Science.gov

Sample records for albumin-derived peptides efficiently

  1. Effects of peptide acetylation and dimethylation on electrospray ionization efficiency.

    PubMed

    Cho, Kyung-Cho; Kang, Jeong Won; Choi, Yuri; Kim, Tae Woo; Kim, Kwang Pyo

    2016-02-01

    Peptide acetylation and dimethylation have been widely used to derivatize primary amino groups (peptide N-termini and the ε-amino group of lysines) for chemical isotope labeling of quantitative proteomics or for affinity tag labeling for selection and enrichment of labeled peptides. However, peptide acetylation results in signal suppression during electrospray ionization (ESI) due to charge neutralization. In contrast, dimethylated peptides show increased ionization efficiency after derivatization, since dimethylation increases hydrophobicity and maintains a positive charge on the peptide under common LC conditions. In this study, we quantitatively compared the ESI efficiencies of acetylated and dimethylated model peptides and tryptic peptides of BSA. Dimethylated peptides showed higher ionization efficiency than acetylated peptides for both model peptides and tryptic BSA peptides. At the proteome level, peptide dimethylation led to better protein identification than peptide acetylation when tryptic peptides of mouse brain lysate were analyzed with LC-ESI-MS/MS. These results demonstrate that dimethylation of tryptic peptides enhanced ESI efficiency and provided up to two-fold improved protein identification sensitivity in comparison with acetylation. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26889926

  2. The peptide carrier Pep-1 forms biologically efficient nanoparticle complexes

    SciTech Connect

    Munoz-Morris, Maria A.; Heitz, Frederic; Divita, Gilles . E-mail: gilles.divita@crbm.cnrs.fr; Morris, May C.

    2007-04-20

    Cell-penetrating peptides (CPPs) constitute a family of peptides whose unique characteristic is their ability to insert into and cross biological membranes. Cell-penetrating peptide carriers of the Pep family are amphipathic peptides which have been shown to deliver peptides and proteins into a wide variety of cells through formation of non-covalent complexes with their cargo. In this study, we have investigated the morphological features of different Pep-1/cargo complexes by scanning electron microscopy and light scattering measurements. We provide first-time evidence that biologically efficient complexes of Pep-1/p27Kip tumour suppressor physically exist in the form of discrete nanoparticles. Moreover, we have characterized the relationship between the Pep-1/cargo ratio, the size and homogeneity of the nanoparticles formed, and their efficiency in delivering the cargo into cells, and report that particle size and homogeneity is both directly dependent on the ratio of Pep-1/cargo formulations, and responsible for their biological efficiency.

  3. An Albumin-Derived Peptide Scaffold Capable of Binding and Catalysis

    PubMed Central

    Luisi, Immacolata; Pavan, Silvia; Fontanive, Giampaolo; Tossi, Alessandro; Benedetti, Fabio; Savoini, Adriano; Maurizio, Elisa; Sgarra, Riccardo; Sblattero, Daniele; Berti, Federico

    2013-01-01

    We have identified a 101-amino-acid polypeptide derived from the sequence of the IIA binding site of human albumin. The polypeptide contains residues that make contact with IIA ligands in the parent protein, and eight cysteine residues to form disulfide bridges, that stabilize the polypeptide structure. Seventy-four amino acids are located in six α-helical regions, while the remaining thirty-seven amino acids form six connecting coil/loop regions. A soluble GST fusion protein was expressed in E. coli in yields as high as 4 mg/l. This protein retains the IIA fragment’s capacity to bind typical ligands such as warfarin and efavirenz and other albumin’s functional properties such as aldolase activity and the ability to direct the stereochemical outcome of a diketone reduction. This newly cloned polypeptide thus represents a valuable starting point for the construction of libraries of binders and catalysts with improved proficiency. PMID:23451052

  4. Efficient synthesis of longer Aβ peptides via removable backbone modification.

    PubMed

    Zuo, Chao; Tang, Shan; Si, Yan-Yan; Wang, Zhipeng A; Tian, Chang-Lin; Zheng, Ji-Shen

    2016-06-14

    Longer amyloid-beta (Aβ) peptides (43 to 49 amino acids) play essential roles in the pathology of Alzheimer's disease (AD). The difficulty in the preparation of longer Aβ peptides is still an obstacle to elucidate their roles in AD. Herein we report a robust and efficient strategy for the chemical synthesis of longer Aβ peptides (Aβ48 and Aβ49). A key feature of this method is the installation of removable Arg4-tagged backbone modification groups into the hydrophobic region of Aβ. This modification can improve the handling properties of the purification, ligation and mass characterization of longer Aβ peptides. The practicability of the new method has been demonstrated by the successful synthesis of Aβ48 and Aβ49 peptides. PMID:27188564

  5. Fragmentation efficiencies of peptide ions following low energy collisional activation

    NASA Astrophysics Data System (ADS)

    Summerfield, Scott G.; Gaskell, Simon J.

