a decline in population abundance, a reduction of spring chinook salmon spawning distribution is evident in the Grandemore » Ronde River basin. Numerous factors are thought to contribute to the decline of spring chinook salmon in the Snake River and its tributaries. These factors include passage problems and increased mortality of juvenile and adult migrants at mainstem Columbia and Snake river dams, overharvest, and habitat degradation associated with timber, agricultural, and land development practices. This study was designed to describe aspects of the life history strategies exhibited by spring chinook salmon in the Grande Ronde River basin. During the past year the focus was on rearing and migration patterns of juveniles in the upper Grande Ronde River and Catherine Creek. The study design included three objectives: (1) document the annual in-basin migration patterns for spring chinook salmon juveniles in the upper Grande Ronde River and Catherine Creek, including the abundance of migrants, migration timing and duration; (2) estimate and compare smolt survival indices to mainstem Columbia and Snake river dams for fall and spring migrating spring chinook salmon; and (3) determine summer and winter habitat utilization and preference of juvenile spring chinook salmon in the upper Grande Ronde River and Catherine Creek.« less

  13. Self-sustaining populations, population sinks or aggregates of strays: chum (Oncorhynchus keta) and Chinook salmon (Oncorhynchus tshawytscha) in the Wood River system, Alaska.

    PubMed

    Lin, Jocelyn E; Hilborn, Ray; Quinn, Thomas P; Hauser, Lorenz

    2011-12-01

    Small populations can provide insights into ecological and evolutionary aspects of species distributions over space and time. In the Wood River system in Alaska, USA, small aggregates of Chinook (Oncorhynchus tshawytscha) and chum salmon (O. keta) spawn in an area dominated by sockeye salmon (O. nerka). Our objective was to determine whether these Chinook and chum salmon are reproductively isolated, self-sustaining populations, population sinks that produce returning adults but receive immigration, or strays from other systems that do not produce returning adults. DNA samples collected from adult chum salmon from 16 streams and Chinook salmon from four streams in the Wood River system over 3 years were compared to samples from large populations in the nearby Nushagak River system, a likely source of strays. For both species, microsatellite markers indicated no significant genetic differentiation between the two systems. Simulations of microsatellite data in a large source and a smaller sink population suggested that considerable immigration would be required to counteract the diverging effects of genetic drift and produce genetic distances as small as those observed, considering the small census sizes of the two species in the Wood River system. Thus, the Wood River system likely receives substantial immigration from neighbouring watersheds, such as the Nushagak River system, which supports highly productive runs. Although no data on population productivity in the Wood River system exist, our results suggest source-sink dynamics for the two species, a finding relevant to other systems where salmonid population sizes are limited by habitat factors. © 2011 Blackwell Publishing Ltd.

  14. "Research to Improve the Efficacy of Captive Broodstock Programs and Advance Hatchery Reform Throughout the Columbia River Basin." [from the Abstract], 2007-2008 Annual Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berejikian, Barry A.

    This project was developed to conduct research to improve the efficacy of captive broodstock programs and advance hatchery reform throughout the Columbia river basin. The project has three objectives: (1) maintain adaptive life history characteristics in Chinook salmon, (2) improve imprinting in juvenile sockeye salmon, and (3) match wild phenotypes in Chinook and sockeye salmon reared in hatcheries. A summary of the results are as follows: Objective 1: Adult and jack Chinook salmon males were stocked into four replicate spawning channels at a constant density (N = 16 per breeding group), but different ratios, and were left to spawn naturallymore » with a fixed number of females (N = 6 per breeding group). Adult males obtained primary access to females and were first to enter the nest at the time of spawning. Jack male spawning occurred primarily by establishing satellite positions downstream of the courting pair, and 'sneaking' into the nest at the time of spawning. Male dominance hierarchies were fairly stable and strongly correlated with the order of nest entry at the time of spawning. Spawning participation by jack and adult males is consistent with a negative frequency dependent selection model, which means that selection during spawning favors the rarer life history form. Results of DNA parentage assignments will be analyzed to estimate adult-to-fry fitness of each male. Objective 2: To determine the critical period(s) for imprinting for sockeye salmon, juvenile salmon were exposed to known odorants at key developmental stages. Molecular assessments of imprinting-induced changes in odorant receptor gene expression indicated that regulation of odorant expression is influenced by developmental status and odor exposure history. The results suggest that sockeye salmon are capable of imprinting to homing cues during the developmental periods that correspond to several of current release strategies employed as part of the Captive Broodstock program (specifically

  15. Commencement Bay Study. Volume III. Fish Wetlands.

    DTIC Science & Technology

    1981-12-31

    species of adult Pacific salmon during various times of the year. The Pacific salmon include spring and fall chinook ( Oncorhynchus tshawytscha), coho (0...kisutch), chum (0. keta), and pink (0. gorbuscha). A fifth species, sockeye (0. nerka ) has been observed in Kapowsin Creek (a tributary to the Puyallup...pink salmon, Oncorhynchus gorbuscha, and chum salmon, Oncorhynchus keta, in Traiters Cove, Alaska with speculations on the carrying capacity of the

  16. Changes in Salmon Spawning Habitat Distributions Following Rapid and Gradual Channel Adjustments in the Cedar River, Washington

    NASA Astrophysics Data System (ADS)

    Timm, R. K.; Wissmar, R. C.; Berge, H.; Foley, S.

    2005-05-01

    Anthropogenic controls on rivers such as dams, hardened banks, and land uses limit the interactions between main river channel and floodplain ecosystems and contribute to decreased habitat diversity. These system controls dampen the frequency and magnitude of natural disturbances that contibute to physical habitat structure and variability. Under natural and altered disturbance regimes river systems are expected to exhibit resiliency. However, in some cases, disturbances cause fluctuations in the trajectory of the mean system state that can have implications for river recovery in the short- and long-term by changing the spatial and temporal dimensions of available habitat relative to specific biological requirements. Historic and contemporary salmon spawning data are analyzed in the context of changing disturbance regimes in the Cedar River, Washington. Historic data are presented for active channel conditions and spawning fish distributions. Contemporary data are presented for an intensively studied reach that received a landslide that deposited approximately 50,000 m3 of sediment in the main channel, temporarily damming the river. Biologically, the spatio-temporal spawning distributions of Chinook (Oncorhynchus tshawytcha) and sockeye (O. nerka) salmon responded to modifications of physical habitat.

  17. Genomic signatures predict migration and spawning failure in wild Canadian salmon.

    PubMed

    Miller, Kristina M; Li, Shaorong; Kaukinen, Karia H; Ginther, Norma; Hammill, Edd; Curtis, Janelle M R; Patterson, David A; Sierocinski, Thomas; Donnison, Louise; Pavlidis, Paul; Hinch, Scott G; Hruska, Kimberly A; Cooke, Steven J; English, Karl K; Farrell, Anthony P

    2011-01-14

    Long-term population viability of Fraser River sockeye salmon (Oncorhynchus nerka) is threatened by unusually high levels of mortality as they swim to their spawning areas before they spawn. Functional genomic studies on biopsied gill tissue from tagged wild adults that were tracked through ocean and river environments revealed physiological profiles predictive of successful migration and spawning. We identified a common genomic profile that was correlated with survival in each study. In ocean-tagged fish, a mortality-related genomic signature was associated with a 13.5-fold greater chance of dying en route. In river-tagged fish, the same genomic signature was associated with a 50% increase in mortality before reaching the spawning grounds in one of three stocks tested. At the spawning grounds, the same signature was associated with 3.7-fold greater odds of dying without spawning. Functional analysis raises the possibility that the mortality-related signature reflects a viral infection.

  18. A Conceptual Plan for Mitigating Anadromous Fish Losses in the Hanford Reach, Columbia River, Washington.

    DTIC Science & Technology

    1980-10-01

    Oncorhynchus nerka ) An estimated 1.6 million sockeye salmon smolts pass through the Hanford Reach annually. It is expected that up to 240,000 of these smolts...supplementation or ther- mal modification during critical periods, was selected as a production strategy (Figure 2). 2. Chinook Salmon ( Oncorhynchus tshawytscha) a...supplemental heating or warmer groundwater would be necessary. 3. Coho Salmon ( Oncorhynchus kisutch) The hatchery production cycle of coho salmon is similar to

  19. Accounting for escape mortality in fisheries: implications for stock productivity and optimal management.

    PubMed

    Baker, Matthew R; Schindler, Daniel E; Essington, Timothy E; Hilborn, Ray

    2014-01-01

    Few studies have considered the management implications of mortality to target fish stocks caused by non-retention in commercial harvest gear (escape mortality). We demonstrate the magnitude of this previously unquantified source of mortality and its implications for the population dynamics of exploited stocks, biological metrics, stock productivity, and optimal management. Non-retention in commercial gillnet fisheries for Pacific salmon (Oncorhynchus spp.) is common and often leads to delayed mortality in spawning populations. This represents losses, not only to fishery harvest, but also in future recruitment to exploited stocks. We estimated incidence of non-retention in Alaskan gillnet fisheries for sockeye salmon (O. nerka) and found disentanglement injuries to be extensive and highly variable between years. Injuries related to non-retention were noted in all spawning populations, and incidence of injury ranged from 6% to 44% of escaped salmon across nine river systems over five years. We also demonstrate that non-retention rates strongly correlate with fishing effort. We applied maximum likelihood and Bayesian approaches to stock-recruitment analyses, discounting estimates of spawning salmon to account for fishery-related mortality in escaped fish. Discounting spawning stock estimates as a function of annual fishing effort improved model fits to historical stock-recruitment data in most modeled systems. This suggests the productivity of exploited stocks has been systematically underestimated. It also suggests that indices of fishing effort may be used to predict escape mortality and correct for losses. Our results illustrate how explicitly accounting for collateral effects of fishery extraction may improve estimates of productivity and better inform management metrics derived from estimates of stock-recruitment analyses.

  20. Physiological consequences of the salmon louse (Lepeophtheirus salmonis) on juvenile pink salmon (Oncorhynchus gorbuscha): implications for wild salmon ecology and management, and for salmon aquaculture.

    PubMed

    Brauner, C J; Sackville, M; Gallagher, Z; Tang, S; Nendick, L; Farrell, A P

    2012-06-19

    Pink salmon, Oncorhynchus gorbuscha, are the most abundant wild salmon species and are thought of as an indicator of ecosystem health. The salmon louse, Lepeophtheirus salmonis, is endemic to pink salmon habitat but these ectoparasites have been implicated in reducing local pink salmon populations in the Broughton Archipelago, British Columbia. This allegation arose largely because juvenile pink salmon migrate past commercial open net salmon farms, which are known to incubate the salmon louse. Juvenile pink salmon are thought to be especially sensitive to this ectoparasite because they enter the sea at such a small size (approx. 0.2 g). Here, we describe how 'no effect' thresholds for salmon louse sublethal impacts on juvenile pink salmon were determined using physiological principles. These data were accepted by environmental managers and are being used to minimize the impact of salmon aquaculture on wild pink salmon populations.

  1. Experimental infection of six North American fish species with the North Carolina strain of spring Viremia of Carp Virus

    USGS Publications Warehouse

    Emmenegger, Eveline J.; Sanders, George E.; Conway, Carla M.; Binkowski, Fred P.; Winton, James R.; Kurath, Gael

    2016-01-01

    Three salmonid species, rainbow and steelhead trout (Oncorhynchus mykiss), Chinook salmon (O. tshawytscha), and sockeye salmon (O. nerka), were challenged by immersion or injection with the North Carolina SVCV isolate. Two cyprinid species, koi and fathead minnow (Pimephales promelas) and one percid species, yellow perch (Perca flavescens) were also challenged. Koi were highly susceptible to SVCV up to 11 months of age and fathead minnows had chronic disease expression with moderate mortality (29%). SVCV also induced moderate mortalities (33%) in yellow perch fry. Virus challenged salmonid fish had cumulative percent mortalities ranging from 0 to 100%, with sockeye salmon fry being the most vulnerable. A sub-sample of mortalities and survivors were screened for virus by plaque assay and reverse transcription polymerase chain reaction. In general, all mortalities tested positive for SVCV with high viral titers while survivors had variable persistence of SVCV with overall lower virus titers. Our SVCV challenges of multiple North American fish species suggested that host age is a key factor in determining disease outcome. Other factors, such as fish broodstock, virus strain, water temperature, and rearing conditions in association with the intrinsic level of species susceptibility may also impact infection dynamics. This is the first report of SVCV infecting a species (yellow perch) in the family Percidae and that sockeye salmon fry can suffer similarly high mortalities as the primary SVCV host species.

  2. A gas chromatography/high-resolution mass spectrometry (GC/HRMS) method for determination of polybrominated diphenyl ethers in fish.

    PubMed

    Alaee, M; Sergeant, D B; Ikonomou, M G; Luross, J M

    2001-09-01

    A method for the determination of polybrominated diphenyl ethers (PBDEs) in biota for routine analysis is described. The mass spectroscopic (MS) evaluation of 23 brominated diphenyl ethers, under electron ionization and electron capture negative ion conditions using magnetic sector and quadrupole mass spectrometers, showed that high-resolution mass spectrometry (HRMS) under electron ionization conditions was the most reliable technique, with high selectivity and adequate sensitivity. The instrument detection limit for this method ranged for individual congeners between 4.8 and 0.1 pg for 3-bromodiphenyl ether (BDE-2) and 2,3',4,4'-tetrabromodiphenyl ether (BDE-66), respectively, and method detection limit for each homologue group ranged between 5 pg/g for salmon certified reference material (CRM) and 93 pg/g for lake trout CRM. The effectiveness of this method was evaluated by analyzing the occurrence of PBDEs in commercially available CRMs comprising Lake Ontario lake trout, Pacific herring, and sockeye salmon. The average coefficients of variation for the replicate analyses of PDBEs in several tissue samples were: 25% for lake trout, 36% for Pacific herring, and 34% for sockeye salmon. The average deviations in the inter-laboratory study were: 14% for lake trout, 15% for Pacific herring, and 37% for sockeye salmon. Results indicated that the described method, based on gas chromatography/high-resolution mass spectrometry, is reliable for determining PBDE concentrations in biological tissues.

