Sample records for albumin fusion proteins

  1. Fusion protein of retinol-binding protein and albumin domain III reduces liver fibrosis

    PubMed Central

    Lee, Hongsik; Jeong, Hyeyeun; Park, Sangeun; Yoo, Wonbaek; Choi, Soyoung; Choi, Kyungmin; Lee, Min-Goo; Lee, Mihwa; Cha, DaeRyong; Kim, Young-Sik; Han, Jeeyoung; Kim, Wonkon; Park, Sun-Hwa; Oh, Junseo

    2015-01-01

    Activated hepatic stellate cells (HSCs) play a key role in liver fibrosis, and inactivating HSCs has been considered a promising therapeutic approach. We previously showed that albumin and its derivative designed for stellate cell-targeting, retinol-binding protein–albumin domain III fusion protein (referred to as R-III), inactivate cultured HSCs. Here, we investigated the mechanism of action of albumin/R-III in HSCs and examined the anti-fibrotic potential of R-III in vivo. R-III treatment and albumin expression downregulated retinoic acid (RA) signaling which was involved in HSC activation. RA receptor agonist and retinaldehyde dehydrogenase overexpression abolished the anti-fibrotic effect of R-III and albumin, respectively. R-III uptake into cultured HSCs was significantly decreased by siRNA-STRA6, and injected R-III was localized predominantly in HSCs in liver. Importantly, R-III administration reduced CCl4- and bile duct ligation-induced liver fibrosis. R-III also exhibited a preventive effect against CCl4-inducd liver fibrosis. These findings suggest that the anti-fibrotic effect of albumin/R-III is, at least in part, mediated by downregulation of RA signaling and that R-III is a good candidate as a novel anti-fibrotic drug. PMID:25864124

  2. Overproduction, purification and characterization of human interferon alpha2a-human serum albumin fusion protein produced in methilotropic yeast Pichia pastoris

    NASA Astrophysics Data System (ADS)

    Ningrum, R. A.; Santoso, A.; Herawati, N.

    2017-05-01

    Human interferon alpha2a (hIFNα2a) is a therapeutic protein that used in cancer and hepatitis B/C therapy. The main problem of using hIFNα-2a is its short elimination half life due to its low molecular weight. Development of higher molecular weight protein by albumin fusion technology is a rational strategy to solve the problem. In our previous research we constructed an open reading frame (ORF) encoding hIFNα2a-human serum albumin (HSA) fusion protein that expressed in Pichia pastoris (P. pastoris) protease deficient strain SMD1168. This research was performed to overproduce, purify and characterize the fusion protein. To overproduce the protein, cultivation was performed in buffered complex medium containing glyserol (BMGY) for 24 h and protein overproduction was applied in buffered complex medium containing methanol (BMMY) for 48 hours at 30°C. The fusion protein was purified by blue sepharose affinity chromatography. Molecular weight characterization by SDS PAGE corresponds with its theoretical size, 85 kDa. Western blot analysis demonstrated that the fusion protein was recognized by anti hIFNα2 and anti HSA monoclonal antibody as well. Amino acid sequence of the fusion protein was determined by LC MS/MS2 mass spectrometry with trypsin as proteolitic enzyme. There were three fragments that identified as hIFNα2a and seven fragments that identified as HSA. Total identified amino acids were 150 residues with 20% coverage from total residues. To conclude, hIFNα2a-HSA fusion protein was overproduced, purified and characterized. Characterization based on molecular weight, antibody recognition and amino acid sequence confirmed that the fusion protein has correct identity as theoretically thought.

  3. Fusion of small unilamellar vesicles induced by bovine serum albumin fragments.

    PubMed

    Garcia, L A; Schenkman, S; Araujo, P S; Chaimovich, H

    1983-07-01

    The limited pepsin proteolysis products of bovine serum albumin, fragment A (residues 307-586) and fragment B (residues 1-306), induced the fusion of small unilamellar vesicles of egg phosphatidyl choline at concentrations near 5 microM. Fusion was demonstrated and analyzed on the basis of: a) time-dependent changes in absorbance; b) dilution of the fluorescent label 2-(10-(1-pyrene)decanoyl) phosphatidyl choline, incorporated into a small percentage of the vesicles, as measured by the decrease in the excimer to monomer (E/M) ratio; c) increase of the average hydrodynamic radius of the liposomes, estimated by Sepharose 4B filtration, and d) the strict inverse relationship between the size of the liposomes and their E/M ratios. Albumin fragment B, like albumin, induced the formation of large aggregates in which rapid cooperative fusion produced vesicles having a large hydrodynamic radius. Fragment A did not produce large aggregates and the initial fusion products exhibited a hydrodynamic radius. Fragment A did not produce large aggregates and the initial fusion products exhibited a hydrodynamic radius smaller than those obtained with fragment B. Albumin and fragments A and B are fusogenic only at pH below 4.0. These data discussed in terms of a general model for a signal-dependent protein-induced membrane fusion.

  4. Expression, purification, and lipolytic activity of recombinant human serum albumin fusion proteins with one domain of human growth hormone in Pichia pastoris.

    PubMed

    Wang, Furong; Wu, Min; Liu, Wenhui; Shen, Qi; Sun, Hongying; Chen, Shuqing

    2013-01-01

    Human growth hormone (hGH) can mobilize lipid and inhibit the synthesis of triglycerides. However, it is not a potentially useful drug for treating obesity because it has many other actions resulting in several side effects. Here, we report a novel approach to develop the lipolytic function of hGH. The amino terminus of hGH was replaced by an inactive protein so that the actions unrelated to lipolytic function would be avoided. The fusion genes encoding human serum albumin (HSA) and lipolytic domain of hGH were constructed and expressed in Pichia pastoris. The recombinant proteins were purified and characterized by SDS-PAGE and Western blot. The preliminary stability tests demonstrated that HSA-hGH166-191 and HSA-hGH177-191 were stable at different pH levels after four days at 37°C. Lipolytic activity assay revealed that fusion proteins could increase the amounts of glycerol released from the isolated adipocytes. The HSA fusion proteins constructed in this work can be further developed as antiobesity agents. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  5. Incorporation of albumin fusion proteins into fibrin clots in vitro and in vivo: comparison of different fusion motifs recognized by factor XIIIa.

    PubMed

    Sheffield, William P; Eltringham-Smith, Louise J

    2011-12-20

    The transglutaminase activated factor XIII (FXIIIa) acts to strengthen pathological fibrin clots and to slow their dissolution, in part by crosslinking active α(2)-antiplasmin (α(2)AP) to fibrin. We previously reported that a yeast-derived recombinant fusion protein comprising α(2)AP residues 13-42 linked to human serum albumin (HSA) weakened in vitro clots but failed to become specifically incorporated into in vivo clots. In this study, our aims were to improve both the stability and clot localization of the HSA fusion protein by replacing α(2)AP residues 13-42 with shorter sequences recognized more effectively by FXIIIa. Expression plasmids were prepared encoding recombinant HSA with the following N-terminal 23 residue extensions: H(6)NQEQVSPLTLLAG(4)Y (designated XL1); H(6)DQMMLPWAVTLG(4)Y (XL2); H(6)WQHKIDLPYNGAG(4)Y (XL3); and their 17 residue non-His-tagged equivalents (XL4, XL5, and XL6). The HSA moiety of XL4- to XL6-HSA proteins was C-terminally His-tagged. All chimerae were efficiently secreted from transformed Pichia pastoris yeast except XL3-HSA, and following nickel chelate affinity purification were found to be intact by amino acid sequencing, as was an N-terminally His-tagged version of α(2)AP(13-42)-HSA. Of the proteins tested, XL5-HSA was cross-linked to biotin pentylamine (BPA) most rapidly by FXIIIa, and was the most effective competitor of α(2)AP crosslinking not only to BPA but also to plasma fibrin clots. In the mouse ferric chloride vena cava thrombosis model, radiolabeled XL5-HSA was retained in the clot to a greater extent than recombinant HSA. In the rabbit jugular vein stasis thrombosis model, XL5-HSA was also retained in the clot, in a urea-insensitive manner indicative of crosslinking to fibrin, to a greater extent than recombinant HSA. Fusion protein XL5-HSA (DQMMLPWAVTLG4Y-HSAH6) was found to be more active as a substrate for FXIIIa-mediated transamidation than seven other candidate fusion proteins in vitro. The improved

  6. Fusion of small unilamellar vesicles induced by a serum albumin fragment of molecular weight 9000.

    PubMed

    Garcia, L A; Araújo, P S; Chaimovich, H

    1984-05-16

    A peptide (P-9) comprising amino acids 307 to 385 of bovine serum albumin induced the fusion of small unilamellar vesicles of phosphatidylcholine at low pH. Upon acidification P-9 exhibited a ultraviolet differential spectrum characteristic of hydrophilic exposure of chromophores. This conformational change, and the structure of P-9 composed of three amphiphilic helixes , suggested a general working hypothesis for the description of protein-induced membrane fusion.

  7. Thioredoxin-albumin fusion protein prevents copper enhanced zinc-induced neurotoxicity via its antioxidative activity.

    PubMed

    Tanaka, Ken-Ichiro; Shimoda, Mikako; Chuang, Victor T G; Nishida, Kento; Kawahara, Masahiro; Ishida, Tatsuhiro; Otagiri, Masaki; Maruyama, Toru; Ishima, Yu

    2018-01-15

    Zinc (Zn) is a co-factor for a vast number of enzymes, and functions as a regulator for immune mechanism and protein synthesis. However, excessive Zn release induced in pathological situations such as stroke or transient global ischemia is toxic. Previously, we demonstrated that the interaction of Zn and copper (Cu) is involved in the pathogenesis of Alzheimer's disease and vascular dementia. Furthermore, oxidative stress has been shown to play a significant role in the pathogenesis of various metal ions induced neuronal death. Thioredoxin-Albumin fusion (HSA-Trx) is a derivative of thioredoxin (Trx), an antioxidative protein, with improved plasma retention and stability of Trx. In this study, we examined the effect of HSA-Trx on Cu 2+ /Zn 2+ -induced neurotoxicity. Firstly, HSA-Trx was found to clearly suppress Cu 2+ /Zn 2+ -induced neuronal cell death in mouse hypothalamic neuronal cells (GT1-7 cells). Moreover, HSA-Trx markedly suppressed Cu 2+ /Zn 2+ -induced ROS production and the expression of oxidative stress related genes, such as heme oxygenase-1. In contrast, HSA-Trx did not affect the intracellular levels of both Cu 2+ and Zn 2+ after Cu 2+ /Zn 2+ treatment. Finally, HSA-Trx was found to significantly suppress endoplasmic reticulum (ER) stress response induced by Cu 2+ /Zn 2+ treatment in a dose dependent manner. These results suggest that HSA-Trx counteracted Cu 2+ /Zn 2+ -induced neurotoxicity by suppressing the production of ROS via interfering the related gene expressions, in addition to the highly possible radical scavenging activity of the fusion protein. Based on these findings, HSA-Trx has great potential as a promising therapeutic agent for the treatment of refractory neurological diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. [Construction and expression of recombinant human serum albumin-EPO fusion protein].

    PubMed

    Huang, Ying-Chun; Gou, Xing-Hua; Han, Lei; Li, De-Hua; Zhao, Lan-Ying; Wu, Qia-Qing

    2011-05-01

    OBJECTIVE To construct the recombinant plasmid pCI-HLE encoding human serum album-EPO (HSA-EPO) fusion protein and to express it in CHO cell. The cDNA encoding human serum album and EPO were amplified by PCR, and then spliced with the synsitic DNA fragment encoding GS (GGGGS), by overlap PCR extension to form LEPO. After BamH I digestion, the HSA and LEPO was ligated to generate the fusion HSA-EPO gene and was then cloned into the expression vector pCI-neo to generate the recombinant plasmid pCI-HLE. The plasmid pCI-HLE was transfected into CHO cell by liposome protocol. Then, the recombinant cells were screened by G418 and identified by PCR and Western blot. Expression of fusion protein was evaluated by Enzyme Linked Immunosorbent Assay (ELISA). Restrictive enzymes digestion and DNA sequencing revealed that HSA-EPO fusion gene was cloned into expression vector pCI-neo successfully. PCR and Western blot analysis confirmed that the fusion gene was integrated in the genome of CHO cells and expressed successfully. The HSA-EPO production varied from 86 Iu/(mL x 10(6) x 72 h) to 637 IU/(mLx 10(6) x 72 h). The results confirmed that HSA-EPO fusion gene can be expressed in the CHO cells, with EPO immunogenicity, which could serve as foundation for the development of long-lasting recombinant HSA-EPO protein.

  9. Superior serum half life of albumin tagged TNF ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Nicole; Schneider, Britta; Pfizenmaier, Klaus

    2010-06-11

    Due to their immune stimulating and apoptosis inducing properties, ligands of the TNF family attract increasing interest as therapeutic proteins. A general limitation of in vivo applications of recombinant soluble TNF ligands is their notoriously rapid clearance from circulation. To improve the serum half life of the TNF family members TNF, TWEAK and TRAIL, we genetically fused soluble variants of these molecules to human serum albumin (HSA). The serum albumin-TNF ligand fusion proteins were found to be of similar bioactivity as the corresponding HSA-less counterparts. Upon intravenous injection (i.v.), serum half life of HSA-TNF ligand fusion proteins, as determined bymore » ELISA, was around 15 h as compared to approximately 1 h for all of the recombinant control TNF ligands without HSA domain. Moreover, serum samples collected 6 or 24 h after i.v. injection still contained high TNF ligand bioactivity, demonstrating that there is only limited degradation/inactivation of circulating HSA-TNF ligand fusion proteins in vivo. In a xenotransplantation model, significantly less of the HSA-TRAIL fusion protein compared to the respective control TRAIL protein was required to achieve inhibition of tumor growth indicating that the increased half life of HSA-TNF ligand fusion proteins translates into better therapeutic action in vivo. In conclusion, our data suggest that genetic fusion to serum albumin is a powerful and generally applicable mean to improve bioavailability and in vivo activity of TNF ligands.« less

  10. Biologically active protein fragments containing specific binding regions of serum albumin or related proteins

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1998-01-01

    In accordance with the present invention, biologically active protein fragments can be constructed which contain only those specific portions of the serum albumin family of proteins such as regions known as subdomains IIA and IIIA which are primarily responsible for the binding properties of the serum albumins. The artificial serums that can be prepared from these biologically active protein fragments are advantageous in that they can be produced much more easily than serums containing the whole albumin, yet still retain all or most of the original binding potential of the full albumin proteins. In addition, since the protein fragment serums of the present invention can be made from non-natural sources using conventional recombinant DNA techniques, they are far safer than serums containing natural albumin because they do not carry the potentially harmful viruses and other contaminants that will be found in the natural substances.

  11. 21 CFR 862.1645 - Urinary protein or albumin (nonquantitative) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Urinary protein or albumin (nonquantitative) test... Chemistry Test Systems § 862.1645 Urinary protein or albumin (nonquantitative) test system. (a) Identification. A urinary protein or albumin (nonquantitative) test system is a device intended to identify...

  12. 21 CFR 862.1645 - Urinary protein or albumin (nonquantitative) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Urinary protein or albumin (nonquantitative) test... Chemistry Test Systems § 862.1645 Urinary protein or albumin (nonquantitative) test system. (a) Identification. A urinary protein or albumin (nonquantitative) test system is a device intended to identify...

  13. 21 CFR 862.1645 - Urinary protein or albumin (nonquantitative) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Urinary protein or albumin (nonquantitative) test... Chemistry Test Systems § 862.1645 Urinary protein or albumin (nonquantitative) test system. (a) Identification. A urinary protein or albumin (nonquantitative) test system is a device intended to identify...

  14. 21 CFR 862.1645 - Urinary protein or albumin (nonquantitative) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Urinary protein or albumin (nonquantitative) test... Chemistry Test Systems § 862.1645 Urinary protein or albumin (nonquantitative) test system. (a) Identification. A urinary protein or albumin (nonquantitative) test system is a device intended to identify...

  15. Hendra virus fusion protein transmembrane domain contributes to pre-fusion protein stability

    PubMed Central

    Webb, Stacy; Nagy, Tamas; Moseley, Hunter; Fried, Michael; Dutch, Rebecca

    2017-01-01

    Enveloped viruses utilize fusion (F) proteins studding the surface of the virus to facilitate membrane fusion with a target cell membrane. Fusion of the viral envelope with a cellular membrane is required for release of viral genomic material, so the virus can ultimately reproduce and spread. To drive fusion, the F protein undergoes an irreversible conformational change, transitioning from a metastable pre-fusion conformation to a more thermodynamically stable post-fusion structure. Understanding the elements that control stability of the pre-fusion state and triggering to the post-fusion conformation is important for understanding F protein function. Mutations in F protein transmembrane (TM) domains implicated the TM domain in the fusion process, but the structural and molecular details in fusion remain unclear. Previously, analytical ultracentrifugation was utilized to demonstrate that isolated TM domains of Hendra virus F protein associate in a monomer-trimer equilibrium (Smith, E. C., Smith, S. E., Carter, J. R., Webb, S. R., Gibson, K. M., Hellman, L. M., Fried, M. G., and Dutch, R. E. (2013) J. Biol. Chem. 288, 35726–35735). To determine factors driving this association, 140 paramyxovirus F protein TM domain sequences were analyzed. A heptad repeat of β-branched residues was found, and analysis of the Hendra virus F TM domain revealed a heptad repeat leucine-isoleucine zipper motif (LIZ). Replacement of the LIZ with alanine resulted in dramatically reduced TM-TM association. Mutation of the LIZ in the whole protein resulted in decreased protein stability, including pre-fusion conformation stability. Together, our data suggest that the heptad repeat LIZ contributed to TM-TM association and is important for F protein function and pre-fusion stability. PMID:28213515

  16. Hendra virus fusion protein transmembrane domain contributes to pre-fusion protein stability.

    PubMed

    Webb, Stacy; Nagy, Tamas; Moseley, Hunter; Fried, Michael; Dutch, Rebecca

    2017-04-07

    Enveloped viruses utilize fusion (F) proteins studding the surface of the virus to facilitate membrane fusion with a target cell membrane. Fusion of the viral envelope with a cellular membrane is required for release of viral genomic material, so the virus can ultimately reproduce and spread. To drive fusion, the F protein undergoes an irreversible conformational change, transitioning from a metastable pre-fusion conformation to a more thermodynamically stable post-fusion structure. Understanding the elements that control stability of the pre-fusion state and triggering to the post-fusion conformation is important for understanding F protein function. Mutations in F protein transmembrane (TM) domains implicated the TM domain in the fusion process, but the structural and molecular details in fusion remain unclear. Previously, analytical ultracentrifugation was utilized to demonstrate that isolated TM domains of Hendra virus F protein associate in a monomer-trimer equilibrium (Smith, E. C., Smith, S. E., Carter, J. R., Webb, S. R., Gibson, K. M., Hellman, L. M., Fried, M. G., and Dutch, R. E. (2013) J. Biol. Chem. 288, 35726-35735). To determine factors driving this association, 140 paramyxovirus F protein TM domain sequences were analyzed. A heptad repeat of β-branched residues was found, and analysis of the Hendra virus F TM domain revealed a heptad repeat leucine-isoleucine zipper motif (LIZ). Replacement of the LIZ with alanine resulted in dramatically reduced TM-TM association. Mutation of the LIZ in the whole protein resulted in decreased protein stability, including pre-fusion conformation stability. Together, our data suggest that the heptad repeat LIZ contributed to TM-TM association and is important for F protein function and pre-fusion stability. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Fusion to Human Serum Albumin Extends the Circulatory Half-Life and Duration of Antithrombotic Action of the Kunitz Protease Inhibitor Domain of Protease Nexin 2.

    PubMed

    Sheffield, William P; Eltringham-Smith, Louise J; Bhakta, Varsha

    2018-01-01

    The Kunitz Protease Inhibitor (KPI) domain of protease nexin 2 (PN2) potently inhibits coagulation factor XIa. Recombinant KPI has been shown to inhibit thrombosis in mouse models, but its clearance from the murine circulation remains uncharacterized. The present study explored the pharmacokinetic and pharmacodynamic effects of fusing KPI to human serum albumin (HSA) in fusion protein KPIHSA. Hexahistidine-tagged KPI (63 amino acids) and KPIHSA (656 amino acids) were expressed in Pichia pastoris yeast and purified by nickel-chelate chromatography. Clearance profiles in mice were determined, as well as the effects of KPI or KPIHSA administration on FeCl3-induced vena cava thrombus size or carotid artery time to occlusion, respectively. Fusion to HSA increased the mean terminal half-life of KPI by 8-fold and eliminated its interaction with the low density lipoprotein receptor-related protein. KPI and KPIHSA similarly reduced thrombus size and occlusion in both venous and arterial thrombosis models when administered at the time of injury, but only KPI was effective when administered one hour before injury. Albumin fusion deflects KPI from rapid in vivo clearance without impairing its antithrombotic properties and widens its potential therapeutic window. © 2018 The Author(s). Published by S. Karger AG, Basel.

  18. Detecting protein-protein interactions using Renilla luciferase fusion proteins.

    PubMed

    Burbelo, Peter D; Kisailus, Adam E; Peck, Jeremy W

    2002-11-01

    We have developed a novel system designated the luciferase assay for protein detection (LAPD) to study protein-protein interactions. This method involves two protein fusions, a soluble reporter fusion and a fusion for immobilizing the target protein. The soluble reporter is an N-terminal Renilla luciferase fusion protein that exhibits high Renilla luciferase activity. Crude cleared lysates from transfected Cos1 cells that express the Renilla luciferase fusion protein can be used in binding assays with immobilized target proteins. Following incubation and washing, target-bound Renilla luciferase fusion proteins produce light from the coelenterazine substrate, indicating an interaction between the two proteins of interest. As proof of the principle, we reproduced known, transient protein-protein interactions between the Cdc42 GTPase and its effector proteins. GTPase Renilla fusion proteins produced in Cos1 cells were tested with immobilized recombinant GST-N-WASP and CEP5 effector proteins. Using this assay, we could detect specific interactions of Cdc42 with these effector proteins in approximately 50 min. The specificity of these interactions was demonstrated by showing that they were GTPase-specific and GTP-dependent and not seen with other unrelated target proteins. These results suggest that the LAPD method, which is both rapid and sensitive, may have research and practical applications.

  19. Prevalence of isolated non-albumin proteinuria in the US population tested for both, urine total protein and urine albumin: An unexpected discovery.

    PubMed

    Katayev, Alexander; Zebelman, Arthur M; Sharp, Thomas M; Samantha Flynn; Bernstein, Richard K

    2017-04-01

    Isolated non-albumin proteinuria (NAP) is a condition when urine total protein concentrations are elevated without elevation of urine albumin. The prevalence of NAP in the US population tested for both, urine total protein and albumin was assessed in this study. The database of a US nationwide laboratory network was queried for test results when random urine albumin was ordered together with urine total protein and also when timed 24-hour urine albumin was ordered together with urine total protein. The total prevalence of NAP in the US population tested for both, urine total protein and albumin was calculated for patient groups having normal and low-normal urine albumin (random and timed) with elevated and severely increased urine total protein (random and timed). Also, the prevalence of NAP was calculated for patients with normal urine albumin to assess the probability of missing proteinuria if only urine albumin is measured. The prevalence of NAP in the random samples group was 10.1% (15.2% for females and 4.7% for males). Among patients with normal random albumin, there were 20.0% (27.3% of females and 10.7% of males) patients with NAP. The prevalence of NAP in the timed samples group was 24.6% (29.8% for females and 18.5% for males). Among patients with normal timed urine albumin, there were 36.2% (40.0% of females and 30.8% of males) patients with NAP. There was a strong positive association with female gender and NAP in most patients groups. Testing for only urine (micro)albumin can miss up to 40% of females and 30.8% of males with gross proteinuria. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  20. Preparation of GST Fusion Proteins.

    PubMed

    Einarson, Margret B; Pugacheva, Elena N; Orlinick, Jason R

    2007-04-01

    INTRODUCTIONThis protocol describes the preparation of glutathione-S-transferase (GST) fusion proteins, which have had a wide range of applications since their introduction as tools for synthesis of recombinant proteins in bacteria. GST was originally selected as a fusion moiety because of several desirable properties. First and foremost, when expressed in bacteria alone, or as a fusion, GST is not sequestered in inclusion bodies (in contrast to previous fusion protein systems). Second, GST can be affinity-purified without denaturation because it binds to immobilized glutathione, which provides the basis for simple purification. Consequently, GST fusion proteins are routinely used for antibody generation and purification, protein-protein interaction studies, and biochemical analysis.

  1. 2S Albumin Storage Proteins: What Makes them Food Allergens?

    PubMed

    Moreno, F Javier; Clemente, Alfonso

    2008-01-01

    2S albumin storage proteins are becoming of increasing interest in nutritional and clinical studies as they have been reported as major food allergens in seeds of many mono- and di-cotyledonous plants. This review describes the main biochemical, structural and functional properties of these proteins thought to play a role in determining their potential allergenicity. 2S albumins are considered to sensitize directly via the gastrointestinal tract (GIT). The high stability of their intrinsic protein structure, dominated by a well-conserved skeleton of cysteine residues, to the harsh conditions present in the GIT suggests that these proteins are able to cross the gut mucosal barrier to sensitize the mucosal immune system and/or elicit an allergic response. The flexible and solvent-exposed hypervariable region of these proteins is immunodominant and has the ability to bind IgE from allergic patients sera. Several linear IgE-binding epitopes of 2S albumins spanning this region have been described to play a major role in allergenicity; the role of conformational epitopes of these proteins in food allergy is far from being understood and need to be investigated. Finally, the interaction of these proteins with other components of the food matrix might influence the absorption rates of immunologically reactive 2S albumins but also in their immune response.

  2. 2S Albumin Storage Proteins: What Makes them Food Allergens?

    PubMed Central

    Moreno, F. Javier; Clemente, Alfonso

    2008-01-01

    2S albumin storage proteins are becoming of increasing interest in nutritional and clinical studies as they have been reported as major food allergens in seeds of many mono- and di-cotyledonous plants. This review describes the main biochemical, structural and functional properties of these proteins thought to play a role in determining their potential allergenicity. 2S albumins are considered to sensitize directly via the gastrointestinal tract (GIT). The high stability of their intrinsic protein structure, dominated by a well-conserved skeleton of cysteine residues, to the harsh conditions present in the GIT suggests that these proteins are able to cross the gut mucosal barrier to sensitize the mucosal immune system and/or elicit an allergic response. The flexible and solvent-exposed hypervariable region of these proteins is immunodominant and has the ability to bind IgE from allergic patients´ sera. Several linear IgE-binding epitopes of 2S albumins spanning this region have been described to play a major role in allergenicity; the role of conformational epitopes of these proteins in food allergy is far from being understood and need to be investigated. Finally, the interaction of these proteins with other components of the food matrix might influence the absorption rates of immunologically reactive 2S albumins but also in their immune response. PMID:18949071

  3. Simple bioconjugate chemistry serves great clinical advances: albumin as a versatile platform for diagnosis and precision therapy

    PubMed Central

    2017-01-01

    Albumin is the most abundant circulating protein in plasma and has recently emerged as a versatile protein carrier for drug targeting and for improving the pharmacokinetic profile of peptide or protein based drugs. Three drug delivery technologies related to albumin have been developed, which include the coupling of low-molecular weight drugs to exogenous or endogenous albumin, conjugating bioactive proteins by albumin fusion technology (AFT), and encapsulation of drugs into albumin nanoparticles. This review article starts with a brief introduction of human serum albumin (HSA), and then summarizes the mainstream chemical strategies of developing HSA binding molecules for coupling with drug molecules. Moreover, we also concisely condense the recent progress of the most important clinical applications of HSA-binding platforms, and specify the current challenges that need to be met for a bright future of HSA-binding. PMID:26771036

  4. Imparting albumin-binding affinity to a human protein by mimicking the contact surface of a bacterial binding protein.

    PubMed

    Oshiro, Satoshi; Honda, Shinya

    2014-04-18

    Attachment of a bacterial albumin-binding protein module is an attractive strategy for extending the plasma residence time of protein therapeutics. However, a protein fused with such a bacterial module could induce unfavorable immune reactions. To address this, we designed an alternative binding protein by imparting albumin-binding affinity to a human protein using molecular surface grafting. The result was a series of human-derived 6 helix-bundle proteins, one of which specifically binds to human serum albumin (HSA) with adequate affinity (KD = 100 nM). The proteins were designed by transferring key binding residues of a bacterial albumin-binding module, Finegoldia magna protein G-related albumin-binding domain (GA) module, onto the human protein scaffold. Despite 13-15 mutations, the designed proteins maintain the original secondary structure by virtue of careful grafting based on structural informatics. Competitive binding assays and thermodynamic analyses of the best binders show that the binding mode resembles that of the GA module, suggesting that the contacting surface of the GA module is mimicked well on the designed protein. These results indicate that the designed protein may act as an alternative low-risk binding module to HSA. Furthermore, molecular surface grafting in combination with structural informatics is an effective approach for avoiding deleterious mutations on a target protein and for imparting the binding function of one protein onto another.

  5. Optimal expression of a Fab-effector fusion protein in Escherichia coli by removing the cysteine residues responsible for an interchain disulfide bond of a Fab molecule.

    PubMed

    Kang, Hyeon-Ju; Kim, Hye-Jin; Jung, Mun-Sik; Han, Jae-Kyu; Cha, Sang-Hoon

    2017-04-01

    Development of novel bi-functional or even tri-functional Fab-effector fusion proteins would have a great potential in the biomedical sciences. However, the expression of Fab-effector fusion proteins in Escherichia coli is problematic especially when a eukaryotic effector moiety is genetically linked to a Fab due to the lack of proper chaperone proteins and an inappropriate physicochemical environment intrinsic to the microbial hosts. We previously reported that a human Fab molecule, referred to as SL335, reactive to human serum albumin has a prolonged in vivo serum half-life in rats. We, herein, tested six discrete SL335-human growth hormone (hGH) fusion constructs as a model system to define an optimal Fab-effector fusion format for E. coli expression. We found that one variant, referred to as HserG/Lser, outperformed the others in terms of a soluble expression yield and functionality in that HserG/Lser has a functional hGH bioactivity and possesses an serum albumin-binding affinity comparable to SL335. Our results clearly demonstrated that the genetic linkage of an effector domain to the C-terminus of Fd (V H +C H1 ) and the removal of cysteine (Cys) residues responsible for an interchain disulfide bond (IDB) ina Fab molecule optimize the periplasmic expression of a Fab-effector fusion protein in E. coli. We believe that our approach can contribute the development of diverse bi-functional Fab-effector fusion proteins by providing a simple strategy that enables the reliable expression of a functional fusion proteins in E. coli. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  6. Identification of Protein-Protein Interactions with Glutathione-S-Transferase (GST) Fusion Proteins.

    PubMed

    Einarson, Margret B; Pugacheva, Elena N; Orlinick, Jason R

    2007-08-01

    INTRODUCTIONGlutathione-S-transferase (GST) fusion proteins have had a wide range of applications since their introduction as tools for synthesis of recombinant proteins in bacteria. GST was originally selected as a fusion moiety because of several desirable properties. First and foremost, when expressed in bacteria alone, or as a fusion, GST is not sequestered in inclusion bodies (in contrast to previous fusion protein systems). Second, GST can be affinity-purified without denaturation because it binds to immobilized glutathione, which provides the basis for simple purification. Consequently, GST fusion proteins are routinely used for antibody generation and purification, protein-protein interaction studies, and biochemical analysis. This article describes the use of GST fusion proteins as probes for the identification of protein-protein interactions.

  7. Definition of IgG- and albumin-binding regions of streptococcal protein G.

    PubMed

    Akerström, B; Nielsen, E; Björck, L

    1987-10-05

    Protein G, the immunoglobin G-binding surface protein of group C and G streptococci, also binds serum albumin. The albumin-binding site on protein G is distinct from the immunoglobulin G-binding site. By mild acid hydrolysis of the papain-liberated protein G fragment (35 kDa), a 28-kDa fragment was produced which retained full immunoglobulin G-binding activity (determined by Scatchard plotting) but had lost all albumin-binding capacity. A protein G (65 kDa), isolated after cloning and expression of the protein G gene in Escherichia coli, had comparable affinity to immunoglobulin G (5-10 X 10(10)M-1), but much higher affinity to albumin than the 35- and 28-kDa protein G fragments (31, 2.6, and 0 X 10(9)M-1, respectively). The amino-terminal amino acid sequences of the 65-, 35-, and 28-kDa fragments allowed us to exactly locate the three fragments in an overall sequence map of protein G, based on the partial gene sequences published by Guss et al. (Guss, B., Eliasson, M., Olsson, A., Uhlen, M., Frej, A.-K., Jörnvall, H., Flock, J.-I., and Lindberg, M. (1986) EMBO J. 5, 1567-1575) and Fahnestock et al. (Fahnestock, S. R., Alexander, P., Nagle, J., and Filpula, D. (1986) J. Bacteriol. 167, 870-880). In this map could then be deduced the location of three homologous albumin-binding regions and three homologous immunoglobulin G-binding regions.

  8. Protein-protein binding before and after photo-modification of albumin

    NASA Astrophysics Data System (ADS)

    Rozinek, Sarah C.; Glickman, Randolph D.; Thomas, Robert J.; Brancaleon, Lorenzo

    2016-03-01

    Bioeffects of directed-optical-energy encompass a wide range of applications. One aspect of photochemical interactions involves irradiating a photosensitizer with visible light in order to induce protein unfolding and consequent changes in function. In the past, irradiation of several dye-protein combinations has revealed effects on protein structure. Beta lactoglobulin, human serum albumin (HSA) and tubulin have all been photo-modified with meso-tetrakis(4- sulfonatophenyl)porphyrin (TSPP) bound, but only in the case of tubulin has binding caused a verified loss of biological function (loss of ability to form microtubules) as a result of this light-induced structural change. The current work questions if the photo-induced structural changes that occur to HSA, are sufficient to disable its biological function of binding to osteonectin. The albumin-binding protein, osteonectin, is about half the molecular weight of HSA, so the two proteins and their bound product can be separated and quantified by size exclusion high performance liquid chromatography. TSPP was first bound to HSA and irradiated, photo-modifying the structure of HSA. Then native HSA or photo-modified HSA (both with TSPP bound) were compared, to assess loss in HSA's innate binding ability as a result of light-induced structure modification.

  9. The interaction of albumin and fatty-acid-binding protein with membranes: oleic acid dissociation.

    PubMed

    Catalá, A

    1984-10-01

    Bovine serum albumin or fatty-acid-binding protein rapidly lose oleic acid when incubated in the presence of dimyristoyl lecithin liposomes. The phenomenon is dependent on vesicle concentration and no measurable quantities of protein are found associated with liposomes. Upon gel filtration on Sepharose CL-2B of incubated mixtures of microsomes containing [1-14C] oleic acid and albumin or fatty-acid-binding protein, association of fatty acid with the soluble proteins could be demonstrated. Both albumin and fatty-acid-binding protein stimulated the transfer of oleic acid from rat liver microsomes to egg lecithin liposomes. These results indicate that albumin is more effective in the binding of oleic acid than fatty-acid-binding protein, which allows a selective oleic acid dissociation during its interaction with membranes.

  10. Albumin Redhill, a human albumin variant.

    PubMed

    Brand, S; Hutchinson, D W; Donaldson, D

    1984-01-31

    Albumin Redhill, a variant human albumin with the same C-terminal amino acid as albumin A but with arginine at the N-terminus has been isolated by chromatofocusing from the sera of an English family. Albumin Redhill appears to contain two sites of mutation in its protein chain and is probably a proalbumin. The ability of albumin Redhill to bind Ni(II) or Cu(II) ions is considerably less than that of albumin A.

  11. Exo-endo cellulase fusion protein

    DOEpatents

    Bower, Benjamin S [Palo Alto, CA; Larenas, Edmund A [Palo Alto, CA; Mitchinson, Colin [Palo Alto, CA

    2012-01-17

    The present invention relates to a heterologous exo-endo cellulase fusion construct, which encodes a fusion protein having cellulolytic activity comprising a catalytic domain derived from a fungal exo-cellobiohydrolase and a catalytic domain derived from an endoglucanase. The invention also relates to vectors and fungal host cells comprising the heterologous exo-endo cellulase fusion construct as well as methods for producing a cellulase fusion protein and enzymatic cellulase compositions.

  12. Fc-fusion Proteins in Therapy: An Updated View.

    PubMed

    Jafari, Reza; Zolbanin, Naime M; Rafatpanah, Houshang; Majidi, Jafar; Kazemi, Tohid

    2017-01-01

    Fc-fusion proteins are composed of Fc region of IgG antibody (Hinge-CH2-CH3) and a desired linked protein. Fc region of Fc-fusion proteins can bind to neonatal Fc receptor (FcRn) thereby rescuing it from degradation. The first therapeutic Fc-fusion protein was introduced for the treatment of AIDS. The molecular designing is the first stage in production of Fc-fusion proteins. The amino acid residues in the Fc region and linked protein are very important in the bioactivity and affinity of the fusion proteins. Although, therapeutic monoclonal antibodies are the top selling biologics but the application of therapeutic Fc-fusion proteins in clinic is in progress and among these medications Etanercept is the most effective in therapy. At present, eleven Fc-fusion proteins have been approved by FDA. There are novel Fc-fusion proteins which are in pre-clinical and clinical development. In this article, we review the molecular and biological characteristics of Fc-fusion proteins and then further discuss the features of novel therapeutic Fc-fusion proteins. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. (PCG) Protein Crystal Growth Horse Serum Albumin

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Horse Serum Albumin crystals grown during the USML-1 (STS-50) mission's Protein Crystal Growth Glovebox Experiment. These crystals were grown using a vapor diffusion technique at 22 degrees C. The crystals were allowed to grow for nine days while in orbit. Crystals of 1.0 mm in length were produced. The most abundant blood serum protein, regulates blood pressure and transports ions, metabolites, and therapeutic drugs. Principal Investigator was Edward Meehan.

  14. Insulin Is Required to Maintain Albumin Expression by Inhibiting Forkhead Box O1 Protein*

    PubMed Central

    Chen, Qing; Lu, Mingjian; Monks, Bobby R.; Birnbaum, Morris J.

    2016-01-01

    Diabetes is accompanied by dysregulation of glucose, lipid, and protein metabolism. In recent years, much effort has been spent on understanding how insulin regulates glucose and lipid metabolism, whereas the effect of insulin on protein metabolism has received less attention. In diabetes, hepatic production of serum albumin decreases, and it has been long established that insulin positively controls albumin gene expression. In this study, we used a genetic approach in mice to identify the mechanism by which insulin regulates albumin gene transcription. Albumin expression was decreased significantly in livers with insulin signaling disrupted by ablation of the insulin receptor or Akt. Concomitant deletion of Forkhead Box O1 (Foxo1) in these livers rescued the decreased albumin secretion. Furthermore, activation of Foxo1 in the liver is sufficient to suppress albumin expression. These results suggest that Foxo1 acts as a repressor of albumin expression. PMID:26668316

  15. Chromatographic and traditional albumin isotherms on cellulose: a model for wound protein adsorption on modified cotton

    USDA-ARS?s Scientific Manuscript database

    Albumin is the most abundant protein found in healing wounds. Traditional and chromatogrpahic protein isotherms of albumin binding on modified cotton fibers are useful in understanding albumin binding to cellulose wound dressings. An important consideration in the design of cellulosic wound dressin...

  16. Extending the Serum Half-Life of G-CSF via Fusion with the Domain III of Human Serum Albumin

    PubMed Central

    Zhao, Shuqiang; Zhang, Yu; Tian, Hong; Chen, Xiaofei; Cai, Di; Yao, Wenbing; Gao, Xiangdong

    2013-01-01

    Protein fusion technology is one of the most commonly used methods to extend the half-life of therapeutic proteins. In this study, in order to prolong the half-life of Granulocyte colony stimulating factor (G-CSF), the domain III of human serum albumin (3DHSA) was genetically fused to the N-terminal of G-CSF. The 3DHSA-G-CSF fusion gene was cloned into pPICZαA along with the open reading frame of the α-factor signal under the control of the AOX1 promoter. The recombinant expression vector was transformed into Pichia pastoris GS115, and the recombinant strains were screened by SDS-PAGE. As expected, the 3DHSA-G-CSF showed high binding affinity with HSA antibody and G-CSF antibody, and the natural N-terminal of 3DHSA was detected by N-terminal sequencing. The bioactivity and pharmacokinetic studies of 3DHSA-G-CSF were respectively determined using neutropenia model mice and human G-CSF ELISA kit. The results demonstrated that 3DHSA-G-CSF has the ability to increase the peripheral white blood cell (WBC) counts of neutropenia model mice, and the half-life of 3DHSA-G-CSF is longer than that of native G-CSF. In conclusion, 3DHSA can be used to extend the half-life of G-CSF. PMID:24151579

  17. Albumin-based drug delivery: harnessing nature to cure disease.

    PubMed

    Larsen, Maja Thim; Kuhlmann, Matthias; Hvam, Michael Lykke; Howard, Kenneth A

    2016-01-01

    The effectiveness of a drug is dependent on accumulation at the site of action at therapeutic levels, however, challenges such as rapid renal clearance, degradation or non-specific accumulation requires drug delivery enabling technologies. Albumin is a natural transport protein with multiple ligand binding sites, cellular receptor engagement, and a long circulatory half-life due to interaction with the recycling neonatal Fc receptor. Exploitation of these properties promotes albumin as an attractive candidate for half-life extension and targeted intracellular delivery of drugs attached by covalent conjugation, genetic fusions, association or ligand-mediated association. This review will give an overview of albumin-based products with focus on the natural biological properties and molecular interactions that can be harnessed for the design of a next-generation drug delivery platform.

  18. Spring-loaded model revisited: paramyxovirus fusion requires engagement of a receptor binding protein beyond initial triggering of the fusion protein.

    PubMed

    Porotto, Matteo; Devito, Ilaria; Palmer, Samantha G; Jurgens, Eric M; Yee, Jia L; Yokoyama, Christine C; Pessi, Antonello; Moscona, Anne

    2011-12-01

    During paramyxovirus entry into a host cell, receptor engagement by a specialized binding protein triggers conformational changes in the adjacent fusion protein (F), leading to fusion between the viral and cell membranes. According to the existing paradigm of paramyxovirus membrane fusion, the initial activation of F by the receptor binding protein sets off a spring-loaded mechanism whereby the F protein progresses independently through the subsequent steps in the fusion process, ending in membrane merger. For human parainfluenza virus type 3 (HPIV3), the receptor binding protein (hemagglutinin-neuraminidase [HN]) has three functions: receptor binding, receptor cleaving, and activating F. We report that continuous receptor engagement by HN activates F to advance through the series of structural rearrangements required for fusion. In contrast to the prevailing model, the role of HN-receptor engagement in the fusion process is required beyond an initiating step, i.e., it is still required even after the insertion of the fusion peptide into the target cell membrane, enabling F to mediate membrane merger. We also report that for Nipah virus, whose receptor binding protein has no receptor-cleaving activity, the continuous stimulation of the F protein by a receptor-engaged binding protein is key for fusion. We suggest a general model for paramyxovirus fusion activation in which receptor engagement plays an active role in F activation, and the continued engagement of the receptor binding protein is essential to F protein function until the onset of membrane merger. This model has broad implications for the mechanism of paramyxovirus fusion and for strategies to prevent viral entry.

  19. Efficient expression of stable recombinant human insulin-like growth factor-1 fusion with human serum albumin in Chinese hamster ovary cells.

    PubMed

    Wan, Aini; Xu, Dongsheng; Liu, Kedong; Peng, Lin; Cai, Yanfei; Chen, Yun; He, Yang; Yang, Jianfeng; Jin, Jian; Li, Huazhong

    2017-08-09

    Insulin-like growth factor-1 (IGF-1) plays a crucial role in cell development, differentiation, and metabolism, and has been a potential therapeutic agent for many diseases. Chinese hamster ovary (CHO) cells are widely used for production of recombinant therapeutic proteins, but the expression level of IGF-1 in CHO cells is very low (1,500 µg/L) and the half-life of IGF-1 in blood circulation is only 4.5 min according to previous studies. Therefore, IGF-1 was fused to long-circulating serum protein human serum albumin (HSA) and expressed in CHO cells. After 8-day fed-batch culture, the expression level of HSA-IGF-1 reached 100 mg/L. The fusion protein HSA-IGF-1 was purified with a recovery of 35% using a two-step chromatographic procedure. According to bioactivity assay, the purified HSA-IGF-1 could stimulate the proliferation of NIH3T3 cells in a dose-dependent fashion and promote the cell-cycle progression. Besides this, HSA-IGF-1 could bind to IGF-1 receptor on cell membrane and activate the intracellular PI3K/AKT signaling pathway. Our study suggested that HSA fusion technology carried out in CHO cells not only provided bioactivity in HSA-IGF-1 for further research but also offered a beneficial strategy to produce other similar cytokines in CHO cells.

  20. Serum Albumin Stimulates Protein Kinase G-dependent Microneme Secretion in Toxoplasma gondii.

    PubMed

    Brown, Kevin M; Lourido, Sebastian; Sibley, L David

    2016-04-29

    Microneme secretion is essential for motility, invasion, and egress in apicomplexan parasites. Although previous studies indicate that Ca(2+) and cGMP control microneme secretion, little is known about how these pathways are naturally activated. Here we have developed genetically encoded indicators for Ca(2+) and microneme secretion to better define the signaling pathways that regulate these processes in Toxoplasma gondii We found that microneme secretion was triggered in vitro by exposure to a single host protein, serum albumin. The natural agonist serum albumin induced microneme secretion in a protein kinase G-dependent manner that correlated with increased cGMP levels. Surprisingly, serum albumin acted independently of elevated Ca(2+) and yet it was augmented by artificial agonists that raise Ca(2+), such as ethanol. Furthermore, although ethanol elevated intracellular Ca(2+), it alone was unable to trigger secretion without the presence of serum or serum albumin. This dichotomy was recapitulated by zaprinast, a phosphodiesterase inhibitor that elevated cGMP and separately increased Ca(2+) in a protein kinase G-independent manner leading to microneme secretion. Taken together, these findings reveal that microneme secretion is centrally controlled by protein kinase G and that this pathway is further augmented by elevation of intracellular Ca(2.) © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. (Na+ + K+)-ATPase Is a Target for Phosphoinositide 3-Kinase/Protein Kinase B and Protein Kinase C Pathways Triggered by Albumin*

    PubMed Central

    Peruchetti, Diogo B.; Pinheiro, Ana Acacia S.; Landgraf, Sharon S.; Wengert, Mira; Takiya, Christina M.; Guggino, William B.; Caruso-Neves, Celso

    2011-01-01

    In recent decades, evidence has confirmed the crucial role of albumin in the progression of renal disease. However, the possible role of signaling pathways triggered by physiologic concentrations of albumin in the modulation of proximal tubule (PT) sodium reabsorption has not been considered. In the present work, we have shown that a physiologic concentration of albumin increases the expression of the α1 subunit of (Na+ + K+)-ATPase in LLC-PK1 cells leading to an increase in enzyme activity. This process involves the sequential activation of PI3K/protein kinase B and protein kinase C pathways promoting inhibition of protein kinase A. This integrative network is inhibited when albumin concentration is increased, similar to renal disease, leading to a decrease in the α1 subunit of (Na+ + K+)-ATPase expression. Together, the results indicate that variation in albumin concentration in PT cells has an important effect on PT sodium reabsorption and, consequently, on renal sodium excretion. PMID:22057272

  2. Total protein, albumin and low-molecular-weight protein excretion in HIV-positive patients.

    PubMed

    Campbell, Lucy J; Dew, Tracy; Salota, Rashim; Cheserem, Emily; Hamzah, Lisa; Ibrahim, Fowzia; Sarafidis, Pantelis A; Moniz, Caje F; Hendry, Bruce M; Poulton, Mary; Sherwood, Roy A; Post, Frank A

    2012-08-10

    Chronic kidney disease is common in HIV positive patients and renal tubular dysfunction has been reported in those receiving combination antiretroviral therapy (cART). Tenofovir (TFV) in particular has been linked to severe renal tubular disease as well as proximal tubular dysfunction. Markedly elevated urinary concentrations of retinal-binding protein (RBP) have been reported in patients with severe renal tubular disease, and low-molecular-weight proteins (LMWP) such as RBP may be useful in clinical practice to assess renal tubular function in patients receiving TFV. We analysed 3 LMWP as well as protein and albumin in the urine of a sample of HIV positive patients. In a cross-sectional fashion, total protein, albumin, RBP, cystatin C, and neutrophil gelatinase-associated lipocalin (NGAL) were quantified in random urine samples of 317 HIV positive outpatients and expressed as the ratio-to-creatinine (RBPCR, CCR and NGALCR). Exposure to cART was categorised as none, cART without TFV, and cART containing TFV and a non-nucleoside reverse-transcriptase-inhibitor (TFV/NNRTI) or TFV and a protease-inhibitor (TFV/PI). Proteinuria was present in 10.4 % and microalbuminuria in 16.7 % of patients. Albumin accounted for approximately 10 % of total urinary protein. RBPCR was within the reference range in 95 % of patients while NGALCR was elevated in 67 % of patients. No overall differences in urine protein, albumin, and LMWP levels were observed among patients stratified by cART exposure, although a greater proportion of patients exposed to TFV/PI had RBPCR >38.8 μg/mmol (343 μg/g) (p = 0.003). In multivariate analyses, black ethnicity (OR 0.43, 95 % CI 0.24, 0.77) and eGFR <75 mL/min/1.73 m2 (OR 3.54, 95 % CI 1.61, 7.80) were independently associated with upper quartile (UQ) RBPCR. RBPCR correlated well to CCR (r2 = 0.71), but not to NGALCR, PCR or ACR. In HIV positive patients, proteinuria was predominantly of tubular origin and microalbuminuria

  3. Precursor–product relationship between intrahepatic albumin and plasma albumin

    PubMed Central

    LeBouton, A. V.

    1968-01-01

    Rats were injected with [3H]leucine, and at various times thereafter labelled albumin was isolated by electrophoresis from their livers and blood plasma. The specific radioactivity of each protein was determined by spectrophotometry and liquid-scintillation spectrometry. Intrahepatic albumin was shown to be identical with plasma albumin by its electrophoretic mobility and antigenicity. It was found that intrahepatic albumin was the direct precursor of plasma albumin. Comparison of their specific radioactivities showed that intrahepatic albumin attained a higher specific radioactivity before plasma albumin. When plasma albumin reached its maximum specific radioactivity, that of intrahepatic albumin had decreased to a similar value. Thereafter, the specific radioactivity of intrahepatic albumin remained lower than that of plasma albumin. PMID:4966084

  4. Modulated photophysics of a cationic DNA-staining dye inside protein bovine serum albumin: study of binding interaction and structural changes of protein.

    PubMed

    Samanta, Anuva; Jana, Sankar; Ray, Debarati; Guchhait, Nikhil

    2014-01-01

    The binding affinity of cationic DNA-staining dye, propidium iodide, with transport protein, bovine serum albumin, has been explored using UV-vis absorption, fluorescence, and circular dichroism spectroscopy. Steady state and time resolved fluorescence studies authenticate that fluorescence quenching of bovine serum albumin by propidium iodide is due to bovine serum albumin-propidium iodide complex formation. Thermodynamic parameters obtained from temperature dependent spectral studies cast light on binding interaction between the probe and protein. Site marker competitive binding has been encountered using phenylbutazone and flufenamic acid for site I and site II, respectively. Energy transfer efficiency and distance between bovine serum albumin and propidium iodide have been determined using Förster mechanism. Structural stabilization or destabilization of protein by propidium iodide has been investigated by urea denaturation study. The circular dichroism study as well as FT-IR measurement demonstrates some configurational changes of the protein in presence of the dye. Docking studies support the experimental data thereby reinforcing the binding site of the probe to the subdomain IIA of bovine serum albumin. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Modulated photophysics of a cationic DNA-staining dye inside protein bovine serum albumin: Study of binding interaction and structural changes of protein

    NASA Astrophysics Data System (ADS)

    Samanta, Anuva; Jana, Sankar; Ray, Debarati; Guchhait, Nikhil

    2014-03-01

    The binding affinity of cationic DNA-staining dye, propidium iodide, with transport protein, bovine serum albumin, has been explored using UV-vis absorption, fluorescence, and circular dichroism spectroscopy. Steady state and time resolved fluorescence studies authenticate that fluorescence quenching of bovine serum albumin by propidium iodide is due to bovine serum albumin-propidium iodide complex formation. Thermodynamic parameters obtained from temperature dependent spectral studies cast light on binding interaction between the probe and protein. Site marker competitive binding has been encountered using phenylbutazone and flufenamic acid for site I and site II, respectively. Energy transfer efficiency and distance between bovine serum albumin and propidium iodide have been determined using Förster mechanism. Structural stabilization or destabilization of protein by propidium iodide has been investigated by urea denaturation study. The circular dichroism study as well as FT-IR measurement demonstrates some configurational changes of the protein in presence of the dye. Docking studies support the experimental data thereby reinforcing the binding site of the probe to the subdomain IIA of bovine serum albumin.

  6. Positional effects of fusion partners on the yield and solubility of MBP fusion proteins

    PubMed Central

    Raran-Kurussi, Sreejith; Keefe, Karina; Waugh, David S.

    2015-01-01

    Escherichia coli maltose-binding protein (MBP) is exceptionally effective at promoting the solubility of its fusion partners. However, there are conflicting reports in the literature claiming that 1) MBP is an effective solubility enhancer only when it is joined to the N-terminus of an aggregation-prone passenger protein, and 2) MBP is equally effective when fused to either end of the passenger. Here, we endeavor to resolve this controversy by comparing the solubility of a diverse set of MBP fusion proteins that, unlike those analyzed in previous studies, are identical in every way except for the order of the two domains. The results indicate that fusion proteins with an N-terminal MBP provide an excellent solubility advantage along with more robust expression when compared to analogous fusions in which MBP is the C-terminal fusion partner. We find that only intrinsically soluble passenger proteins (i.e., those not requiring a solubility enhancer) are produced as soluble fusions when they precede MBP. We also report that even subtle differences in inter-domain linker sequences can influence the solubility of fusion proteins. PMID:25782741

  7. Hexahistidine (6xHis) fusion-based assays for protein-protein interactions.

    PubMed

    Puckett, Mary C

    2015-01-01

    Fusion-protein tags provide a useful method to study protein-protein interactions. One widely used fusion tag is hexahistidine (6xHis). This tag has unique advantages over others due to its small size and the relatively low abundance of naturally occurring consecutive histidine repeats. 6xHis tags can interact with immobilized metal cations to provide for the capture of proteins and protein complexes of interest. In this chapter, a description of the benefits and uses of 6xHis-fusion proteins as well as a detailed method for performing a 6xHis-pulldown assay are described.

  8. The N-terminal sequence of albumin Redhill, a variant of human serum albumin.

    PubMed

    Hutchinson, D W; Matejtschuk, P

    1985-12-02

    Albumin Redhill, a variant human albumin, has been isolated by fast protein liquid chromatofocusing. The N-terminal sequence of this protein corresponded to that of albumin A except that one additional arginine residue was attached to the N-terminus.

  9. Purification, identification and preliminary crystallographic studies of a 2S albumin seed protein from Lens culinaris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Pankaj; Gaur, Vineet; Salunke, Dinakar M., E-mail: dinakar@nii.res.in

    2008-08-01

    A 2S albumin from L. culinaris was purified and crystallized and preliminary crystallographic studies were carried out. Lens culinaris (lentil) is a widely consumed high-protein-content leguminous crop. A 2S albumin protein (26.5 kDa) has been identified using NH{sub 2}-terminal sequencing from a 90% ammonium sulfate saturation fraction of total L. culinaris seed protein extract. The NH{sub 2}-terminal sequence shows very high homology to PA2, an allergy-related protein from Pisum sativum. The 2S albumin protein was purified using a combination of size-exclusion and ion-exchange chromatography. Crystals of the 2S seed albumin obtained using the hanging-drop vapour-diffusion method diffracted to 2.5 Åmore » resolution and were indexed in space group P4{sub 1} (or P4{sub 3}), with unit-cell parameters a = b = 78.6, c = 135.2 Å.« less

  10. Predictive value of C-reactive protein/albumin ratio in acute pancreatitis.

    PubMed

    Kaplan, Mustafa; Ates, Ihsan; Akpinar, Muhammed Yener; Yuksel, Mahmut; Kuzu, Ufuk Baris; Kacar, Sabite; Coskun, Orhan; Kayacetin, Ertugrul

    2017-08-15

    Serum C-reactive protein (CRP) increases and albumin decreases in patients with inflammation and infection. However, their role in patients with acute pancreatitis is not clear. The present study was to investigate the predictive significance of the CRP/albumin ratio for the prognosis and mortality in acute pancreatitis patients. This study was performed retrospectively with 192 acute pancreatitis patients between January 2002 and June 2015. Ranson scores, Atlanta classification and CRP/albumin ratios of the patients were calculated. The CRP/albumin ratio was higher in deceased patients compared to survivors. The CRP/albumin ratio was positively correlated with Ranson score and Atlanta classification in particular and with important prognostic markers such as hospitalization time, CRP and erythrocyte sedimentation rate. In addition to the CRP/albumin ratio, necrotizing pancreatitis type, moderately severe and severe Atlanta classification, and total Ranson score were independent risk factors of mortality. It was found that an increase of 1 unit in the CRP/albumin ratio resulted in an increase of 1.52 times in mortality risk. A prediction value about CRP/albumin ratio >16.28 was found to be a significant marker in predicting mortality with 92.1% sensitivity and 58.0% specificity. It was seen that Ranson and Atlanta classification were higher in patients with CRP/albumin ratio >16.28 compared with those with CRP/albumin ratio ≤16.28. Patients with CRP/albumin ratio >16.28 had a 19.3 times higher chance of death. The CRP/albumin ratio is a novel but promising, easy-to-measure, repeatable, non-invasive inflammation-based prognostic score in acute pancreatitis. Copyright © 2017 The Editorial Board of Hepatobiliary & Pancreatic Diseases International. Published by Elsevier B.V. All rights reserved.

  11. Normal values of urine total protein- and albumin-to-creatinine ratios in term newborns.

    PubMed

    El Hamel, Chahrazed; Chianea, Thierry; Thon, Séverine; Lepichoux, Anne; Yardin, Catherine; Guigonis, Vincent

    2017-01-01

    It is important to have an accurate assessment of urinary protein when glomerulopathy or kidney injury is suspected. Currently available normal values for the neonate population have limited value, in part because they are based on small populations and obsolete creatinine assays. We have performed a prospective study with the aim to update the normal upper values of the urinary total protein-to-creatinine and albumin-to-creatinine ratios in term newborns. Urine samples were collected from 277 healthy, full-term newborns within the first 48 hours (D0-1) and between 72 and 120 h of life (D3-4). Total protein, albumin, creatinine and osmolality were measured and the upper limit of normal (upper-limit) values determined. At D0-1 and D3-4, the upper-limit values for the total protein-to-creatinine ratio were 1431 and 1205 mg/g (162 and 136 g/mol) and those for the albumin-to-creatinine ratio were 746 and 301 mg/g (84 and 34 g/mol), respectively. The upper-limit values were significantly higher at D0-1 than at D3-4 only for the albumin-to-creatinine ratio. This study determined the upper limit of normal values for urinary total protein-to-creatinine and albumin-to-creatinine ratios in the largest population of newborns studied to date. These values can therefore be considered as the most clinically relevant data currently available for the detection and diagnosis of glomerular injury in daily clinical practice in this population.

  12. The actin cytoskeleton inhibits pore expansion during PIV5 fusion protein-promoted cell-cell fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wurth, Mark A.; Schowalter, Rachel M.; Smith, Everett Clinton

    2010-08-15

    Paramyxovirus fusion (F) proteins promote both virus-cell fusion, required for viral entry, and cell-cell fusion, resulting in syncytia formation. We used the F-actin stabilizing drug, jasplakinolide, and the G-actin sequestrant, latrunculin A, to examine the role of actin dynamics in cell-cell fusion mediated by the parainfluenza virus 5 (PIV5) F protein. Jasplakinolide treatment caused a dose-dependent increase in cell-cell fusion as measured by both syncytia and reporter gene assays, and latrunculin A treatment also resulted in fusion stimulation. Treatment with jasplakinolide or latrunculin A partially rescued a fusion pore opening defect caused by deletion of the PIV5 F protein cytoplasmicmore » tail, but these drugs had no effect on fusion inhibited at earlier stages by either temperature arrest or by a PIV5 heptad repeat peptide. These data suggest that the cortical actin cytoskeleton is an important regulator of fusion pore enlargement, an energetically costly stage of viral fusion protein-mediated membrane merger.« less

  13. The actin cytoskeleton inhibits pore expansion during PIV5 fusion protein-promoted cell-cell fusion

    PubMed Central

    Wurth, Mark A.; Schowalter, Rachel M.; Smith, Everett Clinton; Moncman, Carole L.; Dutch, Rebecca Ellis; McCann, Richard O.

    2010-01-01

    Paramyxovirus fusion (F) proteins promote both virus-cell fusion, required for viral entry, and cell-cell fusion, resulting in syncytia formation. We used the F-actin stabilizing drug, jasplakinolide, and the G-actin sequestrant, latrunculin A, to examine the role of actin dynamics in cell-cell fusion mediated by the parainfluenza virus 5 (PIV5) F protein. Jasplakinolide treatment caused a dose-dependent increase in cell-cell fusion as measured by both syncytia and reporter gene assays, and latrunculin A treatment also resulted in fusion stimulation. Treatment with jasplakinolide or latrunculin A partially rescued a fusion pore opening defect caused by deletion of the PIV5 F protein cytoplasmic tail, but these drugs had no effect on fusion inhibited at earlier stages by either temperature arrest or by a PIV5 heptad repeat peptide. These data suggest that the cortical actin cytoskeleton is an important regulator of fusion pore enlargement, an energetically costly stage of viral fusion protein-mediated membrane merger. PMID:20537366

  14. Positional effects of fusion partners on the yield and solubility of MBP fusion proteins.

    PubMed

    Raran-Kurussi, Sreejith; Keefe, Karina; Waugh, David S

    2015-06-01

    Escherichia coli maltose-binding protein (MBP) is exceptionally effective at promoting the solubility of its fusion partners. However, there are conflicting reports in the literature claiming that (1) MBP is an effective solubility enhancer only when it is joined to the N-terminus of an aggregation-prone passenger protein, and (2) MBP is equally effective when fused to either end of the passenger. Here, we endeavor to resolve this controversy by comparing the solubility of a diverse set of MBP fusion proteins that, unlike those analyzed in previous studies, are identical in every way except for the order of the two domains. The results indicate that fusion proteins with an N-terminal MBP provide an excellent solubility advantage along with more robust expression when compared to analogous fusions in which MBP is the C-terminal fusion partner. We find that only intrinsically soluble passenger proteins (i.e., those not requiring a solubility enhancer) are produced as soluble fusions when they precede MBP. We also report that even subtle differences in inter-domain linker sequences can influence the solubility of fusion proteins. Published by Elsevier Inc.

  15. Membrane Fusion Proteins as Nanomachines

    NASA Astrophysics Data System (ADS)

    Tamm, Lukas

    2009-03-01

    Membrane fusion is key to fertilization, virus infection, and neurotransmission. Specific proteins work like nanomachines to stitch together fluid, yet highly ordered lipid bilayers. The energy gained from large exothermic conformational changes of these proteins is utilized to fuse lipid bilayers that do not fuse spontaneously. Structural studies using x-ray crystallography and NMR spectroscopy have yielded detailed information about architecture and inner workings of these molecular machines. The question now is: how is mechanical energy gained from such protein transformations harnessed to transform membrane topology? To answer this question, we have determined that a boomerang-shaped structure of the influenza fusion peptide is critical to generate a high-energy binding intermediate in the target membrane and to return the ``boomerang'' to its place of release near the viral membrane for completion of the fusion cycle. In presynaptic exocytosis, receptor and acceptor SNAREs are zippered to form a helical bundle that is arrested shortly before the membrane. Ca binding to interlocked synaptotagmin releases the fusion block. Structural NMR and single molecule fluorescence data are combined to arrive at and further refine this picture.

  16. 21 CFR 862.1645 - Urinary protein or albumin (nonquantitative) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1645 Urinary protein or albumin (nonquantitative) test system. (a...

  17. Rho GTPase activity modulates paramyxovirus fusion protein-mediated cell-cell fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schowalter, Rachel M.; Wurth, Mark A.; Aguilar, Hector C.

    2006-07-05

    The paramyxovirus fusion protein (F) promotes fusion of the viral envelope with the plasma membrane of target cells as well as cell-cell fusion. The plasma membrane is closely associated with the actin cytoskeleton, but the role of actin dynamics in paramyxovirus F-mediated membrane fusion is unclear. We examined cell-cell fusion promoted by two different paramyxovirus F proteins in three cell types in the presence of constitutively active Rho family GTPases, major cellular coordinators of actin dynamics. Reporter gene and syncytia assays demonstrated that expression of either Rac1{sup V12} or Cdc42{sup V12} could increase cell-cell fusion promoted by the Hendra ormore » SV5 glycoproteins, though the effect was dependent on the cell type expressing the viral glycoproteins. In contrast, RhoA{sup L63} decreased cell-cell fusion promoted by Hendra glycoproteins but had little affect on SV5 F-mediated fusion. Also, data suggested that GTPase activation in the viral glycoprotein-containing cell was primarily responsible for changes in fusion. Additionally, we found that activated Cdc42 promoted nuclear rearrangement in syncytia.« less

  18. C-terminal tyrosine residues modulate the fusion activity of the Hendra virus fusion protein

    PubMed Central

    Popa, Andreea; Pager, Cara Teresia; Dutch, Rebecca Ellis

    2011-01-01

    The paramyxovirus family includes important human pathogens such as measles, mumps, respiratory syncytial virus and the recently emerged, highly pathogenic Hendra and Nipah viruses. The viral fusion (F) protein plays critical roles in infection, promoting both the viral-cell membrane fusion events needed for viral entry as well as cell-cell fusion events leading to syncytia formation. We describe the surprising finding that addition of the short epitope HA tag to the cytoplasmic tail (CT) of the Hendra virus F protein leads to a significant increase in cell-cell membrane fusion. This increase was not due to alterations in surface expression, cleavage state, or association with lipid microdomains. Addition of a Myc tag of similar length did not alter Hendra F fusion activity, indicating that the observed stimulation was not solely a result of lengthening the CT. Three tyrosine residues within the HA tag were critical for the increase in fusion, suggesting C-terminal tyrosines may modulate Hendra fusion activity. The effects of HA tag addition varied with other fusion proteins, as parainfluenza virus 5 F-HA showed decreased surface expression and no stimulation in fusion. These results indicate that additions to the C-terminal end of the F protein CT can modulate protein function in a sequence specific manner, reinforcing the need for careful analysis of epitope tagged glycoproteins. In addition, our results implicate C-terminal tyrosine residues in modulation of the membrane fusion reaction promoted by these viral glycoproteins. PMID:21175223

  19. Paramyxovirus F1 protein has two fusion peptides: implications for the mechanism of membrane fusion.

    PubMed

    Peisajovich, S G; Samuel, O; Shai, Y

    2000-03-10

    Viral fusion proteins contain a highly hydrophobic segment, named the fusion peptide, which is thought to be responsible for the merging of the cellular and viral membranes. Paramyxoviruses are believed to contain a single fusion peptide at the N terminus of the F1 protein. However, here we identified an additional internal segment in the Sendai virus F1 protein (amino acids 214-226) highly homologous to the fusion peptides of HIV-1 and RSV. A synthetic peptide, which includes this region, was found to induce membrane fusion of large unilamellar vesicles, at concentrations where the known N-terminal fusion peptide is not effective. A scrambled peptide as well as several peptides from other regions of the F1 protein, which strongly bind to membranes, are not fusogenic. The functional and structural characterization of this active segment suggest that the F1 protein has an additional internal fusion peptide that could participate in the actual fusion event. The presence of homologous regions in other members of the same family suggests that the concerted action of two fusion peptides, one N-terminal and the other internal, is a general feature of paramyxoviruses. Copyright 2000 Academic Press.

  20. SAFE Software and FED Database to Uncover Protein-Protein Interactions using Gene Fusion Analysis.

    PubMed

    Tsagrasoulis, Dimosthenis; Danos, Vasilis; Kissa, Maria; Trimpalis, Philip; Koumandou, V Lila; Karagouni, Amalia D; Tsakalidis, Athanasios; Kossida, Sophia

    2012-01-01

    Domain Fusion Analysis takes advantage of the fact that certain proteins in a given proteome A, are found to have statistically significant similarity with two separate proteins in another proteome B. In other words, the result of a fusion event between two separate proteins in proteome B is a specific full-length protein in proteome A. In such a case, it can be safely concluded that the protein pair has a common biological function or even interacts physically. In this paper, we present the Fusion Events Database (FED), a database for the maintenance and retrieval of fusion data both in prokaryotic and eukaryotic organisms and the Software for the Analysis of Fusion Events (SAFE), a computational platform implemented for the automated detection, filtering and visualization of fusion events (both available at: http://www.bioacademy.gr/bioinformatics/projects/ProteinFusion/index.htm). Finally, we analyze the proteomes of three microorganisms using these tools in order to demonstrate their functionality.

  1. SAFE Software and FED Database to Uncover Protein-Protein Interactions using Gene Fusion Analysis

    PubMed Central

    Tsagrasoulis, Dimosthenis; Danos, Vasilis; Kissa, Maria; Trimpalis, Philip; Koumandou, V. Lila; Karagouni, Amalia D.; Tsakalidis, Athanasios; Kossida, Sophia

    2012-01-01

    Domain Fusion Analysis takes advantage of the fact that certain proteins in a given proteome A, are found to have statistically significant similarity with two separate proteins in another proteome B. In other words, the result of a fusion event between two separate proteins in proteome B is a specific full-length protein in proteome A. In such a case, it can be safely concluded that the protein pair has a common biological function or even interacts physically. In this paper, we present the Fusion Events Database (FED), a database for the maintenance and retrieval of fusion data both in prokaryotic and eukaryotic organisms and the Software for the Analysis of Fusion Events (SAFE), a computational platform implemented for the automated detection, filtering and visualization of fusion events (both available at: http://www.bioacademy.gr/bioinformatics/projects/ProteinFusion/index.htm). Finally, we analyze the proteomes of three microorganisms using these tools in order to demonstrate their functionality. PMID:22267904

  2. Complementation between avirulent Newcastle disease virus and a fusion protein gene expressed from a retrovirus vector: requirements for membrane fusion.

    PubMed Central

    Morrison, T; McQuain, C; McGinnes, L

    1991-01-01

    The cDNA derived from the fusion gene of the virulent AV strain of Newcastle disease virus (NDV) was expressed in chicken embryo cells by using a retrovirus vector. The fusion protein expressed in this system was transported to the cell surface and was efficiently cleaved into the disulfide-linked F1-F2 form found in infectious virions. The cells expressing the fusion gene grew normally and could be passaged many times. Monolayers of these cells would plaque, in the absence of trypsin, avirulent NDV strains (strains which encode a fusion protein which is not cleaved in tissue culture). Fusion protein-expressing cells would not fuse if mixed with uninfected cells or uninfected cells expressing the hemagglutinin-neuraminidase (HN) protein. However, the fusion protein-expressing cells, if infected with avirulent strains of NDV, would fuse with uninfected cells, suggesting that fusion requires both the fusion protein and another viral protein expressed in the same cell. Fusion was also seen after transfection of the HN protein gene into fusion protein-expressing cells. Thus, the expressed fusion protein gene is capable of complementing the virus infection, providing an active cleaved fusion protein required for the spread of infection. However, the fusion protein does not mediate cell fusion unless the cell also expresses the HN protein. Fusion protein-expressing cells would not plaque influenza virus in the absence of trypsin, nor would influenza virus-infected fusion protein-expressing cells fuse with uninfected cells. Thus, the influenza virus HA protein will not substitute for the NDV HN protein in cell-to-cell fusion. Images PMID:1987376

  3. Rubella virus: first calcium-requiring viral fusion protein.

    PubMed

    Dubé, Mathieu; Rey, Felix A; Kielian, Margaret

    2014-12-01

    Rubella virus (RuV) infection of pregnant women can cause fetal death, miscarriage, or severe fetal malformations, and remains a significant health problem in much of the underdeveloped world. RuV is a small enveloped RNA virus that infects target cells by receptor-mediated endocytosis and low pH-dependent membrane fusion. The structure of the RuV E1 fusion protein was recently solved in its postfusion conformation. RuV E1 is a member of the class II fusion proteins and is structurally related to the alphavirus and flavivirus fusion proteins. Unlike the other known class II fusion proteins, however, RuV E1 contains two fusion loops, with a metal ion complexed between them by the polar residues N88 and D136. Here we demonstrated that RuV infection specifically requires Ca(2+) during virus entry. Other tested cations did not substitute. Ca(2+) was not required for virus binding to cell surface receptors, endocytic uptake, or formation of the low pH-dependent E1 homotrimer. However, Ca(2+) was required for low pH-triggered E1 liposome insertion, virus fusion and infection. Alanine substitution of N88 or D136 was lethal. While the mutant viruses were efficiently assembled and endocytosed by host cells, E1-membrane insertion and fusion were specifically blocked. Together our data indicate that RuV E1 is the first example of a Ca(2+)-dependent viral fusion protein and has a unique membrane interaction mechanism.

  4. Comparison of soy-protein and egg albumin on endogenously secreted zinc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oberleas, D.; Smith, J.C.

    1986-03-05

    Male albino rats (Charles River) were maintained on a basal soy-protein diet, unsupplemented with Zn and with 1.6% Ca for 4 weeks (Ca)(Phy)/(Zn) = 9.4(molar). Animals were subdivided in 2 expts. between soy-protein 0.8% Ca, 11.24 mg Zn/Kg diet (4.2(molar)) or 1.6% Ca, 11.21 mg Zn/Kg (9.4(molar)) and egg albumin 0.8% Ca, 0.46 mg Zn/Kg diet and 1.6% Ca, 0.37 mg Zn/Kg diet at which time each animal was injected with 10 ..mu..Ci /sup 65/Zn. Daily fecal collections were made for 14 days and ratios of /sup 65/Zn Soy:Egg alb. calculated. The very low concentration of Zn in the eggmore » albumin diet restricted the pancreatic secretion of Zn and the differential effect of phytate on these diets was not apparent as shown earlier with soy and casein diets. This was also reflected in the growth rates of the exptl. groups in that the egg albumin fed rats gained -4.4 and -9.0 g/wk; soy fed rats gained 28.0 and 17.3 g/wk.« less

  5. Albumin and C-reactive protein have prognostic significance in patients with community-acquired pneumonia.

    PubMed

    Lee, Jae Hyuk; Kim, Jooyeong; Kim, Kyuseok; Jo, You Hwan; Rhee, JoongEui; Kim, Tae Youn; Na, Sang Hoon; Hwang, Seung Sik

    2011-06-01

    This study aims to determine the association of commonly used biochemical markers, such as albumin and C-reactive protein (CRP), with mortality and the prognostic performance of these markers combined with the pneumonia severity index (PSI) for mortality and adverse outcomes in patients with community-acquired pneumonia (CAP). The data were gathered prospectively for patients hospitalized with CAP via the emergency department. Laboratory values, including CRP and albumin, clinical variables, and the PSI were measured. Primary outcomes were 28-day mortality and survival times. Secondary outcome was admission to the intensive care unit, vasopressor use, or the need for mechanical ventilation during the hospital stay. A total of 424 patients were included. The 28-day mortality was 13.7%. C-reactive protein and albumin were significantly different between survivors and nonsurvivors. In logistic regression analysis, CRP and albumin were independently associated with 28-day mortality (P < .05). Receiver operating characteristic curves showed improved mortality prediction by adding CRP or albumin to the PSI scale. The Cox proportional hazards analysis showed that high serum albumin (≥3.3 mg/dL) had a hazard ratio of 0.5 (95% confidence interval, 0.3-0.9), and high CRP (≥14.3 mg/dL) had a hazard ratio of 2.0 (95% confidence interval, 1.1-3.4). For predicting secondary outcome, adding albumin to PSI increased areas under the curve significantly, but CRP did not. Albumin and CRP were associated with 28-day mortality in hospitalized patients with CAP, and these markers increased prognostic performance when combined with the PSI scale. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  6. Relationship between proportion and composition of albumins, and in vitro protein digestibility of raw and cooked pea seeds (Pisum sativum L.).

    PubMed

    Park, Sei Joon; Kim, Tae Wan; Baik, Byung-Kee

    2010-08-15

    Peas provide an excellent plant protein resource for human diets, but their proteins are less readily digestible than animal proteins. To identify the relationship between composition and in vitro digestibility of pea protein, eight pea varieties with a wide range of protein content (157.3-272.7 g kg(-1)) were determined for the proportion of albumins and globulins, their compositions using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and in vitro protein digestibility (IVPD) before and after heat treatment using a multi-enzyme (trypsin, chymotrypsin and peptidase) method. The proportion of albumins based on total seed protein content decreased from 229 to 147 g kg(-1) as seed protein content increased from 157.3 to 272.7 g kg(-1), while the proportion of globulins increased from 483 to 590 g kg(-1). The IVPDs of eight raw pea seeds were 79.9-83.5%, with significant varietal variations, and those were improved to 85.9-86.8% by cooking. Albumins, including (pea albumins 2) PA2, trypsin inhibitor, lectin and lipoxygenase, were identified as proteolytic resistant proteins. Globulins were mostly digested by protease treatment after heating. The quantitative ratio of albumins and globulins, and the quantitative variations of albumin protein components, including lipoxygenase, PA2, lectins and trypsin inhibitors, appear to influence the protein digestibility of both raw and cooked pea seeds. Copyright (c) 2010 Society of Chemical Industry.

  7. Albumin-stabilized fluorescent silver nanodots

    NASA Astrophysics Data System (ADS)

    Sych, Tomash; Polyanichko, Alexander; Kononov, Alexei

    2017-07-01

    Ligand-stabilized Ag nanoclusters (NCs) possess many attractive features including high fluorescence quantum yield, large absorption cross-section, good photostability, large Stokes shift and two-photon absorption cross sections. While plenty of fluorescent clusters have been synthesized on various polymer templates, only a few studies have been reported on the fluorescent Ag clusters on peptides and proteins. We study silver NCs synthesized on different protein matrices, including bovine serum albumin, human serum albumin, egg albumin, equine serum albumin, and lysozyme. Our results show that red-emitting Ag NCs can effectively be stabilized by the disulfide bonds in proteins and that the looser structure of the denatured protein favors formation of the clusters.

  8. Calcium-dependent interaction of monomeric S100P protein with serum albumin.

    PubMed

    Kazakov, Alexei S; Shevelyova, Marina P; Ismailov, Ramis G; Permyakova, Maria E; Litus, Ekaterina A; Permyakov, Eugene A; Permyakov, Sergei E

    2018-03-01

    S100 proteins are multifunctional (intra/extra)cellular mostly dimeric calcium-binding proteins engaged into numerous diseases. We have found that monomeric recombinant human S100P protein interacts with intact human serum albumin (HSA) in excess of calcium ions with equilibrium dissociation constant of 25-50nM, as evidenced by surface plasmon resonance spectroscopy and fluorescent titration by HSA of S100P labelled by fluorescein isothiocyanate. Calcium removal or S100P dimerization abolish the S100P-HSA interaction. The interaction is selective, since S100P does not bind bovine serum albumin and monomeric human S100B lacks interaction with HSA. In vitro glycation of HSA disables its binding to S100P. The revealed selective and highly specific conformation-dependent interaction between S100P and HSA shows that functional properties of monomeric and dimeric forms of S100 proteins are different, and raises concerns on validity of cell-based assays and animal models used for studies of (patho)physiological roles of extracellular S100 proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Overview of Fusion Tags for Recombinant Proteins.

    PubMed

    Kosobokova, E N; Skrypnik, K A; Kosorukov, V S

    2016-03-01

    Virtually all recombinant proteins are now prepared using fusion domains also known as "tags". The use of tags helps to solve some serious problems: to simplify procedures of protein isolation, to increase expression and solubility of the desired protein, to simplify protein refolding and increase its efficiency, and to prevent proteolysis. In this review, advantages and disadvantages of such fusion tags are analyzed and data on both well-known and new tags are generalized. The authors own data are also presented.

  10. Engineering of Bispecific Affinity Proteins with High Affinity for ERBB2 and Adaptable Binding to Albumin

    PubMed Central

    Nilvebrant, Johan; Åstrand, Mikael; Georgieva-Kotseva, Maria; Björnmalm, Mattias; Löfblom, John; Hober, Sophia

    2014-01-01

    The epidermal growth factor receptor 2, ERBB2, is a well-validated target for cancer diagnostics and therapy. Recent studies suggest that the over-expression of this receptor in various cancers might also be exploited for antibody-based payload delivery, e.g. antibody drug conjugates. In such strategies, the full-length antibody format is probably not required for therapeutic effect and smaller tumor-specific affinity proteins might be an alternative. However, small proteins and peptides generally suffer from fast excretion through the kidneys, and thereby require frequent administration in order to maintain a therapeutic concentration. In an attempt aimed at combining ERBB2-targeting with antibody-like pharmacokinetic properties in a small protein format, we have engineered bispecific ERBB2-binding proteins that are based on a small albumin-binding domain. Phage display selection against ERBB2 was used for identification of a lead candidate, followed by affinity maturation using second-generation libraries. Cell surface display and flow-cytometric sorting allowed stringent selection of top candidates from pools pre-enriched by phage display. Several affinity-matured molecules were shown to bind human ERBB2 with sub-nanomolar affinity while retaining the interaction with human serum albumin. Moreover, parallel selections against ERBB2 in the presence of human serum albumin identified several amino acid substitutions that dramatically modulate the albumin affinity, which could provide a convenient means to control the pharmacokinetics. The new affinity proteins competed for ERBB2-binding with the monoclonal antibody trastuzumab and recognized the native receptor on a human cancer cell line. Hence, high affinity tumor targeting and tunable albumin binding were combined in one small adaptable protein. PMID:25089830

  11. Trimeric Transmembrane Domain Interactions in Paramyxovirus Fusion Proteins

    PubMed Central

    Smith, Everett Clinton; Smith, Stacy E.; Carter, James R.; Webb, Stacy R.; Gibson, Kathleen M.; Hellman, Lance M.; Fried, Michael G.; Dutch, Rebecca Ellis

    2013-01-01

    Paramyxovirus fusion (F) proteins promote membrane fusion between the viral envelope and host cell membranes, a critical early step in viral infection. Although mutational analyses have indicated that transmembrane (TM) domain residues can affect folding or function of viral fusion proteins, direct analysis of TM-TM interactions has proved challenging. To directly assess TM interactions, the oligomeric state of purified chimeric proteins containing the Staphylococcal nuclease (SN) protein linked to the TM segments from three paramyxovirus F proteins was analyzed by sedimentation equilibrium analysis in detergent and buffer conditions that allowed density matching. A monomer-trimer equilibrium best fit was found for all three SN-TM constructs tested, and similar fits were obtained with peptides corresponding to just the TM region of two different paramyxovirus F proteins. These findings demonstrate for the first time that class I viral fusion protein TM domains can self-associate as trimeric complexes in the absence of the rest of the protein. Glycine residues have been implicated in TM helix interactions, so the effect of mutations at Hendra F Gly-508 was assessed in the context of the whole F protein. Mutations G508I or G508L resulted in decreased cell surface expression of the fusogenic form, consistent with decreased stability of the prefusion form of the protein. Sedimentation equilibrium analysis of TM domains containing these mutations gave higher relative association constants, suggesting altered TM-TM interactions. Overall, these results suggest that trimeric TM interactions are important driving forces for protein folding, stability and membrane fusion promotion. PMID:24178297

  12. Structural characterization of Mumps virus fusion protein core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Yueyong; Xu Yanhui; Lou Zhiyong

    2006-09-29

    The fusion proteins of enveloped viruses mediating the fusion between the viral and cellular membranes comprise two discontinuous heptad repeat (HR) domains located at the ectodomain of the enveloped glycoproteins. The crystal structure of the fusion protein core of Mumps virus (MuV) was determined at 2.2 A resolution. The complex is a six-helix bundle in which three HR1 peptides form a central highly hydrophobic coiled-coil and three HR2 peptides pack against the hydrophobic grooves on the surface of central coiled-coil in an oblique antiparallel manner. Fusion core of MuV, like those of simian virus 5 and human respiratory syncytium virus,more » forms typical 3-4-4-4-3 spacing. The similar charecterization in HR1 regions, as well as the existence of O-X-O motif in extended regions of HR2 helix, suggests a basic rule for the formation of the fusion core of viral fusion proteins.« less

  13. The cytoplasmic domain of the gamete membrane fusion protein HAP2 targets the protein to the fusion site in Chlamydomonas and regulates the fusion reaction.

    PubMed

    Liu, Yanjie; Pei, Jimin; Grishin, Nick; Snell, William J

    2015-03-01

    Cell-cell fusion between gametes is a defining step during development of eukaryotes, yet we know little about the cellular and molecular mechanisms of the gamete membrane fusion reaction. HAP2 is the sole gamete-specific protein in any system that is broadly conserved and shown by gene disruption to be essential for gamete fusion. The wide evolutionary distribution of HAP2 (also known as GCS1) indicates it was present in the last eukaryotic common ancestor and, therefore, dissecting its molecular properties should provide new insights into fundamental features of fertilization. HAP2 acts at a step after membrane adhesion, presumably directly in the merger of the lipid bilayers. Here, we use the unicellular alga Chlamydomonas to characterize contributions of key regions of HAP2 to protein location and function. We report that mutation of three strongly conserved residues in the ectodomain has no effect on targeting or fusion, although short deletions that include those residues block surface expression and fusion. Furthermore, HAP2 lacking a 237-residue segment of the cytoplasmic region is expressed at the cell surface, but fails to localize at the apical membrane patch specialized for fusion and fails to rescue fusion. Finally, we provide evidence that the ancient HAP2 contained a juxta-membrane, multi-cysteine motif in its cytoplasmic region, and that mutation of a cysteine dyad in this motif preserves protein localization, but substantially impairs HAP2 fusion activity. Thus, the ectodomain of HAP2 is essential for its surface expression, and the cytoplasmic region targets HAP2 to the site of fusion and regulates the fusion reaction. © 2015. Published by The Company of Biologists Ltd.

  14. TAT-MTS-MCM fusion proteins reduce MMA levels and improve mitochondrial activity and liver function in MCM-deficient cells.

    PubMed

    Erlich-Hadad, Tal; Hadad, Rita; Feldman, Anat; Greif, Hagar; Lictenstein, Michal; Lorberboum-Galski, Haya

    2018-03-01

    Methylmalonic aciduria (MMA) is a disorder of organic acid metabolism resulting from a functional defect of the mitochondrial enzyme, methylmalonyl-CoA mutase (MCM). The main treatments for MMA patients are dietary restriction of propiogenic amino acids and carnitine supplementation. Liver or combined liver/kidney transplantation has been used to treat those with the most severe clinical manifestations. Thus, therapies are necessary to help improve quality of life and prevent liver, renal and neurological complications. Previously, we successfully used the TAT-MTS-Protein approach for replacing a number of mitochondrial-mutated proteins. In this targeted system, TAT, an 11 a.a peptide, which rapidly and efficiently can cross biological membranes, is fused to a mitochondrial targeting sequence (MTS), followed by the mitochondrial mature protein which sends the protein into the mitochondria. In the mitochondria, the TAT-MTS is cleaved off and the native protein integrates into its natural complexes and is fully functional. In this study, we used heterologous MTSs of human, nuclear-encoded mitochondrial proteins, to target the human MCM protein into the mitochondria. All fusion proteins reached the mitochondria and successfully underwent processing. Treatment of MMA patient fibroblasts with these fusion proteins restored mitochondrial activity such as ATP production, mitochondrial membrane potential and oxygen consumption, indicating the importance of mitochondrial function in this disease. Treatment with the fusion proteins enhanced cell viability and most importantly reduced MMA levels. Treatment also enhanced albumin and urea secretion in a CRISPR/Cas9-engineered HepG2 MUT (-/-) liver cell line. Therefore, we suggest using this TAT-MTS-Protein approach for the treatment of MMA. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  15. Characterization of protein-bound gold in rat urine following aurothiomalate administration and of rat and human albumin-gold-thiomalate.