    1997-11-01

    Low energy fragmentations of protonated peptides in the gas phase are generally attributed to charge-directed processes. The extent and location of peptide backbone fragmentation is accordingly influenced by the extent to which charge is sequestered on amino acid side-chains. We describe systematic studies of the efficiencies of decomposition of peptide ions to assess in particular the influence of the presence of basic amino acid residues and of the protonation state. In a set of analogues containing two arginine, two histidine or two lysine residues, the extent of fragmentation of [M + 2H]2+ ions decreases with increased basicity, reflecting decreased backbone protonation. The collisionally activated dissociation of multiply protonated melittin ions shows an increase in fragmentation efficiency with higher charge state (using activation conditions which are similar for each charge state). For a single charge state, acetylation of primary amine groups increases fragmentation efficiency, consistent with the reduction in basicity of lysine side-chains. Conversion of arginine residues to the less basic dimethylpyrimidylornithine, however, decreases fragmentation efficiency, suggesting more effective sequestering of ionizing protons; the effect may be attributable to a disfavouring of proton-bridged structures but this hypothesis requires further study. Preliminary data for the decompositions of [M- 2H]2- ions derived from peptides containing two acidic residues suggest that the sequestration of charge away from the backbone is again detrimental to efficient fragmentation. Apparently diagnostic cleavages adjacent to aspartic acid residues are observed.

  6. ERAP1-ERAP2 dimerization increases peptide-trimming efficiency.

    PubMed

    Evnouchidou, Irini; Weimershaus, Mirjana; Saveanu, Loredana; van Endert, Peter

    2014-07-15

    The endoplasmic reticulum aminopeptidases (ERAP)1 and ERAP2 play a critical role in the production of final epitopes presented by MHC class I molecules. Formation of heterodimers by ERAP1 and ERAP2 has been proposed to facilitate trimming of epitope precursor peptides, but the effects of dimerization on ERAP function remain unknown. In this study, we produced stabilized ERAP1-ERAP2 heterodimers and found that they produced several mature epitopes more efficiently than a mix of the two enzymes unable to dimerize. Physical interaction with ERAP2 changes basic enzymatic parameters of ERAP1 and improves its substrate-binding affinity. Thus, by bringing the two enzymes in proximity and by producing allosteric effects on ERAP1, dimerization of ERAP1/2 creates complexes with superior peptide-trimming efficacy. Such complexes are likely to enhance Ag presentation by cells displaying coordinated expression of the two enzymes. PMID:24928998

  7. Definition of Proteasomal Peptide Splicing Rules for High-Efficiency Spliced Peptide Presentation by MHC Class I Molecules

    PubMed Central

    Berkers, Celia R.; de Jong, Annemieke; Schuurman, Karianne G.; Linnemann, Carsten; Meiring, Hugo D.; Janssen, Lennert; Neefjes, Jacques J.; Schumacher, Ton N. M.; Rodenko, Boris

    2015-01-01

    Peptide splicing, in which two distant parts of a protein are excised and then ligated to form a novel peptide, can generate unique MHC class I–restricted responses. Because these peptides are not genetically encoded and the rules behind proteasomal splicing are unknown, it is difficult to predict these spliced Ags. In the current study, small libraries of short peptides were used to identify amino acid sequences that affect the efficiency of this transpeptidation process. We observed that splicing does not occur at random, neither in terms of the amino acid sequences nor through random splicing of peptides from different sources. In contrast, splicing followed distinct rules that we deduced and validated both in vitro and in cells. Peptide ligation was quantified using a model peptide and demonstrated to occur with up to 30% ligation efficiency in vitro, provided that optimal structural requirements for ligation were met by both ligating partners. In addition, many splicing products could be formed from a single protein. Our splicing rules will facilitate prediction and detection of new spliced Ags to expand the peptidome presented by MHC class I Ags. PMID:26401003

