Sample records for albedo thermal inertia

  1. Atmospheric effects on the mapping of Martian thermal inertia and thermally derived albedo

    NASA Technical Reports Server (NTRS)

    Hayashi, Joan N.; Jakosky, Bruce M.; Haberle, Robert M.

    1995-01-01

    We examine the effects of a dusty C02 atmosphere on the thermal inertia and thermally derived albedo of Mars and we present a new map of thermal inertias. This new map was produced using a coupled surface atmosphere (CSA) model, dust opacities from Viking infrared thermal mapper (IRTM) data, and C02 columns based on topography. The CSA model thermal inertias are smaller than the 2% model thermal inertias, with the difference largest at large thermal inertia. Although the difference between the thermal inertias obtained with the two models is moderate for much of the region studied, it is largest in regions of either high dust opacity or of topographic lows, including the Viking Lander 1 site and some geologically interesting regions. The CSA model thermally derived albedos do not accurately predict the IRTM measured albedos and are very similar to the thermally derived albedos obtained with models making the 2% assumption.

  2. Atmospheric effects on the mapping of Martian thermal inertia and thermally derived albedo

    NASA Technical Reports Server (NTRS)

    Hayashi, Joan N.; Jakosky, Bruce M.; Haberle, Robert M.

    1995-01-01

    We examine the effects of a dusty CO2 atmosphere on the thermal inertia and thermally derived albedo of Mars and we present a new map of thermal inertias. This new map was produced using a coupled surface atmosphere (CSA) model, dust opacities from Viking infrared thermal mapper (IRTM) data, and CO2 columns based on topography. The CSA model thermal inertias are smaller than the 2% model thermal inertias, with the difference largest at large thermal inertia. Although the difference between the thermal inertias obtained with the two models is moderate for much of the region studied, it is largest in regions of either high dust opacity or of topographic lows, including the Viking Lander 1 site and some geologically interesting regions. The CSA model thermally derived albedos do not acurately predict the IRTM measured albedos and are very similar to the thermally derived albedos obtained with models making the 2% assumption.

  3. Atmospheric effects on the mapping of Martian thermal inertia and thermally derived albedo

    NASA Technical Reports Server (NTRS)

    Hayashi, J. N.; Jakosky, B. M.; Haberle, R. M.

    1994-01-01

    The most widely used thermal inertia data for Mars assumes the atmospheric contribution is constant and equal to 2 percent of the maximum solar insolation. Haberle and Jakosky investigated the effect of including a dusty CO2 atmosphere and sensible heat exchange with the surface on thermal inertia. We recently utilized Haberle and Jakosky's coupled surface-atmosphere model to investigate the effects of such an atmosphere on the thermally derived albedo. The thermally derived albedo is the albedo which, together with the thermal inertia, provides model surface temperatures which best match the observed temperatures. New maps are presented of thermal inertia and thermally derived albedo which incorporate dust opacities derived from IRTM data.

  4. Mars Polar Thermal Inertia and Albedo Properties Using TES Data

    NASA Astrophysics Data System (ADS)

    Scherbenski, J. M.; Paige, D. A.

    2002-12-01

    We present north and south polar thermal inertia and albedo maps derived from MGS TES observations. The maps were derived using the same robust approach developed to make polar thermal and inertia and albedo maps using IRTM observationsby Paige, Bachman, and Keegan (1994) and Paige and Keegan (1994). The data processing approach involved reading TES reduced data records in PDS format using the Vanilla software tool, and sending the data down a processing pipeline that constrains and bins the data, and compares it to the results of a diurnal and seasonal thermal model to obtain the best fit thermal inertia and apparent albedo. To facilitate comparison, the TES maps were created at the same Ls ranges as the published IRTM maps using TES spectral surface temperature results. The north polar maps used TES nadir observations obtained during a 50-day period from Ls 98.39 to Ls 121.25. The south polar maps used TES nadir observations obtained during a 30-day period from Ls 321.58 to 338.07. The creation of these maps employ a basic thermal model that does not include the effects of the atmosphere, as well as a one-dimensional radiative-convective model that does include the effects of the atmosphere. The spatial resolution of the north polar maps is 0.1 degrees of latitude and 1.0 degrees of longitude. The spatial resolution of the south polar maps is 2 degrees of latitude and 2 degrees of longitude. The TES north polar maps show the residual cap area in significantly greater detail than has been available previously. The IRTM maps showed that the north polar sand sea that surrounds the cap has unusually low thermal inertia. The TES maps confirm this conclusion, but also show that the dark renetrant features in chama boreal and elsewhere on the cap also have low thermal inertias. This strongly supports the proposal that these dark rentrants are the sources of the dune material. The TES maps also show that the darker layered deposits which are found at the periphery of the

  5. High-Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer

    USGS Publications Warehouse

    Mellon, M.T.; Jakosky, B.M.; Kieffer, H.H.; Christensen, P.R.

    2000-01-01

    High-resolution thermal inertia mapping results are presented, derived from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) observations of the surface temperature of Mars obtained during the early portion of the MGS mapping mission. Thermal inertia is the key property controlling the diurnal surface temperature variations, and is dependent on the physical character of the top few centimeters of the surface. It represents a complex combination of particle size, rock abundance, exposures of bedrock, and degree of induration. In this work we describe the derivation of thermal inertia from TES data, present global scale analysis, and place these results into context with earlier work. A global map of nighttime thermal-bolometer-based thermal inertia is presented at 14?? per pixel resolution, with approximately 63% coverage between 50??S and 70??N latitude. Global analysis shows a similar pattern of high and low thermal inertia as seen in previous Viking low-resolution mapping. Significantly more detail is present in the high-resolution TES thermal inertia. This detail represents horizontal small-scale variability in the nature of the surface. Correlation with albedo indicates the presence of a previously undiscovered surface unit of moderate-to-high thermal inertia and intermediate albedo. This new unit has a modal peak thermal inertia of 180-250 J m-2 K-1 s-12 and a narrow range of albedo near 0.24. The unit, covering a significant fraction of the surface, typically surrounds the low thermal inertia regions and may comprise a deposit of indurated fine material. Local 3-km-resolution maps are also presented as examples of eolian, fluvial, and volcanic geology. Some impact crater rims and intracrater dunes show higher thermal inertias than the surrounding terrain; thermal inertia of aeolian deposits such as intracrater dunes may be related to average particle size. Outflow channels and valleys consistently show higher thermal inertias than the

  6. Parameterization of albedo, thermal inertia, and surface roughness of desert scrub/sandy soil surface

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Mccumber, M.

    1986-01-01

    Spectral albedo, A sub n, for the direct solar beam is defined as A sub n (r sub i,s, theta sub 0) = r sub i exp(-s tan theta sub 0)1-I(s) where I(s) is the integral over all reflection angles describing the interception by the absorbing plants of the flux reflected from the soil, r sub i soil reflectance, assumed Lambertian, S the projection on a vertical plane of plants per unit surface area, and theta sub 0 is the solar zenith angle. Hemispheric reflectance for the direct solar beam equals 1-I(s) times the reflectance to the zenith. The values of s of 0.1, 0.2, and 0.3 respectively quantify sparse, moderately dense, and very dense desert scrub. Thin plants are assumed to be of negligible thermal inertia, and thus directly yield the absorbed insolation to the atmosphere. Surface thermal inertia is therefore effectively reduced. The ratio of surface roughness height to plant height is parameterized for sparse, moderately dense, and very dense desert-scrub as a function of s based on data expressing the dependence of this ratio on plant silhouette.

  7. The thermal inertia of Mars from the Mars Global Surveyor Thermal Emission Spectrometer

    USGS Publications Warehouse

    Jakosky, Bruce M.; Mellon, Michael T.; Kieffer, Hugh H.; Christensen, Philip R.; Varnes, E. Stacy; Lee, Steven W.

    2000-01-01

    We have used Mars Global Surveyor (MGS) Thermal Emission Spectrometer thermal emission measurements to derive the thermal inertia of the Martian surface at the ∼100-km spatial scale. We have validated the use of nighttime-only measurements to derive thermal inertia as well as the use of a single wavelength band versus bolometric thermal emission measurements. We have also reanalyzed the Viking Infrared Thermal Mapper data set in a similar manner in order to allow a direct comparison between the two. Within the uncertainties of the fit of the data to the model, and the uncertainties inherent in the model, the thermal inertia has not changed substantially in the 21 years between the Viking and the MGS measurements. Although some differences are seen, they are most likely due to changes in albedo during the intervening years or to residual effects of airborne dust that are not fully accounted for in the thermal models. The thermal inertia values that we derive, between about 24 and 800 J m-2 s-1/2 K-1, are thought to better represent the actual thermal inertia of the Martian surface than previous estimates.

  8. Thermal inertia and surface heterogeneity on Mars

    NASA Astrophysics Data System (ADS)

    Putzig, Nathaniel E.

    Thermal inertia derived from temperature observations is critical for understanding surface geology and assessing potential landing sites on Mars. Derivation methods generally assume uniform surface properties for any given observation. Consequently, horizontal heterogeneity and near-surface layering may yield apparent thermal inertia that varies with time of day and season. To evaluate the effects of horizontal heterogeneity, I modeled the thermal behavior of surfaces containing idealized material mixtures (dust, sand, duricrust, and rocks) and differing slope facets. These surfaces exhibit diurnal and seasonal variability in apparent thermal inertia of several 100 tiu, 1 even for components with moderately contrasting thermal properties. To isolate surface effects on the derived thermal inertia of Mars, I mapped inter- annual and seasonal changes in albedo and atmospheric dust opacity, accounting for their effects in a modified derivation algorithm. Global analysis of three Mars years of MGS-TES 2 data reveals diurnal and seasonal variations of ~200 tiu in the mid-latitudes and 600 tiu or greater in the polar regions. Correlation of TES results and modeled apparent thermal inertia of heterogeneous surfaces indicates pervasive surface heterogeneity on Mars. At TES resolution, the near-surface thermal response is broadly dominated by layering and is consistent with the presence of duricrusts over fines in the mid-latitudes and dry soils over ground ice in the polar regions. Horizontal surface mixtures also play a role and may dominate at higher resolution. In general, thermal inertia obtained from single observations or annually averaged maps may misrepresent surface properties. In lieu of a robust heterogeneous- surface derivation technique, repeat coverage can be used together with forward-modeling results to constrain the near-surface heterogeneity of Mars. 1 tiu == J m -2 K -1 s - 2 Mars Global Surveyor Thermal Emission Spectrometer

  9. Geologic applications of thermal-inertia mapping from satellite. [Powder River Basin, Wyoming

    NASA Technical Reports Server (NTRS)

    Offield, T. W. (Principal Investigator); Miller, S. H.; Watson, K.

    1979-01-01

    The author has identified the following significant results. After digitization, a noise rejection filter was applied to data obtained by USGS aircraft. An albedo image was formed by combining three bands of visible data. Along with the day and nighttime thermal data, the albedo image was used to construct a relative thermal-inertia image. This image, registered to a topographic base, shows there are thermal property differences in the vicinity of the contact between the Fort Union and Wasatch formations in the Powder River Basin, Wyoming.

  10. Thermal and albedo mapping of the polar regions of Mars using Viking thermal mapper observations: 2. South polar region

    NASA Technical Reports Server (NTRS)

    Paige, David A.; Keegan, Kenneth D.

    1994-01-01

    We present the first maps of the apparent thermal inertia and albedo of the south polar region of Mars. The observations used to create these maps were acquired by the infrared thermal mapper (IRTM) instruments on the two Viking Orbiters over a 30-day period in 1977 during the Martian late southern summer season. The maps cover the region from 60 deg S to the south pole at a spatial resolution of 1 deg of latitude, thus completing the initial thermal mapping of the entire planet. The analysis and interpretation of these maps is aided by the results of a one-dimensional radiative convective model, which is used to calculate diurnal variations in surface and atmospheric temperatures, and brightness temperatures at the top of the atmosphere for a range of assumptions concerning dust optical properties and dust optical depths. The maps show that apparent thermal inertias of bare ground regions decrease systematically from 60 deg S to the south pole. In unfrosted regions close to the south pole, apparent thermal inertias are among the lowest observed anywhere on the planet. On the south residual cap, apparent thermal inertias are very high due to the presence of CO2 frost. In most other regions of Mars, best fit apparent albedos based on thermal emission measurements are generally in good agreement with actual surface albedos based on broadband solar reflectance measurements. The one-dimensional atmospheric model calculations also predict anomalously cold brightness temperatures close to the pole during late summer, and after considering a number of alternatives, it is concluded that the net surface cooling due to atmospheric dust is the best explanation for this phenomenon. The region of lowest apparent thermal inertia close to the pole, which includes the south polar layered deposits, is interpreted to be mantled by a continuous layer of aeolian material that must be at least a few millimeters thick. The low thermal inertias mapped in the south polar region imply an

  11. Thermal and albedo mapping of the polar regions of Mars using Viking thermal mapper observations: 1. North polar region

    NASA Technical Reports Server (NTRS)

    Paige, David A.; Bachman, Jennifer E.; Keegan, Kenneth D.

    1994-01-01

    We present the first maps of the apparent thermal inertia and albedo of the north polar region of Mars. The observations used to create these maps were acquired by the infrared thermal mapper (IRTM) instruments on the two Viking orbiters over a 50-day period in 1978 during the Martian early northern summer season. The maps cover the region from 60 deg N to the north pole at a spatial resolution of 1/2 deg of latitude. The analysis and interpretation of these maps is aided by the results of a one-dimensional radiative convective model, which is used to calculate diurnal variations in surface and atmospheric temperatures, and brightness temperatures at the top of the atmospphere for a wide range of assumptions concerning aerosol optical properties and aerosol optical depths. The results of these calculations show that the effects of the Martian atmosphere on remote determinations of surface thermal inertia are more significant than have been indicated in previous studies. The maps of apparent thermal inertia and albedo show a great deal of spatial structure that is well correlated with surface features.

  12. Global Surface Thermal Inertia Derived from Dawn VIR Observations

    NASA Astrophysics Data System (ADS)

    Titus, T. N.; Becker, K. J.; Anderson, J.; Capria, M.; Tosi, F.; Prettyman, T. H.; De Sanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; Combe, J.; McCord, T. B.; Li, J. Y.; Russell, C. T.; Raymond, C. A.

    2012-12-01

    Comparisons of surface temperatures, derived from Dawn [1] Visible and Infrared Mapping Spectrometer (VIR-MS) [2] observations , to thermal models suggest that Vesta generally has a low-thermal-inertia surface, between 25 and 35 J m^-2 K^-1 s^-½, consistent with a thick layer of fine-grain material [3]. Temperatures were calculated using a Bayesian approach to nonlinear inversion as described by Tosi et al. [4]. In order to compare observed temperatures of Vesta to model calculations, several geometric and photometric parameters must be known or estimated. These include local mean solar time, latitude, local slope, bond bolometric albedo, and the effective emissivity at 5μm. Local time, latitude, and local slope are calculated using the USGS ISIS software system [5]. We employ a multi-layered thermal-diffusion model called 'KRC' [6], which has been used extensively in the study of Martian thermophysical properties. This thermal model is easily modified for use with Vesta by replacing the Martian ephemeris input with the Vesta ephemeris and disabling the atmosphere. This model calculates surface temperatures throughout an entire Vesta year for specific sets of slope, azimuth, latitude and elevation, and a range of albedo and thermal-inertia values. The ranges of albedo and thermal inertia values create temperature indices that are closely matched to the dates and times observed by VIR. Based on observed temperatures and best-fit KRC thermal models, estimates of the annual mean surface temperatures were found to range from 176 K - 188 K for flat zenith-facing equatorial surfaces, but these temperatures can drop as low as 112 K for polar-facing slopes at mid-latitudes. [7] In this work, we will compare observed temperatures of the surface of Vesta (using data acquired by Dawn VIR-MS [2] during the approach, survey, high-altitude mapping and departure phases) to model temperature results using the KRC thermal model [5]. Where possible, temperature observations from

  13. Thermal and albedo mapping of the north and south polar regions of Mars

    NASA Technical Reports Server (NTRS)

    Paige, D. A.; Keegan, K. D.

    1991-01-01

    The first maps are presented of the north and south polar regions of Mars. The thermal properties of the midlatitude regions from -60 deg to +60 deg latitude were mapped in previous studies. The presented maps complete the mapping of entire planet. The maps for the north and south polar regions were derived from Viking Infrared Thermal Mapper (IRTM) observations. Best fit thermal inertias were determined by comparing the available IRTM 20 micron channel brightness within a given region to surface temperatures computed by a diurnal and seasonal thermal model. The model assumes no atmospheric contributions to the surface heat balance. The resulting maps of apparent thermal inertia and average IRTM measured solar channel lambert albedo for the north and south polar regions from the poles to +/- 60 deg latitude.

  14. Impact of Thermal Inertia on Urban Climatology: A Case Study of Delhi

    NASA Astrophysics Data System (ADS)

    Berwal, S.; Kumar, D.; Singh, V. P.; Pandey, A. K.; Kumar, K.

    2016-12-01

    The ability with which a material can absorb, restore the heat and release it later during the nighttime is known as thermal inertia. In the context to urban areas, it measures the sub-surface's ability to store heat during the day and release it during the night. It prevents the overheating in summer and maintains heat during the winter thereby safeguarding the building comfort level. Due to huge population and urban sprawl this study can be very useful for Delhi and cities like it. The climatic modification in the context of urban areas due to human activities in relation to rural areas is termed as the urban heat island effect (UHI). The modelling for formation of urban UHI has been done using the geospatial technique. Apart from temperature, the amount of dust in the atmosphere is also a significant contributor in modifying the UHI formation. It is also an attempt to establish the role of land use and land cover patterns and respective thermal inertia affecting this phenomenon. The thermal inertia over Delhi-NCR was estimated using surface albedo and daytime-nighttime temperature differences from MODIS datasets. Higher thermal inertia were observed in urban areas than that of rural areas during the analysis of the thermal inertia maps. Furthermore, the study also reveals that the urban heat island intensity (UHI) and the thermal inertia has a relationship of strong inverse correlation. The results of this study will provide useful insights for urban planners and the local governments to devise appropriate strategies for making the urban climate favourable for the city residents.

  15. Mars Thermal Inertia

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image shows the global thermal inertia of the Martian surface as measured by the Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor. The data were acquired during the first 5000 orbits of the MGS mapping mission. The pattern of inertia variations observed by TES agrees well with the thermal inertia maps made by the Viking Infrared Thermal Mapper experiment, but the TES data shown here are at significantly higher spatial resolution (15 km versus 60 km).

    The TES instrument was built by Santa Barbara Remote Sensing and is operated by Philip R. Christensen, of Arizona State University, Tempe, AZ.

  16. MGS-TES thermal inertia study of the Arsia Mons Caldera

    USGS Publications Warehouse

    Cushing, G.E.; Titus, T.N.

    2008-01-01

    Temperatures of the Arsia Mons caldera floor and two nearby control areas were obtained by the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES). These observations revealed that the Arsia Mons caldera floor exhibits thermal behavior different from the surrounding Tharsis region when compared with thermal models. Our technique compares modeled and observed data to determine best fit values of thermal inertia, layer depth, and albedo. Best fit modeled values are accurate in the two control regions, but those in the Arsia Mons' caldera are consistently either up to 15 K warmer than afternoon observations, or have albedo values that are more than two standard deviations higher than the observed mean. Models of both homogeneous and layered (such as dust over bedrock) cases were compared, with layered-cases indicating a surface layer at least thick enough to insulate itself from diurnal effects of an underlying substrate material. Because best fit models of the caldera floor poorly match observations, it is likely that the caldera floor experiences some physical process not incorporated into our thermal model. Even on Mars, Arsia Mons is an extreme environment where CO2 condenses upon the caldera floor every night, diurnal temperatures range each day by a factor of nearly 2, and annual average atmospheric pressure is only around one millibar. Here, we explore several possibilities that may explain the poor modeled fits to caldera floor and conclude that temperature dependent thermal conductivity may cause thermal inertia to vary diurnally, and this effect may be exaggerated by presence of water-ice clouds, which occur frequently above Arsia Mons. Copyright 2008 by the American Geophysical Union.

  17. Calculation of thermal inertia from day-night measurements separated by days or weeks

    NASA Technical Reports Server (NTRS)

    Kahle, A. B.; Alley, R. E.

    1985-01-01

    The calculation of the thermal inertia of an area from remotely sensed data involves the measurement of the surface albedo and the determination of the diurnal temperature range of the surface in image format. The temperature-range image is calculated from surface thermal radiance measured as near as possible to the time of maximum surface temperature and (predawn) surface minimum temperature. Ordinarily, both surface-temperature images are measured within the same 12-hour period. If this is impossible, then the measurement of the predawn surface radiance within a 36-hour period has been considered to be adequate, although less satisfactory. The problems arising in connection with the impossibility to conduct measurements within the same 12-hour period are studied, and suggestions are made for cases in which only relative thermal inertia across an area is required. In such cases investigators should consider using the best day-night temperature pairs available, even if not acquired within a 12 to 36 hour period.

  18. Global distribution of bedrock exposures on Mars using THEMIS high-resolution thermal inertia

    USGS Publications Warehouse

    Edwards, C.S.; Bandfield, J.L.; Christensen, P.R.; Fergason, R.L.

    2009-01-01

    We investigate high thermal inertia surfaces using the Mars Odyssey Thermal Emission Imaging System (THEMIS) nighttime temperature images (100 m/pixel spatial sampling). For this study, we interpret any pixel in a THEMIS image with a thermal inertia over 1200 J m-2 K-1 s-1/2 as "bedrock" which represents either in situ rock exposures or rock-dominated surfaces. Three distinct morphologies, ranked from most to least common, are associated with these high thermal inertia surfaces: (1) valley and crater walls associated with mass wasting and high surface slope angles; (2) floors of craters with diameters >25 km and containing melt or volcanics associated with larger, high-energy impacts; and (3) intercrater surfaces with compositions significantly more mafic than the surrounding regolith. In general, bedrock instances on Mars occur as small exposures (less than several square kilometers) situated in lower-albedo (<0.18), moderate to high thermal inertia (>350 J m-2 K-1 s-1/2), and relatively dust-free (dust cover index <0.95) regions; however, there are instances that do not follow these generalizations. Most instances are concentrated in the southern highlands, with very few located at high latitudes (poleward of 45oN and 58oS), suggesting enhanced mechanical breakdown probably associated with permafrost. Overall, Mars has very little exposed bedrock with only 960 instances identified from 75oS to 75oN with likely <3500 km2 exposed, representing???1% of the total surface area. These data indicate that Mars has likely undergone large-scale surface processing and reworking, both chemically and mechanically, either destroying or masking a majority of the bedrock exposures on the planet. Copyright 2009 by the American Geophysical Union.

  19. Discovery of Spin-Rate-Dependent Asteroid Thermal Inertia

    NASA Astrophysics Data System (ADS)

    Harris, Alan; Drube, Line

    2016-10-01

    Knowledge of the surface thermal inertia of an asteroid can provide insight into surface structure: porous material has a lower thermal inertia than rock. Using WISE/NEOWISE data and our new asteroid thermal-inertia estimator we show that the thermal inertia of main-belt asteroids (MBAs) appears to increase with spin period. Similar behavior is found in the case of thermophysically-modeled thermal inertia values of near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. On the basis of a picture of depth-dependent thermal inertia our results suggest that, in general, thermal inertia values representative of solid rock are reached some tens of centimeters to meters below the surface in the case of MBAs (the median diameter in our dataset = 24 km). In the case of the much smaller (km-sized) NEOs a thinner porous surface layer is indicated, with large pieces of solid rock possibly existing just a meter or less below the surface. These conclusions are consistent with our understanding from in-situ measurements of the surfaces of the Moon, and a few asteroids, and suggest a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids. Our results have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles ("kinetic impactors") in planetary defense.

  20. Mars Surface Heterogeneity From Variations in Apparent Thermal Inertia

    NASA Astrophysics Data System (ADS)

    Putzig, N. E.; Mellon, M. T.

    2005-12-01

    Current techniques used in the calculation of thermal inertia from observed brightness temperatures typically assume that planetary surface properties are uniform on the scale of the instrument's observational footprint. Mixed or layered surfaces may yield different apparent thermal inertia values at different seasons or times of day due to the nonlinear relationship between temperature and thermal inertia. To obtain sufficient data coverage for investigating temporal changes, we processed three Mars years of observations from the Mars Global Surveyor Thermal Emission Spectrometer and produced seasonal nightside and dayside maps of apparent thermal inertia. These maps show broad regions with seasonal and diurnal differences as large as 200 J m-2 K-1 s-½ at mid-latitudes (60°S to 60°N) and ranging up to 600 J m-2 K-1 s-½ or greater in the polar regions. Comparison of the maps with preliminary results from forward-modeling of heterogeneous surfaces indicates that much of the martian surface may be dominated by (1) horizontally mixed surfaces, such as those containing differing proportions of rocks, sand, dust, duricrust, and localized frosts; (2) higher thermal inertia layers over lower thermal inertia substrates, such as duricrust or desert pavements; and (3) lower thermal inertia layers over higher thermal inertia substrates, such as dust over sand or rocks and soils with an ice table at depth.

  1. Thermal inertia as an indicator of rockiness variegation on near-Earth asteroid surfaces

    NASA Astrophysics Data System (ADS)

    Ali-Lagoa, Victor; Delbo, Marco; Hanus, Josef

    2016-10-01

    Determining key physical properties of asteroids such as sizes and albedos or reflectance spectra is crucial to understand their origins and the processes that they have undergone during their evolution. In particular, one of the aims of NEOShield-2 project, funded by the European Union's Horizon 2020 Research and Innovation programme, is to physically characterize small near Earth asteroids (NEA) in an effort to determine effective mitigation strategies in case of impact with our planet [Harris et al. 2013 2013AcAau,90,80H].We performed thermophysical modelling of NEAs, such as (1685) Toro, and potentially hazardous asteroids (PHAs), such as (33342) 1998 WT24. In addition to size, thermophysical models (TPM) of asteroids can constrain the surface thermal inertia, which is related to the material composition and physical nature, namely its "rockiness" or typical size of the particles on its surface. These have observable effects on the surface temperature distribution as a function of time and thus on the thermal infrared fluxes we observe, to which we can fit our model.In the case of WT24, its thermal inertia has been previously constrained to be in the range 100-300 SI units [Harris et al. 2007, Icarus 188, 414H]. But this was based on a spherical shape model approximation since no shape model was available by the time. Such a low thermal inertia value seems in disagreement with a relatively high metal content of the enstatite chondrites, the meteorite type to which WT24, classified as an E-type [Lazzarin et al. 2004 A&A 425L, 25L], has been spectrally associated. Using a three-dimensional model and spin vector based on radar observations [Busch et al. 2008 Icarus 197, 375B], our TPM produces a higher best-fitting value of the thermal inertia. We also find the intriguing possibility that the hemisphere of WT24 dominated by concave terrains, possibly be the result of an impact crater, has a higher thermal inertia. This would be similar to the case of our Moon

  2. Thermal Inertia of Rocks and Rock Populations

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    The effective thermal inertia of rock populations on Mars and Earth is derived from a model of effective inertia versus rock diameter. Results allow a parameterization of the effective rock inertia versus rock abundance and bulk and fine component inertia. Additional information is contained in the original extended abstract.

  3. Sensitivity of thermal inertia calculations to variations in environmental factors. [in mapping of Earth's surface by remote sensing

    NASA Technical Reports Server (NTRS)

    Kahle, A. B.; Alley, R. E.; Schieldge, J. P.

    1984-01-01

    The sensitivity of thermal inertia (TI) calculations to errors in the measurement or parameterization of a number of environmental factors is considered here. The factors include effects of radiative transfer in the atmosphere, surface albedo and emissivity, variations in surface turbulent heat flux density, cloud cover, vegetative cover, and topography. The error analysis is based upon data from the Heat Capacity Mapping Mission (HCMM) satellite for July 1978 at three separate test sites in the deserts of the western United States. Results show that typical errors in atmospheric radiative transfer, cloud cover, and vegetative cover can individually cause root-mean-square (RMS) errors of about 10 percent (with atmospheric effects sometimes as large as 30-40 percent) in HCMM-derived thermal inertia images of 20,000-200,000 pixels.

  4. Thermal inertia characteristics of the Martian crater Curie

    NASA Technical Reports Server (NTRS)

    Horner, V. M.; Zimbelman, J. R.

    1987-01-01

    Thermal inertia characteristics have been determined for the martian crater Curie from high resolution groundtracks of Viking Thermal Infrared Mapper (IRTM) data. Flow features near the southeastern edge of the ejecta indicate that at least part of the Curie ejecta was emplaced in a manner similar to the ejecta of rampart craters. Within the study region there appears to be a general southeastern trend towards lower thermal inertia values. This trend may be related to the proximity of the Arabia region, which is mainly to the south and east of Curie. Curie is in a region where the overall thermal inertias change over relatively short distances radial to Arabia. Therefore, the observed general decrease in thermal inertia may represent increasing regional dust accumulation in the direction of Arabia.

  5. Conductivity Cell Thermal Inertia Correction Revisited

    NASA Astrophysics Data System (ADS)

    Eriksen, C. C.

    2012-12-01

    Salinity measurements made with a CTD (conductivity-temperature-depth instrument) rely on accurate estimation of water temperature within their conductivity cell. Lueck (1990) developed a theoretical framework for heat transfer between the cell body and water passing through it. Based on this model, Lueck and Picklo (1990) introduced the practice of correcting for cell thermal inertia by filtering a temperature time series using two parameters, an amplitude α and a decay time constant τ, a practice now widely used. Typically these two parameters are chosen for a given cell configuration and internal flushing speed by a statistical method applied to a particular data set. Here, thermal inertia correction theory has been extended to apply to flow speeds spanning well over an order of magnitude, both within and outside a conductivity cell, to provide predictions of α and τ from cell geometry and composition. The extended model enables thermal inertia correction for the variable flows encountered by conductivity cells on autonomous gliders and floats, as well as tethered platforms. The length scale formed as the product of cell encounter speed of isotherms, α, and τ can be used to gauge the size of the temperature correction for a given thermal stratification. For cells flushed by dynamic pressure variation induced by platform motion, this length varies by less than a factor of 2 over more than a decade of speed variation. The magnitude of correction for free-flow flushed sensors is comparable to that of pumped cells, but at an order of magnitude in energy savings. Flow conditions around a cell's exterior are found to be of comparable importance to thermal inertia response as flushing speed. Simplification of cell thermal response to a single normal mode is most valid at slow speed. Error in thermal inertia estimation arises from both neglect of higher modes and numerical discretization of the correction scheme, both of which can be easily quantified

  6. Estimating Thermal Inertia with a Maximum Entropy Boundary Condition

    NASA Astrophysics Data System (ADS)

    Nearing, G.; Moran, M. S.; Scott, R.; Ponce-Campos, G.

    2012-04-01

    Thermal inertia, P [Jm-2s-1/2K-1], is a physical property the land surface which determines resistance to temperature change under seasonal or diurnal heating. It is a function of volumetric heat capacity, c [Jm-3K-1], and thermal conductivity, k [Wm-1K-1] of the soil near the surface: P=√ck. Thermal inertia of soil varies with moisture content due the difference between thermal properties of water and air, and a number of studies have demonstrated that it is feasible to estimate soil moisture given thermal inertia (e.g. Lu et al, 2009, Murray and Verhoef, 2007). We take the common approach to estimating thermal inertia using measurements of surface temperature by modeling the Earth's surface as a 1-dimensional homogeneous diffusive half-space. In this case, surface temperature is a function of the ground heat flux (G) boundary condition and thermal inertia and a daily value of P was estimated by matching measured and modeled diurnal surface temperature fluctuations. The difficulty is in measuring G; we demonstrate that the new maximum entropy production (MEP) method for partitioning net radiation into surface energy fluxes (Wang and Bras, 2011) provides a suitable boundary condition for estimating P. Adding the diffusion representation of heat transfer in the soil reduces the number of free parameters in the MEP model from two to one, and we provided a sensitivity analysis which suggests that, for the purpose of estimating P, it is preferable to parameterize the coupled MEP-diffusion model by the ratio of thermal inertia of the soil to the effective thermal inertia of convective heat transfer to the atmosphere. We used this technique to estimate thermal inertia at two semiarid, non-vegetated locations in the Walnut Gulch Experimental Watershed in southeast AZ, USA and compared these estimates to estimates of P made using the Xue and Cracknell (1995) solution for a linearized ground heat flux boundary condition, and we found that the MEP-diffusion model produced

  7. Apparent thermal inertia and the surface heterogeneity of Mars

    NASA Astrophysics Data System (ADS)

    Putzig, Nathaniel E.; Mellon, Michael T.

    2007-11-01

    Thermal inertia derivation techniques generally assume that surface properties are uniform at horizontal scales below the footprint of the observing instrument and to depths of several decimeters. Consequently, surfaces with horizontal or vertical heterogeneity may yield apparent thermal inertia which varies with time of day and season. To investigate these temporal variations, we processed three Mars years of Mars Global Surveyor Thermal Emission Spectrometer observations and produced global nightside and dayside seasonal maps of apparent thermal inertia. These maps show broad regions with diurnal and seasonal differences up to 200 J m -2 K -1s -1/2 at mid-latitudes (60° S to 60° N) and 600 J m -2 K -1s -1/2 or greater in the polar regions. We compared the seasonal mapping results with modeled apparent thermal inertia and created new maps of surface heterogeneity at 5° resolution, delineating regions that have thermal characteristics consistent with horizontal mixtures or layers of two materials. The thermal behavior of most regions on Mars appears to be dominated by layering, with upper layers of higher thermal inertia (e.g., duricrusts or desert pavements over fines) prevailing in mid-latitudes and upper layers of lower thermal inertia (e.g., dust-covered rock, soils with an ice table at shallow depths) prevailing in polar regions. Less common are regions dominated by horizontal mixtures, such as those containing differing proportions of rocks, sand, dust, and duricrust or surfaces with divergent local slopes. Other regions show thermal behavior that is more complex and not well-represented by two-component surface models. These results have important implications for Mars surface geology, climate modeling, landing-site selection, and other endeavors that employ thermal inertia as a tool for characterizing surface properties.

  8. Evaluation of algorithms for geological thermal-inertia mapping

    NASA Technical Reports Server (NTRS)

    Miller, S. H.; Watson, K.

    1977-01-01

    The errors incurred in producing a thermal inertia map are of three general types: measurement, analysis, and model simplification. To emphasize the geophysical relevance of these errors, they were expressed in terms of uncertainty in thermal inertia and compared with the thermal inertia values of geologic materials. Thus the applications and practical limitations of the technique were illustrated. All errors were calculated using the parameter values appropriate to a site at the Raft River, Id. Although these error values serve to illustrate the magnitudes that can be expected from the three general types of errors, extrapolation to other sites should be done using parameter values particular to the area. Three surface temperature algorithms were evaluated: linear Fourier series, finite difference, and Laplace transform. In terms of resulting errors in thermal inertia, the Laplace transform method is the most accurate (260 TIU), the forward finite difference method is intermediate (300 TIU), and the linear Fourier series method the least accurate (460 TIU).

  9. What on Mars is a High Thermal-Inertia Surface?

    NASA Image and Video Library

    2015-04-08

    Coprates Chasma is located in the huge canyon system, Vallis Marineris. NASA Mars Reconnaissance Orbiter finds indications of high thermal inertia. What do we mean when we describe a surface as having "high thermal inertia"? The term refers to the ability of a material to conduct and store heat, and in planetary science, its measure of the subsurface's ability to store heat during the day and reradiate it during the night. What causes thermal inertia? It depends on the composition of the terrain that we're studying. Here in Coprates Chasma, the site of this observation, we find indications of such high thermal inertia, so an image at high resolution may help us determine the composition and structure to give us an answer. http://photojournal.jpl.nasa.gov/catalog/PIA19357

  10. Temporal and spatial mapping of atmospheric dust opacity and surface albedo on Mars

    NASA Technical Reports Server (NTRS)

    Lee, S. W.; Clancy, R. T.; Gladstone, G. R.; Martin, T. Z.

    1993-01-01

    The Mariner 9 and Viking missions provided abundant evidence that eolian processes are active over much of the surface of Mars. Past studies have demonstrated that variations in regional albedo and wind streak patterns are indicative of sediment transport through a region, while thermal inertia data (derived from the Viking Infrared Thermal Mapper (IRTM) datasets) are indicative of the degree of surface mantling by dust deposits. We are making use of the method developed by T. Z. Martin to determine dust opacity from IRTM thermal observations. We have developed a radiative transfer model that allows corrections for the effects of atmospheric dust loading on observations of surface albedo to be made. This approach to determining 'dust-corrected surface albedo' incorporates the atmospheric dust opacity, the single-scattering albedo and particle phase function of atmospheric dust, the bidirectional reflectance of the surface, and accounts for variable lighting and viewing geometry.

  11. Thermal inertia effect in an axisymmetric thermoelastic problem based on generalized thermoelasticity

    NASA Astrophysics Data System (ADS)

    Xie, Yushu; Li, Fatao

    2010-06-01

    The objective of this paper is to study thermal inertia effect due to the fact of the properties of the hyperbolic equations based on LS theory in generalized thermoelasticity. Simulations in a 2D hollow cylinder for uncoupled dynamic thermal stresses and thermal displacements were predicted by use of finite element method with Newmark algorithm. The thermal inertia effect on LS theory in rapid transient heat transfer process is also investigated in comparison with in steady heat transfer process. When different specific heat capacity is chosen, dynamic thermal stresses appear different types of vibration, in which less heat capacity causes more violent dynamic thermal stresses because of the thermal inertia effect. Both dynamic thermal stresses and thermal displacements in rapid transient heat transfer process have the larger amplitude and higher frequency than in steady heat transfer process due to thermal inertia from the results of simulation, which is consistent with the nature of the generalized thermoelasticity.

  12. Coupling diffusion and maximum entropy models to estimate thermal inertia

    USDA-ARS?s Scientific Manuscript database

    Thermal inertia is a physical property of soil at the land surface related to water content. We have developed a method for estimating soil thermal inertia using two daily measurements of surface temperature, to capture the diurnal range, and diurnal time series of net radiation and specific humidi...

  13. Observing the variation of asteroid thermal inertia with heliocentric distance

    NASA Astrophysics Data System (ADS)

    Rozitis, B.; Green, S. F.; MacLennan, E.; Emery, J. P.

    2018-06-01

    Thermal inertia is a useful property to characterize a planetary surface, since it can be used as a qualitative measure of the regolith grain size. It is expected to vary with heliocentric distance because of its dependence on temperature. However, no previous investigation has conclusively observed a change in thermal inertia for any given planetary body. We have addressed this by using NEOWISE data and the Advanced Thermophysical Model to study the thermophysical properties of the near-Earth asteroids (1036) Ganymed, (1580) Betulia, and (276 049) 2002 CE26 as they moved around their highly eccentric orbits. We confirm that the thermal inertia values of Ganymed and 2002 CE26 do vary with heliocentric distance, although the degree of variation observed depends on the spectral emissivity assumed in the thermophysical modelling. We also confirm that the thermal inertia of Betulia did not change for three different observations obtained at the same heliocentric distance. Depending on the spectral emissivity, the variations for Ganymed and 2002 CE26 are potentially more extreme than that implied by theoretical models of heat transfer within asteroidal regoliths, which might be explained by asteroids having thermal properties that also vary with depth. Accounting for this variation reduces a previously observed trend of decreasing asteroid thermal inertia with increasing size, and suggests that the surfaces of small and large asteroids could be much more similar than previously thought. Furthermore, this variation can affect Yarkovsky orbital drift predictions by a few tens of per cent.

  14. Atmospheric effects on the remote determination of thermal inertia on Mars

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M.; Jakosky, Bruce M.

    1991-01-01

    Measurements of the IR brightness temperature at the Martian surface at many different times of day are presently compared with temperatures predicted by thermal models which allow sunlight to reach the surface unattenuated, in order to determine the thermal inertia of the uppermost 1-10 cm of the Martian surface. The consequences of the assumptions made are assessed in view of results from a different thermal model which invokes radiation-transfer through a dusty CO2 atmosphere, as well as sensible heat-exchange with the surface. Smaller thermal inertias imply smaller particle sizes; the results obtained suggest that low thermal-inertia regions consist of 5-micron, rather than 50-micron, particle sizes.

  15. The Role of Atmospheric Pressure on Surface Thermal Inertia for Early Mars Climate Modeling

    NASA Astrophysics Data System (ADS)

    Mischna, M.; Piqueux, S.

    2017-12-01

    On rocky bodies such as Mars, diurnal surface temperatures are controlled by the surface thermal inertia, which is a measure of the ability of the surface to store heat during the day and re-radiate it at night. Thermal inertia is a compound function of the near-surface regolith thermal conductivity, density and specific heat, with the regolith thermal conductivity being strongly controlled by the atmospheric pressure. For Mars, current best maps of global thermal inertia are derived from the Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor (MGS) spacecraft using bolometric brightness temperatures of the surface. Thermal inertia is widely used in the atmospheric modeling community to determine surface temperatures and to establish lower boundary conditions for the atmosphere. Infrared radiation emitted from the surface is key in regulating lower atmospheric temperatures and driving overall global circulation. An accurate map of surface thermal inertia is thus required to produce reasonable results of the present-day atmosphere using numerical Mars climate models. Not surprisingly, thermal inertia is also a necessary input into climate models of early Mars, which assume a thicker atmosphere, by as much as one to two orders of magnitude above the present-day 6 mb mean value. Early Mars climate models broadly, but incorrectly, assume the present day thermal inertia surface distribution. Here, we demonstrate that, on early Mars, when pressures were larger than today's, the surface layer thermal inertia was globally higher because of the increased thermal conductivity driven by the higher gas pressure in interstitial pore spaces within the soil. Larger thermal inertia reduces the diurnal range of surface temperature and will affect the size and timing of the modeled seasonal polar ice caps. Additionally, it will globally alter the frequency of when surface temperatures are modeled to exceed the liquid water melting point, and so results may

  16. Martian particle size based on thermal inertia corrected for elevation-dependent atmospheric properties

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.

    1993-01-01

    Thermal inertia is commonly used to derive physical properties of the Martian surface. If the surface is composed of loosely consolidated grains, then the thermal conductivity derived from the inertia can theoretically be used to compute the particle size. However, one persistent difficulty associated with the interpretation of thermal inertia and the derivation of particle size from it has been the degree to which atmospheric properties affect both the radiation balance at the surface and the gas conductivity. These factors vary with atmospheric pressure so that derived thermal inertias and particle sizes are a function of elevation. By utilizing currently available thermal models and laboratory information, a fine component thermal inertia map was convolved with digital topography to produce particle size maps of the Martian surface corrected for these elevation-dependent effects. Such an approach is especially applicable for the highest elevations on Mars, where atmospheric back radiation and gas conductivity are low.

  17. Thermal inertia mapping of Mars from 60°S to 60°N

    USGS Publications Warehouse

    Palluconi, Frank Don; Kieffer, Hugh H.

    1981-01-01

    Twenty-micrometer brightness temperatures are used to derive the thermal inertia for 81% of the Martian surface between latitudes ±60°. These data were acquired by the two Viking Infrared Thermal Mappers in 1977 and 1978 following the two global dust storms of 1977. The spatial resolution used is 2° in latitude by 2° in longitude and the total range in derived inertia is . The distribution of thermal inertia is strongly bimodal with all values of thermal inertia less than  being associated with three disjoint bright regions mostly in the northern hemisphere. Sufficient dust is raised in global storms to provide fine material adequate to produce these low-inertia areas but the specific deposition mechanism has not been defined. At the low resolution used, no complete exposures of clean rock were found. There is some tendency for darker material to be associated with higher thermal inertia, although the trend is far from one to one. The distribution of high- and low-inertia areas is sufficiently nonrandom to produce a variation in whole-disk brightness temperature with central meridian longitude. This variation and the change in surface kinetic temperature associated with dust storms are factors in establishing the whole-disk brightness temperature at radio and infrared wavelengths and will be important for those who use Mars as a calibration source.

  18. Evaluation of thermal data for geologic applications

    NASA Technical Reports Server (NTRS)

    Kahle, A. B.; Palluconi, F. D.; Levine, C. J.; Abrams, M. J.; Nash, D. B.; Alley, R. E.; Schieldge, J. P.

    1982-01-01

    Sensitivity studies using thermal models indicated sources of errors in the determination of thermal inertia from HCMM data. Apparent thermal inertia, with only simple atmospheric radiance corrections to the measured surface temperature, would be sufficient for most operational requirements for surface thermal inertia. Thermal data does have additional information about the nature of surface material that is not available in visible and near infrared reflectance data. Color composites of daytime temperature, nighttime temperature, and albedo were often more useful than thermal inertia images alone for discrimination of lithologic boundaries. A modeling study, using the annual heating cycle, indicated the feasibility of looking for geologic features buried under as much as a meter of alluvial material. The spatial resolution of HCMM data is a major limiting factor in the usefulness of the data for geologic applications. Future thermal infrared satellite sensors should provide spatial resolution comparable to that of the LANDSAT data.

  19. The role of porosity in thermal inertia variations on basaltic lavas

    NASA Technical Reports Server (NTRS)

    Zimbelman, James R.

    1986-01-01

    Thermal inertia, defined as the square root of the product of thermal conductivity, density, and specific heat, has been noted to vary in inverse proportion to porosity in Hawaiian basalts. It is presently suggested that porosities of the order of more than 80 percent are required if the low thermal inertias observed in Martian shield volcanoes are the result of pristine lava flow surface properties. An aeolian origin is held to be most likely in view of thermal measurements on Mars; the volcanic surfaces in question are anticipated to have a short lifetime in their environment.

  20. Surface energy budget and thermal inertia at Gale Crater: Calculations from ground-based measurements.

    PubMed

    Martínez, G M; Rennó, N; Fischer, E; Borlina, C S; Hallet, B; de la Torre Juárez, M; Vasavada, A R; Ramos, M; Hamilton, V; Gomez-Elvira, J; Haberle, R M

    2014-08-01

    The analysis of the surface energy budget (SEB) yields insights into soil-atmosphere interactions and local climates, while the analysis of the thermal inertia ( I ) of shallow subsurfaces provides context for evaluating geological features. Mars orbital data have been used to determine thermal inertias at horizontal scales of ∼10 4  m 2 to ∼10 7  m 2 . Here we use measurements of ground temperature and atmospheric variables by Curiosity to calculate thermal inertias at Gale Crater at horizontal scales of ∼10 2  m 2 . We analyze three sols representing distinct environmental conditions and soil properties, sol 82 at Rocknest (RCK), sol 112 at Point Lake (PL), and sol 139 at Yellowknife Bay (YKB). Our results indicate that the largest thermal inertia I  = 452 J m -2  K -1  s -1/2 (SI units used throughout this article) is found at YKB followed by PL with I  = 306 and RCK with I  = 295. These values are consistent with the expected thermal inertias for the types of terrain imaged by Mastcam and with previous satellite estimations at Gale Crater. We also calculate the SEB using data from measurements by Curiosity's Rover Environmental Monitoring Station and dust opacity values derived from measurements by Mastcam. The knowledge of the SEB and thermal inertia has the potential to enhance our understanding of the climate, the geology, and the habitability of Mars.

  1. Surface energy budget and thermal inertia at Gale Crater: Calculations from ground-based measurements

    PubMed Central

    Martínez, G M; Rennó, N; Fischer, E; Borlina, C S; Hallet, B; de la Torre Juárez, M; Vasavada, A R; Ramos, M; Hamilton, V; Gomez-Elvira, J; Haberle, R M

    2014-01-01

    The analysis of the surface energy budget (SEB) yields insights into soil-atmosphere interactions and local climates, while the analysis of the thermal inertia (I) of shallow subsurfaces provides context for evaluating geological features. Mars orbital data have been used to determine thermal inertias at horizontal scales of ∼104 m2 to ∼107 m2. Here we use measurements of ground temperature and atmospheric variables by Curiosity to calculate thermal inertias at Gale Crater at horizontal scales of ∼102 m2. We analyze three sols representing distinct environmental conditions and soil properties, sol 82 at Rocknest (RCK), sol 112 at Point Lake (PL), and sol 139 at Yellowknife Bay (YKB). Our results indicate that the largest thermal inertia I = 452 J m−2 K−1 s−1/2 (SI units used throughout this article) is found at YKB followed by PL with I = 306 and RCK with I = 295. These values are consistent with the expected thermal inertias for the types of terrain imaged by Mastcam and with previous satellite estimations at Gale Crater. We also calculate the SEB using data from measurements by Curiosity's Rover Environmental Monitoring Station and dust opacity values derived from measurements by Mastcam. The knowledge of the SEB and thermal inertia has the potential to enhance our understanding of the climate, the geology, and the habitability of Mars. PMID:26213666

  2. Physical properties of the Mars Exploration Rover landing sites as inferred from Mini-TES-derived thermal inertia

    USGS Publications Warehouse

    Fergason, R.L.; Christensen, P.R.; Bell, J.F.; Golombek, M.P.; Herkenhoff, K. E.; Kieffer, H.H.

    2006-01-01

    The Miniature Thermal Emission Spectrometer (Mini-TES) on board the two Mars Exploration Rovers provides the first opportunity to observe thermal properties from the Martian surface, relate these properties to orbital data, and perform soil conductivity experiments under Martian conditions. The thermal inertias of soils, bedforms, and rock at each landing site were derived to quantify the physical properties of these features and understand geologic processes occurring at these localities. The thermal inertia for the. Gusev plains rock target Bonneville Beacon (???1200 J m-2 K-1 s-1/2) is consistent with a dense, basaltic rock, but the rocks at the Columbia Hills have a lower thermal inertia (???620 J m-2 K-1 s-1/2), suggesting that they have a volcaniclasic origin. Bedforms on the floors of craters at both landing sites have thermal inertias of 200 J m-2 K-1 s-1/2, consistent with a particle diameter of ???160 ??m. This diameter is comparable to the most easily moved grain size in the current atmosphere on Mars, suggesting that these bedforms may have formed under current atmospheric conditions. Along the Meridiani plains, the thermal inertia is lower than that derived from TES and Thermal Emission Imaging System (THEMIS) orbital data. This discrepancy is not well understood. Mini-TES-derived thermal inertias at Gusev along a ???2.5 km traverse follow trends in thermal inertia measured from orbit with TES and THEMIS. However, along the traverse, there are variability and mixing of particle sizes that are not resolved in the orbital thermal inertia data due to meter-scale processes that are not identifiable at larger scales. Copyright 2006 by the American Geophysical Union.

  3. THERMAL-INERTIA MAPPING IN VEGETATED TERRAIN FROM HEAT CAPACITY MAPPING MISSION SATELLITE DATA.

    USGS Publications Warehouse

    Watson, Ken; Hummer-Miller, Susanne

    1984-01-01

    Thermal-inertia data, derived from the Heat Capacity Mapping Mission (HCMM) satellite, were analyzed in areas of varying amounts of vegetation cover. Thermal differences which appear to correlate with lithologic differences have been observed previously in areas of substantial vegetation cover. However, the energy exchange occurring within the canopy is much more complex than that used to develop the methods employed to produce thermal-inertia images. Because adequate models are lacking at present, the interpretation is largely dependent on comparison, correlation, and inference. Two study areas were selected in the western United States: the Richfield, Utah and the Silver City, Arizona-New Mexico, 1 degree multiplied by 2 degree quadrangles. Many thermal-inertia highs were found to be associated with geologic-unit boundaries, faults, and ridges. Lows occur in valleys with residual soil cover.

  4. Well-preserved low thermal inertia ejecta deposits surrounding young secondary impact craters on Mars

    NASA Astrophysics Data System (ADS)

    Hill, J. R.; Christensen, P. R.

    2017-06-01

    Following the most recent updates to the Mars Odyssey Thermal Emission Imaging System daytime and nighttime infrared global mosaics, a colorized global map was produced that combines the thermophysical information from the nighttime infrared global mosaic with the morphologic context of the daytime infrared global mosaic. During the validation of this map, large numbers of low thermal inertia ejecta deposits surrounding small young impact craters were observed. A near-global survey (60°N-60°S) identified 4024 of these low thermal inertia ejecta deposits, which were then categorized based on their apparent state of degradation. Mapping their locations revealed that they occur almost exclusively in regions with intermediate-to-high thermal inertias, with distinct clusters in northern Terra Sirenum, Solis Planum, and southwestern Daedalia Planum. High-Resolution Imaging Science Experiment images show that the thermophysically distinct facies of the deposits are well correlated with the estimated average ejecta grain sizes, which decrease with radial distance from the crater. Comparisons with recent primary impact craters and secondary impact craters surrounding Zunil Crater show that the low thermal inertia ejecta deposits very closely resemble the secondary craters, but not the primary craters. We conclude that the low thermal inertia ejecta deposits are secondary impact crater ejecta deposits, many of which originated from the rayed crater primary impact events, and are both well preserved and easily identifiable due to the absence of dust cover and aeolian modification that would otherwise reduce the thermal contrast between the ejecta facies and the surrounding terrain.

  5. Comparison of Observed Surface Temperatures of 4 Vesta to the KRC Thermal Model

    NASA Technical Reports Server (NTRS)

    Titus, T. N.; Becker, K. J.; Anderson, J. A.; Capria, M. T.; Tosi, F.; DeSanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; hide

    2012-01-01

    In this work, we will compare ob-served temperatures of the surface of Vesta using data acquired by the Dawn [1] Visible and Infrared Map-ping Spectrometer (VIR-MS) [2] during the approach phase to model results from the KRC thermal model. High thermal inertia materials, such as bedrock, resist changes in temperature while temperatures of low thermal inertia material, such as dust, respond quickly to changes in solar insolation. The surface of Vesta is expected to have low to medium thermal inertia values, with the most commonly used value being extremely low at 15 TIU [4]. There are several parameters which affect observed temperatures in addition to thermal inertia: bond albedo, slope, and surface roughness. In addition to these parameters, real surfaces are rarely uniform monoliths that can be described by a single thermal inertia value. Real surfaces are often vertically layered or are mixtures of dust and rock. For Vesta's surface, with temperature extremes ranging from 50 K to 275 K and no atmosphere, even a uniform monolithic surface may have non-uniform thermal inertia due to temperature dependent thermal conductivity.

  6. Ground-Atmosphere Interactions at Gale: Determination of the Surface Energy Budget, Thermal Inertia and Water Sorption on the Regolith

    NASA Astrophysics Data System (ADS)

    Martinez, German; Renno, Nilton; Fischer, Erik; Borlina, Caue; Hallet, Bernard; De la Torre Juarez, Manuel; Vasavada, Aswhin; Gomez-Elvira, Javier

    2014-05-01

    The analysis of the Surface Energy Budget (SEB) yields insights into the local climate and the soil-atmosphere interactions, while the analysis of the thermal inertia of the shallow subsurface augments surface observations, providing information about the local geology. The Mars Global Surveyor Thermal Emission Spectrometer and the Mars Odyssey Thermal Emission Imaging System have measured near subsurface thermal inertia from orbit at scales of ~104 m2 to ~10 km2. Here we report analysis of the thermal inertia at a few locations at Gale Crater at scales of 100 m2. The thermal inertia is calculated by solving the heat conduction equation in the soil using hourly measurements by the Rover Environmental Station (REMS) ground temperature sensor as an upper boundary condition. Three Sols representative of different environmental conditions and soil properties, namely, Sol 82 at Rocknest (RCK), Sol 112 at Point Lake (PL) and Sol 139 at Yellowknife Bay (YKB) are analyzed in detail. The largest thermal inertia (I) value is found at YKB, I = 445 J m-2 K-1 s-1/2 or 445 tiu (thermal inertia unit), followed by PL with I= 300 tiu and RCK withI = 280 tiu [1]. These values are consistent with the type of terrain imaged by MastCam and with previous satellite estimates at Gale Crater [2,3]. The SEB is calculated by using all REMS data products as well as dust opacity values derived from MastCam measurements, whereas previously, the SEB has been calculated using numerical models only [4]. At each location and during the daytime, the SEB is dominated by the downwelling shortwave (SW) solar radiation (~450-500 W/m2) and the upwelling longwave (LW) radiation emitted by the surface (~300-400 W/m2). The sum of these two terms accounts for at least 70% of the net surface heating rate between 0900 and 1400 local solar time. At nighttime, the SEB is dominated by the upwelling LW radiation emitted by the surface (~50-100 W/m2) and the downwelling LW radiation from the atmosphere (~50 W/m2

  7. Implications for the Daily Variation and the Low Value of Thermal Inertia at Arabia Terra on Mars

    NASA Astrophysics Data System (ADS)

    Toyota, T.; Saruya, T.; Kurita, K.

    2010-12-01

    Active nature of the Martian surface is considered to be responsible for various styles of the atmosphere-surface interaction. Here, we propose an idea to interpret the daily variation and the low value of thermal inertia at Arabia Terra on Mars. Thermal inertia calculated with the surface temperature obtained by remote sensing exhibits daily variation and seasonal variation. Putzig and Mellon [1] suggested that horizontal or vertical heterogeneity may yield apparent thermal inertia which varies with time of day and season. However, their interpretation couldn’t completely explain the extent and the phase of the temporal variation of thermal inertia at Arabia Terra. We would like to propose another possibility to explain the characteristics of the thermal inertia at Arabia Terra. In addition, the value of thermal inertia is extremely low at Arabia Terra. Daytime thermal inertia at Arabia Terra is as low as 20 tiu [1,2], which is lower than the value of thermal inertia of 1 micron dust aggregates ( 61 tiu [3]). To explain these characteristics of Arabia Terra, we proposed an idea that condensation and sublimation of water ice at the granular surface cause the daily variation and the low value of the thermal inertia at Arabia Terra. At nighttime, water vapor condenses at the surface. Immediately after sunrise, water ice at the surface sublimates. Electric force and sublimating gas pressure could affect the porosity of the surface. We suppose that the daily variation of the thermal inertia is caused by presence of deposition/removal of water ice and the low value of the thermal inertia is caused by the higher value of the bulk porosity than random close packing. To substantiate the above model, there remain four main questions to be answered. 1) Is there sufficient water vapor at the atmosphere above Arabia Terra?, 2) Does the sufficient amount of water condense at the surface during the night?, 3) Can water vapor and other factors make the surface porosity higher

  8. Thermal Inertia of Rocks and Rock Populations and Implications for Landing Hazards on Mars

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    Rocks represent an obvious potential hazard to a landing spacecraft. They also represent an impediment to rover travel and objects of prime scientific interest. Although Mars Orbiter Camera (MOC) images are of high enough resolution to distinguish the largest rocks (an extremely small population several meters diameter or larger), traditionally the abundance and distribution of rocks on Mars have been inferred from thermal inertia and radar measurements, our meager ground truth sampling of landing sites, and terrestrial rock populations. In this abstract, we explore the effective thermal inertia of rocks and rock populations, interpret the results in terms of abundances and populations of potentially hazardous rocks, and conclude with interpretations of rock hazards on the Martian surface and in extremely high thermal inertia areas.

  9. Thermal inertias in the upper millimeters of the Martian surace derived using Phobus' shadow

    NASA Technical Reports Server (NTRS)

    Betts, Bruce H.; Murray, Bruce C.; Svitek, Tomas

    1995-01-01

    The first thermal images of Phobos' shadow on the surface of Mars, in addition to simultaneous visible images, were obtained by the Phobus '88 Termoskan instrument. The best observed shadow occurence was on the flanks of Arsia Mons. For this occurence, we combined the observed decrease in visible illumination of the surface with the observed decrease in brightness temperature to calculate thermal inertias of the Martian surface. The most realistic of our three models of eclipse cooling improves upon our preliminary model by including nonisothermal initial conditions and downward atmospheric flux. Most of our derived inertias fall within the range 38 to 59 J/Sq m/S(exp 0.5)K (0.9 to 1.4 10(exp -3)Cal/Sq m/S(exp 0.5)/K), corresponding to dust-sized particles (for a homogeneous surface), consistent with previous theories of Tharsis as a currrent area of dust deposition. Viking infrared thermal mapper (IRTM) inertias are diurnally derived and are sensitive to centimeter depths, whereas the shadow-derived inertias sample the upper tenths of a millimeter of the surface. The shadow-derived inertias are lower than those derived from Viking IRTM measurements (84 to 147), however, uncertainties in both sets of derived inertias make conclusions about layering tenuous. Thus, near-surface millimeter versus centimeter layering may exist in this region, but if it does, it is likely not very significant. Both eclipse and diurnal inertias appear to increase near the eastern end of the shadow occurence. We also analyzed a shadow occurence near the crater Herschel that showed no observed cooling. This analysis was limited by cool morning temperatures and instrument sensitivity, but yielded a lower bound of 80 on eclipse inertias in that region. Based upon our results, we strongly recommend future spacecraft thermal observations of Phobus' shadow, and suggest that they will be most useful if they improve upon Termoskan's geographic and temporal coverage and its accuracy.

  10. Thermal inertias in the upper millimeters of the Martian surface derived using Phobos' shadow

    NASA Technical Reports Server (NTRS)

    Betts, Bruce H.; Murray, Bruce C.; Svitek, Tomas

    1995-01-01

    The first thermal images of Phobos' shadow on the surface of Mars, in addition to simultaneous visible images, were obtained by the Phobos'88 Termoskan instrument. The best observed shadow occurrence was on the flanks of Arsia Mons. For this occurrence, we combined the observed decrease in visible illumination of the surface with the observed decrease in brightness temperature to calculate thermal inertias of the Martian surface. The most realistic of our three models of eclipse cooling improves upon our preliminary model by including nonisothermal initial conditions and downward atmospheric flux. Most of our derived inertias fall within the range 38 to 59 J/(sq m s(exp 1/2) K), (0.9 to 1.4 x 10(exp -3) cal/(sq cm s(exp 1/2) K)) corresponding to dust-sized particles (for a homogeneous surface), consistent with previous theories of Tharsis as a current area of dust deposition. Viking infrared thermal mapper (IRTM) inertias are diurnally derived and are sensitive to centimeter depths, whereas the shadow-derived inertias sample the upper tenths of a millimeter of the surface. The shadow-derived inertias are lower than those derived from Viking IRTM measurements (84 to 147), however, uncertainties in both sets of derived inertias make conclusions about layering tenuous. Thus, near-surface millimeter versus centimeter layering may exist in this region, but if it does, it is likely not very significant. Both eclipse and diurnal inertias appear to increase near the eastern end of the shadow occurrence. We also analyzed a shadow occurrence near the crater Herschel that showed no observed cooling. This analysis was limited by cool morning temperatures and instrument sensitivity, but yielded a lower bound of 80 on eclipse inertias in that region. Based upon our results, we strongly recommend future spacecraft thermal observations of Phobos' shadow, and suggest that they will be most useful if they improve upon Terinoskan's geographic and temporal coverage and its accuracy.

  11. Modeling the Effect of Grain Size Mixing on Thermal Inertia Values Derived from Diurnal and Seasonal THEMIS Measurements

    NASA Astrophysics Data System (ADS)

    McCarty, C.; Moersch, J.

    2017-12-01

    Sedimentary processes have slowed over Mars' geologic history. Analysis of the surface today can provide insight into the processes that may have affected it over its history. Sub-resolved checkerboard mixtures of materials with different thermal inertias (and therefore different grain sizes) can lead to differences in thermal inertia values inferred from night and day radiance observations. Information about the grain size distribution of a surface can help determine the degree of sorting it has experienced or it's geologic maturity. Standard methods for deriving thermal inertia from measurements made with THEMIS can give values for the same location that vary by as much as 20% between scenes. Such methods make the assumption that each THEMIS pixel contains material that has uniform thermophysical properties. Here we propose that if a mixture of small and large particles is present within a pixel, the inferred thermal inertia will be strongly dominated by whichever particle is warmer at the time of the measurement because the power radiated by a surface is proportional (by the Stefan-Boltzmann law) to the fourth power of its temperature. This effect will result in a change in thermal inertia values inferred from measurements taken at different times of day and night. Therefore, we expect to see correlation between the magnitude of diurnal variations in inferred thermal inertia values and the degree of grain size mixing for a given pixel location. Preliminary work has shown that the magnitude of such diurnal variation in inferred thermal inertias is sufficient to detect geologically useful differences in grain size distributions. We hypothesize that at least some of the 20% variability in thermal inertias inferred from multiple scenes for a given location could be attributed to sub-pixel grain size mixing rather than uncertainty inherent to the experiment, as previously thought. Mapping the difference in inferred thermal inertias from day and night THEMIS

  12. First Retrieval of Surface Lambert Albedos From Mars Reconnaissance Orbiter CRISM Data

    NASA Astrophysics Data System (ADS)

    McGuire, P. C.; Arvidson, R. E.; Murchie, S. L.; Wolff, M. J.; Smith, M. D.; Martin, T. Z.; Milliken, R. E.; Mustard, J. F.; Pelkey, S. M.; Lichtenberg, K. A.; Cavender, P. J.; Humm, D. C.; Titus, T. N.; Malaret, E. R.

    2006-12-01

    at 2.5 μm, 3) a physical thermal model (PTM) based upon maps of thermal inertia from TES and coarse-resolution surface slopes (SS) from MOLA, and 4) a photoclinometric extension to the PTM that uses CRISM albedos at 0.41 μm to compute the SS at CRISM spatial resolution. For the thermal correction, we expect that each of these 4 different techniques will be valuable for some fraction of the observations.

  13. Use of thermal inertia determined by HCMM to predict nocturnal cold prone areas in Florida

    NASA Technical Reports Server (NTRS)

    Allen, L. H., Jr. (Principal Investigator)

    1983-01-01

    Pairs of HCMM day-night thermal infrared (IR) data were selected during the 1978-79 winter to examine patterns of surface temperature and thermal inertia (TI) of peninsular Florida. The GOES and NOAA-6 thermal IR, as well as National Climatic Center temperatures and rainfall, were also used. The HCMM apparent thermal inertia (ATI) images closely corresponded to the general soil map of Florida, based on soil drainage classes. Areas with low ATI overlay well-drained soils, such as deep sands and drained organic soils, whereas with high ATI overlay areas with wetlands and bodies of water. The HCMM ATI images also corresponded well with GOES-detected winter nocturnal cold-prone areas. Use of HCMM data with Carlson's energy balance model showed both high moisture availability (MA) and high thermal inertia (TI) of wetland-type surfaces and low MA and low TI of upland, well-drained soils. Since soil areas with low TI develop higher temperatures during the day, then antecedent patterns of highest maximum daytime surface temperature can also be used to predict nocturnal cold-prone areas in Florida.

  14. The joint influence of albedo and insulation on roof performance: An observational study

    DOE PAGES

    Ramamurthy, P.; Sun, T.; Rule, K.; ...

    2015-02-23

    We focus on understanding the temperature and heat flux fields in building roofs, and how they are modulated by the interacting influences of albedo and insulation at annual, seasonal and diurnal scales. High precision heat flux plates and thermocouples were installed over multiple rooftops of varying insulation thickness and albedo in the Northeastern United States to monitor the temperature and the heat flux into and out of the roof structures for a whole year. This analysis shows that while membrane reflectivity (albedo) plays a dominant role in reducing the heat conducted inward through the roof structures during the warmer months,more » insulation thickness becomes the main roof attribute in preventing heat loss from the buildings during colder months. On a diurnal scale, the thermal state of the white roof structures fluctuated little compared to black roof structures; membrane temperature over white roofs ranged between 10 °C and 45 °C during summer months compared to black membranes that ranged between 10 °C and 80 °C. Insulation thickness, apart from reducing the heat conducted through the roof structure, also delayed the transfer of heat, owing to the thermal inertia of the insulation layer. Furthermore, this has important implications for determining the peak heating and cooling times.« less

  15. The joint influence of albedo and insulation on roof performance: An observational study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramamurthy, P.; Sun, T.; Rule, K.

    We focus on understanding the temperature and heat flux fields in building roofs, and how they are modulated by the interacting influences of albedo and insulation at annual, seasonal and diurnal scales. High precision heat flux plates and thermocouples were installed over multiple rooftops of varying insulation thickness and albedo in the Northeastern United States to monitor the temperature and the heat flux into and out of the roof structures for a whole year. This analysis shows that while membrane reflectivity (albedo) plays a dominant role in reducing the heat conducted inward through the roof structures during the warmer months,more » insulation thickness becomes the main roof attribute in preventing heat loss from the buildings during colder months. On a diurnal scale, the thermal state of the white roof structures fluctuated little compared to black roof structures; membrane temperature over white roofs ranged between 10 °C and 45 °C during summer months compared to black membranes that ranged between 10 °C and 80 °C. Insulation thickness, apart from reducing the heat conducted through the roof structure, also delayed the transfer of heat, owing to the thermal inertia of the insulation layer. Furthermore, this has important implications for determining the peak heating and cooling times.« less

  16. Geologic applications of thermal-inertia mapping from satellite. [Powder River, Wyoming; Cubeza Prieta, Arizona, and Yellowstone National Park

    NASA Technical Reports Server (NTRS)

    Offield, T. W. (Principal Investigator); Watson, K.; Hummer-Miller, S.

    1981-01-01

    In the Powder River Basin, Wyo., narrow geologic units having thermal inertias which contrast with their surroundings can be discriminated in optimal images. A few subtle thermal inertia anomalies coincide with areas of helium leakage believed to be associated with deep oil and gas concentrations. The most important results involved delineation of tectonic framework elements some of which were not previously recognized. Thermal and thermal inertia images also permit mapping of geomorphic textural domains. A thermal lineament appears to reveal a basement discontinuity which involves the Homestake Mine in the Black Hill, a zone of Tertiary igneous activity and facies control in oil producing horizons. Applications of these data to the Cabeza Prieta, Ariz., area illustrate their potential for igneous rock type discrimination. Extension to Yellowstone National Park resulted in the detection of additional structural information but surface hydrothermal features could not be distinguished with any confidence. A thermal inertia mapping algorithm, a fast and accurate image registration technique, and an efficient topographic slope and elevation correction method were developed.

  17. Characterization of the High-Albedo NEA 3691 Bede

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Lederer, Susan M.; Jehin, Emmanuel; Rozitis, Benjamin; Jefferson, Jeffrey D.; Nelson, Tyler W.; Dotson, Jessie L.; Ryan, Erin L.; Howell, Ellen S.; Fernandez, Yanga R.; hide

    2016-01-01

    Characterization of NEAs provides important inputs to models for atmospheric entry, risk assessment and mitigation. Diameter is a key parameter because diameter translates to kinetic energy in atmospheric entry. Diameters can be derived from the absolute magnitude, H(PA=0deg), and from thermal modeling of observed IR fluxes. For both methods, the albedo (pv) is important - high pv surfaces have cooler temperatures, larger diameters for a given Hmag, and shallower phase curves (larger slope parameter G). Thermal model parameters are coupled, however, so that a higher thermal inertia also results in a cooler surface temperature. Multiple parameters contribute to constraining the diameter. Observations made at multiple observing geometries can contribute to understanding the relationships between and potentially breaking some of the degeneracies between parameters. We present data and analyses on NEA 3691 Bede with the aim of best constraining the diameter and pv from a combination of thermal modeling and light curve analyses. We employ our UKIRT+Michelle mid-IR photometric observations of 3691 Bede's thermal emission at 2 phase angles (27&43 deg 2015-03-19 & 04-13), in addition to WISE data (33deg 2010-05-27, Mainzer+2011). Observing geometries differ by solar phase angles and by moderate changes in heliocentric distance (e.g., further distances produce somewhat cooler surface temperatures). With the NEATM model and for a constant IR beaming parameter (eta=constant), there is a family of solutions for (diameter, pv, G, eta) where G is the slope parameter from the H-G Relation. NEATM models employing Pravec+2012's choice of G=0.43, produce D=1.8 km and pv˜0.4, given that G=0.43 is assumed from studies of main belt asteroids (Warner+2009). We present an analysis of the light curve of 3691 Bede to constrain G from observations. We also investigate fitting thermophysical models (TPM, Rozitis+11) to constrain the coupled parameters of thermal inertia (Gamma) and surface

  18. Characterization of the high-albedo NEA 3691 Bede

    NASA Astrophysics Data System (ADS)

    Wooden, Diane H.; Lederer, Susan M.; Jehin, Emmanuel; Rozitis, Benjamin; Jefferson, Jeffrey D.; Nelson, Tyler W.; Dotson, Jessie L.; Ryan, Erin L.; Howell, Ellen S.; Fernandez, Yanga R.; Lovell, Amy J.; Woodward, Charles E.; Harker, David Emerson

    2016-10-01

    Characterization of NEAs provides important inputs to models for atmospheric entry, risk assessment and mitigation. Diameter is a key parameter because diameter translates to kinetic energy in atmospheric entry. Diameters can be derived from the absolute magnitude, H(PA=0deg), and from thermal modeling of observed IR fluxes. For both methods, the albedo (pv) is important - high pv surfaces have cooler temperatures, larger diameters for a given Hmag, and shallower phase curves (larger slope parameter G). Thermal model parameters are coupled, however, so that a higher thermal inertia also results in a cooler surface temperature. Multiple parameters contribute to constraining the diameter.Observations made at multiple observing geometries can contribute to understanding the relationships between and potentially breaking some of the degeneracies between parameters. We present data and analyses on NEA 3691 Bede with the aim of best constraining the diameter and pv from a combination of thermal modeling and light curve analyses. We employ our UKIRT+Michelle mid-IR photometric observations of 3691 Bede's thermal emission at 2 phase angles (27&43 deg 2015-03-19 & 04-13), in addition to WISE data (33deg 2010-05-27, Mainzer+2011).Observing geometries differ by solar phase angles and by moderate changes in heliocentric distance (e.g., further distances produce somewhat cooler surface temperatures). With the NEATM model and for a constant IR beaming parameter (eta=constant), there is a family of solutions for (diameter, pv, G, eta) where G is the slope parameter from the H-G Relation. NEATM models employing Pravec+2012's choice of G=0.43, produce D=1.8 km and pv≈0.4, given that G=0.43 is assumed from studies of main belt asteroids (Warner+2009). We present an analysis of the light curve of 3691 Bede to constrain G from observations. We also investigate fitting thermophysical models (TPM, Rozitis+11) to constrain the coupled parameters of thermal inertia (Gamma) and surface

  19. Iapetus Surface Temperatures, and the Influence of Sublimation on the Albedo Dichotomy: Cassini CIRS Constraints

    NASA Astrophysics Data System (ADS)

    Spencer, J. R.; Pearl, J. C.; Segura, M.; Cassini CIRS Team

    2005-08-01

    The Composite Infrared Spectrometer (CIRS) on the Cassini orbiter obtained extensive observations of Iapetus' thermal emission during the New Year 2005 flyby, with best 8 - 16 μ m spatial resolution of 35 km per pixel. Observed subsolar temperatures on the dark terrain reach nearly 130 K, much warmer than any other satellite surface in the Saturn system, due to the combination of low albedo and slow rotation. These high temperatures mean that, uniquely in the Saturn system, water ice sublimation rates are significant at low latitudes on Iapetus' dark side, and surface water ice is probably not stable there on geological timescales. This result is consistent with the lack of water ice at low latitudes on the dark terrain inferred from Cassini UVIS UV spectra (Hendrix et al., 2005 LPSC). Thermally-controlled migration of water ice may thus contribute to the curious shape of the light/dark boundary on Iapetus, with bright poles and dark terrain extending round the equator onto the trailing side. Impacts of Saturn-centric or prograde heliocentric material cannot alone explain this shape, as their impact flux depends only on distance from the apex of motion (though the impact distribution of Oort cloud comet dust may be consistent with the observed albedo pattern (Cook and Franklin 1970)). We model the ballistic migration of water ice across the surface of Iapetus, determining temperatures and sublimation rates assuming CIRS-constrained thermal inertia and a simple dependence of albedo on distance from the apex of motion. Water ice is lost rapidly from low latitudes on the dark leading side and accumulates near the poles, and is also lost, though more slowly, in equatorial regions near the sub-Saturn and anti-Saturn points. The resulting water ice distribution pattern matches the distribution of Iapetus' bright terrain remarkably well. Albedo modification by thermal migration can thus help to reconcile Iapetus' albedo patterns with albedo control by Saturn-centric or

  20. Sulfates on Mars: TES Observations and Thermal Inertia Data

    NASA Astrophysics Data System (ADS)

    Cooper, C. D.; Mustard, J. F.