  3. Coastal Habitats in Puget Sound: A Research Plan in Support of the Puget Sound Nearshore Partnership

    DTIC Science & Technology

    2006-11-01

    of these are Chinook ( Oncorhynchus tshawytscha), Coho (O. kisutch), chum (O. keta), pink (O. gorbuscha), and sockeye salmon (O. nerka ), anadromous...pink salmon ( Oncorhynchus gorbuscha) embryos. Environmental Science and Technology. 18:494-503. Hood, G. in press. Deepwater slough restoration...Ylitalo, J. Labenia, T. Collier, and N. Scholz. 2003. High rates of pre-spawn mortality in Coho Salmon ( Oncorhynchus kisutch) from urban streams in the

  4. Alaskan Voices.

    ERIC Educational Resources Information Center

    Achatz, Mary, Ed.; Caldera, Debra, Ed.; Saylor, Brian; DeGross, Denny

    This paper examines the attitudes of adults and teenagers in 10 predominantly rural Alaskan communities toward their own health and well-being and that of children and families in their community. The communities were located across the state and ranged in size from populations of under 900 to over 50,000. The proportion of Alaska Natives in the…

  5. Dead fish swimming: a review of research on the early migration and high premature mortality in adult Fraser River sockeye salmon Oncorhynchus nerka.

    PubMed

    Hinch, S G; Cooke, S J; Farrell, A P; Miller, K M; Lapointe, M; Patterson, D A

    2012-07-01

    Adult sockeye salmon Oncorhynchus nerka destined for the Fraser River, British Columbia are some of the most economically important populations but changes in the timing of their homeward migration have led to management challenges and conservation concerns. After a directed migration from the open ocean to the coast, this group historically would mill just off shore for 3-6 weeks prior to migrating up the Fraser River. This milling behaviour changed abruptly in 1995 and thereafter, decreasing to only a few days in some years (termed early migration), with dramatic consequences that have necessitated risk-averse management strategies. Early migrating fish consistently suffer extremely high mortality (exceeding 90% in some years) during freshwater migration and on spawning grounds prior to spawning. This synthesis examines multidisciplinary, collaborative research aimed at understanding what triggers early migration, why it results in high mortality, and how fisheries managers can utilize these scientific results. Tissue analyses from thousands of O. nerka captured along their migration trajectory from ocean to spawning grounds, including hundreds that were tracked with biotelemetry, have revealed that early migrants are more reproductively advanced and ill-prepared for osmoregulatory transition upon their entry into fresh water. Gene array profiles indicate that many early migrants are also immunocompromised and stressed, carrying a genomic profile consistent with a viral infection. The causes of these physiological changes are still under investigation. Early migration brings O. nerka into the river when it is 3-6° C warmer than historical norms, which for some late-run populations approaches or exceeds their critical maxima leading to the collapse of metabolic and cardiac scope, and mortality. As peak spawning dates have not changed, the surviving early migrants tend to mill in warm lakes near to spawning areas. These results in the accumulation of many more

  6. The memory remains: application of historical DNA for scaling biodiversity loss.

    PubMed

    Nielsen, Einar E; Bekkevold, Dorte

    2012-04-01

    Few species worldwide have attracted as much attention in relation to conservation and sustainable management as Pacific salmon. Most populations have suffered significant reductions, many have disappeared, and even entire evolutionary significant units (ESUs) are believed to have been lost. Until now, no 'smoking gun' in terms of direct genetic evidence of the loss of a salmon ESU has been produced. In this issue of Molecular Ecology, Iwamoto et al. (2012) use microsatellite analysis of historical scale samples of Columbia River sockeye salmon (Oncorhynchus nerka) from 1924 (Fig. 1) to ask the pertinent question: Do the historical samples contain salmon from extirpated populations or ESUs? They identified four genetic groups in the historical samples of which two were almost genetically identical to contemporary ESUs in the river, one showed genetic relationship with a third ESU, but one group was not related to any of the contemporary populations. In association with ecological data, the genetic results suggest that an early migrating Columbia River headwater sockeye salmon ESU has been extirpated. The study has significant importance for conservation and reestablishment of sockeye populations in the Columbia River, but also underpins the general significance of shifting baselines in conservation biology, and how to assess loss of genetic biodiversity. The results clearly illustrate the huge and versatile potential of using historical DNA in population and conservation genetics. Because of the extraordinarily plentiful historical samples and rapid advances in fish genomics, fishes are likely to spearhead future studies of temporal ecological and population genomics in non-model organisms. [Figure: see text]. © 2012 Blackwell Publishing Ltd.

  7. Gas chromatography/principal component similarity system for detection of E. coli and S. aureus contaminating salmon and hamburger.

    PubMed

    Nakai, S; Wang, Z H; Dou, J; Nakamura, S; Ogawa, M; Nakai, E; Vanderstoep, J

    1999-02-01

    Coho, Atlantic, Spring, and Sockeye salmon and five commercial samples of hamburger patties were analyzed by processing gas chromatography (GC) data of volatile compounds using the principal component similarity (PCS) technique. PCS scattergrams of the samples inoculated with Escherichia coli and Staphylococcus aureus followed by incubation showed the pattern-shift lines moving away from the data point for uninoculated, unincubated reference samples in different directions with increasing incubation time. When the PCS scattergrams were drawn for samples incubated overnight, the samples inoculated with the two bacterial species and the uninoculated samples appeared as three separated groups. This GC/PCS approach has the potential to ensure quality of samples by discriminating good samples from potentially spoiled samples. The latter may require further microbial assays to identify the bacteria species potentially contaminating foods.

  8. 40 CFR 408.167 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Alaskan Hand-Butchered Salmon Processing Subcategory § 408.167 Effluent limitations guidelines... salmon processing facility located in population or processing centers including but not limited to...

  9. 40 CFR 408.167 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Alaskan Hand-Butchered Salmon Processing Subcategory § 408.167 Effluent limitations guidelines... salmon processing facility located in population or processing centers including but not limited to...

  10. Declining wild salmon populations in relation to parasites from farm salmon.

    PubMed

    Krkosek, Martin; Ford, Jennifer S; Morton, Alexandra; Lele, Subhash; Myers, Ransom A; Lewis, Mark A

    2007-12-14

    Rather than benefiting wild fish, industrial aquaculture may contribute to declines in ocean fisheries and ecosystems. Farm salmon are commonly infected with salmon lice (Lepeophtheirus salmonis), which are native ectoparasitic copepods. We show that recurrent louse infestations of wild juvenile pink salmon (Oncorhynchus gorbuscha), all associated with salmon farms, have depressed wild pink salmon populations and placed them on a trajectory toward rapid local extinction. The louse-induced mortality of pink salmon is commonly over 80% and exceeds previous fishing mortality. If outbreaks continue, then local extinction is certain, and a 99% collapse in pink salmon population abundance is expected in four salmon generations. These results suggest that salmon farms can cause parasite outbreaks that erode the capacity of a coastal ecosystem to support wild salmon populations.

  11. "Research to Improve the Efficacy of Captive Broodstock Programs and Advance Hatchery Reform Throughout the Columbia River Basin." [from the Abstract], 2008-2009 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berejikian, Barry A.

    This project was developed to conduct research to improve the efficacy of captive broodstock programs and advance hatchery reform throughout the Columbia River Basin. The project has three objectives: (1) maintain adaptive life history characteristics in Chinook salmon, (2) improve imprinting in juvenile sockeye salmon, and (3) match wild phenotypes in Chinook and sockeye salmon reared in hatcheries. A summary of the results are as follows: Objective 1: The ratio of jack to adult male Chinook salmon were varied in experimental breeding populations to test the hypothesis that reproductive success of the two male phenotypes would vary with their relativemore » frequency in the population. Adult Chinook salmon males nearly always obtained primary access to nesting females and were first to enter the nest at the time of spawning. Jack male spawning occurred primarily by establishing satellite positions downstream of the courting pair, and 'sneaking' into the nest at the time of spawning. Male dominance hierarchies were fairly stable and strongly correlated with the order of nest entry at the time of spawning. Observed participation in spawning events and adult-to-fry reproductive success of jack and adult males was consistent with a negative frequency-dependent selection model. Overall, jack males sired an average of 21% of the offspring produced across a range of jack male frequencies. Implications of these and additional findings on Chinook salmon hatchery broodstock management will be presented in the FY 2009 Annual Report. Objective 2: To determine the critical period(s) for imprinting for sockeye salmon, juvenile salmon were exposed to known odorants at key developmental stages. Molecular assessments of imprinting-induced changes in odorant receptor gene expression indicated that regulation of odorant expression is influenced by developmental status and odor exposure history. Expression levels of basic amino acid receptor (BAAR) mRNA in the olfactory epithelium

  12. Salmon lice – impact on wild salmonids and salmon aquaculture

    PubMed Central

    Torrissen, O; Jones, S; Asche, F; Guttormsen, A; Skilbrei, O T; Nilsen, F; Horsberg, T E; Jackson, D

    2013-01-01

    Salmon lice, Lepeophtheirus salmonis, are naturally occurring parasites of salmon in sea water. Intensive salmon farming provides better conditions for parasite growth and transmission compared with natural conditions, creating problems for both the salmon farming industry and, under certain conditions, wild salmonids. Salmon lice originating from farms negatively impact wild stocks of salmonids, although the extent of the impact is a matter of debate. Estimates from Ireland and Norway indicate an odds ratio of 1.1:1-1.2:1 for sea lice treated Atlantic salmon smolt to survive sea migration compared to untreated smolts. This is considered to have a moderate population regulatory effect. The development of resistance against drugs most commonly used to treat salmon lice is a serious concern for both wild and farmed fish. Several large initiatives have been taken to encourage the development of new strategies, such as vaccines and novel drugs, for the treatment or removal of salmon lice from farmed fish. The newly sequenced salmon louse genome will be an important tool in this work. The use of cleaner fish has emerged as a robust method for controlling salmon lice, and aquaculture production of wrasse is important towards this aim. Salmon lice have large economic consequences for the salmon industry, both as direct costs for the prevention and treatment, but also indirectly through negative public opinion. PMID:23311858

  13. Smallmouth bass and largemouth bass predation on juvenile Chinook salmon and other salmonids in the Lake Washington basin

    USGS Publications Warehouse

    Tabor, R.A.; Footen, B.A.; Fresh, K.L.; Celedonia, M.T.; Mejia, F.; Low, D.L.; Park, L.

    2007-01-01

    We assessed the impact of predation by smallmouth bass Micropterus dolomieu and largemouth bass M. salmoides on juveniles of federally listed Chinook salmon Oncorhynchus tshawytscha and other anadromous salmonid populations in the Lake Washington system. Bass were collected with boat electrofishing equipment in the south end of Lake Washington (February-June) and the Lake Washington Ship Canal (LWSC; April-July), a narrow waterway that smolts must migrate through to reach the marine environment. Genetic analysis was used to identify ingested salmonids to obtain a more precise species-specific consumption estimate. Overall, we examined the stomachs of 783 smallmouth bass and 310 largemouth bass greater than 100 mm fork length (FL). Rates of predation on salmonids in the south end of Lake Washington were generally low for both black bass species. In the LWSC, juvenile salmonids made up a substantial part of bass diets; consumption of salmonids was lower for largemouth bass than for smallmouth bass. Smallmouth bass predation on juvenile salmonids was greatest in June, when salmonids made up approximately 50% of their diet. In the LWSC, overall black bass consumption of salmonids was approximately 36,000 (bioenergetics model) to 46,000 (meal turnover consumption model) juveniles, of which about one-third was juvenile Chinook salmon, one-third was coho salmon O. kisutch, and one-third was sockeye salmon O. nerka. We estimated that about 2,460,000 juvenile Chinook salmon (hatchery and wild sources combined) were produced in the Lake Washington basin in 1999; thus, the mortality estimates in the LWSC range from 0.5% (bioenergetics) to 0.6% (meal turnover). Black bass prey mostly on subyearlings of each salmonid species. The vulnerability of subyearlings to predation can be attributed to their relatively small size; their tendency to migrate when water temperatures exceed 15??C, coinciding with greater black bass activity; and their use of nearshore areas, where overlap

  14. 40 CFR 408.162 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORY Alaskan Hand-Butchered Salmon Processing Subcategory § 408.162 Effluent limitations guidelines... available (BPT): (a) Any hand-butchered salmon processing facility located in population or processing... salmon processing facility not covered under § 408.162(a) shall meet the following limitations: No...

  15. 40 CFR 408.162 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORY Alaskan Hand-Butchered Salmon Processing Subcategory § 408.162 Effluent limitations guidelines... available (BPT): (a) Any hand-butchered salmon processing facility located in population or processing... salmon processing facility not covered under § 408.162(a) shall meet the following limitations: No...

  16. Trends in spawning populations of Pacific anadromous salmonids

    USGS Publications Warehouse

    Konkel, G.W.; McIntyre, J.D.