    PubMed

    Shaw, C F; Schaeffer-Memmel, N; Krawczak, D

    1986-03-01

    The metabolites of gold in the urine of rats given the antiarthritic drug aurothiomalate were investigated by gel permeation chromatography, electrophoresis, and chemical studies. Following a single dose of aurtothiomalate, the excreted gold was protein-bound in the high-molecular-weight (greater than or equal to 150,000 dalton) and serum albumin fractions. Electrophoresis confirmed the presence of albumin, but showed that the other proteins present differ from those in normal or in vitro aurothiomalate-incubated rat sera. The pattern of the proteins establishes that the proteinuria was of the glomerular type. The alterations in the gold distribution produced by incubation of the urine with the low-molecular-weight thiol penicillamine and with exogenously added aurothiomalate indicated the existence of a labile equilibrium of gold among protein binding sites in the urine. Incubation of rat and human sera and commercially prepared serum albumins with aurothiomalate increased the electrophoretic mobility of the albumin. The significance of this change in electrophoretic mobility with respect to two models of gold binding by serum albumin is discussed.

  16. Ligand screening system using fusion proteins of G protein-coupled receptors with G protein alpha subunits.

    PubMed

    Suga, Hinako; Haga, Tatsuya

    2007-01-01

    G protein-coupled receptors (GPCRs) constitute one of the largest families of genes in the human genome, and are the largest targets for drug development. Although a large number of GPCR genes have recently been identified, ligands have not yet been identified for many of them. Various assay systems have been employed to identify ligands for orphan GPCRs, but there is still no simple and general method to screen for ligands of such GPCRs, particularly of G(i)-coupled receptors. We have examined whether fusion proteins of GPCRs with G protein alpha subunit (Galpha) could be utilized for ligand screening and showed that the fusion proteins provide an effective method for the purpose. This article focuses on the followings: (1) characterization of GPCR genes and GPCRs, (2) identification of ligands for orphan GPCRs, (3) characterization of GPCR-Galpha fusion proteins, and (4) identification of ligands for orphan GPCRs using GPCR-Galpha fusion proteins.

  17. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  18. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  19. Structural Transition and Antibody Binding of EBOV GP and ZIKV E Proteins from Pre-Fusion to Fusion-Initiation State.

    PubMed

    Lappala, Anna; Nishima, Wataru; Miner, Jacob; Fenimore, Paul; Fischer, Will; Hraber, Peter; Zhang, Ming; McMahon, Benjamin; Tung, Chang-Shung

    2018-05-10

    Membrane fusion proteins are responsible for viral entry into host cells—a crucial first step in viral infection. These proteins undergo large conformational changes from pre-fusion to fusion-initiation structures, and, despite differences in viral genomes and disease etiology, many fusion proteins are arranged as trimers. Structural information for both pre-fusion and fusion-initiation states is critical for understanding virus neutralization by the host immune system. In the case of Ebola virus glycoprotein (EBOV GP) and Zika virus envelope protein (ZIKV E), pre-fusion state structures have been identified experimentally, but only partial structures of fusion-initiation states have been described. While the fusion-initiation structure is in an energetically unfavorable state that is difficult to solve experimentally, the existing structural information combined with computational approaches enabled the modeling of fusion-initiation state structures of both proteins. These structural models provide an improved understanding of four different neutralizing antibodies in the prevention of viral host entry.

  20. LABELING WITH 14C AMINO ACIDS OF ALBUMIN-LIKE PROTEIN BY RAT LIVER RIBONUCLEOPROTEIN PARTICLES

    PubMed Central

    von der Decken, Alexandra

    1963-01-01

    Ribonucleoprotein particles were prepared by treatment of rat liver microsomes with detergents and high concentrations of KCl. They were active in incorporating 14C amino acids into protein when incubated with cell sap together with ATP, GTP, and a system to regenerate the triphosphates. The albumin of the incubation mixture, soluble at 105,000 g, and that of the fraction released by ultrasonication of the particles were studied by immunoelectrophoresis in agar gel. When the ribonucleoprotein particles were incubated with cell sap the immunological precipitation lines formed with antiserum to rat serum albumin were highly radioactive as tested by autoradiography. After zone electrophoresis on cellulose acetate, two immunologically reactive albumins were obtained which differed in their electrophoretic mobility from rat serum albumin. Labeled albumin, when purified on DEAE-cellulose columns, retained its radioactivity as tested by autoradiography following immunoelectrophoresis. On cellulose acetate this purified albumin showed an electrophoretic mobility higher than that of rat serum albumin. PMID:14026307

  1. Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Yeongseon; Choi, Won Tae; Heller, William T.

    Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermalmore » driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. Lastly, these results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure.« less

  2. Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins

    DOE PAGES

    Jang, Yeongseon; Choi, Won Tae; Heller, William T.; ...

    2017-07-27

    Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermalmore » driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. Lastly, these results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure.« less

  3. Diagnostic accuracy of the postoperative ratio of C-reactive protein to albumin for complications after colorectal surgery.

    PubMed

    Ge, Xiaolong; Cao, Yu; Wang, Hongkan; Ding, Chao; Tian, Hongliang; Zhang, Xueying; Gong, Jianfeng; Zhu, Weiming; Li, Ning

    2017-01-10

    The ratio of C-reactive protein to albumin, as a novel inflammation-based prognostic score, is associated with outcomes in cancer and septic patients. The diagnostic accuracy of the CRP/albumin ratio has not been assessed in colorectal surgery for postoperative complications. A total of 359 patients undergoing major colorectal surgery between 2012 and 2015 were eligible for this study. Uni- and multivariate analyses were performed to identify risk factors for postoperative complications. Receiver operating characteristic curves were developed to examine the cutoff values and diagnostic accuracy of the CRP/albumin ratio and postoperative CRP levels. Among all the patients, 139 (38.7%) were reported to have postoperative complications. The CRP/albumin ratio was an independent risk factor for complications (OR 4.413; 95% CI 2.463-7.906; P < 0.001), and the cutoff value was 2.2, which had a higher area under the curve compared to CRP on postoperative day 3 (AUC 0.779 vs 0.756). The CRP/albumin ratio also had a higher positive predictive value than CRP levels on postoperative day 3. Patients with CRP/albumin ≥2.2 suffered more postoperative complications (60.8% vs 18.6%, P < 0.001), longer postoperative stays (10 (4-71) vs 7 (3-78) days, P < 0.001), and increased surgical site infections (SSIs) (21.1% vs 4.8%, P < 0.001) than those with CRP/albumin <2.2. The ratio of C-reactive protein to albumin could help to identify patients who have a high probability of postoperative complications, and the ratio has higher diagnostic accuracy than C-reactive protein alone for postoperative complications in colorectal surgery.

  4. Mutations in the Parainfluenza Virus 5 Fusion Protein Reveal Domains Important for Fusion Triggering and Metastability

    PubMed Central

    Bose, Sayantan; Heath, Carissa M.; Shah, Priya A.; Alayyoubi, Maher; Jardetzky, Theodore S.

    2013-01-01

    Paramyxovirus membrane glycoproteins F (fusion protein) and HN, H, or G (attachment protein) are critical for virus entry, which occurs through fusion of viral and cellular envelopes. The F protein folds into a homotrimeric, metastable prefusion form that can be triggered by the attachment protein to undergo a series of structural rearrangements, ultimately folding into a stable postfusion form. In paramyxovirus-infected cells, the F protein is activated in the Golgi apparatus by cleavage adjacent to a hydrophobic fusion peptide that inserts into the target membrane, eventually bringing the membranes together by F refolding. However, it is not clear how the attachment protein, known as HN in parainfluenza virus 5 (PIV5), interacts with F and triggers F to initiate fusion. To understand the roles of various F protein domains in fusion triggering and metastability, single point mutations were introduced into the PIV5 F protein. By extensive study of F protein cleavage activation, surface expression, and energetics of fusion triggering, we found a role for an immunoglobulin-like (Ig-like) domain, where multiple hydrophobic residues on the PIV5 F protein may mediate F-HN interactions. Additionally, destabilizing mutations of PIV5 F that resulted in HN trigger-independent mutant F proteins were identified in a region along the border of F trimer subunits. The positions of the potential HN-interacting region and the region important for F stability in the lower part of the PIV5 F prefusion structure provide clues to the receptor-binding initiated, HN-mediated F trigger. PMID:24089572

  5. Computational and biological characterization of fusion proteins of two insecticidal proteins for control of insect pests.

    PubMed

    Javaid, Shaista; Naz, Sehrish; Amin, Imran; Jander, Georg; Ul-Haq, Zaheer; Mansoor, Shahid

    2018-03-19

    Sucking pests pose a serious agricultural challenge, as available transgenic technologies such as Bacillus thuringiensis crystal toxins (Bt) are not effective against them. One approach is to produce fusion protein toxins for the control of these pests. Two protein toxins, Hvt (ω-atracotoxin from Hadronyche versuta) and onion leaf lectin, were translationally fused to evaluate the negative effects of fusion proteins on Phenacoccus solenopsis (mealybug), a phloem-feeding insect pest. Hvt was cloned both N-terminally (HL) and then C-terminally (LH) in the fusion protein constructs, which were expressed transiently in Nicotiana tabacum using a Potato Virus X (PVX) vector. The HL fusion protein was found to be more effective against P. solenopsis, with an 83% mortality rate, as compared to the LH protein, which caused 65% mortality. Hvt and lectin alone caused 42% and 45%, respectively, under the same conditions. Computational studies of both fusion proteins showed that the HL protein is more stable than the LH protein. Together, these results demonstrate that translational fusion of two insecticidal proteins improved the insecticidal activity relative to each protein individually and could be expressed in transgenic plants for effective control of sucking pests.

  6. Overview of Albumin and Its Purification Methods

    PubMed Central

    Raoufinia, Ramin; Mota, Ali; Keyhanvar, Neda; Safari, Fatemeh; Shamekhi, Sara; Abdolalizadeh, Jalal

    2016-01-01

    As the most frequent plasma protein, albumin constitutes more than 50% of the serum proteins in healthy individuals. It has a key role in oncotic pressure maintenance and it is known as a versatile protein carrier for transportation of various endogenous and exogenous ligands. Reduced amounts of albumin in the body will lead to different kinds of diseases such as hypovolemia and hypoproteinemia. It also has various indications in shocks, burns, cardiopulmonary bypass, acute liver failure and etc. Further applications in research consist of cell culture supplement, drug delivery carrier and protein/drug stabilizer. So, the demand for albumin increased annually worldwide. Due to different applications of albumin, many efforts have been accomplished to achieve albumin during a long period of time. In this review, an overview of serum albumin and different purification methods are summarized. PMID:28101456

  7. ChiPPI: a novel method for mapping chimeric protein-protein interactions uncovers selection principles of protein fusion events in cancer.

    PubMed

    Frenkel-Morgenstern, Milana; Gorohovski, Alessandro; Tagore, Somnath; Sekar, Vaishnovi; Vazquez, Miguel; Valencia, Alfonso

    2017-07-07

    Fusion proteins, comprising peptides deriving from the translation of two parental genes, are produced in cancer by chromosomal aberrations. The expressed fusion protein incorporates domains of both parental proteins. Using a methodology that treats discrete protein domains as binding sites for specific domains of interacting proteins, we have cataloged the protein interaction networks for 11 528 cancer fusions (ChiTaRS-3.1). Here, we present our novel method, chimeric protein-protein interactions (ChiPPI) that uses the domain-domain co-occurrence scores in order to identify preserved interactors of chimeric proteins. Mapping the influence of fusion proteins on cell metabolism and pathways reveals that ChiPPI networks often lose tumor suppressor proteins and gain oncoproteins. Furthermore, fusions often induce novel connections between non-interactors skewing interaction networks and signaling pathways. We compared fusion protein PPI networks in leukemia/lymphoma, sarcoma and solid tumors finding distinct enrichment patterns for each disease type. While certain pathways are enriched in all three diseases (Wnt, Notch and TGF β), there are distinct patterns for leukemia (EGFR signaling, DNA replication and CCKR signaling), for sarcoma (p53 pathway and CCKR signaling) and solid tumors (FGFR and EGFR signaling). Thus, the ChiPPI method represents a comprehensive tool for studying the anomaly of skewed cellular networks produced by fusion proteins in cancer. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Determination of plasma albumin concentration in healthy and diseased turtles: a comparison of protein electrophoresis and the bromcresol green dye-binding method.

    PubMed

    Müller, Kerstin; Brunnberg, Leo

    2010-03-01

    In reptile medicine, plasma chemistry analysis is widely used for the evaluation of an individual's health status. The standard method for the determination of plasma albumin concentration is protein electrophoresis combined with the determination of total protein concentration, but the bromcresol green (BCG) dye-binding method is also used. The reliability of the BCG method for the measurement of albumin concentration in reptiles is unknown. The aim of this study was to compare the plasma albumin values of turtles obtained by protein electrophoresis and the BCG method. Between March 2008 and September 2008, heparinized plasma samples from 16 clinically healthy and 10 diseased turtles of different species were collected. Plasma albumin concentrations were measured by protein electrophoresis and by the BCG method. The results of the 2 methods were compared using Passing-Bablok regression and Bland-Altman plots. Albumin concentration measured by BCG was weakly correlated with the corresponding protein electrophoretic values in all turtles (r(s)=.610, P<.001) and in healthy turtles evaluated separately (r(s)=.700, P=.003), whereas in diseased turtles no such correlation was found (r(s)=.374, P=.287). The albumin concentration measured with the 2 different methods differed significantly in all turtles (P=.009; Wilcoxon's test) and in healthy turtles (P=.005) but not in diseased animals (P=.241). In the Bland-Altman plot a systematic error was found between the 2 methods in diseased turtles. Measurement of albumin by the BCG dye-binding method may lead to inaccurate results for plasma albumin concentration, especially in ill turtles. Therefore, for health assessment in turtles, albumin should be measured by protein electrophoresis.

  9. Visualizing and quantifying protein secretion using a Renilla luciferase-GFP fusion protein.

    PubMed

    Liu, J; Wang, Y; Szalay, A A; Escher, A

    2000-01-01

    We have shown previously that an engineered form of Renilla luciferase (SRUC) can be secreted as a functional enzyme by mammalian cells, and that fusing wild-type Renilla luciferase with the green fluorescent protein from Aequorea victoria (GFP) yields a chimeric protein retaining light-emission properties similar to that of unfused Renilla luciferase and GFP. In the work presented here, SRUC was fused with GFP to determine whether it could be used to both visualize and quantify protein secretion in mammalian cells. Simian COS-7 and Chinese hamster ovary (CHO) cells were transiently transfected with gene constructs encoding a secreted or an intracellular version of a Renilla luciferase-GFP fusion protein. Renilla luciferase activity was measured from COS-7 cell lysates and culture media, and GFP activity was detected in CHO cells using fluorescence microscopy. Data indicated that the SRUC-GFP fusion protein was secreted as a chimeric protein that had both Renilla luciferase and GFP activity. This fusion protein could be a useful marker for the study of protein secretion in mammalian cells. Copyright 2000 John Wiley & Sons, Ltd.

  10. Fibrinogen adsorption on blocked surface of albumin.

    PubMed

    Holmberg, Maria; Hou, Xiaolin

    2011-05-01

    We have investigated the adsorption of albumin and fibrinogen onto PET (polyethylene terephthalate) and glass surfaces and how pre-adsorption of albumin onto these surfaces can affect the adsorption of later added fibrinogen. For materials and devices being exposed to blood, adsorption of fibrinogen is often a non-wanted event, since fibrinogen is part of the clotting cascade and unspecific adsorption of fibrinogen can have an influence on the activation of platelets. Albumin is often used as blocking agent for avoiding unspecific protein adsorption onto surfaces in devices designed to handle biological samples, including protein solutions. It is based on the assumption that proteins adsorbs as a monolayer on surfaces and that proteins do not adsorb on top of each other. By labelling albumin and fibrinogen with two different radioactive iodine isotopes that emit gamma radiation with different energies, the adsorption of both albumin and fibrinogen has been monitored simultaneously on the same sample. Information about topography and coverage of adsorbed protein layers has been obtained using AFM (Atomic Force Microscopy) analysis in liquid. Our studies show that albumin adsorbs in a multilayer fashion on PET and that fibrinogen adsorbs on top of albumin when albumin is pre-adsorbed on the surfaces. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Impact of fluorescent protein fusions on the bacterial flagellar motor.

    PubMed

    Heo, M; Nord, A L; Chamousset, D; van Rijn, E; Beaumont, H J E; Pedaci, F

    2017-10-03

    Fluorescent fusion proteins open a direct and unique window onto protein function. However, they also introduce the risk of perturbation of the function of the native protein. Successful applications of fluorescent fusions therefore rely on a careful assessment and minimization of the side effects, but such insight is still lacking for many applications. This is particularly relevant in the study of the internal dynamics of motor proteins, where both the chemical and mechanical reaction coordinates can be affected. Fluorescent proteins fused to the stator of the Bacterial Flagellar Motor (BFM) have previously been used to unveil the motor subunit dynamics. Here we report the effects on single motors of three fluorescent proteins fused to the stators, all of which altered BFM behavior. The torque generated by individual stators was reduced while their stoichiometry remained unaffected. MotB fusions decreased the switching frequency and induced a novel bias-dependent asymmetry in the speed in the two directions. These effects could be mitigated by inserting a linker at the fusion point. These findings provide a quantitative account of the effects of fluorescent fusions to the stator on BFM dynamics and their alleviation- new insights that advance the use of fluorescent fusions to probe the dynamics of protein complexes.

  12. Spring-Loaded Model Revisited: Paramyxovirus Fusion Requires Engagement of a Receptor Binding Protein beyond Initial Triggering of the Fusion Protein▿

    PubMed Central

    Porotto, Matteo; DeVito, Ilaria; Palmer, Samantha G.; Jurgens, Eric M.; Yee, Jia L.; Yokoyama, Christine C.; Pessi, Antonello; Moscona, Anne

    2011-01-01

    During paramyxovirus entry into a host cell, receptor engagement by a specialized binding protein triggers conformational changes in the adjacent fusion protein (F), leading to fusion between the viral and cell membranes. According to the existing paradigm of paramyxovirus membrane fusion, the initial activation of F by the receptor binding protein sets off a spring-loaded mechanism whereby the F protein progresses independently through the subsequent steps in the fusion process, ending in membrane merger. For human parainfluenza virus type 3 (HPIV3), the receptor binding protein (hemagglutinin-neuraminidase [HN]) has three functions: receptor binding, receptor cleaving, and activating F. We report that continuous receptor engagement by HN activates F to advance through the series of structural rearrangements required for fusion. In contrast to the prevailing model, the role of HN-receptor engagement in the fusion process is required beyond an initiating step, i.e., it is still required even after the insertion of the fusion peptide into the target cell membrane, enabling F to mediate membrane merger. We also report that for Nipah virus, whose receptor binding protein has no receptor-cleaving activity, the continuous stimulation of the F protein by a receptor-engaged binding protein is key for fusion. We suggest a general model for paramyxovirus fusion activation in which receptor engagement plays an active role in F activation, and the continued engagement of the receptor binding protein is essential to F protein function until the onset of membrane merger. This model has broad implications for the mechanism of paramyxovirus fusion and for strategies to prevent viral entry. PMID:21976650

  13. Bifunctional fusion proteins of calmodulin and protein A as affinity ligands in protein purification and in the study of protein-protein interactions.

    PubMed

    Hentz, N G; Daunert, S

    1996-11-15

    An affinity chromatography system is described that incorporates a genetically designed bifunctional affinity ligand. The utility of the system in protein purification and in the study of protein-protein interactions is demonstrated by using the interaction between protein A and the heat shock protein DnaK as a model system. The bifunctional affinity ligand was developed by genetically fusing calmodulin (CaM) to protein A (ProtA). The dual functionality of protein A-calmodulin (ProtA-CaM) stems from the molecular recognition properties of the two components of the fusion protein. In particular, CaM serves as the anchoring component by virtue of its binding properties toward phenothiazine. Thus, the ProtA-CaM can be immobilized on a solid support containing phenothiazine from the C-terminal domain of the fusion protein. Protein A is at the N-terminal domain of the fusion protein and serves as the affinity site for DnaK. While DnaK binds specifically to the protein A domain of the bifunctional ligand, it is released upon addition of ATP and under very mild conditions (pH 7.0). In addition to obtaining highly purified DnaK, this system is very rugged in terms of its performance. The proteinaceous bifunctional affinity ligand can be easily removed by addition of EGTA, and fresh ProtA-CaM can be easily reloaded onto the column. This allows for a facile regeneration of the affinity column because the phenothiazine-silica support matrix is stable for long periods of time under a variety of conditions. This study also demonstrates that calmodulin fusions can provide a new approach to study protein-protein interactions. Indeed, the ProtA-CaM fusion protein identified DnaK as a cellular component that interacts with protein A from among the thousands of proteins present in Escherichia coli.

  14. Parenteral amino acids increase albumin and skeletal muscle protein fractional synthetic rates in premature newborn minipigs.

    PubMed

    Hellstern, Gerald; Kaempf-Rotzoll, Daisy; Linderkamp, Otwin; Langhans, Klaus-Dieter; Rating, Dietz

    2002-09-01

    Early administration of parenteral amino acids increases whole body nitrogen retention in premature infants. Tracer kinetic studies suggest an increase in whole body protein synthesis as a possible mechanism for this increase in nitrogen retention. However, the effect of early parenteral amino acids on synthesis of specific proteins remains uncertain. Using premature newborn minipigs as a model for human premature newborns, we investigated the effects of parenterally administered amino acids on albumin and skeletal muscle protein fractional synthetic rates. Fifteen Yucatan minipigs were delivered by cesarean section 6 days before the mean expected delivery date (day 106 of gestation; expected gestation, 111-113 days) and randomized to two groups immediately after birth: 7 piglets received a mixture of amino acids (0.4 g. kg. h ) and glucose (0.8 g. kg. h ) for 5 hours, and 8 piglets (control group) received glucose only. All piglets received a continuous primed infusion of 1-[ C]valine. Arterial plasma free C-valine enrichment was measured by gas chromatography/mass spectrometry, and protein synthetic rates were determined by measuring incorporation of C-valine into albumin and skeletal muscle protein using gas chromatography/combustion/isotope ratio mass spectrometry. Administration of amino acids increased albumin (87.0% +/- 42.1% [mean +/- SD] vs. 37.6% +/- 6.8% per 24 hours; < 0.05) and skeletal muscle fractional synthetic rates (11.60% +/- 6.9% vs. 6.5% +/- 1.5% per 24 hours; < 0.05). We conclude that parenteral amino acids increase albumin and skeletal muscle fractional synthetic rates in premature piglets on the first day of life.

  15. Fusion proteins as alternate crystallization paths to difficult structure problems

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Rueker, Florian; Ho, Joseph X.; Lim, Kap; Keeling, Kim; Gilliland, Gary; Ji, Xinhua

    1994-01-01

    The three-dimensional structure of a peptide fusion product with glutathione transferase from Schistosoma japonicum (SjGST) has been solved by crystallographic methods to 2.5 A resolution. Peptides or proteins can be fused to SjGST and expressed in a plasmid for rapid synthesis in Escherichia coli. Fusion proteins created by this commercial method can be purified rapidly by chromatography on immobilized glutathione. The potential utility of using SjGST fusion proteins as alternate paths to the crystallization and structure determination of proteins is demonstrated.

  16. Genome-Wide Identification and Comparative Analysis of Albumin Family in Vertebrates

    PubMed Central

    Li, Shugang; Cao, Yiping; Geng, Fang

    2017-01-01

    Albumins are the most well-known globular proteins, and the most typical representatives are the serum albumins. However, less attention was paid to the albumin family, except for the human and bovine serum albumin. To characterize the features of albumin family, we have mined all the putative albumin proteins from the available genome sequences. The results showed that albumin is widely distributed in vertebrates, but not present in the bacteria and archaea. The phylogenetic analysis of vertebrate albumin family implied an evolutionary relationship between members of serum albumin, α-fetoprotein, vitamin D–binding protein, and afamin. Meanwhile, a new member from the albumin family was found, namely, extracellular matrix protein 1. The structural analysis revealed that the motifs for forming the internal disulfide bonds are highly conserved in the albumin family, despite the low overall sequence identity across the family. The domain arrangement of albumin proteins indicated that most of vertebrate albumins contain 3 characteristic domains, arising from 2 evolutionary patterns. And a significant trend has been observed that the albumin proteins in higher vertebrate species tend to possess more characteristic domains. This study has provided the fundamental information required for achieving a better understanding of the albumin distribution, phylogenetic relationship, characteristic motif, structure, and new insights into the evolutionary pattern. PMID:28680266

  17. Albumin modification and fragmentation in renal disease.

    PubMed

    Donadio, Carlo; Tognotti, Danika; Donadio, Elena

    2012-02-18

    Albumin is the most important antioxidant substance in plasma and performs many physiological functions. Furthermore, albumin is the major carrier of endogenous molecules and exogenous ligands. This paper reviews the importance of post-translational modifications of albumin and fragments thereof in patients with renal disease. First, current views and controversies on renal handling of proteins, mainly albumin, will be discussed. Post-translational modifications, namely the fragmentation of albumin found with proteomic techniques in nephrotic patients, diabetics, and ESRD patients will be presented and discussed. It is reasonable to hypothesize that proteolytic fragmentation of serum albumin is due to a higher susceptibility to proteases, induced by oxidative stress. The clinical relevance of the fragmentation of albumin has not yet been established. These modifications could affect some physiological functions of albumin and have a patho-physiological role in uremic syndrome. Proteomic analysis of serum allows the identification of over-expressed proteins and can detect post-translational modifications of serum proteins, hitherto hidden, using standard laboratory techniques. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Bifunctional fusion proteins containing the sequence of the bradykinin homologue maximakinin: activities at the rat bradykinin B2 receptor.

    PubMed

    Charest-Morin, Xavier; Lodge, Robert; Marceau, François

    2018-05-01

    To support bradykinin (BK) B 2 receptor (B 2 R) detection and therapeutic stimulation, we developed and characterized fusion proteins consisting of the BK homolog maximakinin (MK), or variants, positioned at the C-terminus of functional proteins (enhanced green fluorescent protein (EGFP), the peroxidase APEX2, or human serum albumin (HSA)). EGFP-MK loses its reactivity with anti-BK antibodies and molecular mass as it progresses in the endosomal tract of cells expressing rat B 2 Rs (immunoblots, epifluorescence microscopy). APEX2-(NG) 15 -MK is a bona fide agonist of the rat, but not of the human B 2 R (calcium and c-Fos signaling) and is compatible with the cytochemistry reagent TrueBlue (microscopy), a luminol-based reagent, or 3,3',5,5'-tetramethylbenzidine (luminescence or colourimetric B 2 R detection, cell well plate format). APEX2-(NG) 15 -MK is a non-isotopic ligand suitable for drug discovery via binding competition. Affinity-purified secreted forms of HSA fused with peptides possessing the C-terminal MK or BK sequence failed to stimulate the rat B 2 R in the concentration range of 50-600 nmol/L. However, the non-secreted construction myc-HSA-MK is a B 2 R agonist, indicating that protein denaturation made the C-terminal sequence available for receptor binding. Fusion protein ligands of the B 2 R are stable but subjected to slow intracellular inactivation, strong species specificity, and possible steric hindrance between the receptor and large proteins.

  19. Simple method provides resolution of albumin, lipoprotein, free fraction, and chylomicron to enhance the utility of protein binding assays.

    PubMed

    Brockman, Adam H; Oller, Haley R; Moreau, Benoît; Kriksciukaite, Kristina; Bilodeau, Mark T

    2015-02-12

    Medicinal chemists have been encouraged in recent years to embrace high speed protein binding assays. These methods employ dialysis membranes in 96-well format or spin filters. Membrane-based methods do not separate lipoprotein binding from albumin binding and introduce interference despite membrane binding controls. Ultracentrifugation methods, in contrast, do not introduce interference if density gradients can be avoided and they resolve lipoprotein from albumin. A new generation of compact, fast ultracentrifuges facilitates the rapid and fully informative separation of plasma into albumin, albumin/fatty acid complex, lipoprotein, protein-free, and chylomicron fractions with no need of salt or sugar density gradients. We present a simple and fast ultracentrifuge method here for two platinum compounds and a taxane that otherwise bound irreversibly to dialysis membranes and which exhibited distinctive lipoprotein binding behaviors. This new generation of ultracentrifugation methods underscores a need to further discuss protein binding assessments as they relate to medicinal chemistry efforts.

  20. Full-Length Trimeric Influenza Virus Hemagglutinin II Membrane Fusion Protein and Shorter Constructs Lacking the Fusion Peptide or Transmembrane Domain: Hyperthermostability of the Full-Length Protein and the Soluble Ectodomain and Fusion Peptide Make Significant Contributions to Fusion of Membrane Vesicles†

    PubMed Central

    Ratnayake, Punsisi U.; Ekanayaka, E. A. Prabodha; Komanduru, Sweta S.; Weliky, David P.

    2015-01-01

    Influenza virus is a Class I enveloped virus which is initially endocytosed into a host respiratory epithelial cell. Subsequent reduction of the pH to the 5–6 range triggers a structural change of the viral hemagglutinin II (HA2) protein, fusion of the viral and endosomal membranes, and release of the viral nucleocapsid into the cytoplasm. HA2 contains fusion peptide (FP), soluble ectodomain (SE), transmembrane (TM), and intraviral domains with respective lengths of ~25, ~160, ~25, and ~10 residues. The present work provides a straightforward protocol for producing and purifying mg quantities of full-length HA2 from expression in bacteria. Biophysical and structural comparisons are made between full-length HA2 and shorter constructs including SHA2 ≡ SE, FHA2 ≡ FP + SE, and SHA2-TM ≡ SE + TM constructs. The constructs are helical in detergent at pH 7.4 and the dominant trimer species. The proteins are highly thermostable in decylmaltoside detergent with Tm > 90 °C for HA2 with stabilization provided by the SE, FP, and TM domains. The proteins are likely in a trimer-of-hairpins structure, the final protein state during fusion. All constructs induce fusion of negatively-charged vesicles at pH 5.0 with much less fusion at pH 7.4. Attractive protein/vesicle electrostatics play a role in fusion, as the proteins are positively-charged at pH 5.0 and negatively-charged at pH 7.4 and the pH-dependence of fusion is reversed for positively-charged vesicles. Comparison of fusion between constructs supports significant contributions to fusion from the SE and the FP with little effect from the TM. PMID:26297995

  1. Full-length trimeric influenza virus hemagglutinin II membrane fusion protein and shorter constructs lacking the fusion peptide or transmembrane domain: Hyperthermostability of the full-length protein and the soluble ectodomain and fusion peptide make significant contributions to fusion of membrane vesicles.

    PubMed

    Ratnayake, Punsisi U; Prabodha Ekanayaka, E A; Komanduru, Sweta S; Weliky, David P

    2016-01-01

    Influenza virus is a class I enveloped virus which is initially endocytosed into a host respiratory epithelial cell. Subsequent reduction of the pH to the 5-6 range triggers a structural change of the viral hemagglutinin II (HA2) protein, fusion of the viral and endosomal membranes, and release of the viral nucleocapsid into the cytoplasm. HA2 contains fusion peptide (FP), soluble ectodomain (SE), transmembrane (TM), and intraviral domains with respective lengths of ∼ 25, ∼ 160, ∼ 25, and ∼ 10 residues. The present work provides a straightforward protocol for producing and purifying mg quantities of full-length HA2 from expression in bacteria. Biophysical and structural comparisons are made between full-length HA2 and shorter constructs including SHA2 ≡ SE, FHA2 ≡ FP+SE, and SHA2-TM ≡ SE+TM constructs. The constructs are helical in detergent at pH 7.4 and the dominant trimer species. The proteins are highly thermostable in decylmaltoside detergent with Tm>90 °C for HA2 with stabilization provided by the SE, FP, and TM domains. The proteins are likely in a trimer-of-hairpins structure, the final protein state during fusion. All constructs induce fusion of negatively-charged vesicles at pH 5.0 with much less fusion at pH 7.4. Attractive protein/vesicle electrostatics play a role in fusion, as the proteins are positively-charged at pH 5.0 and negatively-charged at pH 7.4 and the pH-dependence of fusion is reversed for positively-charged vesicles. Comparison of fusion between constructs supports significant contributions to fusion from the SE and the FP with little effect from the TM. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. The Multifaceted Role of SNARE Proteins in Membrane Fusion

    PubMed Central

    Han, Jing; Pluhackova, Kristyna; Böckmann, Rainer A.

    2017-01-01

    Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined. PMID:28163686

  3. The Multifaceted Role of SNARE Proteins in Membrane Fusion.

    PubMed

    Han, Jing; Pluhackova, Kristyna; Böckmann, Rainer A

    2017-01-01

    Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined.

  4. The p14 fusion-associated small transmembrane (FAST) protein effects membrane fusion from a subset of membrane microdomains.

    PubMed

    Corcoran, Jennifer A; Salsman, Jayme; de Antueno, Roberto; Touhami, Ahmed; Jericho, Manfred H; Clancy, Eileen K; Duncan, Roy

    2006-10-20

    The reovirus fusion-associated small transmembrane (FAST) proteins are a unique family of viral membrane fusion proteins. These nonstructural viral proteins induce efficient cell-cell rather than virus-cell membrane fusion. We analyzed the lipid environment in which the reptilian reovirus p14 FAST protein resides to determine the influence of the cell membrane on the fusion activity of the FAST proteins. Topographical mapping of the surface of fusogenic p14-containing liposomes by atomic force microscopy under aqueous conditions revealed that p14 resides almost exclusively in thickened membrane microdomains. In transfected cells, p14 was found in both Lubrol WX- and Triton X-100-resistant membrane complexes. Cholesterol depletion of donor cell membranes led to preferential disruption of p14 association with Lubrol WX (but not Triton X-100)-resistant membranes and decreased cell-cell fusion activity, both of which were reversed upon subsequent cholesterol repletion. Furthermore, co-patching analysis by fluorescence microscopy indicated that p14 did not co-localize with classical lipid-anchored raft markers. These data suggest that the p14 FAST protein associates with heterogeneous membrane microdomains, a distinct subset of which is defined by cholesterol-dependent Lubrol WX resistance and which may be more relevant to the membrane fusion process.

  5. The glycan structure of albumin Redhill, a glycosylated variant of human serum albumin.

    PubMed

    Kragh-Hansen, U; Donaldson, D; Jensen, P H

    2001-11-26

    Although human serum albumin is synthesized without carbohydrate, glycosylated variants of the protein can be found. We have determined the structure of the glycan bound to the double-mutant albumin Redhill (-1 Arg, 320 Ala-->Thr). The oligosaccharide was released from the protein using anhydrous hydrazine, and its structure was investigated using neuraminidase and a reagent array analysis method, which is based on the use of specific exoglycosidases. The glycan was shown to be a disialylated biantennary complex type oligosaccharide N-linked to 318 Asn. However, a minor part (11 mol%) of the glycan was without sialic acid. The structure is principally the same as that of glycans bound to two other types of glycosylated albumin variants. Glycosylation can affect, for example, the fatty acid binding properties of albumin. Taking the present information into account, it is apparent that different effects on binding are caused not by different glycan structures but by different locations of attachment, with the possible addition of local conformational changes in the protein molecule.

  6. Trimeric transmembrane domain interactions in paramyxovirus fusion proteins: roles in protein folding, stability, and function.

    PubMed

    Smith, Everett Clinton; Smith, Stacy E; Carter, James R; Webb, Stacy R; Gibson, Kathleen M; Hellman, Lance M; Fried, Michael G; Dutch, Rebecca Ellis

    2013-12-13

    Paramyxovirus fusion (F) proteins promote membrane fusion between the viral envelope and host cell membranes, a critical early step in viral infection. Although mutational analyses have indicated that transmembrane (TM) domain residues can affect folding or function of viral fusion proteins, direct analysis of TM-TM interactions has proved challenging. To directly assess TM interactions, the oligomeric state of purified chimeric proteins containing the Staphylococcal nuclease (SN) protein linked to the TM segments from three paramyxovirus F proteins was analyzed by sedimentation equilibrium analysis in detergent and buffer conditions that allowed density matching. A monomer-trimer equilibrium best fit was found for all three SN-TM constructs tested, and similar fits were obtained with peptides corresponding to just the TM region of two different paramyxovirus F proteins. These findings demonstrate for the first time that class I viral fusion protein TM domains can self-associate as trimeric complexes in the absence of the rest of the protein. Glycine residues have been implicated in TM helix interactions, so the effect of mutations at Hendra F Gly-508 was assessed in the context of the whole F protein. Mutations G508I or G508L resulted in decreased cell surface expression of the fusogenic form, consistent with decreased stability of the prefusion form of the protein. Sedimentation equilibrium analysis of TM domains containing these mutations gave higher relative association constants, suggesting altered TM-TM interactions. Overall, these results suggest that trimeric TM interactions are important driving forces for protein folding, stability and membrane fusion promotion.

  7. Immunological Properties of Hepatitis B Core Antigen Fusion Proteins

    NASA Astrophysics Data System (ADS)

    Francis, Michael J.; Hastings, Gillian Z.; Brown, Alan L.; Grace, Ken G.; Rowlands, David J.; Brown, Fred; Clarke, Berwyn E.

    1990-04-01

    The immunogenicity of a 19 amino acid peptide from foot-and-mouth disease virus has previously been shown to approach that of the inactivated virus from which it was derived after multimeric particulate presentation as an N-terminal fusion with hepatitis B core antigen. In this report we demonstrate that rhinovirus peptide-hepatitis B core antigen fusion proteins are 10-fold more immunogenic than peptide coupled to keyhole limpet hemocyanin and 100-fold more immunogenic than uncoupled peptide with an added helper T-cell epitope. The fusion proteins can be readily administered without adjuvant or with adjuvants acceptable for human and veterinary application and can elicit a response after nasal or oral dosing. The fusion proteins can also act as T-cell-independent antigens. These properties provide further support for their suitability as presentation systems for "foreign" epitopes in the development of vaccines.

  8. Conserved Glycine Residues in the Fusion Peptide of the Paramyxovirus Fusion Protein Regulate Activation of the Native State

    PubMed Central

    Russell, Charles J.; Jardetzky, Theodore S.; Lamb, Robert A.

    2004-01-01

    Hydrophobic fusion peptides (FPs) are the most highly conserved regions of class I viral fusion-mediating glycoproteins (vFGPs). FPs often contain conserved glycine residues thought to be critical for forming structures that destabilize target membranes. Unexpectedly, a mutation of glycine residues in the FP of the fusion (F) protein from the paramyxovirus simian parainfluenza virus 5 (SV5) resulted in mutant F proteins with hyperactive fusion phenotypes (C. M. Horvath and R. A. Lamb, J. Virol. 66:2443-2455, 1992). Here, we constructed G3A and G7A mutations into the F proteins of SV5 (W3A and WR isolates), Newcastle disease virus (NDV), and human parainfluenza virus type 3 (HPIV3). All of the mutant F proteins, except NDV G7A, caused increased cell-cell fusion despite having slight to moderate reductions in cell surface expression compared to those of wild-type F proteins. The G3A and G7A mutations cause SV5 WR F, but not NDV F or HPIV3 F, to be triggered to cause fusion in the absence of coexpression of its homotypic receptor-binding protein hemagglutinin-neuraminidase (HN), suggesting that NDV and HPIV3 F have stricter requirements for homotypic HN for fusion activation. Dye transfer assays show that the G3A and G7A mutations decrease the energy required to activate F at a step in the fusion cascade preceding prehairpin intermediate formation and hemifusion. Conserved glycine residues in the FP of paramyxovirus F appear to have a primary role in regulating the activation of the metastable native form of F. Glycine residues in the FPs of other class I vFGPs may also regulate fusion activation. PMID:15564482

  9. Surface Density of the Hendra G Protein Modulates Hendra F Protein-Promoted Membrane Fusion: Role for Hendra G Protein Trafficking and Degradation

    PubMed Central

    Whitman, Shannon D.; Dutch, Rebecca Ellis

    2007-01-01

    Hendra virus, like most paramyxoviruses, requires both a fusion (F) and attachment (G) protein for promotion of cell-cell fusion. Recent studies determined that Hendra F is proteolytically processed by the cellular protease cathepsin L after endocytosis. This unique cathepsin L processing results in a small percentage of Hendra F on the cell surface. To determine how the surface densities of the two Hendra glycoproteins affect fusion promotion, we performed experiments that varied the levels of glycoproteins expressed in transfected cells. Using two different fusion assays, we found a marked increase in fusion when expression of the Hendra G protein was increased, with a 1:1 molar ratio of Hendra F:G on the cell surface resulting in optimal membrane fusion. Our results also showed that Hendra G protein levels are modulated by both more rapid protein turnover and slower protein trafficking than is seen for Hendra F. PMID:17328935

  10. The prevalence of deranged C-reactive protein and albumin in patients with incurable cancer approaching death.

    PubMed

    Gray, Sarah; Axelsson, Bertil

    2018-01-01

    Amongst patients with incurable cancer approaching death, cachexia is common and associated with adverse outcomes. The term cachexia lacks a universally accepted definition and there is no consensus regarding which variables are to be measured. Furthermore, an elevated C-reactive protein is a common clinical challenge in this patient group. This study aims to add to the ongoing discussion regarding the definition of cancer cachexia and to study the role of C-reactive protein and s-albumin in this context. A 1-year cohort, consisting of 155 cancer patients enrolled in a specialized palliative home care team in the city of Östersund, Sweden, that were deceased during the year of 2015 was studied. Laboratory measures were studied within 0-30 and 31-60 days prior to death. C-reactive protein >10 mg/L and coinciding s-albumin <30 g/L was referred to as "laboratory cachexia". Also, the number of days from the first found "laboratory cachexia" until death was noted. The prevalence of "laboratory cachexia" was 85% 0-30 days prior to death compared to 66% 31-60 days prior to death (p<0.01). The majority of patients (75%) had an onset of "laboratory cachexia" within 0-120 days prior to death, with a median of 47 days. The median values for C-reactive protein and s-albumin within 0-30 days prior to death were 84mg/L and 23g/L respectively. Could markedly deranged values of C-reactive protein and s-albumin, such as found in this study, signal a relatively short remaining survival time in patients with incurable cancer and no clinical signs of ongoing infection? The role of "laboratory cachexia" in this context as well as the cut off values for the laboratory measures included may be further discussed.

  11. Chaperone activity of human small heat shock protein-GST fusion proteins.

    PubMed

    Arbach, Hannah; Butler, Caley; McMenimen, Kathryn A

    2017-07-01

    Small heat shock proteins (sHsps) are a ubiquitous part of the machinery that maintains cellular protein homeostasis by acting as molecular chaperones. sHsps bind to and prevent the aggregation of partially folded substrate proteins in an ATP-independent manner. sHsps are dynamic, forming an ensemble of structures from dimers to large oligomers through concentration-dependent equilibrium dissociation. Based on structural studies and mutagenesis experiments, it is proposed that the dimer is the smallest active chaperone unit, while larger oligomers may act as storage depots for sHsps or play additional roles in chaperone function. The complexity and dynamic nature of their structural organization has made elucidation of their chaperone function challenging. HspB1 and HspB5 are two canonical human sHsps that vary in sequence and are expressed in a wide variety of tissues. In order to determine the role of the dimer in chaperone activity, glutathione-S-transferase (GST) was genetically linked as a fusion protein to the N-terminus regions of both HspB1 and HspB5 (also known as Hsp27 and αB-crystallin, respectively) proteins in order to constrain oligomer formation of HspB1 and HspB5, by using GST, since it readily forms a dimeric structure. We monitored the chaperone activity of these fusion proteins, which suggest they primarily form dimers and monomers and function as active molecular chaperones. Furthermore, the two different fusion proteins exhibit different chaperone activity for two model substrate proteins, citrate synthase (CS) and malate dehydrogenase (MDH). GST-HspB1 prevents more aggregation of MDH compared to GST-HspB5 and wild type HspB1. However, when CS is the substrate, both GST-HspB1 and GST-HspB5 are equally effective chaperones. Furthermore, wild type proteins do not display equal activity toward the substrates, suggesting that each sHsp exhibits different substrate specificity. Thus, substrate specificity, as described here for full-length GST

  12. Transmembrane Domains of Highly Pathogenic Viral Fusion Proteins Exhibit Trimeric Association In Vitro

    PubMed Central

    Webb, Stacy R.; Smith, Stacy E.; Fried, Michael G.

    2018-01-01

    ABSTRACT Enveloped viruses require viral fusion proteins to promote fusion of the viral envelope with a target cell membrane. To drive fusion, these proteins undergo large conformational changes that must occur at the right place and at the right time. Understanding the elements which control the stability of the prefusion state and the initiation of conformational changes is key to understanding the function of these important proteins. The construction of mutations in the fusion protein transmembrane domains (TMDs) or the replacement of these domains with lipid anchors has implicated the TMD in the fusion process. However, the structural and molecular details of the role of the TMD in these fusion events remain unclear. Previously, we demonstrated that isolated paramyxovirus fusion protein TMDs associate in a monomer-trimer equilibrium, using sedimentation equilibrium analytical ultracentrifugation. Using a similar approach, the work presented here indicates that trimeric interactions also occur between the fusion protein TMDs of Ebola virus, influenza virus, severe acute respiratory syndrome coronavirus (SARS CoV), and rabies virus. Our results suggest that TM-TM interactions are important in the fusion protein function of diverse viral families. IMPORTANCE Many important human pathogens are enveloped viruses that utilize membrane-bound glycoproteins to mediate viral entry. Factors that contribute to the stability of these glycoproteins have been identified in the ectodomain of several viral fusion proteins, including residues within the soluble ectodomain. Although it is often thought to simply act as an anchor, the transmembrane domain of viral fusion proteins has been implicated in protein stability and function as well. Here, using a biophysical approach, we demonstrated that the fusion protein transmembrane domains of several deadly pathogens—Ebola virus, influenza virus, SARS CoV, and rabies virus—self-associate. This observation across various viral

  13. Proximal Tubules Have the Capacity to Regulate Uptake of Albumin.

    PubMed

    Wagner, Mark C; Campos-Bilderback, Silvia B; Chowdhury, Mahboob; Flores, Brittany; Lai, Xianyin; Myslinski, Jered; Pandit, Sweekar; Sandoval, Ruben M; Wean, Sarah E; Wei, Yuan; Satlin, Lisa M; Wiggins, Roger C; Witzmann, Frank A; Molitoris, Bruce A

    2016-02-01

    Evidence from multiple studies supports the concept that both glomerular filtration and proximal tubule (PT) reclamation affect urinary albumin excretion rate. To better understand these roles of glomerular filtration and PT uptake, we investigated these processes in two distinct animal models. In a rat model of acute exogenous albumin overload, we quantified glomerular sieving coefficients (GSC) and PT uptake of Texas Red-labeled rat serum albumin using two-photon intravital microscopy. No change in GSC was observed, but a significant decrease in PT albumin uptake was quantified. In a second model, loss of endogenous albumin was induced in rats by podocyte-specific transgenic expression of diphtheria toxin receptor. In these albumin-deficient rats, exposure to diphtheria toxin induced an increase in albumin GSC and albumin filtration, resulting in increased exposure of the PTs to endogenous albumin. In this case, PT albumin reabsorption was markedly increased. Analysis of known albumin receptors and assessment of cortical protein expression in the albumin overload model, conducted to identify potential proteins and pathways affected by acute protein overload, revealed changes in the expression levels of calreticulin, disabled homolog 2, NRF2, angiopoietin-2, and proteins involved in ATP synthesis. Taken together, these results suggest that a regulated PT cell albumin uptake system can respond rapidly to different physiologic conditions to minimize alterations in serum albumin level. Copyright © 2016 by the American Society of Nephrology.

  14. Proximal Tubules Have the Capacity to Regulate Uptake of Albumin

    PubMed Central

    Wagner, Mark C.; Campos-Bilderback, Silvia B.; Chowdhury, Mahboob; Flores, Brittany; Lai, Xianyin; Myslinski, Jered; Pandit, Sweekar; Sandoval, Ruben M.; Wean, Sarah E.; Wei, Yuan; Satlin, Lisa M.; Wiggins, Roger C.; Witzmann, Frank A.

    2016-01-01

    Evidence from multiple studies supports the concept that both glomerular filtration and proximal tubule (PT) reclamation affect urinary albumin excretion rate. To better understand these roles of glomerular filtration and PT uptake, we investigated these processes in two distinct animal models. In a rat model of acute exogenous albumin overload, we quantified glomerular sieving coefficients (GSC) and PT uptake of Texas Red-labeled rat serum albumin using two-photon intravital microscopy. No change in GSC was observed, but a significant decrease in PT albumin uptake was quantified. In a second model, loss of endogenous albumin was induced in rats by podocyte-specific transgenic expression of diphtheria toxin receptor. In these albumin-deficient rats, exposure to diphtheria toxin induced an increase in albumin GSC and albumin filtration, resulting in increased exposure of the PTs to endogenous albumin. In this case, PT albumin reabsorption was markedly increased. Analysis of known albumin receptors and assessment of cortical protein expression in the albumin overload model, conducted to identify potential proteins and pathways affected by acute protein overload, revealed changes in the expression levels of calreticulin, disabled homolog 2, NRF2, angiopoietin-2, and proteins involved in ATP synthesis. Taken together, these results suggest that a regulated PT cell albumin uptake system can respond rapidly to different physiologic conditions to minimize alterations in serum albumin level. PMID:26054544

  15. HIP1-ALK, a novel fusion protein identified in lung adenocarcinoma.

    PubMed

    Hong, Mineui; Kim, Ryong Nam; Song, Ji-Young; Choi, So-Jung; Oh, Ensel; Lira, Maruja E; Mao, Mao; Takeuchi, Kengo; Han, Joungho; Kim, Jhingook; Choi, Yoon-La

    2014-03-01

    The most common mechanism underlying overexpression and activation of anaplastic lymphoma kinase (ALK) in non-small-cell lung carcinoma could be attributed to the formation of a fusion protein. To date, five fusion partners of ALK have been reported, namely, echinoderm microtubule associated protein like 4, tropomyosin-related kinase-fused gene, kinesin family member 5B, kinesin light chain 1, and protein tyrosine phosphatase, nonreceptor type 3. In this article, we report a novel fusion gene huntingtin interacting protein 1 (HIP1)-ALK, which is conjoined between the huntingtin-interacting protein 1 gene HIP1 and ALK. Reverse-transcriptase polymerase chain reaction and immunohistochemical analysis were used to detect this fusion gene's transcript and protein expression, respectively. We had amplified the full-length cDNA sequence of this novel fusion gene by using 5'-rapid amplification of cDNA ends. The causative genomic translocation t(2;7)(p23;q11.23) for generating this novel fusion gene was verified by using genomic sequencing. The examined adenocarcinoma showed predominant acinar pattern, and ALK immunostaining was localized to the cytoplasm, with intense staining in the submembrane region. In break-apart, fluorescence in situ hybridization analysis for ALK, split of the 5' and 3' probe signals, and isolated 3' signals were observed. Reverse-transcriptase polymerase chain reaction revealed that the tumor harbored a novel fusion transcript in which exon 21 of HIP1 was fused to exon 20 of ALK in-frame. The novel fusion gene and its protein HIP1-ALK harboring epsin N-terminal homology, coiled-coil, juxtamembrane, and kinase domains, which could play a role in carcinogenesis, could become diagnostic and therapeutic target of the lung adenocarcinoma and deserve a further study in the future.

  16. Green fluorescence protein-based content-mixing assay of SNARE-driven membrane fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, Paul; Kong, Byoungjae; Jung, Young-Hun

    Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins mediate intracellular membrane fusion by forming a ternary SNARE complex. A minimalist approach utilizing proteoliposomes with reconstituted SNARE proteins yielded a wealth of information pinpointing the molecular mechanism of SNARE-mediated fusion and its regulation by accessory proteins. Two important attributes of a membrane fusion are lipid-mixing and the formation of an aqueous passage between apposing membranes. These two attributes are typically observed by using various fluorescent dyes. Currently available in vitro assay systems for observing fusion pore opening have several weaknesses such as cargo-bleeding, incomplete removal of unencapsulated dyes, and inadequate information regardingmore » the size of the fusion pore, limiting measurements of the final stage of membrane fusion. In the present study, we used a biotinylated green fluorescence protein and streptavidin conjugated with Dylight 594 (DyStrp) as a Föster resonance energy transfer (FRET) donor and acceptor, respectively. This FRET pair encapsulated in each v-vesicle containing synaptobrevin and t-vesicle containing a binary acceptor complex of syntaxin 1a and synaptosomal-associated protein 25 revealed the opening of a large fusion pore of more than 5 nm, without the unwanted signals from unencapsulated dyes or leakage. This system enabled determination of the stoichiometry of the merging vesicles because the FRET efficiency of the FRET pair depended on the molar ratio between dyes. Here, we report a robust and informative assay for SNARE-mediated fusion pore opening. - Highlights: • SNARE proteins drive membrane fusion and open a pore for cargo release. • Biotinylated GFP and DyStrp was used as the reporter pair of fusion pore opening. • Procedure for efficient SNARE reconstitution and reporter encapsulation was established. • The FRET pair reported opening of a large fusion pore bigger than 5

  17. Tandem SUMO fusion vectors for improving soluble protein expression and purification.

    PubMed

    Guerrero, Fernando; Ciragan, Annika; Iwaï, Hideo

    2015-12-01

    Availability of highly purified proteins in quantity is crucial for detailed biochemical and structural investigations. Fusion tags are versatile tools to facilitate efficient protein purification and to improve soluble overexpression of proteins. Various purification and fusion tags have been widely used for overexpression in Escherichia coli. However, these tags might interfere with biological functions and/or structural investigations of the protein of interest. Therefore, an additional purification step to remove fusion tags by proteolytic digestion might be required. Here, we describe a set of new vectors in which yeast SUMO (SMT3) was used as the highly specific recognition sequence of ubiquitin-like protease 1, together with other commonly used solubility enhancing proteins, such as glutathione S-transferase, maltose binding protein, thioredoxin and trigger factor for optimizing soluble expression of protein of interest. This tandem SUMO (T-SUMO) fusion system was tested for soluble expression of the C-terminal domain of TonB from different organisms and for the antiviral protein scytovirin. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Subcellular localization of transiently expressed fluorescent fusion proteins.

    PubMed

    Collings, David A

    2013-01-01

    The recent and massive expansion in plant genomics data has generated a large number of gene sequences for which two seemingly simple questions need to be answered: where do the proteins encoded by these genes localize in cells, and what do they do? One widespread approach to answering the localization question has been to use particle bombardment to transiently express unknown proteins tagged with green fluorescent protein (GFP) or its numerous derivatives. Confocal fluorescence microscopy is then used to monitor the localization of the fluorescent protein as it hitches a ride through the cell. The subcellular localization of the fusion protein, if not immediately apparent, can then be determined by comparison to localizations generated by fluorescent protein fusions to known signalling sequences and proteins, or by direct comparison with fluorescent dyes. This review aims to be a tour guide for researchers wanting to travel this hitch-hiker's path, and for reviewers and readers who wish to understand their travel reports. It will describe some of the technology available for visualizing protein localizations, and some of the experimental approaches for optimizing and confirming localizations generated by particle bombardment in onion epidermal cells, the most commonly used experimental system. As the non-conservation of signal sequences in heterologous expression systems such as onion, and consequent mis-targeting of fusion proteins, is always a potential problem, the epidermal cells of the Argenteum mutant of pea are proposed as a model system.

  19. Protein body-inducing fusions for high-level production and purification of recombinant proteins in plants.

    PubMed

    Conley, Andrew J; Joensuu, Jussi J; Richman, Alex; Menassa, Rima

    2011-05-01

    For the past two decades, therapeutic and industrially important proteins have been expressed in plants with varying levels of success. The two major challenges hindering the economical production of plant-made recombinant proteins include inadequate accumulation levels and the lack of efficient purification methods. To address these limitations, several fusion protein strategies have been recently developed to significantly enhance the production yield of plant-made recombinant proteins, while simultaneously assisting in their subsequent purification. Elastin-like polypeptides are thermally responsive biopolymers composed of a repeating pentapeptide 'VPGXG' sequence that are valuable for the purification of recombinant proteins. Hydrophobins are small fungal proteins capable of altering the hydrophobicity of their respective fusion partner, thus enabling efficient purification by surfactant-based aqueous two-phase systems. Zera, a domain of the maize seed storage protein γ-zein, can induce the formation of protein storage bodies, thus facilitating the recovery of fused proteins using density-based separation methods. These three novel protein fusion systems have also been shown to enhance the accumulation of a range of different recombinant proteins, while concurrently inducing the formation of protein bodies. The packing of these fusion proteins into protein bodies may exclude the recombinant protein from normal physiological turnover. Furthermore, these systems allow for quick, simple and inexpensive nonchromatographic purification of the recombinant protein, which can be scaled up to industrial levels of protein production. This review will focus on the similarities and differences of these artificial storage organelles, their biogenesis and their implication for the production of recombinant proteins in plants and their subsequent purification. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied

  20. Structure of the Newcastle disease virus F protein in the post-fusion conformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, Kurt; Wen, Xiaolin; Leser, George P.

    2010-11-17

    The paramyxovirus F protein is a class I viral membrane fusion protein which undergoes a significant refolding transition during virus entry. Previous studies of the Newcastle disease virus, human parainfluenza virus 3 and parainfluenza virus 5 F proteins revealed differences in the pre- and post-fusion structures. The NDV Queensland (Q) F structure lacked structural elements observed in the other two structures, which are key to the refolding and fusogenic activity of F. Here we present the NDV Australia-Victoria (AV) F protein post-fusion structure and provide EM evidence for its folding to a pre-fusion form. The NDV AV F structure containsmore » heptad repeat elements missing in the previous NDV Q F structure, forming a post-fusion six-helix bundle (6HB) similar to the post-fusion hPIV3 F structure. Electrostatic and temperature factor analysis of the F structures points to regions of these proteins that may be functionally important in their membrane fusion activity.« less

  1. A Conserved Region in the F2 Subunit of Paramyxovirus Fusion Proteins Is Involved In Fusion Regulation▿

    PubMed Central

    Gardner, Amanda E.; Dutch, Rebecca E.

    2007-01-01

    Paramyxoviruses utilize both an attachment protein and a fusion (F) protein to drive virus-cell and cell-cell fusion. F exists functionally as a trimer of two disulfide-linked subunits: F1 and F2. Alignment and analysis of a set of paramyxovirus F protein sequences identified three conserved blocks (CB): one in the fusion peptide/heptad repeat A domain, known to play important roles in fusion promotion, one in the region between the heptad repeats of F1 (CBF1) (A. E. Gardner, K. L. Martin, and R. E. Dutch, Biochemistry 46:5094-5105, 2007), and one in the F2 subunit (CBF2). To analyze the functions of CBF2, alanine substitutions at conserved positions were created in both the simian virus 5 (SV5) and Hendra virus F proteins. A number of the CBF2 mutations resulted in folding and expression defects. However, the CBF2 mutants that were properly expressed and trafficked had altered fusion promotion activity. The Hendra virus CBF2 Y79A and P89A mutants showed significantly decreased levels of fusion, whereas the SV5 CBF2 I49A mutant exhibited greatly increased cell-cell fusion relative to that for wild-type F. Additional substitutions at SV5 F I49 suggest that both side chain volume and hydrophobicity at this position are important in the folding of the metastable, prefusion state and the subsequent triggering of membrane fusion. The recently published prefusogenic structure of parainfluenza virus 5/SV5 F (H. S. Yin et al., Nature 439:38-44, 2006) places CBF2 in direct contact with heptad repeat A. Our data therefore indicate that this conserved region plays a critical role in stabilizing the prefusion state, likely through interactions with heptad repeat A, and in triggering membrane fusion. PMID:17507474

  2. Mechanism for Active Membrane Fusion Triggering by Morbillivirus Attachment Protein

    PubMed Central

    Ader, Nadine; Brindley, Melinda; Avila, Mislay; Örvell, Claes; Horvat, Branka; Hiltensperger, Georg; Schneider-Schaulies, Jürgen; Vandevelde, Marc; Zurbriggen, Andreas; Plemper, Richard K.

    2013-01-01

    The paramyxovirus entry machinery consists of two glycoproteins that tightly cooperate to achieve membrane fusion for cell entry: the tetrameric attachment protein (HN, H, or G, depending on the paramyxovirus genus) and the trimeric fusion protein (F). Here, we explore whether receptor-induced conformational changes within morbillivirus H proteins promote membrane fusion by a mechanism requiring the active destabilization of prefusion F or by the dissociation of prefusion F from intracellularly preformed glycoprotein complexes. To properly probe F conformations, we identified anti-F monoclonal antibodies (MAbs) that recognize conformation-dependent epitopes. Through heat treatment as a surrogate for H-mediated F triggering, we demonstrate with these MAbs that the morbillivirus F trimer contains a sufficiently high inherent activation energy barrier to maintain the metastable prefusion state even in the absence of H. This notion was further validated by exploring the conformational states of destabilized F mutants and stabilized soluble F variants combined with the use of a membrane fusion inhibitor (3g). Taken together, our findings reveal that the morbillivirus H protein must lower the activation energy barrier of metastable prefusion F for fusion triggering. PMID:23077316

  3. A tripartite approach identifies the major sunflower seed albumins.

    PubMed

    Jayasena, Achala S; Franke, Bastian; Rosengren, Johan; Mylne, Joshua S

    2016-03-01

    We have used a combination of genomic, transcriptomic, and proteomic approaches to identify the napin-type albumin genes in sunflower and define their contributions to the seed albumin pool. Seed protein content is determined by the expression of what are typically large gene families. A major class of seed storage proteins is the napin-type, water soluble albumins. In this work we provide a comprehensive analysis of the napin-type albumin content of the common sunflower (Helianthus annuus) by analyzing a draft genome, a transcriptome and performing a proteomic analysis of the seed albumin fraction. We show that although sunflower contains at least 26 genes for napin-type albumins, only 15 of these are present at the mRNA level. We found protein evidence for 11 of these but the albumin content of mature seeds is dominated by the encoded products of just three genes. So despite high genetic redundancy for albumins, only a small sub-set of this gene family contributes to total seed albumin content. The three genes identified as producing the majority of sunflower seed albumin are potential future candidates for manipulation through genetics and breeding.

  4. Protein accumulation and rumen stability of wheat γ-gliadin fusion proteins in tobacco and alfalfa.

    PubMed

    Sun, Xiaodong; Chi-Ham, Cecilia L; Cohen-Davidyan, Tamar; DeBen, Christopher; Getachew, Girma; DePeters, Edward; Putnam, Daniel; Bennett, Alan

    2015-09-01

    The nutritional value of various crops can be improved by engineering plants to produce high levels of proteins. For example, because methionine deficiency limits the protein quality of Medicago Sativa (alfalfa) forage, producing alfalfa plants that accumulate high levels of a methionine-rich protein could increase the nutritional value of that crop. We used three strategies in designing methionine-rich recombinant proteins that could accumulate to high levels in plants and thereby serve as candidates for improving the protein quality of alfalfa forage. In tobacco, two fusion proteins, γ-gliadin-δ-zein and γ-δ-zein, as well as δ-zein co-expressed with β-zein, all formed protein bodies. However, the γ-gliadin-δ-zein fusion protein accumulated to the highest level, representing up to 1.5% of total soluble protein (TSP) in one transformant. In alfalfa, γ-gliadin-δ-zein accumulated to 0.2% of TSP, and in an in vitro rumen digestion assay, γ-gliadin-δ-zein was more resistant to microbial degradation than Rubisco. Additionally, although it did not form protein bodies, a γ-gliadin-GFP fusion protein accumulated to much higher levels, 7% of TSP, than a recombinant protein comprised of an ER localization signal fused to GFP in tobacco. Based on our results, we conclude that γ-gliadin-δ-zein is a potential candidate protein to use for enhancing methionine levels in plants and for improving rumen stability of forage protein. γ-gliadin fusion proteins may provide a general platform for increasing the accumulation of recombinant proteins in transgenic plants. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Elastin-like-polypeptide based fusion proteins for osteogenic factor delivery in bone healing.

    PubMed

    McCarthy, Bryce; Yuan, Yuan; Koria, Piyush

    2016-07-08

    Modern treatments of bone injuries and diseases are becoming increasingly dependent on the usage of growth factors to stimulate bone growth. Bone morphogenetic protein-2 (BMP-2), a potent osteogenic inductive protein, exhibits promising results in treatment models, but recently has had its practical efficacy questioned due to the lack of local retention, ectopic bone formation, and potentially lethal inflammation. Where a new delivery technique of the BMP-2 is necessary, here we demonstrate the viability of an elastin-like peptide (ELP) fusion protein containing BMP-2 for delivery of the BMP-2. This fusion protein retains the performance characteristics of both the BMP-2 and ELP. The fusion protein was found to induce osteogenic differentiation of mesenchymal stem cells as evidenced by the production of alkaline phosphatase and extracellular calcium deposits in response to treatment by the fusion protein. Retention of the ELPs inverse phase transition property has allowed for expression of the fusion protein within a bacterial host (such as Escherichia coli) and easy and rapid purification using inverse transition cycling. The fusion protein formed self-aggregating nanoparticles at human-body temperature. The data collected suggests the viability of these fusion protein nanoparticles as a dosage-efficient and location-precise noncytotoxic delivery vehicle for BMP-2 in bone treatment. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1029-1037, 2016. © 2016 American Institute of Chemical Engineers.

  6. Fusion peptides from oncogenic chimeric proteins as putative specific biomarkers of cancer.

    PubMed

    Conlon, Kevin P; Basrur, Venkatesha; Rolland, Delphine; Wolfe, Thomas; Nesvizhskii, Alexey I; MacCoss, Michael J; Lim, Megan S; Elenitoba-Johnson, Kojo S J

    2013-10-01

    Chromosomal translocations encoding chimeric fusion proteins constitute one of the most common mechanisms underlying oncogenic transformation in human cancer. Fusion peptides resulting from such oncogenic chimeric fusions, though unique to specific cancer subtypes, are unexplored as cancer biomarkers. Here we show, using an approach termed fusion peptide multiple reaction monitoring mass spectrometry, the direct identification of different cancer-specific fusion peptides arising from protein chimeras that are generated from the juxtaposition of heterologous genes fused by recurrent chromosomal translocations. Using fusion peptide multiple reaction monitoring mass spectrometry in a clinically relevant scenario, we demonstrate the specific, sensitive, and unambiguous detection of a specific diagnostic fusion peptide in clinical samples of anaplastic large cell lymphoma, but not in a diverse array of benign lymph nodes or other forms of primary malignant lymphomas and cancer-derived cell lines. Our studies highlight the utility of fusion peptides as cancer biomarkers and carry broad implications for the use of protein biomarkers in cancer detection and monitoring.

  7. Membrane fusion triggers rapid degradation of two gamete-specific, fusion-essential proteins in a membrane block to polygamy in Chlamydomonas.

    PubMed

    Liu, Yanjie; Misamore, Michael J; Snell, William J

    2010-05-01

    The plasma membranes of gametes are specialized for fusion, yet, once fusion occurs, in many organisms the new zygote becomes incapable of further membrane fusion reactions. The molecular mechanisms that underlie this loss of fusion capacity (block to polygamy) remain unknown. During fertilization in the green alga Chlamydomonas, the plus gamete-specific membrane protein FUS1 is required for adhesion between the apically localized sites on the plasma membranes of plus and minus gametes that are specialized for fusion, and the minus-specific membrane protein HAP2 is essential for completion of the membrane fusion reaction. HAP2 (GCS1) family members are also required for fertilization in Arabidopsis, and for the membrane fusion reaction in the malaria organism Plasmodium berghei. Here, we tested whether Chlamydomonas gamete fusion triggers alterations in FUS1 and HAP2 and renders the plasma membranes of the cells incapable of subsequent fusion. We find that, even though the fusogenic sites support multi-cell adhesions, triploid zygotes are rare, indicating a fusion-triggered block to the membrane fusion reaction. Consistent with the extinction of fusogenic capacity, both FUS1 and HAP2 are degraded upon fusion. The rapid, fusion-triggered cleavage of HAP2 in zygotes is distinct from degradation occurring during constitutive turnover in gametes. Thus, gamete fusion triggers specific degradation of fusion-essential proteins and renders the zygote incapable of fusion. Our results provide the first molecular explanation for a membrane block to polygamy in any organism.

  8. Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia.

    PubMed

    Grembecka, Jolanta; He, Shihan; Shi, Aibin; Purohit, Trupta; Muntean, Andrew G; Sorenson, Roderick J; Showalter, Hollis D; Murai, Marcelo J; Belcher, Amalia M; Hartley, Thomas; Hess, Jay L; Cierpicki, Tomasz

    2012-01-29

    Translocations involving the mixed lineage leukemia (MLL) gene result in human acute leukemias with very poor prognosis. The leukemogenic activity of MLL fusion proteins is critically dependent on their direct interaction with menin, a product of the multiple endocrine neoplasia (MEN1) gene. Here we present what are to our knowledge the first small-molecule inhibitors of the menin-MLL fusion protein interaction that specifically bind menin with nanomolar affinities. These compounds effectively reverse MLL fusion protein-mediated leukemic transformation by downregulating the expression of target genes required for MLL fusion protein oncogenic activity. They also selectively block proliferation and induce both apoptosis and differentiation of leukemia cells harboring MLL translocations. Identification of these compounds provides a new tool for better understanding MLL-mediated leukemogenesis and represents a new approach for studying the role of menin as an oncogenic cofactor of MLL fusion proteins. Our findings also highlight a new therapeutic strategy for aggressive leukemias with MLL rearrangements.

  9. Synchronous fluorescence based biosensor for albumin determination by cooperative binding of fluorescence probe in a supra-biomolecular host-protein assembly.

    PubMed

    Patra, Digambara

    2010-01-15

    A synchronous fluorescence probe based biosensor for estimation of albumin with high sensitivity and selectivity was developed. Unlike conventional fluorescence emission or excitation spectral measurements, synchronous fluorescence measurement offered exclusively a new synchronous fluorescence peak in the shorter wavelength range upon binding of chrysene with protein making it an easy identification tool for albumin determination. The cooperative binding of a fluorescence probe, chrysene, in a supramolecular host-protein assembly during various albumin assessments was investigated. The presence of supramolecular host molecules such as beta-cyclodextrin, curucurbit[6]uril or curucurbit[7]uril have little influence on sensitivity or limit of detection during albumin determination but reduced dramatically interference from various coexisting metal ion quenchers/enhancers. Using the present method the limit of detection for BSA and gamma-Globulin was found to be 0.005 microM which is more sensitive than reported values. Copyright 2009 Elsevier B.V. All rights reserved.

  10. Distinct roles for key karyogamy proteins during yeast nuclear fusion.

    PubMed

    Melloy, Patricia; Shen, Shu; White, Erin; Rose, Mark D

    2009-09-01

    During yeast mating, cell fusion is followed by the congression and fusion of the two nuclei. Proteins required for nuclear fusion are found at the surface (Prm3p) and within the lumen (Kar2p, Kar5p, and Kar8p) of the nuclear envelope (NE). Electron tomography (ET) of zygotes revealed that mutations in these proteins block nuclear fusion with different morphologies, suggesting that they act in different steps of fusion. Specifically, prm3 zygotes were blocked before formation of membrane bridges, whereas kar2, kar5, and kar8 zygotes frequently contained them. Membrane bridges were significantly larger and occurred more frequently in kar2 and kar8, than in kar5 mutant zygotes. The kinetics of NE fusion in prm3, kar5, and kar8 mutants, measured by live-cell fluorescence microscopy, were well correlated with the size and frequency of bridges observed by ET. However the kar2 mutant was defective for transfer of NE lumenal GFP, but not diffusion within the lumen, suggesting that transfer was blocked at the NE fusion junction. These observations suggest that Prm3p acts before initiation of outer NE fusion, Kar5p may help dilation of the initial fusion pore, and Kar2p and Kar8p act after outer NE fusion, during inner NE fusion.

  11. A fusion-protein approach enabling mammalian cell production of tumor targeting protein domains for therapeutic development.

    PubMed

    Hu, Jia; Chen, Xiang; Zhang, Xuhua; Yuan, Xiaopeng; Yang, Mingjuan; Dai, Hui; Yang, Wei; Zhou, Qinghua; Wen, Weihong; Wang, Qirui; Qin, Weijun; Zhao, Aizhi

    2018-05-01

    A single chain Fv fragment (scFv) is a fusion of the variable regions of heavy (V H ) and light (V L ) chains of immunoglobulins. They are important elements of chimeric antigen receptors for cancer therapy. We sought to produce a panel of 16 extracellular protein domains of tumor markers for use in scFv yeast library screenings. A series of vectors comprising various combinations of expression elements was made, but expression was unpredictable and more than half of the protein domains could not be produced using any of the constructs. Here we describe a novel fusion expression system based on mouse TEM7 (tumor endothelial marker 7), which could facilitate protein expression. With this approach we could produce all but one of the tumor marker domains that could not otherwise be expressed. In addition, we demonstrated that the tumor associated antigen hFZD10 produced as a fusion protein with mTEM7 could be used to enrich scFv antibodies from a yeast display library. Collectively our study demonstrates the potential of specific fusion proteins based on mTEM7 in enabling mammalian cell production of tumor targeting protein domains for therapeutic development. © 2018 The Protein Society.

  12. [Diagnostic of ascites due to portal hypertension: accuracy of the serum-ascites albumin gradient and protein analises in ascitic fluid].

    PubMed

    Rodríguez Vargas, Brainy Omar; Monge Salgado, Eduardo; Montes Teves, Pedro; Salazar Ventura, Sonia; Guzmán Calderón, Edson

    2014-01-01

    To evaluate the diagnostic accuracy of the Serum-Ascites Albumin Gradient (GASA), Protein Concentration in the Ascitic Fluid (PTLA), Albumin Concentration in the ascitic fluid (CAA) and the Protein Ascites/Serum Ratio (IPAS) for the diagnosis of ascites due to portal hypertension. it was an observational and retrospective study of validation of diagnostic tests. The study population was patients from a National Public Health Hospital Daniel Alcides Carrion of Callao, Peru, during the period January to December of 2012, patients over 15 years old with a diagnosis of ascites which samples were taken for study by paracentesis with an standard technique, it was analyzed total protein and albumin, as well as study of total protein and albumin in blood. We obtained the diagnostic accuracy, sensitivity, specificity, PPV and NPV of the Serum-Ascites Albumin Gradient (GASA), Protein Concentration in the Ascitic Fluid (PTLA), Albumin Concentration in the ascitic fluid (CAA) and the Protein Ascites/Serum Ratio (IPAS) for the diagnosis of ascites due to portal hypertension. To determine ascites by HTP as diagnostic tests we took into account: GASA >= 1.1, PTLA <2.5, CAA <1.1 or IPAS< 0.5. There were 126 patients diagnosed with ascites, 10 patients was excluded for having incomplete data. Of the 116 patients, the average age was 53.03 +/- 15.73 years old, male 65 (56%) and female 51 (44%). 61 (52%) had ascites due to portal hypertension from liver cirrhosis, and 55 (48%) of ascites due to NO HTP. The sensitivity and specificity for GASA was 93% and 47% respectively, for PTLA was 80% and 89% respectively, for CAA was 85% and 87% respectively and for the IPAS was 83% and 80% respectively. The área under the ROC curve for GASA was 0.70, ATPL was 0.84, IPAS was 0.81 and CAA was 0.86, we found statistically significant differences between GASA compared to the other three parameters (p<0.01 ). The diagnostic accuracy of CAA, ATPL and IPAS is higher than the GASA to discriminate

  13. The prognostic value of serum C-reactive protein, ferritin, and albumin prior to allogeneic transplantation for acute myeloid leukemia and myelodysplastic syndromes.

    PubMed

    Artz, Andrew S; Logan, Brent; Zhu, Xiaochun; Akpek, Gorgun; Bufarull, Rodrigo Martino; Gupta, Vikas; Lazarus, Hillard M; Litzow, Mark; Loren, Alison; Majhail, Navneet S; Maziarz, Richard T; McCarthy, Philip; Popat, Uday; Saber, Wael; Spellman, Stephen; Ringden, Olle; Wickrema, Amittha; Pasquini, Marcelo C; Cooke, Kenneth R

    2016-11-01

    We sought to confirm the prognostic importance of simple clinically available biomarkers of C-reactive protein, serum albumin, and ferritin prior to allogeneic hematopoietic cell transplantation. The study population consisted of 784 adults with acute myeloid leukemia in remission or myelodysplastic syndromes undergoing unrelated donor transplant reported to the Center for International Blood and Marrow Transplant Research. C-reactive protein and ferritin were centrally quantified by ELISA from cryopreserved plasma whereas each center provided pre-transplant albumin. In multivariate analysis, transplant-related mortality was associated with the pre-specified thresholds of C-reactive protein more than 10 mg/L (P=0.008) and albumin less than 3.5 g/dL (P=0.01) but not ferritin more than 2500 ng/mL. Only low albumin independently influenced overall mortality. Optimal thresholds affecting transplant-related mortality were defined as: C-reactive protein more than 3.67 mg/L, log(ferritin), and albumin less than 3.4 g/dL. A 3-level biomarker risk group based on these values separated risks of transplant-related mortality: low risk (reference), intermediate (HR=1.66, P=0.015), and high risk (HR=2.7, P<0.001). One-year survival was 74%, 67% and 56% for low-, intermediate- and high-risk groups. Routinely available pre-transplant biomarkers independently risk-stratify for transplant-related mortality and survival. Copyright© Ferrata Storti Foundation.

  14. The prognostic value of serum C-reactive protein, ferritin, and albumin prior to allogeneic transplantation for acute myeloid leukemia and myelodysplastic syndromes

    PubMed Central

    Artz, Andrew S.; Logan, Brent; Zhu, Xiaochun; Akpek, Gorgun; Bufarull, Rodrigo Martino; Gupta, Vikas; Lazarus, Hillard M.; Litzow, Mark; Loren, Alison; Majhail, Navneet S.; Maziarz, Richard T.; McCarthy, Philip; Popat, Uday; Saber, Wael; Spellman, Stephen; Ringden, Olle; Wickrema, Amittha; Pasquini, Marcelo C.; Cooke, Kenneth R.

    2016-01-01

    We sought to confirm the prognostic importance of simple clinically available biomarkers of C-reactive protein, serum albumin, and ferritin prior to allogeneic hematopoietic cell transplantation. The study population consisted of 784 adults with acute myeloid leukemia in remission or myelodysplastic syndromes undergoing unrelated donor transplant reported to the Center for International Blood and Marrow Transplant Research. C-reactive protein and ferritin were centrally quantified by ELISA from cryopreserved plasma whereas each center provided pre-transplant albumin. In multivariate analysis, transplant-related mortality was associated with the pre-specified thresholds of C-reactive protein more than 10 mg/L (P=0.008) and albumin less than 3.5 g/dL (P=0.01) but not ferritin more than 2500 ng/mL. Only low albumin independently influenced overall mortality. Optimal thresholds affecting transplant-related mortality were defined as: C-reactive protein more than 3.67 mg/L, log(ferritin), and albumin less than 3.4 g/dL. A 3-level biomarker risk group based on these values separated risks of transplant-related mortality: low risk (reference), intermediate (HR=1.66, P=0.015), and high risk (HR=2.7, P<0.001). One-year survival was 74%, 67% and 56% for low-, intermediate- and high-risk groups. Routinely available pre-transplant biomarkers independently risk-stratify for transplant-related mortality and survival. PMID:27662010

  15. A Conserved Region between the Heptad Repeats of Paramyxovirus Fusion Proteins is Critical for Proper F Protein Folding†

    PubMed Central

    Gardner, Amanda E.; Martin, Kimberly L.; Dutch, Rebecca E.

    2008-01-01

    Paramyxoviruses are a diverse family which utilizes a fusion (F) protein to enter cells via fusion of the viral lipid bilayer with a target cell membrane. Although certain regions of F are known to play critical roles in membrane fusion, the function of much of the protein remains unclear. Sequence alignment of a set of paramyxovirus F proteins and analysis utilizing Block Maker identified a region of conserved amino acid sequence in a large domain between the heptad repeats of F1, designated CBF1. We employed site-directed mutagenesis to analyze the function of completely conserved residues of CBF1 in both the simian virus 5 (SV5) and Hendra virus F proteins. The majority of CBF1 point mutants were deficient in homotrimer formation, proteolytic processing, and transport to the cell surface. For some SV5 F mutants, proteolytic cleavage and surface expression could be restored by expression at 30°C, and varying levels of fusion promotion were observed at this temperature. In addition, the mutant SV5 F V402A displayed a hyperfusogenic phenotype at both 30°C and 37°C, indicating this mutation allows for efficient fusion with only an extremely small amount of cleaved, active protein. The recently published prefusogenic structure of PIV5/SV5 F [Yin, H.S., et al. (2006) Nature 439, 38–44] indicates that residues within and flanking CBF1 interact with the fusion peptide domain. Together, these data suggest that CBF1-fusion peptide interactions are critical for the initial folding of paramyxovirus F proteins from across this important viral family, and can also modulate subsequent membrane fusion promotion. PMID:17417875

  16. TRAIL-CM4 fusion protein shows in vitro antibacterial activity and a stronger antitumor activity than solo TRAIL protein.

    PubMed

    Sang, Ming; Zhang, Jiaxin; Li, Bin; Chen, Yuqing

    2016-06-01

    A TRAIL-CM4 fusion protein in soluble form with tumor selective apoptosis and antibacterial functions was expressed in the Escherichia coli expression system and isolated through dialysis refolding and histidine-tag Nickel-affinity purification. Fresh Jurkat cells were treated with the TRAIL-CM4 fusion protein. Trypan blue staining and MTT analyses showed that, similar to a TRAIL positive control, Jurkat cell proliferation was significantly inhibited. Flow cytometry analyses using Annexin V-fluorescein revealed that Jurkat cells treated with the TRAIL-CM4 fusion protein exhibited increased apoptosis. Laser confocal microscopy showed that APB-CM4 and the fusion protein TRAIL-CM4 can bind to Jurkat cell membranes and initiate their destruction. ABP-CM4 enhances the antitumor activity of TRAIL by targeting and damaging the tumor cell membrane. In antibacterial experiments, agar well diffusion and bacterial growth inhibition curve assays revealed concentration-dependent TRAIL-CM4 antibacterial activity against Escherichia coli K12D31. The expressed TRAIL-CM4 fusion protein exhibited enhanced antitumor and antibacterial activities. Fusion protein expression allowed the two different proteins to function in combination. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Proteins on exocytic vesicles mediate calcium-triggered fusion.

    PubMed Central

    Vogel, S S; Zimmerberg, J

    1992-01-01

    In many exocytic systems, micromolar concentrations of intracellular Ca2+ trigger fusion. We find that aggregates of secretory granules isolated from sea urchin eggs fuse together when perfused with greater than or equal to 10 microM free Ca2+. Mixing of membrane components was demonstrated by transfer of fluorescent lipophilic dye, and melding of granule contents was seen with differential interference microscopy. A technique based upon light scattering was developed to conveniently detect fusion. Two protein modifiers, trypsin and N-ethylmaleimide, inhibit granule-granule fusion at concentrations similar to those that inhibit granule-plasma membrane fusion. We suggest that molecular machinery sufficient for Ca(2+)-triggered fusion resides on secretory granules as purified and that at least some of these essential components are proteinaceous. Images PMID:1584814

  18. Production and characterization of monoclonal antibodies (mAbs) against human serum albumin (HSA) for the development of an immunoaffinity system with oriented anti-HSA mAbs as immobilized ligand.

    PubMed

    Rajak, Poonam; Vijayalakshmi, M A; Jayaprakash, N S

    2013-05-05

    Proteins present in human serum are of immense importance in the field of biomarker discovery. But, the presence of high-abundant proteins like albumin makes the analysis more challenging because of masking effect on low-abundant proteins. Therefore, removal of albumin using highly specific monoclonal antibodies (mAbs) can potentiate the discovery of low-abundant proteins. In the present study, mAbs against human serum albumin (HSA) were developed and integrated in to an immunoaffinity based system for specific removal of albumin from the serum. Hybridomas were obtained by fusion of Sp2/0 mouse myeloma cells with spleen cells from the mouse immunized with HSA. Five clones (AHSA1-5) producing mAbs specific to HSA were established and characterized by enzyme linked immunosorbent assay (ELISA) and immunoblotting for specificity, sensitivity and affinity in terms of antigen binding. The mAbs were able to bind to both native albumin as well as its glycated isoform. Reactivity of mAbs with different mammalian sera was tested. The affinity constant of the mAbs ranged from 10(8) to 10(9)M(-1). An approach based on oriented immobilization was followed to immobilize purified anti-HSA mAbs on hydrazine activated agarose gel and the dynamic binding capacity of the column was determined. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Construction of fusion vectors of corynebacteria: expression of glutathione-S-transferase fusion protein in Corynebacterium acetoacidophilum ATCC 21476.

    PubMed

    Srivastava, Preeti; Deb, J K

    2002-07-02

    A series of fusion vectors containing glutathione-S-transferase (GST) were constructed by inserting GST fusion cassette of Escherichia coli vectors pGEX4T-1, -2 and -3 in corynebacterial vector pBK2. Efficient expression of GST driven by inducible tac promoter of E. coli was observed in Corynebacterium acetoacidophilum. Fusion of enhanced green fluorescent protein (EGFP) and streptokinase genes in this vector resulted in the synthesis of both the fusion proteins. The ability of this recombinant organism to produce several-fold more of the product in the extracellular medium than in the intracellular space would make this system quite attractive as far as the downstream processing of the product is concerned.

  20. Generation of fusion protein EGFRvIII-HBcAg and its anti-tumor effect in vivo

    PubMed Central

    Duan, Xiao-yi; Han, Dong-gang; Zhang, Ming-xin; Wang, Jian-sheng

    2009-01-01

    The epidermal growth factor receptor variant III (EGFRvIII) is the most common variation of EGFR. Because it shows a high frequency in several different types of tumor and has not been detected in normal tissues, it is an ideal target for tumor specific therapy. In this study, we prepared EGFRvIII-HBcAg fusion protein. After immunization with fusion protein, HBcAg or PBS, the titers of antibody in BALB/c mice immunized with fusion protein reached 2.75 × 105. Western blot analysis demonstrated that the fusion protein had specific antigenicity against anti-EGFRvIII antibody. Further observation showed fusion protein induced a high frequency of IFN-γ-secreting lymphocytes. CD4+T cells rather than CD8+T cells were associated with the production of IFN-γ. Using Renca-vIII(+) cell as specific stimulator, we observed remarkable cytotoxic activity in splenocytes from mice immunized with fusion protein. Mice were challenged with Renca-vIII(+) cells after five times immunization. In fusion protein group, three of ten mice failed to develop tumor and all survived at the end of the research. The weight of tumors in fusion protein were obviously lighter than that in other two groups (t = 4.73, P = 0.044;t = 6.89, P = 0.040). These findings demonstrated that EGFRvIII-HBcAg fusion protein triggered protective responses against tumor expressing EGFRvIII. PMID:19788747

  1. Production of recombinant proteins in Escherichia coli tagged with the fusion protein CusF3H.

    PubMed

    Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Zarate, Xristo

    2017-04-01

    Recombinant protein expression in the bacterium Escherichia coli still is the number one choice for large-scale protein production. Nevertheless, many complications can arise using this microorganism, such as low yields, the formation of inclusion bodies, and the requirement for difficult purification steps. Most of these problems can be solved with the use of fusion proteins. Here, the use of the metal-binding protein CusF3H+ is described as a new fusion protein for recombinant protein expression and purification in E. coli. We have previously shown that CusF produces large amounts of soluble protein, with low levels of formation of inclusion bodies, and that proteins can be purified using IMAC resins charged with Cu(II) ions. CusF3H+ is an enhanced variant of CusF, formed by the addition of three histidine residues at the N-terminus. These residues then can bind Ni(II) ions allowing improved purity after affinity chromatography. Expression and purification of Green Fluorescent Protein tagged with CusF3H+ showed that the mutation did not alter the capacity of the fusion protein to increase protein expression, and purity improved considerably after affinity chromatography with immobilized nickel ions; high yields are obtained after tag-removal since CusF3H+ is a small protein of just 10 kDa. Furthermore, the results of experiments involving expression of tagged proteins having medium to large molecular weights indicate that the presence of the CusF3H+ tag improves protein solubility, as compared to a His-tag. We therefore endorse CusF3H+ as a useful alternative fusion protein/affinity tag for production of recombinant proteins in E. coli. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. HaloTag technology for specific and covalent labeling of fusion proteins.