    2001-05-01

    The high resolution thermal emission spectra returned by the TES spectrometer on the MGS spacecraft have allowed the mapping of a variety of minerals and rock types by different sets of researchers. Recently, we have used a linear deconvolution approach to compare sulfate-palagonite soil mixtures created in the laboratory with Martian surface spectra. This approach showed that a number of areas on Mars have spectral properties that match those of sulfate-cemented soils (but neither loose powder mixtures of sulfates and soils nor sand-sized grains of disaggregated crusted soils). These features do not appear to be caused by atmospheric or instrumental effects and are thus believed to be related to surface composition and texture. The distribution and physical state of sulfate are important pieces of information for interpreting surface processes on Mars. A number of different mechanisms could have deposited sulfate in surface layers. Some of these include evaporation of standing bodies of water, aerosol deposition of volcanic gases, hydrothermal alteration from groundwater, and in situ interaction between the atmosphere and soil. The areas on Mars with cemented sulfate signatures are spread across a wide range of elevations and are generally large in spatial scale. Some of the areas are associated with volcanic regions, but many are in dark red plains that have previously been interpreted as duricrust deposits. Our current work compares the distribution of sulfate-cemented soils as mapped by the spectral deconvolution approach with thermal inertia maps produced from both Viking and MGS-TES. Duricrust regions, interpreted from intermediate thermal inertia values, are large regions thought to be sulfate-cemented soils similar to coherent, sulfate-rich materials seen at the Viking lander sites. Our observations of apparent regions of cemented sulfate are also large in spatial extent. This scale information is important for evaluating formation mechanisms for the

  1. A Global Map of Thermal Inertia from Mars Global Surveyor Mapping-Mission Data

    NASA Technical Reports Server (NTRS)

    Mellon, M. T.; Kretke, K. A.; Smith, M. D.; Pelkey, S. M.

    2002-01-01

    TES (thermal emission spectrometry) has obtained high spatial resolution surface temperature observations from which thermal inertia has been derived. Seasonal coverage of these data now provides a nearly global view of Mars, including the polar regions, at high resolution. Additional information is contained in the original extended abstract.

  2. Regional thermal-inertia mapping from an experimental satellite ( Powder River basin, Wyoming).

    USGS Publications Warehouse

    Watson, K.

    1982-01-01

    A new experimental satellite has provided, for the first time, thermal data that should be useful in reconnaissance geologic exploration. Thermal inertia, a property of geologic materials, can be mapped from these data by applying an algorithm that has been developed using a new thermal model. A simple registration procedure was used on a pair of day and night images of the Powder River basin, Wyoming, to illustrate the method.-from Author

  3. Microwave brightness temperature and thermal inertia - towards synergistic method of high-resolution soil moisture retrieval

    NASA Astrophysics Data System (ADS)

    Lukowski, Mateusz; Usowicz, Boguslaw; Sagan, Joanna; Szlazak, Radoslaw; Gluba, Lukasz; Rojek, Edyta

    2017-04-01

    Soil moisture is an important parameter in many environmental studies, as it influences the exchange of water and energy at the interface between the land surface and the atmosphere. Accurate assessment of the soil moisture spatial and temporal variations is crucial for numerous studies; starting from a small scale of single field, then catchment, mesoscale basin, ocean conglomeration, finally ending at the global water cycle. Despite numerous advantages, such as fine accuracy (undisturbed by clouds or daytime conditions) and good temporal resolution, passive microwave remote sensing of soil moisture, e.g. SMOS and SMAP, are not applicable to a small scale - simply because of too coarse spatial resolution. On the contrary, thermal infrared-based methods of soil moisture retrieval have a good spatial resolution, but are often disturbed by clouds and vegetation interferences or night effects. The methods that base on point measurements, collected in situ by monitoring stations or during field campaigns, are sometimes called "ground truth" and may serve as a reference for remote sensing, of course after some up-scaling and approximation procedures that are, unfortunately, potential source of error. Presented research concern attempt to synergistic approach that join two remote sensing methods: passive microwave and thermal infrared, supported by in situ measurements. Microwave brightness temperature of soil was measured by ELBARA, the radiometer at 1.4 GHz frequency, installed at 6 meters high tower at Bubnow test site in Poland. Thermal inertia around the tower was modelled using the statistical-physical model whose inputs were: soil physical properties, its water content, albedo and surface temperatures measured by an infrared pyrometer, directed at the same footprint as ELBARA. The results coming from this method were compared to in situ data obtained during several field campaigns and by the stationary agrometeorological stations. The approach seems to be

  4. Thermal studies of Martian channels and valleys using Termoskan data: New results

    NASA Technical Reports Server (NTRS)

    Betts, B. H.; Murray, B. C.

    1993-01-01

    The Termoskan instrument onboard the Phobos '88 spacecraft acquired the highest-spatial-resolution thermal data ever obtained for Mars. Included in the thermal images are 2 km/pixel midday observations of several major channel and valley systems, including significant portions of Shalbatana Vallis, Ravi Vallis, Al-Qahira Vallis, Ma'adim Vallis, the channel connecting Valles Marineris with Hydraotes Chaos, and channel material in Eos Chasma. Termoskan also observed small portions of the southern beginnings of Simud, Tiu, and Ares Valles and some channel material in Gangis Chasma. Simultaneous broad band visible data were obtained for all but Ma'adim Vallis. We find that most of the channels and valleys have higher inertias than their surroundings, consistent with Viking IRTM-based thermal studies of Martian channels. We see for the first time that thermal inertia boundaries closely match all flat channel floor boundaries. Combining Termoskan thermal data, relative observations from Termoskan visible channel data, Viking absolute bolometric albedos, and a thermal model of the Mars surface, we have derived lower bounds on channel thermal inertias. Lower bounds on typical channel thermal inertias range from 8.4 to 12.5 (10(exp -3) cal cm(exp -2) s(exp -1/2)K(exp -1)) (352 to 523 in SI units). Lower bounds on inertia differences with the surrounding heavily cratered plains range from 1.1 to 3.5 (46 to 147 in SI units). Atmospheric and geometric effects are not sufficient to cause the inertia enhancements. We agree with previous researchers that localized, dark, high inertia areas within channels are likely eolian in nature. However, the Temloskan data show that eolian deposits do not fill the channels, nor are they responsible for the overall thermal inertia enhancement. Thermal homogeneity and strong correlation of thermal boundaries with the channel floor boundaries lead us to favor noneolian overall explanations.

  5. Structure of the Saint Francois Mountains and surrounding lead belt, S.E. Missouri: Inference from thermal IR and other data sets

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E. (Principal Investigator)

    1982-01-01

    Progress in the preparation of manuscripts on the discovery of a Precambrian rift running NW-SE through Missouri as seen in free air and Bouguer gravity anomalies and in HCMM data, and on digital image processing of potential field and topographic data on the rift is reported. Copies of the papers are attached. Contrast-enhanced HCMM images that have been transformed to Mercator projections are presented. Shaded relief map overlays of thermal and apparent thermal inertia images used as part of a masers thesis examining correlations between HCMM data products, linears, and geologic units are presented. Progress in examination of the difference in information content of daytime infrared, night time infrared, albedo, and thermal inertia images and their application to he identification of linears not directly controlled by topography is reported. Thermal infrared and albedo data were coded as hue, saturation and brightness values to generate a color display, which is included.

  6. Thermal inertia mapping of below ground objects and voids

    NASA Astrophysics Data System (ADS)

    Del Grande, Nancy K.; Ascough, Brian M.; Rumpf, Richard L.

    2013-05-01

    Thermal inertia (effusivity) contrast marks the borders of naturally heated below ground object and void sites. The Dual Infrared Effusivity Computed Tomography (DIRECT) method, patent pending, detects and locates the presence of enhanced heat flows from below ground object and void sites at a given area. DIRECT maps view contrasting surface temperature differences between sites with normal soil and sites with soil disturbed by subsurface, hollow or semi-empty object voids (or air gaps) at varying depths. DIRECT utilizes an empirical database created to optimize the scheduling of daily airborne thermal surveys to view and characterize unseen object and void types, depths and volumes in "blind" areas.

  7. Phase-Angle Dependence of Determinations of Diameter, Albedo, and Taxonomy: A Case Study of NEO 3691 Bede

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Lederer, Susan M.; Jehin, Emmanuel; Howell, Ellen S.; Fernandez, Yan; Harker, David E.; Ryan, Erin; Lovell, Amy; Woodward, Charles E.; Benner, Lance A.

    2015-01-01

    Parameters important for NEO risk assessment and mitigation include Near-Earth Object diameter and taxonomic classification, which translates to surface composition. Diameters of NEOs are derived from the thermal fluxes measured by WISE, NEOWISE, Spitzer Warm Mission and ground-based telescopes including the IRTF and UKIRT. Diameter and its coupled parameters Albedo and IR beaming parameter (a proxy for thermal inertia and/or surface roughness) are dependent upon the phase angle, which is the Sun-target-observer angle. Orbit geometries of NEOs, however, typically provide for observations at phase angles greater than 20 degrees. At higher phase angles, the observed thermal emission is sampling both the day and night sides of the NEO. We compare thermal models for NEOs that exclude (NEATM) and include (NESTM) night-side emission. We present a case study of NEO 3691 Bede, which is a higher albedo object, X (Ec) or Cgh taxonomy, to highlight the range of H magnitudes for this object (depending on the albedo and phase function slope parameter G), and to examine at different phase angles the taxonomy and thermal model fits for this NEO. Observations of 3691 Bede include our observations with IRTF+SpeX and with the 10 micrometer UKIRT+Michelle instrument, as well as WISE and Spitzer Warm mission data. By examining 3691 Bede as a case study, we highlight the interplay between the derivation of basic physical parameters and observing geometry, and we discuss the uncertainties in H magnitude, taxonomy assignment amongst the X-class (P, M, E), and diameter determinations. Systematic dependencies in the derivation of basic characterization parameters of H-magnitude, diameter, albedo and taxonomy with observing geometry are important to understand. These basic characterization parameters affect the statistical assessments of the NEO population, which in turn, affects the assignment of statistically-assessed basic parameters to discovered but yet-to-be-fully-characterized NEOs.

  8. Surfaces of Europa, Ganymede, and Callisto: an investigation using Voyager IRIS thermal infrared spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, J.R.

    1987-01-01

    In 1979, the IRIS infrared spectrometers on the two Voyager spacecraft obtained over 1000 disk-resolved thermal emission spectra of Europa, Ganymede, and Callisto, Jupiter's three large icy satellites. This dissertation describes the first detailed analysis of this data set. Ganymede and Callisto subsolar temperatures are 10 and 5/sup 0/K, respectively, below equilibrium values. Equatorial nighttime temperatures are between 100 and 75/sup 0/K, Callisto and Europa being colder than Ganymede. The diurnal temperature profiles can be matched by 2-layer surfaces that are also consistent with the eclipse cooling observed from earth, though previous eclipse models underestimated thermal inertias by about 50%.more » Substrate thermal inertias in the 2-layer models are a factor of several lower than for solid ice. These are cold spots on Ganymede and Callisto that are not high-albedo regions, which may indicate large thermal inertia anomalies.« less

  9. THEMIS high-resolution digital terrain: Topographic and thermophysical mapping of Gusev Crater, Mars

    USGS Publications Warehouse

    Cushing, G.E.; Titus, T.N.; Soderblom, L.A.; Kirk, R.L.

    2009-01-01

    We discuss a new technique to generate high-resolution digital terrain models (DTMs) and to quantitatively derive and map slope-corrected thermophysical properties such as albedo, thermal inertia, and surface temperatures. This investigation is a continuation of work started by Kirk et al. (2005), who empirically deconvolved Thermal Emission Imaging System (THEMIS) visible and thermal infrared data of this area, isolating topographic information that produced an accurate DTM. Surface temperatures change as a function of many variables such as slope, albedo, thermal inertia, time, season, and atmospheric opacity. We constrain each of these variables to construct a DTM and maps of slope-corrected albedo, slope- and albedo-corrected thermal inertia, and surface temperatures across the scene for any time of day or year and at any atmospheric opacity. DTMs greatly facilitate analyses of the Martian surface, and the MOLA global data set is not finely scaled enough (128 pixels per degree, ???0.5 km per pixel near the equator) to be combined with newer data sets (e.g., High Resolution Imaging Science Experiment, Context Camera, and Compact Reconnaissance Imaging Spectrometer for Mars at ???0.25, ???6, and ???20 m per pixel, respectively), so new techniques to derive high-resolution DTMs are always being explored. This paper discusses our technique of combining a set of THEMIS visible and thermal infrared observations such that albedo and thermal inertia variations within the scene are eliminated and only topographic variations remain. This enables us to produce a high-resolution DTM via photoclinometry techniques that are largely free of albedo-induced errors. With this DTM, THEMIS observations, and a subsurface thermal diffusion model, we generate slope-corrected maps of albedo, thermal inertia, and surface temperatures. In addition to greater accuracy, these products allow thermophysical properties to be directly compared with topography.

  10. The radiobrightness thermal inertia measure of soil moisture

    NASA Technical Reports Server (NTRS)

    England, Anthony W.; Galantowicz, John F.; Schretter, Mindy S.

    1992-01-01

    Radiobrightness thermal inertia (RTI) is proposed as a method for using day-night differences in satellite-sensed radiobrightness to monitor the moisture of Great Plains soils. Diurnal thermal and radiobrightness models are used to examine the sensitivity of the RTI method. Model predictions favor use of the 37.0 and 85.5 GHz, H-polarized channels of the Special Sensor Microwave/Imager (SSM/I). The model further predicts that overflight times near 2:00 AM/PM would be nearly optimal for RTI, that midnight/noon and 4:00 AM/PM are nearly as good, but that the 6:00 AM/PM overflight times of the current SSM/I are particularly poor. Data from the 37.0 GHz channel of the Scanning Multichannel Microwave Radiometer (SMMR) are used to demonstrate that the method is plausible.

  11. Compensating for environmental variability in the thermal inertia approach to remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Idso, S. B.; Jackson, R. D.; Reginato, R. J.

    1976-01-01

    A procedure is developed for removing data scatter in the thermal-inertia approach to remote sensing of soil moisture which arises from environmental variability in time and space. It entails the utilization of nearby National Weather Service air temperature measurements to normalize measured diurnal surface temperature variations to what they would have been for a day of standard diurnal air temperature variation, arbitrarily assigned to be 18 C. Tests of the procedure's basic premise on a bare loam soil and a crop of alfalfa indicate it to be conceptually sound. It is possible that the technique could also be useful in other thermal-inertia applications, such as lithographic mapping.

  12. The Origin of Regional Dust Deposits on Mars

    NASA Technical Reports Server (NTRS)

    Christensen, P. R.

    1985-01-01

    Recently, additional evidence was derived from the Viking Infrared Thermal Mapper observations that allows a more complete model for the formation of Low Thermal inertia-high Albedo regions to be proposed. The first observation is that dust appears to be currently accumulating in the low thermal inertia regions. Following each global dust storm a thin layer of dust is deposited globally, as evidenced by an increase in surface albedo seen from orbit and from the Viking Lander sites. During the period following the storm, the bright dust fallout is subsequently removed from low albedo regions, as indicated by the post-storm darkening of these surfaces and by an increase in the atmospheric dust content over dark regions relative to the bright, low thermal inertia regions. Thus, the fine dust storm material is removed from dark regions but not from the bright regions, resulting in a net accumulation within the bright, low thermal inertia regions. Once deposition has begun, the covering of exposed rocks and sand and the accumulation of fine material on the surface make removal of material increasingly difficult, thereby enhancing the likelihood that material will accumulate within the low thermal inertia regions.

  13. Physical properties (particle size, rock abundance) from thermal infrared remote observations: Implications for Mars landing sites

    NASA Technical Reports Server (NTRS)

    Christensen, P. R.; Edgett, Kenneth S.

    1994-01-01

    Critical to the assessment of potential sites for the 1997 Pathfinder landing is estimation of general physical properties of the martian surface. Surface properties have been studied using a variety of spacecraft and earth-based remote sensing observations, plus in situ studies at the Viking lander sites. Because of their value in identifying landing hazards and defining scientific objectives, we focus this discussion on thermal inertia and rock abundance derived from middle-infrared (6 to 30 microns) observations. Used in conjunction with other datasets, particularly albedo and Viking orbiter images, thermal inertia and rock abundance provide clues about the properties of potential Mars landing sites.

  14. Role of the Soil Thermal Inertia in the short term variability of the surface temperature and consequences for the soil-moisture temperature feedback

    NASA Astrophysics Data System (ADS)

    Cheruy, Frederique; Dufresne, Jean-Louis; Ait Mesbah, Sonia; Grandpeix, Jean-Yves; Wang, Fuxing

    2017-04-01

    A simple model based on the surface energy budget at equilibrium is developed to compute the sensitivity of the climatological mean daily temperature and diurnal amplitude to the soil thermal inertia. It gives a conceptual framework to quantity the role of the atmospheric and land surface processes in the surface temperature variability and relies on the diurnal amplitude of the net surface radiation, the sensitivity of the turbulent fluxes to the surface temperature and the thermal inertia. The performances of the model are first evaluated with 3D numerical simulations performed with the atmospheric (LMDZ) and land surface (ORCHIDEE) modules of the Institut Pierre Simon Laplace (IPSL) climate model. A nudging approach is adopted, it prevents from using time-consuming long-term simulations required to account for the natural variability of the climate and allow to draw conclusion based on short-term (several years) simulations. In the moist regions the diurnal amplitude and the mean surface temperature are controlled by the latent heat flux. In the dry areas, the relevant role of the stability of the boundary layer and of the soil thermal inertia is demonstrated. In these regions, the sensitivity of the surface temperature to the thermal inertia is high, due to the high contribution of the thermal flux to the energy budget. At high latitudes, when the sensitivity of turbulent fluxes is dominated by the day-time sensitivity of the sensible heat flux to the surface temperature and when this later is comparable to the thermal inertia term of the sensitivity equation, the surface temperature is also partially controlled by the thermal inertia which can rely on the snow properties; In the regions where the latent heat flux exhibits a high day-to-day variability, such as transition regions, the thermal inertia has also significant impact on the surface temperature variability . In these not too wet (energy limited) and not too dry (moisture-limited) soil moisture (SM

  15. A closer look at Galileo Thermal data from a Possible Plume Source North of Pwyll, Europa

    NASA Astrophysics Data System (ADS)

    Rathbun, J. A.; Spencer, J. R.

    2017-12-01

    Two different observing techniques, both employing the Hubble Space Telescope, have found evidence for plumes just off Europa's limb (Roth et al., 2014; Sparks et al., 2016). More recent observations using the Jovian transit technique enabled Sparks et al. (2017) to determine that one location was the source of two separate detections: just north of the impact crater Pwyll at 275 W, -16 S, a region we informally call North Pwyll. This source was detected on March 17, 2014 and February 22, 2016. Coinciding with this source is a broad thermal anomaly observed by the Galileo Photopolarimeter-Radiometer (PPR) during the Europan night (Sparks et al., 2017; Spencer et al., 1999). Rathbun et al. (2010) determined detection limits for the PPR observations and found that a 100 km2 hotspot in the vicinity of North Pwyll would have been detected if it had a temperature above about 150 K. We took a closer look at the PPR data and found that there are 5 PPR observations that include the North Pwyll region, at local times varying from midway between midnight and sunrise (the data already published) through midway between sunrise and noon. While at least one observation near noon is required for a complete measurement of the diurnal variation, we were able to fit a thermal model to the available data and found that endogenic heating is not required and that the data can be fit using an albedo of 0.4 and a thermal inertia of 114 in MKS units. Due to the sparseness and noisiness of the data, these values are very uncertain. Rathbun et al. (2010) found Europa's thermal inertias to be in the range of 20-140 MKS and albedos 0.3-0.7, so North Pwyll has a high thermal inertia and low albedo. Unfortunately, the high latitude of the other putative plume source locations (63 S and 75 S) puts them in areas poorly imaged by PPR.

  16. On the metal-rich surfaces of (16) Psyche and other M-type asteroids from interferometric observations in the thermal infrared

    NASA Astrophysics Data System (ADS)

    Delbo, Marco; Matter, A.; Gundlach, B.; Blum, J.

    2013-10-01

    Asteroids belonging to the spectroscopic M-type exhibit a quasi featureless and moderately red reflectance spectrum and a geometric visible albedo between 0.1 and 0.3. These asteroids were initially thought to be metallic cores of differentiated asteroids that were exposed to space by a catastrophic disruption by impacts. Later, this view has been challenged by the detection of silicates and hydration spectroscopic bands on these bodies. Unveiling the physical properties of the surfaces of these asteroids, and identifying their meteorite analogs is a challenge from remote-sensing observations. Nevertheless, these are crucial problems, important for estimating the number of asteroids that underwent differentiation in the early phases of the formation of our solar system. The thermal inertia is a sensitive indicator for the presence of metal in the regolith on the surfaces of asteroids. We developed a new thermophysical model that allow us to derive the value of the thermal inertia from interferometric observations in the thermal infrared. We report on our investigation of the thermal inertia of M-type asteroids, including the asteroids (16) Psyche, for which we obtained a thermal inertia value anomalously high compared to the thermal inertia values of other asteroids in the same size range. From the thermal inertia and model of heat conductivity that accounts for different values of the packing fraction (a measure of the degree of compaction of the regolith particles) the regolith grain size is derived.

  17. Thermophysical modeling of main-belt asteroids from WISE thermal data

    NASA Astrophysics Data System (ADS)

    Hanuš, J.; Delbo', M.; Ďurech, J.; Alí-Lagoa, V.

    2018-07-01

    By means of a varied-shape thermophysical model of Hanuš et al. (2015) that takes into account asteroid shape and pole uncertainties, we analyze the thermal infrared data acquired by the NASA's Wide-field Infrared Survey Explorer of about 300 asteroids with derived convex shape models. We utilize publicly available convex shape models and rotation states as input for the thermophysical modeling. For more than one hundred asteroids, the thermophysical modeling gives us an acceptable fit to the thermal infrared data allowing us to report their thermophysical properties such as size, thermal inertia, surface roughness or visible geometric albedo. This work more than doubles the number of asteroids with determined thermophysical properties, especially the thermal inertia. In the remaining cases, the shape model and pole orientation uncertainties, specific rotation or thermophysical properties, poor thermal infrared data or their coverage prevent the determination of reliable thermophysical properties. Finally, we present the main results of the statistical study of derived thermophysical parameters within the whole population of main-belt asteroids and within few asteroid families. Our sizes based on TPM are, in average, consistent with the radiometric sizes reported by Mainzer et al. (2016). The thermal inertia increases with decreasing size, but a large range of thermal inertia values is observed within the similar size ranges between D ∼ 10-100 km. We derived unexpectedly low thermal inertias ( < 20 J m-2 s- 1 / 2 K-1) for several asteroids with sizes 10 < D < 50 km, indicating a very fine and mature regolith on these small bodies. The thermal inertia values seem to be consistent within several collisional families, however, the statistical sample is in all cases rather small. The fast rotators with rotation period P ≲ 4 h tend to have slightly larger thermal inertia values, so probably do not have a fine regolith on the surface. This could be explained, for

  18. Formation of Iapetus' extreme albedo dichotomy by exogenically triggered thermal ice migration.

    PubMed

    Spencer, John R; Denk, Tilmann

    2010-01-22

    The extreme albedo asymmetry of Saturn's moon Iapetus, which is about 10 times as bright on its trailing hemisphere as on its leading hemisphere, has been an enigma for three centuries. Deposition of exogenic dark material on the leading side has been proposed as a cause, but this alone cannot explain the global shape, sharpness, and complexity of the transition between Iapetus' bright and dark terrain. We demonstrate that all these characteristics, and the asymmetry's large amplitude, can be plausibly explained by runaway global thermal migration of water ice, triggered by the deposition of dark material on the leading hemisphere. This mechanism is unique to Iapetus among the saturnian satellites because its slow rotation produces unusually high daytime temperatures and water ice sublimation rates for a given albedo.

  19. Geologic application of thermal inertia imaging using HCMM data. [Walker Lane, Nevada; San Rafael, Utah; and Death Valley and Pisgah Crater, Lavic Lake Region, California

    NASA Technical Reports Server (NTRS)

    Kahle, A. B.; Schieldge, J. P.; Abrams, M. J.; Alley, R. E.; Levine, C. J. (Principal Investigator)

    1981-01-01

    Three test sites in the western US were selected to discriminate among surface geologic materials on the basis of their thermal properties as determined from HCMM data. Attempts to determine quantitatively accurate thermal inertia values from HCMM digital data met with only partial success due to the effects of sensor miscalibrations, radiative transfer in the atmosphere, and varying meteorology and elevation across a scene. In most instances, apparent thermal inertia was found to be an excellent qualitative representation of true thermal inertia. Computer processing of digital day and night HCMM data allowed construction of geologically useful images. At some test sites, more information was provided by data than LANDSAT data. Soil moisture effects and differences in spectrally dark materials were more effectively displayed using the thermal data.

  20. Correlations Between Olivine Abundance and Thermal Inertia: Implications for Global Weathering and/or Alteration on Mars

    NASA Astrophysics Data System (ADS)

    Hamilton, V. E.; McDowell, M. L.; Koeppen, W. C.

    2010-03-01

    TES data show no global trend between thermal inertia and olivine abundance. But it is premature to conclude that all dark surfaces were once more mafic OR that olivine is not preferentially removed from olivine-enriched outcrops as they erode.

  1. The Albedo of Kepler's Small Worlds

    NASA Astrophysics Data System (ADS)

    Jansen, Tiffany; Kipping, David

    2018-01-01

    The study of exoplanet phase curves has been established as a powerful tool for measuring the atmospheric properties of other worlds. To first order, phase curves have the same amplitude as occultations, yet far greater temporal baselines enabling substantial improvements in sensitivity. Even so, only a relatively small fraction of Kepler planets have detectable phase curves, leading to a population dominated by hot-Jupiters. One way to boost sensitivity further is to stack different planets of similar types together, giving rise to an average phase curve for a specific ensemble. In this work, we measure the average albedo, thermal redistribution efficiency, and greenhouse boosting factor from the average phase curves of 115 Neptunian and 50 Terran (solid) worlds. We construct ensemble phase curve models for both samples accounting for the reflection and thermal components and regress our models assuming a global albedo, redistribution factor and greenhouse factor in a Bayesian framework. We find modest evidence for a detected phase curve in the Neptunian sample, although the albedo and thermal properties are somewhat degenerate meaning we can only place an upper limit on the albedo of Ag < 0.23 and greenhouse factor of f < 1.40 to 95% confidence. As predicted theoretically, this confirms hot-Neptunes are darker than Neptune and Uranus. Additionally, we place a constraint on the albedo of solid, Terran worlds of Ag < 0.42 and f < 1.60 to 95% confidence, compatible with a dark Lunar-like surface.

  2. Use of thermal inertia determined by HCMM to predict nocturnal cold prone areas in Florida

    NASA Technical Reports Server (NTRS)

    Allen, L. H., Jr. (Principal Investigator); Chen, E.; Martsolf, J. D.; Jones, P. H.

    1981-01-01

    The HCMM transparency scenes for the available winter of 1978-1979 were evaluated; scenes were identified on processed magnetic tapes; other remote sensing information was identified; and a soil heat flux model with variable-depth thermal profile was developed. The Image 100 system was used to compare HCMM and GOES transparent images of surface thermal patterns. Excellent correspondence of patterns was found, with HCMM giving the greater resolution. One image shows details of thermal patterns in Florida that are attributable to difference in near surface water contents. The wide range of surface temperatures attributable to surface thermal inertia that exist in the relatively flat Florida topography is demonstrated.

  3. A simple algorithm to estimate the effective regional atmospheric parameters for thermal-inertia mapping

    USGS Publications Warehouse

    Watson, K.; Hummer-Miller, S.

    1981-01-01

    A method based solely on remote sensing data has been developed to estimate those meteorological effects which are required for thermal-inertia mapping. It assumes that the atmospheric fluxes are spatially invariant and that the solar, sky, and sensible heat fluxes can be approximated by a simple mathematical form. Coefficients are determined from least-squares method by fitting observational data to our thermal model. A comparison between field measurements and the model-derived flux shows the type of agreement which can be achieved. An analysis of the limitations of the method is also provided. ?? 1981.

  4. The influence of thermal inertia on temperatures and frost stability on Triton

    NASA Technical Reports Server (NTRS)

    Spencer, John R.; Moore, Jeffrey M.

    1992-01-01

    It is presently argued, in view of (1) a thermal inertia model for the surface of Triton which (like previous ones) predicts a monotonic recession of permanent N2 deposits toward the poles and very little seasonal N2 frost in the southern hemisphere, and (2) new spectroscopic evidence for nonvolatile CO2 on Triton's bright southern hemisphere, that much of that bright southern material is not N2. Such bright southern hemisphere volatiles may allow the formation of seasonal frosts, thereby helping to explain the observed spectroscopic changes of Triton during the last decade.

  5. Io's Heat Flow: A Model Including "Warm" Polar Regions

    NASA Astrophysics Data System (ADS)

    Veeder, G. J.; Matson, D. L.; Johnson, T. V.; Davies, A. G.; Blaney, D. L.

    2002-12-01

    Some 90 percent of Io's surface is thermally "passive" material. It is separate from the sites of active volcanic eruptions. Though "passive", its thermal behavior continues to be a challenge for modelers. The usual approach is to take albedo, average daytime temperature, temperature as a function of time of day, etc., and attempt to match these constraints with a uniform surface with a single value of thermal inertia. Io is a case where even globally averaged observations are inconsistent with a single-thermal-inertia model approach. The Veeder et al. (1994) model for "passive" thermal emission addressed seven constraints derived from a decade of ground-based, global observations - average albedo plus infrared fluxes at three separate wavelengths (4.8, 8.7, and 20 microns) for both daytime and eclipsed conditions. This model has only two components - a unit of infinite thermal inertia and a unit of zero thermal inertia. The free parameters are the areal coverage ratio of the two units and their relative albedos (constrained to match the known average albedo). This two-parameter model agreed with the global radiometric data and also predicted significantly higher non-volcanic nighttime temperatures than traditional ("lunar-like") single thermal inertia models. Recent observations from the Galileo infrared radiometer show relatively uniform minimum-night-time temperatures. In particular, they show little variation with either latitude or time of night (Spencer et al., 2000; Rathbun et al., 2002). Additionally, detailed analyses of Io's scattering properties and reflectance variations have led to the interesting conclusion that Io's albedo at regional scales varies little with latitude (Simonelli, et al., 2001). This effectively adds four new observational constraints - lack of albedo variation with latitude, average minimum nighttime temperature and lack of variation of temperature with either latitude or longitude. We have made the fewest modifications necessary

  6. Simulation of the early Martian climate using a general circulation model, DRAMATIC MGCM: Impacts of thermal inertia

    NASA Astrophysics Data System (ADS)

    Kamada, A.; Kuroda, T.; Kasaba, Y.; Terada, N.; Akiba, T.

    2017-09-01

    Our Mars General Circulation Model was used to reproduce the early Martian climate which was thought to be warm and wet. Our simulation with high thermal inertia assuming wet soils and ancient ocean/lakes succeeded in producing the surface temperature above 273K throughout a year in low-mid latitudes of northern hemisphere.

  7. The Thermal Emission and Albedo of Super-Earths with Flat Transmission Spectra

    NASA Astrophysics Data System (ADS)

    Morley, Caroline; Fortney, Jonathan; Marley, Mark

    2014-11-01

    Vast resources have been dedicated to characterizing the handful of planets with radii between Earth’s and Neptune’s that are accessible to current telescopes. Observations of their transmission spectra have been inconclusive and do not constrain the atmospheric composition. Here, we present a path forward for understanding this class of small planets: by understanding the thermal emission and reflectivity of small planets, we can break these degeneracies and constrain the atmospheric composition. Of the ~four small planets studied to date, all have radii in the near-IR consistent with being constant in wavelength. This suggests either that these planets all have higher mean molecular weight atmospheres than expected for hydrogen-dominated bulk compositions, or that the atmospheres of small planets are consistently enshrouded in thick hazes and clouds. For the particularly well-studied planet GJ 1214b, the measurements made using HST/WFC3 can rule out atmospheres with high mean molecular weights, leaving clouds as the sole explanation for the flat transmission spectrum. We showed in Morley et al. 2013 that these clouds and hazes can be made of salts and sulfides, which condense in the upper atmosphere of a cool H-rich atmosphere like GJ 1214b, or made of photochemical hazes such as soots, which result from methane photodissociation and subsequent carbon chemistry. Here, we explore how clouds thick enough to obscure the transmission spectrum change both thermal emission spectra and albedo spectra. These observations are complementary to transmission spectra measurements. Thermal emission probes deeper layers of the atmosphere, potentially below the high haze layer obscuring the transmission spectra; albedo spectra probe reflected starlight largely from the cloud particles themselves. Crucially, these complementary observations of planets with flat transmission spectra may allow us to break the degeneracies between cloud materials, cloud height and longitude, and

  8. The Thermal Emission and Albedo of Super-Earths with Flat Transmission Spectra

    NASA Astrophysics Data System (ADS)

    Morley, Caroline; Fortney, Jonathan J.; Marley, Mark

    2015-01-01

    Vast resources have been dedicated to characterizing the handful of planets with radii between Earth's and Neptune's that are accessible to current telescopes. Observations of their transmission spectra have been inconclusive and do not constrain the atmospheric composition. Here, we present a path forward for understanding this class of small planets: by understanding the thermal emission and reflectivity of small planets, we can break these degeneracies and constrain the atmospheric composition.Of the ~five small planets studied to date, four have radii in the near-IR consistent with being constant in wavelength. This suggests either that these planets all have higher mean molecular weight atmospheres than expected for hydrogen-dominated bulk compositions, or that the atmospheres of small planets are consistently enshrouded in thick hazes and clouds. For the particularly well-studied planet GJ 1214b, the measurements made using HST/WFC3 can rule out atmospheres with high mean molecular weights, leaving clouds as the sole explanation for the flat transmission spectrum. We showed in Morley et al. 2013 that these clouds and hazes can be made of salts and sulfides, which condense in the upper atmosphere of a cool H-rich atmosphere like GJ 1214b, or made of photochemical hazes such as soots, which result from methane photodissociation and subsequent carbon chemistry. Here, we explore how clouds thick enough to obscure the transmission spectrum change both thermal emission spectra and albedo spectra. These observations are complementary to transmission spectra measurements. Thermal emission probes deeper layers of the atmosphere, potentially below the high haze layer obscuring the transmission spectra; albedo spectra probe reflected starlight largely from the cloud particles themselves. Crucially, these complementary observations of planets with flat transmission spectra may allow us to break the degeneracies between cloud materials, cloud height and longitude, and

  9. A Model of Thermal Conductivity for Planetary Soils. 2; Theory for Cemented Soils

    NASA Technical Reports Server (NTRS)

    Piqueux, S.; Christensen, P. R.

    2009-01-01

    A numerical model of heat conduction through particulate media made of spherical grains cemented by various bonding agents is presented. The pore-filling gas conductivity, volume fraction, and thermal conductivity of the cementing phase are tunable parameters. Cement fractions <0.001-0.01% in volume have small effects on the soil bulk thermal conductivity. A significant conductivity increase (factor 3-8) is observed for bond fractions of 0.01 to 1% in volume. In the 1 to 15% bond fraction domain, the conductivity increases continuously but less intensely (25-100% conductivity increase compared to a 1% bond system). Beyond 15% of cements, the conductivity increases vigorously and the bulk conductivity rapidly approaches that of bedrock. The composition of the cements (i.e. conductivity) has little influence on the bulk thermal inertia of the soil, especially if the volume of bond <10%. These results indicate that temperature measurements are sufficient to detect cemented soils and quantify the amount of cementing phase, but the mineralogical nature of the bonds and the typical grain size are unlikely to be determined from orbit. On Mars, a widespread surface unit characterized by a medium albedo (0.19-0.26) and medium/high thermal inertia (200-600 J s(0.5)/sq m/K) has long been hypothesized to be associated with a duricrust. The fraction of cement required to fit the thermal data is less than approx.1-5% by volume. This small amount of material is consistent with orbital observations, confirming that soil cementation is an important factor controlling the thermal inertia of the Martian surface

  10. A model of thermal conductivity for planetary soils: 2. Theory for cemented soils

    NASA Astrophysics Data System (ADS)

    Piqueux, S.; Christensen, P. R.

    2009-09-01

    A numerical model of heat conduction through particulate media made of spherical grains cemented by various bonding agents is presented. The pore-filling gas conductivity, volume fraction, and thermal conductivity of the cementing phase are tunable parameters. Cement fractions <0.001-0.01% in volume have small effects on the soil bulk thermal conductivity. A significant conductivity increase (factor 3-8) is observed for bond fractions of 0.01 to 1% in volume. In the 1 to 15% bond fraction domain, the conductivity increases continuously but less intensely (25-100% conductivity increase compared to a 1% bond system). Beyond 15% of cements, the conductivity increases vigorously and the bulk conductivity rapidly approaches that of bedrock. The composition of the cements (i.e. conductivity) has little influence on the bulk thermal inertia of the soil, especially if the volume of bond <10%. These results indicate that temperature measurements are sufficient to detect cemented soils and quantify the amount of cementing phase, but the mineralogical nature of the bonds and the typical grain size are unlikely to be determined from orbit. On Mars, a widespread surface unit characterized by a medium albedo (0.19-0.26) and medium/high thermal inertia (200-600 J s-0.5 m-2 K-1) has long been hypothesized to be associated with a duricrust. The fraction of cement required to fit the thermal data is less than ˜1-5% by volume. This small amount of material is consistent with orbital observations, confirming that soil cementation is an important factor controlling the thermal inertia of the Martian surface.

  11. Determination of debris albedo from visible and infrared brightnesses

    NASA Astrophysics Data System (ADS)

    Lambert, John V.; Osteen, Thomas J.; Kraszewski, Butch

    1993-09-01

    The Air Force Phillips Laboratory is conducting measurements to characterize the orbital debris environment using wide-field optical systems located at the Air Force's Maui, Hawaii, Space Surveillance Site. Conversion of the observed visible brightnesses of detected debris objects to physical sizes require knowledge of the albedo (reflectivity). A thermal model for small debris objects has been developed and is used to calculate albedos from simultaneous visible and thermal infrared observations of catalogued debris objects. The model and initial results will be discussed.

  12. Surface albedo observations at Gusev Crater and Meridiani Planum, Mars

    NASA Astrophysics Data System (ADS)

    Bell, J. F.; Rice, M. S.; Johnson, J. R.; Hare, T. M.

    2008-05-01

    During the Mars Exploration Rover mission, the Pancam instrument has periodically acquired large-scale panoramic images with its broadband (739 +/- 338 nm) filter in order to estimate the Lambert bolometric albedo of the surface along each rover's traverse. In this work we present the full suite of such estimated albedo values measured to date by the Spirit and Opportunity rovers along their traverses in Gusev Crater and Meridiani Planum, respectively. We include estimated bolometric albedo values of individual surface features (e.g., outcrops, dusty plains, aeolian bed forms, wheel tracks, light-toned soils, and crater walls) as well as overall surface averages of the 43 total panoramic albedo data sets acquired to date. We also present comparisons to estimated Lambert albedo values taken from the Mars Global Surveyor Mars Orbiter Camera (MOC) along the rovers' traverses, and to the large-scale bolometric albedos of the sites from the Viking Orbiter Infrared Thermal Mapper (IRTM) and Mars Global Surveyor/Thermal Emission Spectrometer (TES). The ranges of Pancam-derived albedos at Gusev Crater (0.14 to 0.25) and in Meridiani Planum (0.10 to 0.18) are in good agreement with IRTM, TES, and MOC orbital measurements. These data sets will be a useful tool and benchmark for future investigations of albedo variations with time, including measurements from orbital instruments like the Context Camera and High Resolution Imaging Science Experiment on Mars Reconnaissance Orbiter. Long-term, accurate albedo measurements could also be important for future efforts in climate modeling as well as for studies of active surface processes.

  13. Three Mars Years of Surface Albedo Changes Observed by the Mars Reconnaissance Orbiter MARCI Investigation

    NASA Astrophysics Data System (ADS)

    Bell, J. F.; Wellington, D. F.; Anderson, R. B.; Wolff, M. J.; Supulver, K. D.; Cantor, B. A.; Malin, M. C.

    2012-12-01

    Rovers Spirit (Gusev crater) and Opportunity (Meridiani Planum), as well as Gale crater, the landing site for the Mars Science Laboratory rover Curiosity. Time-lapse animations of albedo changes in and around Gale crater, for example, reveal tens of km-scale changes in low albedo surface markings both within the crater (including near the rover's planned traverse path) as well as within the 500 km long low albedo wind streak south of the crater. Combined with morphologic, thermal inertia, and compositional/mineralogic constraints from other data sets, MARCI albedo variation measurements can help to constrain present rates of dust and sand transport in a variety of environments on Mars.

  14. Radiative transfer in dusty nebulae. III - The effects of dust albedo

    NASA Technical Reports Server (NTRS)

    Petrosian, V.; Dana, R. A.

    1980-01-01

    The effects of an albedo of internal dust, such as ionization structure and temperature of dust grain, were studied by the quasi-diffusion method with an iterative technique for solving the radiative heat transfer equations. It was found that the generalized on-the-spot approximation solution is adequate for most astrophysical applications for a zero albedo; for a nonzero albedo, the Eddington approximation is more accurate. The albedo increases the average energy of the diffuse photons, increasing the ionization level of hydrogen and heavy elements if the Eddington approximation is applied; the dust thermal gradient is reduced so that the infrared spectrum approaches blackbody spectrum with an increasing albedo.

  15. Thermal Emission Spectroscopy (5.2 To 38 Microns) And Analysis Of 10 Near-earth Asteroids

    NASA Astrophysics Data System (ADS)

    Dave, Riddhi; Emery, J.; Cruikshank, D.; Mueller, M.; Delbo, M.; Trilling, D. E.; Mommert, M.

    2010-10-01

    Near Earth Asteroids (NEAs- 0.983AUalbedo and size distribution of the NEAs is an essential prerequisite for exploring their physical nature, thermal properties, mineralogy, taxonomy and for developing reliable NEA population models. In support of the ExploreNEOs campaign of the Warm Spitzer program, we will present initial results from study of a sample of NEAs using the Infrared Spectrograph (IRS) on NASA's Spitzer Space Telescope [Programs 88 and 91- Extinct Comets and Low-Albedo Asteroids]. These data were reduced with Spitzer IRS Custom Extraction (SPICE) a JAVA-based tool built for interactive extraction of Spitzer IRS spectra. The 5.2-38 m thermal emission spectra[R 60-130] have been fitted with models of the thermal continuum employing the Near Earth Asteroid Thermal Model [NEATM](Harris 1998) and a Thermophysical model. Simultaneous measurements of the asteroid flux in the thermal infrared, combined with a thermal model, allow both the diameter and the albedo to be determined. The sample of Asteroids to be a part of this study are 1602 Geographos, 1580 Betulia, 433 Eros, 2212 Hephaistos, 1685 Toro, 1917 Cuyo, 1566 Icarus, 3200 Phaethon, 7092 Cadmus and 1866 Sisyphus. This study will give in-depth understanding of the applicability of the NEATM for NEAs observed at higher phase angles, having larger thermal inertia than main-belt asteroids, and/or displaying varied geometries. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

  16. Surface albedo observations at Gusev Crater and Meridiani Planum, Mars

    USGS Publications Warehouse

    Bell, J.F.; Rice, M.S.; Johnson, J. R.; Hare, T.M.

    2008-01-01

    During the Mars Exploration Rover mission, the Pancam instrument has periodically acquired large-scale panoramic images with its broadband (739??338 nm) filter in order to estimate the Lambert bolometric albedo of the surface along each rover's traverse. In this work we present the full suite of such estimated albedo values measured to date by the Spirit and Opportunity rovers along their traverses in Gusev Crater and Meridiani Planum, respectively. We include estimated bolometric albedo values of individual surface features (e.g., outcrops, dusty plains, aeolian bed forms, wheel tracks, light-toned soils, and crater walls) as well as overall surface averages of the 43 total panoramic albedo data sets acquired to date. We also present comparisons to estimated Lambert albedo values taken from the Mars Global Surveyor Mars Orbiter Camera (MOC) along the rovers' traverses, and to the large-scale bolometric albedos of the sites from the Viking Orbiter Infrared Thermal Mapper (IRTM) and Mars Global Surveyor/Thermal Emission Spectrometer (TES). The ranges of Pancam-derived albedos at Gusev Crater (0.14 to 0.25) and in Meridiani Planum. (0.10 to 0.18) are in good agreement with IRTM, TES, and MOC orbital measurements. These data sets will be a useful tool and benchmark for future investigations of albodo variations with time, including measurements from orbital instruments like the Context Camera and High Resolution Imaging Science Experiment on Mars Reconnaissance Orbiter. Long-term, accurate albedo measurements could also be important for future efforts in climate modeling as well as for studies of active surface processes. Copyright 2008 by the American Geophysical Union.

  17. Daily temperature variations on Mars

    NASA Technical Reports Server (NTRS)

    Ditteon, R.

    1982-01-01

    It is noted that for approximately 32% of the Martian surface area no values of thermal inertia or albedo can fit the thermal observations. These temperature anomalies do not correlate with elevation, geologic units, morphology, or atmospheric dust content. All regions having a Lambert albedo less than 0.18 can be well fit with the standard thermal model, but all areas with albedo greater than 0.28 are anomalous. A strong inverse correlation is seen between the magnitude of the anomaly and the thermal inertia. This correlation is seen as indicating that some surface property is responsible for the anomaly. In the anomalous region the temperatures are observed to be warmer in the morning and cooler late in the afternoon and to decrease more slowly during the night than the Viking model temperatures. It is believed that of all the physical processes likely to occur on Mars but not included in the Viking thermal model, only a layered soil can explain the observations. A possible explanation of the layering deduced from the infrared thermal mapper observations is a layer of aeolian deposited dust about one thermal skin depth thick (1 to 4 cm), covering a duricrust.

  18. Thermal comfort of pedestrians in an urban street canyon is affected by increasing albedo of building walls

    NASA Astrophysics Data System (ADS)

    Lee, Hyunjung; Mayer, Helmut

    2018-03-01

    Numerical simulations based on the ENVI-met model were carried out for an E-W street canyon in the city of Stuttgart (Southwest Germany) to analyse the effect of increased albedo of building walls on outdoor human thermal comfort. It was quantified by air temperature (T a ), mean radiant temperature (T mrt ) and physiologically equivalent temperature (PET). The simulations were conducted on 4 August 2003 as a heat wave day that represents a typical scenario for future summer weather in Central Europe. The simulation results presented for 13 CET and averaged over the period 10-16 CET are focused on pedestrians on both sidewalks. For the initial situation, i.e. albedo of 0.2, human heat stress indicated by mean PET is by 26% lower on the N-facing than on the S-facing sidewalk, while this reduction amounts to 42% for mean T mrt . Mean T a does not show any spatial differentiation. The systematic albedo increment by 0.2 from 0.2 to 0.8 leads to a linear increase of outdoor human heat stress in terms of T mrt and PET. For both variables, this increase is more pronounced on the N-facing than on the S-facing sidewalk. Mean relative T a shows the tendency of a minimal increase with rising albedo. The results were achieved for the usual standardised human-biometeorological reference person. Its substitution by two other types of male and female pedestrians, respectively, which are statistically characteristic of human conditions in Germany, does not reveal any significant change in the results.

  19. Thermal comfort of pedestrians in an urban street canyon is affected by increasing albedo of building walls.

    PubMed

    Lee, Hyunjung; Mayer, Helmut

    2018-03-12

    Numerical simulations based on the ENVI-met model were carried out for an E-W street canyon in the city of Stuttgart (Southwest Germany) to analyse the effect of increased albedo of building walls on outdoor human thermal comfort. It was quantified by air temperature (T a ), mean radiant temperature (T mrt ) and physiologically equivalent temperature (PET). The simulations were conducted on 4 August 2003 as a heat wave day that represents a typical scenario for future summer weather in Central Europe. The simulation results presented for 13 CET and averaged over the period 10-16 CET are focused on pedestrians on both sidewalks. For the initial situation, i.e. albedo of 0.2, human heat stress indicated by mean PET is by 26% lower on the N-facing than on the S-facing sidewalk, while this reduction amounts to 42% for mean T mrt . Mean T a does not show any spatial differentiation. The systematic albedo increment by 0.2 from 0.2 to 0.8 leads to a linear increase of outdoor human heat stress in terms of T mrt and PET. For both variables, this increase is more pronounced on the N-facing than on the S-facing sidewalk. Mean relative T a shows the tendency of a minimal increase with rising albedo. The results were achieved for the usual standardised human-biometeorological reference person. Its substitution by two other types of male and female pedestrians, respectively, which are statistically characteristic of human conditions in Germany, does not reveal any significant change in the results.

  20. Thermal properties of Rhea's Poles: Evidence for a Meter-Deep Unconsolidated Subsurface Layer

    NASA Technical Reports Server (NTRS)

    Howett, C. J. A.; Spencer, J. R.; Hurford, T.; Verbiscer, A.; Segura, M.

    2016-01-01

    Cassini's Composite Infrared Spectrometer (CIRS) observed both of Rhea's polar regions during a close (2000 km) flyby on 9th March 2013 during orbit 183. Rhea's southern pole was again observed during a more distant (51,000 km) flyby on 10th February 2015 during orbit 212. The results show Rhea's southern winter pole is one of the coldest places directly observed in our Solar System: surface temperatures of 25.4 +/-7.4 K and 24.7 +/-6.8 K are inferred from orbit 183 and 212 data, respectively. The surface temperature of the northern summer pole inferred from orbit 183 data is warmer: 66.6 +/-0.6 K. Assuming the surface thermophysical properties of the two polar regions are comparable then these temperatures can be considered a summer and winter seasonal temperature constraint for the polar region. Orbit 183 will provide solar longitude ( LS ) coverage at 133 deg and 313 deg for the summer and winter poles respectively, while orbit 212 provides an additional winter temperature constraint at LS 337 deg. Seasonal models with bolometric albedo values between 0.70 and 0.74 and thermal inertia values between 1 and 46 J m( exp -2) K( exp -1) s (exp -1/2) (otherwise known as MKS units) can provide adequate fits to these temperature constraints (assuming the winter temperature is an upper limit). Both these albedo and thermal inertia values agree within the uncertainties with those previously observed on both Rhea's leading and trailing hemispheres. Investigating the seasonal temperature change of Rhea's surface is particularly important, as the seasonal wave is sensitive to deeper surface temperatures ( approximately tens of centimeters to meter depths) than the more commonly reported diurnal wave (typically less than a centimeter), the exact depth difference dependent upon the assumed surface properties. For example, if a surface porosity of 0.5 and thermal inertia of 25 MKS is assumed then the depth of the seasonal thermal wave is 76 cm, which is much deeper than the

  1. Thermal inertia and reversing buoyancy in flow in porous media

    NASA Astrophysics Data System (ADS)

    Menand, Thierry; Raw, Alan; Woods, Andrew W.

    2003-03-01

    The displacement of fluids through porous rocks is fundamental for the recharge of geothermal and hydrocarbon reservoirs [Grant et al., 1982; Lake, 1989], for contaminant dispersal through the groundwater [Bear, 1972] and in controlling mineral reactions in permeable rocks [Phillips, 1991]. In many cases, the buoyancy force associated with density differences between the formation fluid and the displacing fluid controls the rate and pattern of flow through the permeable rock [Phillips, 1991; Barenblatt, 1996; Turcotte and Schubert, 2002]. Here, using new laboratory experiments, we establish that a striking range of different flow patterns may develop depending on whether this density contrast is associated with differences in temperature and/or composition between the two fluids. Owing to the effects of thermal inertia in a porous rock, thermal fronts lag behind compositional fronts [Woods and Fitzgerald, 1993; Turcotte and Schubert, 2002], so that two zones of different density develop in the region flooded with injected fluid. This can lead to increasing, decreasing or even reversing buoyancy in the injected liquid; in the latter case it may then form a double-flood front, spreading along both the upper and lower boundary of the rock. Recognition of these different flow regimes is key for predicting sweep efficiency and dispersal patterns in natural and engineered flows, and offers new opportunities for the enhanced recovery of natural resources in porous rocks.

  2. The Near-Earth Encounter of Asteroid 308635 (2005 YU55): Thermal IR Observations

    NASA Technical Reports Server (NTRS)

    Lim, Lucy F.; Emery, J. P.; Moskovitz, N. A.; Busch, N. W.; Yang, B.; Granvik, M.

    2012-01-01

    The near-Earth approach (0.00217 AU, or 0.845 lunar distances) of the C-type asteroid 308635 (2005 YU55) in November 2011 presented a rare opportunity for detailed observations of a low-albedo NEA in this size range. As part of a multi-telescope campaign to measure visible and infrared spectra and photometry, we obtained mid-infrared (approx. 8 to 22 micron) photometry and spectroscopy of 2005 YU55 using Michelle on the Gemini North telescope on UT November 9 and 10,2011. An extensive radar campaign together with optical light-curves established the rotation state of YU55. In addition, the radar imaging resulted in a shape model for the asteroid, detection of numerous boulders on its surface, and a preliminary estimate of its equatorial diameter at 380 +/- 20 m. In a preliminary analysis, applying the radar and lightcurve-derived parameters to a rough-surface thermophysical model fit to the Gemini/Michelle thermal emission photometry results in a thermal inertia range of approximately 500 to 1500 J/sq m/0.5s/K, with the low-thermal-inertia solution corresponding to the small end of the radar size range and vice versa. Updates to these results will be presented and modeling of the thermal contribution to the measured near-infrared spectra from Palomar/Triplespec and IRTF/SpeX will also be discussed.

  3. Global Albedo

    Atmospheric Science Data Center

    2013-04-19

    ... the albedo. Bright surfaces have albedo near unity, and dark surfaces have albedo near zero. The DHR refers to the amount of spectral ... Atmospheric Science Data Center's  MISR Level 3 Imagery web site . The Multi-angle Imaging SpectroRadiometer observes the daylit ...

  4. The effects of dune slopes and material heterogeneity on the thermal behavior of dune fields in Mars' Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    O'Shea, P. M.; Putzig, N. E.; Van Kooten, S.; Fenton, L. K.

    2015-12-01

    We analyzed the effects of slopes on the thermal properties of three dune fields in Mars' southern hemisphere. Although slope has important thermal effects, it is not the main driver of observed apparent thermal inertia (ATI) for these dunes. Comparing the ATI seasonal behavior as derived from Thermal Emission Spectrometer (TES) data with that modeled for compositional heterogeneities, we found that TES results correlate best with models of duricrust overlying and/or horizontally mixing with fines. We measured slopes and aspects in digital terrain models created from High Resolution Imaging Science Experiment (HiRISE) images of dunes within Proctor, Kaiser, and Wirtz craters. Using the MARSTHERM web toolset, we incorporated the slopes and aspects together with TES albedo, TES thermal inertia, surface pressure, and TES dust opacity, into models of seasonal ATI. Models that incorporate sub-pixel slopes show seasonal day and night ATI values that differ from the TES results by 0-300 J m-2 K-1 s-½. In addition, the models' day-night differences are opposite in sign from those of the TES results, indicating that factors other than slope are involved. We therefore compared the TES data to model results for a broad range of horizontally mixed and two-layered surfaces to seek other possible controls on the observed data, finding that a surface layer of higher thermal inertia is a likely contributor. However, it is clear from this study that the overall composition and morphology of the dune fields are more complex than currently available models allow. Future work will combine slopes with other model parameters such as multi-layered surfaces and lateral changes in layer thickness. Coupling these improvements with broader seasonal coverage from the Thermal Emission Imaging System (THEMIS) at more thermally favorable times of day would allow more accurate characterization of dune thermal behavior.

  5. Surface Properties and Characteristics of Mars Landing Sites from Remote Sensing Data and Ground Truth

    NASA Astrophysics Data System (ADS)

    Golombek, M. P.; Haldemann, A. F.; Simpson, R. A.; Furgason, R. L.; Putzig, N. E.; Huertas, A.; Arvidson, R. E.; Heet, T.; Bell, J. F.; Mellon, M. T.; McEwen, A. S.

    2008-12-01

    Surface characteristics at the six sites where spacecraft have successfully landed on Mars can be related favorably to their signatures in remotely sensed data from orbit and from the Earth. Comparisons of the rock abundance, types and coverage of soils (and their physical properties), thermal inertia, albedo, and topographic slope all agree with orbital remote sensing estimates and show that the materials at the landing sites can be used as ground truth for the materials that make up most of the equatorial and mid- to moderately high-latitude regions of Mars. The six landing sites sample two of the three dominant global thermal inertia and albedo units that cover ~80% of the surface of Mars. The Viking, Spirit, Mars Pathfinder, and Phoenix landing sites are representative of the moderate to high thermal inertia and intermediate to high albedo unit that is dominated by crusty, cloddy, blocky or frozen soils (duricrust that may be layered) with various abundances of rocks and bright dust. The Opportunity landing site is representative of the moderate to high thermal inertia and low albedo surface unit that is relatively dust free and composed of dark eolian sand and/or increased abundance of rocks. Rock abundance derived from orbital thermal differencing techniques in the equatorial regions agrees with that determined from rock counts at the surface and varies from ~3-20% at the landing sites. The size-frequency distributions of rocks >1.5 m diameter fully resolvable in HiRISE images of the landing sites follow exponential models developed from lander measurements of smaller rocks and are continuous with these rock distributions indicating both are part of the same population. Interpretation of radar data confirms the presence of load bearing, relatively dense surfaces controlled by the soil type at the landing sites, regional rock populations from diffuse scattering similar to those observed directly at the sites, and root-mean-squared slopes that compare favorably

  6. Albedo Boundary

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-510, 11 October 2003

    The sharp, nearly straight line that runs diagonally across the center of this April 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image is an albedo boundary. Albedois a term that refers to reflectance of sunlight. A surface with a low albedo is one that appears dark because it reflects less light than a high albedo (bright) surface. On Mars, albedo boundaries occur between two materials of differing texture, particle size, or composition, or some combination of these three factors. The boundary shown here is remarkable because it is so sharp and straight. This is caused by wind. Most likely, the entire surface was once covered with the lower-albedo (darker) material that is now seen in the upper half of the image. At some later time, wind stripped away this darker material from the surfaces in the lower half of the image. The difference in albedo here might be related to composition, and possibly particle size. This picture is located near the southwest rim of Schiaparelli Basin at 5.5oS, 345.9oW. The picture covers an area 3 km (1.9 mi) wide and is illuminated by sunlight from the left.

  7. Vesta surface thermal properties map

    USGS Publications Warehouse

    Capria, Maria Teresa; Tosi, F.; De Santis, Maria Cristina; Capaccioni, F.; Ammannito, E.; Frigeri, A.; Zambon, F; Fonte, S.; Palomba, E.; Turrini, D.; Titus, T.N.; Schroder, S.E.; Toplis, M.J.; Liu, J.Y.; Combe, J.-P.; Raymond, C.A.; Russell, C.T.

    2014-01-01

    The first ever regional thermal properties map of Vesta has been derived from the temperatures retrieved by infrared data by the mission Dawn. The low average value of thermal inertia, 30 ± 10 J m−2 s−0.5 K−1, indicates a surface covered by a fine regolith. A range of thermal inertia values suggesting terrains with different physical properties has been determined. The lower thermal inertia of the regions north of the equator suggests that they are covered by an older, more processed surface. A few specific areas have higher than average thermal inertia values, indicative of a more compact material. The highest thermal inertia value has been determined on the Marcia crater, known for its pitted terrain and the presence of hydroxyl in the ejecta. Our results suggest that this type of terrain can be the result of soil compaction following the degassing of a local subsurface reservoir of volatiles.

  8. Pitted cones and domes on Mars: Observations in Acidalia Planitia and Cydonia Mensae using MOC, THEMIS, and TES data

    USGS Publications Warehouse

    Farrand, W. H.; Gaddis, L.R.; Keszthelyi, L.

    2005-01-01

    Domes and cones with summit pits located in Acidalia Planitia and Cydonia Mensae were studied using MOC and THEMIS images and a TES-derived thermal inertia map. North of 40.5??N latitude, the features have a dome-like morphology, and south of that latitude, the morphology is more cone-like. Layering is apparent in the summit craters of fresher looking southern cones, and asymmetric aprons were observed in some instances. Some of the northern domes also display layering in their summit craters, but asymmetric aprons were not observed. The northern domes can also display multiple summit pits or no summit pits at all and can occur in association with higher-albedo "pancake" features. The northern domes are higher in albedo but have apparent thermal inertias that are lower than the surrounding plains. The apparent thermal inertia values of the southern cones range from values comparable to the surrounding plains to slightly lower. From the TES thermal inertia map, we infer that the thermal inertia values of the pitted cones are between those of basaltic fine dust and sand, while those of the surrounding plains are closer to that of basaltic sand. While a unique interpretation of the origin of the pitted cones is not possible with the available data, we do not find compelling evidence to suggest an origin related to either basaltic volcanism or ground-ice. Instead, an origin for these features through some combination of mud volcanism and evaporite deposition around geysers and/or springs is most consistent with the observations. Copyright 2005 by the American Geophysical Union.

  9. Thermal infrared observations and thermophysical characterization of the OSIRIS-REx target asteroid (101955) Bennu

    NASA Astrophysics Data System (ADS)

    Emery, J.; Fernandez, Y.; Kelley, M.; Warden, K.; Hergenrother, C.; Lauretta, D.; Drake, M.; Campins, H.; Ziffer, J.

    2014-07-01

    Near-Earth asteroids (NEAs) have garnered ever-increasing attention over the past few years due to the insights they offer into Solar System formation and evolution, the potential hazard they pose, and their accessibility for both robotic and human spaceflight missions. Among the NEAs, carbonaceous asteroids hold particular interest, because they may contain clues to how the Earth got its supplies of water and organic materials, and because none has yet been studied in detail by spacecraft. (101955) Bennu is special among the NEAs in that it will not only be visited by a spacecraft, but the OSIRIS-REx mission will also return a sample of Bennu's regolith to the Earth for detailed laboratory study. We present analysis of thermal infrared photometry and spectroscopy to test the hypotheses that Bennu is carbonaceous and that its surface is covered in fine-grained (sub-cm) regolith. The Spitzer Space Telescope observed Bennu in 2007, using the Infrared Spectrograph (IRS) to obtain spectra over the wavelength range of 5.2-38 μ m and images at 16 and 22 μ m at 10 different longitudes, as well as the Infrared Array Camera (IRAC) to image Bennu at 3.6, 4.5, 5.8, and 8.0 μ m, also at 10 different longitudes. Thermophysical analysis, assuming a spherical body with the known rotation period and spin-pole orientation, returns an effective diameter of 484±10 m, in agreement with the effective diameter calculated from the radar shape model at the orientation of the Spitzer observations (492±20 m, Nolan et al. 2013) and a visible geometric albedo of 0.046±0.005 (using H_{V}=20.51, Hergenrother et al. 2013). Including the radar shape model in the thermal analysis, and taking surface roughness into account, yields a disk-averaged thermal inertia of 310±70 J m^{-2}K^{-1}s^{-1/2}, which is significantly lower than that for several other NEAs of comparable size. There may be a small variation of thermal inertia with rotational phase (±60 J m^{-2}K^{-1}s^{-1/2}). The spectral

  10. The polar layered deposits on Mars: Inference from thermal inertia modeling and geologic studies

    NASA Technical Reports Server (NTRS)

    Herkenhoff, K. E.

    1992-01-01

    It is widely believed that the Martian polar layered deposits record climate variations over at least the last 10 to 100 m.y., but the details of the processes involved and their relative roles in layer formation and evolution remain obscure. Weathering of the Martian layered deposits by sublimation of water ice can account for the thermal inertias, water vapor abundances, and geologic relationships observed in the Martian polar regions. The nonvolatile components of the layered deposits appears to consist mainly of bright red dust, with small amounts of dark dust. Dark dust, perhaps similar to the magnetic material found at the Viking Lander sites, may preferentially form filamentary residue particles upon weathering of the deposits. Once eroded, these particles may saltate to form the dark dunes found in both polar regions. This scenario for the origin and evolution of the dark material within the polar layered deposits is consistent with the available imaging and thermal data. Further experimental measurements of the thermophysical properties of magnetite and maghemite under Martian conditions are needed to better test this hypothesis.

  11. Thermal Tomography of Asteroid Surface Structure

    NASA Astrophysics Data System (ADS)

    Harris, Alan W.; Drube, Line

    2016-12-01

    Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles (“kinetic impactors”) in planetary defense.

  12. THE ALBEDOS OF KEPLER'S CLOSE-IN SUPER-EARTHS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demory, Brice-Olivier, E-mail: bod21@cam.ac.uk

    Exoplanet research focusing on the characterization of super-Earths is currently limited to the handful of targets orbiting bright stars that are amenable to detailed study. This Letter proposes to look at alternative avenues to probe the surface and atmospheric properties of this category of planets, known to be ubiquitous in our galaxy. I conduct Markov Chain Monte Carlo light-curves analyses for 97 Kepler close-in R{sub P} ≲ 2.0 R {sub ⊕} super-Earth candidates with the aim of detecting their occultations at visible wavelengths. Brightness temperatures and geometric albedos in the Kepler bandpass are constrained for 27 super-Earth candidates. A hierarchicalmore » Bayesian modeling approach is then employed to characterize the population-level reflective properties of these close-in super-Earths. I find median geometric albedos A{sub g} in the Kepler bandpass ranging between 0.16 and 0.30, once decontaminated from thermal emission. These super-Earth geometric albedos are statistically larger than for hot Jupiters, which have medians A{sub g} ranging between 0.06 and 0.11. A subset of objects, including Kepler-10b, exhibit significantly larger albedos (A{sub g} ≳ 0.4). I argue that a better understanding of the incidence of stellar irradation on planetary surface and atmospheric processes is key to explain the diversity in albedos observed for close-in super-Earths.« less

  13. Variability of albedo and utility of the MODIS albedo product in forested wetlands

    USGS Publications Warehouse

    Sumner, David M.; Wu, Qinglong; Pathak, Chandra S.

    2011-01-01

    Albedo was monitored over a two-year period (beginning April 2008) at three forested wetland sites in Florida, USA using up- and down-ward facing pyranometers. Water level, above and below land surface, is the primary control on the temporal variability of daily albedo. Relatively low reflectivity of water accounts for the observed reductions in albedo with increased inundation of the forest floor. Enhanced canopy shading of the forest floor was responsible for lower sensitivity of albedo to water level at the most dense forest site. At one site, the most dramatic reduction in daily albedo was observed during the inundation of a highly-reflective, calcareous periphyton-covered land surface. Satellite-based Moderate-Resolution Imaging Spectroradiometer (MODIS) estimates of albedo compare favorably with measured albedo. Use of MODIS albedo values in net radiation computations introduced a root mean squared error of less than 4.7 W/m2 and a mean, annual bias of less than 2.3 W/m2 (1.7%). These results suggest that MODIS-estimated albedo values can reliably be used to capture areal and temporal variations in albedo that are important to the surface energy balance.

  14. THERMAL TOMOGRAPHY OF ASTEROID SURFACE STRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Alan W.; Drube, Line, E-mail: alan.harris@dlr.de

    Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) tomore » 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles (“kinetic impactors”) in planetary defense.« less

  15. Global Surface Dust Distribution Changes on Mars (MY24-33)

    NASA Astrophysics Data System (ADS)

    Piqueux, S.; Hayne, P. O.; Kleinboehl, A.; Edwards, C. S.; Elder, C. M.; Heavens, N. G.; Kass, D. M.; McCleese, D. J.; Schofield, J. T.; Shirley, J. H.; Smith, M. D.

    2016-12-01

    Telescopic and spacecraft observations document inter-annual and inter-seasonal changes of the Martian albedo that are interpreted to result from the redistribution of surface dust in response to atmospheric events such as global or regional dust storms, dust devil activity, or seasonal winds. Based on these observations and general circulation modeling, several authors have hypothesized that a necessary condition for global dust storm initiation and growth is the presence of strategically located surface dust reservoirs replenished during inter-storm periods. If this hypothesis is valid, the cyclical accumulation and removal of thermally thick (>50 μm) layers of dust at specific locations ought to produce a distinct temperature signature, since Martian dust exhibits extremely low thermal conductivity and thermal inertia values compared to sand, gravel, rocks, and bedrock. Characterizing dust movement using temperature data presents a major advantage over mapping relying solely on albedo changes: it yields dust layer thicknesses, whose spatial and temporal integration enables the derivation of surface dust fluxes. In this work, we use global (1° per pixel resolution) seasonal (10° Ls resolution, from MY24 to 33) maps of the Martian surface albedo, atmospheric dust opacity, and ground temperature (derived from TES, THEMIS, and MCS observations) to derive apparent variations of the thermal inertia, and thereby characterize surface changes consistent with the deposition or removal of dust. We show that changes in thermal inertia for some regions are consistent with dust accumulation; whereas others seem to lose dust. We compare these maps with published GCM dust lifting predictions, and with observations of past dust storm occurrence, thereby constraining the role of surface dust availability.

  16. Thermal behavior of horizontally mixed surfaces on Mars

    NASA Astrophysics Data System (ADS)

    Putzig, Nathaniel E.; Mellon, Michael T.

    2007-11-01

    Current methods for deriving thermal inertia from spacecraft observations of planetary brightness temperature generally assume that surface properties are uniform for any given observation or co-located set of observations. As a result of this assumption and the nonlinear relationship between temperature and thermal inertia, sub-pixel horizontal heterogeneity may yield different apparent thermal inertia at different times of day or seasons. We examine the effects of horizontal heterogeneity on Mars by modeling the thermal behavior of various idealized mixed surfaces containing differing proportions of either dust, sand, duricrust, and rock or slope facets at different angles and azimuths. Latitudinal effects on mixed-surface thermal behavior are also investigated. We find large (several 100 J m -2 K -1 s -1/2) diurnal and seasonal variations in apparent thermal inertia even for small (˜10%) admixtures of materials with moderately contrasting thermal properties or slope angles. Together with similar results for layered surfaces [Mellon, M.T., Putzig, N.E., 2007. Lunar Planet. Sci. XXXVIII. Abstract 2184], this work shows that the effects of heterogeneity on the thermal behavior of the martian surface are substantial and may be expected to result in large variations in apparent thermal inertia as derived from spacecraft instruments. While our results caution against the over-interpretation of thermal inertia taken from median or average maps or derived from single temperature measurements, they also suggest the possibility of using a suite of apparent thermal inertia values derived from single observations over a range of times of day and seasons to constrain the heterogeneity of the martian surface.

  17. Thermal inertia and radar reflectivity of the Martian north polar ERG: Low-density aggregates

    NASA Technical Reports Server (NTRS)

    Herkenhoff, K. E.

    1993-01-01

    The north polar layered deposits on Mars appear to be the source of the dark material that comprises the north polar erg. The physical properties and chemical composition of the erg material therefore have important implications for the origin and evolution of the Martian layered deposits. Viking bistatic radar and infrared thermal mapping (IRTM) data indicate that the bulk density of the erg material is lower than that of the average Martian surface. These data are consistent with hypotheses involving formation of filamentary sublimation residue (FSR) particles from erosion of the layered deposits. The color and albedo of the erg and of the layered deposits, and the presence of magnetic material on Mars, suggest that the dark material is composed of low-density aggregates of magnetic dust grains, perhaps similar to FSR particles created in laboratory experiments.

  18. Inertia and Decision Making.

    PubMed

    Alós-Ferrer, Carlos; Hügelschäfer, Sabine; Li, Jiahui

    2016-01-01

    Decision inertia is the tendency to repeat previous choices independently of the outcome, which can give rise to perseveration in suboptimal choices. We investigate this tendency in probability-updating tasks. Study 1 shows that, whenever decision inertia conflicts with normatively optimal behavior (Bayesian updating), error rates are larger and decisions are slower. This is consistent with a dual-process view of decision inertia as an automatic process conflicting with a more rational, controlled one. We find evidence of decision inertia in both required and autonomous decisions, but the effect of inertia is more clear in the latter. Study 2 considers more complex decision situations where further conflict arises due to reinforcement processes. We find the same effects of decision inertia when reinforcement is aligned with Bayesian updating, but if the two latter processes conflict, the effects are limited to autonomous choices. Additionally, both studies show that the tendency to rely on decision inertia is positively associated with preference for consistency.

  19. Inertia and Decision Making

    PubMed Central

    Alós-Ferrer, Carlos; Hügelschäfer, Sabine; Li, Jiahui

    2016-01-01

    Decision inertia is the tendency to repeat previous choices independently of the outcome, which can give rise to perseveration in suboptimal choices. We investigate this tendency in probability-updating tasks. Study 1 shows that, whenever decision inertia conflicts with normatively optimal behavior (Bayesian updating), error rates are larger and decisions are slower. This is consistent with a dual-process view of decision inertia as an automatic process conflicting with a more rational, controlled one. We find evidence of decision inertia in both required and autonomous decisions, but the effect of inertia is more clear in the latter. Study 2 considers more complex decision situations where further conflict arises due to reinforcement processes. We find the same effects of decision inertia when reinforcement is aligned with Bayesian updating, but if the two latter processes conflict, the effects are limited to autonomous choices. Additionally, both studies show that the tendency to rely on decision inertia is positively associated with preference for consistency. PMID:26909061

  20. Thermal infrared observations and thermophysical characterization of OSIRIS-REx target asteroid (101955) Bennu

    NASA Astrophysics Data System (ADS)

    Emery, J. P.; Fernández, Y. R.; Kelley, M. S. P.; Warden, K. T.; Hergenrother, C.; Lauretta, D. S.; Drake, M. J.; Campins, H.; Ziffer, J.

    2014-05-01

    Near-Earth Asteroids (NEAs) have garnered ever increasing attention over the past few years due to the insights they offer into Solar System formation and evolution, the potential hazard they pose, and their accessibility for both robotic and human spaceflight missions. Among the NEAs, carbonaceous asteroids hold particular interest because they may contain clues to how the Earth got its supplies of water and organic materials, and because none has yet been studied in detail by spacecraft. (101955) Bennu is special among NEAs in that it will not only be visited by a spacecraft, but the OSIRIS-REx mission will also return a sample of Bennu’s regolith to Earth for detailed laboratory study. This paper presents analysis of thermal infrared photometry and spectroscopy that test the hypotheses that Bennu is carbonaceous and that its surface is covered in fine-grained (sub-cm) regolith. The Spitzer Space Telescope observed Bennu in 2007, using the Infrared Spectrograph (IRS) to obtain spectra over the wavelength range 5.2-38 μm and images at 16 and 22 μm at 10 different longitudes, as well as the Infrared Array Camera (IRAC) to image Bennu at 3.6, 4.5, 5.8, and 8.0 μm, also at 10 different longitudes. Thermophysical analysis, assuming a spherical body with the known rotation period and spin-pole orientation, returns an effective diameter of 484 ± 10 m, in agreement with the effective diameter calculated from the radar shape model at the orientation of the Spitzer observations (492 ± 20 m, Nolan, M.C., Magri, C., Howell, E.S., Benner, L.A.M., Giorgini, J.D., Hergenrother, C.W., Hudson, R.S., Lauretta, D.S., Margo, J.-L., Ostro, S.J., Scheeres, D.J. [2013]. Icarus 226, 629-640) and a visible geometric albedo of 0.046 ± 0.005 (using Hv = 20.51, Hergenrother, C.W. et al. [2013]. Icarus 226, 663-670). Including the radar shape model in the thermal analysis, and taking surface roughness into account, yields a disk-averaged thermal inertia of 310 ± 70 J m-2 K-1 s-1

  1. The albedo, effective temperature, and energy balance of Uranus, as determined from Voyager IRIS data

    NASA Technical Reports Server (NTRS)

    Pearl, J. C.; Conrath, B. J.; Hanel, R. A.; Pirraglia, J. A.; Coustenis, A.

    1990-01-01

    The albedo, T(eff), and energy balance of Uranus are presently derived from Voyager IR Spectrometer and Radiometer data. By obtaining the absolute phase curve of Uranus, it has become possible to evaluate the Bond albedo without making separate determinations of the geometric albedo and phase integral. An orbital mean value for the bolometric Bond albedo of 0.3 + or - 0.049 yields an equilibrium temperature of 58.2 + or - 1.0 K. Thermal spectra from pole-to-pole latitude coverage establish a T(eff) of 59.1 + or - 0.3 K, leading to an energy balance of 1.06 + or - 0.08 for Uranus.