  8. Efficient generation of peptide hydrazides via direct hydrazinolysis of Peptidyl-Wang-TentaGel resins.

    PubMed

    Bello, Claudia; Kikul, Frauke; Becker, Christian F W

    2015-03-01

    Peptide hydrazides are valuable building blocks in peptide and protein chemistry, e.g. as precursors of peptide thioesters that allow the preparation of these important intermediates under mild conditions. Additional robust and versatile methods for the generation of peptide hydrazides from standard solid supports are therefore highly desired in order to facilitate access to peptide thioester via Fmoc-based SPPS. Here, the efficient generation of peptide hydrazides from conventional 4-hydroxymethyl phenol Wang-TentalGel peptidyl resins is described. Direct hydrazinolysis of a 19mer mucin1 peptide gives the protected peptide hydrazide in excellent yields. Testing a series of octapeptides carrying the 20 common proteinogenic amino acids at their C-terminus led to preparation of all corresponding peptide hydrazides in very good to excellent yields and purities. The available set of octapeptides allowed analyzing the influence of the nature of the C-terminal amino acid and of the solvent on the hydrazinolysis reaction. Furthermore, the compatibility of the method with posttranslational modifications (here glycosylation) and with potentially sensitive functional groups in amino acid side chains makes this approach a viable alternative for obtaining peptide hydrazides. It combines the advantages of a straightforward synthesis with stereochemical stability and flexibility, as it provides easy access to the peptide acid and the peptide thioester (via the hydrazide) from the same solid support. PMID:25648984

  9. Enhancing the efficiency of sortase-mediated ligations through nickel-peptide complex formation.

    PubMed

    David Row, R; Roark, Travis J; Philip, Marina C; Perkins, Lorena L; Antos, John M

    2015-08-14

    A modified sortase A recognition motif containing a masked Ni(2+)-binding peptide was employed to boost the efficiency of sortase-catalyzed ligation reactions. Deactivation of the Ni(2+)-binding peptide using a Ni(2+) additive improved reaction performance at low to equimolar ratios of the glycine amine nucleophile and sortase substrate. The success of this approach was demonstrated with both peptide and protein substrates. PMID:26152789

  10. The efficiency of peptide immunotherapy for respiratory allergy.

    PubMed

    Incorvaia, Cristoforo; Montagni, Marcello; Ridolo, Erminia

    2016-06-01

    Allergen immunotherapy (AIT) was introduced more than a century ago and is yet the only disease-modifying treatment for allergy. AIT is currently conducted with whole allergen extracts and several studies clearly support its efficacy in the treatment of respiratory allergies, however the need for a long treatment - that affects costs and patients compliance - and possible IgE-mediated adverse events are still unresolved issues. Peptide immunotherapy is based on the use of short synthetic peptides which represent major T-cell epitopes of the allergen with markedly reduced ability to cross-link IgE and activate mast cells and basophils. Data from clinical trials confirmed the efficacy and tolerability of peptide immunotherapy in patients with cat allergy, with a sustained clinical effect after a short course treatment. Peptide therapy is a promising safe and effective new specific treatment for allergy to be developed for the most important allergens causing rhinitis or asthma. PMID:26901667

  11. Effect of poly-glutamate on uptake efficiency and cytotoxicity of cell penetrating peptides.

    PubMed

    Farkhani, Samad Mussa; Shirani, Ali; Mohammadi, Samaneh; Zakeri-Milani, Parvin; Shahbazi Mojarrad, Javid; Valizadeh, Hadi

    2016-04-01

    Cell penetrating peptides (CPPs) were developed as vehicles for efficient delivery of various molecules. An ideal CPP-peptide should not display any toxicity against cancer cells as well as healthy cells and efficiently enter into the cell. Because of the cationic nature and the intrinsic vector capabilities, these peptides can cause cytotoxicity. One of the possible reasons for toxicity of CPPs is direct translocation and consequently, pore formation on the plasma membrane. In this study it was demonstrated that interaction of poly-glutamate with CPP considerably reduced their cytotoxicity in A549 cell. This strategy could be useful for efficient drug delivery mediated by CPP. PMID:27074859

  12. An accurate and efficient algorithm for Peptide and ptm identification by tandem mass spectrometry.

    PubMed

    Ning, Kang; Ng, Hoong Kee; Leong, Hon Wai

    2007-01-01

    Peptide identification by tandem mass spectrometry (MS/MS) is one of the most important problems in proteomics. Recent advances in high throughput MS/MS experiments result in huge amount of spectra. Unfortunately, identification of these spectra is relatively slow, and the accuracies of current algorithms are not high with the presence of noises and post-translational modifications (PTMs). In this paper, we strive to achieve high accuracy and efficiency for peptide identification problem, with special concern on identification of peptides with PTMs. This paper expands our previous work on PepSOM with the introduction of two accurate modified scoring functions: Slambda for peptide identification and Slambda* for identification of peptides with PTMs. Experiments showed that our algorithm is both fast and accurate for peptide identification. Experiments on spectra with simulated and real PTMs confirmed that our algorithm is accurate for identifying PTMs. PMID:18546510