    1987-01-01

    Annual escapement records for 1968-1984 for five species of Pacific salmon-chinook (Oncorhynchus tshawytscha), coho (O. kisutch), sockeye (O. nerka), pink (O. gorbuscha), and chum (O. keta)—and steelhead (Salmo gairdneri) were obtained from published and unpublished sources and organized in a computer database. More than 25,500 escapement records were obtained for more than 1,100 locations throughout Alaska, Washington, Idaho, Oregon, and California. Escapement trends for naturally reproducing populations for which data were available for at least 7 years from 1968 to 1984 and at least 4 years from 1975 to 1984 were analyzed by linear regression. Significant trends were observed in about 30% of the 886 populations examined. Trends were summarized by species for three geographic regions in Alaska and four in the Pacific Northwest (including California). For chinook, sockeye, and pink salmon, trends were predominantly increasing in the Alaska regions and either lacking or predominantly decreasing in most of the Pacific Northwest regions; for coho and chum salmon, trends were predominantly decreasing in one or more Alaska regions as well as in most of the Pacific Northwest regions. For steelhead, too few populations were examined to enable us to characterize trends throughout their range. Among the 657 salmonid populations excluded from the trend analysis because the data sets were incomplete, 13 (of which 2 were in Alaska) declined to zero during the period of analysis. For coho, sockeye, pink, and chum salmon and steelhead, major data gaps were revealed by a comparison of the geographic distribution of escapement records with the spawning distribution of the species. For chinook salmon, escapement records were more geographically representative of the spawning distribution.

  17. Columbia River Channel Improvement Project: Final Supplemental Integrated Feasibility Report and Environmental Impact Statement

    DTIC Science & Technology

    2003-01-01

    Sockeye salmon ( Oncorhynchus nerka ) Snake River Endangered Stream Yearling + 11/2/91 Steelhead trout ( Oncorhynchus mykiss) Snake River... Oncorhynchus tshawytscha) Snake River spring/summer Threatened Stream Yearling + 4/22/92 Snake River fall Threatened Ocean Subyearling 4...Willamette River Threatened Ocean Subyearling + 3/24/99 Chum salmon ( Oncorhynchus keta) Columbia River Threatened Ocean Subyearling 3/25/99

  18. PACIFIC SALMON: LESSONS LEARNED FOR RECOVERING ATLANTIC SALMON

    EPA Science Inventory

    n evaluation of the history of efforts to reverse the long-term decline of Pacific Salmon provides instructive policy lessons for recovering Atlantic Salmon. From California to southern British Columbia, wild runs of Pacific salmon have universally declined and many have disappe...

  19. Poached Salmon

    MedlinePlus

    ... page: https://medlineplus.gov/recipe/poachedsalmon.html Poached Salmon To use the sharing features on this page, ... olive oil Ground black pepper, to taste For salmon: 4 salmon steaks, 5 oz each 3 cups ...

  20. 7 CFR 1780.49 - Rural or Native Alaskan villages.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Rural or Native Alaskan villages. 1780.49 Section..., DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS Loan and Grant Application Processing § 1780.49 Rural or Native Alaskan villages. (a) General. (1) This section contains regulations for...

  1. Occurrence and genetic typing of infectious hematopoietic necrosis virus in Kamchatka, Russia

    USGS Publications Warehouse

    Rudakova, S.L.; Kurath, G.; Bochkova, E.V.

    2007-01-01

    Infectious hematopoietic necrosis virus (IHNV) is a well known rhabdoviral pathogen of salmonid fish in North America that has become established in Asia and Europe. On the Pacific coast of Russia, IHNV was first detected in hatchery sockeye from the Kamchatka Peninsula in 2001. Results of virological examinations of over 10 000 wild and cultured salmonid fish from Kamchatka during 1996 to 2005 revealed IHNV in several sockeye salmon Oncorhynchus nerka populations. The virus was isolated from spawning adults and from juveniles undergoing epidemics in both hatchery and wild sockeye populations from the Bolshaya watershed. No virus was detected in 2 other water-sheds, or in species other than sockeye salmon. Genetic typing of 8 virus isolates by seguence analysis of partial glycoprotein and nucleocapsid genes revealed that they were genetically homogeneous and fell within the U genogroup of IHNV. In phylogenetic analyses, the Russian IHNV sequences were indistinguishable from the sequences of North American U genogroup isolates that occur throughout Alaska, British Columbia, Washington, and Oregon. The high similarity, and in some cases identity, between Russian and North American IHNV isolates suggests virus transmission or exposure to a common viral reservoir in the North Pacific Ocean. ?? Inter-Research 2007.

  2. 40 CFR 408.200 - Applicability; description of the Alaskan bottom fish processing subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Alaskan bottom fish processing subcategory. 408.200 Section 408.200 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Alaskan Bottom Fish Processing Subcategory § 408.200 Applicability; description of the Alaskan bottom fish processing subcategory. The provisions of this subpart are applicable...

  3. 40 CFR 408.200 - Applicability; description of the Alaskan bottom fish processing subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Alaskan bottom fish processing subcategory. 408.200 Section 408.200 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Alaskan Bottom Fish Processing Subcategory § 408.200 Applicability; description of the Alaskan bottom fish processing subcategory. The provisions of this subpart are applicable...

  4. 40 CFR 408.200 - Applicability; description of the Alaskan bottom fish processing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Alaskan bottom fish processing subcategory. 408.200 Section 408.200 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Alaskan Bottom Fish Processing Subcategory § 408.200 Applicability; description of the Alaskan bottom fish processing subcategory. The provisions of this subpart are applicable...

  5. 40 CFR 408.200 - Applicability; description of the Alaskan bottom fish processing subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Alaskan bottom fish processing subcategory. 408.200 Section 408.200 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Alaskan Bottom Fish Processing Subcategory § 408.200 Applicability; description of the Alaskan bottom fish processing subcategory. The provisions of this subpart are applicable...

  6. 40 CFR 408.200 - Applicability; description of the Alaskan bottom fish processing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Alaskan bottom fish processing subcategory. 408.200 Section 408.200 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Alaskan Bottom Fish Processing Subcategory § 408.200 Applicability; description of the Alaskan bottom fish processing subcategory. The provisions of this subpart are applicable...

  7. 40 CFR 408.100 - Applicability; description of the remote Alaskan shrimp processing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... remote Alaskan shrimp processing subcategory. 408.100 Section 408.100 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Remote Alaskan Shrimp Processing Subcategory § 408.100 Applicability; description of the remote Alaskan shrimp processing subcategory. The provisions of this subpart are applicable...

  8. 40 CFR 408.100 - Applicability; description of the remote Alaskan shrimp processing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... remote Alaskan shrimp processing subcategory. 408.100 Section 408.100 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Remote Alaskan Shrimp Processing Subcategory § 408.100 Applicability; description of the remote Alaskan shrimp processing subcategory. The provisions of this subpart are applicable...

  9. Relationship of farm salmon, sea lice, and wild salmon populations.

    PubMed

    Marty, Gary D; Saksida, Sonja M; Quinn, Terrance J

    2010-12-28

    Increased farm salmon production has heightened concerns about the association between disease on farm and wild fish. The controversy is particularly evident in the Broughton Archipelago of Western Canada, where a high prevalence of sea lice (ectoparasitic copepods) was first reported on juvenile wild pink salmon (Oncorhynchus gorbuscha) in 2001. Exposure to sea lice from farmed Atlantic salmon (Salmo salar) was thought to be the cause of the 97% population decline before these fish returned to spawn in 2002, although no diagnostic investigation was done to rule out other causes of mortality. To address the concern that sea lice from fish farms would cause population extinction of wild salmon, we analyzed 10-20 y of fish farm data and 60 y of pink salmon data. We show that the number of pink salmon returning to spawn in the fall predicts the number of female sea lice on farm fish the next spring, which, in turn, accounts for 98% of the annual variability in the prevalence of sea lice on outmigrating wild juvenile salmon. However, productivity of wild salmon is not negatively associated with either farm lice numbers or farm fish production, and all published field and laboratory data support the conclusion that something other than sea lice caused the population decline in 2002. We conclude that separating farm salmon from wild salmon--proposed through coordinated fallowing or closed containment--will not increase wild salmon productivity and that medical analysis can improve our understanding of complex issues related to aquaculture sustainability.

  10. Alaskan Native Early School Leavers: A Study with Recommendations.

    ERIC Educational Resources Information Center

    Crumb, Jeanmarie

    In response to a request by the Anchorage Native Caucus and the Anchorage Native Education Coalition, this study by the Anchorage School District Community Relations Department focuses on the Alaskan Native dropout problem. The study indicates that between September 1976 and March 1981, Native Alaskans, who compose approximately 4% of the total…

  11. Keeping Alaskan Tradition Alive: Building Relationships in the Curriculum

    ERIC Educational Resources Information Center

    Hughes, Eileen; Forbes, Sue

    2005-01-01

    This article reviews varied types of relationships that were formed when a kindergarten class embarked on a study of the Native Alaskan art of carving. The public school kindergarten classroom, located in Anchorage, Alaska, drew from a community with a high population of Hispanic, African American, and Native Alaskan families with different…

  12. A Statistical Profile: Women in the Alaskan Community Colleges.

    ERIC Educational Resources Information Center

    Seppanen, Loretta J.

    Women's status as students and employees in Alaska's community colleges is greatly influenced by the unique Alaskan environment, where women make up only 47.6% of the population and where the population is on the whole very young. Women comprised 58% of all enrolled students in Alaskan community colleges in fall 1982 and received 56% of the…

  13. 40 CFR 408.172 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORY Alaskan Mechanized Salmon Processing Subcategory § 408.172 Effluent limitations guidelines... available (BPT): (a) Any mechanized salmon processing facility located in population or processing centers... grease 29 11 pH (1) (1) 1 Within the range 6.0 to 9.0. (b) Any mechanized salmon processing facility not...

  14. 40 CFR 408.172 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORY Alaskan Mechanized Salmon Processing Subcategory § 408.172 Effluent limitations guidelines... available (BPT): (a) Any mechanized salmon processing facility located in population or processing centers... grease 29 11 pH (1) (1) 1 Within the range 6.0 to 9.0. (b) Any mechanized salmon processing facility not...

  15. Effects of parasites from salmon farms on productivity of wild salmon

    PubMed Central

    Krkošek, Martin; Connors, Brendan M.; Morton, Alexandra; Lewis, Mark A.; Dill, Lawrence M.; Hilborn, Ray

    2011-01-01

    The ecological risks of salmon aquaculture have motivated changes to management and policy designed to protect wild salmon populations and habitats in several countries. In Canada, much attention has focused on outbreaks of parasitic copepods, sea lice (Lepeophtheirus salmonis), on farmed and wild salmon in the Broughton Archipelago, British Columbia. Several recent studies have reached contradictory conclusions on whether the spread of lice from salmon farms affects the productivity of sympatric wild salmon populations. We analyzed recently available sea lice data on farms and spawner–recruit data for pink (Oncorhynchus gorbuscha) and coho (Oncorhynchus kisutch) salmon populations in the Broughton Archipelago and nearby regions where farms are not present. Our results show that sea lice abundance on farms is negatively associated with productivity of both pink and coho salmon in the Broughton Archipelago. These results reconcile the contradictory findings of previous studies and suggest that management and policy measures designed to protect wild salmon from sea lice should yield conservation and fishery benefits. PMID:21873246

  16. Relationship of farm salmon, sea lice, and wild salmon populations

    PubMed Central

    Marty, Gary D.; Saksida, Sonja M.; Quinn, Terrance J.

    2010-01-01

    Increased farm salmon production has heightened concerns about the association between disease on farm and wild fish. The controversy is particularly evident in the Broughton Archipelago of Western Canada, where a high prevalence of sea lice (ectoparasitic copepods) was first reported on juvenile wild pink salmon (Oncorhynchus gorbuscha) in 2001. Exposure to sea lice from farmed Atlantic salmon (Salmo salar) was thought to be the cause of the 97% population decline before these fish returned to spawn in 2002, although no diagnostic investigation was done to rule out other causes of mortality. To address the concern that sea lice from fish farms would cause population extinction of wild salmon, we analyzed 10–20 y of fish farm data and 60 y of pink salmon data. We show that the number of pink salmon returning to spawn in the fall predicts the number of female sea lice on farm fish the next spring, which, in turn, accounts for 98% of the annual variability in the prevalence of sea lice on outmigrating wild juvenile salmon. However, productivity of wild salmon is not negatively associated with either farm lice numbers or farm fish production, and all published field and laboratory data support the conclusion that something other than sea lice caused the population decline in 2002. We conclude that separating farm salmon from wild salmon—proposed through coordinated fallowing or closed containment—will not increase wild salmon productivity and that medical analysis can improve our understanding of complex issues related to aquaculture sustainability. PMID:21149706

  17. NASA Finds Sea Ice Driving Arctic Air Pollutants Alaskan North Slope

    NASA Image and Video Library

    2012-03-01

    JPL-led study shows bromine explosion on March 13, 2008 across the Alaskan North Slope looking south toward the Brooks Range at the horizon, which blocked the bromine from going further south into the Alaskan interior.

  18. 40 CFR 408.50 - Applicability; description of the remote Alaskan crab meat processing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... remote Alaskan crab meat processing subcategory. 408.50 Section 408.50 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Remote Alaskan Crab Meat Processing Subcategory § 408.50 Applicability; description of the remote Alaskan crab meat processing subcategory. The provisions of this subpart are...

  19. 40 CFR 408.50 - Applicability; description of the remote Alaskan crab meat processing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... remote Alaskan crab meat processing subcategory. 408.50 Section 408.50 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Remote Alaskan Crab Meat Processing Subcategory § 408.50 Applicability; description of the remote Alaskan crab meat processing subcategory. The provisions of this subpart are...