  2. Assessment of Mars Exploration Rover Landing Site Predictions

    NASA Astrophysics Data System (ADS)

    Golombek, M. P.

    2005-05-01

    Comprehensive analyses of remote sensing data during the 3-year effort to select the Mars Exploration Rover landing sites at Gusev crater and Meridiani Planum correctly predicted the safe and trafficable surfaces explored by the two rovers. Gusev crater was predicted to be a relatively low relief surface that was comparably dusty, but less rocky than the Viking landing sites. Available data for Meridiani Planum indicated a very flat plain composed of basaltic sand to granules and hematite that would look completely unlike any of the existing landing sites with a dark, low albedo surface, little dust and very few rocks. Orbital thermal inertia measurements of 315 J m-2 s-0.5 K-1 at Gusev suggested surfaces dominated by duricrust to cemented soil-like materials or cohesionless sand or granules, which is consistent with observed soil characteristics and measured thermal inertias from the surface. THEMIS thermal inertias along the traverse at Gusev vary from 285 at the landing site to 330 around Bonneville rim and show systematic variations that can be related to the observed increase in rock abundance (5-30%). Meridiani has an orbital bulk inertia of ~200, similar to measured surface inertias that correspond to observed surfaces dominated by 0.2 mm sand size particles. Rock abundance derived from orbital thermal differencing techniques suggested that Meridiani Planum would have very low rock abundance, consistent with the rock free plain traversed by Opportunity. Spirit landed in an 8% orbital rock abundance pixel, consistent with the measured 7% of the surface covered by rocks >0.04 m diameter at the landing site, which is representative of the plains away from craters. The orbital albedo of the Spirit traverse varies from 0.19 to 0.30, consistent with surface measurements in and out of dust devil tracks. Opportunity is the first landing in a low albedo portion of Mars as seen from orbit, which is consistent with the dark, dust-free surface and measured albedos. The

  3. Physical properties of transneptunian objects, Centaurs, and Trojans from thermal observations

    NASA Astrophysics Data System (ADS)

    Mueller, M.

    2014-07-01

    The most productive way to measure the size and albedo of small bodies throughout the Solar System is through studies of their thermal emission. This is complicated for the cold bodies in the outer Solar System, whose thermal emission peaks at wavelengths for which the Earth's atmosphere is opaque. While the relatively warm Trojans are marginally accessible from the ground in the Q band, the sizes of only a handful of transneptunian objects (TNOs) and Centaurs were known before Spitzer was launched in 2003. Spitzer/MIPS photometry at wavelengths of 24 and 70 microns allowed size and albedo of tens of TNOs and Centaurs to be measured. Herschel (operational in 2009--2013) allowed photometry of a total of ˜140 TNOs at wavelengths between 70 and 500 microns using PACS and SPIRE, chiefly in the framework of the Key Programme ``TNOs are Cool!''. I will present selected results from these surveys and discuss their implications on our knowledge of the origin and evolution of the Solar System, as evidenced by its coldest members. Of particular interest are the sizes of binary systems. Where their masses are known from spatially resolved observations, diameter measurements allow the bulk mass density to be determined, providing a unique probe of the object's interior. In the past few years, we have witnessed a remarkable increase in the number of successfully observed stellar occultations by TNOs and other small bodies. They provide an elegant, model-independent, and accurate way of measuring projected TNO dimensions at the time of the event and at the location of the observer(s). Even satellites or ring systems can be detected this way. However, predictable occultations are rare events and will likely stay infrequent, even in the post-Gaia era. Studies of the ensemble properties of the transneptunian populations will continue to rely on thermal observations. Reliable thermal modeling requires some knowledge of the target's temperature. Optimally, this is obtained through

  4. Albedo of Permanently Shadowed Regions of the Lunar Poles

    NASA Astrophysics Data System (ADS)

    Riner, M. A.; Lucey, P. G.; Bussey, B.; Cahill, J. T.; McGovern, A.

    2012-12-01

    limit is due to a complete loss of received laser signal as the spacecraft crosses the terminator due to thermal contraction of insulating blankets that pull the LOLA telescope out of alignment with the detectors. Fortuitously, two of the five laser spots reposition onto detectors after a transition period, so good laser range is obtained on a portion of the lunar night side. Additional calibration of night side reflectance data pole ward of 83° is ongoing [4]. The albedo of measured permanently shaded regions is 0.31 +/- 0.031 (1σ) compared to 0.31 +/- 0.033 (1σ) for measured sunlit regions from 60-80° north and south latitudes. This suggests that the high albedo of the floor of Shackleton is either unique or that the cause of the high albedo only acts at higher latitudes. Additional study of PSRs pole ward of 83° from LOLA night side data and examination of individual orbit tracks through PSRs may help elucidate the relationship between PSRs and albedo and contribute to understanding of these unique thermal environments, distribution of ice in PSRs, and volatile delivery and retention mechanisms. [1] Ingersoll et al. (1992) Icarus, 100, 40-47. [2] Smith et al. (2010) Space Sci. Rev., 150, 209-241. [3] Riner and Lucey (2011) AGU Fall Meeting, #P13D-1707. [4] Zuber et al. (2012) Nature, 486, 378-381. [5] McGovern et al. (2012), Icarus, accepted pending final review.

  5. Observations of Surfzone Albedo

    NASA Astrophysics Data System (ADS)

    Sinnett, G.; Feddersen, F.

    2014-12-01

    The surfzone environment (where waves break) contains several unique and previously unconsidered processes that affect the heat budget. Entering short-wave radiation is a dominant term in both shelf and surfzone heat budgets. In contrast to the shelf, however, depth limited wave breaking in the surfzone generates spray, whitewater and suspended sediments, elevating the surface albedo (ratio of reflected to incident short-wave radiation). Elevated albedo reduces the level of solar short-wave radiation entering the water, potentially resulting in less heating. Additionally, surfzone water quality is often impacted by fecal bacteria contamination. As bacteria mortality is related to short-wave solar radiation, elevated surfzone albedo could reduce pathogen mortality, impacting human health. Albedo in the open ocean has been frequently studied and parameterizations often consider solar zenith angle, wind speed and ocean chlorophyll concentration, producing albedo values typically near 0.06. However, surfzone albedo observations have been extremely sparse, yet show depth limited wave breaking may increase the albedo by nearly a factor of 10 up to 0.5. Here, we present findings from a field study at the Scripps Institution of Oceanography pier to observe the affect of waves on surfzone albedo. Concurrent measurements were taken with a four-way radiometer (to measure both downwelling and upwelling short-wave and long wave radiation) mounted above the surfzone. A co-located GoPro camera was used to relate visual aspects of the surfzone to measured reflectance, and wave height and period were observed with a bottom mounted pressure sensor in 5 m water depth just outside the surfzone. Wind speed and direction were observed on the pier 10 m above the water surface. Here, we will examine the surfzone albedo dependence on surfzone parameters, such as wave height.

  6. Reuyl Crater Dust Avalanches

    NASA Image and Video Library

    2002-06-04

    The rugged, arcuate rim of the 90 km crater Reuyl dominates this NASA Mars Odyssey image. Reuyl crater is at the southern edge of a region known to be blanketed in thick dust based on its high albedo brightness and low thermal inertia values.

  7. Improvement of Mars surface snow albedo modeling in LMD Mars GCM with SNICAR

    NASA Astrophysics Data System (ADS)

    Singh, D.; Flanner, M.; Millour, E.

    2017-12-01

    The current version of Laboratoire de Météorologie Dynamique (LMD) Mars GCM (original-MGCM) uses annually repeating (prescribed) albedo values from the Thermal Emission Spectrometer observations. We integrate the Snow, Ice, and Aerosol Radiation (SNICAR) model with MGCM (SNICAR-MGCM) to prognostically determine H2O and CO2 ice cap albedos interactively in the model. Over snow-covered regions mean SNICAR-MGCM albedo is higher by about 0.034 than original-MGCM. Changes in albedo and surface dust content also impact the shortwave energy flux at the surface. SNICAR-MGCM model simulates a change of -1.26 W/m2 shortwave flux on a global scale. Globally, net CO2 ice deposition increases by about 4% over one Martian annual cycle as compared to original-MGCM simulations. SNICAR integration reduces the net mean global surface temperature, and the global surface pressure of Mars by about 0.87% and 2.5% respectively. Changes in albedo also show a similar distribution as dust deposition over the globe. The SNICAR-MGCM model generates albedos with higher sensitivity to surface dust content as compared to original-MGCM. For snow-covered regions, we improve the correlation between albedo and optical depth of dust from -0.91 to -0.97 with SNICAR-MGCM as compared to original-MGCM. Using new diagnostic capabilities with this model, we find that cryospheric surfaces (with dust) increase the global surface albedo of Mars by 0.022. The cryospheric effect is severely muted by dust in snow, however, which acts to decrease the planet-mean surface albedo by 0.06.

  8. Surface thermophysical properties on the potentially hazardous asteroid (99942) Apophis

    NASA Astrophysics Data System (ADS)

    Yu, Liang-Liang; Ji, Jianghui; Ip, Wing-Huen

    2017-07-01

    We investigate the surface thermophysical properties (thermal emissivity, thermal inertia, roughness fraction and geometric albedo) of asteroid (99942) Apophis, using the currently available mid-infrared observations from CanariCam on Gran Telescopio CANARIAS and far-infrared data from PACS on Herschel, based on the Advanced Thermophysical Model. We show that the thermal emissivity of Apophis should be wavelength dependent from 8.70 μm to 160 μm, and the maximum emissivity may appear around 20 μm, similar to that of Vesta. Moreover, we further derive the thermal inertia, roughness fraction, geometric albedo and effective diameter of Apophis within a possible 1σ scale of Γ ={100}-52+100{{{Jm}}}{{-}2} {{{s}}}{{-}0.{{5}}} {{{K}}}{{-}1}, {f}{{r}}=0.78˜ 1.0, {p}{{v}}={0.286}-0.026+0.030 and {D}{{eff}}={378}-25+19{{m}}, and 3σ scale of Γ ={100}-100+240 {{{Jm}}}{{-}2} {{{s}}}{{-}0.{{5}}} {{{K}}}{{-}1}, {f}{{r}}=0.2˜ 1.0, {p}{{v}}={0.286}-0.029+0.039 and {D}{{eff}}={378}-29+27{{m}}. The derived low thermal inertia but high roughness fraction may imply that Apophis could have regolith on its surface, where stronger space weathering but weaker regolith migration has happened in comparison with asteroid Itokawa. Our results show that small-size asteroids could also have fine regolith on the surface, and further infer that Apophis may have been delivered from the Main Belt by the Yarkovsky effect.

  9. Geenland Glacier Albedo Variability

    NASA Astrophysics Data System (ADS)

    2004-01-01

    The program for Arctic Regional Climate Assessment (PARCA) is a NASA-funded project with the prime goal of addressing the mass balance of the Greenland ice sheet. Since the formal initiation of the program in 1995, there has been a significant improvement in the estimates of the mass balance of the ice sheet. Results from this program reveal that the high-elevation regions of the ice sheet are approximately in balance, but the margins are thinning. Laser surveys reveal significant thinning along 70 percent of the ice sheet periphery below 2000 m elevations, and in at least one outlet glacier, Kangerdlugssuaq in southeast Greenland, thinning has been as much as 10 m/yr. This study examines the albedo variability in four outlet glaciers to help separate out the relative contributions of surface melting versus ice dynamics to the recent mass balance changes. Analysis of AVHRR Polar Pathfinder albedo shows that at the Petermann and Jakobshavn glaciers, there has been a negative trend in albedo at the glacier terminus from 1981 to 2000, whereas the Stor+strommen and Kangerdlugssuaq glaciers show slightly positive trends in albedo. These findings are consistent with recent observations of melt extent from passive microwave data which show more melt on the western side of Greenland and slightly less on the eastern side. Significance of albedo trends will depend on where and when the albedo changes occur. Since the majority of surface melt occurs in the shallow sloping western margin of the ice sheet where the shortwave radiation dominates the energy balance in summer (e.g. Jakobshavn region) this region will be more sensitive to changes in albedo than in regions where this is not the case. Near the Jakobshavn glacier, even larger changes in albedo have been observed, with decreases as much as 20 percent per decade.

  10. Greenland Glacier Albedo Variability

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The program for Arctic Regional Climate Assessment (PARCA) is a NASA-funded project with the prime goal of addressing the mass balance of the Greenland ice sheet. Since the formal initiation of the program in 1995, there has been a significant improvement in the estimates of the mass balance of the ice sheet. Results from this program reveal that the high-elevation regions of the ice sheet are approximately in balance, but the margins are thinning. Laser surveys reveal significant thinning along 70 percent of the ice sheet periphery below 2000 m elevations, and in at least one outlet glacier, Kangerdlugssuaq in southeast Greenland, thinning has been as much as 10 m/yr. This study examines the albedo variability in four outlet glaciers to help separate out the relative contributions of surface melting versus ice dynamics to the recent mass balance changes. Analysis of AVHRR Polar Pathfinder albedo shows that at the Petermann and Jakobshavn glaciers, there has been a negative trend in albedo at the glacier terminus from 1981 to 2000, whereas the Stor+strommen and Kangerdlugssuaq glaciers show slightly positive trends in albedo. These findings are consistent with recent observations of melt extent from passive microwave data which show more melt on the western side of Greenland and slightly less on the eastern side. Significance of albedo trends will depend on where and when the albedo changes occur. Since the majority of surface melt occurs in the shallow sloping western margin of the ice sheet where the shortwave radiation dominates the energy balance in summer (e.g. Jakobshavn region) this region will be more sensitive to changes in albedo than in regions where this is not the case. Near the Jakobshavn glacier, even larger changes in albedo have been observed, with decreases as much as 20 percent per decade.

  11. Inferring heat recirculation and albedo for exoplanetary atmospheres: Comparing optical phase curves and secondary eclipse data

    NASA Astrophysics Data System (ADS)

    von Paris, P.; Gratier, P.; Bordé, P.; Selsis, F.

    2016-03-01

    Context. Basic atmospheric properties, such as albedo and heat redistribution between day- and nightsides, have been inferred for a number of planets using observations of secondary eclipses and thermal phase curves. Optical phase curves have not yet been used to constrain these atmospheric properties consistently. Aims: We model previously published phase curves of CoRoT-1b, TrES-2b, and HAT-P-7b, and infer albedos and recirculation efficiencies. These are then compared to previous estimates based on secondary eclipse data. Methods: We use a physically consistent model to construct optical phase curves. This model takes Lambertian reflection, thermal emission, ellipsoidal variations, and Doppler boosting, into account. Results: CoRoT-1b shows a non-negligible scattering albedo (0.11 < AS < 0.3 at 95% confidence) as well as small day-night temperature contrasts, which are indicative of moderate to high re-distribution of energy between dayside and nightside. These values are contrary to previous secondary eclipse and phase curve analyses. In the case of HAT-P-7b, model results suggest a relatively high scattering albedo (AS ≈ 0.3). This confirms previous phase curve analysis; however, it is in slight contradiction to values inferred from secondary eclipse data. For TrES-2b, both approaches yield very similar estimates of albedo and heat recirculation. Discrepancies between recirculation and albedo values as inferred from secondary eclipse and optical phase curve analyses might be interpreted as a hint that optical and IR observations probe different atmospheric layers, hence temperatures.

  12. Quantum inertia stops superposition: Scan Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Gato-Rivera, Beatriz

    2017-08-01

    Scan Quantum Mechanics is a novel interpretation of some aspects of quantum mechanics in which the superposition of states is only an approximate effective concept. Quantum systems scan all possible states in the superposition and switch randomly and very rapidly among them. A crucial property that we postulate is quantum inertia, that increases whenever a constituent is added, or the system is perturbed with all kinds of interactions. Once the quantum inertia Iq reaches a critical value Icr for an observable, the switching among its different eigenvalues stops and the corresponding superposition comes to an end, leaving behind a system with a well defined value of that observable. Consequently, increasing the mass, temperature, gravitational strength, etc. of a quantum system increases its quantum inertia until the superposition of states disappears for all the observables and the system transmutes into a classical one. Moreover, the process could be reversible. Entanglement can only occur between quantum systems because an exact synchronization between the switchings of the systems involved must be established in the first place and classical systems do not have any switchings to start with. Future experiments might determine the critical inertia Icr corresponding to different observables, which translates into a critical mass Mcr for fixed environmental conditions as well as critical temperatures, critical electric and magnetic fields, etc. In addition, this proposal implies a new radiation mechanism from astrophysical objects with strong gravitational fields, giving rise to non-thermal synchrotron emission, that could contribute to neutron star formation. Superconductivity, superfluidity, Bose-Einstein condensates, and any other physical phenomena at very low temperatures must be reanalyzed in the light of this interpretation, as well as mesoscopic systems in general.

  13. Phylogenetic inertia and Darwin's higher law.

    PubMed

    Shanahan, Timothy

    2011-03-01

    The concept of 'phylogenetic inertia' is routinely deployed in evolutionary biology as an alternative to natural selection for explaining the persistence of characteristics that appear sub-optimal from an adaptationist perspective. However, in many of these contexts the precise meaning of 'phylogenetic inertia' and its relationship to selection are far from clear. After tracing the history of the concept of 'inertia' in evolutionary biology, I argue that treating phylogenetic inertia and natural selection as alternative explanations is mistaken because phylogenetic inertia is, from a Darwinian point of view, simply an expected effect of selection. Although Darwin did not discuss 'phylogenetic inertia,' he did assert the explanatory priority of selection over descent. An analysis of 'phylogenetic inertia' provides a perspective from which to assess Darwin's view. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. The Effect of Bond Albedo on Venus' Atmospheric and Surface Temperatures

    NASA Astrophysics Data System (ADS)

    Bullock, M. A.; Limaye, S. S.; Grinspoon, D. H.; Way, M.

    2017-12-01

    averaged surface temperature at a=0.81. Calculations here show that a Bond albedo of a=0.9 would yield a surface temperature of 666.4 K, about 70 K too low, unless there is additional thermal absorption within the atmosphere that is not understood. Colin, L.,, Venus, University of Arizona Press, Tucson, 1983, pp 10-26. Mallama, A., et al., 2006. Icarus. 182, 10-22.

  15. Migration of Frosts from High-Albedo Regions of Pluto: what New Horizons Reveals

    NASA Astrophysics Data System (ADS)

    Buratti, Bonnie J.; Stern, S. A.; Weaver, Hal A.; Young, Leslie A.; Olkin, Cathy B.; Ennico, Kimberly; Binzel, Richard P.; Zangari, Amanda; Earle, Alissa M.

    2015-11-01

    With its high eccentricity and obliquity, Pluto should exhibit seasonal volatile transport on its surface. Several lines of evidence support this transport: doubling of Pluto’s atmospheric pressure over the past two decades (Young et al., 2013, Ap. J. 766, L22; Olkin et al., 2015, Icarus 246, 230); changes in its historical rotational light curve, once all variations due to viewing geometry have been modelled (Buratti et al., 2015; Ap. J. 804, L6); and changes in HST albedo maps (Buie et al., 2010, Astron. J. 139, 1128). New Horizons LORRI images reveal that the region of greatest albedo change is not the polar cap(s) of Pluto, but the feature informally named Tombaugh Regio (TR). This feature has a normal reflectance as high as ~0.8 in some places, and it is superposed on older, lower-albedo pre-existing terrain with an albedo of only ~0.10. This contrast is larger than any other body in the Solar System, except for Iapetus. This albedo dichotomy leads to a complicated system of cold-trapping and thermal segregation, beyond the simple picture of seasonal volatile transport. Whatever the origin of TR, it initially acted as a cold trap, as the temperature differential between the high and low albedo regions could be enormous, possibly approaching 20K, based on their albedo differences and assuming their normalized phase curves are similar. This latter assumption will be refined as the full New Horizons data set is returned.Over six decades of ground-based photometry suggest that TR has been decreasing in albedo over the last 25 years. Possible causes include changing insolation angles, or sublimation from the edges where the high-albedo material impinges on a much warmer substrate.Funding by the NASA New Horizons Project acknowledged.

  16. Earth's Reflection: Albedo

    ERIC Educational Resources Information Center

    Gillette, Brandon; Hamilton, Cheri

    2011-01-01

    When viewing objects of different colors, you might notice that some appear brighter than others. This is because light is reflected differently from various surfaces, depending on their physical properties. The word "albedo" is used to describe how reflective a surface is. The Earth-atmosphere has a combined albedo of about 30%, a number that is…

  17. MCNP SIMULATION OF THE HP(10) ENERGY RESPONSE OF A BRAZILIAN TLD ALBEDO NEUTRON INDIVIDUAL DOSEMETER, FROM THERMAL TO 20 MeV.

    PubMed

    Freitas, B M; Martins, M M; Pereira, W W; da Silva, A X; Mauricio, C L P

    2016-09-01

    The Brazilian Instituto de Radioproteção e Dosimetria (IRD) runs a neutron individual monitoring system with a home-made TLD albedo dosemeter. It has already been characterised and calibrated in some reference fields. However, the complete energy response of this dosemeter is not known, and the calibration factors for all monitored workplace neutron fields are difficult to be obtained experimentally. Therefore, to overcome such difficulties, Monte Carlo simulations have been used. This paper describes the simulation of the HP(10) neutron response of the IRD TLD albedo dosemeter using the MCNPX transport code, for energies from thermal to 20 MeV. The validation of the MCNPX modelling is done comparing the simulated results with the experimental measurements for ISO standard neutron fields of (241)Am-Be, (252)Cf, (241)Am-B and (252)Cf(D2O) and also for (241)Am-Be source moderated with paraffin and silicone. Bare (252)Cf are used for normalisation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Rhea and Dione: Variations in Surface Thermal Properties

    NASA Astrophysics Data System (ADS)

    Howett, Carly; Spencer, J.; Anne, V.

    2013-10-01

    Thermal inertia variations have been observed on icy satellite surfaces throughout the Saturnian system, resulting in night and daytime temperature variations across the satellites. The most notable are the two ‘Pac-Man’ anomalies on Mimas and Tethys (Howett et al., 2011, 2012): distinct regions of high thermal inertia at low latitudes on the leading hemisphere of both satellites, resulting in warmer nighttime and cooler daytime temperatures (by ~15 K) than their surroundings. High-energy electrons are the likely cause of this surface alteration, which preferentially bombard low latitudes of the leading hemisphere of Mimas and Tethys, effectively gluing the grains together and thus increasing their thermal inertia. Cassini’s CIRS (Composite Infrared Spectrometer) has returned a plethora of night- and day-time data for both Dione and Rhea. Using these data, with the same analysis techniques that discovered the ‘Pac-Men’, the spatial variations in thermophysical properties across Rhea and Dione have been mapped. The results are intriguing: for the first time we see a decrease in the thermal inertia across Rhea’s Inktomi crater ejecta blanket and hints at a high thermal inertia region at low latitudes on Dione’s leading hemisphere. If Dione’s high thermal inertia region is formed by the same mechanism as the ‘Pac-Men’ on Mimas and Tethys (and nothing similar is observed on Rhea), then this sets an important bound in the electron energy able to produce this type of surface alteration. Rhea’s Inktomi crater (14 S/112 W, diameter 48 km) is a bright young ray crater. A similar crater (i.e. young, morphologically fresh) exists on Dione: Creusa (49 N/76 W, diameter 40 km). Preliminary results show that no significant change in the thermal inertia is observed over Creusa. Why should thermal inertia vary over Inktomi, but not Creusa? Rhea and Dione’s subsurface may be different enough to explain this inconsistency (Schenk et al., 2011), or maybe the

  19. Improvement of Mars Surface Snow Albedo Modeling in LMD Mars GCM With SNICAR

    NASA Astrophysics Data System (ADS)

    Singh, D.; Flanner, M. G.; Millour, E.

    2018-03-01

    The current version of Laboratoire de Météorologie Dynamique (LMD) Mars GCM (original-MGCM) uses annually repeating (prescribed) CO2 snow albedo values based on the Thermal Emission Spectrometer observations. We integrate the Snow, Ice, and Aerosol Radiation (SNICAR) model with MGCM (SNICAR-MGCM) to prognostically determine H2O and CO2 snow albedos interactively in the model. Using the new diagnostic capabilities of this model, we find that cryospheric surfaces (with dust) increase the global surface albedo of Mars by 0.022. Over snow-covered regions, SNICAR-MGCM simulates mean albedo that is higher by about 0.034 than prescribed values in the original-MGCM. Globally, shortwave flux into the surface decreases by 1.26 W/m2, and net CO2 snow deposition increases by about 4% with SNICAR-MGCM over one Martian annual cycle as compared to the original-MGCM simulations. SNICAR integration reduces the mean global surface temperature and the surface pressure of Mars by about 0.87% and 2.5%, respectively. Changes in albedo also show a similar distribution to dust deposition over the globe. The SNICAR-MGCM model generates albedos with higher sensitivity to surface dust content as compared to original-MGCM. For snow-covered regions, we improve the correlation between albedo and optical depth of dust from -0.91 to -0.97 with SNICAR-MGCM as compared to the original-MGCM. Dust substantially darkens Mars's cryosphere, thereby reducing its impact on the global shortwave energy budget by more than half, relative to the impact of pure snow.

  20. Emotional inertia and psychological maladjustment.

    PubMed

    Kuppens, Peter; Allen, Nicholas B; Sheeber, Lisa B

    2010-07-01

    In this article, we examine the concept of emotional inertia as a fundamental property of the emotion dynamics that characterize psychological maladjustment. Emotional inertia refers to the degree to which emotional states are resistant to change. Because psychological maladjustment has been associated with both emotional underreactivity and ineffective emotion-regulation skills, we hypothesized that its overall emotion dynamics would be characterized by high levels of inertia. We provide evidence from two naturalistic studies that, using different methods, showed that the emotional fluctuations of individuals who exhibited low self-esteem (Study 1) and depression (Study 2) were characterized by higher levels of inertia in both positive and negative emotions than the emotional fluctuations of people who did not exhibit low self-esteem and depression. We also discuss the usefulness of the concept of emotional inertia as a hallmark of maladaptive emotion dynamics.

  1. The Near-Earth Encounter of Asteroid 308635 (2005 YU55): Thermal IR Observations

    NASA Astrophysics Data System (ADS)

    Lim, Lucy F.; Emery, J. P.; Moskovitz, N. A.; Busch, M. W.; Yang, B.; Granvik, M.

    2012-10-01

    The near-Earth approach (0.00217 AU, or 0.845 lunar distances) of the C-type asteroid 308635 (2005 YU55) in November 2011 presented a rare opportunity for detailed observations of a low-albedo NEA in this size range. As part of a multi-telescope campaign to measure visible and infrared spectra and photometry, we obtained mid-infrared ( 8 to 22 micron) photometry and spectroscopy of 2005 YU55 using Michelle [1] on the Gemini North telescope on UT November 9 and 10, 2011. An extensive radar campaign [2] together with optical lightcurves [3,4] established the rotation state of YU55. In addition, the radar imaging resulted in a shape model for the asteroid, detection of numerous boulders on its surface, and a preliminary estimate of its equatorial diameter at 380 +/- 20 m. In a preliminary analysis, applying the radar and lightcurve-derived parameters to a rough-surface thermophysical model fit to the Gemini/Michelle thermal emission photometry results in a thermal inertia range of approximately 500 to 1500 J m-2 s-1/2 K-1, with the low-thermal-inertia solution corresponding to the small end of the radar size range and vice versa. Updates to these results will be presented and modeling of the thermal contribution to the measured near-infrared spectra from Palomar/Triplespec and IRTF/SpeX will also be discussed. The authors gratefully acknowledge the assistance of observatory staff and the support of the NASA NEOO program (LFL and JPE), the Carnegie fellowship (NAM), and NASA AES, NSF, and the NRAO Jansky Fellowship (MWB). [1] De Buizer, J. and R. Fisher, Proc. Hris (2005), pp. 84-87. [2] Busch, M.W. et al., ACM (2012), abstract #6179. [3] Warner, B., MPBull 39 (2), 84 [4] Pravec, P.

  2. A new validation technique for estimations of body segment inertia tensors: Principal axes of inertia do matter.

    PubMed

    Rossi, Marcel M; Alderson, Jacqueline; El-Sallam, Amar; Dowling, James; Reinbolt, Jeffrey; Donnelly, Cyril J

    2016-12-08

    The aims of this study were to: (i) establish a new criterion method to validate inertia tensor estimates by setting the experimental angular velocity data of an airborne objects as ground truth against simulations run with the estimated tensors, and (ii) test the sensitivity of the simulations to changes in the inertia tensor components. A rigid steel cylinder was covered with reflective kinematic markers and projected through a calibrated motion capture volume. Simulations of the airborne motion were run with two models, using inertia tensor estimated with geometric formula or the compound pendulum technique. The deviation angles between experimental (ground truth) and simulated angular velocity vectors and the root mean squared deviation angle were computed for every simulation. Monte Carlo analyses were performed to assess the sensitivity of simulations to changes in magnitude of principal moments of inertia within ±10% and to changes in orientation of principal axes of inertia within ±10° (of the geometric-based inertia tensor). Root mean squared deviation angles ranged between 2.9° and 4.3° for the inertia tensor estimated geometrically, and between 11.7° and 15.2° for the compound pendulum values. Errors up to 10% in magnitude of principal moments of inertia yielded root mean squared deviation angles ranging between 3.2° and 6.6°, and between 5.5° and 7.9° when lumped with errors of 10° in principal axes of inertia orientation. The proposed technique can effectively validate inertia tensors from novel estimation methods of body segment inertial parameter. Principal axes of inertia orientation should not be neglected when modelling human/animal mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. MARSTHERM: A Web-based System Providing Thermophysical Analysis Tools for Mars Research

    NASA Astrophysics Data System (ADS)

    Putzig, N. E.; Barratt, E. M.; Mellon, M. T.; Michaels, T. I.

    2013-12-01

    We introduce MARSTHERM, a web-based system that will allow researchers access to a standard numerical thermal model of the Martian near-surface and atmosphere. In addition, the system will provide tools for the derivation, mapping, and analysis of apparent thermal inertia from temperature observations by the Mars Global Surveyor Thermal Emission Spectrometer (TES) and the Mars Odyssey Thermal Emission Imaging System (THEMIS). Adjustable parameters for the thermal model include thermal inertia, albedo, surface pressure, surface emissivity, atmospheric dust opacity, latitude, surface slope angle and azimuth, season (solar longitude), and time steps for calculations and output. The model computes diurnal surface and brightness temperatures for either a single day or a full Mars year. Output options include text files and plots of seasonal and diurnal surface, brightness, and atmospheric temperatures. The tools for the derivation and mapping of apparent thermal inertia from spacecraft data are project-based, wherein the user provides an area of interest (AOI) by specifying latitude and longitude ranges. The system will then extract results within the AOI from prior global mapping of elevation (from the Mars Orbiter Laser Altimeter, for calculating surface pressure), TES annual albedo, and TES seasonal and annual-mean 2AM and 2PM apparent thermal inertia (Putzig and Mellon, 2007, Icarus 191, 68-94). In addition, a history of TES dust opacity within the AOI is computed. For each project, users may then provide a list of THEMIS images to process for apparent thermal inertia, optionally overriding the TES-derived dust opacity with a fixed value. Output from the THEMIS derivation process includes thumbnail and context images, GeoTIFF raster data, and HDF5 files containing arrays of input and output data (radiance, brightness temperature, apparent thermal inertia, elevation, quality flag, latitude, and longitude) and ancillary information. As a demonstration of capabilities

  4. Albedo matters: Understanding runaway albedo variations on Pluto

    NASA Astrophysics Data System (ADS)

    Earle, Alissa M.; Binzel, Richard P.; Young, Leslie A.; Stern, S. A.; Ennico, K.; Grundy, W.; Olkin, C. B.; Weaver, H. A.; New Horizons Surface Composition Theme

    2018-03-01

    The data returned from NASA's New Horizons reconnaissance of the Pluto system show striking albedo variations from polar to equatorial latitudes as well as sharp longitudinal boundaries. Pluto has a high obliquity (currently 119°) that varies by 23° over a period of less than 3 million years. This variation, combined with its regressing longitude of perihelion (360° over 3.7 million years), creates epochs of "Super Seasons" where one pole is pointed at the Sun at perihelion, thereby experiencing a short, relatively warm summer followed by its longest possible period of winter darkness. In contrast, the other pole experiences a much longer, less intense summer and a short winter season. We use a simple volatile sublimation and deposition model to explore the relationship between albedo variations, latitude, and volatile sublimation and deposition for the current epoch as well as historical epochs during which Pluto experienced these "Super Seasons." Our investigation quantitatively shows that Pluto's geometry creates the potential for runaway albedo and volatile variations, particularly in the equatorial region, which can sustain stark longitudinal contrasts like the ones we see between Tombaugh Regio and the informally named Cthulhu Regio.

  5. A neutron Albedo system with time rejection for landmine and IED detection

    NASA Astrophysics Data System (ADS)

    Kovaltchouk, V. D.; Andrews, H. R.; Clifford, E. T. H.; Faust, A. A.; Ing, H.; McFee, J. E.

    2011-10-01

    A neutron Albedo system has been developed for imaging of buried landmines and improvised explosive devices (IEDs). It involves irradiating the ground with fast neutrons and subsequently detecting the thermalized neutrons that return. A scintillating 6Li loaded ZnS(Ag) screen with a sensitive area of 40 cm×40 cm is used as a thermal neutron detector. Scintillation light is captured by orthogonal arrays of wavelength-shifting fibers placed on either side of the scintillator surface and then transferred to X and Y multi-pixel PMTs. A timing circuit, used with pulsed neutron sources, records the time when a neutron detection takes place relative to an external synchronization pulse from the pulsed source. Experimental tests of the Albedo system performance have been done in a sand box with a 252Cf neutron source (no time gating) and with pulsed D-D (2.6 MeV) neutrons from the Defense R&D Ottawa Van de Graaff accelerator (with time gating). Information contained in the time evolution of the thermal neutron field provided improved detection capability and image reconstruction. The detector design is described and experimental results are discussed.

  6. The Thermal Infrared Sensor onboard NASA's Mars 2020 Mission

    NASA Astrophysics Data System (ADS)

    Martinez, G.; Perez-Izquierdo, J.; Sebastian, E.; Ramos, M.; Bravo, A.; Mazo, M.; Rodriguez-Manfredi, J. A.

    2017-12-01

    NASA's Mars 2020 rover mission is scheduled for launch in July/August 2020 and will address key questions about the potential for life on Mars. The Mars Environmental Dynamics Analyzer (MEDA) is one of the seven instruments onboard the rover [1] and has been designed to assess the environmental conditions across the rover traverse. MEDA will extend the current record of in-situ meteorological measurements at the surface [2] to other locations on Mars. The Thermal InfraRed Sensor (TIRS) [3] is one of the six sensors comprising MEDA. TIRS will use three downward-looking channels to measure (1) the surface skin temperature (with high heritage from the Rover Environmental Monitoring Station onboard the Mars Science Laboratory mission [4]), (2) the upwelling thermal infrared radiation from the surface and (3) the reflected solar radiation at the surface, and two upward-looking channels to measure the (4) downwelling thermal infrared radiation at the surface and (5) the atmospheric temperature. In combination with other MEDA's sensors, TIRS will allow the quantification of the surface energy budget [5] and the determination of key geophysical properties of the terrain such as the albedo and thermal inertia with an unprecedented spatial resolution. Here we present a general description of the TIRS, with focus on its scientific requirements and results from field campaigns showing the performance of the different channels. References:[1] Rodríguez-Manfredi, J. A. et al. (2014), MEDA: An environmental and meteorological package for Mars 2020, LPSC, 45, 2837. [2] Martínez, G.M. et al. (2017), The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity, Space Science Reviews, 1-44. [3] Pérez-Izquierdo, J. et al. (2017), The Thermal Infrared Sensor (TIRS) of the Mars Environmental Dynamics Analyzer (MEDA) Instrument onboard Mars 2020, IEEE. [4] Sebastián, E. et al. (2010), The Rover Environmental Monitoring Station Ground

  7. NLCD - MODIS albedo data

    EPA Pesticide Factsheets

    The NLCD-MODIS land cover-albedo database integrates high-quality MODIS albedo observations with areas of homogeneous land cover from NLCD. The spatial resolution (pixel size) of the database is 480m-x-480m aligned to the standardized UGSG Albers Equal-Area projection. The spatial extent of the database is the continental United States. This dataset is associated with the following publication:Wickham , J., C.A. Barnes, and T. Wade. Combining NLCD and MODIS to Create a Land Cover-Albedo Dataset for the Continental United States. REMOTE SENSING OF ENVIRONMENT. Elsevier Science Ltd, New York, NY, USA, 170(0): 143-153, (2015).

  8. Albedos of Small Hilda Asteroids

    NASA Astrophysics Data System (ADS)

    Ryan, Erin L.; Woodward, C. E.

    2010-10-01

    We present albedo results for 70 small Hilda dynamical family members detected by the Spitzer Space Telescope in multiple archival programs. This Spitzer data samples Hildas with diameters between 2 and 11 kilometers. Our preliminary analysis reveals that the mean geometric albedo for this sample is pv = 0.05, matching the mean albedo derived for large (20 to 160 km) Hilda asteroids observed by IRAS (Ryan and Woodward 2010). This mean albedo is significantly darker than the mean albedo of asteroids in the outer main belt (2.8 AU < a < 3.5 AU), possibly suggesting that these asteroids did not originate from the outer main belt . This is in direct conflict with some dynamical models which suggest that the HIldas are field asteroids trapped from an inward migration of Jupiter (Franklin et al. 2004), and may provide additional observation support for delivery of dark Kuiper Belt contaminants to the inner solar system as per the Nice Model (Levison et al. 2009).

  9. Development and Validation of the Sleep Inertia Questionnaire (SIQ) and Assessment of Sleep Inertia in Analogue and Clinical Depression

    PubMed Central

    Kanady, Jennifer C.; Harvey, Allison G.

    2015-01-01

    Sleep inertia is the transitional state from sleep to wake. Research on sleep inertia is important in depression because many people with depression report having difficulty getting out of bed, which contributes to impairment and can impede the implementation of interventions. The first aim was to develop and validate the first self-report measure of sleep inertia, the Sleep Inertia Questionnaire (SIQ). The second aim was to compare reports of sleep inertia across three groups: (1) No-to-Mild-Depression, (2) Analogue-Depression, and (3) Syndromal-Depression. The SIQ demonstrates strong psychometric properties; it has good to excellent internal consistency, strong construct validity, and SIQ severity is associated with less prior sleep duration. Sleep inertia is more severe in the Analogue-Depression and Syndromal-Depression groups compared to the No-to-Mild-Depression group. In conclusion, the SIQ is a reliable measure of sleep inertia and has potential for improving the assessment of sleep inertia in clinical and research settings. PMID:26451063

  10. Development and Validation of the Sleep Inertia Questionnaire (SIQ) and Assessment of Sleep Inertia in Analogue and Clinical Depression.

    PubMed

    Kanady, Jennifer C; Harvey, Allison G

    2015-10-01

    Sleep inertia is the transitional state from sleep to wake. Research on sleep inertia is important in depression because many people with depression report having difficulty getting out of bed, which contributes to impairment and can impede the implementation of interventions. The first aim was to develop and validate the first self-report measure of sleep inertia, the Sleep Inertia Questionnaire (SIQ). The second aim was to compare reports of sleep inertia across three groups: (1) No-to-Mild-Depression, (2) Analogue-Depression, and (3) Syndromal-Depression. The SIQ demonstrates strong psychometric properties; it has good to excellent internal consistency, strong construct validity, and SIQ severity is associated with less prior sleep duration. Sleep inertia is more severe in the Analogue-Depression and Syndromal-Depression groups compared to the No-to-Mild-Depression group. In conclusion, the SIQ is a reliable measure of sleep inertia and has potential for improving the assessment of sleep inertia in clinical and research settings.

  11. Soil water content spatial pattern estimated by thermal inertia from air-borne sensors

    NASA Astrophysics Data System (ADS)

    Coppola, Antonio; Basile, Angelo; Esposito, Marco; Menenti, Massimo; Buonanno, Maurizio

    2010-05-01

    Remote sensing of soil water content from air- or space-borne platforms offer the possibility to provide large spatial coverage and temporal continuity. The water content can be actually monitored in a thin soil layer, usually up to a depth of 0.05m below the soil surface. To the contrary, difficulties arise in the estimation of the water content storage along the soil profile and its spatial (horizontal) distribution, which are closely connected to soil hydraulic properties and their spatial distribution. A promising approach for estimating soil water contents profiles is the integration of remote sensing of surface water content and hydrological modeling. A major goal of the scientific group is to develop a practical and robust procedure for estimating water contents throughout the soil profile from surface water content. As a first step, in this work, we will show some preliminary results from aircraft images analysis and their validation by field campaigns data. The data extracted from the airborne sensors provided the opportunity of retrieving land surface temperatures with a very high spatial resolution. The surface water content pattern, as deduced by the thermal inertia estimations, was compared to the surface water contents maps measured in situ by time domain reflectometry-based probes.

  12. Flapping inertia for selected rotor blades

    NASA Technical Reports Server (NTRS)

    Berry, John D.; May, Matthew J.

    1991-01-01

    Aerodynamics of helicopter rotor systems cannot be investigated without consideration for the dynamics of the rotor. One of the principal properties of the rotor which affects the rotor dynamics is the inertia of the rotor blade about its root attachment. Previous aerodynamic investigation have been performed on rotor blades with a variety of planforms to determine the performance differences due to blade planform. The blades tested for this investigation have been tested on the U.S. Army 2 meter rotor test system (2MRTS) in the NASA Langley 14 by 22 foot subsonic tunnel for hover performance. This investigation was intended to provide fundamental information on the flapping inertia of five rotor blades with differing planforms. The inertia of the bare cuff and the cuff with a blade extension were also measured for comparison with the inertia of the blades. Inertia was determined using a swing testing technique, using the period of oscillation to determine the effective flapping inertia. The effect of damping in the swing test was measured and described. A comparison of the flapping inertials for rectangular and tapered planform blades of approximately the same mass showed the tapered blades to have a lower inertia, as expected.

  13. Thermophysical Characteristics of OSIRIS-REx Target Asteroid (101955) Bennu

    NASA Astrophysics Data System (ADS)

    Yu, Liangliang; Ji, Jianghui

    2016-01-01

    In this work, we investigate the thermophysical properties, including thermal inertia, roughness fraction and surface grain size of OSIRIS-REx target asteroid (101955) Bennu by using a thermophysical model with the recently updated 3D radar-derived shape model (Nolan et al., 2013) and mid-infrared observations (Müller et al. 2012, Emery et al., 2014). We find that the asteroid bears an effective diameter of 510+6 -40 m, a geometric albedo of 0.047+0.0083 -0.0011, a roughness fraction of 0.04+0.26 -0.04, and thermal inertia of 240+440 -60 Jm-2s-0.5K-1 for our best-fit solution. The best-estimate thermal inertia suggests that fine-grained regolith may cover a large portion of Bennu's surface, where a grain size may vary from 1.3 to 31 mm. Our outcome suggests that Bennu is suitable for the OSIRIS-REx mission to return samples to Earth.

  14. The Low Albedo of Comets

    NASA Astrophysics Data System (ADS)

    Buratti, B. J.; Choukroun, M.; Bauer, J. M.

    2016-12-01

    Comets are among the handful of objects with very low albedos, in the 0.02-0.06 range. Dark material is common in the outer Solar System, but analysis of the spectra and albedo of this material by spacecraft including Cassini and New Horizons shows that it is diverse, covering a range of compositions. Some is neutral-colored in the visible, such as that found on Phoebe, while some is very red, such as that on the surfaces of D-type asteroids or the low-albedo side of Iapetus. The different types of low-albedo material may reflect both compositional diversity, including contamination by volatiles or darkening agents, and divergent alteration histories. The key question is whether a particular sub-type of low albedo material is pristine - an unprocessed accumulation of interstellar dust - or an end product of polymerization and photolysis into ever more complex materials. Comets have albedos similar to the leading hemisphere of Iapetus, the surface of Titan, and the lowest-albedo C-type and D-type asteroids. Observations by the WISE and NEOWISE cameras show that comets have consistently low albedos (1). The first quantitative measurement of low-albedo material in the Kuiper Belt, from which comets such as Jupiter Family Comets including 67P/Churyumov-Gerasimenko come, shows that even this material is not as dark as that found on comets (2). Results from both Stardust (3) and more recently Rosetta (4, 5) show that cometary surfaces contain prebiotic molecules, including the amino acid glycine. Other very low albedo objects have also been connected to complex organic molecules: on Iapetus, PAHs have been detected (6), and Titan's surface is believed to be covered with hydrocarbons produced in its haze layer (7). The presence of organic molecules, including complex ones, could be the unique characteristic of the very darkest material. The delivery of pre-biotic material from comets to the young Earth could represent a key link in the origins of terrestrial life. (1

  15. UV/visible albedos from airborne measurements

    NASA Astrophysics Data System (ADS)

    Webb, A.; Kylling, A.; Stromberg, I.

    2003-04-01

    During the INSPECTRO campaign effective surface albedo was measured at UV and visible wavelengths from two airborne platforms, a Cessna light aircraft and a hot air balloon. On board the Cessna was a scanning spectroradiometer measuring from 300 - 500nm at 10nm intervals. The NILU cube, with 6 faces and two UV channels at 312 and 340nm, was suspended beneath the hot air balloon. Flights took place over East Anglia during September, 2002. Balloon flights were made below cloud layers, while the Cessna flew both above and below cloud. The Cessna also flew over Barton Bendish, where surface albedos have been measured for ground truthing of satellite data, and measured the effective albedo at four visible wave- lengths in the centres of the satellite bandpass functions. Results of measurements from the different platforms are compared, and model simulations used to deduce the surface albedo from the effective albedo at altitude, giving, for example, an albedo of 0.02 ± 0.01 at 340nm.

  16. Selection of extreme environmental conditions, albedo coefficient and Earth infrared radiation, for polar summer Long Duration Balloon missions

    NASA Astrophysics Data System (ADS)

    González-Llana, Arturo; González-Bárcena, David; Pérez-Grande, Isabel; Sanz-Andrés, Ángel

    2018-07-01

    The selection of the extreme thermal environmental conditions -albedo coefficient and Earth infrared radiation- for the thermal design of stratospheric balloon missions is usually based on the methodologies applied in space missions. However, the particularities of stratospheric balloon missions, such as the much higher residence time of the balloon payload over a determined area, make necessary an approach centered in the actual environment the balloon is going to find, in terms of geographic area and season of flight. In this sense, this work is focussed on stratospheric balloon missions circumnavigating the North Pole during the summer period. Pairs of albedo and Earth infrared radiation satellite data restricted to this area and season of interest have been treated statistically. Furthermore, the environmental conditions leading to the extreme temperatures of the payload depend in turn on the surface finish, and more particularly on the ratio between the solar absorptance and the infrared emissivity α/ε. A simple but representative thermal model of a balloon and its payload has been set up in order to identify the pairs of albedo coefficient and Earth infrared radiation leading to extreme temperatures for each value of α/ε.

  17. Primary uterine inertia in four labrador bitches.

    PubMed

    Davidson, Autumn P

    2011-01-01

    Uterine inertia is a common cause of dystocia in the bitch and is designated as primary (i.e., uterine contractions fail to ever be initiated) or secondary (i.e., uterine contractions cease after a period of time but before labor is completed). The etiology of primary uterine inertia is not well understood. The accurate diagnosis of primary uterine inertia requires the use of tocodynamometry (uterine monitoring). Primary uterine inertia has been postulated to result from a failure of luteolysis resulting in persistently elevated progesterone concentrations. In this study, primary uterine inertia was diagnosed in a series of four bitches in which luteolysis was documented suggesting some other etiopathogenesis for primary uterine inertia.

  18. Effects of Inertia on Evolutionary Prisoner's Dilemma Game

    NASA Astrophysics Data System (ADS)

    Du, Wen-Bo; Cao, Xian-Bin; Liu, Run-Ran; Wang, Zhen

    2012-09-01

    Considering the inertia of individuals in real life, we propose a modified Fermi updating rule, where the inertia of players is introduced into evolutionary prisoner's dilemma game (PDG) on square lattices. We mainly focus on how the inertia affects the cooperative behavior of the system. Interestingly, we find that the cooperation level has a nonmonotonic dependence on the inertia: with small inertia, cooperators will soon be invaded by defectors; with large inertia, players are unwilling to change their strategies and the cooperation level remains the same as the initial state; while a moderate inertia can induce the highest cooperation level. Moreover, effects of environmental noise and individual inertia are studied. Our work may be helpful in understanding the emergence and persistence of cooperation in nature and society.

  19. Therapeutic Inertia and Treatment Intensification.

    PubMed

    Josiah Willock, Robina; Miller, Joseph B; Mohyi, Michelle; Abuzaanona, Ahmed; Muminovic, Meri; Levy, Phillip D

    2018-01-29

    This review aims to emphasize how therapeutic inertia, the failure of clinicians to intensify treatment when blood pressure rises or remains above therapeutic goals, contributes to suboptimal blood pressure control in hypertensive populations. Studies reveal that the therapeutic inertia is quite common and contributes to suboptimal blood pressure control. Quality improvement programs and standardized approaches to support antihypertensive treatment intensification are ways to combat therapeutic inertia. Furthermore, programs that utilize non-physician medical professionals such as pharmacists and nurses demonstrate promise in mitigating the effects of this important problem. Therapeutic inertia impedes antihypertensive management and requires a broad effort to reduce its effects. There is an ongoing need for renewed focus and research in this area to improve hypertension control.

  20. A simulation model of temperature transitory on rocks having different thermal inertia. Analysis of the theoretical capacity of rock discrimination by remote sensing data

    NASA Technical Reports Server (NTRS)

    Cassinis, R. (Principal Investigator); Tosi, N.

    1980-01-01

    The possibility of identifying ground surface material by measuring the surface temperature at two different and significant times of the day was investigated for the case of hypothetical island whose rocky surface contained no vegetation and consisted of dolomite, clay, and granite. The thermal dynamics of the soil surface during a day in which atmospheric conditions were average for a latitude of about 40 deg to 50 deg were numerically simulated. The line of separation between zones of different materials was delineated by the range of temperature variation. Results show that the difference between maximum and minimum value of the temperature of ground surface during the day is linked to the thermal inertia value of the material of which the rock is formed.

  1. Baring high-albedo soils by overgrazing: a hypothesized desertification mechanism.

    PubMed

    Otterman, J

    1974-11-08

    Observations are reported of high-albedo soils denuded by overgrazing which appear bright, in high contrast to regions covered by natural vegetation. Measurements and modeling show that the denuded surfaces are cooler, when compared under sunlit conditions. This observed "thermal depression" eflect should, on theoretical grounds, result in a decreased lifting of air necessary for cloud formation and precipitation, and thus lead to regional climatic desertification.

  2. Baring high-albedo soils by overgrazing - A hypothesized desertification mechanism

    NASA Technical Reports Server (NTRS)

    Otterman, J.

    1974-01-01

    Observations are reported of high-albedo soils denuded by overgrazing which appear bright, in high contrast to regions covered by natural vegetation. Measurements and modeling show that the denuded surfaces are cooler, when compared under sunlit conditions. This observed 'thermal depression' effect should, on theoretical grounds, result in a decreased lifting of air necessary for cloud formation and precipitation, and thus lead to regional climatic desertification.

  3. Arctic sea ice albedo from AVHRR

    NASA Technical Reports Server (NTRS)

    Lindsay, R. W.; Rothrock, D. A.

    1994-01-01

    The seasonal cycle of surface albedo of sea ice in the Arctic is estimated from measurements made with the Advanced Very High Resolution Radiometer (AVHRR) on the polar-orbiting satellites NOAA-10 and NOAA-11. The albedos of 145 200-km-square cells are analyzed. The cells are from March through September 1989 and include only those for which the sun is more than 10 deg above the horizon. Cloud masking is performed manually. Corrections are applied for instrument calibration, nonisotropic reflection, atmospheric interference, narrowband to broadband conversion, and normalization to a common solar zenith angle. The estimated albedos are relative, with the instrument gain set to give an albedo of 0.80 for ice floes in March and April. The mean values for the cloud-free portions of individual cells range from 0.18 to 0.91. Monthly averages of cells in the central Arctic range from 0.76 in April to 0.47 in August. The monthly averages of the within-cell standard deviations in the central Arctic are 0.04 in April and 0.06 in September. The surface albedo and surface temperature are correlated most strongly in March (R = -0.77) with little correlation in the summer. The monthly average lead fraction is determined from the mean potential open water, a scaled representation of the temperature or albedo between 0.0 (for ice) and 1.0 (for water); in the central Arctic it rises from an average 0.025 in the spring to 0.06 in September. Sparse data on aerosols, ozone, and water vapor in the atmospheric column contribute uncertainties to instantaneous, area-average albedos of 0.13, 0.04, and 0.08. Uncertainties in monthly average albedos are not this large. Contemporaneous estimation of these variables could reduce the uncertainty in the estimated albedo considerably. The poor calibration of AVHRR channels 1 and 2 is another large impediment to making accurate albedo estimates.

  4. Using CRISM and THEMIS to characterize high thermal inertia terrains in the northern Hellas region of Mars

    NASA Astrophysics Data System (ADS)

    McBeck, J.; Seelos, K. D.; Ackiss, S. E.; Buczkowski, D.

    2014-12-01

    Previous analyses of Thermal Emission Imaging System (THEMIS) data indicate that high thermal inertia (TI) materials within the cratered highlands north of Hellas are in situ bedrock units enriched in olivine. The high TI materials occur in both ~3.5 Ga infilled, flat-floored craters as well as ~3.8-4.0 Ga expanses of intercrater plains. A spatial association of the intercrater plains units with the Hellas ring structures suggests that they may have resulted from magma ascension and eruption via crustal fractures. Infilled craters may have formed after individual impact events triggered decompressional melting and effusive volcanism. Here we examine the mineralogy of both the high TI intercrater plains materials and high TI crater floor materials to the north of Hellas (30°E to 85°E and 7°S to 27°S) using Vis/NIR spectral data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). We report on the spatial distribution and variability of observed mafic minerals (olivine, low-calcium pyroxene, and high-calcium pyroxene) to constrain whether the formation of these outcrops were caused or influenced by a single event (e.g., the Hellas impact), multiple individual events, or by some other means, and to provide overall insight into Noachian/Hesperian crustal evolution of Mars.

  5. Physical properties of asteroids derived from a novel approach to modeling of optical lightcurves and WISE thermalinfrared data

    NASA Astrophysics Data System (ADS)

    Durech, Josef; Hanus, Josef; Delbo, Marco; Ali-Lagoa, Victor; Carry, Benoit

    2014-11-01

    Convex shape models and spin vectors of asteroids are now routinely derived from their disk-integrated lightcurves by the lightcurve inversion method of Kaasalainen et al. (2001, Icarus 153, 37). These shape models can be then used in combination with thermal infrared data and a thermophysical model to derive other physical parameters - size, albedo, macroscopic roughness and thermal inertia of the surface. In this classical two-step approach, the shape and spin parameters are kept fixed during the thermophysical modeling when the emitted thermal flux is computed from the surface temperature, which is computed by solving a 1-D heat diffusion equation in sub-surface layers. A novel method of simultaneous inversion of optical and infrared data was presented by Durech et al. (2012, LPI Contribution No. 1667, id.6118). The new algorithm uses the same convex shape representation as the lightcurve inversion but optimizes all relevant physical parameters simultaneously (including the shape, size, rotation vector, thermal inertia, albedo, surface roughness, etc.), which leads to a better fit to the thermal data and a reliable estimation of model uncertainties. We applied this method to selected asteroids using their optical lightcurves from archives and thermal infrared data observed by the Wide-field Infrared Survey Explorer (WISE) satellite. We will (i) show several examples of how well our model fits both optical and infrared data, (ii) discuss the uncertainty of derived parameters (namely the thermal inertia), (iii) compare results obtained with the two-step approach with those obtained by our method, (iv) discuss the advantages of this simultaneous approach with respect to the classical two-step approach, and (v) advertise the possibility to use this approach to tens of thousands asteroids for which enough WISE and optical data exist.

  6. Inertia in strategy switching transforms the strategy evolution.

    PubMed

    Zhang, Yanling; Fu, Feng; Wu, Te; Xie, Guangming; Wang, Long

    2011-12-01

    A recent experimental study [Traulsen et al., Proc. Natl. Acad. Sci. 107, 2962 (2010)] shows that human strategy updating involves both direct payoff comparison and the cost of switching strategy, which is equivalent to inertia. However, it remains largely unclear how such a predisposed inertia affects 2 × 2 games in a well-mixed population of finite size. To address this issue, the "inertia bonus" (strategy switching cost) is added to the learner payoff in the Fermi process. We find how inertia quantitatively shapes the stationary distribution and that stochastic stability under inertia exhibits three regimes, with each covering seven regions in the plane spanned by two inertia parameters. We also obtain the extended "1/3" rule with inertia and the speed criterion with inertia; these two findings hold for a population above two. We illustrate the above results in the framework of the Prisoner's Dilemma game. As inertia varies, two intriguing stationary distributions emerge: the probability of coexistence state is maximized, or those of two full states are simultaneously peaked. Our results may provide useful insights into how the inertia of changing status quo acts on the strategy evolution and, in particular, the evolution of cooperation.

  7. The determination of surface albedo from meteorological satellites

    NASA Technical Reports Server (NTRS)

    Johnson, W. T.

    1977-01-01

    A surface albedo was determined from visible data collected by the NOAA-4 polar orbiting meteorological satellite. To filter out the major cause of atmospheric reflectivity, namely clouds, techniques were developed and applied to the data resulting in a map of global surface albedo. Neglecting spurious surface albedos for regions with persistent cloud cover, sun glint effects, insufficient reflected light and, at this time, some unresolved influences, the surface albedos retrieved from satellite data closely matched those of a global surface albedo map produced from surface and aircraft measurements and from characteristic albedos for land type and land use.

  8. Contribution of ground surface altitude difference to thermal anomaly detection using satellite images: Application to volcanic/geothermal complexes in the Andes of Central Chile

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Francisco J.; Lemus, Martín; Parada, Miguel A.; Benavente, Oscar M.; Aguilera, Felipe A.

    2012-09-01

    Detection of thermal anomalies in volcanic-geothermal areas using remote sensing methodologies requires the subtraction of temperatures, not provided by geothermal manifestations (e.g. hot springs, fumaroles, active craters), from satellite image kinetic temperature, which is assumed to correspond to the ground surface temperature. Temperatures that have been subtracted in current models include those derived from the atmospheric transmittance, reflectance of the Earth's surface (albedo), topography effect, thermal inertia and geographic position effect. We propose a model that includes a new parameter (K) that accounts for the variation of temperature with ground surface altitude difference in areas where steep relief exists. The proposed model was developed and applied, using ASTER satellite images, in two Andean volcanic/geothermal complexes (Descabezado Grande-Cerro Azul Volcanic Complex and Planchón-Peteroa-Azufre Volcanic Complex) where field data of atmosphere and ground surface temperature as well as radiation for albedo calibration were obtained in 10 selected sites. The study area was divided into three zones (Northern, Central and Southern zones) where the thermal anomalies were obtained independently. K value calculated for night images of the three zones are better constrained and resulted to be very similar to the Environmental Lapse Rate (ELR) determined for a stable atmosphere (ELR > 7 °C/km). Using the proposed model, numerous thermal anomalies in areas of ≥ 90 m × 90 m were identified that were successfully cross-checked in the field. Night images provide more reliable information for thermal anomaly detection than day images because they record higher temperature contrast between geothermal areas and its surroundings and correspond to more stable atmospheric condition at the time of image acquisition.

  9. Use of thermal inertia determined by HCMM to predict nocturnal cold prone areas in Florida. [The Everglades agricultural area, Lake Okeechobee, and the Suwanee River basin

    NASA Technical Reports Server (NTRS)

    Allen, L. H., Jr. (Principal Investigator); Chen, E.; Martsolf, J. D.; Jones, P. H.

    1981-01-01

    Transparencies, prints, and computer compatible tapes of temperature differential and thermal inertia for the winter of 1978 to 1979 were obtained. Thermal inertial differences in the South Florida depicted include: drained organic soils of the Everglades agricultural area, undrained organic soils of the managed water conservation areas of the South Florida water management district, the urbanized area around Miami, Lake Okeechobee, and the mineral soil west of the Everglades agricultural area. The range of wetlands and uplands conditions within the Suwanee River basin was also identified. It is shown that the combination of wetlands uplands surface features of Florida yield a wide range of surface temperatures related to wetness of the surface features.

  10. Massive Submucosal Ganglia in Colonic Inertia.

    PubMed

    Naemi, Kaveh; Stamos, Michael J; Wu, Mark Li-Cheng

    2018-02-01

    - Colonic inertia is a debilitating form of primary chronic constipation with unknown etiology and diagnostic criteria, often requiring pancolectomy. We have occasionally observed massively enlarged submucosal ganglia containing at least 20 perikarya, in addition to previously described giant ganglia with greater than 8 perikarya, in cases of colonic inertia. These massively enlarged ganglia have yet to be formally recognized. - To determine whether such "massive submucosal ganglia," defined as ganglia harboring at least 20 perikarya, characterize colonic inertia. - We retrospectively reviewed specimens from colectomies of patients with colonic inertia and compared the prevalence of massive submucosal ganglia occurring in this setting to the prevalence of massive submucosal ganglia occurring in a set of control specimens from patients lacking chronic constipation. - Seven of 8 specimens affected by colonic inertia harbored 1 to 4 massive ganglia, for a total of 11 massive ganglia. One specimen lacked massive ganglia but had limited sampling and nearly massive ganglia. Massive ganglia occupied both superficial and deep submucosal plexus. The patient with 4 massive ganglia also had 1 mitotically active giant ganglion. Only 1 massive ganglion occupied the entire set of 10 specimens from patients lacking chronic constipation. - We performed the first, albeit distinctly small, study of massive submucosal ganglia and showed that massive ganglia may be linked to colonic inertia. Further, larger studies are necessary to determine whether massive ganglia are pathogenetic or secondary phenomena, and whether massive ganglia or mitotically active ganglia distinguish colonic inertia from other types of chronic constipation.

  11. Enhancement of the MODIS Daily Snow Albedo Product

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Schaaf, Crystal B.; Wang, Zhuosen; Riggs, George A.

    2009-01-01

    The MODIS daily snow albedo product is a data layer in the MOD10A1 snow-cover product that includes snow-covered area and fractional snow cover as well as quality information and other metadata. It was developed to augment the MODIS BRDF/Albedo algorithm (MCD43) that provides 16-day maps of albedo globally at 500-m resolution. But many modelers require daily snow albedo, especially during the snowmelt season when the snow albedo is changing rapidly. Many models have an unrealistic snow albedo feedback in both estimated albedo and change in albedo over the seasonal cycle context, Rapid changes in snow cover extent or brightness challenge the MCD43 algorithm; over a 16-day period, MCD43 determines whether the majority of clear observations was snow-covered or snow-free then only calculates albedo for the majority condition. Thus changes in snow albedo and snow cover are not portrayed accurately during times of rapid change, therefore the current MCD43 product is not ideal for snow work. The MODIS daily snow albedo from the MOD10 product provides more frequent, though less robust maps for pixels defined as "snow" by the MODIS snow-cover algorithm. Though useful, the daily snow albedo product can be improved using a daily version of the MCD43 product as described in this paper. There are important limitations to the MOD10A1 daily snow albedo product, some of which can be mitigated. Utilizing the appropriate per-pixel Bidirectional Reflectance Distribution Functions (BRDFs) can be problematic, and correction for anisotropic scattering must be included. The BRDF describes how the reflectance varies with view and illumination geometry. Also, narrow-to-broadband conversion specific for snow on different surfaces must be calculated and this can be difficult. In consideration of these limitations of MOD10A1, we are planning to improve the daily snow albedo algorithm by coupling the periodic per-pixel snow albedo from MCD43, with daily surface ref|outanoom, In this paper, we

  12. 40 CFR 1066.250 - Base inertia verification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Base inertia verification. 1066.250... CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.250 Base inertia verification. (a) Overview. This section describes how to verify the dynamometer's base inertia. (b) Scope and frequency...

  13. 40 CFR 1066.250 - Base inertia verification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Base inertia verification. 1066.250... CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.250 Base inertia verification. (a) Overview. This section describes how to verify the dynamometer's base inertia. (b) Scope and frequency...

  14. 40 CFR 1066.250 - Base inertia verification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Base inertia verification. 1066.250... CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.250 Base inertia verification. (a) Overview. This section describes how to verify the dynamometer's base inertia. (b) Scope and frequency...

  15. The Statistics of Albedo and Heat Recirculation on Hot Exoplanets

    NASA Astrophysics Data System (ADS)

    Cowan, Nicolas B.; Agol, Eric

    2011-03-01

    If both the day-side and night-side effective temperatures of a planet can be measured, it is possible to estimate its Bond albedo, 0 < AB < 1, as well as its day-night heat redistribution efficiency, 0 < ɛ < 1. We attempt a statistical analysis of the albedo and redistribution efficiency for 24 transiting exoplanets that have at least one published secondary eclipse. For each planet, we show how to calculate a sub-stellar equilibrium temperature, T 0, and associated uncertainty. We then use a simple model-independent technique to estimate a planet's effective temperature from planet/star flux ratios. We use thermal secondary eclipse measurements—those obtained at λ>0.8 μm—to estimate day-side effective temperatures, T d, and thermal phase variations—when available—to estimate night-side effective temperature. We strongly rule out the "null hypothesis" of a single AB and ɛ for all 24 planets. If we allow each planet to have different parameters, we find that low Bond albedos are favored (AB < 0.35 at 1σ confidence), which is an independent confirmation of the low albedos inferred from non-detections of reflected light. Our sample exhibits a wide variety of redistribution efficiencies. When normalized by T 0, the day-side effective temperatures of the 24 planets describe a uni-modal distribution. The two biggest outliers are GJ 436b (abnormally hot) and HD 80606b (abnormally cool), and these are the only eccentric planets in our sample. The dimensionless quantity T d/T 0 exhibits no trend with the presence or absence of stratospheric inversions. There is also no clear trend between T d/T 0 and T 0. That said, the six planets with the greatest sub-stellar equilibrium temperatures (T > 2400 K) have low ɛ, as opposed to the 18 cooler planets, which show a variety of recirculation efficiencies. This hints that the very hottest transiting giant planets are qualitatively different from the merely hot Jupiters. We propose an explanation of this trend based on

  16. A cavity radiometer for Earth albedo measurement, phase 1

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Radiometric measurements of the directional albedo of the Earth requires a detector with a flat response from 0.2 to 50 microns, a response time of about 2 seconds, a sensitivity of the order of 0.02 mw/sq cm, and a measurement uncertainty of less than 5 percent. Absolute cavity radiometers easily meet the spectral response and accuracy requirements for Earth albedo measurements, but the radiometers available today lack the necessary sensitivity and response time. The specific innovations addressed were the development of a very low thermal mass cavity and printed/deposited thermocouple sensing elements which were incorporated into the radiometer design to produce a sensitive, fast response, absolute radiometer. The cavity is applicable to the measurement of the reflected and radiated fluxes from the Earth surface and lower atmosphere from low Earth orbit satellites. The effort consisted of requirements and thermal analysis; design, construction, and test of prototype elements of the black cavity and sensor elements to show proof-of-concept. The results obtained indicate that a black body cavity sensor that has inherently a flat response from 0.2 to 50 microns can be produced which has a sensitivity of at least 0.02 mw/sq cm per micro volt ouput and with a time constant of less than two seconds. Additional work is required to develop the required thermopile.

  17. Impact of Dust on Mars Surface Albedo and Energy Flux with LMD General Circulation Model

    NASA Astrophysics Data System (ADS)

    Singh, D.; Flanner, M.; Millour, E.; Martinez, G.

    2015-12-01

    Mars, just like Earth experience different seasons because of its axial tilt (about 25°). This causes growth and retreat of snow cover (primarily CO2) in Martian Polar regions. The perennial caps are the only place on the planet where condensed H2O is available at surface. On Mars, as much as 30% atmospheric CO2 deposits in each hemisphere depending upon the season. This leads to a significant variation on planet's surface albedo and hence effecting the amount of solar flux absorbed or reflected at the surface. General Circulation Model (GCM) of Laboratoire de Météorologie Dynamique (LMD) currently uses observationally derived surface albedo from Thermal Emission Spectrometer (TES) instrument for the polar caps. These TES albedo values do not have any inter-annual variability, and are independent of presence of any dust/impurity on surface. Presence of dust or other surface impurities can significantly reduce the surface albedo especially during and right after a dust storm. This change will also be evident in the surface energy flux interactions. Our work focuses on combining earth based Snow, Ice, and Aerosol Radiation (SNICAR) model with current state of GCM to incorporate the impact of dust on Martian surface albedo, and hence the energy flux. Inter-annual variability of surface albedo and planet's top of atmosphere (TOA) energy budget along with their correlation with currently available mission data will be presented.

  18. Estimating big bluestem albedo from directional reflectance measurements

    NASA Technical Reports Server (NTRS)

    Irons, J. R.; Ranson, K. J.; Daughtry, C. S. T.

    1988-01-01

    Multidirectional reflectance factor measurements acquired in the summer of 1986 are used to make estimates of big bluestem grass albedo, evaluating the variation of albedo with changes in solar zenith angle and phenology. On any given day, the albedo was observed to increase by at least 19 percent as solar zenith angle increased. Changes in albedo were found to correspond to changes in the green leaf area index of the grass canopy. Estimates of albedo made using reflectance data acquired within only one or two azimuthal planes and at a restricted range of view zenith angle were evaluated and compared to 'true' albedos derived from all available reflectance factor data. It was found that even a limited amount of multiple direction reflectance data was preferable to a single nadir reflectance factor for the estimation of prarie grass albedo.

  19. Toward a definition of colonic inertia

    PubMed Central

    Bassotti, Gabrio; de Roberto, Giuseppe; Sediari, Luca; Morelli, Antonio

    2004-01-01

    Chronic constipation is a relatively frequent symptom; among its subtypes, the so called-colonic inertia represents a disease condition that is often considered for surgery. However, to date, there has been no agreement on definition of colonic inertia, and a literature review showed that this definition was given to numerous entities that differ from each other. In this paper these concepts are reviewed and a more stringent definition of colonic inertia is proposed. PMID:15300885

  20. Generating multi-scale albedo look-up maps using MODIS BRDF/Albedo products and landsat imagery

    USDA-ARS?s Scientific Manuscript database

    Surface albedo determines radiative forcing and is a key parameter for driving Earth’s climate. Better characterization of surface albedo for individual land cover types can reduce the uncertainty in estimating changes to Earth’s radiation balance due to land cover change. This paper presents a mult...

  1. Toward a definition of colonic inertia.

    PubMed

    Bassotti, Gabrio; Roberto, Giuseppe-De; Sediari, Luca; Morelli, Antonio

    2004-09-01

    Chronic constipation is a relatively frequent symptom; among its subtypes, the so called-colonic inertia represents a disease condition that is often considered for surgery. However, to date, there has been no agreement on definition of colonic inertia, and a literature review showed that this definition was given to numerous entities that differ from each other. In this paper these concepts are reviewed and a more stringent definition of colonic inertia is proposed. Copyright 2004 The WJG Press ISSN

  2. DETERMINING MOTOR INERTIA OF A STRESS-CONTROLLED RHEOMETER.

    PubMed

    Klemuk, Sarah A; Titze, Ingo R

    2009-01-01

    Viscoelastic measurements made with a stress-controlled rheometer are affected by system inertia. Of all contributors to system inertia, motor inertia is the largest. Its value is usually determined empirically and precision is rarely if ever specified. Inertia uncertainty has negligible effects on rheologic measurements below the coupled motor/plate/sample resonant frequency. But above the resonant frequency, G' values of soft viscoelastic materials such as dispersions, gels, biomaterials, and non-Newtonian polymers, err quadratically due to inertia uncertainty. In the present investigation, valid rheologic measurements were achieved near and above the coupled resonant frequency for a non-Newtonian reference material. At these elevated frequencies, accuracy in motor inertia is critical. Here we compare two methods for determining motor-inertia accurately. For the first (commercially-used) phase method, frequency responses of standard fluids were measured. Phase between G' and G" was analyzed at 5-70 Hz for motor inertia values of 50-150% of the manufacturer's nominal value. For a newly-devised two-plate method (10 mm and 60 mm parallel plates), dynamic measurements of a non-Newtonian standard were collected. Using a linear equation of motion with inertia, viscosity, and elasticity coefficients, G' expressions for both plates were equated and motor inertia was determined to be accurate (by comparison to the phase method) with a precision of ± 3%. The newly developed two-plate method had advantages of expressly eliminating dependence on gap, was explicitly derived from basic principles, quantified the error, and required fewer experiments than the commercially used phase method.

  3. ALMA Thermal Mapping of Ceres – Search for Subsurface Water Ice

    NASA Astrophysics Data System (ADS)

    Moullet, Arielle; Li, Jian-Yang; Titus, Timothy N.; Sykes, Mark V.; Hsieh, Henry H.

    2018-06-01

    Spectroscopic observations of the surface of Ceres by Dawn have demonstrated that hydrated minerals are ubiquitous, but only few smaller sites are enriched with water ice. This is somewhat surprising as Ceres is believed to host a large amount a water in its interior.The possibility of inhomogeneous subsurface water distribution can be investigated by tracing thermal inertia distribution. To that effect, we mapped the temperature of Ceres using 1.3mm maps of the whole surface obtained with the Atacama Large Millimeter Array (ALMA) over three different epochs during one Ceres’ year. Assessing the thermal conditions at the depths probed by sub millimeter observations (a few cm below the surface, within the annual thermal skin depth) is critical to constrain the effective thermal inertia, and hence the status of subsurface water ice. We will present preliminary results in terms of temperature features and the corresponding thermal inertia derived based on comparisons from the KRC thermal model which has been extensively used for Mars. Initial analysis is consistent with the presence of near-surface high thermal inertia layer, presumably water ice, in the north polar region.This work is supported by the NASA Solar System Observations Program NNX15AE02G.

  4. Spectral and diurnal variations in clear sky planetary albedo

    NASA Technical Reports Server (NTRS)

    Briegleb, B.; Ramanathan, V.

    1982-01-01

    Spectral and diurnal variations in the clear sky planetary albedo of the earth are calculated using a radiative transfer model to obtain January and July values for a 5 deg x 5 deg global grid. The model employs observed climatological values of temperatures, humidities, snow and sea-ice cover. The diurnal cycle of clear sky albedo is calculated in the following intervals: 0.2-0.5, 0.5-0.7, and 0.7-4 microns. Observed ozone distribution is specified as a function of latitude and season. The 0.2-0.5 micron spectral albedo is 10-20% higher than the total albedo for all latitudes because of Rayleigh scattering; the 0.5-0.7 micron albedo differs from the total albedo by 1-2% for most latitudes, while the 0.7-4 micron albedo is 5-10% lower than the total because of strong atmospheric absorption. Planetary albedo decreases from morning to local noon, with diurnal variations being particularly strong over water.

  5. Assessment of VIIRS daily BRDF/Albedo product using in situ measurement of SURFRAD sites and MODIS V006 daily BRDF/Albedo product

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Wang, Z.; Sun, Q.; Schaaf, C.; Roman, M. O.