    PubMed

    Benink, Hélène A; Urh, Marjeta

    2015-01-01

    Appending proteins of interest to fluorescent protein tags such as GFP has revolutionized how proteins are studied in the cellular environment. Over the last few decades many varieties of fluorescent proteins have been generated, each bringing new capability to research. However, taking full advantage of standard fluorescent proteins with advanced and differential features requires significant effort on the part of the researcher. This approach necessitates that many genetic fusions be generated and confirmed to function properly in cells with the same protein of interest. To lessen this burden, a newer category of protein fusion tags termed "self-labeling protein tags" has been developed. This approach utilizes a single protein tag, the function of which can be altered by attaching various chemical moieties (fluorescent labels, affinity handles, etc.). In this way a single genetically encoded protein fusion can easily be given functional diversity and adaptability as supplied by synthetic chemistry. Here we present protein labeling methods using HaloTag technology; comprised of HaloTag protein and the collection of small molecules designed to bind it specifically and provide it with varied functionalities. For imaging purposes these small molecules, termed HaloTag ligands, contain distinct fluorophores. Due to covalent and rapid binding between HaloTag protein and its ligands, labeling is permanent and efficient. Many of these ligands have been optimized for permeability across cellular membranes allowing for live cell labeling and imaging analysis. Nonpermeable ligands have also been developed for specific labeling of surface proteins. Overall, HaloTag is a versatile technology that empowers the end user to label a protein of interest with the choice of different fluorophores while alleviating the need for generation of multiple genetic fusions.

  3. A structurally driven analysis of thiol reactivity in mammalian albumins.

    PubMed

    Spiga, Ottavia; Summa, Domenico; Cirri, Simone; Bernini, Andrea; Venditti, Vincenzo; De Chiara, Matteo; Priora, Raffaella; Frosali, Simona; Margaritis, Antonios; Di Giuseppe, Danila; Di Simplicio, Paolo; Niccolai, Neri

    2011-04-01

    Understanding the structural basis of protein redox activity is still an open question. Hence, by using a structural genomics approach, different albumins have been chosen to correlate protein structural features with the corresponding reaction rates of thiol exchange between albumin and disulfide DTNB. Predicted structures of rat, porcine, and bovine albumins have been compared with the experimentally derived human albumin. High structural similarity among these four albumins can be observed, in spite of their markedly different reactivity with DTNB. Sequence alignments offered preliminary hints on the contributions of sequence-specific local environments modulating albumin reactivity. Molecular dynamics simulations performed on experimental and predicted albumin structures reveal that thiolation rates are influenced by hydrogen bonding pattern and stability of the acceptor C34 sulphur atom with donor groups of nearby residues. Atom depth evolution of albumin C34 thiol groups has been monitored during Molecular Dynamic trajectories. The most reactive albumins appeared also the ones presenting the C34 sulphur atom on the protein surface with the highest accessibility. High C34 sulphur atom reactivity in rat and porcine albumins seems to be determined by the presence of additional positively charged amino acid residues favoring both the C34 S⁻ form and the approach of DTNB. Copyright © 2011 Wiley Periodicals, Inc.

  4. The dengue virus type 2 envelope protein fusion peptide is essential for membrane fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Claire Y.-H., E-mail: CHuang1@cdc.go; Butrapet, Siritorn; Moss, Kelly J.

    The flaviviral envelope (E) protein directs virus-mediated membrane fusion. To investigate membrane fusion as a requirement for virus growth, we introduced 27 unique mutations into the fusion peptide of an infectious cDNA clone of dengue 2 virus and recovered seven stable mutant viruses. The fusion efficiency of the mutants was impaired, demonstrating for the first time the requirement for specific FP AAs in optimal fusion. Mutant viruses exhibited different growth kinetics and/or genetic stabilities in different cell types and adult mosquitoes. Virus particles could be recovered following RNA transfection of cells with four lethal mutants; however, recovered viruses could notmore » re-infect cells. These viruses could enter cells, but internalized virus appeared to be retained in endosomal compartments of infected cells, thus suggesting a fusion blockade. Mutations of the FP also resulted in reduced virus reactivity with flavivirus group-reactive antibodies, confirming earlier reports using virus-like particles.« less

  5. Rapamycin-induced oligomer formation system of FRB-FKBP fusion proteins.

    PubMed

    Inobe, Tomonao; Nukina, Nobuyuki

    2016-07-01

    Most proteins form larger protein complexes and perform multiple functions in the cell. Thus, artificial regulation of protein complex formation controls the cellular functions that involve protein complexes. Although several artificial dimerization systems have already been used for numerous applications in biomedical research, cellular protein complexes form not only simple dimers but also larger oligomers. In this study, we showed that fusion proteins comprising the induced heterodimer formation proteins FRB and FKBP formed various oligomers upon addition of rapamycin. By adjusting the configuration of fusion proteins, we succeeded in generating an inducible tetramer formation system. Proteins of interest also formed tetramers by fusing to the inducible tetramer formation system, which exhibits its utility in a broad range of biological applications. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. A phorbol ester-binding protein is required downstream of Rab5 in endosome fusion.

    PubMed

    Aballay, A; Barbieri, M A; Colombo, M I; Arenas, G N; Stahl, P D; Mayorga, L S

    1998-12-28

    Previous observations indicate that a zinc and phorbol ester binding factor is necessary for endosome fusion. To further characterize the role of this factor in the process, we used an in vitro endosome fusion assay supplemented with recombinant Rab5 proteins. Both zinc depletion and addition of calphostin C, an inhibitor of protein kinase C, inhibited endosome fusion in the presence of active Rab5. Addition of the phorbol ester PMA (phorbol 12-myristate 13-acetate) reversed the inhibition of endosome fusion caused by a Rab5 negative mutant. Moreover, PMA stimulated fusion in the presence of Rab5 immunodepleted cytosol. These results suggest that the phorbol ester binding protein is acting downstream of Rab5 in endosome fusion.

  7. Full Conversion of the Hemagglutinin-Neuraminidase Specificity of the Parainfluenza Virus 5 Fusion Protein by Replacement of 21 Amino Acids in Its Head Region with Those of the Simian Virus 41 Fusion Protein

    PubMed Central

    Nakahashi, Mito; Matsushima, Yoshiaki; Ito, Morihiro; Nishio, Machiko; Kawano, Mitsuo; Komada, Hiroshi; Nosaka, Tetsuya

    2013-01-01

    For most parainfluenza viruses, a virus type-specific interaction between the hemagglutinin-neuraminidase (HN) and fusion (F) proteins is a prerequisite for mediating virus-cell fusion and cell-cell fusion. The molecular basis of this functional interaction is still obscure partly because it is unknown which region of the F protein is responsible for the physical interaction with the HN protein. Our previous cell-cell fusion assay using the chimeric F proteins of parainfluenza virus 5 (PIV5) and simian virus 41 (SV41) indicated that replacement of two domains in the head region of the PIV5 F protein with the SV41 F counterparts bestowed on the PIV5 F protein the ability to induce cell-cell fusion on coexpression with the SV41 HN protein while retaining its ability to induce fusion with the PIV5 HN protein. In the study presented here, we furthered the chimeric analysis of the F proteins of PIV5 and SV41, finding that the PIV5 F protein could be converted to an SV41 HN-specific chimeric F protein by replacing five domains in the head region with the SV41 F counterparts. The five SV41 F-protein-derived domains of this chimera were then divided into 16 segments; 9 out of 16 proved to be not involved in determining its specificity for the SV41 HN protein. Finally, mutational analyses of a chimeric F protein, which harbored seven SV41 F-protein-derived segments, revealed that replacement of at most 21 amino acids of the PIV5 F protein with the SV41 F-protein counterparts was enough to convert its HN protein specificity. PMID:23698295

  8. Fusion Protein Vaccines Targeting Two Tumor Antigens Generate Synergistic Anti-Tumor Effects

    PubMed Central

    Cheng, Wen-Fang; Chang, Ming-Cheng; Sun, Wei-Zen; Jen, Yu-Wei; Liao, Chao-Wei; Chen, Yun-Yuan; Chen, Chi-An

    2013-01-01

    Introduction Human papillomavirus (HPV) has been consistently implicated in causing several kinds of malignancies, and two HPV oncogenes, E6 and E7, represent two potential target antigens for cancer vaccines. We developed two fusion protein vaccines, PE(ΔIII)/E6 and PE(ΔIII)/E7 by targeting these two tumor antigens to test whether a combination of two fusion proteins can generate more potent anti-tumor effects than a single fusion protein. Materials and Methods In vivo antitumor effects including preventive, therapeutic, and antibody depletion experiments were performed. In vitro assays including intracellular cytokine staining and ELISA for Ab responses were also performed. Results PE(ΔIII)/E6+PE(ΔIII)/E7 generated both stronger E6 and E7-specific immunity. Only 60% of the tumor protective effect was observed in the PE(ΔIII)/E6 group compared to 100% in the PE(ΔIII)/E7 and PE(ΔIII)/E6+PE(ΔIII)/E7 groups. Mice vaccinated with the PE(ΔIII)/E6+PE(ΔIII)/E7 fusion proteins had a smaller subcutaneous tumor size than those vaccinated with PE(ΔIII)/E6 or PE(ΔIII)/E7 fusion proteins alone. Conclusion Fusion protein vaccines targeting both E6 and E7 tumor antigens generated more potent immunotherapeutic effects than E6 or E7 tumor antigens alone. This novel strategy of targeting two tumor antigens together can promote the development of cancer vaccines and immunotherapy in HPV-related malignancies. PMID:24058440

  9. Spatiotemporal dynamics of membrane remodeling and fusion proteins during endocytic transport

    PubMed Central

    Arlt, Henning; Auffarth, Kathrin; Kurre, Rainer; Lisse, Dominik; Piehler, Jacob; Ungermann, Christian

    2015-01-01

    Organelles of the endolysosomal system undergo multiple fission and fusion events to combine sorting of selected proteins to the vacuole with endosomal recycling. This sorting requires a consecutive remodeling of the organelle surface in the course of endosomal maturation. Here we dissect the remodeling and fusion machinery on endosomes during the process of endocytosis. We traced selected GFP-tagged endosomal proteins relative to exogenously added fluorescently labeled α-factor on its way from the plasma membrane to the vacuole. Our data reveal that the machinery of endosomal fusion and ESCRT proteins has similar temporal localization on endosomes, whereas they precede the retromer cargo recognition complex. Neither deletion of retromer nor the fusion machinery with the vacuole affects this maturation process, although the kinetics seems to be delayed due to ESCRT deletion. Of importance, in strains lacking the active Rab7-like Ypt7 or the vacuolar SNARE fusion machinery, α-factor still proceeds to late endosomes with the same kinetics. This indicates that endosomal maturation is mainly controlled by the early endosomal fusion and remodeling machinery but not the downstream Rab Ypt7 or the SNARE machinery. Our data thus provide important further understanding of endosomal biogenesis in the context of cargo sorting. PMID:25657322

  10. A minichaperone-based fusion system for producing insoluble proteins in soluble stable forms.

    PubMed

    Sharapova, Olga A; Yurkova, Maria S; Fedorov, Alexey N

    2016-02-01

    We have developed a fusion system for reliable production of insoluble hydrophobic proteins in soluble stable forms. A carrier is thermophilic minichaperone, GroEL apical domain (GrAD), a 15 kDa monomer able to bind diverse protein substrates. The Met-less variant of GrAD has been made for further convenient use of Met-specific CNBr chemical cleavage, if desired. The Met-less GrAD retained stability and solubility of the original protein. Target polypeptides can be fused to either C-terminus or N-terminus of GrAD. The system has been tested with two unrelated insoluble proteins fused to the C-terminus of GrAD. One of the proteins was also fused to GrAD N-terminus. The fusions formed inclusion bodies at 25°C and above and were partly soluble only at lower expression temperatures. Most importantly, however, after denaturation in urea, all fusions without exception were completely renatured in soluble stable forms that safely survived freezing-thawing as well as lyophilization. All fusions for both tested target proteins retained solubility at high concentrations for days. Functional analysis revealed that a target protein may retain functionality in the fusion. Convenience features include potential thermostability of GrAD fusions, capacity for chemical and enzymatic cleavage of a target and His6 tag for purification. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Mutant Fusion Proteins with Enhanced Fusion Activity Promote Measles Virus Spread in Human Neuronal Cells and Brains of Suckling Hamsters

    PubMed Central

    Shirogane, Yuta; Suzuki, Satoshi O.; Ikegame, Satoshi; Koga, Ritsuko

    2013-01-01

    Subacute sclerosing panencephalitis (SSPE) is a fatal degenerative disease caused by persistent measles virus (MV) infection in the central nervous system (CNS). From the genetic study of MV isolates obtained from SSPE patients, it is thought that defects of the matrix (M) protein play a crucial role in MV pathogenicity in the CNS. In this study, we report several notable mutations in the extracellular domain of the MV fusion (F) protein, including those found in multiple SSPE strains. The F proteins with these mutations induced syncytium formation in cells lacking SLAM and nectin 4 (receptors used by wild-type MV), including human neuronal cell lines, when expressed together with the attachment protein hemagglutinin. Moreover, recombinant viruses with these mutations exhibited neurovirulence in suckling hamsters, unlike the parental wild-type MV, and the mortality correlated with their fusion activity. In contrast, the recombinant MV lacking the M protein did not induce syncytia in cells lacking SLAM and nectin 4, although it formed larger syncytia in cells with either of the receptors. Since human neuronal cells are mainly SLAM and nectin 4 negative, fusion-enhancing mutations in the extracellular domain of the F protein may greatly contribute to MV spread via cell-to-cell fusion in the CNS, regardless of defects of the M protein. PMID:23255801

  12. Ellipsometric studies of synthetic albumin-binding chitosan-derivatives and selected blood plasma proteins

    NASA Astrophysics Data System (ADS)

    Sarkar, Sabyasachi

    This dissertation summarizes work on the synthesis of chitosan-derivatives and the development of ellipsometric methods to characterize materials of biological origin. Albumin-binding chitosan-derivatives were synthesized via addition reactions that involve amine groups naturally present in chitosan. These surfaces were shown to have an affinity towards human serum albumin via ELISA, UV spectroscopy and SDS PAGE. Modified surfaces were characterized with IR ellipsometry at various stages of their synthesis using appropriate optical models. It was found that spin cast chitosan films were anisotropic in nature. All optical models used for characterizing chitosan-derivatives were thus anisotropic. Chemical signal dependence on molecular structure and composition was illustrated via IR spectroscopic ellipsometry (IRSE). An anisotropic optical model of an ensemble of Lorentz oscillators were used to approximate material behavior. The presence of acetic acid in spin-cast non-neutralized chitosan samples was thus shown. IRSE application to biomaterials was also demonstrated by performing a step-wise chemical characterizations during synthesis stages. Protein adsorbed from single protein solutions on these modified surfaces was monitored by visible in-situ variable wavelength ellipsometry. Based on adsorption profiles obtained from single protein adsorption onto silicon surfaces, lumped parameter kinetic models were developed. These models were used to fit experimental data of immunoglobulin-G of different concentrations and approximate conformational changes in fibrinogen adsorption. Biomaterial characterization by ellipsometry was further extended to include characterization of individual protein solutions in the IR range. Proteins in an aqueous environment were characterized by attenuated total internal reflection (ATR) IR ellipsometry using a ZnSe prism. Parameterized dielectric functions were created for individual proteins using Lorentz oscillators. These

  13. Novel Fusion Protein Approach for Efficient High-Throughput Screening of Small Molecule–Mediating Protein-Protein Interactions in Cells and Living Animals

    PubMed Central

    Paulmurugan, Ramasamy; Gambhir, Sanjiv S.

    2014-01-01

    Networks of protein interactions execute many different intracellular pathways. Small molecules either synthesized within the cell or obtained from the external environment mediate many of these protein-protein interactions. The study of these small molecule–mediated protein-protein interactions is important in understanding abnormal signal transduction pathways in a variety of disorders, as well as in optimizing the process of drug development and validation. In this study, we evaluated the rapamycin-mediated interaction of the human proteins FK506-binding protein (FKBP12) rapamycin-binding domain (FRB) and FKBP12 by constructing a fusion of these proteins with a split-Renilla luciferase or a split enhanced green fluorescent protein (split-EGFP) such that complementation of the reporter fragments occurs in the presence of rapamycin. Different linker peptides in the fusion protein were evaluated for the efficient maintenance of complemented reporter activity. This system was studied in both cell culture and xenografts in living animals. We found that peptide linkers with two or four EAAAR repeat showed higher protein-protein interaction–mediated signal with lower background signal compared with having no linker or linkers with amino acid sequences GGGGSGGGGS, ACGSLSCGSF, and ACGSLSCGS-FACGSLSCGSF. A 9 ± 2-fold increase in signal intensity both in cell culture and in living mice was seen compared with a system that expresses both reporter fragments and the interacting proteins separately. In this fusion system, rapamycin induced heterodimerization of the FRB and FKBP12 moieties occurred rapidly even at very lower concentrations (0.00001 nmol/L) of rapamycin. For a similar fusion system employing split-EGFP, flow cytometry analysis showed significant level of rapamycin-induced complementation. PMID:16103094

  14. Novel fusion protein approach for efficient high-throughput screening of small molecule-mediating protein-protein interactions in cells and living animals.

    PubMed

    Paulmurugan, Ramasamy; Gambhir, Sanjiv S

    2005-08-15

    Networks of protein interactions execute many different intracellular pathways. Small molecules either synthesized within the cell or obtained from the external environment mediate many of these protein-protein interactions. The study of these small molecule-mediated protein-protein interactions is important in understanding abnormal signal transduction pathways in a variety of disorders, as well as in optimizing the process of drug development and validation. In this study, we evaluated the rapamycin-mediated interaction of the human proteins FK506-binding protein (FKBP12) rapamycin-binding domain (FRB) and FKBP12 by constructing a fusion of these proteins with a split-Renilla luciferase or a split enhanced green fluorescent protein (split-EGFP) such that complementation of the reporter fragments occurs in the presence of rapamycin. Different linker peptides in the fusion protein were evaluated for the efficient maintenance of complemented reporter activity. This system was studied in both cell culture and xenografts in living animals. We found that peptide linkers with two or four EAAAR repeat showed higher protein-protein interaction-mediated signal with lower background signal compared with having no linker or linkers with amino acid sequences GGGGSGGGGS, ACGSLSCGSF, and ACGSLSCGSFACGSLSCGSF. A 9 +/- 2-fold increase in signal intensity both in cell culture and in living mice was seen compared with a system that expresses both reporter fragments and the interacting proteins separately. In this fusion system, rapamycin induced heterodimerization of the FRB and FKBP12 moieties occurred rapidly even at very lower concentrations (0.00001 nmol/L) of rapamycin. For a similar fusion system employing split-EGFP, flow cytometry analysis showed significant level of rapamycin-induced complementation.

  15. Concentration-dependent reversible self-oligomerization of serum albumins through intermolecular β-sheet formation.

    PubMed

    Bhattacharya, Arpan; Prajapati, Roopali; Chatterjee, Surajit; Mukherjee, Tushar Kanti

    2014-12-16

    Proteins inside a cell remain in highly crowded environments, and this often affects their structure and activity. However, most of the earlier studies involving serum albumins were performed under dilute conditions, which lack biological relevance. The effect of protein-protein interactions on the structure and properties of serum albumins at physiological conditions have not yet been explored. Here, we report for the first time the effect of protein-protein and protein-crowder interactions on the structure and stability of two homologous serum albumins, namely, human serum albumin (HSA) and bovine serum albumin (BSA), at physiological conditions by using spectroscopic techniques and scanning electron microscopy (SEM). Concentration-dependent self-oligomerization and subsequent structural alteration of serum albumins have been explored by means of fluorescence and circular dichroism spectroscopy at pH 7.4. The excitation wavelength (λex) dependence of the intrinsic fluorescence and the corresponding excitation spectra at each emission wavelength indicate the presence of various ground state oligomers of serum albumins in the concentration range 10-150 μM. Circular dichroism and thioflavin T binding assay revealed formation of intermolecular β-sheet rich interfaces at high protein concentration. Excellent correlations have been observed between β-sheet content of both the albumins and fluorescence enhancement of ThT with protein concentrations. SEM images at a concentration of 150 μM revealed large dispersed self-oligomeric states with sizes vary from 330 to 924 nm and 260 to 520 nm for BSA and HSA, respectively. The self-oligomerization of serum albumins is found to be a reversible process; upon dilution, these oligomers dissociate into a native monomeric state. It has also been observed that synthetic macromolecular crowder polyethylene glycol (PEG 200) stabilizes the self-associated state of both the albumins which is contrary to expectations that the

  16. Urinary Tamm-Horsfall protein, albumin, vitamin D-binding protein, and retinol-binding protein as early biomarkers of chronic kidney disease in dogs.

    PubMed

    Chacar, Fernanda; Kogika, Márcia; Sanches, Talita R; Caragelasco, Douglas; Martorelli, Cínthia; Rodrigues, Camila; Capcha, Jose Manuel C; Chew, Dennis; Andrade, Lúcia

    2017-06-01

    Proteinuria is a marker and mediator of chronic kidney disease (CKD). In clinical practice, the urinary protein-to-creatinine ratio (UP/C) is of limited usefulness, because it indicates only the magnitude of proteinuria and not the origin of the loss (glomerular or tubular). The complete assessment of proteinuria includes quantitative and qualitative evaluations, both of which are required in order to optimize the therapy. In addition to measuring the UP/C, we performed SDS-PAGE and western blotting to determine the expression of albumin, vitamin D-binding protein (VDBP), retinol-binding protein (RBP), and Tamm-Horsfall protein (THP) in urine samples of 49 dogs: healthy (control) dogs ( n  =   9); and dogs with CKD ( n  =   40), stratified by stage. In the dogs with stage 3 or 4 CKD, there was a predominance of tubular proteins. Neither VDBP nor RBP was observed in the urine of the control dogs. Among the dogs with stage 1 or 2 CKD, VDBP and RBP were detected in those without proteinuria or with borderline proteinuria. The expression of urinary albumin was significantly higher in the stage 4 group than in any other group ( P  ≤   0.01). In the stage 4 group, urinary THP was either undetectable or lower than in the control group ( P  ≤   0.01). In conclusion, urinary VDBP and RBP might act as early markers of kidney injury, and a decrease in urinary THP could be an indicator of CKD progression. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  17. Regulation of Exocytotic Fusion Pores by SNARE Protein Transmembrane Domains

    PubMed Central

    Wu, Zhenyong; Thiyagarajan, Sathish; O’Shaughnessy, Ben; Karatekin, Erdem

    2017-01-01

    Calcium-triggered exocytotic release of neurotransmitters and hormones from neurons and neuroendocrine cells underlies neuronal communication, motor activity and endocrine functions. The core of the neuronal exocytotic machinery is composed of soluble N-ethyl maleimide sensitive factor attachment protein receptors (SNAREs). Formation of complexes between vesicle-attached v- and plasma-membrane anchored t-SNAREs in a highly regulated fashion brings the membranes into close apposition. Small, soluble proteins called Complexins (Cpx) and calcium-sensing Synaptotagmins cooperate to block fusion at low resting calcium concentrations, but trigger release upon calcium increase. A growing body of evidence suggests that the transmembrane domains (TMDs) of SNARE proteins play important roles in regulating the processes of fusion and release, but the mechanisms involved are only starting to be uncovered. Here we review recent evidence that SNARE TMDs exert influence by regulating the dynamics of the fusion pore, the initial aqueous connection between the vesicular lumen and the extracellular space. Even after the fusion pore is established, hormone release by neuroendocrine cells is tightly controlled, and the same may be true of neurotransmitter release by neurons. The dynamics of the fusion pore can regulate the kinetics of cargo release and the net amount released, and can determine the mode of vesicle recycling. Manipulations of SNARE TMDs were found to affect fusion pore properties profoundly, both during exocytosis and in biochemical reconstitutions. To explain these effects, TMD flexibility, and interactions among TMDs or between TMDs and lipids have been invoked. Exocytosis has provided the best setting in which to unravel the underlying mechanisms, being unique among membrane fusion reactions in that single fusion pores can be probed using high-resolution methods. An important role will likely be played by methods that can probe single fusion pores in a biochemically

  18. Fusion proteins useful for producing pinene

    DOEpatents

    Peralta-Yahya, Pamela P.; Keasling, Jay D

    2016-06-28

    The present invention provides for a modified host cell comprising a heterologous pinene synthase (PS), or enzymatically active fragment or variant thereof, and optionally a geranyl pyrophosphate synthase (GPPS), or enzymatically active fragment or variant thereof, or a fusion protein comprising: (a) a PS and (b) a GPPS linked by a linker.

  19. Characterization of the fusion core in zebrafish endogenous retroviral envelope protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Jian; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071; Zhang, Huaidong

    2015-05-08

    Zebrafish endogenous retrovirus (ZFERV) is the unique endogenous retrovirus in zebrafish, as yet, containing intact open reading frames of its envelope protein gene in zebrafish genome. Similarly, several envelope proteins of endogenous retroviruses in human and other mammalian animal genomes (such as syncytin-1 and 2 in human, syncytin-A and B in mouse) were identified and shown to be functional in induction of cell–cell fusion involved in placental development. ZFERV envelope protein (Env) gene appears to be also functional in vivo because it is expressible. After sequence alignment, we found ZFERV Env shares similar structural profiles with syncytin and other type Imore » viral envelopes, especially in the regions of N- and C-terminal heptad repeats (NHR and CHR) which were crucial for membrane fusion. We expressed the regions of N + C protein in the ZFERV Env (residues 459–567, including predicted NHR and CHR) to characterize the fusion core structure. We found N + C protein could form a stable coiled-coil trimer that consists of three helical NHR regions forming a central trimeric core, and three helical CHR regions packing into the grooves on the surface of the central core. The structural characterization of the fusion core revealed the possible mechanism of fusion mediated by ZFERV Env. These results gave comprehensive explanation of how the ancient virus infects the zebrafish and integrates into the genome million years ago, and showed a rational clue for discovery of physiological significance (e.g., medicate cell–cell fusion). - Highlights: • ZFERV Env shares similar structural profiles with syncytin and other type I viral envelopes. • The fusion core of ZFERV Env forms stable coiled-coil trimer including three NHRs and three CHRs. • The structural mechanism of viral entry mediated by ZFERV Env is disclosed. • The results are helpful for further discovery of physiological function of ZFERV Env in zebrafish.« less

  20. Biochemical and functional characterization of an albumin protein belonging to the hemopexin superfamily from Lens culinaris seeds.

    PubMed

    Scarafoni, Alessio; Gualtieri, Elisa; Barbiroli, Alberto; Carpen, Aristodemo; Negri, Armando; Duranti, Marcello

    2011-09-14

    The present paper reports the purification and biochemical characterization of an albumin identified in mature lentil seeds with high sequence similarity to pea PA2. These proteins are found in many edible seeds and are considered potentially detrimental for human health due to the potential allergenicity and lectin-like activity. Thus, the description of their possible presence in food and the assessment of the molecular properties are relevant. The M(r), pI, and N-terminal sequence of this protein have been determined. The work included the study of (i) the binding properties to hemine to assess the presence of hemopexin structural domains and (ii) the binding properties of the protein to thiamin. In addition, the structural changes induced by heating have been evaluated by means of spectroscopic techniques. Denaturation temperature has also been determined. The present work provides new insights about the structural molecular features and the ligand-binding properties and dynamics of this kind of seed albumin.

  1. A protein disulfide isomerase gene fusion expression system that increases the extracellular productivity of Bacillus brevis.

    PubMed

    Kajino, T; Ohto, C; Muramatsu, M; Obata, S; Udaka, S; Yamada, Y; Takahashi, H

    2000-02-01

    We have developed a versatile Bacillus brevis expression and secretion system based on the use of fungal protein disulfide isomerase (PDI) as a gene fusion partner. Fusion with PDI increased the extracellular production of heterologous proteins (light chain of immunoglobulin G, 8-fold; geranylgeranyl pyrophosphate synthase, 12-fold). Linkage to PDI prevented the aggregation of the secreted proteins, resulting in high-level accumulation of fusion proteins in soluble and biologically active forms. We also show that the disulfide isomerase activity of PDI in a fusion protein is responsible for the suppression of the aggregation of the protein with intradisulfide, whereas aggregation of the protein without intradisulfide was prevented even when the protein was fused to a mutant PDI whose two active sites were disrupted, suggesting that another PDI function, such as chaperone-like activity, synergistically prevented the aggregation of heterologous proteins in the PDI fusion expression system.

  2. A Protein Disulfide Isomerase Gene Fusion Expression System That Increases the Extracellular Productivity of Bacillus brevis

    PubMed Central

    Kajino, Tsutomu; Ohto, Chikara; Muramatsu, Masayoshi; Obata, Shusei; Udaka, Shigezo; Yamada, Yukio; Takahashi, Haruo

    2000-01-01

    We have developed a versatile Bacillus brevis expression and secretion system based on the use of fungal protein disulfide isomerase (PDI) as a gene fusion partner. Fusion with PDI increased the extracellular production of heterologous proteins (light chain of immunoglobulin G, 8-fold; geranylgeranyl pyrophosphate synthase, 12-fold). Linkage to PDI prevented the aggregation of the secreted proteins, resulting in high-level accumulation of fusion proteins in soluble and biologically active forms. We also show that the disulfide isomerase activity of PDI in a fusion protein is responsible for the suppression of the aggregation of the protein with intradisulfide, whereas aggregation of the protein without intradisulfide was prevented even when the protein was fused to a mutant PDI whose two active sites were disrupted, suggesting that another PDI function, such as chaperone-like activity, synergistically prevented the aggregation of heterologous proteins in the PDI fusion expression system. PMID:10653729

  3. Dual-mode enhancement of metallothionein protein with cell transduction and retention peptide fusion.

    PubMed

    Lim, Kwang Suk; Lim, Myoung-Hwa; Won, Young-Wook; Kim, Jang Kyoung; Kang, Young Cheol; Park, Eun Jeong; Chae, Ji-Won; Kim, So-Mi; Ryu, Seong-Eon; Pak, Youngmi Kim; Kim, Yong-Hee

    2013-10-28

    Protein transduction domains (PTDs), also known as cell-penetrating peptides (CPPs), have been developed as effective systems for delivering bio-active cargos such as proteins, genes and particles. Further improvements on cell-specific targeting, intracellular organelle targeting and intracellular retention are still necessary to enhance the therapeutic effect of PTD fusion proteins. In order to enhance the cell transduction and retention of anti-oxidative metallothionein protein (MT), MT was recombinantly fused with transcriptional activator (Tat) with or without a short peptide (sMTS) derived from mitochondria malate dehydrogenase (mMDH). Cellular uptake and retention time of fusion protein were significantly increased in the H9c2 cell by sMTS. The Tat-sMTS-MT (TMM) fusion protein protected H9c2 cells more effectively against hypoxia, hyperglycemia and combination compared with Tat-MT (TM) by reducing intracellular ROS level. It maintained the normal blood glucose level over an extended period of time in a streptozotocin-induced diabetic mouse model. PTD-sMTS-MT fusion protein has a potential to be used as a therapeutic protein for the treatment or prevention of diabetes and diabetic complications. © 2013.

  4. Eliciting an antibody response against a recombinant TSH containing fusion protein.

    PubMed

    Mard-Soltani, Maysam; Rasaee, Mohamad Javad; Sheikhi, AbdolKarim; Hedayati, Mehdi

    2017-01-01

    Designing novel antigens to rise specific antibodies for Thyroid Stimulating Hormone (TSH) detection is of great significance. A novel fusion protein consisting of the C termini sequence of TSH beta subunit and a fusion sequence was designed and produced for rabbit immunization. Thereafter, the produced antibodies were purified and characterized for TSH detection. Our results indicate that the produced antibody is capable of sensitive and specific detection of TSH with low cross reactivity. This study underscores the applicability of designed fusion protein for specific and sensitive polyclonal antibody production and the importance of selecting an amenable region of the TSH for immunization.

  5. Multiple Factors Influence Glomerular Albumin Permeability in Rats

    PubMed Central

    Sandoval, Ruben M.; Wagner, Mark C.; Patel, Monica; Campos-Bilderback, Silvia B.; Rhodes, George J.; Wang, Exing; Wean, Sarah E.; Clendenon, Sherry S.

    2012-01-01

    Different laboratories recently reported incongruous results describing the quantification of albumin filtration using two-photon microscopy. We investigated the factors that influence the glomerular sieving coefficient for albumin (GSCA) in an effort to explain these discordant reports and to develop standard operating procedures for determining GSCA. Multiple factors influenced GSCA, including the kidney depth of image acquisition (10–20 μm was appropriate), the selection of fluorophore (probes emitting longer wavelengths were superior), the selection of plasma regions for fluorescence measurements, the size and molecular dispersion characteristics of dextran polymers if used, dietary status, and the genetic strain of rat. Fasting reduced the GSCA in Simonsen Munich Wistar rats from 0.035±0.005 to 0.016±0.004 (P<0.01). Frömter Munich Wistar rats had a much lower GSCA in both the fed and the fasted states. Finally, we documented extensive albumin transcytosis with vesicular and tubular delivery to and fusion with the basolateral membrane in S1 proximal tubule cells. In summary, these results help explain the previously conflicting microscopy and micropuncture data describing albumin filtration and highlight the dynamic nature of glomerular albumin permeability. PMID:22223875

  6. Targeted expression, purification, and cleavage of fusion proteins from inclusion bodies in Escherichia coli.

    PubMed

    Hwang, Peter M; Pan, Jonathan S; Sykes, Brian D

    2014-01-21

    Today, proteins are typically overexpressed using solubility-enhancing fusion tags that allow for affinity chromatographic purification and subsequent removal by site-specific protease cleavage. In this review, we present an alternative approach to protein production using fusion partners specifically designed to accumulate in insoluble inclusion bodies. The strategy is appropriate for the mass production of short peptides, intrinsically disordered proteins, and proteins that can be efficiently refolded in vitro. There are many fusion protein systems now available for insoluble expression: TrpLE, ketosteroid isomerase, PurF, and PagP, for example. The ideal fusion partner is effective at directing a wide variety of target proteins into inclusion bodies, accumulates in large quantities in a highly pure form, and is readily solubilized and purified in commonly used denaturants. Fusion partner removal under denaturing conditions is biochemically challenging, requiring harsh conditions (e.g., cyanogen bromide in 70% formic acid) that can result in unwanted protein modifications. Recent advances in metal ion-catalyzed peptide bond cleavage allow for more mild conditions, and some methods involving nickel or palladium will likely soon appear in more biological applications. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Antibody-cytokine fusion proteins for improving efficacy and safety of cancer therapy.

    PubMed

    Valedkarimi, Zahra; Nasiri, Hadi; Aghebati-Maleki, Leili; Majidi, Jafar

    2017-11-01

    Cytokines are key players in the regulation of immune responses both in physiological and pathological states. A number of cytokines have been evaluated in clinical trials and shown promising results in the treatment of different malignancies. Despite this, the clinical application of these molecules may be plagued by undesirable side effects The development of recombinant antibody-cytokine fusion proteins, which offer a means for target delivery of cytokines toward the tumor site, has significantly improved the therapeutic index of these immunomodulatory molecules. Selective tumor localization is provided by the monoclonal antibody component of the fusion protein that binds to the molecules present on the surface of tumor cells or accumulated preferentially in the diseased site. In this manner, the cytokine element is specifically located at the tumor site and can stimulate immune cells with appropriate cytokine receptors. Over the recent years, several antibody-cytokine fusion proteins have been developed with the capacity to target a wide variety of cancers whose application, in some cases, has led to complete rejection of the tumor. These findings support the notion that antibody-cytokine fusion proteins represent huge potential for cancer therapy. This review presents an overview of the advances made in the field of targeted cytokine delivery, which is made possible by genetically engineering antibody-cytokine fusion proteins. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Quantification of carbamylated albumin in serum based on capillary electrophoresis.

    PubMed

    Delanghe, Sigurd; Moerman, Alena; Pletinck, Anneleen; Schepers, Eva; Glorieux, Griet; Van Biesen, Wim; Delanghe, Joris R; Speeckaert, Marijn M

    2017-09-01

    Protein carbamylation, a nonenzymatic posttranslational modification promoted during uremia, is linked to a poor prognosis. In the present study, carbamylation of serum albumin was assayed using the symmetry factor on a capillary electrophoresis instrument (Helena V8). The symmetry factor has been defined as the distance from the center line of the peak to the back slope, divided by the distance from the center line of the peak to the front slope, with all measurements made at 10% of the maximum peak height. Serum albumin, creatinine, and urea concentrations were assayed using routine methods, whereas uremic toxins were determined using HPLC. In vitro carbamylation induced a marked albumin peak asymmetry. Reference values for the albumin symmetry factor were 0.69-0.92. In kidney patients, albumin peak asymmetry corresponded to the chronic kidney disease stage (p < 0.0001). The symmetry factor correlated well with serum urea (r = -0.5595, p < 0.0001) and creatinine (r = -0.5986, p < 0.0001) concentrations. Several protein-bound uremic toxins showed a significant negative correlation with the symmetry factor. Morphology of the albumin fraction was not affected by presence of glycated albumin and protein-bound antibiotics. In conclusion, the presented method provides a simple, practical way for monitoring protein carbamylation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Potential Pitfalls and Solutions for Use of Fluorescent Fusion Proteins to Study the Lysosome

    PubMed Central

    Huang, Ling; Pike, Douglas; Sleat, David E.; Nanda, Vikas; Lobel, Peter

    2014-01-01

    Use of fusion protein tags to investigate lysosomal proteins can be complicated by the acidic, protease-rich environment of the lysosome. Potential artifacts include degradation or release of the tag and acid quenching of fluorescence. Tagging can also affect protein folding, glycosylation and/or trafficking. To specifically investigate the use of fluorescent tags to reveal lysosomal localization, we tested mCherry derivatives as C-terminal tags for Niemann-Pick disease type C protein 2 (NPC2), a luminal lysosomal protein. Full-length mCherry was released from the NPC2 chimera while deletion of the 11 N-terminal residues of mCherry generated a cleavage-resistant (cr) fluorescent variant. Insertion of proline linkers between NPC2 and crmCherry had little effect while Gly-Ser linkers promoted cleavage. The NPC2-crmCherry fusion was targeted to the lysosome and restored function in NPC2-deficient cells. Fusion of crmCherry to known and candidate lysosomal proteins revealed that the linkers had different effects on lysosomal localization. Direct fusion of crmCherry impaired mannose 6-phosphorylation and lysosomal targeting of the lysosomal protease tripeptidyl peptidase I (TPP1), while insertion of linkers corrected the defects. Molecular modeling suggested structural bases for the effects of different linkers on NPC2 and TPP1 fusion proteins. While mCherry fusion proteins can be useful tools for studying the lysosome and related organelles, our findings underscore the potential artifacts associated with such applications. PMID:24586430

  10. Allosteric effects of gold nanoparticles on human serum albumin.

    PubMed

    Shao, Qing; Hall, Carol K

    2017-01-07

    The ability of nanoparticles to alter protein structure and dynamics plays an important role in their medical and biological applications. We investigate allosteric effects of gold nanoparticles on human serum albumin protein using molecular simulations. The extent to which bound nanoparticles influence the structure and dynamics of residues distant from the binding site is analyzed. The root mean square deviation, root mean square fluctuation and variation in the secondary structure of individual residues on a human serum albumin protein are calculated for four protein-gold nanoparticle binding complexes. The complexes are identified in a brute-force search process using an implicit-solvent coarse-grained model for proteins and nanoparticles. They are then converted to atomic resolution and their structural and dynamic properties are investigated using explicit-solvent atomistic molecular dynamics simulations. The results show that even though the albumin protein remains in a folded structure, the presence of a gold nanoparticle can cause more than 50% of the residues to decrease their flexibility significantly, and approximately 10% of the residues to change their secondary structure. These affected residues are distributed on the whole protein, even on regions that are distant from the nanoparticle. We analyze the changes in structure and flexibility of amino acid residues on a variety of binding sites on albumin and confirm that nanoparticles could allosterically affect the ability of albumin to bind fatty acids, thyroxin and metals. Our simulations suggest that allosteric effects must be considered when designing and deploying nanoparticles in medical and biological applications that depend on protein-nanoparticle interactions.

  11. Studies to Prevent Degradation of Recombinant Fc-Fusion Protein Expressed in Mammalian Cell Line and Protein Characterization

    PubMed Central

    Chakrabarti, Sanjukta; Barrow, Colin J.; Kanwar, Rupinder K.; Ramana, Venkata; Kanwar, Jagat R.

    2016-01-01

    Clipping of recombinant proteins is a major issue in animal cell cultures. A recombinant Fc-fusion protein, VEGFR1(D1–D3)-Fc expressed in CHOK1SV GS-KO cells was observed to be undergoing clippings in lab scale cultures. Partial cleaving of expressed protein initiated early on in cell culture and was observed to increase over time in culture and also on storage. In this study, a few parameters were explored in a bid to inhibit clipping in the fusion protein The effects of culture temperature, duration of culture, the addition of an anti-clumping agent, ferric citrate and use of protease inhibitor cocktail on inhibition of proteolysis of the Fc fusion were studied. Lowering of culture temperature from 37 to 30 °C alone appears to be the best solution for reducing protein degradation from the quality, cost and regulatory points of view. The obtained Fc protein was characterized and found to be in its stable folded state, exhibiting a high affinity for its ligand and also biological and functional activities. PMID:27294920

  12. Human serum albumin homeostasis: a new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements

    PubMed Central

    Levitt, David G; Levitt, Michael D

    2016-01-01

    Serum albumin concentration (CP) is a remarkably strong prognostic indicator of morbidity and mortality in both sick and seemingly healthy subjects. Surprisingly, the specifics of the pathophysiology underlying the relationship between CP and ill-health are poorly understood. This review provides a summary that is not previously available in the literature, concerning how synthesis, catabolism, and renal and gastrointestinal clearance of albumin interact to bring about albumin homeostasis, with a focus on the clinical factors that influence this homeostasis. In normal humans, the albumin turnover time of about 25 days reflects a liver albumin synthesis rate of about 10.5 g/day balanced by renal (≈6%), gastrointestinal (≈10%), and catabolic (≈84%) clearances. The acute development of hypoalbuminemia with sepsis or trauma results from increased albumin capillary permeability leading to redistribution of albumin from the vascular to interstitial space. The best understood mechanism of chronic hypoalbuminemia is the decreased albumin synthesis observed in liver disease. Decreased albumin production also accounts for hypoalbuminemia observed with a low-protein and normal caloric diet. However, a calorie- and protein-deficient diet does not reduce albumin synthesis and is not associated with hypoalbuminemia, and CP is not a useful marker of malnutrition. In most disease states other than liver disease, albumin synthesis is normal or increased, and hypoalbuminemia reflects an enhanced rate of albumin turnover resulting either from an increased rate of catabolism (a poorly understood phenomenon) or enhanced loss of albumin into the urine (nephrosis) or intestine (protein-losing enteropathy). The latter may occur with subtle intestinal pathology and hence may be more prevalent than commonly appreciated. Clinically, reduced CP appears to be a result rather than a cause of ill-health, and therapy designed to increase CP has limited benefit. The ubiquitous occurrence of

  13. Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Hsien-Sheng; Paterson, Reay G.; Wen, Xiaolin

    2010-03-08

    Class I viral fusion proteins share common mechanistic and structural features but little sequence similarity. Structural insights into the protein conformational changes associated with membrane fusion are based largely on studies of the influenza virus hemagglutinin in pre- and postfusion conformations. Here, we present the crystal structure of the secreted, uncleaved ectodomain of the paramyxovirus, human parainfluenza virus 3 fusion (F) protein, a member of the class I viral fusion protein group. The secreted human parainfluenza virus 3 F forms a trimer with distinct head, neck, and stalk regions. Unexpectedly, the structure reveals a six-helix bundle associated with the postfusionmore » form of F, suggesting that the anchor-minus ectodomain adopts a conformation largely similar to the postfusion state. The transmembrane anchor domains of F may therefore profoundly influence the folding energetics that establish and maintain a metastable, prefusion state.« less

  14. The Fusion Protein Specificity of the Parainfluenza Virus Hemagglutinin-Neuraminidase Protein Is Not Solely Defined by the Primary Structure of Its Stalk Domain

    PubMed Central

    Ito, Morihiro; Ohtsuka, Junpei; Hara, Kenichiro; Komada, Hiroshi; Nishio, Machiko; Nosaka, Tetsuya

    2015-01-01

    ABSTRACT Virus-specific interaction between the attachment protein (HN) and the fusion protein (F) is prerequisite for the induction of membrane fusion by parainfluenza viruses. This HN-F interaction presumably is mediated by particular amino acids in the HN stalk domain and those in the F head domain. We found in the present study, however, that a simian virus 41 (SV41) F-specific chimeric HPIV2 HN protein, SCA, whose cytoplasmic, transmembrane, and stalk domains were derived from the SV41 HN protein, could not induce cell-cell fusion of BHK-21 cells when coexpressed with an SV41 HN-specific chimeric PIV5 F protein, no. 36. Similarly, a headless form of the SV41 HN protein failed to induce fusion with chimera no. 36, whereas it was able to induce fusion with the SV41 F protein. Interestingly, replacement of 13 amino acids of the SCA head domain, which are located at or around the dimer interface of the head domain, with SV41 HN counterparts resulted in a chimeric HN protein, SCA-RII, which induced fusion with chimera no. 36 but not with the SV41 F protein. More interestingly, retroreplacement of 11 out of the 13 amino acids of SCA-RII with the SCA counterparts resulted in another chimeric HN protein, IM18, which induced fusion either with chimera no. 36 or with the SV41 F protein, similar to the SV41 HN protein. Thus, we conclude that the F protein specificity of the HN protein that is observed in the fusion event is not solely defined by the primary structure of the HN stalk domain. IMPORTANCE It is appreciated that the HN head domain initially conceals the HN stalk domain but exposes it after the head domain has bound to the receptors, which allows particular amino acids in the stalk domain to interact with the F protein and trigger it to induce fusion. However, other regulatory roles of the HN head domain in the fusion event have been ill defined. We have shown in the current study that removal of the head domain or amino acid substitutions in a particular

  15. Effects of protein transduction domain (PTD) selection and position for improved intracellular delivery of PTD-Hsp27 fusion protein formulations.

    PubMed

    Ul Ain, Qurrat; Lee, Jong Hwan; Woo, Young Sun; Kim, Yong-Hee

    2016-09-01

    Protein drugs have attracted considerable attention as therapeutic agents due to their diversity and biocompatibility. However, hydrophilic proteins possess difficulty in penetrating lipophilic cell membrane. Although protein transduction domains (PTDs) have shown effectiveness in protein delivery, the importance of selection and position of PTDs in recombinant protein vector constructs has not been investigated. This study intends to investigate the significance of PTD selection and position for therapeutic protein delivery. Heat shock protein 27 (Hsp27) would be a therapeutic protein for the treatment of ischemic heart diseases, but itself is insufficient to prevent systemic degradation and overcoming biochemical barriers during cellular transport. Among all PTD-Hsp27 fusion proteins we cloned, Tat-Hsp27 fusion protein showed the highest efficacy. Nona-arginine (9R) conjugation to the N-terminal of Hsp27 (Hsp27-T) showed higher efficacy than C-terminal. To test the synergistic effect of two PTDs, Tat was inserted to the N-terminal of Hsp27-9R. Tat-Hsp27-9R exhibited enhanced transduction efficiency and significant improvement against oxidative stress and apoptosis. PTD-Hsp27 fusion proteins have strong potential to be developed as therapeutic proteins for the treatment of ischemic heart diseases and selection and position of PTDs for improved efficacy of PTD-fusion proteins need to be optimized considering protein's nature, transduction efficiency and stability.

  16. Purification and Crystallization Reveal Two Types of Interactions of the Fusion Protein Homotrimer of Semliki Forest Virus

    PubMed Central

    Gibbons, Don L.; Reilly, Brigid; Ahn, Anna; Vaney, Marie-Christine; Vigouroux, Armelle; Rey, Felix A.; Kielian, Margaret

    2004-01-01

    The fusion proteins of the alphaviruses and flaviviruses have a similar native structure and convert to a highly stable homotrimer conformation during the fusion of the viral and target membranes. The properties of the alpha- and flavivirus fusion proteins distinguish them from the class I viral fusion proteins, such as influenza virus hemagglutinin, and establish them as the first members of the class II fusion proteins. Understanding how this new class carries out membrane fusion will require analysis of the structural basis for both the interaction of the protein subunits within the homotrimer and their interaction with the viral and target membranes. To this end we report a purification method for the E1 ectodomain homotrimer from the alphavirus Semliki Forest virus. The purified protein is trimeric, detergent soluble, retains the characteristic stability of the starting homotrimer, and is free of lipid and other contaminants. In contrast to the postfusion structures that have been determined for the class I proteins, the E1 homotrimer contains the fusion peptide region responsible for interaction with target membranes. This E1 trimer preparation is an excellent candidate for structural studies of the class II viral fusion proteins, and we report conditions that generate three-dimensional crystals suitable for analysis by X-ray diffraction. Determination of the structure will provide our first high-resolution views of both the low-pH-induced trimeric conformation and the target membrane-interacting region of the alphavirus fusion protein. PMID:15016874

  17. Antibody-independent Targeted Quantification of TMPRSS2-ERG Fusion Protein Products in Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Jintang; Sun, Xuefei; Shi, Tujin

    2014-10-01

    Fusions between the transmembrane protease serine 2 (TMPRSS2) and ETS related gene (ERG) represent one of the most specific biomarkers that define a distinct molecular subtype of prostate cancer. The studies on TMPRSS2-ERG gene fusions have seldom been performed at the protein level, primarily due to the lack of high-quality antibodies or an antibody-independent method that is sufficiently sensitive for detecting the truncated ERG protein products resulting from TMPRSS2-ERG gene fusions and alternative splicing. Herein, we applied a recently developed PRISM (high-pressure high-resolution separations with intelligent selection and multiplexing)-SRM (selected reaction monitoring) strategy for quantifying ERG protein in prostate cancermore » cell lines and tumors. The highly sensitive PRISM-SRM assays led to confident detection of 6 unique ERG peptides in either the TMPRSS2-ERG positive cell lines or tissues but not in the negative controls, indicating that ERG protein expression is highly correlated with TMPRSS2-ERG gene rearrangements. Significantly, our results demonstrated for the first time that at least two groups of ERG protein isoforms were simultaneously expressed at variable levels in TMPRSS2-ERG positive samples as evidenced by concomitant detection of two mutually exclusive peptides. Three peptides shared across almost all fusion protein products were determined to be the most abundant peptides, and hence can be used as “signature” peptides for detecting ERG overexpression resulting from TMPRSS2-ERG gene fusion. These PRISM-SRM assays provide valuable tools for studying TMPRSS2-ERG gene fusion protein products, thus improving our understanding of the role of TMPRSS2-ERG gene fusion in the biology of prostate cancer.« less

  18. The antifungal properties of a 2S albumin-homologous protein from passion fruit seeds involve plasma membrane permeabilization and ultrastructural alterations in yeast cells.

    PubMed

    Agizzio, Ana Paula; Da Cunha, Maura; Carvalho, André O; Oliveira, Marco Antônio; Ribeiro, Suzanna F F; Gomes, Valdirene M

    2006-10-01

    Different types of antimicrobial proteins were purified from plant seeds, including chitinases, β-1,3-glucanases, defensins, thionins, lipid transfer proteins and 2S albumins. It has become clear that these groups of proteins play an important role in the protection of plants from microbial infection. Recent results from our laboratory have shown that the defense-related proteins from passion fruit seeds, named Pf1 and Pf2 (which show sequence homology with 2S albumins), inhibit fungal growth and glucose-stimulated acidification of the medium by Saccharomyces cerevisiae cells. The aim of this study was to determine whether 2S albumins from passion fruit seeds induce plasma membrane permeabilization and cause morphological alterations in yeast cells. Initially, we used an assay based on the uptake of SYTOX Green, an organic compound that fluoresces upon interaction with nucleic acids and penetrates cells with compromised plasma membranes, to investigate membrane permeabilization in S. cerevisiae cells. When viewed with a confocal laser microscope, S. cervisiae cells showed strong SYTOX Green fluorescence in the cytosol, especially in the nuclei. 2S albumins also inhibited glucose-stimulated acidification of the medium by S. cerevisiae cells, which indicates a probable impairment of fungal metabolism. The microscopical analysis of the yeast cells treated with 2S albumins demonstrated several morphological alterations in cell shape, cell surface, cell wall and bud formation, as well as in the organization of intracellular organelles. Copyright © 2006 Elsevier Ireland Ltd. All rights reserved.

  19. IL4-10 Fusion Protein Is a Novel Drug to Treat Persistent Inflammatory Pain

    PubMed Central

    Steen-Louws, Cristine; Hartgring, Sarita A. Y.; Willemen, Hanneke L. D. M.; Prado, Judith; Lafeber, Floris P. J. G.; Heijnen, Cobi J.; Hack, C. E.; van Roon, Joel A. G.; Kavelaars, Annemieke

    2016-01-01

    Chronic pain is a major clinical problem that is difficult to treat and requires novel therapies. Although most pain therapies primarily target neurons, neuroinflammatory processes characterized by spinal cord and dorsal root ganglion production of proinflammatory cytokines play an important role in persistent pain states and represent potential therapeutic targets. Anti-inflammatory cytokines are attractive candidates to regulate aberrant neuroinflammatory processes, but the therapeutic potential of these cytokines as stand-alone drugs is limited. Their optimal function requires concerted actions with other regulatory cytokines, and their relatively small size causes rapid clearance. To overcome these limitations, we developed a fusion protein of the anti-inflammatory cytokines interleukin 4 (IL4) and IL10. The IL4-10 fusion protein is a 70 kDa glycosylated dimeric protein that retains the functional activity of both cytokine moieties. Intrathecal administration of IL4-10 dose-dependently inhibited persistent inflammatory pain in mice: three IL4-10 injections induced full resolution of inflammatory pain in two different mouse models of persistent inflammatory pain. Both cytokine moieties were required for optimal effects. The IL4-10 fusion protein was more effective than the individual cytokines or IL4 plus IL10 combination therapy and also inhibited allodynia in a mouse model of neuropathic pain. Mechanistically, IL4-10 inhibited the activity of glial cells and reduced spinal cord and dorsal root ganglion cytokine levels without affecting paw inflammation. In conclusion, we developed a novel fusion protein with improved efficacy to treat pain, compared with wild-type anti-inflammatory cytokines. The IL4-10 fusion protein has potential as a treatment for persistent inflammatory pain. SIGNIFICANCE STATEMENT The treatment of chronic pain is a major clinical and societal challenge. Current therapies to treat persistent pain states are limited and often cause major

  20. A new fusion protein platform for quantitatively measuring activity of multiple proteases

    PubMed Central

    2014-01-01

    Background Recombinant proteins fused with specific cleavage sequences are widely used as substrate for quantitatively analyzing the activity of proteases. Here we propose a new fusion platform for multiple proteases, by using diaminopropionate ammonia-lyase (DAL) as the fusion protein. It was based on the finding that a fused His6-tag could significantly decreases the activities of DAL from E. coli (eDAL) and Salmonella typhimurium (sDAL). Previously, we have shown that His6GST-tagged eDAL could be used to determine the activity of tobacco etch virus protease (TEVp) under different temperatures or in the denaturant at different concentrations. In this report, we will assay different tags and cleavage sequences on DAL for expressing yield in E. coli, stability of the fused proteins and performance of substrate of other common proteases. Results We tested seven different protease cleavage sequences (rhinovirus 3C, TEV protease, factor Xa, Ssp DnaB intein, Sce VMA1 intein, thrombin and enterokinase), three different tags (His6, GST, CBD and MBP) and two different DALs (eDAL and sDAL), for their performance as substrate to the seven corresponding proteases. Among them, we found four active DAL-fusion substrates suitable for TEVp, factor Xa, thrombin and DnaB intein. Enterokinase cleaved eDAL at undesired positions and did not process sDAL. Substitution of GST with MBP increase the expression level of the fused eDAL and this fusion protein was suitable as a substrate for analyzing activity of rhinovirus 3C. We demonstrated that SUMO protease Ulp1 with a N-terminal His6-tag or MBP tag displayed different activity using the designed His6SUMO-eDAL as substrate. Finally, owing to the high level of the DAL-fusion protein in E. coli, these protein substrates can also be detected directly from the crude extract. Conclusion The results show that our designed DAL-fusion proteins can be used to quantify the activities of both sequence- and conformational-specific proteases, with

  1. Mitochondrial Fusion and ERK Activity Regulate Steroidogenic Acute Regulatory Protein Localization in Mitochondria

    PubMed Central

    Duarte, Alejandra; Castillo, Ana Fernanda; Podestá, Ernesto J.; Poderoso, Cecilia

    2014-01-01

    The rate-limiting step in the biosynthesis of steroid hormones, known as the transfer of cholesterol from the outer to the inner mitochondrial membrane, is facilitated by StAR, the Steroidogenic Acute Regulatory protein. We have described that mitochondrial ERK1/2 phosphorylates StAR and that mitochondrial fusion, through the up-regulation of a fusion protein Mitofusin 2, is essential during steroidogenesis. Here, we demonstrate that mitochondrial StAR together with mitochondrial active ERK and PKA are necessary for maximal steroid production. Phosphorylation of StAR by ERK is required for the maintenance of this protein in mitochondria, observed by means of over-expression of a StAR variant lacking the ERK phosphorylation residue. Mitochondrial fusion regulates StAR levels in mitochondria after hormone stimulation. In this study, Mitofusin 2 knockdown and mitochondrial fusion inhibition in MA-10 Leydig cells diminished StAR mRNA levels and concomitantly mitochondrial StAR protein. Together our results unveil the requirement of mitochondrial fusion in the regulation of the localization and mRNA abundance of StAR. We here establish the relevance of mitochondrial phosphorylation events in the correct localization of this key protein to exert its action in specialized cells. These discoveries highlight the importance of mitochondrial fusion and ERK phosphorylation in cholesterol transport by means of directing StAR to the outer mitochondrial membrane to achieve a large number of steroid molecules per unit of StAR. PMID:24945345

  2. Beyond Anchoring: the Expanding Role of the Hendra Virus Fusion Protein Transmembrane Domain in Protein Folding, Stability, and Function

    PubMed Central

    Smith, Everett Clinton; Culler, Megan R.; Hellman, Lance M.; Fried, Michael G.; Creamer, Trevor P.

    2012-01-01

    While work with viral fusion proteins has demonstrated that the transmembrane domain (TMD) can affect protein folding, stability, and membrane fusion promotion, the mechanism(s) remains poorly understood. TMDs could play a role in fusion promotion through direct TMD-TMD interactions, and we have recently shown that isolated TMDs from three paramyxovirus fusion (F) proteins interact as trimers using sedimentation equilibrium (SE) analysis (E. C. Smith, et al., submitted for publication). Immediately N-terminal to the TMD is heptad repeat B (HRB), which plays critical roles in fusion. Interestingly, addition of HRB decreased the stability of the trimeric TMD-TMD interactions. This result, combined with previous findings that HRB forms a trimeric coiled coil in the prefusion form of the whole protein though HRB peptides fail to stably associate in isolation, suggests that the trimeric TMD-TMD interactions work in concert with elements in the F ectodomain head to stabilize a weak HRB interaction. Thus, changes in TMD-TMD interactions could be important in regulating F triggering and refolding. Alanine insertions between the TMD and HRB demonstrated that spacing between these two regions is important for protein stability while not affecting TMD-TMD interactions. Additional mutagenesis of the C-terminal end of the TMD suggests that β-branched residues within the TMD play a role in membrane fusion, potentially through modulation of TMD-TMD interactions. Our results support a model whereby the C-terminal end of the Hendra virus F TMD is an important regulator of TMD-TMD interactions and show that these interactions help hold HRB in place prior to the triggering of membrane fusion. PMID:22238302

  3. Quantitation of secreted proteins using mCherry fusion constructs and a fluorescent microplate reader.

    PubMed

    Duellman, Tyler; Burnett, John; Yang, Jay

    2015-03-15

    Traditional assays for secreted proteins include methods such as Western blot and enzyme-linked immunosorbent assay (ELISA) detection of the protein in the cell culture medium. We describe a method for the detection of a secreted protein based on fluorescent measurement of an mCherry fusion reporter. This microplate reader-based mCherry fluorescence detection method has a wide dynamic range of 4.5 orders of magnitude and a sensitivity that allows detection of 1 to 2fmol fusion protein. Comparison with the Western blot detection method indicated greater linearity, wider dynamic range, and a similar lower detection threshold for the microplate-based fluorescent detection assay of secreted fusion proteins. An mCherry fusion protein of matrix metalloproteinase-9 (MMP-9), a secreted glycoprotein, was created and expressed by transfection of human embryonic kidney (HEK) 293 cells. The cell culture medium was assayed for the presence of the fluorescent signal up to 32 h after transfection. The secreted MMP-9-mCherry fusion protein was detected 6h after transfection with a linear increase in signal intensity over time. Treatment with chloroquine, a drug known to inhibit the secretion of many proteins, abolished the MMP-9-mCherry secretion, demonstrating the utility of this method in a biological experiment. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Arabidopsis HAP2/GCS1 is a gamete fusion protein homologous to somatic and viral fusogens

    PubMed Central

    Valansi, Clari; Moi, David; Leikina, Evgenia; Matveev, Elena; Chernomordik, Leonid V.

    2017-01-01

    Cell–cell fusion is inherent to sexual reproduction. Loss of HAPLESS 2/GENERATIVE CELL SPECIFIC 1 (HAP2/GCS1) proteins results in gamete fusion failure in diverse organisms, but their exact role is unclear. In this study, we show that Arabidopsis thaliana HAP2/GCS1 is sufficient to promote mammalian cell–cell fusion. Hemifusion and complete fusion depend on HAP2/GCS1 presence in both fusing cells. Furthermore, expression of HAP2 on the surface of pseudotyped vesicular stomatitis virus results in homotypic virus–cell fusion. We demonstrate that the Caenorhabditis elegans Epithelial Fusion Failure 1 (EFF-1) somatic cell fusogen can replace HAP2/GCS1 in one of the fusing membranes, indicating that HAP2/GCS1 and EFF-1 share a similar fusion mechanism. Structural modeling of the HAP2/GCS1 protein family predicts that they are homologous to EFF-1 and viral class II fusion proteins (e.g., Zika virus). We name this superfamily Fusexins: fusion proteins essential for sexual reproduction and exoplasmic merger of plasma membranes. We suggest a common origin and evolution of sexual reproduction, enveloped virus entry into cells, and somatic cell fusion. PMID:28137780

  5. Accumulation and processing of a recombinant protein designed as a cleavable fusion to the endogenous Rubisco LSU protein in Chlamydomonas chloroplast

    PubMed Central

    Muto, Machiko; Henry, Ryan E; Mayfield, Stephen P

    2009-01-01

    Background Expression of recombinant proteins in green algal chloroplast holds substantial promise as a platform for the production of human therapeutic proteins. A number of proteins have been expressed in the chloroplast of Chlamydomonas reinhardtii, including complex mammalian proteins, but many of these proteins accumulate to significantly lower levels than do endogenous chloroplast proteins. We examined if recombinant protein accumulation could be enhanced by genetically fusing the recombinant reporter protein, luciferase, to the carboxy-terminal end of an abundant endogenous protein, the large subunit of ribulose bisphosphate carboxylase (Rubisco LSU). Additionally, as recombinant proteins fused to endogenous proteins are of little clinical or commercial value, we explored the possibility of engineering our recombinant protein to be cleavable from the endogenous protein in vivo. This strategy would obviate the need for further in vitro processing steps in order to produce the desired recombinant protein. To achieve this, a native protein-processing site from preferredoxin (preFd) was placed between the Rubisco LSU and luciferase coding regions in the fusion protein construct. Results The luciferase from the fusion protein accumulated to significantly higher levels than luciferase expressed alone. By eliminating the endogenous Rubisco large subunit gene (rbcL), we achieved a further increase in luciferase accumulation with respect to luciferase expression in the WT background. Importantly, near-wild type levels of functional Rubisco holoenzyme were generated following the proteolytic removal of the fused luciferase, while luciferase activity for the fusion protein was almost ~33 times greater than luciferase expressed alone. These data demonstrate the utility of using fusion proteins to enhance recombinant protein accumulation in algal chloroplasts, and also show that engineered proteolytic processing sites can be used to liberate the exogenous protein from

  6. Serum albumin: accuracy and clinical use.

    PubMed

    Infusino, Ilenia; Panteghini, Mauro

    2013-04-18

    Albumin is the major plasma protein and its determination is used for the prognostic assessment of several diseases. Clinical guidelines call for monitoring of serum albumin with specific target cut-offs that are independent of the assay used. This requires accurate and equivalent results among different commercially available methods (i.e., result standardization) through a consistent definition and application of a reference measurement system. This should be associated with the definition of measurement uncertainty goals based on medical relevance of serum albumin to make results reliable for patient management. In this paper, we show that, in the current situation, if one applies analytical goals for serum albumin measurement derived from its biologic variation, the uncertainty budget derived from each step of the albumin traceability chain is probably too high to fulfil established quality levels for albumin measurement and to guarantee the accuracy needed for clinical usefulness of the test. The situation is further worsened if non-specific colorimetric methods are used for albumin measurement as they represent an additional random source of uncertainty. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Blood-brain barrier drug delivery of IgG fusion proteins with a transferrin receptor monoclonal antibody.

    PubMed

    Pardridge, William M

    2015-02-01

    Biologic drugs are large molecules that do not cross the blood- brain barrier (BBB). Brain penetration is possible following the re-engineering of the biologic drug as an IgG fusion protein. The IgG domain is a MAb against an endogenous BBB receptor such as the transferrin receptor (TfR). The TfRMAb acts as a molecular Trojan horse to ferry the fused biologic drug into the brain via receptor-mediated transport on the endogenous BBB TfR. This review discusses TfR isoforms, models of BBB transport of transferrin and TfRMAbs, and the genetic engineering of TfRMAb fusion proteins, including BBB penetrating IgG-neurotrophins, IgG-decoy receptors, IgG-lysosomal enzyme therapeutics and IgG-avidin fusion proteins, as well as BBB transport of bispecific antibodies formed by fusion of a therapeutic antibody to a TfRMAb targeting antibody. Also discussed are quantitative aspects of the plasma pharmacokinetics and brain uptake of TfRMAb fusion proteins, as compared to the brain uptake of small molecules, and therapeutic applications of TfRMAb fusion proteins in mouse models of neural disease, including Parkinson's disease, stroke, Alzheimer's disease and lysosomal storage disorders. The review covers the engineering of TfRMAb-avidin fusion proteins for BBB targeted delivery of biotinylated peptide radiopharmaceuticals, low-affinity TfRMAb Trojan horses and the safety pharmacology of chronic administration of TfRMAb fusion proteins. The BBB delivery of biologic drugs is possible following re-engineering as a fusion protein with a molecular Trojan horse such as a TfRMAb. The efficacy of this technology will be determined by the outcome of future clinical trials.

  8. Melittin-MIL-2 fusion protein as a candidate for cancer immunotherapy.

    PubMed

    Liu, Mingjun; Wang, Haitao; Liu, Linjie; Wang, Bin; Sun, Guirong

    2016-06-01

    Cytokine fusion protein that modulates the immune response holds great potential for cancer immunotherapy. IL-2 is an effective treatment against advanced cancers. However, the therapeutic efficacy of IL-2 is limited by severe systemic toxicity. Several mutants recombinant IL-2 can increase antitumor activity and minimize systemic toxicity. Melittin is an attractive anticancer candidate because of its wide-spectrum lytic properties. We previously generated a bifunctional fusion protein melittin-MIL-2, composed of melittin and a mutant IL-2. The melittin-MIL-2 inhibited the growth of human ovarian cancer SKOV3 cells in vitro and in vivo tumor growth. However, whether this antitumor effect could also be used in cancer immunotherapy was unknown. To assess its cancer immunotherapy potential, we further investigated its more effective antitumor immune response and antitumor effect against cancers of different tissue origins in vitro and in vivo. The specific IL-2 activity of the melittin-MIL-2 fusion protein was tested on the cytokine growth dependent cell line CTLL-2. The cytolytic activity was detected by standard 4-h (51)Cr-release assays. PBMC stimulation in response to the melittin-MIL-2 was determined by IFN-γ release assay. We observed the cancer cell proliferation of different tissue origins by MTT assay. The ability of melittin-MIL-2 to inhibit tumor growth in vivo was evaluated by using human liver (SMMC-7721 cancer cells), lung (A549 cancer cells) and ovarian (SKOV3 cancer cells) cancer xenograft models. To assess the immunity within the tumor microenvironment, the level of some cytokines including IFN-γ, TNF-α, IL-12 and IL-4 was analyzed by ELISA. We injected the MDA-MB-231 cells and the melittin-MIL-2 into mice, and the anti-metastatic effect was examined by counting nodules in the lung. The melittin-MIL-2 was more effective in inducing T cell and NK-cell cytotoxicity. The fusion protein significantly increased IFN-γ production in PBMCs. In vitro, the

  9. Evaluation of capillary zone electrophoresis for the determination of protein composition in therapeutic immunoglobulins and human albumins.

    PubMed

    Christians, Stefan; van Treel, Nadine Denise; Bieniara, Gabriele; Eulig-Wien, Annika; Hanschmann, Kay-Martin; Giess, Siegfried

    2016-07-01

    Capillary zone electrophoresis (CZE) provides an alternative means of separating native proteins on the basis of their inherent electrophoretic mobilities. The major advantage of CZE is the quantification by UV detection, circumventing the drawbacks of staining and densitometry in the case of gel electrophoresis methods. The data of this validation study showed that CZE is a reliable assay for the determination of protein composition in therapeutic preparations of human albumin and human polyclonal immunoglobulins. Data obtained by CZE are in line with "historical" data obtained by the compendial method, provided that peak integration is performed without time correction. The focus here was to establish a rapid and reliable test to substitute the current gel based zone electrophoresis techniques for the control of protein composition of human immunoglobulins or albumins in the European Pharmacopoeia. We believe that the more advanced and modern CZE method described here is a very good alternative to the procedures currently described in the relevant monographs. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  10. Measles virus attachment proteins with impaired ability to bind CD46 interact more efficiently with the homologous fusion protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corey, Elizabeth A.; Iorio, Ronald M.; Program in Immunology and Virology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655

    2009-01-05

    Fusion promotion by measles virus (MV) depends on an interaction between the hemagglutinin (H) and fusion (F) glycoproteins. Amino acid substitutions in MV H that drastically reduce hemagglutinating activity result in an increase in the amount of H (primarily the 74 kDa isoform) detectable in a complex with F at the cell surface. This is in direct contrast to the loss of the ability to detect a complex between the fusion protein of Newcastle disease virus and most attachment proteins that lack receptor binding activity. These opposing results provide support for the existence of different mechanisms for the regulation ofmore » fusion by these two paramyxoviruses.« less

  11. Fusion proteins in head and neck neoplasms: Clinical implications, genetics, and future directions for targeting

    PubMed Central

    Escalante, Derek A.; Wang, He; Fundakowski, Christopher E.

    2016-01-01

    ABSTRACT Fusion proteins resulting from chromosomal rearrangements are known to drive the pathogenesis of a variety of hematological and solid neoplasms such as chronic myeloid leukemia and non-small-cell lung cancer. Efforts to elucidate the role they play in these malignancies have led to important diagnostic and therapeutic triumphs, including the famous development of the tyrosine kinase inhibitor dasatinib targeting the BCR-ABL fusion. Until recently, there has been a paucity of research investigating fusion proteins harbored by head and neck neoplasms. The discovery and characterization of novel fusion proteins in neoplasms originating from the thyroid, nasopharynx, salivary glands, and midline head and neck structures offer substantial contributions to our understanding of the pathogenesis and biological behavior of these neoplasms, while raising new therapeutic and diagnostic opportunities. Further characterization of these fusion proteins promises to facilitate advances on par with those already achieved with regard to hematologic malignancies in the precise, molecularly guided diagnosis and treatment of head and neck neoplasms. The following is a subsite specific review of the clinical implications of fusion proteins in head and neck neoplasms and the future potential for diagnostic targeting. PMID:27636353

  12. Towards reconstitution of membrane fusion mediated by SNAREs and other synaptic proteins

    PubMed Central

    Brunger, Axel T.; Cipriano, Daniel J.; Diao, Jiajie

    2015-01-01

    Abstract Proteoliposomes have been widely used for in vitro studies of membrane fusion mediated by synaptic proteins. Initially, such studies were made with large unsynchronized ensembles of vesicles. Such ensemble assays limited the insights into the SNARE-mediated fusion mechanism that could be obtained from them. Single particle microscopy experiments can alleviate many of these limitations but they pose significant technical challenges. Here we summarize various approaches that have enabled studies of fusion mediated by SNAREs and other synaptic proteins at a single-particle level. Currently available methods are described and their advantages and limitations are discussed. PMID:25788028

  13. Electret filter collects more exhaled albumin than glass condenser

    PubMed Central

    Jia, Ziru; Liu, Hongying; Li, Wang; Xie, Dandan; Cheng, Ke; Pi, Xitian

    2018-01-01

    Abstract In recent years, noninvasive diagnosis based on biomarkers in exhaled breath has been extensively studied. The procedure of biomarker collection is a key step. However, the traditional condenser method has low efficacy in collecting nonvolatile compounds especially the protein biomarkers in breath. To solve this deficiency, here we propose an electret filter method. Exhaled breath of 6 volunteers was collected with a glass condenser and an electret filter. The amount of albumin was analyzed. Furthermore, the difference of exhaled albumin between smokers and nonsmokers was evaluated. The electret filter method collected more albumin than the glass condenser method at the same breath volume level (P < .01). Smokers exhaling more albumin than nonsmokers were also observed (P < .01). The electret filter is capable of collecting proteins more effectively than the condenser method. In addition, smokers tend to exhale more albumin than nonsmokers. PMID:29384875

  14. Production of Hev b5 as a fluorescent biotin-binding tripartite fusion protein in insect cells.

    PubMed

    Nordlund, Henri R; Laitinen, Olli H; Uotila, Sanna T H; Kulmala, Minna; Kalkkinen, Nisse; Kulomaa, Markku S

    2005-10-14

    The presented green fluorescent protein and streptavidin core-based tripartite fusion system provides a simple and efficient way for the production of proteins fused to it in insect cells. This fusion protein forms a unique tag, which serves as a multipurpose device enabling easy optimization of production, one-step purification via streptavidin-biotin interaction, and visualization of the fusion protein during downstream processing and in applications. In the present study, we demonstrate the successful production, purification, and detection of a natural rubber latex allergen Hev b5 with this system. We also describe the production of another NRL allergen with the system, Hev b1, which formed large aggregates and gave small yields in purification. The aggregates were detected at early steps by microscopical inspection of the infected insect cells producing this protein. Therefore, this fusion system can also be utilized as a fast indicator of the solubility of the expressed fusion proteins and may therefore be extremely useful in high-throughput expression approaches.

  15. IL4-10 Fusion Protein Is a Novel Drug to Treat Persistent Inflammatory Pain.

    PubMed

    Eijkelkamp, Niels; Steen-Louws, Cristine; Hartgring, Sarita A Y; Willemen, Hanneke L D M; Prado, Judith; Lafeber, Floris P J G; Heijnen, Cobi J; Hack, C E; van Roon, Joel A G; Kavelaars, Annemieke

    2016-07-13

    Chronic pain is a major clinical problem that is difficult to treat and requires novel therapies. Although most pain therapies primarily target neurons, neuroinflammatory processes characterized by spinal cord and dorsal root ganglion production of proinflammatory cytokines play an important role in persistent pain states and represent potential therapeutic targets. Anti-inflammatory cytokines are attractive candidates to regulate aberrant neuroinflammatory processes, but the therapeutic potential of these cytokines as stand-alone drugs is limited. Their optimal function requires concerted actions with other regulatory cytokines, and their relatively small size causes rapid clearance. To overcome these limitations, we developed a fusion protein of the anti-inflammatory cytokines interleukin 4 (IL4) and IL10. The IL4-10 fusion protein is a 70 kDa glycosylated dimeric protein that retains the functional activity of both cytokine moieties. Intrathecal administration of IL4-10 dose-dependently inhibited persistent inflammatory pain in mice: three IL4-10 injections induced full resolution of inflammatory pain in two different mouse models of persistent inflammatory pain. Both cytokine moieties were required for optimal effects. The IL4-10 fusion protein was more effective than the individual cytokines or IL4 plus IL10 combination therapy and also inhibited allodynia in a mouse model of neuropathic pain. Mechanistically, IL4-10 inhibited the activity of glial cells and reduced spinal cord and dorsal root ganglion cytokine levels without affecting paw inflammation. In conclusion, we developed a novel fusion protein with improved efficacy to treat pain, compared with wild-type anti-inflammatory cytokines. The IL4-10 fusion protein has potential as a treatment for persistent inflammatory pain. The treatment of chronic pain is a major clinical and societal challenge. Current therapies to treat persistent pain states are limited and often cause major side effects. Therefore

  16. Longitudinal Associations among Renal Urea Clearance-Corrected Normalized Protein Catabolic Rate, Serum Albumin, and Mortality in Patients on Hemodialysis.

    PubMed

    Eriguchi, Rieko; Obi, Yoshitsugu; Streja, Elani; Tortorici, Amanda R; Rhee, Connie M; Soohoo, Melissa; Kim, Taehee; Kovesdy, Csaba P; Kalantar-Zadeh, Kamyar

    2017-07-07

    There are inconsistent reports on the association of dietary protein intake with serum albumin and outcomes among patients on hemodialysis. Using a new normalized protein catabolic rate (nPCR) variable accounting for residual renal urea clearance, we hypothesized that higher baseline nPCR and rise in nPCR would be associated with higher serum albumin and better survival among incident hemodialysis patients. Among 36,757 incident hemodialysis patients in a large United States dialysis organization, we examined baseline and change in renal urea clearance-corrected nPCR as a protein intake surrogate and modeled their associations with serum albumin and mortality over 5 years (1/2007-12/2011). Median nPCRs with and without accounting for renal urea clearance at baseline were 0.94 and 0.78 g/kg per day, respectively (median within-patient difference, 0.14 [interquartile range, 0.07-0.23] g/kg per day). During a median follow-up period of 1.4 years, 8481 deaths were observed. Baseline renal urea clearance-corrected nPCR was associated with higher serum albumin and lower mortality in the fully adjusted model ( P trend <0.001). Among 13,895 patients with available data, greater rise in renal urea clearance-corrected nPCR during the first 6 months was also associated with attaining high serum albumin (≥3.8 g/dl) and lower mortality ( P trend <0.001); compared with the reference group (a change of 0.1-0.2 g/kg per day), odds and hazard ratios were 0.53 (95% confidence interval, 0.44 to 0.63) and 1.32 (95% confidence interval, 1.14 to 1.54), respectively, among patients with a change of <-0.2 g/kg per day and 1.62 (95% confidence interval, 1.35 to 1.96) and 0.76 (95% confidence interval, 0.64 to 0.90), respectively, among those with a change of ≥0.5 g/kg per day. Within a given category of nPCR without accounting for renal urea clearance, higher levels of renal urea clearance-corrected nPCR consistently showed lower mortality risk. Among incident hemodialysis patients

  17. Amadori-albumin correlates with microvascular complications and precedes nephropathy in type 1 diabetic patients.

    PubMed

    Schalkwijk, C G; Chaturvedi, N; Twaafhoven, H; van Hinsbergh, V W M; Stehouwer, C D A

    2002-07-01

    Amadori-albumin, a major glycated protein, is involved in experimental hyperglycaemia-induced microvascular complications, and is associated with advanced nephropathy in Type I diabetic patients in humans. Our aim was to assess the association of Amadori-albumin with early nephropathy and with retinopathy in Type I diabetic patients and the involvement of chronic low-degree inflammation therein. Amadori-albumin, the Amadori product of haemoglobin (HbA1c), C-reactive protein, and fibrinogen levels were measured in the EUCLID study, a 2-year randomised, double-blind, placebo-controlled trial of lisinopril in 447 Type I diabetic patients. Retinal photographs were taken in 341 patients at baseline and 294 at follow up. Amadori-albumin was positively associated with albumin the excretion rate and retinopathy status (P = 0.0001 and P = 0.02 for trend, respectively) and with the progression from normoalbuminuria to (micro)albuminuria (38.6 U mL(-1) in nonprogressors, 44.3 U mL-1 in progressors; P = 0.02), but not with the development or progression of retinopathy during a 2-year follow up. Amadori-albumin levels at baseline were associated with C-reactive protein and fibrinogen (P = 0.0007 and P = 0.0001, respectively). C-reactive protein and fibrinogen were also associated with albumin excretion rates (P = 0.03 and P = 0.01, respectively) and retinopathy status (P = 0.02 and P = 0.0006, respectively). Adjustment for these inflammatory markers did not markedly attenuate the association between Amadori-albumin and the albumin excretion rate, while adjustment for fibrinogen, but not C-reactive protein, abolished the association between Amadori-albumin and retinopathy. Lisinopril had no impact on the association between the levels of Amadori-albumin and albumin excretion rates or retinopathy. Amadori-albumin was associated with early nephropathy and with retinopathy in Type I diabetic patients and preceded an increase in albumin excretion rate, but not retinopathy. A chronic

  18. Polyclonal and monoclonal antibodies specific for the six-helix bundle of the human respiratory syncytial virus fusion glycoprotein as probes of the protein post-fusion conformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palomo, Concepción; Mas, Vicente; Vázquez, Mónica

    Human respiratory syncytial virus (hRSV) has two major surface glycoproteins (G and F) anchored in the lipid envelope. Membrane fusion promoted by hRSV{sub F} occurs via refolding from a pre-fusion form to a highly stable post-fusion state involving large conformational changes of the F trimer. One of these changes results in assembly of two heptad repeat sequences (HRA and HRB) into a six-helix bundle (6HB) motif. To assist in distinguishing pre- and post-fusion conformations of hRSV{sub F}, we have prepared polyclonal (α-6HB) and monoclonal (R145) rabbit antibodies specific for the 6HB. Among other applications, these antibodies were used to exploremore » the requirements of 6HB formation by isolated protein segments or peptides and by truncated mutants of the F protein. Site-directed mutagenesis and electron microscopy located the R145 epitope in the post-fusion hRSV{sub F} at a site distantly located from previously mapped epitopes, extending the repertoire of antibodies that can decorate the F molecule. - Highlights: • Antibodies specific for post-fusion respiratory syncytial virus fusion protein are described. • Polyclonal antibodies were obtained in rabbit inoculated with chimeric heptad repeats. • Antibody binding required assembly of a six-helix bundle in the post-fusion protein. • A monoclonal antibody with similar structural requirements is also described. • Binding of this antibody to the post-fusion protein was visualized by electron microscopy.« less

  19. Recombinant albumin monolayers on latex particles.

    PubMed

    Sofińska, Kamila; Adamczyk, Zbigniew; Kujda, Marta; Nattich-Rak, Małgorzata

    2014-01-14

    The adsorption of recombinant human serum albumin (rHSA) on negatively charged polystyrene latex micro-particles was studied at pH 3.5 and the NaCl concentration range of 10(-3) to 0.15 M. The electrophoretic mobility of latex monotonically increased with the albumin concentration in the suspension. The coverage of adsorbed albumin was quantitatively determined using the depletion method, where the residual protein concentration was determined by electrokinetic measurements and AFM imaging. It was shown that albumin adsorption was irreversible. Its maximum coverage on latex varied between 0.7 mg m(-2) for 10(-3) M NaCl to 1.3 mg m(-2) for 0.15 M NaCl. The latter value matches the maximum coverage previously determined for human serum albumin on mica using the streaming potential method. The increase in the maximum coverage was interpreted in terms of reduced electrostatic repulsion among adsorbed molecules. These facts confirm that albumin adsorption at pH 3.5 is governed by electrostatic interactions and proceeds analogously to colloid particle deposition. The stability of albumin monolayers was measured in additional experiments where changes in the latex electrophoretic mobility and the concentration of free albumin in solutions were monitored over prolonged time periods. Based on these experimental data, a robust procedure of preparing albumin monolayers on latex particles of well-controlled coverage and molecule distribution was proposed.

  20. Measles Virus Fusion Protein: Structure, Function and Inhibition

    PubMed Central

    Plattet, Philippe; Alves, Lisa; Herren, Michael; Aguilar, Hector C.

    2016-01-01

    Measles virus (MeV), a highly contagious member of the Paramyxoviridae family, causes measles in humans. The Paramyxoviridae family of negative single-stranded enveloped viruses includes several important human and animal pathogens, with MeV causing approximately 120,000 deaths annually. MeV and canine distemper virus (CDV)-mediated diseases can be prevented by vaccination. However, sub-optimal vaccine delivery continues to foster MeV outbreaks. Post-exposure prophylaxis with antivirals has been proposed as a novel strategy to complement vaccination programs by filling herd immunity gaps. Recent research has shown that membrane fusion induced by the morbillivirus glycoproteins is the first critical step for viral entry and infection, and determines cell pathology and disease outcome. Our molecular understanding of morbillivirus-associated membrane fusion has greatly progressed towards the feasibility to control this process by treating the fusion glycoprotein with inhibitory molecules. Current approaches to develop anti-membrane fusion drugs and our knowledge on drug resistance mechanisms strongly suggest that combined therapies will be a prerequisite. Thus, discovery of additional anti-fusion and/or anti-attachment protein small-molecule compounds may eventually translate into realistic therapeutic options. PMID:27110811

  1. Measles Virus Fusion Protein: Structure, Function and Inhibition.

    PubMed

    Plattet, Philippe; Alves, Lisa; Herren, Michael; Aguilar, Hector C

    2016-04-21

    Measles virus (MeV), a highly contagious member of the Paramyxoviridae family, causes measles in humans. The Paramyxoviridae family of negative single-stranded enveloped viruses includes several important human and animal pathogens, with MeV causing approximately 120,000 deaths annually. MeV and canine distemper virus (CDV)-mediated diseases can be prevented by vaccination. However, sub-optimal vaccine delivery continues to foster MeV outbreaks. Post-exposure prophylaxis with antivirals has been proposed as a novel strategy to complement vaccination programs by filling herd immunity gaps. Recent research has shown that membrane fusion induced by the morbillivirus glycoproteins is the first critical step for viral entry and infection, and determines cell pathology and disease outcome. Our molecular understanding of morbillivirus-associated membrane fusion has greatly progressed towards the feasibility to control this process by treating the fusion glycoprotein with inhibitory molecules. Current approaches to develop anti-membrane fusion drugs and our knowledge on drug resistance mechanisms strongly suggest that combined therapies will be a prerequisite. Thus, discovery of additional anti-fusion and/or anti-attachment protein small-molecule compounds may eventually translate into realistic therapeutic options.

  2. [Research progress in hirudin fusion protein--review].

    PubMed

    Zhang, Chuan-Ling; Yu, Ai-Ping; Jin, Ji-De; Wu, Chu-Tse

    2007-02-01

    Natural hirudin extracted from the secretion of medical leech salivary gland is a single-chain peptide containing 65 aminoacid residues with molecular weight of 7000 D, and exists in three isomers of HV1, HV2 and HV3. Hirudin possesses three disulfide bridges forming the structure of core cyclic peptides, which binds to the catalytic site of thrombin so as to inhibit the catalysis of thrombin. Its c-terminus rich in acidic aminoacid residues possesses hydrophilicity, and is free on the molecular surface, and can bind with fibrin recognition site of hirudin. The minimal segment of 12 - 16 C-terminal acidic residues keeps the minimal activity of anti-thrombosis. Thus, hirudin, as a potent and specific inhibitor of thrombin, can be used to protect from and to treat clinically thrombosis. As it has some disadvantages such as short half-life, bleeding side-effect and mono-function, and so on, hirudin has been fused with some other functional proteins in recent years. The obtained fusion proteins can prolong the half life of hirudin, or relieve it bleeding side effect, or bring new functions, such as thrombolysis, inhibiting the platelet aggregation, targeting specifically. The research progress in hirudin fusion protein was summarized in this review.