  20. 40 CFR 408.90 - Applicability; description of the non-remote Alaskan shrimp processing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-remote Alaskan shrimp processing subcategory. 408.90 Section 408.90 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Non-Remote Alaskan Shrimp Processing Subcategory § 408.90 Applicability; description of the non-remote Alaskan shrimp processing subcategory. The provisions of this subpart are...

  1. 40 CFR 408.90 - Applicability; description of the non-remote Alaskan shrimp processing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-remote Alaskan shrimp processing subcategory. 408.90 Section 408.90 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Non-Remote Alaskan Shrimp Processing Subcategory § 408.90 Applicability; description of the non-remote Alaskan shrimp processing subcategory. The provisions of this subpart are...

  2. Alaska Is Our Home--Book 3: A Natural Science Handbook for Alaskan Students.

    ERIC Educational Resources Information Center

    Bury, John; Bury, Susan

    The third book in a series of natural science handbooks for Alaskan students focuses on Alaskan plantlife. The first chapter, on trees, gives general information about trees and explains how to identify and locate trees in the three main Alaskan tree families: pine, willow, and birch. The second chapter, on plants, describes 14 kinds of edible…

  3. A multi-year analysis of spillway survival for juvenile salmonids as a function of spill bay operations at McNary Dam, Washington and Oregon, 2004-09

    USGS Publications Warehouse

    Adams, Noah S.; Hansel, Hal C.; Perry, Russell W.; Evans, Scott D.

    2012-01-01

    We analyzed 6 years (2004-09) of passage and survival data collected at McNary Dam to examine how spill bay operations affect survival of juvenile salmonids passing through the spillway at McNary Dam. We also examined the relations between spill bay operations and survival through the juvenile fish bypass in an attempt to determine if survival through the bypass is influenced by spill bay operations. We used a Cormack-Jolly-Seber release-recapture model (CJS model) to determine how the survival of juvenile salmonids passing through McNary Dam relates to spill bay operations. Results of these analyses, while not designed to yield predictive models, can be used to help develop dam-operation strategies that optimize juvenile salmonid survival. For example, increasing total discharge typically had a positive effect on both spillway and bypass survival for all species except sockeye salmon (Oncorhynchus nerka). Likewise, an increase in spill bay discharge improved spillway survival for yearling Chinook salmon (Oncorhynchus tshawytscha), and an increase in spillway discharge positively affected spillway survival for juvenile steelhead (Oncorhynchus mykiss). The strong linear relation between increased spill and increased survival indicates that increasing the amount of water through the spillway is one strategy that could be used to improve spillway survival for yearling Chinook salmon and juvenile steelhead. However, increased spill did not improve spillway survival for subyearling Chinook salmon and sockeye salmon. Our results indicate that a uniform spill pattern would provide the highest spillway survival and bypass survival for subyearling Chinook salmon. Conversely, a predominantly south spill pattern provided the highest spillway survival for yearling Chinook salmon and juvenile steelhead. Although spill pattern was not a factor for spillway survival of sockeye salmon, spill bay operations that optimize passage through the north and south spill bays maximized

  4. Relative resistance of Pacific salmon to infectious salmon anaemia virus

    USGS Publications Warehouse

    Rolland, J.B.; Winton, J.R.

    2003-01-01

    Infectious salmon anaemia (ISA) is a major disease of Atlantic salmon, Salmo salar, caused by an orthomyxovirus (ISAV). Increases in global aqua culture and the international movement of fish made it important to determine if Pacific salmon are at risk. Steelhead trout, Oncorhynchus mykiss, and chum, O. keta, Chinook, O. tshawytscha, coho, O. kisutch, and Atlantic salmon were injected intraperitoneally with a high, medium, or low dose of a Norwegian strain of ISAV. In a second challenge, the same species, except chum salmon, were injected with a high dose of either a Canadian or the Norwegian strain. Average cumulative mortality of Atlantic salmon in trial 1 was 12% in the high dose group, 20% in the medium dose group and 16% in the low dose group. The average cumulative mortality of Atlantic salmon in trial 2 was 98%. No signs typical of ISA and no ISAV-related mortality occurred among any of the groups of Oncorhynchus spp. in either experiment, although ISAV was reisolated from some fish sampled at intervals post-challenge. The results indicate that while Oncorhynchus spp. are quite resistant to ISAV relative to Atlantic salmon, the potential for ISAV to adapt to Oncorhynchus spp. should not be ignored.

  5. Canadian and US agencies use bubbles to aid salmon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    B.C. Hydro, Canada's federal Department of Fisheries and Oceans, and the Bureau of Reclamation in the US have implemented unique bubbler systems that release compressed air to aid fish migration and improve spawning habitat. In each case, compressed air equipment produced bubbles that lifted cool water from a lake bottom to displace warmer water on top. An experimental project during the summer of 1992, involving BC Hydro and the Department of Fisheries and Oceans, succeeded in reducing the mortality rate of sockeye salmon on their migration up the Somass River from the Alberni Inlet to Great Central Lake on Vancouvermore » Island. The bubbler system cooled the water to aid the migration of hundreds of thousands of fish who were reluctant to continue upstream due to exceptionally warm water temperatures. Participants in the project suspended a large lead-weighted plastic curtain (more than 12 meters tall and extending the length of three football fields) from a series of floats across the outlet of Grand Central Lake. Compressed air equipment was installed behind the curtain to produce bubbles to lift cool water from the lake bottom. Water flowing into the river ranged from 1 to 3 degrees cooler than water on the other side of the curtain.« less

  6. Guide for Fish Kill Investigations.

    DTIC Science & Technology

    1980-05-09

    11 cm 1.1-1.7 0-83% 12-20 Oncorhynchus nerka Adult 2.3-2.7 most 21-23 Sockeye salmon Perca flavescens 10 cm 0.5-1.2 50% 10-20 Yellow perch yearling 0.4...Guide for Fish Kill Investigations Scientific Name Common Name Size DO mg/L* Deaths Temp ’C Oncorhynchus kisutch Yearling 1.2-1.6 50% 14 Coho salmon 4

  7. Refined liquid smoke: a potential antilisterial additive to cold-smoked sockeye salmon (Oncorhynchus nerka).

    PubMed

    Montazeri, Naim; Himelbloom, Brian H; Oliveira, Alexandra C M; Leigh, Mary Beth; Crapo, Charles A

    2013-05-01

    Cold-smoked salmon (CSS) is a potentially hazardous ready-to-eat food product due to the high risk of contamination with Listeria monocytogenes and lack of a listericidal step. We investigated the antilisterial property of liquid smokes (LS) against Listeria innocua ATCC 33090 (surrogate to L. monocytogenes) as a potential supplement to vacuum-packaged CSS. A full-strength LS (Code 10-Poly), and three commercially refined fractions (AM-3, AM-10, and 1291) having less color and flavor (lower content of phenols and carbonyl-containing compounds) were tested. In vitro assays showed strong inhibition for all LS except for 1291. The CSS strips were surface coated with AM-3 and AM-10 at 1% LS (vol/wt) with an L-shaped glass rod and then inoculated with L. innocua at 3.5 log CFU/g, vacuum packaged, and stored at 4°C. The LS did not completely eliminate L. innocua but provided a 2-log reduction by day 14, with no growth up to 35 days of refrigerated storage. A simple difference sensory test by 180 untrained panelists showed the application of AM-3 did not significantly influence the overall sensorial quality of CSS. In essence, the application of the refined LS as an antilisterial additive to CSS is recommended.

  8. 40 CFR 408.210 - Applicability; description of the non-Alaskan conventional bottom fish processing subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-Alaskan conventional bottom fish processing subcategory. 408.210 Section 408.210 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Non-Alaskan Conventional Bottom Fish Processing Subcategory § 408.210 Applicability; description of the non-Alaskan conventional bottom fish processing subcategory. The provisions of...

  9. 40 CFR 408.210 - Applicability; description of the non-Alaskan conventional bottom fish processing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-Alaskan conventional bottom fish processing subcategory. 408.210 Section 408.210 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Non-Alaskan Conventional Bottom Fish Processing Subcategory § 408.210 Applicability; description of the non-Alaskan conventional bottom fish processing subcategory. The provisions of...

  10. 40 CFR 408.220 - Applicability; description of the non-Alaskan mechanized bottom fish processing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-Alaskan mechanized bottom fish processing subcategory. 408.220 Section 408.220 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Non-Alaskan Mechanized Bottom Fish Processing Subcategory § 408.220 Applicability; description of the non-Alaskan mechanized bottom fish processing subcategory. The provisions of...

  11. 40 CFR 408.210 - Applicability; description of the non-Alaskan conventional bottom fish processing subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-Alaskan conventional bottom fish processing subcategory. 408.210 Section 408.210 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Non-Alaskan Conventional Bottom Fish Processing Subcategory § 408.210 Applicability; description of the non-Alaskan conventional bottom fish processing subcategory. The provisions of...

  12. 40 CFR 408.210 - Applicability; description of the non-Alaskan conventional bottom fish processing subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-Alaskan conventional bottom fish processing subcategory. 408.210 Section 408.210 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Non-Alaskan Conventional Bottom Fish Processing Subcategory § 408.210 Applicability; description of the non-Alaskan conventional bottom fish processing subcategory. The provisions of...

  13. 40 CFR 408.220 - Applicability; description of the non-Alaskan mechanized bottom fish processing subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-Alaskan mechanized bottom fish processing subcategory. 408.220 Section 408.220 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Non-Alaskan Mechanized Bottom Fish Processing Subcategory § 408.220 Applicability; description of the non-Alaskan mechanized bottom fish processing subcategory. The provisions of...

  14. 40 CFR 408.220 - Applicability; description of the non-Alaskan mechanized bottom fish processing subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-Alaskan mechanized bottom fish processing subcategory. 408.220 Section 408.220 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Non-Alaskan Mechanized Bottom Fish Processing Subcategory § 408.220 Applicability; description of the non-Alaskan mechanized bottom fish processing subcategory. The provisions of...

  15. 40 CFR 408.220 - Applicability; description of the non-Alaskan mechanized bottom fish processing subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-Alaskan mechanized bottom fish processing subcategory. 408.220 Section 408.220 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Non-Alaskan Mechanized Bottom Fish Processing Subcategory § 408.220 Applicability; description of the non-Alaskan mechanized bottom fish processing subcategory. The provisions of...

  16. 40 CFR 408.220 - Applicability; description of the non-Alaskan mechanized bottom fish processing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-Alaskan mechanized bottom fish processing subcategory. 408.220 Section 408.220 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Non-Alaskan Mechanized Bottom Fish Processing Subcategory § 408.220 Applicability; description of the non-Alaskan mechanized bottom fish processing subcategory. The provisions of...

  17. 40 CFR 408.210 - Applicability; description of the non-Alaskan conventional bottom fish processing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-Alaskan conventional bottom fish processing subcategory. 408.210 Section 408.210 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Non-Alaskan Conventional Bottom Fish Processing Subcategory § 408.210 Applicability; description of the non-Alaskan conventional bottom fish processing subcategory. The provisions of...

  18. 40 CFR 408.40 - Applicability; description of the non-remote Alaskan crab meat processing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-remote Alaskan crab meat processing subcategory. 408.40 Section 408.40 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Non-Remote Alaskan Crab Meat Processing Subcategory § 408.40 Applicability; description of the non-remote Alaskan crab meat processing subcategory. The provisions of this subpart are...

  19. 40 CFR 408.40 - Applicability; description of the non-remote Alaskan crab meat processing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-remote Alaskan crab meat processing subcategory. 408.40 Section 408.40 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Non-Remote Alaskan Crab Meat Processing Subcategory § 408.40 Applicability; description of the non-remote Alaskan crab meat processing subcategory. The provisions of this subpart are...

  20. Modeling Parasite Dynamics on Farmed Salmon for Precautionary Conservation Management of Wild Salmon

    PubMed Central

    Rogers, Luke A.; Peacock, Stephanie J.; McKenzie, Peter; DeDominicis, Sharon; Jones, Simon R. M.; Chandler, Peter; Foreman, Michael G. G.; Revie, Crawford W.; Krkošek, Martin

    2013-01-01

    Conservation management of wild fish may include fish health management in sympatric populations of domesticated fish in aquaculture. We developed a mathematical model for the population dynamics of parasitic sea lice (Lepeophtheirus salmonis) on domesticated populations of Atlantic salmon (Salmo salar) in the Broughton Archipelago region of British Columbia. The model was fit to a seven-year dataset of monthly sea louse counts on farms in the area to estimate population growth rates in relation to abiotic factors (temperature and salinity), local host density (measured as cohort surface area), and the use of a parasiticide, emamectin benzoate, on farms. We then used the model to evaluate management scenarios in relation to policy guidelines that seek to keep motile louse abundance below an average three per farmed salmon during the March–June juvenile wild Pacific salmon (Oncorhynchus spp.) migration. Abiotic factors mediated the duration of effectiveness of parasiticide treatments, and results suggest treatment of farmed salmon conducted in January or early February minimized average louse abundance per farmed salmon during the juvenile wild salmon migration. Adapting the management of parasites on farmed salmon according to migrations of wild salmon may therefore provide a precautionary approach to conserving wild salmon populations in salmon farming regions. PMID:23577082

  1. Comment on "Declining wild salmon populations in relation to parasites from farm salmon".

    PubMed

    Riddell, Brian E; Beamish, Richard J; Richards, Laura J; Candy, John R

    2008-12-19

    Krkosek et al. (Reports, 14 December 2007, p. 1772) claimed that sea lice spread from salmon farms placed wild pink salmon populations "on a trajectory toward rapid local extinction." Their prediction is inconsistent with observed pink salmon returns and overstates the risks from sea lice and salmon farming.