    2014-12-01

    Surface albedo is defined as the ratio of upwelling to downwelling radiative flux. It's important for understanding the global energy budget. Remote sensing albedo products provide global time continuous coverage to help capture global energy variability and change. The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi-NPP satellite, launched on October 28, 2011, is aiming to provide continues data record with the MODerate resolution Imaging Spectroradiometer (MODIS), which has been providing Bidirectional Reflectance Distribution Function (BRDF)/Albedo product since 2000. By utilizing the same approach that was used for the most recently V006 daily MODIS BRDF/Albedo product, VIIRS has the ability to keep providing products for research and operational users. Validating albedo product of VIIRS using in situmeasured albedo can assure the quality for land surface climate and biosphere models, and comparing with MODIS product can assure time continues of BRDF/albedo product. The daily BRDF/Albedo product still uses 16-day period multispectral, cloud-cleared, atmospherically-corrected surface reflectances to fit the Ross-Thick/Li-Sparse-Reciprocal semi-empirical BRDF model. But the multiday observations are also weighted based on proximity to the production date in order to emphasis on that individual day. Surface Radiation Budget Network (SURFRAD) was established in 1993 through the support of NOAA's Office of Global Programs. In situ albedo was driven from downwelling and upwelling radiative flux measured from the towers. Fraction of diffuse sky light was calculated using the direct and diffuse solar recorded in the data. It was further used to translate VIIRS, MODIS black sky and white sky albedos into actual albedo at local solar noon. Results show that VIIRS, MODIS and in situ albedo agree well at SURFARD spatially representative sites. While the VIIRS surface reflectance, snow, and cloud algorithms are still undergoing revision, the result shows that

  6. The Distribution of Geometric Albedos of Jupiter-Family Comets From SEPPCoN and Visible-Wavelength Photometry

    NASA Astrophysics Data System (ADS)

    Fernandez, Yanga R.; Weaver, Harold A.; Lisse, Casey M.; Meech, Karen Jean; Lowry, Stephen C.; Bauer, James M.; Fitzsimmons, Alan; Snodgrass, Colin

    2016-01-01

    Cometary nuclei are some of the least reflective natural objects in the Solar System, although the number of comets for which the reflectivity has heretofore actually been measured is small due to the difficulty of the requisite measurements. When no other information is present, it is common to assume a geometric albedo of 4%, and this is consistent with the limited number of known albedos. However the true average albedo, median albedo, and spread of the distribution are not well constrained. Knowing the ensemble properties of cometary albedos would aid in understanding the surface scattering properties as well as the interior thermal evolution and surface evolution of the population. We present here a preliminary estimate of the distribution of geometric albedos among the Jupiter-family comet (JFC) population. We make use of and build on the results of the Survey of Ensemble Physical Properties of Cometary Nuclei (SEPPCoN), in which we obtained new and independent estimates of the radii of 89 JFCs [1,2]. We will present our preliminary albedo estimates for ~50 JFC nuclei (by far the most ever obtained), and we will discuss the implications of the ensemble of the results. These JFCs were all observed in R-band, and were all observed at relatively large heliocentric distances (usually >4 AU from the Sun) where the comets appeared inactive, thus minimizing coma contamination. We acknowledge the support of NASA grant NNX09AB44G, of NSF grant AST-0808004, and of the Astrophysical Research Consortium/Apache Point Observatory for this work. References: [1] Y. R. Fernandez et al., 2013, Icarus 226, 1138. [2] M. S. Kelley et al., 2013, Icarus 225, 475.

  7. Spacecraft inertia estimation via constrained least squares

    NASA Technical Reports Server (NTRS)

    Keim, Jason A.; Acikmese, Behcet A.; Shields, Joel F.

    2006-01-01

    This paper presents a new formulation for spacecraft inertia estimation from test data. Specifically, the inertia estimation problem is formulated as a constrained least squares minimization problem with explicit bounds on the inertia matrix incorporated as LMIs [linear matrix inequalities). The resulting minimization problem is a semidefinite optimization that can be solved efficiently with guaranteed convergence to the global optimum by readily available algorithms. This method is applied to data collected from a robotic testbed consisting of a freely rotating body. The results show that the constrained least squares approach produces more accurate estimates of the inertia matrix than standard unconstrained least squares estimation methods.

  8. Quantifying the ice-albedo feedback through decoupling

    NASA Astrophysics Data System (ADS)

    Kravitz, B.; Rasch, P. J.

    2017-12-01

    The ice-albedo feedback involves numerous individual components, whereby warming induces sea ice melt, inducing reduced surface albedo, inducing increased surface shortwave absorption, causing further warming. Here we attempt to quantify the sea ice albedo feedback using an analogue of the "partial radiative perturbation" method, but where the governing mechanisms are directly decoupled in a climate model. As an example, we can isolate the insulating effects of sea ice on surface energy and moisture fluxes by allowing sea ice thickness to change but fixing Arctic surface albedo, or vice versa. Here we present results from such idealized simulations using the Community Earth System Model in which individual components are successively fixed, effectively decoupling the ice-albedo feedback loop. We isolate the different components of this feedback, including temperature change, sea ice extent/thickness, and air-sea exchange of heat and moisture. We explore the interactions between these different components, as well as the strengths of the total feedback in the decoupled feedback loop, to quantify contributions from individual pieces. We also quantify the non-additivity of the effects of the components as a means of investigating the dominant sources of nonlinearity in the ice-albedo feedback.

  9. Moments of inertia of relativistic magnetized stars

    NASA Astrophysics Data System (ADS)

    Konno, K.

    2001-06-01

    We consider principal moments of inertia of axisymmetric, magnetically deformed stars in the context of general relativity. The general expression for the moment of inertia with respect to the symmetric axis is obtained. The numerical estimates are derived for several polytropic stellar models. We find that the values of the principal moments of inertia are modified by a factor of 2 at most from Newtonian estimates.

  10. Experimental Study of the Moment of Inertia of a Cone--Angular Variation and Inertia Ellipsoid

    ERIC Educational Resources Information Center

    Pintao, Carlos A. F.; de Souza Filho, Moacir P.; Usida, Wesley F.; Xavier, Jose A.

    2007-01-01

    In this paper, an experimental set-up which differs from the traditional ones is established in order to determine the moment of inertia of a right circular cone. Its angular variation and inertia ellipsoid are determined by means of an experimental study. In addition, a system that allows for the evaluation of the angular acceleration and torque…

  11. Therapeutic inertia in the outpatient management of dyslipidemia in patients with ischemic heart disease. The inertia study.

    PubMed

    Lázaro, Pablo; Murga, Nekane; Aguilar, Dolores; Hernández-Presa, Miguel A

    2010-12-01

    Studies indicate that dyslipidemia is undertreated. Numerous systematic reviews have shown that, even when therapeutic targets set by clinical practice guidelines have not been met, treatment remains unchanged despite the availability of alternatives approaches. The result is increased morbidity and mortality. Our aims were to investigate this phenomenon, known as therapeutic inertia, in patients with dyslipidemia and ischemic heart disease, and to determine its possible causes. national, multicenter, observational study of data obtained from physicians by questionnaire and from the clinical records of patients with ischemic heart disease. Main variable: therapeutic inertia during a consultation, defined as treatment remaining the same despite a change being indicated (e.g. low-density lipoprotein cholesterol >100 mg/dl or >70 mg/dl in diabetics). Covariates: physician, patient and consultation characteristics. multivariate logistic regression analysis of factors associated with therapeutic inertia during a consultation. Overall, 43% of consultations involved therapeutic inertia, and an association with coronary risk factors, including diabetes, did not result in a change in treatment. Therapeutic inertia occurred more frequently when there was a long time between the diagnosis and treatment of dyslipidemia and that of ischemic heart disease. Undertreatment was particularly common in women despite a greater overall risk. The more experienced physicians treated younger patients more appropriately. Clinical practice was improved by educational sessions at conferences. Therapeutic inertia was common in patients with chronic ischemic heart disease and dyslipidemia, irrespective of overall cardiovascular risk. Factors associated with the patient, disease and physician had an influence.

  12. Transient and asymptotic behavior in a regular network model for the ice-albedo feedback under thermal forcing

    NASA Astrophysics Data System (ADS)

    Mueller-Stoffels, M.; Wackerbauer, R.

    2010-12-01

    The Arctic ocean and sea ice form a feedback system which plays an important role in the global climate. Variations of the global ice and snow distribution have a significant effect on the planetary albedo which governs the absorption of shortwave radiation. The complexity of highly parametrized GCMs makes it very difficult to assess single feedback processes in the climate system without the concurrent use of simple models where the physics are understood [1][2][3]. We introduce a complex systems model to investigate thermodynamic feedback processes in an Arctic ice-ocean layer. The ice-ocean layer is represented as a regular network of coupled cells. The state of each cell is determined by its energy content, which also defines the phase of the cell. The energy transport between cells is described with nonlinear and heterogeneous diffusion constants. And the time-evolution of the ice-ocean is driven by shortwave, longwave and lateral oceanic and atmospheric thermal forcing. This model is designed to study the stability of an ice cover under various heat intake scenarios. The network structure of the model allows to easily introduce albedo heterogeneities due to aging ice, wind blown snow cover, and ice movement to explore the time-evolution and pattern formation (melt ponds) processes in the Arctic sea ice. The solely thermodynamic model exhibits two stable states; one in the perennially ice covered domain and one in the perennially open water domain. Their existence is due to the temperature dependence of the longwave radiative budget. Transition between these states can be forced via lateral heat fluxes. During the transition from the ice covered to the open water stable state the ice albedo feedback effects are manifested as an increased warming rate of the ice cover together with enhanced seasonal energy oscillations. In the current model realization seasonal ice cover is present as a transient state only. Furthermore, the model exhibits hysteresis between

  13. The Gamma-Ray Albedo of the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskalenko, I.V.; /Stanford U., HEPL /KIPAC, Menlo Park; Porter, T.A.

    2008-03-25

    We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makesmore » it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.« less

  14. The Gamma-ray Albedo of the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskalenko, Igor V.; /Stanford U., HEPL; Porter, Troy A.

    2007-09-28

    We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makesmore » it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.« less

  15. Electrohydrodynamics of a viscous drop with inertia.

    PubMed

    Nganguia, H; Young, Y-N; Layton, A T; Lai, M-C; Hu, W-F

    2016-05-01

    Most of the existing numerical and theoretical investigations on the electrohydrodynamics of a viscous drop have focused on the creeping Stokes flow regime, where nonlinear inertia effects are neglected. In this work we study the inertia effects on the electrodeformation of a viscous drop under a DC electric field using a novel second-order immersed interface method. The inertia effects are quantified by the Ohnesorge number Oh, and the electric field is characterized by an electric capillary number Ca_{E}. Below the critical Ca_{E}, small to moderate electric field strength gives rise to steady equilibrium drop shapes. We found that, at a fixed Ca_{E}, inertia effects induce larger deformation for an oblate drop than a prolate drop, consistent with previous results in the literature. Moreover, our simulations results indicate that inertia effects on the equilibrium drop deformation are dictated by the direction of normal electric stress on the drop interface: Larger drop deformation is found when the normal electric stress points outward, and smaller drop deformation is found otherwise. To our knowledge, such inertia effects on the equilibrium drop deformation has not been reported in the literature. Above the critical Ca_{E}, no steady equilibrium drop deformation can be found, and often the drop breaks up into a number of daughter droplets. In particular, our Navier-Stokes simulations show that, for the parameters we use, (1) daughter droplets are larger in the presence of inertia, (2) the drop deformation evolves more rapidly compared to creeping flow, and (3) complex distribution of electric stresses for drops with inertia effects. Our results suggest that normal electric pressure may be a useful tool in predicting drop pinch-off in oblate deformations.

  16. Global Albedo

    Atmospheric Science Data Center

    2013-04-19

    ... reflected by the Earth's surface at various wavelengths. A quantitative measure of this reflected sunlight is described by the albedo, ... parts of the planet, and for monthly as well as seasonal time increments. These and other surface and vegetation products from the MISR ...

  17. Determining the Products of Inertia for Small Scale UAVs

    NASA Technical Reports Server (NTRS)

    Lorenzetti, Joseph S.; Banuelos, Leonel C.; Clarke, Robert; Murillo, Oscar J.; Bowers, Albion H.

    2017-01-01

    Moments of inertia and products of inertia often need to be determined for aircraft. As complex bodies, their mass properties need to be determined experimentally for best accuracy. While several moment of inertia experimental techniques have been developed, there are few to determine the products of inertia. Products of inertia can be easily determined mathematically if the angle between the aircraft x body axis and principal x axis is known. This method finds the principal inclination angle by mathematically correlating the measured moments of inertia about a range of axes of the aircraft. This correlation uses a least squares error minimization of a mathematical model that describes the ellipse of inertia in the aircraft's x-z axes plane. Results from a test conducted on a small scale UAV (Unmanned Aerial Vehicle) at NASA Armstrong Flight Research Center is also presented, which is an example of the intended application of this technique.

  18. Thermal and visible studies of Mars using the Termoskan data set

    NASA Astrophysics Data System (ADS)

    Betts, Bruce Harold

    1994-01-01

    In 1989, the Soviet Phobos '88 Termoskan instrument acquired the highest spatial resolution thermal data ever for Mars, (300 m to 3 km per pixel), and simultaneous broad band visible data. The panoramas cover a large portion of the equatorial region from 30 deg S to 6 deg N. This thesis presents new and unique analyses facilitated by Termoskan and describes the instrument, data, and validation. Ejecta blankets distinct in the thermal infrared (EDITHs), a newly recognized type of feature, show a strong dependence upon Hesperian aged terrains. I postulate that most of the observed EDITHs are due to excavation of thermally distinctive Noachian age material from beneath a relatively thin layer of younger, more consolidated Hesperian volcanic material. EDITHs are excellent targets for future landers and orbiters because of relatively dust free surface exposures of material excavated from depth. Most observed channels have higher inertias than their surroundings. Channel inertia lower bounds range from 8.4 to 12.5 (10-3 cal/sq cm s-1/2/K. Channel floor inertia enhancements are strongly associated with channels showing fretted morphologies such as wide, flat floors. Fretting may have emplaced more blocks on channel floors or caused increased bonding of fines due to increased availability of water. The coupling to morphology of EDITH and channel inertias is unlike most Martian inertia variations. Termoskan observed fine thermal structure at the limit of its spatial resolution, implying there cannot be global scale dust blanketing deeper than about one centimeter. Morning limb brightening in the thermal channel is likely due to a water ice or dust hare that is warmer than the surface at the time of the observations. In the visible channel, scattering is significant to 70 km and localized high altitude stratospheric clouds are observed. Termoskan obtained the first ever thermal images of Phobos' shadow on the surface of Mars. I used the observed cooling to calculate thermal

  19. A Continental United States High Resolution NLCD Land Cover – MODIS Albedo Database to Examine Albedo and Land Cover Change Relationships

    EPA Science Inventory

    Surface albedo influences climate by affecting the amount of solar radiation that is reflected at the Earth’s surface, and surface albedo is, in turn, affected by land cover. General Circulation Models typically use modeled or prescribed albedo to assess the influence of land co...

  20. Generalized Calibration of the Polarimetric Albedo Scale of Asteroids

    NASA Astrophysics Data System (ADS)

    Lupishko, D. F.

    2018-03-01

    Six different calibrations of the polarimetric albedo scale of asteroids have been published so far. Each of them contains its particular random and systematic errors and yields its values of geometric albedo. On the one hand, this complicates their analysis and comparison; on the other hand, it becomes more and more difficult to decide which of the proposed calibrations should be used. Moreover, in recent years, new databases on the albedo of asteroids obtained from the radiometric surveys of the sky with the orbital space facilities (the InfraRed Astronomical Satellite (IRAS), the Japanese astronomical satellite AKARI (which means "light"), the Wide-field Infrared Survey Explorer (WISE), and the Near-Earth Object Wide-field Survey Explorer (NEOWISE)) have appeared; and the database on the diameters and albedos of asteroids obtained from their occultations of stars has substantially increased. Here, we critically review the currently available calibrations and propose a new generalized calibration derived from the interrelations between the slope h and the albedo and between P min and the albedo. This calibration is based on all of the available series of the asteroid albedos and the most complete data on the polarization parameters of asteroids. The generalized calibration yields the values of the polarimetric albedo of asteroids in the system unified with the radiometric albedos and the albedos obtained from occultations of stars by asteroids. This, in turn, removes the difficulties in their comparison, joint analysis, etc.

  1. Use of thermal inertia determined by HCMM to predict nocturnal cold prone areas in Florida. [Everglades agricultural area and the west north central peninsula

    NASA Technical Reports Server (NTRS)

    Allen, L. H., Jr. (Principal Investigator); Chen, E.; Martsolf, J. D.; Jones, P. H.

    1981-01-01

    Surface temperatures derived from HCMM data were compared with to those obtained by GOES satellite and the apparent thermal inertia (ATI) calculated. For two dates, the HCMM temperatures appear to be about 5 C lower than the GOES temperatures. The ATI for excessively-drained to well-drained mineral soils was greater than for drained organic soils possibly because of long periods of low rainfall during late 1980 and early 1981. Organic soils cropped to sugar cane showed lower ATI after a severe killing freeze. With dead leaves, there was less transpiration and more solar radiation probably reached the dark soil surface. This would explain the larger diurnal temperature amplitude observed.

  2. Evidence for Possible Exposed Water Ice Deposits in Martian Low Latitude Chasms and Chaos

    NASA Technical Reports Server (NTRS)

    Leovy, C.; Wood, S. E.; Catling, D.; Montgomery, D. R.; Moore, J.; Barnhart, C.; Ginder, E.; Louie, M.

    2004-01-01

    A light-toned interior layer deposit (ILD) on the floor of the deep martian depression Juventae Chasma is found to have a relatively high thermal inertia approx. 500 J m(exp -2) s(exp -1/2) K(exp -1). This could imply rock, but is also similar to the average value of thermal inertia found for north polar layered deposits. Furthermore, ILD-B is found to exhibit a bluff and terrace structure . A terrace structure arises naturally in model simulations of the sublimation of large ice deposits. Such a staircase terrain, of course, is a further characteristic of north polar layered terrain. Morphological similarity, thermal inertia in the range of thermal inertias of the north polar cap layered terrain, and relatively high albedo lead us to propose that the ILD-B may consist of residual water ice partially covered by, and perhaps mixed with, varying amounts of dust or sand. Other ILDs (A-C) are also found in Juventae Chasma. While these ILDs lack the close morphological resemblance to the north polar cap, they share many other common features and appear to be part of the same formation. Similar ILDs are found in chaotic terrain elsewhere in the martian tropics. This leads us to propose that water ice may exist in the martian tropics today and may be implicit in the formation of chaotic terrain.

  3. Radiometric Measurements of the Thermal Conductivity of Complex Planetary-like Materials

    NASA Astrophysics Data System (ADS)

    Piqueux, S.; Christensen, P. R.

    2012-12-01

    Planetary surface temperatures and thermal inertias are controlled by the physical and compositional characteristics of the surface layer material, which result from current and past geological activity. For this reason, temperature measurements are often acquired because they provide fundamental constraints on the geological history and habitability. Examples of regolith properties affecting surface temperatures and inertias are: grain sizes and mixture ratios, solid composition in the case of ices, presence of cement between grains, regolith porosity, grain roughness, material layering etc.. Other important factors include volatile phase changes, and endogenic or exogenic heat sources (i.e. geothermal heat flow, impact-related heat, biological activity etc.). In the case of Mars, the multitude of instruments observing the surface temperature at different spatial and temporal resolutions (i.e. IRTM, Thermoskan, TES, MiniTES, THEMIS, MCS, REMS, etc.) in conjunction with other instruments allows us to probe and characterize the thermal properties of the surface layer with an unprecedented resolution. While the derivation of thermal inertia values from temperature measurements is routinely performed by well-established planetary regolith numerical models, constraining the physical properties of the surface layer from thermal inertia values requires the additional step of laboratory measurements. The density and specific heat are usually constant and sufficiently well known for common geological materials, but the bulk thermal conductivity is highly variable as a function of the physical characteristics of the regolith. Most laboratory designs do not allow an investigation of the thermal conductivity of complex regolith configurations similar to those observed on planetary surfaces (i.e. cemented material, large grains, layered material, and temperature effects) because the samples are too small and need to be soft to insert heating or measuring devices. For this

  4. Gamma-ray Albedo of the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskalenko, Igor V.; Porter, Troy A.

    2007-06-14

    We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma-rays from the Moon is very steep with an effective cutoff around 3 GeV (600 MeV for the inner part of the Moon disc). Since it is the only (almost) black spot in the gamma-ray sky, it provides a unique opportunity for calibration of gamma-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST).more » The albedo flux depends on the incident CR spectrum which changes over the solar cycle. Therefore, it is possible to monitor the CR spectrum using the albedo gamma-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo -rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the GLAST LAT to monitor the CR spectrum near the Earth beyond the lifetime of PAMELA.« less

  5. Emotional inertia contributes to depressive symptoms beyond perseverative thinking.

    PubMed

    Brose, Annette; Schmiedek, Florian; Koval, Peter; Kuppens, Peter

    2015-01-01

    The autocorrelation or inertia of negative affect reflects how much negative emotions carry over from moment to moment and has been associated with increased depressive symptoms. In this study, we posed three challenges to this association by examining: (1) whether emotional inertia is relevant for depressive symptoms when assessed on a longer timescale than usual; (2) whether inertia is uniquely related to depressive symptoms after controlling for perseverative thoughts; and (3) whether inertia is related to depressive symptoms over and above the within-person association between affect and perseverative thoughts. Participants (N = 101) provided ratings of affect and perseverative thoughts for 100 days; depressive symptoms were reported before and after the study, and again after 2.5 years. Day-to-day emotional inertia was related to depressive symptoms over and above trait and state perseverative thoughts. Moreover, inertia predicted depressive symptoms when adjusting for its association with perseverative thoughts. These findings establish the relevance of emotional inertia in depressive symptoms independent of perseverative thoughts.

  6. A coupled subsurface-boundary layer model of water on Mars

    NASA Astrophysics Data System (ADS)

    Zent, A. P.; Haberle, R. M.; Houben, H. C.; Jakosky, B. M.

    1993-02-01

    A 1D numerical model of the exchange of H2O between the atmosphere and subsurface of Mars through the PBL is employed to explore the mechanisms of H2O exchange and to elucidate the role played by the regolith in the local H2O budget. The atmospheric model includes effects of Coriolis, pressure gradient, and frictional forces for momentum: radiation, sensible heat flux, and advection for heat. It is suggested that in most cases, the flux through the Martian surface reverses twice in the course of each sol. The effects of surface albedo, thermal inertia, solar declination, atmospheric optical depth, and regolith pore structure are explored. It is proposed that higher thermal inertia forces more H2O into the atmosphere because the regolith is warmer at depth.

  7. Lithological and textural controls on radar and diurnal thermal signatures of weathered volcanic deposits, Lunar Crater region, Nevada

    NASA Technical Reports Server (NTRS)

    Plaut, Jeffrey J.; Rivard, Benoit

    1992-01-01

    Radar backscatter intensity as measured by calibrated synthetic aperture radar (SAR) systems is primarily controlled by three factors: local incidence angle, wavelength-scale roughness, and dielectric permittivity of surface materials. Radar observations may be of limited use for geological investigations of surface composition, unless the relationships between lithology and the above characteristics can be adequately understood. In arid terrains, such as the Southwest U.S., weathering signatures (e.g. soil development, fracturing, debris grain size and shape, and hill slope characteristics) are controlled to some extent by lithologic characteristics of the parent bedrock. These textural features of outcrops and their associated debris will affect radar backscatter to varying degrees, and the multiple-wavelength capability of the JPL Airborne SAR (AIRSAR) system allows sampling of textures at three distinct scales. Diurnal temperature excursions of geologic surfaces are controlled primarily by the thermal inertia of surface materials, which is a measure of the resistance of a material to a change in temperature. Other influences include albedo, surface slopes affecting insolation, local meteorological conditions and surface emissivity at the relevant thermal wavelengths. To first order, thermal inertia variations on arid terrain surfaces result from grain size distribution and porosity differences, at scales ranging from micrometers to tens of meters. Diurnal thermal emission observations, such as those made by the JPL Thermal Infrared Multispectral Scanner (TIMS) airborne instrument, are thus influenced by geometric surface characteristics at scales comparable to those controlling radar backscatter. A preliminary report on a project involving a combination of field, laboratory and remote sensing observations of weathered felsic-to basaltic volcanic rock units exposed in the southern part of the Lunar Crater Volcanic Field, in the Pancake Range of central Nevada is

  8. A microphysically-based approach to modeling emissivity and albedo of the martian seasonal caps

    USGS Publications Warehouse

    Eluszkiewicz, J.; Moncet, J.-L.; Titus, T.N.; Hansen, G.B.

    2005-01-01

    A new model of albedo and emissivity of the martian seasonal caps represented as porous CO2 slabs containing spherical voids and dust particles is described. In the model, a radiative transfer model is coupled with a microphysical model in order to link changes in albedo and emissivity to changes in porosity caused by ice metamorphism. The coupled model is capable of reproducing temporal changes in the spectra of the caps taken by the Thermal Emission Spectrometer onboard the Mars Global Surveyor and it can be used as the forward model in the retrievals of the caps' physical properties (porosity, dust abundance, void and dust grain size) from the spectra. Preliminary results from such inversion studies are presented. ?? 2004 Elsevier Inc. All rights reserved.

  9. Survey of TES high albedo events in Mars' northern polar craters

    USGS Publications Warehouse

    Armstrong, J.C.; Nielson, S.K.; Titus, T.N.

    2007-01-01

    Following the work exploring Korolev Crater (Armstrong et al., 2005) for evidence of crater interior ice deposits, we have conducted a survey of Thermal Emission Spectroscopy (TES) temperature and albedo measurements for Mars' northern polar craters larger than 10 km. Specifically, we identify a class of craters that exhibits brightening in their interiors during a solar longitude, Ls, of 60 to 120 degrees, roughly depending on latitude. These craters vary in size, latitude, and morphology, but appear to have a specific regional association on the surface that correlates with the distribution of subsurface hydrogen (interpreted as water ice) previously observed on Mars. We suggest that these craters, like Korolev, exhibit seasonal high albedo frost events that indicate subsurface water ice within the craters. A detailed study of these craters may provide insight in the geographical distribution of the ice and context for future polar missions. Copyright 2007 by the American Geophysical Union.

  10. The New Global Gapless GLASS Albedo Product from 1981 to 2014

    NASA Astrophysics Data System (ADS)

    Dou, B.; Liu, Q.; Qu, Y.; Wang, L.; Feng, Y.; Nie, A.; Li, X.; Zhang, J.; Niu, H.; Cai, E.; Zhao, L.

    2016-12-01

    Long-time series and various spatial resolution albedo products are needed for climate change and environmental studies at both global and regional scale. To meet these requirements, GLASS (Global LAnd Surface Satellites) gapless albedo product from 1981 to 2010 was firstly released in 2012 and widely used in long-term earth change researches. However, only shortwave albedo product in spatial resolution of 0.05 degree and 1 km were provided, which limits extensive applications for visible and near-infrared bands. Thus, new GLASS albedo product are produced and comprehensively enhanced in time series, algorithm and product content. Five major updates are conducted: 1) Time region is expanded from 1981-2010 to 1981-2014; 2) Physically ART (radiative transfer theory) and TCOWA (Three-Component Ocean Water Albedo) models rather than previous RTLSR (Rose-Thick Li-Sparse Reciprocal kernel combination) model are adopted for snow and inland water albedo estimation, respectively; 3) global shortwave, visible, and near-infrared albedos in spatial resolution of 0.05 degree and 1 km are released; 4) Clear-sky albedo is provided beyond the traditional black-sky albedo and white sky-albedo for amateurish user; 5) 250 m albedo product is provided in part of global for regional application. In this study, we firstly detail the updates of this inspiring product. Then the product is compared with the previous GLASS albedo product and preliminary assessed against field measurements under various land covers. Significant improvements are reported for snow and water albedo. The results demonstrate that the new GLASS albedo product is a gapless, long-term continuous, and self-consistent data-set. Comparing to previous GLASS albedo product, lower black-sky albedo and higher white-sky albedo are proved for permanent snow-cover region. Moreover, higher albedo of inland water and seasonal snow-cover mountain are captured. This product brings new chance and view to understanding long

  11. Thermophysical properties along Curiosity's traverse in Gale crater, Mars, derived from the REMS Ground Temperature Sensor

    NASA Astrophysics Data System (ADS)

    Vasavada, A. R.; Piqueux, S.

    2016-12-01

    The REMS instrument onboard the Mars Science Laboratory rover, Curiosity, has measured ground temperature nearly continuously at hourly intervals for two Mars years. Coverage of the entire diurnal cycle at 1 Hz is achieved every few martian days. We compare these measurements with predictions of surface-atmosphere thermal models to derive the apparent thermal inertia and thermally derived albedo along the rover's traverse, after accounting for the radiative effects of dust as well as atmospheric water ice during fall and winter, as is necessary to match the measured seasonal trend. The REMS measurements can distinguish between active sand, other loose materials, mudstone, and sandstone based on their thermophysical properties. However, the thermal inertias of bedrock-dominated surfaces ( 350-550 J m-2 K-1 s-½) are lower than expected. We use the detailed shape of the diurnal ground temperature curve to infer the effects of lateral mixing of different materials within the sensor footprint, as well as vertical heterogeneity. While results of this forward modeling approach are non-unique, we find surface configurations capable of creating the observed thermal responses that also are consistent with rover imagery. Bedrock thermal inertias isolated by this modeling are 1000-1900 J m-2 K-1 s-½ for mudstone and 700 J m-2 K-1 s-½ for sandstone. This methodology provides a better basis for inferring properties such as rock porosity, cement composition, and degree of cementation from the thermal inertia. These results highlight the advantages of deriving thermophysical properties from ground temperature records well-sampled in local time.

  12. NOAA AVHRR Land Surface Albedo Algorithm Development

    NASA Technical Reports Server (NTRS)

    Toll, D. L.; Shirey, D.; Kimes, D. S.

    1997-01-01

    The primary objective of this research is to develop a surface albedo model for the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR). The primary test site is the Konza prairie, Kansas (U.S.A.), used by the International Satellite Land Surface Climatology Project (ISLSCP) in the First ISLSCP Field Experiment (FIFE). In this research, high spectral resolution field spectrometer data was analyzed to simulate AVHRR wavebands and to derive surface albedos. Development of a surface albedo algorithm was completed by analysing a combination of satellite, field spectrometer, and ancillary data. Estimated albedos from the field spectrometer data were compared to reference albedos derived using pyranometer data. Variations from surface anisotropy of reflected solar radiation were found to be the most significant albedo-related error. Additional error or sensitivity came from estimation of a shortwave mid-IR reflectance (1.3-4.0 micro-m) using the AVHRR red and near-IR bands. Errors caused by the use of AVHRR spectral reflectance to estimate both a total visible (0.4-0.7 micro-m) and near-IR (0.7-1.3 micro-m) reflectance were small. The solar spectral integration, using the derived ultraviolet, visible, near-IR and SW mid-IR reflectivities, was not sensitive to many clear-sky changes in atmospheric properties and illumination conditions.

  13. Isolated colonic inertia is not usually the cause of chronic constipation.

    PubMed

    Ragg, J; McDonald, R; Hompes, R; Jones, O M; Cunningham, C; Lindsey, I

    2011-11-01

    Chronic constipation is classified as outlet obstruction, colonic inertia or both. We aimed to determine the incidence of isolated colonic inertia in chronic constipation and to study symptom pattern in those with prolonged colonic transit time. Chronic constipation patients were classified radiologically by surgeon-reported defaecating proctography and transit study into four groups: isolated outlet obstruction, isolated colonic inertia, outlet obstruction plus colonic inertia, or normal. Symptom patterns were defined as stool infrequency (twice weekly or less) or frequent unsuccessful evacuations (more than twice weekly). Of 541 patients with chronic constipation, 289 (53%) were classified as isolated outlet obstruction, 26 (5%) as isolated colonic inertia, 159 (29%) as outlet obstruction plus colonic inertia and 67 (12%) as normal. Of 448 patients (83%) with outlet obstruction, 35% had additional colonic inertia. Only 14% of those with prolonged colonic transit time had isolated colonic inertia. Frequent unsuccessful evacuations rather than stool infrequency was the commonest symptom pattern in all three disease groups (isolated outlet obstruction 86%, isolated colonic inertia 54% and outlet obstruction plus colonic inertia 63%). Isolated colonic inertia is an unusual cause of chronic constipation. Most patients with colonic inertia have associated outlet obstruction. These data question the clinical significance of isolated colonic inertia. © 2011 The Authors. Colorectal Disease © 2011 The Association of Coloproctology of Great Britain and Ireland.

  14. Evaluation of MODIS and VIIRS Albedo Products Using Ground and Airborne Measurements and Development of Ceos/Wgcv/Lpv Albedo Ecv Protocols

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Roman, M. O.; Schaaf, C.; Sun, Q.; Liu, Y.; Saenz, E. J.; Gatebe, C. K.

    2014-12-01

    Surface albedo, defined as the ratio of the hemispheric reflected solar radiation flux to the incident flux upon the surface, is one of the essential climate variables and quantifies the radiation interaction between the atmosphere and the land surface. An absolute accuracy of 0.02-0.05 for global surface albedo is required by climate models. The MODerate resolution Imaging Spectroradiometer (MODIS) standard BRDF/albedo product makes use of a linear "kernel-driven" RossThick-LiSparse Reciprocal (RTLSR) BRDF model to describe the reflectance anisotropy. The surface albedo is calculated by integrating the BRDF over the above ground hemisphere. While MODIS Terra was launched in Dec 1999 and MODIS Aqua in 2002, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi-NPP satellite was launched more recently on October 28, 2011. Thus a long term record of BRDF, albedo and Nadir BRDF-Adjusted Reflectance (NBAR) products from VIIRS can be generated through MODIS heritage algorithms. Several investigations have evaluated the MODIS albedo products during the growing season, as well as during dormant and snow covered periods. The Land Product Validation (LPV) sub-group of the Committee on Earth Observation Satellites (CEOS) Working Group on Calibration and Validation (WGCV) aims to address the challenges associated with the validation of global land products. The validation of global surface radiation/albedo products is one of the LPV subgroup activities. In this research, a reference dataset covering various land surface types and vegetation structure is assembled to assess the accuracy of satellite albedo products. This dataset includes in situ data (Baseline Surface Radiation Network (BSRN), FLUXNET and Long Term Ecological Research network (LTER) etc.) and airborne measurements (e.g. Cloud Absorption Radiometer (CAR)). Spatially representative analysis is applied to each site to establish whether the ground measurements can adequately represent moderate spatial

  15. The AKARI IRC asteroid flux catalogue: updated diameters and albedos

    NASA Astrophysics Data System (ADS)

    Alí-Lagoa, V.; Müller, T. G.; Usui, F.; Hasegawa, S.

    2018-05-01

    The AKARI IRC all-sky survey provided more than twenty thousand thermal infrared observations of over five thousand asteroids. Diameters and albedos were obtained by fitting an empirically calibrated version of the standard thermal model to these data. After the publication of the flux catalogue in October 2016, our aim here is to present the AKARI IRC all-sky survey data and discuss valuable scientific applications in the field of small body physical properties studies. As an example, we update the catalogue of asteroid diameters and albedos based on AKARI using the near-Earth asteroid thermal model (NEATM). We fit the NEATM to derive asteroid diameters and, whenever possible, infrared beaming parameters. We fit groups of observations taken for the same object at different epochs of the survey separately, so we compute more than one diameter for approximately half of the catalogue. We obtained a total of 8097 diameters and albedos for 5170 asteroids, and we fitted the beaming parameter for almost two thousand of them. When it was not possible to fit the beaming parameter, we used a straight line fit to our sample's beaming parameter-versus-phase angle plot to set the default value for each fit individually instead of using a single average value. Our diameters agree with stellar-occultation-based diameters well within the accuracy expected for the model. They also match the previous AKARI-based catalogue at phase angles lower than 50°, but we find a systematic deviation at higher phase angles, at which near-Earth and Mars-crossing asteroids were observed. The AKARI IRC All-sky survey is an essential source of information about asteroids, especially the large ones, since, it provides observations at different observation geometries, rotational coverages and aspect angles. For example, by comparing in more detail a few asteroids for which dimensions were derived from occultations, we discuss how the multiple observations per object may already provide three

  16. Increase in surface albedo caused by agricultural plastic film

    NASA Astrophysics Data System (ADS)

    Fan, X.; Chen, H.; Xia, X.

    2016-12-01

    The area of agricultural greenhouses and cropland covered by plastic film has increased inChina over the past three decades. Construction of large-area plastic greenhouse potentiallychanges the physical and radiative properties of the surface and its albedo, thereby potentiallyaffecting the surface energy budget and climate change. This study aims to investigate theeffect of the plastic-film cover on surface albedo based on computationswith a simplified modeland several field observation experiments. The results showed that surface albedo increasedby ˜23.5 and ˜33.9% on clear and overcast days, respectively, if grassland was covered byplastic film. Surface albedo of bare soil covered by plastic film increased by ˜16.6% underclear sky conditions. A larger increase in surface albedo was derived for surface types withsmaller surface albedo. Model calculations were in good agreement with field observations.

  17. The nature of albedo features on Mercury, with maps for the telescopic observer. Part II: The nature of the albedo markings

    NASA Astrophysics Data System (ADS)

    Graham, D. L.

    1995-04-01

    Part One of this paper (J. Brit. Astron. Assoc., 105(1), 1995) reviewed the classical telescopic observations of albedo markings on Mercury and reproduced the definitive albedo map to assist visual observers of the planet. In Part Two, an investigation into the relationship between albedo and physiography is conducted, and the significance of the historical observations is discussed.

  18. Comet 67P: Thermal Maps and Local Properties as Derived from Rosetta/VIRTIS data

    NASA Astrophysics Data System (ADS)

    Tosi, Federico; Capria, Maria Teresa; Capaccioni, Fabrizio; Filacchione, Gianrico; Erard, Stéphane; Leyrat, Cédric; Bockelée-Morvan, Dominique; De Sanctis, Maria Cristina; Raponi, Andrea; Ciarniello, Mauro; Schmitt, Bernard; Arnold, Gabriele; Mottola, Stefano; Fonti, Sergio; Palomba, Ernesto; Longobardo, Andrea; Cerroni, Priscilla; Piccioni, Giuseppe; Drossart, Pierre; Kuehrt, Ekkehard

    2015-04-01

    Comet 67P is shown to be everywhere rich in organic materials with little to no water ice visible on the surface. In the range of heliocentric distances from 3.59 to 2.74 AU, daytime observed surface temperatures retrieved from VIRTIS data are overall comprised in the range between 180 and 220 K, which is incompatible with large exposures of water ice and is consistent with a low-albedo, organics-rich surface. The accuracy of temperature retrieval is as good as a few K in regions of the comet unaffected by shadowing or limb proximity. Maximum temperature values as high as 230 K have been recorded in very few places. The highest values of surface temperature in the early Mapping phase were obtained in August 2014, during observations at small phase angles implying that the observed surface has a large predominance of small incidence angles, and local solar times (LST) centered around the maximum daily insolation. In all cases, direct correlation with topographic features is observed, i.e. largest temperature values are generally associated with the smallest values of illumination angles. So far, there is no evidence of thermal anomalies, i.e. places of the surface that are intrinsically warmer or cooler than surrounding terrains observed at the same local solar time and under similar solar illumination. For a given LST, the maximum temperature mainly depends on the solar incidence angle and on surface properties such as thermal inertia and albedo. Since VIRTIS is able to observe the same point of the surface on various occasions under different conditions of solar illumination and LST, it is possible to reconstruct the temperature of that point at different times of the comet's day, thus building diurnal profiles of temperature that are useful to constrain thermal inertia. The availability of spatially-resolved, accurate temperature observations, significantly spaced out in local solar time, provides clues to the physical structure local features, which complements

  19. Kotov during Albedo Experiment in the SM

    NASA Image and Video Library

    2013-11-18

    ISS038-E-005022 (20 Nov. 2013) --- At a window in the International Space Station?s Zvezda Service Module, Russian cosmonaut Oleg Kotov, Expedition 38 commander, uses a digital camera photospectral system to perform a session for the Albedo Experiment. The experiment measures Earth?s albedo, or the amount of solar radiation reflected from the surface, in the hopes to develop methods to harness the reflected radiation to supplement the station?s power supply. The light reflection phenomenon is measured in units called albedo.

  20. Kotov during Albedo Experiment in the SM

    NASA Image and Video Library

    2013-11-18

    ISS038-E-005014 (20 Nov. 2013) --- At a window in the International Space Station’s Zvezda Service Module, Russian cosmonaut Oleg Kotov, Expedition 38 commander, uses a digital camera photospectral system to perform a session for the Albedo Experiment. The experiment measures Earth’s albedo, or the amount of solar radiation reflected from the surface, in the hopes to develop methods to harness the reflected radiation to supplement the station’s power supply. The light reflection phenomenon is measured in units called albedo.

  1. Kotov during Albedo Experiment in the SM

    NASA Image and Video Library

    2013-11-18

    ISS038-E-005023 (20 Nov. 2013) --- At a window in the International Space Station?s Zvezda Service Module, Russian cosmonaut Oleg Kotov, Expedition 38 commander, uses a digital camera photospectral system to perform a session for the Albedo Experiment. The experiment measures Earth?s albedo, or the amount of solar radiation reflected from the surface, in the hopes to develop methods to harness the reflected radiation to supplement the station?s power supply. The light reflection phenomenon is measured in units called albedo.

  2. Kotov during Albedo Experiment in the SM

    NASA Image and Video Library

    2013-11-18

    ISS038-E-005031 (20 Nov. 2013) --- At a window in the International Space Station?s Zvezda Service Module, Russian cosmonaut Oleg Kotov, Expedition 38 commander, uses a digital camera photospectral system to perform a session for the Albedo Experiment. The experiment measures Earth?s albedo, or the amount of solar radiation reflected from the surface, in the hopes to develop methods to harness the reflected radiation to supplement the station?s power supply. The light reflection phenomenon is measured in units called albedo.

  3. Kotov during Albedo Experiment in the SM

    NASA Image and Video Library

    2013-11-18

    ISS038-E-005016 (20 Nov. 2013) --- At a window in the International Space Station?s Zvezda Service Module, Russian cosmonaut Oleg Kotov, Expedition 38 commander, uses a digital camera photospectral system to perform a session for the Albedo Experiment. The experiment measures Earth?s albedo, or the amount of solar radiation reflected from the surface, in the hopes to develop methods to harness the reflected radiation to supplement the station?s power supply. The light reflection phenomenon is measured in units called albedo.

  4. Kotov during Albedo Experiment in the SM

    NASA Image and Video Library

    2013-11-18

    ISS038-E-005019 (20 Nov. 2013) --- At a window in the International Space Station?s Zvezda Service Module, Russian cosmonaut Oleg Kotov, Expedition 38 commander, uses a digital camera photospectral system to perform a session for the Albedo Experiment. The experiment measures Earth?s albedo, or the amount of solar radiation reflected from the surface, in the hopes to develop methods to harness the reflected radiation to supplement the station?s power supply. The light reflection phenomenon is measured in units called albedo.

  5. NEOWISE Reactivation Mission Year Three: Asteroid Diameters and Albedos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masiero, Joseph R.; Mainzer, A. K.; Kramer, E.

    The Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) reactivation mission has completed its third year of surveying the sky in the thermal infrared for near-Earth asteroids and comets. NEOWISE collects simultaneous observations at 3.4 and 4.6  μ m of solar system objects passing through its field of regard. These data allow for the determination of total thermal emission from bodies in the inner solar system, and thus the sizes of these objects. In this paper, we present thermal model fits of asteroid diameters for 170 NEOs and 6110 Main Belt asteroids (MBAs) detected during the third year of the survey,more » as well as the associated optical geometric albedos. We compare our results with previous thermal model results from NEOWISE for overlapping sample sets, as well as diameters determined through other independent methods, and find that our diameter measurements for NEOs agree to within 26% (1 σ ) of previously measured values. Diameters for the MBAs are within 17% (1 σ ). This brings the total number of unique near-Earth objects characterized by the NEOWISE survey to 541, surpassing the number observed during the fully cryogenic mission in 2010.« less

  6. Nonlinear transient waves in coupled phase oscillators with inertia.

    PubMed

    Jörg, David J

    2015-05-01

    Like the inertia of a physical body describes its tendency to resist changes of its state of motion, inertia of an oscillator describes its tendency to resist changes of its frequency. Here, we show that finite inertia of individual oscillators enables nonlinear phase waves in spatially extended coupled systems. Using a discrete model of coupled phase oscillators with inertia, we investigate these wave phenomena numerically, complemented by a continuum approximation that permits the analytical description of the key features of wave propagation in the long-wavelength limit. The ability to exhibit traveling waves is a generic feature of systems with finite inertia and is independent of the details of the coupling function.

  7. Estimating the Inertia Matrix of a Spacecraft

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet; Keim, Jason; Shields, Joel

    2007-01-01

    A paper presents a method of utilizing some flight data, aboard a spacecraft that includes reaction wheels for attitude control, to estimate the inertia matrix of the spacecraft. The required data are digitized samples of (1) the spacecraft attitude in an inertial reference frame as measured, for example, by use of a star tracker and (2) speeds of rotation of the reaction wheels, the moments of inertia of which are deemed to be known. Starting from the classical equations for conservation of angular momentum of a rigid body, the inertia-matrix-estimation problem is formulated as a constrained least-squares minimization problem with explicit bounds on the inertia matrix incorporated as linear matrix inequalities. The explicit bounds reflect physical bounds on the inertia matrix and reduce the volume of data that must be processed to obtain a solution. The resulting minimization problem is a semidefinite optimization problem that can be solved efficiently, with guaranteed convergence to the global optimum, by use of readily available algorithms. In a test case involving a model attitude platform rotating on an air bearing, it is shown that, relative to a prior method, the present method produces better estimates from few data.

  8. Lambert Reflectance Albedo And Temperature Mapping Of Thermal Emission Spectrometer Data During The Mars Global Surveyor Aerobraking Phase

    NASA Astrophysics Data System (ADS)

    Badri, K. M.; Alqasim, A.; Altunaiji, E. S.; Edwards, C. S.; Smith, M. D.

    2017-12-01

    The goal of this work is to create multiple sets of maps using Thermal Emission Spectrometer (TES) data that encompass the aerobraking phase of the Mars Global Surveyor mission. This work will serve as a proof of concept for the upcoming Emirates Mars Mission, where the Emirates Mars Infrared Spectrometer (EMRIS) will generate data acquired in a similar manner to that acquired by TES during aerobraking. To generate maps of these data on a global scale, python will be used in combination with the Spacecraft Planet Instrument Camera Matrix and Event (SPICE) toolkit to determine the geometry of the pixels on the planet surface. TES is an instrument within the Mars Global Surveyor (MGS) spacecraft. It is a Fourier transform infrared spectrometer developed to study the surface and atmosphere of Mars using thermal infrared emission spectroscopy. TES consists of six detectors arranged in a 2x3 array with a nominal spot size of 3 × 6 km when in its nominal mapping orbit. Over the southern hemisphere during aerobraking the footprint is significantly larger (10s of km) due to the elliptical nature of the orbit during this phase of the mission. TES aerobraking spectra were taken between Mars Year 23, Ls=180° and Mars Year 24, Ls=30°. Here we map TES footprints to the surface during MGS aerobraking, binned by solar longitude to observe differences on the surface in both temperature and Lambert albedo.

  9. Thermal Intertias of Main-Belt Asteroids from Wise Thermal Infrared Data

    NASA Astrophysics Data System (ADS)

    Hanus, Josef; Delbo', Marco; Durech, Josef; Alí-Lagoa, Victor

    2014-11-01

    By means of a modified thermophysical model (TPM) that takes into account asteroid shape and pole uncertainties, we analyze the thermal infrared data acquired by the NASA's Wide-field Infrared Survey Explorer (WISE) of about 300 asteroids with derived convex shape models. We adopt convex shape models from the DAMIT database (Durech et al., 2010, A&A 513, A46) and present new determinations based on optical disk-integrated photometry and the lightcurve inversion method (Kaasalainen & Torppa, 2001, Icarus 153, 37). This work more than double the number of asteroids with determined thermophysical properties. We also discuss cases in which shape uncertainties prevent the determination of reliable thermophysical properties. This is per-se a novel result, as the effect of shape has been often neglected in thermophysical modeling of asteroids.We also present the main results of the statistical study of derived thermophysical parameters within the whole population of MBAs and within few asteroid families. The thermal inertia increases with decreasing size, but a large range of thermal inertia values is observed within the similar size ranges between 10-100 km. Surprisingly, we derive low (<20J m^{-2} s^{-1/2} K^{-1}) thermal inertia values for several asteroids with sizes D>10 km, indicating a very fine and mature regolith on these small bodies. The work of JH and MD was carried under the contract 11-BS56-008 (SHOCKS) of the French Agence National de la Recherche (ANR), and JD has been supported by the grant GACR P209/10/0537 of the Czech Science Foundation.

  10. Treating inertia in passive microbead rheology.

    PubMed

    Indei, Tsutomu; Schieber, Jay D; Córdoba, Andrés; Pilyugina, Ekaterina

    2012-02-01

    The dynamic modulus G(*) of a viscoelastic medium is often measured by following the trajectory of a small bead subject to Brownian motion in a method called "passive microbead rheology." This equivalence between the positional autocorrelation function of the tracer bead and G(*) is assumed via the generalized Stokes-Einstein relation (GSER). However, inertia of both bead and medium are neglected in the GSER so that the analysis based on the GSER is not valid at high frequency where inertia is important. In this paper we show how to treat both contributions to inertia properly in one-bead passive microrheological analysis. A Maxwell fluid is studied as the simplest example of a viscoelastic fluid to resolve some apparent paradoxes of eliminating inertia. In the original GSER, the mean-square displacement (MSD) of the tracer bead does not satisfy the correct initial condition. If bead inertia is considered, the proper initial condition is realized, thereby indicating an importance of including inertia, but the MSD oscillates at a time regime smaller than the relaxation time of the fluid. This behavior is rather different from the original result of the GSER and what is observed. What is more, the discrepancy from the GSER result becomes worse with decreasing bead mass, and there is an anomalous gap between the MSD derived by naïvely taking the zero-mass limit in the equation of motion and the MSD for finite bead mass as indicated by McKinley et al. [J. Rheol. 53, 1487 (2009)]. In this paper we show what is necessary to take the zero-mass limit of the bead safely and correctly without causing either the inertial oscillation or the anomalous gap, while obtaining the proper initial condition. The presence of a very small purely viscous element can be used to eliminate bead inertia safely once included in the GSER. We also show that if the medium contains relaxation times outside the window where the single-mode Maxwell behavior is observed, the oscillation can be

  11. Arid land monitoring using Landsat albedo difference images

    USGS Publications Warehouse

    Robinove, Charles J.; Chavez, Pat S.; Gehring, Dale G.; Holmgren, Ralph

    1981-01-01

    The Landsat albedo, or percentage of incoming radiation reflected from the ground in the wavelength range of 0.5 [mu]m to 1.1 [mu]m, is calculated from an equation using the Landsat digital brightness values and solar irradiance values, and correcting for atmospheric scattering, multispectral scanner calibration, and sun angle. The albedo calculated for each pixel is used to create an albedo image, whose grey scale is proportional to the albedo. Differencing sequential registered images and mapping selected values of the difference is used to create quantitative maps of increased or decreased albedo values of the terrain. All maps and other output products are in black and white rather than color, thus making the method quite economical. Decreases of albedo in arid regions may indicate improvement of land quality; increases may indicate degradation. Tests of the albedo difference mapping method in the Desert Experimental Range in southwestern Utah (a cold desert with little long-term terrain change) for a four-year period show that mapped changes can be correlated with erosion from flash floods, increased or decreased soil moisture, and increases or decreases in the density of desert vegetation, both perennial shrubs and annual plants. All terrain changes identified in this test were related to variations in precipitation. Although further tests of this method in hot deserts showing severe "desertification" are needed, the method is nevertheless recommended for experimental use in monitoring terrain change in other arid and semiarid regions of the world.

  12. Evaluation of coarse scale land surface remote sensing albedo product over rugged terrain

    NASA Astrophysics Data System (ADS)

    Wen, J.; Xinwen, L.; You, D.; Dou, B.

    2017-12-01

    Satellite derived Land surface albedo is an essential climate variable which controls the earth energy budget and it can be used in applications such as climate change, hydrology, and numerical weather prediction. The accuracy and uncertainty of surface albedo products should be evaluated with a reliable reference truth data prior to applications. And more literatures investigated the validation methods about the albedo validation in a flat or homogenous surface. However, the albedo performance over rugged terrain is still unknow due to the validation method limited. A multi-validation strategy is implemented to give a comprehensive albedo validation, which will involve the high resolution albedo processing, high resolution albedo validation based on in situ albedo, and the method to upscale the high resolution albedo to a coarse scale albedo. Among them, the high resolution albedo generation and the upscale method is the core step for the coarse scale albedo validation. In this paper, the high resolution albedo is generated by Angular Bin algorithm. And a albedo upscale method over rugged terrain is developed to obtain the coarse scale albedo truth. The in situ albedo located 40 sites in mountain area are selected globally to validate the high resolution albedo, and then upscaled to the coarse scale albedo by the upscale method. This paper takes MODIS and GLASS albedo product as a example, and the prelimarily results show the RMSE of MODIS and GLASS albedo product over rugged terrain are 0.047 and 0.057, respectively under the RMSE with 0.036 of high resolution albedo.

  13. Social inertia and diversity in collaboration networks

    NASA Astrophysics Data System (ADS)

    Ramasco, J. J.

    2007-04-01

    Random graphs are useful tools to study social interactions. In particular, the use of weighted random graphs allows to handle a high level of information concerning which agents interact and in which degree the interactions take place. Taking advantage of this representation, we recently defined a magnitude, the Social Inertia, that measures the eagerness of agents to keep ties with previous partners. To study this magnitude, we used collaboration networks that are specially appropriate to obtain valid statitical results due to the large size of publically available databases. In this work, I study the Social Inertia in two of these empirical networks, IMDB movie database and condmat. More specifically, I focus on how the Inertia relates to other properties of the graphs, and show that the Inertia provides information on how the weight of neighboring edges correlates. A social interpretation of this effect is also offered.

  14. Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results

    USGS Publications Warehouse

    Christensen, P.R.; Bandfield, J.L.; Hamilton, V.E.; Ruff, S.W.; Kieffer, H.H.; Titus, T.N.; Malin, M.C.; Morris, R.V.; Lane, M.D.; Clark, R.L.; Jakosky, B.M.; Mellon, M.T.; Pearl, J.C.; Conrath, B.J.; Smith, M.D.; Clancy, R.T.; Kuzmin, R.O.; Roush, T.; Mehall, G.L.; Gorelick, N.; Bender, K.; Murray, K.; Dason, S.; Greene, E.; Silverman, S.; Greenfield, M.

    2001-01-01

    a detection limit of 7sim;10%; this lack of evidence for chemical weathering indicates a geologic history dominated by a cold, dry climate in which mechanical, rather than chemical, weathering was the significant form of erosion and sediment production. (5) There is no conclusive evidence for sulfate minerals at a detection limit of ???15%. The polar region has been studied with the following major conclusions: (1) Condensed CO2 has three distinct end-members, from fine-grained crystals to slab ice. (2) The growth and retreat of the polar caps observed by MGS is virtually the same as observed by Viking 12 Martian years ago. (3) Unique regions have been identified that appear to differ primarily in the grain size of CO2; one south polar region appears to remain as black slab CO2 ice throughout its sublimation. (4) Regional atmospheric dust is common in localized and regional dust storms around the margin and interior of the southern cap. Analysis of the thermophysical properties of the surface shows that (1) the spatial pattern of albedo has changed since Viking observations, (2) a unique cluster of surface materials with intermediate inertia and albedo occurs that is distinct from the previously identified low-inertia/bright and high-inertia/dark surfaces, and (3) localized patches of high-inertia material have been found in topographic lows and may have been formed by a unique set of aeolian, fluvial, or erosional processes or may be exposed bedrock. Copyright 2001 by the American Geophysical Union.

  15. Neural predictors of emotional inertia in daily life.

    PubMed

    Waugh, Christian E; Shing, Elaine Z; Avery, Bradley M; Jung, Youngkyoo; Whitlow, Christopher T; Maldjian, Joseph A

    2017-09-01

    Assessing emotional dynamics in the brain offers insight into the fundamental neural and psychological mechanisms underlying emotion. One such dynamic is emotional inertia-the influence of one's emotional state at one time point on one's emotional state at a subsequent time point. Emotion inertia reflects emotional rigidity and poor emotion regulation as evidenced by its relationship to depression and neuroticism. In this study, we assessed changes in cerebral blood flow (CBF) from before to after an emotional task and used these changes to predict stress, positive and negative emotional inertia in daily life events. Cerebral blood flow changes in the lateral prefrontal cortex (lPFC) predicted decreased non-specific emotional inertia, suggesting that the lPFC may feature a general inhibitory mechanism responsible for limiting the impact that an emotional state from one event has on the emotional state of a subsequent event. CBF changes in the ventromedial prefrontal cortex and lateral occipital cortex were associated with positive emotional inertia and negative/stress inertia, respectively. These data advance the blossoming literature on the temporal dynamics of emotion in the brain and on the use of neural indices to predict mental health-relevant behavior in daily life. © The Author (2017). Published by Oxford University Press.

  16. Incorporating inertia into multiagent systems

    NASA Astrophysics Data System (ADS)

    Man, W. C.; Chau, H. F.

    2006-03-01

    We consider a model that demonstrates the crucial role of inertia and stickiness in multiagent systems, based on the minority game. The inertia of an agent is introduced into the game model by allowing agents to apply hypothesis testing when choosing their best strategies, thereby reducing their reactivity toward changes in the environment. We find by extensive numerical simulations that our game shows a remarkable improvement of global cooperation throughout the whole phase space. In other words, the maladaptation behavior due to over-reaction of agents is removed. These agents are also shown to be advantageous over the standard ones, which are sometimes too sensitive to attain a fair success rate. We also calculate analytically the minimum amount of inertia needed to achieve the above improvement. Our calculation is consistent with the numerical simulation results. Finally, we review some related works in the field that show similar behaviors and compare them to our work.

  17. Impact of weather events on Arctic sea ice albedo evolution

    NASA Astrophysics Data System (ADS)

    Arntsen, A. E.; Perovich, D. K.; Polashenski, C.; Stwertka, C.

    2015-12-01

    Arctic sea ice undergoes a seasonal evolution from cold snow-covered ice to melting snow to bare ice with melt ponds. Associated with this physical evolution is a decrease in the albedo of the ice cover. While the change in albedo is often considered as a steady seasonal decrease, weather events during melt, such as rain or snow, can impact the albedo evolution. Measurements on first year ice in the Chukchi Sea showed a decrease in visible albedo to 0.77 during the onset of melt. New snow from 4 - 6 June halted melting and increased the visible albedo to 0.87. It took 12 days for the albedo to decrease to levels prior to the snowfall. Incident solar radiation is large in June and thus a change in albedo has a large impact on the surface heat budget. The snowfall increased the albedo by 0.1 and reduced the absorbed sunlight from 5 June to 17 June by approximately 32 MJ m-2. The total impact of the snowfall will be even greater, since the delay in albedo reduction will be propagated throughout the entire summer. A rain event would have the opposite impact, increasing solar heat input and accelerating melting. Snow or rain in May or June can impact the summer melt cycle of Arctic sea ice.

  18. Selective effects of weight and inertia on maximum lifting.

    PubMed

    Leontijevic, B; Pazin, N; Kukolj, M; Ugarkovic, D; Jaric, S

    2013-03-01

    A novel loading method (loading ranged from 20% to 80% of 1RM) was applied to explore the selective effects of externally added simulated weight (exerted by stretched rubber bands pulling downward), weight+inertia (external weights added), and inertia (covariation of the weights and the rubber bands pulling upward) on maximum bench press throws. 14 skilled participants revealed a load associated decrease in peak velocity that was the least associated with an increase in weight (42%) and the most associated with weight+inertia (66%). However, the peak lifting force increased markedly with an increase in both weight (151%) and weight+inertia (160%), but not with inertia (13%). As a consequence, the peak power output increased most with weight (59%), weight+inertia revealed a maximum at intermediate loads (23%), while inertia was associated with a gradual decrease in the peak power output (42%). The obtained findings could be of importance for our understanding of mechanical properties of human muscular system when acting against different types of external resistance. Regarding the possible application in standard athletic training and rehabilitation procedures, the results speak in favor of applying extended elastic bands which provide higher movement velocity and muscle power output than the usually applied weights. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Virtual Inertia: Current Trends and Future Directions

    DOE PAGES

    Tamrakar, Ujjwol; Shrestha, Dipesh; Maharjan, Manisha; ...

    2017-06-26

    The modern power system is progressing from a synchronous machine-based system towards an inverter-dominated system, with a large-scale penetration of renewable energy sources (RESs) like wind and photovoltaics. RES units today represent a major share of the generation, and the traditional approach of integrating themas grid following units can lead to frequency instability. Many researchers have pointed towards using inverters with virtual inertia control algorithms so that they appear as synchronous generators to the grid, maintaining and enhancing system stability. Our paper presents a literature review of the current state-of-the-art of virtual inertia implementation techniques, and explores potential research directionsmore » and challenges. The major virtual inertia topologies are compared and classified. Through literature review and simulations of some selected topologies it has been shown that similar inertial response can be achieved by relating the parameters of these topologies through time constants and inertia constants, although the exact frequency dynamics may vary slightly. The suitability of a topology depends on system control architecture and desired level of detail in replication of the dynamics of synchronous generators. We present a discussion on the challenges and research directions which points out several research needs, especially for systems level integration of virtual inertia systems.« less

  20. Virtual Inertia: Current Trends and Future Directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamrakar, Ujjwol; Shrestha, Dipesh; Maharjan, Manisha

    The modern power system is progressing from a synchronous machine-based system towards an inverter-dominated system, with a large-scale penetration of renewable energy sources (RESs) like wind and photovoltaics. RES units today represent a major share of the generation, and the traditional approach of integrating themas grid following units can lead to frequency instability. Many researchers have pointed towards using inverters with virtual inertia control algorithms so that they appear as synchronous generators to the grid, maintaining and enhancing system stability. Our paper presents a literature review of the current state-of-the-art of virtual inertia implementation techniques, and explores potential research directionsmore » and challenges. The major virtual inertia topologies are compared and classified. Through literature review and simulations of some selected topologies it has been shown that similar inertial response can be achieved by relating the parameters of these topologies through time constants and inertia constants, although the exact frequency dynamics may vary slightly. The suitability of a topology depends on system control architecture and desired level of detail in replication of the dynamics of synchronous generators. We present a discussion on the challenges and research directions which points out several research needs, especially for systems level integration of virtual inertia systems.« less

  1. The Dependence of the Ice-Albedo Feedback on Atmospheric Properties

    PubMed Central

    Selsis, F.; Kitzmann, D.; Rauer, H.

    2013-01-01

    Abstract Ice-albedo feedback is a potentially important destabilizing effect for the climate of terrestrial planets. It is based on the positive feedback between decreasing surface temperatures, an increase of snow and ice cover, and an associated increase in planetary albedo, which then further decreases surface temperature. A recent study shows that for M stars, the strength of the ice-albedo feedback is reduced due to the strong spectral dependence of stellar radiation and snow/ice albedos; that is, M stars primarily emit in the near IR, where the snow and ice albedo is low, and less in the visible, where the snow/ice albedo is high. This study investigates the influence of the atmosphere (in terms of surface pressure and atmospheric composition) on this feedback, since an atmosphere was neglected in previous studies. A plane-parallel radiative transfer model was used for the calculation of planetary albedos. We varied CO2 partial pressures as well as the H2O, CH4, and O3 content in the atmosphere for planets orbiting Sun-like and M type stars. Results suggest that, for planets around M stars, the ice-albedo effect is significantly reduced, compared to planets around Sun-like stars. Including the effects of an atmosphere further suppresses the sensitivity to the ice-albedo effect. Atmospheric key properties such as surface pressure, but also the abundance of radiative trace gases, can considerably change the strength of the ice-albedo feedback. For dense CO2 atmospheres of the order of a few to tens of bar, atmospheric rather than surface properties begin to dominate the planetary radiation budget. At high CO2 pressures, the ice-albedo feedback is strongly reduced for planets around M stars. The presence of trace amounts of H2O and CH4 in the atmosphere also weakens the ice-albedo effect for both stellar types considered. For planets around Sun-like stars, O3 could also lead to a very strong decrease of the ice-albedo feedback at high CO2 pressures. Key Words

  2. Physical properties of Deucalionis, Eos, Xanthe-type units in the central equatorial region of Mars

    NASA Technical Reports Server (NTRS)

    Strickland, Edwin L., III

    1992-01-01

    Classification and mapping of surficial units in the central equatorial region of Mars (30 degrees N to 20 degrees S, 57 degrees E to 75 degrees W) using enhanced color images and Mars Consortium data, identified three distinct, high albedo, relatively red surficial units in regions with intermediate to high thermal inertias. These units have distinctive properties and morphologies, occur in different, well-defined areas, and show different seasonal and secular patterns of albedo change. Deucalionis units occupy the classical albedo area of Deucalionis Regio, south of Meridiani Sinus and Sabaeus Sinus, and adjacent areas. Eos forms a bright band that separates the dark, relatively blue Meridiani-type units that dominate the southern part of the study area from intermediate albedo, relatively red Oxia units common in the north. Xanthe forms moderately bright, relatively red, Type 1B crater-streaks and uniform sheet-deposits in and adjacent to parts of Chryse Planitia, including the Viking 1 landing site. Xanthe is always associated with Oxia deposits, and has significantly lower albedos than the Eos materials, which it can be confused with.

  3. Efficient Computation Of Manipulator Inertia Matrix

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Bejczy, Antal K.

    1991-01-01

    Improved method for computation of manipulator inertia matrix developed, based on concept of spatial inertia of composite rigid body. Required for implementation of advanced dynamic-control schemes as well as dynamic simulation of manipulator motion. Motivated by increasing demand for fast algorithms to provide real-time control and simulation capability and, particularly, need for faster-than-real-time simulation capability, required in many anticipated space teleoperation applications.

  4. Effects of microscale inertia on dynamic ductile crack growth

    NASA Astrophysics Data System (ADS)

    Jacques, N.; Mercier, S.; Molinari, A.

    2012-04-01

    The aim of this paper is to investigate the role of microscale inertia in dynamic ductile crack growth. A constitutive model for porous solids that accounts for dynamic effects due to void growth is proposed. The model has been implemented in a finite element code and simulations of crack growth in a notched bar and in an edge cracked specimen have been performed. Results are compared to predictions obtained via the Gurson-Tvergaard-Needleman (GTN) model where micro-inertia effects are not accounted for. It is found that microscale inertia has a significant influence on the crack growth. In particular, it is shown that micro-inertia plays an important role during the strain localisation process by impeding void growth. Therefore, the resulting damage accumulation occurs in a more progressive manner. For this reason, simulations based on the proposed modelling exhibit much less mesh sensitivity than those based on the viscoplastic GTN model. Microscale inertia is also found to lead to lower crack speeds. Effects of micro-inertia on fracture toughness are evaluated.

  5. Characterization of surficial units on Mars using Viking orbiter multispectral image and thermal data

    NASA Technical Reports Server (NTRS)

    Presley, M. A.; Arvidson, R. E.; Christensen, P. R.

    1987-01-01

    Albedo and thermal property correlations of the topography of Mars were conducted with emphases upon the types and origins of materials exposed in the central equatorial region. This area displays a wide variation in color, albedo and thermal properties, and is relatively free of dust and haze. The physical, mineralogical and elemental characteristics of this area are discussed.

  6. Soil texture and granulometry at the surface of Mars

    NASA Technical Reports Server (NTRS)

    Dollfus, Audouin; Deschamps, Marc; Zimbelman, James R.

    1993-01-01

    Attention is given to a characterization of the physical behavior of the Martian upper surface in its first few decimeters on the basis of mutual relationships between three parameters: the linear polarization of the reflected light, the visual albedo, and the thermal inertia. Polarimetric scans raked a strip covering two contrasting regions, the dark-hued Mare Erythraeum, and the light-hued Thaumasia. Erythraeum is characterized everywhere by a uniform polarization response, despite the large geomorphological diversity of the surface. A ubiquitous coating or mantling with small dark grains of albedo 12.7 percent, with a radius of 10 to 20 microns, is indicated. Thaumasia exhibits a large variety of soil properties. A typical location with albedo of 16.3 percent has a surface covered with orange grains, probably very dispersed in size, for which the largest grains are 20 to 40 microns.

  7. Inversion of the Earth spherical albedo from radiation-pressure

    NASA Astrophysics Data System (ADS)

    Wilkman, Olli; Herranen, Joonas; Näränen, Jyri; Virtanen, Jenni; Koivula, Hannu; Poutanen, Markku; Penttilä, Antti; Gritsevich, Maria; Muinonen, Karri

    2017-04-01

    We are studying the retrieval of the spherical albedo and net radiation of the Earth from the perturbations caused by the planet's radiation on the dynamics of its satellites. The spherical or Bond albedo gives the ratio of the fluxes incident on and scattered by the planet. The net radiation represents the net heat input into the planet's climate system and drives changes in its atmospheric, surface, and ocean temperatures. The ultimate aim of the study is inverting the problem and estimating the Earth albedo based on observations of satellites, simultaneously improving the space-geodetic positioning accuracy. Here we investigate the effect of the spherical albedo on satellite orbits with the help of a simplified model. We simulate the propagation of satellite orbits using a new simulation software. The simulation contains the main perturbing forces on medium and high Earth orbits, used by, e.g., navigation satellites, including the radiation pressure of reflected sunlight from the Earth. An arbitrary satellite shape model can be used, and the rotation of the satellite is modeled. In this first study, we use a box-wing satellite model with a simple surface BRDF. We also assume a diffusely reflecting Earth with a single global albedo value. We vary the Earth albedo and search for systematic effects on different orbits. Thereafter, we estimate the dependence of the albedo accuracy on the satellite positioning and timing data available. We show that the inversion of the spherical albedo with reasonable accuracy is feasible from the current space-geodetic measurements.

  8. Investigating the thermophysical properties of indurated materials on Mars

    NASA Astrophysics Data System (ADS)

    Murphy, Nathaniel William

    Indurated materials have been observed on the surface of Mars at every landing site and inferred from orbital remote-sensing data by the Viking, Mars Global Surveyor, and Mars Odyssey spacecraft. However, indurated materials on Mars are poorly understood because there is no ground truth for the indurated surfaces inferred from thermal remote-sensing data. I adopted two approaches to investigate indurated materials on Mars: (1) remote-sensing analysis of the Isidis basin, which shows some of the highest thermal inertia values derived from TES 1 observations, and (2) laboratory analyses of terrestrial indurated materials. To characterize the surface of the Isidis basin, I combined a variety of remote-sensing datasets, including thermal inertia data derived from TES and MO-THEMIS, TES albedo, THEMIS thermal and visible imaging, and Earth-based radar observations. From these observations I concluded that the thermal inertia values in the Isidis basin are likely the result of variations in the degree of cementation of indurated materials. To examine the thermophysical properties of indurated materials I collected four examples of terrestrial indurated materials. These included two types of gypcrete collected from a gypcrete deposit near Upham Hills, NM, clay-materials from Lunar Lake Playa, NV, and a pyroclastic material from the Bandelier Tuff near Los Alamos, NM. Despite significant differences in their physical properties and origins, all of these materials have thermal inertia values consistent with inferred indurated surfaces on Mars. There are no strong correlations between the thermal and physical properties of the collected samples due to thermal effects of the fabrics of the indurated materials. 1 Thermal Emission Spectrometer onboard the Mars Global Surveyor spacecraft. 2 Thermal Emission Imaging System onboard the Mars Odyssey spacecraft

  9. Neutron star moments of inertia

    NASA Technical Reports Server (NTRS)

    Ravenhall, D. G.; Pethick, C. J.

    1994-01-01

    An approximation for the moment of inertia of a neutron star in terms of only its mass and radius is presented, and insight into it is obtained by examining the behavior of the relativistic structural equations. The approximation is accurate to approximately 10% for a variety of nuclear equations of state, for all except very low mass stars. It is combined with information about the neutron-star crust to obtain a simple expression (again in terms only of mass and radius) for the fractional moment of inertia of the crust.

  10. Surface albedo from bidirectional reflectance

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Irons, J. R.; Daughtry, C. S. T.

    1991-01-01

    The validity of integrating over discrete wavelength bands is examined to estimate total shortwave bidirectional reflectance of vegetated and bare soil surfaces. Methods for estimating albedo from multiple angle, discrete wavelength band radiometer measurements are studied. These methods include a numerical integration technique and the integration of an empirically derived equation for bidirectional reflectance. It is concluded that shortwave albedos estimated through both techniques agree favorably with the independent pyranometer measurements. Absolute rms errors are found to be 0.5 percent or less for both grass sod and bare soil surfaces.

  11. Thermophysical Properties Along Curiosity's Traverse in Gale Crater, Mars, Derived from the REMS Ground Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Vasavada, Ashwin R.; Piqueux, Sylvain; Lewis, Kevin W.; Lemmon, Mark T.; Smith, Michael Doyle

    2016-01-01

    The REMS instrument onboard the Mars Science Laboratory rover, Curiosity, has measured ground temperature nearly continuously at hourly intervals for two Mars years. Coverage of the entire diurnal cycle at 1 Hz is available every few martian days. We compare these measurements with predictions of surface atmosphere thermal models to derive the apparent thermal inertia and thermally derived albedo along the rovers traverse after accounting for the radiative effects of atmospheric water ice during fall and winter, as is necessary to match the measured seasonal trend. The REMS measurements can distinguish between active sand, other loose materials, mudstone, and sandstone based on their thermophysical properties. However, the apparent thermal inertias of bedrock dominated surfaces [approx. 350-550 J m(exp. -2) K(exp. -1 s(exp. -1/2 )] are lower than expected. We use rover imagery and the detailed shape of the diurnal ground temperature curve to explore whether lateral or vertical heterogeneity in the surface materials within the sensor footprint might explain the low inertias. We find that the bedrock component of the surface can have a thermal inertia as high as 650-1700 J m(exp. -2) K(exp. -1) s(exp. -1/2) for mudstone sites and approx. 700 J m(exp. -2) K(exp. -1) s(exp. - 1/2) for sandstone sites in models runs that include lateral and vertical mixing. Although the results of our forward modeling approach may be non-unique, they demonstrate the potential to extract information about lateral and vertical variations in thermophysical properties from temporally resolved measurements of ground temperature.

  12. Physician and patient characteristics associated with clinical inertia in blood pressure control.

    PubMed

    Harle, Christopher A; Harman, Jeffrey S; Yang, Shuo

    2013-11-01

    Clinical inertia, the failure to adjust antihypertensive medications during patient visits with uncontrolled hypertension, is thought to be a common problem. This retrospective study used 5 years of electronic medical records from a multispecialty group practice to examine the association between physician and patient characteristics and clinical inertia. Hierarchical linear models (HLMs) were used to examine (1) differences in physician and patient characteristics among patients with and without clinical inertia, and (2) the association between clinical inertia and future uncontrolled hypertension. Overall, 66% of patients experienced clinical inertia. Clinical inertia was associated with one physician characteristic, patient volume (odds ratio [OR]=0.998). However, clinical inertia was associated with multiple patient characteristics, including patient age (OR=1.021), commercial insurance (OR=0.804), and obesity (OR=1.805). Finally, patients with clinical inertia had 2.9 times the odds of uncontrolled hypertension at their final visit in the study period. These findings may aid the design of interventions to reduce clinical inertia. ©2013 Wiley Periodicals, Inc.

  13. Evaluation of HCMM satellite data for estuarine tidal circulation patterns and thermal inertia soil moisture measurements. [Delaware Bay, Cooper River, and the Potomac River estuaries; Luverne, Minnesota, soil moisture, and water temperature of Lake Anna, Virginia

    NASA Technical Reports Server (NTRS)

    Wiesnet, D. R.; Mcginnis, D. F., Jr. (Principal Investigator); Matson, M.; Pritchard, J. A.

    1981-01-01

    Digital thermal maps of the Cooper River (SC) and the Potomac River estuaries were prepared from heat capacity mapping radiometer (HCMR) tapes. Tidal phases were correctly interpreted and verified. Synoptic surface circulation patterns were charted by location thermal fronts and water mass boundaries within the estuaries. Thermal anomalies were detected adjacent of a conventional power plant on the Potomac. Under optimum conditions, estuaries as small as the Cooper River can be monitored for generalized thermal/tidal circulation patterns by the HCMM-type IR sensors. The HCMM thermal inertia approach to estimating soil moisture at the Luverne (MN) test site was found to be unsatisfactory as a NESS operational satellite technique because of cloud cover interference. Thermal-IR data show similar structure of the Baltimore and Washington heat islands when compared to NOAA AVHRR thermal-IR data. Thermal anomalies from the warm water discharge water of a nuclear power plant were mapped in Lake Anna, Virginia.