  3. The MARVEL domain protein, Singles Bar, is required for progression past the pre-fusion complex stage of myoblast fusion.

    PubMed

    Estrada, Beatriz; Maeland, Anne D; Gisselbrecht, Stephen S; Bloor, James W; Brown, Nicholas H; Michelson, Alan M

    2007-07-15

    Multinucleated myotubes develop by the sequential fusion of individual myoblasts. Using a convergence of genomic and classical genetic approaches, we have discovered a novel gene, singles bar (sing), that is essential for myoblast fusion. sing encodes a small multipass transmembrane protein containing a MARVEL domain, which is found in vertebrate proteins involved in processes such as tight junction formation and vesicle trafficking where--as in myoblast fusion--membrane apposition occurs. sing is expressed in both founder cells and fusion competent myoblasts preceding and during myoblast fusion. Examination of embryos injected with double-stranded sing RNA or embryos homozygous for ethane methyl sulfonate-induced sing alleles revealed an identical phenotype: replacement of multinucleated myofibers by groups of single, myosin-expressing myoblasts at a stage when formation of the mature muscle pattern is complete in wild-type embryos. Unfused sing mutant myoblasts form clusters, suggesting that early recognition and adhesion of these cells are unimpaired. To further investigate this phenotype, we undertook electron microscopic ultrastructural studies of fusing myoblasts in both sing and wild-type embryos. These experiments revealed that more sing mutant myoblasts than wild-type contain pre-fusion complexes, which are characterized by electron-dense vesicles paired on either side of the fusing plasma membranes. In contrast, embryos mutant for another muscle fusion gene, blown fuse (blow), have a normal number of such complexes. Together, these results lead to the hypothesis that sing acts at a step distinct from that of blow, and that sing is required on both founder cell and fusion-competent myoblast membranes to allow progression past the pre-fusion complex stage of myoblast fusion, possibly by mediating fusion of the electron-dense vesicles to the plasma membrane.

  4. Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system

    PubMed Central

    Costa, Sofia; Almeida, André; Castro, António; Domingues, Lucília

    2014-01-01

    Proteins are now widely produced in diverse microbial cell factories. The Escherichia coli is still the dominant host for recombinant protein production but, as a bacterial cell, it also has its issues: the aggregation of foreign proteins into insoluble inclusion bodies is perhaps the main limiting factor of the E. coli expression system. Conversely, E. coli benefits of cost, ease of use and scale make it essential to design new approaches directed for improved recombinant protein production in this host cell. With the aid of genetic and protein engineering novel tailored-made strategies can be designed to suit user or process requirements. Gene fusion technology has been widely used for the improvement of soluble protein production and/or purification in E. coli, and for increasing peptide’s immunogenicity as well. New fusion partners are constantly emerging and complementing the traditional solutions, as for instance, the Fh8 fusion tag that has been recently studied and ranked among the best solubility enhancer partners. In this review, we provide an overview of current strategies to improve recombinant protein production in E. coli, including the key factors for successful protein production, highlighting soluble protein production, and a comprehensive summary of the latest available and traditionally used gene fusion technologies. A special emphasis is given to the recently discovered Fh8 fusion system that can be used for soluble protein production, purification, and immunogenicity in E. coli. The number of existing fusion tags will probably increase in the next few years, and efforts should be taken to better understand how fusion tags act in E. coli. This knowledge will undoubtedly drive the development of new tailored-made tools for protein production in this bacterial system. PMID:24600443

  5. Enhanced immunogenicity of HPV 16 E7 fusion proteins in DNA vaccination.

    PubMed

    Michel, Nico; Osen, Wolfram; Gissmann, Lutz; Schumacher, Ton N M; Zentgraf, Hanswalter; Müller, Martin

    2002-03-01

    DNA vaccination is a promising approach for inducing both humoral and cellular immune responses. For immunotherapy of HPV-16-associated diseases the E7 protein is considered a prime candidate, as it is expressed in all HPV-16-positive tumors. Unfortunately, the E7 protein is a very poor inducer of a cytotoxic T-cell response, when being used as antigen in DNA vaccination. Here we demonstrate that after fusion to protein export/import signals such as the herpes simplex virus ferry protein VP22, E7 can translocate in vitro from VP22-E7-expressing cells to neighboring cells that do not carry the VP22-E7 gene. In vivo, the VP22-E7 fusion shows significantly increased efficiency in inducing a cytotoxic T-cell response. Our data suggest that the export function of VP22 plays a major role in this phenomenon, since VP22 can be replaced by classical protein export signals, without impairing the induction of the E7-specific cellular immune response. However, all E7 fusion constructs showed significantly elevated protein steady-state levels, which might also account for the observed boost in immunogenicity. (C)2002 Elsevier Science (USA).

  6. High-level expression of soluble recombinant proteins in Escherichia coli using an HE-maltotriose-binding protein fusion tag.

    PubMed

    Han, Yingqian; Guo, Wanying; Su, Bingqian; Guo, Yujie; Wang, Jiang; Chu, Beibei; Yang, Guoyu

    2018-02-01

    Recombinant proteins are commonly expressed in prokaryotic expression systems for large-scale production. The use of genetically engineered affinity and solubility enhancing fusion proteins has increased greatly in recent years, and there now exists a considerable repertoire of these that can be used to enhance the expression, stability, solubility, folding, and purification of their fusion partner. Here, a modified histidine tag (HE) used as an affinity tag was employed together with a truncated maltotriose-binding protein (MBP; consisting of residues 59-433) from Pyrococcus furiosus as a solubility enhancing tag accompanying a tobacco etch virus protease-recognition site for protein expression and purification in Escherichia coli. Various proteins tagged at the N-terminus with HE-MBP(Pyr) were expressed in E. coli BL21(DE3) cells to determine expression and solubility relative to those tagged with His6-MBP or His6-MBP(Pyr). Furthermore, four HE-MBP(Pyr)-fused proteins were purified by immobilized metal affinity chromatography to assess the affinity of HE with immobilized Ni 2+ . Our results showed that HE-MBP(Pyr) represents an attractive fusion protein allowing high levels of soluble expression and purification of recombinant protein in E. coli. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Mature forms of the major seed storage albumins in sunflower: A mass spectrometric approach.

    PubMed

    Franke, Bastian; Colgrave, Michelle L; Mylne, Joshua S; Rosengren, K Johan

    2016-09-16

    Seed storage albumins are abundant, water-soluble proteins that are degraded to provide critical nutrients for the germinating seedling. It has been established that the sunflower albumins encoded by SEED STORAGE ALBUMIN 2 (SESA2), SESA20 and SESA3 are the major components of the albumin-rich fraction of the common sunflower Helianthus annuus. To determine the structure of sunflowers most important albumins we performed a detailed chromatographic and mass spectrometric characterization to assess what post-translational processing they receive prior to deposition in the protein storage vacuole. We found that SESA2 and SESA20 each encode two albumins. The first of the two SESA2 albumins (SESA2-1) exists as a monomer of 116 or 117 residues, differing by a threonine at the C-terminus. The second of the two SESA2 albumins (SESA2-2) is a monomer of 128 residues. SESA20 encodes the albumin SESA20-2, which is a 127-residue monomer, whereas SESA20-1 was not abundant enough to be structurally described. SESA3, which has been partly characterized previously, was found in several forms with methylation of its asparagine residues. In contrast to other dicot albumins, which are generally matured into a heterodimer, all the dominant mature sunflower albumins SESA2, SESA20-2, SESA3 and its post-translationally modified analogue SESA3-a are monomeric. Sunflower plants have been bred to thrive in various climate zones making them favored crops to meet the growing worldwide demand by humans for protein. The abundance of seed storage proteins makes them an important source of protein for animal and human nutrition. This study explores the structures of the dominant sunflower napin-type seed storage albumins to understand what structures evolution has favored in the most abundant proteins in sunflower seed. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  8. Structure and Function Study of HIV and Influenza Fusion Proteins

    NASA Astrophysics Data System (ADS)

    Liang, Shuang

    Human immunodeficiency virus (HIV) and influenza virus are membrane-enveloped viruses causing acquired immunodeficiency syndrome (AIDS) and flu. The initial step of HIV and influenza virus infection is fusion between viral and host cell membrane catalyzed by the viral fusion protein gp41 and hemagglutinin (HA) respectively. However, the structure of gp41 and HA as well as the infection mechanism are still not fully understood. This work addresses (1) full length gp41 ectodomain and TM domain structure and function and (2) IFP membrane location and IFP-membrane interaction. My studies of gp41 protein and IFP can provide better understanding of the membrane fusion mechanism and may aid development of anti-viral therapeutics and vaccine. The full length ectodomain and transmembrane domain of gp41 and shorter constructs were expressed, purified and solubilized at physiology conditions. The constructs adopt overall alpha helical structure in SDS and DPC detergents, and showed hyperthermostability with Tm > 90 °C. The oligomeric states of these proteins vary in different detergent buffer: predominant trimer for all constructs and some hexamer fraction for HM and HM_TM protein in SDS at pH 7.4; and mixtures of monomer, trimer, and higher-order oligomer protein in DPC at pH 4.0 and 7.4. Substantial protein-induced vesicle fusion was observed, including fusion of neutral vesicles at neutral pH, which are the conditions similar HIV/cell fusion. Vesicle fusion by a gp41 ectodomain construct has rarely been observed under these conditions, and is aided by inclusion of both the FP and TM, and by protein which is predominantly trimer rather than monomer. Current data was integrated with existing data, and a structural model was proposed. Secondary structure and conformation of IFP is a helix-turn-helix structure in membrane. However, there has been arguments about the IFP membrane location. 13C-2H REDOR solid-state NMR is used to solve this problem. The IFP adopts major alpha

  9. Generation of therapeutic protein variants with the human serum albumin binding capacity via site-specific fatty acid conjugation.

    PubMed

    Cho, Jinhwan; Lim, Sung In; Yang, Byung Seop; Hahn, Young S; Kwon, Inchan

    2017-12-21

    Extension of the serum half-life is an important issue in developing new therapeutic proteins and expanding applications of existing therapeutic proteins. Conjugation of fatty acid, a natural human serum albumin ligand, to a therapeutic protein/peptide was developed as a technique to extend the serum half-life in vivo by taking advantages of unusually long serum half-life of human serum albumin (HSA). However, for broad applications of fatty acid-conjugation, several issues should be addressed, including a poor solubility of fatty acid and a substantial loss in the therapeutic activity. Therefore, herein we systematically investigate the conditions and components in conjugation of fatty acid to a therapeutic protein resulting in the HSA binding capacity without compromising therapeutic activities. By examining the crystal structure and performing dye conjugation assay, two sites (W160 and D112) of urate oxidase (Uox), a model therapeutic protein, were selected as sites for fatty acid-conjugation. Combination of site-specific incorporation of a clickable p-azido-L-phenylalanine to Uox and strain-promoted azide-alkyne cycloaddition allowed the conjugation of fatty acid (palmitic acid analog) to Uox with the HSA binding capacity and retained enzyme activity. Deoxycholic acid, a strong detergent, greatly enhanced the conjugation yield likely due to the enhanced solubility of palmitic acid analog.

  10. Deltabaculoviruses encode a functional type I budded virus envelope fusion protein

    USDA-ARS?s Scientific Manuscript database

    Envelope fusion proteins (F proteins) are major constituents of budded viruses (BVs) of alpha- and betabaculoviruses (Baculoviridae) and are essential for the systemic infection of insect larvae and insect cells in culture. An F protein homolog gene was absent in gammabaculoviruses. Here we show tha...

  11. α-SNAP Interferes with the Zippering of the SNARE Protein Membrane Fusion Machinery

    PubMed Central

    Park, Yongsoo; Vennekate, Wensi; Yavuz, Halenur; Preobraschenski, Julia; Hernandez, Javier M.; Riedel, Dietmar; Walla, Peter Jomo; Jahn, Reinhard

    2014-01-01

    Neuronal exocytosis is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Before fusion, SNARE proteins form complexes bridging the membrane followed by assembly toward the C-terminal membrane anchors, thus initiating membrane fusion. After fusion, the SNARE complex is disassembled by the AAA-ATPase N-ethylmaleimide-sensitive factor that requires the cofactor α-SNAP to first bind to the assembled SNARE complex. Using chromaffin granules and liposomes we now show that α-SNAP on its own interferes with the zippering of membrane-anchored SNARE complexes midway through the zippering reaction, arresting SNAREs in a partially assembled trans-complex and preventing fusion. Intriguingly, the interference does not result in an inhibitory effect on synaptic vesicles, suggesting that membrane properties also influence the final outcome of α-SNAP interference with SNARE zippering. We suggest that binding of α-SNAP to the SNARE complex affects the ability of the SNARE complex to harness energy or transmit force to the membrane. PMID:24778182

  12. The study of a light-activated albumin protein solder to bond layers of porcine small intestinal submucosa.

    PubMed

    Ware, Mark H; Buckley, Christine A

    2003-01-01

    This study investigated the feasibility of bonding layers of porcine small intestinal submucosa (SIS, Cook Biotech, Inc.) with a light-activated protein solder. SIS is an acellular, collagen-based extracellular matrix material that is approximately 100 microns thick. The solder consists of bovine serum albumin and indocyanine green dye (ICG) in deionized water. The solder is activated by an 808 nm diode laser, which denatures the albumin, causing the albumin to bond with the collagen of the tissue. The predictable absorption and thermal energy diffusion rates of ICG increase the chances of reproducible results. To determine the optimal condition for laser soldering SIS, the following parameters were varied: albumin concentration (from 30-45% (w/v) in increments of 5%), the concentration of ICG (from 0.5-2.0 mg/ml H2O) and the irradiance of the laser (10-64 W/cm2). While many of the solder compositions and laser irradiance combinations resulted in no bonding, a solder composition of 45% albumin, ICG concentration of 0.5 mg/ml H2O, and a laser irradiance of 21 W/cm2 did produce a bond between two pieces of SIS. The average shear strength of this bond was 29.5 +/- 17.1 kPa (n = 14). This compares favorably to our previous work using fibrin glue as an adhesive, in which the average shear strength was 27 +/- 15.8 kPa (n = 40).

  13. Response of albumin synthesis to oral nutrients in young and elderly subjects.

    PubMed

    Caso, Giuseppe; Feiner, Joshua; Mileva, Izolda; Bryan, Leslie J; Kelly, Patricia; Autio, Karen; Gelato, Marie C; McNurlan, Margaret A

    2007-02-01

    The synthesis of albumin after oral ingestion of nutrients provides a means of storing amino acids, which can be made available during periods of fasting. This study was undertaken to see whether the response of albumin synthesis to the oral intake of nutrients is compromised in elderly subjects. Albumin synthesis was determined from the incorporation of 43 mg l-[(2)H(5)]phenylalanine/kg body wt. Eight elderly subjects (aged >60 y) and 8 young subjects (aged 21-35 y) were studied on 3 separate occasions: after the intake of water, a liquid meal (with 15% of energy from protein, 30% of energy from fat, and 55% of energy from carbohydrate), or an isonitrogenous but not isocaloric meal containing only protein. Mean (+/-SEM) albumin synthesis, expressed as an absolute rate (ie, the amount of albumin synthesized per day), was significantly lower in elderly subjects (108 +/- 7 mg . kg body wt(-1) . d(-1)) than in young subjects (141 +/- 7 mg . kg body wt(-1) . d(-1)). In response to the complete meal, albumin synthesis was significantly increased in both the elderly (144 +/- 7 mgkg body wt(-1) . d(-1)) and the young (187 +/- 11 mg . kg body wt(-1) . d(-1)) subjects. The protein component of the meal was sufficient to stimulate albumin synthesis in both the elderly (147 +/- 14 mg . kg body wt(-1) . d(-1)) and the young (182 +/- 6 mg . kg body wt(-1) . d(-1)) subjects. Elderly subjects have lower rates of albumin synthesis than do young subjects during fasting, but they stimulate albumin synthesis proportionately in response to the oral ingestion of protein. The intakes of additional fat and carbohydrate do not stimulate albumin synthesis further.

  14. Membrane Fusion Promoted by Increasing Surface Densities of the Paramyxovirus F and HN Proteins: Comparison of Fusion Reactions Mediated by Simian Virus 5 F, Human Parainfluenza Virus Type 3 F, and Influenza Virus HA

    PubMed Central

    Dutch, Rebecca Ellis; Joshi, Sangeeta Bagai; Lamb, Robert A.

    1998-01-01

    The membrane fusion reaction promoted by the paramyxovirus simian virus 5 (SV5) and human parainfluenza virus type 3 (HPIV-3) fusion (F) proteins and hemagglutinin-neuraminidase (HN) proteins was characterized when the surface densities of F and HN were varied. Using a quantitative content mixing assay, it was found that the extent of SV5 F-mediated fusion was dependent on the surface density of the SV5 F protein but independent of the density of SV5 HN protein, indicating that HN serves only a binding function in the reaction. However, the extent of HPIV-3 F protein promoted fusion reaction was found to be dependent on surface density of HPIV-3 HN protein, suggesting that the HPIV-3 HN protein is a direct participant in the fusion reaction. Analysis of the kinetics of lipid mixing demonstrated that both initial rates and final extents of fusion increased with rising SV5 F protein surface densities, suggesting that multiple fusion pores can be active during SV5 F protein-promoted membrane fusion. Initial rates and extent of lipid mixing were also found to increase with increasing influenza virus hemagglutinin protein surface density, suggesting parallels between the mechanism of fusion promoted by these two viral fusion proteins. PMID:9733810

  15. Engineering Styrene Monooxygenase for Biocatalysis: Reductase-Epoxidase Fusion Proteins.

    PubMed

    Heine, Thomas; Tucker, Kathryn; Okonkwo, Nonye; Assefa, Berhanegebriel; Conrad, Catleen; Scholtissek, Anika; Schlömann, Michael; Gassner, George; Tischler, Dirk

    2017-04-01

    The enantioselective epoxidation of styrene and related compounds by two-component styrene monooxygenases (SMOs) has targeted these enzymes for development as biocatalysts. In the present work, we prepare genetically engineered fusion proteins that join the C-terminus of the epoxidase (StyA) to the N-terminus of the reductase (StyB) through a linker peptide and demonstrate their utility as biocatalysts in the synthesis of Tyrain purple and other indigoid dyes. A single-vector expression system offers a simplified platform for transformation and expansion of the catalytic function of styrene monooxygenases, and the resulting fusion proteins are self-regulated and couple efficiently NADH oxidation to styrene epoxidation. We find that the reductase domain proceeds through a sequential ternary-complex mechanism at low FAD concentration and a double-displacement mechanism at higher concentrations of FAD. Single-turnover studies indicate an observed rate constant for FAD-to-FAD hydride transfer of ~8 s -1 . This step is rate limiting in the styrene epoxidation reaction and helps to ensure that flavin reduction and styrene epoxidation reactions proceed without wasteful side reactions. Comparison of the reductase activity of the fusion proteins with the naturally occurring reductase, SMOB, and N-terminally histidine-tagged reductase, NSMOB, suggests that the observed changes in catalytic mechanism are due in part to an increase in flavin-binding affinity associated with the N-terminal extension of the reductase.

  16. Purification of CD47-streptavidin fusion protein from bacterial lysate using biotin-agarose affinity chromatography.

    PubMed

    Salehi, Nasrin; Peng, Ching-An

    2016-07-08

    CD47 is a widely expressed transmembrane glycoprotein that modulates the activity of a plethora of immune cells via its extracellular domain. Therefore, CD47 plays important roles in the regulation of immune responses and may serve as targets for the development of immunotherapeutic agents. To make sure CD47 functionality is intact under the process of protein conjugation, CD47-streptavidin fusion protein was expressed and purified because it can easily bind to biotin-tagged materials via the unique biotin-streptavidin affinity. In this study, gene sequences of CD47 extracellular domain (CD47ECD) and core streptavidin (coreSA) with a total 834 bp were inserted into pET20b plasmid to construct recombinant plasmid encoding CD47-SA fusion gene. After bacteria transformation, the CD47-SA fusion protein was expressed by isopropyl-β-d-thiogalactopyranoside (IPTG) induction. The collected bacteria lysate was loaded on biotinylated agarose to proceed the purification of CD47-SA fusion protein. Due to the unexpected high affinity between biotin and coreSA, standard washing and elution approaches (e.g., varying pH, using biotin, and applying guanidine hydrochloride) reported for biotin-streptavidin affinity chromatography were not able to separate the target fusion protein. Instead, using low concentration of the non-ionic detergent Triton X-100 followed with alkaline buffer could efficiently weaken the binding between biotin and coreSA, thereby eluting out CD47-SA fusion protein from the biotin agarose column. The purified CD47-SA fusion protein was further characterized by molecular biology methods and its antiphagocytic functionality was confirmed by the phagocytosis assay. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:949-958, 2016. © 2016 American Institute of Chemical Engineers.

  17. Chromophore-assisted laser inactivation of alpha- and gamma-tubulin SNAP-tag fusion proteins inside living cells.

    PubMed

    Keppler, Antje; Ellenberg, Jan

    2009-02-20

    Chromophore-assisted laser inactivation (CALI) can help to unravel localized activities of target proteins at defined times and locations within living cells. Covalent SNAP-tag labeling of fusion proteins with fluorophores such as fluorescein is a fast and highly specific tool to attach the photosensitizer to its target protein in vivo for selective inactivation of the fusion protein. Here, we demonstrate the effectiveness and specificity of SNAP-tag-based CALI by acute inactivation of alpha-tubulin and gamma-tubulin SNAP-tag fusions during live imaging assays of cell division. Singlet oxygen is confirmed as the reactive oxygen species that leads to loss of fusion protein function. The major advantage of SNAP-tag CALI is the ease, reliability, and high flexibility in labeling: the genetically encoded protein tag can be covalently labeled with various dyes matching the experimental requirements. This makes SNAP-tag CALI a very useful tool for rapid inactivation of tagged proteins in living cells.

  18. Elimination of established murine colon carcinoma metastases by antibody-interleukin 2 fusion protein therapy.

    PubMed

    Xiang, R; Lode, H N; Dolman, C S; Dreier, T; Varki, N M; Qian, X; Lo, K M; Lan, Y; Super, M; Gillies, S D; Reisfeld, R A

    1997-11-01

    A recombinant humanized antibody-interleukin 2 fusion protein (huKS1/4-IL-2) was used to direct IL-2 to the tumor microenvironment and elicit a T cell-mediated eradication of established pulmonary and hepatic CT26-KSA colon carcinoma metastases in syngeneic BALB/c mice. This antitumor effect was specific because a fusion protein, which was nonreactive with these tumor cells, failed to exert any such effect. The efficacy of the huKS1/4-IL-2 fusion protein in eliminating metastases was documented because mixtures of monoclonal antibody huKS1/4 with recombinant human IL-2 were ineffective and, at best, only partially reduced tumor load. Two lines of evidence indicated the eradication of metastases and the absence of minimal residual disease in animals treated with the fusion protein: first, the lack of detection of CT26-KSA cells by reverse transcription-PCR, which can detect one tumor cell in 10(6) liver cells; and second, the tripling of life span. The effector mechanism involved in this tumor eradication is dependent on T cells because the IL-2-directed therapy is ineffective in T cell-deficient SCID mice. The essential effector cells were further characterized as CD8+ T cells by in vivo depletion studies. Such T cells, isolated from tumor-bearing mice after fusion protein therapy, elicited MHC class I-restricted cytotoxicity in vitro against colon carcinoma target cells. Taken together, these data indicate that fusion protein-directed IL-2 therapy induces a T cell-dependent host immune response capable of eradicating established colon cancer metastases in an animal tumor model.

  19. Membrane proteins in human erythrocytes during cell fusion induced by oleoylglycerol

    PubMed Central

    Quirk, Susan J.; Ahkong, Quet Fah; Botham, Gaynor M.; Vos, Jan; Lucy, Jack A.

    1978-01-01

    1. The fusion of human erythrocytes into multicellular bodies that is induced by microdroplets of oleoylglycerol was investigated by optical and electron microscopy, and by gel electrophoresis of membrane proteins. 2. At the highest concentrations of oleoylglycerol and Ca2+ used, at least 80% of the cells fused after 30min at 37°C and only about 5% of the cells had completely lysed; the shapes of fused multicellular bodies were usually retained in `ghosts' prepared by hypo-osmotic lysis. 3. The rate of cell fusion was related to the concentration of Ca2+, although some cells fused when no exogenous Ca2+ was present. 4. Interactions of microdroplets of oleoylglycerol with the cells led to abnormalities in the structural appearance of the erythrocyte membrane; subsequent membrane fusion occurred, at least in some instances, at the sites of the microdroplets. 5. The intramembranous particles on the P-fracture face of the treated cells were more randomly distributed, but not significantly increased in number by comparison with the control cells. 6. Gel electrophoresis of the proteins of `ghosts' prepared from fused human erythrocytes showed a production of material of very high molecular weight, the development of a new component in the band-3 region, an increased staining of bands 4.3 and 4.5, and a new component moving slightly faster than band 6. 7. Bands 2.1–2.3 were altered, band 3 was decreased and band 4.1 was lost. 8. Most, but not all, of the changes in the membrane proteins appeared to result from the entry of Ca2+ into the cell. 9. 1-Chloro-4-phenyl-3-l-toluene-p-sulphonamidobutan-2-one partially inhibited both cell fusion and the associated decrease in band-3 protein. 10. The possibility that proteolytic degradation of membrane proteins may be involved in cell fusion induced by oleoylglycerol is considered, and some implications of this possibility are discussed. ImagesPLATE 4PLATE 1PLATE 2PLATE 3 PMID:728105

  20. A residue located at the junction of the head and stalk regions of measles virus fusion protein regulates membrane fusion by controlling conformational stability.

    PubMed

    Satoh, Yuto; Yonemori, Saeka; Hirose, Mitsuhiro; Shogaki, Hiroko; Wakimoto, Hiroshi; Kitagawa, Yoshinori; Gotoh, Bin; Shirai, Tsuyoshi; Takahashi, Ken-Ichi; Itoh, Masae

    2017-02-01

    The fusion (F) protein of measles virus performs refolding from the thermodynamically metastable prefusion form to the highly stable postfusion form via an activated unstable intermediate stage, to induce membrane fusion. Some amino acids involved in the fusion regulation cluster in the heptad repeat B (HR-B) domain of the stalk region, among which substitution of residue 465 by various amino acids revealed that fusion activity correlates well with its side chain length from the Cα (P<0.01) and van der Waals volume (P<0.001), except for Phe, Tyr, Trp, Pro and His carrying ring structures. Directed towards the head region, longer side chains of the non-ring-type 465 residues penetrate more deeply into the head region and may disturb the hydrophobic interaction between the stalk and head regions and cause destabilization of the molecule by lowering the energy barrier for refolding, which conferred the F protein enhanced fusion activity. Contrarily, the side chain of ring-type 465 residues turned away from the head region, resulting in not only no contact with the head region but also extensive coverage of the HR-B surface, which may prevent the dissociation of the HR-B bundle for initiation of membrane fusion and suppress fusion activity. Located in the HR-B domain just at the junction between the head and stalk regions, amino acid 465 is endowed with a possible ability to either destabilize or stabilize the F protein depending on its molecular volume and the direction of the side chain, regulating fusion activity of measles virus F protein.

  1. The Importance of Protein-Protein Interactions on the pH-Induced Conformational Changes of Bovine Serum Albumin: A Small-Angle X-Ray Scattering Study

    PubMed Central

    Barbosa, Leandro R.S.; Ortore, Maria Grazia; Spinozzi, Francesco; Mariani, Paolo; Bernstorff, Sigrid; Itri, Rosangela

    2010-01-01

    Abstract The combined effects of concentration and pH on the conformational states of bovine serum albumin (BSA) are investigated by small-angle x-ray scattering. Serum albumins, at physiological conditions, are found at concentrations of ∼35–45 mg/mL (42 mg/mL in the case of humans). In this work, BSA at three different concentrations (10, 25, and 50 mg/mL) and pH values (2.0–9.0) have been studied. Data were analyzed by means of the Global Fitting procedure, with the protein form factor calculated from human serum albumin (HSA) crystallographic structure and the interference function described, considering repulsive and attractive interaction potentials within a random phase approximation. Small-angle x-ray scattering data show that BSA maintains its native state from pH 4.0 up to 9.0 at all investigated concentrations. A pH-dependence of the absolute net protein charge is shown and the charge number per BSA is quantified to 10(2), 8(1), 13(2), 20(2), and 26(2) for pH values 4.0, 5.4, 7.0, 8.0, and 9.0, respectively. The attractive potential diminishes as BSA concentration increases. The coexistence of monomers and dimers is observed at 50 mg/mL and pH 5.4, near the BSA isoelectric point. Samples at pH 2.0 show a different behavior, because BSA overall shape changes as a function of concentration. At 10 mg/mL, BSA is partially unfolded and a strong repulsive protein-protein interaction occurs due to the high amount of exposed charge. At 25 and 50 mg/mL, BSA undergoes some re-folding, which likely results in a molten-globule state. This work concludes by confirming that the protein concentration plays an important role on the pH-unfolded BSA state, due to a delicate compromise between interaction forces and crowding effects. PMID:20085727

  2. Elastin-like Polypeptide (ELP) Charge Influences Self-Assembly of ELP-mCherry Fusion Proteins.

    PubMed

    Mills, Carolyn E; Michaud, Zachary; Olsen, Bradley D

    2018-05-23

    Self-assembly of protein-polymer bioconjugates presents an elegant strategy for controlling nanostructure and orientation of globular proteins in functional materials. Recent work has shown that genetic fusion of globular protein mCherry to an elastin-like polypeptide (ELP) yields similar self-assembly behavior to these protein-polymer bioconjugates. In the context of studying protein-polymer bioconjugate self-assembly, the mutability of the ELP sequence allows several different properties of the ELP block to be tuned orthogonally while maintaining consistent polypeptide backbone chemistry. This work uses this ELP sequence tunability in combination with the precise control offered by genetic engineering of an amino acid sequence to generate a library of four novel ELP sequences that are used to study the combined effect of charge and hydrophobicity on ELP-mCherry fusion protein self-assembly. Concentrated solution self-assembly is studied by small-angle X-ray scattering (SAXS) and depolarized light scattering (DPLS). These experiments show that fusions containing a negatively charged ELP block do not assemble at all, and fusions with a charge balanced ELP block exhibit a weak propensity for assembly. By comparison, the fusion containing an uncharged ELP block starts to order at 40 wt % in solution and at all concentrations measured has sharper, more intense SAXS peaks than other fusion proteins. These experiments show that charge character of the ELP block is a stronger predictor of self-assembly behavior than the hydrophobicity of the ELP block. Dilute solution small-angle neutron scattering (SANS) on the ELPs alone suggests that all ELPs used in this study (including the uncharged ELP) adopt dilute solution conformations similar to those of traditional polymers, including polyampholytes and polyelectrolytes. Finally, dynamic light scattering studies on ELP-mCherry blends shows that there is no significant complexation between the charged ELPs and m

  3. The recombinant expression and activity detection of MAF-1 fusion protein.

    PubMed

    Fu, Ping; Wu, Jianwei; Gao, Song; Guo, Guo; Zhang, Yong; Liu, Jian

    2015-10-01

    This study establishes the recombinant expression system of MAF-1 (Musca domestica antifungal peptide-1) and demonstrates the antifungal activity of the expression product and shows the relationship between biological activity and structure. The gene segments on mature peptide part of MAF-1 were cloned, based on the primers designed according to the cDNA sequence of MAF-1. We constructed the recombinant prokaryotic expression plasmid using prokaryotic expression vector (pET-28a(+)) and converted it to the competent cell of BL21(DE3) to gain recombinant MAF-1 fusion protein with His tag sequence through purifying affinity chromatographic column of Ni-NTA. To conduct the Western Blotting test, recombinant MAF-1 fusion protein was used to produce the polyclonal antibody of rat. The antifungal activity of the expression product was detected using Candida albicans (ATCC10231) as the indicator. The MAF-1 recombinant fusion protein was purified to exhibit obvious antifungal activity, which lays the foundation for the further study of MAF-1 biological activity, the relationship between structure and function, as well as control of gene expression.

  4. Interaction of bovine serum albumin protein with self assembled monolayer of mercaptoundecanoic acid

    NASA Astrophysics Data System (ADS)

    Poonia, Monika; Agarwal, Hitesh; Manjuladevi, V.; Gupta, R. K.

    2016-05-01

    Detection of proteins and other biomolecules in liquid phase is the essence for the design of a biosensor. The sensitivity of a sensor can be enhanced by the appropriate functionalization of the sensing area so as to establish the molecular specific interaction. In the present work, we have studied the interaction of bovine serum albumin (BSA) protein with a chemically functionalized surface using a quartz crystal microbalance (QCM). The gold-coated quartz crystals (AT-cut/5 MHz) were functionalized by forming self-assembled monolayer (SAM) of 11-Mercaptoundecanoic acid (MUA). The adsorption characteristics of BSA onto SAM of MUA on quartz crystal are reported. BSA showed the highest affinity for SAM of MUA as compared to pure gold surface. The SAM of MUA provides carboxylated surface which enhances not only the adsorption of the BSA protein but also a very stable BSA-MUA complex in the liquid phase.

  5. The vacuolar transport of aleurain-GFP and 2S albumin-GFP fusions is mediated by the same pre-vacuolar compartments in tobacco BY-2 and Arabidopsis suspension cultured cells.

    PubMed

    Miao, Yansong; Li, Kwun Yee; Li, Hong-Ye; Yao, Xiaoqiang; Jiang, Liwen

    2008-12-01

    Soluble proteins reach vacuoles because they contain vacuolar sorting determinants (VSDs) that are recognized by vacuolar sorting receptor (VSR) proteins. Pre-vacuolar compartments (PVCs), defined by VSRs and GFP-VSR reporters in tobacco BY-2 cells, are membrane-bound intermediate organelles that mediate protein traffic from the Golgi apparatus to the vacuole in plant cells. Multiple pathways have been demonstrated to be responsible for vacuolar transport of lytic enzymes and storage proteins to the lytic vacuole (LV) and the protein storage vacuole (PSV), respectively. However, the nature of PVCs for LV and PSV pathways remains unclear. Here, we used two fluorescent reporters, aleurain-GFP and 2S albumin-GFP, that represent traffic of lytic enzymes and storage proteins to LV and PSV, respectively, to study the PVC-mediated transport pathways via transient expression in suspension cultured cells. We demonstrated that the vacuolar transport of aleurain-GFP and 2S albumin-GFP was mediated by the same PVC populations in both tobacco BY-2 and Arabidopsis suspension cultured cells. These PVCs were defined by the seven GFP-AtVSR reporters. In wortmannin-treated cells, the vacuolated PVCs contained the mRFP-AtVSR reporter in their limiting membranes, whereas the soluble aleurain-GFP or 2S albumin-GFP remained in the lumen of the PVCs, indicating a possible in vivo relationship between receptor and cargo within PVCs.

  6. Role of the Simian Virus 5 Fusion Protein N-Terminal Coiled-Coil Domain in Folding and Promotion of Membrane Fusion

    PubMed Central

    West, Dava S.; Sheehan, Michael S.; Segeleon, Patrick K.; Dutch, Rebecca Ellis

    2005-01-01

    Formation of a six-helix bundle comprised of three C-terminal heptad repeat regions in antiparallel orientation in the grooves of an N-terminal coiled-coil is critical for promotion of membrane fusion by paramyxovirus fusion (F) proteins. We have examined the effect of mutations in four residues of the N-terminal heptad repeat in the simian virus 5 (SV5) F protein on protein folding, transport, and fusogenic activity. The residues chosen have previously been shown from study of isolated peptides to have differing effects on stability of the N-terminal coiled-coil and six-helix bundle (R. E. Dutch, G. P. Leser, and R. A. Lamb, Virology 254:147-159, 1999). The mutant V154M showed reduced proteolytic cleavage and surface expression, indicating a defect in intracellular transport, though this mutation had no effect when studied in isolated peptides. The mutation I137M, previously shown to lower thermostability of the six-helix bundle, resulted in an F protein which was properly processed and transported to the cell surface but which had reduced fusogenic activity. Finally, mutations at L140M and L161M, previously shown to disrupt α-helix formation of isolated N-1 peptides but not to affect six-helix bundle formation, resulted in F proteins that were properly processed. Interestingly, the L161M mutant showed increased syncytium formation and promoted fusion at lower temperatures than the wild-type F protein. These results indicate that interactions separate from formation of an N-terminal coiled-coil or six-helix bundle are important in the initial folding and transport of the SV5 F protein and that mutations that destabilize the N-terminal coiled-coil can result in stimulation of membrane fusion. PMID:15650180

  7. Protein-Protein Interaction Assays with Effector-GFP Fusions in Nicotiana benthamiana.

    PubMed

    Petre, Benjamin; Win, Joe; Menke, Frank L H; Kamoun, Sophien

    2017-01-01

    Plant parasites secrete proteins known as effectors into host tissues to manipulate host cell structures and functions. One of the major goals in effector biology is to determine the host cell compartments and the protein complexes in which effectors accumulate. Here, we describe a five-step pipeline that we routinely use in our lab to achieve this goal, which consists of (1) Golden Gate assembly of pathogen effector-green fluorescent protein (GFP) fusions into binary vectors, (2) Agrobacterium-mediated heterologous protein expression in Nicotiana benthamiana leaf cells, (3) laser-scanning confocal microscopy assay, (4) anti-GFP coimmunoprecipitation-liquid chromatography-tandem mass spectrometry (coIP/MS) assay, and (5) anti-GFP western blotting. This pipeline is suitable for rapid, cost-effective, and medium-throughput screening of pathogen effectors in planta.

  8. The Ancient Gamete Fusogen HAP2 Is a Eukaryotic Class II Fusion Protein.

    PubMed

    Fédry, Juliette; Liu, Yanjie; Péhau-Arnaudet, Gérard; Pei, Jimin; Li, Wenhao; Tortorici, M Alejandra; Traincard, François; Meola, Annalisa; Bricogne, Gérard; Grishin, Nick V; Snell, William J; Rey, Félix A; Krey, Thomas

    2017-02-23

    Sexual reproduction is almost universal in eukaryotic life and involves the fusion of male and female haploid gametes into a diploid cell. The sperm-restricted single-pass transmembrane protein HAP2-GCS1 has been postulated to function in membrane merger. Its presence in the major eukaryotic taxa-animals, plants, and protists (including important human pathogens like Plasmodium)-suggests that many eukaryotic organisms share a common gamete fusion mechanism. Here, we report combined bioinformatic, biochemical, mutational, and X-ray crystallographic studies on the unicellular alga Chlamydomonas reinhardtii HAP2 that reveal homology to class II viral membrane fusion proteins. We further show that targeting the segment corresponding to the fusion loop by mutagenesis or by antibodies blocks gamete fusion. These results demonstrate that HAP2 is the gamete fusogen and suggest a mechanism of action akin to viral fusion, indicating a way to block Plasmodium transmission and highlighting the impact of virus-cell genetic exchanges on the evolution of eukaryotic life. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Expression and Purification of Neurotrophin-Elastin-Like Peptide Fusion Proteins for Neural Regeneration.

    PubMed

    Johnson, Tamina; Koria, Piyush

    2016-04-01

    Neural injuries such as spinal cord injuries, traumatic brain injuries, or nerve transection injuries pose a major health problem. Neurotrophins such as nerve growth factor (NGF) or brain-derived neurotrophic factor (BDNF) have been shown to improve the outcome of neural injuries in several pre-clinical models, but their use in clinics is limited by the lack of a robust delivery system that enhances their bioavailability and half-life. We describe two fusion proteins comprising NGF or BDNF fused with elastin-like peptides (ELPs). The aim of this study was to investigate the biological activity of neurotrophin-ELP (N-ELP) fusion proteins via in vitro culture models. NGF and BDNF were cloned in front of an elastin-like polypeptide sequence V40C2. These proteins were expressed in bacteria as inclusion bodies. These fusion proteins underwent solubilization via 8 M urea and purification via inverse transition cycling (ITC). We measured the particle size and the effect of temperature on precipitated particles using dynamic light scattering (DLS). We used western blot analysis to confirm the specificity of NGF-ELP to tropomyosin receptor kinase A (TrkA) antibody and to confirm the specificity of BDNF-ELP to TrkB antibody. PC12 cells were used to perform a neurite outgrowth assay to determine the biological activity of NGF-ELP. Bioactivity of BDNF-ELP was ascertained via transfecting human epithelial kidney (HEK 293-T) cells to express the TrkB receptor. The proteins were successfully purified to high homogeneity by exploiting the phase transition property of ELPs and urea, which solubilize inclusion bodies. Using PC12 neurite outgrowth assay, we further demonstrated that the biological activity of NGF was retained in the fusion. Similarly, BDNF-ELP phosphorylated the TrkB receptor, suggesting the biological activity of BDNF was also retained in the fusion. We further show that owing to the phase transition property of ELPs in the fusion, these proteins self-assembled into

  10. Prm3p is a pheromone-induced peripheral nuclear envelope protein required for yeast nuclear fusion.

    PubMed

    Shen, Shu; Tobery, Cynthia E; Rose, Mark D

    2009-05-01

    Nuclear membrane fusion is the last step in the mating pathway of the yeast Saccharomyces cerevisiae. We adapted a bioinformatics approach to identify putative pheromone-induced membrane proteins potentially required for nuclear membrane fusion. One protein, Prm3p, was found to be required for nuclear membrane fusion; disruption of PRM3 caused a strong bilateral defect, in which nuclear congression was completed but fusion did not occur. Prm3p was localized to the nuclear envelope in pheromone-responding cells, with significant colocalization with the spindle pole body in zygotes. A previous report, using a truncated protein, claimed that Prm3p is localized to the inner nuclear envelope. Based on biochemistry, immunoelectron microscopy and live cell microscopy, we find that functional Prm3p is a peripheral membrane protein exposed on the cytoplasmic face of the outer nuclear envelope. In support of this, mutations in a putative nuclear localization sequence had no effect on full-length protein function or localization. In contrast, point mutations and deletions in the highly conserved hydrophobic carboxy-terminal domain disrupted both protein function and localization. Genetic analysis, colocalization, and biochemical experiments indicate that Prm3p interacts directly with Kar5p, suggesting that nuclear membrane fusion is mediated by a protein complex.

  11. Bovine serum albumin surface imprinted polymer fabricated by surface grafting copolymerization on zinc oxide rods and its application for protein recognition.

    PubMed

    Li, Xiangjie; Zhou, Jingjing; Tian, Lei; Li, Wei; Zhang, Baoliang; Zhang, Hepeng; Zhang, Qiuyu

    2015-10-01

    A novel bovine serum albumin (BSA) surface imprinted polymer based on ZnO rods was synthesized by surface grafting copolymerization. It exhibited an excellent recognition performance to bovine serum albumin. The adsorption capacity and imprinting factor of bovine serum albumin could reach 89.27 mg/g and 2.35, respectively. Furthermore, the fluorescence property of ZnO was used for tracing the process of protein imprinting and it implied the excellent optical sensing property of this material. More importantly, the hypothesis that the surface charge of carrier could affect the imprinting process was confirmed. That is, ZnO with positive surface charge could not only improve the recognition specificity of binding sites to template proteins (pI < 7), but also deteriorate the bindings between sites and non-template proteins (pI > 7). It was also important that the reusability of ZnO@BSA molecularly imprinted polymers was satisfactory. This implied that the poor mechanical/chemical stability of traditional zinc oxide sensors could be solved by the introduction of surface grafting copolymerization. These results revealed that the ZnO@BSA molecularly imprinted polymers are a promising optical/electrochemical sensor element. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Determination of the affinity of drugs toward serum albumin by measurement of the quenching of the intrinsic tryptophan fluorescence of the protein.

    PubMed

    Epps, D E; Raub, T J; Caiolfa, V; Chiari, A; Zamai, M

    1999-01-01

    Binding of new chemical entities to serum proteins is an issue confronting pharmaceutical companies during development of potential therapeutic agents. Most drugs bind to the most abundant plasma protein, human serum albumin (HSA), at two major binding sites. Excepting fluorescence spectroscopy, existing methods for assaying drug binding to serum albumin are insensitive to higher-affinity compounds and can be labour-intensive, time-consuming, and usually require compound-specific assays. This led us to examine alternative ways to measure drug-albumin interaction. One method described here uses fluorescence quenching of the single tryptophan (Trp) residue in HSA excited at 295 nm to measure drug-binding affinity. Unfortunately, many compounds absorb, fluoresce, or both, in this UV wavelength region of the spectrum. Several types of binding phenomenon and spectral interference were identified by use of six structurally unrelated compounds and the equations necessary to make corrections mathematically were derived and applied to calculate binding constants accurately. The general cases were: direct quenching of Trp fluorescence by optically transparent ligands with low or high affinities; binding of optically transparent, non-fluorescent ligands to two specific sites where both sites or only one site result in Trp fluorescence quenching; and chromophores whose absorption either overlaps the Trp emission and quenches by energy transfer or absorbs light at the Trp fluorescence excitation wavelength producing absorptive screening as well as fluorescence quenching. Unless identification of the site specificity of drug binding to serum albumin is desired, quenching of the Trp fluorescence of albumin by titration with ligand is a rapid and facile method for determining the binding affinities of drugs for serum albumin.

  13. Electrostatic Architecture of the Infectious Salmon Anemia Virus (ISAV) Core Fusion Protein Illustrates a Carboxyl-Carboxylate pH Sensor.

    PubMed

    Cook, Jonathan D; Soto-Montoya, Hazel; Korpela, Markus K; Lee, Jeffrey E

    2015-07-24

    Segment 5, ORF 1 of the infectious salmon anemia virus (ISAV) genome, encodes for the ISAV F protein, which is responsible for viral-host endosomal membrane fusion during a productive ISAV infection. The entry machinery of ISAV is composed of a complex of the ISAV F and ISAV hemagglutinin esterase (HE) proteins in an unknown stoichiometry prior to receptor engagement by ISAV HE. Following binding of the receptor to ISAV HE, dissociation of the ISAV F protein from HE, and subsequent endocytosis, the ISAV F protein resolves into a fusion-competent oligomeric state. Here, we present a 2.1 Å crystal structure of the fusion core of the ISAV F protein determined at low pH. This structure has allowed us to unambiguously demonstrate that the ISAV entry machinery exhibits typical class I viral fusion protein architecture. Furthermore, we have determined stabilizing factors that accommodate the pH-dependent mode of ISAV transmission, and our structure has allowed the identification of a central coil that is conserved across numerous and varied post-fusion viral glycoprotein structures. We then discuss a mechanistic model of ISAV fusion that parallels the paramyxoviral class I fusion strategy wherein attachment and fusion are relegated to separate proteins in a similar fashion to ISAV fusion. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. [Construction and expression of HSV-2gD-Hsp70 fusion protein gene].

    PubMed

    Fan, Jian-Yong; Yang, Hui-Lan; Wang, Ying; Guan, Lei

    2006-11-01

    To construct and express Hsp70-HSV2gD fusion protein. Genes of Hsp70 and HSV-2gD were subcloned into vectors pGEX-4T-1 respectively. After confirmed by DNA sequence analysis, the recombinant plasmids pGEX-4T-HSP-gD was transformed into E. coli DH5alpha and induced to express with IPTG. The expressed protein was characterized by SDS-PAGE and Western blot after purified. BALB/c mice were immunized with fusion proteins respectively via intra-m uscular injection. The proliferation of spleen lymphocytes, the level of y-IFN in culture and anti-HSV-2gD IgG antibody in serum was detected was detected. The expressed protein was analyzed by SDS-PAGE after induced with IPTG, which showed a new band with an apparent molecular mass corresponding to the predicted size (118 kD). Western Blotting analysis demonstrates that the purified Hsp70-HSV2gD fusion protein had specific binding activity. The stimulation indexes of spleen lymphocytes, the level of gamma-IFN in culture and anti-HSV-2gD IgG antibody in serum of GST-Hsp70-gD group was obviously higher than that of other groups (P < 0.05 respectively). The successful expression of the Hsp70-HSV2gD fusion protein, which can induce immune responses, laid a solid foundation for its further research.

  15. Expression of Leukemia-Associated Nup98 Fusion Proteins Generates an Aberrant Nuclear Envelope Phenotype.

    PubMed

    Fahrenkrog, Birthe; Martinelli, Valérie; Nilles, Nadine; Fruhmann, Gernot; Chatel, Guillaume; Juge, Sabine; Sauder, Ursula; Di Giacomo, Danika; Mecucci, Cristina; Schwaller, Jürg

    2016-01-01

    Chromosomal translocations involving the nucleoporin NUP98 have been described in several hematopoietic malignancies, in particular acute myeloid leukemia (AML). In the resulting chimeric proteins, Nup98's N-terminal region is fused to the C-terminal region of about 30 different partners, including homeodomain (HD) transcription factors. While transcriptional targets of distinct Nup98 chimeras related to immortalization are relatively well described, little is known about other potential cellular effects of these fusion proteins. By comparing the sub-nuclear localization of a large number of Nup98 fusions with HD and non-HD partners throughout the cell cycle we found that while all Nup98 chimeras were nuclear during interphase, only Nup98-HD fusion proteins exhibited a characteristic speckled appearance. During mitosis, only Nup98-HD fusions were concentrated on chromosomes. Despite the difference in localization, all tested Nup98 chimera provoked morphological alterations in the nuclear envelope (NE), in particular affecting the nuclear lamina and the lamina-associated polypeptide 2α (LAP2α). Importantly, such aberrations were not only observed in transiently transfected HeLa cells but also in mouse bone marrow cells immortalized by Nup98 fusions and in cells derived from leukemia patients harboring Nup98 fusions. Our findings unravel Nup98 fusion-associated NE alterations that may contribute to leukemogenesis.

  16. Expression of Leukemia-Associated Nup98 Fusion Proteins Generates an Aberrant Nuclear Envelope Phenotype

    PubMed Central

    Fahrenkrog, Birthe; Martinelli, Valérie; Nilles, Nadine; Fruhmann, Gernot; Chatel, Guillaume; Juge, Sabine; Sauder, Ursula; Di Giacomo, Danika; Mecucci, Cristina; Schwaller, Jürg

    2016-01-01

    Chromosomal translocations involving the nucleoporin NUP98 have been described in several hematopoietic malignancies, in particular acute myeloid leukemia (AML). In the resulting chimeric proteins, Nup98's N-terminal region is fused to the C-terminal region of about 30 different partners, including homeodomain (HD) transcription factors. While transcriptional targets of distinct Nup98 chimeras related to immortalization are relatively well described, little is known about other potential cellular effects of these fusion proteins. By comparing the sub-nuclear localization of a large number of Nup98 fusions with HD and non-HD partners throughout the cell cycle we found that while all Nup98 chimeras were nuclear during interphase, only Nup98-HD fusion proteins exhibited a characteristic speckled appearance. During mitosis, only Nup98-HD fusions were concentrated on chromosomes. Despite the difference in localization, all tested Nup98 chimera provoked morphological alterations in the nuclear envelope (NE), in particular affecting the nuclear lamina and the lamina-associated polypeptide 2α (LAP2α). Importantly, such aberrations were not only observed in transiently transfected HeLa cells but also in mouse bone marrow cells immortalized by Nup98 fusions and in cells derived from leukemia patients harboring Nup98 fusions. Our findings unravel Nup98 fusion-associated NE alterations that may contribute to leukemogenesis. PMID:27031510

  17. Premature activation of the paramyxovirus fusion protein before target cell attachment with corruption of the viral fusion machinery.

    PubMed

    Farzan, Shohreh F; Palermo, Laura M; Yokoyama, Christine C; Orefice, Gianmarco; Fornabaio, Micaela; Sarkar, Aurijit; Kellogg, Glen E; Greengard, Olga; Porotto, Matteo; Moscona, Anne

    2011-11-04

    Paramyxoviruses, including the childhood pathogen human parainfluenza virus type 3, enter host cells by fusion of the viral and target cell membranes. This fusion results from the concerted action of its two envelope glycoproteins, the hemagglutinin-neuraminidase (HN) and the fusion protein (F). The receptor-bound HN triggers F to undergo conformational changes that render it competent to mediate fusion of the viral and cellular membranes. We proposed that, if the fusion process could be activated prematurely before the virion reaches the target host cell, infection could be prevented. We identified a small molecule that inhibits paramyxovirus entry into target cells and prevents infection. We show here that this compound works by an interaction with HN that results in F-activation prior to receptor binding. The fusion process is thereby prematurely activated, preventing fusion of the viral membrane with target cells and precluding viral entry. This first evidence that activation of a paramyxovirus F can be specifically induced before the virus contacts its target cell suggests a new strategy with broad implications for the design of antiviral agents.

  18. [Expression of the fusion protein CFP10-ESAT6 of Mycobacterium tuberculosis and the study of its immunogenicity].

    PubMed

    Wang, Xiao-ying; Bao, Lang; Zhao, Ming-cai; Zhang, Hui-dong; Long, Yang

    2006-05-01

    To express a recombinant fusion protein CFP10-ESAT6 of Mycobacterium tuberculosis, and obtain the polyclonal antibodies of this fusion protein by immune rabbit. The 630 bp cfpl0-esat6 fusion gene fragments were amplified from the genomic DNA of a Mycobacterium tuberculosis reference strain H37Rv and inserted into the expression plasmid pET32a (+) to generate the recombinant plasmid pET-cfp10-esat6. The recombinat expression plasmid was transformed into E. coli BL21 (DE3). The fused protein CFP10-ESAT6 with His-tag was expressed after inducing with IPTG and purified with affinity chromatography. This protein was used to immune the rabbit to obtained the polyclonal antibodies, and been analyzed with Western-blot and ELISA. The recombinant plasmid pET-cfp10-esat6 was success fully constructed, the recombinant fusion protein CFP10-ESAT6 could be expressed at relatively high levels, and the polyclonal antibodies of fusion protein were obtained. The successful construction and expression of the recombinant fusion protein CFP10-ESAT6 and the obtained polyclonal antibodies will be very helpful for the development of new anti-tuberculosis vaccine and the clinical serologic diagnosis.

  19. Structure of the cleavage-activated prefusion form of the parainfluenza virus 5 fusion protein.

    PubMed

    Welch, Brett D; Liu, Yuanyuan; Kors, Christopher A; Leser, George P; Jardetzky, Theodore S; Lamb, Robert A

    2012-10-09

    The paramyxovirus parainfluenza virus 5 (PIV5) enters cells by fusion of the viral envelope with the plasma membrane through the concerted action of the fusion (F) protein and the receptor binding protein hemagglutinin-neuraminidase. The F protein folds initially to form a trimeric metastable prefusion form that is triggered to undergo large-scale irreversible conformational changes to form the trimeric postfusion conformation. It is thought that F refolding couples the energy released with membrane fusion. The F protein is synthesized as a precursor (F0) that must be cleaved by a host protease to form a biologically active molecule, F1,F2. Cleavage of F protein is a prerequisite for fusion and virus infectivity. Cleavage creates a new N terminus on F1 that contains a hydrophobic region, known as the FP, which intercalates target membranes during F protein refolding. The crystal structure of the soluble ectodomain of the uncleaved form of PIV5 F is known; here we report the crystal structure of the cleavage-activated prefusion form of PIV5 F. The structure shows minimal movement of the residues adjacent to the protease cleavage site. Most of the hydrophobic FP residues are buried in the uncleaved F protein, and only F103 at the newly created N terminus becomes more solvent-accessible after cleavage. The conformational freedom of the charged arginine residues that compose the protease recognition site increases on cleavage of F protein.

  20. Structure of the cleavage-activated prefusion form of the parainfluenza virus 5 fusion protein

    PubMed Central

    Welch, Brett D.; Liu, Yuanyuan; Kors, Christopher A.; Leser, George P.; Jardetzky, Theodore S.; Lamb, Robert A.

    2012-01-01

    The paramyxovirus parainfluenza virus 5 (PIV5) enters cells by fusion of the viral envelope with the plasma membrane through the concerted action of the fusion (F) protein and the receptor binding protein hemagglutinin-neuraminidase. The F protein folds initially to form a trimeric metastable prefusion form that is triggered to undergo large-scale irreversible conformational changes to form the trimeric postfusion conformation. It is thought that F refolding couples the energy released with membrane fusion. The F protein is synthesized as a precursor (F0) that must be cleaved by a host protease to form a biologically active molecule, F1,F2. Cleavage of F protein is a prerequisite for fusion and virus infectivity. Cleavage creates a new N terminus on F1 that contains a hydrophobic region, known as the FP, which intercalates target membranes during F protein refolding. The crystal structure of the soluble ectodomain of the uncleaved form of PIV5 F is known; here we report the crystal structure of the cleavage-activated prefusion form of PIV5 F. The structure shows minimal movement of the residues adjacent to the protease cleavage site. Most of the hydrophobic FP residues are buried in the uncleaved F protein, and only F103 at the newly created N terminus becomes more solvent-accessible after cleavage. The conformational freedom of the charged arginine residues that compose the protease recognition site increases on cleavage of F protein. PMID:23012473

  1. α-SNAP interferes with the zippering of the SNARE protein membrane fusion machinery.

    PubMed

    Park, Yongsoo; Vennekate, Wensi; Yavuz, Halenur; Preobraschenski, Julia; Hernandez, Javier M; Riedel, Dietmar; Walla, Peter Jomo; Jahn, Reinhard

    2014-06-06

    Neuronal exocytosis is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Before fusion, SNARE proteins form complexes bridging the membrane followed by assembly toward the C-terminal membrane anchors, thus initiating membrane fusion. After fusion, the SNARE complex is disassembled by the AAA-ATPase N-ethylmaleimide-sensitive factor that requires the cofactor α-SNAP to first bind to the assembled SNARE complex. Using chromaffin granules and liposomes we now show that α-SNAP on its own interferes with the zippering of membrane-anchored SNARE complexes midway through the zippering reaction, arresting SNAREs in a partially assembled trans-complex and preventing fusion. Intriguingly, the interference does not result in an inhibitory effect on synaptic vesicles, suggesting that membrane properties also influence the final outcome of α-SNAP interference with SNARE zippering. We suggest that binding of α-SNAP to the SNARE complex affects the ability of the SNARE complex to harness energy or transmit force to the membrane. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Eradication of Human Hepatic and Pulmonary Melanoma Metastases in SCID Mice by Antibody--Interleukin 2 Fusion Proteins

    NASA Astrophysics Data System (ADS)

    Becker, Jurgen C.; Pancook, James D.; Gillies, Stephen D.; Mendelsohn, John; Reisfeld, Ralph A.

    1996-04-01

    Antibody--cytokine fusion proteins combine the unique targeting ability of antibodies with the multifunctional activity of cytokines. Here, we demonstrate the therapeutic efficacy of such constructs for the treatment of hepatic and pulmonary metastases of different melanoma cell lines. Two antibody--interleukin 2 (IL-2) fusion proteins, ch225-IL2 and ch14.18-IL2, constructed by fusion of a synthetic sequence coding for human IL-2 to the carboxyl end of the Cγ 1 gene of the corresponding antibodies, were tested for their therapeutic efficacy against xenografted human melanoma in vivo. Tumorspecific fusion proteins completely inhibited the growth of hepatic and pulmonary metastases in C.B-17 scid/scid mice previously reconstituted with human lymphokine-activated killer cells, whereas treatment with combinations of the corresponding antibodies plus recombinant IL-2 only reduced the tumor load. Even when treatment with fusion proteins was delayed up to 8 days after inoculation of tumor cells, it still resulted in complete eradication of micrometastases that were established at that time point. Selection of tumor cell lines expressing or lacking the targeted antigen of the administered fusion protein proved the specificity of the observed antitumor effect. Biodistribution analysis demonstrated that the tumorspecific fusion protein accumulated not only in subcutaneous tumors but also in lungs and livers affected with micrometastases. Survival times of animals treated with the fusion protein were more than doubled as compared to those treated with the combination of the corresponding antibody plus IL-2. Our data demonstrate that an immunotherapeutic approach using cytokines targeted by antibodies to tumor sites has potent effects against disseminated human melanoma.

  3. Carbamylated albumin is one of the target antigens of anti-carbamylated protein antibodies.

    PubMed

    Nakabo, Shuichiro; Hashimoto, Motomu; Ito, Shinji; Furu, Moritoshi; Ito, Hiromu; Fujii, Takao; Yoshifuji, Hajime; Imura, Yoshitaka; Nakashima, Ran; Murakami, Kosaku; Kuramoto, Nobuo; Tanaka, Masao; Satoh, Junko; Ishigami, Akihito; Morita, Satoshi; Mimori, Tsuneyo; Ohmura, Koichiro

    2017-07-01

    Anti-carbamylated protein (anti-CarP) antibodies are detected in RA patients. Fetal calf serum is used as an antigen source in anti-CarP ELISA, and the precise target antigens have not been found. We aimed to identify the target antigens of anti-CarP antibodies. Western blotting of anti-CarP antibodies was conducted. Anti-carbamylated human albumin (CarALB) antibody was detected by in-house ELISA for 493 RA patients and 144 healthy controls (HCs). An inhibition ELISA of anti-CarP antibodies by CarALB and citrullinated albumin (citALB) was performed using eight RA patients' sera. Serum CarALB was detected by liquid chromatography-tandem mass spectroscopy (LC/MS/MS), and the serum MPO concentration was measured by ELISA. We focused on carbamylated albumin because it corresponded to the size of the thickest band detected by western blotting of anti-CarP antibodies. Anti-CarALB antibody was detected in 31.4% of RA patients, and the correlation of the titres between anti-CarALB and anti-CarP was much closer than that between anti-citALB and anti-CCP antibodies (ρ = 0.59 and ρ = 0.16, respectively). The inhibition ELISA showed that anti-CarP antibodies were inhibited by CarALB, but not by citALB. CarALB was detected in sera from RA patients by LC/MS/MS. The serum MPO concentration was correlated with disease activity and was higher in RA patients with anti-CarALB antibody than in those without. We found that carbamylated albumin is a novel target antigen of anti-CarP antibodies, and it is the first reported target antigen that has not been reported as the target of ACPA. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  4. [Construction and expression of a fusion protein made of tissue-type plasminogen activator and hirudin in Pichia pastoris].

    PubMed

    Yu, Ai-Ping; Shi, Bing-Xing; Dong, Chun-Na; Jiang, Zhong-Hua; Wu, Zu-Ze

    2005-07-01

    To combine the fibrinolytic with anticoagulant activities for therapy of thrombotic deseases, a fusion protein made of tissue-type plasminogen activator (t-PA) and hirudin was constructed and expressed in chia pastoris. To improve thrombolytic properties of t-PA and reduce bleeding side effect of hirudin, FXa-recognition sequence was introduced between t-PA and hirudin molecules.The anticoagulant activity of hirudin can be target-released through cleavage of FXa at thrombus site. t-PA gene and hirudin gene with FXa-recognition sequence at its 5'-terminal were obtained by RT-PCR and PCR respectively. The fusion protein gene was cloned into plasmid pIC9K and electroporated into the genome of Pichia pastoris GS115. The expression of fusion protein was induced by methanol in shaking flask and secreted into the culture medium. Two forms of the fusion protein, single-chain and double-chain linked by a disulfide bond (due to the cleveage of t-PA at Arg275-Ile276), were obtained. The intact fusion protein retained the fibrinolytic activity but lacked any anticoagulant activity. After cleavage by FXa, the fusion protein liberated intact free hirudin to exert its anticoagulant activity. So, the fusion protein is a bifunctional molecule having good prospect to develop into a new targeted therapeutic agent with reduced bleeding side effect for thrombotic diseases.

  5. Kits and methods of detection using cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.

    1998-04-14

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  6. Kits and methods of detection using cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, Oded

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  7. IgG-Paraoxonase-1 Fusion Protein for Targeted Drug Delivery Across the Human Blood-Brain Barrier

    PubMed Central

    Boado, Ruben J.; Zhang, Yun; Zhang, Yufeng; Wang, Yuntao; Pardridge, William M.

    2009-01-01

    Paraoxonase (PON)-1 is the most potent human protein with organophosphatase activity against organophosphate (OP) toxins. OP compounds readily cross the blood-brain barrier (BBB), and have lethal mechanisms of action within the brain. The production of a brain penetrating form of human PON1, which crosses the BBB, is possible with the re-engineering of the enzyme as a fusion protein with a monoclonal antibody (MAb) against the human insulin receptor (HIR). The HIRMAb crosses the BBB via the endogenous insulin receptor, and acts as a molecular Trojan horse to ferry the PON1 into brain. The human PON1 was fused to the carboxyl terminus of the heavy chain of the chimeric HIRMAb. COS cells were dual transfected with the heavy chain gene and the light chain gene, and the HIRMAb-PON1 fusion protein was affinity purified with protein A chromatography. Western blotting with antibodies to human IgG or human PON1 showed the heavy chain of the HIRMAb-PON1 fusion protein was 40 kDa larger than the heavy chain of the chimeric HIRMAb. The ED50 of binding to the HIR extracellular domain was 0.55 ± 0.07 nM and 1.1 ±0.1 nM, respectively, for the chimeric HIRMAb and the HIRMAb-PON1 fusion protein. The PON1 enzyme activity of the fusion protein was approximately 25% of the enzyme activity in human plasma, based on a fluorometric enzymatic assay. In conclusion, human PON1 has been re-engineered as an IgG-organophosphatase fusion protein that penetrates the human BBB. PMID:19434854

  8. Biocompatibility of electrospun human albumin: a pilot study.

    PubMed

    Noszczyk, B H; Kowalczyk, T; Łyżniak, M; Zembrzycki, K; Mikułowski, G; Wysocki, J; Kawiak, J; Pojda, Z

    2015-03-02

    Albumin is rarely used for electrospinning because it does not form fibres in its native globular form. This paper presents a novel method for electrospinning human albumin from a solution containing pharmaceutical grade protein and 25% polyethylene oxide (PEO) used as the fibre-forming agent. After spontaneous cross-linking at body temperature, with no further chemicals added, the fibres become insoluble and the excess PEO can be washed out. Albumin deposited along the fibres retains its native characteristics, such as its non-adhesiveness to cells and its susceptibility for degradation by macrophages. To demonstrate this we evaluated the mechanical properties, biocompatibility and biodegradability of this novel product. After subcutaneous implantation in mice, albumin mats were completely resorbable within six days and elicited only a limited local inflammatory response. In vitro, the mats suppressed cell attachment and migration. As this product is inexpensive, produced from human pharmaceutical grade albumin without chemical modifications, retains its native protein properties and fulfils the specific requirements for anti-adhesive dressings, its clinical use can be expedited. We believe that it could specifically be used when treating paediatric patients with epidermolysis bullosa, in whom non-healing wounds occur after minor hand injuries which lead to rapid adhesions and devastating contractures.

  9. Structural and kinetic analysis of the unnatural fusion protein 4-coumaroyl-CoA ligase::stilbene synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yechun; Yi, Hankuil; Wang, Melissa

    2012-10-24

    To increase the biochemical efficiency of biosynthetic systems, metabolic engineers have explored different approaches for organizing enzymes, including the generation of unnatural fusion proteins. Previous work aimed at improving the biosynthesis of resveratrol, a stilbene associated a range of health-promoting activities, in yeast used an unnatural engineered fusion protein of Arabidopsis thaliana (thale cress) 4-coumaroyl-CoA ligase (At4CL1) and Vitis vinifera (grape) stilbene synthase (VvSTS) to increase resveratrol levels 15-fold relative to yeast expressing the individual enzymes. Here we present the crystallographic and biochemical analysis of the 4CL::STS fusion protein. Determination of the X-ray crystal structure of 4CL::STS provides the firstmore » molecular view of an artificial didomain adenylation/ketosynthase fusion protein. Comparison of the steady-state kinetic properties of At4CL1, VvSTS, and 4CL::STS demonstrates that the fusion protein improves catalytic efficiency of either reaction less than 3-fold. Structural and kinetic analysis suggests that colocalization of the two enzyme active sites within 70 {angstrom} of each other provides the basis for enhanced in vivo synthesis of resveratrol.« less

  10. Site-directed antibody immobilization using a protein A-gold binding domain fusion protein for enhanced SPR immunosensing.

    PubMed

    de Juan-Franco, Elena; Caruz, Antonio; Pedrajas, J R; Lechuga, Laura M

    2013-04-07

    We have implemented a novel strategy for the oriented immobilization of antibodies onto a gold surface based on the use of a fusion protein, the protein A-gold binding domain (PAG). PAG consists of a gold binding peptide (GBP) coupled to the immunoglobulin-binding domains of staphylococcal protein A. This fusion protein provides an easy and fast oriented immobilization of antibodies preserving its native structure, while leaving the antigen binding sites (Fab) freely exposed. Using this immobilization strategy, we have demonstrated the performance of the immunosensing of the human Growth Hormone by SPR. A limit of detection of 90 ng mL(-1) was obtained with an inter-chip variability lower than 7%. The comparison of this method with other strategies for the direct immobilization of antibodies over gold surfaces has showed the enhanced sensitivity provided by the PAG approach.

  11. Membrane fusion and exocytosis.

    PubMed

    Jahn, R; Südhof, T C

    1999-01-01

    Membrane fusion involves the merger of two phospholipid bilayers in an aqueous environment. In artificial lipid bilayers, fusion proceeds by means of defined transition states, including hourglass-shaped intermediates in which the proximal leaflets of the fusing membranes are merged whereas the distal leaflets are separate (fusion stalk), followed by the reversible opening of small aqueous fusion pores. Fusion of biological membranes requires the action of specific fusion proteins. Best understood are the viral fusion proteins that are responsible for merging the viral with the host cell membrane during infection. These proteins undergo spontaneous and dramatic conformational changes upon activation. In the case of the paradigmatic fusion proteins of the influenza virus and of the human immunodeficiency virus, an amphiphilic fusion peptide is inserted into the target membrane. The protein then reorients itself, thus forcing the fusing membranes together and inducing lipid mixing. Fusion of intracellular membranes in eukaryotic cells involves several protein families including SNAREs, Rab proteins, and Sec1/Munc-18 related proteins (SM-proteins). SNAREs form a novel superfamily of small and mostly membrane-anchored proteins that share a common motif of about 60 amino acids (SNARE motif). SNAREs reversibly assemble into tightly packed helical bundles, the core complexes. Assembly is thought to pull the fusing membranes closely together, thus inducing fusion. SM-proteins comprise a family of soluble proteins that bind to certain types of SNAREs and prevent the formation of core complexes. Rab proteins are GTPases that undergo highly regulated GTP-GDP cycles. In their GTP form, they interact with specific proteins, the effector proteins. Recent evidence suggests that Rab proteins function in the initial membrane contact connecting the fusing membranes but are not involved in the fusion reaction itself.

  12. Structural studies of bovine, equine, and leporine serum albumin complexes with naproxen.

    PubMed

    Bujacz, Anna; Zielinski, Kamil; Sekula, Bartosz

    2014-09-01

    Serum albumin, a protein naturally abundant in blood plasma, shows remarkable ligand binding properties of numerous endogenous and exogenous compounds. Most of serum albumin binding sites are able to interact with more than one class of ligands. Determining the protein-ligand interactions among mammalian serum albumins is essential for understanding the complexity of this transporter. We present three crystal structures of serum albumins in complexes with naproxen (NPS): bovine (BSA-NPS), equine (ESA-NPS), and leporine (LSA-NPS) determined to 2.58 Å (C2), 2.42 Å (P61), and 2.73 Å (P2₁2₁2₁) resolutions, respectively. A comparison of the structurally investigated complexes with the analogous complex of human serum albumin (HSA-NPS) revealed surprising differences in the number and distribution of naproxen binding sites. Bovine and leporine serum albumins possess three NPS binding sites, but ESA has only two. All three complexes of albumins studied here have two common naproxen locations, but BSA and LSA differ in the third NPS binding site. None of these binding sites coincides with the naproxen location in the HSA-NPS complex, which was obtained in the presence of other ligands besides naproxen. Even small differences in sequences of serum albumins from various species, especially in the area of the binding pockets, influence the affinity and the binding mode of naproxen to this transport protein. © 2014 Wiley Periodicals, Inc.

  13. Quantitative determination of polysulfide in albumins, plasma proteins and biological fluid samples using a novel combined assays approach.

    PubMed

    Ikeda, Mayumi; Ishima, Yu; Shibata, Akitomo; Chuang, Victor T G; Sawa, Tomohiro; Ihara, Hideshi; Watanabe, Hiroshi; Xian, Ming; Ouchi, Yuya; Shimizu, Taro; Ando, Hidenori; Ukawa, Masami; Ishida, Tatsuhiro; Akaike, Takaaki; Otagiri, Masaki; Maruyama, Toru

    2017-05-29

    Hydrogen sulfide (H 2 S) signaling involves polysulfide (RSS n SR') formation on various proteins. However, the current lack of sensitive polysulfide detection assays poses methodological challenges for understanding sulfane sulfur homeostasis and signaling. We developed a novel combined assay by modifying Sulfide Antioxidant Buffer (SAOB) to produce an "Elimination Method of Sulfide from Polysulfide" (EMSP) treatment solution that liberates sulfide, followed with methylene blue (MB) sulfide detection assay. The combined EMSP-MB sulfide detection assay performed on low molecular weight sulfur species showed that sulfide was produced from trisulfide compounds such as glutathione trisulfide and diallyl trisulfide, but not from the thiol compounds such as cysteine, cystine and glutathione. In the case of plasma proteins, this novel combined detection assay revealed that approximately 14.7, 1.7, 3.9, 3.7 sulfide mol/mol released from human serum albumin, α 1 -anti-trypsin, α 1 -acid glycoprotein and ovalbumin, respectively, suggesting that serum albumin is a major pool of polysulfide in human blood circulation. Taken together with the results of albumins of different species, the liberated sulfide has a good correlation with cysteine instead of methionine, indicating the site of incorporation of polysulfide is cysteine. With this novel sulfide detention assay, approximately 8,000, 120 and 1100 μM of polysulfide concentrations was quantitated in human healthy plasma, saliva and tear, respectively. Our promising polysulfide specific detection assay can be a very important tool because quantitative determination of polysulfide sheds light on the functional consequence of protein-bound cysteine polysulfide and expands the research area of reactive oxygen to reactive polysulfide species. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Five Residues in the Apical Loop of the Respiratory Syncytial Virus Fusion Protein F2 Subunit are Critical for its Fusion Activity.

    PubMed

    Hicks, Stephanie N; Chaiwatpongsakorn, Supranee; Costello, Heather M; McLellan, Jason S; Ray, William; Peeples, Mark E

    2018-05-09

    The respiratory syncytial virus (RSV) fusion (F) protein is a trimeric, membrane-anchored glycoprotein capable of mediating both viral-target cell membrane fusion to initiate infection and cell-cell fusion, even in the absence of the attachment glycoprotein. The F protein is initially expressed in a precursor form, whose functional capabilities are activated by proteolysis at two sites between the F 1 and F 2 subunits. This cleavage results in expression of the metastable and high-energy prefusion conformation. To mediate fusion, the F protein is triggered by an unknown stimulus, causing the F 1 subunit to refold dramatically while F 2 changes minimally. Hypothesizing that the most likely site for interaction with a target-cell component would be the top, or apex, of the protein, we determined the importance of the residues in the apical loop of F 2 by scanning mutagenesis. Five residues were not important, two were of intermediate importance, and all four lysines and one isoleucine were essential. Alanine replacement did not result in the loss of pre-F conformation for any of these mutants. Each of the four lysines required its specific charge for fusion function. Alanine replacement of the three essential lysines on the ascent to the apex hindered fusion following a forced fusion event, suggesting they are involved in refolding. Alanine mutation at Ile64, also on the ascent to the apex, and Lys75, did not prevent fusion following forced triggering, suggesting they are not involved in refolding and may instead be involved in the natural triggering of the F protein. IMPORTANCE RSV infects virtually every child by the age of 3, causing nearly 33 million acute lower respiratory infections (ALRI) worldwide each year in children younger than 5 (Nair H, et al. 2010. Lancet 375:1545-55). RSV is also the second leading cause of respiratory related death in the elderly (Falsey AR, Walsh EE. 2005. Drugs Aging 22:577-87; Falsey AR, Hennessey PA, Formica MA, Cox C, Walsh EE

  15. Proteomic analysis of albumin and globulin fractions of pea (Pisum sativum L.) seeds.

    PubMed

    Dziuba, Jerzy; Szerszunowicz, Iwona; Nałęcz, Dorota; Dziuba, Marta

    2014-01-01

    Proteomic analysis is emerging as a highly useful tool in food research, including studies of food allergies. Two-dimensional gel electrophoresis involving isoelectric focusing and sodium dodecyl sulfate polyacrylamide gel electrophoresis is the most effective method of separating hundreds or even thousands of proteins. In this study, albumin and globulin tractions of pea seeds cv. Ramrod were subjected to proteomic analysis. Selected potentially alergenic proteins were identified based on their molecular weights and isoelectric points. Pea seeds (Pisum sativum L.) cv. Ramrod harvested over a period of two years (Plant Breeding Station in Piaski-Szelejewo) were used in the experiment. The isolated albumins, globulins and legumin and vicilin fractions of globulins were separated by two-dimensional gel electrophoresis. Proteomic images were analysed in the ImageMaster 2D Platinum program with the use of algorithms from the Melanie application. The relative content, isoelectric points and molecular weights were computed for all identified proteins. Electrophoregrams were analysed by matching spot positions from three independent replications. The proteomes of albumins, globulins and legumin and vicilin fractions of globulins produced up to several hundred spots (proteins). Spots most characteristic of a given fraction were identified by computer analysis and spot matching. The albumin proteome accumulated spots of relatively high intensity over a broad range of pi values of ~4.2-8.1 in 3 molecular weight (MW) ranges: I - high molecular-weight albumins with MW of ~50-110 kDa, II - average molecular-weight albumins with MW of ~20-35 kDa, and III - low molecular-weight albumins with MW of ~13-17 kDa. 2D gel electrophoregrams revealed the presence of 81 characteristic spots, including 24 characteristic of legumin and 14 - of vicilin. Two-dimensional gel electrophoresis proved to be a useful tool for identifying pea proteins. Patterns of spots with similar isoelectric

  16. Vibrio effector protein VopQ inhibits fusion of V-ATPase–containing membranes

    PubMed Central

    Sreelatha, Anju; Bennett, Terry L.; Carpinone, Emily M.; O’Brien, Kevin M.; Jordan, Kamyron D.; Burdette, Dara L.; Orth, Kim; Starai, Vincent J.

    2015-01-01

    Vesicle fusion governs many important biological processes, and imbalances in the regulation of membrane fusion can lead to a variety of diseases such as diabetes and neurological disorders. Here we show that the Vibrio parahaemolyticus effector protein VopQ is a potent inhibitor of membrane fusion based on an in vitro yeast vacuole fusion model. Previously, we demonstrated that VopQ binds to the Vo domain of the conserved V-type H+-ATPase (V-ATPase) found on acidic compartments such as the yeast vacuole. VopQ forms a nonspecific, voltage-gated membrane channel of 18 Å resulting in neutralization of these compartments. We now present data showing that VopQ inhibits yeast vacuole fusion. Furthermore, we identified a unique mutation in VopQ that delineates its two functions, deacidification and inhibition of membrane fusion. The use of VopQ as a membrane fusion inhibitor in this manner now provides convincing evidence that vacuole fusion occurs independently of luminal acidification in vitro. PMID:25453092

  17. Vibrio effector protein VopQ inhibits fusion of V-ATPase-containing membranes.

    PubMed

    Sreelatha, Anju; Bennett, Terry L; Carpinone, Emily M; O'Brien, Kevin M; Jordan, Kamyron D; Burdette, Dara L; Orth, Kim; Starai, Vincent J

    2015-01-06

    Vesicle fusion governs many important biological processes, and imbalances in the regulation of membrane fusion can lead to a variety of diseases such as diabetes and neurological disorders. Here we show that the Vibrio parahaemolyticus effector protein VopQ is a potent inhibitor of membrane fusion based on an in vitro yeast vacuole fusion model. Previously, we demonstrated that VopQ binds to the V(o) domain of the conserved V-type H(+)-ATPase (V-ATPase) found on acidic compartments such as the yeast vacuole. VopQ forms a nonspecific, voltage-gated membrane channel of 18 Å resulting in neutralization of these compartments. We now present data showing that VopQ inhibits yeast vacuole fusion. Furthermore, we identified a unique mutation in VopQ that delineates its two functions, deacidification and inhibition of membrane fusion. The use of VopQ as a membrane fusion inhibitor in this manner now provides convincing evidence that vacuole fusion occurs independently of luminal acidification in vitro.

  18. Viral membrane fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Stephen C., E-mail: harrison@crystal.harvard.edu

    2015-05-15

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formedmore » draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism.« less

  19. Albumin transcytosis from the pleural space.

    PubMed

    Agostoni, Emilio; Bodega, Francesca; Zocchi, Luciano

    2002-11-01

    Occurrence of transcytosis in pleural mesothelium was verified by measuring removal of labeled macromolecules from pleural liquid in experiments without and with nocodazole. To this end, we injected 0.3 ml of Ringer-albumin with 750 microg of albumin-Texas red or with 600 microg of dextran 70-Texas red in the right pleural space of anesthetized rabbits, and after 3 h we measured pleural liquid volume, labeled macromolecule concentration, and, hence, labeled macromolecule quantity in the liquid of this space. Labeled albumin left was 318 +/- 28 microg in control and 419 +/- 17 microg in nocodazole experiments (means +/- SE); hence, whereas ventilation was similar its removal was greater (P < 0.01) in control experiments. Labeled dextran left was 283 +/- 10 microg in control and 381 +/- 21 microg in nocodazole experiments; hence, whereas ventilation was similar its removal was greater (P < 0.01) in control experiments. These findings indicate occurrence of transcytosis from the pleural space. Liquid removed by transcytosis was 0.05 ml/h. This amount times unlabeled albumin concentration under physiological conditions (10 mg/ml) times lumen-vesicle partition coefficient for albumin (0.78) provides fluid-phase albumin transcytosis: approximately 203 microg. h(-1) kg(-2/3). Transcytosis might contribute a relevant part of protein and liquid removal from the pleural space.

  20. Determination of Urine Albumin by New Simple High-Performance Liquid Chromatography Method.

    PubMed

    Klapkova, Eva; Fortova, Magdalena; Prusa, Richard; Moravcova, Libuse; Kotaska, Karel

    2016-11-01

    A simple high-performance liquid chromatography (HPLC) method was developed for the determination of albumin in patients' urine samples without coeluting proteins and was compared with the immunoturbidimetric determination of albumin. Urine albumin is important biomarker in diabetic patients, but part of it is immuno-nonreactive. Albumin was determined by high-performance liquid chromatography (HPLC), UV detection at 280 nm, Zorbax 300SB-C3 column. Immunoturbidimetric analysis was performed using commercial kit on automatic biochemistry analyzer COBAS INTEGRA ® 400, Roche Diagnostics GmbH, Manheim, Germany. The HLPC method was fully validated. No significant interference with other proteins (transferrin, α-1-acid glycoprotein, α-1-antichymotrypsin, antitrypsin, hemopexin) was found. The results from 301 urine samples were compared with immunochemical determination. We found a statistically significant difference between these methods (P = 0.0001, Mann-Whitney test). New simple HPLC method was developed for the determination of urine albumin without coeluting proteins. Our data indicate that the HPLC method is highly specific and more sensitive than immunoturbidimetry. © 2016 Wiley Periodicals, Inc.

  1. Clinical impact of serum proteins on drug delivery.

    PubMed

    Kratz, Felix; Elsadek, Bakheet

    2012-07-20

    Among serum proteins albumin and transferrin have attracted the most interest as drug carriers in the past two decades. Prior to that, their potential use was overshadowed by the advent of monoclonal antibodies that was initiated by Milstein and Koehler in 1975. Meanwhile intensive pursuit of exploiting transferrin, but above all albumin as an exogenous or endogenous carrier protein for treating various diseases, primarily cancer, rheumatoid arthritis, diabetes and hepatitis has resulted in several marketed products and numerous clinical trials. While the use of transferrin has clinically been primarily restricted to immunotoxins, albumin-based drug delivery systems ranging from albumin drug nanoparticles, albumin fusion protein, prodrugs and peptide derivatives that bind covalently to albumin as well as physically binding antibody fragments and therapeutically active peptides are in advanced clinical trials or approved products. For treating diabetes, Levemir and Victoza that are myristic acid derivatives of human insulin or glucagon-like peptide 1 (GLP-1) act as long-acting peptides by binding to the fatty acid binding sites on circulating albumin to control glucose levels. Levemir from Novo Nordisk has already developed into a blockbuster since its market approval in 2004. Abraxane, an albumin paclitaxel nanoparticle as a water-soluble galenic formulation avoiding the use of cremophor/ethanol, transports paclitaxel through passive targeting as an albumin paclitaxel complex to the tumor site and is superior to conventional Taxol against metastatic breast cancer. INNO-206, an albumin-binding doxorubicin prodrug that also accumulates in solid tumors due to the enhanced permeability and retention (EPR) effect but releases the parent drug through acid cleavage, either intra- or extracellularly, is entering phase II studies against sarcoma. An expanding field is the use of albumin-binding antibody moieties which do not contain the fragment crystallizable (Fc) portion

  2. Newly designed modifier prolongs the action of short-lived peptides and proteins by allowing their binding to serum albumin.

    PubMed

    Shechter, Yoram; Sasson, Keren; Lev-Goldman, Vered; Rubinraut, Sara; Rubinstein, Menachem; Fridkin, Mati

    2012-08-15

    We found that human serum albumin (HSA) contains a single binding domain for derivatives of long-chain fatty acid (LCFA)-like molecules in which the carboxylate is replaced by sulfonate. Accordingly, we have synthesized 16-sulfo-hexadecanoic acid-N-hydroxysuccinimide ester [HO(3)S-(CH(2))(15)-CONHS], an agent that reacts selectively with the amino side chains of peptides and proteins. A macromolecule containing a single 16-sulfohexadecanoate moiety associating with albumin with a K(a) value of 0.83 ± 0.08 × 10(6) M(-1), a sufficient affinity to extend the actions in vivo of such short-lived peptides and proteins. Subcutaneous administration of insulin-NHCO-(CH(2))(15)-SO(3)(-) into mice facilitated a glucose-lowering effect 4.3 times in duration and 6.6 times in area under the curve (AUC) as compared to an in vitro equipotent amount of Zn(2+)-free insulin. Similarly, subcutaneous and intravenous administration of exendin-4-NHCO-(CH(2))(15)-SO(3)(-) to mice yielded prolonged and stable reduction in glucose level, 5-9-fold longer than that of exendin-4. Also, a single subcutaneous administration of human interferon-α2-[NH-CO-(CH(2))(15)-SO(3)(-)](3) to mice yielded circulating antiviral activity over a period of 40 h. In conclusion, a simple, hydrophilic reagent has been engineered, synthesized, and studied. Its linkage to peptides and proteins in a monomodified fashion yielded hydrophilic, prolonged acting derivatives, due to their acquired ability to associate with serum albumin after administration.