  2. Offshore oil in the Alaskan Arctic

    NASA Technical Reports Server (NTRS)

    Weeks, W. F.; Weller, G.

    1984-01-01

    Oil and gas deposits in the Alaskan Arctic are estimated to contain up to 40 percent of the remaining undiscovered crude oil and oil-equivalent natural gas within U.S. jurisdiction. Most (65 to 70 percent) of these estimated reserves are believed to occuur offshore beneath the shallow, ice-covered seas of the Alaskan continental shelf. Offshore recovery operations for such areas are far from routine, with the primary problems associated with the presence of ice. Some problems that must be resolved if efficient, cost-effective, environmentally safe, year-round offshore production is to be achieved include the accurate estimation of ice forces on offshore structures, the proper placement of pipelines beneath ice-produced gouges in the sea floor, and the cleanup of oil spills in pack ice areas.

  3. SALMON 2100 PROJECT: LIKELY SCENARIOS FOR WILD SALMON

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and British Columbia. The Project does not support o...

  4. Alaskan Native High School Dropouts: A Report Prepared for Project ANNA.

    ERIC Educational Resources Information Center

    Jacobson, Desa

    Presented is a summary of the Alaskan Native high school dropouts. The data collected on 180 Native Alaskan high school dropouts was taken from the regional dormitories at Nome, Kodiak, Bethel and Boarding Home programs in Anchorage, Tok, Fairbanks, Dillingham, and Ketchikan. Students who terminated for academic reasons, failed to attend school,…

  5. Salmon habitat assessment for conservation planning in the lower White Salmon River, Washington

    USGS Publications Warehouse

    Hardiman, Jill M.; Allen, M. Brady

    2015-01-01

    In 2011, Condit Dam was removed from the White Salmon River, Washington. Since dam removal, there has been interest among scientists (State and Federal), Tribes, non-profit organizations, and the general public in assessing Pacific salmon habitat and use in the White Salmon River for conservation planning and potential fishery management actions. The study area extended from the lower 6 miles of the White Salmon River to the confluence with the Columbia River, including the former reservoir area. The Mid-Columbia Fisheries Enhancement Group received a grant to initiate efforts to plan for salmon habitat protection in the lower 6 river miles of the White Salmon River. As part of efforts by the Mid-Columbia Fisheries Enhancement Group to conduct conservation planning, the U.S. Geological Survey (USGS) used current and historical habitat information to assist in the planning process. The USGS compiled existing georeferenced habitat data into a Geographic Information System to identify areas of high quality habitat for salmon, potential areas for restoration/improvement, and areas that could be threatened. The primary sources of georeferenced data for this project include a lidar flight contracted by PacifiCorp, bathymetry from USGS, and fall Chinook salmon redd surveys from the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife. Redd observations provided support that the study area is a migratory corridor for salmon and steelhead and that the lowest 2–3 miles had the highest concentration of documented fall Chinook salmon redds. The study area has potential for restoration/conservation areas to improve/conserve salmon habitat.

  6. Evidence for competition at sea between Norton Sound chum salmon and Asian hatchery chum salmon

    USGS Publications Warehouse

    Ruggerone, Gregory T.; Agler, B.A.; Nielsen, Jennifer L.

    2012-01-01

    Increasing production of hatchery salmon over the past four decades has led to concerns about possible density-dependent effects on wild Pacific salmon populations in the North Pacific Ocean. The concern arises because salmon from distant regions overlap in the ocean, and wild salmon populations having low productivity may compete for food with abundant hatchery populations. We tested the hypothesis that adult length-at-age, age-at-maturation, productivity, and abundance of a Norton Sound, Alaska, chum salmon population were influenced by Asian hatchery chum salmon, which have become exceptionally abundant and surpassed the abundance of wild chum salmon in the North Pacific beginning in the early 1980s. We found that smaller adult length-at-age, delayed age-at-maturation, and reduced productivity and abundance of the Norton Sound salmon population were associated with greater production of Asian hatchery chum salmon since 1965. Modeling of the density-dependent relationship, while controlling for other influential variables, indicated that an increase in adult hatchery chum salmon abundance from 10 million to 80 million adult fish led to a 72% reduction in the abundance of the wild chum salmon population. These findings indicate that competition with hatchery chum salmon contributed to the low productivity and abundance of Norton Sound chum salmon, which includes several stocks that are classified as Stocks of Concern by the State of Alaska. This study provides new evidence indicating that large-scale hatchery production may influence body size, age-at-maturation, productivity and abundance of a distant wild salmon population.

  7. Utilization of smoked salmon trim in extruded smoked salmon jerky.

    PubMed

    Kong, J; Dougherty, M P; Perkins, L B; Camire, M E

    2012-06-01

    During smoked salmon processing, the dark meat along the lateral line is removed before packaging; this by-product currently has little economic value. In this study, the dark meat trim was incorporated into an extruded jerky. Three formulations were processed: 100% smoked trim, 75% : 25% smoked trim : fresh salmon fillet, and 50% : 50% smoked trim : fresh salmon blends (w/w basis). The base formulation contained salmon (approximately 83.5%), tapioca starch (8%), pregelatinized potato starch (3%), sucrose (4%), salt (1.5%), sodium nitrate (0.02%), and ascorbyl palmitate (0.02% of the lipid content). Blends were extruded in a laboratory-scale twin-screw extruder and then hot-smoked for 5 h. There were no significant differences among formulations in moisture, water activity, and pH. Protein was highest in the 50 : 50 blend jerky. Ash content was highest in the jerky made with 100% trim. Total lipids and salt were higher in the 100% trim jerky than in the 50 : 50 blend. Hot smoking did not adversely affect docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) content in lipids from 100% smoked trim jerky. Servings of salmon jerky made with 75% and 100% smoked trim provided at least 500 mg of EPA and DHA. The 50 : 50 formulation had the highest Intl. Commission on Illumination (CIE) L*, a*, and b* color values. Seventy consumers rated all sensory attributes as between "like slightly" and "like moderately." With some formulation and processing refinements, lateral line trim from smoked salmon processors has potential to be incorporated into acceptable, healthful snack products. Dark meat along the lateral line is typically discarded by smoked salmon processors. This omega-3 fatty acid rich by-product can be used to make a smoked salmon jerky that provides a convenient source of these healthful lipids for consumers. © 2012 Institute of Food Technologists®

  8. Predation on Chinook Salmon parr by hatchery salmonids and Fallfish in the Salmon River, New York

    USGS Publications Warehouse

    Johnson, James H.; Nack, Christopher C.; Chalupnicki, Marc; Abbett, Ross; McKenna, James E.

    2016-01-01

    Naturally reproduced Chinook Salmon Oncorhynchus tshawytscha contribute substantially to the fishery in Lake Ontario. The Salmon River, a Lake Ontario tributary in New York, produces the largest numbers of naturally spawned Chinook Salmon, with parr abundance in the river often exceeding 10 million. In the spring of each year, large numbers of hatchery salmonid yearlings—potential predators of Chinook Salmon parr—are released into the Salmon River by the New York State Department of Environmental Conservation. We sought to examine predation on Chinook Salmon parr in the Salmon River during May and June prior to out-migration. Over the 4 years examined (2009–2012), annual consumption of Chinook Salmon parr by hatchery-released yearling steelhead O. mykiss and Coho Salmon O. kisutch ranged from 1.5 to 3.3 million and from 0.4 to 2.1 million, respectively. In 2009, Fallfish Semotilus corporalis were estimated to consume 2.9 million Chinook Salmon parr. Predation was higher in May, when the average TL of Chinook Salmon parr was 44.5 mm, than in June. Fallfish were also important predators of naturally reproduced steelhead subyearlings, consuming an estimated 800,000 steelhead in 2009. Hatchery-released yearling salmonids consumed 13.8–15.3% of the Chinook Salmon parr that were estimated to be present in the Salmon River during 2010–2012. Earlier releases of hatchery salmonid yearlings could reduce the riverine consumption of Chinook Salmon parr by facilitating the out-migration of yearlings prior to Chinook Salmon emergence.

  9. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program : Facility Operation and Maintenance Facilities, Annual Report 2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie

    2004-01-01

    Anadromous salmonid stocks have declined in both the Grande Ronde River Basin (Lower Snake River Compensation Plan (LSRCP) Status Review Symposium 1998) and in the entire Snake River Basin (Nehlsen et al. 1991), many to the point of extinction. The Grande Ronde River Basin historically supported large populations of fall and spring chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho (O. kisutch) salmon and steelhead trout (O. mykiss) (Nehlsen et al. 1991). The decline of chinook salmon and steelhead populations and extirpation of coho and sockeye salmon in the Grande Ronde River Basin was, in part, a result of constructionmore » and operation of hydroelectric facilities, over fishing, and loss and degradation of critical spawning and rearing habitat in the Columbia and Snake River basins (Nehlsen et al. 1991). Hatcheries were built in Oregon, Washington and Idaho under the Lower Snake River Compensation Plan (LSRCP) to compensate for losses of anadromous salmonids due to the construction and operation of the lower four Snake River dams. Lookingglass Hatchery (LGH) on Lookingglass Creek, a tributary of the Grande Ronde River, was completed under LSRCP in 1982 and has served as the main incubation and rearing site for chinook salmon programs for Grande Ronde and Imnaha rivers in Oregon. Despite these hatchery programs, natural spring chinook populations continued to decline resulting in the National Marine Fisheries Service (NMFS) listing Snake River spring/summer chinook salmon as ''threatened'' under the federal Endangered Species Act (1973) on 22 April 1992. Continuing poor escapement levels and declining population trends indicated that Grande Ronde River basin spring chinook salmon were in imminent danger of extinction. These continuing trends led fisheries co-managers in the basin to initiate the Grande Ronde Endemic Spring Chinook Salmon Supplementation Program (GRESCSSP) in order to prevent extinction and preserve options for use of endemic

  10. Geography and host species shape the evolutionary dynamics of U genogroup infectious hematopoietic necrosis virus.

    PubMed

    Black, Allison; Breyta, Rachel; Bedford, Trevor; Kurath, Gael

    2016-07-01

    Infectious hematopoietic necrosis virus (IHNV) is a negative-sense RNA virus that infects wild and cultured salmonids throughout the Pacific Coastal United States and Canada, from California to Alaska. Although infection of adult fish is usually asymptomatic, juvenile infections can result in high mortality events that impact salmon hatchery programs and commercial aquaculture. We used epidemiological case data and genetic sequence data from a 303 nt portion of the viral glycoprotein gene to study the evolutionary dynamics of U genogroup IHNV in the Pacific Northwestern United States from 1971 to 2013. We identified 114 unique genotypes among 1,219 U genogroup IHNV isolates representing 619 virus detection events. We found evidence for two previously unidentified, broad subgroups within the U genogroup, which we designated 'UC' and 'UP'. Epidemiologic records indicated that UP viruses were detected more frequently in sockeye salmon ( Oncorhynchus nerka ) and in coastal waters of Washington and Oregon, whereas UC viruses were detected primarily in Chinook salmon ( Oncorhynchus tshawytscha ) and steelhead trout ( Oncorhynchus mykiss ) in the Columbia River Basin, which is a large, complex watershed extending throughout much of interior Washington, Oregon, and Idaho. These findings were supported by phylogenetic analysis and by F ST . Ancestral state reconstruction indicated that early UC viruses in the Columbia River Basin initially infected sockeye salmon but then emerged via host shifts into Chinook salmon and steelhead trout sometime during the 1980s. We postulate that the development of these subgroups within U genogroup was driven by selection pressure for viral adaptation to Chinook salmon and steelhead trout within the Columbia River Basin.

  11. THE SALMON 2100 PROJECT -- AN ALTERNATIVES FUTURES PERSPECTIVE ON PACIFIC NORTHWEST SALMON RECOVERY

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in the Pacific Northwest and California. Wild salmon recovery efforts in western North Americ...

  12. Mother knows best, even when stressed? Effects of maternal exposure to a stressor on offspring performance at different life stages in a wild semelparous fish.

    PubMed

    Sopinka, N M; Hinch, S G; Middleton, C T; Hills, J A; Patterson, D A

    2014-06-01

    The environment mothers are exposed to has resonating effects on offspring performance. In iteroparous species, maternal exposure to stressors generally results in offspring ill-equipped for survival. Still, opportunities for future fecundity can offset low quality offspring. Little is known, however, as to how intergenerational effects of stress manifest in semelparous species with only a single breeding episode. Such mothers would suffer a total loss of fitness if offspring cannot survive past multiple life stages. We evaluated whether chronic exposure of female sockeye salmon (Oncorhynchus nerka) to a chase stressor impaired offspring performance traits. Egg size and early offspring survival were not influenced by maternal exposure to the repeated acute stressor. Later in development, fry reared from stressed mothers swam for shorter periods of time but possessed a superior capacity to re-initiate bouts of burst swimming. In contrast to iteroparous species, the mechanisms driving the observed effects do not appear to be related to cortisol, as egg hormone concentrations did not vary between stressed and undisturbed mothers. Sockeye salmon appear to possess buffering strategies that protect offspring from deleterious effects of maternal stress that would otherwise compromise progeny during highly vulnerable stages of development. Whether stressed sockeye salmon mothers endow offspring with traits that are matched or mismatched for survival in the unpredictable environment they encountered is discussed. This study highlights the importance of examining intergenerational effects among species-specific reproductive strategies, and across offspring life history to fully determine the scope of impact of maternal stress.