  14. Searching for Thermal Anomalies on Icy Satellites: Step 1- Validation of the Three Dimensional Volatile-Transport (VT3D)

    NASA Astrophysics Data System (ADS)

    Simmons, Gary G.; Howett, Carly J. A.; Young, Leslie A.; Spencer, John R.

    2015-11-01

    In the last few decades, thermal data from the Galileo and Cassini spacecraft have detected various anomalies on Jovian and Saturnian satellites, including the thermally anomalous “PacMan” regions on Mimas and Tethys and the Pwyll anomaly on Europa (Howett et al. 2011, Howett et al. 2012, Spencer et al. 1999). Yet, the peculiarities of some of these anomalies, like the weak detection of the “PacMan” anomalies on Rhea and Dione and the low thermal inertia values of the widespread anomalies on equatorial Europa, are subjects for on-going research (Howett et al. 2014, Rathbun et al. 2010). Further, analysis and review of all the data both Galileo and Cassini took of these worlds will provide information of the thermal inertia and albedos of their surfaces, perhaps highlighting potential targets of interest for future Jovian and Saturnian system missions. Many previous works have used a thermophysical model for airless planets developed by Spencer (1990). However, the Three Dimensional Volatile-Transport (VT3D) model proposed by Young (2012) is able to predict surface temperatures in significantly faster computation time, incorporating seasonal and diurnal insolation variations. This work is the first step in an ongoing investigation, which will use VT3D’s capabilities to reanalyze Galileo and Cassini data. VT3D, which has already been used to analyze volatile transport on Pluto, is validated by comparing its results to that of the Spencer thermal model. We will also present our initial results using VT3D to reanalyze the thermophysical properties of the PacMan anomaly previous discovered on Mimas by Howett et al. (2011), using temperature constraints of diurnal data from Cassini/CIRS. VT3D is expected to be an efficient tool in identifying new thermal anomalies in future Saturnian and Jovian missions.Bibliography:C.J.A. Howett et al. (2011), Icarus 216, 221.C.J.A. Howett et al. (2012), Icarus 221, 1084.C.J.A. Howett et al. (2014), Icarus 241, 239.J

  15. Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product

    NASA Astrophysics Data System (ADS)

    Wang, Zhuosen; Schaaf, Crystal B.; Sun, Qingsong; Kim, JiHyun; Erb, Angela M.; Gao, Feng; Román, Miguel O.; Yang, Yun; Petroy, Shelley; Taylor, Jeffrey R.; Masek, Jeffrey G.; Morisette, Jeffrey T.; Zhang, Xiaoyang; Papuga, Shirley A.

    2017-07-01

    Seasonal vegetation phenology can significantly alter surface albedo which in turn affects the global energy balance and the albedo warming/cooling feedbacks that impact climate change. To monitor and quantify the surface dynamics of heterogeneous landscapes, high temporal and spatial resolution synthetic time series of albedo and the enhanced vegetation index (EVI) were generated from the 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) operational Collection V006 daily BRDF/NBAR/albedo products and 30 m Landsat 5 albedo and near-nadir reflectance data through the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The traditional Landsat Albedo (Shuai et al., 2011) makes use of the MODIS BRDF/Albedo products (MCD43) by assigning appropriate BRDFs from coincident MODIS products to each Landsat image to generate a 30 m Landsat albedo product for that acquisition date. The available cloud free Landsat 5 albedos (due to clouds, generated every 16 days at best) were used in conjunction with the daily MODIS albedos to determine the appropriate 30 m albedos for the intervening daily time steps in this study. These enhanced daily 30 m spatial resolution synthetic time series were then used to track albedo and vegetation phenology dynamics over three Ameriflux tower sites (Harvard Forest in 2007, Santa Rita in 2011 and Walker Branch in 2005). These Ameriflux sites were chosen as they are all quite nearby new towers coming on line for the National Ecological Observatory Network (NEON), and thus represent locations which will be served by spatially paired albedo measures in the near future. The availability of data from the NEON towers will greatly expand the sources of tower albedometer data available for evaluation of satellite products. At these three Ameriflux tower sites the synthetic time series of broadband shortwave albedos were evaluated using the tower albedo measurements with a Root Mean Square Error (RMSE) less than 0.013 and a

  16. Sea Ice, Clouds, Sunlight, and Albedo: The Umbrella Versus the Blanket

    NASA Astrophysics Data System (ADS)

    Perovich, D. K.

    2017-12-01

    The Arctic sea ice cover has undergone a major decline in recent years, with reductions in ice extent, ice thickness, and ice age. Understanding the feedbacks and forcing driving these changes is critical in improving predictions. The surface radiation budget plays a central role in summer ice melt and is governed by clouds and surface albedo. Clouds act as an umbrella reducing the downwelling shortwave, but also serve as a blanket increasing the downwelling longwave, with the surface albedo also determining the net balance. Using field observations from the SHEBA program, pairs of clear and cloudy days were selected for each month from May through September and the net radiation flux was calculated for different surface conditions and albedos. To explore the impact of albedo we calculated a break even albedo, where the net radiation for cloudy skies is the same as clear skies. For albedos larger than the break-even value the net radiation flux is smaller under clear skies compared to cloudy skies. Break-even albedos ranged from 0.30 in September to 0.58 in July. For snow covered or bare ice, clear skies always resulted in less radiative heat input. In contrast, leads always had, and ponds usually had, more radiative heat input under clear skies than cloudy skies. Snow covered ice had a net radiation flux that was negative or near zero under clear skies resulting in radiative cooling. We combined the albedo of individual ice types with the area of those ice types to calculate albedos averaged over a 50 km x 50 km area. The July case had the smallest areally averaged albedo of 0.50. This was less than the breakeven albedo, so cloudy skies had a smaller net radiation flux than clear skies. For the cases from the other four months, the areally averaged albedo was greater than the break-even albedo. The areally averaged net radiation flux was negative under clear skies for the May and September cases.

  17. Postfire influences of snag attrition on albedo and radiative forcing

    NASA Astrophysics Data System (ADS)

    O'Halloran, Thomas L.; Acker, Steven A.; Joerger, Verena M.; Kertis, Jane; Law, Beverly E.

    2014-12-01

    This paper examines albedo perturbation and radiative forcing after a high-severity fire in a mature forest in the Oregon Cascade Range. Correlations between postfire albedo and seedling, sapling, and snag (standing dead tree) density were investigated across fire severity classes and seasons for years 4-15 after fire. Albedo perturbation was 14 times larger in winter compared to summer and increased with fire severity class for the first several years. Albedo perturbation increased linearly with time over the study period. Correlations between albedo perturbations and the vegetation densities were strongest with snags, and significant in all fire classes in both summer and winter (R < -0.92, p < 0.01). The resulting annual radiative forcing at the top of the atmosphere became more negative linearly at a rate of -0.86 W m-2 yr-1, reaching -15 W m-2 in year 15 after fire. This suggests that snags can be the dominant controller of postfire albedo on decadal time scales.

  18. Occurrence of lower cloud albedo in ship tracks

    NASA Astrophysics Data System (ADS)

    Chen, Y.-C.; Christensen, M. W.; Xue, L.; Sorooshian, A.; Stephens, G. L.; Rasmussen, R. M.; Seinfeld, J. H.

    2012-09-01

    The concept of geoengineering by marine cloud brightening is based on seeding marine stratocumulus clouds with sub-micrometer sea-salt particles to enhance the cloud droplet number concentration and cloud albedo, thereby producing a climate cooling effect. The efficacy of this as a strategy for global cooling rests on the extent to which aerosol-perturbed marine clouds will respond with increased albedo. Ship tracks, quasi-linear cloud features prevalent in oceanic regions impacted by ship exhaust, are a well-known manifestation of the effect of aerosol injection on marine clouds. We present here an analysis of the albedo responses in ship tracks, based on in situ aircraft measurements and three years of satellite observations of 589 individual ship tracks. It is found that the sign (increase or decrease) and magnitude of the albedo response in ship tracks depends on the mesoscale cloud structure, the free tropospheric humidity, and cloud top height. In a closed cell structure (cloud cells ringed by a perimeter of clear air), nearly 30% of ship tracks exhibited a decreased albedo. Detailed cloud responses must be accounted for in global studies of the potential efficacy of sea-spray geoengineering as a means to counteract global warming.

  19. Albedos of Centaurs, Jovian Trojans and Hildas

    NASA Astrophysics Data System (ADS)

    Romanishin, William

    2017-01-01

    I present optical V band albedo distributions for samples of outer solar system minor bodies including Centaurs, Jovian Trojans and Hildas. Diameters come almost entirely from the NEOWISE catalog (Mainzer etal 2016- Planetary Data System). Optical photometry (H values) for about 2/3 of the approximately 2700 objects studied are from PanStarrrs (Veres et al 2015 Icarus 261, 34). The PanStarrs optical photometry is supplemented by H values from JPL Horizons (corrected to be on the same photometric system as the PanStarrs data) for the objects in the NEOWISE catalog that are not in the PanStarrs catalog. I compare the albedo distributions of various pairs of subsamples using the nonparametric Wilcoxon rank sum test. Examples of potentially interesting comparisons include: (1) the median L5 Trojan cloud albedo is about 10% darker than that of the L4 cloud at a high level of statistical significance and (2) the median albedo of the gray Centaurs lies between that of the L4 and L5 Trojan groups.

  20. Surgical Management of Colonic Inertia

    PubMed Central

    McCoy, Jacob A.; Beck, David E.

    2012-01-01

    For the select small number of constipated patients that cannot be managed medically, surgical options should be considered. Increases in our knowledge of colorectal physiology and experience have fostered improvements in patient evaluation and surgical management. Currently, patients with refractory colonic inertia are offered total abdominal colectomy and ileorectal anastomosis, often with laparoscopic techniques. With proper patient selection, the results have been excellent for resolving the frequency and quality of bowel movements. However, symptoms such as bloating and abdominal pain, which may be related to irritable bowel syndrome rather than the colonic inertia, may persist. PMID:23449085

  1. A Novel Flexible Inertia Weight Particle Swarm Optimization Algorithm.

    PubMed

    Amoshahy, Mohammad Javad; Shamsi, Mousa; Sedaaghi, Mohammad Hossein

    2016-01-01

    Particle swarm optimization (PSO) is an evolutionary computing method based on intelligent collective behavior of some animals. It is easy to implement and there are few parameters to adjust. The performance of PSO algorithm depends greatly on the appropriate parameter selection strategies for fine tuning its parameters. Inertia weight (IW) is one of PSO's parameters used to bring about a balance between the exploration and exploitation characteristics of PSO. This paper proposes a new nonlinear strategy for selecting inertia weight which is named Flexible Exponential Inertia Weight (FEIW) strategy because according to each problem we can construct an increasing or decreasing inertia weight strategy with suitable parameters selection. The efficacy and efficiency of PSO algorithm with FEIW strategy (FEPSO) is validated on a suite of benchmark problems with different dimensions. Also FEIW is compared with best time-varying, adaptive, constant and random inertia weights. Experimental results and statistical analysis prove that FEIW improves the search performance in terms of solution quality as well as convergence rate.

  2. Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product

    USGS Publications Warehouse

    Wang, Zhuosen; Schaaf, Crystal B.; Sun, Qingson; Kim, JiHyun; Erb, Angela M.; Gao, Feng; Roman, Miguel O.; Yang, Yun; Petroy, Shelley; Taylor, Jeffrey; Masek, Jeffrey G.; Morisette, Jeffrey T.; Zhang, Xiaoyang; Papuga, Shirley A.

    2017-01-01

    Seasonal vegetation phenology can significantly alter surface albedo which in turn affects the global energy balance and the albedo warming/cooling feedbacks that impact climate change. To monitor and quantify the surface dynamics of heterogeneous landscapes, high temporal and spatial resolution synthetic time series of albedo and the enhanced vegetation index (EVI) were generated from the 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) operational Collection V006 daily BRDF/NBAR/albedo products and 30 m Landsat 5 albedo and near-nadir reflectance data through the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The traditional Landsat Albedo (Shuai et al., 2011) makes use of the MODIS BRDF/Albedo products (MCD43) by assigning appropriate BRDFs from coincident MODIS products to each Landsat image to generate a 30 m Landsat albedo product for that acquisition date. The available cloud free Landsat 5 albedos (due to clouds, generated every 16 days at best) were used in conjunction with the daily MODIS albedos to determine the appropriate 30 m albedos for the intervening daily time steps in this study. These enhanced daily 30 m spatial resolution synthetic time series were then used to track albedo and vegetation phenology dynamics over three Ameriflux tower sites (Harvard Forest in 2007, Santa Rita in 2011 and Walker Branch in 2005). These Ameriflux sites were chosen as they are all quite nearby new towers coming on line for the National Ecological Observatory Network (NEON), and thus represent locations which will be served by spatially paired albedo measures in the near future. The availability of data from the NEON towers will greatly expand the sources of tower albedometer data available for evaluation of satellite products. At these three Ameriflux tower sites the synthetic time series of broadband shortwave albedos were evaluated using the tower albedo measurements with a Root Mean Square Error (RMSE) less than 0

  3. Earth's albedo in the middle ultraviolet

    NASA Astrophysics Data System (ADS)

    Barysheva, V. I.; Ogurtsov, Vladimir I.

    1993-11-01

    The spectral Earth's albedo in the 0.25 - 0.34 micrometers range for the solar zenith angles O degree(s) - 85 degree(s) has been obtained from the analysis of experiment BUFS on the spaceship `Meteor' and the theoretical albedo calculations carried out for various atmospheric conditions taking into account the ozone radiation absorption in the Hartley and Huggins bands and Rayleigh radiation scattering. The obtained results are compared with those of the SBUV `Nimbus' and SME data.

  4. Effective Albedo of Vegetated Terrain at L-Band

    NASA Technical Reports Server (NTRS)

    Kurum, Mehmet; O'Neill, Peggy E.; Lang, Roger H.

    2011-01-01

    This paper derives an explicit expression for an effective albedo of vegetated terrain from the zero- and multiple- order radiative transfer (RT) model comparison. The formulation establishes a direct physical link between the effective vegetation parameterization and the theoretical description of absorption and scattering within the canopy. The paper will present an evaluation of the derived albedo for corn canopies with data taken during an experiment at Alabama A&M Winfield A. Thomas Agricultural Research Station near Huntsville, Alabama in June, 1998. The test site consisted of two 50-m x 60-m plots - one with a bare surface and the other with grass cover - and four 30-m x 50-m plots of corn at different planting densities. One corn field was planted at a full density of 9.5 plants/sq m while the others were planted at 1/3, 1/2 and 2/3 of the full density. The fields were observed with a truck-mounted L-band radiometer at incident angle of 15 degree for the period of two weeks. Soil moisture (SM) changed daily due to irrigation and natural rainfall. Variations in gravimetric SM from 18 % to 34 % were seen during this period. Ground truth data, including careful characterization of the corn size and orientation statistics, and its dielectric, was also collected and used to simulate the effective albedo for the vegetation. The single-scattering albedo is defined as the fractional power scattered from individual vegetation constituents with respect to canopy extinction. It represents single-scattering properties of vegetation elements only, and is independent of ground properties. The values of the albedo get higher when there is dense vegetation (i.e. forest, mature corn, etc.) with scatterers, such as branches and trunks (or stalks in the case of corn), which are large with respect to the wavelength. This large albedo leads to a reduction in brightness temperature in the zero-order RT solution (known as tau-omega model). Higher-order multiple-scattering RT

  5. VizieR Online Data Catalog: AKARI IRC asteroid sample diameters & albedos (Ali-Lagoa+, 2018)

    NASA Astrophysics Data System (ADS)

    Ali-Lagoa, V.; Mueller, T. G.; Usui, F.; Hasegawa, S.

    2017-11-01

    Table 1 contains the best-fitting values of size and beaming parameter and corresponding visible geometric albedos for the full AKARI IRC sample. We fitted the near-Earth asteroid thermal model (NEATM) of Harris (1998Icar..131..291H) to the AKARI IRC thermal infrared data (Murakami et al., 2007PASJ...59S.369M, Onaka et al., 2007PASJ...59S.401O, Ishihara et al., 2010A&A...514A...1I, Cat. II/297, Usui et al., 2011PASJ...63.1117U, Cat. J/PASJ/63/1117, Takita et al., 2012PASJ...64..126T, Hasegawa et al., 2013PASJ...65...34H, Cat. J/PASJ/65/34). The NEATM implementation is described in Ali-Lagoa and Delbo' (2017A&A...603A..55A, cat. J/A+A/603/A55). Minimum relative errors of 10, 15, and 20 percent are given for size, beaming parameter and albedo in those cases where the beaming parameter could be fitted. Otherwise, a default value of the beaming parameter is assumed based on Eq. 1 in the article, and the minimum relative errors in size and albedo increase to 20 and 40 percent (see the discussions in Mainzer et al., 2011ApJ...736..100M, Ali-Lagoa et al., 2016A&A...591A..14A, Cat. J/A+A/591/A14). We also provide the asteroid absolute magnitudes and G12 slope parameters retrieved from Oszkiewicz et al. (2012), the number of observations used in each IRC band (S9W and L18W), plus the heliocentric and geocentric distances and phase angle (r, Delta, alpha) based on the ephemerides taken from the MIRIADE service (http://vo.imcce.fr/webservices/miriade/?ephemph). (1 data file).

  6. On the influence of microscale inertia on dynamic ductile crack extension

    NASA Astrophysics Data System (ADS)

    Jacques, N.; Mercier, S.; Molinari, A.

    2012-08-01

    The present paper is devoted to the modelling of damage by micro-voiding in ductile solids under dynamic loading conditions. Using a dynamic homogenization procedure, a constitutive damage model accounting for inertial effects due to void growth (microscale inertia or micro-inertia) has been developed. The role played by microscale inertia in dynamic ductile crack growth is investigated with the use of the proposed micromechanical modelling. It is found that micro-inertia has a significant influence on the fracture behaviour. Micro-inertia limits the velocity at which cracks propagate. It also contributes to increase the apparent dynamic toughness of the material.

  7. Using Remote Sensing to Quantify Roof Albedo in Seven California Cities

    NASA Astrophysics Data System (ADS)

    Ban-Weiss, G. A.; Woods, J.; Millstein, D.; Levinson, R.

    2013-12-01

    Cool roofs reflect sunlight and therefore can reduce cooling energy use in buildings. Further, since roofs cover about 20-25% of cities, wide spread deployment of cool roofs could mitigate the urban heat island effect and partially counter urban temperature increases associated with global climate change. Accurately predicting the potential for increasing urban albedo using reflective roofs and its associated energy use and climate benefits requires detailed knowledge of the current stock of roofs at the city scale. Until now this knowledge has been limited due to a lack of availability of albedo data with sufficient spatial coverage, spatial resolution, and spectral information. In this work we use a novel source of multiband aerial imagery to derive the albedos of individual roofs in seven California cities: Los Angeles, Long Beach, San Diego, Bakersfield, Sacramento, San Francisco, and San Jose. The radiometrically calibrated, remotely sensed imagery has high spatial resolution (1 m) and four narrow (less than 0.1 μm wide) band reflectances: blue, green, red, and near-infrared. To derive the albedo of roofs in each city, we first locate roof pixels within GIS building outlines. Next we use laboratory measurements of the solar spectral reflectances of 190 roofing products to empirically relate solar reflectance (albedo) to reflectances in the four narrow bands; the root-mean-square of the residuals for the albedo prediction is 0.016. Albedos computed from remotely sensed reflectances are calibrated to ground measurements of roof albedo in each city. The error (both precision and accuracy) of albedo values is presented for each city. The area-weighted mean roof albedo (× standard deviation) for each city ranges from 0.17 × 0.08 (Los Angeles) to 0.29 × 0.15 (San Diego). In each city most roofs have low albedo in the range of 0.1 to 0.3. Roofs with albedo greater than 0.4 comprise less than 3% of total roofs and 7% of total roof area in each city. The California

  8. Thermal Imaging Performance of TIR Onboard the Hayabusa2 Spacecraft

    NASA Astrophysics Data System (ADS)

    Arai, Takehiko; Nakamura, Tomoki; Tanaka, Satoshi; Demura, Hirohide; Ogawa, Yoshiko; Sakatani, Naoya; Horikawa, Yamato; Senshu, Hiroki; Fukuhara, Tetsuya; Okada, Tatsuaki

    2017-07-01

    The thermal infrared imager (TIR) is a thermal infrared camera onboard the Hayabusa2 spacecraft. TIR will perform thermography of a C-type asteroid, 162173 Ryugu (1999 JU3), and estimate its surface physical properties, such as surface thermal emissivity ɛ , surface roughness, and thermal inertia Γ, through remote in-situ observations in 2018 and 2019. In prelaunch tests of TIR, detector calibrations and evaluations, along with imaging demonstrations, were performed. The present paper introduces the experimental results of a prelaunch test conducted using a large-aperture collimator in conjunction with TIR under atmospheric conditions. A blackbody source, controlled at constant temperature, was measured using TIR in order to construct a calibration curve for obtaining temperatures from observed digital data. As a known thermal emissivity target, a sandblasted black almite plate warmed from the back using a flexible heater was measured by TIR in order to evaluate the accuracy of the calibration curve. As an analog target of a C-type asteroid, carbonaceous chondrites (50 mm × 2 mm in thickness) were also warmed from the back and measured using TIR in order to clarify the imaging performance of TIR. The calibration curve, which was fitted by a specific model of the Planck function, allowed for conversion to the target temperature within an error of 1°C (3σ standard deviation) for the temperature range of 30 to 100°C. The observed temperature of the black almite plate was consistent with the temperature measured using K-type thermocouples, within the accuracy of temperature conversion using the calibration curve when the temperature variation exhibited a random error of 0.3 °C (1σ ) for each pixel at a target temperature of 50°C. TIR can resolve the fine surface structure of meteorites, including cracks and pits with the specified field of view of 0.051°C (328 × 248 pixels). There were spatial distributions with a temperature variation of 3°C at the setting

  9. Therapeutic inertia amongst general practitioners with interest in diabetes.

    PubMed

    Seidu, Samuel; Than, Tun; Kar, Deb; Lamba, Amrit; Brown, Pam; Zafar, Azhar; Hussain, Rizwan; Amjad, Ahmed; Capehorn, Mathew; Martin, Elizabeth; Fernando, Kevin; McMoran, Jim; Millar-Jones, David; Kahn, Shahzada; Campbell, Nigel; Brice, Richard; Mohan, Rahul; Mistry, Mukesh; Kanumilli, Naresh; St John, Joan; Quigley, Richard; Kenny, Colin; Khunti, Kamlesh

    2018-02-01

    As the therapeutic options in the management of type 2 diabetes increase, there is an increase confusion among health care professionals, thus leading to the phenomenon of therapeutic inertia. This is the failure to escalate or de-escalate treatment when the clinical need for this is required. It has been studied extensively in various settings, however, it has never been reported in any studies focusing solely on primary care physicians with an interest in diabetes. This group is increasingly becoming the focus of managing complex diabetes care in the community, albeit with the support from specialists. In this retrospective audit, we assessed the prevalence of the phenomenon of therapeutic inertia amongst primary care physicians with an interest in diabetes in UK. We also assessed the predictive abilities of various patient level characteristics on therapeutic inertia amongst this group of clinicians. Out of the 240 patients reported on, therapeutic inertia was judged to have occurred in 53 (22.1%) of patients. The full model containing all the selected variables was not statistically significant, p=0.59. So the model was not able to distinguish between situations in which therapeutic inertia occurred and when it did not occur. None of the patient level characteristics on its own was predictive of therapeutic inertia. Therapeutic inertia was present only in about a fifth of patient patients with diabetes being managed by primary care physicians with an interest in diabetes. Copyright © 2017 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  10. Principles of thermal remote sensing

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The remote sensing of temperature is performed by sensing radiation emitted from solids, liquids, and gases in the thermal infrared region of the spectrum, in which thermal emission is dominant over reflected solar energy. For Earth resources applications, thermal sensing of solids and liquids is performed in two ""windows'' of the atmosphere where atmospheric absorption and emission are at a minimum. Temperature measurement, intrinsic thermal properties, factors in interpreting thermal data, the use of thermal inertia, and the measurements obtained by the heat capacity mapping radiometer are discussed.

  11. Long-term record of top-of-atmosphere albedo generated from AVHRR data

    NASA Astrophysics Data System (ADS)

    Song, Z.

    2017-12-01

    Top-of-Atmosphere (TOA) albedo is a fundamental component of Earth's energy budget. Previously, long-term accurate TOA albedo products did not exist due to the lack of stable broadband observations. With a new albedo estimation methodology based on multispectral observations, TOA albedo since 1981 has been retrieved using data from the Advanced Very High Resolution Radiometer (AVHRR), which provides the longest record of satellite observations across the globe. To develop the long-term TOA albedo record, the instantaneous TOA albedo was calculated by the direct estimation method, which was built on training data pairs from coincident AVHRR TOA reflectance and Moderate Resolution Imaging Spectroradiometer (MODIS) TOA albedo. The instantaneous TOA albedo was then converted to daily mean and monthly mean albedo based on the diurnal curves from geostationary satellites. The TOA albedo results (AVHRR-TAL) were compared with Clouds and the Earth's Radiant Energy System (CERES) flux products for 2007. The monthly mean AVHRR-TAL agreed well with the CERES products, with a root mean square difference (RMSD) of 0.032 and a bias of 0.013. In addition, AVHRR-TAL showed similar seasonal variations to those seen in the CERES products. Further analysis on long-term time series showed good consistency between the two datasets (R2 > 0.95 and relative RMSD < 4%) from 2000 to 2015. Although some calibration issues remain to be solved, our datasets show the potential ability to observe the global TOA albedo from 1981 to the present.

  12. Preferential cooling of hot extremes from cropland albedo management

    PubMed Central

    Davin, Edouard L.; Seneviratne, Sonia I.; Ciais, Philippe; Olioso, Albert; Wang, Tao

    2014-01-01

    Changes in agricultural practices are considered a possible option to mitigate climate change. In particular, reducing or suppressing tillage (no-till) may have the potential to sequester carbon in soils, which could help slow global warming. On the other hand, such practices also have a direct effect on regional climate by altering the physical properties of the land surface. These biogeophysical effects, however, are still poorly known. Here we show that no-till management increases the surface albedo of croplands in summer and that the resulting cooling effect is amplified during hot extremes, thus attenuating peak temperatures reached during heat waves. Using a regional climate model accounting for the observed effects of no-till farming on surface albedo, as well as possible reductions in soil evaporation, we investigate the potential consequences of a full conversion to no-till agriculture in Europe. We find that the summer cooling from cropland albedo increase is strongly amplified during hot summer days, when surface albedo has more impact on the Earth’s radiative balance due to clear-sky conditions. The reduced evaporation associated with the crop residue cover tends to counteract the albedo-induced cooling, but during hot days the albedo effect is the dominating factor. For heatwave summer days the local cooling effect gained from no-till practice is of the order of 2 °C. The identified asymmetric impact of surface albedo change on summer temperature opens new avenues for climate-engineering measures targeting high-impact events rather than mean climate properties. PMID:24958872

  13. The Moment of Inertia of a Rectangular Rod

    NASA Astrophysics Data System (ADS)

    Takeuchi, Takao

    2007-11-01

    Recently an inexpensive setup to obtain the moment of inertia of a rotating system was proposed by Peter E. Banks. An equally simple and inexpensive experiment to obtain the moment of inertia of a uniform rod is proposed in this paper. A rectangular rod with a hole somewhere in the rod was used for this purpose. The moment of inertia of a rectangular rod around the hole location was attempted. The experimental setup is shown in Fig. 1. Various supporting rods, clamps, and rubber stoppers to hold the rectangular rod in place at point p are not shown.

  14. Neural predictors of emotional inertia in daily life

    PubMed Central

    Shing, Elaine Z.; Avery, Bradley M.; Jung, Youngkyoo; Whitlow, Christopher T.; Maldjian, Joseph A.

    2017-01-01

    Abstract Assessing emotional dynamics in the brain offers insight into the fundamental neural and psychological mechanisms underlying emotion. One such dynamic is emotional inertia—the influence of one’s emotional state at one time point on one’s emotional state at a subsequent time point. Emotion inertia reflects emotional rigidity and poor emotion regulation as evidenced by its relationship to depression and neuroticism. In this study, we assessed changes in cerebral blood flow (CBF) from before to after an emotional task and used these changes to predict stress, positive and negative emotional inertia in daily life events. Cerebral blood flow changes in the lateral prefrontal cortex (lPFC) predicted decreased non-specific emotional inertia, suggesting that the lPFC may feature a general inhibitory mechanism responsible for limiting the impact that an emotional state from one event has on the emotional state of a subsequent event. CBF changes in the ventromedial prefrontal cortex and lateral occipital cortex were associated with positive emotional inertia and negative/stress inertia, respectively. These data advance the blossoming literature on the temporal dynamics of emotion in the brain and on the use of neural indices to predict mental health-relevant behavior in daily life. PMID:28992272

  15. Spin-Mechanical Inertia in Antiferromagnet

    NASA Astrophysics Data System (ADS)

    Cheng, Ran; Wu, Xiaochuan; Xiao, Di

    Interplay between spin dynamics and mechanical motions is responsible for numerous striking phenomena, which has shaped a rapidly expanding field known as spin-mechanics. The guiding principle of this field has been the conservation of angular momentum that involves both quantum spins and classical mechanical rotations. However, in an antiferromagnet, the macroscopic magnetization vanishes while the order parameter (Néel order) does not carry an angular momentum. It is therefore not clear whether the order parameter dynamics has any mechanical consequence as its ferromagnetic counterparts. Here we demonstrate that the Néel order dynamics affects the mechanical motion of a rigid body by modifying its inertia tensor in the presence of strong magnetocrystalline anisotropy. This effect depends on temperature when magnon excitations are considered. Such a spin-mechanical inertia can produce measurable consequences at nanometer scales. Our discovery establishes spin-mechanical inertia as an essential ingredient to properly describe spin-mechanical effects in AFs, which supplements the known governing physics from angular momentum conservation. This work was supported by the DOE, Basic Energy Sciences, Grant No. DE-SC0012509. D.X. also acknowledges support from a Research Corporation for Science Advancement Cottrell Scholar Award.

  16. Albedo, Land Cover, and Daytime Surface Temperature Variation Across an Urbanized Landscape

    NASA Astrophysics Data System (ADS)

    Trlica, A.; Hutyra, L. R.; Schaaf, C. L.; Erb, A.; Wang, J. A.

    2017-11-01

    Land surface albedo is a key parameter controlling the local energy budget, and altering the albedo of built surfaces has been proposed as a tool to mitigate high near-surface temperatures in the urban heat island. However, most research on albedo in urban landscapes has used coarse-resolution data, and few studies have attempted to relate albedo to other urban land cover characteristics. This study provides an empirical description of urban summertime albedo using 30 m remote sensing measurements in the metropolitan area around Boston, Massachusetts, relating albedo to metrics of impervious cover fraction, tree canopy coverage, population density, and land surface temperature (LST). At 30 m spatial resolution, median albedo over the study area (excluding open water) was 0.152 (0.112-0.187). Trends of lower albedo with increasing urbanization metrics and temperature emerged only after aggregating data to 500 m or the boundaries of individual towns, at which scale a -0.01 change in albedo was associated with a 29 (25-35)% decrease in canopy cover, a 27 (24-30)% increase in impervious cover, and an increase in population from 11 to 386 km-2. The most intensively urbanized towns in the region showed albedo up to 0.035 lower than the least urbanized towns, and mean mid-morning LST 12.6°C higher. Trends in albedo derived from 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) measurements were comparable, but indicated a strong contribution of open water at this coarser resolution. These results reveal linkages between albedo and urban land cover character, and offer empirical context for climate resilient planning and future landscape functional changes with urbanization.

  17. Assessment of NPP VIIRS Albedo Over Heterogeneous Crop Land in Northern China

    NASA Astrophysics Data System (ADS)

    Wu, Xiaodan; Wen, Jianguang; Xiao, Qing; Yu, Yunyue; You, Dongqin; Hueni, Andreas

    2017-12-01

    In this paper, the accuracy of Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (VIIRS) land surface albedo, which is derived from the direct estimation algorithm, was assessed using ground-based albedo observations from a wireless sensor network over a heterogeneous cropland in the Huailai station, northern China. Data from six nodes spanning 2013-2014 over vegetation, bare soil, and mixed terrain surfaces were utilized to provide ground reference at VIIRS pixel scale. The performance of VIIRS albedo was also compared with Global LAnd Surface Satellite (GLASS) and Moderate Resolution Imaging Spectroradiometer (MODIS) albedos (Collection 5 and 6). The results indicate that the current granular VIIRS albedo has a high accuracy with a root-mean-square error of 0.02 for typical land covers. They are significantly correlated with ground references indicated by a correlation coefficient (R) of 0.73. The VIIRS albedo shows distinct advantages to GLASS and MODIS albedos over bare soil and mixed-cover surfaces, while it is inferior to the other two products over vegetated surfaces. Furthermore, its time continuity and the ability to capture the abrupt change of surface albedo are better than that of GLASS and MODIS albedo.

  18. Potential effects of forest management on surface albedo

    NASA Astrophysics Data System (ADS)

    Otto, J.; Bréon, F.-M.; Schelhaas, M.-J.; Pinty, B.; Luyssaert, S.

    2012-04-01

    Currently 70% of the world's forests are managed and this figure is likely to rise due to population growth and increasing demand for wood based products. Forest management has been put forward by the Kyoto-Protocol as one of the key instruments in mitigating climate change. For temperate and boreal forests, the effects of forest management on the stand-level carbon balance are reasonably well understood, but the biophysical effects, for example through changes in the albedo, remain elusive. Following a modeling approach, we aim to quantify the variability in albedo that can be attributed to forest management through changes in canopy structure and density. The modelling approach chains three separate models: (1) a forest gap model to describe stand dynamics, (2) a Monte-Carlo model to estimate the probability density function of the optical path length of photons through the canopy and (3) a physically-based canopy transfer model to estimate the interaction between photons and leaves. The forest gap model provides, on a monthly time step the position, height, diameter, crown size and leaf area index of individual trees. The Monte-Carlo model computes from this the probability density function of the distance a photon travels through crown volumes to determine the direct light reaching the forest floor. This information is needed by the canopy transfer model to calculate the effective leaf area index - a quantity that allows it to correctly represent a 3D process with a 1D model. Outgoing radiation is calculated as the result of multiple processes involving the scattering due to the canopy layer and the forest floor. Finally, surface albedo is computed as the ratio between incident solar radiation and calculated outgoing radiation. The study used two time series representing thinning from below of a beech and a Scots pine forest. The results show a strong temporal evolution in albedo during stand establishment followed by a relatively stable albedo once the canopy

  19. Flight Validation of the Thermal Propellant Gauging Method used at EADS Astrium

    NASA Astrophysics Data System (ADS)

    Dandaleix, L.; Ounougha, L.; Jallade, S.

    2004-10-01

    EADS Astrium recently met a major milestone in the field of propellant gauging with the first reorbitation of an Eurostar tanks equipped satellite. It proved successful determining the remaining available propellant mass for spacecraft displacement beyond the customer specified graveyard orbit; thus demonstrating its expertness in Propellant Gauging in correlation with tank residual mass minimization. A critical parameter in satellite operational planning is indeed the accurate knowledge of the on-board remaining propellant mass; basically for the commercial telecommunication missions, where it is the major criterion for lifetime maximization. To provide an accurate and reliable process for measurement of this propellant mass throughout lifetime, EADS Astrium uses a Combination of two independent techniques: The Dead Reckoning Method (maximum accuracy at BOL), based on thrusters flow rate prediction &the Thermal Propellant Gauging Technique, deriving the propellant mass from the tank thermal capacity (Absolute gauging method, with increasing accuracy along lifetime). Then, the present article shows the recent flight validation of the Gauging method obtained for Eurostar E2000 propellant tanks including the validation of the different thermodynamic models. ABBREVIATIONS &ACRONYMS BOL, MOL, EOL: Beginning, Middle &End of Life Cempty: Empty tank thermal inertia [J/K] Chelium: Helium thermal inertia [J/K] Cpropellant: Propellant thermal inertia [J/K] Ct = C1+C2: Total tank thermal inertia (Subscript for upper node and for lower node) [J/K] CPS: Combined Propulsion System DR: Dead Reckoning FM: Flight Model LAE: Liquid Apogee Engine lsb: Least significant byte M0: TPGS Uncertainty component linked to Cempty mox, mfuel: Propellant mass of oxidiser &fuel [kg] Pox, Pfuel: Pressure of oxidiser &fuel [bar] PTA: Propellant Tank Assembly Q: Heater power [W] Qox, Qfuel: Mass flow rate of oxidiser &fuel [kg/s] RCT: Reaction Control Thrusters T0: Spacecraft platform equilibrium

  20. Monitoring Land Surface Albedo and Vegetation Dynamics Using High Spatial and Temporal Resolution Synthetic Time Series from Landsat and the MODIS BRDF/NBAR/Albedo Product

    NASA Technical Reports Server (NTRS)

    Wang, Zhuosen; Schaaf, Crystal B.; Sun, Quingsong; Kim, Jihyun; Erb, Angela M.; Gao, Feng; Roman, Miguel O.; Yang, Yun; Petroy, Shelley; Taylor, Jeffrey R.; hide

    2017-01-01

    Seasonal vegetation phenology can significantly alter surface albedo which in turn affects the global energy balance and the albedo warmingcooling feedbacks that impact climate change. To monitor and quantify the surface dynamics of heterogeneous landscapes, high temporal and spatial resolution synthetic time series of albedo and the enhanced vegetation index (EVI) were generated from the 500-meter Moderate Resolution Imaging Spectroradiometer (MODIS) operational Collection V006 daily BRDF (Bidirectional Reflectance Distribution Function) / NBAR (Nadir BRDF-Adjusted Reflectance) / albedo products and 30-meter Landsat 5 albedo and near-nadir reflectance data through the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The traditional Landsat Albedo (Shuai et al., 2011) makes use of the MODIS BRDFAlbedo products (MCD43) by assigning appropriate BRDFs from coincident MODIS products to each Landsat image to generate a 30-meter Landsat albedo product for that acquisition date. The available cloud free Landsat 5 albedos (due to clouds, generated every 16 days at best) were used in conjunction with the daily MODIS albedos to determine the appropriate 30-meter albedos for the intervening daily time steps in this study. These enhanced daily 30-meter spatial resolution synthetic time series were then used to track albedo and vegetation phenology dynamics over three Ameriflux tower sites (Harvard Forest in 2007, Santa Rita in 2011 and Walker Branch in 2005). These Ameriflux sites were chosen as they are all quite nearby new towers coming on line for the National Ecological Observatory Network (NEON), and thus represent locations which will be served by spatially paired albedo measures in the near future. The availability of data from the NEON towers will greatly expand the sources of tower albedometer data available for evaluation of satellite products. At these three Ameriflux tower sites the synthetic time series of broadband shortwave albedos

  1. Surface Albedo Darkening from wildfires in Northern Sub-Saharan Africa

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Ichoku, C. M.; Poudal, R.; Roman, M. O.; Wilcox, E.

    2014-01-01

    Wildfires are recognized as a key physical disturbance of terrestrial ecosystems and a major source of atmospheric trace gases and aerosols. They are known to produce changes in landscape patterns and lead to changes in surface albedo that can persist for long periods. Here, we estimate the darkening of surface albedo due to wildfires in different land cover ecosystems in the Northern Sub-Saharan Africa using data from the Moderate Resolution Imaging Spectroradiometer (MODIS). We determined a decrease in albedo after fires over most land cover types (e.g. woody savannas: (-0.00352 0.00003) and savannas: (- 0.003910.00003), which together accounted for >86% of the total MODIS fire count between 2003 and 2011). Grasslands had a higher value (-0.00454 0.00003) than the savannas, but accounted for only about 5% of the total fire count. A few other land cover types (e.g. Deciduous broad leaf: (0.00062 0.00015), and barren: 0.00027 0.00019), showed an increase in albedo after fires, but accounted for less than 1% of the total fires. Albedo change due to wildfires is more important during the fire season (October-February). The albedo recovery progresses rapidly during the first year after fires, where savannas show the greatest recovery (>77%) within one year, while deciduous broadleaf, permanent wetlands and barren lands show the least one-year recovery (56%). The persistence of surface albedo darkening in most land cover types is limited to about six to seven years, after which at least 98% of the burnt pixels recover to their pre-fire albedo.

  2. A Novel Flexible Inertia Weight Particle Swarm Optimization Algorithm

    PubMed Central

    Shamsi, Mousa; Sedaaghi, Mohammad Hossein

    2016-01-01

    Particle swarm optimization (PSO) is an evolutionary computing method based on intelligent collective behavior of some animals. It is easy to implement and there are few parameters to adjust. The performance of PSO algorithm depends greatly on the appropriate parameter selection strategies for fine tuning its parameters. Inertia weight (IW) is one of PSO’s parameters used to bring about a balance between the exploration and exploitation characteristics of PSO. This paper proposes a new nonlinear strategy for selecting inertia weight which is named Flexible Exponential Inertia Weight (FEIW) strategy because according to each problem we can construct an increasing or decreasing inertia weight strategy with suitable parameters selection. The efficacy and efficiency of PSO algorithm with FEIW strategy (FEPSO) is validated on a suite of benchmark problems with different dimensions. Also FEIW is compared with best time-varying, adaptive, constant and random inertia weights. Experimental results and statistical analysis prove that FEIW improves the search performance in terms of solution quality as well as convergence rate. PMID:27560945

  3. Decoupling Identification for Serial Two-Link Two-Inertia System

    NASA Astrophysics Data System (ADS)

    Oaki, Junji; Adachi, Shuichi

    The purpose of our study is to develop a precise model by applying the technique of system identification for the model-based control of a nonlinear robot arm, under taking joint-elasticity into consideration. We previously proposed a systematic identification method, called “decoupling identification,” for a “SCARA-type” planar two-link robot arm with elastic joints caused by the Harmonic-drive® reduction gears. The proposed method serves as an extension of the conventional rigid-joint-model-based identification. The robot arm is treated as a serial two-link two-inertia system with nonlinearity. The decoupling identification method using link-accelerometer signals enables the serial two-link two-inertia system to be divided into two linear one-link two-inertia systems. The MATLAB®'s commands for state-space model estimation are utilized in the proposed method. Physical parameters such as motor inertias, link inertias, joint-friction coefficients, and joint-spring coefficients are estimated through the identified one-link two-inertia systems using a gray-box approach. This paper describes accuracy evaluations using the two-link arm for the decoupling identification method under introducing closed-loop-controlled elements and varying amplitude-setup of identification-input. Experimental results show that the identification method also works with closed-loop-controlled elements. Therefore, the identification method is applicable to a “PUMA-type” vertical robot arm under gravity.

  4. Compensations for increased rotational inertia during human cutting turns.

    PubMed

    Qiao, Mu; Brown, Brian; Jindrich, Devin L

    2014-02-01

    Locomotion in a complex environment is often not steady state, but unsteady locomotion (stability and maneuverability) is not well understood. We investigated the strategies used by humans to perform sidestep cutting turns when running. Previous studies have argued that because humans have small yaw rotational moments of inertia relative to body mass, deceleratory forces in the initial velocity direction that occur during the turning step, or 'braking' forces, could function to prevent body over-rotation during turns. We tested this hypothesis by increasing body rotational inertia and testing whether braking forces during stance decreased. We recorded ground reaction force and body kinematics from seven participants performing 45 deg sidestep cutting turns and straight running at five levels of body rotational inertia, with increases up to fourfold. Contrary to our prediction, braking forces remained consistent at different rotational inertias, facilitated by anticipatory changes to body rotational speed. Increasing inertia revealed that the opposing effects of several turning parameters, including rotation due to symmetrical anterior-posterior forces, result in a system that can compensate for fourfold changes in rotational inertia with less than 50% changes to rotational velocity. These results suggest that in submaximal effort turning, legged systems may be robust to changes in morphological parameters, and that compensations can involve relatively minor adjustments between steps to change initial stance conditions.

  5. Compensations for increased rotational inertia during human cutting turns

    PubMed Central

    Qiao, Mu; Brown, Brian; Jindrich, Devin L.

    2014-01-01

    Locomotion in a complex environment is often not steady state, but unsteady locomotion (stability and maneuverability) is not well understood. We investigated the strategies used by humans to perform sidestep cutting turns when running. Previous studies have argued that because humans have small yaw rotational moments of inertia relative to body mass, deceleratory forces in the initial velocity direction that occur during the turning step, or ‘braking’ forces, could function to prevent body over-rotation during turns. We tested this hypothesis by increasing body rotational inertia and testing whether braking forces during stance decreased. We recorded ground reaction force and body kinematics from seven participants performing 45 deg sidestep cutting turns and straight running at five levels of body rotational inertia, with increases up to fourfold. Contrary to our prediction, braking forces remained consistent at different rotational inertias, facilitated by anticipatory changes to body rotational speed. Increasing inertia revealed that the opposing effects of several turning parameters, including rotation due to symmetrical anterior–posterior forces, result in a system that can compensate for fourfold changes in rotational inertia with less than 50% changes to rotational velocity. These results suggest that in submaximal effort turning, legged systems may be robust to changes in morphological parameters, and that compensations can involve relatively minor adjustments between steps to change initial stance conditions. PMID:24115061

  6. Unexpected and Unexplained Surface Temperature Variations on Mimas

    NASA Astrophysics Data System (ADS)

    Howett, C.; Spencer, J. R.; Pearl, J. C.; Hurford, T. A.; Segura, M.; Cassini Cirs Team

    2010-12-01

    Until recently it was thought one of the most interesting things about Mimas, Saturn’s innermost classical icy moon, was its resemblance to Star Wars’ Death Star. However, a bizarre pattern of daytime surface temperatures was observed on Mimas using data obtained by Cassini’s Composite Infrared Spectrometer (CIRS) in February 2010. The observations were taken during Cassini’s closest ever encounter with Mimas (<10,000 km) and cover the daytime anti-Saturn hemisphere centered on longitude ~145° W. Instead of surface temperatures smoothly increasing throughout the morning and early afternoon, then cooling in the evening, as expected, a sharp V-shaped boundary is observed separating cooler midday and afternoon temperatures (~77 K) on the leading side from warmer morning temperatures (~92 K) on the trailing side. The boundary’s apex is centered at equatorial latitudes near the anti-Saturn point and extends to low north and south latitudes on the trailing side. Subtle differences in the surface colors have been observed that are roughly spatially correlated with the observed extent of the temperature anomaly, with the cooler regions tending to be bluer (Schenk et al., Submitted). However, visible-wavelength albedo is similar in the two regions, so albedo variations are probably not directly responsible for the thermal anomaly. It is more likely that thermal inertia variations produce the anomaly, with thermal inertia being unusually high in the region with anomalously low daytime temperatures. Comparison of the February 2010 CIRS data to previous lower spatial resolution data taken at different local times tentatively confirm that the cooler regions do indeed display higher thermal inertias. Bombardment of the surface by high energy electrons from Saturn’s radiation belts has been proposed to explain the observed color variations (Schenk et al., Submitted). Electrons above ~1 MeV preferentially impact Mimas’ leading hemisphere at low latitudes where they

  7. Albedos of Jovian Trojans, Hildas and Centaurs

    NASA Astrophysics Data System (ADS)

    Romanishin, William; Tegler, Stephen C.

    2017-10-01

    We present distributions of optical V band albedos for samples of outer solar system minor bodies including Centaurs, Jovian Trojans and Hildas. Diameters come almost entirely from the NEOWISE catalog (Mainzer etal 2016- Planetary Data System). Optical photometry (H values) for about 2/3 of the approximately 2700 objects studied are from PanStarrrs (Veres et al 2015 Icarus 261, 34). The PanStarrs optical photometry is supplemented by H values from JPL Horizons (corrected to be on the same photometric system as the PanStarrs data) for the objects in the NEOWISE catalog that are not in the PanStarrs catalog. We compare the albedo distributions of various pairs of subsamples using the nonparametric Wilcoxon rank sum test. Examples of potentially interesting comparisons include: (1) The Hildas are 15-25% darker than the Trojans at a very high level of statistical significance. If the Hildas and Trojans started out with similar surfaces, the Hildas may have darkened due to the effects of gardening as they pass through zone III of the asteroid belt. (2) The median albedo of the gray Centaurs lies between that of the L4 and L5 Trojan groups (3) The median L5 Trojan cloud albedo is about 10% darker than that of the L4 cloud at a high level of significance. However, the modes of the L4 and L5 albedo distributions are very similar, perhaps indicating the presence of a distinct brighter component in the L4 cloud that is not found in the L5 cloud.

  8. Relating black carbon content to reduction of snow albedo

    NASA Astrophysics Data System (ADS)

    Brandt, R. E.; Warren, S. G.; Clarke, A. D.

    2011-12-01

    In remote snow of the Northern Hemisphere, the levels of soot pollution are in the parts-per-billion (ppb) range, where the effect on albedo is at the level of a few percent. A reduction of albedo by 1-2% is significant for climate but is difficult to detect experimentally, because snow albedo depends on several other variables. In our work to quantify the climatic effect of black carbon (BC) in snow, we therefore do not directly measure the albedo reduction. Instead, we use a two-step procedure: (1) We collect snow samples, melt and filter them, and analyze the filters spectrophotometrically for BC concentration. (2) We use the BC amount from the filter measurement, together with snow grain size, in a radiative transfer model to compute the albedo reduction. Our radiative transfer model uses the discrete ordinates algorithm DISORT 2.0. We have chosen a representative BC size distribution and optical constants, and have incorporated those of mineral dust as well. While a given mass of BC causes over an order of magnitude more snow albedo reduction compared to dust, a snowpack containing dust mutes the albedo-reducing effect of BC. Because the computed reduction of snow albedo is model-based, it requires experimental verification. We doubt that direct measurement of albedo-reduction will be feasible in nature, because of the vertical variation of both snow grain size and soot content, and because the natural soot content is small. We conclude that what is needed is an artificial snowpack, with uniform grain size and large uniform soot content (ppm not ppb), to produce a large signal on albedo. We have chosen to pursue this experiment outdoors rather than in the laboratory, for the following reasons: (1) The snowpack in the field of view is uniformly illuminated if the source of radiation is the Sun. (2) Visible radiation penetrates into the snow, so photons emerge horizontally distant from where they entered. In the limited width of a laboratory snowpack, radiation

  9. [Temporal and Spatial Characteristics of Lake Taihu Surface Albedo and Its Impact Factors].

    PubMed

    Cao, Chang; Li, Xu-hui; Zhang, Mi; Liu, Shou-dong; Xiao, Wei; Xiao, Qi-tao; Xu, Jia-ping

    2015-10-01

    Lake surface albedo determines energy balance of water-atmospheric interface and water physical environment. Solar elevation angle, cloudiness, wind speed, water quality and other factors can affect lake surface albedo. Using solar radiation, wind speed, and water quality data (turbidity and chlorophyll-a concentration) which were observed in four eddy covariance sites (Meiliangwan, Dapukou, Bifenggang and Xiaoleishan i. e. MLW, DPK, BFG and XLS) in Lake Taihu and clearness index (k(t)), the influence of these factors on Lake Taihu surface albedo and the reasons that led to its spatial difference were investigated. The results showed that solar elevation angle played a leading role in the diurnal and seasonal change of lake surface albedo; lake surface albedo reached two peaks in 0 < k(t) < 0.1 and 0.4 < k(t) < 0.6 respectively, when solar elevation angle was below 35 degrees. The surface albedo increased with the increasing wind speed, turbidity and chlorophyll-a concentration. However, wind could indirectly affect surface albedo through leading to the changes in sediment resuspension and chlorophyll-a distribution. The sequence of albedo in the four sites was XLS > BFG > DPK > MLW. XLS and BFG belonged to the higher albedo group, while DPK and MLW belonged to the lower albedo group. The different biological environments caused by aquatic macrophytes and algae resulting in the spatial variation of Lake Taihu surface albedo. The relationship between albedo and chlorophyll-a concentration was not a very sensitive factor for indicating the outbreak of algae. This study can provide theoretical reference for lake albedo parameterization.

  10. A perturbative correction for electron-inertia in magnetized sheath structures

    NASA Astrophysics Data System (ADS)

    Gohain, Munmi; Karmakar, Pralay K.

    2016-10-01

    We propose a hydrodynamic model to study the equilibrium properties of planar plasma sheaths in two-component quasi-neutral magnetized plasmas. It includes weak but finite electron-inertia incorporated via a regular perturbation of the electronic fluid dynamics only relative to a new smallness parameter, δ, assessing the weak inertial-to-electromagnetic strengths. The zeroth-order perturbation around δ leads to the usual Boltzmann distribution law, which describes inertialess thermalized electrons. The forthwith next higher-order yields the modified Boltzmann law describing the putative lowest-order electron-inertial correction, which is applied meticulously to derive the local Bohm criterion for sheath formation. It is found to be influenced jointly by electron-inertial corrective effects, magnetic field and field orientation relative to the bulk plasma flow. We establish that the mutualistic action of electron-inertia amid gyro-kinetic effects slightly enhances the ion-flow Mach threshold value (typically, M i0 ⩾ 1.140), against the normal value of unity, confrontationally towards the sheath entrance. A numerical illustrative scheme is methodically constructed to see the parametric dependence of the new sheath properties on diverse problem arguments. The merits and demerits are highlighted in the light of the existing results conjointly with clear indication to future ameliorations.

  11. Changes in inertia and effect on turning effort across different wheelchair configurations.

    PubMed

    Caspall, Jayme J; Seligsohn, Erin; Dao, Phuc V; Sprigle, Stephen

    2013-01-01

    When executing turning maneuvers, manual wheelchair users must overcome the rotational inertia of the wheelchair system. Differences in wheelchair rotational inertia can result in increases in torque required to maneuver, resulting in greater propulsion effort and stress on the shoulder joints. The inertias of various configurations of an ultralightweight wheelchair were measured using a rotational inertia-measuring device. Adjustments in axle position, changes in wheel and tire type, and the addition of several accessories had various effects on rotational inertias. The configuration with the highest rotational inertia (solid tires, mag wheels with rearward axle) exceeded the configuration with the lowest (pneumatic tires, spoke wheels with forward axle) by 28%. The greater inertia requires increased torque to accelerate the wheelchair during turning. At a representative maximum acceleration, the reactive torque spanned the range of 11.7 to 15.0 N-m across the wheelchair configurations. At higher accelerations, these torques exceeded that required to overcome caster scrub during turning. These results indicate that a wheelchair's rotational inertia can significantly influence the torque required during turning and that this influence will affect active users who turn at higher speeds. Categorizing wheelchairs using both mass and rotational inertia would better represent differences in effort during wheelchair maneuvers.

  12. Hysteretic transitions in the Kuramoto model with inertia.

    PubMed

    Olmi, Simona; Navas, Adrian; Boccaletti, Stefano; Torcini, Alessandro

    2014-10-01

    We report finite-size numerical investigations and mean-field analysis of a Kuramoto model with inertia for fully coupled and diluted systems. In particular, we examine, for a gaussian distribution of the frequencies, the transition from incoherence to coherence for increasingly large system size and inertia. For sufficiently large inertia the transition is hysteretic, and within the hysteretic region clusters of locked oscillators of various sizes and different levels of synchronization coexist. A modification of the mean-field theory developed by Tanaka, Lichtenberg, and Oishi [Physica D 100, 279 (1997)] allows us to derive the synchronization curve associated to each of these clusters. We have also investigated numerically the limits of existence of the coherent and of the incoherent solutions. The minimal coupling required to observe the coherent state is largely independent of the system size, and it saturates to a constant value already for moderately large inertia values. The incoherent state is observable up to a critical coupling whose value saturates for large inertia and for finite system sizes, while in the thermodinamic limit this critical value diverges proportionally to the mass. By increasing the inertia the transition becomes more complex, and the synchronization occurs via the emergence of clusters of whirling oscillators. The presence of these groups of coherently drifting oscillators induces oscillations in the order parameter. We have shown that the transition remains hysteretic even for randomly diluted networks up to a level of connectivity corresponding to a few links per oscillator. Finally, an application to the Italian high-voltage power grid is reported, which reveals the emergence of quasiperiodic oscillations in the order parameter due to the simultaneous presence of many competing whirling clusters.

  13. Continuous versus discontinuous albedo representations in a simple diffusive climate model

    NASA Astrophysics Data System (ADS)

    Simmons, P. A.; Griffel, D. H.

    1988-07-01

    A one-dimensional annually and zonally averaged energy-balance model, with diffusive meridional heat transport and including icealbedo feedback, is considered. This type of model is found to be very sensitive to the form of albedo used. The solutions for a discontinuous step-function albedo are compared to those for a more realistic smoothly varying albedo. The smooth albedo gives a closer fit to present conditions, but the discontinuous form gives a better representation of climates in earlier epochs.

  14. The Effects of Surface Roughness on the Apparent Thermal and Optical Properties of the Moon

    NASA Astrophysics Data System (ADS)

    Rubanenko, L.; Hayne, P. O.; Paige, D. A.

    2017-12-01

    The thermal inertia and albedo of airless planetary bodies such as the Moon can be inferred by measuring the surface temperatures and solar reflectance. However, roughness below the instrument resolution can affect these measured parameters. Scattering and IR emission from warm slopes onto colder slopes change the surface cooling rate, while shadowing and directional scattering change the reflectance. The importance of these effects grows with increasing solar incidence and emission angles, and during solar eclipses during which the insolation decreases rapidly. The high-quality data gathered by the Lunar Reconnaissance Orbiter (LRO) mission during the last seven years provides us with a unique opportunity to study these effects. Previous works have either adopted a simplified roughness model composed of a single slope, or an illumination model that does not account for subsurface conduction. Our approach incorporates data with simulations conducted using a coupled thermal and illumination model. First, we model the surface temperature distribution below the instrument resolution, considering two realizations: a cratered surface and a Gaussian random surface. Then, we fit the rough surface brightness temperature distribution to that of a flat surface with effective thermal and optical properties to find they differ from the original properties by up to 20% due to the added surface roughness. In the future, this will help to better constrain the intrinsic physical properties of the surface on both the Moon and Mercury and also other airless bodies such as asteroids.

  15. Standards for the validation of remotely sensed albedo products

    NASA Astrophysics Data System (ADS)

    Adams, Jennifer

    2015-04-01

    Land surface albedo is important component of the Earth's energy balance, defined as the fraction of shortwave radiation absorbed by a surface, and is one many Essential Climate Variables (ECVS) that can be retrieved from space through remote sensing. To quantify the accuracy of these products, they must be validated with respect to in-situ measurements of albedo using an albedometer. Whilst accepted standards exist for the calibration of albedometers, standards for the use of in-situ measurement schemes, and their use in validation procedures have yet to be developed. It is essential that we can assess the quality of remotely sensed albedo data, and to identify traceable sources of uncertainty during process of providing these data. As a result of the current lack of accepted standards for in-situ albedo retrieval and validation procedures, we are not yet able to identify and quantify traceable sources of uncertainty. Establishing standard protocols for in-situ retrievals for the validation of global albedo products would allow inter-product use and comparison, in addition to product standardization. Accordingly, this study aims to assess the quality of in-situ albedo retrieval schemes and identify sources of uncertainty, specifically in vegetation environments. A 3D Monte Carlo Ray Tracing Model will be used to simulate albedometer instruments in complex 3D vegetation canopies. To determine sources of uncertainty, factors that influence albedo measurement uncertainty were identified and will subsequently be examined: 1. Time of day (Solar Zenith Angle) 2. Ecosytem type 3. Placement of albedometer within the ecosystem 4. Height of albedometer above the canopy 5. Clustering within the ecosystem A variety of 3D vegetation canopies have been generated to cover the main ecosystems found globally, different seasons, and different plant distributions. Canopies generated include birchstand and pinestand forests for summer and winter, savanna, shrubland, cropland and

  16. Effects of moment of inertia on restricted motion swing speed.

    PubMed

    Schorah, David; Choppin, Simon; James, David

    2015-06-01

    In many sports, the maximum swing speed of a racket, club, or bat is a key performance parameter. Previous research in multiple sports supports the hypothesis of an inverse association between the swing speed and moment of inertia of an implement. The aim of this study was to rigorously test and quantify this relationship using a restricted swinging motion. Eight visually identical rods with a common mass but variable moment of inertia were manufactured. Motion capture technology was used to record eight participants' maximal effort swings with the rods. Strict exclusion criteria were applied to data that did not adhere to the prescribed movement pattern. The study found that for all participants, swing speed decreased with respect to moment of inertia according to a power relationship. However, in contrast to previous studies, the rate of decrease varied from participant to participant. With further analysis it was found that participants performed more consistently at the higher end of the moment of inertia range tested. The results support the inverse association between swing speed and moment of inertia but only for higher moment of inertia implements.

  17. Magnetic moment of inertia within the torque-torque correlation model.

    PubMed

    Thonig, Danny; Eriksson, Olle; Pereiro, Manuel

    2017-04-19

    An essential property of magnetic devices is the relaxation rate in magnetic switching which strongly depends on the energy dissipation. This is described by the Landau-Lifshitz-Gilbert equation and the well known damping parameter, which has been shown to be reproduced from quantum mechanical calculations. Recently the importance of inertia phenomena have been discussed for magnetisation dynamics. This magnetic counterpart to the well-known inertia of Newtonian mechanics, represents a research field that so far has received only limited attention. We present and elaborate here on a theoretical model for calculating the magnetic moment of inertia based on the torque-torque correlation model. Particularly, the method has been applied to bulk itinerant magnets and we show that numerical values are comparable with recent experimental measurements. The theoretical analysis shows that even though the moment of inertia and damping are produced by the spin-orbit coupling, and the expression for them have common features, they are caused by very different electronic structure mechanisms. We propose ways to utilise this in order to tune the inertia experimentally, and to find materials with significant inertia dynamics.

  18. Magnetic suspension options for spacecraft inertia-wheel applications

    NASA Technical Reports Server (NTRS)

    Downer, J. R.

    1984-01-01

    Design criteria for spacecraft inertia-wheel suspensions are listed. The advantages of magnetic suspensions over other suspension types for spacecraft inertia-wheel applications are cited along with the functions performed by magnetic suspension. The common designs for magnetic suspensions are enumerated. Materials selection of permanent magnets and core materials is considered.

  19. Measurement of thermal neutrons reflection coefficients for two-layer reflectors.

    PubMed

    Azimkhani, S; Zolfagharpour, F; Ziaie, F

    2018-05-01

    In this research, thermal neutrons albedo coefficients and relative number of excess counts have been measured experimentally for different thicknesses of two-layer reflectors by using 241 Am-Be neutron source (5.2Ci) and BF 3 detector. Our used reflectors consist of two-layer which are combinations of water, graphite, polyethylene, and lead materials. Experimental results reveal that thermal neutron reflection coefficients slightly increased by addition of the second layer. The maximum value of growth for thermal neutrons albedo is obtained for lead-polyethylene compound (0.72 ± 0.01). Also, there is suitable agreement between the experimental values and simulation results by using MCNPX code. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Inertia and Couple-Stress Effects in a Curvilinear Thrust Hydrostatic Bearing

    NASA Astrophysics Data System (ADS)

    Walicka, A.; Jurczak, P.; Falicki, J.

    2017-08-01

    The flow of a couple-stress lubricant in a clearance of a curvilinear thrust hydrostatic bearing with impermeable walls is considered. The flow in the bearing clearance is considered with inertia forces. The equations of motion are solved by an averaged inertia method. As a result, the formulae for pressure distributions without and with inertia effects were obtained. Radial thrust bearings and spherical bearings are discussed as numerical examples. It is shown that inertia effects influence the bearing performance considerably.

  1. Lunar Terrain and Albedo Reconstruction from Apollo Imagery

    NASA Technical Reports Server (NTRS)

    Nefian, Ara V.; Kim, Taemin; Broxton, Michael; Moratto, Zach

    2010-01-01

    Generating accurate three dimensional planetary models and albedo maps is becoming increasingly more important as NASA plans more robotics missions to the Moon in the coming years. This paper describes a novel approach for separation of topography and albedo maps from orbital Lunar images. Our method uses an optimal Bayesian correlator to refine the stereo disparity map and generate a set of accurate digital elevation models (DEM). The albedo maps are obtained using a multi-image formation model that relies on the derived DEMs and the Lunar- Lambert reflectance model. The method is demonstrated on a set of high resolution scanned images from the Apollo era missions.

  2. Coordinated analyses of orbital and spirit rover data to characterize surface materials on the cratered plains of Gusev Crater, Mars

    USGS Publications Warehouse

    Lichtenberg, K.A.; Arvidson, R. E.; Poulet, F.; Morris, R.V.; Knudson, A.; Bell, J.F.; Bellucci, G.; Bibring, J.-P.; Farrand, W. H.; Johnson, J. R.; Ming, D. W.; Pinet, P.C.; Rogers, A.D.; Squyres, S. W.

    2007-01-01

    Comparison of the Mars Exploration Rover Spirit's Pancam (0.4 to 1.0 ??m) and Mars Express Observatoire pour la Mineralogie l'Eau, les Glaces et l'Activite?? (OMEGA) (0.4 to 2.5 ??m) spectral reflectance data over Spirit's traverses shows that Gusev cratered plains are dominated by nanophase ferric-oxide-rich dust covering weakly altered basaltic sands. This interpretation is also consistent with both observations from OMEGA data covering plains beyond the traverse region and interpretations of data from the other payload instruments on the Spirit Rover. OMEGA observations of relatively low albedo regions where dust has presumably been stripped by dust devils show negative spectral reflectance slopes from 1.5 to 2.5 ??m and moderately masked spectral features which are indicative of olivine or pyroxene. High-albedo regions north and south of the Spirit landing site have flat spectral reflectance slopes and few spectral features, although all spectra have a nanophase ferric-oxide absorption edge between 0.4 and 0.75 ??m. Comparison of THEMIS-derived thermal inertia values with OMEGA-derived spectral parameters shows that although the dust cover can be optically thick (0.4 to 2.5 ??m wavelength region) in some areas, it is not thick enough (???1 cm) to mask the thermal inertia of the underlying substrate for areas included in this study. Copyright 2007 by the American Geophysical Union.

  3. XCO2 retrieval error over deserts near critical surface albedo

    NASA Astrophysics Data System (ADS)

    Zhang, Qiong; Shia, Run-Lie; Sander, Stanley P.; Yung, Yuk L.

    2016-02-01

    Large retrieval errors in column-weighted CO2 mixing ratio (XCO2) over deserts are evident in the Orbiting Carbon Observatory 2 version 7 L2 products. We argue that these errors are caused by the surface albedo being close to a critical surface albedo (αc). Over a surface with albedo close to αc, increasing the aerosol optical depth (AOD) does not change the continuum radiance. The spectral signature caused by changing the AOD is identical to that caused by changing the absorbing gas column. The degeneracy in the retrievals of AOD and XCO2 results in a loss of degrees of freedom and information content. We employ a two-stream-exact single scattering radiative transfer model to study the physical mechanism of XCO2 retrieval error over a surface with albedo close to αc. Based on retrieval tests over surfaces with different albedos, we conclude that over a surface with albedo close to αc, the XCO2 retrieval suffers from a significant loss of accuracy. We recommend a bias correction approach that has significantly improved the XCO2 retrieval from the California Laboratory for Atmospheric Remote Sensing data in the presence of aerosol loading.

  4. Landsat monitoring of albedo changes in northwestern Arizona, 1977-1980

    USGS Publications Warehouse

    Robinove, Charles Joseph

    1982-01-01

    As part of a cooperative project between the U.S. Geological Survey and the Bureau of Land Management, changes in albedo (percentage of light reflected from the ground) were calculated and mapped from Landsat images for an area in northwestern Arizona for three periods: August 26, 1977, to September 3, 1979; September 3, 1979, to August 28, 1980; and August 26, 1977, to August 28, 1980. The mapped albedo changes were field checked in April 1981. Decreases in albedo were associated with increases in vegetation, primarily the flush of annual vegetation and the regrowth of vegetation in chained areas and sites of past fires. Increases in albedo were due to recent fires. Continuous monitoring of changes in albedo using current, rather than historical, Landsat images can provide the Bureau of Land Management with a means of monitoring vegetation growth, determining areas of high fire potential, and more efficiently deploying of field personnel to sites where severe changes are occuring in the quality of the land and vegetation resources. For example, an albedo change could be an indication of encroachment by an invader species. Similarly, it could indicate where rangeland is being lost to desertification.

  5. Inertia and Double Bending of Light from Equivalence

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L., Jr.

    2010-01-01

    Careful examination of light paths in an accelerated reference frame, with use of Special Relativity, can account fully for the observed bending of light in a gravitational field, not just half of it as reported in 1911. This analysis also leads to a Machian formulation of inertia similar to the one proposed by Einstein in 1912 and later derived from gravitational field equations in Minkowsky Space by Sciama in 1953. There is a clear inference from equivalence that there is some type of inertial mass increase in a gravitational field. It is the purpose of the current paper to suggest that equivalence provides a more complete picture of gravitational effects than previously thought, correctly predicting full light bending, and that since the theory of inertia is derivable from equivalence, any theory based on equivalence must take account of it. Einstein himself clearly was not satisfied with the status of inertia in GRT, as our quotes have shown. Many have tried to account for inertia and met with less than success, for example Davidson s integration of Sciama s inertia into GRT but only for a steady state cosmology [10], and the Machian gravity theory of Brans and Dicke [11]. Yet Mach s idea hasn t gone away, and now it seems that it cannot go away without also disposing of equivalence.

  6. Dynamic thermal tomography for nondestructive inspection of aging aircraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Grande, N.K.; Dolan, K.W.; Durbin, P.F.

    1993-11-01

    The authors apply dual-band infrared (DBIR) imaging as a dynamic thermal tomography tool for wide area inspection of a Boeing 737 aircraft and several Boeing KC-135 aircraft panels. The analyses are discussed in this report. After flash-heating the aircraft skin, they record synchronized DBIR images every 40 ms, from onset to 8 seconds after the heat flash. They analyze selective DBIR image ratios which enhance surface temperature contrast and remove surface-emissivity clutter. The Boeing 737 and KC-135 aircraft fuselage panels have varying percent thickness losses from corrosion. They established the correlation of percent thickness loss with surface temperature rise (abovemore » ambient) for a partially corroded F-18 wing box structure and several aluminum plates which had 6 to 60% thickness losses at milled flat-bottom hole sites. Based on this correlation, lap splice temperatures rise 1C per 24 {plus_minus} 5% material loss at 0.4 s after the heat flash. They tabulate and map corrosion-related percent thickness loss effects for the riveted Boeing 737, and the riveted Boeing KKC-135. They map the fuselage composite thermal inertia, based on the (inverse) slope of the surface temperature versus inverse square root of time. Composite thermal inertia maps characterized shallow skin defects within the lap splice at early times (< 0.3 s) and deeper skin defects within the lap splice at late times (> 0.4 s). Late time composite thermal inertia maps depict where corrosion-related thickness losses occur (e.g., on the inside of the Boeing 737 lap splice, beneath the galley and the latrine). Lap splice sites on a typical Boeing KC-135 panel with low composite thermal inertia values had high skin-thickness losses from corrosion.« less

  7. Physical properties of the extreme Centaur and super-comet candidate 2013 AZ60

    NASA Astrophysics Data System (ADS)

    Pál, A.; Kiss, Cs.; Horner, J.; Szakáts, R.; Vilenius, E.; Müller, Th. G.; Acosta-Pulido, J.; Licandro, J.; Cabrera-Lavers, A.; Sárneczky, K.; Szabó, Gy. M.; Thirouin, A.; Sipőcz, B.; Dózsa, Á.; Duffard, R.

    2015-11-01

    We present estimates of the basic physical properties including size and albedo of the extreme Centaur 2013 AZ60. These properties have been derived from optical and thermal infrared measurements. Our optical measurements revealed a probable full period of ≈9.4 h with a shallow amplitude of 4.5%. By combining optical brightness information and thermal emission data, we are able to derive a diameter of 62.3 ± 5.3 km and a geometric albedo of 2.9%, which corresponds to an extremely dark surface. Additionally, our finding of ≳50 Jm-2 K-1 s- 1/2 for the thermal inertia is also remarkable for objects in such a distance. The results of dynamical simulations yield an unstable orbit, with a 50% probability that the target will be ejected from the solar system within 700 000 yr. The current orbit of this object and its instability could imply a pristine cometary surface. This possibility agrees with the observed low geometric albedo and red photometric colour indices for the object, which match the surface of a dormant comet well, as would be expected for a long-period cometary body approaching perihelion. Although it was approaching ever closer to the Sun, however, the object exhibited star-like profiles in each of our observations, lacking any sign of cometary activity. According to the albedo, 2013 AZ60 is a candidate for the darkest body among the known trans-Neptunian objects.

  8. Albedo in the ATIC Experiment

    NASA Technical Reports Server (NTRS)

    Sokolskaya, N. V.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Case, G.; Christl, M.; Chang, J.; Fazely, A. R.; Ganel, O.; hide

    2002-01-01

    ATIC(Advanced Thin Ionization Calorimeter) is a balloon borne experiment designed to measure the cosmic ray composition for elements from hydrogen to iron and their energy spectra from approx.50 GeV to near 100 TeV. It consists of a Si-matrix detector to determine the charge of a CR particle, a scintillator hodoscope for tracking, carbon interaction targets and a fully active BGO calorimeter. ATIC had its first 16-day flight from McMurdo, Antarctica from 28/12/2000 to 13/01/2000. The ATIC flight collected approximately 25 million events. To measure charge of primary particle in presence of radiation scattered back from the interaction and subsequent shower development in the calorimeter a charge detector must be a mosaic of small detector pads so that the pad containing the signal from the incident particle has no additional signal from albedo particles. Therefore the silicon matrix was built of 4480 individual silicon pads each 2 cm x 1.5 cm. The matrix consists of four planes of detectors and the active detector area, in these planes are partially overlapped to completely cover the aperture. The lateral and amplitude distributions of albedo signals in Si-matrix are analyzed for different primary nuclei and different energy deposits in BGO calorimeter. The greater part of albedo signals has Q near 1, where Q = square root of Amplitude(MIP). The albedo distribution exponentially decreases up to Q near 8. These high values are produced by slow protons and plans. There are also a small number of signals of Q > 8, mainly for heavy nucleus primaries. These signals are apparently generated by neutrons. The comparison of the experimental data and simulations with GEANT 3-21 code using QGSM generator for nucleus-nucleus interactions is presented.

  9. Thermal stability of water ice in Ceres' crater Oxo

    NASA Astrophysics Data System (ADS)

    Formisano, Michelangelo; Federico, Costanzo; De Sanctis, Maria Cristina; Frigeri, Alessandro; Magni, Gianfranco; Tosi, Federico

    2016-10-01

    Dwarf planet Ceres, target of the NASA Dawn mission, exhibits evidences of ammoniated phyllosilicates on its surface [1], compatible with a likely outer Solar System origin. Considerable amounts of water ice have recently been detected in some craters by the Visible InfraRed mapping spectrometer (VIR) onboard Dawn in some small fresh crater, such as Oxo, located at about 40° N. The exposure mechanism of water ice is unknown: cryovolcanism, cometary type sublimation/recondensation [2]or impacts with other bodies are likely mechanisms. The evaluation of the time stability of the water ice is crucial to understand the plausible mechanism for its existence. For this purpose, we developed a 3D finite-elements model (FEM) by using the topography given by the shape model of Ceres derived on the basis of images acquired by the Framing Camera in the Survey mission phase. The illumination conditions are provided by the SPICE toolkit. We performed several simulations by analyzing the effect of thermal inertia and albedo on the temperature and rate of ice sublimation. The results of the simulations about the stability of water ice will be presented.[1] De Sanctis et al. NATURE, doi:10.1038/nature16172[2] Formisano et al. MNRAS, doi: 10.1093/mnras/stv2344

  10. Change in Urban Albedo in London: A Multi-scale Perspective

    NASA Astrophysics Data System (ADS)

    Susca, T.; Kotthaus, S.; Grimmond, S.