  3. Intravital Imaging Reveals Angiotensin II–Induced Transcytosis of Albumin by Podocytes

    PubMed Central

    Schießl, Ina Maria; Hammer, Anna; Kattler, Veronika; Gess, Bernhard; Theilig, Franziska; Witzgall, Ralph

    2016-01-01

    Albuminuria is a hallmark of kidney disease of various etiologies and usually caused by deterioration of glomerular filtration barrier integrity. We recently showed that angiotensin II (Ang II) acutely increases albumin filtration in the healthy kidney. Here, we used intravital microscopy to assess the effects of Ang II on podocyte function in rats. Acute infusion of 30, 60, or 80 ng/kg per minute Ang II enhanced the endocytosis of albumin by activation of the type 1 Ang II receptor and resulted in an average (±SEM) of 3.7±2.2, 72.3±18.6 (P<0.001), and 239.4±34.6 µm3 (P<0.001) albumin-containing vesicles per glomerulus, respectively, compared with none at baseline or 10 ng/kg per minute Ang II. Immunostaining of Ang II–infused kidneys confirmed the presence of albumin-containing vesicles, which colocalized with megalin, in podocin-positive cells. Furthermore, podocyte endocytosis of albumin was markedly reduced in the presence of gentamicin, a competitive inhibitor of megalin-dependent endocytosis. Ang II infusion increased the concentration of albumin in the subpodocyte space, a potential source for endocytic protein uptake, and gentamicin further increased this concentration. Some endocytic vesicles were acidified and colocalized with LysoTracker. Most vesicles migrated from the capillary to the apical aspect of the podocyte and were eventually released into the urinary space. This transcytosis accounted for approximately 10% of total albumin filtration. In summary, the transcellular transport of proteins across the podocyte constitutes a new pathway of glomerular protein filtration. Ang II enhances the endocytosis and transcytosis of plasma albumin by podocytes, which may eventually impair podocyte function. PMID:26116357

  4. Enzymatic activity of albumin shown by coelenterazine chemiluminescence.

    PubMed

    Vassel, N; Cox, C D; Naseem, R; Morse, V; Evans, R T; Power, R L; Brancale, A; Wann, K T; Campbell, A K

    2012-01-01

    Bioluminescence, the emission of light from live organisms, occurs in 18 phyla and is the major communication system in the deep sea. It has appeared independently many times during evolution but its origins remain unknown. Coelenterazine bioluminescence discovered in luminous jellyfish is the most common chemistry causing bioluminescence in the sea, occurring in seven phyla. Sequence similarities between coelenterazine luciferases and photoproteins from different phyla are poor (often < 5%). The aim of this study was to examine albumin that binds organic substances as a coelenterazine luciferase to test the hypothesis that the evolutionary origin of a bioluminescent protein was the result of the formation of a solvent cage containing just a few key amino acids. The results show for the first time that bovine and human albumin catalysed coelenterazine chemiluminescence consistent with a mono-oxygenase, whereas gelatin and haemoglobin, an oxygen carrier, had very weak activity. Insulin also catalysed coelenterazine chemiluminescence and was increased by Zn(2+). Albumin chemiluminescence was heat denaturable, exhibited saturable substrate characteristics and was inhibited by cations that bound these proteins and by drugs that bind to human albumin drug site I. Molecular modelling confirmed the coelenterazine binding site and identified four basic amino acids: lys195, arg222, his242 and arg257, potentially important in binding and catalysis similar to naturally occurring coelenterazine bioluminescent proteins. These results support the 'solvent cage' hypothesis for the evolutionary origin of enzymatic coelenterazine bioluminescent proteins. They also have important consequences in diseases such as diabetes, gut disorders and food intolerance where a mono-oxygenase could affect cell surface proteins. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Targeting of Cytolytic T-Cells for Breast Cancer Therapy Using Novel-Fusion Proteins

    DTIC Science & Technology

    1999-07-01

    1 construct was subsequently subcloned into the Pichia pastoris expression plasmid pPICZcxB (Invitrogen) which contains the alcohol oxidase promoter...breast carcinomas, and the extracellular domain of B7.2 (CD86). This fusion protein was expressed and purified from Pichia pastoris, shown to retain...year’s report, the hB7.2/B1 chimeric fusion protein produced in Pichia pastoris, was shown to bind to both recombinant and cell surface tumor marker erbB

  6. Selective targeting of a TNFR decoy receptor pharmaceutical to the primate brain as a receptor-specific IgG fusion protein.

    PubMed

    Boado, Ruben J; Hui, Eric Ka-Wai; Lu, Jeff Zhiqiang; Zhou, Qing-Hui; Pardridge, William M

    2010-03-01

    Decoy receptors, such as the human tumor necrosis factor receptor (TNFR), are potential new therapies for brain disorders. However, decoy receptors are large molecule drugs that are not transported across the blood-brain barrier (BBB). To enable BBB transport of a TNFR decoy receptor, the human TNFR-II extracellular domain was re-engineered as a fusion protein with a chimeric monoclonal antibody (MAb) against the human insulin receptor (HIR). The HIRMAb acts as a molecular Trojan horse to ferry the TNFR therapeutic decoy receptor across the BBB. The HIRMAb-TNFR fusion protein was expressed in stably transfected CHO cells, and was analyzed with electrophoresis, Western blotting, size exclusion chromatography, and binding assays for the HIR and TNFalpha. The HIRMAb-TNFR fusion protein was radio-labeled by trititation, in parallel with the radio-iodination of recombinant TNFR:Fc fusion protein, and the proteins were co-injected in the adult Rhesus monkey. The TNFR:Fc fusion protein did not cross the primate BBB in vivo, but the uptake of the HIRMAb-TNFR fusion protein was high and 3% of the injected dose was taken up by the primate brain. The TNFR was selectively targeted to brain, relative to peripheral organs, following fusion to the HIRMAb. This study demonstrates that decoy receptors may be re-engineered as IgG fusion proteins with a BBB molecular Trojan horse that selectively targets the brain, and enables penetration of the BBB in vivo. IgG-decoy receptor fusion proteins represent a new class of human neurotherapeutics. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Combining random gene fission and rational gene fusion to discover near-infrared fluorescent protein fragments that report on protein-protein interactions.

    PubMed

    Pandey, Naresh; Nobles, Christopher L; Zechiedrich, Lynn; Maresso, Anthony W; Silberg, Jonathan J

    2015-05-15

    Gene fission can convert monomeric proteins into two-piece catalysts, reporters, and transcription factors for systems and synthetic biology. However, some proteins can be challenging to fragment without disrupting function, such as near-infrared fluorescent protein (IFP). We describe a directed evolution strategy that can overcome this challenge by randomly fragmenting proteins and concomitantly fusing the protein fragments to pairs of proteins or peptides that associate. We used this method to create libraries that express fragmented IFP as fusions to a pair of associating peptides (IAAL-E3 and IAAL-K3) and proteins (CheA and CheY) and screened for fragmented IFP with detectable near-infrared fluorescence. Thirteen novel fragmented IFPs were identified, all of which arose from backbone fission proximal to the interdomain linker. Either the IAAL-E3 and IAAL-K3 peptides or CheA and CheY proteins could assist with IFP fragment complementation, although the IAAL-E3 and IAAL-K3 peptides consistently yielded higher fluorescence. These results demonstrate how random gene fission can be coupled to rational gene fusion to create libraries enriched in fragmented proteins with AND gate logic that is dependent upon a protein-protein interaction, and they suggest that these near-infrared fluorescent protein fragments will be suitable as reporters for pairs of promoters and protein-protein interactions within whole animals.

  8. Structural and immunologic characterization of bovine, horse, and rabbit serum albumins

    PubMed Central

    Majorek, Karolina A.; Porebski, Przemyslaw J.; Dayal, Arjun; Zimmerman, Matthew D.; Jablonska, Kamila; Stewart, Alan J.; Chruszcz, Maksymilian; Minor, Wladek

    2012-01-01

    Serum albumin (SA) is the most abundant plasma protein in mammals. SA is a multifunctional protein with extraordinary ligand binding capacity, making it a transporter molecule for a diverse range of metabolites, drugs, nutrients, metals and other molecules. Due to its ligand binding properties, albumins have wide clinical, pharmaceutical, and biochemical applications. Albumins are also allergenic, and exhibit a high degree of cross-reactivity due to significant sequence and structure similarity of SAs from different organisms. Here we present crystal structures of albumins from cattle (BSA), horse (ESA) and rabbit (RSA) serums. The structural data are correlated with the results of immunological studies of SAs. We also analyze the conservation or divergence of structures and sequences of SAs in the context of their potential allergenicity and cross-reactivity. In addition, we identified a previously uncharacterized ligand binding site in the structure of RSA, and calcium binding sites in the structure of BSA, which is the first serum albumin structure to contain metal ions. PMID:22677715

  9. Heat-mediated activation of affinity-immobilized Taq DNA polymerase.

    PubMed

    Nilsson, J; Bosnes, M; Larsen, F; Nygren, P A; Uhlén, M; Lundeberg, J

    1997-04-01

    A novel strategy for heat-mediated activation of recombinant Taq DNA polymerase is described. A serum albumin binding protein tag is used to affinity-immobilize an E. coli-expressed Taq DNA polymerase fusion protein onto a solid support coated with human serum albumin (HSA). Analysis of heat-mediated elution showed that elevated temperatures (> 70 degrees C) were required to significantly release the fusion protein from the solid support. A primer-extension assay showed that immobilization of the fusion protein resulted in little or no extension product. In contrast, fusion protein released from the HSA ligand by heat showed high polymerase activity. Thus, a heat-mediated release and reactivation of the Taq DNA polymerase fusion protein from the solid support can be obtained to allow for hot-start PCR with improved amplification performance.

  10. A fully human anti-Ep-CAM scFv-beta-glucuronidase fusion protein for selective chemotherapy with a glucuronide prodrug.

    PubMed

    de Graaf, M; Boven, E; Oosterhoff, D; van der Meulen-Muileman, I H; Huls, G A; Gerritsen, W R; Haisma, H J; Pinedo, H M

    2002-03-04

    Monoclonal antibodies against tumour-associated antigens could be useful to deliver enzymes selectively to the site of a tumour for activation of a non-toxic prodrug. A completely human fusion protein may be advantageous for repeated administration, as host immune responses may be avoided. We have constructed a fusion protein consisting of a human single chain Fv antibody, C28, against the epithelial cell adhesion molecule and the human enzyme beta-glucuronidase. The sequences encoding C28 and human enzyme beta-glucuronidase were joined by a sequence encoding a flexible linker, and were preceded by the IgGkappa signal sequence for secretion of the fusion protein. A CHO cell line was engineered to secrete C28-beta-glucuronidase fusion protein. Antibody specificity and enzyme activity were retained in the secreted fusion protein that had an apparent molecular mass of 100 kDa under denaturing conditions. The fusion protein was able to convert a non-toxic prodrug of doxorubicin, N-[4-doxorubicin-N-carbonyl(oxymethyl)phenyl]-O-beta-glucuronyl carbamate to doxorubicin, resulting in cytotoxicity. A bystander effect was demonstrated, as doxorubicin was detected in all cells after N-[4-doxorubicin-N-carbonyl(oxymethyl)phenyl]-O-beta-glucuronyl carbamate administration when only 10% of the cells expressed the fusion protein. This is the first fully human and functional fusion protein consisting of an scFv against epithelial cell adhesion molecule and human enzyme beta-glucuronidase for future use in tumour-specific activation of a non-toxic glucuronide prodrug. Copyright 2002 Cancer Research UK

  11. The Roles of Glycated Albumin as Intermediate Glycation Index and Pathogenic Protein

    PubMed Central

    Kim, Kwang Joon

    2012-01-01

    The conventional glycemic indices used in management of diabetic patients includes A1c, fructosamine, 1,5-anhydroglucitol, and glycated albumin (GA). Among these indices, A1c is currently used as the gold standard. However, A1c cannot reflect the glycemic change over a relatively short period of time, and its accuracy is known to decrease when abnormalities in hemoglobin metabolism, such as anemia, coexist. When considering these weaknesses, there have been needs for finding a novel glycemic index for diagnosing and managing diabetes, as well as for predicting diabetic complications properly. Recently, several studies have suggested the potential of GA as an intermediate-term glycation index in covering the short-term effect of treatment. Furthermore, its role as a pathogenic protein affecting the worsening of diabetes and occurrence of diabetic complications is receiving attention as well. Therefore, in this article, we wanted to review the recent status of GA as a glycemic index and as a pathogenic protein. PMID:22540045

  12. Femtosecond studies of protein-ligand hydrophobic binding and dynamics: human serum albumin.

    PubMed

    Zhong, D; Douhal, A; Zewail, A H

    2000-12-19

    In this contribution, we report studies of the nature of the dynamics and hydrophobic binding in protein-ligand complexes of human serum albumin with 2-(2'-hydroxyphenyl)-4-methyloxazole. With femtosecond time resolution, we examined the orientational motion of the ligand, its intrinsic nuclear motions, and the lifetime changes in the hydrophobic phase. For comparisons, with similar but chemical nanocavities, we also studied the same ligand in micelles and cyclodextrins. The hydrophobic interactions in the binding crevice are much stronger than those observed in cyclodextrins and micelles. The confined geometry restrains the nonradiative decay and significantly lengthens the excited-state lifetime. The observed dynamics over the femtosecond-to-nanosecond time scale indicate that the binding structure is rigid and the local motions of the ligand are nearly "frozen" in the protein. Another major finding is the elucidation of the directed dynamics by the protein. Proton transfer and intramolecular twisting of 2-(2'-hydroxyphenyl)-4-methyloxazole were observed to evolve along two routes: one involves the direct stretching motion in the molecular plane (approximately 200 fs) and is not sensitive to the environment; the second, less dominant, is related to the twisting motion (approximately 3 ps) of the two heterocyclic rings and drastically slows down in the protein hydrophobic pocket.

  13. Differential sensing using proteins: exploiting the cross-reactivity of serum albumin to pattern individual terpenes and terpenes in perfume.

    PubMed

    Adams, Michelle M; Anslyn, Eric V

    2009-12-02

    There has been a growing interest in the use of differential sensing for analyte classification. In an effort to mimic the mammalian senses of taste and smell, which utilize protein-based receptors, we have introduced serum albumins as nonselective receptors for recognition of small hydrophobic molecules. Herein, we employ a sensing ensemble consisting of serum albumins, a hydrophobic fluorescent indicator (PRODAN), and a hydrophobic additive (deoxycholate) to detect terpenes. With the aid of linear discriminant analysis, we successfully applied our system to differentiate five terpenes. We then extended our terpene analysis and utilized our sensing ensemble for terpene discrimination within the complex mixtures found in perfume.

  14. [Construction and expression of a eukaryotic expression vector containing human CR2-Fc fusion protein].

    PubMed

    Li, Xinxin; Wu, Zhihao; Zhang, Chuanfu; Jia, Leili; Song, Hongbin; Xu, Yuanyong

    2014-01-01

    To construct a eukaryotic expression vector containing human complement receptor 2 (CR2)-Fc and express the CR2-Fc fusion protein in Chinese hamster ovary (CHO) cells. The extracellular domain of human CR2 and IgG1 Fc were respectively amplified, ligated and inserted into the eukaryotic expression vector PCI-neo. After verified by restriction enzyme digestion and sequencing, the recombinant plasmid was transfected into CHO K1 cells. The ones with stable expression of the fusion protein were obtained by means of G418 selection. The expression of the CR2-Fc fusion protein was detected and confirmed by SDS-PAGE and Western blotting. Restriction enzyme digestion and sequencing demonstrated that the recombinant plasmid was valid. SDS-PAGE showed that relative molecular mass (Mr;) of the purified product was consistent with the expected value. Western blotting further proved the single band at the same position. We constructed the eukaryotic expression vector of CR2-Fc/PCI-neo successfully. The obtained fusion protein was active and can be used for the further study of the role in HIV control.

  15. Albumin Antioxidant Response to Stress in Diabetic Nephropathy Progression

    PubMed Central

    Medina-Navarro, Rafael; Corona-Candelas, Itzia; Barajas-González, Saúl; Díaz-Flores, Margarita; Durán-Reyes, Genoveva

    2014-01-01

    Background A new component of the protein antioxidant capacity, designated Response Surplus (RS), was recently described. A major feature of this component is the close relationship between protein antioxidant capacity and molecular structure. Oxidative stress is associated with renal dysfunction in patients with renal failure, and plasma albumin is the target of massive oxidation in nephrotic syndrome and diabetic nephropathy. The aim of the present study was to explore the albumin redox state and the RS component of human albumin isolated from diabetic patients with progressive renal damage. Methods/Principal Findings Serum aliquots were collected and albumin isolated from 125 diabetic patients divided into 5 groups according to their estimated glomerular filtration rate (GFR). In addition to clinical and biochemical variables, the albumin redox state, including antioxidant capacity, thiol group content, and RS component, were evaluated. The albumin antioxidant capacity and thiol group content were reciprocally related to the RS component in association with GFR reduction. The GFR decline and RS component were significantly negatively correlated (R = –0.83, p<0.0001). Age, creatinine, thiol groups, and antioxidant capacity were also significantly related to the GFR decline (R = –0.47, p<0.001; R = –0.68, p<0.0001; R = 0.44, p<0.001; and R = 0.72, p<0.0001). Conclusion/Significance The response of human albumin to stress in relation to the progression of diabetic renal disease was evaluated. The findings confirm that the albumin molecular structure is closely related to its redox state, and is a key factor in the progression of diabetes nephropathy. PMID:25187963

  16. Podocytes Degrade Endocytosed Albumin Primarily in Lysosomes

    PubMed Central

    Carson, John M.; Okamura, Kayo; Wakashin, Hidefumi; McFann, Kim; Dobrinskikh, Evgenia; Kopp, Jeffrey B.; Blaine, Judith

    2014-01-01

    Albuminuria is a strong, independent predictor of chronic kidney disease progression. We hypothesize that podocyte processing of albumin via the lysosome may be an important determinant of podocyte injury and loss. A human urine derived podocyte-like epithelial cell (HUPEC) line was used for in vitro experiments. Albumin uptake was quantified by Western blot after loading HUPECs with fluorescein-labeled (FITC) albumin. Co-localization of albumin with lysosomes was determined by confocal microscopy. Albumin degradation was measured by quantifying FITC-albumin abundance in HUPEC lysates by Western blot. Degradation experiments were repeated using HUPECs treated with chloroquine, a lysosome inhibitor, or MG-132, a proteasome inhibitor. Lysosome activity was measured by fluorescence recovery after photo bleaching (FRAP). Cytokine production was measured by ELISA. Cell death was determined by trypan blue staining. In vivo, staining with lysosome-associated membrane protein-1 (LAMP-1) was performed on tissue from a Denys-Drash trangenic mouse model of nephrotic syndrome. HUPECs endocytosed albumin, which co-localized with lysosomes. Choloroquine, but not MG-132, inhibited albumin degradation, indicating that degradation occurs in lysosomes. Cathepsin B activity, measured by FRAP, significantly decreased in HUPECs exposed to albumin (12.5% of activity in controls) and chloroquine (12.8%), and declined further with exposure to albumin plus chloroquine (8.2%, p<0.05). Cytokine production and cell death were significantly increased in HUPECs exposed to albumin and chloroquine alone, and these effects were potentiated by exposure to albumin plus chloroquine. Compared to wild-type mice, glomerular staining of LAMP-1 was significantly increased in Denys-Drash mice and appeared to be most prominent in podocytes. These data suggest lysosomes are involved in the processing of endocytosed albumin in podocytes, and lysosomal dysfunction may contribute to podocyte injury and

  17. Podocytes degrade endocytosed albumin primarily in lysosomes.

    PubMed

    Carson, John M; Okamura, Kayo; Wakashin, Hidefumi; McFann, Kim; Dobrinskikh, Evgenia; Kopp, Jeffrey B; Blaine, Judith

    2014-01-01

    Albuminuria is a strong, independent predictor of chronic kidney disease progression. We hypothesize that podocyte processing of albumin via the lysosome may be an important determinant of podocyte injury and loss. A human urine derived podocyte-like epithelial cell (HUPEC) line was used for in vitro experiments. Albumin uptake was quantified by Western blot after loading HUPECs with fluorescein-labeled (FITC) albumin. Co-localization of albumin with lysosomes was determined by confocal microscopy. Albumin degradation was measured by quantifying FITC-albumin abundance in HUPEC lysates by Western blot. Degradation experiments were repeated using HUPECs treated with chloroquine, a lysosome inhibitor, or MG-132, a proteasome inhibitor. Lysosome activity was measured by fluorescence recovery after photo bleaching (FRAP). Cytokine production was measured by ELISA. Cell death was determined by trypan blue staining. In vivo, staining with lysosome-associated membrane protein-1 (LAMP-1) was performed on tissue from a Denys-Drash trangenic mouse model of nephrotic syndrome. HUPECs endocytosed albumin, which co-localized with lysosomes. Choloroquine, but not MG-132, inhibited albumin degradation, indicating that degradation occurs in lysosomes. Cathepsin B activity, measured by FRAP, significantly decreased in HUPECs exposed to albumin (12.5% of activity in controls) and chloroquine (12.8%), and declined further with exposure to albumin plus chloroquine (8.2%, p<0.05). Cytokine production and cell death were significantly increased in HUPECs exposed to albumin and chloroquine alone, and these effects were potentiated by exposure to albumin plus chloroquine. Compared to wild-type mice, glomerular staining of LAMP-1 was significantly increased in Denys-Drash mice and appeared to be most prominent in podocytes. These data suggest lysosomes are involved in the processing of endocytosed albumin in podocytes, and lysosomal dysfunction may contribute to podocyte injury and

  18. Detection of an unknown fusion protein in confiscated black market products.

    PubMed

    Walpurgis, Katja; Krug, Oliver; Thomas, Andreas; Laussmann, Tim; Schänzer, Wilhelm; Thevis, Mario

    2014-01-01

    Even without clinical approval, many performance-enhancing drugs are available on the black market and can therefore be easily obtained by cheating athletes. The misuse of these preparations can be associated with unforeseeable health risks - either due to a poor quality of the drugs or as a result of an insufficient clinical assessment. Moreover, confiscated black market products have frequently been shown to contain ingredients other than those declared on the label as well as additional by-products or compounds with a modified molecular structure. This communication describes the identification of an unknown fusion protein observed in several unlabelled black market products obtained from independent sources. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of the confiscated preparations indicated the presence of an 18-kDa fusion protein consisting of the bacterial redox protein thioredoxin-1 (Trx, 12 kDa) and a 6-kDa peptide of unassigned composition. Trx has no relevance as performance enhancing agent but is routinely used as solubility tag for recombinant protein production. Further evaluation of the acquired MS/MS data revealed both an additional His tag and a thrombin cleavage site between the tags and the presumed bioactive peptide. However, thrombin cleavage of the fusion protein and LC-MS/MS analysis of the resulting peptide fragment finally suggested that the unknown protein is only the product of an empty expression vector without the DNA insert of interest. These findings are a further alarming example for the high level of risk that athletes take when misusing drugs obtained from the black market. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Albumin nanostructures as advanced drug delivery systems

    PubMed Central

    Karimi, Mahdi; Bahrami, Sajad; Ravari, Soodeh Baghaee; Zangabad, Parham Sahandi; Mirshekari, Hamed; Bozorgomid, Mahnaz; Shahreza, Somayeh; Sori, Masume; Hamblin, Michael R.

    2016-01-01

    Introduction One of the biggest impacts that the nanotechnology has made on medicine and biology, has been in the area of drug delivery systems (DDSs). Many drugs suffer from serious problems concerning insolubility, instability in biological environments, poor uptake into cells and tissues, suboptimal selectivity for targets and unwanted side effects. Nanocarriers can be designed as DDSs to overcome many of these drawbacks. One of the most versatile building blocks to prepare these nanocarriers is the ubiquitous, readily available and inexpensive protein, serum albumin. Areas covered This review covers the use of different types of albumin (human, bovine, rat, and chicken egg) to prepare nanoparticle and microparticle-based structures to bind drugs. Various methods have been used to modify the albumin structure. A range of targeting ligands can be attached to the albumin that can be recognized by specific cell receptors that are expressed on target cells or tissues. Expert opinion The particular advantages of albumin used in DDSs include ready availability, ease of chemical modification, good biocompatibility, and low immunogenicity. The regulatory approvals that have been received for several albumin-based therapeutic agents suggest that this approach will continue to be successfully explored. PMID:27216915

  20. [Construction of cTnC-linker-TnI (P) Genes, Expression of Fusion Protein and Preparation of Lyophilized Protein].

    PubMed

    Song, Xiaoli; Liu, Xiaoyun; Cai, Lei; Wu, Jianwei; Wang, Jihua

    2015-12-01

    In order to construct and express human cardiac troponin C-linker-troponin I(P) [ cTnC-linker-TnI(P)] fusion protein, detect its activity and prepare lyophilized protein, we searched the CDs of human cTnC and cTnI from GenBank, synthesized cTnC and cTnI(30-110aa) into cloning vector by a short DNA sequence coding for 15 neutral amino acid residues. pCold I-cTnC-linker-TnI(P) was constructed and transformed into E. coli BL21(DE3). Then, cTnC-linker-TnI(P) fusion protein was induced by isopropyl-β-D-thiogalactopyranoside (IPTG). Soluable expression of cTnC-linker-TnI(P) in prokaryotic system was successfully obtained. The fusion protein was purified by Ni²⁺ Sepharose 6 Fast Flow affinity chromatography with over 95% purity and prepared into lyophilized protein. The activity of purified cTnC-linker-TnI(P) and its lyophilized protein were detected by Wondfo Finecare™ cTnI Test. Lyophilized protein of cTnC-linker-TnI(P) was stable for 10 or more days at 37 °C and 4 or more months at 25 °C and 4 °C. The expression system established in this research is feasible and efficient. Lyophilized protein is stable enough to be provided as biological raw materials for further research.

  1. Desorption kinetics of organic chemicals from albumin.

    PubMed

    Krause, Sophia; Ulrich, Nadin; Goss, Kai-Uwe

    2018-03-01

    When present in blood, most chemicals tend to bind to the plasma protein albumin. For distribution into surrounding tissues, desorption from albumin is necessary, because only the unbound form of a chemical is assumed to be able to cross cell membranes. For metabolism of chemicals, the liver is a particularly important organ. One potentially limiting step for hepatic uptake of the chemicals is desorption from albumin, because blood passes the human liver within seconds. Desorption kinetics from albumin can thus be an important parameter for our pharmacokinetic and toxicokinetic understanding of chemicals. This work presents a dataset of measured desorption rate constants and reveals a possibility for their prediction. Additionally, the obtained extraction profiles directly indicate physiological relevance of desorption kinetics, because desorption of the test chemicals is still incomplete after time frames comparable to the residence time of blood in the liver.

  2. Albumin in chronic liver disease: structure, functions and therapeutic implications.

    PubMed

    Spinella, Rosaria; Sawhney, Rohit; Jalan, Rajiv

    2016-01-01

    Human serum albumin is a critical plasma protein produced by the liver with a number of accepted clinical indications in chronic liver disease including management of circulatory and renal dysfunction in patients with ascites. Advanced cirrhosis is characterised by reduced albumin concentration as well as impaired albumin function as a result of specific structural changes and oxidative damage. Traditionally, the biologic and therapeutic role of albumin in liver disease was attributed to its oncotic effects but it is now understood that albumin has a wide range of other important physiologic functions such as immunomodulation, endothelial stabilisation, antioxidant effects and binding multiple drugs, toxins and other molecules. This review discusses the multifunctional properties of albumin and, in particular, the biologic and clinical implications of structural and functional changes of albumin that are associated with cirrhosis. Based on these insights, we explore the current and potential future therapeutic uses of albumin in liver disease.

  3. Expression of chimeric ras protein with OmpF signal peptide in Escherichia coli: localization of OmpF fusion protein in the inner membrane.

    PubMed

    Yamamoto, T; Okawa, N; Endo, T; Kaji, A

    1991-08-01

    The ras gene was fused with the DNA sequence of OmpF signal peptide or with the DNA sequence of OmpF signal peptide plus the amino terminal portion of the OmpF gene. They were placed in plasmids together with the bacteriophage lambda PL promoter. These plasmids were introduced into Escherichia coli strain K-12 and the OmpF signal peptide fusion proteins were expressed. These fusion proteins were identified as 29.0 and 30.0 kDa proteins. However, processed products of these proteins were not found in the extract. The fusion proteins were localized mostly in the cytoplasm and the inner membrane, but none of them was secreted into the periplasmic space. On the other hand, the ras protein alone was found in the cytoplasm and not in the inner membrane. Viable counts of E. coli harbouring these plasmids decreased when these fused proteins were induced. Induction of the ras protein alone did not harm cells. These observations suggest that insertion of the heterologous proteins into the inner membrane may cause the bactericidal effect.

  4. TALE-PvuII fusion proteins--novel tools for gene targeting.

    PubMed

    Yanik, Mert; Alzubi, Jamal; Lahaye, Thomas; Cathomen, Toni; Pingoud, Alfred; Wende, Wolfgang

    2013-01-01

    Zinc finger nucleases (ZFNs) consist of zinc fingers as DNA-binding module and the non-specific DNA-cleavage domain of the restriction endonuclease FokI as DNA-cleavage module. This architecture is also used by TALE nucleases (TALENs), in which the DNA-binding modules of the ZFNs have been replaced by DNA-binding domains based on transcription activator like effector (TALE) proteins. Both TALENs and ZFNs are programmable nucleases which rely on the dimerization of FokI to induce double-strand DNA cleavage at the target site after recognition of the target DNA by the respective DNA-binding module. TALENs seem to have an advantage over ZFNs, as the assembly of TALE proteins is easier than that of ZFNs. Here, we present evidence that variant TALENs can be produced by replacing the catalytic domain of FokI with the restriction endonuclease PvuII. These fusion proteins recognize only the composite recognition site consisting of the target site of the TALE protein and the PvuII recognition sequence (addressed site), but not isolated TALE or PvuII recognition sites (unaddressed sites), even at high excess of protein over DNA and long incubation times. In vitro, their preference for an addressed over an unaddressed site is > 34,000-fold. Moreover, TALE-PvuII fusion proteins are active in cellula with minimal cytotoxicity.

  5. Increase of Total Nephron Albumin Filtration and Reabsorption in Diabetic Nephropathy.

    PubMed

    Mori, Keita P; Yokoi, Hideki; Kasahara, Masato; Imamaki, Hirotaka; Ishii, Akira; Kuwabara, Takashige; Koga, Kenichi; Kato, Yukiko; Toda, Naohiro; Ohno, Shoko; Kuwahara, Koichiro; Endo, Tomomi; Nakao, Kazuwa; Yanagita, Motoko; Mukoyama, Masashi; Mori, Kiyoshi

    2017-01-01

    The amount of albumin filtered through the glomeruli and reabsorbed at the proximal tubules in normal and in diabetic kidneys is debated. The megalin/cubilin complex mediates protein reabsorption, but genetic knockout of megalin is perinatally lethal. To overcome current technical problems, we generated a drug-inducible megalin-knockout mouse line, megalin(lox/lox);Ndrg1-CreER T2 (iMegKO), in which megalin expression can be shut off at any time by administration of tamoxifen (Tam). Tam administration in adult iMegKO mice decreased the expression of renal megalin protein by 92% compared with that in wild-type C57BL/6J mice and almost completely abrogated renal reabsorption of intravenously injected retinol-binding protein. Furthermore, urinary albumin excretion increased to 175 μg/d (0.46 mg albumin/mg creatinine) in Tam-treated iMegKO mice, suggesting that this was the amount of total nephron albumin filtration. By comparing Tam-treated, streptozotocin-induced diabetic iMegKO mice with Tam-treated nondiabetic iMegKO mice, we estimated that the development of diabetes led to a 1.9-fold increase in total nephron albumin filtration, a 1.8-fold increase in reabsorption, and a significant reduction in reabsorption efficiency (86% efficiency versus 96% efficiency in nondiabetic mice). Insulin treatment normalized these abnormalities. Akita;iMegKO mice, another model of type 1 diabetes, showed equivalent results. Finally, nondiabetic iMegKO mice had a glomerular sieving coefficient of albumin of 1.7×10 -5 , which approximately doubled in diabetic iMegKO mice. This study reveals actual values and changes of albumin filtration and reabsorption in early diabetic nephropathy in mice, bringing new insights to our understanding of renal albumin dynamics associated with the hyperfiltration status of diabetic nephropathy. Copyright © 2016 by the American Society of Nephrology.

  6. Sequence motifs and prokaryotic expression of the reptilian paramyxovirus fusion protein

    USGS Publications Warehouse

    Franke, J.; Batts, W.N.; Ahne, W.; Kurath, G.; Winton, J.R.

    2006-01-01

    Fourteen reptilian paramyxovirus isolates were chosen to represent the known extent of genetic diversity among this novel group of viruses. Selected regions of the fusion (F) gene were sequenced, analyzed and compared. The F gene of all isolates contained conserved motifs homologous to those described for other members of the family Paramyxoviridae including: signal peptide, transmembrane domain, furin cleavage site, fusion peptide, N-linked glycosylation sites, and two heptad repeats, the second of which (HRB-LZ) had the characteristics of a leucine zipper. Selected regions of the fusion gene of isolate Gono-GER85 were inserted into a prokaryotic expression system to generate three recombinant protein fragments of various sizes. The longest recombinant protein was cleaved by furin into two fragments of predicted length. Western blot analysis with virus-neutralizing rabbit-antiserum against this isolate demonstrated that only the longest construct reacted with the antiserum. This construct was unique in containing 30 additional C-terminal amino acids that included most of the HRB-LZ. These results indicate that the F genes of reptilian paramyxoviruses contain highly conserved motifs typical of other members of the family and suggest that the HRB-LZ domain of the reptilian paramyxovirus F protein contains a linear antigenic epitope. ?? Springer-Verlag 2005.

  7. The BAR Domain Proteins: Molding Membranes in Fission, Fusion, and Phagy

    PubMed Central

    Ren, Gang; Vajjhala, Parimala; Lee, Janet S.; Winsor, Barbara; Munn, Alan L.

    2006-01-01

    The Bin1/amphiphysin/Rvs167 (BAR) domain proteins are a ubiquitous protein family. Genes encoding members of this family have not yet been found in the genomes of prokaryotes, but within eukaryotes, BAR domain proteins are found universally from unicellular eukaryotes such as yeast through to plants, insects, and vertebrates. BAR domain proteins share an N-terminal BAR domain with a high propensity to adopt α-helical structure and engage in coiled-coil interactions with other proteins. BAR domain proteins are implicated in processes as fundamental and diverse as fission of synaptic vesicles, cell polarity, endocytosis, regulation of the actin cytoskeleton, transcriptional repression, cell-cell fusion, signal transduction, apoptosis, secretory vesicle fusion, excitation-contraction coupling, learning and memory, tissue differentiation, ion flux across membranes, and tumor suppression. What has been lacking is a molecular understanding of the role of the BAR domain protein in each process. The three-dimensional structure of the BAR domain has now been determined and valuable insight has been gained in understanding the interactions of BAR domains with membranes. The cellular roles of BAR domain proteins, characterized over the past decade in cells as distinct as yeasts, neurons, and myocytes, can now be understood in terms of a fundamental molecular function of all BAR domain proteins: to sense membrane curvature, to bind GTPases, and to mold a diversity of cellular membranes. PMID:16524918

  8. Construction, expression, and localization of a CycA::PhoA fusion protein in Rhodobacter sphaeroides and Escherichia coli.

    PubMed Central

    Varga, A R; Kaplan, S

    1989-01-01

    We demonstrated the utility of Escherichia coli alkaline phosphatase, encoded by phoA, as a reporter molecule for genetic fusions in Rhodobacter sphaeroides. A portion of the R. sphaeroides cycA gene was fused to phoA, yielding a fusion protein comprising the putative signal sequence and first 10 amino acids of the cytochrome c2 apoprotein joined to the sixth amino acid of alkaline phosphatase. The fusion protein was efficiently transported to the periplasm of R. sphaeroides as determined by enzyme activity, Western immunoblot analysis, and immunogold electron microscopy. We also documented the ability of an R. sphaeroides mutant, RS104, with gross defects in photosynthetic membrane morphology to efficiently recognize and translocate the fusion protein to the periplasmic compartment. The inclusion of 500 base pairs of R. sphaeroides DNA in cis to the cycA structural gene resulted in a 2.5-fold increase in alkaline phosphatase activity in photosynthetically grown cells compared with the activity in aerobically grown cells, demonstrating that the fusion protein is regulated in a manner similar to that of cytochrome c2 regulation. We also constructed two pUC19-based plasmids suitable for the construction of translational fusions to phoA. In these plasmids, translational fusions of phoA to the gene under consideration can be made in all three reading frames, thus facilitating construction and expression of fusion protein systems utilizing phoA. Images PMID:2553661

  9. A fully human anti-Ep-CAM scFv-beta-glucuronidase fusion protein for selective chemotherapy with a glucuronide prodrug

    PubMed Central

    de Graaf, M; Boven, E; Oosterhoff, D; van der Meulen-Muileman, I H; Huls, G A; Gerritsen, W R; Haisma, H J; Pinedo, H M

    2002-01-01

    Monoclonal antibodies against tumour-associated antigens could be useful to deliver enzymes selectively to the site of a tumour for activation of a non-toxic prodrug. A completely human fusion protein may be advantageous for repeated administration, as host immune responses may be avoided. We have constructed a fusion protein consisting of a human single chain Fv antibody, C28, against the epithelial cell adhesion molecule and the human enzyme β-glucuronidase. The sequences encoding C28 and human enzyme β-glucuronidase were joined by a sequence encoding a flexible linker, and were preceded by the IgGκ signal sequence for secretion of the fusion protein. A CHO cell line was engineered to secrete C28-β-glucuronidase fusion protein. Antibody specificity and enzyme activity were retained in the secreted fusion protein that had an apparent molecular mass of 100 kDa under denaturing conditions. The fusion protein was able to convert a non-toxic prodrug of doxorubicin, N-[4-doxorubicin-N-carbonyl(oxymethyl)phenyl]-O-β-glucuronyl carbamate to doxorubicin, resulting in cytotoxicity. A bystander effect was demonstrated, as doxorubicin was detected in all cells after N-[4-doxorubicin-N-carbonyl(oxymethyl)phenyl]-O-β-glucuronyl carbamate administration when only 10% of the cells expressed the fusion protein. This is the first fully human and functional fusion protein consisting of an scFv against epithelial cell adhesion molecule and human enzyme β-glucuronidase for future use in tumour-specific activation of a non-toxic glucuronide prodrug. British Journal of Cancer (2002) 86, 811–818. DOI: 10.1038/sj/bjc/6600143 www.bjcancer.com © 2002 Cancer Research UK PMID:11875747

  10. Expression of proteins in Escherichia coli as fusions with maltose-binding protein to rescue non-expressed targets in a high-throughput protein-expression and purification pipeline

    PubMed Central

    Hewitt, Stephen N.; Choi, Ryan; Kelley, Angela; Crowther, Gregory J.; Napuli, Alberto J.; Van Voorhis, Wesley C.

    2011-01-01

    Despite recent advances, the expression of heterologous proteins in Escherichia coli for crystallization remains a nontrivial challenge. The present study investigates the efficacy of maltose-binding protein (MBP) fusion as a general strategy for rescuing the expression of target proteins. From a group of sequence-verified clones with undetectable levels of protein expression in an E. coli T7 expression system, 95 clones representing 16 phylogenetically diverse organisms were selected for recloning into a chimeric expression vector with an N-terminal histidine-tagged MBP. PCR-amplified inserts were annealed into an identical ligation-independent cloning region in an MBP-fusion vector and were analyzed for expression and solubility by high-throughput nickel-affinity binding. This approach yielded detectable expression of 72% of the clones; soluble expression was visible in 62%. However, the solubility of most proteins was marginal to poor upon cleavage of the MBP tag. This study offers large-scale evidence that MBP can improve the soluble expression of previously non-expressing proteins from a variety of eukaryotic and prokaryotic organisms. While the behavior of the cleaved proteins was disappointing, further refinements in MBP tagging may permit the more widespread use of MBP-fusion proteins in crystallographic studies. PMID:21904041

  11. Albumin heterogeneity in low-abundance fluids. The case of urine and cerebro-spinal fluid.

    PubMed

    Bruschi, Maurizio; Santucci, Laura; Candiano, Giovanni; Ghiggeri, Gian Marco

    2013-12-01

    Serum albumin is a micro-heterogeneous protein composed of at least 40 isoforms. Its heterogeneity is even more pronounced in biological fluids other than serum, the major being urine and cerebrospinal fluid. Modification 'in situ' and/or selectivity of biological barriers, such as in the kidney, determines the final composition of albumin and may help in definition of inflammatory states. This review focuses on various aspects of albumin heterogeneity in low 'abundance fluids' and highlights the potential source of information in diseases. The electrical charge of the protein in urine and CSF is modified but with an opposite change and depending on clinical conditions. In normal urine, the bulk of albumin is more anionic than in serum for the presence of ten times more fatty acids that introduce equivalent anionic charges and modify hydrophobicity of the protein. At the same time, urinary albumin is more glycosylated compared to the serum homolog. Finally, albumin fragments can be detected in urine in patients with proteinuria. For albumin in CSF, we lack information relative to normal conditions since ethical problems do not allow normal CSF to be studied. In multiple sclerosis, the albumin charge in CSF is more cationic than in serum, this change possibly involving structural anomalies or small molecules bindings. Massively fatty albumin could be toxic for tubular cells and be eliminated on this basis. Renal handling of glycosylated albumin can alter the normal equilibrium of filtration/reabsorption and trigger mechanisms leading to glomerulosclerosis and tubulo-interstitial fibrosis. This article is part of a Special Issue entitled Serum Albumin. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  12. Domain fusion analysis by applying relational algebra to protein sequence and domain databases.

    PubMed

    Truong, Kevin; Ikura, Mitsuhiko

    2003-05-06

    Domain fusion analysis is a useful method to predict functionally linked proteins that may be involved in direct protein-protein interactions or in the same metabolic or signaling pathway. As separate domain databases like BLOCKS, PROSITE, Pfam, SMART, PRINTS-S, ProDom, TIGRFAMs, and amalgamated domain databases like InterPro continue to grow in size and quality, a computational method to perform domain fusion analysis that leverages on these efforts will become increasingly powerful. This paper proposes a computational method employing relational algebra to find domain fusions in protein sequence databases. The feasibility of this method was illustrated on the SWISS-PROT+TrEMBL sequence database using domain predictions from the Pfam HMM (hidden Markov model) database. We identified 235 and 189 putative functionally linked protein partners in H. sapiens and S. cerevisiae, respectively. From scientific literature, we were able to confirm many of these functional linkages, while the remainder offer testable experimental hypothesis. Results can be viewed at http://calcium.uhnres.utoronto.ca/pi. As the analysis can be computed quickly on any relational database that supports standard SQL (structured query language), it can be dynamically updated along with the sequence and domain databases, thereby improving the quality of predictions over time.

  13. Domain fusion analysis by applying relational algebra to protein sequence and domain databases

    PubMed Central

    Truong, Kevin; Ikura, Mitsuhiko

    2003-01-01

    Background Domain fusion analysis is a useful method to predict functionally linked proteins that may be involved in direct protein-protein interactions or in the same metabolic or signaling pathway. As separate domain databases like BLOCKS, PROSITE, Pfam, SMART, PRINTS-S, ProDom, TIGRFAMs, and amalgamated domain databases like InterPro continue to grow in size and quality, a computational method to perform domain fusion analysis that leverages on these efforts will become increasingly powerful. Results This paper proposes a computational method employing relational algebra to find domain fusions in protein sequence databases. The feasibility of this method was illustrated on the SWISS-PROT+TrEMBL sequence database using domain predictions from the Pfam HMM (hidden Markov model) database. We identified 235 and 189 putative functionally linked protein partners in H. sapiens and S. cerevisiae, respectively. From scientific literature, we were able to confirm many of these functional linkages, while the remainder offer testable experimental hypothesis. Results can be viewed at . Conclusion As the analysis can be computed quickly on any relational database that supports standard SQL (structured query language), it can be dynamically updated along with the sequence and domain databases, thereby improving the quality of predictions over time. PMID:12734020

  14. Pharmacokinetics and brain uptake of an IgG-TNF decoy receptor fusion protein following intravenous, intraperitoneal, and subcutaneous administration in mice.

    PubMed

    Sumbria, Rachita K; Zhou, Qing-Hui; Hui, Eric Ka-Wai; Lu, Jeff Zhiqiang; Boado, Ruben J; Pardridge, William M

    2013-04-01

    Tumor necrosis factor (TNF)-α is a proinflammatory cytokine active in the brain. Etanercept, the TNF decoy receptor (TNFR), does not cross the blood-brain barrier (BBB). The TNFR was re-engineered for BBB penetration as a fusion protein with a chimeric monoclonal antibody (mAb) against the mouse transferrin receptor (TfR), and this fusion protein is designated cTfRMAb-TNFR. The cTfRMAb domain of the fusion protein acts as a molecular Trojan horse and mediates transport via the endogenous BBB TfR. To support future chronic treatment of mouse models of neural disease with daily administration of the cTfRMAb-TNFR fusion protein, a series of pharmacokinetics and brain uptake studies in the mouse was performed. The cTfRMAb-TNFR fusion protein was radiolabeled and injected into mice via the intravenous, intraperitoneal (IP), or subcutaneous (SQ) routes of administration at doses ranging from 0.35 to 10 mg/kg. The distribution of the fusion protein into plasma following the IP or SQ routes was enhanced by increasing the injection dose from 3 to 10 mg/kg. The fusion protein demonstrated long circulation times with high metabolic stability following the IP or SQ routes of injection. The IP or SQ routes produced concentrations of the cTfRMAb-TNFR fusion protein in the brain that exceed by 20- to 50-fold the concentration of TNFα in pathologic conditions of the brain. The SQ injection is the preferred route of administration, as the level of cTfRMAb fusion protein produced in the brain is comparable to that generated with intravenous injection, and at a much lower plasma area under the concentration curve of the fusion protein as compared to IP administration.

  15. Electrostatic Unfolding and Interactions of Albumin Driven by pH Changes: A Molecular Dynamics Study

    PubMed Central

    2015-01-01

    A better understanding of protein aggregation is bound to translate into critical advances in several areas, including the treatment of misfolded protein disorders and the development of self-assembling biomaterials for novel commercial applications. Because of its ubiquity and clinical potential, albumin is one of the best-characterized models in protein aggregation research; but its properties in different conditions are not completely understood. Here, we carried out all-atom molecular dynamics simulations of albumin to understand how electrostatics can affect the conformation of a single albumin molecule just prior to self-assembly. We then analyzed the tertiary structure and solvent accessible surface area of albumin after electrostatically triggered partial denaturation. The data obtained from these single protein simulations allowed us to investigate the effect of electrostatic interactions between two proteins. The results of these simulations suggested that hydrophobic attractions and counterion binding may be strong enough to effectively overcome the electrostatic repulsions between the highly charged monomers. This work contributes to our general understanding of protein aggregation mechanisms, the importance of explicit consideration of free ions in protein solutions, provides critical new insights about the equilibrium conformation of albumin in its partially denatured state at low pH, and may spur significant progress in our efforts to develop biocompatible protein hydrogels driven by electrostatic partial denaturation. PMID:24393011

  16. Albumin-coated SPIONs: an experimental and theoretical evaluation of protein conformation, binding affinity and competition with serum proteins

    NASA Astrophysics Data System (ADS)

    Yu, Siming; Perálvarez-Marín, Alex; Minelli, Caterina; Faraudo, Jordi; Roig, Anna; Laromaine, Anna

    2016-07-01

    The variety of nanoparticles (NPs) used in biological applications is increasing and the study of their interaction with biological media is becoming more important. Proteins are commonly the first biomolecules that NPs encounter when they interact with biological systems either in vitro or in vivo. Among NPs, super-paramagnetic iron oxide nanoparticles (SPIONs) show great promise for medicine. In this work, we study in detail the formation, composition, and structure of a monolayer of bovine serum albumin (BSA) on SPIONs. We determine, both by molecular simulations and experimentally, that ten molecules of BSA form a monolayer around the outside of the SPIONs and their binding strength to the SPIONs is about 3.5 × 10-4 M, ten times higher than the adsorption of fetal bovine serum (FBS) on the same SPIONs. We elucidate a strong electrostatic interaction between BSA and the SPIONs, although the secondary structure of the protein is not affected. We present data that supports the strong binding of the BSA monolayer on SPIONs and the properties of the BSA layer as a protein-resistant coating. We believe that a complete understanding of the behavior and morphology of BSA-SPIONs and how the protein interacts with SPIONs is crucial for improving NP surface design and expanding the potential applications of SPIONs in nanomedicine.The variety of nanoparticles (NPs) used in biological applications is increasing and the study of their interaction with biological media is becoming more important. Proteins are commonly the first biomolecules that NPs encounter when they interact with biological systems either in vitro or in vivo. Among NPs, super-paramagnetic iron oxide nanoparticles (SPIONs) show great promise for medicine. In this work, we study in detail the formation, composition, and structure of a monolayer of bovine serum albumin (BSA) on SPIONs. We determine, both by molecular simulations and experimentally, that ten molecules of BSA form a monolayer around the

  17. Macrophage fusion is controlled by the cytoplasmic protein tyrosine phosphatase PTP-PEST/PTPN12.

    PubMed

    Rhee, Inmoo; Davidson, Dominique; Souza, Cleiton Martins; Vacher, Jean; Veillette, André

    2013-06-01

    Macrophages can undergo cell-cell fusion, leading to the formation of multinucleated giant cells and osteoclasts. This process is believed to promote the proteolytic activity of macrophages toward pathogens, foreign bodies, and extracellular matrices. Here, we examined the role of PTP-PEST (PTPN12), a cytoplasmic protein tyrosine phosphatase, in macrophage fusion. Using a macrophage-targeted PTP-PEST-deficient mouse, we determined that PTP-PEST was not needed for macrophage differentiation or cytokine production. However, it was necessary for interleukin-4-induced macrophage fusion into multinucleated giant cells in vitro. It was also needed for macrophage fusion following implantation of a foreign body in vivo. Moreover, in the RAW264.7 macrophage cell line, PTP-PEST was required for receptor activator of nuclear factor kappa-B ligand (RANKL)-triggered macrophage fusion into osteoclasts. PTP-PEST had no impact on expression of fusion mediators such as β-integrins, E-cadherin, and CD47, which enable macrophages to become fusion competent. However, it was needed for polarization of macrophages, migration induced by the chemokine CC chemokine ligand 2 (CCL2), and integrin-induced spreading, three key events in the fusion process. PTP-PEST deficiency resulted in specific hyperphosphorylation of the protein tyrosine kinase Pyk2 and the adaptor paxillin. Moreover, a fusion defect was induced upon treatment of normal macrophages with a Pyk2 inhibitor. Together, these data argue that macrophage fusion is critically dependent on PTP-PEST. This function is seemingly due to the ability of PTP-PEST to control phosphorylation of Pyk2 and paxillin, thereby regulating cell polarization, migration, and spreading.

  18. Engineering a pharmacologically superior form of granulocyte-colony-stimulating factor by fusion with gelatin-like-protein polymer.

    PubMed

    Huang, Yan-Shan; Wen, Xiao-Fang; Wu, Yi-Liang; Wang, Ye-Fei; Fan, Min; Yang, Zhi-Yu; Liu, Wei; Zhou, Lin-Fu

    2010-03-01

    The plasma half-life of therapeutic proteins is a critical factor in many clinical applications. Therefore, new strategies to prolong plasma half-life of long-acting peptides and protein drugs are in high demand. Here, we designed an artificial gelatin-like protein (GLK) and fused this hydrophilic GLK polymer to granulocyte-colony-stimulating factor (G-CSF) to generate a chimeric GLK/G-CSF fusion protein. The genetically engineered recombinant GLK/G-CSF (rGLK/G-CSF) fusion protein was purified from Pichia pastoris. In vitro studies demonstrated that rGLK/G-CSF possessed an enlarged hydrodynamic radius, improved thermal stability and retained full bioactivity compared to unfused G-CSF. Following a single subcutaneous administration to rats, the rGLK/G-CSF fusion protein displayed a slower plasma clearance rate and stimulated greater and longer lasting increases in circulating white blood cells than G-CSF. Our findings indicate that fusion with this artificial, hydrophilic, GLK polymer provides many advantages in the construction of a potent hematopoietic factor with extended plasma half-life. This approach could be easily applied to other therapeutic proteins and have important clinical applications. (c) 2009 Elsevier B.V. All rights reserved.

  19. Proteolysis and utilization of albumin by enrichment cultures of subgingival microbiota.

    PubMed

    Wei, G X; van der Hoeven, J S; Smalley, J W; Mikx, F H; Fan, M W

    1999-12-01

    Subgingival dental plaque consists mainly of microorganisms that derive their energy from amino acid fermentation. Their nutrient requirements are met by the subgingival proteolytic system, which includes proteases from microorganism and inflammatory cells, and substrate proteins from sulcus exudate, including albumin. To determine the selective effect of individual proteins on microbiota, we used albumin as the main substrate for growth. Eight subgingval plaque samples from untreated periodontal pockets of patients with adult periodontitis were inoculated in peptone yeast medium with bovine albumin (9 g/l). After three subculture steps, cell yields of the enrichment cultures at the medium with 0, 1.25, 2.5, 5, 10, and 20 g/l albumin were determined. Proteolytic activity (U/absorbance at 550 nm) of the enrichment cultures and different isolates derived from the cultures was estimated by the degradation of resorufin-labeled casein. It was observed that the yield of the mixed culture was albumin limited, and the proteolytic activities of the cultures in albumin broth were higher than in control (peptone broth). Among the isolates from the enrichment cultures, Peptostreptococcus micros, Prevotella melaninogenica, Prevotella buccae and Prevotella bivia demonstrated proteolysis. The frequent occurrence of Streptococcus gordonii and Streptococcus anginosus in the albumin cultures is explained by their ability to utilize arginine as an energy source for growth. Albumin in the medium was partly degraded by pure cultures but completely consumed in enrichment cultures, indicating synergy of bacterial proteinases. It is concluded that the subgingival microbiota possesses proteolytic activity and may use albumin as a substrate for their growth. Enrichment cultures on albumin may serve as a relatively simple in vitro model to evaluate the effects of proteinase inhibitors.

  20. Fragments of Target Cells are Internalized into Retroviral Envelope Protein-Expressing Cells during Cell-Cell Fusion by Endocytosis

    PubMed Central

    Izumida, Mai; Kamiyama, Haruka; Suematsu, Takashi; Honda, Eri; Koizumi, Yosuke; Yasui, Kiyoshi; Hayashi, Hideki; Ariyoshi, Koya; Kubo, Yoshinao

    2016-01-01

    Retroviruses enter into host cells by fusion between viral and host cell membranes. Retroviral envelope glycoprotein (Env) induces the membrane fusion, and also mediates cell-cell fusion. There are two types of cell-cell fusions induced by the Env protein. Fusion-from-within is induced by fusion between viral fusogenic Env protein-expressing cells and susceptible cells, and virions induce fusion-from-without by fusion between adjacent cells. Although entry of ecotropic murine leukemia virus (E-MLV) requires host cell endocytosis, the involvement of endocytosis in cell fusion is unclear. By fluorescent microscopic analysis of the fusion-from-within, we found that fragments of target cells are internalized into Env-expressing cells. Treatment of the Env-expressing cells with an endocytosis inhibitor more significantly inhibited the cell fusion than that of the target cells, indicating that endocytosis in Env-expressing cells is required for the cell fusion. The endocytosis inhibitor also attenuated the fusion-from-without. Electron microscopic analysis suggested that the membrane fusion resulting in fusion-from-within initiates in endocytic membrane dents. This study shows that two types of the viral cell fusion both require endocytosis, and provides the cascade of fusion-from-within. PMID:26834711

  1. Role played by Disabled-2 in albumin induced MAP Kinase signalling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diwakar, Ramaswamy; Pearson, Alexander L.; Colville-Nash, Paul

    2008-02-15

    Albumin has been shown to activate the mitogen activated protein kinase (MAPK) pathway in proximal tubular cells (PTECs) of the kidney. Megalin, the putative receptor for albumin has potential signalling properties. However, the mechanisms by which megalin signals are unclear. The adaptor phosphoprotein Disabled-2 (Dab2) is known to interact with the cytoplasmic tail of megalin and may be involved in albumin-mediated MAPK signalling. In this study, we investigated the role of Dab2 in albumin-mediated MAPK signalling and further studied the role of Dab2 in albumin-induced TGF{beta}-1 secretion, a MAPK dependent event. We used RNA interference to knockdown Dab2 protein abundancemore » in HKC-8 cells a model of human PTECs. Albumin activated ERK1,2 and Elk-1 in a MEK-1 dependent manner and resulted in secretion of TGF{beta}-1. In the absence of albumin, knockdown of Dab2 resulted in a trend towards increase in pERK1,2 consistent with its putative role as an inhibitor of cell proliferation. However albumin-induced ERK1,2 activation was completely abolished by Dab2 knockdown. Dab2 knockdown did not however result in inhibition of albumin-induced TGF{beta}-1 secretion. These results suggest that Dab2 is a ligand dependent bi-directional regulator of ERK1,2 activity by demonstrating that in addition to its more traditional role as an inhibitor of ERK1,2 it may also activate ERK1,2.« less

  2. Albumin binds self-assembling dyes as specific polymolecular ligands.

    PubMed

    Stopa, Barbara; Rybarska, Janina; Drozd, Anna; Konieczny, Leszek; Król, Marcin; Lisowski, Marek; Piekarska, Barbara; Roterman, Irena; Spólnik, Paweł; Zemanek, Grzegorz

    2006-12-15

    Self-assembling dyes with a structure related to Congo red (e.g. Evans blue) form polymolecular complexes with albumin. The dyes, which are lacking a self-assembling property (Trypan blue, ANS) bind as single molecules. The supramolecular character of dye ligands bound to albumin was demonstrated by indicating the complexation of dye molecules outnumbering the binding sites in albumin and by measuring the hydrodynamic radius of albumin which is growing upon complexation of self-assembling dye in contrast to dyes lacking this property. The self-assembled character of Congo red was also proved using it as a carrier introducing to albumin the intercalated nonbonding foreign compounds. Supramolecular, ordered character of the dye in the complex with albumin was also revealed by finding that self-assembling dyes become chiral upon complexation. Congo red complexation makes albumin less resistant to low pH as concluded from the facilitated N-F transition, observed in studies based on the measurement of hydrodynamic radius. This particular interference with protein stability and the specific changes in digestion resulted from binding of Congo red suggest that the self-assembled dye penetrates the central crevice of albumin.

  3. Glycation induces formation of amyloid cross-beta structure in albumin.

    PubMed

    Bouma, Barend; Kroon-Batenburg, Loes M J; Wu, Ya-Ping; Brünjes, Bettina; Posthuma, George; Kranenburg, Onno; de Groot, Philip G; Voest, Emile E; Gebbink, Martijn F B G

    2003-10-24

    Amyloid fibrils are components of proteinaceous plaques that are associated with conformational diseases such as Alzheimer's disease, transmissible spongiform encephalopathies, and familial amyloidosis. Amyloid polypeptides share a specific quarternary structure element known as cross-beta structure. Commonly, fibrillar aggregates are modified by advanced glycation end products (AGE). In addition, AGE formation itself induces protein aggregation. Both amyloid proteins and protein-AGE adducts bind multiligand receptors, such as receptor for AGE, CD36, and scavenger receptors A and B type I, and the serine protease tissue-type plasminogen activator (tPA). Based on these observations, we hypothesized that glycation induces refolding of globular proteins, accompanied by formation of cross-beta structure. Using transmission electron microscopy, we demonstrate here that glycated albumin condensates into fibrous or amorphous aggregates. These aggregates bind to amyloid-specific dyes Congo red and thioflavin T and to tPA. In contrast to globular albumin, glycated albumin contains amino acid residues in beta-sheet conformation, as measured with circular dichroism spectropolarimetry. Moreover, it displays cross-beta structure, as determined with x-ray fiber diffraction. We conclude that glycation induces refolding of initially globular albumin into amyloid fibrils comprising cross-beta structure. This would explain how glycated ligands and amyloid ligands can bind to the same multiligand "cross-beta structure" receptors and to tPA.

  4. Porphyrin mediated photo-modification of the structure and function of human serum albumin

    NASA Astrophysics Data System (ADS)

    Rozinek, Sarah C.

    Photosensitization reactions involve irradiating (with visible light) molecules with a high efficiency for either electron transfer or entering an excited triplet state (photosensitizer). Such reactions are applied to photodynamic cancer therapy, many medical laser-treatments, and a potential array of disinfection and pest elimination techniques. To understand the biophysical mechanisms of how these applications are effective at the protein level, the group of Dr. Brancaleon (UTSA) has investigated the irradiation of several dye-protein combinations, and discovered effects on protein structure and function. To further that work, we have investigated irradiation of the protein, human serum albumin (HSA), photosensitized by either protoporphyrin IX (PPIX) or meso-tetrakis(4-sulfonatophenyl)porphyrin (TSPP). HSA is the most abundant plasma protein, making it a likely substrate in PDT, and it possesses a specific binding pocket for iron-PPIX (heme) and possibly other porphyrin derivatives. The results of our research are summarized as follows. First, a thorough characterization of the binding of each photosensitizer to albumin was completed, elucidating a probable binding location for TSPP. Next, fluorescence lifetime emission of the single tryptophan residue, alongside circular dichroism, found tertiary structural changes around tryptophan and an overall 20% decrease in protein secondary structure after irradiation with TSPP bound. Finally, to determine if protein function was lost after photosensitization, size exclusion chromatography found modified albumin still recognizable by its receptor-protein, and comparative ex vivo up-take studies revealed that modified albumin is not processed the same way as native albumin in live tapeworm larva (Mesocestoides corti). Thus we found that visible light can induce partial unfolding of a protein by using a photo-activated ligand. These small structural modifications were sufficient to affect the protein's biological function.

  5. Purification method for recombinant proteins based on a fusion between the target protein and the C-terminus of calmodulin

    NASA Technical Reports Server (NTRS)

    Schauer-Vukasinovic, Vesna; Deo, Sapna K.; Daunert, Sylvia

    2002-01-01

    Calmodulin (CaM) was used as an affinity tail to facilitate the purification of the green fluorescent protein (GFP), which was used as a model target protein. The protein GFP was fused to the C-terminus of CaM, and a factor Xa cleavage site was introduced between the two proteins. A CaM-GFP fusion protein was expressed in E. coli and purified on a phenothiazine-derivatized silica column. CaM binds to the phenothiazine on the column in a Ca(2+)-dependent fashion and it was, therefore, used as an affinity tail for the purification of GFP. The fusion protein bound to the affinity column was then subjected to a proteolytic digestion with factor Xa. Pure GFP was eluted with a Ca(2+)-containing buffer, while CaM was eluted later with a buffer containing the Ca(2+)-chelating agent EGTA. The purity of the isolated GFP was verified by SDS-PAGE, and the fluorescence properties of the purified GFP were characterized.

  6. Pru du 2S albumin or Pru du vicilin?

    PubMed

    Garino, Cristiano; De Paolis, Angelo; Coïsson, Jean Daniel; Arlorio, Marco

    2015-06-01

    A short partial sequence of 28 amino acids is all the information we have so far about the putative allergen 2S albumin from almond. The aim of this work was to analyze this information using mainly bioinformatics tools, in order to verify its rightness. Based on the results reported in the paper describing this allergen from almond, we analyzed the original data of amino acids sequencing through available software. The degree of homology of the almond 12kDa protein with any other known 2S albumin appears to be much lower than the one reported in the paper that firstly described it. In a publicly available cDNA library we discovered an expressed sequence tag which translation generates a protein that perfectly matches both of the sequencing outputs described in the same paper. A further analysis indicated that the latter protein seems to belong to the vicilin superfamily rather than to the prolamin one. The fact that also vicilins are seed storage proteins known to be highly allergenic would explain the IgE reactivity originally observed. Based on our observations we suggest that the IgE reactive 12kDa protein from almond currently known as Pru du 2S albumin is in reality the cleaved N-terminal region of a 7S vicilin like protein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Design of Recombinant Stem Cell Factor macrophage Colony Stimulating Factor Fusion Proteins and their Biological Activity In Vitro

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Yang, Jie; Wang, Yuelang; Zhan, Chenyang; Zang, Yuhui; Qin, Junchuan

    2005-05-01

    Stem cell factor (SCF) and macrophage colony stimulating factor (M-CSF) can act in synergistic way to promote the growth of mononuclear phagocytes. SCF-M-CSF fusion proteins were designed on the computer using the Homology and Biopolymer modules of the software packages InsightII. Several existing crystal structures were used as templates to generate models of the complexes of receptor with fusion protein. The structure rationality of the fusion protein incorporated a series of flexible linker peptide was analyzed on InsightII system. Then, a suitable peptide GGGGSGGGGSGG was chosen for the fusion protein. Two recombinant SCF-M-CSF fusion proteins were generated by construction of a plasmid in which the coding regions of human SCF (1-165aa) and M-CSF (1-149aa) cDNA were connected by this linker peptide coding sequence followed by subsequent expression in insect cell. The results of Western blot and activity analysis showed that these two recombinant fusion proteins existed as a dimer with a molecular weight of 84 KD under non-reducing conditions and a monomer of 42 KD at reducing condition. The results of cell proliferation assays showed that each fusion protein induced a dose-dependent proliferative response. At equimolar concentration, SCF/M-CSF was about 20 times more potent than the standard monomeric SCF in stimulating TF-1 cell line growth, while M-CSF/SCF was 10 times of monomeric SCF. No activity difference of M-CSF/SCF or SCF/M-CSF to M-CSF (at same molar) was found in stimulating the HL-60 cell linear growth. The synergistic effect of SCF and M-CSF moieties in the fusion proteins was demonstrated by the result of clonogenic assay performed with human bone mononuclear, in which both SCF/M-CSF and M-CSF/SCF induced much higher number of CFU-M than equimolar amount of SCF or M-CSF or that of two cytokines mixture.

  8. Chemiluminescence analysis of antioxidant capacity for serum albumin isolated from healthy or uremic volunteers.

    PubMed

    Huang, Chih-Yang; Liou, Show-Yih; Kuo, Wei-Wen; Wu, Hsi-Chin; Chang, Yen-Lin; Chen, Tung-Sheng

    2016-12-01

    Regular hemodialysis treatment induces an elevation in oxidative stress in patients with end-stage renal failure, resulting in oxidative damage of the most abundant serum protein, albumin. Oxidation of serum albumin causes depletion of albumin reactive thiols, leading to oxidative modification of serum albumin. The aim of this study was to screen the antioxidant capacity of albumins isolated from uremic patients (HD-ALB) or healthy volunteers (N-ALB). From high-performance liquid chromatography spectra, we observed that one uremic solute binds to HD-ALB via the formation of disulfide bonds between HD-ALB and the uremic solute. Furthermore, we found using chemiluminescent analysis that the antioxidant capacities for N-ALB to scavenge reactive oxygen species including singlet oxygen, hypochlorite and hydrogen peroxide were higher than HD-ALB. Our results suggest that protein-bound uremic solute binds to albumin via formation of disulfide bonds, resulting in the depletion of albumin reactive thiols. The depletion of albumin reactive thiols leads to a reduced antioxidant capacity of HD-ALB, implying postmodification of albumin. This situation may reduce the antioxidant capacity of albumin and increase oxidative stress, resulting in increase in complications related to oxidative damage in uremic patients. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Optimization of proximity ligation assay (PLA) for detection of protein interactions and fusion proteins in non-adherent cells: application to pre-B lymphocytes.

    PubMed

    Debaize, Lydie; Jakobczyk, Hélène; Rio, Anne-Gaëlle; Gandemer, Virginie; Troadec, Marie-Bérengère

    2017-01-01

    Genetic abnormalities, including chromosomal translocations, are described for many hematological malignancies. From the clinical perspective, detection of chromosomal abnormalities is relevant not only for diagnostic and treatment purposes but also for prognostic risk assessment. From the translational research perspective, the identification of fusion proteins and protein interactions has allowed crucial breakthroughs in understanding the pathogenesis of malignancies and consequently major achievements in targeted therapy. We describe the optimization of the Proximity Ligation Assay (PLA) to ascertain the presence of fusion proteins, and protein interactions in non-adherent pre-B cells. PLA is an innovative method of protein-protein colocalization detection by molecular biology that combines the advantages of microscopy with the advantages of molecular biology precision, enabling detection of protein proximity theoretically ranging from 0 to 40 nm. We propose an optimized PLA procedure. We overcome the issue of maintaining non-adherent hematological cells by traditional cytocentrifugation and optimized buffers, by changing incubation times, and modifying washing steps. Further, we provide convincing negative and positive controls, and demonstrate that optimized PLA procedure is sensitive to total protein level. The optimized PLA procedure allows the detection of fusion proteins and protein interactions on non-adherent cells. The optimized PLA procedure described here can be readily applied to various non-adherent hematological cells, from cell lines to patients' cells. The optimized PLA protocol enables detection of fusion proteins and their subcellular expression, and protein interactions in non-adherent cells. Therefore, the optimized PLA protocol provides a new tool that can be adopted in a wide range of applications in the biological field.

  10. Differential signaling through p190 and p210 BCR-ABL fusion proteins revealed by interactome and phosphoproteome analysis.

    PubMed

    Cutler, J A; Tahir, R; Sreenivasamurthy, S K; Mitchell, C; Renuse, S; Nirujogi, R S; Patil, A H; Heydarian, M; Wong, X; Wu, X; Huang, T-C; Kim, M-S; Reddy, K L; Pandey, A

    2017-07-01

    Two major types of leukemogenic BCR-ABL fusion proteins are p190 BCR-ABL and p210 BCR-ABL . Although the two fusion proteins are closely related, they can lead to different clinical outcomes. A thorough understanding of the signaling programs employed by these two fusion proteins is necessary to explain these clinical differences. We took an integrated approach by coupling protein-protein interaction analysis using biotinylation identification with global phosphorylation analysis to investigate the differences in signaling between these two fusion proteins. Our findings suggest that p190 BCR-ABL and p210 BCR-ABL differentially activate important signaling pathways, such as JAK-STAT, and engage with molecules that indicate interaction with different subcellular compartments. In the case of p210 BCR-ABL , we observed an increased engagement of molecules active proximal to the membrane and in the case of p190 BCR-ABL , an engagement of molecules of the cytoskeleton. These differences in signaling could underlie the distinct leukemogenic process induced by these two protein variants.

  11. The conserved glycine residues in the transmembrane domain of the Semliki Forest virus fusion protein are not required for assembly and fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao Maofu; Kielian, Margaret

    2005-02-05

    The alphavirus Semliki Forest virus (SFV) infects cells via a low pH-triggered fusion reaction mediated by the viral E1 protein. Both the E1 fusion peptide and transmembrane (TM) domain are essential for membrane fusion, but the functional requirements for the TM domain are poorly understood. Here we explored the role of the five TM domain glycine residues, including the highly conserved glycine pair at E1 residues 415/416. SFV mutants with alanine substitutions for individual or all five glycine residues (5G/A) showed growth kinetics and fusion pH dependence similar to those of wild-type SFV. Mutants with increasing substitution of glycine residuesmore » showed an increasingly more stringent requirement for cholesterol during fusion. The 5G/A mutant showed decreased fusion kinetics and extent in fluorescent lipid mixing assays. TM domain glycine residues thus are not required for efficient SFV fusion or assembly but can cause subtle effects on the properties of membrane fusion.« less

  12. Two single mutations in the fusion protein of Newcastle disease virus confer hemagglutinin-neuraminidase independent fusion promotion and attenuate the pathogenicity in chickens

    USDA-ARS?s Scientific Manuscript database

    The fusion (F) protein of Newcastle disease virus (NDV) plays an important role in viral infection and pathogenicity through mediating membrane fusion between the virion and host cells in the presence of the hemagglutinin-neuraminidase (HN). Previously, we obtained a velogenic NDV genotype VII muta...

  13. Mitochondrial remodeling following fission inhibition by 15d-PGJ2 involves molecular changes in mitochondrial fusion protein OPA1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kar, Rekha; Department of Biochemistry, UT Health Science Center at San Antonio, San Antonio, TX 78229; Mishra, Nandita

    2010-09-03

    Research highlights: {yields} Chemical inhibition of fission protein Drp1 leads to mitochondrial fusion. {yields} Increased fusion stimulates molecular changes in mitochondrial fusion protein OPA1. {yields} Proteolysis of larger isoforms, new synthesis and ubiquitination of OPA1 occur. {yields} Loss of mitochondrial tubular rigidity and disorganization of cristae. {yields} Generation of large swollen dysfunctional mitochondria. -- Abstract: We showed earlier that 15 deoxy {Delta}{sup 12,14} prostaglandin J2 (15d-PGJ2) inactivates Drp1 and induces mitochondrial fusion . However, prolonged incubation of cells with 15d-PGJ2 resulted in remodeling of fused mitochondria into large swollen mitochondria with irregular cristae structure. While initial fusion of mitochondria bymore » 15d-PGJ2 required the presence of both outer (Mfn1 and Mfn2) and inner (OPA1) mitochondrial membrane fusion proteins, later mitochondrial changes involved increased degradation of the fusion protein OPA1 and ubiquitination of newly synthesized OPA1 along with decreased expression of Mfn1 and Mfn2, which likely contributed to the loss of tubular rigidity, disorganization of cristae, and formation of large swollen degenerated dysfunctional mitochondria. Similar to inhibition of Drp1 by 15d-PGJ2, decreased expression of fission protein Drp1 by siRNA also resulted in the loss of fusion proteins. Prevention of 15d-PGJ2 induced mitochondrial elongation by thiol antioxidants prevented not only loss of OPA1 isoforms but also its ubiquitination. These findings provide novel insights into unforeseen complexity of molecular events that modulate mitochondrial plasticity.« less

  14. Pharmacokinetics and safety in rhesus monkeys of a monoclonal antibody-GDNF fusion protein for targeted blood-brain barrier delivery.

    PubMed

    Pardridge, William M; Boado, Ruben J

    2009-10-01

    Glial-derived neurotrophic factor (GDNF) is a potential therapy for stroke, Parkinson's disease, or drug addiction. However, GDNF does not cross the blood-brain barrier (BBB). GDNF is re-engineered as a fusion protein with a chimeric monoclonal antibody (MAb) to the human insulin receptor (HIR), which acts as a molecular Trojan horse to deliver the GDNF across the BBB. The pharmacokinetics (PK), toxicology, and safety pharmacology of the HIRMAb-GDNF fusion protein were investigated in Rhesus monkeys. The fusion protein was administered as an intravenous injection at doses up to 50 mg/kg over a 60 h period to 56 Rhesus monkeys. The plasma concentration of the HIRMAb-GDNF fusion protein was measured with a 2-site sandwich ELISA. No adverse events were observed in a 2-week terminal toxicology study, and no neuropathologic changes were observed. The PK analysis showed a linear relationship between plasma AUC and dose, a large systemic volume of distribution, as well as high clearance rates of 8-10 mL/kg/min. A no-observable-adverse-effect level is established in the Rhesus monkey for the acute administration of the HIRMAb-GDNF fusion protein. The fusion protein targeting the insulin receptor has a PK profile similar to a classical small molecule.

  15. Structure and function of photosystem I–[FeFe] hydrogenase protein fusions: An all-atom molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Bradley J.; Cheng, Xiaolin; Frymier, Paul

    2015-12-15

    All-atom molecular dynamics (MD) simulation was used to study the solution dynamics and protein protein interactions of protein fusions of photosystem I (PSI) from Thermosynechococcus elongatus and an [FeFe]-hydrogenase (FeFe H 2ase) from Clostridium pasteurianum, a unique complex capable of photocatalytic hydrogen production. This study involved fusions of these two proteins via dithiol linkers of different length including decanedithiol, octanedithiol, and hexanedithiol, for which experimental data had previously been obtained. Evaluation of root-mean-squared deviations (RMSDs) relative to the respective crystal structures of PSI and the FeFe H 2ase shows that these fusion complexes approach stable equilibrium conformations during the MDmore » simulations. Investigating protein mobility via root-mean-squared fluctuations (RMSFs) reveals that tethering via the shortest hexanedithiol linker results in increased atomic fluctuations of both PSI and the hydrogenase in these fusion complexes. Furthermore, evaluation of the inter- and intraprotein electron transfer distances in these fusion complexes indicates that the structural changes in the FeFe H 2ase arising from ligation to PSI via the shortest hexanedithiol linker may hinder electron transport in the hydrogenase, thus providing a molecular level explanation for the observation that the medium-length octanedithiol linker gives the highest hydrogen production rate.« less

  16. The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices--guilty as charged?

    PubMed

    Rizo, Josep; Südhof, Thomas C

    2012-01-01

    Neurotransmitter release is governed by proteins that have homo-logs in most types of intracellular membrane fusion, including the Sec1/Munc18 protein Munc18-1 and the SNARE proteins syntaxin-1, synaptobrevin/VAMP, and SNAP-25. The SNAREs initiate fusion by forming tight SNARE complexes that bring the vesicle and plasma membranes together. SNARE maintenance in a functional state depends on two chaperone systems (Hsc70/αCSP/SGT and synuclein); defects in these systems lead to neurodegeneration. Munc18-1 binds to an autoinhibitory closed conformation of syntaxin-1, gating formation of SNARE complexes, and also binds to SNARE complexes, which likely underlies the crucial function of Munc18-1 in membrane fusion by an as-yet unclear mechanism. Syntaxin-1 opening is mediated by Munc13s through their MUN domain, which is homologous to diverse tethering factors and may also have a general role in fusion. MUN domain activity is likely modulated in diverse presynaptic plasticity processes that depend on Ca(2+) and RIM proteins, among others.

  17. Novel routes of albumin passage across the glomerular filtration barrier.

    PubMed

    Castrop, H; Schießl, I M

    2017-03-01

    Albuminuria is a hallmark of kidney diseases of various aetiologies and an unambiguous symptom of the compromised integrity of the glomerular filtration barrier. Furthermore, there is increasing evidence that albuminuria per se aggravates the development and progression of chronic kidney disease. This review covers new aspects of the movement of large plasma proteins across the glomerular filtration barrier in health and disease. Specifically, this review focuses on the role of endocytosis and transcytosis of albumin by podocytes, which constitutes a new pathway of plasma proteins across the filtration barrier. Thus, we summarize what is known about the mechanisms of albumin endocytosis by podocytes and address the fate of the endocytosed albumin, which is directed to lysosomal degradation or transcellular movement with subsequent vesicular release into the urinary space. We also address the functional consequences of overt albumin endocytosis by podocytes, such as the formation of pro-inflammatory cytokines, which might eventually result in a deterioration of podocyte function. Finally, we consider the diagnostic potential of podocyte-derived albumin-containing vesicles in the urine as an early marker of a compromised glomerular barrier function. In terms of new technical approaches, the review covers how our knowledge of the movement of albumin across the glomerular filtration barrier has expanded by the use of new intravital imaging techniques. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  18. Screening Fusion Tags for Improved Recombinant Protein Expression in E. coli with the Expresso® Solubility and Expression Screening System.

    PubMed

    Steinmetz, Eric J; Auldridge, Michele E

    2017-11-01

    The simplicity, speed, and low cost of bacterial culture make E. coli the system of choice for most initial trials of recombinant protein expression. However, many heterologous proteins are either poorly expressed in bacteria, or are produced as incorrectly folded, insoluble aggregates that lack the activity of the native protein. In many cases, fusion to a partner protein can allow for improved expression and/or solubility of a difficult target protein. Although several different fusion partners have gained favor, none are universally effective, and identifying the one that best improves soluble expression of a given target protein is an empirical process. This unit presents a strategy for parallel screening of fusion partners for enhanced expression or solubility. The Expresso® Solubility and Expression Screening System includes a panel of seven distinct fusion partners and utilizes an extremely simple cloning strategy to enable rapid screening and identification of the most effective fusion partner. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  19. Targeting the latent cytomegalovirus reservoir with an antiviral fusion toxin protein

    PubMed Central

    Krishna, B. A.; Spiess, K.; Poole, E. L.; Lau, B.; Voigt, S.; Kledal, T. N.; Rosenkilde, M. M.; Sinclair, J. H.

    2017-01-01

    Reactivation of human cytomegalovirus (HCMV) in transplant recipients can cause life-threatening disease. Consequently, for transplant recipients, killing latently infected cells could have far-reaching clinical benefits. In vivo, myeloid cells and their progenitors are an important site of HCMV latency, and one viral gene expressed by latently infected myeloid cells is US28. This viral gene encodes a cell surface G protein-coupled receptor (GPCR) that binds chemokines, triggering its endocytosis. We show that the expression of US28 on the surface of latently infected cells allows monocytes and their progenitor CD34+ cells to be targeted and killed by F49A-FTP, a highly specific fusion toxin protein that binds this viral GPCR. As expected, this specific targeting of latently infected cells by F49A-FTP also robustly reduces virus reactivation in vitro. Consequently, such specific fusion toxin proteins could form the basis of a therapeutic strategy for eliminating latently infected cells before haematopoietic stem cell transplantation. PMID:28148951

  20. Expression and activity analysis of a new fusion protein targeting ovarian cancer cells.

    PubMed

    Su, Manman; Chang, Weiqin; Wang, Dingding; Cui, Manhua; Lin, Yang; Wu, Shuying; Xu, Tianmin

    2015-09-01

    The aim of the present study was to develop a new therapeutic drug to improve the prognosis of ovarian cancer patients. Human urokinase-type plasminogen activator (uPA)17-34-kunitz-type protease inhibitor (KPI) eukaryotic expression vector was constructed and recombinant human uPA17-34-KPI (rhuPA17-34-KPI) in P. pastoris was expressed. In the present study, the DNA sequences that encode uPA 17-34 amino acids were created according to the native amino acids sequence and inserted into the KPI-pPICZαC vector, which was constructed. Then, uPA17‑34-KPI-pPICZαC was transformed into P. pastoris X-33, and rhuPA17-34-KPI was expressed by induction of methanol. The bioactivities of a recombinant fusion protein were detected with trypsin inhibition analysis, and the inhibitory effects on the growth of ovarian cancer cells were identified using the TUNEL assay, in vitro wound‑healing assay and Matrigel model analysis. The results of the DNA sequence analysis of the recombinant vector uPA17-34-KPI‑pPICZα demonstrated that the DNA‑encoding human uPA 17-34 amino acids, 285-288 amino acids of amyloid precursor protein (APP) and 1-57 amino acids of KPI were correctly inserted into the pPICZαC vector. Following induction by methonal, the fusion protein with a molecular weight of 8.8 kDa was observed using SDS-PAGE and western blot analysis. RhuPA17-34-KPI was expressed in P. pastoris with a yield of 50 mg/l in a 50-ml tube. The recombinant fusion protein was able to inhibit the activity of trypsin, inhibit growth and induce apoptosis of SKOV3 cells, and inhibit the invasion and metastasis of ovarian cancer cells. By considering uPA17-34 amino acid specific binding uPAR as the targeted part of fusion protein and utilizing the serine protease inhibitor activity of KPI, it was found that the recombinant fusion protein uPA17-34-KPI inhibited the invasion and metastasis of ovarian tumors, and may therefore be regarded as effective in targeted treatment.

  1. An Abundant Evolutionarily Conserved CSB-PiggyBac Fusion Protein Expressed in Cockayne Syndrome

    PubMed Central

    Newman, John C.; Bailey, Arnold D.; Fan, Hua-Ying; Pavelitz, Thomas; Weiner, Alan M.

    2008-01-01

    Cockayne syndrome (CS) is a devastating progeria most often caused by mutations in the CSB gene encoding a SWI/SNF family chromatin remodeling protein. Although all CSB mutations that cause CS are recessive, the complete absence of CSB protein does not cause CS. In addition, most CSB mutations are located beyond exon 5 and are thought to generate only C-terminally truncated protein fragments. We now show that a domesticated PiggyBac-like transposon PGBD3, residing within intron 5 of the CSB gene, functions as an alternative 3′ terminal exon. The alternatively spliced mRNA encodes a novel chimeric protein in which CSB exons 1–5 are joined in frame to the PiggyBac transposase. The resulting CSB-transposase fusion protein is as abundant as CSB protein itself in a variety of human cell lines, and continues to be expressed by primary CS cells in which functional CSB is lost due to mutations beyond exon 5. The CSB-transposase fusion protein has been highly conserved for at least 43 Myr since the divergence of humans and marmoset, and appears to be subject to selective pressure. The human genome contains over 600 nonautonomous PGBD3-related MER85 elements that were dispersed when the PGBD3 transposase was last active at least 37 Mya. Many of these MER85 elements are associated with genes which are involved in neuronal development, and are known to be regulated by CSB. We speculate that the CSB-transposase fusion protein has been conserved for host antitransposon defense, or to modulate gene regulation by MER85 elements, but may cause CS in the absence of functional CSB protein. PMID:18369450

  2. Entropic forces drive self-organization and membrane fusion by SNARE proteins

    PubMed Central

    Stratton, Benjamin S.; Warner, Jason M.; Rothman, James E.; O’Shaughnessy, Ben

    2017-01-01

    SNARE proteins are the core of the cell’s fusion machinery and mediate virtually all known intracellular membrane fusion reactions on which exocytosis and trafficking depend. Fusion is catalyzed when vesicle-associated v-SNAREs form trans-SNARE complexes (“SNAREpins”) with target membrane-associated t-SNAREs, a zippering-like process releasing ∼65 kT per SNAREpin. Fusion requires several SNAREpins, but how they cooperate is unknown and reports of the number required vary widely. To capture the collective behavior on the long timescales of fusion, we developed a highly coarse-grained model that retains key biophysical SNARE properties such as the zippering energy landscape and the surface charge distribution. In simulations the ∼65-kT zippering energy was almost entirely dissipated, with fully assembled SNARE motifs but uncomplexed linker domains. The SNAREpins self-organized into a circular cluster at the fusion site, driven by entropic forces that originate in steric–electrostatic interactions among SNAREpins and membranes. Cooperative entropic forces expanded the cluster and pulled the membranes together at the center point with high force. We find that there is no critical number of SNAREs required for fusion, but instead the fusion rate increases rapidly with the number of SNAREpins due to increasing entropic forces. We hypothesize that this principle finds physiological use to boost fusion rates to meet the demanding timescales of neurotransmission, exploiting the large number of v-SNAREs available in synaptic vesicles. Once in an unfettered cluster, we estimate ≥15 SNAREpins are required for fusion within the ∼1-ms timescale of neurotransmitter release. PMID:28490503

  3. Applicability of 99m Tc-Labeled Human Serum Albumin Scintigraphy in Dogs With Protein-Losing Enteropathy.

    PubMed

    Engelmann, N; Ondreka, N; von Pückler, K; Mohrs, S; Sicken, J; Neiger, R

    2017-03-01

    Diagnosis of protein loss into the gastrointestinal tract using noninvasive techniques is challenging. In people, scintigraphy not only is a sensitive tool to confirm protein-losing enteropathy (PLE), but it also allows for localization of protein loss. To investigate the feasibility of 99m Tc-labeled human serum albumin (HSA) scintigraphy in dogs with PLE in comparison with control dogs. A total of 8 clinically healthy control research dogs and 7 client-owned dogs with gastrointestinal clinical signs and hypoalbuminemia (serum albumin concentration <2.0 g/dL). Prospective case-control study. After IV injection of 400 MBq freshly prepared 99m Tc HSA (30 mg/dog), images of the abdomen were obtained 10, 60, 120, and 240 minutes postinjection. Additional images of the salivary and thyroid glands were obtained to rule out free 99m Tc. A scan was considered positive for PLE when radiopharmaceutical exudation was detectable in the intestinal tract. Only 1 control dog showed exudation of the radiopharmaceutical into the intestinal tract. No free 99m Tc was detected in any dog. In dogs with PLE, focal small intestinal and diffuse small intestinal radiopharmaceutical exudation into the bowel was detected in 2 and 3 dogs, respectively, whereas in 2 dogs, there was disagreement about whether radiopharmaceutical exudation was focal or diffuse. 99m Tc-labeled HSA scintigraphy was feasible to diagnose PLE in dogs. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  4. Macrophage Fusion Is Controlled by the Cytoplasmic Protein Tyrosine Phosphatase PTP-PEST/PTPN12

    PubMed Central

    Rhee, Inmoo; Davidson, Dominique; Souza, Cleiton Martins; Vacher, Jean

    2013-01-01

    Macrophages can undergo cell-cell fusion, leading to the formation of multinucleated giant cells and osteoclasts. This process is believed to promote the proteolytic activity of macrophages toward pathogens, foreign bodies, and extracellular matrices. Here, we examined the role of PTP-PEST (PTPN12), a cytoplasmic protein tyrosine phosphatase, in macrophage fusion. Using a macrophage-targeted PTP-PEST-deficient mouse, we determined that PTP-PEST was not needed for macrophage differentiation or cytokine production. However, it was necessary for interleukin-4-induced macrophage fusion into multinucleated giant cells in vitro. It was also needed for macrophage fusion following implantation of a foreign body in vivo. Moreover, in the RAW264.7 macrophage cell line, PTP-PEST was required for receptor activator of nuclear factor kappa-B ligand (RANKL)-triggered macrophage fusion into osteoclasts. PTP-PEST had no impact on expression of fusion mediators such as β-integrins, E-cadherin, and CD47, which enable macrophages to become fusion competent. However, it was needed for polarization of macrophages, migration induced by the chemokine CC chemokine ligand 2 (CCL2), and integrin-induced spreading, three key events in the fusion process. PTP-PEST deficiency resulted in specific hyperphosphorylation of the protein tyrosine kinase Pyk2 and the adaptor paxillin. Moreover, a fusion defect was induced upon treatment of normal macrophages with a Pyk2 inhibitor. Together, these data argue that macrophage fusion is critically dependent on PTP-PEST. This function is seemingly due to the ability of PTP-PEST to control phosphorylation of Pyk2 and paxillin, thereby regulating cell polarization, migration, and spreading. PMID:23589331

  5. Production and characterization of active recombinant interleukin-12/eGFP fusion protein in stably-transfected DF1 chicken cells.