  13. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix C: Anadromous Fish and Juvenile Fish Transportation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Columbia River System Operation Review

    1995-11-01

    This Appendix C of the Final Environmental Impact Statement for the Columbia River System discusses impacts on andromous fish and juvenile fish transportation. The principal andromous fish in the Columbia basin include salmonid species (Chinook, coho, and sockeye salmon, and steelhead) and nonsalmoinid andromous species (sturgeon, lamprey, and shad). Major sections in this document include the following: background, scope and process; affected environment for salmon and steelhead, shaded, lamprey, sturgeon; study methods; description of alternatives: qualitative and quantitative findings.

  14. Plasmacytoid leukemia of chinook salmon.

    PubMed

    Kent, M L; Eaton, W D; Casey, J W

    1997-04-01

    Plasmacytoid leukemia is a common disease of seawater pen-reared chinook salmon (Oncorhynchus tshawytscha) in British Columbia, Canada, but has also been detected in wild salmon, in freshwater-reared salmon in United States, and in salmon from netpens in Chile. The disease can be transmitted under laboratory conditions, and is associated with a retrovirus, the salmon leukemia virus. However, the proliferating plasmablasts are often infected with the microsporean Enterocytozoon salmonis, which may be an important co-factor in the disease.

  15. Artificial transmission to and susceptibility of Puget Sound fish to viral erythrocytic necrosis (VEN)

    USGS Publications Warehouse

    MacMillian, John R.; Mulcahy, Dan

    1979-01-01

    In Puget Sound, Wash., the incidence of viral erythrocytic necrosis (VEN) varied geographically from 0 to 17% in chum salmon (Oncorhynchus keta) and from 4 to 59% in Pacific herring (Clupea harengus pallasi). The disease was experimentally transmitted by intraperitoneal injection to chum, pink (O. gorbuscha), coho (O. kisutch), chinook (O. tshawytscha), sockeye (O. nerka), and Atlantic (Salmo salar) salmon, and rainbow (S. gairdneri), brown (S. trutta), and brook (Salvelinus fontinalis) trout. The disease was transmitted to chum salmon and brook trout by waterborne virus. Virus obtained from herring was experimentally transmitted into chum salmon by intraperitoneal injection. Key words: viral erythrocytic necrosis, fish disease, transmission

  16. 36 CFR 13.1204 - Traditional red fish fishery.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Traditional red fish fishery... Provisions § 13.1204 Traditional red fish fishery. Local residents who are descendants of Katmai residents... fish (spawned-out sockeye salmon that have no significant commercial value). ...

  17. 36 CFR 13.1204 - Traditional red fish fishery.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Traditional red fish fishery... Provisions § 13.1204 Traditional red fish fishery. Local residents who are descendants of Katmai residents... fish (spawned-out sockeye salmon that have no significant commercial value). ...

  18. 36 CFR 13.1204 - Traditional red fish fishery.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Traditional red fish fishery... Provisions § 13.1204 Traditional red fish fishery. Local residents who are descendants of Katmai residents... fish (spawned-out sockeye salmon that have no significant commercial value). ...

  19. Research on Captive Broodstock Programs for Pacific Salmon, 2002-2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berejikian, Barry A.

    The success of captive broodstock programs depends on high in-culture survival, appropriate development of the reproductive system, and the behavior and survival of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. Current velocity in rearing vessels had little if any effect on reproductive behavior of captively reared steelhead. However, males and females reared in high velocity vessels participated a greater number of spawning events than siblings reared in low velocity tanks. Observations of nesting females and associated malesmore » in a natural stream (Hamma Hamma River) were consistent with those observed in a controlled spawning channel. DNA pedigree analyses did not reveal significant differences in the numbers of fry produced by steelhead reared in high and low velocity vessels. To determine the critical period(s) for imprinting for sockeye salmon, juvenile salmon are being exposed to known odorants at key developmental stages. Subsequently they will be tested for development of long-term memories of these odorants. In 2002-2003, the efficacy of EOG analysis for assessing imprinting was demonstrated and will be applied in these and other behavioral and molecular tools in the current work plan. Results of these experiments will be important to determine the critical periods for imprinting for the offspring of captively-reared fish destined for release into natal rivers or lakes. By early August, the oocytes of all of Rapid River Hatchery chinook salmon females returning from the ocean had advanced to the tertiary yolk globule stage; whereas, only some of the captively reared Lemhi River females sampled had advanced to this stage, and the degree of advancement was not dependent on rearing temperature. The mean spawning time of captive Lemhi River females was 3-4 weeks after that of the Rapid River

  20. Influence of High-Pressure Processing at Low Temperature and Nisin on Listeria innocua Survival and Sensory Preference of Dry-Cured Cold-Smoked Salmon.

    PubMed

    Lebow, Noelle K; DesRocher, Lisa D; Younce, Frank L; Zhu, Mei-Jun; Ross, Carolyn F; Smith, Denise M

    2017-12-01

    Cold-smoked salmon (CSS) production lacks a validated kill step for Listeria monocytogenes. Although Listeria spp. are reduced by nisin or high-pressure processing (HPP), CSS muscle discoloration is often observed after HPP. Effects of nisin and low-temperature HPP on L. innocua survival (nonpathogenic surrogate for L. monocytogenes), spoilage organism growth, color, and sensory preference and peelability of CSS were studied. Cold-smoked sockeye salmon (Oncorhynchus nerka) fillets ± nisin (10 μg/g) were inoculated with a 3-strain L. innocua cocktail, vacuum-packaged, frozen at - 30 °C, and high-pressure processed in an ice slurry within an insulated sleeve. Initial experiments indicated that nisin and HPP for 120 s at 450 MPa (N450) and 600 MPa (N600) were most effective against L. innocua, and thus were selected for further storage studies. L. innocua in N450 and N600-treated CSS was reduced 2.63 ± 0.15 and 3.99 ± 0.34 Log CFU/g, respectively, immediately after HPP. L. innocua and spoilage growth were not observed in HPP-treated CSS during 36 d storage at 4 °C. Low-temperature HPP showed a smaller increase in lightness of CSS compared to ambient-temperature HPP performed in previous studies. Sensory evaluation indicated that overall liking of CSS treated with N450 and N600 were preferred over the control by 61% and 62% of panelists, respectively (P < 0.05). Peelability of sliced CSS was reduced by HPP (P < 0.05). Nisin in combination with low-temperature HPP was effective in controlling L. innocua in CSS while maintaining consumer acceptability. Cold-smoked salmon is a high-risk ready-to-eat product that may be contaminated with L. monocytogenes. Results showed that nisin combined with high-pressure processing at low temperature, reduced the population of Listeria and controlled the spoilage organisms during storage. As an added benefit, high-pressure processing at low temperature may reduce lightening of the salmon flesh, leading to enhanced consumer

  1. A molecular comparison of Alaskan and North East Atlantic Halicondria panicea (Pallas 1766) (Porifera: Demospongiae)

    USGS Publications Warehouse

    Erpenbeck, Dirk; Knowlton, Anne L.; Talbot, Sandra L.; Highsmith, Ray C.; van Soest, Rob W.M.

    2004-01-01

    The intraspecific relationships between populations of Alaskan Halichondria cf. panicea are the subjects of ongoing research. In this study we compare CO1 sequences of Alaskan Halichondria cf. panicea with North East Atlantic Halichondria panicea and its sister species Halichondria bowerbanki. Alaskan Halichondria cf. panicea form a well-supported sister group to the European Halichondria panicea/ H. bowerbanki species complex in the resulting gene tree and cluster distantly from their European conspecifics.

  2. Carbon balance of the Alaskan boreal forest

    Treesearch

    John Yarie; Tim Hammond

    1996-01-01

    Determination of the carbon balance in a broad forest region like the Alaskan boreal forest requires the development of a number of important environmental (state factors) classes to allow for the development of carbon balance estimates.

  3. Calcitonin Salmon Injection

    MedlinePlus

    Calcitonin salmon injection is used to treat osteoporosis in postmenopausal women. Osteoporosis is a disease that causes bones to weaken and break more easily. Calcitonin salmon injection is also used to ...

  4. It's a Salmon's Life!

    ERIC Educational Resources Information Center

    French, M. Jenice; Skochdopole, Laura Downey

    1998-01-01

    Describes an integrated science unit to help preservice teachers gain confidence in their abilities to learn and teach science. The teachers role played being salmon as they learned about the salmon's life cycle and the difficulties salmon encounter. The unit introduced the use of investigative activities that begin with questions and end with…

  5. Maternal and environmental influences on egg size and juvenile life-history traits in Pacific salmon

    PubMed Central

    Braun, Douglas C; Patterson, David A; Reynolds, John D

    2013-01-01

    Life-history traits such as fecundity and offspring size are shaped by investment trade-offs faced by mothers and mediated by environmental conditions. We use a 21-year time series for three populations of wild sockeye salmon (Oncorhynchus nerka) to test predictions for such trade-offs and responses to conditions faced by females during migration, and offspring during incubation. In years when their 1100 km upstream migration was challenged by high water discharges, females that reached spawning streams had invested less in gonads by producing smaller but not fewer eggs. These smaller eggs produced lighter juveniles, and this effect was further amplified in years when the incubation water was warm. This latter result suggests that there should be selection for larger eggs to compensate in populations that consistently experience warm incubation temperatures. A comparison among 16 populations, with matching migration and rearing environments but different incubation environments (i.e., separate spawning streams), confirmed this prediction; smaller females produced larger eggs for their size in warmer creeks. Taken together, these results reveal how maternal phenotype and environmental conditions can shape patterns of reproductive investment and consequently juvenile fitness-related traits within and among populations. PMID:23789081

  6. One Northwest community - People, salmon, rivers, and the sea: Towards sustainable salmon fisheries

    USGS Publications Warehouse

    MacDonald, Donald D.; Steward, Cleveland R.; Knudsen, E. Eric; Knudsen, E. Eric; Steward, Cleveland R.; MacDonald, Donald; Williams, Jack E.; Reiser, Dudley W.

    1999-01-01

    Pacific salmon management is in crisis. Throughout their range, salmon and steelhead populations are being adversely affected by human activities. Without coordinated, effective, and timely action, the future of the Pacific salmon resource is most certainly in doubt. To address the challenges that are currently facing salmon management, concerned citizens representing a diverse array of government agencies and non-governmental organizations have agreed to cooperate in the development of a Sustainable Fisheries Strategy for west coast salmon and steelhead populations. The Strategy builds on the contents of this book, resulting from the Sustainable Fisheries Conference and subsequent community- and watershed-based citizen forums. This chapter presents the key elements of the Strategy including a common vision for the future, a series of guiding principles, and specific strategies for supporting sustainable fisheries. As such, the Strategy embraces an ecosystem-based approach to managing human activities, rather than the traditional egocentric approach to managing salmonid populations and associated habitats. A system of community-based, watershed-oriented councils, including all stakeholders and agency representatives, is proposed for effective transition to ecosystem-based salmon and steelhead management. It is our hope that everyone involved in Pacific salmon management will embrace both the spirit and the specific elements of the Sustainable Fisheries Strategy as we face the difficult challenges ahead.

  7. Asymmetric hybridization and introgression between pink salmon and chinook salmon in the Laurentian Great Lakes

    USGS Publications Warehouse

    Rosenfield, Jonathan A.; Todd, Thomas; Greil, Roger

    2000-01-01

    Among Pacific salmon collected in the St. Marys River, five natural hybrids of pink salmon Oncorhynchus gorbuscha and chinook salmon Oncorhynchus tshawytscha and one suspected backcross have been detected using morphologic, meristic, and color evidence. One allozyme (LDH, l-lactate dehydrogenase from muscle) and one nuclear DNA locus (growth hormone) for which species-specific fixed differences exist were analyzed to detect additional hybrids and to determine if introgression had occurred. Restriction fragment length polymorphism of mitochondrial DNA (mtDNA) was used to identify the maternal parent of each hybrid. Evidence of introgression was found among the five previously identified hybrids. All hybrid specimens had chinook salmon mtDNA, indicating that hybridization between chinook salmon and pink salmon in the St. Marys River is asymmetric and perhaps unidirectional. Ecological, physiological, and sexual selection forces may contribute to this asymmetric hybridization. Introgression between these highly differentiated species has implications for management, systematics, and conservation of Pacific salmon.

  8. SALMON 2100 PROJECT

    EPA Science Inventory

    Twenty eight salmon scientists and policy experts have joined forces in an innovative project to identify ways that, if adopted, likely would restore and sustain wild salmon runs in California, Oregon, Washington, Idaho, and southern British Columbia.

  9. Concentrations of environmental DNA (eDNA) reflect spawning salmon abundance at fine spatial and temporal scales

    USGS Publications Warehouse

    Tillotson, Michael D.; Kelly, Ryan P.; Duda, Jeff; Hoy, Marshal S.; Kralj, James; Quinn, Thomas P.

    2018-01-01

    Developing fast, cost-effective assessments of wild animal abundance is an important goal for many researchers, and environmental DNA (eDNA) holds much promise for this purpose. However, the quantitative relationship between species abundance and the amount of DNA present in the environment is likely to vary substantially among taxa and with ecological context. Here, we report a strong quantitative relationship between eDNA concentration and the abundance of spawning sockeye salmon in a small stream in Alaska, USA, where we took temporally- and spatially-replicated samples during the spawning period. This high-resolution dataset suggests that (1) eDNA concentrations vary significantly day-to-day, and likely within hours, in the context of the dynamic biological event of a salmon spawning season; (2) eDNA, as detected by species-specific quantitative PCR probes, seems to be conserved over short distances (tens of meters) in running water, but degrade quickly over larger scales (ca. 1.5 km); and (3) factors other than the mere presence of live, individual fish — such as location within the stream, live/dead ratio, and water temperature — can affect the eDNA-biomass correlation in space or time. A multivariate model incorporating both biotic and abiotic variables accounted for over 75% of the eDNA variance observed, suggesting that where a system is well-characterized, it may be possible to predict species' abundance from eDNA surveys, although we underscore that species- and system-specific variables are likely to limit the generality of any given quantitative model. Nevertheless, these findings provide an important step toward quantitative applications of eDNA in conservation and management.