    2013-12-01

    Urbanization-induced change in land use has considerable implications for climate, air quality, resources and ecosystems. Urban-induced warming is one of the most well-known impacts. This directly and indirectly can extend beyond the city. One way to reduce the size of this is to modify the surface atmosphere exchanges through changing the urban albedo. As increased rugosity caused by the morphology of a city results in lower albedo with constant material characteristics, the impacts of changing the albedo has impacts across a range of scales. Here a multi-scale assessment of the potential effects of the increase in albedo in London is presented. This includes modeling at the global and meso-scale informed by local and micro-scale measurements. In this study the first order calculations are conducted for the impact of changing the albedo (e.g. a 0.01 increase) on the radiative exchange. For example, when incoming solar radiation and cloud cover are considered, based on data retrieved from NASA (http://power.larc.nasa.gov/) for ~1600 km2 area of London, would produce a mean decrease in the instantaneous solar radiative forcing on the same surface of 0.40 W m-2. The nature of the surface is critical in terms of considering the impact of changes in albedo. For example, in the Central Activity Zone in London pavement and building can vary from 10 to 100% of the plan area. From observations the albedo is seen to change dramatically with changes in building materials. For example, glass surfaces which are being used increasingly in the central business district results in dramatic changes in albedo. Using the documented albedo variations determined across different scales the impacts are considered. For example, the effect of the increase in urban albedo is translated into the corresponding amount of avoided emission of carbon dioxide that produces the same effect on climate. At local scale, the effect that the increase in urban albedo can potentially have on local

  11. Coarse Scale In Situ Albedo Observations over Heterogeneous Land Surfaces and Validation Strategy

    NASA Astrophysics Data System (ADS)

    Xiao, Q.; Wu, X.; Wen, J.; BAI, J., Sr.

    2017-12-01

    To evaluate and improve the quality of coarse-pixel land surface albedo products, validation with ground measurements of albedo is crucial over the spatially and temporally heterogeneous land surface. The performance of albedo validation depends on the quality of ground-based albedo measurements at a corresponding coarse-pixel scale, which can be conceptualized as the "truth" value of albedo at coarse-pixel scale. The wireless sensor network (WSN) technology provides access to continuously observe on the large pixel scale. Taking the albedo products as an example, this paper was dedicated to the validation of coarse-scale albedo products over heterogeneous surfaces based on the WSN observed data, which is aiming at narrowing down the uncertainty of results caused by the spatial scaling mismatch between satellite and ground measurements over heterogeneous surfaces. The reference value of albedo at coarse-pixel scale can be obtained through an upscaling transform function based on all of the observations for that pixel. We will devote to further improve and develop new method that that are better able to account for the spatio-temporal characteristic of surface albedo in the future. Additionally, how to use the widely distributed single site measurements over the heterogeneous surfaces is also a question to be answered. Keywords: Remote sensing; Albedo; Validation; Wireless sensor network (WSN); Upscaling; Heterogeneous land surface; Albedo truth at coarse-pixel scale

  12. Albedo boundaries on Mars in 1972: Results from Mariner 9

    USGS Publications Warehouse

    Batson, R.M.; Inge, J.L.

    1976-01-01

    A map of "albedo" boundaries (light and dark markings) on Mars was prepared from Mariner 9 images. After special digital processing, these pictures provide detailed locations of albedo boundaries, which is significant in interpreting recent eolian activity. Derivation of absolute albedo values from the spacecraft data was not attempted. The map correlates well with telescopic observations of Mars after the 1971 dust storm. ?? 1976.

  13. Earth albedo neutrons from 10 to 100 MeV.

    NASA Technical Reports Server (NTRS)

    Preszler, A. M.; Simnett, G. M.; White, R. S.

    1972-01-01

    We report the measurement of the energy and angular distributions of earth albedo neutrons from 10 to 100 MeV at 40 deg N geomagnetic latitude from a balloon at 120,000 ft, below 4.65 g/sq cm. The albedo-neutron omnidirectional energy distribution is flat to 50 MeV, then decreases with energy. The absolute neutron energy distribution is of the correct strength and shape for the albedo neutrons to be the source of the protons trapped in earth's inner radiation belt.

  14. Albedo of bare ice near the Trans-Antarctic Mountains as an analogue of sea-glaciers on the tropical ocean of Snowball Earth

    NASA Astrophysics Data System (ADS)

    Dadic, R.; Mullen, P.; Schneebeli, M.; Brandt, R. E.; Fitzpatric, M.; Carns, R.; Warren, S. G.

    2012-04-01

    weighted by the spectral solar flux to obtain broadband albedos. These range from 0.8 for snow to 0.55 for blue ice. Although what determines the albedo is the SSA of bubbles or snow grains, the broadband albedo also shows a systematic relation to the snow or ice density, suggesting that density might serve as a surrogate variable that will be easier to predict than SSA in an ice-sheet model, using a parameterization for firn densification. The ice cores were analyzed by micro-CT (computer tomography) for bubble morphology, cracks (mainly thermal cracks), and SSA. The SSA is used in a radiative transfer model to explain the measured albedo spectra. We found that thermal cracks in the Allan Hills may be more important than in the equatorial region of Snowball Earth. We tried to separate the effects of cracks from original air bubbles by separately computing their individual SSAs in the CT images, and using those SSAs in the albedo model. These methods allow us to estimate a range of albedos for the different possible regions and climatic conditions on low latitudes of Snowball Earth.

  15. The role of inertia in modeling decisions from experience with instance-based learning.

    PubMed

    Dutt, Varun; Gonzalez, Cleotilde

    2012-01-01

    One form of inertia is the tendency to repeat the last decision irrespective of the obtained outcomes while making decisions from experience (DFE). A number of computational models based upon the Instance-Based Learning Theory, a theory of DFE, have included different inertia implementations and have shown to simultaneously account for both risk-taking and alternations between alternatives. The role that inertia plays in these models, however, is unclear as the same model without inertia is also able to account for observed risk-taking quite well. This paper demonstrates the predictive benefits of incorporating one particular implementation of inertia in an existing IBL model. We use two large datasets, estimation and competition, from the Technion Prediction Tournament involving a repeated binary-choice task to show that incorporating an inertia mechanism in an IBL model enables it to account for the observed average risk-taking and alternations. Including inertia, however, does not help the model to account for the trends in risk-taking and alternations over trials compared to the IBL model without the inertia mechanism. We generalize the two IBL models, with and without inertia, to the competition set by using the parameters determined in the estimation set. The generalization process demonstrates both the advantages and disadvantages of including inertia in an IBL model.

  16. Independent effects of adding weight and inertia on balance during quiet standing

    PubMed Central

    2012-01-01

    Background Human balance during quiet standing is influenced by adding mass to the body with a backpack, with symmetrically-applied loads to the trunk, or with obesity. Adding mass to the body increases both the weight and inertia of the body, which theoretically could provide counteracting effects on body dynamics and balance. Understanding the independent effects of adding weight and inertia on balance may provide additional insight into human balance that could lead to novel advancements in balance training and rehabilitation. Therefore, the purpose of this study was to investigate the independent effects of adding weight and inertia on balance during quiet standing. Methods Sixteen normal-weight young adult participants stood as still as possible on a custom-built backboard apparatus under four experimental conditions: baseline, added inertia only, added weight only, and added inertia and weight. Results Adding inertia by itself had no measurable effect on center of pressure movement or backboard movement. Adding weight by itself increased center of pressure movement (indicated greater effort by the postural control system to stand as still as possible) and backboard movement (indicating a poorer ability of the body to stand as still as possible). Adding inertia and weight at the same time increased center of pressure movement but did not increase backboard movement compared to the baseline condition. Conclusions Adding inertia and adding weight had different effects on balance. Adding inertia by itself had no effect on balance. Adding weight by itself had a negative effect on balance. When adding inertia and weight at the same time, the added inertia appeared to lessen (but did not eliminate) the negative effect of adding weight on balance. These results improve our fundamental understanding of how added mass influences human balance. PMID:22507125

  17. Independent effects of adding weight and inertia on balance during quiet standing.

    PubMed

    Costello, Kerry Elizabeth; Matrangola, Sara Louise; Madigan, Michael Lawrence

    2012-04-16

    Human balance during quiet standing is influenced by adding mass to the body with a backpack, with symmetrically-applied loads to the trunk, or with obesity. Adding mass to the body increases both the weight and inertia of the body, which theoretically could provide counteracting effects on body dynamics and balance. Understanding the independent effects of adding weight and inertia on balance may provide additional insight into human balance that could lead to novel advancements in balance training and rehabilitation. Therefore, the purpose of this study was to investigate the independent effects of adding weight and inertia on balance during quiet standing. Sixteen normal-weight young adult participants stood as still as possible on a custom-built backboard apparatus under four experimental conditions: baseline, added inertia only, added weight only, and added inertia and weight. Adding inertia by itself had no measurable effect on center of pressure movement or backboard movement. Adding weight by itself increased center of pressure movement (indicated greater effort by the postural control system to stand as still as possible) and backboard movement (indicating a poorer ability of the body to stand as still as possible). Adding inertia and weight at the same time increased center of pressure movement but did not increase backboard movement compared to the baseline condition. Adding inertia and adding weight had different effects on balance. Adding inertia by itself had no effect on balance. Adding weight by itself had a negative effect on balance. When adding inertia and weight at the same time, the added inertia appeared to lessen (but did not eliminate) the negative effect of adding weight on balance. These results improve our fundamental understanding of how added mass influences human balance.

  18. Clear-sky narrowband albedos derived from VIRS and MODIS

    NASA Astrophysics Data System (ADS)

    Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Arduini, Robert F.

    2004-02-01

    The Clouds and Earth"s Radiant Energy System (CERES) project is using multispectral imagers, the Visible Infrared Scanner (VIRS) on the tropical Rainfall Measuring Mission (TRMM) satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra, operating since spring 2000, and Aqua, operating since summer 2002, to provide cloud and clear-sky properties at various wavelengths. This paper presents the preliminary results of an analysis of the CERES clear-sky reflectances to derive a set top-of-atmosphere clear sky albedo for 0.65, 0.86, 1.6, 2.13 μm, for all major surface types using the combined MODIS and VIRS datasets. The variability of snow albedo with surface type is examined using MODIS data. Snow albedo was found to depend on the vertical structure of the vegetation. At visible wavelengths, it is least for forested areas and greatest for smooth desert and tundra surfaces. At 1.6 and 2.1-μm, the snow albedos are relatively insensitive to the underlying surface because snow decreases the reflectance. Additional analyses using all of the MODIS results will provide albedo models that should be valuable for many remote sensing, simulation and radiation budget studies.

  19. Early Knowledge of Object Motion: Continuity and Inertia.

    ERIC Educational Resources Information Center

    Spelke, Elizabeth; And Others

    1994-01-01

    Investigated whether infants infer that a hidden, freely moving object will move continuously and smoothly. Six- to 10- month olds inferred that the object's path would be connected and unobstructed, in accord with continuity. Younger infants did not infer this, in accord with inertia. At 8 and 10 months, knowledge of inertia emerged but remained…

  20. Mars low albedo regions: Possible map of near-surface

    NASA Technical Reports Server (NTRS)

    Huguenin, R. L.

    1987-01-01

    A freeze/thaw desorption mechanism is proposed in certain low albedo areas which could be the factor that instigated dust storms. It is widely accepted that the bulk of the episodic gas evolution (not necessarily the oxygen release) experienced during the humidification process in the Viking Gas Exhange Experiment (GEX) was caused by a familiar process in which more polar H2O molecules replace large quantities of other preadsorbed gas molecules on adsorption sites. The author suggests that a similar process could produce high pore pressures in soil that could disrupt the soil and eject dust at high velocity. The author also argued that association of sites of dust storms initiated with high thermal inertial areas may simply reflect repeated dust depletion.

  1. Variable control of neutron albedo in toroidal fusion devices

    DOEpatents

    Jassby, Daniel L.; Micklich, Bradley J.

    1986-01-01

    An arrangement is provided for controlling neutron albedo in toroidal fusion devices having inboard and outboard vacuum vessel walls for containment of the neutrons of a fusion plasma. Neutron albedo material is disposed immediately adjacent the inboard wall, and is movable, preferably in vertical directions, so as to be brought into and out of neutron modifying communication with the fusion neutrons. Neutron albedo material preferably comprises a liquid form, but may also take pebble, stringer and curtain-like forms. A neutron flux valve, rotatable about a vertical axis is also disclosed.

  2. Factors associated with clinical inertia: an integrative review

    PubMed Central

    Aujoulat, Isabelle; Jacquemin, Patricia; Rietzschel, Ernst; Scheen, André; Tréfois, Patrick; Wens, Johan; Darras, Elisabeth; Hermans, Michel P

    2014-01-01

    Failure to initiate or intensify therapy according to evidence-based guidelines is increasingly being acknowledged as a phenomenon that contributes to inadequate management of chronic conditions, and is referred to as clinical inertia. However, the number and complexity of factors associated with the clinical reasoning that underlies the decision-making processes in medicine calls for a critical examination of the consistency of the concept. Indeed, in the absence of information on and justification of treatment decisions that were made, clinical inertia may be only apparent, and actually reflect good clinical practice. This integrative review seeks to address the factors generally associated with clinical inaction, in order to better delineate the concept of true clinical inertia. PMID:24868181

  3. Direct determination of surface albedos from satellite imagery

    NASA Technical Reports Server (NTRS)

    Mekler, Y.; Joseph, J. H.

    1983-01-01

    An empirical method to measure the spectral surface albedo of surfaces from Landsat imagery is presented and analyzed. The empiricism in the method is due only to the fact that three parameters of the solution must be determined for each spectral photograph of an image on the basis of independently known albedos at three points. The approach is otherwise based on exact solutions of the radiative transfer equation for upwelling intensity. Application of the method allows the routine construction of spectral albedo maps from satelite imagery, without requiring detailed knowledge of the atmospheric aerosol content, as long as the optical depth is less than 0.75, and of the calibration of the satellite sensor.

  4. a Physical Parameterization of Snow Albedo for Use in Climate Models.

    NASA Astrophysics Data System (ADS)

    Marshall, Susan Elaine

    The albedo of a natural snowcover is highly variable ranging from 90 percent for clean, new snow to 30 percent for old, dirty snow. This range in albedo represents a difference in surface energy absorption of 10 to 70 percent of incident solar radiation. Most general circulation models (GCMs) fail to calculate the surface snow albedo accurately, yet the results of these models are sensitive to the assumed value of the snow albedo. This study replaces the current simple empirical parameterizations of snow albedo with a physically-based parameterization which is accurate (within +/- 3% of theoretical estimates) yet efficient to compute. The parameterization is designed as a FORTRAN subroutine (called SNOALB) which can be easily implemented into model code. The subroutine requires less then 0.02 seconds of computer time (CRAY X-MP) per call and adds only one new parameter to the model calculations, the snow grain size. The snow grain size can be calculated according to one of the two methods offered in this thesis. All other input variables to the subroutine are available from a climate model. The subroutine calculates a visible, near-infrared and solar (0.2-5 μm) snow albedo and offers a choice of two wavelengths (0.7 and 0.9 mu m) at which the solar spectrum is separated into the visible and near-infrared components. The parameterization is incorporated into the National Center for Atmospheric Research (NCAR) Community Climate Model, version 1 (CCM1), and the results of a five -year, seasonal cycle, fixed hydrology experiment are compared to the current model snow albedo parameterization. The results show the SNOALB albedos to be comparable to the old CCM1 snow albedos for current climate conditions, with generally higher visible and lower near-infrared snow albedos using the new subroutine. However, this parameterization offers a greater predictability for climate change experiments outside the range of current snow conditions because it is physically-based and

  5. Factors associated with therapeutic inertia in hypertension: validation of a predictive model.

    PubMed

    Redón, Josep; Coca, Antonio; Lázaro, Pablo; Aguilar, Ma Dolores; Cabañas, Mercedes; Gil, Natividad; Sánchez-Zamorano, Miguel Angel; Aranda, Pedro

    2010-08-01

    To study factors associated with therapeutic inertia in treating hypertension and to develop a predictive model to estimate the probability of therapeutic inertia in a given medical consultation, based on variables related to the consultation, patient, physician, clinical characteristics, and level of care. National, multicentre, observational, cross-sectional study in primary care and specialist (hospital) physicians who each completed a questionnaire on therapeutic inertia, provided professional data and collected clinical data on four patients. Therapeutic inertia was defined as a consultation in which treatment change was indicated (i.e., SBP >or= 140 or DBP >or= 90 mmHg in all patients; SBP >or= 130 or DBP >or= 80 in patients with diabetes or stroke), but did not occur. A predictive model was constructed and validated according to the factors associated with therapeutic inertia. Data were collected on 2595 patients and 13,792 visits. Therapeutic inertia occurred in 7546 (75%) of the 10,041 consultations in which treatment change was indicated. Factors associated with therapeutic inertia were primary care setting, male sex, older age, SPB and/or DBP values close to normal, treatment with more than one antihypertensive drug, treatment with an ARB II, and more than six visits/year. Physician characteristics did not weigh heavily in the association. The predictive model was valid internally and externally, with acceptable calibration, discrimination and reproducibility, and explained one-third of the variability in therapeutic inertia. Although therapeutic inertia is frequent in the management of hypertension, the factors explaining it are not completely clear. Whereas some aspects of the consultations were associated with therapeutic inertia, physician characteristics were not a decisive factor.

  6. The Role of Inertia in Modeling Decisions from Experience with Instance-Based Learning

    PubMed Central

    Dutt, Varun; Gonzalez, Cleotilde

    2012-01-01

    One form of inertia is the tendency to repeat the last decision irrespective of the obtained outcomes while making decisions from experience (DFE). A number of computational models based upon the Instance-Based Learning Theory, a theory of DFE, have included different inertia implementations and have shown to simultaneously account for both risk-taking and alternations between alternatives. The role that inertia plays in these models, however, is unclear as the same model without inertia is also able to account for observed risk-taking quite well. This paper demonstrates the predictive benefits of incorporating one particular implementation of inertia in an existing IBL model. We use two large datasets, estimation and competition, from the Technion Prediction Tournament involving a repeated binary-choice task to show that incorporating an inertia mechanism in an IBL model enables it to account for the observed average risk-taking and alternations. Including inertia, however, does not help the model to account for the trends in risk-taking and alternations over trials compared to the IBL model without the inertia mechanism. We generalize the two IBL models, with and without inertia, to the competition set by using the parameters determined in the estimation set. The generalization process demonstrates both the advantages and disadvantages of including inertia in an IBL model. PMID:22685443

  7. Modeling the thermal emission from asteroid 3 Juno using ALMA observations and the KRC thermal model

    NASA Astrophysics Data System (ADS)

    Titus, Timothy N.; Li, Jian-Yang; Moullet, Arielle; Sykes, Mark V.

    2015-11-01

    Asteroid 3 Juno (hereafter referred to as Juno), discovered 1 September 1804, is the 11th largest asteroid in the Main Asteroid Belt (MAB). Containing approximately 1% of the mass in the MAB [1], Juno is the second largest S-type [2].As part of the observations acquired from Atacama Large Millimeter/submillimeter Array (ALMA) [3], 10 reconstructed images at ~60km/pixel resolution were acquired of Juno [4] that showed significant deviations from the Standard Thermal Model (STM) [5]. These deviations could be a result of surface topography, albedo variations, emissivity variations, thermal inertia variations, or any combination.The KRC thermal model [6, 7], which has been extensively used for Mars [e.g. 8, 9] and has been applied to Vesta [10] and Ceres [11], will be used to compare model thermal emission to that observed by ALMA at a wavelength of 1.33 mm [4]. The 10 images, acquired over a four hour period, captured ~55% of Juno’s 7.21 hour rotation. Variations in temperature as a function of local time will be used to constrain the source of the thermal emission deviations from the STM.This work is supported by the NASA Solar System Observations Program.References:[1] Pitjeva, E. V. (2005) Solar System Research 39(3), 176. [2] Baer, J. and S. R. Chesley (2008) Celestial Mechanics and Dynamical Astronomy, 100, 27-42. [3] Wootten A. et al. (2015) IAU General Assembly, Meeting #29, #2237199 [4] arXiv:1503.02650 [astro-ph.EP] doi: 10.1088/2041-8205/808/1/L2 [5] Lebofsky, L.A. eta al. (1986) Icarus, 68, 239-251. [6] Kieffer, H. H., et al. (1977) J. Geophys. Res., 82, 4249-4291. [7] Kieffer, Hugh H., (2013) Journal of Geophysical Research: Planets, Volume 118, Issue 3, pp. 451-470 [8] Titus, T. N., H. H. Kieffer, and P. N. Christensen (2003) Science, 299, 1048-1051. [9] Fergason, R. L. et al. (2012) Space Sci. Rev, 170, 739-773, doi:10.1007/s11214-012-9891-3. [10] Titus, T. N. et al. (2012) 43rd LPSC, held March 19-23, 2012 at The Woodlands, Texas. LPI Contribution No

  8. Thermophysical characteristics of the large main-belt asteroid (349) Dembowska

    NASA Astrophysics Data System (ADS)

    Yu, Liang Liang; Yang, Bin; Ji, Jianghui; Ip, Wing-Huen

    2017-12-01

    (349) Dembowska is a large, bright main-belt asteroid that has a fast rotation and an oblique spin axis. It might have experienced partial melting and differentiation. We constrain Dembowska's thermophysical properties, such as thermal inertia, roughness fraction, geometric albedo and effective diameter within 3σ uncertainty of Γ =20^{+12}_{-7} Jm-2 s-0.5 K-1, f_r=0.25^{+0.60}_{-0.25}, p_v=0.309^{+0.026}_{-0.038} and D_eff=155.8^{+7.5}_{-6.2} km, by utilizing the advanced thermophysical model to analyse four sets of thermal infrared data obtained by the Infrared Astronomy Satellite (IRAS), AKARI, the Wide-field Infrared Survey Explorer (WISE) and the Subaru/Cooled Mid-Infrared Camera and Spectrometer (COMICS) at different epochs. In addition, by modelling the thermal light curve observed by WISE, we obtain the rotational phases of each data set. These rotationally resolved data do not reveal significant variations of thermal inertia and roughness across the surface, indicating that the surface of Dembowska should be covered by a dusty regolith layer with few rocks or boulders. Besides, the low thermal inertia of Dembowska shows no significant difference with other asteroids larger than 100 km, which indicates that the dynamical lives of these large asteroids are long enough to make their surfaces have sufficiently low thermal inertia. Furthermore, based on the derived surface thermophysical properties, as well as the known orbital and rotational parameters, we can simulate Dembowska's surface and subsurface temperatures throughout its orbital period. The surface temperature varies from ∼40 to ∼220 K, showing significant seasonal variation, whereas the subsurface temperature achieves equilibrium temperature about 120-160 K below a depth of 30-50 cm.

  9. Global albedos of Pluto and Charon from LORRI New Horizons observations

    NASA Astrophysics Data System (ADS)

    Buratti, B. J.; Hofgartner, J. D.; Hicks, M. D.; Weaver, H. A.; Stern, S. A.; Momary, T.; Mosher, J. A.; Beyer, R. A.; Verbiscer, A. J.; Zangari, A. M.; Young, L. A.; Lisse, C. M.; Singer, K.; Cheng, A.; Grundy, W.; Ennico, K.; Olkin, C. B.

    2017-05-01

    The exploration of the Pluto-Charon system by the New Horizons spacecraft represents the first opportunity to understand the distribution of albedo and other photometric properties of the surfaces of objects in the Solar System's ;Third Zone; of distant ice-rich bodies. Images of the entire illuminated surface of Pluto and Charon obtained by the Long Range Reconnaissance Imager (LORRI) camera provide a global map of Pluto that reveals surface albedo variegations larger than any other Solar System world except for Saturn's moon Iapetus. Normal reflectances on Pluto range from 0.08-1.0, and the low-albedo areas of Pluto are darker than any region of Charon. Charon exhibits a much blander surface with normal reflectances ranging from 0.20-0.73. Pluto's albedo features are well-correlated with geologic features, although some exogenous low-albedo dust may be responsible for features seen to the west of the area informally named Tombaugh Regio. The albedo patterns of both Pluto and Charon are latitudinally organized, with the exception of Tombaugh Regio, with darker regions concentrated at the Pluto's equator and Charon's northern pole. The phase curve of Pluto is similar to that of Triton, the large moon of Neptune believed to be a captured Kuiper Belt Object (KBO), while Charon's is similar to that of the Moon. Preliminary Bond albedos are 0.25 ± 0.03 for Charon and 0.72 ± 0.07 for Pluto. Maps of an approximation to the Bond albedo for both Pluto and Charon are presented for the first time. Our work shows a connection between very high albedo (near unity) and planetary activity, a result that suggests the KBO Eris may be currently active.

  10. Snow Cover and Vegetation-Induced Decrease in Global Albedo From 2002 to 2016

    NASA Astrophysics Data System (ADS)

    Li, Qiuping; Ma, Mingguo; Wu, Xiaodan; Yang, Hong

    2018-01-01

    Land surface albedo is an essential parameter in regional and global climate models, and it is markedly influenced by land cover change. Variations in the albedo can affect the surface radiation budget and further impact the global climate. In this study, the interannual variation of albedo from 2002 to 2016 was estimated on the global scale using Moderate Resolution Imaging Spectroradiometer (MODIS) datasets. The presence and causes of the albedo changes for each specific region were also explored. From 2002 to 2016, the MODIS-based albedo decreased globally, snow cover declined by 0.970 (percent per pixel), while the seasonally integrated normalized difference vegetation index increased by 0.175. Some obvious increases in the albedo were detected in Central Asia, northeastern China, parts of the boreal forest in Canada, and the temperate steppe in North America. In contrast, noticeable decreases in the albedo were found in the Siberian tundra, Europe, southeastern Australia, and northeastern regions of North America. In the Northern Hemisphere, the greening trend at high latitudes made more contribution to the decline in the albedo. However, the dramatic fluctuation of snow-cover at midlatitudes predominated in the change of albedo. Our analysis can help to understand the roles that vegetation and snow cover play in the variation of albedo on global and regional scales.

  11. Monitoring surface albedo change with Landsat

    NASA Technical Reports Server (NTRS)

    Otterman, J.

    1977-01-01

    A pronounced decrease of the surface albedo (reflectivity) has been observed in an area in the Northern Sinai, fenced-in in the summer of 1974. Analysis of the Landsat Multispectral Scanner System digital data from an April 1977 pass indicates a reduction in the albedo in the exclosure by 13%, as compared to the outside, which continues to be subjected to overgrazing and anthropogenic pressures. The reduction of reflectivity is approximately the same in all the spectral bands, and is therefore attributable to accumulation of dead plants and plant debris, and not directly to live vegetation.

  12. Intercomparison Between in situ and AVHRR Polar Pathfinder-Derived Surface Albedo over Greenland

    NASA Technical Reports Server (NTRS)

    Stroeve, Julienne C.; Box, Jason E.; Fowler, Charles; Haran, Terence; Key, Jeffery

    2001-01-01

    The Advanced Very High Resolution (AVHRR) Polar Pathfinder Data (APP) provides the first long time series of consistent, calibrated surface albedo and surface temperature data for the polar regions. Validations of these products have consisted of individual studies that analyzed algorithm performance for limited regions and or time periods. This paper reports on comparisons made between the APP-derived surface albedo and that measured at fourteen automatic weather stations (AWS) around the Greenland ice sheet from January 1997 to August 1998. Results show that satellite-derived surface albedo values are on average 10% less than those measured by the AWS stations. However, the station measurements tend to be biased high by about 4% and thus the differences in absolute albedo may be less (e.g. 6%). In regions of the ice sheet where the albedo variability is small, such as the dry snow facies, the APP albedo uncertainty exceeds the natural variability. Further work is needed to improve the absolute accuracy of the APP-derived surface albedo. Even so, the data provide temporally and spatially consistent estimates of the Greenland ice sheet albedo.

  13. Development of a Multilayer MODIS IST-Albedo Product of Greenland

    NASA Technical Reports Server (NTRS)

    Hall, D. K.; Comiso, J. C.; Cullather, R. I.; Digirolamo, N. E.; Nowicki, S. M.; Medley, B. C.

    2017-01-01

    A new multilayer IST-albedo Moderate Resolution Imaging Spectroradiometer (MODIS) product of Greenland was developed to meet the needs of the ice sheet modeling community. The multiple layers of the product enable the relationship between IST and albedo to be evaluated easily. Surface temperature is a fundamental input for dynamical ice sheet models because it is a component of the ice sheet radiation budget and mass balance. Albedo influences absorption of incoming solar radiation. The daily product will combine the existing standard MODIS Collection-6 ice-surface temperature, derived melt maps, snow albedo and water vapor products. The new product is available in a polar stereographic projection in NetCDF format. The product will ultimately extend from March 2000 through the end of 2017.

  14. Aerial albedos of natural vegetation in South-eastern Australia

    NASA Technical Reports Server (NTRS)

    Howard, J. A.

    1977-01-01

    Black-and-white low-level 70mm photography was used to record the track of the aircraft, which was then plotted on conventional 1:80,000 23 cm photogrammetric photographs and referenced against simultaneous measurements of the beam albedos of vegetation. Using stereoscopic pairs of the 70mm photographs, the vegetation was classified into sub-formations. Marked differences in the 'sub-formation' albedos were observed. A two-way table using stand height and crown cover of the sub-formations clearly showed a very distinctive trend of albedos. This finding may be important in other vegetal studies.

  15. The effect of aerosols on the earth-atmosphere albedo

    NASA Technical Reports Server (NTRS)

    Herman, B. M.; Browning, S. R.

    1975-01-01

    The paper presents calculations of the change in reflected flux by the earth-atmosphere system in response to increases in the atmospheric aerosol loading for a range of complex indices of refraction, solar elevation angle and ground albedo. Results show that, for small values of ground albedo, the reflected solar flux may either increase or decrease with increasing aerosol loadings, depending upon the complex part of the index of refraction of the aerosols. For high ground albedos, an increase in aerosol levels always results in a decrease of reflected flux (i.e., a warming of the earth-atmosphere system).

  16. Thermal mapping of Ceres at 1.2 mm with ALMA

    NASA Astrophysics Data System (ADS)

    Moullet, Arielle; Li, Jian-Yang; Titus, Timothy N.; Sykes, Mark V.; Ip, Wing-Huen; Lai, Ian-Lin

    2016-10-01

    Ceres' thermal emission distribution, which can be characterized through observations at IR and longer wavelengths, is indicative of radiative and physical properties of its surface such as thermal inertia and roughness. High-resolution maps from the Dawn mission now provide an exquisite geographic and geological context for the interpretation of temperature features, which are at large not accessible to the spacecraft's instruments. In particular, the presence of hydrated minerals and distinctive geological features suggest the existence of ice water reservoirs near the surface, which may be characterized through the analysis of thermal inertia distributions.We report on observations obtained in Fall 2015 at the Atacama Large Millimeter Array (ALMA), sampling most of the rotation of Ceres and hence allowing one to disentangle local-hour effects from geographical thermal features. The observations were performed during the 2015 Long Baseline Campaign, offering baselines as long as 10 km and yielding a spatial resolution down to 30 mas (~45 km at the equator). At the observed wavelength of 1.2 mm, the thermal emission probes both the emission from the surface and from deeper layers, down to the level of the diurnal skin depth, hence accessing regions where water ice could be stable.We will describe the diurnal and latitudinal temperature variations derived from our observations as well as preliminary results from thermal modeling in terms of subsurface thermal inertia and ice table latitudinal extent. This work is supported by the NASA Solar System Observations Program grant NNX15AE02G.

  17. Albedo Spatial Variability and Causes on the Western Greenland Ice Sheet Percolation Zone

    NASA Astrophysics Data System (ADS)

    Lewis, G.; Osterberg, E. C.; Hawley, R. L.; Koffman, B. G.; Marshall, H. P.; Birkel, S. D.; Dibb, J. E.

    2016-12-01

    Many recent studies have concluded that Greenland Ice Sheet (GIS) mass loss has been accelerating over recent decades, but spatial and temporal variations in GIS mass balance remain poorly understood due to a complex relationship among precipitation and temperature changes, increasing melt and runoff, ice discharge, and surface albedo. Satellite measurements from MODerate resolution Imaging Spectroradiometer (MODIS) indicate that albedo has been declining over the past decade, but the cause and extent of GIS albedo change remains poorly constrained by field data. As fresh snow (albedo > 0.85) warms and melts, its albedo decreases due to snow grain growth, promoting solar absorption, higher snowpack temperatures and further melt. However, dark impurities like soot and dust can also significantly reduce snow albedo, even in the dry snow zone. While many regional climate models (e.g. the Regional Atmospheric Climate MOdel - RACMO2) calculate albedo spatial resolutions on the order of 10-30 km, and MODIS averages albedo over 500 m, surface features like sastrugi can affect albedo on much smaller scales. Here we assess the relative importance of grain size and shape vs. impurity concentrations on albedo in the western GIS percolation zone. We collected broadband albedo measurements (300-2500 nm at 3-8 nm resolution) at 35 locations using an ASD FieldSpec4 spectroradiometer to simultaneously quantify radiative fluxes and spectral reflectance. Measurements were collected on 10 x 10 m, 1 x 1 km, 5 x 5 km, and 10 x 10 km grids to determine the spatial variability of albedo as part of the 850-km Greenland Traverse for Accumulation and Climate Studies (GreenTrACS) traverse from Raven/Dye 2 to Summit. Additionally, we collected shallow (0-50 cm) snow pit samples every 5 cm at ASD measurement sites to quantify black carbon and mineral dust concentrations and size distributions using a Single Particle Soot Photometer and Coulter Counter, respectively. Preliminary results

  18. The global blue-sky albedo change between 2000 - 2015 seen from MODIS

    NASA Astrophysics Data System (ADS)

    Chrysoulakis, N.; Mitraka, Z.; Gorelick, N.

    2016-12-01

    The land surface albedo is a critical physical variable, which influences the Earth's climate by affecting the energy budget and distribution in the Earth-atmosphere system. Blue-sky albedo estimates provide a quantitative means for better constraining global and regional scale climate models. The Moderate Resolution Imaging Spectroradiometer (MODIS) albedo product includes parameters for the estimation of both the directional-hemispherical surface reflectance (black-sky albedo) and the bi-hemispherical surface reflectance (white-sky albedo). This dataset was used here for the blue-sky albedo estimation over the globe on an 8-day basis at 0.5 km spatial resolution for the whole time period covered by MODIS acquisitions (i.e. 2000 until today). To estimate the blue-sky albedo, the fraction of the diffused radiation is needed, a function of the Aerosol Optical Thickness (AOT). Required AOT information was acquired from the MODIS AOT product at 1̊ × 1̊ spatial resolution. Since the blue-sky albedo depends on the solar zenith angle (SZA), the 8-day mean blue-sky albedo values were computed as averages of the corresponding values for the representative SZAs covering the 24-hour day. The estimated blue-sky albedo time series was analyzed to capture changes during the 15 period. All computation were performed using the Google Earth Engine (GEE). The GEE provided access to all the MODIS products needed for the analysis without the need of searching or downloading. Moreover, the combination of MODIS products in both temporal and spatial terms was fast and effecting using the GEE API (Application Program Interface). All the products covering the globe and for the time period of 15 years were processed via a single collection. Most importantly, GEE allowed for including the calculation of SZAs covering the 24-hour day which improves the quality of the overall product. The 8-day global products of land surface albedo are available through http://www.rslab.gr/downloads.html

  19. Spatio-temporal Variability of Albedo and its Impact on Glacier Melt Modelling

    NASA Astrophysics Data System (ADS)

    Kinnard, C.; Mendoza, C.; Abermann, J.; Petlicki, M.; MacDonell, S.; Urrutia, R.

    2017-12-01

    Albedo is an important variable for the surface energy balance of glaciers, yet its representation within distributed glacier mass-balance models is often greatly simplified. Here we study the spatio-temporal evolution of albedo on Glacier Universidad, central Chile (34°S, 70°W), using time-lapse terrestrial photography, and investigate its effect on the shortwave radiation balance and modelled melt rates. A 12 megapixel digital single-lens reflex camera was setup overlooking the glacier and programmed to take three daily images of the glacier during a two-year period (2012-2014). One image was chosen for each day with no cloud shading on the glacier. The RAW images were projected onto a 10m resolution digital elevation model (DEM), using the IMGRAFT software (Messerli and Grinsted, 2015). A six-parameter camera model was calibrated using a single image and a set of 17 ground control points (GCPs), yielding a georeferencing accuracy of <1 pixel in image coordinates. The camera rotation was recalibrated for new images based on a set of common tie points over stable terrain, thus accounting for possible camera movement over time. The reflectance values from the projected image were corrected for topographic and atmospheric influences using a parametric solar irradiation model, following a modified algorithm based on Corripio (2004), and then converted to albedo using reference albedo measurements from an on-glacier automatic weather station (AWS). The image-based albedo was found to compare well with independent albedo observations from a second AWS in the glacier accumulation area. Analysis of the albedo maps showed that the albedo is more spatially-variable than the incoming solar radiation, making albedo a more important factor of energy balance spatial variability. The incorporation of albedo maps within an enhanced temperature index melt model revealed that the spatio-temporal variability of albedo is an important factor for the calculation of glacier

  20. Albedo of Carbon Dioxide Ice in Mars' Residual South Polar Cap

    NASA Astrophysics Data System (ADS)

    James, P. B.; Wolff, M. J.; Bonev, B.

    2015-12-01

    The albedo of surface CO2 deposits in the Residual South Polar Cap (RSPC) of Mars controls their net condensation / sublimation over a martian year and is therefore a crucial parameter in determining RSPC stability. The albedo used in previous analyses is obtained by dividing I/F, determined from radiometrically calibrated imaging data, by the cosine of the incidence angle. Because of atmospheric aerosols, the albedo calculated from I/F above the atmosphere is not the surface albedo that enters into stability considerations. In order to determine the surface albedo, we interpolate optical depths determined from CRISM EPF measurements to provide estimates of the dust and ice opacities over the RSPC (Wolff et al., 2009) and use these to determine the actual surface albedos from MARCI images using the radiative transport program DISORT (Stamnes et al., 1988). Assuming that dust is the only contributor to atmospheric opacity, the retrieved surface albedos for the longer wavelength MARCI filters in MY 28 and 29 are found to be consistent despite very different dust opacities in the two years (James et al., 2014). However, this model fails to reproduce the short wavelength behavior in early summer and suggests either an additional opacity source or modification of the CRISM dust opacity or the dust phase function. The consequences of these changes will be discussed.

  1. Spatially Complete Global Surface Albedos Derived from Terra/MODIS Data

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Moody, Eric G.; Platnick, Steven; Schaaf, Crystal B.

    2005-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. Recent production of land surface anisotropy, diffuse bihemispherical (white-sky) albedo and direct beam directional hemispherical (black-sky) albedo from observations acquired by the MODIS instruments aboard NASA's Terra and &la satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal information on the land surface's radiative characteristics. Cloud cover, which curtails retrievals, and the presence of ephemeral and seasonal snow limit the snow-free data to approximately half the global land surfaces on an annual equal-angle basis. This precludes the MOD43B3 albedo products from being used in some remote sensing and ground-based applications, &mate models, and global change research projects.

  2. Discrimination of soil hydraulic properties by combined thermal infrared and microwave remote sensing

    NASA Technical Reports Server (NTRS)

    Vandegriend, A. A.; Oneill, P. E.

    1986-01-01

    Using the De Vries models for thermal conductivity and heat capacity, thermal inertia was determined as a function of soil moisture for 12 classes of soil types ranging from sand to clay. A coupled heat and moisture balance model was used to describe the thermal behavior of the top soil, while microwave remote sensing was used to estimate the soil moisture content of the same top soil. Soil hydraulic parameters are found to be very highly correlated with the combination of soil moisture content and thermal inertia at the same moisture content. Therefore, a remotely sensed estimate of the thermal behavior of the soil from diurnal soil temperature observations and an independent remotely sensed estimate of soil moisture content gives the possibility of estimating soil hydraulic properties by remote sensing.

  3. On the role of micro-inertia in enriched continuum mechanics.

    PubMed

    Madeo, Angela; Neff, Patrizio; Aifantis, Elias C; Barbagallo, Gabriele; d'Agostino, Marco Valerio

    2017-02-01

    In this paper, the role of gradient micro-inertia terms [Formula: see text] and free micro-inertia terms [Formula: see text] is investigated to unveil their respective effects on the dynamic behaviour of band-gap metamaterials. We show that the term [Formula: see text] alone is only able to disclose relatively simplified dispersive behaviour. On the other hand, the term [Formula: see text] alone describes the full complex behaviour of band-gap metamaterials. A suitable mixing of the two micro-inertia terms allows us to describe a new feature of the relaxed-micromorphic model, i.e. the description of a second band-gap occurring for higher frequencies. We also show that a split of the gradient micro-inertia [Formula: see text], in the sense of Cartan-Lie decomposition of matrices, allows us to flatten separately the longitudinal and transverse optic branches, thus giving us the possibility of a second band-gap. Finally, we investigate the effect of the gradient inertia [Formula: see text] on more classical enriched models such as the Mindlin-Eringen and the internal variable ones. We find that the addition of such a gradient micro-inertia allows for the onset of one band-gap in the Mindlin-Eringen model and three band-gaps in the internal variable model. In this last case, however, non-local effects cannot be accounted for, which is a too drastic simplification for most metamaterials. We conclude that, even when adding gradient micro-inertia terms, the relaxed micromorphic model remains the best performing one, among the considered enriched models, for the description of non-local band-gap metamaterials.

  4. Greenland ice sheet albedo variability and feedback: 2000-2015

    NASA Astrophysics Data System (ADS)

    Box, J. E.; van As, D.; Fausto, R. S.; Mottram, R.; Langen, P. P.; Steffen, K.

    2015-12-01

    Absorbed solar irradiance represents the dominant source of surface melt energy for Greenland ice. Surface melting has increased as part of a positive feedback amplifier due to surface darkening. The 16 most recent summers of observations from the NASA MODIS sensor indicate a darkening exceeding 6% in July when most melting occurs. Without the darkening, the increase in surface melting would be roughly half as large. A minority of the albedo decline signal may be from sensor degradation. So, in this study, MOD10A1 and MCD43 albedo products from MODIS are evaluated for sensor degradation and anisotropic reflectance errors. Errors are minimized through calibration to GC-Net and PROMICE Greenland snow and ice ground control data. The seasonal and spatial variability in Greenland snow and ice albedo over a 16 year period is presented, including quantifying changing absorbed solar irradiance and melt enhancement due to albedo feedback using the DMI HIRHAM5 5 km model.

  5. Thermal behavior and ice-table depth within the north polar erg of Mars

    NASA Astrophysics Data System (ADS)

    Putzig, Nathaniel E.; Mellon, Michael T.; Herkenhoff, Kenneth E.; Phillips, Roger J.; Davis, Brian J.; Ewer, Kenneth J.; Bowers, Lauren M.

    2014-02-01

    We fully resolve a long-standing thermal discrepancy concerning the north polar erg of Mars. Several recent studies have shown that the erg's thermal properties are consistent with normal basaltic sand overlying shallow ground ice or ice-cemented sand. Our findings bolster that conclusion by thoroughly characterizing the thermal behavior of the erg, demonstrating that other likely forms of physical heterogeneity play only a minor role, and obviating the need to invoke exotic materials. Thermal inertia as calculated from orbital temperature observations of the dunes has previously been found to be more consistent with dust-sized materials than with sand. Since theory and laboratory data show that dunes will only form out of sand-sized particles, exotic sand-sized agglomerations of dust have been invoked to explain the low values of thermal inertia. However, the polar dunes exhibit the same darker appearance and color as that of dunes found elsewhere on the planet that have thermal inertia consistent with normal sand-sized basaltic grains, whereas Martian dust deposits are generally lighter and redder. The alternative explanation for the discrepancy as a thermal effect of a shallow ice table is supported by our analysis of observations from the Mars Global Surveyor Thermal Emission Spectrometer and the Mars Odyssey Thermal Emission Imaging System and by forward modeling of physical heterogeneity. In addition, our results exclude a uniform composition of dark dust-sized materials, and they show that the thermal effects of the dune slopes and bright interdune materials evident in high-resolution images cannot account for the erg's thermal behavior.

  6. Thermal behavior and ice-table depth within the north polar erg of Mars

    USGS Publications Warehouse

    Putzig, Nathaniel E.; Mellon, Michael T.; Herkenhoff, Kenneth E.; Phillips, Roger J.; Davis, Brian J.; Ewer, Kenneth J.; Bowers, Lauren M.

    2014-01-01

    We fully resolve a long-standing thermal discrepancy concerning the north polar erg of Mars. Several recent studies have shown that the erg’s thermal properties are consistent with normal basaltic sand overlying shallow ground ice or ice-cemented sand. Our findings bolster that conclusion by thoroughly characterizing the thermal behavior of the erg, demonstrating that other likely forms of physical heterogeneity play only a minor role, and obviating the need to invoke exotic materials. Thermal inertia as calculated from orbital temperature observations of the dunes has previously been found to be more consistent with dust-sized materials than with sand. Since theory and laboratory data show that dunes will only form out of sand-sized particles, exotic sand-sized agglomerations of dust have been invoked to explain the low values of thermal inertia. However, the polar dunes exhibit the same darker appearance and color as that of dunes found elsewhere on the planet that have thermal inertia consistent with normal sand-sized basaltic grains, whereas Martian dust deposits are generally lighter and redder. The alternative explanation for the discrepancy as a thermal effect of a shallow ice table is supported by our analysis of observations from the Mars Global Surveyor Thermal Emission Spectrometer and the Mars Odyssey Thermal Emission Imaging System and by forward modeling of physical heterogeneity. In addition, our results exclude a uniform composition of dark dust-sized materials, and they show that the thermal effects of the dune slopes and bright interdune materials evident in high-resolution images cannot account for the erg’s thermal behavior.

  7. Empirical moments of inertia of axially asymmetric nuclei

    DOE PAGES

    Allmond, J. M.; Wood, J. L.

    2017-02-06

    We extracted empirical moments of inertia, J1, J2, J3, of atomic nuclei with E(4more » $$+\\atop{1}$$)/E(2$$+\\atop{1}$$ ) > 2.7 from experimental 2$$+\\atop{g,y}$$, energies and electric quadrupole matrix elements, determined from multi- step Coulomb excitation data, and the results are compared to expectations based on rigid and irro- tational inertial flow. Only by having the signs of the E2 matrix elements, i.e., <2$$+\\atop{g}$$ ||M (E2)||2$$+\\atop{g}$$> and <0$$+\\atop{g}$$ ||M (E2)||2$$+\\atop{g}$$> < 2$$+\\atop{g}$$ ||M (E2)||2$$+\\atop{γ}$$> <2$$+\\atop{γ}$$ ||M (E2)||0$$+\\atop{g}$$> , can a unique solution to all three components of the inertia tensor of an asymmetric top be obtained. And while the absolute moments of inertia fall between the rigid and irrotational values as expected, the relative moments of inertia appear to be qualitatively consistent with the β 2 sin 2(γ ) dependence of the Bohr Hamiltonian which originates from a SO(5) in- variance. A better understanding of inertial flow is central to improving collective models, particularly hydrodynamic-based collective models. The results suggest that a better description of collective dynamics and inertial flow for atomic nuclei is needed. The inclusion of vorticity degrees of freedom may provide a path forward. This is our first report of empirical moments of inertia for all three axes and the results should challenge both collective and microscopic descriptions of inertial flow.« less

  8. User's manual for the time-dependent INERTIA code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, A.W.; Bennett, R.B.

    1985-01-01

    The time-dependent INERTIA code is described. This code models the effects of neutral beam momentum input in tokamaks as predicted by the time-dependent formulation of the Stacey-Sigmar formalism. The operation and architecture of the code are described, as are the supplementary plotting and impurity line radiation routines. A short description of the steady-state version of the INERTIA code is also provided.

  9. Emotional inertia prospectively predicts the onset of depressive disorder in adolescence.

    PubMed

    Kuppens, Peter; Sheeber, Lisa B; Yap, Marie B H; Whittle, Sarah; Simmons, Julian G; Allen, Nicholas B

    2012-04-01

    Emotional inertia refers to the degree to which a person's current emotional state is predicted by their prior emotional state, reflecting how much it carries over from one moment to the next. Recently, in a cross-sectional study, we showed that high inertia is an important characteristic of the emotion dynamics observed in psychological maladjustment such as depression. In the present study, we examined whether emotional inertia prospectively predicts the onset of first-episode depression during adolescence. Emotional inertia was assessed in a sample of early adolescents (N = 165) based on second-to-second behavioral coding of videotaped naturalistic interactions with a parent. Greater inertia of both negative and positive emotional behaviors predicted the emergence of clinical depression 2.5 years later. The implications of these findings for the understanding of the etiology and early detection of depression are discussed. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  10. Effectiveness and clinical inertia in patients with antidiabetic therapy.

    PubMed

    Machado-Duque, Manuel Enrique; Ramírez-Riveros, Adriana Carolina; Machado-Alba, Jorge Enrique

    2017-06-01

    To establish the effectiveness of antidiabetic therapy and the frequency of clinical inertia in the management of type 2 diabetes mellitus in Colombia. A cross-sectional study with follow-up of patients who had been treated for at least 1 year and were receiving medical consultation for antidiabetic treatment. Effectiveness was established when haemoglobin-A1c levels were <7% and when clinical inertia was reached, which was defined as no therapeutic modifications despite not achieving management controls. Sociodemographic, clinical and pharmacological variables were evaluated, and multivariate analyses were performed. In total, 363 patients with type 2 diabetes mellitus were evaluated, with a mean age of 62.0±12.2 years. A total of 1,016 consultations were evaluated, and the therapy was effective at the end of the follow-up in 57.9% of cases. Clinical inertia was found in 56.8% of patients who did not have metabolic control. The most frequently prescribed medications were metformin (84.0%), glibenclamide (23.4%) and insulin glargine (20.7%). Moreover, 57.6% of the patients were treated with two or more antidiabetic medications. Having metabolic control in the first consult of the follow-up was a protective factor against clinical inertia in the subsequent consultations (OR: 0.08; 95%CI: 0.04-0.15; P<.001). The effectiveness of treatment for patients with type 2 diabetes mellitus has increased in Colombia, and for the first time, clinical inertia was identifiable and quantifiable and found in similar proportions to other countries. Clinical inertia is a relevant condition given that it interferes with the possibility of controlling this pathology. © 2017 John Wiley & Sons Ltd.

  11. Interpretation of surface and planetary directional albedos for vegetated regions

    NASA Technical Reports Server (NTRS)

    Cess, Robert D.; Vulis, Inna L.

    1989-01-01

    An atmospheric solar radiation model has been coupled with surface reflectance measurements for two vegetation types, pasture land and savannah, in order to address several issues associated with understanding the directional planetary albedo; i.e., the dependence of planetary albedo upon solar zenith angle. These include an elucidation of processes that influence the variation of planetary albedo with solar zenith angle, as well as emphasizing potential problems associated with converting narrowband planetary albedo measurements to broadband quantities. It is suggested that, for vegetated surfaces, this latter task could be somewhat formidable, since the model simulations indicate that narrowband to broadband conversions strongly depend upon vegetation type. A further aspect of this paper is to illustrate a procedure by which reciprocity inconsistencies within a bidirectional reflectance dataset, if they are not too severe, can be circumvented.

  12. Seasonal albedo of an urban/rural landscape from satellite observations

    NASA Technical Reports Server (NTRS)

    Brest, Christopher L.

    1987-01-01

    Using data from 27 calibrated Landsat observations of the Hartford, Connecticut area, the spatial distribution and seasonal variation of surface reflectance and albedo were examined. Mean values of visible reflectance, near-IR reflectance, and albedo are presented (for both snow-free and snow-cover observations) according to 14 land use/land cover categories. A diversity of albedo values was found to exist in this type of environment, associated with land cover. Many land-cover categories display a seasonal dependence, with intracategory seasonal differences being of comparable magnitude to intercategory differences. Key factors in determining albedo (and its seasonal dynamics) are the presence or absence of vegetation and the canopy structure. Snow-cover/snow-free differences range from a few percent (for urban land covers) to over 40 percent (for low-canopy vegetation).

  13. Close packing effects on clean and dirty snow albedo and associated climatic implications

    NASA Astrophysics Data System (ADS)

    He, C.; Liou, K. N.; Takano, Y.

    2017-12-01

    Previous modeling of snow albedo, a key climate feedback parameter, follows the independent scattering approximation (ISA) such that snow grains are considered as a number of separate units with distances longer than wavelengths. Here we develop a new snow albedo model for widely observed close-packed snow grains internally mixed with black carbon (BC) and demonstrate that albedo simulations match closer to observations. Close packing results in a stronger light absorption for clean and BC-contaminated snow. Compared with ISA, close packing reduces pure snow albedos by up to 0.05, whereas it enhances BC-induced snow albedo reduction and associated surface radiative forcing by up to 15% (20%) for fresh (old) snow, with larger enhancements for stronger structure packing. Finally, our results suggest that BC-snow albedo forcing and snow albedo feedback (climate sensitivity) are underestimated in previous modeling studies, making snow close packing consideration a necessity in climate modeling and analysis.

  14. Close packing effects on clean and dirty snow albedo and associated climatic implications

    NASA Astrophysics Data System (ADS)

    He, Cenlin; Takano, Yoshi; Liou, Kuo-Nan

    2017-04-01

    Previous modeling of snow albedo, a key climate feedback parameter, follows the independent scattering approximation (ISA) such that snow grains are considered as a number of separate units with distances longer than wavelengths. Here we develop a new snow albedo model for widely observed close-packed snow grains internally mixed with black carbon (BC) and demonstrate that albedo simulations match closer to observations. Close packing results in a stronger light absorption for clean and BC-contaminated snow. Compared with ISA, close packing reduces pure snow albedos by up to 0.05, whereas it enhances BC-induced snow albedo reduction and associated surface radiative forcing by up to 15% (20%) for fresh (old) snow, with larger enhancements for stronger structure packing. Finally, our results suggest that BC-snow albedo forcing and snow albedo feedback (climate sensitivity) are underestimated in previous modeling studies, making snow close packing consideration a necessity in climate modeling and analysis.

  15. Thermal conductivity measurements of particulate materials under Martian conditions

    NASA Technical Reports Server (NTRS)

    Presley, M. A.; Christensen, P. R.

    1993-01-01

    The mean particle diameter of surficial units on Mars has been approximated by applying thermal inertia determinations from the Mariner 9 Infrared Radiometer and the Viking Infrared Thermal Mapper data together with thermal conductivity measurement. Several studies have used this approximation to characterize surficial units and infer their nature and possible origin. Such interpretations are possible because previous measurements of the thermal conductivity of particulate materials have shown that particle size significantly affects thermal conductivity under martian atmospheric pressures. The transfer of thermal energy due to collisions of gas molecules is the predominant mechanism of thermal conductivity in porous systems for gas pressures above about 0.01 torr. At martian atmospheric pressures the mean free path of the gas molecules becomes greater than the effective distance over which conduction takes place between the particles. Gas particles are then more likely to collide with the solid particles than they are with each other. The average heat transfer distance between particles, which is related to particle size, shape and packing, thus determines how fast heat will flow through a particulate material.The derived one-to-one correspondence of thermal inertia to mean particle diameter implies a certain homogeneity in the materials analyzed. Yet the samples used were often characterized by fairly wide ranges of particle sizes with little information about the possible distribution of sizes within those ranges. Interpretation of thermal inertia data is further limited by the lack of data on other effects on the interparticle spacing relative to particle size, such as particle shape, bimodal or polymodal mixtures of grain sizes and formation of salt cements between grains. To address these limitations and to provide a more comprehensive set of thermal conductivities vs. particle size a linear heat source apparatus, similar to that of Cremers, was assembled to

  16. Correction of broadband albedo measurements affected by unknown slope and sensor tilts

    NASA Astrophysics Data System (ADS)

    Weiser, Ursula; Olefs, Marc; Schöner, Wolfgang; Weyss, Gernot; Hynek, Bernhard

    2017-02-01

    Geometric effects induced by the underlying terrain slope or by tilt errors of radiation sensors lead to an erroneous measurement of snow or ice albedo. Consequently, diurnal albedo variations are observed. A general method to correct tilt errors of albedo measurements in cases where tilts of both the sensors and the slopes are not accurately measured or known is presented. Atmospheric parameters for this correction method can either be taken from a nearby well-maintained and horizontally levelled measurement of global radiation or alternatively from a solar radiation model. In a next step the model is fitted to the measured data to determine tilts and directions of the sensors and the underlying terrain slope. This then allows to correct the measured albedo, the radiative balance and the energy balance. Depending on the direction of the slope and the sensors a comparison between measured and corrected albedo values reveals obvious over-or underestimations of albedo.

  17. Visible Wavelength Exoplanet Phase Curves from Global Albedo Maps

    NASA Astrophysics Data System (ADS)

    Webber, Matthew; Cahoy, Kerri Lynn

    2015-01-01

    To investigate the effect of three-dimensional global albedo maps we use an albedo model that: calculates albedo spectra for each points across grid in longitude and latitude on the planetary disk, uses the appropriate angles for the source-observer geometry for each location, and then weights and sums these spectra using the Tschebychev-Gauss integration method. This structure permits detailed 3D modeling of an illuminated planetary disk and computes disk-integrated phase curves. Different pressure-temperature profiles are used for each location based on geometry and dynamics. We directly couple high-density pressure maps from global dynamic radiative-transfer models to compute global cloud maps. Cloud formation is determined from the correlation of the species condensation curves with the temperature-pressure profiles. We use the detailed cloud patterns, of spatial-varying composition and temperature, to determine the observable albedo spectra and phase curves for exoplanets Kepler-7b and HD189733b. These albedo spectra are used to compute planet-star flux ratios using PHOENIX stellar models, exoplanet orbital parameters, and telescope transmission functions. Insight from the Earthshine spectrum and solid surface albedo functions (e.g. water, ice, snow, rocks) are used with our planetary grid to determine the phase curve and flux ratios of non-uniform Earth and Super Earth-like exoplanets with various rotation rates and stellar types. Predictions can be tailored to the visible and Near-InfraRed (NIR) spectral windows for the Kepler space telescope, Hubble space telescope, and future observatories (e.g. WFIRST, JWST, Exo-C, Exo-S). Additionally, we constrain the effect of exoplanet urban-light on the shape of the night-side phase curve for Earths and Super-Earths.

  18. Estimation of shortwave hemispherical reflectance (albedo) from bidirectionally reflected radiance data

    NASA Technical Reports Server (NTRS)

    Starks, Patrick J.; Norman, John M.; Blad, Blaine L.; Walter-Shea, Elizabeth A.; Walthall, Charles L.

    1991-01-01

    An equation for estimating albedo from bidirectional reflectance data is proposed. The estimates of albedo are found to be greater than values obtained with simultaneous pyranometer measurements. Particular attention is given to potential sources of systematic errors including extrapolation of bidirectional reflectance data out to a view zenith angle of 90 deg, the use of inappropriate weighting coefficients in the numerator of the albedo equation, surface shadowing caused by the A-frame instrumentation used to measure the incoming and outgoing radiation fluxes, errors in estimates of the denominator of the proposed albedo equation, and a 'hot spot' contribution in bidirectional data measured by a modular multiband radiometer.

  19. The seasonal cycle of snow cover, sea ice and surface albedo

    NASA Technical Reports Server (NTRS)

    Robock, A.

    1980-01-01

    The paper examines satellite data used to construct mean snow cover caps for the Northern Hemisphere. The zonally averaged snow cover from these maps is used to calculate the seasonal cycle of zonally averaged surface albedo. The effects of meltwater on the surface, solar zenith angle, and cloudiness are parameterized and included in the calculations of snow and ice albedo. The data allows a calculation of surface albedo for any land or ocean 10 deg latitude band as a function of surface temperature ice and snow cover; the correct determination of the ice boundary is more important than the snow boundary for accurately simulating the ice and snow albedo feedback.

  20. Cassini Imaging of Iapetus and Solution of the Albedo Asymmetry Enigma

    NASA Astrophysics Data System (ADS)

    Denk, Tilmann; Spencer, John

    2014-05-01

    Cassini imaging of Iapetus during one close and several more distant flybys mainly in the first years of the mission revealed an alien and often unique landscape of this third-largest moon in the Saturnian system [1]. The data show numerous impact craters on the bright and dark terrain, equator-facing dark and pole-facing bright crater walls, huge impact basins, rather minor endogenic geologic features, a non-spherical, but ellipsoidal shape, a giant ridge which spans across half of Iapetus' circumference exactly along the equator, a newly detected global 'color dichotomy' presumably formed by dust from retrograde irregular moons, and of course the famous extreme global albedo asymmetry which has been an enigma for more than three centuries. Revealing the cause of this 'albedo dichotomy' enigma of Iapetus, where the trailing side and poles are more than 10x brighter than the leading side, was one of the major tasks for the Cassini mission. It has now been solved successfully. In the mid-1970es, deposition of exogenic dark material on the leading side, originating from outer retrograde moon Phoebe, was proposed as the cause. But this alone could not explain the global shape, sharpness, and complexity of the transition between Iapetus' bright and dark terrain. Mainly with Cassini spectrometer (CIRS) and imaging (ISS) data, all these characteristics and the asymmetry's large amplitude are now plausibly explained by runaway global thermal migration of water ice, triggered by the deposition of dark material on the leading hemisphere. This mechanism is unique to Iapetus among the Saturnian satellites for many reasons. Most important are Iapetus' slow rotation which produces unusually high daytime temperatures and water ice sublimation rates, and the size (gravity) of Iapetus which is small enough for global migration of water ice but large enough that much of the ice is retained on the surface [2]. References: [1] Denk, T., Neukum, G., Roatsch, Th., Porco, C.C., Burns, J

  1. Prediction of temperature and thermal inertia effect in the maturation stage and stockpiling of a large composting mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrena, R.; Canovas, C.; Sanchez, A.

    2006-07-01

    A macroscopic non-steady state energy balance was developed and solved for a composting pile of source-selected organic fraction of municipal solid waste during the maturation stage (13,500 kg of compost). Simulated temperature profiles correlated well with temperature experimental data (ranging from 50 to 70 deg. C) obtained during the maturation process for more than 50 days at full scale. Thermal inertia effect usually found in composting plants and associated to the stockpiling of large composting masses could be predicted by means of this simplified energy balance, which takes into account terms of convective, conductive and radiation heat dissipation. Heat lossesmore » in a large composting mass are not significant due to the similar temperatures found at the surroundings and at the surface of the pile (ranging from 15 to 40 deg. C). In contrast, thermophilic temperature in the core of the pile was maintained during the whole maturation process. Heat generation was estimated with the static respiration index, a parameter that is typically used to monitor the biological activity and stability of composting processes. In this study, the static respiration index is presented as a parameter to estimate the metabolic heat that can be generated according to the biodegradable organic matter content of a compost sample, which can be useful in predicting the temperature of the composting process.« less

  2. Bimodal albedo distributions in the ablation zone of the southwestern Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Moustafa, S. E.; Rennermalm, A. K.; Smith, L. C.; Miller, M. A.; Mioduszewski, J. R.

    2014-09-01

    Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface, and thus, meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates and amplified ice-albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation zone albedo and meltwater production is still relatively unknown, and excluded in surface mass balance models. In this study, we analyze albedo and ablation rates using in situ and remotely-sensed data. Observations include: (1) a new high-quality in situ spectral albedo dataset collected with an Analytical Spectral Devices (ASD) spectroradiometer measuring at 325-1075 nm, along a 1.25 km transect during three days in June 2013; (2) broadband albedo at two automatic weather stations; and (3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August. We find that seasonal ablation zone albedos have a bimodal distribution, with two alternate states. This suggests that an abrupt switch from high to low albedo can be triggered by a modest melt event, resulting in amplified surface ablation rates. Our results show that such a shift corresponds to an observed melt rate percent difference increase of 51.6% during peak melt season (between 10-14 and 20-24 July 2013). Furthermore, our findings demonstrate that seasonal changes in GrIS ablation zone albedo are not exclusively a function of a darkening surface from ice crystal growth, but rather are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. As the climate continues to warm, regional climate models should consider the seasonal evolution of ice surface types in Greenland's ablation zone to improve projections of mass loss contributions to sea level rise.

  3. Bimodal Albedo Distributions in the Ablation Zone of the Southwestern Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Moustafa, S.; Rennermalm, A. K.; Smith, L. C.; Miller, M. A.; Mioduszewski, J.; Koenig, L.

    2014-12-01

    Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface, and thus meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates and amplified ice-albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation zone albedo and meltwater production is still relatively unknown, and excluded in surface mass balance models. In this study, we analyze albedo and ablation rates (m d-1) using in situ and remotely-sensed data. Observations include: 1) a new high-quality in situ spectral albedo dataset collected with an Analytical Spectral Devices (ASD) spectroradiometer measuring at 325-1075 nm, along a 1.25 km transect during three days in June 2013; 2) broadband albedo at two automatic weather stations; and 3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August. We find that seasonal ablation zone albedos have a bimodal distribution, with two alternate states. This suggests that an abrupt switch from high to low albedo can be triggered by a modest melt event, resulting in amplified ablation rates. Our results show that such a shift corresponds to an observed melt rate percent difference increase of 51.6% during peak melt season (between 10-14 July and 20-24 July, 2013). Furthermore, our findings demonstrate that seasonal changes in GrIS ablation zone albedo are not exclusively a function of a darkening surface from ice crystal growth, but rather are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. As the climate continues to warm, regional climate models should consider the seasonal evolution of ice surface types in Greenland's ablation zone to improve projections of mass loss contributions to sea level rise.

  4. Simulation and Analysis of Topographic Effect on Land Surface Albedo over Mountainous Areas

    NASA Astrophysics Data System (ADS)

    Hao, D.; Wen, J.; Xiao, Q.

    2017-12-01

    Land surface albedo is one of the significant geophysical variables affecting the Earth's climate and controlling the surface radiation budget. Topography leads to the formation of shadows and the redistribution of incident radiation, which complicates the modeling and estimation of the land surface albedo. Some studies show that neglecting the topography effect may lead to significant bias in estimating the land surface albedo for the sloping terrain. However, for the composite sloping terrain, the topographic effects on the albedo remain unclear. Accurately estimating the sub-topographic effect on the land surface albedo over the composite sloping terrain presents a challenge for remote sensing modeling and applications. In our study, we focus on the development of a simplified estimation method for land surface albedo including black-sky albedo (BSA) and white-sky albedo (WSA) of the composite sloping terrain at a kilometer scale based on the fine scale DEM (30m) and quantitatively investigate and understand the topographic effects on the albedo. The albedo is affected by various factors such as solar zenith angle (SZA), solar azimuth angle (SAA), shadows, terrain occlusion, and slope and aspect distribution of the micro-slopes. When SZA is 30°, the absolute and relative deviations between the BSA of flat terrain and that of rugged terrain reaches 0.12 and 50%, respectively. When the mean slope of the terrain is 30.63° and SZA=30°, the absolute deviation of BSA caused by SAA can reach 0.04. The maximal relative and relative deviation between the WSA of flat terrain and that of rugged terrain reaches 0.08 and 50%. These results demonstrate that the topographic effect has to be taken into account in the albedo estimation.

  5. Greenland surface albedo changes in July 1981-2012 from satellite observations

    NASA Astrophysics Data System (ADS)

    He, Tao; Liang, Shunlin; Yu, Yunyue; Wang, Dongdong; Gao, Feng; Liu, Qiang

    2013-12-01

    Significant melting events over Greenland have been observed over the past few decades. This study presents an analysis of surface albedo change over Greenland using a 32-year consistent satellite albedo product from the global land surface satellite (GLASS) project together with ground measurements. Results show a general decreasing trend of surface albedo from 1981 to 2012 (-0.009 ± 0.002 decade-1, p < 0.01). However, a large decrease has occurred since 2000 (-0.028 ± 0.008 decade-1, p < 0.01) with most significant decreases at elevations between 1000 and 1500 m (-0.055 decade-1, p < 0.01) which may be associated with surface temperature increases. The surface radiative forcing from albedo changes is 2.73 W m-2 decade-1 and 3.06 W m-2 decade-1 under full-sky and clear-sky conditions, respectively, which indicates that surface albedo changes are likely to have a larger impact on the surface shortwave radiation budget than that caused by changes in the atmosphere over Greenland. A comparison made between satellite albedo products and data output from the Coupled Model Inter-comparison Project 5 (CMIP5) general circulation models (GCMs) shows that most of the CMIP5 models do not detect the significantly decreasing trends of albedo in recent decades. This suggests that more efforts are needed to improve our understanding and simulation of climate change at high latitudes.

  6. Thermal Inertia, Albedo, and MOLA-derived Roughness for Terrains in the Terra Meridiani Area, Mars

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.; Deal, K.; Hynek, B. M.; Seelos, F. P., IV; Snider, N. O.; Mellon, M. T.; Garvin, J. B.

    2002-01-01

    Surface properties of layered deposits draped on dissected, cratered terrain in the Terra Meridiani area are analyzed using remote sensing data. The etched plains are cemented and differentially eroded, and the hematite plains are loose and drifting. Additional information is contained in the original extended abstract.

  7. Thermal anomaly on Mimas surface: Implications on its regolith structure

    NASA Astrophysics Data System (ADS)

    Ferrari, C.; Lucas, A.

    2015-10-01

    Thanks to the Cassini CIRS infrared spectrometer,Howett et al. [1] have discovered a large scale thermal anomaly on the surface of Saturn satellite Mimas. This anomaly translates into a dichotomy in thermal inertia between leading and trailing faces of this synchronous icy satellite: the leading face (region R2) exhibits a high thermal inertia,Γ =66 ± 23 J/m 2/K/s 1/2, compared to the trailing one(region R1), where Γ < 16 J/m2/K/s1/2. The pattern appears to be well correlated with a color anomaly (Schenk et al. [2]) in visible light, also observed on other Saturn moons. It maybe due to the alter ation of their leading face by a focused bombardment of highly energetic electrons.This is thought to increase the contact between regolith grains by gluing them, improving thus the thermal conductivity or decrea sing porosity.

  8. On the role of micro-inertia in enriched continuum mechanics

    NASA Astrophysics Data System (ADS)

    Madeo, Angela; Neff, Patrizio; Aifantis, Elias C.; Barbagallo, Gabriele; d'Agostino, Marco Valerio

    2017-02-01

    In this paper, the role of gradient micro-inertia terms η ¯ ∥ ∇ u,t∥2 and free micro-inertia terms η ∥P,t∥2 is investigated to unveil their respective effects on the dynamic behaviour of band-gap metamaterials. We show that the term η ¯ ∥ ∇ u,t∥2 alone is only able to disclose relatively simplified dispersive behaviour. On the other hand, the term η ∥P,t∥2 alone describes the full complex behaviour of band-gap metamaterials. A suitable mixing of the two micro-inertia terms allows us to describe a new feature of the relaxed-micromorphic model, i.e. the description of a second band-gap occurring for higher frequencies. We also show that a split of the gradient micro-inertia η ¯ ∥ ∇ u,t∥2, in the sense of Cartan-Lie decomposition of matrices, allows us to flatten separately the longitudinal and transverse optic branches, thus giving us the possibility of a second band-gap. Finally, we investigate the effect of the gradient inertia η ¯ ∥ ∇ u,t∥2 on more classical enriched models such as the Mindlin-Eringen and the internal variable ones. We find that the addition of such a gradient micro-inertia allows for the onset of one band-gap in the Mindlin-Eringen model and three band-gaps in the internal variable model. In this last case, however, non-local effects cannot be accounted for, which is a too drastic simplification for most metamaterials. We conclude that, even when adding gradient micro-inertia terms, the relaxed micromorphic model remains the best performing one, among the considered enriched models, for the description of non-local band-gap metamaterials.

  9. On the role of micro-inertia in enriched continuum mechanics

    PubMed Central

    Neff, Patrizio; Aifantis, Elias C.; Barbagallo, Gabriele; d’Agostino, Marco Valerio

    2017-01-01

    In this paper, the role of gradient micro-inertia terms η¯∥ ∇u,t∥2 and free micro-inertia terms η∥P,t∥2 is investigated to unveil their respective effects on the dynamic behaviour of band-gap metamaterials. We show that the term η¯∥ ∇u,t∥2 alone is only able to disclose relatively simplified dispersive behaviour. On the other hand, the term η∥P,t∥2 alone describes the full complex behaviour of band-gap metamaterials. A suitable mixing of the two micro-inertia terms allows us to describe a new feature of the relaxed-micromorphic model, i.e. the description of a second band-gap occurring for higher frequencies. We also show that a split of the gradient micro-inertia η¯∥ ∇u,t∥2, in the sense of Cartan–Lie decomposition of matrices, allows us to flatten separately the longitudinal and transverse optic branches, thus giving us the possibility of a second band-gap. Finally, we investigate the effect of the gradient inertia η¯∥ ∇u,t∥2 on more classical enriched models such as the Mindlin–Eringen and the internal variable ones. We find that the addition of such a gradient micro-inertia allows for the onset of one band-gap in the Mindlin–Eringen model and three band-gaps in the internal variable model. In this last case, however, non-local effects cannot be accounted for, which is a too drastic simplification for most metamaterials. We conclude that, even when adding gradient micro-inertia terms, the relaxed micromorphic model remains the best performing one, among the considered enriched models, for the description of non-local band-gap metamaterials. PMID:28293136

  10. Growing season carries stronger contributions to albedo dynamics on the Tibetan plateau

    PubMed Central

    2017-01-01

    The Tibetan Plateau has experienced higher-than-global-average climate warming in recent decades, resulting in many significant changes in ecosystem structure and function. Among them is albedo, which bridges the causes and consequences of land surface processes and climate. The plateau is covered by snow/ice and vegetation in the non-growing season (nGS) and growing season (GS), respectively. Based on the MODIS products, we investigated snow/ice cover and vegetation greenness in relation to the spatiotemporal changes of albedo on the Tibetan Plateau from 2000 through 2013. A synchronous relationship was found between the change in GSNDVI and GSalbedo over time and across the Tibetan landscapes. We found that the annual average albedo had a decreasing trend, but that the albedo had slightly increased during the nGS and decreased during the GS. Across the landscapes, the nGSalbedo fluctuated in a synchronous pattern with snow/ice cover. Temporally, monthly snow/ice coverage also had a high correspondence with albedo, except in April and October. We detected clear dependencies of albedo on elevation. With the rise in altitude, the nGSalbedo decreased below 4000 m, but increased for elevations of 4500–5500 m. Above 5500 m, the nGSalbedo decreased, which was in accordance with the decreased amount of snow/ice coverage and the increased soil moisture on the plateau. More importantly, the decreasing albedo in the most recent decade appeared to be caused primarily by lowered growing season albedo. PMID:28886037

  11. Growing season carries stronger contributions to albedo dynamics on the Tibetan plateau.

    PubMed

    Tian, Li; Chen, Jiquan; Zhang, Yangjian

    2017-01-01

    The Tibetan Plateau has experienced higher-than-global-average climate warming in recent decades, resulting in many significant changes in ecosystem structure and function. Among them is albedo, which bridges the causes and consequences of land surface processes and climate. The plateau is covered by snow/ice and vegetation in the non-growing season (nGS) and growing season (GS), respectively. Based on the MODIS products, we investigated snow/ice cover and vegetation greenness in relation to the spatiotemporal changes of albedo on the Tibetan Plateau from 2000 through 2013. A synchronous relationship was found between the change in GSNDVI and GSalbedo over time and across the Tibetan landscapes. We found that the annual average albedo had a decreasing trend, but that the albedo had slightly increased during the nGS and decreased during the GS. Across the landscapes, the nGSalbedo fluctuated in a synchronous pattern with snow/ice cover. Temporally, monthly snow/ice coverage also had a high correspondence with albedo, except in April and October. We detected clear dependencies of albedo on elevation. With the rise in altitude, the nGSalbedo decreased below 4000 m, but increased for elevations of 4500-5500 m. Above 5500 m, the nGSalbedo decreased, which was in accordance with the decreased amount of snow/ice coverage and the increased soil moisture on the plateau. More importantly, the decreasing albedo in the most recent decade appeared to be caused primarily by lowered growing season albedo.

  12. Albedo as a modulator of climate response to tropical deforestation

    NASA Technical Reports Server (NTRS)

    Dirmeyer, Paul A.; Shukla, J.