    PubMed

    Wu, Hsing Chieh; Chen, Yu San; Shen, Pin Chun; Shien, Jui Hung; Lee, Long Huw; Chiu, Hua Hsien

    2015-01-01

    The adjuvant activity of chicken interleukin-12 (chIL-12) protein has been described as similar to that of mammalian IL-12. Recombinant chIL-12 can be produced using several methods, but chIL-12 production in eukaryotic cells is lower than that in prokaryotic cells. Stimulating compounds, such as dimethyl sulfoxide (DMSO), can be added to animal cell cultures to overcome this drawback. In this study, we constructed a cell line, DF1/chIL-12 which stably expressed a fusion protein, chIL-12 and enhanced green fluorescent protein (eGFP) connected by a (G4 S)3 linker sequence. Fusion protein production was increased when cells were cultured in the presence of DMSO. When 1 × 10(6) DF1/chIL-12 cells were inoculated in a T-175 flask containing 30 mL of media, incubated for 15 h, and further cultivated in the presence of 4% DMSO for 48 h, the production of total fusion protein was mostly enhanced compared with the production of total fusion protein by using cell lysates induced with DMSO at other concentrations. The concentrations of the unpurified and purified total fusion proteins in cell lysates were 2,781 ± 2.72 ng mL(-1) and 2,207 ± 3.28 ng mL(-1) , respectively. The recovery rate was 79%. The fusion protein stimulated chicken splenocytes to produce IFN-γ, which was measured using an enzyme-linked immunosorbent assay, in the culture supernatant, indicating that treating DF1/chIL-12 cells with DMSO or producing chIL-12 in a fusion protein form does not have adverse effects on the bioactivity of chIL-12. © 2015 American Institute of Chemical Engineers.

  6. Junction region of EWS-FLI1 fusion protein has a dominant negative effect in Ewing's sarcoma in vitro.

    PubMed

    Jully, Babu; Vijayalakshmi, Ramshankar; Gopal, Gopisetty; Sabitha, Kesavan; Rajkumar, Thangarajan

    2012-11-12

    Ewing's sarcoma is a malignancy characterized by a specific 11:22 chromosomal translocation which generates a novel EWS-FLI1 fusion protein functioning as an aberrant transcription factor. In the present study, we have further characterized the junction region of the EWS-FLI1 fusion protein. In-silico model of EWS-FLI1 fusion protein was analysed for ligand binding sites, and a putative region (amino acid (aa) 251-343 of the type 1 fusion protein) in the vicinity of the fusion junction was cloned and expressed using bacterial expression. The recombinant protein was characterized by Circular Dichroism (CD). We then expressed aa 251-280 ectopically in Ewing's sarcoma cell-line and its effect on cell proliferation, tumorigenicity and expression of EWS-FLI1 target genes were analysed. Our modelling analysis indicated that Junction region (aa 251-343) encompasses potential ligand biding sites in the EWS-FLI1 protein and when expressed in bacteria was present as soluble form. Ectopically expressing this region in Ewing's sarcoma cells inhibited tumorigenicity, and EWS-FLI1 target genes indicating a dominant negative biological effect. Junction region can be exploited further as target for drug development in future to specifically target EWS-FLI1 in Ewing's Sarcoma.

  7. Albumin reduces the antibacterial efficacy of wound antiseptics against Staphylococcus aureus.

    PubMed

    Kapalschinski, N; Seipp, H M; Kückelhaus, M; Harati, K K; Kolbenschlag, J J; Daigeler, A; Jacobsen, F; Lehnhardt, M; Hirsch, T

    2017-04-02

    The influence of proteins on the efficacy of antiseptic solutions has been rarely investigated even though exudate can contain high levels of protien. The aim of this study was to analyse the antibacterial efficacy of commonly used solutions in the presence of albumin protein. Using Staphylococcus aureus in a standardised quantitative suspension assay, the antibacterial effects of poly (1-(2-oxo-1-pyrrolidinyl) ethylene)-iodine (PVP-I) and octenidin-dihydrochloride/phenoxyethanol (OCT/PE) were analysed in the presence of 0-3% bovine serum albumin (BSA). These were compared with previous results obtained with polyhexamethylene biguanide hydrochloride (PHMB). Presence of albumin caused a significant (p<0.001) decrease in antibacterial effect in the analysed solutions. The concentrations of albumin that provoked highly significant decreases in the bacterial reduction factors of the study agents were: 0.01875 % for PVP-I, followed by 0.75 % for OCT/PE. After addition of 3 % albumin, adequate antimicrobial effects were ensured for titrations to 5 % PVP-I and 8 % OCT/PE. As we could show before, it is not possible to titrate PHMB in order to assure adequate potency. This study demonstrates that albumin induces a significant decrease of the antibacterial potency of the analysed solutions.

  8. [Construction and prokaryotic expression of recombinant gene EGFRvIII HBcAg and immunogenicity analysis of the fusion protein].

    PubMed

    Duan, Xiao-yi; Wang, Jian-sheng; Guo, You-min; Han, Jun-li; Wang, Quan-ying; Yang, Guang-xiao

    2007-01-01

    To construct recombinant prokaryotic expression plasmid pET28a(+)/c-PEP-3-c and evaluate the immunogenicity of the fusion protein. cDNA fragment encoding PEP-3 was obtained from pGEM-T Easy/PEP-3 and inserted into recombinant plasmid pGEMEX/HBcAg. Then it was subcloned in prokaryotic expression vector and transformed into E.coli BL21(DE3). The fusion protein was expressed by inducing IPTG and purified by Ni(2+)-NTA affinity chromatography. BALB/c mice were immunized with fusion protein and the antibody titre was determined by indirect ELISA. The recombinant gene was confirmed to be correct by restriction enzyme digestion and DNA sequencing. After prokaryotic expression, fusion protein existed in sediment and accounted for 56% of all bacterial lysate. The purified product accounted for 92% of all protein and its concentration was 8 g/L. The antibody titre in blood serum reached 1:16 000 after the fourth immunization and reached 1:2.56x10(5) after the sixth immunization. The titre of anti-PEP-3 antibody reached 1:1.28x10(5) and the titre of anti-HBcAg antibody was less than 1:4x10(3). Fusion gene PEP-3-HBcAg is highly expressed in E.coli BL21. The expressed fusion protein can induce neutralizing antibody with high titer and specificity, which lays a foundation for the study of genetically engineering vaccine for malignant tumors with the high expression of EGFRvIII.

  9. Fusion Partner Toolchest for the Stabilization and Crystallization of G Protein-Coupled Receptors

    PubMed Central

    Chun, Eugene; Thompson, Aaron A.; Liu, Wei; Roth, Christopher B.; Griffith, Mark T.; Katritch, Vsevolod; Kunken, Joshua; Xu, Fei; Cherezov, Vadim; Hanson, Michael A.; Stevens, Raymond C.

    2012-01-01

    SUMMARY Structural studies of human G protein-coupled receptors (GPCRs) have recently been accelerated through the use of the T4 lysozyme fusion partner that was inserted into the third intracellular loop. Using chimeras of the human β2-adrenergic and human A2A adenosine receptors, we present the methodology and data for the selection of five new fusion partners for crystallizing GPCRs. In particular, the use of the thermostabilized apocytochrome b562RIL as a fusion partner displays certain advantages over the previously utilized T4 lysozyme, resulting in a significant improvement in stability and structure in GPCR-fusion constructs. PMID:22681902

  10. Albumin-induced apoptosis of tubular cells is modulated by BASP1

    PubMed Central

    Sanchez-Niño, M D; Fernandez-Fernandez, B; Perez-Gomez, M V; Poveda, J; Sanz, A B; Cannata-Ortiz, P; Ruiz-Ortega, M; Egido, J; Selgas, R; Ortiz, A

    2015-01-01

    Albuminuria promotes tubular injury and cell death, and is associated with faster progression of chronic kidney disease (CKD) to end-stage renal disease. However, the molecular mechanisms regulating tubular cell death in response to albuminuria are not fully understood. Brain abundant signal protein 1 (BASP1) was recently shown to mediate glucose-induced apoptosis in tubular cells. We have studied the role of BASP1 in albumin-induced tubular cell death. BASP1 expression was studied in experimental puromycin aminonucleoside-induced nephrotic syndrome in rats and in human nephrotic syndrome. The role of BASP1 in albumin-induced apoptosis was studied in cultured human HK2 proximal tubular epithelial cells. Puromycin aminonucleoside induced proteinuria and increased total kidney BASP1 mRNA and protein expression. Immunohistochemistry localized the increased BASP1 to tubular cells. BASP1 expression colocalized with deoxynucleotidyl-transferase-mediated dUTP nick-end labeling staining for apoptotic cells. Increased tubular BASP1 expression was observed in human proteinuric nephropathy by immunohistochemistry, providing evidence for potential clinical relevance. In cultured tubular cells, albumin induced apoptosis and increased BASP1 mRNA and protein expression at 6–48 h. Confocal microscopy localized the increased BASP1 expression in albumin-treated cells mainly to the perinuclear area. A peripheral location near the cell membrane was more conspicuous in albumin-treated apoptotic cells, where it colocalized with actin. Inhibition of BASP1 expression by a BASP1 siRNA protected from albumin-induced apoptosis. In conclusion, albumin-induced apoptosis in tubular cells is BASP1-dependent. This information may be used to design novel therapeutic approaches to slow CKD progression based on protection of tubular cells from the adverse consequences of albuminuria. PMID:25675304

  11. A plasmid toolkit for cloning chimeric cDNAs encoding customized fusion proteins into any Gateway destination expression vector

    PubMed Central

    2013-01-01

    Background Valuable clone collections encoding the complete ORFeomes for some model organisms have been constructed following the completion of their genome sequencing projects. These libraries are based on Gateway cloning technology, which facilitates the study of protein function by simplifying the subcloning of open reading frames (ORF) into any suitable destination vector. The expression of proteins of interest as fusions with functional modules is a frequent approach in their initial functional characterization. A limited number of Gateway destination expression vectors allow the construction of fusion proteins from ORFeome-derived sequences, but they are restricted to the possibilities offered by their inbuilt functional modules and their pre-defined model organism-specificity. Thus, the availability of cloning systems that overcome these limitations would be highly advantageous. Results We present a versatile cloning toolkit for constructing fully-customizable three-part fusion proteins based on the MultiSite Gateway cloning system. The fusion protein components are encoded in the three plasmids integral to the kit. These can recombine with any purposely-engineered destination vector that uses a heterologous promoter external to the Gateway cassette, leading to the in-frame cloning of an ORF of interest flanked by two functional modules. In contrast to previous systems, a third part becomes available for peptide-encoding as it no longer needs to contain a promoter, resulting in an increased number of possible fusion combinations. We have constructed the kit’s component plasmids and demonstrate its functionality by providing proof-of-principle data on the expression of prototype fluorescent fusions in transiently-transfected cells. Conclusions We have developed a toolkit for creating fusion proteins with customized N- and C-term modules from Gateway entry clones encoding ORFs of interest. Importantly, our method allows entry clones obtained from ORFeome

  12. A plasmid toolkit for cloning chimeric cDNAs encoding customized fusion proteins into any Gateway destination expression vector.

    PubMed

    Buj, Raquel; Iglesias, Noa; Planas, Anna M; Santalucía, Tomàs

    2013-08-20

    Valuable clone collections encoding the complete ORFeomes for some model organisms have been constructed following the completion of their genome sequencing projects. These libraries are based on Gateway cloning technology, which facilitates the study of protein function by simplifying the subcloning of open reading frames (ORF) into any suitable destination vector. The expression of proteins of interest as fusions with functional modules is a frequent approach in their initial functional characterization. A limited number of Gateway destination expression vectors allow the construction of fusion proteins from ORFeome-derived sequences, but they are restricted to the possibilities offered by their inbuilt functional modules and their pre-defined model organism-specificity. Thus, the availability of cloning systems that overcome these limitations would be highly advantageous. We present a versatile cloning toolkit for constructing fully-customizable three-part fusion proteins based on the MultiSite Gateway cloning system. The fusion protein components are encoded in the three plasmids integral to the kit. These can recombine with any purposely-engineered destination vector that uses a heterologous promoter external to the Gateway cassette, leading to the in-frame cloning of an ORF of interest flanked by two functional modules. In contrast to previous systems, a third part becomes available for peptide-encoding as it no longer needs to contain a promoter, resulting in an increased number of possible fusion combinations. We have constructed the kit's component plasmids and demonstrate its functionality by providing proof-of-principle data on the expression of prototype fluorescent fusions in transiently-transfected cells. We have developed a toolkit for creating fusion proteins with customized N- and C-term modules from Gateway entry clones encoding ORFs of interest. Importantly, our method allows entry clones obtained from ORFeome collections to be used without prior

  13. Efficient replication of a paramyxovirus independent of full zippering of the fusion protein six-helix bundle domain

    PubMed Central

    Brindley, Melinda A.; Plattet, Philippe; Plemper, Richard Karl

    2014-01-01

    Enveloped viruses such as HIV and members of the paramyxovirus family use metastable, proteinaceous fusion machineries to merge the viral envelope with cellular membranes for infection. A hallmark of the fusogenic glycoproteins of these pathogens is refolding into a thermodynamically highly stable fusion core structure composed of six antiparallel α-helices, and this structure is considered instrumental for pore opening and/or enlargement. Using a paramyxovirus fusion (F) protein, we tested this paradigm by engineering covalently restricted F proteins that are predicted to be unable to close the six-helix bundle core structure fully. Several candidate bonds formed efficiently, resulting in F trimers and higher-order complexes containing covalently linked dimers. The engineered F complexes were incorporated into recombinant virions efficiently and were capable of refolding into a postfusion conformation without temporary or permanent disruption of the disulfide bonds. They efficiently formed fusion pores based on virus replication and quantitative cell-to-cell and virus-to-cell fusion assays. Complementation of these F mutants with a monomeric, fusion-inactive F variant enriched the F oligomers for heterotrimers containing a single disulfide bond, without affecting fusion complementation profiles compared with standard F protein. Our demonstration that complete closure of the fusion core does not drive paramyxovirus entry may aid the design of strategies for inhibiting virus entry. PMID:25157143

  14. Efficient replication of a paramyxovirus independent of full zippering of the fusion protein six-helix bundle domain.

    PubMed

    Brindley, Melinda A; Plattet, Philippe; Plemper, Richard Karl

    2014-09-09

    Enveloped viruses such as HIV and members of the paramyxovirus family use metastable, proteinaceous fusion machineries to merge the viral envelope with cellular membranes for infection. A hallmark of the fusogenic glycoproteins of these pathogens is refolding into a thermodynamically highly stable fusion core structure composed of six antiparallel α-helices, and this structure is considered instrumental for pore opening and/or enlargement. Using a paramyxovirus fusion (F) protein, we tested this paradigm by engineering covalently restricted F proteins that are predicted to be unable to close the six-helix bundle core structure fully. Several candidate bonds formed efficiently, resulting in F trimers and higher-order complexes containing covalently linked dimers. The engineered F complexes were incorporated into recombinant virions efficiently and were capable of refolding into a postfusion conformation without temporary or permanent disruption of the disulfide bonds. They efficiently formed fusion pores based on virus replication and quantitative cell-to-cell and virus-to-cell fusion assays. Complementation of these F mutants with a monomeric, fusion-inactive F variant enriched the F oligomers for heterotrimers containing a single disulfide bond, without affecting fusion complementation profiles compared with standard F protein. Our demonstration that complete closure of the fusion core does not drive paramyxovirus entry may aid the design of strategies for inhibiting virus entry.

  15. Determination of the topology of endoplasmic reticulum membrane proteins using redox-sensitive green-fluorescence protein fusions.

    PubMed

    Tsachaki, Maria; Birk, Julia; Egert, Aurélie; Odermatt, Alex

    2015-07-01

    Membrane proteins of the endoplasmic reticulum (ER) are involved in a wide array of essential cellular functions. Identification of the topology of membrane proteins can provide significant insight into their mechanisms of action and biological roles. This is particularly important for membrane enzymes, since their topology determines the subcellular site where a biochemical reaction takes place and the dependence on luminal or cytosolic co-factor pools and substrates. The methods currently available for the determination of topology of proteins are rather laborious and require post-lysis or post-fixation manipulation of cells. In this work, we have developed a simple method for defining intracellular localization and topology of ER membrane proteins in living cells, based on the fusion of the respective protein with redox-sensitive green-fluorescent protein (roGFP). We validated the method and demonstrated that roGFP fusion proteins constitute a reliable tool for the study of ER membrane protein topology, using as control microsomal 11β-hydroxysteroid dehydrogenase (11β-HSD) proteins whose topology has been resolved, and comparing with an independent approach. We then implemented this method to determine the membrane topology of six microsomal members of the 17β-hydroxysteroid dehydrogenase (17β-HSD) family. The results revealed a luminal orientation of the catalytic site for three enzymes, i.e. 17β-HSD6, 7 and 12. Knowledge of the intracellular location of the catalytic site of these enzymes will enable future studies on their biological functions and on the role of the luminal co-factor pool. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Maltose-Binding Protein Enhances Secretion of Recombinant Human Granzyme B Accompanied by In Vivo Processing of a Precursor MBP Fusion Protein

    PubMed Central

    Dälken, Benjamin; Jabulowsky, Robert A.; Oberoi, Pranav; Benhar, Itai; Wels, Winfried S.

    2010-01-01

    Background The apoptosis-inducing serine protease granzyme B (GrB) is an important factor contributing to lysis of target cells by cytotoxic lymphocytes. Expression of enzymatically active GrB in recombinant form is a prerequisite for functional analysis and application of GrB for therapeutic purposes. Methods and Findings We investigated the influence of bacterial maltose-binding protein (MBP) fused to GrB via a synthetic furin recognition motif on the expression of the MBP fusion protein also containing an N-terminal α-factor signal peptide in the yeast Pichia pastoris. MBP markedly enhanced the amount of GrB secreted into culture supernatant, which was not the case when GrB was fused to GST. MBP-GrB fusion protein was cleaved during secretion by an endogenous furin-like proteolytic activity in vivo, liberating enzymatically active GrB without the need of subsequent in vitro processing. Similar results were obtained upon expression of a recombinant fragment of the ErbB2/HER2 receptor protein or GST as MBP fusions. Conclusions Our results demonstrate that combination of MBP as a solubility enhancer with specific in vivo cleavage augments secretion of processed and functionally active proteins from yeast. This strategy may be generally applicable to improve folding and increase yields of recombinant proteins. PMID:21203542

  17. Albumin-induced podocyte injury and protection are associated with regulation of COX-2.

    PubMed Central

    Agrawal, Shipra; Guess, Adam J.; Chanley, Melinda A.; Smoyer, and William E.

    2014-01-01

    Albuminuria is both a hallmark and a risk factor for progressive glomerular disease, and results in increased exposure of podocytes to serum albumin with its associated factors. Here in vivo and in vitro models of serum albumin overload were used to test the hypothesis that albumin-induced proteinuria and podocyte injury directly correlate with COX-2 induction. Albumin induced COX-2, MCP-1, CXCL1 and the stress protein HSP25 in both rat glomeruli and cultured podocytes, while B7-1 and HSP70i were also induced in podocytes. Podocyte exposure to albumin induced both mRNA and protein and enhanced the mRNA stability of COX-2, a key regulator of renal hemodynamics and inflammation, which renders podocytes susceptible to injury. Podocyte exposure to albumin also stimulated several kinases (p38 MAPK, MK2, JNK/SAPK and ERK1/2), inhibitors of which (except JNK/SAPK) down-regulated albumin-induced COX-2. Inhibition of AMPK, PKC and NFκB also down-regulated albumin-induced COX-2. Critically, albumin-induced COX-2 was also inhibited by glucocorticoids and thiazolidinediones, both of which directly protect podocytes against injury. Furthermore, specific albumin-associated fatty acids were identified as important contributors to COX-2 induction, podocyte injury and proteinuria. Thus, COX-2 is associated with podocyte injury during albuminuria, as well as with the known podocyte protection imparted by glucocorticoids and thiazolidinediones. Moreover, COX-2 induction, podocyte damage and albuminuria appear mediated largely by serum albumin-associated fatty acids. PMID:24918154

  18. Fusion proteins of flagellin and the major birch pollen allergen Bet v 1 show enhanced immunogenicity, reduced allergenicity, and intrinsic adjuvanticity.

    PubMed

    Kitzmüller, Claudia; Kalser, Julia; Mutschlechner, Sonja; Hauser, Michael; Zlabinger, Gerhard J; Ferreira, Fatima; Bohle, Barbara

    2018-01-01

    Recombinant fusion proteins of flagellin and antigens have been demonstrated to induce strong innate and adaptive immune responses. Such fusion proteins can enhance the efficacy of allergen-specific immunotherapy. We sought to characterize different fusion proteins of flagellin and the major birch pollen allergen Bet v 1 for suitability as allergy vaccines. A truncated version of flagellin (NtCFlg) was genetically fused to the N- or C-terminus of Bet v 1. Toll-like receptor (TLR) 5 binding was assessed with HEK293 cells expressing TLR5. Upregulation of CD40, CD80, CD83, and CD86 on monocyte-derived dendritic cells from allergic patients was analyzed by using flow cytometry. The T cell-stimulatory capacity of the fusion proteins was assessed with naive and Bet v 1-specific T cells. IgE binding was tested in inhibition ELISAs and basophil activation tests. Mice were immunized with the fusion proteins in the absence and presence of aluminum hydroxide. Cellular and antibody responses were monitored. Murine antibodies were tested for blocking capacity in basophil activation tests. Both fusion proteins matured monocyte-derived dendritic cells through TLR5. Compared with Bet v 1, the fusion proteins showed stronger T cell-stimulatory and reduced IgE-binding capacity and induced murine Bet v 1-specific antibodies in the absence of aluminum hydroxide. However, only antibodies induced by means of immunization with NtCFlg fused to the C-terminus of Bet v 1 inhibited binding of patients' IgE antibodies to Bet v 1. Bet v 1-flagellin fusion proteins show enhanced immunogenicity, reduced allergenicity, and intrinsic adjuvanticity and thus represent promising vaccines for birch pollen allergen-specific immunotherapy. However, the sequential order of allergen and adjuvant within a fusion protein determines its immunologic characteristics. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  19. Disaggregation of lipopolysaccharide by albumin, hemoglobin or high-density lipoprotein, forming complexes that prime neutrophils for enhanced release of superoxide.

    PubMed

    Komatsu, Toshiya; Aida, Yoshitomi; Fukuda, Takao; Sanui, Terukazu; Hiratsuka, Shunji; Pabst, Michael J; Nishimura, Fusanori

    2016-04-01

    We studied the interaction of LPS with albumin, hemoglobin or high-density lipoprotein (HDL), and whether the interaction affected the activity of LPS on neutrophils. These proteins disaggregated LPS, depending upon temperature and LPS:protein ratio. Albumin-treated LPS was absorbed by immobilized anti-albumin antibody and was eluted with Triton X-100, indicating that LPS formed a hydrophobic complex with albumin. Rd mutant LPS was not disaggregated by the proteins, and did not form a complex with the proteins. But triethylamine-treated Rd mutant LPS formed complexes. When LPS was incubated with an equal concentration of albumin and with polymyxin B (PMXB), PMXB-LPS-protein three-way complexes were formed. After removal of PMXB, the complexes consisted of 11-15 LPS monomers bound to one albumin or hemoglobin molecule. LPS primed neutrophils for enhanced release of formyl peptide-stimulated superoxide, in a serum- and LPS-binding protein (LBP)-dependent manner. Although LPS plus LBP alone did not prime neutrophils, albumin-, hemoglobin- or HDL-treated LPS primed neutrophils when added with LBP. Triethylamine-treated Rd mutant LPS primed neutrophils only when incubated with one of the proteins and with LBP. Thus, in addition to LBP, disaggregation and complex formation of LPS with one of these proteins is required for LPS to prime neutrophils. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Immobilization of the N-terminal helix stabilizes prefusion paramyxovirus fusion proteins

    PubMed Central

    Song, Albert S.; Poor, Taylor A.; Abriata, Luciano A.; Jardetzky, Theodore S.; Dal Peraro, Matteo; Lamb, Robert A.

    2016-01-01

    Parainfluenza virus 5 (PIV5) is an enveloped, single-stranded, negative-sense RNA virus of the Paramyxoviridae family. PIV5 fusion and entry are mediated by the coordinated action of the receptor-binding protein, hemagglutinin–neuraminidase (HN), and the fusion protein (F). Upon triggering by HN, F undergoes an irreversible ATP- and pH-independent conformational change, going down an energy gradient from a metastable prefusion state to a highly stable postfusion state. Previous studies have highlighted key conformational changes in the F-protein refolding pathway, but a detailed understanding of prefusion F-protein metastability remains elusive. Here, using two previously described F-protein mutations (S443D or P22L), we examine the capacity to modulate PIV5 F stability and the mechanisms by which these point mutants act. The S443D mutation destabilizes prefusion F proteins by disrupting a hydrogen bond network at the base of the F-protein globular head. The introduction of a P22L mutation robustly rescues destabilized F proteins through a local hydrophobic interaction between the N-terminal helix and a hydrophobic pocket. Prefusion stabilization conferred by a P22L-homologous mutation is demonstrated in the F protein of Newcastle disease virus, a paramyxovirus of a different genus, suggesting a conserved stabilizing structural element within the paramyxovirus family. Taken together, the available data suggest that movement of the N-terminal helix is a necessary early step for paramyxovirus F-protein refolding and presents a novel target for structure-based drug design. PMID:27335462

  1. Immobilization of the N-terminal helix stabilizes prefusion paramyxovirus fusion proteins.

    PubMed

    Song, Albert S; Poor, Taylor A; Abriata, Luciano A; Jardetzky, Theodore S; Dal Peraro, Matteo; Lamb, Robert A

    2016-07-05

    Parainfluenza virus 5 (PIV5) is an enveloped, single-stranded, negative-sense RNA virus of the Paramyxoviridae family. PIV5 fusion and entry are mediated by the coordinated action of the receptor-binding protein, hemagglutinin-neuraminidase (HN), and the fusion protein (F). Upon triggering by HN, F undergoes an irreversible ATP- and pH-independent conformational change, going down an energy gradient from a metastable prefusion state to a highly stable postfusion state. Previous studies have highlighted key conformational changes in the F-protein refolding pathway, but a detailed understanding of prefusion F-protein metastability remains elusive. Here, using two previously described F-protein mutations (S443D or P22L), we examine the capacity to modulate PIV5 F stability and the mechanisms by which these point mutants act. The S443D mutation destabilizes prefusion F proteins by disrupting a hydrogen bond network at the base of the F-protein globular head. The introduction of a P22L mutation robustly rescues destabilized F proteins through a local hydrophobic interaction between the N-terminal helix and a hydrophobic pocket. Prefusion stabilization conferred by a P22L-homologous mutation is demonstrated in the F protein of Newcastle disease virus, a paramyxovirus of a different genus, suggesting a conserved stabilizing structural element within the paramyxovirus family. Taken together, the available data suggest that movement of the N-terminal helix is a necessary early step for paramyxovirus F-protein refolding and presents a novel target for structure-based drug design.

  2. Chemotropism and Cell Fusion in Neurospora crassa Relies on the Formation of Distinct Protein Complexes by HAM-5 and a Novel Protein HAM-14

    PubMed Central

    Jonkers, Wilfried; Fischer, Monika S.; Do, Hung P.; Starr, Trevor L.; Glass, N. Louise

    2016-01-01

    In filamentous fungi, communication is essential for the formation of an interconnected, multinucleate, syncytial network, which is constructed via hyphal fusion or fusion of germinated asexual spores (germlings). Anastomosis in filamentous fungi is comparable to other somatic cell fusion events resulting in syncytia, including myoblast fusion during muscle differentiation, macrophage fusion, and fusion of trophoblasts during placental development. In Neurospora crassa, fusion of genetically identical germlings is a highly dynamic and regulated process that requires components of a MAP kinase signal transduction pathway. The kinase pathway components (NRC-1, MEK-2 and MAK-2) and the scaffold protein HAM-5 are recruited to hyphae and germling tips undergoing chemotropic interactions. The MAK-2/HAM-5 protein complex shows dynamic oscillation to hyphae/germling tips during chemotropic interactions, and which is out-of-phase to the dynamic localization of SOFT, which is a scaffold protein for components of the cell wall integrity MAP kinase pathway. In this study, we functionally characterize HAM-5 by generating ham-5 truncation constructs and show that the N-terminal half of HAM-5 was essential for function. This region is required for MAK-2 and MEK-2 interaction and for correct cellular localization of HAM-5 to “fusion puncta.” The localization of HAM-5 to puncta was not perturbed in 21 different fusion mutants, nor did these puncta colocalize with components of the secretory pathway. We also identified HAM-14 as a novel member of the HAM-5/MAK-2 pathway by mining MAK-2 phosphoproteomics data. HAM-14 was essential for germling fusion, but not for hyphal fusion. Colocalization and coimmunoprecipitation data indicate that HAM-14 interacts with MAK-2 and MEK-2 and may be involved in recruiting MAK-2 (and MEK-2) to complexes containing HAM-5. PMID:27029735

  3. Chemotropism and Cell Fusion in Neurospora crassa Relies on the Formation of Distinct Protein Complexes by HAM-5 and a Novel Protein HAM-14.

    PubMed

    Jonkers, Wilfried; Fischer, Monika S; Do, Hung P; Starr, Trevor L; Glass, N Louise

    2016-05-01

    In filamentous fungi, communication is essential for the formation of an interconnected, multinucleate, syncytial network, which is constructed via hyphal fusion or fusion of germinated asexual spores (germlings). Anastomosis in filamentous fungi is comparable to other somatic cell fusion events resulting in syncytia, including myoblast fusion during muscle differentiation, macrophage fusion, and fusion of trophoblasts during placental development. In Neurospora crassa, fusion of genetically identical germlings is a highly dynamic and regulated process that requires components of a MAP kinase signal transduction pathway. The kinase pathway components (NRC-1, MEK-2 and MAK-2) and the scaffold protein HAM-5 are recruited to hyphae and germling tips undergoing chemotropic interactions. The MAK-2/HAM-5 protein complex shows dynamic oscillation to hyphae/germling tips during chemotropic interactions, and which is out-of-phase to the dynamic localization of SOFT, which is a scaffold protein for components of the cell wall integrity MAP kinase pathway. In this study, we functionally characterize HAM-5 by generating ham-5 truncation constructs and show that the N-terminal half of HAM-5 was essential for function. This region is required for MAK-2 and MEK-2 interaction and for correct cellular localization of HAM-5 to "fusion puncta." The localization of HAM-5 to puncta was not perturbed in 21 different fusion mutants, nor did these puncta colocalize with components of the secretory pathway. We also identified HAM-14 as a novel member of the HAM-5/MAK-2 pathway by mining MAK-2 phosphoproteomics data. HAM-14 was essential for germling fusion, but not for hyphal fusion. Colocalization and coimmunoprecipitation data indicate that HAM-14 interacts with MAK-2 and MEK-2 and may be involved in recruiting MAK-2 (and MEK-2) to complexes containing HAM-5. Copyright © 2016 by the Genetics Society of America.

  4. Fusion protein based on Grb2-SH2 domain for cancer therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Yuriko; Graduate School of Pharmaceutical Sciences, Chiba University; Furukawa, Takako, E-mail: tfuru@nirs.go.jp

    2010-08-20

    Research highlights: {yields} Grb2 mediates EGFR signaling through binding to phosphorylate EGFR with SH2 domain. {yields} We generated fusion proteins containing 1 or 2 SH2 domains of Grb2 added with TAT. {yields} The one with 2 SH2 domains (TSSF) interfered ERK phosphorylation. {yields} TSSF significantly delayed the growth of EGFR overexpressing tumor in a mouse model. -- Abstract: Epidermal growth factor receptor (EGFR) is one of the very attractive targets for cancer therapy. In this study, we generated fusion proteins containing one or two Src-homology 2 (SH2) domains of growth factor receptor bound protein 2 (Grb2), which bind to phosphorylatedmore » EGFR, added with HIV-1 transactivating transcription for cell membrane penetration (termed TSF and TSSF, respectively). We examined if they can interfere Grb2-mediated signaling pathway and suppress tumor growth as expected from the lack of SH3 domain, which is necessary to intermediate EGFR-Grb2 cell signaling, in the fusion proteins. The transduction efficiency of TSSF was similar to that of TSF, but the binding activity of TSSF to EGFR was higher than that of TSF. Treatment of EGFR-overexpressing cells showed that TSSF decreased p42-ERK phosphorylation, while TSF did not. Both the proteins delayed cell growth but did not induce cell death in culture. TSSF also significantly suppressed tumor growth in vivo under consecutive administration. In conclusion, TSSF showed an ability to inhibit EGFR-Grb2 signaling and could have a potential to treat EGFR-activated cancer.« less

  5. Posttranscriptional regulation of albumin gene expression by branched-chain amino acids in rats with acute liver injury.

    PubMed

    Kuwahata, Masashi; Kuramoto, Yasuko; Tomoe, Yuka; Sugata, Emi; Segawa, Hiroko; Ito, Mikiko; Oka, Tatsuzo; Miyamoto, Ken-Ichi

    2004-12-24

    We previously demonstrated that the integration of albumin mRNA into functional polysomes was regulated by the supply of branched-chain amino acids (BCAA) in the liver of galactosamine-treated rats. To study the mechanism of this regulation, we investigated interaction between rat liver proteins and albumin transcripts. When albumin transcript was incubated with ribosome salt wash (RSW) extracts prepared from liver, a specific RNA-protein complex (p65) formed. Competition experiments showed that a pyrimidine-rich sequence in the coding region of albumin mRNA was required for the formation of p65. The level of p65 was increased in the RSW extracts prepared from liver of galactosamine-treated rats infused with a standard amino acid formula, compared with a BCAA-enriched amino acid formula. The protein in p65 appears to be polypyrimidine tract-binding protein (PTB), because the formation of p65 was reduced in the RSW extracts pre-incubated with anti-PTB antibody. In cell-free translation analysis, immunodepletion of PTB from rabbit reticulocyte lysate caused an increase in albumin translation. These results suggest that binding of PTB to albumin mRNA suppresses its translation. A supply of BCAA may interfere with this binding and improve the translation efficiency of albumin mRNA in injured liver.

  6. Novel interactions of CAPS (Ca2+-dependent activator protein for secretion) with the three neuronal SNARE proteins required for vesicle fusion.

    PubMed

    Daily, Neil J; Boswell, Kristin L; James, Declan J; Martin, Thomas F J

    2010-11-12

    CAPS (aka CADPS) is required for optimal vesicle exocytosis in neurons and endocrine cells where it functions to prime the exocytic machinery for Ca(2+)-triggered fusion. Fusion is mediated by trans complexes of the SNARE proteins VAMP-2, syntaxin-1, and SNAP-25 that bridge vesicle and plasma membrane. CAPS promotes SNARE complex formation on liposomes, but the SNARE binding properties of CAPS are unknown. The current work revealed that CAPS exhibits high affinity binding to syntaxin-1 and SNAP-25 and moderate affinity binding to VAMP-2. CAPS binding is specific for a subset of exocytic SNARE protein isoforms and requires membrane integration of the SNARE proteins. SNARE protein binding by CAPS is novel and mediated by interactions with the SNARE motifs in the three proteins. The C-terminal site for CAPS binding on syntaxin-1 does not overlap the Munc18-1 binding site and both proteins can co-reside on membrane-integrated syntaxin-1. As expected for a C-terminal binding site on syntaxin-1, CAPS stimulates SNARE-dependent liposome fusion with N-terminal truncated syntaxin-1 but exhibits impaired activity with C-terminal syntaxin-1 mutants. Overall the results suggest that SNARE complex formation promoted by CAPS may be mediated by direct interactions of CAPS with each of the three SNARE proteins required for vesicle exocytosis.

  7. Novel Interactions of CAPS (Ca2+-dependent Activator Protein for Secretion) with the Three Neuronal SNARE Proteins Required for Vesicle Fusion*

    PubMed Central

    Daily, Neil J.; Boswell, Kristin L.; James, Declan J.; Martin, Thomas F. J.

    2010-01-01

    CAPS (aka CADPS) is required for optimal vesicle exocytosis in neurons and endocrine cells where it functions to prime the exocytic machinery for Ca2+-triggered fusion. Fusion is mediated by trans complexes of the SNARE proteins VAMP-2, syntaxin-1, and SNAP-25 that bridge vesicle and plasma membrane. CAPS promotes SNARE complex formation on liposomes, but the SNARE binding properties of CAPS are unknown. The current work revealed that CAPS exhibits high affinity binding to syntaxin-1 and SNAP-25 and moderate affinity binding to VAMP-2. CAPS binding is specific for a subset of exocytic SNARE protein isoforms and requires membrane integration of the SNARE proteins. SNARE protein binding by CAPS is novel and mediated by interactions with the SNARE motifs in the three proteins. The C-terminal site for CAPS binding on syntaxin-1 does not overlap the Munc18-1 binding site and both proteins can co-reside on membrane-integrated syntaxin-1. As expected for a C-terminal binding site on syntaxin-1, CAPS stimulates SNARE-dependent liposome fusion with N-terminal truncated syntaxin-1 but exhibits impaired activity with C-terminal syntaxin-1 mutants. Overall the results suggest that SNARE complex formation promoted by CAPS may be mediated by direct interactions of CAPS with each of the three SNARE proteins required for vesicle exocytosis. PMID:20826818

  8. A Supramolecular Approach toward Bioinspired PAMAM-Dendronized Fusion Toxins.

    PubMed

    Kuan, Seah Ling; Förtsch, Christina; Ng, David Yuen Wah; Fischer, Stephan; Tokura, Yu; Liu, Weina; Wu, Yuzhou; Koynov, Kaloian; Barth, Holger; Weil, Tanja

    2016-06-01

    Nature has provided a highly optimized toolbox in bacterial endotoxins with precise functions dictated by their clear structural division. Inspired by this streamlined design, a supramolecular approach capitalizing on the strong biomolecular (streptavidin (SA))-biotin interactions is reported herein to prepare two multipartite fusion constructs, which involves the generation 2.0 (D2) or generation 3.0 (D3) polyamidoamine-dendronized transporter proteins (dendronized streptavidin (D3SA) and dendronized human serum albumin (D2HSA)) non-covalently fused to the C3bot1 enzyme from Clostridium botulinum, a potent and specific Rho-inhibitor. The fusion constructs, D3SA-C3 and D2HSA-C3, represent the first examples of dendronized protein transporters that are fused to the C3 enzyme, and it is successfully demonstrated that the C3 Rho-inhibitor is delivered into the cytosol of mammalian cells as determined from the characteristic C3-mediated changes in cell morphology and confocal microscopy. The design circumvents the low uptake of the C3 enzyme by eukaryotic cells and holds great promise for reprogramming the properties of toxin enzymes using a supramolecular approach to broaden their therapeutic applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electrochemical Biosensor for the Detection of Glycated Albumin.

    PubMed

    Mikula, Edyta; Wyslouch-Cieszynska, Aleksandra; Zhukova, Liliya; Verwilst, Peter; Dehaen, Wim; Radecki, Jerzy; Radecka, Hanna

    2017-01-01

    Alzheimer's disease (AD) is the most common form of dementia. The process of AD can begin 20 years before any symptom of cognitive loss. Thus, the development of systems for early diagnosis and prevention is very important. The mechanism of AD is still under debate. Nevertheless, higher levels of glycated albumin in cerebrospinal fluid and plasma are observed in AD patients. Therefore, glycated albumin could be a biomarker of AD development. Electrochemical biosensor for direct determination of glycated albumin was based on thiol derivative of pentetic acid (DTPA) complex with Cu(II) created on gold electrode surface. His-tagged domains of Receptors for Advanced Glycation End Products (RAGE) were applied as analytical active element for glycated albumin recognition. The binding of glycated albumin by His6- RAGE domains was monitored using Osteryoung square - wave voltammetry. Electrodes modified with His6 - RAGE VC1 natural domain generated decrease of Cu(II) redox currents in the presence of glycated albumin. Human albumin, Aβ 1-40 and S100B protein caused negligible influence on biosensors responses towards glycated albumin. The detection limits were: 2.3 pM, 1.1 pM, 2.9 pM and 3.1 pM in the presence of: buffer, buffer + albumin, buffer + S100B, buffer + Aβ1-40 , respectively. The presented electrochemical biosensor was successfully applied for the determination of glycated albumin. Considering analytical parameters such as good selectivity and sensitivity in pM range, biosensor could be recommended as an analytical tool for medical samples analysis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Recurrent hyperactive ESR1 fusion proteins in endocrine therapy-resistant breast cancer

    PubMed Central

    Trabucco, S E; Priedigkeit, N; Parachoniak, C A; Vanden Borre, P; Morley, S; Rosenzweig, M; Gay, L M; Goldberg, M E; Suh, J; Ali, S M; Ross, J; Leyland-Jones, B; Young, B; Williams, C; Park, B; Tsai, M; Haley, B; Peguero, J; Callahan, R D; Sachelarie, I; Cho, J; Atkinson, J M; Bahreini, A; Nagle, A M; Puhalla, S L; Watters, R J; Erdogan-Yildirim, Z; Cao, L; Oesterreich, S; Mathew, A; Lucas, P C; Davidson, N E; Brufsky, A M; Frampton, G M; Stephens, P J; Chmielecki, J; Lee, A V

    2018-01-01

    Abstract Background Estrogen receptor-positive (ER-positive) metastatic breast cancer is often intractable due to endocrine therapy resistance. Although ESR1 promoter switching events have been associated with endocrine-therapy resistance, recurrent ESR1 fusion proteins have yet to be identified in advanced breast cancer. Patients and methods To identify genomic structural rearrangements (REs) including gene fusions in acquired resistance, we undertook a multimodal sequencing effort in three breast cancer patient cohorts: (i) mate-pair and/or RNAseq in 6 patient-matched primary-metastatic tumors and 51 metastases, (ii) high coverage (>500×) comprehensive genomic profiling of 287–395 cancer-related genes across 9542 solid tumors (5216 from metastatic disease), and (iii) ultra-high coverage (>5000×) genomic profiling of 62 cancer-related genes in 254 ctDNA samples. In addition to traditional gene fusion detection methods (i.e. discordant reads, split reads), ESR1 REs were detected from targeted sequencing data by applying a novel algorithm (copyshift) that identifies major copy number shifts at rearrangement hotspots. Results We identify 88 ESR1 REs across 83 unique patients with direct confirmation of 9 ESR1 fusion proteins (including 2 via immunoblot). ESR1 REs are highly enriched in ER-positive, metastatic disease and co-occur with known ESR1 missense alterations, suggestive of polyclonal resistance. Importantly, all fusions result from a breakpoint in or near ESR1 intron 6 and therefore lack an intact ligand binding domain (LBD). In vitro characterization of three fusions reveals ligand-independence and hyperactivity dependent upon the 3′ partner gene. Our lower-bound estimate of ESR1 fusions is at least 1% of metastatic solid breast cancers, the prevalence in ctDNA is at least 10× enriched. We postulate this enrichment may represent secondary resistance to more aggressive endocrine therapies applied to patients with ESR1 LBD missense alterations

  11. Recurrent hyperactive ESR1 fusion proteins in endocrine therapy-resistant breast cancer.

    PubMed

    Hartmaier, R J; Trabucco, S E; Priedigkeit, N; Chung, J H; Parachoniak, C A; Vanden Borre, P; Morley, S; Rosenzweig, M; Gay, L M; Goldberg, M E; Suh, J; Ali, S M; Ross, J; Leyland-Jones, B; Young, B; Williams, C; Park, B; Tsai, M; Haley, B; Peguero, J; Callahan, R D; Sachelarie, I; Cho, J; Atkinson, J M; Bahreini, A; Nagle, A M; Puhalla, S L; Watters, R J; Erdogan-Yildirim, Z; Cao, L; Oesterreich, S; Mathew, A; Lucas, P C; Davidson, N E; Brufsky, A M; Frampton, G M; Stephens, P J; Chmielecki, J; Lee, A V

    2018-04-01

    Estrogen receptor-positive (ER-positive) metastatic breast cancer is often intractable due to endocrine therapy resistance. Although ESR1 promoter switching events have been associated with endocrine-therapy resistance, recurrent ESR1 fusion proteins have yet to be identified in advanced breast cancer. To identify genomic structural rearrangements (REs) including gene fusions in acquired resistance, we undertook a multimodal sequencing effort in three breast cancer patient cohorts: (i) mate-pair and/or RNAseq in 6 patient-matched primary-metastatic tumors and 51 metastases, (ii) high coverage (>500×) comprehensive genomic profiling of 287-395 cancer-related genes across 9542 solid tumors (5216 from metastatic disease), and (iii) ultra-high coverage (>5000×) genomic profiling of 62 cancer-related genes in 254 ctDNA samples. In addition to traditional gene fusion detection methods (i.e. discordant reads, split reads), ESR1 REs were detected from targeted sequencing data by applying a novel algorithm (copyshift) that identifies major copy number shifts at rearrangement hotspots. We identify 88 ESR1 REs across 83 unique patients with direct confirmation of 9 ESR1 fusion proteins (including 2 via immunoblot). ESR1 REs are highly enriched in ER-positive, metastatic disease and co-occur with known ESR1 missense alterations, suggestive of polyclonal resistance. Importantly, all fusions result from a breakpoint in or near ESR1 intron 6 and therefore lack an intact ligand binding domain (LBD). In vitro characterization of three fusions reveals ligand-independence and hyperactivity dependent upon the 3' partner gene. Our lower-bound estimate of ESR1 fusions is at least 1% of metastatic solid breast cancers, the prevalence in ctDNA is at least 10× enriched. We postulate this enrichment may represent secondary resistance to more aggressive endocrine therapies applied to patients with ESR1 LBD missense alterations. Collectively, these data indicate that N-terminal ESR1

  12. Function of fusion regulatory proteins (FRPs) in immune cells and virus-infected cells.

    PubMed

    Tsurudome, M; Ito, Y

    2000-01-01

    Two molecules that regulate cell fusion have been identified and designated fusion regulatory protein-1 (FRP-1) and FRP-2. FRP-1 is a complex composed of a glycosylated heavy chain and a nonglycosylated light chain that are disulfide linked. FRP-1 heavy chain is identical to 4F2/CD98 heavy chain, whereas FRP-2 is identical to integrin alpha3 subunit. The FRP-1 heavy chain is a multifunctional molecule: that is, fusion regulator, amino acid transporter, integrin regulator, comitogenic factor, Na+-Ca2+ exchanger, oncogenic protein, and so on. Several aspects of the structure and function of the FRP-1 system are reviewed: fusion regulatory molecular mechanisms, cross-talk between the FRP-1 and integrin, the FRP-1 system as amino acid transporter, and FRP-1-mediated T-cell activation. The FRP-1 system is involved in virus-mediated cell fusion and multinucleated giant cell formation of blood monocytes. Monoclonal antibodies against human FRP-1 heavy chain induce polykaryocytes that have properties as osteoclasts. Multiple steps participate in molecular mechanisms regulating cell fusion. The FRP-1 heavy chain supports amino acid transport activity and the FRP-1 light chains have recently been cloned as amino acid transporters that require association with the heavy chain to exhibit their activity. Novel pathways for monocyte-dependent regulation of T-cell activation have recently been found that are mediated by the FRP-1 system. In conclusion, the FRP-1 molecules are essential factors for basic cellular functions.

  13. Expression and Purification of Recombinant Human Basic Fibroblast Growth Factor Fusion Proteins and Their Uses in Human Stem Cell Culture.

    PubMed

    Imsoonthornruksa, Sumeth; Pruksananonda, Kamthorn; Parnpai, Rangsun; Rungsiwiwut, Ruttachuk; Ketudat-Cairns, Mariena

    2015-01-01

    To reduce the cost of cytokines and growth factors in stem cell research, a simple method for the production of soluble and biological active human basic fibroblast growth factor (hbFGF) fusion protein in Escherichia coli was established. Under optimal conditions, approximately 60-80 mg of >95% pure hbFGF fusion proteins (Trx-6xHis-hbFGF and 6xHis-hbFGF) were obtained from 1 liter of culture broth. The purified hbFGF proteins, both with and without the fusion tags, were biologically active, which was confirmed by their ability to stimulate proliferation of NIH3T3 cells. The fusion proteins also have the ability to support several culture passages of undifferentiated human embryonic stem cells and induce pluripotent stem cells. This paper describes a low-cost and uncomplicated method for the production and purification of biologically active hbFGF fusion proteins. © 2015 S. Karger AG, Basel.

  14. Identification of a Region in the Stalk Domain of the Nipah Virus Receptor Binding Protein That Is Critical for Fusion Activation

    PubMed Central

    Talekar, Aparna; DeVito, Ilaria; Salah, Zuhair; Palmer, Samantha G.; Chattopadhyay, Anasuya; Rose, John K.; Xu, Rui; Wilson, Ian A.; Moscona, Anne

    2013-01-01

    Paramyxoviruses, including the emerging lethal human Nipah virus (NiV) and the avian Newcastle disease virus (NDV), enter host cells through fusion of the viral and target cell membranes. For paramyxoviruses, membrane fusion is the result of the concerted action of two viral envelope glycoproteins: a receptor binding protein and a fusion protein (F). The NiV receptor binding protein (G) attaches to ephrin B2 or B3 on host cells, whereas the corresponding hemagglutinin-neuraminidase (HN) attachment protein of NDV interacts with sialic acid moieties on target cells through two regions of its globular domain. Receptor-bound G or HN via its stalk domain triggers F to undergo the conformational changes that render it competent to mediate fusion of the viral and cellular membranes. We show that chimeric proteins containing the NDV HN receptor binding regions and the NiV G stalk domain require a specific sequence at the connection between the head and the stalk to activate NiV F for fusion. Our findings are consistent with a general mechanism of paramyxovirus fusion activation in which the stalk domain of the receptor binding protein is responsible for F activation and a specific connecting region between the receptor binding globular head and the fusion-activating stalk domain is required for transmitting the fusion signal. PMID:23903846

  15. The pharmacological efficacy of the anti-IL17 scFv and sTNFR1 bispecific fusion protein in inflammation mouse stimulated by LPS.

    PubMed

    Yang, Yongbi; Zhang, Teng; Cao, Hongxue; Yu, Dan; Zhang, Tong; Zhao, Shaojuan; Jing, Xiaohui; Song, Liying; Liu, Yunye; Che, Ruixiang; Liu, Xin; Li, Deshan; Ren, Guiping

    2017-08-01

    Acute lung injury (ALI) is still a leading cause of morbidity and mortality in critically ill patients. Recently, our study found that a bispecific fusion protein treatment can ameliorate the lung injury induced by LPS. However, the molecular mechanisms which bispecific fusion protein ameliorates acute lung injury remain unclear. In this study, we found that the bispecific fusion protein treatment inhibited the nuclear transcription of NF-κB in confocal laser scanning fluorescence microscopy, the bispecific fusion protein exert protective effects in the cell model of ALI induced by lipopolysaccharide (LPS) via inhibiting the nuclear factor κB (NF-κB) signaling pathway and mediate inflammation. Moreover, the treatment of the bispecific fusion protein show its efficacy in animal models stimulated by LPS, the results of real-time PCR and ELISA demonstrate that bispecific fusion protein treatment effectively inhibited the over-expression of inflammatory cytokines(tumor necrosis factor α, interleukin 1β and interleukin 17). In addition, LPS-challenged mice exhibited significant lung injury characterized by the deterioration of histopathology, which was meliorated by bispecific fusion protein treatment. Collectively, these results demonstrate that bispecific fusion protein treatment ameliorates LPS-induced ALI through reducing inflammatory cytokines and lung inflammation, which may be associated with the decreased the nuclear transcription of NF-κB. The bispecific fusion protein may be useful as a novel therapy to treat ALI. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Dynamin-related protein-1 controls fusion pore dynamics during platelet granule exocytosis.

    PubMed

    Koseoglu, Secil; Dilks, James R; Peters, Christian G; Fitch-Tewfik, Jennifer L; Fadel, Nathalie A; Jasuja, Reema; Italiano, Joseph E; Haynes, Christy L; Flaumenhaft, Robert

    2013-03-01

    Platelet granule exocytosis serves a central role in hemostasis and thrombosis. Recently, single-cell amperometry has shown that platelet membrane fusion during granule exocytosis results in the formation of a fusion pore that subsequently expands to enable the extrusion of granule contents. However, the molecular mechanisms that control platelet fusion pore expansion and collapse are not known. We identified dynamin-related protein-1 (Drp1) in platelets and found that an inhibitor of Drp1, mdivi-1, blocked exocytosis of both platelet dense and α-granules. We used single-cell amperometry to monitor serotonin release from individual dense granules and, thereby, measured the effect of Drp1 inhibition on fusion pore dynamics. Inhibition of Drp1 increased spike width and decreased prespike foot events, indicating that Drp1 influences fusion pore formation and expansion. Platelet-mediated thrombus formation in vivo after laser-induced injury of mouse cremaster arterioles was impaired after infusion of mdivi-1. These results demonstrate that inhibition of Drp1 disrupts platelet fusion pore dynamics and indicate that Drp1 can be targeted to control thrombus formation in vivo.

  17. TALE-PvuII Fusion Proteins – Novel Tools for Gene Targeting

    PubMed Central

    Yanik, Mert; Alzubi, Jamal; Lahaye, Thomas; Cathomen, Toni; Pingoud, Alfred; Wende, Wolfgang

    2013-01-01

    Zinc finger nucleases (ZFNs) consist of zinc fingers as DNA-binding module and the non-specific DNA-cleavage domain of the restriction endonuclease FokI as DNA-cleavage module. This architecture is also used by TALE nucleases (TALENs), in which the DNA-binding modules of the ZFNs have been replaced by DNA-binding domains based on transcription activator like effector (TALE) proteins. Both TALENs and ZFNs are programmable nucleases which rely on the dimerization of FokI to induce double-strand DNA cleavage at the target site after recognition of the target DNA by the respective DNA-binding module. TALENs seem to have an advantage over ZFNs, as the assembly of TALE proteins is easier than that of ZFNs. Here, we present evidence that variant TALENs can be produced by replacing the catalytic domain of FokI with the restriction endonuclease PvuII. These fusion proteins recognize only the composite recognition site consisting of the target site of the TALE protein and the PvuII recognition sequence (addressed site), but not isolated TALE or PvuII recognition sites (unaddressed sites), even at high excess of protein over DNA and long incubation times. In vitro, their preference for an addressed over an unaddressed site is > 34,000-fold. Moreover, TALE-PvuII fusion proteins are active in cellula with minimal cytotoxicity. PMID:24349308

  18. Posttranslational nitro-glycative modifications of albumin in Alzheimer's disease: implications in cytotoxicity and amyloid-β peptide aggregation.

    PubMed

    Ramos-Fernández, Eva; Tajes, Marta; Palomer, Ernest; Ill-Raga, Gerard; Bosch-Morató, Mònica; Guivernau, Biuse; Román-Dégano, Irene; Eraso-Pichot, Abel; Alcolea, Daniel; Fortea, Juan; Nuñez, Laura; Paez, Antonio; Alameda, Francesc; Fernández-Busquets, Xavier; Lleó, Alberto; Elosúa, Roberto; Boada, Mercé; Valverde, Miguel A; Muñoz, Francisco J

    2014-01-01

    Glycation and nitrotyrosination are pathological posttranslational modifications that make proteins prone to losing their physiological properties. Since both modifications are increased in Alzheimer's disease (AD) due to amyloid-β peptide (Aβ) accumulation, we have studied their effect on albumin, the most abundant protein in cerebrospinal fluid and blood. Brain and plasmatic levels of glycated and nitrated albumin were significantly higher in AD patients than in controls. In vitro turbidometry and electron microscopy analyses demonstrated that glycation and nitrotyrosination promote changes in albumin structure and biochemical properties. Glycated albumin was more resistant to proteolysis and less uptake by hepatoma cells occurred. Glycated albumin also reduced the osmolarity expected for a solution containing native albumin. Both glycation and nitrotyrosination turned albumin cytotoxic in a cell type-dependent manner for cerebral and vascular cells. Finally, of particular relevance to AD, these modified albumins were significantly less effective in avoiding Aβ aggregation than native albumin. In summary, nitrotyrosination and especially glycation alter albumin structural and biochemical properties, and these modifications might contribute for the progression of AD.

  19. Expression and Activation of Horseradish Peroxidase-Protein A/G Fusion Protein in Silkworm Larvae for Diagnostic Purposes.

    PubMed

    Xxxx, Patmawati; Minamihata, Kosuke; Tatsuke, Tsuneyuki; Lee, Jae Man; Kusakabe, Takahiro; Kamiya, Noriho

    2018-06-01

    Recombinant protein production can create artificial proteins with desired functions by introducing genetic modifications to the target proteins. Horseradish peroxidase (HRP) has been used extensively as a reporter enzyme in biotechnological applications; however, recombinant production of HRP has not been very successful, hampering the utilization of HRP with genetic modifications. A fusion protein comprising an antibody binding protein and HRP will be an ideal bio-probe for high-quality HRP-based diagnostic systems. A HRP-protein A/G fusion protein (HRP-pAG) is designed and its production in silkworm (Bombyx mori) is evaluated for the first time. HRP-pAG is expressed in a soluble apo form, and is activated successfully by incubating with hemin. The activated HRP-pAG is used directly for ELISA experiments and retains its activity over 20 days at 4 °C. Moreover, HRP-pAG is modified with biotin by the microbial transglutaminase (MTG) reaction. The biotinylated HRP-pAG is conjugated with streptavidin to form a HRP-pAG multimer and the multimeric HRP-pAG produced higher signals in the ELISA system than monomeric HRP-pAG. The successful production of recombinant HRP in silkworm will contribute to creating novel HRP-based bioconjugates as well as further functionalization of HRP by applying enzymatic post-translational modifications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Molecularly imprinted composite cryogel for albumin depletion from human serum.

    PubMed

    Andaç, Müge; Baydemir, Gözde; Yavuz, Handan; Denizli, Adil

    2012-11-01

    A new composite protein-imprinted macroporous cryogel was prepared for depletion of albumin from human serum prior to use in proteom applications. Polyhydroxyethyl-methacylate-based molecularly imprinted polymer (MIP) composite cryogel was prepared with high gel fraction yields up to 83%, and its morphology and porosity were characterized by Fourier transform infrared, scanning electron microscopy, swelling studies, flow dynamics, and surface area measurements. Selective binding experiments were performed in the presence of competitive proteins human transferrin (HTR) and myoglobin (MYB). MIP composite cryogel exhibited a high binding capacity and selectivity for human serum albumin (HSA) in the presence of HTR and MYB. The competitive adsorption amount for HSA in MIP composite cryogel is 722.1 mg/dL in the presence of competitive proteins (HTR and MYB). MIP composite cryogel column was successfully applied in the fast protein liquid chromatography system for selective depletion of albumin in human serum. The depletion ratio was highly increased by embedding beads into cryogel (85%). Finally, MIP composite cryogel can be reused many times with no apparent decrease in HSA adsorption capacity. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Fusion partners can increase the expression of recombinant interleukins via transient transfection in 2936E cells

    PubMed Central

    Carter, Jane; Zhang, Jue; Dang, Thien-Lan; Hasegawa, Haruki; Cheng, Janet D; Gianan, Irene; O'Neill, Jason W; Wolfson, Martin; Siu, Sophia; Qu, Sheldon; Meininger, David; Kim, Helen; Delaney, John; Mehlin, Christopher

    2010-01-01

    The expression levels of five secreted target interleukins (IL-11, 15, 17B, 32, and IL23 p19 subunit) were tested with three different fusion partners in 2936E cells. When fused to the N-terminus, human serum albumin (HSA) was found to enhance the expression of both IL-17B and IL-15, cytokines which did not express at measurable levels on their own. Although the crystallizable fragment of an antibody (Fc) was also an effective fusion partner for IL-17B, Fc did not increase expression of IL-15. Fc was superior to HSA for the expression of the p19 subunit of IL-23, but no partner led to measurable levels of IL-32γ secretion. Glutathione S-transferase (GST) did not enhance the expression of any target and suppressed the production of IL-11, a cytokine which expressed robustly both on its own and when fused to HSA or Fc. Cleavage of the fusion partner was not always possible. The use of HSA or Fc as N-terminal fusions can be an effective technique to express difficult proteins, especially for applications in which the fusion partner need not be removed. PMID:20014434

  2. A fast and reproducible method for albumin isolation and depletion from serum and cerebrospinal fluid.

    PubMed

    Holewinski, Ronald J; Jin, Zhicheng; Powell, Matthew J; Maust, Matthew D; Van Eyk, Jennifer E

    2013-03-01

    Analysis of serum and plasma proteomes is a common approach for biomarker discovery, and the removal of high-abundant proteins, such as albumin and immunoglobins, is usually the first step in the analysis. However, albumin binds peptides and proteins, which raises concerns as to how the removal of albumin could impact the outcome of the biomarker study while ignoring the possibility that this could be a biomarker subproteome itself. The first goal of this study was to test a new commercially available affinity capture reagent from Protea Biosciences and to compare the efficiency and reproducibility to four other commercially available albumin depletion methods. The second goal of this study was to determine if there is a highly efficient albumin depletion/isolation system that minimizes sample handling and would be suitable for large numbers of samples. Two of the methods tested (Sigma and ProteaPrep) showed an albumin depletion efficiency of 97% or greater for both serum and cerebrospinal fluid (CSF). Isolated serum and CSF albuminomes from ProteaPrep spin columns were analyzed directly by LC-MS/MS, identifying 128 serum (45 not previously reported) and 94 CSF albuminome proteins (17 unique to the CSF albuminome). Serum albuminome was also isolated using Vivapure anti-HSA columns for comparison, identifying 105 proteins, 81 of which overlapped with the ProteaPrep method. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Nipah virus fusion protein: Importance of the cytoplasmic tail for endosomal trafficking and bioactivity.

    PubMed

    Weis, Michael; Maisner, Andrea

    2015-01-01

    Nipah virus (NiV) is a highly pathogenic paramyxovirus which encodes two surface glycoproteins: the receptor-binding protein G and the fusion protein F. As for all paramyxoviruses, proteolytic activation of the NiV-F protein is an indispensable prerequisite for viral infectivity. Interestingly, proteolytic activation of NiV-F differs principally from other paramyxoviruses with respect to protease usage (cathepsins instead of trypsin- or furin-like proteases), and the subcellular localization where cleavage takes place (endosomes instead of Golgi or plasma membrane). To allow efficient F protein activation needed for productive virus replication and cell-to-cell fusion, the NiV-F cytoplasmic tail contains a classical tyrosine-based endocytosis signal (Y525RSL) that we have shown earlier to be needed for F uptake and proteolytic activation. In this report, we furthermore revealed that an intact endocytosis signal alone is not sufficient for full bioactivity. The very C-terminus of the cytoplasmic tail is needed in addition. Deletions of more than four residues did not affect F uptake or endosomal cleavage but downregulated the surface expression, likely by delaying the intracellular trafficking through endosomal-recycling compartments. Given that the NiV-F cytoplasmic tail is needed for timely and correct intracellular trafficking, endosomal cleavage and fusion activity, the influence of tail truncations on NiV-mediated cell-to-cell fusion and on pseudotyping lentiviral vectors is discussed. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Binding of Sulpiride to Seric Albumins

    PubMed Central

    da Silva Fragoso, Viviane Muniz; de Morais Coura, Carla Patrícia; Hoppe, Luanda Yanaan; Soares, Marília Amável Gomes; Silva, Dilson; Cortez, Celia Martins

    2016-01-01

    The aim of this work was to study the interaction of sulpiride with human serum albumin (HSA) and bovine serum albumin (BSA) through the fluorescence quenching technique. As sulpiride molecules emit fluorescence, we have developed a simple mathematical model to discriminate the quencher fluorescence from the albumin fluorescence in the solution where they interact. Sulpiride is an antipsychotic used in the treatment of several psychiatric disorders. We selectively excited the fluorescence of tryptophan residues with 290 nm wavelength and observed the quenching by titrating HSA and BSA solutions with sulpiride. Stern-Volmer graphs were plotted and quenching constants were estimated. Results showed that sulpiride form complexes with both albumins. Estimated association constants for the interaction sulpiride–HSA were 2.20 (±0.08) × 104 M−1, at 37 °C, and 5.46 (±0.20) × 104 M−1, at 25 °C. Those for the interaction sulpiride-BSA are 0.44 (±0.01) × 104 M−1, at 37 °C and 2.17 (±0.04) × 104 M−1, at 25 °C. The quenching intensity of BSA, which contains two tryptophan residues in the peptide chain, was found to be higher than that of HSA, what suggests that the primary binding site for sulpiride in albumin should be located next to the sub domain IB of the protein structure. PMID:26742031

  5. Type II integral membrane protein, TM of J paramyxovirus promotes cell-to-cell fusion.

    PubMed

    Li, Zhuo; Hung, Cher; Paterson, Reay G; Michel, Frank; Fuentes, Sandra; Place, Ryan; Lin, Yuan; Hogan, Robert J; Lamb, Robert A; He, Biao

    2015-10-06

    Paramyxoviruses include many important animal and human pathogens. Most paramyxoviruses have two integral membrane proteins: fusion protein (F) and attachment proteins hemagglutinin, hemagglutinin-neuraminidase, or glycoprotein (G), which are critical for viral entry into cells. J paramyxovirus (JPV) encodes four integral membrane proteins: F, G, SH, and transmembrane (TM). The function of TM is not known. In this work, we have generated a viable JPV lacking TM (JPV∆TM). JPV∆TM formed opaque plaques compared with JPV. Quantitative syncytia assays showed that JPV∆TM was defective in promoting cell-to-cell fusion (i.e., syncytia formation) compared with JPV. Furthermore, cells separately expressing F, G, TM, or F plus G did not form syncytia whereas cells expressing F plus TM formed some syncytia. However, syncytia formation was much greater with coexpression of F, G, and TM. Biochemical analysis indicates that F, G, and TM interact with each other. A small hydrophobic region in the TM ectodomain from amino acid residues 118 to 132, the hydrophobic loop (HL), was important for syncytial promotion, suggesting that the TM HL region plays a critical role in cell-to-cell fusion.

  6. A protein coevolution method uncovers critical features of the Hepatitis C Virus fusion mechanism

    PubMed Central

    Douam, Florian; Mancip, Jimmy; Mailly, Laurent; Montserret, Roland; Ding, Qiang; Verhoeyen, Els; Baumert, Thomas F.; Ploss, Alexander; Carbone, Alessandra

    2018-01-01

    Amino-acid coevolution can be referred to mutational compensatory patterns preserving the function of a protein. Viral envelope glycoproteins, which mediate entry of enveloped viruses into their host cells, are shaped by coevolution signals that confer to viruses the plasticity to evade neutralizing antibodies without altering viral entry mechanisms. The functions and structures of the two envelope glycoproteins of the Hepatitis C Virus (HCV), E1 and E2, are poorly described. Especially, how these two proteins mediate the HCV fusion process between the viral and the cell membrane remains elusive. Here, as a proof of concept, we aimed to take advantage of an original coevolution method recently developed to shed light on the HCV fusion mechanism. When first applied to the well-characterized Dengue Virus (DENV) envelope glycoproteins, coevolution analysis was able to predict important structural features and rearrangements of these viral protein complexes. When applied to HCV E1E2, computational coevolution analysis predicted that E1 and E2 refold interdependently during fusion through rearrangements of the E2 Back Layer (BL). Consistently, a soluble BL-derived polypeptide inhibited HCV infection of hepatoma cell lines, primary human hepatocytes and humanized liver mice. We showed that this polypeptide specifically inhibited HCV fusogenic rearrangements, hence supporting the critical role of this domain during HCV fusion. By combining coevolution analysis and in vitro assays, we also uncovered functionally-significant coevolving signals between E1 and E2 BL/Stem regions that govern HCV fusion, demonstrating the accuracy of our coevolution predictions. Altogether, our work shed light on important structural features of the HCV fusion mechanism and contributes to advance our functional understanding of this process. This study also provides an important proof of concept that coevolution can be employed to explore viral protein mediated-processes, and can guide the

  7. Export of FepA::PhoA fusion proteins to the outer membrane of Escherichia coli K-12.

    PubMed

    Murphy, C K; Klebba, P E

    1989-11-01

    A library of fepA::phoA gene fusions was generated in order to study the structure and secretion of the Escherichia coli K-12 ferric enterobactin receptor, FepA. All of the fusion proteins contained various lengths of the amino-terminal portion of FepA fused in frame to the catalytic portion of bacterial alkaline phosphatase. Localization of FepA::PhoA fusion proteins in the cell envelope was dependent on the number of residues of mature FepA present at the amino terminus. Hybrids containing up to one-third of the amino-terminal portion of FepA fractionated with their periplasm, while those containing longer sequences of mature FepA were exported to the outer membrane. Outer membrane-localized fusion proteins expressed FepA sequences on the external face of the outer membrane and alkaline phosphatase moieties in the periplasmic space. From sequence determinations of the fepA::phoA fusion joints, residues within FepA which may be exposed on the periplasmic side of the outer membrane were identified.

  8. Fusion activation through attachment protein stalk domains indicates a conserved core mechanism of paramyxovirus entry into cells.

    PubMed

    Bose, Sayantan; Song, Albert S; Jardetzky, Theodore S; Lamb, Robert A

    2014-04-01

    Paramyxoviruses are a large family of membrane-enveloped negative-stranded RNA viruses causing important diseases in humans and animals. Two viral integral membrane glycoproteins (fusion [F] and attachment [HN, H, or G]) mediate a concerted process of host receptor recognition, followed by the fusion of viral and cellular membranes, resulting in viral nucleocapsid entry into the cytoplasm. However, the sequence of events that closely links the timing of receptor recognition by HN, H, or G and the "triggering" interaction of the attachment protein with F is unclear. F activation results in F undergoing a series of irreversible conformational rearrangements to bring about membrane merger and virus entry. By extensive study of properties of multiple paramyxovirus HN proteins, we show that key features of F activation, including the F-activating regions of HN proteins, flexibility within this F-activating region, and changes in globular head-stalk interactions are highly conserved. These results, together with functionally active "headless" mumps and Newcastle disease virus HN proteins, provide insights into the F-triggering process. Based on these data and very recently published data for morbillivirus H and henipavirus G proteins, we extend our recently proposed "stalk exposure model" to other paramyxoviruses and propose an "induced fit" hypothesis for F-HN/H/G interactions as conserved core mechanisms of paramyxovirus-mediated membrane fusion. Paramyxoviruses are a large family of membrane-enveloped negative-stranded RNA viruses causing important diseases in humans and animals. Two viral integral membrane glycoproteins (fusion [F] and attachment [HN, H, or G]) mediate a concerted process of host receptor recognition, followed by the fusion of viral and cellular membranes. We describe here the molecular mechanism by which HN activates the F protein such that virus-cell fusion is controlled and occurs at the right time and the right place. We extend our recently

  9. Different sets of ER-resident J-proteins regulate distinct polar nuclear-membrane fusion events in Arabidopsis thaliana.

    PubMed

    Maruyama, Daisuke; Yamamoto, Masaya; Endo, Toshiya; Nishikawa, Shuh-ichi

    2014-11-01

    Angiosperm female gametophytes contain a central cell with two polar nuclei. In many species, including Arabidopsis thaliana, the polar nuclei fuse during female gametogenesis. We previously showed that BiP, an Hsp70 in the endoplasmic reticulum (ER), was essential for membrane fusion during female gametogenesis. Hsp70 function requires partner proteins for full activity. J-domain containing proteins (J-proteins) are the major Hsp70 functional partners. A. thaliana ER contains three soluble J-proteins, AtERdj3A, AtERdj3B, and AtP58(IPK). Here, we analyzed mutants of these proteins and determined that double-mutant ovules lacking AtP58(IPK) and AtERdj3A or AtERdj3B were defective in polar nuclear fusion. Electron microscopy analysis identified that polar nuclei were in close contact, but no membrane fusion occurred in mutant ovules lacking AtP58(IPK) and AtERdj3A. The polar nuclear outer membrane appeared to be connected via the ER remaining at the inner unfused membrane in mutant ovules lacking AtP58(IPK) and AtERdj3B. These results indicate that ER-resident J-proteins, AtP58(IPK)/AtERdj3A and AtP58(IPK)/AtERdj3B, function at distinct steps of polar nuclear-membrane fusion. Similar to the bip1 bip2 double mutant female gametophytes, the aterdj3a atp58(ipk) double mutant female gametophytes defective in fusion of the outer polar nuclear membrane displayed aberrant endosperm proliferation after fertilization with wild-type pollen. However, endosperm proliferated normally after fertilization of the aterdj3b atp58(ipk) double mutant female gametophytes defective in fusion of the inner membrane. Our results indicate that the polar nuclear fusion defect itself does not cause an endosperm proliferation defect. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. A role for nephrin, a renal protein, in vertebrate skeletal muscle cell fusion

    PubMed Central

    Sohn, Regina Lee; Huang, Ping; Kawahara, Genri; Mitchell, Matthew; Guyon, Jeffrey; Kalluri, Raghu; Kunkel, Louis M.; Gussoni, Emanuela

    2009-01-01

    Skeletal muscle is formed via fusion of myoblasts, a well-studied process in Drosophila. In vertebrates however, this process is less well understood, and whether there is evolutionary conservation with the proteins studied in flies is under investigation. Sticks and stones (Sns), a cell surface protein found on Drosophila myoblasts, has structural homology to nephrin. Nephrin is a protein expressed in kidney that is part of the filtration barrier formed by podocytes. No previous study has established any role for nephrin in skeletal muscle. We show, using two models, zebrafish and mice, that the absence of nephrin results in poorly developed muscles and incompletely fused myotubes, respectively. Although nephrin-knockout (nephrinKO) myoblasts exhibit prolonged activation of MAPK/ERK pathway during myogenic differentiation, expression of myogenin does not seem to be altered. Nevertheless, MAPK pathway blockade does not rescue myoblast fusion. Co-cultures of unaffected human fetal myoblasts with nephrinKO myoblasts or myotubes restore the formation of mature myotubes; however, the contribution of nephrinKO myoblasts is minimal. These studies suggest that nephrin plays a role in secondary fusion of myoblasts into nascent myotubes, thus establishing a possible functional conservation with Drosophila Sns. PMID:19470472

  11. NMR structure and localization of a large fragment of the SARS-CoV fusion protein: Implications in viral cell fusion.

    PubMed

    Mahajan, Mukesh; Chatterjee, Deepak; Bhuvaneswari, Kannaian; Pillay, Shubhadra; Bhattacharjya, Surajit

    2018-02-01

    The lethal Coronaviruses (CoVs), Severe Acute Respiratory Syndrome-associated Coronavirus (SARS-CoV) and most recently Middle East Respiratory Syndrome Coronavirus, (MERS-CoV) are serious human health hazard. A successful viral infection requires fusion between virus and host cells carried out by the surface spike glycoprotein or S protein of CoV. Current models propose that the S2 subunit of S protein assembled into a hexameric helical bundle exposing hydrophobic fusogenic peptides or fusion peptides (FPs) for membrane insertion. The N-terminus of S2 subunit of SARS-CoV reported to be active in cell fusion whereby FPs have been identified. Atomic-resolution structure of FPs derived either in model membranes or in membrane mimic environment would glean insights toward viral cell fusion mechanism. Here, we have solved 3D structure, dynamics and micelle localization of a 64-residue long fusion peptide or LFP in DPC detergent micelles by NMR methods. Micelle bound structure of LFP is elucidated by the presence of discretely folded helical and intervening loops. The C-terminus region, residues F42-Y62, displays a long hydrophobic helix, whereas the N-terminus is defined by a short amphipathic helix, residues R4-Q12. The intervening residues of LFP assume stretches of loops and helical turns. The N-terminal helix is sustained by close aromatic and aliphatic sidechain packing interactions at the non-polar face. 15 N{ 1 H}NOE studies indicated dynamical motion, at ps-ns timescale, of the helices of LFP in DPC micelles. PRE NMR showed that insertion of several regions of LFP into DPC micelle core. Together, the current study provides insights toward fusion mechanism of SARS-CoV. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Cell-to-Cell Measles Virus Spread between Human Neurons Is Dependent on Hemagglutinin and Hyperfusogenic Fusion Protein.

    PubMed

    Sato, Yuma; Watanabe, Shumpei; Fukuda, Yoshinari; Hashiguchi, Takao; Yanagi, Yusuke; Ohno, Shinji

    2018-03-15

    Measles virus (MV) usually causes acute infection but in rare cases persists in the brain, resulting in subacute sclerosing panencephalitis (SSPE). Since human neurons, an important target affected in the disease, do not express the known MV receptors (signaling lymphocyte activation molecule [SLAM] and nectin 4), how MV infects neurons and spreads between them is unknown. Recent studies have shown that many virus strains isolated from SSPE patients possess substitutions in the extracellular domain of the fusion (F) protein which confer enhanced fusion activity. Hyperfusogenic viruses with such mutations, unlike the wild-type MV, can induce cell-cell fusion even in SLAM- and nectin 4-negative cells and spread efficiently in human primary neurons and the brains of animal models. We show here that a hyperfusogenic mutant MV, IC323-F(T461I)-EGFP (IC323 with a fusion-enhancing T461I substitution in the F protein and expressing enhanced green fluorescent protein), but not the wild-type MV, spreads in differentiated NT2 cells, a widely used human neuron model. Confocal time-lapse imaging revealed the cell-to-cell spread of IC323-F(T461I)-EGFP between NT2 neurons without syncytium formation. The production of virus particles was strongly suppressed in NT2 neurons, also supporting cell-to-cell viral transmission. The spread of IC323-F(T461I)-EGFP was inhibited by a fusion inhibitor peptide as well as by some but not all of the anti-hemagglutinin antibodies which neutralize SLAM- or nectin-4-dependent MV infection, suggesting the presence of a distinct neuronal receptor. Our results indicate that MV spreads in a cell-to-cell manner between human neurons without causing syncytium formation and that the spread is dependent on the hyperfusogenic F protein, the hemagglutinin, and the putative neuronal receptor for MV. IMPORTANCE Measles virus (MV), in rare cases, persists in the human central nervous system (CNS) and causes subacute sclerosing panencephalitis (SSPE) several

  13. Mutations in the Fusion Protein of Measles Virus That Confer Resistance to the Membrane Fusion Inhibitors Carbobenzoxy-d-Phe-l-Phe-Gly and 4-Nitro-2-Phenylacetyl Amino-Benzamide

    PubMed Central

    Ha, Michael N.; Delpeut, Sébastien; Noyce, Ryan S.; Sisson, Gary; Black, Karen M.; Lin, Liang-Tzung; Bilimoria, Darius; Plemper, Richard K.; Privé, Gilbert G.

    2017-01-01

    ABSTRACT The inhibitors carbobenzoxy (Z)-d-Phe-l-Phe-Gly (fusion inhibitor peptide [FIP]) and 4-nitro-2-phenylacetyl amino-benzamide (AS-48) have similar efficacies in blocking membrane fusion and syncytium formation mediated by measles virus (MeV). Other homologues, such as Z-d-Phe, are less effective but may act through the same mechanism. In an attempt to map the site of action of these inhibitors, we generated mutant viruses that were resistant to the inhibitory effects of Z-d-Phe-l-Phe-Gly. These 10 mutations were localized to the heptad repeat B (HRB) region of the fusion protein, and no changes were observed in the viral hemagglutinin, which is the receptor attachment protein. Mutations were validated in a luciferase-based membrane fusion assay, using transfected fusion and hemagglutinin expression plasmids or with syncytium-based assays in Vero, Vero-SLAM, and Vero-Nectin 4 cell lines. The changes I452T, D458N, D458G/V459A, N462K, N462H, G464E, and I483R conferred resistance to both FIP and AS-48 without compromising membrane fusion. The inhibitors did not block hemagglutinin protein-mediated binding to the target cell. Edmonston vaccine/laboratory and IC323 wild-type strains were equally affected by the inhibitors. Escape mutations were mapped upon a three-dimensional (3D) structure modeled from the published crystal structure of parainfluenzavirus 5 fusion protein. The most effective mutations were situated in a region located near the base of the globular head and its junction with the alpha-helical stalk of the prefusion protein. We hypothesize that the fusion inhibitors could interfere with the structural changes that occur between the prefusion and postfusion conformations of the fusion protein. IMPORTANCE Due to lapses in vaccination worldwide that have caused localized outbreaks, measles virus (MeV) has regained importance as a pathogen. Antiviral agents against measles virus are not commercially available but could be useful in conjunction with Me

  14. Simple, Rapid, and Selective Isolation of 2S Albumins from Allergenic Seeds and Nuts.

    PubMed

    Hummel, Marlene; Wigger, Tina; Höper, Tessa; Westkamp, Imke; Brockmeyer, Jens

    2015-07-08

    The 2S albumins belong to the group of seed storage proteins present in different seeds and nuts. Due to their pronounced allergenic potential, which is often associated with severe allergic reactions, this protein family is of special interest in the field of allergen research. Here we present a simple, rapid, and selective method for the purification of 2S albumins directly from allergenic seeds and nuts. We systematically optimized the parameters "buffer system", "extraction temperature", "buffer molarity", and "pH " and were able to achieve 2S albumin purities of about 99% without further purification and demonstrate transferability of this method to nine different allergenic food matrices. Compared to conventional isolation routines, significant reduction of hands-on time and required laboratory equipment is achieved, but nonetheless higher protein yields are obtained. The presented method allows for the rapid purification of different 2S albumins including the corresponding isoforms from natural material.

  15. LegC3, an Effector Protein from Legionella pneumophila, Inhibits Homotypic Yeast Vacuole Fusion In Vivo and In Vitro

    PubMed Central

    Bennett, Terry L.; Kraft, Shannon M.; Reaves, Barbara J.; Mima, Joji; O’Brien, Kevin M.; Starai, Vincent J.

    2013-01-01

    During infection, the intracellular pathogenic bacterium Legionella pneumophila causes an extensive remodeling of host membrane trafficking pathways, both in the construction of a replication-competent vacuole comprised of ER-derived vesicles and plasma membrane components, and in the inhibition of normal phagosome:endosome/lysosome fusion pathways. Here, we identify the LegC3 secreted effector protein from L. pneumophila as able to inhibit a SNARE- and Rab GTPase-dependent membrane fusion pathway in vitro, the homotypic fusion of yeast vacuoles (lysosomes). This vacuole fusion inhibition appeared to be specific, as similar secreted coiled-coiled domain containing proteins from L. pneumophila, LegC7/YlfA and LegC2/YlfB, did not inhibit vacuole fusion. The LegC3-mediated fusion inhibition was reversible by a yeast cytosolic extract, as well as by a purified soluble SNARE, Vam7p. LegC3 blocked the formation of trans-SNARE complexes during vacuole fusion, although we did not detect a direct interaction of LegC3 with the vacuolar SNARE protein complexes required for fusion. Additionally, LegC3 was incapable of inhibiting a defined synthetic model of vacuolar SNARE-driven membrane fusion, further suggesting that LegC3 does not directly inhibit the activity of vacuolar SNAREs, HOPS complex, or Sec17p/18p during membrane fusion. LegC3 is likely utilized by Legionella to modulate eukaryotic membrane fusion events during pathogenesis. PMID:23437241

  16. Human Innate Immune Responses to Hexamethylene Diisocyanate (HDI) and HDI-Albumin Conjugates

    PubMed Central

    Wisnewski, Adam V.; Liu, Qing; Liu, Jian; Redlich, Carrie A.

    2011-01-01

    Background Isocyanates, a leading cause of occupational asthma, are known to induce adaptive immune responses; however, innate immune responses, which generally precede and regulate adaptive immunity, remain largely uncharacterized. Objective Identify and characterize cellular, molecular and systemic innate immune responses induced by hexamethylene diisocyanate (HDI). Methods Human peripheral blood mononuclear cells (PBMCs) were stimulated in vitro with HDI-albumin conjugates or control antigen, and changes in phenotype, gene, and protein expression were characterized by flow cytometry, microarray, Western blot and ELISA. Cell uptake of isocyanate was visualized microscopically using HDI-albumin conjugates prepared with fluorescently-labeled albumin. In vivo, human HDI exposure was performed via specific inhalation challenge, and subsequent changes in PBMCs and serum proteins were measured by flow cytometry and ELISA. Genotypes were determined by PCR. Results Human monocytes take-up HDI-albumin conjugates and undergo marked changes in morphology and gene/protein expression in vitro. The most significant (p 0.007 – 0.05) changes in mircoarray gene expression were noted in lysosomal genes, especially peptidases and proton pumps involved in antigen processing. Chemokines that regulate monocyte/macrophage trafficking (MIF, MCP-1), and pattern recognition receptors that bind chitin (chitinases) and oxidized low-density lipoprotein (CD68) were also increased following isocyanate-albumin exposure. In vivo, HDI exposed subjects exhibited an acute increase in the percentage of PBMCs with the same HDI-albumin responsive phenotype characterized in vitro (HLA-DR+/CD11c+ with altered light scatter properties). An exposure-dependent decrease (46±11%; p<0.015) in serum concentrations of chitinase-3-like-1 was also observed, in individuals that lack the major (type 1) human chitinase (due to genetic polymorphism), but not in individuals possessing at least one functional

  17. Urine Protein and Urine Protein to Creatinine Ratio

    MedlinePlus

    ... Less Common Questions Related Content On This Site Tests: Urinalysis ; Albumin ; Urine Albumin ; Protein Electrophoresis ; Total Protein , BUN , Creatinine , Creatinine Clearance , eGFR Conditions: Kidney Disease , Proteinuria , Pre-eclampsia , Diabetes , Hypertension , Multiple Myeloma , Urinary Tract Infection ...

  18. Mechanism of increased clearance of glycated albumin by proximal tubule cells

    PubMed Central

    Wagner, Mark C.; Myslinski, Jered; Pratap, Shiv; Flores, Brittany; Rhodes, George; Campos-Bilderback, Silvia B.; Sandoval, Ruben M.; Kumar, Sudhanshu; Patel, Monika; Ashish

    2016-01-01

    Serum albumin is the most abundant plasma protein and has a long half-life due to neonatal Fc receptor (FcRn)-mediated transcytosis by many cell types, including proximal tubule cells of the kidney. Albumin also interacts with, and is modified by, many small and large molecules. Therefore, the focus of the present study was to address the impact of specific known biological albumin modifications on albumin-FcRn binding and cellular handling. Binding at pH 6.0 and 7.4 was performed since FcRn binds albumin strongly at acidic pH and releases it after transcytosis at physiological pH. Equilibrium dissociation constants were measured using microscale thermophoresis. Since studies have shown that glycated albumin is excreted in the urine at a higher rate than unmodified albumin, we studied glucose and methylgloxal modified albumins (21 days). All had reduced affinity to FcRn at pH 6.0, suggesting these albumins would not be returned to the circulation via the transcytotic pathway. To address why modified albumin has reduced affinity, we analyzed the structure of the modified albumins using small-angle X-ray scattering. This analysis showed significant structural changes occurring to albumin with glycation, particularly in the FcRn-binding region, which could explain the reduced affinity to FcRn. These results offer an explanation for enhanced proximal tubule-mediated sorting and clearance of abnormal albumins. PMID:26887834

  19. Uptake of leptin and albumin via separate pathways in proximal tubule cells.

    PubMed

    Briffa, Jessica F; Grinfeld, Esther; Poronnik, Philip; McAinch, Andrew J; Hryciw, Deanne H

    2016-10-01

    The adipokine leptin and oncotic protein albumin are endocytosed in the proximal tubule via the scavenger receptor megalin. Leptin reduces megalin expression and activates cell signalling pathways that upregulate fibrotic protein expression. The aim of this study was to investigate if leptin uptake in proximal tubule cells was via the albumin-megalin endocytic complex. In immortalised proximal tubule Opossum kidney cells (OK) fluorescent leptin and albumin co-localised following 5min exposure, however there was no co-localisation at 10, 20 and 30min exposure. In OK cells, acute exposure to leptin for 2h did not alter NHE3, ClC-5, NHERF1 and NHERF2 mRNA. However, acute leptin exposure increased NHERF2 protein expression in proximal tubule cells. In OK cells, immunoprecipitation experimentation indicated leptin did not bind to ClC-5. Leptin uptake in OK cells was enhanced by bafilomycin and ammonium chloride treatment, demonstrating that uptake was not dependent on lysosomal pH. Thus, it is likely that two pools of megalin exist in proximal tubule cells to facilitate separate uptake of leptin and albumin by endocytosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Self-Assembly of Spider Silk-Fusion Proteins Comprising Enzymatic and Fluorescence Activity.