  10. An Authentic Voice in the Technocratic Wilderness: Alaskan Natives and the "Tundra Times."

    ERIC Educational Resources Information Center

    Daley, Patrick; James, Beverly

    1986-01-01

    Examines a pair of critical challenges to the cultural integrity of Alaskan Natives around 1960 as pivotal episodes in the process of native resistance to U. S. dominance. Historically evaluates the fragility of native culture in terms of the political, scientific, and economic interests expressed in the mainstream Alaskan press, particularly the…

  11. Efficiently estimating salmon escapement uncertainty using systematically sampled data

    USGS Publications Warehouse

    Reynolds, Joel H.; Woody, Carol Ann; Gove, Nancy E.; Fair, Lowell F.

    2007-01-01

    Fish escapement is generally monitored using nonreplicated systematic sampling designs (e.g., via visual counts from towers or hydroacoustic counts). These sampling designs support a variety of methods for estimating the variance of the total escapement. Unfortunately, all the methods give biased results, with the magnitude of the bias being determined by the underlying process patterns. Fish escapement commonly exhibits positive autocorrelation and nonlinear patterns, such as diurnal and seasonal patterns. For these patterns, poor choice of variance estimator can needlessly increase the uncertainty managers have to deal with in sustaining fish populations. We illustrate the effect of sampling design and variance estimator choice on variance estimates of total escapement for anadromous salmonids from systematic samples of fish passage. Using simulated tower counts of sockeye salmon Oncorhynchus nerka escapement on the Kvichak River, Alaska, five variance estimators for nonreplicated systematic samples were compared to determine the least biased. Using the least biased variance estimator, four confidence interval estimators were compared for expected coverage and mean interval width. Finally, five systematic sampling designs were compared to determine the design giving the smallest average variance estimate for total annual escapement. For nonreplicated systematic samples of fish escapement, all variance estimators were positively biased. Compared to the other estimators, the least biased estimator reduced bias by, on average, from 12% to 98%. All confidence intervals gave effectively identical results. Replicated systematic sampling designs consistently provided the smallest average estimated variance among those compared.

  12. Comparative diets of subyearling Atlantic salmon and subyearling coho salmon in Lake Ontario tributaries

    USGS Publications Warehouse

    Johnson, James H.; Ringler, Neil H.

    2016-01-01

    Restoration of Atlantic salmon (Salmo salar) in Lake Ontario could potentially be negatively affected by the presence of non-native salmonids that are naturalized in the basin. Coho salmon (Oncorhynchus kisutch) have been spawning successfully in Lake Ontario tributaries for over 40 years and their juveniles will reside in streams with juvenile Atlantic salmon for one year. This study sought to examine interspecific diet associations between these species, and to compare diets to the composition of the benthos and drift in three Lake Ontario tributaries. Aquatic insects, mainly ephemeropterans and chironomids were the major prey consumed by subyearling Atlantic salmon whereas terrestrial invertebrates made up only 3.7% of the diet. Ephemeropterans and chironomids were the primary aquatic taxa consumed by subyearling coho salmon but, as a group, terrestrial invertebrates (41.8%) were the major prey. In sympatry, Atlantic salmon fed more actively from the benthos whereas the diet of coho salmon was more similar to the drift. The different feeding pattern of each species resulted in low interspecific diet similarity. There is likely little competition between these species for food in Lake Ontario tributaries as juveniles.

  13. Geography and host species shape the evolutionary dynamics of U genogroup infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Black, Allison; Breyta, Rachel; Bedford, Trevor; Kurath, Gael

    2016-01-01

    Infectious hematopoietic necrosis virus (IHNV) is a negative-sense RNA virus that infects wild and cultured salmonids throughout the Pacific Coastal United States and Canada, from California to Alaska. Although infection of adult fish is usually asymptomatic, juvenile infections can result in high mortality events that impact salmon hatchery programs and commercial aquaculture. We used epidemiological case data and genetic sequence data from a 303 nt portion of the viral glycoprotein gene to study the evolutionary dynamics of U genogroup IHNV in the Pacific Northwestern United States from 1971 to 2013. We identified 114 unique genotypes among 1,219 U genogroup IHNV isolates representing 619 virus detection events. We found evidence for two previously unidentified, broad subgroups within the U genogroup, which we designated ‘UC’ and ‘UP’. Epidemiologic records indicated that UP viruses were detected more frequently in sockeye salmon (Oncorhynchus nerka) and in coastal waters of Washington and Oregon, whereas UC viruses were detected primarily in Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) in the Columbia River Basin, which is a large, complex watershed extending throughout much of interior Washington, Oregon, and Idaho. These findings were supported by phylogenetic analysis and by FST. Ancestral state reconstruction indicated that early UC viruses in the Columbia River Basin initially infected sockeye salmon but then emerged via host shifts into Chinook salmon and steelhead trout sometime during the 1980s. We postulate that the development of these subgroups within U genogroup was driven by selection pressure for viral adaptation to Chinook salmon and steelhead trout within the Columbia River Basin.

  14. Evaluation of Delisting Criteria and Rebuilding Schedules for Snake River Spring/Summer Chinook, Fall Chinook and Sockeye Salmon : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 10 of 11.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cramer, Steven P.; Neeley, Doug

    1993-06-01

    We develop a framework for distinguishing healthy and threatened populations, and we analyze specific criteria by which these terms can be measured for threatened populations of salmon in the Snake River. We review reports and analyze existing data on listed populations of salmon in the Snake River to establish a framework for two stages of the recovery process: (1) defining de-listing criteria, and (2) estimating the percentage increase in survival that will be necessary for recovery of the population within specified time frames, given the de-listing criteria that must be achieved. We develop and apply a simplified population model tomore » estimate the percentage improvement in survival that will be necessary to achieve different rates of recovery. We considered five main concepts identifying de-listing criteria: (1) minimum population size, (2) rates of population change, (3) number of population subunits, (4) survival rates, and (5) driving variables. In considering minimum population size, we conclude that high variation in survival rates poses a substantially greater probability of causing extinction than does loss of genetic variation. Distinct population subunits exist and affect both the genetic variability of the population and the dynamics of population decline and growth. We distinguish between two types of population subunits, (1) genetic and (2) geographic, and we give examples of their effects on population recovery.« less

  15. Predation by fallfish (Semotilus corporalis) on Pacific salmon eggs in the Salmon River, New York

    USGS Publications Warehouse

    Johnson, J. H.; Nack, C.C.; Chalupnicki, M.A.

    2009-01-01

    Fallfish (Semotilus corporalis) are the largest native cyprinid in the northeastern United States and are the most abundant native species in the Salmon River, New York. The Salmon River is a high-quality spawning and nursery river for Pacific salmon (Oncorhynchus spp.) migrating from Lake Ontario. Because of the large number of Pacific salmon spawning in the river in the fall extensive redd superimposition occurs resulting in salmonid eggs being available on the substrate. We examined the fall diet of 647 fallfish in 2007 and 2008 to determine the extent of predation on Pacific salmon eggs. The contribution of eggs in the diet significantly increased once fallfish attained a size of 100 mm total length. The largest size category of fallfish examined (≥150 mm) had the highest proportion (86.1%) of salmon eggs in their diet. The contribution of Zooplankton and chironomids in the diet of fallfish decreased with fish size. Except for the two largest groups of fallfish examined (i.e., 100–149 mm and ≥150 mm) diet overlap among size groups was low. The high contribution in the diet during the fall and high caloric value of Pacific salmon eggs could increase growth and survival of this species in the Salmon River.

  16. The effect of exposure to farmed salmon on piscine orthoreovirus infection and fitness in wild Pacific salmon in British Columbia, Canada

    PubMed Central

    2017-01-01

    The disease Heart and Skeletal Muscle Inflammation (HSMI) is causing substantial economic losses to the Norwegian salmon farming industry where the causative agent, piscine orthoreovirus (PRV), is reportedly spreading from farmed to wild Atlantic salmon (Salmo salar) with as yet undetermined impacts. To assess if PRV infection is epidemiologically linked between wild and farmed salmon in the eastern Pacific, wild Pacific salmon (Oncorhynchus sp.) from regions designated as high or low exposure to salmon farms and farmed Atlantic salmon reared in British Columbia (BC) were tested for PRV. The proportion of PRV infection in wild fish was related to exposure to salmon farms (p = 0.0097). PRV was detected in: 95% of farmed Atlantic salmon, 37–45% of wild salmon from regions highly exposed to salmon farms and 5% of wild salmon from the regions furthest from salmon farms. The proportion of PRV infection was also significantly lower (p = 0.0008) where wild salmon had been challenged by an arduous return migration into high-elevation spawning habitat. Inter-annual PRV infection declined in both wild and farmed salmon from 2012–2013 (p ≤ 0.002). These results suggest that PRV transfer is occurring from farmed Atlantic salmon to wild Pacific salmon, that infection in farmed salmon may be influencing infection rates in wild salmon, and that this may pose a risk of reduced fitness in wild salmon impacting their survival and reproduction. PMID:29236731

  17. The effect of exposure to farmed salmon on piscine orthoreovirus infection and fitness in wild Pacific salmon in British Columbia, Canada.

    PubMed

    Morton, Alexandra; Routledge, Richard; Hrushowy, Stacey; Kibenge, Molly; Kibenge, Frederick

    2017-01-01

    The disease Heart and Skeletal Muscle Inflammation (HSMI) is causing substantial economic losses to the Norwegian salmon farming industry where the causative agent, piscine orthoreovirus (PRV), is reportedly spreading from farmed to wild Atlantic salmon (Salmo salar) with as yet undetermined impacts. To assess if PRV infection is epidemiologically linked between wild and farmed salmon in the eastern Pacific, wild Pacific salmon (Oncorhynchus sp.) from regions designated as high or low exposure to salmon farms and farmed Atlantic salmon reared in British Columbia (BC) were tested for PRV. The proportion of PRV infection in wild fish was related to exposure to salmon farms (p = 0.0097). PRV was detected in: 95% of farmed Atlantic salmon, 37-45% of wild salmon from regions highly exposed to salmon farms and 5% of wild salmon from the regions furthest from salmon farms. The proportion of PRV infection was also significantly lower (p = 0.0008) where wild salmon had been challenged by an arduous return migration into high-elevation spawning habitat. Inter-annual PRV infection declined in both wild and farmed salmon from 2012-2013 (p ≤ 0.002). These results suggest that PRV transfer is occurring from farmed Atlantic salmon to wild Pacific salmon, that infection in farmed salmon may be influencing infection rates in wild salmon, and that this may pose a risk of reduced fitness in wild salmon impacting their survival and reproduction.

  18. Salmon-Eating Grizzly Bears Exposed to Elevated Levels of Marine Derived Persistent Organic Pollutants

    NASA Astrophysics Data System (ADS)

    Christensen, J. R.; Ross, P. S.; Whiticar, M. J.

    2004-12-01

    The coastal grizzly bears of British Columbia (BC, Canada) rely heavily on salmon returning from the Pacific Ocean, whereas interior bears do not have access to or readily utilize this marine-derived food source. Since salmon have been shown to accumulate persistent organic pollutants (POPs) from the North Pacific Ocean, we hypothesized that salmon consumption by grizzly bears would be reflected by an increase in the POP burden. To test this hypothesis we collected hair and fat tissue from grizzlies at various locations around BC to compare salmon-eating (coastal) grizzlies to non-salmon-eating (interior) grizzlies. We characterized the feeding habits for each bear sampled by measuring the stable carbon and nitrogen isotope signature of their hair. The positive relationship between 13C/12C and 15N/14N isotopic ratios suggests that the majority of the meat portion of the diet of coastal grizzlies is coming from salmon, rather than from terrestrial or freshwater sources. By contrast, stable isotope ratios revealed that interior bears have an almost exclusive vegetarian diet with no marine influence. As hypothesized, the coastal grizzly bears have significantly greater OC pesticide and lower-brominated PBDE congener body burden than the interior grizzlies. We also found a positive relationship between C and N isotope ratios and these same POP contaminants in bear tissue. Overall, these results demonstrate that Pacific salmon represents a significant vector delivering both OC pesticides and PBDEs to BC coastal grizzly bears.

  19. 50 CFR 300.96 - Penalties.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Penalties. 300.96 Section 300.96 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Fraser River Sockeye and Pink Salmon Fisheries § 300.96 Penalties. Any treaty Indian who commits any act that...

  20. 50 CFR 300.96 - Penalties.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Penalties. 300.96 Section 300.96 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Fraser River Sockeye and Pink Salmon Fisheries § 300.96 Penalties. Any treaty Indian who commits any act that...

  1. Retrospective analysis of AYK Chinook salmon growth

    USGS Publications Warehouse

    Ruggerone, Gregory T.; Nielsen, Jennifer L.; Agler, B.A.