    1994-01-01

    An atmospheric general circulation model with land surface properties represented by the simplified Simple Biosphere model is used to investigate the effects on local climate due to tropical deforestation for the Amazon basin. One control and three anomaly integrations of 4 years' duration are performed. In the anomaly integrations, rain forest in South America is replaced by degraded grassland. The anomaly integrations differ only in the optical properties of the grassland vegetation, with net surface albedos ranging from the same as to 0.09 lighter than that of rain forest. It is found that the change in climate, particularly rainfall, is strongly dependent on the change in surface albedo that accompanies deforestation. Replacement of forest by grass causes a reduction in transpiration and reduces frictional convergence by decreasing surface roughness. However, precipitation averaged over the deforested area is not necessarily reduced. Average precipitation decreases when the increase in albedo is greater than 0.03. If surface albedo is not increased appreciably as a result of deforestation, moisture flux convergence driven by the increase in surface temperature can offset the other effects, and average precipitation increases. As albedo is increased, surface temperature does not change, but surface latent and sensible heat flux decreases due to reduced radiational energy absorbed at the surface, resulting in a reduction in convection and precipitation. A change in the distribution of precipitation due to deforestation that appears to be independent of the albedo is observed.

  13. Albedo as a modulator of climate response to tropical deforestation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirmeyer, P.A.; Shukla, J.

    1994-10-01

    An atmospheric general circulation model with land surface properties represented by the simplified Simple Biosphere model is used to investigate the effects on local climate due to tropical deforestation for the Amazon basin. One control and three anomaly integrations of 4 years` duration are performed. In the anomaly integrations, rain forest in South America is replaced by degraded grassland. The anomaly integrations differ only in the optical properties of the grassland vegetation, with net surface albedos ranging from the same as to 0.09 lighter than that of rain forest. It is found that the change in climate, particularly rainfall, ismore » strongly dependent on the change in surface albedo that accompanies deforestation. Replacement of forest by grass causes a reduction in transpiration and reduces frictional convergence by decreasing surface roughness. However, precipitation averaged over the deforested area is not necessarily reduced. Average precipitation decreases when the increase in albedo is greater than 0.03. If surface albedo is not increased appreciably as a result of deforestation, moisture flux convergence driven by the increase in surface temperature can offset the other effects, and average precipitation increases. As albedo is increased, surface temperature does not change, but surface latent and sensible heat flux decreases due to reduced radiational energy absorbed at the surface, resulting in a reduction in convection and precipitation. A change in the distribution of precipitation due to deforestation that appears to be independent of the albedo is observed.« less

  14. Impact of clinical inertia on cardiovascular risk factors in patients with diabetes.

    PubMed

    Whitford, David L; Al-Anjawi, Hussam A; Al-Baharna, Marwa M

    2014-07-01

    To determine whether clinical inertia is associated with simpler interventions occurring more often than complex changes and the association between clinical inertia and outcomes. Prevalence of clinical inertia over a 30 month period for hyperglycaemia, hypertension and dyslipidaemia was calculated in a random sample (n=334) of patients attending a diabetes clinic. Comparisons between prevalence of clinical inertia and outcomes for each condition were examined using parametric tests of association. There was less clinical inertia in hyperglycaemia (29% of consultations) compared with LDL (80% of consultations) and systolic BP (68% of consultations). Consultations where therapy was intensified had a greater reduction in risk factor levels than when no change was made. No association was found between treatment intensity scores and changes in HbA1c, LDL or blood pressure over 30 months. Physicians are no more likely to intervene in conditions where simple therapeutic changes are necessary as opposed to complex changes. Greater clinical inertia leads to poorer outcomes. There continues to be substantial clinical inertia in routine clinical practice. Physicians should adopt a holistic approach to cardiovascular risk reduction in patients with diabetes, adhere more closely to established management guidelines and emphasize personal individualized target setting. Copyright © 2013 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  15. Thermal fracturing on comets. Applications to 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Attree, N.; Groussin, O.; Jorda, L.; Rodionov, S.; Auger, A.-T.; Thomas, N.; Brouet, Y.; Poch, O.; Kührt, E.; Knapmeyer, M.; Preusker, F.; Scholten, F.; Knollenberg, J.; Hviid, S.; Hartogh, P.

    2018-03-01

    We simulate the stresses induced by temperature changes in a putative hard layer near the surface of comet 67P/Churyumov-Gerasimenko with a thermo-viscoelastic model. Such a layer could be formed by the recondensation or sintering of water ice (and dust grains), as suggested by laboratory experiments and computer simulations, and would explain the high compressive strength encountered by experiments on board the Philae lander. Changes in temperature from seasonal insolation variation penetrate into the comet's surface to depths controlled by the thermal inertia, causing the material to expand and contract. Modelling this with a Maxwellian viscoelastic response on a spherical nucleus, we show that a hard, icy layer with similar properties to Martian permafrost will experience high stresses: up to tens of MPa, which exceed its material strength (a few MPa), down to depths of centimetres to a metre. The stress distribution with latitude is confirmed qualitatively when taking into account the comet's complex shape but neglecting thermal inertia. Stress is found to be comparable to the material strength everywhere for sufficient thermal inertia (≳50 J m-2 K-1 s-1/2) and ice content (≳45% at the equator). In this case, stresses penetrate to a typical depth of 0.25 m, consistent with the detection of metre-scale thermal contraction crack polygons all over the comet. Thermal fracturing may be an important erosion process on cometary surfaces which breaks down material and weakens cliffs.

  16. Physical Properties of the MER and Beagle II Landing Sites on Mars

    NASA Astrophysics Data System (ADS)

    Jakosky, B. M.; Pelkey, S. M.; Mellon, M. T.; Putzig, N.; Martinez-Alonso, S.; Murphy, N.; Hynek, B.

    2003-12-01

    The ESA Beagle II and the NASA Mars Exploration Rover spacecraft are scheduled to land on the martian surface in December 2003 and January 2004, respectively. Mission operations and success depends on the physical properties of the surfaces on which they land. Surface structural characteristics such as the abundances of loose, unconsolidated fine material, of fine material that has been cemented into a duricrust, and of rocks affect the ability to safely land and to successfully sample and traverse the surface. Also, physical properties affect surface and atmospheric temperatures, which affect lander and rover functionality. We are in the process of analyzing surface temperature information for these sites, derived from MGS TES and Odyssey THEMIS daytime and nighttime measurements. Our approach is to: (i) remap thermal inertia using TES data at ~3-km resolution, to obtain the most complete coverage possible; (ii) interpret physical properties from TES coverage in conjunction with other remote-sensing data sets; (iii) map infrared brightness using daytime and nighttime THEMIS data at 100-m resolution, and do qualitative analysis of physical properties and processes; and (iv) derive thermal inertia from THEMIS nighttime data in conjunction with daytime albedo measurements derived from TES, THEMIS, and MOC observations. In addition, we will use measured temperatures and derived thermal inertia to predict surface temperatures for the periods of the missions.

  17. Albedo of Surface CO2 Deposits in Mars' Residual South Polar Cap

    NASA Astrophysics Data System (ADS)

    James, P. B.; Wolff, M. J.; Bonev, B.

    2014-12-01

    The albedo of surface CO2 deposits in the Residual South Polar Cap (RSPC) of Mars controls their net condensation / sublimation over a martian year and is therefore a crucial parameter in determining RSPC stability. The albedo used in previous analyses is obtained by dividing I/F, determined from radiometrically calibrated imaging data, by the cosine of the incidence angle. Because of atmospheric aerosols, the albedo calculated from I/F above the atmosphere is not the surface albedo that enters into stability considerations. In order to determine the surface albedo, we interpolate optical depths determined from CRISM EPF measurements to provide estimates of the dust and ice opacities over the RSPC (Wolff et al., 2009) and use these to determine the actual surface albedos from MARCI images using the radiative transport program DISORT (Stamnes et al., 1988). Assuming that dust is the only contributor to atmospheric opacity, the retrieved surface albedos for the longer wavelength MARCI filters in MY 28 and 29 are found to be consistent despite very different dust opacities in the two years (James et al., 2014). However, this model fails to reproduce the short wavelength behavior in early summer. We consider possible modifications of the dust only model that could explain the discrepancy.

  18. Family Physician Clinical Inertia in Glycemic Control among Patients with Type 2 Diabetes

    PubMed Central

    Lang, Valerija Bralić; Marković, Biserka Bergman; Kranjčević, Ksenija

    2015-01-01

    Background Many patients with diabetes do not achieve target values. One of the reasons for this is clinical inertia. The correct explanation of clinical inertia requires a conjunction of patient with physician and health care system factors. Our aim was to determine the rate of clinical inertia in treating diabetes in primary care and association of patient, physician, and health care setting factors with clinical inertia. Material/Methods This was a national, multicenter, observational, cross-sectional study in primary care in Croatia. Each family physician (FP) provided professional data and collected clinical data on 15–25 type 2 diabetes (T2DM) patients. Clinical inertia was defined as a consultation in which treatment change based on glycated hemoglobin (HbA1c) levels was indicated but did not occur. Results A total of 449 FPs (response rate 89.8%) collected data on 10275 patients. Mean clinical inertia per FP was 55.6% (SD ±26.17) of consultations. All of the FPs were clinically inert with some patients, and 9% of the FPs were clinically inert with all patients. The main factors associated with clinical inertia were: higher percentage of HbA1c, oral anti-diabetic drug initiated by diabetologist, increased postprandial glycemia and total cholesterol, physical inactivity of patient, and administration of drugs other than oral antidiabetics. Conclusions Clinical inertia in treating patients with T2DM is a serious problem. Patients with worse glycemic control and those whose therapy was initiated by a diabetologist experience more clinical inertia. More research on causes of clinical inertia in treating patients with T2DM should be conducted to help achieve more effective diabetes control. PMID:25652941

  19. Family physician clinical inertia in glycemic control among patients with type 2 diabetes.

    PubMed

    Bralić Lang, Valerija; Bergman Marković, Biserka; Kranjčević, Ksenija

    2015-02-05

    Many patients with diabetes do not achieve target values. One of the reasons for this is clinical inertia. The correct explanation of clinical inertia requires a conjunction of patient with physician and health care system factors. Our aim was to determine the rate of clinical inertia in treating diabetes in primary care and association of patient, physician, and health care setting factors with clinical inertia. This was a national, multicenter, observational, cross-sectional study in primary care in Croatia. Each family physician (FP) provided professional data and collected clinical data on 15-25 type 2 diabetes (T2DM) patients. Clinical inertia was defined as a consultation in which treatment change based on glycated hemoglobin (HbA1c) levels was indicated but did not occur. A total of 449 FPs (response rate 89.8%) collected data on 10275 patients. Mean clinical inertia per FP was 55.6% (SD ±26.17) of consultations. All of the FPs were clinically inert with some patients, and 9% of the FPs were clinically inert with all patients. The main factors associated with clinical inertia were: higher percentage of HbA1c, oral anti-diabetic drug initiated by diabetologist, increased postprandial glycemia and total cholesterol, physical inactivity of patient, and administration of drugs other than oral antidiabetics. Clinical inertia in treating patients with T2DM is a serious problem. Patients with worse glycemic control and those whose therapy was initiated by a diabetologist experience more clinical inertia. More research on causes of clinical inertia in treating patients with T2DM should be conducted to help achieve more effective diabetes control.

  20. Moments of Inertia of Disks and Spheres without Integration

    ERIC Educational Resources Information Center

    Hong, Seok-Cheol; Hong, Seok-In

    2013-01-01

    Calculation of moments of inertia is often challenging for introductory-level physics students due to the use of integration, especially in non-Cartesian coordinates. Methods that do not employ calculus have been described for finding the rotational inertia of thin rods and other simple bodies. In this paper we use the parallel axis theorem and…

  1. Chimera states in coupled Kuramoto oscillators with inertia.

    PubMed

    Olmi, Simona

    2015-12-01

    The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaotic but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry.

  2. The influence of canopy shading of snow on effective albedo in forested environments

    NASA Astrophysics Data System (ADS)

    Webster, C.; Jonas, T.

    2017-12-01

    The overlap of highly reflective snow and absorbent forested areas creates strong heterogeneity in the effective surface albedo compared to forest-free areas. Current errors in calculations of effective forest snow albedo arise due to uncertainties in how models should treat masking of snow by vegetation but improvement of local and large scale models is currently limited by a lack of measurements that demonstrate both spatial and temporal variability over forests. We present above-canopy measurements of winter-time effective forest snow albedo using up- and down-looking radiometers mounted on an octocopter UAV for a total of fifteen flights on eight different days. Ground-view fractions across the flight path were between 0.12 and 0.81. Correlations between effective albedo and both ground-view fraction and canopy height were statistically significant during 14 out of 15 flights, but varied between flights due to solar angle and snow cover. Measured effective albedo across the flight path differed by up to 0.33 during snow-on canopy conditions. A comparison between maximum interception and no interception showed effective albedo varied by up 0.17, which was the same variation between effective albedo during high (46°) and low (23°) solar elevation angles. Temporal and spatial variations in effective albedo caused by canopy shading of the snow surface are therefore as important as temporal variations caused by interception of snow by the canopy. Calculation of effective albedo over forested areas therefore requires careful consideration of canopy height, canopy coverage, solar angle and interception load. The results of this study should be used to inform snow albedo and canopy structure parametrisations in local and larger scale land surface models.

  3. Anthropogenic desertification by high-albedo pollution Observations and modeling

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Rosenberg, N. W.; Rosenberg, E.

    1974-01-01

    ERTS-1 MSS albedo data of Western Negev, Sinai and the Gaza strip are presented. A sharp contrast in albedo exists across the Negev-Sinai and Negev-Gaza strip borders. Anthropogenic desertification has occurred on the Arab side due to overgrazing and Bedouin agriculture, whereas natural vegetation grows much more abundantly on the Israeli side.

  4. Emotional inertia and external events: The roles of exposure, reactivity, and recovery.

    PubMed

    Koval, Peter; Brose, Annette; Pe, Madeline L; Houben, Marlies; Erbas, Yasemin; Champagne, Dominique; Kuppens, Peter

    2015-10-01

    Increased moment-to-moment predictability, or inertia, of negative affect has been identified as an important dynamic marker of psychological maladjustment, and increased vulnerability to depression in particular. However, little is known about the processes underlying emotional inertia. The current article examines how the emotional context, and people's responses to it, are related to emotional inertia. We investigated how individual differences in the inertia of negative affect (NA) are related to individual differences in exposure, reactivity, and recovery from emotional events, in daily life (assessed using experience sampling) as well as in the lab (assessed using an emotional film-clip task), among 200 participants commencing their first year of tertiary education. This dual-method approach allowed us to assess affective responding on different timescales, and in response to standardized as well as idiographic emotional stimuli. Our most consistent finding, across both methods, was that heightened NA inertia is related to decreased NA recovery following negative stimuli, suggesting that higher levels of inertia may be mostly driven by impairments in affect repair following negative events. (c) 2015 APA, all rights reserved).

  5. Albedo of surface CO2 deposits in Mars' Residual South Polar Cap

    NASA Astrophysics Data System (ADS)

    James, P. B.; Wolff, M. J.; Bonev, B.

    2013-12-01

    The albedo of surface CO2 deposits in the Residual South Polar Cap (RSPC) controls their net condensation / sublimation over a martian year and is therefore a crucial parameter in determining RSPC stability. The Lambert albedo used in previous analyses is obtained by dividing I/F, determined from radiometrically calibrated imaging data, by the cosine of the incidence angle. Because of atmospheric dust, this albedo calculated from I/F above the atmosphere is not the surface albedo that enters into stability considerations. In order to investigate the real surface albedo, we interpolate optical depths determined from CRISM EPF measurements to provide estimates of the opacites over the RSPC and use these to determine the actual surface albedos from MARCI images using the radiative transport program DISORT (Stamnes et al., 1988). The assumption that the surface is a Lambertian diffuse reflector can then also be tested. MARCI images acquired in one-day span a significant range of emission angles; the set of images acquired during one sol is similar to EPF observations except that diurnal opacity variations could be important.

  6. Analysis of Surface Albedo to Improve Upper-Ocean Heat Budget Calculations

    NASA Astrophysics Data System (ADS)

    Hogikyan, A.; Zhang, D.; Cronin, M. F.

    2016-12-01

    Over 90% of the Earth's energy imbalance is stored in the oceans, so it is important to understand the ocean-atmosphere heat transfer. The Ocean Climate Stations group (OCS) at the Pacific Marine Environmental Laboratory maintains two moored surface buoys in the North Pacific (PAPA and KEO) as air-sea flux reference sites. The goal of the reference sites is to validate global air-sea flux products from atmospheric reanalyses and satellite products, that are critical to understand and model the variability and trend of the earth climate. As other air-sea flux reference buoys in the world ocean, PAPA and KEO only measure downward shortwave radiation (SWdown), but utilize the albedo and the directly measured SWdown to calculate the SWup. Since the open ocean albedo is small, the errors associated with this practice are thought to be comparable or smaller than the instrumentation errors in the air-sea flux measurements. In addition, it is generally accepted that ocean surface albedos can be derived with reasonable confidence from surface radiative fluxes in satellite products such as the Clouds and the Earth's Radiant Energy System (CERES) and the International Satellite Cloud Climatology Project (ISCCP). This project developed a CERES-based albedo product for derivation of SWnet at PAPA and KEO, and assessed the impact of CERES-based albedo on the net surface heat fluxes relative to the currently used ISCCP-based albedo in the OCS air-sea flux data (http://www.pmel.noaa.gov/ocs/data/fluxdisdel/). The high-resolution surface fluxes from CERES are more frequently updated, and consider more physical factors in the approximation, than those from ISCCP. There was a greater change between ISCCP and CERES albedo during wintertime than during summer. There was a greater change at Station PAPA in the northeastern sub-Arctic Pacific, than at Station KEO in the northwestern subtropical Pacific. The rate of temperature change of the mixed-layer is shown to increase based on the

  7. Automated Thermal Sample Acquisition with Applications

    NASA Astrophysics Data System (ADS)

    Kooshesh, K. A.; Lineberger, D. H.

    2012-03-01

    We created an Arduino®-based robot to detect samples subject to an experiment, perform measurements once each sample is located, and store the results for further analysis. We then relate the robot’s performance to an experiment on thermal inertia.

  8. 40 CFR 86.529-98 - Road load force and inertia weight determination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Road load force and inertia weight... inertia weight determination. (a)(1) Road load as a function of speed is given by the following equation: F = A + CV2 (2) The values for coefficients A and C and the test inertia are given in Figure F98-9...

  9. 40 CFR 86.529-98 - Road load force and inertia weight determination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Road load force and inertia weight... inertia weight determination. (a)(1) Road load as a function of speed is given by the following equation: F = A + CV2 (2) The values for coefficients A and C and the test inertia are given in Figure F98-9...

  10. 40 CFR 86.529-98 - Road load force and inertia weight determination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Road load force and inertia weight... inertia weight determination. (a)(1) Road load as a function of speed is given by the following equation: F = A + CV2 (2) The values for coefficients A and C and the test inertia are given in Figure F98-9...

  11. 40 CFR 86.529-98 - Road load force and inertia weight determination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Road load force and inertia weight... inertia weight determination. (a)(1) Road load as a function of speed is given by the following equation: F = A + CV2 (2) The values for coefficients A and C and the test inertia are given in Figure F98-9...

  12. Sea ice roughness: the key for predicting Arctic summer ice albedo

    NASA Astrophysics Data System (ADS)

    Landy, J.; Ehn, J. K.; Tsamados, M.; Stroeve, J.; Barber, D. G.

    2017-12-01

    Although melt ponds on Arctic sea ice evolve in stages, ice with smoother surface topography typically allows the pond water to spread over a wider area, reducing the ice-albedo and accelerating further melt. Building on this theory, we simulated the distribution of meltwater on a range of statistically-derived topographies to develop a quantitative relationship between premelt sea ice surface roughness and summer ice albedo. Our method, previously applied to ICESat observations of the end-of-winter sea ice roughness, could account for 85% of the variance in AVHRR observations of the summer ice-albedo [Landy et al., 2015]. Consequently, an Arctic-wide reduction in sea ice roughness over the ICESat operational period (from 2003 to 2008) explained a drop in ice-albedo that resulted in a 16% increase in solar heat input to the sea ice cover. Here we will review this work and present new research linking pre-melt sea ice surface roughness observations from Cryosat-2 to summer sea ice albedo over the past six years, examining the potential of winter roughness as a significant new source of sea ice predictability. We will further evaluate the possibility for high-resolution (kilometre-scale) forecasts of summer sea ice albedo from waveform-level Cryosat-2 roughness data in the landfast sea ice zone of the Canadian Arctic. Landy, J. C., J. K. Ehn, and D. G. Barber (2015), Albedo feedback enhanced by smoother Arctic sea ice, Geophys. Res. Lett., 42, 10,714-10,720, doi:10.1002/2015GL066712.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowan, Nicolas B.; Voigt, Aiko; Abbot, Dorian S., E-mail: n-cowan@nortwestern.edu

    In order to understand the climate on terrestrial planets orbiting nearby Sun-like stars, one would like to know their thermal inertia. We use a global climate model to simulate the thermal phase variations of Earth analogs and test whether these data could distinguish between planets with different heat storage and heat transport characteristics. In particular, we consider a temperate climate with polar ice caps (like the modern Earth) and a snowball state where the oceans are globally covered in ice. We first quantitatively study the periodic radiative forcing from, and climatic response to, rotation, obliquity, and eccentricity. Orbital eccentricity andmore » seasonal changes in albedo cause variations in the global-mean absorbed flux. The responses of the two climates to these global seasons indicate that the temperate planet has 3 Multiplication-Sign the bulk heat capacity of the snowball planet due to the presence of liquid water oceans. The obliquity seasons in the temperate simulation are weaker than one would expect based on thermal inertia alone; this is due to cross-equatorial oceanic and atmospheric energy transport. Thermal inertia and cross-equatorial heat transport have qualitatively different effects on obliquity seasons, insofar as heat transport tends to reduce seasonal amplitude without inducing a phase lag. For an Earth-like planet, however, this effect is masked by the mixing of signals from low thermal inertia regions (sea ice and land) with that from high thermal inertia regions (oceans), which also produces a damped response with small phase lag. We then simulate thermal light curves as they would appear to a high-contrast imaging mission (TPF-I/Darwin). In order of importance to the present simulations, which use modern-Earth orbital parameters, the three drivers of thermal phase variations are (1) obliquity seasons, (2) diurnal cycle, and (3) global seasons. Obliquity seasons are the dominant source of phase variations for most viewing

  14. Diagnostic inertia in dyslipidaemia: results of a preventative programme in Spain.

    PubMed

    Palazón-Bru, Antonio; Sepehri, Armina; Ramírez-Prado, Dolores; Navarro-Cremades, Felipe; Cortés, Ernesto; Rizo-Baeza, Mercedes; Gil-Guillén, Vicente Francisco

    2015-01-01

    Others have analysed the relationship between inadequate behaviour by healthcare professionals in the diagnosis of dyslipidaemia (diagnostic inertia) and the history of cardiovascular risk factors. However, since no study has assessed cardiovascular risk scores as associated factors, we carried out a study to quantify diagnostic inertia in dyslipidaemia and to determine if cardiovascular risk scores are associated with this inertia. In the Valencian Community (Spain), a preventive programme (cardiovascular, gynaecologic and vaccination) was started in 2003 inviting persons aged ≥40 years to undergo a health check-up at their health centre. This cross-sectional study examined persons with no known dyslipidaemia seen during the first six months of the programme (n = 16, 905) but whose total cholesterol (TC) was ≥5.17 mmol/L. Diagnostic inertia was defined as lack of follow-up to confirm/discard the dyslipidaemia diagnosis. Other variables included in the analysis were gender, history of cardiovascular risk factors/cardiovascular disease, counselling (diet/exercise), body mass index (BMI), age, blood pressure, fasting blood glucose and lipids. TC was grouped as ≥/<6.20 mmol/L. In patients without cardiovascular disease and <75/≤65 years (n = 15, 778/13, 597), the REGICOR (REgistre GIroní del COr)/SCORE (Systematic COronary Risk Evaluation) cardiovascular risk functions were used to classify risk (high/low). Inertia was quantified and the adjusted odds ratios calculated from multivariate models. In the overall sample, the rate of diagnostic inertia was 52% (95% CI [51.2-52.7]); associated factors were TC ≥ 6.20 mmol/L, high or "not measured" BMI, hypertension, smoking and higher values of fasting blood glucose, systolic blood pressure and TC. In the REGICOR sample, the rate of diagnostic inertia was 51.9% (95% CI [51.1-52.7]); associated factors were REGICOR high and high or "not measured" BMI. In the SCORE sample the rate of diagnostic inertia was 51.7% (95

  15. Diagnostic inertia in dyslipidaemia: results of a preventative programme in Spain

    PubMed Central

    Sepehri, Armina; Ramírez-Prado, Dolores; Navarro-Cremades, Felipe; Cortés, Ernesto; Rizo-Baeza, Mercedes; Gil-Guillén, Vicente Francisco

    2015-01-01

    Others have analysed the relationship between inadequate behaviour by healthcare professionals in the diagnosis of dyslipidaemia (diagnostic inertia) and the history of cardiovascular risk factors. However, since no study has assessed cardiovascular risk scores as associated factors, we carried out a study to quantify diagnostic inertia in dyslipidaemia and to determine if cardiovascular risk scores are associated with this inertia. In the Valencian Community (Spain), a preventive programme (cardiovascular, gynaecologic and vaccination) was started in 2003 inviting persons aged ≥40 years to undergo a health check-up at their health centre. This cross-sectional study examined persons with no known dyslipidaemia seen during the first six months of the programme (n = 16, 905) but whose total cholesterol (TC) was ≥5.17 mmol/L. Diagnostic inertia was defined as lack of follow-up to confirm/discard the dyslipidaemia diagnosis. Other variables included in the analysis were gender, history of cardiovascular risk factors/cardiovascular disease, counselling (diet/exercise), body mass index (BMI), age, blood pressure, fasting blood glucose and lipids. TC was grouped as ≥/<6.20 mmol/L. In patients without cardiovascular disease and <75/≤65 years (n = 15, 778/13, 597), the REGICOR (REgistre GIroní del COr)/SCORE (Systematic COronary Risk Evaluation) cardiovascular risk functions were used to classify risk (high/low). Inertia was quantified and the adjusted odds ratios calculated from multivariate models. In the overall sample, the rate of diagnostic inertia was 52% (95% CI [51.2–52.7]); associated factors were TC ≥ 6.20 mmol/L, high or “not measured” BMI, hypertension, smoking and higher values of fasting blood glucose, systolic blood pressure and TC. In the REGICOR sample, the rate of diagnostic inertia was 51.9% (95% CI [51.1–52.7]); associated factors were REGICOR high and high or “not measured” BMI. In the SCORE sample the rate of diagnostic inertia

  16. Inclusion of Solar Elevation Angle in Land Surface Albedo Parameterization Over Bare Soil Surface.

    PubMed

    Zheng, Zhiyuan; Wei, Zhigang; Wen, Zhiping; Dong, Wenjie; Li, Zhenchao; Wen, Xiaohang; Zhu, Xian; Ji, Dong; Chen, Chen; Yan, Dongdong

    2017-12-01

    Land surface albedo is a significant parameter for maintaining a balance in surface energy. It is also an important parameter of bare soil surface albedo for developing land surface process models that accurately reflect diurnal variation characteristics and the mechanism behind the solar spectral radiation albedo on bare soil surfaces and for understanding the relationships between climate factors and spectral radiation albedo. Using a data set of field observations, we conducted experiments to analyze the variation characteristics of land surface solar spectral radiation and the corresponding albedo over a typical Gobi bare soil underlying surface and to investigate the relationships between the land surface solar spectral radiation albedo, solar elevation angle, and soil moisture. Based on both solar elevation angle and soil moisture measurements simultaneously, we propose a new two-factor parameterization scheme for spectral radiation albedo over bare soil underlying surfaces. The results of numerical simulation experiments show that the new parameterization scheme can more accurately depict the diurnal variation characteristics of bare soil surface albedo than the previous schemes. Solar elevation angle is one of the most important factors for parameterizing bare soil surface albedo and must be considered in the parameterization scheme, especially in arid and semiarid areas with low soil moisture content. This study reveals the characteristics and mechanism of the diurnal variation of bare soil surface solar spectral radiation albedo and is helpful in developing land surface process models, weather models, and climate models.

  17. Quantifying the missing link between forest albedo and productivity in the boreal zone

    NASA Astrophysics Data System (ADS)

    Hovi, Aarne; Liang, Jingjing; Korhonen, Lauri; Kobayashi, Hideki; Rautiainen, Miina

    2016-11-01

    Albedo and fraction of absorbed photosynthetically active radiation (FAPAR) determine the shortwave radiation balance and productivity of forests. Currently, the physical link between forest albedo and productivity is poorly understood, yet it is crucial for designing optimal forest management strategies for mitigating climate change. We investigated the relationships between boreal forest structure, albedo and FAPAR using a radiative transfer model called Forest Reflectance and Transmittance model FRT and extensive forest inventory data sets ranging from southern boreal forests to the northern tree line in Finland and Alaska (N = 1086 plots). The forests in the study areas vary widely in structure, species composition, and human interference, from intensively managed in Finland to natural growth in Alaska. We show that FAPAR of tree canopies (FAPARCAN) and albedo are tightly linked in boreal coniferous forests, but the relationship is weaker if the forest has broadleaved admixture, or if canopies have low leaf area and the composition of forest floor varies. Furthermore, the functional shape of the relationship between albedo and FAPARCAN depends on the angular distribution of incoming solar irradiance. We also show that forest floor can contribute to over 50 % of albedo or total ecosystem FAPAR. Based on our simulations, forest albedos can vary notably across the biome. Because of larger proportions of broadleaved trees, the studied plots in Alaska had higher albedo (0.141-0.184) than those in Finland (0.136-0.171) even though the albedo of pure coniferous forests was lower in Alaska. Our results reveal that variation in solar angle will need to be accounted for when evaluating climate effects of forest management in different latitudes. Furthermore, increasing the proportion of broadleaved trees in coniferous forests is the most important means of maximizing albedo without compromising productivity: based on our findings the potential of controlling forest

  18. Effect of land cover change on snow free surface albedo across the continental United States

    USGS Publications Warehouse

    Wickham, J.; Nash, M.S.; Barnes, Christopher A.

    2016-01-01

    Land cover changes (e.g., forest to grassland) affect albedo, and changes in albedo can influence radiative forcing (warming, cooling). We empirically tested albedo response to land cover change for 130 locations across the continental United States using high resolution (30 m-×-30 m) land cover change data and moderate resolution (~ 500 m-×-500 m) albedo data. The land cover change data spanned 10 years (2001 − 2011) and the albedo data included observations every eight days for 13 years (2001 − 2013). Empirical testing was based on autoregressive time series analysis of snow free albedo for verified locations of land cover change. Approximately one-third of the autoregressive analyses for woody to herbaceous or forest to shrub change classes were not significant, indicating that albedo did not change significantly as a result of land cover change at these locations. In addition, ~ 80% of mean differences in albedo arising from land cover change were less than ± 0.02, a nominal benchmark for precision of albedo measurements that is related to significant changes in radiative forcing. Under snow free conditions, we found that land cover change does not guarantee a significant albedo response, and that the differences in mean albedo response for the majority of land cover change locations were small.

  19. Areal-Averaged Spectral Surface Albedo in an Atlantic Coastal Area: Estimation from Ground-Based Transmission

    DOE PAGES

    Kassianov, Evgueni; Barnard, James; Flynn, Connor; ...

    2017-07-12

    Tower-based data combined with high-resolution satellite products have been used to produce surface albedo at various spatial scales over land. Because tower-based albedo data are available at only a few sites, surface albedos using these combined data are spatially limited. Moreover, tower-based albedo data are not representative of highly heterogeneous regions. To produce areal-averaged and spectrally-resolved surface albedo for regions with various degrees of surface heterogeneity, we have developed a transmission-based retrieval and demonstrated its feasibility for relatively homogeneous land surfaces. Here we demonstrate its feasibility for a highly heterogeneous coastal region. We use the atmospheric transmission measured during amore » 19-month period (June 2009 – December 2010) by a ground-based Multi-Filter Rotating Shadowband Radiometer (MFRSR) at five wavelengths (0.415, 0.5, 0.615, 0.673 and 0.87 µm) at the Department of Energy’s Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) site located on Graciosa Island. We compare the MFRSR-retrieved areal-averaged surface albedo with albedo derived from Moderate Resolution Imaging Spectroradiometer (MODIS) observations, and also a composite-based albedo. Lastly, we demonstrate that these three methods produce similar spectral signatures of surface albedo; however, the MFRSR-retrieved albedo, is higher on average (≤0.04) than the MODIS-based areal-averaged surface albedo and the largest difference occurs in winter.« less

  20. Areal-Averaged Spectral Surface Albedo in an Atlantic Coastal Area: Estimation from Ground-Based Transmission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassianov, Evgueni; Barnard, James; Flynn, Connor

    Tower-based data combined with high-resolution satellite products have been used to produce surface albedo at various spatial scales over land. Because tower-based albedo data are available at only a few sites, surface albedos using these combined data are spatially limited. Moreover, tower-based albedo data are not representative of highly heterogeneous regions. To produce areal-averaged and spectrally-resolved surface albedo for regions with various degrees of surface heterogeneity, we have developed a transmission-based retrieval and demonstrated its feasibility for relatively homogeneous land surfaces. Here we demonstrate its feasibility for a highly heterogeneous coastal region. We use the atmospheric transmission measured during amore » 19-month period (June 2009 – December 2010) by a ground-based Multi-Filter Rotating Shadowband Radiometer (MFRSR) at five wavelengths (0.415, 0.5, 0.615, 0.673 and 0.87 µm) at the Department of Energy’s Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) site located on Graciosa Island. We compare the MFRSR-retrieved areal-averaged surface albedo with albedo derived from Moderate Resolution Imaging Spectroradiometer (MODIS) observations, and also a composite-based albedo. Lastly, we demonstrate that these three methods produce similar spectral signatures of surface albedo; however, the MFRSR-retrieved albedo, is higher on average (≤0.04) than the MODIS-based areal-averaged surface albedo and the largest difference occurs in winter.« less

  1. Changes in blast zone albedo patterns around new martian impact craters

    NASA Astrophysics Data System (ADS)

    Daubar, I. J.; Dundas, C. M.; Byrne, S.; Geissler, P.; Bart, G. D.; McEwen, A. S.; Russell, P. S.; Chojnacki, M.; Golombek, M. P.

    2016-03-01

    "Blast zones" (BZs) around new martian craters comprise various albedo features caused by the initial impact, including diffuse halos, extended linear and arcuate rays, secondary craters, ejecta patterns, and dust avalanches. We examined these features for changes in repeat images separated by up to four Mars years. Here we present the first comprehensive survey of the qualitative and quantitative changes observed in impact blast zones over time. Such changes are most likely due to airfall of high-albedo dust restoring darkened areas to their original albedo, the albedo of adjacent non-impacted surfaces. Although some sites show drastic changes over short timescales, nearly half of the sites show no obvious changes over several Mars years. Albedo changes are more likely to occur at higher-latitude sites, lower-elevation sites, and at sites with smaller central craters. No correlation was seen between amount of change and Dust Cover Index, relative halo size, or historical regional albedo changes. Quantitative albedo measurements of the diffuse dark halos relative to their surroundings yielded estimates of fading lifetimes for these features. The average lifetime among sites with measurable fading is ∼15 Mars years; the median is ∼8 Mars years for a linear brightening. However, at approximately half of sites with three or more repeat images, a nonlinear function with rapid initial fading followed by a slow increase in albedo provides a better fit to the fading behavior; this would predict even longer lifetimes. The predicted lifetimes of BZs are comparable to those of slope streaks, and considered representative of fading by global atmospheric dust deposition; they last significantly longer than dust devil or rover tracks, albedo features that are erased by different processes. These relatively long lifetimes indicate that the measurement of the current impact rate by Daubar et al. (Daubar, I.J. et al. [2013]. Icarus 225, 506-516. http://dx.doi.org/10.1016/j

  2. Changes in blast zone albedo patterns around new martian impact craters

    USGS Publications Warehouse

    Daubar, Ingrid J.; Dundas, Colin; Byrne, Shane; Geissler, Paul; Bart, Gwen; McEwen, Alfred S.; Russell, Patrick; Chojnacki, Matthew; Golombek, M.P.

    2016-01-01

    “Blast zones” (BZs) around new martian craters comprise various albedo features caused by the initial impact, including diffuse halos, extended linear and arcuate rays, secondary craters, ejecta patterns, and dust avalanches. We examined these features for changes in repeat images separated by up to four Mars years. Here we present the first comprehensive survey of the qualitative and quantitative changes observed in impact blast zones over time. Such changes are most likely due to airfall of high-albedo dust restoring darkened areas to their original albedo, the albedo of adjacent non-impacted surfaces. Although some sites show drastic changes over short timescales, nearly half of the sites show no obvious changes over several Mars years. Albedo changes are more likely to occur at higher-latitude sites, lower-elevation sites, and at sites with smaller central craters. No correlation was seen between amount of change and Dust Cover Index, relative halo size, or historical regional albedo changes. Quantitative albedo measurements of the diffuse dark halos relative to their surroundings yielded estimates of fading lifetimes for these features. The average lifetime among sites with measurable fading is ∼15 Mars years; the median is ∼8 Mars years for a linear brightening. However, at approximately half of sites with three or more repeat images, a nonlinear function with rapid initial fading followed by a slow increase in albedo provides a better fit to the fading behavior; this would predict even longer lifetimes. The predicted lifetimes of BZs are comparable to those of slope streaks, and considered representative of fading by global atmospheric dust deposition; they last significantly longer than dust devil or rover tracks, albedo features that are erased by different processes. These relatively long lifetimes indicate that the measurement of the current impact rate by Daubar et al. (Daubar, I.J. et al. [2013]. Icarus 225, 506–516. http://dx.doi.org/10

  3. Impacts of Synoptic Weather Patterns on Snow Albedo at Sites in New England

    NASA Astrophysics Data System (ADS)

    Adolph, A. C.; Albert, M. R.; Lazarcik, J.; Dibb, J. E.; Amante, J.; Price, A. N.

    2015-12-01

    Winter snow in the northeastern United States has changed over the last several decades, resulting in shallower snow packs, fewer days of snow cover and increasing precipitation falling as rain in the winter. In addition to these changes which cause reductions in surface albedo, increasing winter temperatures also lead to more rapid snow grain growth, resulting in decreased snow reflectivity. We present in-situ measurements and analyses to test the sensitivity of seasonal snow albedo to varying weather conditions at sites in New England. In particular, we investigate the impact of temperature on snow albedo through melt and grain growth, the impact of precipitation event frequency on albedo through snow "freshening," and the impact of storm path on snow structure and snow albedo. Over three winter seasons between 2013 and 2015, in-situ snow characterization measurements were made at three non-forested sites across New Hampshire. These near-daily measurements include spectrally resolved albedo, snow optical grain size determined through contact spectroscopy, snow depth, snow density and local meteorological parameters. Combining this information with storm tracks derived from HYSPLIT modeling, we quantify the current sensitivity of northeastern US snow albedo to temperature as well as precipitation type, frequency and path. Our analysis shows that southerly winter storms result in snow with a significantly lower albedo than storms which come from across the continental US or the Atlantic Ocean. Interannual variability in temperature and statewide spatial variability in snowfall rates at our sites show the relative importance of snowfall amount and temperatures in albedo evolution over the course of the winter.

  4. Using scaling to compute moments of inertia of symmetric objects

    NASA Astrophysics Data System (ADS)

    Ricardo, Bernard

    2015-09-01

    Moment of inertia is a very important property in the study of rotational mechanics. The concept of moment of inertia is analogous to mass in the linear motion, and its calculation is routinely done through integration. This paper provides an alternative way to compute moments of inertia of rigid bodies of regular shape using their symmetrical property. This approach will be very useful and preferred for teaching rotational mechanics at the undergraduate level, as it does not require the knowledge or the application of calculus. The seven examples provided in this paper will help readers to understand clearly how to use the method.

  5. Assessment of Greenland Outlet Glacier Albedo Variability

    NASA Astrophysics Data System (ADS)

    Stroeve, J.

    2003-04-01

    Recent studies have shown that the coastal regions of the Greenland ice sheet are thinning rapidly. Analysis of passive microwave satellite data since 1979 have revealed a corresponding positive trend in the areal extent of melt. This trend was emphasized in 2002, when the total area of surface melt on the Greenland ice sheet surpased the maximum melt extent from the past 24 years by more than 9%. Increases in coastal temperatures have certainly contributed to melting near the margins. However, the high rate of thinning in the coastal regions, up to several m/yr, cannot be explained by increases in temperatures alone. Some of the thinning is likely creep thinning resulting from discharge velocities that exceed balance velocities. In order to better understand the role of ablation in the recent thinning rates, the variability in the surface albedo at four outlet glaciers is analyzed from 1981 to 2000 using the AVHRR Polar Pathfinder data set. The four glaciers analyzed are the following: Storstrommen (77N, 23W), Kangerdlugssuaq (68N, 33W), Petermann (81N, 62W) and Jakobshavn (69N, 50W). Clear sky albedo changes over time from May through September for the period 1981-2000 are presented. These months are chosen in order to capture the full cycle of melt onset and refreeze. The albedo record at the glaciers shows large seasonal and interannual variability. Resuls indicate a steady decrease in surface albedo during the summer months from 1981 to 2000, particularly in the Jakobshavn drainage basin.

  6. Correction of broadband snow albedo measurements affected by unknown slope and sensor tilts

    NASA Astrophysics Data System (ADS)

    Weiser, Ursula; Olefs, Marc; Schöner, Wolfgang; Weyss, Gernot; Hynek, Bernhard

    2016-04-01

    Geometric effects induced by the underlying terrain slope or by tilt errors of the radiation sensors lead to an erroneous measurement of snow or ice albedo. Consequently, artificial diurnal albedo variations in the order of 1-20 % are observed. The present paper proposes a general method to correct tilt errors of albedo measurements in cases where tilts of both the sensors and the slopes are not accurately measured or known. We demonstrate that atmospheric parameters for this correction model can either be taken from a nearby well-maintained and horizontally levelled measurement of global radiation or alternatively from a solar radiation model. In a next step the model is fitted to the measured data to determine tilts and directions of sensors and the underlying terrain slope. This then allows us to correct the measured albedo, the radiative balance and the energy balance. Depending on the direction of the slope and the sensors a comparison between measured and corrected albedo values reveals obvious over- or underestimations of albedo. It is also demonstrated that differences between measured and corrected albedo are generally highest for large solar zenith angles.

  7. Gender in Science and Engineering Faculties: Demographic Inertia Revisited.

    PubMed

    Thomas, Nicole R; Poole, Daniel J; Herbers, Joan M

    2015-01-01

    The under-representation of women on faculties of science and engineering is ascribed in part to demographic inertia, which is the lag between retirement of current faculty and future hires. The assumption of demographic inertia implies that, given enough time, gender parity will be achieved. We examine that assumption via a semi-Markov model to predict the future faculty, with simulations that predict the convergence demographic state. Our model shows that existing practices that produce gender gaps in recruitment, retention, and career progression preclude eventual gender parity. Further, we examine sensitivity of the convergence state to current gender gaps to show that all sources of disparity across the entire faculty career must be erased to produce parity: we cannot blame demographic inertia.

  8. The effect of directional inertias added to pelvis and ankle on gait

    PubMed Central

    2013-01-01

    Background Gait training robots should display a minimum added inertia in order to allow normal walking. The effect of inertias in specific directions is yet unknown. We set up two experiments to assess the effect of inertia in anteroposterior (AP) direction to the ankle and AP and mediolateral (ML) direction to the pelvis. Methods We developed an experimental setup to apply inertia in forward backward and or sideways directions. In two experiments nine healthy subjects walked on a treadmill at 1.5 km/h and 4.5 km/h with no load and with AP loads of 0.3, 1.55 and 3.5 kg to the left ankle in the first experiment and combinations of AP and ML loads on the pelvis (AP loads 0.7, 4.3 and 10.2 kg; ML loads 0.6, 2.3 and 5.3 kg). We recorded metabolic rate, EMG of major leg muscles, gait parameters and kinematics. Results & discussion Adding 1.55 kg or more inertia to the ankle in AP direction increases the pelvis acceleration and decreases the foot acceleration in AP direction both at speeds of 4.5 km/h. Adding 3.5 kg of inertia to the ankle also increases the swing time as well as AP motions of the pelvis and head-arms-trunk (HAT) segment. Muscle activity remains largely unchanged. Adding 10.2 kg of inertia to the pelvis in AP direction causes a significant decrease of the pelvis and HAT segment motions, particularly at high speeds. Also the sagittal back flexion increases. Lower values of AP inertia and ML inertias up to 5.3 kg had negligible effect. In general the found effects are larger at high speeds. Conclusions We found that inertia up to 2 kg at the ankle or 6 kg added to the pelvis induced significant changes, but since these changes were all within the normal inter subject variability we considered these changes as negligible for application as rehabilitation robotics and assistive devices. PMID:23597391

  9. Emergency Entry with One Control Torque: Non-Axisymmetric Diagonal Inertia Matrix

    NASA Technical Reports Server (NTRS)

    Llama, Eduardo Garcia

    2011-01-01

    In another work, a method was presented, primarily conceived as an emergency backup system, that addressed the problem of a space capsule that needed to execute a safe atmospheric entry from an arbitrary initial attitude and angular rate in the absence of nominal control capability. The proposed concept permits the arrest of a tumbling motion, orientation to the heat shield forward position and the attainment of a ballistic roll rate of a rigid spacecraft with the use of control in one axis only. To show the feasibility of such concept, the technique of single input single output (SISO) feedback linearization using the Lie derivative method was employed and the problem was solved for different number of jets and for different configurations of the inertia matrix: the axisymmetric inertia matrix (I(sub xx) > I(sub yy) = I(sub zz)), a partially complete inertia matrix with I(sub xx) > I(sub yy) > I(sub zz), I(sub xz) not = 0 and a realistic complete inertia matrix with I(sub xx) > I(sub yy) > I)sub zz), I(sub ij) not= 0. The closed loop stability of the proposed non-linear control on the total angle of attack, Theta, was analyzed through the zero dynamics of the internal dynamics for the case where the inertia matrix is axisymmetric (I(sub xx) > I(sub yy) = I(sub zz)). This note focuses on the problem of the diagonal non-axisymmetric inertia matrix (I(sub xx) > I(sub yy) > I(sub zz)), which is half way between the axisymmetric and the partially complete inertia matrices. In this note, the control law for this type of inertia matrix will be determined and its closed-loop stability will be analyzed using the same methods that were used in the other work. In particular, it will be proven that the control system is stable in closed-loop when the actuators only provide a roll torque.

  10. Ground albedo neutrons produced by cosmic radiations

    NASA Astrophysics Data System (ADS)

    Kodama, M.

    1983-05-01

    Day-to-day variations of cosmic-ray-produced neutron fluxes near the earth's ground surface are measured by using three sets of paraffin-moderated BF3 counters, which are installed in different locations, 3 m above ground, ground level, and 20 cm under ground. Neutron flux decreases observed by these counters when snowcover exists show that there are upward-moving neutrons, that is, ground albedo neutron near the ground surface. The amount of albedo neutrons is estimated to be about 40 percent of total neutron flux in the energy range 1-10 to the 6th eV.

  11. Inertia Estimation of Spacecraft Based on Modified Law of Conservation of Angular Momentum

    NASA Astrophysics Data System (ADS)

    Kim, Dong Hoon; Choi, Dae-Gyun; Oh, Hwa-Suk

    2010-12-01

    In general, the information of inertia properties is required to control a spacecraft. The inertia properties are changed by some activities such as consumption of propellant, deployment of solar panel, sloshing, etc. Extensive estimation methods have been investigated to obtain the precise inertia properties. The gyro-based attitude data including noise and bias needs to be compensated for improvement of attitude control accuracy. A modified estimation method based on the law of conservation of angular momentum is suggested to avoid inconvenience like filtering process for noiseeffect compensation. The conventional method is modified and beforehand estimated moment of inertia is applied to improve estimation efficiency of product of inertia. The performance of the suggested method has been verified for the case of STSAT-3, Korea Science Technology Satellite.

  12. Thermal and microstructural properties of fine-grained material at the Viking Lander 1 site

    NASA Astrophysics Data System (ADS)

    Paton, M. D.; Harri, A.-M.; Savijärvi, H.; Mäkinen, T.; Hagermann, A.; Kemppinen, O.; Johnston, A.

    2016-06-01

    As Viking Lander 1 touched down on Mars one of its footpads fully penetrated a patch of loose fine-grained drift material. The surrounding landing site, as observed by VL-1, was found to exhibit a complex terrain consisting of a crusted surface with an assortment of rocks, large dune-like drifts and smaller patches of drift material. We use a temperature sensor attached to the buried footpad and covered in fine-grained material to determine the thermal properties of drift material at the VL-1 site. The thermal properties are used to investigate the microstructure of the drift material and understand its relevance to surface-atmosphere interactions. We obtained a thermal inertia value of 103 ± 22 tiu. This value is in the upper range of previous thermal inertia estimates of martian dust as measured from orbit and is significantly lower than the regional thermal inertia of the VL-1 site, of around 283 tiu, obtained from orbit. We estimate a thermal inertia of around 263 ± 29 tiu for the duricrust at the VL-1 site. It was noted the patch of fine-grained regolith around the footpad was about 20-30 K warmer compared to similar material beyond the thermal influence of the lander. An effective diameter of 8 ± 5 μm was calculated for the particles in the drift material. This is larger than atmospheric dust and large compared to previous estimates of the drift material particle diameter. We interpret our results as the presence of a range of particle sizes, <8 μm, in the drift material with the thermal properties being controlled by a small amount of large particles (∼8 μm) and its cohesion being controlled by a large amount of smaller particles. The bulk of the particles in the drift material are therefore likely comparable in size to that of atmospheric dust. The possibility of larger particles being locked into a fine-grained material has implications for understanding the mobilisation of wind blown materials on Mars.

  13. Two-Arm Flexible Thermal Strap

    NASA Technical Reports Server (NTRS)

    Urquiza, Eugenio; Vasquez, Cristal; Rodriquez, Jose I.; Leland, Robert S.; VanGorp, Byron E.

    2011-01-01

    Airborne and space infrared cameras require highly flexible direct cooling of mechanically-sensitive focal planes. A thermal electric cooler is often used together with a thermal strap as a means to transport the thermal energy removed from the infrared detector. While effective, traditional thermal straps are only truly flexible in one direction. In this scenario, a cooling solution must be highly conductive, lightweight, able to operate within a vacuum, and highly flexible in all axes to accommodate adjustment of the focal plane while transmitting minimal force. A two-armed thermal strap using three end pieces and a twisted section offers enhanced elastic movement, significantly beyond the motion permitted by existing thermal straps. This design innovation allows for large elastic displacements in two planes and moderate elasticity in the third plane. By contrast, a more conventional strap of the same conductance offers less flexibility and asymmetrical elasticity. The two-arm configuration reduces the bending moment of inertia for a given conductance by creating the same cross-sectional area for thermal conduction, but with only half the thickness. This reduction in the thickness has a significant effect on the flexibility since there is a cubic relationship between the thickness and the rigidity or bending moment of inertia. The novelty of the technology lies in the mechanical design and manufacturing of the thermal strap. The enhanced flexibility will facilitate cooling of mechanically sensitive components (example: optical focal planes). This development is a significant contribution to the thermal cooling of optics. It is known to be especially important in the thermal control of optical focal planes due to their highly sensitive alignment requirements and mechanical sensitivity; however, many other applications exist including the cooling of gimbal-mounted components.

  14. Multi-modal albedo distributions in the ablation area of the southwestern Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Moustafa, S. E.; Rennermalm, A. K.; Smith, L. C.; Miller, M. A.; Mioduszewski, J. R.; Koenig, L. S.; Hom, M. G.; Shuman, C. A.

    2015-05-01

    Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface and, thus, meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates, earlier snowmelt, and amplified melt-albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation area albedo and meltwater production is still relatively unknown. In this study, we analyze albedo and ablation rates using in situ and remotely sensed data. Observations include (1) a new high-quality in situ spectral albedo data set collected with an Analytical Spectral Devices Inc. spectroradiometer measuring at 325-1075 nm along a 1.25 km transect during 3 days in June 2013; (2) broadband albedo at two automatic weather stations; and (3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August 2012 and 2013. We find that seasonal ablation area albedos in 2013 have a bimodal distribution, with snow and ice facies characterizing the two peaks. Our results show that a shift from a distribution dominated by high to low albedos corresponds to an observed melt rate increase of 51.5% (between 10-14 July and 20-24 July 2013). In contrast, melt rate variability caused by albedo changes before and after this shift was much lower and varied between ~10 and 30% in the melting season. Ablation area albedos in 2012 exhibited a more complex multimodal distribution, reflecting a transition from light to dark-dominated surface, as well as sensitivity to the so called "dark-band" region in southwest Greenland. In addition to a darkening surface from ice crystal growth, our findings demonstrate that seasonal changes in GrIS ablation area albedos are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. Thus, seasonal variability in ablation area albedos appears to be regulated primarily as a function

  15. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations.

    PubMed

    Wang, Tao; Peng, Shushi; Krinner, Gerhard; Ryder, James; Li, Yue; Dantec-Nédélec, Sarah; Ottlé, Catherine

    2015-01-01

    Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation) into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique) improve the simulation accuracy of mean seasonal (October throughout May) snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the magnitude of

  16. Modeling of ground albedo neutrons to investigate seasonal cosmic ray-induced neutron variations measured at high-altitude stations

    NASA Astrophysics Data System (ADS)

    Hubert, G.; Pazianotto, M. T.; Federico, C. A.

    2016-12-01

    This paper investigates seasonal cosmic ray-induced neutron variations measured over a long-term period (from 2011 to 2016) in both the high-altitude stations located in medium geomagnetic latitude and Antarctica (Pic-du-Midi and Concordia, respectively). To reinforce analysis, modeling based on ground albedo neutrons simulations of extensive air showers and the solar modulation potential was performed. Because the local environment is well known and stable over time in Antarctica, data were used to validate the modeling approach. A modeled scene representative to the Pic-du-Midi was simulated with GEANT4 for various hydrogen properties (composition, density, and wet level) and snow thickness. The orders of magnitudes of calculated thermal fluence rates are consistent with measurements obtained during summers and winters. These variations are dominant in the thermal domain (i.e., En < 0.5 eV) and lesser degree in epithermal and evaporation domains (i.e., 0.5 eV < En < 0.1 MeV and 0.1 MeV < En < 20 MeV, respectively). Cascade neutron (En > 20 MeV) is weakly impacted. The role of hydrogen content on ground albedo neutron generation was investigated with GEANT4 simulations. These investigations focused to mountain environment; nevertheless, they demonstrate the complexity of the local influences on neutron fluence rates.

  17. Selective Effects of Training Against Weight and Inertia on Muscle Mechanical Properties.

    PubMed

    Djuric, Sasa; Cuk, Ivan; Sreckovic, Sreten; Mirkov, Dragan; Nedeljkovic, Aleksandar; Jaric, Slobodan

    2016-10-01

    To explore the effects of training against mechanically different types of loads on muscle force (F), velocity (V), and power (P) outputs. Subjects practiced maximum bench throws over 8 wk against a bar predominantly loaded by approximately constant external force (weight), weight plates (weight plus inertia), or weight plates whose weight was compensated by a constant external force pulling upward (inertia). Instead of a typically applied single trial performed against a selected load, the pretest and posttest consisted of the same task performed against 8 different loads ranging from 30% to 79% of the subject's maximum strength applied by adding weight plates to the bar. That provided a range of F and V data for subsequent modeling by linear F-V regression revealing the maximum F (F-intercept), V (V-intercept), and P (P = FV/4). Although all 3 training conditions resulted in increased P, the inertia type of the training load could be somewhat more effective than weight. An even more important finding was that the P increase could be almost exclusively based on a gain in F, V, or both when weight, inertia, or weight-plus-inertia training load were applied, respectively. The inertia training load is more effective than weight in increasing P and weight and inertia may be applied for selective gains in F and V, respectively, whereas the linear F-V model obtained from loaded trials could be used for discerning among muscle F, V, and P.

  18. IAU nomenclature for albedo features on the planet Mercury

    NASA Technical Reports Server (NTRS)

    Dollfus, A.; Chapman, C. R.; Davies, M. E.; Gingerich, O.; Goldstein, R.; Guest, J.; Morrison, D.; Smith, B. A.

    1978-01-01

    The International Astronomical Union has endorsed a nomenclature for the albedo features on Mercury. Designations are based upon the mythological names related to the god Hermes; they are expressed in Latin form. The dark-hued albedo features are associated with the generic term Solitudo. The light-hued areas are designated by a single name without generic term. The 32 names adopted are allocated on the Mercury map.

  19. Orientational dynamics of a triaxial ellipsoid in simple shear flow: Influence of inertia.

    PubMed

    Rosén, Tomas; Kotsubo, Yusuke; Aidun, Cyrus K; Do-Quang, Minh; Lundell, Fredrik

    2017-07-01

    The motion of a single ellipsoidal particle in simple shear flow can provide valuable insights toward understanding suspension flows with nonspherical particles. Previously, extensive studies have been performed on the ellipsoidal particle with rotational symmetry, a so-called spheroid. The nearly prolate ellipsoid (one major and two minor axes of almost equal size) is known to perform quasiperiodic or even chaotic orbits in the absence of inertia. With small particle inertia, the particle is also known to drift toward this irregular motion. However, it is not previously understood what effects from fluid inertia could be, which is of highest importance for particles close to neutral buoyancy. Here, we find that fluid inertia is acting strongly to suppress the chaotic motion and only very weak fluid inertia is sufficient to stabilize a rotation around the middle axis. The mechanism responsible for this transition is believed to be centrifugal forces acting on fluid, which is dragged along with the rotational motion of the particle. With moderate fluid inertia, it is found that nearly prolate triaxial particles behave similarly to the perfectly spheroidal particles. Finally, we also are able to provide predictions about the stable rotational states for the general triaxial ellipsoid in simple shear with weak inertia.

  20. A new parameterization of the post-fire snow albedo effect

    NASA Astrophysics Data System (ADS)

    Gleason, K. E.; Nolin, A. W.

    2013-12-01

    Mountain snowpack serves as an important natural reservoir of water: recharging aquifers, sustaining streams, and providing important ecosystem services. Reduced snowpacks and earlier snowmelt have been shown to affect fire size, frequency, and severity in the western United States. In turn, wildfire disturbance affects patterns of snow accumulation and ablation by reducing canopy interception, increasing turbulent fluxes, and modifying the surface radiation balance. Recent work shows that after a high severity forest fire, approximately 60% more solar radiation reaches the snow surface due to the reduction in canopy density. Also, significant amounts of pyrogenic carbon particles and larger burned woody debris (BWD) are shed from standing charred trees, which concentrate on the snowpack, darken its surface, and reduce snow albedo by 50% during ablation. Although the post-fire forest environment drives a substantial increase in net shortwave radiation at the snowpack surface, driving earlier and more rapid melt, hydrologic models do not explicitly incorporate forest fire disturbance effects to snowpack dynamics. The objective of this study was to parameterize the post-fire snow albedo effect due to BWD deposition on snow to better represent forest fire disturbance in modeling of snow-dominated hydrologic regimes. Based on empirical results from winter experiments, in-situ snow monitoring, and remote sensing data from a recent forest fire in the Oregon High Cascades, we characterized the post-fire snow albedo effect, and developed a simple parameterization of snowpack albedo decay in the post-fire forest environment. We modified the recession coefficient in the algorithm: α = α0 + K exp (-nr) where α = snowpack albedo, α0 = minimum snowpack albedo (≈0.4), K = constant (≈ 0.44), -n = number of days since last major snowfall, r = recession coefficient [Rohrer and Braun, 1994]. Our parameterization quantified BWD deposition and snow albedo decay rates and

  1. Effect of inertia properties on attitude stability of nonrigid spin-stabilized spacecraft

    NASA Technical Reports Server (NTRS)

    Lang, W. E.; Young, J. P.

    1974-01-01

    The phenomenon of energy dissipation in spinning spacecraft is discussed with particular reference to its dependence on spacecraft inertia properties. Specific dissipation mechanisms are identified. The effect of external environmental factors on spin stability is also discussed. Generalized curves are presented relating system stability to the principal inertia ratio for various forms of energy dissipation. Dual-spin systems and the effect of lateral inertia asymmetry are also reviewed.

  2. Signatures of Volatiles in the Lunar Proton Albedo

    NASA Technical Reports Server (NTRS)

    Schwadron, N. A.; Wilson, J. K.; Looper, M. D.; Jordan, A. P.; Spence, H. E.; Blake, J. B.; Case, A. W.; Iwata, Y.; Kasper, J. C.; Farrell, W. M.; hide

    2015-01-01

    We find evidence for hydrated material in the lunar regolith using "albedo protons" measured with the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO). Fluxes of these albedo protons, which are emitted from the regolith due to steady bombardment by high energy radiation (Galactic Cosmic Rays), are observed to peak near the poles, and are inconsistent with the latitude trends of heavy element enrichment (e.g., enhanced Fe abundance). The latitudinal distribution of albedo protons anti-correlates with that of epithermal or high energy neutrons. The high latitude enhancement may be due to the conversion of upward directed secondary neutrons from the lunar regolith into tertiary protons due to neutron-proton collisions in hydrated regolith that is more prevalent near the poles. The CRaTER instrument may thus provide important measurements of volatile distributions within regolith at the Moon and potentially, with similar sensors and observations, at other bodies within the Solar System.

  3. Evaluation of Operational Albedo Algorithms For AVHRR, MODIS and VIIRS: Case Studies in Southern Africa

    NASA Astrophysics Data System (ADS)

    Privette, J. L.; Schaaf, C. B.; Saleous, N.; Liang, S.

    2004-12-01

    Shortwave broadband albedo is the fundamental surface variable that partitions solar irradiance into energy available to the land biophysical system and energy reflected back into the atmosphere. Albedo varies with land cover, vegetation phenological stage, surface wetness, solar angle, and atmospheric condition, among other variables. For these reasons, a consistent and normalized albedo time series is needed to accurately model weather, climate and ecological trends. Although an empirically-derived coarse-scale albedo from the 20-year NOAA AVHRR record (Sellers et al., 1996) is available, an operational moderate resolution global product first became available from NASA's MODIS sensor. The validated MODIS product now provides the benchmark upon which to compare albedo generated through 1) reprocessing of the historic AVHRR record and 2) operational processing of data from the future National Polar-Orbiting Environmental Satellite System's (NPOESS) Visible/Infrared Imager Radiometer Suite (VIIRS). Unfortunately, different instrument characteristics (e.g., spectral bands, spatial resolution), processing approaches (e.g., latency requirements, ancillary data availability) and even product definitions (black sky albedo, white sky albedo, actual or blue sky albedo) complicate the development of the desired multi-mission (AVHRR to MODIS to VIIRS) albedo time series -- a so-called Climate Data Record. This presentation will describe the different albedo algorithms used with AVHRR, MODIS and VIIRS, and compare their results against field measurements collected over two semi-arid sites in southern Africa. We also describe the MODIS-derived VIIRS proxy data we developed to predict NPOESS albedo characteristics. We conclude with a strategy to develop a seamless Climate Data Record from 1982- to 2020.

  4. Analysis on variability and trend in Antarctic sea ice albedo between 1983 and 2009

    NASA Astrophysics Data System (ADS)

    Seo, Minji; Kim, Hyun-cheol; Choi, Sungwon; Lee, Kyeong-sang; Han, Kyung-soo

    2017-04-01

    Sea ice is key parameter in order to understand the cryosphere climate change. Several studies indicate the different trend of sea ice between Antarctica and Arctic. Albedo is important factor for understanding the energy budget and factors for observing of environment changes of Cryosphere such as South Pole, due to it mainly covered by ice and snow with high albedo value. In this study, we analyzed variability and trend of long-term sea ice albedo data to understand the changes of sea ice over Antarctica. In addiction, sea ice albedo researched the relationship with Antarctic oscillation in order to determine the atmospheric influence. We used the sea ice albedo data at The Satellite Application Facility on Climate Monitoring and Antarctic Oscillation data at NOAA Climate Prediction Center (CPC). We analyzed the annual trend in albedo using linear regression to understand the spatial and temporal tendency. Antarctic sea ice albedo has two spatial trend. Weddle sea / Ross sea sections represent a positive trend (0.26% ˜ 0.04% yr-1) and Bellingshausen Amundsen sea represents a negative trend (- 0.14 ˜ -0.25%yr-1). Moreover, we performed the correlation analysis between albedo and Antarctic oscillation. As a results, negative area indicate correlation coefficient of - 0.3639 and positive area indicates correlation coefficient of - 0.0741. Theses results sea ice albedo has regional trend according to ocean. Decreasing sea ice trend has negative relationship with Antarctic oscillation, its represent a possibility that sea ice influence atmospheric factor.

  5. Validation of GEOLAND-2 Spot/vgt Albedo Products by Using Ceos Olive Methodology

    NASA Astrophysics Data System (ADS)

    Camacho de Coca, F.; Sanchez, J.; Schaaf, C.; Baret, F.; Weiss, M.; Cescatti, A.; Lacaze, R. N.

    2012-12-01

    This study evaluates the scientific merit of the global surface albedo products developed in the framework of the Geoland-2 project based on SPOT/VEGETATION observations. The methodology follows the OLIVE (On-Line Validation Exercise) approach supported by the CEOS Land Product Validation subgroup (calvalportal.ceos.org/cvp/web/olive). First, the spatial and temporal consistency of SPOT/VGT albedo products was assessed by intercomparison with reference global products (MODIS/Terra+Aqua and POLDER-3/PARASOL) for the period 2006-2007. A bulk statistical analysis over a global network of 420 homogeneous sites (BELMANIP-2) was performed and analyzed per biome types. Additional sites were included to study albedo under snow conditions. Second, the accuracy and realism of temporal variations were evaluated using a number of ground measurements from FLUXNET sites suitable for use in direct comparison to the co-located satellite data. Our results show that SPOT/VGT albedo products present reliable spatial and temporal distribution of retrievals. The SPOT/VGT albedo performs admirably with MODIS, with a mean bias and RMSE for the shortwave black-sky albedo over BELMANIP-2 sites lower than 0.006 and 0.03 (13% in relative terms) respectively, and even better for snow free pixels. Similar results were found for the white-sky albedo quantities. Discrepancies are larger when comparing with POLDER-3 products: for the shortwave black-sky albedo a mean bias of -0.014 and RMSE of 0.04 (20%) was found. This overall performance figures are however land-cover dependent and larger uncertainties were found over some biomes (or regions) or specific periods (e.g. winter in the north hemisphere). The comparison of SPOT/VGT blue-sky albedo estimates with ground measurements (mainly over Needle-leaf forest sites) show a RMSE of 0.04 and a bias of 0.003 when only snow-free pixels are considered. Moreover, this work shows that the OLIVE tool is also suitable for validation of global albedo

  6. Albedo indicating land degradation around the Badain Jaran Desert for better land resources utilization.

    PubMed

    Liu, Fengshan; Chen, Ying; Lu, Haiying; Shao, Hongbo

    2017-02-01

    Surface albedo is an easy access parameter in reflecting the status of both human disturbed soil and indirectly influenced area, whose characteristic is an important indicator in sustainable development under the background of global climate change. In this study, we employed meteorological data, MODIS 8-day BRDF/Albedo and LAI products from 2000 to 2014 to show the amelioration and mechanism around the Badain Jaran Desert. Results showed that the human-dominated afforestation activities significantly increased the leaf area index (LAI) in summer and autumn. Lower reflectance at visible band was sensed inside the desert compared with the ecozone and the lowest albedo at forested area. The contribution of soil and vegetation reflectance to surface albedo determined the linear sensitivity of albedo to LAI variation. Decreased albedo dominated the spatial-temporal pattern of the Badain Jaran Desert. This study suggested that surface albedo can be regarded as a useful index in indicating the change process and evaluating the sustainable development of biological management around the Badain Jaran Desert. Copyright © 2016. Published by Elsevier B.V.

  7. Rotationally resolved colors of the targets of NASA's Lucy mission

    NASA Astrophysics Data System (ADS)

    Emery, Joshua; Mottola, Stefano; Brown, Mike; Noll, Keith; Binzel, Richard

    2018-05-01

    We propose rotationally resolved photometry at 3.6 and 4.5 um of 5 Trojan asteroids and one Main Belt asteroid - the targets of NASA's Lucy mission. The proposed Spitzer observations are designed to meet a combination of science goals and mission support objectives. Science goals 1) Search for signatures of volatiles and/or organics on the surfaces. a. This goal includes resolving a discrepancy between previous WISE and Spitzer measurements of Trojans 2) Provide new constraints on the cause of rotational spectral heterogeneity detected on 3548 Eurybates at shorter wavelengths a. Determine whether the heterogeneity (Fig 1) extends to the 3-5 um region 3) Assess the possibility for spectral heterogeneity on the other targets a. This goal will help test the hypothesis of Wong and Brown (2015) that the near-surface interiors of Trojans differ from their surfaces 4) Thermal data at 4.5 um for the Main Belt target Donaldjohanson will refine estimates of size, albedo, and provide the first estimate of thermal inertia Mission support objectives 1) Assess scientifically optimal encounter times (viewing geometries) for the fly-bys a. Characterizing rotational spectral units now will enable the team to choose the most scientifically valuable part of the asteroid to view 2) Gather data to optimize observing parameters for Lucy instruments a. Measuring brightness in the 3 - 5 um region and resolving the discrepancy between WISE and Spitzer will enable better planning of the Lucy spectral observations in this wavelength range 3) The size, albedo, and thermal inertia of Donaldjohanson are fundamental data for planning the encounter with that Main Belt asteroid

  8. Global warming and climate forcing by recent albedo changes on Mars

    USGS Publications Warehouse

    Fenton, L.K.; Geissler, P.E.; Haberle, R.M.

    2007-01-01

    For hundreds of years, scientists have tracked the changing appearance of Mars, first by hand drawings and later by photographs. Because of this historical record, many classical albedo patterns have long been known to shift in appearance over time. Decadal variations of the martian surface albedo are generally attributed to removal and deposition of small amounts of relatively bright dust on the surface. Large swaths of the surface (up to 56 million km2) have been observed to darken or brighten by 10 per cent or more. It is unknown, however, how these albedo changes affect wind circulation, dust transport and the feedback between these processes and the martian climate. Here we present predictions from a Mars general circulation model, indicating that the observed interannual albedo alterations strongly influence the martian environment. Results indicate enhanced wind stress in recently darkened areas and decreased wind stress in brightened areas, producing a positive feedback system in which the albedo changes strengthen the winds that generate the changes. The simulations also predict a net annual global warming of surface air temperatures by ???0.65 K, enhancing dust lifting by increasing the likelihood of dust devil generation. The increase in global dust lifting by both wind stress and dust devils may affect the mechanisms that trigger large dust storm initiation, a poorly understood phenomenon, unique to Mars. In addition, predicted increases in summertime air temperatures at high southern latitudes would contribute to the rapid and steady scarp retreat that has been observed in the south polar residual ice for the past four Mars years. Our results suggest that documented albedo changes affect recent climate change and large-scale weather patterns on Mars, and thus albedo variations are a necessary component of future atmospheric and climate studies. ??2007 Nature Publishing Group.

  9. Global warming and climate forcing by recent albedo changes on Mars.

    PubMed

    Fenton, Lori K; Geissler, Paul E; Haberle, Robert M

    2007-04-05

    For hundreds of years, scientists have tracked the changing appearance of Mars, first by hand drawings and later by photographs. Because of this historical record, many classical albedo patterns have long been known to shift in appearance over time. Decadal variations of the martian surface albedo are generally attributed to removal and deposition of small amounts of relatively bright dust on the surface. Large swaths of the surface (up to 56 million km2) have been observed to darken or brighten by 10 per cent or more. It is unknown, however, how these albedo changes affect wind circulation, dust transport and the feedback between these processes and the martian climate. Here we present predictions from a Mars general circulation model, indicating that the observed interannual albedo alterations strongly influence the martian environment. Results indicate enhanced wind stress in recently darkened areas and decreased wind stress in brightened areas, producing a positive feedback system in which the albedo changes strengthen the winds that generate the changes. The simulations also predict a net annual global warming of surface air temperatures by approximately 0.65 K, enhancing dust lifting by increasing the likelihood of dust devil generation. The increase in global dust lifting by both wind stress and dust devils may affect the mechanisms that trigger large dust storm initiation, a poorly understood phenomenon, unique to Mars. In addition, predicted increases in summertime air temperatures at high southern latitudes would contribute to the rapid and steady scarp retreat that has been observed in the south polar residual ice for the past four Mars years. Our results suggest that documented albedo changes affect recent climate change and large-scale weather patterns on Mars, and thus albedo variations are a necessary component of future atmospheric and climate studies.

  10. Mars' "White Rock" feature lacks evidence of an aqueous origin: Results from Mars Global Surveyor

    USGS Publications Warehouse

    Ruff, S.W.; Christensen, P.R.; Clark, R.N.; Kieffer, H.H.; Malin, M.C.; Bandfield, J.L.; Jakosky, B.M.; Lane, M.D.; Mellon, M.T.; Presley, M.A.

    2001-01-01

    The "White Rock" feature on Mars has long been viewed as a type example for a Martian playa largely because of its apparent high albedo along with its location in a topographic basin (a crater). Data from the Mars Global Surveyor Thermal Emission Spectrometer (TES) demonstrate that White Rock is not anomalously bright relative to other Martian bright regions, reducing the significance of its albedo and weakening the analogy to terrestrial playas. Its thermal inertia value indicates that it is not mantled by a layer of loose dust, nor is it bedrock. The thermal infrared spectrum of White Rock shows no obvious features of carbonates or sulfates and is, in fact, spectrally flat. Images from the Mars Orbiter Camera show that the White Rock massifs are consolidated enough to retain slopes and allow the passage of saltating grains over their surfaces. Material appears to be shed from the massifs and is concentrated at the crests of nearby bedforms. One explanation for these observations is that White Rock is an eroded accumulation of compacted or weakly cemented aeolian sediment. Copyright 2001 by the American Geophysical Union.

  11. Dielectric and thermal modeling of Vesta's surface

    NASA Astrophysics Data System (ADS)

    Palmer, E. M.; Heggy, E.; Capria, M. T.; Tosi, F.; Russell, C. T.

    2013-09-01

    We generate a dielectric model for the surface of Vesta from thermal observations by Dawn's Visible and Infrared (VIR) mapping spectrometer. After retrieving surface temperatures from VIR data, we model thermal inertia, and derive a theoretical temperature map of Vesta's surface at a given UTC. To calculate the real part of the dielectric constant (ɛ') and the loss tangent (tg δ) we use the dielectric properties of basaltic lunar regolith as a first-order analog, assuming surface density and composition consistent with fine basaltic lunar dust. First results indicate that for the majority of the surface, ɛ' ranges from 2.0 to 2.1 from the night to day side respectively, and tg δ ranges from 1.05E-2 to 1.40E-2. While these regions are consistent with a basaltic, desiccated ~55% porous surface, we also find anomalies in the thermal inertia that may correspond to a variation in local surface density relative to the global average, and a consequent variation in the local dielectric properties.

  12. The Annual Cycle of Water Vapor on Mars as Observed by the Thermal Emission Spectrometer

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Spectra taken by the Mars Global Surveyor Thermal Emission Spectrometer (TES) have been used to monitor the latitude, longitude, and seasonal dependence of water vapor for over one full Martian year (March 1999-March 2001). A maximum in water vapor abundance is observed at high latitudes during mid-summer in both hemispheres, reaching a maximum value of approximately 100 pr-micrometer in the north and approximately 50 pr-micrometer in the south. Low water vapor abundance (<5 pr-micrometer) is observed at middle and high latitudes in the fall and winter of both hemispheres. There are large differences in the hemispheric (north versus south) and seasonal (perihelion versus aphelion) behavior of water vapor. The latitudinal and seasonal dependence of the decay of the northern summer water vapor maximum implies cross-equatorial transport of water to the southern hemisphere, while there is little or no corresponding transport during the decay of the southern hemisphere summer maximum. The latitude-longitude dependence of annually-averaged water vapor (corrected for topography) has a significant positive correlation with albedo and significant negative correlations with thermal inertia and surface pressure. Comparison of TES results with those retrieved from the Viking Orbiter Mars Atmospheric Water Detectors (MAWD) experiments shows some similar features, but also many significant differences. The southern hemisphere maximum observed by TES was not observed by MAWD and the large latitudinal gradient in annually-averaged water vapor observed by MAWD does not appear in the TES results.