    PubMed

    Humenik, Martin; Mohrand, Madeleine; Scheibel, Thomas

    2018-04-18

    The recombinant spider silk protein eADF4(C16) was genetically fused either with esterase 2 (EST2) or green fluorescent protein (GFP). The fusions EST-eADF4(C16) and GFP-eADF4(C16) were spectroscopically investigated and showed native structures of EST and GFP. The structural integrity was confirmed by the enzymatic activity of EST and the fluorescence of GFP. The spider silk moiety retained its intrinsically unstructured conformation in solution and the self-assembly into either nanofibrils or nanoparticles could be controlled by the concentration of phosphate. Particles, however, showed significantly lower activity of the EST and GFP domains likely caused by a steric hindrance. However, upon self-assembly of EST-eADF4(C16) and GFP-eADF4(C16) into fibrils the protein activities were retained. In general, the fusion of globular enzymes with the spider silk domain allows the generation of fibrous biomaterials with catalytic or light emitting properties.

  1. Higher accumulation of F1-V fusion recombinant protein in plants after induction of protein body formation.

    PubMed

    Alvarez, M Lucrecia; Topal, Emel; Martin, Federico; Cardineau, Guy A

    2010-01-01

    Improving foreign protein accumulation is crucial for enhancing the commercial success of plant-based production systems since product yields have a major influence on process economics. Cereal grain evolved to store large amounts of proteins in tightly organized aggregates. In maize, gamma-Zein is the major storage protein synthesized by the rough endoplasmic reticulum (ER) and stored in specialized organelles called protein bodies (PB). Zera (gamma-Zein ER-accumulating domain) is the N-terminal proline-rich domain of gamma-zein that is sufficient to induce the assembly of PB formation. Fusion of the Zera domain to proteins of interest results in assembly of dense PB-like, ER-derived organelles, containing high concentration of recombinant protein. Our main goal was to increase recombinant protein accumulation in plants in order to enhance the efficiency of orally-delivered plant-made vaccines. It is well known that oral vaccination requires substantially higher doses than parental formulations. As a part of a project to develop a plant-made plague vaccine, we expressed our model antigen, the Yersinia pestis F1-V antigen fusion protein, with and without a fused Zera domain. We demonstrated that Zera-F1-V protein accumulation was at least 3x higher than F1-V alone when expressed in three different host plant systems: Ncotiana benthamiana, Medicago sativa (alfalfa) and Nicotiana tabacum NT1 cells. We confirmed the feasibility of using Zera technology to induce protein body formation in non-seed tissues. Zera expression and accumulation did not affect plant development and growth. These results confirmed the potential exploitation of Zera technology to substantially increase the accumulation of value-added proteins in plants.

  2. Mo-CBP3, an Antifungal Chitin-Binding Protein from Moringa oleifera Seeds, Is a Member of the 2S Albumin Family

    PubMed Central

    Freire, José E. C.; Vasconcelos, Ilka M.; Moreno, Frederico B. M. B.; Batista, Adelina B.; Lobo, Marina D. P.; Pereira, Mirella L.; Lima, João P. M. S.; Almeida, Ricardo V. M.; Sousa, Antônio J. S.; Monteiro-Moreira, Ana C. O.; Oliveira, José T. A.; Grangeiro, Thalles B.

    2015-01-01

    Mo-CBP3 is a chitin-binding protein from M. oleifera seeds that inhibits the germination and mycelial growth of phytopathogenic fungi. This protein is highly thermostable and resistant to pH changes, and therefore may be useful in the development of new antifungal drugs. However, the relationship of MoCBP3 with the known families of carbohydrate-binding domains has not been established. In the present study, full-length cDNAs encoding 4 isoforms of Mo-CBP3 (Mo-CBP3-1, Mo-CBP3-2, Mo-CBP3-3 and Mo-CBP3-4) were cloned from developing seeds. The polypeptides encoded by the Mo-CBP3 cDNAs were predicted to contain 160 (Mo-CBP3-3) and 163 amino acid residues (Mo-CBP3-1, Mo-CBP3-2 and Mo-CBP3-4) with a signal peptide of 20-residues at the N-terminal region. A comparative analysis of the deduced amino acid sequences revealed that Mo-CBP3 is a typical member of the 2S albumin family, as shown by the presence of an eight-cysteine motif, which is a characteristic feature of the prolamin superfamily. Furthermore, mass spectrometry analysis demonstrated that Mo-CBP3 is a mixture of isoforms that correspond to different mRNA products. The identification of Mo-CBP3 as a genuine member of the 2S albumin family reinforces the hypothesis that these seed storage proteins are involved in plant defense. Moreover, the chitin-binding ability of Mo-CBP3 reveals a novel functionality for a typical 2S albumin. PMID:25789746

  3. Albumin Overload and PINK1/Parkin Signaling-Related Mitophagy in Renal Tubular Epithelial Cells.

    PubMed

    Tan, Jin; Xie, Qi; Song, Shuling; Miao, Yuyang; Zhang, Qiang

    2018-03-01

    BACKGROUND Albumin, as a major urinary protein component, is a risk factor for chronic kidney disease progression. Mitochondrial dysfunction is one of the main causes of albumin-induced proximal tubule cells injury. Mitophagy is considered as a pivotal protective mechanism for the elimination of dysfunctional mitochondria. The objective of this research was to determine whether albumin overload-induced mitochondrial dysfunction can activate PINK1/Parkin-mediated mitophagy in renal tubular epithelial cells (TECs). MATERIAL AND METHODS Immunofluorescence assay and Western blot assay were used to detect the effects of albumin overload on autophagy marker protein LC3. Transmission electron microscopy and Western blot assay were used to investigate the role of albumin in mitochondrial injury. Western blot assay and co-localization of acidic lysosomes and mitochondria assay were employed to detect the activation of mitophagy induced by albumin. Finally, we explored the role of PINK1/Parkin signaling in albumin-induced mitophagy by inhibiting mitophagy by knockdown of PARK2 (Parkin) level. RESULTS Immunofluorescence and Western blot results showed that the expression level of LC3-II increased, and the maximum increase point was observed after 8 h of albumin treatment. Transmission electron microscopy results demonstrated that albumin overload-induced mitochondrial injury and quantity of autophagosomes increased. Additionally, expression of PINK1 and cytosolic cytochrome C increased and mitochondria cytochrome C decreased in the albumin group. The co-localization of acidic lysosomes and mitochondria demonstrated that the number of albumin overload-induced mitophagy-positive dots increased. The transient transfection of PARK2 siRNA result showed knockdown of the expression level of PARK2 can inhibit mitophagy induced by albumin. CONCLUSIONS In conclusion, our study suggests that mitochondrial dysfunction activates the PINK1/Parkin signaling and mitophagy in renal tubular

  4. Pretargeting with bispecific fusion proteins facilitates delivery of nanoparticles to tumor cells with distinct surface antigens.

    PubMed

    Yang, Qi; Parker, Christina L; Lin, Yukang; Press, Oliver W; Park, Steven I; Lai, Samuel K

    2017-06-10

    Tumor heterogeneity, which describes the genetically and phenotypically distinct subpopulations of tumor cells present within the same tumor or patient, presents a major challenge to targeted delivery of diagnostic and/or therapeutic agents. An ideal targeting strategy should deliver a given nanocarrier to the full diversity of cancer cells, which is difficult to achieve with conventional ligand-conjugated nanoparticles. We evaluated pretargeting (i.e., multistep targeting) as a strategy to facilitate nanoparticle delivery to multiple target cells by measuring the uptake of biotinylated nanoparticles by lymphoma cells with distinct surface antigens pretreated with different bispecific streptavidin-scFv fusion proteins. Fusion proteins targeting CD20 or tumor-associated glycoprotein 72 (TAG-72) mediated the specific in vitro uptake of 100nm biotin-functionalized nanoparticles by Raji and Jurkat lymphoma cells (CD20-positive and TAG-72-positive cells, respectively). Greater uptake was observed for pretargeted nanoparticles with increasing amounts of surface biotin, with 6- to 18-fold higher uptake vs. non-biotinylated nanoparticle and fusion protein controls. Fully biotin-modified particles remained resistant to cultured macrophage cell uptake, although they were still quickly cleared from systemic circulation in vivo (t 1/2 <1h). For single Raji tumor-bearing mice, pretargeting with CD20-specific FP significantly increased nanoparticle tumor targeting. In mice bearing both Raji and Jurkat tumors, pretargeting with both fusion proteins markedly increased nanoparticle targeting to both tumor types, compared to animals dosed with nanoparticles alone. These in vitro and in vivo observations support further evaluations of pretargeting fusion protein cocktails as a strategy to enhance nanoparticle delivery to a diverse array of molecularly distinct target cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Elucidating the impact of glucosylation on human serum albumin: A multi-technique approach.

    PubMed

    Neelofar, K M; Ahmad, Jamal; Arif, Zarina; Alam, Khursheed

    2016-11-01

    Early glycation products as well as advance glycation end products are involved in pathogenesis of diabetes. Most of studies carried out on AGEs and their possible role in assessing diabetes complications, whereas only a few were focused to highlight the role of Amadori products. In this study, an attempt has been made to investigate a structural and immunological characterizations of Amadori-albumin upon early glucosylation because albumin undergoes fast glycation under hyperglycaemic condition. Amadori-albumin formation was determined by NBT assay and Amadori adducts in glycated samples were confirmed by LC-MS. Structural alterations in Amadori-albumin were characterized by loss in fluorescence intensity, loss in secondary and tertiary structures, exposure of hydrophobic patches, shifting in Amide bands and increment in hydrodynamic radius. Further, presence to autoantibodies against Amadori-albumin in diabetes patients were confirmed by direct binding ELISA and inhibition ELISA. Immunological studies results showed that autoantibodies present in diabetic patients with and without chronic kidney disease (CKD) showed significant binding with Amadori-albumin in comparison to the native protein. Anti Amadori-albumin antibodies predominantly present in CKD patients compare to without CKD patients. Band shift assay results showed true interaction between Amadori-albumin and autoantibodies present in CKD patients. Glucosylation results showed structural alterations in Amadori-albumin and hence generation of neo-epitopes in HSA molecule. Such modifications rendering the protein highly immunogenic that may be recognized as foreign molecule by immune cells and induced autoantibodies in diabetic patients. These finding signify the role of Amadori-albumin in kidney dysfunction in diabetes and raised level of autoantibodies may be used as biomarker for progression of CKD. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Solid-State Nuclear Magnetic Resonance Investigation of the Structural Topology and Lipid Interactions of a Viral Fusion Protein Chimera Containing the Fusion Peptide and Transmembrane Domain.

    PubMed

    Yao, Hongwei; Lee, Myungwoon; Liao, Shu-Yu; Hong, Mei

    2016-12-13

    The fusion peptide (FP) and transmembrane domain (TMD) of viral fusion proteins play important roles during virus-cell membrane fusion, by inducing membrane curvature and transient dehydration. The structure of the water-soluble ectodomain of viral fusion proteins has been extensively studied crystallographically, but the structures of the FP and TMD bound to phospholipid membranes are not well understood. We recently investigated the conformations and lipid interactions of the separate FP and TMD peptides of parainfluenza virus 5 (PIV5) fusion protein F using solid-state nuclear magnetic resonance. These studies provide structural information about the two domains when they are spatially well separated in the fusion process. To investigate how these two domains are structured relative to each other in the postfusion state, when the ectodomain forms a six-helix bundle that is thought to force the FP and TMD together in the membrane, we have now expressed and purified a chimera of the FP and TMD, connected by a Gly-Lys linker, and measured the chemical shifts and interdomain contacts of the protein in several lipid membranes. The FP-TMD chimera exhibits α-helical chemical shifts in all the membranes examined and does not cause strong curvature of lamellar membranes or membranes with negative spontaneous curvature. These properties differ qualitatively from those of the separate peptides, indicating that the FP and TMD interact with each other in the lipid membrane. However, no 13 C- 13 C cross peaks are observed in two-dimensional correlation spectra, suggesting that the two helices are not tightly associated. These results suggest that the ectodomain six-helix bundle does not propagate into the membrane to the two hydrophobic termini. However, the loosely associated FP and TMD helices are found to generate significant negative Gaussian curvature to membranes that possess spontaneous positive curvature, consistent with the notion that the FP-TMD assembly may

  7. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations.

    PubMed

    Sun, Tianjun; Gauthier, Sherry Y; Campbell, Robert L; Davies, Peter L

    2015-10-08

    Antifreeze proteins (AFPs) adsorb to ice through an extensive, flat, relatively hydrophobic surface. It has been suggested that this ice-binding site (IBS) organizes surface waters into an ice-like clathrate arrangement that matches and fuses to the quasi-liquid layer on the ice surface. On cooling, these waters join the ice lattice and freeze the AFP to its ligand. Evidence for the generality of this binding mechanism is limited because AFPs tend to crystallize with their IBS as a preferred protein-protein contact surface, which displaces some bound waters. Type III AFP is a 7 kDa globular protein with an IBS made up two adjacent surfaces. In the crystal structure of the most active isoform (QAE1), the part of the IBS that docks to the primary prism plane of ice is partially exposed to solvent and has clathrate waters present that match this plane of ice. The adjacent IBS, which matches the pyramidal plane of ice, is involved in protein-protein crystal contacts with few surface waters. Here we have changed the protein-protein contacts in the ice-binding region by crystallizing a fusion of QAE1 to maltose-binding protein. In this 1.9 Å structure, the IBS that fits the pyramidal plane of ice is exposed to solvent. By combining crystallography data with MD simulations, the surface waters on both sides of the IBS were revealed and match well with the target ice planes. The waters on the pyramidal plane IBS were loosely constrained, which might explain why other isoforms of type III AFP that lack the prism plane IBS are less active than QAE1. The AFP fusion crystallization method can potentially be used to force the exposure to solvent of the IBS on other AFPs to reveal the locations of key surface waters.

  8. About the structural role of disulfide bridges in serum albumins: evidence from protein simulated unfolding.

    PubMed

    Paris, Guillaume; Kraszewski, Sebastian; Ramseyer, Christophe; Enescu, Mironel

    2012-11-01

    The role of the 17 disulfide (S-S) bridges in preserving the native conformation of human serum albumin (HSA) is investigated by performing classical molecular dynamics (MD) simulations on protein structures with intact and, respectively, reduced S-S bridges. The thermal unfolding simulations predict a clear destabilization of the protein secondary structure upon reduction of the S-S bridges as well as a significant distortion of the tertiary structure that is revealed by the changes in the protein native contacts fraction. The effect of the S-S bridges reduction on the protein compactness was tested by calculating Gibbs free energy profiles with respect to the protein gyration radius. The theoretical results obtained using the OPLS-AA and the AMBER ff03 force fields are in agreement with the available experimental data. Beyond the validation of the simulation method, the results here reported provide new insights into the mechanism of the protein reductive/oxidative unfolding/folding processes. It is predicted that in the native conformation of the protein, the thiol (-SH) groups belonging to the same reduced S-S bridge are located in potential wells that maintain them in contact. The -SH pairs can be dispatched by specific conformational transitions of the peptide chain located in the neighborhood of the cysteine residues. Copyright © 2012 Wiley Periodicals, Inc.

  9. Binding and hydrolysis of soman by human serum albumin.

    PubMed

    Li, Bin; Nachon, Florian; Froment, Marie-Thérèse; Verdier, Laurent; Debouzy, Jean-Claude; Brasme, Bernardo; Gillon, Emilie; Schopfer, Lawrence M; Lockridge, Oksana; Masson, Patrick

    2008-02-01

    Human plasma and fatty acid free human albumin were incubated with soman at pH 8.0 and 25 degrees C. Four methods were used to monitor the reaction of albumin with soman: progressive inhibition of the aryl acylamidase activity of albumin, the release of fluoride ion from soman, 31P NMR, and mass spectrometry. Inhibition (phosphonylation) was slow with a bimolecular rate constant of 15 +/- 3 M(-1) min (-1). MALDI-TOF and tandem mass spectrometry of the soman-albumin adduct showed that albumin was phosphonylated on tyrosine 411. No secondary dealkylation of the adduct (aging) occurred. Covalent docking simulations and 31P NMR experiments showed that albumin has no enantiomeric preference for the four stereoisomers of soman. Spontaneous reactivation at pH 8.0 and 25 degrees C, measured as regaining of aryl acylamidase activity and decrease of covalent adduct (pinacolyl methylphosphonylated albumin) by NMR, occurred at a rate of 0.0044 h (-1), indicating that the adduct is quite stable ( t1/2 = 6.5 days). At pH 7.4 and 22 degrees C, the covalent soman-albumin adduct, measured by MALDI-TOF mass spectrometry, was more stable ( t1/2 = 20 days). Though the concentration of albumin in plasma is very high (about 0.6 mM), its reactivity with soman (phosphonylation and phosphotriesterase activity) is too slow to play a major role in detoxification of the highly toxic organophosphorus compound soman. Increasing the bimolecular rate constant of albumin for organophosphates is a protein engineering challenge that could lead to a new class of bioscavengers to be used against poisoning by nerve agents. Soman-albumin adducts detected by mass spectrometry could be useful for the diagnosis of soman exposure.

  10. Albumin contributes to kidney disease progression in Alport syndrome.

    PubMed

    Jarad, George; Knutsen, Russell H; Mecham, Robert P; Miner, Jeffrey H

    2016-07-01

    Alport syndrome is a familial kidney disease caused by defects in the collagen type IV network of the glomerular basement membrane. Lack of collagen-α3α4α5(IV) changes the glomerular basement membrane morphologically and functionally, rendering it leaky to albumin and other plasma proteins. Filtered albumin has been suggested to be a cause of the glomerular and tubular injuries observed at advanced stages of Alport syndrome. To directly investigate the role that albumin plays in the progression of disease in Alport syndrome, we generated albumin knockout (Alb(-/-)) mice to use as a tool for removing albuminuria as a component of kidney disease. Mice lacking albumin were healthy and indistinguishable from control littermates, although they developed hypertriglyceridemia. Dyslipidemia was observed in Alb(+/-) mice, which displayed half the normal plasma albumin concentration. Alb mutant mice were bred to collagen-α3(IV) knockout (Col4a3(-/-)) mice, which are a model for human Alport syndrome. Lack of circulating and filtered albumin in Col4a3(-/-);Alb(-/-) mice resulted in dramatically improved kidney disease outcomes, as these mice lived 64% longer than did Col4a3(-/-);Alb(+/+) and Col4a3(-/-);Alb(+/-) mice, despite similar blood pressures and serum triglyceride levels. Further investigations showed that the absence of albumin correlated with reduced transforming growth factor-β1 signaling as well as reduced tubulointerstitial, glomerular, and podocyte pathology. We conclude that filtered albumin is injurious to kidney cells in Alport syndrome and perhaps in other proteinuric kidney diseases, including diabetic nephropathy. Copyright © 2016 the American Physiological Society.

  11. A novel albumin-based tissue scaffold for autogenic tissue engineering applications.

    PubMed

    Li, Pei-Shan; Lee, I-Liang; Yu, Wei-Lin; Sun, Jui-Sheng; Jane, Wann-Neng; Shen, Hsin-Hsin

    2014-07-18

    Tissue scaffolds provide a framework for living tissue regeneration. However, traditional tissue scaffolds are exogenous, composed of metals, ceramics, polymers, and animal tissues, and have a defined biocompatibility and application. This study presents a new method for obtaining a tissue scaffold from blood albumin, the major protein in mammalian blood. Human, bovine, and porcine albumin was polymerised into albumin polymers by microbial transglutaminase and was then cast by freeze-drying-based moulding to form albumin tissue scaffolds. Scanning electron microscopy and material testing analyses revealed that the albumin tissue scaffold possesses an extremely porous structure, moderate mechanical strength, and resilience. Using a culture of human mesenchymal stem cells (MSCs) as a model, we showed that MSCs can be seeded and grown in the albumin tissue scaffold. Furthermore, the albumin tissue scaffold can support the long-term osteogenic differentiation of MSCs. These results show that the albumin tissue scaffold exhibits favourable material properties and good compatibility with cells. We propose that this novel tissue scaffold can satisfy essential needs in tissue engineering as a general-purpose substrate. The use of this scaffold could lead to the development of new methods of artificial fabrication of autogenic tissue substitutes.

  12. Purification of target proteins from intracellular inclusions mediated by intein cleavable polyhydroxyalkanoate synthase fusions.

    PubMed

    Du, Jinping; Rehm, Bernd H A

    2017-11-02

    Recombinant protein production and purification from Escherichia coli is often accompanied with expensive and complicated procedures, especially for therapeutic proteins. Here it was demonstrated that, by using an intein cleavable polyhydroxyalkanoate synthase fusion, recombinant proteins can be first produced and sequestered on a natural resin, the polyhydroxyalkanoate (PHA) inclusions, then separated from contaminating host proteins via simple PHA bead isolation steps, and finally purified by specific release into the soluble fraction induced by a pH reduction. By translationally fusing a target protein to PHA synthase using a self-cleaving intein as linker, intracellular production of PHA beads was achieved. Upon isolation of respective PHA beads the soluble pure target protein was released by a simple pH shift to 6. The utility of this approach was exemplified by producing six target proteins, including Aequorea victoria green fluorescent protein (GFP), Mycobacterium tuberculosis vaccine candidate Rv1626, the immunoglobulin G (IgG) binding ZZ domain of protein A derived from Staphylococcus aureus, human tumor necrosis factor alpha (TNFα), human granulocyte colony-stimulating factor (G-CSF), and human interferon alpha 2b (IFNα2b). Here a new method for production and purification of a tag-less protein was developed through intein cleavable polyhydroxyalkanoate synthase fusion. Pure target protein could be easily obtained without laborious downstream processing.

  13. Fusion Activation through Attachment Protein Stalk Domains Indicates a Conserved Core Mechanism of Paramyxovirus Entry into Cells

    PubMed Central

    Bose, Sayantan; Song, Albert S.; Jardetzky, Theodore S.

    2014-01-01

    ABSTRACT Paramyxoviruses are a large family of membrane-enveloped negative-stranded RNA viruses causing important diseases in humans and animals. Two viral integral membrane glycoproteins (fusion [F] and attachment [HN, H, or G]) mediate a concerted process of host receptor recognition, followed by the fusion of viral and cellular membranes, resulting in viral nucleocapsid entry into the cytoplasm. However, the sequence of events that closely links the timing of receptor recognition by HN, H, or G and the “triggering” interaction of the attachment protein with F is unclear. F activation results in F undergoing a series of irreversible conformational rearrangements to bring about membrane merger and virus entry. By extensive study of properties of multiple paramyxovirus HN proteins, we show that key features of F activation, including the F-activating regions of HN proteins, flexibility within this F-activating region, and changes in globular head-stalk interactions are highly conserved. These results, together with functionally active “headless” mumps and Newcastle disease virus HN proteins, provide insights into the F-triggering process. Based on these data and very recently published data for morbillivirus H and henipavirus G proteins, we extend our recently proposed “stalk exposure model” to other paramyxoviruses and propose an “induced fit” hypothesis for F-HN/H/G interactions as conserved core mechanisms of paramyxovirus-mediated membrane fusion. IMPORTANCE Paramyxoviruses are a large family of membrane-enveloped negative-stranded RNA viruses causing important diseases in humans and animals. Two viral integral membrane glycoproteins (fusion [F] and attachment [HN, H, or G]) mediate a concerted process of host receptor recognition, followed by the fusion of viral and cellular membranes. We describe here the molecular mechanism by which HN activates the F protein such that virus-cell fusion is controlled and occurs at the right time and the right

  14. Biochemistry and biophysics of HIV-1 gp41 - membrane interactions and implications for HIV-1 envelope protein mediated viral-cell fusion and fusion inhibitor design.

    PubMed

    Cai, Lifeng; Gochin, Miriam; Liu, Keliang

    2011-12-01

    Human immunodeficiency virus type 1 (HIV-1), the pathogen of acquired immunodeficiency syndrome (AIDS), causes ~2 millions death every year and still defies an effective vaccine. HIV-1 infects host cells through envelope protein - mediated virus-cell fusion. The transmembrane subunit of envelope protein, gp41, is the molecular machinery which facilitates fusion. Its ectodomain contains several distinguishing functional domains, fusion peptide (FP), Nterminal heptad repeat (NHR), C-terminal heptad repeat (CHR) and membrane proximal extracellular region (MPER). During the fusion process, FP inserts into the host cell membrane, and an extended gp41 prehairpin conformation bridges the viral and cell membranes through MPER and FP respectively. Subsequent conformational change of the unstable prehairpin results in a coiled-coil 6-helix bundle (6HB) structure formed between NHR and CHR. The energetics of 6HB formation drives membrane apposition and fusion. Drugs targeting gp41 functional domains to prevent 6HB formation inhibit HIV-1 infection. T20 (enfuvirtide, Fuzeon) was approved by the US FDA in 2003 as the first fusion inhibitor. It is a 36-residue peptide from the gp41 CHR, and it inhibits 6HB formation by targeting NHR and lipids. Development of new fusion inhibitors, especially small molecule drugs, is encouraged to overcome the shortcomings of T20 as a peptide drug. Hydrophobic characteristics and membrane association are critical for gp41 function and mechanism of action. Research in gp41-membrane interactions, using peptides corresponding to specific functional domains, or constructs including several interactive domains, are reviewed here to get a better understanding of gp41 mediated virus-cell fusion that can inform or guide the design of new HIV-1 fusion inhibitors.

  15. Interaction of singlet oxygen with bovine serum albumin and the role of the protein nano-compartmentalization.

    PubMed

    Giménez, Rodrigo E; Vargová, Veronika; Rey, Valentina; Turbay, M Beatriz Espeche; Abatedaga, Inés; Morán Vieyra, Faustino E; Paz Zanini, Verónica I; Mecchia Ortiz, Juan H; Katz, Néstor E; Ostatná, Veronika; Borsarelli, Claudio D

    2016-05-01

    Singlet molecular oxygen ((1)O2) contributes to protein damage triggering biophysical and biochemical changes that can be related with aging and oxidative stress. Serum albumins, such as bovine serum albumin (BSA), are abundant proteins in blood plasma with different biological functions. This paper presents a kinetic and spectroscopic study of the (1)O2-mediated oxidation of BSA using the tris(2,2'-bipyridine)ruthenium(II) cation [Ru(bpy)3](2+) as sensitizer. BSA quenches efficiently (1)O2 with a total (chemical+physical interaction) rate constant kt(BSA)=7.3(±0.4)×10(8)M(-1)s(-1), where the chemical pathway represented 37% of the interaction. This efficient quenching by BSA indicates the participation of several reactive residues. MALDI-TOF MS analysis of intact BSA confirmed that after oxidation by (1)O2, the mass protein increased the equivalent of 13 oxygen atoms. Time-resolved emission spectra analysis of BSA established that Trp residues were oxidized to N'-formylkynurenine, being the solvent-accessible W134 preferentially oxidized by (1)O2 as compared with the buried W213. MS confirmed oxidation of at least two Tyr residues to form dihydroxyphenylalanine, with a global reactivity towards (1)O2 six-times lower than for Trp residues. Despite the lack of MS evidences, kinetic and chemical analysis also suggested that residues other than Trp and Tyr, e.g. Met, must react with (1)O2. Modeling of the 3D-structure of BSA indicated that the oxidation pattern involves a random distribution of (1)O2 into BSA; allowing also the interaction of (1)O2 with buried residues by its diffusion from the bulk solvent through interconnected internal hydrophilic and hydrophobic grooves. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Cotton Study: Albumin Binding and its Effect on Elastase Activity in the Chronic Non-Healing Wound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, N.; Goheen, S.

    Cotton, as it is used in wound dressings is composed of nearly pure cellulose. During the wound-healing process, cotton is exposed to various blood components including water, salts, cells, and blood proteins. Albumin is the most prominent protein in blood. Elastase is an enzyme secreted by white blood cells and takes an active role in tissue reconstruction. In the chronic non-healing wound, elastase is often over-expressed such that this enzyme digests tissue and growth factors, and interferes with the normal healing process. Our goal is to design a cotton wound dressing that will sequester elastase or assist in reducing elastasemore » activity in the presence of other blood proteins such as albumin. The ability of cotton and various cotton derivatives to sequester elastase and albumin has been studied by examining the adsorption of these two proteins separately. We undertook the present work to confirm the binding of albumin to cotton and to quantify the activity of elastase in the presence of various derivatives of cotton. We previously observed a slight increase in elastase activity when exposed to cotton. We also observed a continuous accumulation of albumin on cotton using high-performance liquid chromatography methods. In the present study, we used an open-column-absorption technique coupled with a colorimetric protein assay to confirm losses of albumin to cotton. We have also confirmed increased elastase activity after exposure to cotton. The results are discussed in relation to the porosity of cotton and the use of cotton for treating chronic non-healing wounds.« less

  17. Individual N-Glycans Added at Intervals along the Stalk of the Nipah Virus G Protein Prevent Fusion but Do Not Block the Interaction with the Homologous F Protein

    PubMed Central

    Zhu, Qiyun; Biering, Scott B.; Mirza, Anne M.; Grasseschi, Brittany A.; Mahon, Paul J.; Lee, Benhur; Aguilar, Hector C.

    2013-01-01

    The promotion of membrane fusion by most paramyxoviruses requires an interaction between the viral attachment and fusion (F) proteins to enable receptor binding by the former to trigger the activation of the latter for fusion. Numerous studies demonstrate that the F-interactive sites on the Newcastle disease virus (NDV) hemagglutinin-neuraminidase (HN) and measles virus (MV) hemagglutinin (H) proteins reside entirely within the stalk regions of those proteins. Indeed, stalk residues of NDV HN and MV H that likely mediate the F interaction have been identified. However, despite extensive efforts, the F-interactive site(s) on the Nipah virus (NiV) G attachment glycoprotein has not been identified. In this study, we have introduced individual N-linked glycosylation sites at several positions spaced at intervals along the stalk of the NiV G protein. Five of the seven introduced sites are utilized as established by a retardation of electrophoretic mobility. Despite surface expression, ephrinB2 binding, and oligomerization comparable to those of the wild-type protein, four of the five added N-glycans completely eliminate the ability of the G protein to complement the homologous F protein in the promotion of fusion. The most membrane-proximal added N-glycan reduces fusion by 80%. However, unlike similar NDV HN and MV H mutants, the NiV G glycosylation stalk mutants retain the ability to bind F, indicating that the fusion deficiency of these mutants is not due to prevention of the G-F interaction. These findings suggest that the G-F interaction is not mediated entirely by the stalk domain of G and may be more complex than that of HN/H-F. PMID:23283956

  18. A stabilized headless measles virus attachment protein stalk efficiently triggers membrane fusion.

    PubMed

    Brindley, Melinda A; Suter, Rolf; Schestak, Isabel; Kiss, Gabriella; Wright, Elizabeth R; Plemper, Richard K

    2013-11-01

    Paramyxovirus attachment and fusion (F) envelope glycoprotein complexes mediate membrane fusion required for viral entry. The measles virus (MeV) attachment (H) protein stalk domain is thought to directly engage F for fusion promotion. However, past attempts to generate truncated, fusion-triggering-competent H-stem constructs remained fruitless. In this study, we addressed the problem by testing the hypothesis that truncated MeV H stalks may require stabilizing oligomerization tags to maintain intracellular transport competence and F-triggering activity. We engineered H-stems of different lengths with added 4-helix bundle tetramerization domains and demonstrate restored cell surface expression, efficient interaction with F, and fusion promotion activity of these constructs. The stability of the 4-helix bundle tags and the relative orientations of the helical wheels of H-stems and oligomerization tags govern the kinetics of fusion promotion, revealing a balance between H stalk conformational stability and F-triggering activity. Recombinant MeV particles expressing a bioactive H-stem construct in the place of full-length H are viable, albeit severely growth impaired. Overall, we demonstrate that the MeV H stalk represents the effector domain for MeV F triggering. Fusion promotion appears linked to the conformational flexibility of the stalk, which must be tightly regulated in viral particles to ensure efficient virus entry. While the pathways toward assembly of functional fusion complexes may differ among diverse members of the paramyxovirus family, central elements of the triggering machinery emerge as highly conserved.

  19. Genetic characterization of an alloalbumin, albumin Kashmir, using gene amplification and allele-specific oligonucleotides.

    PubMed Central

    Savva, D; Tárnoky, A L; Vickers, M F

    1990-01-01

    The molecular basis for albumin Kashmir was studied using the polymerase chain reaction to amplify a DNA fragment containing codon 501 in exon 12 of the human albumin gene. Southern blots of the amplified DNA were hybridized to oligonucleotide probes specific either for the normal allele of albumin or for albumin Kashmir. The results provide strong evidence that codon 501 in albumin Kashmir is AAG (lysine) instead of GAG (glutamic acid), thus confirming the protein sequences reported. This approach was used to characterize a bisalbuminaemic individual as a carrier for albumin Kashmir. Similar strategies may be devised to study the molecular basis and to identify carriers of other alloalbumins. Images Fig. 1. Fig. 2. PMID:2317208

  20. Interaction of sulpiride and serum albumin: Modeling from spectrofluorimetric data

    NASA Astrophysics Data System (ADS)

    Fragoso, Viviane Muniz da Silva; Silva, Dilson

    2015-12-01

    We have applied the fluorescence quenching modeling to study the process of interaction of sulpiride with human serum albumin (HSA) and bovine (BSA). Albumin is more abundant protein in blood and it emits fluorescence when excited by 260-295 nm. Sulpiride is an atypical antipsychotic used in the treatment of many psychiatric disorders. As sulpiride is fluorescent, we developed a mathematical model to analyzing the interaction of two fluorescent substances. This model was able to separate the albumin fluorescence from the quencher fluorescence. Results have shown that sulpiride quenches the fluorescence of both albumins by a static process, due to the complex formation drugalbumin. The association constants calculated for sulpiride-HSA was 2.20 (± 0.08) × 104 M-1 at 37° C, and 5.46 (± 0.20) × 104 M-1, 25 ° C, and the primary binding site to sulpiride in the albumin is located closer to the subdomain IB.

  1. Fc-fusion proteins and FcRn: structural insights for longer-lasting and more effective therapeutics

    PubMed Central

    Rath, Timo; Baker, Kristi; Dumont, Jennifer A.; Peters, Robert T.; Jiang, Haiyan; Qiao, Shuo-Wang; Lencer, Wayne I.; Pierce, Glenn F.; Blumberg, Richard S.

    2016-01-01

    Nearly 350 IgG-based therapeutics are approved for clinical use or are under development for many diseases lacking adequate treatment options. These include molecularly engineered biologicals comprising the IgG Fc-domain fused to various effector molecules (so-called Fc-fusion proteins) that confer the advantages of IgG, including binding to the neonatal Fc receptor (FcRn) to facilitate in vivo stability, and the therapeutic benefit of the specific effector functions. Advances in IgG structure-function relationships and an understanding of FcRn biology have provided therapeutic opportunities for previously unapproachable diseases. This article discusses approved Fc-fusion therapeutics, novel Fc-fusion proteins and FcRn-dependent delivery approaches in development, and how engineering of the FcRn–Fc interaction can generate longer-lasting and more effective therapeutics. PMID:24156398

  2. Long-Segment Fusion for Adult Spinal Deformity Correction Using Low-Dose Recombinant Human Bone Morphogenetic Protein-2: A Retrospective Review of Fusion Rates.

    PubMed

    Schmitt, Paul J; Kelleher, John P; Ailon, Tamir; Heller, Joshua E; Kasliwal, Manish K; Shaffrey, Christopher I; Smith, Justin S

    2016-08-01

    Although use of very high-dose recombinant human bone morphogenetic protein-2 (rhBMP-2) has been reported to markedly improve fusion rates in adult spinal deformity (ASD) surgery, most centers use much lower doses due to cost constraints. How effective these lower doses are for fusion enhancement remains unclear. To assess fusion rates using relatively low-dose rhBMP-2 for ASD surgery. This was a retrospective review of consecutive ASD patients that underwent thoracic to sacral fusion. Patients that achieved 2-year follow-up were analyzed. Impact of patient and surgical factors on fusion rate was assessed, and fusion rates were compared with historical cohorts. Of 219 patients, 172 (78.5%) achieved 2-year follow-up and were analyzed. Using an average rhBMP-2 dose of 3.1 mg/level (average total dose = 35.9 mg/case), the 2-year fusion rate was 73.8%. Cancellous allograft, local autograft, and very limited iliac crest bone graft (<20 mL, obtained during iliac bolt placement) were also used. On multivariate analysis, female sex was associated with a higher fusion rate, whereas age, comorbidity score, deformity type, and 3-column osteotomy were not. There were no complications directly attributable to rhBMP-2. Fusion rates for ASD using low-dose rhBMP-2 were comparable to those reported for iliac crest bone graft but lower than for high-dose rhBMP-2. Importantly, there were substantial differences between patients in the present series and those in the historical comparison groups that could not be fully adjusted for based on available data. Prospective evaluation of rhBMP-2 dosing for ASD surgery is warranted to define the most appropriate dose that balances benefits, risks, and costs. ASD, adult spinal deformityICBG, iliac crest bone graftOR, odds ratiorhBMP-2, recombinant human bone morphogenetic protein-2RR, risk ratioTCO, 3-column osteotomy.

  3. Cleaved thioredoxin fusion protein enables the crystallization of poorly soluble ERα in complex with synthetic ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cura, Vincent; Gangloff, Monique; Eiler, Sylvia

    2008-01-01

    A new crystallization strategy: the presence of cleaved thioredoxin fusion is critical for crystallization of the estrogen nuclear receptor ligand binding domain in complex with synthetic ligands. This novel technique should be regarded as an interesting alternative for crystallization of difficult proteins. The ligand-binding domain (LBD) of human oestrogen receptor α was produced in Escherichia coli as a cleavable thioredoxin (Trx) fusion in order to improve solubility. Crystallization trials with either cleaved and purified LBD or with the purified fusion protein both failed to produce crystals. In another attempt, Trx was not removed from the LBD after endoproteolytic cleavage andmore » its presence promoted nucleation and subsequent crystal growth, which allowed the structure determination of two different LBD–ligand–coactivator peptide complexes at 2.3 Å resolution. This technique is likely to be applicable to other low-solubility proteins.« less

  4. Hepatic FcRn regulates albumin homeostasis and susceptibility to liver injury

    PubMed Central

    Pyzik, Michal; Rath, Timo; Kuo, Timothy T.; Win, Sanda; Baker, Kristi; Hubbard, Jonathan J.; Grenha, Rosa; Gandhi, Amit; Krämer, Thomas D.; Mezo, Adam R.; McDonnell, Kevin; Nienaber, Vicki; Andersen, Jan Terje; Mizoguchi, Atsushi; Blumberg, Laurence; Purohit, Shalaka; Jones, Susan D.; Christianson, Greg; Lencer, Wayne I.; Sandlie, Inger; Kaplowitz, Neil; Roopenian, Derry C.; Blumberg, Richard S.

    2017-01-01

    The neonatal crystallizable fragment receptor (FcRn) is responsible for maintaining the long half-life and high levels of the two most abundant circulating proteins, albumin and IgG. In the latter case, the protective mechanism derives from FcRn binding to IgG in the weakly acidic environment contained within endosomes of hematopoietic and parenchymal cells, whereupon IgG is diverted from degradation in lysosomes and is recycled. The cellular location and mechanism by which FcRn protects albumin are partially understood. Here we demonstrate that mice with global or liver-specific FcRn deletion exhibit hypoalbuminemia, albumin loss into the bile, and increased albumin levels in the hepatocyte. In vitro models with polarized cells illustrate that FcRn mediates basal recycling and bidirectional transcytosis of albumin and uniquely determines the physiologic release of newly synthesized albumin into the basal milieu. These properties allow hepatic FcRn to mediate albumin delivery and maintenance in the circulation, but they also enhance sensitivity to the albumin-bound hepatotoxin, acetaminophen (APAP). As such, global or liver-specific deletion of FcRn results in resistance to APAP-induced liver injury through increased albumin loss into the bile and increased intracellular albumin scavenging of reactive oxygen species. Further, protection from injury is achieved by pharmacologic blockade of FcRn–albumin interactions with monoclonal antibodies or peptide mimetics, which cause hypoalbuminemia, biliary loss of albumin, and increased intracellular accumulation of albumin in the hepatocyte. Together, these studies demonstrate that the main function of hepatic FcRn is to direct albumin into the circulation, thereby also increasing hepatocyte sensitivity to toxicity. PMID:28330995

  5. Targeting tumor cells via EGF receptors: selective toxicity of an HBEGF-toxin fusion protein.

    PubMed

    Chandler, L A; Sosnowski, B A; McDonald, J R; Price, J E; Aukerman, S L; Baird, A; Pierce, G F; Houston, L L

    1998-09-25

    Over-expression of the epidermal growth factor receptor (EGFR) is a hallmark of numerous solid tumors, thus providing a means of selectively targeting therapeutic agents. Heparin-binding epidermal growth factor (HBEGF) binds to EGFRs with high affinity and to heparan sulfate proteoglycans, resulting in increased mitogenic potential compared to other EGF family members. We have investigated the feasibility of using HBEGF to selectively deliver a cytotoxic protein into EGFR-expressing tumor cells. Recombinant fusion proteins consisting of mature human HBEGF fused to the plant ribosome-inactivating protein saporin (SAP) were expressed in Escherichia coli. Purified HBEGF-SAP chimeras inhibited protein synthesis in a cell-free assay and competed with EGF for binding to receptors on intact cells. A construct with a 22-amino-acid flexible linker (L22) between the HBEGF and SAP moieties exhibited an affinity for the EGFR that was comparable to that of HBEGF. The sensitivity to HBEGF-L22-SAP was determined for a variety of human tumor cell lines, including the 60 cell lines comprising the National Cancer Institute Anticancer Drug Screen. HBEGF-L22-SAP was cytotoxic in vitro to a variety of EGFR-bearing cell lines and inhibited growth of EGFR-over-expressing human breast carcinoma cells in vivo. In contrast, the fusion protein had no effect on small-cell lung carcinoma cells, which are EGFR-deficient. Our results demonstrate that fusion proteins composed of HBEGF and SAP exhibit targeting specificity and cytotoxicity that may be of therapeutic value in treating a variety of EGFR-bearing malignancies.

  6. Characterization of oxidation end product of plasma albumin 'in vivo'.

    PubMed

    Musante, Luca; Bruschi, Maurizio; Candiano, Giovanni; Petretto, Andrea; Dimasi, Nazzareno; Del Boccio, Piero; Urbani, Andrea; Rialdi, Giovanni; Ghiggeri, Gian Marco

    2006-10-20

    Anti-oxidants are paradoxically much lower in plasma than inside cells even blood is comparably exposed to the oxidative stress. 'In vitro' models suggest a critical role of albumin as substitutive anti-oxidant in plasma but no proof for this role is available 'in vivo.' Herein, we demonstrate by LC/MS/MS that plasma albumin undergoes massive oxidation in primary nephrotic syndrome, involving stable sulphonation SO3- of the free SH of Cys 34 with +48Da increase in exact mass of the protein (ESI-MS) and formation of a fast moving isoform in the pH range between 5 and 7. Physical-chemical experiments with DSC and fluorescence spectra indicate a thermal stabilization of the structure upon oxidation. This is the first demonstration of massive oxidation of albumin 'in vivo' that reflects a functional role of the protein. Free radicals should be implicated in the pathogenesis of proteinuria in human FSGS.

  7. A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pager, Cara Theresia; Craft, Willie Warren; Patch, Jared

    2006-03-15

    The Nipah virus fusion (F) protein is proteolytically processed to F{sub 1} + F{sub 2} subunits. We demonstrate here that cathepsin L is involved in this important maturation event. Cathepsin inhibitors ablated cleavage of Nipah F. Proteolytic processing of Nipah F and fusion activity was dramatically reduced in cathepsin L shRNA-expressing Vero cells. Additionally, Nipah virus F-mediated fusion was inhibited in cathepsin L-deficient cells, but coexpression of cathepsin L restored fusion activity. Both purified cathepsin L and B could cleave immunopurified Nipah F protein, but only cathepsin L produced products of the correct size. Our results suggest that endosomal cathepsinsmore » can cleave Nipah F, but that cathepsin L specifically converts Nipah F to a mature and fusogenic form.« less

  8. Flagellar membrane fusion and protein exchange in trypanosomes; a new form of cell-cell communication?

    PubMed Central

    Imhof, Simon; Fragoso, Cristina; Hemphill, Andrew; von Schubert, Conrad; Li, Dong; Legant, Wesley; Betzig, Eric; Roditi, Isabel

    2016-01-01

    Diverse structures facilitate direct exchange of proteins between cells, including plasmadesmata in plants and tunnelling nanotubes in bacteria and higher eukaryotes.  Here we describe a new mechanism of protein transfer, flagellar membrane fusion, in the unicellular parasite Trypanosoma brucei. When fluorescently tagged trypanosomes were co-cultured, a small proportion of double-positive cells were observed. The formation of double-positive cells was dependent on the presence of extracellular calcium and was enhanced by placing cells in medium supplemented with fresh bovine serum. Time-lapse microscopy revealed that double-positive cells arose by bidirectional protein exchange in the absence of nuclear transfer.  Furthermore, super-resolution microscopy showed that this process occurred in ≤1 minute, the limit of temporal resolution in these experiments. Both cytoplasmic and membrane proteins could be transferred provided they gained access to the flagellum. Intriguingly, a component of the RNAi machinery (Argonaute) was able to move between cells, raising the possibility that small interfering RNAs are transported as cargo. Transmission electron microscopy showed that shared flagella contained two axonemes and two paraflagellar rods bounded by a single membrane. In some cases flagellar fusion was partial and interactions between cells were transient. In other cases fusion occurred along the entire length of the flagellum, was stable for several hours and might be irreversible. Fusion did not appear to be deleterious for cell function: paired cells were motile and could give rise to progeny while fused. The motile flagella of unicellular organisms are related to the sensory cilia of higher eukaryotes, raising the possibility that protein transfer between cells via cilia or flagella occurs more widely in nature. PMID:27239276

  9. Electret filter collects more exhaled albumin than glass condenser: A method comparison based on human study.

    PubMed

    Jia, Ziru; Liu, Hongying; Li, Wang; Xie, Dandan; Cheng, Ke; Pi, Xitian

    2018-02-01

    In recent years, noninvasive diagnosis based on biomarkers in exhaled breath has been extensively studied. The procedure of biomarker collection is a key step. However, the traditional condenser method has low efficacy in collecting nonvolatile compounds especially the protein biomarkers in breath. To solve this deficiency, here we propose an electret filter method.Exhaled breath of 6 volunteers was collected with a glass condenser and an electret filter. The amount of albumin was analyzed. Furthermore, the difference of exhaled albumin between smokers and nonsmokers was evaluated.The electret filter method collected more albumin than the glass condenser method at the same breath volume level (P < .01). Smokers exhaling more albumin than nonsmokers were also observed (P < .01).The electret filter is capable of collecting proteins more effectively than the condenser method. In addition, smokers tend to exhale more albumin than nonsmokers.

  10. Chemical heterogeneity as a result of hydroxylamine cleavage of a fusion protein of human insulin-like growth factor I.

    PubMed Central

    Canova-Davis, E; Eng, M; Mukku, V; Reifsnyder, D H; Olson, C V; Ling, V T

    1992-01-01

    Recombinant DNA techniques were used to biosynthesize human insulin-like growth factor I (hIGF-I) as a fusion protein wherein the fusion polypeptide is an IgG-binding moiety derived from staphylococcal protein A. This fusion protein is produced in Escherichia coli and secreted into the fermentation broth. In order to release mature recombinant-derived hIGF-I (rhIGF-I), the fusion protein is treated with hydroxylamine, which cleaves a susceptible Asn-Gly bond that has been engineered into the fusion protein gene. Reversed-phase h.p.l.c. was used to estimate the purity of the rhIGF-I preparations, especially for the quantification of the methionine sulphoxide-containing variant. It was determined that hydroxylamine cleavage of the fusion protein produced, as a side reaction, hydroxamates of the asparagine and glutamine residues in rhIGF-I. Although isoelectric focusing was effective in detecting, and reversed-phase h.p.l.c. for producing enriched fractions of the hydroxamate variants, ion-exchange chromatography was a more definitive procedure, as it allowed quantification and facile removal of these variants. The identity of the variants as hydroxamates was established by Staphylococcus aureus V8 proteinase digestion, followed by m.s., as the modification was transparent to amino acid and N-terminal sequence analyses. The biological activity of rhIGF-I was established by its ability to incorporate [3H]thymidine into the DNA of BALB/c373 cells and by a radioreceptor assay utilizing human placental membranes. Both assays demonstrate that the native, recombinant and methionine sulphoxide and hydroxamate IGF-I variants are essentially equipotent. Images Fig. 2. PMID:1637301

  11. Alteration of human serum albumin binding properties induced by modifications: A review

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, Małgorzata; Szkudlarek, Agnieszka; Chudzik, Mariola; Pożycka, Jadwiga; Sułkowska, Anna

    2018-01-01

    Albumin, a major transporting protein in the blood, is the main target of modification that affects the binding of drugs to Sudlow's site I and II. These modification of serum protein moderates its physiological function, and works as a biomarker of some diseases. The main goal of the paper was to explain the possible alteration of human serum albumin binding properties induced by modifications such as glycation, oxidation and ageing, their origin, methods of evaluation and positive and negative meaning described by significant researchers.

  12. Effects of glycation on meloxicam binding to human serum albumin

    NASA Astrophysics Data System (ADS)

    Trynda-Lemiesz, Lilianna; Wiglusz, Katarzyna

    2011-05-01

    The current study reports a binding of meloxicam a pharmacologically important new generation, non-steroidal anti-inflammatory drug to glycated form of the human serum albumin (HSA). The interaction of the meloxicam with nonglycated and glycated albumin has been studied at pH 7.4 in 0.05 M sodium phosphate buffer with 0.1 M NaCl, using fluorescence quenching technique and circular dichroism spectroscopy. Results of the present study have shown that the meloxicam could bind both forms of albumin glycated and nonglycated at a site, which was close to the tryptophan residues. Similarly, how for native albumin glycated form has had one high affinity site for the drug with association constants of the order of 10 5 M -1. The glycation process of the HSA significantly has affected the impact of the meloxicam on the binding of other ligands such as warfarin and bilirubin. The affinity of the glycated albumin for bilirubin as for native albumin has been reduced by meloxicam but observed effect was weaker by half (about 20%) compared with nonglycated albumin. In contrast to the native albumin meloxicam binding to glycated form of the protein only slightly affected the binding of warfarin. It seemed possible that the effects on warfarin binding might be entirely attributable to the Lys 199 modification which was in site I.

  13. Quantization of bovine serum albumin by fluorescence enhancement effects and corresponding binding of macrocyclic host-protein assembly.

    PubMed

    Bardhan, Munmun; Misra, Tapas; Ganguly, Tapan

    2012-01-05

    The present paper reports the investigations on the spectroscopic behavior of the binary complexes of the dye aurintricarboxylic acid (ATA) with protein bovine serum albumin (BSA) and 18-crown 6 (CW) (ATA·BSA, ATA·CW) and the ternary complex ATA·CW·BSA by using UV-vis steady state and time resolved fluorescence spectroscopy. The primary aim of the work is to determine the protein (BSA) quantization by fluorescence enhancement method and investigate the 'enhancer' activity of crown ether (CW) on it to increase the resolution. Steady state and time resolved fluorescence measurements demonstrated how fluorescence intensity of ATA could be used for the determination of the protein BSA in aqueous solution. The binding of dye (probe/fluorescent medicinal molecule) with protein and the denaturing effect in the polar environment of acetonitrile of the dye protein complex act as drug binding as well as drug release activity. Apart from its basic research point of view, the present study also possesses significant importance and applications in the field of medicinal chemistry. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Pharmaceutical-grade albumin: impaired drug-binding capacity in vitro

    PubMed Central

    Olsen, Harald; Andersen, Anders; Nordbø, Arve; Kongsgaard, Ulf E; Børmer, Ole P

    2004-01-01

    Background Albumin is the most abundant protein in blood plasma, and due to its ligand binding properties, serves as a circulating depot for endogenous and exogenous (e.g. drugs) compounds. Hence, the unbound drug is the pharmacologically active drug. Commercial human albumin preparations are frequently used during surgery and in critically ill patients. Recent studies have indicated that the use of pharmaceutical-grade albumin is controversial in critically ill patients. In this in vitro study we investigated the drug binding properties of pharmaceutical-grade albumins (Baxter/Immuno, Octapharma, and Pharmacia & Upjohn), native human serum, and commercially available human serum albumin from Sigma Chemical Company. Methods The binding properties of the various albumin solutions were tested in vitro by means of ultrafiltration. Naproxen, warfarin, and digitoxin were used as ligands. HPLC was used to quantitate the total and free drug concentrations. The data were fitted to a model of two classes of binding sites for naproxen and warfarin and one class for digitoxin, using Microsoft Excel and Graphpad Prism. Results The drugs were highly bound to albumin (95–99.5%). The highest affinity (lowest K1) was found with naproxen. Pharmaceutical-grade albumin solutions displayed significantly lower drug-binding capacity compared to native human serum and Sigma albumin. Thus, the free fraction was considerably higher, approximately 40 times for naproxen and 5 and 2 times for warfarin and digitoxin, respectively. The stabilisers caprylic acid and N-acetyl-DL-tryptophan used in the manufacturing procedure seem to be of importance. Adding the stabilisers to human serum and Sigma albumin reduced the binding affinity whereas charcoal treatment of the pharmaceutical-grade albumin from Octapharma almost restored the specific binding capacity. Conclusion This in vitro study demonstrates that the specific binding for warfarin and digitoxin is significantly reduced and for naproxen

  15. Fluorescent Labeling of COS-7 Expressing SNAP-tag Fusion Proteins for Live Cell Imaging

    PubMed Central

    Provost, Christopher R.; Sun, Luo

    2010-01-01

    SNAP-tag and CLIP-tag protein labeling systems enable the specific, covalent attachment of molecules, including fluorescent dyes, to a protein of interest in live cells. These systems offer a broad selection of fluorescent substrates optimized for a range of imaging instrumentation. Once cloned and expressed, the tagged protein can be used with a variety of substrates for numerous downstream applications without having to clone again. There are two steps to using this system: cloning and expression of the protein of interest as a SNAP-tag fusion, and labeling of the fusion with the SNAP-tag substrate of choice. The SNAP-tag is a small protein based on human O6-alkylguanine-DNA-alkyltransferase (hAGT), a DNA repair protein. SNAP-tag labels are dyes conjugated to guanine or chloropyrimidine leaving groups via a benzyl linker. In the labeling reaction, the substituted benzyl group of the substrate is covalently attached to the SNAP-tag. CLIP-tag is a modified version of SNAP-tag, engineered to react with benzylcytosine rather than benzylguanine derivatives. When used in conjunction with SNAP-tag, CLIP-tag enables the orthogonal and complementary labeling of two proteins simultaneously in the same cells. PMID:20485262

  16. Cellular Specificity of the Blood–CSF Barrier for Albumin Transfer across the Choroid Plexus Epithelium

    PubMed Central

    Liddelow, Shane A.; Dzięgielewska, Katarzyna M.; Møllgård, Kjeld; Whish, Sophie C.; Noor, Natassya M.; Wheaton, Benjamin J.; Gehwolf, Renate; Wagner, Andrea; Traweger, Andreas; Bauer, Hannelore; Bauer, Hans-Christian; Saunders, Norman R.

    2014-01-01

    To maintain the precise internal milieu of the mammalian central nervous system, well-controlled transfer of molecules from periphery into brain is required. Recently the soluble and cell-surface albumin-binding glycoprotein SPARC (secreted protein acidic and rich in cysteine) has been implicated in albumin transport into developing brain, however the exact mechanism remains unknown. We postulate that SPARC is a docking site for albumin, mediating its uptake and transfer by choroid plexus epithelial cells from blood into cerebrospinal fluid (CSF). We used in vivo physiological measurements of transfer of endogenous (mouse) and exogenous (human) albumins, in situ Proximity Ligation Assay (in situ PLA), and qRT-PCR experiments to examine the cellular mechanism mediating protein transfer across the blood–CSF interface. We report that at all developmental stages mouse albumin and SPARC gave positive signals with in situ PLAs in plasma, CSF and within individual plexus cells suggesting a possible molecular interaction. In contrast, in situ PLA experiments in brain sections from mice injected with human albumin showed positive signals for human albumin in the vascular compartment that were only rarely identifiable within choroid plexus cells and only at older ages. Concentrations of both endogenous mouse albumin and exogenous (intraperitoneally injected) human albumin were estimated in plasma and CSF and expressed as CSF/plasma concentration ratios. Human albumin was not transferred through the mouse blood–CSF barrier to the same extent as endogenous mouse albumin, confirming results from in situ PLA. During postnatal development Sparc gene expression was higher in early postnatal ages than in the adult and changed in response to altered levels of albumin in blood plasma in a differential and developmentally regulated manner. Here we propose a possible cellular route and mechanism by which albumin is transferred from blood into CSF across a sub-population of

  17. Temperature influence on fluorescence intensity and enzyme activity of the fusion protein of GFP and hyperthermophilic xylanase.

    PubMed

    Zhang, Chong; Liu, Min-Sheng; Xing, Xin-Hui

    2009-09-01

    By constructing the expression system for fusion protein of GFPmut1 (a green fluorescent protein mutant) with the hyperthermophilic xylanase obtained from Dictyoglomus thermophilum Rt46B.1, the effects of temperature on the fluorescence of GFP and its relationship with the activities of GFP-fused xylanase have been studied. The fluorescence intensities of both GFP and GFP-xylanase have proved to be thermally sensitive, with the thermal sensitivity of the fluorescence intensity of GFP-xylanase being 15% higher than that of GFP. The lost fluorescence intensity of GFP inactivated at high temperature of below 60 degrees C in either single or fusion form can be completely recovered by treatment at 0 degrees C. By the fluorescence recovery of GFP domain at low temperature, the ratios of fluorescence intensity to xylanase activity (Rgfp/Axyl) at 15 degrees C and 37 degrees C have been compared. Even though the numbers of molecules of GFP and xylanase are equivalent, the Rgfp/Axyl ratio at 15 degrees C is ten times of that at 37 degrees C. This is mainly due to the fact that lower temperature is more conducive to the correct folding of GFP than the hyperthermophilic xylanase during the expression. This study has indicated that the ratio of GFP fluorescence to the thermophilic enzyme activity for the fusion proteins expressed at different temperatures could be helpful in understanding the folding properties of the two fusion partners and in design of the fusion proteins.

  18. Fusion proteins comprising annexin V and Kunitz protease inhibitors are highly potent thrombogenic site-directed anticoagulants

    PubMed Central

    Chen, Hsiu-Hui; Vicente, Cristina P.; He, Li; Tollefsen, Douglas M.; Wun, Tze-Chein

    2005-01-01

    The anionic phospholipid, phosphatidyl-l-serine (PS), is sequestered in the inner layer of the plasma membrane in normal cells. Upon injury, activation, and apoptosis, PS becomes exposed on the surfaces of cells and sheds microparticles, which are procoagulant. Coagulation is initiated by formation of a tissue factor/factor VIIa complex on PS-exposed membranes and propagated through the assembly of intrinsic tenase (factor VIIIa/factor IXa), prothrombinase (factor Va/factor Xa), and factor XIa complexes on PS-exposed activated platelets. We constructed a novel series of recombinant anticoagulant fusion proteins by linking annexin V (ANV), a PS-binding protein, to the Kunitz-type protease inhibitor (KPI) domain of tick anticoagulant protein, an aprotinin mutant (6L15), amyloid β-protein precursor, or tissue factor pathway inhibitor. The resulting ANV-KPI fusion proteins were 6- to 86-fold more active than recombinant tissue factor pathway inhibitor and tick anticoagulant protein in an in vitro tissue factor–initiated clotting assay. The in vivo antithrombotic activities of the most active constructs were 3- to 10-fold higher than that of ANV in a mouse arterial thrombosis model. ANV-KPI fusion proteins represent a new class of anticoagulants that specifically target the anionic membrane-associated coagulation enzyme complexes present at sites of thrombogenesis and are potentially useful as antithrombotic agents. PMID:15677561

  19. Influence of myristic acid on furosemide binding to bovine serum albumin. Comparison with furosemide-human serum albumin complex

    NASA Astrophysics Data System (ADS)

    Bojko, B.; Sułkowska, A.; Maciążek-Jurczyk, M.; Równicka, J.; Sułkowski, W. W.

    2010-06-01

    Fluorescence studies on furosemide (FUR) binding to bovine serum albumin (BSA) showed the existence of three or four binding sites in the tertiary structure of the protein. Two of them are located in subdomain IIA, while the others in subdomains IB and/or IIIA. Furosemide binding in subdomain IB is postulated on the basis of run of Stern-Volmer plot indicating the existence of two populations of tryptophans involved in the interaction with FUR. In turn, the significant participation of tyrosil residues in complex formation leads to the consideration of the subdomain IIIA as furosemide low-affinity binding site. The effect of increasing concentration of fatty acid on FUR binding in all studied binding sites was also investigated and compared with the previous results obtained for human serum albumin (HSA). For BSA the lesser impact of fatty acid on affinity between drug and albumin was observed. This is probably a result of more significant role of tyrosines in the complex formation and different polarity of microenvironment of the fluorophores when compared HSA and BSA. The most distinct differences between FUR-BSA and FUR-HSA binding parameters are observed when third fatty acid molecule is bound with the protein and rotation of domains I and II occurs. However these structural changes mostly affect FUR low affinity binding sites.

  20. Purification and Characterization of 2S Albumin from Seeds of Wrightia tinctoria Exhibiting Antibacterial and DNase Activity.

    PubMed

    Sharma, Anchal; Kumar, Pramod; Kesari, Pooja; Neetu; Katiki, Madhusudhanarao; Mishra, Manisha; Singh, Pradhyumna K; Gurjar, Bhola R; Sharma, Ashwani K; Tomar, Shailly; Kumar, Pravindra

    2017-01-01

    2S albumin is a low-molecular-weight seed storage protein belonging to the prolamin superfamily. In the present work a small 2S albumin (WTA) protein of ~16 kDa has been purified from the seeds of Wrightia tinctoria. The WTA is a heterodimer protein with a small subunit of ~5 kDa and a larger subunit of ~11 kDa bridged together through disulphide bonds. The protein exhibits deoxyribonucleases activity against closed circular pBR322 plasmid DNA and linear BL21 genomic DNA. The protein also showed antibacterial activity against Morexalla catarrhalis. CD studies indicate a high α-helical content in the protein. The conserved disulphide bonds in the protein suggest that the WTA is highly stable under high pH and temperature like other 2S albumin. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Albumin contributes to kidney disease progression in Alport syndrome

    PubMed Central

    Knutsen, Russell H.; Mecham, Robert P.

    2016-01-01

    Alport syndrome is a familial kidney disease caused by defects in the collagen type IV network of the glomerular basement membrane. Lack of collagen-α3α4α5(IV) changes the glomerular basement membrane morphologically and functionally, rendering it leaky to albumin and other plasma proteins. Filtered albumin has been suggested to be a cause of the glomerular and tubular injuries observed at advanced stages of Alport syndrome. To directly investigate the role that albumin plays in the progression of disease in Alport syndrome, we generated albumin knockout (Alb−/−) mice to use as a tool for removing albuminuria as a component of kidney disease. Mice lacking albumin were healthy and indistinguishable from control littermates, although they developed hypertriglyceridemia. Dyslipidemia was observed in Alb+/− mice, which displayed half the normal plasma albumin concentration. Alb mutant mice were bred to collagen-α3(IV) knockout (Col4a3−/−) mice, which are a model for human Alport syndrome. Lack of circulating and filtered albumin in Col4a3−/−;Alb−/− mice resulted in dramatically improved kidney disease outcomes, as these mice lived 64% longer than did Col4a3−/−;Alb+/+ and Col4a3−/−;Alb+/− mice, despite similar blood pressures and serum triglyceride levels. Further investigations showed that the absence of albumin correlated with reduced transforming growth factor-β1 signaling as well as reduced tubulointerstitial, glomerular, and podocyte pathology. We conclude that filtered albumin is injurious to kidney cells in Alport syndrome and perhaps in other proteinuric kidney diseases, including diabetic nephropathy. PMID:27147675

  2. In vitro laser nerve repair: protein solder strip irradiation or irradiation alone?

    PubMed

    Trickett, I; Dawes, J M; Knowles, D S; Lanzetta, M; Owen, E R

    1997-01-01

    This study investigated the potential of sutureless nerve repair using two promising laser fusion methods: direct 2 microns irradiation of the epineurium, and protein solder assisted epineurial fusion using a 800 nm laser. Laser anastomosis of the rat sciatic nerve was performed in vitro without stay sutures in two groups of six animals. In the first group, direct laser fusion used a pulsed Cr, Tm: YAG laser. In the second group an albumin-based fluid solder containing the dye indocyanine green was applied to the epineurium, then irradiated with a diode laser. These two techniques were compared with regards to coaptation success and axonal damage. Direct laser welding produced weak bonds despite microscopic investigation of the irradiated nerves showing fusion of the epineurium. The unsatisfactory bonding can be attributed to poor tissue overlap and insufficient protein in the thin epineurium denaturation of underlying axons was also observed. In contrast, the laser solder method produced successful welds with greatly reduced axonal damage, and significantly improved the tensile strength. This study confirmed the technical possibilities of sutureless nerve anastomosis. Laser activated solders enable stronger bonds, by the addition of protein to the anastomosis site, and less thermal damage to underlying tissue through selective absorption of laser energy by dye in the solder. Further in vivo studies are required before drawing final conclusions.

  3. Characterization of Aggregation Propensity of a Human Fc-Fusion Protein Therapeutic by Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Richard Y.-C.; Iacob, Roxana E.; Krystek, Stanley R.; Jin, Mi; Wei, Hui; Tao, Li; Das, Tapan K.; Tymiak, Adrienne A.; Engen, John R.; Chen, Guodong

    2017-05-01

    Aggregation of protein therapeutics has long been a concern across different stages of manufacturing processes in the biopharmaceutical industry. It is often indicative of aberrant protein therapeutic higher-order structure. In this study, the aggregation propensity of a human Fc-fusion protein therapeutic was characterized. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) was applied to examine the conformational dynamics of dimers collected from a bioreactor. HDX-MS data combined with spatial aggregation propensity calculations revealed a potential aggregation interface in the Fc domain. This study provides a general strategy for the characterization of the aggregation propensity of Fc-fusion proteins at the molecular level.

  4. Targeted delivery of siRNA into breast cancer cells via phage fusion proteins.

    PubMed

    Bedi, Deepa; Gillespie, James W; Petrenko, Vasily A; Ebner, Andreas; Leitner, Michael; Hinterdorfer, Peter; Petrenko, Valery A

    2013-02-04

    Nucleic acids, including antisense oligonucleotides, small interfering RNA (siRNA), aptamers, and rybozymes, emerged as versatile therapeutics due to their ability to interfere in a well-planned manner with the flow of genetic information from DNA to protein. However, a systemic use of NAs is hindered by their instability in physiological liquids and inability of intracellular accumulation in the site of action. We first evaluated the potential of cancer specific phage fusion proteins as targeting ligands that provide encapsulation, protection, and navigation of siRNA to the target cell. The tumor-specific proteins were isolated from phages that were affinity selected from a landscape phage library against target breast cancer cells. It was found that fusion phage coat protein fpVIII displaying cancer-targeting peptides can effectively encapsulate siRNAs and deliver them into the cells leading to specific silencing of the model gene GAPDH. Complexes of siRNA and phage protein form nanoparticles (nanophages), which were characterized by atomic force microscopy and ELISA, and their stability was demonstrated by resistance of encapsulated siRNA to degradation by serum nucleases. The phage protein/siRNA complexes can make a new type of highly selective, stable, active, and physiologically acceptable cancer nanomedicine.

  5. F-18 Labeled Diabody-Luciferase Fusion Proteins for Optical-ImmunoPET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Anna M.

    2013-01-18

    The goal of the proposed work is to develop novel dual-labeled molecular imaging probes for multimodality imaging. Based on small, engineered antibodies called diabodies, these probes will be radioactively tagged with Fluorine-18 for PET imaging, and fused to luciferases for optical (bioluminescence) detection. Performance will be evaluated and validated using a prototype integrated optical-PET imaging system, OPET. Multimodality probes for optical-PET imaging will be based on diabodies that are dually labeled with 18F for PET detection and fused to luciferases for optical imaging. 1) Two sets of fusion proteins will be built, targeting the cell surface markers CEA or HER2.more » Coelenterazine-based luciferases and variant forms will be evaluated in combination with native substrate and analogs, in order to obtain two distinct probes recognizing different targets with different spectral signatures. 2) Diabody-luciferase fusion proteins will be labeled with 18F using amine reactive [18F]-SFB produced using a novel microwave-assisted, one-pot method. 3) Sitespecific, chemoselective radiolabeling methods will be devised, to reduce the chance that radiolabeling will inactivate either the target-binding properties or the bioluminescence properties of the diabody-luciferase fusion proteins. 4) Combined optical and PET imaging of these dual modality probes will be evaluated and validated in vitro and in vivo using a prototype integrated optical-PET imaging system, OPET. Each imaging modality has its strengths and weaknesses. Development and use of dual modality probes allows optical imaging to benefit from the localization and quantitation offered by the PET mode, and enhances the PET imaging by enabling simultaneous detection of more than one probe.« less

  6. Recombinant fusion protein and DNA vaccines against foot and mouth disease virus infection in guinea pig and swine.

    PubMed

    Huang, H; Yang, Z; Xu, Q; Sheng, Z; Xie, Y; Yan, W; You, Y; Sun, L; Zheng, Z

    1999-01-01

    In this study, we provide evidence that a recombinant fusion protein containing beta-galactosidase and a tandem repeat peptide of immunogenic dominant epitope of foot-and-mouth disease virus (FMDV) VP1 protein elicits high levels of neutralizing antibody and protects both guinea pigs and swine against infection. Vaccination with this fusion protein induced a FMDV-specific proliferative T-cell response and a neutralizing antibody response. The immunized guinea pigs and swine were protected against FMD type O virus infection. Two DNA plasmids expressing genes of foot-and-mouth disease were constructed. Both plasmids pBO1 and pCO1 contain a signal sequence of the swine immunoglobulin G (IgG) gene and fusion protein gene of pXZ84. The signal sequence and fusion protein gene were under the control of a metallothionein promoter in the case of the pBO1 plasmid and under the control of a cytomegalovirus immediate early promoter in the case of pCO1 plasmid. When pBO1 and pCO1 were inoculated intramuscularly into guinea pigs, both plasmids elicited a neutralizing antibody response and spleen cell proliferation increased following stimulation with FMDV antigen, but animals were not protected from viral challenge.

  7. Transgenic carrot expressing fusion protein comprising M. tuberculosis antigens induces immune response in mice.

    PubMed

    Permyakova, Natalia V; Zagorskaya, Alla A; Belavin, Pavel A; Uvarova, Elena A; Nosareva, Olesya V; Nesterov, Andrey E; Novikovskaya, Anna A; Zav'yalov, Evgeniy L; Moshkin, Mikhail P; Deineko, Elena V

    2015-01-01

    Tuberculosis remains one of the major infectious diseases, which continues to pose a major global health problem. Transgenic plants may serve as bioreactors to produce heterologous proteins including antibodies, antigens, and hormones. In the present study, a genetic construct has been designed that comprises the Mycobacterium tuberculosis genes cfp10, esat6 and dIFN gene, which encode deltaferon, a recombinant analog of the human γ-interferon designed for expression in plant tissues. This construct was transferred to the carrot (Daucus carota L.) genome by Agrobacterium-mediated transformation. This study demonstrates that the fusion protein CFP10-ESAT6-dIFN is synthesized in the transgenic carrot storage roots. The protein is able to induce both humoral and cell-mediated immune responses in laboratory animals (mice) when administered either orally or by injection. It should be emphasized that M. tuberculosis antigens contained in the fusion protein have no cytotoxic effect on peripheral blood mononuclear cells.

  8. Preferential expression and immunogenicity of HIV-1 Tat fusion protein expressed in tomato plant.

    PubMed

    Cueno, Marni E; Hibi, Yurina; Karamatsu, Katsuo; Yasutomi, Yasuhiro; Imai, Kenichi; Laurena, Antonio C; Okamoto, Takashi

    2010-10-01

    HIV-1 Tat plays a major role in viral replication and is essential for AIDS development making it an ideal vaccine target providing that both humoral and cellular immune responses are induced. Plant-based antigen production, due to its cheaper cost, appears ideal for vaccine production. In this study, we created a plant-optimized tat and mutant (Cys30Ala/Lys41Ala) tat (mtat) gene and ligated each into a pBI121 expression vector with a stop codon and a gusA gene positioned immediately downstream. The vector construct was bombarded into tomato leaf calli and allowed to develop. We thus generated recombinant tomato plants preferentially expressing a Tat-GUS fusion protein over a Tat-only protein. In addition, plants bombarded with either tat or mtat genes showed no phenotypic difference and produced 2-4 microg Tat-GUS fusion protein per milligram soluble plant protein. Furthermore, tomato extracts intradermally inoculated into mice were found to induce a humoral and, most importantly, cellular immunity.

  9. Insertion of inter-domain linkers improves expression and bioactivity of Zygote arrest (Zar) fusion proteins.

    PubMed

    Cook, Jonathan M; Charlesworth, Amanda

    2017-04-01

    Developmentally important proteins that are crucial for fertilization and embryogenesis are synthesized through highly regulated translation of maternal mRNA. The Zygote arrest proteins, Zar1 and Zar2, are crucial for embryogenesis and have been implicated in binding mRNA and repressing mRNA translation. To investigate Zar1 and Zar2, the full-length proteins had been fused to glutathione-S-transferase (GST) or MS2 protein tags with minimal inter-domain linkers derived from multiple cloning sites; however, these fusion proteins expressed poorly and/or lacked robust function. Here, we tested the effect of inserting additional linkers between the fusion domains. Three linkers were tested, each 17 amino acids long with different physical and chemical properties: flexible hydrophilic, rigid extended or rigid helical. In the presence of any of the three linkers, GST-Zar1 and GST-Zar2 had fewer breakdown products. Moreover, in the presence of any of the linkers, MS2-Zar1 was expressed to higher levels, and in dual luciferase tethered assays, both MS2-Zar1 and MS2-Zar2 repressed luciferase translation to a greater extent. These data suggest that for Zar fusion proteins, increasing the length of linkers, regardless of their physical or chemical properties, improves stability, expression and bioactivity. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Physical Instability of a Therapeutic Fc Fusion Protein: Domain Contributions to Conformational and Colloidal Stability†

    PubMed Central

    Fast, Jonas L; Cordes, Amanda A; Carpenter, John F; Randolph, Theodore W

    2009-01-01

    Protein therapeutics made up of artificially combined proteins or protein domains, so called fusion proteins, are a novel and growing class of biopharmaceuticals. We have studied abatacept (Orencia®), a fusion protein that is constructed of a modified IgG Fc domain and the soluble part of the T-cell receptor CTLA-4. In accelerated degradation studies conducted at at 40 °C, a pH shift from 7.5 to 6.0 yields significantly faster aggregation kinetics, as measured by size-exclusion chromatography. To understand how the fusion domains and their interactions contribute to this result, we considered aggregation in light of the modified Lumry-Eyring reaction pathway. Protein conformational stabilities against chaotropes and temperature were measured. The structural consequences of these perturbations were observed by a variety of experimental techniques, including differential scanning calorimetry, circular dichroism, and intrinsic fluorescence. Abatacept’s colloidal stability was studied by measuring zeta potentials and osmotic second virial coefficients, as well as by modeling electrostatic potentials on the protein’s surface. The domains of abatacept exhibit different conformational stabilities that are highly pH dependent, whereas abatacept was weakly colloidally unstable at pH 6 or pH 7.5. These results are ascribed to conformational instability of the CTLA-4 and CH2 domains, which unfold to form a molten globule-like structure that is aggregation-prone. We suggest the instability against aggregation is determined by the least stable domains. PMID:19899812

  11. Isolation and characterization of a specific receptor for human albumin on a group L Streptococcus.

    PubMed

    Lämmler, C

    1988-08-01

    Certain group L streptococci demonstrate surface receptors for human albumin. Binding of 125I-albumin to group L streptococci could be inhibited by unlabelled albumin preparations from humans, dogs, mice and bovines, but not by albumin from rabbits. The albumin-binding proteins (ABP) could be solubilized from the streptococcal surface by hot acid treatment of the bacteria and isolated by affinity chromatography on human-albumin sepharose. ABP and specific antisera produced against ABP inhibited 125I-albumin binding to group L streptococci. The molecular weight of ABP determined by SDS-PAGE and Western blotting, was approximately 48,000 Dalton. ABP preparations of group G streptococci isolated from bovines and humans demonstrated cross reactivity with antiserum produced against group L streptococcal ABP.

  12. Enhanced EGFP-chromophore-assisted laser inactivation using deficient cells rescued with functional EGFP-fusion proteins.

    PubMed

    Vitriol, Eric A; Uetrecht, Andrea C; Shen, Feimo; Jacobson, Ken; Bear, James E

    2007-04-17

    Chromophore-assisted laser inactivation (CALI) is a light-mediated technique that offers precise spatiotemporal control of protein inactivation, enabling better understanding of the protein's role in cell function. EGFP has been used effectively as a CALI chromophore, and its cotranslational attachment to the target protein avoids having to use exogenously added labeling reagents. A potential drawback to EGFP-CALI is that the CALI phenotype can be obscured by the endogenous, unlabeled protein that is not susceptible to light inactivation. Performing EGFP-CALI experiments in deficient cells rescued with functional EGFP-fusion proteins permits more complete loss of function to be achieved. Here, we present a modified lentiviral system for rapid and efficient generation of knockdown cell lines complemented with physiological levels of EGFP-fusion proteins. We demonstrate that CALI of EGFP-CapZbeta increases uncapped actin filaments, resulting in enhanced filament growth and the formation of numerous protrusive structures. We show that these effects are completely dependent upon knocking down the endogenous protein. We also demonstrate that CALI of EGFP-Mena in Mena/VASP-deficient cells stabilizes lamellipodial protrusions.

  13. A multipurpose fusion tag derived from an unstructured and hyperacidic region of the amyloid precursor protein

    PubMed Central

    Sangawa, Takeshi; Tabata, Sanae; Suzuki, Kei; Saheki, Yasushi; Tanaka, Keiji; Takagi, Junichi

    2013-01-01

    Expression and purification of aggregation-prone and disulfide-containing proteins in Escherichia coli remains as a major hurdle for structural and functional analyses of high-value target proteins. Here, we present a novel gene-fusion strategy that greatly simplifies purification and refolding procedure at very low cost using a unique hyperacidic module derived from the human amyloid precursor protein. Fusion with this polypeptide (dubbed FATT for Flag-Acidic-Target Tag) results in near-complete soluble expression of variety of extracellular proteins, which can be directly refolded in the crude bacterial lysate and purified in one-step by anion exchange chromatography. Application of this system enabled preparation of functionally active extracellular enzymes and antibody fragments without the need for condition optimization. PMID:23526492

  14. Localized cyclic AMP-dependent protein kinase activity is required for myogenic cell fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukai, Atsushi; Hashimoto, Naohiro

    2008-01-15

    Multinucleated myotubes are formed by fusion of mononucleated myogenic progenitor cells (myoblasts) during terminal skeletal muscle differentiation. In addition, myoblasts fuse with myotubes, but terminally differentiated myotubes have not been shown to fuse with each other. We show here that an adenylate cyclase activator, forskolin, and other reagents that elevate intracellular cyclic AMP (cAMP) levels induced cell fusion between small bipolar myotubes in vitro. Then an extra-large myotube, designated a 'myosheet,' was produced by both primary and established mouse myogenic cells. Myotube-to-myotube fusion always occurred between the leading edge of lamellipodia at the polar end of one myotube and themore » lateral plasma membrane of the other. Forskolin enhanced the formation of lamellipodia where cAMP-dependent protein kinase (PKA) was accumulated. Blocking enzymatic activity or anchoring of PKA suppressed forskolin-enhanced lamellipodium formation and prevented fusion of multinucleated myotubes. Localized PKA activity was also required for fusion of mononucleated myoblasts. The present results suggest that localized PKA plays a pivotal role in the early steps of myogenic cell fusion, such as cell-to-cell contact/recognition through lamellipodium formation. Furthermore, the localized cAMP-PKA pathway might be involved in the specification of the fusion-competent areas of the plasma membrane in lamellipodia of myogenic cells.« less

  15. [Metapneumovirus expands the understanding of Paramyxovirus cell fusion--a review].

    PubMed

    Liu, Xiaoyu; Zhang, Xiaodong; Wei, Yongwei

    2014-04-04

    For most viruses in Paramyxoviridae, cell fusion requires both attachment protein and fusion protein. The attachment protein is responsible for the binding to its cognate receptors, while the interaction between fusion protein and attachment protein triggers the fusion protein which is responsible for the fusion. However, the Metapneumovirus fusion in Pneumovirinae subfamily displayed different mechanism where the attachment protein is not required. The cell fusion is accomplished by fusion protein alone without the help of the attachment protein. Recent studies indicate that low pH is required for cell fusion promoted by some hMPV strains. The fusion protein of aMPV type A is highly fusogenic, whereas that of type B is low. The original fusion models for Paramyxovirus cannot explain the phenomenon above. The mechanism to regulate the cell fusion of Metapneumovirus is poorly understood. It is becoming a hot spot for the study of cell fusion triggered by Paramyxovirus where it enlarged the traditional scope of Paramyxovirus fusion. In this review, we discuss the new achievements and advances in the understanding of cell fusion triggered by Metapneumovirus.

  16. FOXO1 is a direct target of EWS-Fli1 oncogenic fusion protein in Ewing's sarcoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Liu, E-mail: lyang@u.washington.edu; Medical Research Service, VA Puget Sound Health Care System, Seattle, WA 98108; Hu, Hsien-Ming

    2010-11-05

    Research highlights: {yields} Inducible and reversible siRNA knockdown of an oncogenic fusion protein such as EWS-Fli1 is feasible and more advantageous than other siRNA methods. {yields} The tumor suppressor gene FOXO1 is a new EWS-Fli1 target. {yields} While trans-activators are known for the FOXO1 gene, there has been no report on negative regulators of FOXO1 transcription. {yields} This study provides first evidence that the EWS-Fli1 oncogenic fusion protein can function as a transcriptional repressor of the FOXO1 gene. -- Abstract: Ewing's family tumors are characterized by a specific t(11;22) chromosomal translocation that results in the formation of EWS-Fli1 oncogenic fusionmore » protein. To investigate the effects of EWS-Fli1 on gene expression, we carried out DNA microarray analysis after specific knockdown of EWS-Fli1 through transfection of synthetic siRNAs. EWS-Fli1 knockdown increased expression of genes such as DKK1 and p57 that are known to be repressed by EWS-Fli1 fusion protein. Among other potential EWS-Fli1 targets identified by our microarray analysis, we have focused on the FOXO1 gene since it encodes a potential tumor suppressor and has not been previously reported in Ewing's cells. To better understand how EWS-Fli1 affects FOXO1 expression, we have established a doxycycline-inducible siRNA system to achieve stable and reversible knockdown of EWS-Fli1 in Ewing's sarcoma cells. Here we show that FOXO1 expression in Ewing's cells has an inverse relationship with EWS-Fli1 protein level, and FOXO1 promoter activity is increased after doxycycline-induced EWS-Fli1 knockdown. In addition, we have found that direct binding of EWS-Fli1 to FOXO1 promoter is attenuated after doxycycline-induced siRNA knockdown of the fusion protein. Together, these results suggest that suppression of FOXO1 function by EWS-Fli1 fusion protein may contribute to cellular transformation in Ewing's family tumors.« less

  17. Combining Random Gene Fission and Rational Gene Fusion To Discover Near-Infrared Fluorescent Protein Fragments That Report on Protein–Protein Interactions

    PubMed Central

    2015-01-01

    Gene fission can convert monomeric proteins into two-piece catalysts, reporters, and transcription factors for systems and synthetic biology. However, some proteins can be challenging to fragment without disrupting function, such as near-infrared fluorescent protein (IFP). We describe a directed evolution strategy that can overcome this challenge by randomly fragmenting proteins and concomitantly fusing the protein fragments to pairs of proteins or peptides that associate. We used this method to create libraries that express fragmented IFP as fusions to a pair of associating peptides (IAAL-E3 and IAAL-K3) and proteins (CheA and CheY) and screened for fragmented IFP with detectable near-infrared fluorescence. Thirteen novel fragmented IFPs were identified, all of which arose from backbone fission proximal to the interdomain linker. Either the IAAL-E3 and IAAL-K3 peptides or CheA and CheY proteins could assist with IFP fragment complementation, although the IAAL-E3 and IAAL-K3 peptides consistently yielded higher fluorescence. These results demonstrate how random gene fission can be coupled to rational gene fusion to create libraries enriched in fragmented proteins with AND gate logic that is dependent upon a protein–protein interaction, and they suggest that these near-infrared fluorescent protein fragments will be suitable as reporters for pairs of promoters and protein–protein interactions within whole animals. PMID:25265085

  18. A model to estimate the relative position of sites for ligands in serum albumins

    NASA Astrophysics Data System (ADS)

    Motta, Art Adriel Emidio de Araújo; Grassini, Maria Carolina Vilela; Cortez, Célia Martins; Silva, Dilson

    2017-11-01

    In this work, we present a mathematical-computational model developed to estimate the relative position of ligand binding sites in HSA and BSA, based on the theory of fluorescence quenching, considering the molecular and spectrofluorimetric differences and similarities between these two albumins. Albumin is the largest and the most abundant serum protein in vertebrates. The ability to bind xenobiotics makes albumin important to the bioavailability and effectiveness of drugs.

  19. Expression of the B subunit of Escherichia coli heat-labile enterotoxin as a fusion protein in transgenic tomato.

    PubMed

    Walmsley, A M; Alvarez, M L; Jin, Y; Kirk, D D; Lee, S M; Pinkhasov, J; Rigano, M M; Arntzen, C J; Mason, H S

    2003-06-01

    Epitopes often require co-delivery with an adjuvant or targeting protein to enable recognition by the immune system. This paper reports the ability of transgenic tomato plants to express a fusion protein consisting of the B subunit of the Escherichia coli heat-labile enterotoxin (LTB) and an immunocontraceptive epitope. The fusion protein was found to assemble into pentamers, as evidenced by its ability to bind to gangliosides, and had an average expression level of 37.8 microg g(-1) in freeze-dried transgenic tissues. Processing of selected transgenic fruit resulted in a 16-fold increase in concentration of the antigen with minimal loss in detectable antigen. The species-specific nature of this epitope was shown by the inability of antibodies raised against non-target species to detect the LTB fusion protein. The immunocontraceptive ability of this vaccine will be tested in future pilot mice studies.