    2007-01-01

    Harvests of Yukon and Kuskokwim Chinook salmon declined significantly during 1998- 2002 in response to fewer returning salmon. Factors affecting the decline in Chinook salmon abundance are largely unknown. Growth of salmon in freshwater and the ocean is generally thought to influence salmon survival, therefore we examined historical Chinook salmon catch trends and developed growth indices of age-1.3 and age-1.4 Yukon and Kuskokwim Chinook salmon during each year and life stage in freshwater and the ocean, 1964-2004, using measurements of salmon scale growth. Availability of Yukon scales was greater than that of Kuskokwim scales during 1964-2004.Harvests of Yukon and Kuskokwim Chinook salmon rapidly increased in the mid-1970s, then rapidly declined in the late 1990s, apparently in response to the 1976/77 ocean regime shift and the 1997/98 El Nino event. Runs of Nushagak District Chinook salmon (Bristol Bay) also appeared to have been affected by these events in addition to the 1989 regime shift. The rapid responses of Chinook salmon abundance to climate change suggest late life stages were primarily affected, at least initially. Therefore, we searched for Chinook salmon growth patterns that might be related to changes in climate.

  2. 78 FR 62616 - Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 3730-005] Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer of Exemption 1. By letter filed September 23, 2013, Salmon Creek Hydroelectric Company informed the Commission that they have...

  3. Isolation and identification of infectious salmon anaemia virus (ISAV) from Coho salmon in Chile.

    PubMed

    Kibenge, F S; Gárate, O N; Johnson, G; Arriagada, R; Kibenge, M J; Wadowska, D

    2001-05-04

    The isolation of infectious salmon anaemia virus (ISAV) from asymptomatic wild fish species including wild salmon, sea trout and eel established that wild fish can be a reservoir of ISAV for farmed Atlantic salmon. This report characterizes the biological properties of ISAV isolated from a disease outbreak in farmed Coho salmon in Chile and compares it with ISAV isolated from farmed Atlantic salmon in Canada and Europe. The virus that was isolated from Coho salmon tissues was initially detected with ISAV-specific RT-PCR (reverse transcription-polymerase chain reaction). The ability of the virus to grow in cell culture was poor, as cytopathology was not always conspicuous and isolation required passage in the presence of trypsin. Virus replication in cell culture was detected by RT-PCR and IFAT (indirect fluorescent antibody test), and the virus morphology was confirmed by positive staining electron microscopy. Further analysis of the Chilean virus revealed similarities to Canadian ISAV isolates in their ability to grow in the CHSE-214 cell line and in viral protein profile. Sequence analysis of genome segment 2, which encodes the viral RNA polymerase PB1, and segment 8, which encodes the nonstructural proteins NS1 and NS2, showed the Chilean virus to be very similar to Canadian strains of ISAV. This high sequence similarity of ISAV strains of geographically distinct origins illustrates the highly conserved nature of ISAV proteins PB1, NS1 and NS2 of ISAV. It is noteworthy that ISAV was associated with disease outbreaks in farmed Coho salmon in Chile without corresponding clinical disease in farmed Atlantic salmon. This outbreak, which produced high mortality in Coho salmon due to ISAV, is unique and may represent the introduction of the virus to a native wild fish population or a new strain of ISAV.

  4. A genetic dissection of breed composition and performance enhancement in the Alaskan sled dog

    PubMed Central

    2010-01-01

    Background The Alaskan sled dog offers a rare opportunity to investigate the development of a dog breed based solely on performance, rather than appearance, thus setting the breed apart from most others. Several established breeds, many of which are recognized by the American Kennel Club (AKC), have been introduced into the sled dog population to enhance racing performance. We have used molecular methods to ascertain the constitutive breeds used to develop successful sled dog lines, and in doing so, determined the breed origins of specific performance-related behaviors. One hundred and ninety-nine Alaskan sled dogs were genotyped using 96 microsatellite markers that span the canine genome. These data were compared to that from 141 similarly genotyped purebred dog breeds. Sled dogs were evaluated for breed composition based on a variety of performance phenotypes including speed, endurance and work ethic, and the data stratified based on population structure. Results We observe that the Alaskan sled dog has a unique molecular signature and that the genetic profile is sufficient for identifying dogs bred for sprint versus distance. When evaluating contributions of existing breeds we find that the Alaskan Malamute and Siberian Husky contributions are associated with enhanced endurance; Pointer and Saluki are associated with enhanced speed and the Anatolian Shepherd demonstrates a positive influence on work ethic. Conclusion We have established a genetic breed profile for the Alaskan sled dog, identified profile variance between sprint and distance dogs, and established breeds associated with enhanced performance attributes. These data set the stage for mapping studies aimed at finding genes that are associated with athletic attributes integral to the high performing Alaskan sled dog. PMID:20649949

  5. Geochemical evidences of methane hydrate dissociation in Alaskan Beaufort Margin during Holocene

    NASA Astrophysics Data System (ADS)

    Uchida, M.; Rella, S.; Kubota, Y.; Kumata, H.; Mantoku, K.; Nishino, S.; Itoh, M.

    2017-12-01

    Alaskan Beaufort margin bear large abundances of sub-sea and permafrost methane hydrate[Ruppel, 2016]. During the Last Glacial, previous reported direct and indirect evidences accumulated from geochemical data from marginal sea sediment suggests that methane episodically released from hydrate trapped in the seafloor sediments[Kennett et al., 2000; Uchida et al., 2006, 2008; Cook et al, 2011]. Here we analyzed stable isotopes of foraminifera and molecular marker derived from the activity of methanotrophic bacteria from piston cores collected by the 2010 R/V Mirai cruise in Alaskan Beaufort Margin. Our data showed highly depleted 13C compositions of benthic foraminifera, suggesting indirect records of enhanced incorporation of 13C-depleted CO2 formed by methanotrophic process that use 12C-enriched methane as their main source of carbon. This is the first evidence of methane hydrate dissociation in Alaskan margin. Here we discussed timing of signals of methane dissociation with variability of sea ice and intermediate Atlantic water temperature. The dissociation of methane hydrate in the Alaskan Margin may be modulated by Atlantic warm intermediate water warming. Our results suggest that Arctic marginal regions bearing large amount methane hydrate may be a profound effect on future warming climate changes.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berejikian, Barry A.

    The success of captive broodstock programs depends on high in-culture survival, appropriate development of the reproductive system, and the behavior and survival of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. Accomplishments detailed in this report are listed below by major objective. Objective 1: This study documented that captively reared Chinook exhibited spawn timing similar to their founder anadromous population. An analysis of spawn timing data of captively reared Chinook salmon that had received different levels of antibioticmore » treatment did not suggest that antibiotic treatments during the freshwater or seawater phase of the life cycle affects final maturation timing. No effect of rearing density was found with respect to spawn timing or other reproductive behaviors. Objective 2: This study investigated the critical period(s) for imprinting for sockeye salmon by exposing juvenile salmon to known odorants at key developmental stages. Molecular assessments of imprinting-induced changes in odorant receptor gene expression indicated that regulation of odorant expression differs between coho and sockeye salmon. While temporal patterns differ between these species, exposure to arginine elicited increases in odorant receptor mRNA expression in sockeye salmon. Objective 3: This study: (i) identified the critical period when maturation is initiated in male spring Chinook salmon and when body growth affects onset of puberty, (ii) described changes in the reproductive endocrine system during onset of puberty and throughout spermatogenesis in male spring Chinook salmon, (iii) found that the rate of oocyte development prior to vitellogenesis is related to body growth in female spring Chinook, and (iv) demonstrated that growth regimes which reduce early (age 2) male maturation slow the rate of primary

  7. Increased susceptibility to infectious salmon anemia virus (ISAv) in Lepeophtheirus salmonis – infected Atlantic salmon

    USDA-ARS?s Scientific Manuscript database

    The salmon louse and infectious salmon anemia virus (ISAv) are the two most significant pathogens of concern to the Atlantic salmon (Salmo salar) aquaculture industry. However, the interactions between sea lice and ISAv, as well as the impact of a prior sea lice infection on the susceptibility of th...

  8. Evaluation of emamectin benzoate and substance EX against salmon lice in sea-ranched Atlantic salmon smolts.

    PubMed

    Skilbrei, Ove Tommy; Espedal, Per Gunnar; Nilsen, Frank; Garcia, Enrique Perez; Glover, Kevin A

    2015-04-08

    Experimental releases of Atlantic salmon smolts treated with emamectin benzoate (EB) against salmon lice have previously been used to estimate the significance of salmon lice on the survival of migrating smolts. In recent years, the salmon louse has developed reduced sensitivity to EB, which may influence the results of such release experiments. We therefore tested the use of 2 anti-lice drugs: EB was administered to salmon smolts in high doses by intra-peritoneal injection and the prophylactic substance EX (SubEX) was administered by bathing. A third, untreated control group was also established. Salmon were challenged with copepodids of 2 strains of salmon lice (1 EB-sensitive strain and 1 with reduced EB-sensitivity) in mixed-group experimental tanks. At 31 d post-challenge, the numbers of pre-adult lice on treated fish were around 20% compared with the control fish, with minor or no differences between the 2 treatments and lice strains. Both treatments therefore appeared to give the smolts a high degree of protection against infestation of copepodids of salmon lice. However, significantly lower growth of the EB-treatment group indicates that bathing the fish in SubEX is less stressful for smolts than intra-peritoneal injection of EB.

  9. Sediment mobility in fish bearing streams: the influence of floods and spawning salmon

    NASA Astrophysics Data System (ADS)

    Hassan, M. A.; Gottesfeld, A. S.; Tunnicliffe, J. F.

    2002-12-01

    Magnetically tagged particles were used to investigate the effects of sockeye salmon (Oncorhynchus nerka) on the mobility of substrate in gravel bed streams in the Stuart-Takla region of north-central British Columbia. The study reaches in Forfar and O'Ne-ell Creeks have gradients of from 0.005 to 0.019 and have a forced pool-riffle morphology. The dominant annual sediment-transporting event in the channels is the snow-melt flood events in late May or June, with lesser work usually accomplished during summer and fall storm floods. In August every year, the channel beds material is reworked by the Early Stuart salmon spawning event, as the fish excavated the streambed to deposit and bury their eggs. At each of the 5 reaches within the 2 study creeks, 250 tracers (8.5mm - 180mm) were placed in a line on the bed before and after transport events. Results were highly variable, subject to the magnitude of floods, and the returning population of salmon. Overall, the depositional pattern from nival flood events usually demonstrated a high degree of clast mobilization, long travel distances (up to 150m) and mean depths of burial up to 18cm. Storm flood events showed somewhat lower rates of mobilization, distances of travel and depths of burial. Although the fish did not move the tracers very far, their effect on the bed was generally quite pervasive: up to 100% of the clasts were mobilized, and the depth of burial was considerable (mean burial depths up to 14cm). Repeat topographic surveys of the streambed before and after transport events revealed considerable disruption of the bed surface. The geomorphic effect of fish was enhanced in the lower reaches where the hydraulic transporting capacity is somewhat less (lower stream power), the sediment calibre is finer, and fish spawning density is higher. The amount of sediment mobilized by salmonids is often on the same order of magnitude as flood events. The significant vertical mixing of sediments by the fish has important

  10. PNW WILD SALMON IN 2100: AN ALTERNATIVE FUTURES PERSPECTIVE ON SALMON RECOVERY

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and southern British Columbia. The Project does not...

  11. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...

  12. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...

  13. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...

  14. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...

  15. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...

  16. WILD SALMON RESTORATION: IS IT WORTH IT?

    EPA Science Inventory

    Salmon are categorized biologically into two groups: Pacific salmon and Atlantic salmon. Atlantic salmon are found on both sides of the North Atlantic Ocean, but have declined precipitously compared to the size of runs prior to the 1700s. The largest (though small by historic ...

  17. Saving the Salmon

    ERIC Educational Resources Information Center

    Sprangers, Donald

    2004-01-01

    In November 2000, wild Atlantic salmon were placed under the protection of the Endangered Species Act of 1973. Washington Academy (WA) in Maine has played an integral role in the education and restoration of this species. Efforts to restore the salmon's dwindling population, enhance critical habitat areas, and educate and inform the public require…

  18. 50 CFR 300.92 - Relation to other laws.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 11 2014-10-01 2014-10-01 false Relation to other laws. 300.92 Section... REGULATIONS Fraser River Sockeye and Pink Salmon Fisheries § 300.92 Relation to other laws. (a) Insofar as they are consistent with this part, any other applicable Federal law or regulation, or any applicable...

  19. Calcitonin Salmon Nasal Spray

    MedlinePlus

    Calcitonin salmon is used to treat osteoporosis in women who are at least 5 years past menopause and cannot ... a human hormone that is also found in salmon. It works by preventing bone breakdown and increasing ...

  20. Sustainable fisheries management: Pacific salmon

    USGS Publications Warehouse

    Knudsen, E. Eric; Steward, Cleveland R.; MacDonald, Donald; Williams, Jack E.; Reiser, Dudley W.

    1999-01-01

    What has happened to the salmon resource in the Pacific Northwest? Who is responsible and what can be done to reverse the decline in salmon populations? The responsibly falls on everyone involved - fishermen, resource managers and concerned citizens alike - to take the steps necessary to ensure that salmon populations make a full recovery.This collection of papers examines the state of the salmon fisheries in the Pacific Northwest. They cover existing methods and supply model approaches for alternative solutions. The editors stress the importance of input from and cooperation with all parties involved to create a viable solution. Grass roots education and participation is the key to public support - and ultimately the success - of whatever management solutions are developed.A unique and valuable scientific publication, Sustainable Fisheries Management: Pacific Salmon clearly articulates the current state of the Pacific salmon resource, describes the key features of its management, and provides important guidance on how we can make the transition towards sustainable fisheries. The solutions presented in this book provide the basis of a strategy for sustainable fisheries, requiring society and governmental agencies to establish a shared vision, common policies, and a process for collaborative management.