  13. Effectiveness and clinical inertia in the management of hypertension in patients in Colombia.

    PubMed

    Machado-Duque, Manuel Enrique; Ramírez-Valencia, Diana Marcela; Medina-Morales, Diego Alejandro; Machado-Alba, Jorge Enrique

    2015-11-01

    Determine the effectiveness of treatment and the frequency of clinical inertia in the management of hypertension in Colombian patients. A retrospective study with prospective follow-up of individuals on antihypertensive medication who were treated on medical consultation for 1 year was conducted in 20 Colombian cities. Clinical inertia was considered when no modification of therapy occurred despite not achieving control goals. A total of 355 hypertensive patients were included. From a total of 1142 consultations, therapy was effective in 81.7% of cases. In 18.3% of the cases, the control goal was not achieved, and of these, 81.8% were considered clinical inertia. A logistic regression showed that the use of antidiabetics (odds ratio: 2.31; 95% confidence interval: 1.290-4.167; P = .008) was statistically associated with an increased risk of clinical inertia. With a determination of the frequency of inertia and the high effectiveness of antihypertensive treatment, valuable information can be provided to understand the predictors of clinical inertia. Copyright © 2015 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  14. Acquisition of Inertia by a Moving Crack

    NASA Astrophysics Data System (ADS)

    Goldman, Tamar; Livne, Ariel; Fineberg, Jay

    2010-03-01

    We experimentally investigate the dynamics of “simple” tensile cracks. Within an effectively infinite medium, a crack’s dynamics perfectly correspond to inertialess behavior predicted by linear elastic fracture mechanics. Once a crack interacts with waves that it generated at earlier times, this description breaks down. Cracks then acquire inertia and sluggishly accelerate. Crack inertia increases with crack speed v and diverges as v approaches its limiting value. We show that these dynamics are in excellent accord with an equation of motion derived in the limit of an infinite strip [M. Marder, Phys. Rev. Lett. 66, 2484 (1991)PRLTAO0031-900710.1103/PhysRevLett.66.2484].

  15. Albedo impact on the suitability of biochar systems to mitigate global warming.

    PubMed

    Meyer, Sebastian; Bright, Ryan M; Fischer, Daniel; Schulz, Hardy; Glaser, Bruno

    2012-11-20

    Biochar application to agricultural soils can change the surface albedo which could counteract the climate mitigation benefit of biochar systems. However, the size of this impact has not yet been quantified. Based on empirical albedo measurements and literature data of arable soils mixed with biochar, a model for annual vegetation cover development based on satellite data and an assessment of the annual development of surface humidity, an average mean annual albedo reduction of 0.05 has been calculated for applying 30-32 Mg ha(-1) biochar on a test field near Bayreuth, Germany. The impact of biochar production and application on the carbon cycle and on the soil albedo was integrated into the greenhouse gas (GHG) balance of a modeled pyrolysis based biochar system via the computation of global warming potential (GWP) characterization factors. The analysis resulted in a reduction of the overall climate mitigation benefit of biochar systems by 13-22% due to the albedo change as compared to an analysis which disregards the albedo effect. Comparing the use of the same quantity of biomass in a biochar system to a bioenergy district heating system which replaces natural gas combustion, bioenergy heating systems achieve 99-119% of the climate benefit of biochar systems according to the model calculation.

  16. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations

    PubMed Central

    Wang, Tao; Peng, Shushi; Krinner, Gerhard; Ryder, James; Li, Yue; Dantec-Nédélec, Sarah; Ottlé, Catherine

    2015-01-01

    Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation) into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique) improve the simulation accuracy of mean seasonal (October throughout May) snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the magnitude of

  17. Validation and application of MODIS-derived clean snow albedo and dust radiative forcing

    NASA Astrophysics Data System (ADS)

    Rittger, K. E.; Bryant, A. C.; Seidel, F. C.; Bair, E. H.; Skiles, M.; Goodale, C. E.; Ramirez, P.; Mattmann, C. A.; Dozier, J.; Painter, T.

    2012-12-01

    Snow albedo is an important control on snowmelt. Though albedo evolution of aging snow can be roughly modeled from grain growth, dust and other light absorbing impurities are extrinsic and therefore must be measured. Estimates of clean snow albedo and surface radiative forcing from impurities, which can be inferred from MODIS 500 m surface reflectance products, can provide this driving data for snowmelt models. Here we use MODSCAG (MODIS snow covered area and grain size) to estimate the clean snow albedo and MODDRFS (MODIS dust radiative forcing of snow) to estimate the additional absorbed solar radiation from dust and black carbon. With its finer spatial (20 m) and spectral (10 nm) resolutions, AVIRIS provides a way to estimate the accuracy of MODIS products and understand variability of snow albedo at a finer scale that we explore though a range of topography. The AVIRIS database includes images from late in the accumulation season through the melt season when we are most interested in changes in snow albedo. In addition to the spatial validation, we employ the best estimate of albedo from MODIS in an energy balance reconstruction model to estimate the maximum snow water equivalent. MODDRFS calculates radiative forcing only in pixels that are completely snow-covered, so we spatially interpolate the product to estimate the forcing in all pixels where MODSCAG has given us estimates of clean snow albedo. Comparisons with snow pillows and courses show better agreement when the radiative forcing from absorbing impurities is included in the energy balance reconstruction.

  18. Evolutionary sheath structure in magnetized collisionless plasma with electron inertia

    NASA Astrophysics Data System (ADS)

    Gohain, M.; Karmakar, P. K.

    2017-09-01

    A classical hydrodynamic model is methodologically formulated to see the equilibrium properties of a planar plasma sheath in two-component magnetized bounded plasma. It incorporates the weak but finite electron inertia instead of asymptotically inertialess electrons. The effects of the externally applied oblique (relative to the bulk plasma flow) magnetic field are judiciously accented. It is, for the sake of simplicity, assumed that the relevant physical parameters (plasma density, electrostatic potential, and flow velocity) vary only in a direction normal to the confining wall boundary. It is noticed for the first time that the derived Bohm condition for sheath formation is modified conjointly by the electron inertia, magnetic field, and field orientation. It is manifested that the electron inertia in the presence of plasma gyrokinetic effects slightly enhances the ion Mach threshold value (typically, M i0 ≥ 1.139) toward the sheath entrance. This flow supercriticality is in contrast with the heuristic formalism ( M i0 ≥ 1) for the zero-inertia electrons. A numerical illustrative scheme on the parametric sheath features on diverse nontrivial apposite arguments is constructed alongside ameliorative scope.

  19. Spatially Complete Global Surface Albedos Derived from Terra/MODIS Data

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Moody, Eric G.; Schaaf, Crystal B.; Platnick, Steven

    2006-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. , Over five years of land surface anisotropy, diffuse bihemispherical (white-sky) albedo and direct beam directional hemispherical (black-sky) albedo from observations acquired by the MODIS instruments aboard NASA s Terra and Aqua satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal information on the land surface s radiative characteristics. However, roughly 30% of the global land surface, on an annual equal-angle basis, is obscured due to persistent and transient cloud cover, while another 207% is obscured due to ephemeral and seasonal snow effects. This precludes the MOD43B3 albedo products from being directly used in some remote sensing and ground-based applications, climate models, and global change research projects. To provide researchers with the requisite spatially complete global snow-free land surface albedo dataset, an ecosystem-dependent temporal interpolation technique was developed to fill missing or lower quality data and snow covered values from the official MOD43B3 dataset with geophysically realistic values. The method imposes pixel-level and local regional ecosystem-dependent phenological behavior onto retrieved pixel temporal data in such a way as to maintain pixel-level spatial and spectral detail and integrity. The phenological curves are derived from statistics based on the MODIS MOD12Q1 IGBP land cover classification product geolocated with the MOD43B3 data.

  20. Combining NLCD and MODIS to create a land cover-albedo database for the continental United States

    USGS Publications Warehouse

    Wickham, J.; Barnes, Christopher A.; Nash, M.S.; Wade, T.G.

    2015-01-01

    Land surface albedo is an essential climate variable that is tightly linked to land cover, such that specific land cover classes (e.g., deciduous broadleaf forest, cropland) have characteristic albedos. Despite the normative of land-cover class specific albedos, there is considerable variability in albedo within a land cover class. The National Land Cover Database (NLCD) and the Moderate Resolution Imaging Spectroradiometer (MODIS) albedo product were combined to produce a long-term (14 years) integrated land cover-albedo database for the continental United States that can be used to examine the temporal behavior of albedo as a function of land cover. The integration identifies areas of homogeneous land cover at the nominal spatial resolution of the MODIS (MCD43A) albedo product (500 m × 500 m) from the NLCD product (30 m × 30 m), and provides an albedo data record per 500 m × 500 m pixel for 14 of the 16 NLCD land cover classes. Individual homogeneous land cover pixels have up to 605 albedo observations, and 75% of the pixels have at least 319 MODIS albedo observations (≥ 50% of the maximum possible number of observations) for the study period (2000–2013). We demonstrated the utility of the database by conducting a multivariate analysis of variance of albedo for each NLCD land cover class, showing that locational (pixel-to-pixel) and inter-annual variability were significant factors in addition to expected seasonal (intra-annual) and geographic (latitudinal) effects.

  1. Natural versus anthropogenic factors affecting low-level cloud albedo over the North Atlantic

    NASA Technical Reports Server (NTRS)

    Falkowski, Paul G.; Kim, Yongseung; Kolber, Zbigniew; Wilson, Cara; Wirick, Creighton; Cess, Robert

    1992-01-01

    Cloud albedo plays a key role in regulating earth's climate. Cloud albedo depends on column-integrated liquid water content and the density of cloud condensation nuclei, which consists primarily of submicrometer-sized aerosol sulfate particles. A comparison of two independent satellite data sets suggests that, although anthropogenic sulfate emissions may enhance cloud albedo immediately adjacent to the east coast of the United States, over the central North Atlantic Ocean the variability in albedo can be largely accounted for by natural marine and atmospheric processes that probably have remained relatively constant since the beginning of the industrial revolution.

  2. Time to wake up: reactive countermeasures to sleep inertia.

    PubMed

    Hilditch, Cassie J; Dorrian, Jillian; Banks, Siobhan

    2016-12-07

    Sleep inertia is the period of impaired performance and grogginess experienced after waking. This period of impairment is of concern to workers who are on-call, or nap during work hours, and need to perform safety-critical tasks soon after waking. While several studies have investigated the best sleep timing and length to minimise sleep inertia effects, few have focused on countermeasures -especially those that can be implemented after waking (i.e. reactive countermeasures). This structured review summarises current literature on reactive countermeasures to sleep inertia such as caffeine, light, and temperature and discusses evidence for the effectiveness and operational viability of each approach. Current literature does not provide a convincing evidence-base for a reactive countermeasure. Caffeine is perhaps the best option, although it is most effective when administered prior to sleep and is therefore not strictly reactive. Investigations into light and temperature have found promising results for improving subjective alertness; further research is needed to determine whether these countermeasures can also attenuate performance impairment. Future research in this area would benefit from study design features highlighted in this review. In the meantime, it is recommended that proactive sleep inertia countermeasures are used, and that safety-critical tasks are avoided immediately after waking.

  3. Time to wake up: reactive countermeasures to sleep inertia

    PubMed Central

    HILDITCH, Cassie J.; DORRIAN, Jillian; BANKS, Siobhan

    2016-01-01

    Sleep inertia is the period of impaired performance and grogginess experienced after waking. This period of impairment is of concern to workers who are on-call, or nap during work hours, and need to perform safety-critical tasks soon after waking. While several studies have investigated the best sleep timing and length to minimise sleep inertia effects, few have focused on countermeasures -especially those that can be implemented after waking (i.e. reactive countermeasures). This structured review summarises current literature on reactive countermeasures to sleep inertia such as caffeine, light, and temperature and discusses evidence for the effectiveness and operational viability of each approach. Current literature does not provide a convincing evidence-base for a reactive countermeasure. Caffeine is perhaps the best option, although it is most effective when administered prior to sleep and is therefore not strictly reactive. Investigations into light and temperature have found promising results for improving subjective alertness; further research is needed to determine whether these countermeasures can also attenuate performance impairment. Future research in this area would benefit from study design features highlighted in this review. In the meantime, it is recommended that proactive sleep inertia countermeasures are used, and that safety-critical tasks are avoided immediately after waking. PMID:27193071

  4. Albedo gamma-rays observation at energies above 30 MeV

    NASA Astrophysics Data System (ADS)

    Galper, A. M.; Grachev, V. M.; Dmitrenko, V. V.; Kirillov-Ugriumov, V. G.; Liakhov, V. A.; Prokhorova, L. A.; Riumin, V. V.; Ulin, S. E.

    Albedo gamma-ray observations are presented, which were carried out with the small gamma-ray telescope Elena-F on Salyut-6 at the 30-410 MeV and 50-420 MeV energy ranges. For the equatorial region from 15.0-17.5 GV, the albedo gamma-ray fluxes are 40 plus or minus 20 ph/sq m-s-sr, and the measured power law index of the differential energy spectrum is 1.6 plus or minus 0.5. The orbital station data are compared with simultaneous observations performed on a balloon, and the power law index of the differential energy spectrum of albedo gamma-rays measured by the balloon amounts to 2.1 plus or minus 0.4.

  5. Assessing spatio-temporal variability and trends in modelled and measured Greenland Ice Sheet albedo (2000-2013)

    NASA Astrophysics Data System (ADS)

    Alexander, P. M.; Tedesco, M.; Fettweis, X.; van de Wal, R. S. W.; Smeets, C. J. P. P.; van den Broeke, M. R.

    2014-12-01

    Accurate measurements and simulations of Greenland Ice Sheet (GrIS) surface albedo are essential, given the role of surface albedo in modulating the amount of absorbed solar radiation and meltwater production. In this study, we assess the spatio-temporal variability of GrIS albedo during June, July, and August (JJA) for the period 2000-2013. We use two remote sensing products derived from data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS), as well as outputs from the Modèle Atmosphérique Régionale (MAR) regional climate model (RCM) and data from in situ automatic weather stations. Our results point to an overall consistency in spatio-temporal variability between remote sensing and RCM albedo, but reveal a difference in mean albedo of up to ~0.08 between the two remote sensing products north of 70° N. At low elevations, albedo values simulated by the RCM are positively biased with respect to remote sensing products by up to ~0.1 and exhibit low variability compared with observations. We infer that these differences are the result of a positive bias in simulated bare ice albedo. MODIS albedo, RCM outputs, and in situ observations consistently indicate a decrease in albedo of -0.03 to -0.06 per decade over the period 2003-2013 for the GrIS ablation area. Nevertheless, satellite products show a decline in JJA albedo of -0.03 to -0.04 per decade for regions within the accumulation area that is not confirmed by either the model or in situ observations. These findings appear to contradict a previous study that found an agreement between in situ and MODIS trends for individual months. The results indicate a need for further evaluation of high elevation albedo trends, a reconciliation of MODIS mean albedo at high latitudes, and the importance of accurately simulating bare ice albedo in RCMs.

  6. The extreme ultraviolet albedos of the planet Mercury and of the moon

    NASA Technical Reports Server (NTRS)

    Wu, H. H.; Broadfoot, A. L.

    1977-01-01

    The albedo of the moon in the far UV was measured by Mariner 10 at a solar phase angle of 74 deg, and the geometric albedo of Mercury was measured in same wavelength range (584-1657 A) at solar phase angles ranging from 50 to 120 deg. For both the moon and Mercury there is a general increase in albedo for wavelengths decreasing from 1657 to 584 A. The ratio of the albedos of Mercury and the moon increases from about 0.6 to 0.8 in the range 600-1600 A. This merely points to a difference in the surfaces of the moon and Mercury, there being insufficient data to make any conclusions regarding the nature of the difference.

  7. Arctic sea ice albedo - A comparison of two satellite-derived data sets

    NASA Technical Reports Server (NTRS)

    Schweiger, Axel J.; Serreze, Mark C.; Key, Jeffrey R.

    1993-01-01

    Spatial patterns of mean monthly surface albedo for May, June, and July, derived from DMSP Operational Line Scan (OLS) satellite imagery are compared with surface albedos derived from the International Satellite Cloud Climatology Program (ISCCP) monthly data set. Spatial patterns obtained by the two techniques are in general agreement, especially for June and July. Nevertheless, systematic differences in albedo of 0.05 - 0.10 are noted which are most likely related to uncertainties in the simple parameterizations used in the DMSP analyses, problems in the ISCCP cloud-clearing algorithm and other modeling simplifications. However, with respect to the eventual goal of developing a reliable automated retrieval algorithm for compiling a long-term albedo data base, these initial comparisons are very encouraging.

  8. Spatially Complete Global Surface Albedos Derived from Terra/MODIS Data

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Moody, Eric G.; Platnick, Steven; Schaaf, Crystal B.

    2004-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. Recent production of land surface anisotropy, diffuse bihemispherical (white-sky) albedo and direct beam directional hemispherical (black-sky) albedo from observations acquired by the MODIS instruments aboard NASA s Terra and Aqua satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal information on the land surface's radiative characteristics. Cloud cover, which cutails retrievals, and the presence of ephemeral and seasonal snow limit the snow-free data to approximately half the global land surfaces on an annual equal-angle basis. This precludes the MOD43B3 albedo products from being used in some remote sensing and ground-based applications, climate models, and global change research projects. An ecosystem-dependent temporal interpolation technique is described that has been developed to fill missing or seasonally snow-covered data in the official MOD43B3 albedo product. The method imposes pixel-level and local regional ecosystem-dependent phenological behavior onto retrieved pixel temporal data in such a way as to maintain pixel-level spatial and spectral detail and integrity. The phenological curves are derived from statistics based on the MODIS MOD12Q1 IGBP land cover classification product geolocated with the MOD43B3 data. The resulting snow-free value-added products provide the scientific community with spatially and temporally complete global white- and black-sky surface albedo maps and

  9. Field Measured Spectral Albedo-Four Years of Data from the Western U.S. Prairie

    NASA Astrophysics Data System (ADS)

    Michalsky, Joseph J.; Hodges, Gary B.

    2013-01-01

    This paper presents an initial look at four years of spectral measurements used to calculate albedo for the Colorado prairie just east of the Rocky Mountain range foothills. Some issues associated with calculating broadband albedo from thermopile sensors are discussed demonstrating that uncorrected instrument issues have led to incorrect conclusions. Normalized Difference Vegetative Index (NDVI) is defined for the spectral instruments in this study and used to demonstrate the dramatic changes that can be monitored with this very sensitive product. Examples of albedo wavelength and solar-zenith angle dependence for different stages of vegetative growth and senescence are presented. The spectral albedo of fresh snow and its spectral and solar-zenith angle dependence are discussed and contrasted with other studies of these dependencies. We conclude that fresh snow is consistent with a Lambertian reflector over the solar incidence angles measured; this is contrary to most snow albedo results. Even a slope of a degree or two in the viewed surface can explain the asymmetry in the morning and afternoon albedos for snow and vegetation. Plans for extending these spectral measurements for albedo to longer wavelengths and to additional sites are described.

  10. DOES CLINICAL INERTIA VARY BY PERSONALIZED A1C GOAL? A STUDY OF PREDICTORS AND PREVALENCE OF CLINICAL INERTIA IN A U.S. MANAGED-CARE SETTING.

    PubMed

    Lin, Jay; Zhou, Steve; Wei, Wenhui; Pan, Chunshen; Lingohr-Smith, Melissa; Levin, Philip

    2016-02-01

    Clinical inertia is defined as failure to initiate or intensify therapy despite an inadequate treatment response. We assessed the prevalence and identified the predictors of clinical inertia among patients with type 2 diabetes (T2DM) based on personalized goals. Three hemoglobin A1c (A1C) targets (American Diabetes Association A1C <7.0%; modified Ismail-Beigi et al; and Healthcare Effectiveness Data and Information Set) were used when identifying adult patients with T2DM who experienced above-target A1C values during the index period (July 1, 2008 to June 30, 2012) in a U.S. managed-care claims database (IMPACT™). Clinical inertia was defined as no intensification of treatment during the response period. Demographic and clinical characteristics were analyzed to identify predictors of treatment intensification. Irrespective of A1C target, the majority of patients with T2DM (70.4 to 72.8%) experienced clinical inertia in the 6 months following the index event, with 5.3 to 6.2% of patients intensifying treatment with insulin. Patients with a lower likelihood of intensification were older, used >1 oral antidiabetes drug during the baseline period, and had an above-target A1C more recently. Treatment intensification was associated with patients who had point-of-service insurance, mental illness, an endocrinologist visit in the baseline period, or higher index A1C. The prevalence of clinical inertia among patients with T2DM in a U.S. managed-care setting is high and has increased over more recent years. Factors predicting increased risk of clinical inertia may help identify "at-risk" populations and assist in developing strategies to improve their management.

  11. "TNOs are Cool": A survey of the trans-Neptunian region. XII. Thermal light curves of Haumea, 2003 VS2 and 2003 AZ84 with Herschel/PACS

    NASA Astrophysics Data System (ADS)

    Santos-Sanz, P.; Lellouch, E.; Groussin, O.; Lacerda, P.; Müller, T. G.; Ortiz, J. L.; Kiss, C.; Vilenius, E.; Stansberry, J.; Duffard, R.; Fornasier, S.; Jorda, L.; Thirouin, A.

    2017-08-01

    Context. Time series observations of the dwarf planet Haumea and the Plutinos 2003 VS2 and 2003 AZ84 with Herschel/PACS are presented in this work. Thermal emission of these trans-Neptunian objects (TNOs) were acquired as part of the "TNOs are Cool" Herschel Space Observatory key programme. Aims: We search for the thermal light curves at 100 and 160 μm of Haumea and 2003 AZ84, and at 70 and 160 μm for 2003 VS2 by means of photometric analysis of the PACS data. The goal of this work is to use these thermal light curves to obtain physical and thermophysical properties of these icy Solar System bodies. Methods: When a thermal light curve is detected, it is possible to derive or constrain the object thermal inertia, phase integral and/or surface roughness with thermophysical modeling. Results: Haumea's thermal light curve is clearly detected at 100 and 160 μm. The effect of the reported dark spot is apparent at 100 μm. Different thermophysical models were applied to these light curves, varying the thermophysical properties of the surface within and outside the spot. Although no model gives a perfect fit to the thermal observations, results imply an extremely low thermal inertia (<0.5 J m-2 s-1/2 K-1, hereafter MKS) and a high phase integral (>0.73) for Haumea's surface. We note that the dark spot region appears to be only weakly different from the rest of the object, with modest changes in thermal inertia and/or phase integral. The thermal light curve of 2003 VS2 is not firmly detected at 70 μm and at 160 μm but a thermal inertia of (2 ± 0.5) MKS can be derived from these data. The thermal light curve of 2003 AZ84 is not firmly detected at 100 μm. We apply a thermophysical model to the mean thermal fluxes and to all the Herschel/PACS and Spitzer/MIPS thermal data of 2003 AZ84, obtaining a close to pole-on orientation as the most likely for this TNO. Conclusions: For the three TNOs, the thermal inertias derived from light curve analyses or from the

  12. Revisiting surface albedo changes over Greenland since 1980s using satellite data from GLASS, CLARA, MODIS, and Landsat

    NASA Astrophysics Data System (ADS)

    He, T.; Liang, S.; Zhang, Y.

    2017-12-01

    Massive melting events over Greenland have been observed over the past few decades. Accompanying the melting events are the surface albedo changes, which had temporal and spatial variations. Albedo changes over Greenland during the past few decades have been reported in previous studies with the help of satellite observations; however, magnitudes and timing in albedo trends differ greatly in those studies. This has limited our understanding of albedo change mechanisms over Greenland. In this study, we present an analysis of surface albedo change over Greenland since 1980s combining four satellite albedo datasets, namely MODIS, GLASS, CLARA, and Landsat. MODIS, GLASS, and CLARA albedo data are publicly available and Landsat albedos were derived in our earlier study trying to bridge the scale difference between coarse resolution data and ground measurements available from early 1980s. Inter-comparisons were made among the satellite albedos and against ground measurements. We have several new findings. First, trends in surface albedo change among the satellite albedo datasets generally agree with each other and with ground measurements. Second, all datasets showed negative albedo trends after 2000, but magnitudes differ greatly. Third, trends before 2000 from coarse resolution data are not significant but Landsat data observed positive albedo changes. Fourth, the turning point of albedo trend was found to be earlier than 2000. Those findings may bring new research topics on timing and magnitude, and an improved understanding mechanisms of the albedo changes over Greenland during the past few decades.

  13. Thouless-Valatin rotational moment of inertia from linear response theory

    NASA Astrophysics Data System (ADS)

    Petrík, Kristian; Kortelainen, Markus

    2018-03-01

    Spontaneous breaking of continuous symmetries of a nuclear many-body system results in the appearance of zero-energy restoration modes. These so-called spurious Nambu-Goldstone modes represent a special case of collective motion and are sources of important information about the Thouless-Valatin inertia. The main purpose of this work is to study the Thouless-Valatin rotational moment of inertia as extracted from the Nambu-Goldstone restoration mode that results from the zero-frequency response to the total-angular-momentum operator. We examine the role and effects of the pairing correlations on the rotational characteristics of heavy deformed nuclei in order to extend our understanding of superfluidity in general. We use the finite-amplitude method of the quasiparticle random-phase approximation on top of the Skyrme energy density functional framework with the Hartree-Fock-Bogoliubov theory. We have successfully extended this formalism and established a practical method for extracting the Thouless-Valatin rotational moment of inertia from the strength function calculated in the symmetry-restoration regime. Our results reveal the relation between the pairing correlations and the moment of inertia of axially deformed nuclei of rare-earth and actinide regions of the nuclear chart. We have also demonstrated the feasibility of the method for obtaining the moment of inertia for collective Hamiltonian models. We conclude that from the numerical and theoretical perspective, the finite-amplitude method can be widely used to effectively study rotational properties of deformed nuclei within modern density functional approaches.

  14. Distinguishing the albedo of exoplanets from stellar activity

    NASA Astrophysics Data System (ADS)

    Serrano, L. M.; Barros, S. C. C.; Oshagh, M.; Santos, N. C.; Faria, J. P.; Demangeon, O.; Sousa, S. G.; Lendl, M.

    2018-03-01

    Context. Light curves show the flux variation from the target star and its orbiting planets as a function of time. In addition to the transit features created by the planets, the flux also includes the reflected light component of each planet, which depends on the planetary albedo. This signal is typically referred to as phase curve and could be easily identified if there were no additional noise. As well as instrumental noise, stellar activity, such as spots, can create a modulation in the data, which may be very difficult to distinguish from the planetary signal. Aims: We analyze the limitations imposed by the stellar activity on the detection of the planetary albedo, considering the limitations imposed by the predicted level of instrumental noise and the short duration of the obervations planned in the context of the CHEOPS mission. Methods: As initial condition, we have assumed that each star is characterized by just one orbiting planet. We built mock light curves that included a realistic stellar activity pattern, the reflected light component of the planet and an instrumental noise level, which we have chosen to be at the same level as predicted for CHEOPS. We then fit these light curves to try to recover the reflected light component, assuming the activity patterns can be modeled with a Gaussian process. Results: We estimate that at least one full stellar rotation is necessary to obtain a reliable detection of the planetary albedo. This result is independent of the level of noise, but it depends on the limitation of the Gaussian process to describe the stellar activity when the light curve time-span is shorter than the stellar rotation. As an additional result, we found that with a 6.5 magnitude star and the noise level of CHEOPS, it is possible to detect the planetary albedo up to a lower limit of Rp = 0.03 R*. Finally, in presence of typical CHEOPS gaps in the simulations, we confirm that it is still possible to obtain a reliable albedo.

  15. Inertia critical layers and their impacts on nongeostrophic baroclinic instability

    NASA Astrophysics Data System (ADS)

    Shen, Bo-Wen

    We investigate the effects of critical levels (CLs) on a baroclinic flow over mountains, nongeostrophic (NG) inertia critical layer instability, and NG baroclinic instability (BI) in a three-layer atmosphere with a small Richardson number (Ri) in the middle layer. We develop a numerical wave decomposition method in Chapter 2, which is found to be useful in determining the reflection coefficient (Ref) numerically when the flow system is too complicated to obtain Ref analytically. Effects of CLs on flow over mountains are studied both analytically and numerically in Chapter 3. We define the effective inertia critical level (ICL) as the height above which inertia-gravity waves attenuate significantly. Based on numerical simulations with a broad range of Rossby number (Ro) and Ri, four wave regimes are found: (a) Regime I: inertia- gravity waves. The flow behaves like unsheared inertia- gravity waves and the effective lower ICL plays a similar role as the classical critical level (CCL) does in a nonrotating flow. (b) Regime II: combined inertia-gravity waves and baroclinic lee waves. These waves behave like those in Regime I below the lower effective ICL, and like baroclinic lee waves near the CCL. (c) Regime III: combined evanescent and baroclinic lee waves. These waves still behave like baroclinic lee waves near the CCL, but are trapped near the surface. (d) Regime IV: transient waves. NG baroclinic instability exists, as evidenced by the positive domain-averaged north-south heat flux. Wave regime IV is further investigated in Chapter 5. We identify the NG baroclinic instability in Chapter 3 as an inertia critical layer (ICLY) instability. The role of the upper inertia critical level in this instability has been studied by choosing a periodic mountain. When only the CCL and upper ICL are present in the domain, the mesoscale ICLY instability tends to occur. For a periodic mountain ridge, the ICLY instability selects the mountain's tvavelength as its wavelength of

  16. Adverse Selection and Inertia in Health Insurance Markets: When Nudging Hurts.

    PubMed

    Handel, Benjamin R

    2013-12-01

    This paper investigates consumer inertia in health insurance markets, where adverse selection is a potential concern. We leverage a major change to insurance provision that occurred at a large firm to identify substantial inertia, and develop and estimate a choice model that also quantifies risk preferences and ex ante health risk. We use these estimates to study the impact of policies that nudge consumers toward better decisions by reducing inertia. When aggregated, these improved individual-level choices substantially exacerbate adverse selection in our setting, leading to an overall reduction in welfare that doubles the existing welfare loss from adverse selection.

  17. Mapping Global Ocean Surface Albedo from Satellite Observations: Models, Algorithms, and Datasets

    NASA Astrophysics Data System (ADS)

    Li, X.; Fan, X.; Yan, H.; Li, A.; Wang, M.; Qu, Y.

    2018-04-01

    Ocean surface albedo (OSA) is one of the important parameters in surface radiation budget (SRB). It is usually considered as a controlling factor of the heat exchange among the atmosphere and ocean. The temporal and spatial dynamics of OSA determine the energy absorption of upper level ocean water, and have influences on the oceanic currents, atmospheric circulations, and transportation of material and energy of hydrosphere. Therefore, various parameterizations and models have been developed for describing the dynamics of OSA. However, it has been demonstrated that the currently available OSA datasets cannot full fill the requirement of global climate change studies. In this study, we present a literature review on mapping global OSA from satellite observations. The models (parameterizations, the coupled ocean-atmosphere radiative transfer (COART), and the three component ocean water albedo (TCOWA)), algorithms (the estimation method based on reanalysis data, and the direct-estimation algorithm), and datasets (the cloud, albedo and radiation (CLARA) surface albedo product, dataset derived by the TCOWA model, and the global land surface satellite (GLASS) phase-2 surface broadband albedo product) of OSA have been discussed, separately.

  18. Observational determination of albedo decrease caused by vanishing Arctic sea ice

    PubMed Central

    Pistone, Kristina; Eisenman, Ian; Ramanathan, V.

    2014-01-01

    The decline of Arctic sea ice has been documented in over 30 y of satellite passive microwave observations. The resulting darkening of the Arctic and its amplification of global warming was hypothesized almost 50 y ago but has yet to be verified with direct observations. This study uses satellite radiation budget measurements along with satellite microwave sea ice data to document the Arctic-wide decrease in planetary albedo and its amplifying effect on the warming. The analysis reveals a striking relationship between planetary albedo and sea ice cover, quantities inferred from two independent satellite instruments. We find that the Arctic planetary albedo has decreased from 0.52 to 0.48 between 1979 and 2011, corresponding to an additional 6.4 ± 0.9 W/m2 of solar energy input into the Arctic Ocean region since 1979. Averaged over the globe, this albedo decrease corresponds to a forcing that is 25% as large as that due to the change in CO2 during this period, considerably larger than expectations from models and other less direct recent estimates. Changes in cloudiness appear to play a negligible role in observed Arctic darkening, thus reducing the possibility of Arctic cloud albedo feedbacks mitigating future Arctic warming. PMID:24550469

  19. Observational determination of albedo decrease caused by vanishing Arctic sea ice.

    PubMed

    Pistone, Kristina; Eisenman, Ian; Ramanathan, V

    2014-03-04

    The decline of Arctic sea ice has been documented in over 30 y of satellite passive microwave observations. The resulting darkening of the Arctic and its amplification of global warming was hypothesized almost 50 y ago but has yet to be verified with direct observations. This study uses satellite radiation budget measurements along with satellite microwave sea ice data to document the Arctic-wide decrease in planetary albedo and its amplifying effect on the warming. The analysis reveals a striking relationship between planetary albedo and sea ice cover, quantities inferred from two independent satellite instruments. We find that the Arctic planetary albedo has decreased from 0.52 to 0.48 between 1979 and 2011, corresponding to an additional 6.4 ± 0.9 W/m(2) of solar energy input into the Arctic Ocean region since 1979. Averaged over the globe, this albedo decrease corresponds to a forcing that is 25% as large as that due to the change in CO2 during this period, considerably larger than expectations from models and other less direct recent estimates. Changes in cloudiness appear to play a negligible role in observed Arctic darkening, thus reducing the possibility of Arctic cloud albedo feedbacks mitigating future Arctic warming.

  20. Are the circular, dark features on Comet Borrelly's surface albedo variations or pits?

    USGS Publications Warehouse

    Nelson, R.M.; Soderblom, L.A.; Hapke, B.W.

    2004-01-01

    The highest resolution images of Comet 19P/Borrelly show many dark features which, upon casual inspection, appear to be low albedo markings, but which may also be shadows or other photometric variations caused by a depression in the local topography. In order to distinguish between these two possible interpretations we conducted a photometric analysis of three of the most prominent of these features using six of the highest quality images from the September 22, 2001 Deep Space 1 (DS1) flyby. We find that: 1. The radiance in the darkest parts of each feature increases as phase angle decreases, similarly to the radiance behavior of the higher albedo surrounding terrain. The dark features could be either fully illuminated low albedo spots or, alternatively, they could be depressions. No part of any of the three regions was in full shadow. 2. One of the regions has a radiance profile consistent with a rimmed depression, the second, with a simple depression with no rim, and the third with a low albedo spot. 3. The regolith particles are backscattering and carbon black is one of the few candidate regolith materials that might explain this low albedo. We conclude that Borrelly's surface is geologically complex to the limit of resolution of the images with a combination complex topography, pits, troughs, peaks and ridges, and some very dark albedo markings, perhaps a factor of two to three darker than the average 3-4% albedo of the surrounding terrains. Our technique utilizing measured radiance profiles through the dark regions is able to discriminate between rimmed depressions, rimless depressions and simple albedo changes not associated with topography. ?? 2003 Elsevier Inc. All rights reserved.

  1. The albedo of particles in reflection nebulae

    NASA Technical Reports Server (NTRS)

    Rush, W. F.

    1974-01-01

    The relation between the apparent angular extent of a reflection nebula and the apparent magnitude of its illuminating star was reconsidered under a less restrictive set of assumptions. A computational technique was developed which permits the use of fits to the observed m-log a values to determine the albedo of particles composing reflection nebulae, providing only that a phase function and average optical thickness are assumed. Multiple scattering, anisotropic phase functions, and illumination by the general star field are considered, and the albedo of reflection nebular particles appears to be the same as that for interstellar particles in general. The possibility of continuous fluorescence contributions to the surface brightness is also considered.

  2. Multiple Asteroid Systems: Dimensions and Thermal Properties from Spitzer Space Telescope and Ground-based Observations

    NASA Technical Reports Server (NTRS)

    Marchis, F.; Enriquez, J. E.; Emery, J. P.; Mueller, M.; Baek, M.; Pollock, J.; Assafin, M.; Matins, R. Vieira; Berthier, J.; Vachier, F.; hide

    2012-01-01

    We collected mid-IR spectra from 5.2 to 38 microns using the Spitzer Space Telescope Infrared Spectrograph of 28 asteroids representative of all established types of binary groups. Photometric light curves were also obtained for 14 of them during the Spitzer observations to provide the context of the observations and reliable estimates of their absolute magnitudes. The extracted mid-IR spectra were analyzed using a modified standard thermal model (STM) and a thermophysical model (TPM) that takes into account the shape and geometry of the large primary at the time of the Spitzer observation. We derived a reliable estimate of the size, albedo, and beaming factor for each of these asteroids, representing three main taxonomic groups: C, S, and X. For large (volume-equivalent system diameter Deq > 130 km) binary asteroids, the TPM analysis indicates a low thermal inertia (Lambda < or = approx.100 J/1/2 s/K/sq m2) and their emissivity spectra display strong mineral features, implying that they are covered with a thick layer of thermally insulating regolith. The smaller (surface-equivalent system diameter Deff < 17 km) asteroids also show some emission lines of minerals, but they are significantly weaker, consistent with regoliths with coarser grains, than those of the large binary asteroids. The average bulk densities of these multiple asteroids vary from 0.7-1.7 g/cu cm (P-, C-type) to approx. 2 g/cu cm (S-type). The highest density is estimated for the M-type (22) Kalliope (3.2 +/- 0.9 g/cu cm). The spectral energy distributions (SEDs) and emissivity spectra, made available as a supplement document, could help to constrain the surface compositions of these asteroids.

  3. Actuation of an Inertia-Coupled Rimless Wheel Model across Level Ground

    NASA Astrophysics Data System (ADS)

    Weeks, Seth Caleb

    The inertia-coupled rimless wheel model is a passive dynamic walking device which is theoretically capable of achieving highly efficient motion with no energy losses. Under non-ideal circumstances, energy losses due to air drag require the use of actuation to maintain stable motions. The Actuated Inertia-coupled Rimless Wheel Across Flat Terrain (AIRWAFT) model provides actuation to an inertia-coupled rimless wheel model across level ground to compensate for energy losses by applying hip-torque between the frame and inertia wheel via a motor. Two methods of defining the open-loop actuation are presented. Position control defines the relative position of the drum relative to the frame. Torque control specifies the amount of torque between the frame and the drum. The performance of the model was evaluated with respect to changes in various geometrical and control parameters and initial conditions. This parameter study led to the discovery of a stable, periodic motion with a cost of transport of 0.33.

  4. Cooperation is enhanced by inhomogeneous inertia in spatial prisoner's dilemma game

    NASA Astrophysics Data System (ADS)

    Chang, Shuhua; Zhang, Zhipeng; Wu, Yu'e.; Xie, Yunya

    2018-01-01

    Inertia is an important factor that cannot be ignored in the real world for some lazy individuals in the process of decision making. In this work, we introduce a simple classification mechanism of strategy changing in evolutionary prisoner's dilemma games on different topologies. In this model, a part of players update their strategies according to not only the payoff difference, but also the inertia factor, which makes nodes heterogeneous and the system inhomogeneous. Moreover, we also study the impact of the number of neighbors on the evolution of cooperation. The results show that the evolution of cooperation will be promoted to a high level when the inertia factor and the inhomogeneous system are combined. In addition, we find that the more neighbors one player has, the higher density of cooperators is sustained in the optimal position. This work could be conducive to understanding the emergence and persistence of cooperative behavior caused by the inertia factor in reality.

  5. Getting stuck in depression: the roles of rumination and emotional inertia.

    PubMed

    Koval, Peter; Kuppens, Peter; Allen, Nicholas B; Sheeber, Lisa

    2012-01-01

    Like many other mental disorders, depression is characterised by psychological inflexibility. Two instances of such inflexibility are rumination: repetitive cognitions focusing on the causes and consequences of depressive symptoms; and emotional inertia: the tendency for affective states to be resistant to change. In two studies, we tested the predictions that: (1) rumination and emotional inertia are related; and (2) both independently contribute to depressive symptoms. We examined emotional inertia of subjective affective experiences in daily life among a sample of non-clinical undergraduates (Study 1), and of affective behaviours during a family interaction task in a sample of clinically depressed and non-depressed adolescents (Study 2), and related it to self-reported rumination and depression severity. In both studies, rumination (particularly the brooding facet) and emotional inertia (particularly of sad/dysphoric affect) were positively associated, and both independently predicted depression severity. These findings demonstrate the importance of studying both cognitive and affective inflexibility in depression.

  6. Inertia coupling analysis of a self-decoupled wheel force transducer under multi-axis acceleration fields.

    PubMed

    Feng, Lihang; Lin, Guoyu; Zhang, Weigong; Dai, Dong

    2015-01-01

    Wheel force transducer (WFT), which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range.

  7. Inertia Coupling Analysis of a Self-Decoupled Wheel Force Transducer under Multi-Axis Acceleration Fields

    PubMed Central

    Feng, Lihang; Lin, Guoyu; Zhang, Weigong; Dai, Dong

    2015-01-01

    Wheel force transducer (WFT), which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range. PMID:25723492

  8. Surface features on Mars: Ground-based albedo and radar compared with Mariner 9 topography

    NASA Technical Reports Server (NTRS)

    Frey, H.

    1973-01-01

    Earth-based albedo maps of Mars were compared with Mariner 9 television data and ground-based radar profiles to investigate the nature of the bright and dark albedo features. Little correlation was found except at the boundaries of classical albedo features, where some topographic control is indicated. Wind-blown dust models for seasonal and secular albedo variations are supported, but it is not clear whether the fines are derived from bright or dark parent rock. Mars, like the Earth and Moon, has probably generated two distinct types of crustal material.

  9. Moment of Inertia by Differentiation

    ERIC Educational Resources Information Center

    Rizcallah, Joseph A.

    2015-01-01

    The calculation of the moment of inertia of an extended body, as presented in standard introductory-level textbooks, involves the evaluation of a definite integral--an operation often not fully mastered by beginners, let alone the conceptual difficulties it presents, even to the advanced student, in understanding and setting up the integral in the…

  10. Effects of fluid inertia and turbulence on force coefficients for squeeze film dampers

    NASA Technical Reports Server (NTRS)

    Andres, L. S.; Vance, J. M.

    1984-01-01

    The effects of fluid inertia and turbulence on the force coefficients of squeeze film dampers are investigated analytically. Both the convective and the temporal terms are included in the analysis of inertia effects. The analysis of turbulence is based on friction coefficients currently found in the literature for Poiseuille flow. The effect of fluid inertia on the magnitude of the radial direct inertia coefficient (i.e., to produce an apparent added mass at small eccentricity ratios, due to the temporal terms) is found to be completely reversed at large eccentricity ratios. The reversal is due entirely to the inclusion of the convective inertia terms in the analysis. Turbulence is found to produce a large effect on the direct damping coefficient at high eccentricity ratios. For the long or sealed squeeze film damper at high eccentricity ratios, the damping prediction with turbulence included is an order of magnitude higher than the laminar solution.

  11. Report on the ALPO LTP observing program. [for establishing albedo scale for lunar features

    NASA Technical Reports Server (NTRS)

    Cameron, W. S.

    1974-01-01

    Observations of lunar transient phenomena for the Association of Lunar and Planetary Observers (ALPO) are reported. The procedures for making visual observations for estimating albedo are described, and the reported albedo analyzed for lunar topographic features. It is shown that a catalog or scale of albedos can be established for each feature.

  12. Average Albedos of Close-in Super-Earths and Super-Neptunes from Statistical Analysis of Long-cadence Kepler Secondary Eclipse Data

    NASA Astrophysics Data System (ADS)

    Sheets, Holly A.; Deming, Drake

    2017-10-01

    We present the results of our work to determine the average albedo for small, close-in planets in the Kepler candidate catalog. We have adapted our method of averaging short-cadence light curves of multiple Kepler planet candidates to long-cadence data, in order to detect an average albedo for the group of candidates. Long-cadence data exist for many more candidates than the short-cadence data, and so we separate the candidates into smaller radius bins than in our previous work: 1-2 {R}\\oplus , 2-4 {R}\\oplus , and 4-6 {R}\\oplus . We find that, on average, all three groups appear darker than suggested by the short-cadence results, but not as dark as many hot Jupiters. The average geometric albedos for the three groups are 0.11 ± 0.06, 0.05 ± 0.04, and 0.23 ± 0.11, respectively, for the case where heat is uniformly distributed about the planet. If heat redistribution is inefficient, the albedos are even lower, since there will be a greater thermal contribution to the total light from the planet. We confirm that newly identified false-positive Kepler Object of Interest (KOI) 1662.01 is indeed an eclipsing binary at twice the period listed in the planet candidate catalog. We also newly identify planet candidate KOI 4351.01 as an eclipsing binary, and we report a secondary eclipse measurement for Kepler-4b (KOI 7.01) of ˜7.50 ppm at a phase of ˜0.7, indicating that the planet is on an eccentric orbit.

  13. Clear-Sky Narrowband Albedo Datasets Derived from Modis Data

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Minnis, P.; Sun-Mack, S.; Arduini, R. F.; Hong, G.

    2013-12-01

    Satellite remote sensing of clouds requires an accurate estimate of the clear-sky radiances for a given scene to detect clouds and aerosols and to retrieve their microphysical properties. Knowing the spatial and angular variability of clear-sky albedo is essential for predicting the clear-sky radiance at solar wavelengths. The Clouds and the Earth's Radiant Energy System (CERES) Project uses the near-infrared (NIR; 1.24, 1.6 or 2.13 μm) and visible (VIS; 0.63 μm) channels available on the Terra and Aqua Moderate Resolution Imaging Spectroradiometers (MODIS) to help identify clouds and retrieve their properties. Generally, clear-sky albedo for a given surface type is determined for conditions when the vegetation is either thriving or dormant and free of snow. The clear-sky albedos are derived using a radiative transfer parameterization of the impact of the atmosphere, including aerosols, on the observed reflectances. This paper presents the method of generating monthly clear-sky overhead albedo maps for both snow-free and snow-covered surfaces of these channels using one year of MODIS (Moderate Resolution Imaging Spectroradiometer) CERES products. Maps of 1.24 and 1.6 μm are being used as the background to help retrieve cloud properties (e.g., effective particle size, optical depth) in CERES cloud retrievals in both snow-free and snow-covered conditions.

  14. Smoothelin expression in the gastrointestinal tract: implication in colonic inertia.

    PubMed

    Chan, Owen T M; Chiles, Lauren; Levy, Mary; Zhai, Jing; Yerian, Lisa M; Xu, Haodong; Xiao, Shu-Yuan; Soffer, Edy E; Conklin, Jeffrey L; Dhall, Deepti; Kahn, Melissa E; Balzer, Bonnie L; Amin, Mahul B; Wang, Hanlin L

    2013-10-01

    Colonic inertia is a frustrating motility disorder to patients, clinicians, and pathologists. The pathogenesis is largely unknown. The aims of this study were to: (1) characterize the expression of smoothelin, a novel smooth muscle-specific contractile protein expressed only by terminally differentiated smooth muscle cells, in the normal gastrointestinal (GI) tract; and (2) determine whether smoothelin is aberrantly expressed in patients with colonic inertia. A total of 57 resections of the normal GI tract (distal esophagus to left colon) were obtained from patients without GI motor dysfunction. Sixty-one colon resections were obtained from patients with a clinical diagnosis of colonic inertia. Smoothelin immunostaining was conducted on full-thickness tissue sections. In the nondysmotile controls, strong and diffuse cytoplasmic staining for smoothelin was observed in both the inner circular and outer longitudinal layers of the muscularis propria (MP) throughout the entire GI tract. The muscularis mucosae (MM) and muscular vessel walls were either completely negative or only patchily and weakly stained. The 1 exception to this pattern was observed in the distal esophagus, in which the MM was also diffusely and strongly stained. In cases with colonic inertia, a moderate to marked reduction of smoothelin immunoreactivity was observed in 15 of 61 (24.6%) colon resections, selectively seen in the outer layer of the MP. The data demonstrate that smoothelin is differentially expressed in the MP and MM of the normal GI tract and suggest that defective smoothelin expression may play a role in the pathogenesis of colonic inertia in a subset of patients.

  15. Albedo of an irradiated plane-parallel atmosphere with finite optical depth

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2018-03-01

    We analytically derive albedo for a plane-parallel atmosphere with finite optical depth, irradiated by an external source, under the local thermodynamic equilibrium approximation. Albedo is expressed as a function of the photon destruction probability ɛ and optical depth τ, with several parameters such as dilution factors of the external source. In the particular case of the infinite optical depth, albedo A is expressed as A=[1 + (1-W_J/W_H)√{3ɛ}/3]/(1+√{3ɛ}), where WJ and WH are the dilution factors for the mean intensity and Eddington flux, respectively. An example of a model atmosphere is also presented under a gray approximation.

  16. [Characteristics and numerical simulation of surface albedo in temperate desert steppe in Inner Mongolia].

    PubMed

    Yang, Fu-lin; Zhou, Guang-sheng; Zhang, Feng; Wang, Feng-yu; Bao, Fang; Ping, Xiao-yan

    2009-12-01

    Based on the meteorological and biological observation data from the temperate desert steppe ecosystem research station in Sunitezuoqi of Inner Mongolia during growth season (from May 1st to October 15th, 2008), the diurnal and seasonal characteristics of surface albedo in the steppe were analyzed, with related model constructed. In the steppe, the diurnal variation of surface albedo was mainly affected by solar altitude, being higher just after sunrise and before sunset and lower in midday. During growth season, the surface albedo was from 0.20 to 0.34, with an average of 0.25, and was higher in May, decreased in June, kept relatively stable from July to September, and increased in October. This seasonal variation was related to the phenology of canopy leaf, and affected by precipitation process. Soil water content (SWC) and leaf area index (LAI) were the key factors affecting the surface albedo. A model for the surface albedo responding to SWC and LAI was developed, which showed a good performance in consistent between simulated and observed surface albedo.

  17. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility

    NASA Astrophysics Data System (ADS)

    McFarlane, S. A.; Gaustad, K. L.; Mlawer, E. J.; Long, C. N.; Delamere, J.

    2011-09-01

    We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM) facility at the Southern Great Plains (SGP) site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs), four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated) can be identified. A normalized difference vegetation index (NDVI) is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs) and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  18. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility

    NASA Astrophysics Data System (ADS)

    McFarlane, S. A.; Gaustad, K. L.; Mlawer, E. J.; Long, C. N.; Delamere, J.

    2011-05-01

    We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM) facility at the Southern Great Plains (SGP) site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs), four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated) can be identified. A normalized difference vegetation index (NDVI) is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs) and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  19. Use of Moderate-Resolution Imaging Spectroradiometer bidirectional reflectance distribution function products to enhance simulated surface albedos

    NASA Astrophysics Data System (ADS)

    Roesch, Andreas; Schaaf, Crystal; Gao, Feng

    2004-06-01

    Moderate-Resolution Imaging Spectroradiometer (MODIS) surface albedo at high spatial and spectral resolution is compared with other remotely sensed climatologies, ground-based data, and albedos simulated with the European Center/Hamburg 4 (ECHAM4) global climate model at T42 resolution. The study demonstrates the importance of MODIS data in assessing and improving albedo parameterizations in weather forecast and climate models. The remotely sensed PINKER surface albedo climatology follows the MODIS estimates fairly well in both the visible and near-infrared spectra, whereas ECHAM4 simulates high positive albedo biases over snow-covered boreal forests and the Himalayas. In contrast, the ECHAM4 albedo is probably too low over the Sahara sand desert and adjacent steppes. The study clearly indicates that neglecting albedo variations within T42 grid boxes leads to significant errors in the simulated regional climate and horizontal fluxes, mainly in mountainous and/or snow-covered regions. MODIS surface albedo at 0.05 resolution agrees quite well with in situ field measurements collected at Baseline Surface Radiation Network (BSRN) sites during snow-free periods, while significant positive biases are found under snow-covered conditions, mainly due to differences in the vegetation cover at the BSRN site (short grass) and the vegetation within the larger MODIS grid box. Black sky (direct beam) albedo from the MODIS bidirectional reflectance distribution function model captures the diurnal albedo cycle at BSRN sites with sufficient accuracy. The greatest negative biases are generally found when the Sun is low. A realistic approach for relating albedo and zenith angle has been proposed. Detailed evaluations have demonstrated that ignoring the zenith angle dependence may lead to significant errors in the surface energy balance.

  20. Effect of land cover change on snow free surface albedo across the continental United States

    EPA Science Inventory

    Land cover changes (e.g., forest to grassland) affect albedo, and changes in albedo can influence radiative forcing (warming, cooling). We empirically tested albedo response to land cover change for 130 locations across the continental United States using high resolution (30 m-&t...

  1. Estimation of snow albedo reduction by light absorbing impurities using Monte Carlo radiative transfer model

    NASA Astrophysics Data System (ADS)

    Sengupta, D.; Gao, L.; Wilcox, E. M.; Beres, N. D.; Moosmüller, H.; Khlystov, A.

    2017-12-01

    Radiative forcing and climate change greatly depends on earth's surface albedo and its temporal and spatial variation. The surface albedo varies greatly depending on the surface characteristics ranging from 5-10% for calm ocean waters to 80% for some snow-covered areas. Clean and fresh snow surfaces have the highest albedo and are most sensitive to contamination with light absorbing impurities that can greatly reduce surface albedo and change overall radiative forcing estimates. Accurate estimation of snow albedo as well as understanding of feedbacks on climate from changes in snow-covered areas is important for radiative forcing, snow energy balance, predicting seasonal snowmelt, and run off rates. Such information is essential to inform timely decision making of stakeholders and policy makers. Light absorbing particles deposited onto the snow surface can greatly alter snow albedo and have been identified as a major contributor to regional climate forcing if seasonal snow cover is involved. However, uncertainty associated with quantification of albedo reduction by these light absorbing particles is high. Here, we use Mie theory (under the assumption of spherical snow grains) to reconstruct the single scattering parameters of snow (i.e., single scattering albedo ῶ and asymmetry parameter g) from observation-based size distribution information and retrieved refractive index values. The single scattering parameters of impurities are extracted with the same approach from datasets obtained during laboratory combustion of biomass samples. Instead of using plane-parallel approximation methods to account for multiple scattering, we have used the simple "Monte Carlo ray/photon tracing approach" to calculate the snow albedo. This simple approach considers multiple scattering to be the "collection" of single scattering events. Using this approach, we vary the effective snow grain size and impurity concentrations to explore the evolution of snow albedo over a wide

  2. Evaluation of the MODIS Albedo Product over a Heterogeneous Agricultural Area

    NASA Technical Reports Server (NTRS)

    Sobrino, Jose Antonio; Franch, B.; Oltra-Carrio, R.; Vermote, E. F.; Fedele, E.

    2013-01-01

    In this article, the Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF)/Albedo product (MCD43) is evaluated over a heterogeneous agricultural area in the framework of the Earth Observation: Optical Data Calibration and Information Extraction (EODIX) project campaign, which was developed in Barrax (Spain) in June 2011. In this method, two models, the RossThick-LiSparse-Reciprocal (RTLSR) (which corresponds to the MODIS BRDF algorithm) and the RossThick-Maignan-LiSparse-Reciprocal (RTLSR-HS), were tested over airborne data by processing high-resolution images acquired with the Airborne Hyperspectral Scanner (AHS) sensor. During the campaign, airborne images were retrieved with different view zenith angles along the principal and orthogonal planes. Comparing the results of applying the models to the airborne data with ground measurements, we obtained a root mean square error (RMSE) of 0.018 with both RTLSR and RTLSR-HS models. The evaluation of the MODIS BRDF/Albedo product (MCD43) was performed by comparing satellite images with AHS estimations. The results reported an RMSE of 0.04 with both models. Additionally, taking advantage of a homogeneous barley pixel, we compared in situ albedo data to satellite albedo data. In this case, the MODIS albedo estimation was (0.210 +/- 0.003), while the in situ measurement was (0.204 +/- 0.003). This result shows good agreement in regard to a homogeneous pixel.

  3. Adapted head- and eye-movement responses to added-head inertia

    NASA Technical Reports Server (NTRS)

    Gauthier, G. M.; Martin, B. J.; Stark, L. W.

    1986-01-01

    Adaptation to inertia added to the head was studied in men by mounting masses on a rigidly attached helmet until two- to ten-fold increases of inertia were produced, while an overhead suspension compensated for the weights. The observed changes in the eye and head movement coordination included increased head movement latencies, as well as changes in the eye movement amplitude, and later stabilizing alternate contractions of the neck muscles. Oscillopsia, or continual displacement or instability of the visual world, which is a symptom of a breakdown of space constancy, was prominent and consistent in the perceptual reports of the subjects. Although adaptation resulting from adding inertia to the head occurred much faster than that induced by adding prisms or lenses, it has similar perceptual and motor components that may be objectively studied in detail.

  4. Direct real-time neural evidence for task-set inertia.

    PubMed

    Evans, Lisa H; Herron, Jane E; Wilding, Edward L

    2015-03-01

    One influential explanation for the costs incurred when switching between tasks is that they reflect interference arising from completing the previous task-known as task-set inertia. We report a novel approach for assessing task-set inertia in a memory experiment using event-related potentials (ERPs). After a study phase, participants completed a test block in which they switched between a memory task (retrieving information from the study phase) and a perceptual task. These tasks alternated every two trials. An ERP index of the retrieval of study information was evident in the memory task. It was also present on the first trial of the perceptual task but was markedly attenuated on the second. Moreover, this task-irrelevant ERP activity was positively correlated with a behavioral cost associated with switching between tasks. This real-time measure of neural activity thus provides direct evidence of task-set inertia, its duration, and the functional role it plays in switch costs. © The Author(s) 2015.

  5. Compositional Variation in Large-Diameter Low-Albedo asteroids

    NASA Astrophysics Data System (ADS)

    Vilas, F.; Jarvis, K. S.; Thibault, C. A.; Sawyer, S. R.

    2000-12-01

    Age dating of meteorites indicates that the Solar System was subjected to a major heating event 4.5 Gyr ago. Models of the effects of heating by electromagnetic induction or decay of short-lived radionuclides combined with models of the early collisional history of the Solar System after Jupiter's formation indicate that asteroids observed today can be divided into two groups by diameter. Those asteroids having diameters greater than 100 km were mixed by multiple collisions but remain as gravitationally bound rubble piles. Asteroids with diameters less than 100 km should show more compositional diversity. Vilas and Sykes (1996, Icarus, 124) have shown using ECAS photometry that this compositional difference exists. The larger diameter group should be individually homogenous, with spectral differences showing the combined effects of a primordial compositional gradient in the asteroid belt with thermal metamorphism. We address the significance of 36 rotationally-resolved spectra of larger-diameter low-albedo asteroids of the C class (and subclasses B, F, G) and P class in the visible and Near-IR spectral regions. This work was supported by the NASA Planetary Astronomy program.

  6. Time course of sleep inertia dissipation in human performance and alertness

    NASA Technical Reports Server (NTRS)

    Jewett, M. E.; Wyatt, J. K.; Ritz-De Cecco, A.; Khalsa, S. B.; Dijk, D. J.; Czeisler, C. A.

    1999-01-01

    Alertness and performance on a wide variety of tasks are impaired immediately upon waking from sleep due to sleep inertia, which has been found to dissipate in an asymptotic manner following waketime. It has been suggested that behavioural or environmental factors, as well as sleep stage at awakening, may affect the severity of sleep inertia. In order to determine the time course of sleep inertia dissipation under normal entrained conditions, subjective alertness and cognitive throughput were measured during the first 4 h after habitual waketime from a full 8-h sleep episode on 3 consecutive days. We investigated whether this time course was affected by either sleep stage at awakening or behavioural/environmental factors. Sleep inertia dissipated in an asymptotic manner and took 2-4 h to near the asymptote. Saturating exponential functions fitted the sleep inertia data well, with time constants of 0.67 h for subjective alertness and 1.17 h for cognitive performance. Most awakenings occurred out of stage rapid eye movement (REM), 2 or 1 sleep, and no effect of sleep stage at awakening on either the severity of sleep inertia or the time course of its dissipation could be detected. Subjective alertness and cognitive throughput were significantly impaired upon awakening regardless of whether subjects got out of bed, ate breakfast, showered and were exposed to ordinary indoor room light (approximately 150 lux) or whether subjects participated in a constant routine (CR) protocol in which they remained in bed, ate small hourly snacks and were exposed to very dim light (10-15 lux). These findings allow for the refinement of models of alertness and performance, and have important implications for the scheduling of work immediately upon awakening in many occupational settings.

  7. Climate changes impact the surface albedo of a forest ecosystem based on MODIS satellite data

    NASA Astrophysics Data System (ADS)

    Zoran, M. A.; Nemuc, A. V.

    2007-10-01

    Surface albedo is one of the most important biophysical parameter responsible for energy balance control and the surface temperature and boundary-layer structure of the atmosphere. Forest land surface albedo is also highly variable temporally showing both diurnal as well as seasonal variations. In forest systems, albedo controls the microclimate conditions which affects ecosystem physical, physiological, and biogeochemical processes such as energy balance, evapotranspiration, photosynthesis. Due to anthropogenic and natural factors, land cover and land use changes result is the land surfaces albedo change. The main aim of this paper is to investigate the albedo patterns due to the impact of atmospheric pollution and climate variations of a forest ecosystem Branesti-Cernica, placed to the North-East of Bucharest city, Romania based on satellite Landsat ETM+, IKONOS and MODIS data and climate station observations. Our study focuses on 3 years of data (2003-2005), each of which had a different climatic regime. As the physical climate system is very sensitive to surface albedo, forest ecosystems could significantly feedback to the projected climate change modeling scenarios through albedo changes. The results of this research have a number of applications in weather forecasting, climate change, and forest ecosystem studies.

  8. On the definition of albedo and application to irregular particles

    NASA Technical Reports Server (NTRS)

    Hanner, M. S.; Giese, R. H.; Weiss, K.; Zerull, R.

    1981-01-01

    The various definitions of albedo used in planetary astronomy are reviewed. In particular, the Bond albedo, which refers only to the reflected and refracted components, is not applicable to small particles or highly irregular particles, where diffraction is not restricted to a well-defined lobe at small scattering angles. Measured scattering functions for irregular particles are presented in a normalized form and are applied to the case of zodiacal light.

  9. A New Bond Albedo for Performing Orbital Debris Brightness to Size Transformations

    NASA Technical Reports Server (NTRS)

    Mulrooney, Mark K.; Matney, Mark J.

    2008-01-01

    We have developed a technique for estimating the intrinsic size distribution of orbital debris objects via optical measurements alone. The process is predicated on the empirically observed power-law size distribution of debris (as indicated by radar RCS measurements) and the log-normal probability distribution of optical albedos as ascertained from phase (Lambertian) and range-corrected telescopic brightness measurements. Since the observed distribution of optical brightness is the product integral of the size distribution of the parent [debris] population with the albedo probability distribution, it is a straightforward matter to transform a given distribution of optical brightness back to a size distribution by the appropriate choice of a single albedo value. This is true because the integration of a powerlaw with a log-normal distribution (Fredholm Integral of the First Kind) yields a Gaussian-blurred power-law distribution with identical power-law exponent. Application of a single albedo to this distribution recovers a simple power-law [in size] which is linearly offset from the original distribution by a constant whose value depends on the choice of the albedo. Significantly, there exists a unique Bond albedo which, when applied to an observed brightness distribution, yields zero offset and therefore recovers the original size distribution. For physically realistic powerlaws of negative slope, the proper choice of albedo recovers the parent size distribution by compensating for the observational bias caused by the large number of small objects that appear anomalously large (bright) - and thereby skew the small population upward by rising above the detection threshold - and the lower number of large objects that appear anomalously small (dim). Based on this comprehensive analysis, a value of 0.13 should be applied to all orbital debris albedo-based brightness-to-size transformations regardless of data source. Its prima fascia genesis, derived and constructed

  10. Albedo Drop on the Greenland Ice Sheet: Relative Impacts of Wet and Dry Snow Processes

    NASA Astrophysics Data System (ADS)

    Chen, J.; Polashenski, C.

    2014-12-01

    The energy balance of the Greenland Ice Sheet (GIS) is strongly impacted by changes in snow albedo. MODIS (Moderate Resolution Imaging Spectroradiometer) observations indicate that the GIS albedo has dropped since the early part of this century. We analyze data from the MODIS products MOD10A1 for broadband snow albedo and MOD09A1 for surface spectral reflectance since 2001 to better explain the physical mechanisms driving these changes. The MODIS products are filtered, and the data is masked using microwave-derived surface melt maps to isolate albedo changes due to dry snow processes from those driven by melt impacts. Results show that the majority of recent changes in the GIS albedo - even at high elevations - are driven by snow wetting rather than dry snow processes such as grain metamorphosis and aerosol impurity deposition. The spectral signature of the smaller changes occurring within dry snow areas suggests that grain metamorphosis dominates the albedo decline in these regions.

  11. 40 CFR 86.229-94 - Road load force, test weight, and inertia weight class determination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... inertia weight class determination. 86.229-94 Section 86.229-94 Protection of Environment ENVIRONMENTAL... § 86.229-94 Road load force, test weight, and inertia weight class determination. (a) Flywheels... vehicle weight (pounds) Equivalent test weight (pounds) Inertia weight class (pounds) Up-1,062 1,000 1,000...

  12. 40 CFR 86.229-94 - Road load force, test weight, and inertia weight class determination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... inertia weight class determination. 86.229-94 Section 86.229-94 Protection of Environment ENVIRONMENTAL... § 86.229-94 Road load force, test weight, and inertia weight class determination. (a) Flywheels... vehicle weight (pounds) Equivalent test weight (pounds) Inertia weight class (pounds) Up-1,062 1,000 1,000...

  13. 40 CFR 86.229-94 - Road load force, test weight, and inertia weight class determination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... inertia weight class determination. 86.229-94 Section 86.229-94 Protection of Environment ENVIRONMENTAL... § 86.229-94 Road load force, test weight, and inertia weight class determination. (a) Flywheels... vehicle weight (pounds) Equivalent test weight (pounds) Inertia weight class (pounds) Up-1,062 1,000 1,000...

  14. A Review on Inertia and Linear Friction Welding of Ni-Based Superalloys

    NASA Astrophysics Data System (ADS)

    Chamanfar, Ahmad; Jahazi, Mohammad; Cormier, Jonathan

    2015-04-01

    Inertia and linear friction welding are being increasingly used for near-net-shape manufacturing of high-value materials in aerospace and power generation gas turbines because of providing a better quality joint and offering many advantages over conventional fusion welding and mechanical joining techniques. In this paper, the published works up-to-date on inertia and linear friction welding of Ni-based superalloys are reviewed with the objective to make clarifications on discrepancies and uncertainties reported in literature regarding issues related to these two friction welding processes as well as microstructure, texture, and mechanical properties of the Ni-based superalloy weldments. Initially, the chemical composition and microstructure of Ni-based superalloys that contribute to the quality of the joint are reviewed briefly. Then, problems related to fusion welding of these alloys are addressed with due consideration of inertia and linear friction welding as alternative techniques. The fundamentals of inertia and linear friction welding processes are analyzed next with emphasis on the bonding mechanisms and evolution of temperature and strain rate across the weld interface. Microstructural features, texture development, residual stresses, and mechanical properties of similar and dissimilar polycrystalline and single crystal Ni-based superalloy weldments are discussed next. Then, application of inertia and linear friction welding for joining Ni-based superalloys and related advantages over fusion welding, mechanical joining, and machining are explained briefly. Finally, present scientific and technological challenges facing inertia and linear friction welding of Ni-based superalloys including those related to modeling of these processes are addressed.

  15. Analyzing Effect of System Inertia on Grid Frequency Forecasting Usnig Two Stage Neuro-Fuzzy System

    NASA Astrophysics Data System (ADS)

    Chourey, Divyansh R.; Gupta, Himanshu; Kumar, Amit; Kumar, Jitesh; Kumar, Anand; Mishra, Anup

    2018-04-01

    Frequency forecasting is an important aspect of power system operation. The system frequency varies with load-generation imbalance. Frequency variation depends upon various parameters including system inertia. System inertia determines the rate of fall of frequency after the disturbance in the grid. Though, inertia of the system is not considered while forecasting the frequency of power system during planning and operation. This leads to significant errors in forecasting. In this paper, the effect of inertia on frequency forecasting is analysed for a particular grid system. In this paper, a parameter equivalent to system inertia is introduced. This parameter is used to forecast the frequency of a typical power grid for any instant of time. The system gives appreciable result with reduced error.

  16. Multiplatform observations enabling albedo retrievals with high temporal resolution

    NASA Astrophysics Data System (ADS)

    Riihelä, Aku; Manninen, Terhikki; Key, Jeffrey; Sun, Qingsong; Sütterlin, Melanie; Lattanzio, Alessio; Schaaf, Crystal

    2017-04-01

    In this paper we show that combining observations from different polar orbiting satellite families (such as AVHRR and MODIS) is physically justifiable and technically feasible. Our proposed approach will lead to surface albedo retrievals at higher temporal resolution than the state of the art, with comparable or better accuracy. This study is carried out in the World Meteorological Organization (WMO) Sustained and coordinated processing of Environmental Satellite data for Climate Monitoring (SCOPE-CM) project SCM-02 (http://www.scope-cm.org/projects/scm-02/). Following a spectral homogenization of the Top-of-Atmosphere reflectances of bands 1 & 2 from AVHRR and MODIS, both observation datasets are atmospherically corrected with a coherent atmospheric profile and algorithm. The resulting surface reflectances are then fed into an inversion of the RossThick-LiSparse-Reciprocal surface bidirectional reflectance distribution function (BRDF) model. The results of the inversion (BRDF kernels) may then be integrated to estimate various surface albedo quantities. A key principle here is that the larger number of valid surface observations with multiple satellites allows us to invert the BRDF coefficients within a shorter time span, enabling the monitoring of relatively rapid surface phenomena such as snowmelt. The proposed multiplatform approach is expected to bring benefits in particular to the observation of the albedo of the polar regions, where persistent cloudiness and long atmospheric path lengths present challenges to satellite-based retrievals. Following a similar logic, the retrievals over tropical regions with high cloudiness should also benefit from the method. We present results from a demonstrator dataset of a global combined AVHRR-GAC and MODIS dataset covering the year 2010. The retrieved surface albedo is compared against quality-monitored in situ albedo observations from the Baseline Surface Radiation Network (BSRN). Additionally, the combined retrieval

  17. Scaling of rotational inertia of primate mandibles.

    PubMed

    Ross, Callum F; Iriarte-Diaz, Jose; Platts, Ellen; Walsh, Treva; Heins, Liam; Gerstner, Geoffrey E; Taylor, Andrea B

    2017-05-01

    The relative importance of pendulum mechanics and muscle mechanics in chewing dynamics has implications for understanding the optimality criteria driving the evolution of primate feeding systems. The Spring Model (Ross et al., 2009b), which modeled the primate chewing system as a forced mass-spring system, predicted that chew cycle time would increase faster than was actually observed. We hypothesized that if mandibular momentum plays an important role in chewing dynamics, more accurate estimates of the rotational inertia of the mandible would improve the accuracy with which the Spring Model predicts the scaling of primate chew cycle period. However, if mass-related momentum effects are of negligible importance in the scaling of primate chew cycle period, this hypothesis would be falsified. We also predicted that greater "robusticity" of anthropoid mandibles compared with prosimians would be associated with higher moments of inertia. From computed tomography scans, we estimated the scaling of the moment of inertia (I j ) of the mandibles of thirty-one species of primates, including 22 anthropoid and nine prosimian species, separating I j into the moment about a transverse axis through the center of mass (I xx ) and the moment of the center of mass about plausible axes of rotation. We found that across primates I j increases with positive allometry relative to jaw length, primarily due to positive allometry of jaw mass and I xx , and that anthropoid mandibles have greater rotational inertia compared with prosimian mandibles of similar length. Positive allometry of I j of primate mandibles actually lowers the predictive ability of the Spring Model, suggesting that scaling of primate chew cycle period, and chewing dynamics in general, are more strongly influenced by factors other than scaling of inertial properties of the mandible, such as the dynamic properties of the jaw muscles and neural control. Differences in cycle period scaling between chewing and locomotion

  18. A class of parallel algorithms for computation of the manipulator inertia matrix

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Bejczy, Antal K.

    1989-01-01

    Parallel and parallel/pipeline algorithms for computation of the manipulator inertia matrix are presented. An algorithm based on composite rigid-body spatial inertia method, which provides better features for parallelization, is used for the computation of the inertia matrix. Two parallel algorithms are developed which achieve the time lower bound in computation. Also described is the mapping of these algorithms with topological variation on a two-dimensional processor array, with nearest-neighbor connection, and with cardinality variation on a linear processor array. An efficient parallel/pipeline algorithm for the linear array was also developed, but at significantly higher efficiency.

  19. Partial inertia induces additional phase transition in the majority vote model.

    PubMed

    Harunari, Pedro E; de Oliveira, M M; Fiore, C E

    2017-10-01

    Explosive (i.e., discontinuous) transitions have aroused great interest by manifesting in distinct systems, such as synchronization in coupled oscillators, percolation regime, absorbing phase transitions, and more recently, the majority-vote model with inertia. In the latter, the model rules are slightly modified by the inclusion of a term depending on the local spin (an inertial term). In such a case, Chen et al. [Phys Rev. E 95, 042304 (2017)2470-004510.1103/PhysRevE.95.042304] have found that relevant inertia changes the nature of the phase transition in complex networks, from continuous to discontinuous. Here we give a further step by embedding inertia only in vertices with degree larger than a threshold value 〈k〉k^{*}, 〈k〉 being the mean system degree and k^{*} the fraction restriction. Our results, from mean-field analysis and extensive numerical simulations, reveal that an explosive transition is presented in both homogeneous and heterogeneous structures for small and intermediate k^{*}'s. Otherwise, a large restriction can sustain a discontinuous transition only in the heterogeneous case. This shares some similarities with recent results for the Kuramoto model [Phys. Rev. E 91, 022818 (2015)PLEEE81539-375510.1103/PhysRevE.91.022818]. Surprisingly, intermediate restriction and large inertia are responsible for the emergence of an extra phase, in which the system is partially synchronized and the classification of phase transition depends on the inertia and the lattice topology. In this case, the system exhibits two phase transitions.

  20. Thermophysical properties and modeling of minor bodies regoliths

    NASA Astrophysics Data System (ADS)

    Delbo, M.

    2017-12-01

    I will review recent studies of atmosphere-less Solar System minor bodies in the thermal infrared wavelengths (> 5 micron), which have seen major advances in the last few years thanks to the observations from space telescopes such as NASA's WISE and Spitzer, JAXA's Akari and ESA's Herschel. Analysis of these observations by means of numerical models allowed not only the determination of sizes and albedos for more than hundred-thousands asteroids, but also to infer, for several of these objects, the values of their thermal inertia. The latter is a sensitive indicator for the presence (or absence) of surface regolith, its grain size, porosity, and degree of compaction. These data confirm presence of regolith on all the studied asteroids, even on the rapidly rotating (period < 3 hours) ones. To exaplain this latter result, researchers invoked electrostatic forces to retain the regolith, which otherwise would be lost in space. Furthermore, it appears that thermal inertia inversely correlates with asteroid sizes, and directly correlates with their rotation periods. This can be explained by regolith density increasing with increasing depth below the surface, a phenomenon already noted of our moon. These findings will soon be tested with unprecedented detail by data from NASA's OSIRIS-REx sample return mission to the asteroid Bennu. OSIRIS-REx's instruments will map temperatures of the entire surface at different local times of the day (between 3:20am and 8:40pm) allowing fine sampling of the diurnal temperature curve. This will result in maps of the thermal inertia of the surface at 40 m spatial scale. On atmosphere-less bodies, thermal inertia controls the amplitude and rate of changes of temperature cycles, which can reach several tens of degrees and several degrees per minute, respectively. Laboratory experiments on materials analogs to those expected on asteroids show that these repeated temperature excursions cause stress on the materials, leading to their