  20. Fluorescence lifetime measurements of native and glycated human serum albumin and bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Joshi, Narahari V.; Joshi, Virgina O. d.; Contreras, Silvia; Gil, Herminia; Medina, Honorio; Siemiarczuk, Aleksander

    1999-05-01

    Nonenzymatic glycation, also known as Maillard reaction, plays an important role in the secondary complications of the diabetic pathology and aging, therefore, human serum albumin (HSA) and bovine serum albumin (BSA) were glycated by a conventional method in our laboratory using glucose as the glycating agent. Fluorescence lifetime measurements were carried out with a laser strobe fluorometer equipped with a nitrogen/dye laser and a frequency doubler as a pulsed excitation source. The samples were excited at 295 nm and the emission spectra were recorded at 345 nm. The obtained decay curves were tried for double and triple exponential functions. It has been found that the shorter lifetime increases for glycated proteins as compared with that of the native ones. For example, in the case of glycated BSA the lifetime increased from 1.36 ns to 2.30 ns. Similarly, for HSA, the lifetime increases from 1.58 ns to 2.26 ns. Meanwhile, the longer lifetime changed very slightly for both proteins (from 6.52 ns to 6.72 ns). The increase in the lifetime can be associated with the environmental effect; originated from the attachment of glucose to some lysine residues. A good example is Trp 214 which is in the cage of Lys 225, Lys 212, Lys 233, Lys 205, Lys 500, Lys 199 and Lys 195. If fluorescence lifetime technique is calibrated and properly used it could be employed for assessing glycation of proteins.

  1. Paramyxovirus fusion: Real-time measurement of parainfluenza virus 5 virus-cell fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, Sarah A.; Lamb, Robert A.

    2006-11-25

    Although cell-cell fusion assays are useful surrogate methods for studying virus fusion, differences between cell-cell and virus-cell fusion exist. To examine paramyxovirus fusion in real time, we labeled viruses with fluorescent lipid probes and monitored virus-cell fusion by fluorimetry. Two parainfluenza virus 5 (PIV5) isolates (W3A and SER) and PIV5 containing mutations within the fusion protein (F) were studied. Fusion was specific and temperature-dependent. Compared to many low pH-dependent viruses, the kinetics of PIV5 fusion was slow, approaching completion within several minutes. As predicted from cell-cell fusion assays, virus containing an F protein with an extended cytoplasmic tail (rSV5 F551)more » had reduced fusion compared to wild-type virus (W3A). In contrast, virus-cell fusion for SER occurred at near wild-type levels, despite the fact that this isolate exhibits a severely reduced cell-cell fusion phenotype. These results support the notion that virus-cell and cell-cell fusion have significant differences.« less

  2. Characterization of an immunomodulatory Der p 2-FIP-fve fusion protein produced in transformed rice suspension cell culture.

    PubMed

    Su, Chin-Fen; Kuo, I-Chun; Chen, Peng-Wen; Huang, Chiung-Hui; Seow, See Voon; Chua, Kaw Yan; Yu, Su-May

    2012-02-01

    Der p 2, a major allergen of Dermatophagoides pteronyssinus mites, is one of the most clinically relevant allergens to allergic patients worldwide. FIP-fve protein (Fve) from the golden needle mushroom (Flammulina velutipes) is an immunomodulatory protein with potential Th1-skewed adjuvant properties. Here, we produced and immunologically evaluated a Der p 2-Fve fusion protein as a potential immunotherapeutic for allergic diseases. Using an inducible expression system in cultured rice suspension cells, the recombinant Der p 2-Fve fusion protein (designated as OsDp2Fve) was expressed in rice cells under the control of an α-amylase gene (αAmy8) promoter and secreted under sucrose starvation. OsDp2Fve was partially purified from the cultured medium. The conformation of Der p 2 in OsDp2Fve remains intact as reflected by its unaltered allergenicity, as assessed by human IgE ELISA and histamine release assays, compared to non-fusion Der p 2 protein. Furthermore, the Fve protein expressed in OsDp2Fve retains its in vitro lymphoproliferative activity but loses its hemagglutination and lymphoagglutination effects compared to the native protein. Notably, in vivo evaluation showed that mice administered with OsDp2Fve possessed an enhanced production of Der p 2-specific IgG antibodies without potentiating the production of Der p 2-specific IgE and Th2 effector cytokines in comparison with mice co-administered with native Fve and Der p 2 proteins. These results suggest that the recombinant Der p 2-Fve fusion protein produced in rice suspension cell cultures has a great potential for allergy immunotherapy.

  3. Cotton and Protein Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goheen, Steven C.; Edwards, J. V.; Rayburn, Alfred R.

    The adsorbent properties of important wound fluid proteins and cotton cellulose are reviewed. This review focuses on the adsorption of albumin to cotton-based wound dressings and some chemically modified derivatives targeted for chronic wounds. Adsorption of elastase in the presence of albumin was examined as a model to understand the interactive properties of these wound fluid components with cotton fibers. In the chronic non-healing wound, elastase appears to be over-expressed, and it digests tissue and growth factors, interfering with the normal healing process. Albumin is the most prevalent protein in wound fluid, and in highly to moderately exudative wounds, itmore » may bind significantly to the fibers of wound dressings. Thus, the relative binding properties of both elastase and albumin to wound dressing fibers are of interest in the design of more effective wound dressings. The present work examines the binding of albumin to two different derivatives of cotton, and quantifies the elastase binding to the same derivatives following exposure of albumin to the fiber surface. An HPLC adsorption technique was employed coupled with a colorimetric enzyme assay to quantify the relative binding properties of albumin and elastase to cotton. The results of wound protein binding are discussed in relation to the porosity and surface chemistry interactions of cotton and wound proteins. Studies are directed to understanding the implications of protein adsorption phenomena in terms of fiber-protein models that have implications for rationally designing dressings for chronic wounds.« less

  4. Albumin fiber scaffolds for engineering functional cardiac tissues.

    PubMed

    Fleischer, Sharon; Shapira, Assaf; Regev, Omri; Nseir, Nora; Zussman, Eyal; Dvir, Tal

    2014-06-01

    In recent years attempts to engineer contracting cardiac patches were focused on recapitulation of the myocardium extracellular microenvironment. We report here on our work, where for the first time, a three-dimensional cardiac patch was fabricated from albumin fibers. We hypothesized that since albumin fibers' mechanical properties resemble those of cardiac tissue extracellular matrix (ECM) and their biochemical character enables their use as protein carriers, they can support the assembly of cardiac tissues capable of generating strong contraction forces. Here, we have fabricated aligned and randomly oriented electrospun albumin fibers and investigated their structure, mechanical properties, and chemical nature. Our measurements showed that the scaffolds have improved elasticity as compared to synthetic electrospun PCL fibers, and that they are capable of adsorbing serum proteins, such as laminin leading to strong cell-matrix interactions. Moreover, due to the functional groups on their backbone, the fibers can be chemically modified with essential biomolecules. When seeded with rat neonatal cardiac cells the engineered scaffolds induced the assembly of aligned cardiac tissues with high aspect ratio cardiomyocytes and massive actinin striation. Compared to synthetic fibrous scaffolds, cardiac cells cultured within aligned or randomly oriented scaffolds formed functional tissues, exhibiting significantly improved function already on Day 3, including higher beating rate (P = 0.0002 and P < 0.0001, respectively), and higher contraction amplitude (P = 0.009 and P = 0.003, respectively). Collectively, our results suggest that albumin electrospun scaffolds can play a key role in contributing to the ex vivo formation of a contracting cardiac muscle tissue. © 2014 Wiley Periodicals, Inc.

  5. A strategy for targeting recombinant proteins to protein storage vacuoles by fusion to Brassica napus napin in napin-depleted seeds.

    PubMed

    Hegedus, Dwayne D; Baron, Marcus; Labbe, Natalie; Coutu, Cathy; Lydiate, Derek; Lui, Helen; Rozwadowski, Kevin

    2014-03-01

    Seeds are capable of accumulating high levels of seed storage proteins (SSP), as well as heterologous proteins under certain conditions. Arabidopsis thaliana was used to develop a strategy to deplete seeds of an endogenous SSP and then replenish them with the same protein fused to a heterologous protein. In several other studies, competition with endogenous SSP for space and metabolic resources was shown to affect the accumulation of recombinant proteins in seeds. We used RNAi to reduce the expression of the five napin genes and deplete the seeds of this SSP. Targeting a recombinant protein to a vacuole or structure within the seed where it can be protected from cytosolic proteases can also promote its accumulation. To achieve this, a synthetic Brassica napus napin gene (Bn napin) was designed that was both impervious to the A. thaliana napin (At napin) RNAi construct and permitted fusion to a heterologous protein, in this case green fluorescent protein (GFP). GFP was placed in several strategic locations within Bn napin with consideration to maintaining structure, processing sites and possible vacuolar targeting signals. In transgenic A. thaliana plants, GFP was strongly localized to the seed protein storage vacuole in all Bn napin fusion configurations tested, but not when expressed alone. This SSP depletion-replenishment strategy outlined here would be applicable to expression of recombinant proteins in industrial crops that generally have large repertoires of endogenous SSP genes. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  6. Expression of the Acyl-Coenzyme A: Cholesterol Acyltransferase GFP Fusion Protein in Sf21 Insect Cells

    NASA Technical Reports Server (NTRS)

    Mahtani, H. K.; Richmond, R. C.; Chang, T. Y.; Chang, C. C. Y.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The enzyme acyl-coenzyme A:cholesterol acyltransferase (ACAT) is an important contributor to the pathological expression of plaque leading to artherosclerosis n a major health problem. Adequate knowledge of the structure of this protein will enable pharmaceutical companies to design drugs specific to the enzyme. ACAT is a membrane protein located in the endoplasmic reticulum.t The protein has never been purified to homogeneity.T.Y. Chang's laboratory at Dartmouth College provided a 4-kb cDNA clone (K1) coding for a structural gene of the protein. We have modified the gene sequence and inserted the cDNA into the BioGreen His Baculovirus transfer vector. This was successfully expressed in Sf2l insect cells as a GFP-labeled ACAT protein. The advantage to this ACAT-GFP fusion protein (abbreviated GCAT) is that one can easily monitor its expression as a function of GFP excitation at 395 nm and emission at 509 nm. Moreover, the fusion protein GCAT can be detected on Western blots with the use of commercially available GFP antibodies. Antibodies against ACAT are not readily available. The presence of the 6xHis tag in the transfer vector facilitates purification of the recombinant protein since 6xHis fusion proteins bind with high affinity to Ni-NTA agarose. Obtaining highly pure protein in large quantities is essential for subsequent crystallization. The purified GCAT fusion protein can readily be cleaved into distinct GFP and ACAT proteins in the presence of thrombin. Thrombin digests the 6xHis tag linking the two protein sequences. Preliminary experiments have indicated that both GCAT and ACAT are expressed as functional proteins. The ultimate aim is to obtain large quantities of the ACAT protein in pure and functional form appropriate for protein crystal growth. Determining protein structure is the key to the design and development of effective drugs. X-ray analysis requires large homogeneous crystals that are difficult to obtain in the gravity environment of earth

  7. Comparative studies on drug binding to the purified and pharmaceutical-grade human serum albumins: Bridging between basic research and clinical applications of albumin.

    PubMed

    Ashrafi-Kooshk, Mohammad Reza; Ebrahimi, Farangis; Ranjbar, Samira; Ghobadi, Sirous; Moradi, Nastaran; Khodarahmi, Reza

    2015-09-01

    Human serum albumin (HSA), the most abundant protein in blood plasma, is a monomeric multidomain protein that possesses an extraordinary capacity for binding, so that serves as a circulating depot for endogenous and exogenous compounds. During the heat sterilization process, the structure of pharmaceutical-grade HSA may change and some of its activities may be lost. In this study, to provide deeper insight on this issue, we investigated drug-binding and some physicochemical properties of purified albumin (PA) and pharmaceutical-grade albumin (PGA) using two known drugs (indomethacin and ibuprofen). PGA displayed significantly lower drug binding capacity compared to PA. Analysis of the quenching and thermodynamic parameters indicated that intermolecular interactions between the drugs and the proteins are different from each other. Surface hydrophobicity as well as the stability of PGA decreased compared to PA, also surface hydrophobicity of PA and PGA increased upon drugs binding. Also, kinetic analysis of pseudo-esterase activities indicated that Km and Vmax parameters for PGA enzymatic activity are more and less than those of PA, respectively. This in vitro study demonstrates that the specific drug binding of PGA is significantly reduced. Such studies can act as connecting bridge between basic research discoveries and clinical applications. Copyright © 2015 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  8. Cholera toxin B subunit-five-stranded α-helical coiled-coil fusion protein: "five-to-five" molecular chimera displays robust physicochemical stability.

    PubMed

    Arakawa, Takeshi; Harakuni, Tetsuya

    2014-09-03

    To create a physicochemically stable cholera toxin (CT) B subunit (CTB), it was fused to the five-stranded α-helical coiled-coil domain of cartilage oligomeric matrix protein (COMP). The chimeric fusion protein (CTB-COMP) was expressed in Pichia pastoris, predominantly as a pentamer, and retained its affinity for the monosialoganglioside GM1, a natural receptor of CT. The fusion protein displayed thermostability, tolerating the boiling temperature of water for 10min, whereas unfused CTB readily dissociated to its monomers and lost its affinity for GM1. The fusion protein also displayed resistance to strong acid at pHs as low as 0.1, and to the protein denaturant sodium dodecyl sulfate at concentrations up to 10%. Intranasal administration of the fusion protein to mice induced anti-B subunit serum IgG, even after the protein was boiled, whereas unfused CTB showed no thermostable mucosal immunogenicity. This study demonstrates that CTB fused to a pentameric α-helical coiled coil has a novel physicochemical phenotype, which may provide important insight into the molecular design of enterotoxin-B-subunit-based vaccines and vaccine delivery molecules. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. A retrospective analysis of 25% human serum albumin supplementation in hypoalbuminemic dogs with septic peritonitis

    PubMed Central

    Horowitz, Farrah B.; Read, Robyn L.; Powell, Lisa L.

    2015-01-01

    This study describes the influence of 25% human serum albumin (HSA) supplementation on serum albumin level, total protein (TP), colloid osmotic pressure (COP), hospital stay, and survival in dogs with septic peritonitis. Records of 39 dogs with septic peritonitis were evaluated. In the HSA group, initial and post-transfusion TP, albumin, COP, and HSA dose were recorded. In the non-supplemented group, repeated values of TP, albumin, and COP were recorded over their hospitalization. Eighteen dogs survived (53.8% mortality). Repeat albumin values were higher in survivors (mean 23.9 g/L) and elevated repeat albumin values were associated with HSA supplementation. Repeat albumin and TP were higher in the HSA supplemented group (mean 24 g/L and 51.9 g/L, respectively) and their COP increased by 5.8 mmHg. Length of hospitalization was not affected. Twenty-five percent HSA increases albumin, TP, and COP in canine patients with septic peritonitis. Higher postoperative albumin levels are associated with survival. PMID:26028681

  10. Raman microspectroscopy of nanodiamond-induced structural changes in albumin

    NASA Astrophysics Data System (ADS)

    Svetlakova, Anastasiya S.; Brandt, Nikolay N.; Priezzhev, Alexander V.; Chikishev, Andrey Yu.

    2015-04-01

    Nanodiamonds (NDs) are promising agents for theranostic applications due to reported low toxicity and high biocompatibility, which is still being extensively tested on cellular, tissue, and organism levels. It is presumed that for experimental and future clinical applications, NDs will be administered into the organism via the blood circulation system. In this regard, the interaction of NDs with blood components needs to be thoroughly studied. We studied the interaction of carboxylated NDs (cNDs) with albumin, one of the major proteins of blood plasma. After 2-h long in vitro incubation in an aqueous solution of the protein, 100-nm cNDs were dried and the dry samples were studied with the aid of Raman microspectroscopy. The spectroscopic data indicate significant conformational changes that can be due to cND-protein interaction. A possible decrease in the functional activity of albumin related to the conformational changes must be taken into account in the in vivo applications.

  11. Raman microspectroscopy of nanodiamond-induced structural changes in albumin.

    PubMed

    Svetlakova, Anastasiya S; Brandt, Nikolay N; Priezzhev, Alexander V; Chikishev, Andrey Yu

    2015-04-01

    Nanodiamonds (NDs) are promising agents for theranostic applications due to reported low toxicity and high biocompatibility, which is still being extensively tested on cellular, tissue, and organism levels. It is presumed that for experimental and future clinical applications, NDs will be administered into the organism via the blood circulation system. In this regard, the interaction of NDs with blood components needs to be thoroughly studied. We studied the interaction of carboxylated NDs (cNDs) with albumin, one of the major proteins of blood plasma. After 2-h long in vitro incubation in an aqueous solution of the protein, 100-nm cNDs were dried and the dry samples were studied with the aid of Raman microspectroscopy. The spectroscopic data indicate significant conformational changes that can be due to cND–protein interaction. A possible decrease in the functional activity of albumin related to the conformational changes must be taken into account in the in vivo applications.

  12. Size-dependent interaction of silica nanoparticles with lysozyme and bovine serum albumin proteins

    NASA Astrophysics Data System (ADS)

    Yadav, Indresh; Aswal, Vinod K.; Kohlbrecher, Joachim

    2016-05-01

    The interaction of three different sized (diameter 10, 18, and 28 nm) anionic silica nanoparticles with two model proteins—cationic lysozyme [molecular weight (MW) 14.7 kDa)] and anionic bovine serum albumin (BSA) (MW 66.4 kDa) has been studied by UV-vis spectroscopy, dynamic light scattering (DLS), and small-angle neutron scattering (SANS). The adsorption behavior of proteins on the nanoparticles, measured by UV-vis spectroscopy, is found to be very different for lysozyme and BSA. Lysozyme adsorbs strongly on the nanoparticles and shows exponential behavior as a function of lysozyme concentration irrespective of the nanoparticle size. The total amount of adsorbed lysozyme, as governed by the surface-to-volume ratio, increases on lowering the size of the nanoparticles for a fixed volume fraction of the nanoparticles. On the other hand, BSA does not show any adsorption for all the different sizes of the nanoparticles. Despite having different interactions, both proteins induce similar phase behavior where the nanoparticle-protein system transforms from one phase (clear) to two phase (turbid) as a function of protein concentration. The phase behavior is modified towards the lower concentrations for both proteins with increasing the nanoparticle size. DLS suggests that the phase behavior arises as a result of the nanoparticles' aggregation on the addition of proteins. The size-dependent modifications in the interaction potential, responsible for the phase behavior, have been determined by SANS data as modeled using the two-Yukawa potential accounting for the repulsive and attractive interactions in the systems. The protein-induced interaction between the nanoparticles is found to be short-range attraction for lysozyme and long-range attraction for BSA. The magnitude of attractive interaction irrespective of protein type is enhanced with increase in the size of the nanoparticles. The total (attractive+repulsive) potential leading to two-phase formation is found to be

  13. Mapping and proteomic analysis of albumin and globulin proteins in hexaploid wheat kernels (Triticum aestivum L.).

    PubMed

    Merlino, Marielle; Leroy, Philippe; Chambon, Christophe; Branlard, Gérard

    2009-05-01

    Albumins and globulins of wheat endosperm represent 20% of total kernel protein. They are soluble proteins, mainly enzymes and proteins involved in cell functions. Two-dimensional gel immobiline electrophoresis (2DE) (pH 4-7) x SDS-Page revealed around 2,250 spots. Ninety percent of the spots were common between the very distantly related cultivars 'Opata 85' and 'Synthetic W7984', the two parents of the International Triticeae Mapping Initiative (ITMI) progeny. 'Opata' had 130 specific spots while 'Synthetic' had 96. 2DE and image analysis of the soluble proteins present in 112 recombinant inbred lines of the F9-mapped ITMI progeny enabled 120 unbiased segregating spots to be mapped on 21 wheat (Triticum aestivum L. em. Thell) chromosomes. After trypsic digestion, mapped spots were subjected to MALDI-Tof or tandem mass spectrometry for protein identification by database mining. Among the 'Opata' and 'Synthetic' spots identified, many enzymes have already been mapped in the barley and rice genomes. Multigene families of Heat Shock Proteins, beta-amylases, UDP-glucose pyrophosphorylases, peroxydases and thioredoxins were successfully identified. Although other proteins remain to be identified, some differences were found in the number of segregating proteins involved in response to stress: 11 proteins found in the modern selected cultivar 'Opata 85' as compared to 4 in the new hexaploid ;Synthetic W7984'. In addition, 'Opata' and 'Synthetic' differed in the number of proteins involved in protein folding (2 and 10, respectively). The usefulness of the mapped enzymes for future research on seed composition and characteristics is discussed.

  14. Importance of albumin in cross-reactivity among cat, dog and horse allergens.

    PubMed

    Cabañas, R; López-Serrano, M C; Carreira, J; Ventas, P; Polo, F; Caballero, M T; Contreras, J; Barranco, P; Moreno-Ancillo, A

    2000-01-01

    Different allergenic proteins have been involved in cross-reactivity among animals. Albumins seem to be cross-sensitizing allergenic components. The aim of this study was to assess the importance of albumin as a cross-reactive allergen in patients sensitized to cat, dog and horse. One hundred and seventeen patients sensitized to cat were tested for IgE reactivity using skin prick tests and RAST assays with cat, dog and horse hair/dander extracts and their purified albumin extracts. RAST-inhibition studies were carried out to assess cross-reactivity among cat, dog and horse and among their purified albumins. It was found that 22% of patients exhibited specific IgE to cat albumin; 41% of patients sensitized to cat were also sensitized to dog and horse. Out of these patients, 21% had IgE to three albumins and 17% to two. Reciprocal inhibitions were observed among cat, dog and horse albumins and also among cat, dog and horse hair/dander extracts, using in the latter experiment sera from patients not sensitized to albumins. IgE binding to horse extract was inhibited 30% by its homologous albumin and IgE binding to cat and dog extracts in almost 15% by their respective albumins. It was concluded that albumins from these three animals share some epitopes that account for the cross-reactivity observed in around one-third of patients sensitized to cat, dog and horse. Nevertheless, more than 50% of specific IgE that cross-reacts among these three animals is directed to allergens other than albumin.

  15. Generation of monoclonal antibodies to vertebrate albumins for analysis of arthropod blood meals.

    PubMed

    Schwab, Lori Kae; Nardi, James B; Holly, Theresa; Wang, Liping; Frye, Janie; Novak, Robert J

    2011-06-01

    An immunoassay using monoclonal antibodies (MAbs) that are specific for different vertebrate taxa (from class to species) has been developed that simplifies and facilitates analysis of vertebrate blood meals from arthropod vectors. The MAbs have been prepared against the single protein albumin, the most abundant protein in vertebrate sera. A panel of these antibodies has been generated against albumins from 33 species of vertebrates, representing four classes, 15 orders, and 25 families. Immunoreactivity of albumin in mosquito blood meals can be detected as late as 48 h after feeding. Immunoassays with MAbs can be carried out in the field as well as the laboratory. Used in conjunction with nucleic acid assays or used alone with an appropriate assortment of antibodies, the assay is simple, sensitive, and unambiguous. © 2011 The Society for Vector Ecology.

  16. Effective binding of perhalogenated closo-borates to serum albumins revealed by spectroscopic and ITC studies

    NASA Astrophysics Data System (ADS)

    Kuperman, Marina V.; Losytskyy, Mykhaylo Yu.; Bykov, Alexander Yu.; Yarmoluk, Sergiy M.; Zhizhin, Konstantin Yu.; Kuznetsov, Nikolay T.; Varzatskii, Oleg A.; Gumienna-Kontecka, Elzbieta; Kovalska, Vladyslava B.

    2017-08-01

    The interactions of boron cluster compounds closo-borates with biomolecules are widely studied due to their efficiency as agents for boron neutron capture therapy of cancer. In present work the binding abilities of anionic halogen closo-borates [B10Hal10]2- (Hal = Cl, Br, I) and [B12Hal12]2- (Hal = Cl, I) towards bovine and human serum albumins were investigated by spectroscopic and isothermal titration calorimetry (ITC) methods. The protein fluorescence quenching method and ITC studies confirmed the complex formation. The degree of protein fluorescence quenching increased from chlorine to iodine boron derivatives that is attributed to external heavy atom effect. The ITC data point on the existence in the protein structure of two types of binding sites: with higher and lower affinity to closo-borates. Albumin-closo-borate complex binding ratio, n (4-5 anions per protein molecule) is higher than for the parent hydrogen closo-borates (2 anions per protein molecule). Binding constants estimated by fluorescent and ITC methods indicate higher affinity of halogen closo-borates to albumins (K in the range of 104-106 M-1) comparing to that of the hydrogen closo-borate (K about 103 M-1). Due to their high affinity and high binding ratio to albumins halogen closo-borates are proposed for further studies as agents for boron neutron capture therapy.

  17. Antibody-cytokine fusion proteins for treatment of cancer: engineering cytokines for improved efficacy and safety.

    PubMed

    Young, Patricia A; Morrison, Sherie L; Timmerman, John M

    2014-10-01

    The true potential of cytokine therapies in cancer treatment is limited by the inability to deliver optimal concentrations into tumor sites due to dose-limiting systemic toxicities. To maximize the efficacy of cytokine therapy, recombinant antibody-cytokine fusion proteins have been constructed by a number of groups to harness the tumor-targeting ability of monoclonal antibodies. The aim is to guide cytokines specifically to tumor sites where they might stimulate more optimal anti-tumor immune responses while avoiding the systemic toxicities of free cytokine therapy. Antibody-cytokine fusion proteins containing interleukin (IL)-2, IL-12, IL-21, tumor necrosis factor (TNF)α, and interferons (IFNs) α, β, and γ have been constructed and have shown anti-tumor activity in preclinical and early-phase clinical studies. Future priorities for development of this technology include optimization of tumor targeting, bioactivity of the fused cytokine, and choice of appropriate agents for combination therapies. This review is intended to serve as a framework for engineering an ideal antibody-cytokine fusion protein, focusing on previously developed constructs and their clinical trial results. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Saccharomyces cerevisiae-Secreted Fusion Proteins Pfs25 and Pfs28 Elicit Potent Plasmodium falciparum Transmission-Blocking Antibodies in Mice

    PubMed Central

    Gozar, Mary Margaret G.; Price, Virginia L.; Kaslow, David C.

    1998-01-01

    Transmission-blocking vaccines based on sexual-stage surface antigens of Plasmodium falciparum may assist in the control of this lethal form of human malaria. Two vaccine candidates, Pfs25 and Pfs28, were produced as single recombinant fusion proteins. The 39-kDa chimeric proteins, having a C-terminal His6 tag, were secreted by Saccharomyces cerevisiae, using the prepro-α-factor leader sequence. Pfs25-28 fusion proteins were significantly more potent than either Pfs25 or Pfs28 alone in eliciting antibodies in mice that blocked oocyst development in Anopheles freeborni mosquitoes: complete inhibition of oocyst development in the mosquito midgut was achieved with fewer vaccinations, at a lower dose, and for a longer duration than with either Pfs25 or Pfs28 alone. Increased antigen-specific immunoglobulin G titers and highly significant lymphoproliferative stimulation by Pfs28-containing antigens suggest the presence of an immunodominant helper T-cell epitope in the Pfs28 portion of the fusion proteins. This epitope may be responsible for the enhanced humoral response to both Pfs25 and Pfs28 antigens. Protein production of the fusion protein was improved 12-fold by converting Pfs28 codons to yeast-preferred codons (TBV28), using a modified ADH2 promoter and incorporating a (Glu-Ala)2 repeat after the Kex2 cleavage site. PMID:9423839

  19. A discussion of serum albumin level in advanced-stage hepatocellular carcinoma: a medical oncologist's perspective.

    PubMed

    Tanriverdi, Ozgur

    2014-11-01

    Hepatocellular carcinoma is the most common primary malignant tumor of the liver, and it is particularly prevalent in East and Southeast Asia. With surgical and/or local interventional treatment methods, survival rates for early-stage hepatocellular cancers have increased. However, it is not yet clear which staging systems are more applicable in hepatocellular carcinoma. Serum albumin level is already being used as a criterion in most staging systems. Albumin is an important serum protein in human bodily functions, but only 5 % of the daily amount needed is synthesized by the liver. The serum albumin level is affected by multifactorial situations, including capillary permeability, drugs, liver insufficiency, inflammation and/or infections, dehydration or overhydration, protein loosing disorders, and decreased nutrition intake in anorexia-malnutrition syndrome and cancer cachexia. Because of this complex situation, serum albumin level may affect many staging systems for hepatocellular carcinoma by leading to false-negative results. In this paper, the statuses of current staging systems are reviewed, and possible negative events regarding the serum albumin levels found in these staging systems are discussed.

  20. Multilayer affinity adsorption of albumin on polymer brushes modified membranes in a continuous-flow system.

    PubMed

    Hu, Meng-Xin; Li, Xiang; Li, Ji-Nian; Huang, Jing-Jing; Ren, Ge-Rui

    2018-02-23

    Polymer brushes modified surfaces have been widely used for protein immobilization and isolation. Modification of membranes with polymer brushes increases the surface concentration of affinity ligands used for protein binding. Albumin is one of the transporting proteins and shows a high affinity to bile acids. In this work, the modified membranes with cholic acid-containing polymer brushes can be facilely prepared by the immobilization of cholic acid on the poly(2-hydroxyethyl methacrylate) grafted microporous polypropylene membranes (MPPMs) for affinity adsorption of albumin. ATR/FT-IR and X-ray photoelectron spectroscopy were used to characterize the chemical composition of the modified membranes. Water contact angle measurements were used to analyze the hydrophilic/hydrophobic properties of the membrane surface. The modified MPPMs show a high affinity to albumin and have little non-specific adsorption of hemoglobin. The dynamic binding capacity of albumin in the continous-flow system increases with the cycle number and feed rate as the binding degree of cholic acid is moderate. The highest binding capacity of affinity membranes is about 52.49 g/m 2 membrane, which is about 24 times more than the monolayer binding capacity. These results reveal proteins could be captured in multilayers by the polymer brushes containing affinity ligands similar to the polymer brushes containing ion-exchange groups, which open up the potential of the polymer brushes containing affinity ligands in protein or another components separation. And the cholic acid containing polymer brushes modified membranes has the promising potential for albumin separation and purification rapidly from serum or fermented solution in medical diagnosis and bioseparation. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Fluorescent IgG fusion proteins made in E. coli

    PubMed Central

    Luria, Yael; Raichlin, Dina; Benhar, Itai

    2012-01-01

    Antibodies are among the most powerful tools in biological and biomedical research and are presently the fastest growing category of new bio-pharmaceutics. The most common format of antibody applied for therapeutic, diagnostic and analytical purposes is the IgG format. For medical applications, recombinant IgGs are made in cultured mammalian cells in a process that is too expensive to be considered for producing antibodies for diagnostic and analytical purposes. Therefore, for such purposes, mouse monoclonal antibodies or polyclonal sera from immunized animals are used. While looking for an easier and more rapid way to prepare full-length IgGs for therapeutic purposes, we recently developed and reported an expression and purification protocol for full-length IgGs, and IgG-based fusion proteins in E. coli, called “Inclonals.” By applying the Inclonals technology, we could generate full-length IgGs that are genetically fused to toxins. The aim of the study described herein was to evaluate the possibility of applying the “Inclonals” technology for preparing IgG-fluorophore fusion proteins. We found that IgG fused to the green fluorescent proteins enhanced GFP (EGFP) while maintaining functionality in binding, lost most of its fluorescence during the refolding process. In contrast, we found that green fluorescent Superfolder GFP (SFGFP)-fused IgG and red fluorescent mCherry-fused IgG were functional in antigen binding and maintained fluorescence intensity. In addition, we found that we can link several SFGFPs in tandem to each IgG, with fluorescence intensity increasing accordingly. Fluorescent IgGs made in E. coli may become attractive alternatives to monoclonal or polyclonal fluorescent antibodies derived from animals. PMID:22531449

  2. Identification and Characterization of LFD-2, a Predicted Fringe Protein Required for Membrane Integrity during Cell Fusion in Neurospora crassa

    PubMed Central

    Palma-Guerrero, Javier; Zhao, Jiuhai; Gonçalves, A. Pedro; Starr, Trevor L.

    2015-01-01

    The molecular mechanisms of membrane merger during somatic cell fusion in eukaryotic species are poorly understood. In the filamentous fungus Neurospora crassa, somatic cell fusion occurs between genetically identical germinated asexual spores (germlings) and between hyphae to form the interconnected network characteristic of a filamentous fungal colony. In N. crassa, two proteins have been identified to function at the step of membrane fusion during somatic cell fusion: PRM1 and LFD-1. The absence of either one of these two proteins results in an increase of germling pairs arrested during cell fusion with tightly appressed plasma membranes and an increase in the frequency of cell lysis of adhered germlings. The level of cell lysis in ΔPrm1 or Δlfd-1 germlings is dependent on the extracellular calcium concentration. An available transcriptional profile data set was used to identify genes encoding predicted transmembrane proteins that showed reduced expression levels in germlings cultured in the absence of extracellular calcium. From these analyses, we identified a mutant (lfd-2, for late fusion defect-2) that showed a calcium-dependent cell lysis phenotype. lfd-2 encodes a protein with a Fringe domain and showed endoplasmic reticulum and Golgi membrane localization. The deletion of an additional gene predicted to encode a low-affinity calcium transporter, fig1, also resulted in a strain that showed a calcium-dependent cell lysis phenotype. Genetic analyses showed that LFD-2 and FIG1 likely function in separate pathways to regulate aspects of membrane merger and repair during cell fusion. PMID:25595444

  3. A Type-2 fuzzy data fusion approach for building reliable weighted protein interaction networks with application in protein complex detection.

    PubMed

    Mehranfar, Adele; Ghadiri, Nasser; Kouhsar, Morteza; Golshani, Ashkan

    2017-09-01

    Detecting the protein complexes is an important task in analyzing the protein interaction networks. Although many algorithms predict protein complexes in different ways, surveys on the interaction networks indicate that about 50% of detected interactions are false positives. Consequently, the accuracy of existing methods needs to be improved. In this paper we propose a novel algorithm to detect the protein complexes in 'noisy' protein interaction data. First, we integrate several biological data sources to determine the reliability of each interaction and determine more accurate weights for the interactions. A data fusion component is used for this step, based on the interval type-2 fuzzy voter that provides an efficient combination of the information sources. This fusion component detects the errors and diminishes their effect on the detection protein complexes. So in the first step, the reliability scores have been assigned for every interaction in the network. In the second step, we have proposed a general protein complex detection algorithm by exploiting and adopting the strong points of other algorithms and existing hypotheses regarding real complexes. Finally, the proposed method has been applied for the yeast interaction datasets for predicting the interactions. The results show that our framework has a better performance regarding precision and F-measure than the existing approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Residue-level resolution of alphavirus envelope protein interactions in pH-dependent fusion.

    PubMed

    Zeng, Xiancheng; Mukhopadhyay, Suchetana; Brooks, Charles L

    2015-02-17

    Alphavirus envelope proteins, organized as trimers of E2-E1 heterodimers on the surface of the pathogenic alphavirus, mediate the low pH-triggered fusion of viral and endosomal membranes in human cells. The lack of specific treatment for alphaviral infections motivates our exploration of potential antiviral approaches by inhibiting one or more fusion steps in the common endocytic viral entry pathway. In this work, we performed constant pH molecular dynamics based on an atomic model of the alphavirus envelope with icosahedral symmetry. We have identified pH-sensitive residues that cause the largest shifts in thermodynamic driving forces under neutral and acidic pH conditions for various fusion steps. A series of conserved interdomain His residues is identified to be responsible for the pH-dependent conformational changes in the fusion process, and ligand binding sites in their vicinity are anticipated to be potential drug targets aimed at inhibiting viral infections.

  5. Stem Cell Conditioned Culture Media Attenuated Albumin-Induced Epithelial– Mesenchymal Transition in Renal Tubular Cells

    PubMed Central

    Hu, Junping; Zhu, Qing; Li, Pin-Lan; Wang, Weili; Yi, Fan; Li, Ningjun

    2015-01-01

    Background Proteinuria-induced epithelial-mesenchymal transition (EMT) plays an important role in progressive renal tubulointerstitial fibrosis in chronic renal disease. Stem cell therapy has been used for different diseases. Stem cell conditioned culture media (SCM) exhibits similar beneficial effects as stem cell therapy. The present study tested the hypothesis that SCM inhibits albumin-induced EMT in cultured renal tubular cells. Methods Rat renal tubular cells were treated with/without albumin (20 μmg/ml) plus SCM or control cell media (CCM). EMT markers and inflammatory factors were measured by Western blot and fluorescent images. Results Albumin induced EMT as shown by significant decreases in levels of epithelial marker E-cadherin, increases in mesenchymal markers fibroblast-specific protein 1 and α-smooth muscle actin, and elevations in collagen I. SCM inhibited all these changes. Meanwhile, albumin induced NF-κB translocation from cytosol into nucleus and that SCM blocked the nuclear translocation of NF-κB. Albumin also increased the levels of pro-inflammatory factor monocyte chemoattractant protein-1 (MCP)-1 by nearly 30 fold compared with control. SCM almost abolished albumin-induced increase of MCP-1. Conclusion These results suggest that SCM attenuated albumin-induced EMT in renal tubular cells via inhibiting activation of inflammatory factors, which may serve as a new therapeutic approach for chronic kidney diseases. PMID:25832005

  6. Protein Sub-Nuclear Localization Based on Effective Fusion Representations and Dimension Reduction Algorithm LDA.

    PubMed

    Wang, Shunfang; Liu, Shuhui

    2015-12-19

    An effective representation of a protein sequence plays a crucial role in protein sub-nuclear localization. The existing representations, such as dipeptide composition (DipC), pseudo-amino acid composition (PseAAC) and position specific scoring matrix (PSSM), are insufficient to represent protein sequence due to their single perspectives. Thus, this paper proposes two fusion feature representations of DipPSSM and PseAAPSSM to integrate PSSM with DipC and PseAAC, respectively. When constructing each fusion representation, we introduce the balance factors to value the importance of its components. The optimal values of the balance factors are sought by genetic algorithm. Due to the high dimensionality of the proposed representations, linear discriminant analysis (LDA) is used to find its important low dimensional structure, which is essential for classification and location prediction. The numerical experiments on two public datasets with KNN classifier and cross-validation tests showed that in terms of the common indexes of sensitivity, specificity, accuracy and MCC, the proposed fusing representations outperform the traditional representations in protein sub-nuclear localization, and the representation treated by LDA outperforms the untreated one.

  7. Immunogencity of HSA-L7/L12 (Brucella abortus ribosomal protein) in an animal model.

    PubMed

    Pakzad, Iraj; Rezaee, Abbas; Rasaee, Mohammad Javad; Tabbaraee, Bahman; Delpisheh, Ali

    2009-03-01

    The immunogenic Brucella abortus ribosomal protein L7/L12 is a promising candidate antigen for the development of subunit vaccines against brucellosis. This study was aimed to evaluate the protection of recombinant Human Serum Albumin (HAS)-L7/L12 fusion protein in Balb/c mice. The amplified L7/L12 gene was cloned in pYHSA5 vector, pYHSA5-L7/L12 construct was transformed in Saccharomyces cerevisiae and the expressed protein from supernatant was purified by affinity chromatography. Balb/c mice were immunized in five groups by tHSA-L7/L12 fusion protein (group 1), Brucella abortus S19 (group 2), HSA (group 3), recombinant L7/L12 (group 4), PBS (group 5). ELISA to detect antibody production, LTT test to assess antigen specific lymphocyte response were conducted prior to virulent B. abortus strain 544 challenge two weeks after the last injection. Bacterial counts from spleens of immunized mice were done four weeks after challenge. In ELISA tests, the specific antibodies exhibited a dominance of immunoglobulin IgG1 over IgG2a. In addition, the tHSA-L7/L12 fusion protein and L7/L12 elicited a strong T-cell proliferative response upon restimulation in vitro with recombinant tHSA-L7/L12 and L7/L12, suggesting the induction of a cellular immunity response in vivo. However, there was no significant difference in proliferative response of L7/L12 and tHSA-L7/L12 fusion protein (p>0.05). The L7/L12 and tHSA-L7/L12 fusion protein vaccines could also induce significant protection against challenge with the virulent strain B. abortus 544 in Balb/c mice (p< or =0.05). The tHSA-L7/L12 fusion protein, similar to L7/L12 has the ability to induce antigen specific lymphocyte proliferation, stimulate humoral immunity and engender protection.

  8. Structures of the prefusion form of measles virus fusion protein in complex with inhibitors.

    PubMed

    Hashiguchi, Takao; Fukuda, Yoshinari; Matsuoka, Rei; Kuroda, Daisuke; Kubota, Marie; Shirogane, Yuta; Watanabe, Shumpei; Tsumoto, Kouhei; Kohda, Daisuke; Plemper, Richard Karl; Yanagi, Yusuke

    2018-03-06

    Measles virus (MeV), a major cause of childhood morbidity and mortality, is highly immunotropic and one of the most contagious pathogens. MeV may establish, albeit rarely, persistent infection in the central nervous system, causing fatal and intractable neurodegenerative diseases such as subacute sclerosing panencephalitis and measles inclusion body encephalitis. Recent studies have suggested that particular substitutions in the MeV fusion (F) protein are involved in the pathogenesis by destabilizing the F protein and endowing it with hyperfusogenicity. Here we show the crystal structures of the prefusion MeV-F alone and in complex with the small compound AS-48 or a fusion inhibitor peptide. Notably, these independently developed inhibitors bind the same hydrophobic pocket located at the region connecting the head and stalk of MeV-F, where a number of substitutions in MeV isolates from neurodegenerative diseases are also localized. Since these inhibitors could suppress membrane fusion mediated by most of the hyperfusogenic MeV-F mutants, the development of more effective inhibitors based on the structures may be warranted to treat MeV-induced neurodegenerative diseases.

  9. Electrospray ionization mass analysis of normal and genetic variants of human serum albumin.

    PubMed

    Brennan, S O

    1998-11-01

    Both normal albumin (Al A) and genetically modified forms were isolated from six heterozygous subjects. Albumins from each individual were analyzed by electrospray ionization mass spectrometry (ESI MS), and the mass was compared with that predicted from the protein sequence. In all cases, the Al A was heterogeneous, with components of mass (+/- SE) 66463+/-4, 66586+/-3, and 66718+/-5 Da. Each genetic variant showed similar heterogeneity. The mass increase in Al Casebrook (2214 Da) was very close to that predicted (2205 Da) from protein and carbohydrate sequence analysis, whereas the increase in Al Redhill (2378 Da) was close to that expected (2392 Da) for an Arg-albumin with a disialylated N-linked biantennary oligosaccharide and an Ala-->Thr mutation. The circulating proalbumins, Christchurch and Blenheim, had mass increases of 748 and 756 Da, respectively, over Al A; in excellent agreement with theoretical values of 744 and 756. Clear shifts in mass were also detected for the point substitutions 177Cys-->Phe (44 Da), 1Asp-->Val (20 Da), and Arg-albumin (160 Da).

  10. Controlling adsorption of albumin with hyaluronan on silica surfaces and sulfonated latex particles.

    PubMed

    Berts, Ida; Fragneto, Giovanna; Porcar, Lionel; Hellsing, Maja S; Rennie, Adrian R

    2017-10-15

    Polysaccharides are known to modify binding of proteins at interfaces and this paper describes studies of these interactions and how they are modified by pH. Specifically, the adsorption of human serum albumin on to polystyrene latex and to silica is described, focusing on how this is affected by hyaluronan. Experiments were designed to test how such binding might be modified under relevant physiological conditions. Changes in adsorption of albumin alone and the co-adsorption of albumin and hyaluronan are driven by electrostatic interactions. Multilayer binding is found to be regulated by the pH of the solution and the molecular mass and concentration of hyaluronan. Highest adsorption was observed at pH below 4.8 and for low molecular mass hyaluronan (≤150kDa) at concentrations above 2mgml -1 . On silica with grafted hyaluronan, albumin absorption is reversed by changes in solvent pH due to their strong electrostatic attraction. Albumin physisorbed on silica surfaces is also rinsed away with dilute hyaluronan solution at pH 4.8. The results demonstrate that the protein adsorption can be controlled both by changes of pH and by interaction with other biological macromolecules. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Fluorescent holograms with albumin-acrylamide

    NASA Astrophysics Data System (ADS)

    Ordóñez-Padilla, M. J.; Olivares-Pérez, A.; Fuentes-Tapia, I.

    2014-02-01

    We describe fluorescent holograms were made with photosensitive films of albumin (protein) quail, used as modified matrices. Albumin is mixed with acrylamide and eosin Y. Therefore, prepare a photosensitive emulsion and solid hydrated with the ability to phase transmission holograms and volume (VPH). Eosin Y is a fluorescent agent that acts as a photo-sensitizing dye which stimulates the polymerization of acrylamide. To record the interference pattern produced by two waves superimposed on the modified matrix, we use a He-Cd laser. To reconstruct the diffraction pattern is observed with He- Ne laser, λ = 632.8nm, the material is self-developing properties. Measure the diffraction efficiency of the diffracted orders (η[-1, +1]) as a function of exposure energy. We work with various thicknesses and measure the variation of the refractive index using the coupled wave theory of Kogelnik, the holographic gratings meet Bragg condition.

  12. Crystal Structures of Beta- and Gammaretrovirus Fusion Proteins Reveal a Role for Electrostatic Stapling in Viral Entry

    PubMed Central

    Aydin, Halil; Cook, Jonathan D.

    2014-01-01

    Membrane fusion is a key step in the life cycle of all envelope viruses, but this process is energetically unfavorable; the transmembrane fusion subunit (TM) of the virion-attached glycoprotein actively catalyzes the membrane merger process. Retroviral glycoproteins are the prototypical system to study pH-independent viral entry. In this study, we determined crystal structures of extramembrane regions of the TMs from Mason-Pfizer monkey virus (MPMV) and xenotropic murine leukemia virus-related virus (XMRV) at 1.7-Å and 2.2-Å resolution, respectively. The structures are comprised of a trimer of hairpins that is characteristic of class I viral fusion proteins and now completes a structural library of retroviral fusion proteins. Our results allowed us to identify a series of intra- and interchain electrostatic interactions in the heptad repeat and chain reversal regions. Mutagenesis reveals that charge-neutralizing salt bridge mutations significantly destabilize the postfusion six-helix bundle and abrogate retroviral infection, demonstrating that electrostatic stapling of the fusion subunit is essential for viral entry. Our data indicate that salt bridges are a major stabilizing force on the MPMV and XMRV retroviral TMs and likely provide the key energetics for viral and host membrane fusion. PMID:24131724

  13. Reovirus FAST Proteins Drive Pore Formation and Syncytiogenesis Using a Novel Helix-Loop-Helix Fusion-Inducing Lipid Packing Sensor

    PubMed Central

    Sarker, Muzaddid; de Antueno, Roberto; Langelaan, David N.; Parmar, Hiren B.; Shin, Kyungsoo; Rainey, Jan K.; Duncan, Roy

    2015-01-01

    Pore formation is the most energy-demanding step during virus-induced membrane fusion, where high curvature of the fusion pore rim increases the spacing between lipid headgroups, exposing the hydrophobic interior of the membrane to water. How protein fusogens breach this thermodynamic barrier to pore formation is unclear. We identified a novel fusion-inducing lipid packing sensor (FLiPS) in the cytosolic endodomain of the baboon reovirus p15 fusion-associated small transmembrane (FAST) protein that is essential for pore formation during cell-cell fusion and syncytiogenesis. NMR spectroscopy and mutational studies indicate the dependence of this FLiPS on a hydrophobic helix-loop-helix structure. Biochemical and biophysical assays reveal the p15 FLiPS preferentially partitions into membranes with high positive curvature, and this partitioning is impeded by bis-ANS, a small molecule that inserts into hydrophobic defects in membranes. Most notably, the p15 FLiPS can be functionally replaced by heterologous amphipathic lipid packing sensors (ALPS) but not by other membrane-interactive amphipathic helices. Furthermore, a previously unrecognized amphipathic helix in the cytosolic domain of the reptilian reovirus p14 FAST protein can functionally replace the p15 FLiPS, and is itself replaceable by a heterologous ALPS motif. Anchored near the cytoplasmic leaflet by the FAST protein transmembrane domain, the FLiPS is perfectly positioned to insert into hydrophobic defects that begin to appear in the highly curved rim of nascent fusion pores, thereby lowering the energy barrier to stable pore formation. PMID:26061049

  14. [Construction and expression of fusion protein TRX-hJagged1 in E.coli BL21].

    PubMed

    Li, Guo-Hui; Fan, Yu-Zhen; Huang, Si-Yong; Liu, Qiang; Yin, Dan-Dan; Liu, Li; Chen, Ren-An; Hao, Miao-Wang; Liang, Ying-Min

    2014-06-01

    This study was purposed to construct prokaryotic expression vector and to investigate the expression of Notch ligand Jagged1 in E.coli. An expression vector pET-hJagged1 was constructed, which can be inserted in Jagged1 with different lengths, but the DSL domain of human Jagged1 should be contained. Then the recombinant plasmids were transformed into the competent cell of E.coli BL21, and the expression of the fusion protein was induced by IPTG. Fusion protein was purified from the supernatant of cell lysates via the Nickel affinity chromatography. The results showed that prokaryotic expression vectors pET-hJagged1 (Bgl II), pET-hJagged1 (Hind I) and pET-hJagged1 (Stu I) were successfully constructed, but only pET-hJagged1 (Stu I) could express the soluble TRX-hJagged1. The purified TRX-Jagged1 protein could be obtained via the Nickel affinity chromatography, and then confirmed by Western Blot. It is concluded that prokaryotic expression vector pET-hJagged1 is successfully constructed, but only pET-hJagged1 (Stu I) can express the soluble TRX-hJagged1 and the TRX-Jagged1 fusion protein is obtained through the prokaryotic expression system, which laid a solid foundation for further to explore the effects of Jagged1 in hematopoietic and lymphoid system.

  15. Autophagy activation promotes removal of damaged mitochondria and protects against renal tubular injury induced by albumin overload.

    PubMed

    Tan, Jin; Wang, Miaohong; Song, Shuling; Miao, Yuyang; Zhang, Qiang

    2018-01-10

    Proteinuria (albuminuria) is an important cause of aggravating tubulointerstitial injury. Previous studies have shown that autophagy activation can alleviate renal tubular epithelial cell injury caused by urinary protein, but the mechanism is not clear. Here, we investigated the role of clearance of damaged mitochondria in this protective effect. We found that albumin overload induces a significant increase in turnover of LC3-II and decrease in p62 protein level in renal proximal tubular (HK-2) cells in vitro. Albumin overload also induces an increase in mitochondrial damage. ALC, a mitochondrial torpent, alleviates mitochondrial damage induced by albumin overload and also decreases autophagy, while mitochondrial damage revulsant CCCP further increases autophagy. Furthermore, pretreatment of HK-2 cells with rapamycin reduced the amount of damaged mitochondria and the level of apoptosis induced by albumin overload. In contrast, blocking autophagy with chloroquine exerted an opposite effect. Taken together, our results indicated autophagy activation promotes removal of damaged mitochondria and protects against renal tubular injury caused by albumin overload. This further confirms previous research that autophagy activation is an adaptive response in renal tubular epithelial cells after urinary protein overload.

  16. Preliminary investigation of human serum albumin-Vβ inhibition on toxic shock syndrome induced by staphylococcus enterotoxin B in vitro and in vivo.

    PubMed

    Yuan, Qifeng; Li, Lin; Pian, Yaya; Hao, Huaijie; Zheng, Yuling; Zang, Yating; Jiang, Hua; Jiang, Yongqiang

    2016-04-01

    Staphylococcus enterotoxin B (SEB) is a superantigen that can induce massive activation of T cells with specific Vβ and inflammatory cytokine cascades, which mediate shock. To date, no SEB vaccine has been developed for preventing toxic shock syndrome (TSS). Here, we evaluated the therapeutic effect of a fusion protein human serum albumin-Vβ (HSA-Vβ) on TSS induced by SEB. Compared with Vβ, the preparation of HSA-Vβ was much easier to handle owing to its solubility. Affinity testing showed that HSA-Vβ had high affinity for SEB. In vitro results showed that HSA-Vβ could effectively inhibit interferon (IFN)-γ and tumor necrosis factor (TNF)-α secretion by human peripheral blood mononuclear cells. Moreover, in vivo, HSA-Vβ reduced IFN-γ and TNF-α levels in the serum and protected mice from SEB lethal challenge when administered simultaneously with SEB or 30 min after SEB. In summary, we simplified the preparation of Vβ by fusion with HSA, creating the HSA-Vβ protein, which effectively inhibited cytokine production and protected mice from lethal challenge with SEB. These data indicated that HSA-Vβ may represent a novel therapeutic strategy for the treatment of SEB-induced TSS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Pooled-matrix protein interaction screens using Barcode Fusion Genetics.

    PubMed

    Yachie, Nozomu; Petsalaki, Evangelia; Mellor, Joseph C; Weile, Jochen; Jacob, Yves; Verby, Marta; Ozturk, Sedide B; Li, Siyang; Cote, Atina G; Mosca, Roberto; Knapp, Jennifer J; Ko, Minjeong; Yu, Analyn; Gebbia, Marinella; Sahni, Nidhi; Yi, Song; Tyagi, Tanya; Sheykhkarimli, Dayag; Roth, Jonathan F; Wong, Cassandra; Musa, Louai; Snider, Jamie; Liu, Yi-Chun; Yu, Haiyuan; Braun, Pascal; Stagljar, Igor; Hao, Tong; Calderwood, Michael A; Pelletier, Laurence; Aloy, Patrick; Hill, David E; Vidal, Marc; Roth, Frederick P

    2016-04-22

    High-throughput binary protein interaction mapping is continuing to extend our understanding of cellular function and disease mechanisms. However, we remain one or two orders of magnitude away from a complete interaction map for humans and other major model organisms. Completion will require screening at substantially larger scales with many complementary assays, requiring further efficiency gains in proteome-scale interaction mapping. Here, we report Barcode Fusion Genetics-Yeast Two-Hybrid (BFG-Y2H), by which a full matrix of protein pairs can be screened in a single multiplexed strain pool. BFG-Y2H uses Cre recombination to fuse DNA barcodes from distinct plasmids, generating chimeric protein-pair barcodes that can be quantified via next-generation sequencing. We applied BFG-Y2H to four different matrices ranging in scale from ~25 K to 2.5 M protein pairs. The results show that BFG-Y2H increases the efficiency of protein matrix screening, with quality that is on par with state-of-the-art Y2H methods. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  18. Interaction study on bovine serum albumin physically binding to silver nanoparticles: Evolution from discrete conjugates to protein coronas

    NASA Astrophysics Data System (ADS)

    Guo, Jun; Zhong, Ruibo; Li, Wanrong; Liu, Yushuang; Bai, Zhijun; Yin, Jun; Liu, Jingran; Gong, Pei; Zhao, Xinmin; Zhang, Feng

    2015-12-01

    The nanostructures formed by inorganic nanoparticles together with organic molecules especially biomolecules have attracted increasing attention from both industries and researching fields due to their unique hybrid properties. In this paper, we systemically studied the interactions between amphiphilic polymer coated silver nanoparticles and bovine serum albumins by employing the fluorescence quenching approach in combination with the Stern-Volmer and Hill equations. The binding affinity was determined to 1.30 × 107 M-1 and the interaction was spontaneously driven by mainly the van der Waals force and hydrogen-bond mediated interactions, and negatively cooperative from the point of view of thermodynamics. With the non-uniform coating of amphiphilic polymer, the silver nanoparticles can form protein coronas which can become discrete protein-nanoparticle conjugates when controlling their molar ratios of mixing. The protein's conformational changes upon binding nanoparticles was also studied by using the three-dimensional fluorescence spectroscopy.

  19. Experimental Study on the Efficacy of Site-Specific PEGylated Human Serum Albumins in Resuscitation From Hemorrhagic Shock.

    PubMed

    Song, Xinlei; Zhang, Shu; Cheng, Yanna; Zhao, Ting; Lian, Qianqian; Lu, Lu; Wang, Fengshan

    2016-11-01

    To evaluate the resuscitative efficacy and the effect on reperfusion injury of two site-specific PEGylated human serum albumins modified with linear or branched PEG20kDa, compared with saline, 8% human serum albumin and 25% human serum albumin, in a hemorrhagic shock model. Laboratory. Male Wistar rats. Prospective study. Rats were bled to hemorrhagic hypovolemic shock and resuscitated with different resuscitation fluids. The mean arterial pressure and blood gas variables were measured. Hemorheology analysis was performed to evaluate the influence of resuscitation on RBCs and blood viscosity. The microvascular state was indirectly characterized in terms of monocyte chemotactic protein-1 and endothelial nitric oxide synthase that related to shear stress and vasodilation, respectively. The levels of inflammation-related factors and apoptosis-related proteins were used to evaluate the reperfusion injury in lungs. The results showed that PEGylated human serum albumin could improve the level of mean arterial pressure and blood gas variables more effectively at the end of resuscitation. poly(ethylene glycol) modification was able to increase the viscosity of human serum albumin to the level of effectively enhancing the expression of monocyte chemotactic protein-1 and endothelial nitric oxide synthase, which could promote microvascular perfusion. The hyperosmotic resuscitative agents including both 25% human serum albumin and PEGylated human serum albumins could greatly attenuate lung injury. No significant therapeutic advantages but some disadvantages were found for Y shaped poly(ethylene glycol) modification over linear poly(ethylene glycol) modification, such as causing the decrease of erythrocyte deformability. Linear high molecular weight site-specific PEGylated human serum albumin is recommended to be used as a hyperosmotic resuscitative agent.

  20. Structural and functional specificity of Influenza virus haemagglutinin and paramyxovirus fusion protein anchoring peptides.

    PubMed

    Kordyukova, Larisa

    2017-01-02

    Two enveloped virus families, Orthomyxoviridae and Paramyxoviridae, comprise a large number of dangerous pathogens that enter the host cell via fusion of their envelope with a target cell membrane at acidic or neutral pH. The Class I prototypic glycoproteins responsible for this reaction are the Influenza virus haemagglutinin (HA) protein or paramyxovirus fusion (F) protein. X-ray crystallography and cryoelectron microscopy data are available for the HA and F ectodomains in pre- and post-fusion conformations, revealing similar spiky architectures, albeit with clear differences in the details. In contrast, their anchoring segments, which possess a linker region, transmembrane domain and cytoplasmic tail that is specifically modified with long fatty acids (highly conserved in HA and occasional in F), are not resolved. Recent experimental, bioinformatics and molecular modelling data showing the primary, secondary and quaternary organization of the HA and F anchoring segments are summarized in this review. Some amino acid patterns that are crucial for protein thermal stability or lipid membrane order/cholesterol binding are addressed, and new achievements in vaccine practice using HA transmembrane domain chimaeras are discussed. The oligomerization properties of the transmembrane domains are considered in the context of Group-1 and Group-2 antigenic HA subtypes and various genera/subfamilies of paramyxoviruses. A specific focus is the late steps of fusion that are reportedly facilitated by (1) β-sheet-promoting β-branched amino acids (valine and isoleucine) that are enriched in the transmembrane domain of paramyxovirus F or (2) a post-translational modification of C-terminal cysteines with palmitate/stearate (differential S-acylation) that is highly conserved in Influenza virus HA. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A fungal biofilm reactor based on metal structured packing improves the quality of a Gla::GFP fusion protein produced by Aspergillus oryzae.

    PubMed

    Zune, Q; Delepierre, A; Gofflot, S; Bauwens, J; Twizere, J C; Punt, P J; Francis, F; Toye, D; Bawin, T; Delvigne, F

    2015-08-01

    Fungal biofilm is known to promote the excretion of secondary metabolites in accordance with solid-state-related physiological mechanisms. This work is based on the comparative analysis of classical submerged fermentation with a fungal biofilm reactor for the production of a Gla::green fluorescent protein (GFP) fusion protein by Aspergillus oryzae. The biofilm reactor comprises a metal structured packing allowing the attachment of the fungal biomass. Since the production of the target protein is under the control of the promoter glaB, specifically induced in solid-state fermentation, the biofilm mode of culture is expected to enhance the global productivity. Although production of the target protein was enhanced by using the biofilm mode of culture, we also found that fusion protein production is also significant when the submerged mode of culture is used. This result is related to high shear stress leading to biomass autolysis and leakage of intracellular fusion protein into the extracellular medium. Moreover, 2-D gel electrophoresis highlights the preservation of fusion protein integrity produced in biofilm conditions. Two fungal biofilm reactor designs were then investigated further, i.e. with full immersion of the packing or with medium recirculation on the packing, and the scale-up potentialities were evaluated. In this context, it has been shown that full immersion of the metal packing in the liquid medium during cultivation allows for a uniform colonization of the packing by the fungal biomass and leads to a better quality of the fusion protein.

  2. Fusion of Enveloped Viruses in Endosomes

    PubMed Central

    White, Judith M.; Whittaker, Gary R.

    2016-01-01

    Ari Helenius launched the field of enveloped virus fusion in endosomes with a seminal paper in the Journal of Cell Biology in 1980. In the intervening years a great deal has been learned about the structures and mechanisms of viral membrane fusion proteins as well as about the endosomes in which different enveloped viruses fuse and the endosomal cues that trigger fusion. We now recognize three classes of viral membrane fusion proteins based on structural criteria and four mechanisms of fusion triggering. After reviewing general features of viral membrane fusion proteins and viral fusion in endosomes, we delve into three characterized mechanisms for viral fusion triggering in endosomes: by low pH, by receptor binding plus low pH, and by receptor binding plus the action of a protease. We end with a discussion of viruses that may employ novel endosomal fusion triggering mechanisms. A key take home message is that enveloped viruses that enter cells by fusing in endosomes traverse the endocytic pathway until they reach an endosome that has all of the environmental conditions (pH, proteases, ions, intracellular receptors, and lipid composition) to (if needed) prime and (in all cases) trigger the fusion protein and to support membrane fusion. PMID:26935856

  3. Analysis of nuclear export using photoactivatable GFP fusion proteins and interspecies heterokaryons.

    PubMed

    Nakrieko, Kerry-Ann; Ivanova, Iordanka A; Dagnino, Lina

    2010-01-01

    In this chapter, we review protocols for the analysis of nucleocytoplasmic shuttling of transcription factors and nuclear proteins, using two different approaches. The first involves the use of photoactivatable forms of the protein of interest by fusion to photoactivatable green fluorescent protein to follow its movement out of the nucleus by live-cell confocal microscopy. This methodology allows for the kinetic characterization of protein movements as well as measurement of steady-state levels. In a second procedure to assess the ability of a nuclear protein to move into and out of the nucleus, we describe the use of interspecies heterokaryon assays, which provide a measurement of steady-state distribution. These technologies are directly applicable to the analysis of nucleocytoplasmic movements not only of transcription factors, but also other nuclear proteins.

  4. LaSota fusion (F) cleavage motif-mediated fusion activity is affected by other regions of the F protein from different genotype Newcastle disease virus in a chimeric virus: implication for virulence attenuation.

    PubMed

    Kim, Shin-Hee; Xiao, Sa; Collins, Peter L; Samal, Siba K

    2016-06-01

    The cleavage site sequence of the fusion (F) protein contributes to a wide range of virulence of Newcastle disease virus (NDV). In this study, we identified other important amino acid sequences of the F protein that affect cleavage and modulation of fusion. We generated chimeric Beaudette C (BC) viruses containing the cleavage site sequence of avirulent strain LaSota (Las-Fc) together with various regions of the F protein of another virulent strain AKO. We found that the F1 subunit is important for cleavage inhibition. Further dissection of the F1 subunit showed that replacement of four amino acids in the BC/Las-Fc protein with their AKO counterparts (T341S, M384I, T385A and I386L) resulted in an increase in fusion and replication in vitro. In contrast, the mutation N403D greatly reduced cleavage and viral replication, and affected protein conformation. These findings will be useful in developing improved live NDV vaccines and vaccine vectors.

  5. Intrafocal heterogeneity of ERG protein expression and gene fusion pattern in prostate cancer.

    PubMed

    Suh, Ja Hee; Park, Jeong Hwan; Lee, Cheol; Moon, Kyung Chul

    2017-10-01

    Prostate cancer is considered to be highly heterogeneous, with various morphologic features and biologic behaviors. The TMPRSS2-ERG gene fusion is the most frequently observed genetic aberration in prostate cancer. The aim of this study was to elucidate the intrafocal heterogeneity of ERG gene fusion status. ERG immunohistochemistry (IHC) was performed in samples from 168 prostate cancer patients who had undergone radical prostatectomy, and 40 cases showing ERG-positive IHC staining were selected for tissue microarray (TMA) construction. Two to six representative cores were selected from each tumor focus. In the cases with heterogeneous ERG IHC staining intensity, the areas showing different intensities were separately selected. Using the TMA blocks, IHC and fluorescence in situ hybridization (FISH) were conducted to evaluate the heterogeneity of ERG protein expression and ERG fusion gene patterns, respectively, in a single tumor focus. Heterogeneity of ERG IHC staining was defined as the simultaneous presence of negative and positive cores in the same tumor focus. Heterogeneity of ERG FISH was defined by the presence of cores with positive and negative FISH signals or cores with break-apart and interstitial deletion FISH signals in the same tumor focus. A total of 202 TMA cores were isolated from 40 ERG-positive cases. Of the 202 total cores, 19 were negative for ERG IHC staining, and 46 showed 1+, 52 showed 2+, and 85 showed 3+ ERG staining intensity. Eleven cores were negative for ERG FISH signal, 119 cores showed ERG break-apart FISH signals, and the remaining 72 cores revealed interstitial deletion. Intrafocal heterogeneity of ERG IHC staining was found in 20% (8/40) of cases, and intrafocal heterogeneity of ERG gene fusion pattern was found in 32.5% (13/40) of cases. In summary, this study showed significantly frequent intrafocal heterogeneity of ERG protein expression, gene fusion status and fusion pattern. This heterogeneity can be caused by the development

  6. Phenytoin-Bovine Serum Albumin interactions - modeling plasma protein - drug binding: A multi-spectroscopy and in silico-based correlation

    NASA Astrophysics Data System (ADS)

    Suresh, P. K.; Divya, Naik; Nidhi, Shah; Rajasekaran, R.

    2018-03-01

    The study focused on the analysis of the nature and site of binding of Phenytoin (PHT) -(a model hydrophobic drug) with Bovine Serum Albumin (BSA) (a model protein used as a surrogate for HSA). Interactions with defined amounts of Phenytoin and BSA demonstrated a blue shift (hypsochromic -change in the microenvironment of the tryptophan residue with decrease in the polar environment and more of hydrophobicity) with respect to the albumin protein and a red shift (bathochromic -hydrophobicity and polarity related changes) in the case of the model hydrophobic drug. This shift, albeit lower in magnitude, has been substantiated by a fairly convincing, Phenytoin-mediated quenching of the endogenous fluorophore in BSA. Spectral shifts studied at varying pH, temperatures and incubation periods (at varying concentrations of PHT with a defined/constant BSA concentration) showed no significant differences (data not shown). FTIR analysis provided evidence of the interaction of PHT with BSA with a stretching vibration of 1737.86 cm- 1, apart from the vibrations characteristically associated with the amine and carboxyl groups respectively. Our in vitro findings were extended to molecular docking of BSA with PHT (with the different ionized forms of the drug) and the subsequent LIGPLOT-based analysis. In general, a preponderance of hydrophobic interactions was observed. These hydrophobic interactions corroborate the tryptophan-based spectral shifts and the fluorescence quenching data. These results substantiates our hitherto unreported in vitro/in silico experimental flow and provides a basis for screening other hydrophobic drugs in its class.

  7. Design and testing for a nontagged F1-V fusion protein as vaccine antigen against bubonic and pneumonic plague.

    PubMed

    Powell, Bradford S; Andrews, Gerard P; Enama, Jeffrey T; Jendrek, Scott; Bolt, Chris; Worsham, Patricia; Pullen, Jeffrey K; Ribot, Wilson; Hines, Harry; Smith, Leonard; Heath, David G; Adamovicz, Jeffrey J

    2005-01-01

    A two-component recombinant fusion protein antigen was re-engineered and tested as a medical counter measure against the possible biological threat of aerosolized Yersinia pestis. The active component of the proposed subunit vaccine combines the F1 capsular protein and V virulence antigen of Y. pestis and improves upon the design of an earlier histidine-tagged fusion protein. In the current study, different production strains were screened for suitable expression and a purification process was optimized to isolate an F1-V fusion protein absent extraneous coding sequences. Soluble F1-V protein was isolated to 99% purity by sequential liquid chromatography including capture and refolding of urea-denatured protein via anion exchange, followed by hydrophobic interaction, concentration, and then transfer into buffered saline for direct use after frozen storage. Protein identity and primary structure were verified by mass spectrometry and Edman sequencing, confirming a purified product of 477 amino acids and removal of the N-terminal methionine. Purity, quality, and higher-order structure were compared between lots using RP-HPLC, intrinsic fluorescence, CD spectroscopy, and multi-angle light scattering spectroscopy, all of which indicated a consistent and properly folded product. As formulated with aluminum hydroxide adjuvant and administered in a single subcutaneous dose, this new F1-V protein also protected mice from wild-type and non-encapsulated Y. pestis challenge strains, modeling prophylaxis against pneumonic and bubonic plague. These findings confirm that the fusion protein architecture provides superior protection over the former licensed product, establish a foundation from which to create a robust production process, and set forth assays for the development of F1-V as the active pharmaceutical ingredient of the next plague vaccine.

  8. Molecular dynamics analysis of conformational change of paramyxovirus F protein during the initial steps of membrane fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin-Garcia, Fernando; Mendieta-Moreno, Jesus Ignacio; Mendieta, Jesus

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Initial conformational change of paramyxovirus F protein is caused only by mechanical forces. Black-Right-Pointing-Pointer HRA region undergoes a structural change from a beta + alpha conformation to an extended coil and then to an all-alpha conformation. Black-Right-Pointing-Pointer HRS domains of F protein form three single {alpha}-helices prior to generation of the coiled coil. -- Abstract: The fusion of paramyxovirus to the cell membrane is mediated by fusion protein (F protein) present in the virus envelope, which undergoes a dramatic conformational change during the process. Unlike hemagglutinin in orthomyxovirus, this change is not mediated by an alteration of environmentalmore » pH, and its cause remains unknown. Steered molecular dynamics analysis leads us to suggest that the conformational modification is mediated only by stretching mechanical forces once the transmembrane fusion peptide of the protein is anchored to the cell membrane. Such elongating forces will generate major secondary structure rearrangement in the heptad repeat A region of the F protein; from {beta}-sheet conformation to an elongated coil and then spontaneously to an {alpha}-helix. In addition, it is proposed that the heptad repeat A region adopts a final three-helix coiled coil and that this structure appears after the formation of individual helices in each monomer.« less

  9. Albumin-bound fatty acids but not albumin itself alter redox balance in tubular epithelial cells and induce a peroxide-mediated redox-sensitive apoptosis

    PubMed Central

    Ruggiero, Christine; Elks, Carrie M.; Kruger, Claudia; Cleland, Ellen; Addison, Kaity; Noland, Robert C.

    2014-01-01

    Albuminuria is associated with metabolic syndrome and diabetes. It correlates with the progression of chronic kidney disease, particularly with tubular atrophy. The fatty acid load on albumin significantly increases in obesity, presenting a proinflammatory environment to the proximal tubules. However, little is known about changes in the redox milieu during fatty acid overload and how redox-sensitive mechanisms mediate cell death. Here, we show that albumin with fatty acid impurities or conjugated with palmitate but not albumin itself compromised mitochondrial and cell viability, membrane potential and respiration. Fatty acid overload led to a redox imbalance which deactivated the antioxidant protein peroxiredoxin 2 and caused a peroxide-mediated apoptosis through the redox-sensitive pJNK/caspase-3 pathway. Transfection of tubular cells with peroxiredoxin 2 was protective and mitigated apoptosis. Mitochondrial fatty acid entry and ceramide synthesis modulators suggested that mitochondrial β oxidation but not ceramide synthesis may modulate lipotoxic effects on tubular cell survival. These results suggest that albumin overloaded with fatty acids but not albumin itself changes the redox environment in the tubules, inducing a peroxide-mediated redox-sensitive apoptosis. Thus, mitigating circulating fatty acid levels may be an important factor in both preserving redox balance and preventing tubular cell damage in proteinuric diseases. PMID:24500687

  10. Molecular mechanisms involved in gamete interaction: evidence for the participation of cysteine-rich secretory proteins (CRISP) in sperm-egg fusion.

    PubMed

    Da Ros, V; Busso, D; Cohen, D J; Maldera, J; Goldweic, N; Cuasnicu, P S

    2007-01-01

    Epididymal protein DE and testicular protein Tpx-1 are two cysteine-rich secretory proteins also known as CRISP-1 and CRISP-2, respectively. DE/ CRISP-1 is localised on the equatorial segment of acrosome-reacted sperm and participates in rat gamete fusion through its binding to egg-complementary sites. Recent results using bacterially-expressed recombinant fragments of DE as well as synthetic peptides revealed that the ability of DE to bind to the egg surface and inhibit gamete fusion resides in a region of 12 amino acids corresponding to an evolutionary conserved motif of the CRISP family (Signature 2). Given the high degree of homology between DE/CRISP-1 and Tpx-1/CRISP-2, we also explored the potential participation of the testicular intra-acrosomal protein in gamete fusion. Results showing the ability of recombinant Tpx-1 to bind to the surface of rat eggs (evaluated by indirect immunofluorescence) and to significantly inhibit zona-free egg penetration, support the participation of this protein in gamete fusion through its interaction with egg-binding sites. Interestingly, rat Tpx-1 exhibits only two substitutions in Signature 2 when compared to this region in DE. Together, these results provide evidence for the involvement of both epididymal DE/CRISP-1 and testicular Tpx-1/CRISP-2 in gamete fusion suggesting the existence of a functional cooperation between homologue molecules as a mechanism to ensure the success of fertilisation.

  11. Imaging mass spectrometry reveals direct albumin fragmentation within the diabetic kidney.

    PubMed

    Grove, Kerri J; Lareau, Nichole M; Voziyan, Paul A; Zeng, Fenghua; Harris, Raymond C; Hudson, Billy G; Caprioli, Richard M

    2018-05-17

    Albumin degradation in the renal tubules is impaired in diabetic nephropathy such that levels of the resulting albumin fragments increase with the degree of renal injury. However, the mechanism of albumin degradation is unknown. In particular, fragmentation of the endogenous native albumin has not been demonstrated in the kidney and the enzymes that may contribute to fragmentation have not been identified. To explore this we utilized matrix-assisted laser desorption/ionization imaging mass spectrometry for molecular profiling of specific renal regions without disturbing distinct tissue morphology. Changes in protein expression were measured in kidney sections of eNOS -/- db/db mice, a model of diabetic nephropathy, by high spatial resolution imaging allowing molecular localizations at the level of single glomeruli and tubules. Significant increases were found in the relative abundances of several albumin fragments in the kidney of the mice with diabetic nephropathy compared with control nondiabetic mice. The relative abundance of fragments detected correlated positively with the degree of nephropathy. Furthermore, specific albumin fragments accumulating in the lumen of diabetic renal tubules were identified and predicted the enzymatic action of cathepsin D based on cleavage specificity and in vitro digestions. Importantly, this was demonstrated directly in the renal tissue with the endogenous nonlabeled murine albumin. Thus, our results provide molecular insights into the mechanism of albumin degradation in diabetic nephropathy. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  12. Aryl acylamidase activity of human serum albumin with o-nitrotrifluoroacetanilide as the substrate.

    PubMed

    Masson, Patrick; Froment, Marie-Thérèse; Darvesh, Sultan; Schopfer, Lawrence M; Lockridge, Oksana

    2007-08-01

    Albumin is generally regarded as an inert protein with no enzyme activity. However, albumin has esterase activity as well as aryl acylamidase activity. A new acetanilide substrate, o-nitrotrifluoroacetanilide (o-NTFNAC), which is more reactive than the classical o-nitroacetanilide, made it possible to determine the catalytic parameters for hydrolysis by fatty-acid free human serum albumin. Owing to the low enzymatic activity of albumin, kinetic studies were performed at high albumin concentration (0.075 mM). The albumin behavior with this substrate was Michaelis-Menten like. Kinetic analysis was performed according to the formalism used for catalysis at high enzyme concentration. This approach provided values for the turnover and dissociation constant of the albumin-substrate complex: k(cat) = 0.13 +/- 0.02 min(-1) and Ks = 0.67 +/- 0.04 mM. MALDI-TOF experiments showed that unlike the ester substrate p-nitrophenyl acetate, o-NTFNAC does not form a stable adduct (acetylated enzyme). Kinetic analysis and MALDI-TOF experiments demonstrated that hydrolysis of o-NTFNAC by albumin is fully rate-limited by the acylation step (k(cat) = k2). Though the aryl acylamidase activity of albumin is low (k(cat)/Ks = 195 M(-1)min(-1)), because of its high concentration in human plasma (0.6-1 mM), albumin may participate in hydrolysis of aryl acylamides through second-order kinetics. This suggests that albumin may have a role in the metabolism of endogenous and exogenous aromatic amides, including drugs and xenobiotics.

  13. Expression and purification of chimeric peptide comprising EGFR B-cell epitope and measles virus fusion protein T-cell epitope in Escherichia coli.

    PubMed

    Wu, Meizhi; Zhao, Lin; Zhu, Lei; Chen, Zhange; Li, Huangjin

    2013-03-01

    Chimeric peptide MVF-EGFR(237-267), comprising a B-cell epitope from the dimerization interface of human epidermal growth factor receptor (EGFR) and a promiscuous T-cell epitope from measles virus fusion protein (MVF), is a promising candidate antigen peptide for therapeutic vaccine. To establish a high-efficiency preparation process of this small peptide, the coding sequence was cloned into pET-21b and pET-32a respectively, to be expressed alone or in the form of fusion protein with thioredoxin (Trx) and His(6)-tag in Escherichia coli BL21 (DE3). The chimeric peptide failed to be expressed alone, but over-expressed in the fusion form, which presented as soluble protein and took up more than 30% of total proteins of host cells. The fusion protein was seriously degraded during the cell disruption, in which endogenous metalloproteinase played a key role. Degradation of target peptide was inhibited by combined application of EDTA in the cell disruption buffer and a step of Source 30Q anion exchange chromatography (AEC) before metal-chelating chromatography (MCAC) for purifying His(6)-tagged fusion protein. The chimeric peptide was recovered from the purified fusion protein by enterokinase digestion at a yield of 3.0 mg/L bacteria culture with a purity of more than 95%. Immunogenicity analysis showed that the recombinant chimeric peptide was able to arouse more than 1×10(4) titers of specific antibody in BALB/c mice. Present work laid a solid foundation for the development of therapeutic peptide vaccine targeting EGFR dimerization and provided a convenient and low-cost preparation method for small peptides. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Production of recombinant albumin by a herd of cloned transgenic cattle.

    PubMed

    Echelard, Yann; Williams, Jennifer L; Destrempes, Margaret M; Koster, Julie A; Overton, Susan A; Pollock, Daniel P; Rapiejko, Karen T; Behboodi, Esmail; Masiello, Nicholas C; Gavin, William G; Pommer, Jerry; Van Patten, Scott M; Faber, David C; Cibelli, Jose B; Meade, Harry M

    2009-06-01

    Purified plasma derived human albumin has been available as a therapeutic product since World War II. However, cost effective recombinant production of albumin has been challenging due to the amount needed and the complex folding pattern of the protein. In an effort to provide an abundant source of recombinant albumin, a herd of transgenic cows expressing high levels of rhA in their milk was generated. Expression cassettes efficiently targeting the secretion of human albumin to the lactating mammary gland were obtained and tested in transgenic mice. A high expressing transgene was transfected in primary bovine cell lines to produce karyoplasts for use in a somatic cell nuclear transfer program. Founder transgenic cows were produced from four independent cell lines. Expression levels varying from 1-2 g/l to more than 40 g/l of correctly folded albumin were observed. The animals expressing the highest levels of rhA exhibited shortened lactation whereas cows yielding 1-2 g/l had normal milk production. This herd of transgenic cattle is an easily scalable and well characterized source of rhA for biomedical uses.

  15. Non-Canonical Thinking for Targeting ALK-Fusion Onco-Proteins in Lung Cancer

    PubMed Central

    Wu, Wei; Haderk, Franziska; Bivona, Trever G.

    2017-01-01

    Anaplastic lymphoma kinase (ALK) gene rearrangements have been identified in lung cancer at 3–7% frequency, thus representing an important subset of genetic lesions that drive oncogenesis in this disease. Despite the availability of multiple FDA-approved small molecule inhibitors targeting ALK fusion proteins, drug resistance to ALK kinase inhibitors is a common problem in clinic. Thus, there is an unmet need to deepen the current understanding of genomic characteristics of ALK rearrangements and to develop novel therapeutic strategies that can overcome ALK inhibitor resistance. In this review, we present the genomic landscape of ALK fusions in the context of co-occurring mutations with other cancer-related genes, pointing to the central role of genetic epistasis (gene-gene interactions) in ALK-driven advanced-stage lung cancer. We discuss the possibility of targeting druggable domains within ALK fusion partners in addition to available strategies inhibiting the ALK kinase domain directly. Finally, we examine the potential of targeting ALK fusion-specific neoantigens in combination with other treatments, a strategy that could open a new avenue for the improved treatment of ALK positive lung cancer patients. PMID:29189709

  16. Inhibition of CRM1-mediated nuclear export of transcription factors by leukemogenic NUP98 fusion proteins.

    PubMed

    Takeda, Akiko; Sarma, Nayan J; Abdul-Nabi, Anmaar M; Yaseen, Nabeel R

    2010-05-21

    NUP98 is a nucleoporin that plays complex roles in the nucleocytoplasmic trafficking of macromolecules. Rearrangements of the NUP98 gene in human leukemia result in the expression of numerous fusion oncoproteins whose effect on nucleocytoplasmic trafficking is poorly understood. The present study was undertaken to determine the effects of leukemogenic NUP98 fusion proteins on CRM1-mediated nuclear export. NUP98-HOXA9, a prototypic NUP98 fusion, inhibited the nuclear export of two known CRM1 substrates: mutated cytoplasmic nucleophosmin and HIV-1 Rev. In vitro binding assays revealed that NUP98-HOXA9 binds CRM1 through the FG repeat motif in a Ran-GTP-dependent manner similar to but stronger than the interaction between CRM1 and its export substrates. Two NUP98 fusions, NUP98-HOXA9 and NUP98-DDX10, whose fusion partners are structurally and functionally unrelated, interacted with endogenous CRM1 in myeloid cells as shown by co-immunoprecipitation. These leukemogenic NUP98 fusion proteins interacted with CRM1, Ran, and the nucleoporin NUP214 in a manner fundamentally different from that of wild-type NUP98. NUP98-HOXA9 and NUP98-DDX10 formed characteristic aggregates within the nuclei of a myeloid cell line and primary human CD34+ cells and caused aberrant localization of CRM1 to these aggregates. These NUP98 fusions caused nuclear accumulation of two transcription factors, NFAT and NFkappaB, that are regulated by CRM1-mediated export. The nuclear entrapment of NFAT and NFkappaB correlated with enhanced transcription from promoters responsive to these transcription factors. Taken together, the results suggest a new mechanism by which NUP98 fusions dysregulate transcription and cause leukemia, namely, inhibition of CRM1-mediated nuclear export with aberrant nuclear retention of transcriptional regulators.

  17. Interactions of nanobubbles with bovine serum albumin and papain films on gold surfaces.

    PubMed

    Kolivoska, Viliam; Gál, Miroslav; Hromadová, Magdaléna; Lachmanová, Stepánka; Pospísil, Lubomír

    2011-12-01

    Nanobubbles formed on monocrystalline gold/water interface by means of the ethanol-to-water solvent exchange were exposed to the solutions of either bovine serum albumin or papain proteins. Both proteins do not change the position of nanobubbles in water, as observed by in situ tapping mode atomic force microscopy imaging before and after the introduction of the protein. The aqueous environment was subsequently replaced by ethanol. While all nanobubbles were found to dissolve in ethanol in the presence of bovine serum albumin, most of them survived when papain was employed. The protective ability of papain was ascribed to its resistance towards the protein denaturation in aqueous solutions of ethanol. The authors employed in situ atomic force nanolithography to investigate the nanomorphology of the papain/nanobubble assemblies in ethanol.

  18. Guar foaming albumin: a low molecular mass protein with high foaming activity and foam stability isolated from guar meal.

    PubMed

    Shimoyama, Ami; Kido, Shoko; Kinekawa, Yoh-ichi; Doi, Yukio

    2008-10-08

    The water extract of guar meal ( Cyamopsis tetragonolobus) was examined for its foamability. Compared with egg white, the extract showed an extraordinary foam stability: no drainage after 3 h of standing in contrast to 65% drainage for egg white at the same protein concentration. The acid-precipitated protein from the extract was responsible for the high foamability and designated guar foaming albumin (GFA). The foaming activity of GFA was 20 times higher than that of egg white. GFA consisted of two subunits with molecular masses of 6 and 11 kDa linked to each other through disulfide bonds. The cleavage of disulfide bonds in GFA affected the foamability only slightly. GFA remarkably decreased the surface tension of water at low protein concentrations. Immunoblotting analysis demonstrated that GFA did not react to the antisera from allergic patients against plant food. These results suggest that GFA serves as an effective food additive in developing protein-stabilized foam.

  19. Immunogenicity of a recombinant fusion protein of tandem repeat epitopes of foot-and-mouth disease virus type Asia 1 for guinea pigs.

    PubMed

    Zhang, Q; Yang, Y Q; Zhang, Z Y; Li, L; Yan, W Y; Jiang, W J; Xin, A G; Lei, C X; Zheng, Z X

    2002-01-01

    In this study, the sequences of capsid protein VPI regions of YNAs1.1 and YNAs1.2 isolates of foot-and-mouth disease virus (FMDV) were analyzed and a peptide containing amino acids (aa) 133-158 of VP1 and aa 20-34 of VP4 of FMDV type Asia I was assumed to contain B and T cell epitopes, because it is hypervariable and includes a cell attachment site RGD located in the G-H loop. The DNA fragments encoding aa 133-158 of VP1 and aa 20-34 of VP4 of FMDV type Asia 1 were chemically synthesized and ligated into a tandem repeat of aa 133-158-20 approximately 34-133-158. In order to enhance its immunogenicity, the tandem repeat was inserted downstream of the beta-galactosidase gene in the expression vector pWR590. This insertion yielded a recombinant expression vector pAS1 encoding the fusion protein. The latter reacted with sera from FMDV type Asia 1-infected animals in vitro and elicited high levels of neutralizing antibodies in guinea pigs. The T cell proliferation in immunized animals increased following stimulation with the fusion protein. It is reported for the first time that a recombinant fusion protein vaccine was produced using B and T cell epitopes of FMDV type Asia 1 and that this fusion protein was immunogenic. The fusion protein reported here can serve as a candidate of fusion epitopes for design of a vaccine against FMDV type Asia 1.

  20. Renal Type A Intercalated Cells Contain Albumin in Organelles with Aldosterone-Regulated Abundance

    PubMed Central

    Jensen, Thomas Buus; Cheema, Muhammad Umar; Szymiczek, Agata; Damkier, Helle Hasager; Praetorius, Jeppe

    2015-01-01

    Albumin has been identified in preparations of renal distal tubules and collecting ducts by mass spectrometry. This study aimed to establish whether albumin was a contaminant in those studies or actually present in the tubular cells, and if so, identify the albumin containing cells and commence exploration of the origin of the intracellular albumin. In addition to the expected proximal tubular albumin immunoreactivity, albumin was localized to mouse renal type-A intercalated cells and cells in the interstitium by three anti-albumin antibodies. Albumin did not colocalize with markers for early endosomes (EEA1), late endosomes/lysosomes (cathepsin D) or recycling endosomes (Rab11). Immuno-gold electron microscopy confirmed the presence of albumin-containing large spherical membrane associated bodies in the basal parts of intercalated cells. Message for albumin was detected in mouse renal cortex as well as in a wide variety of other tissues by RT-PCR, but was absent from isolated connecting tubules and cortical collecting ducts. Wild type I MDCK cells showed robust uptake of fluorescein-albumin from the basolateral side but not from the apical side when grown on permeable support. Only a subset of cells with low peanut agglutinin binding took up albumin. Albumin-aldosterone conjugates were also internalized from the basolateral side by MDCK cells. Aldosterone administration for 24 and 48 hours decreased albumin abundance in connecting tubules and cortical collecting ducts from mouse kidneys. We suggest that albumin is produced within the renal interstitium and taken up from the basolateral side by type-A intercalated cells by clathrin and dynamin independent pathways and speculate that the protein might act as a carrier of less water-soluble substances across the renal interstitium from the capillaries to the tubular cells. PMID:25874770