  13. Acquisition of an insertion peptide for efficient aminoacylation by a halophile tRNA synthetase.

    PubMed

    Evilia, Caryn; Hou, Ya-Ming

    2006-06-01

    Enzymes of halophilic organisms contain unusual peptide motifs that are absent from their mesophilic counterparts. The functions of these halophile-specific peptides are largely unknown. Here we have identified an unusual peptide that is unique to several halophile archaeal cysteinyl-tRNA synthetases (CysRS), which catalyze attachment of cysteine to tRNA(Cys) to generate the essential cysteinyl-tRNA(Cys) required for protein synthesis. This peptide is located near the active site in the catalytic domain and is highly enriched with acidic residues. In the CysRS of the extreme halophile Halobacterium species NRC-1, deletion of the peptide reduces the catalytic efficiency of aminoacylation by a factor of 100 that largely results from a defect in kcat, rather than the Km for tRNA(Cys). In contrast, maintaining the peptide length but substituting acidic residues in the peptide with neutral or basic residues has no major deleterious effect, suggesting that the acidity of the peptide is not important for the kcat of tRNA aminoacylation. Analysis of general protein structure under physiological high salt concentrations, by circular dichroism and by fluorescence titration of tRNA binding, indicates little change due to deletion of the peptide. However, the presence of the peptide confers tolerance to lower salt levels, and fluorescence analysis in 30% sucrose reveals instability of the enzyme without the peptide. We suggest that the stability associated with the peptide can be used to promote proper enzyme conformation transitions in various stages of tRNA aminoacylation that are associated with catalysis. The acquisition of the peptide by the halophilic CysRS suggests an enzyme adaptation to high salinity. PMID:16734420

  14. Estimation of peptide N-Cα bond cleavage efficiency during MALDI-ISD using a cyclic peptide.

    PubMed

    Asakawa, Daiki; Smargiasso, Nicolas; De Pauw, Edwin

    2016-05-01

    Matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) induces N-Cα bond cleavage via hydrogen transfer from the matrix to the peptide backbone, which produces a c'/z• fragment pair. Subsequently, the z• generates z' and [z + matrix] fragments via further radical reactions because of the low stability of the z•. In the present study, we investigated MALDI-ISD of a cyclic peptide. The N-Cα bond cleavage in the cyclic peptide by MALDI-ISD produced the hydrogen-abundant peptide radical [M + 2H](+) • with a radical site on the α-carbon atom, which then reacted with the matrix to give [M + 3H](+) and [M + H + matrix](+) . For 1,5-diaminonaphthalene (1,5-DAN) adducts with z fragments, post-source decay of [M + H + 1,5-DAN](+) generated from the cyclic peptide showed predominant loss of an amino acid with 1,5-DAN. Additionally, MALDI-ISD with Fourier transform-ion cyclotron resonance mass spectrometry allowed for the detection of both [M + 3H](+) and [M + H](+) with two (13) C atoms. These results strongly suggested that [M + 3H](+) and [M + H + 1,5-DAN](+) were formed by N-Cα bond cleavage with further radical reactions. As a consequence, the cleavage efficiency of the N-Cα bond during MALDI-ISD could be estimated by the ratio of the intensity of [M + H](+) and [M + 3H](+) in the Fourier transform-ion cyclotron resonance spectrum. Because the reduction efficiency of a matrix for the cyclic peptide cyclo(Arg-Gly-Asp-D-Phe-Val) was correlated to its tendency to cleave the N-Cα bond in linear peptides, the present method could allow the evaluation of the efficiency of N-Cα bond cleavage for MALDI matrix development. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27194516

  15. Chemical derivatization of peptide carboxyl groups for highly efficient electron transfer dissociation

    PubMed Central

    Frey, Brian L.; Ladror, Daniel T.; Sondalle, Samuel B.; Krusemark, Casey J.; Jue, April L.; Coon, Joshua J.; Smith, Lloyd M.

    2013-01-01

    The carboxyl groups of tryptic peptides were derivatized with a tertiary or quaternary amine labeling reagent to generate more highly charged peptide ions that fragment efficiently by electron transfer dissociation (ETD). All peptide carboxyl groups—aspartic and glutamic acid side-chains as well as C-termini—were derivatized with an average reaction efficiency of 99%. This nearly complete labeling avoids making complex peptide mixtures even more complex due to partially-labeled products, and it allows the use of static modifications during database searching. Alkyl tertiary amines were found to be the optimal labeling reagent among the four types tested. Charge states are substantially higher for derivatized peptides: a modified tryptic digest of bovine serum albumin (BSA) generates ∼90% of its precursor ions with z > 2, compared to less than 40% for the unmodified sample. The increased charge density of modified peptide ions yields highly efficient ETD fragmentation, leading to many additional peptide identifications and higher sequence coverage (e.g. 70% for modified versus only 43% for unmodified BSA). The utility of this labeling strategy was demonstrated on a tryptic digest of ribosomal proteins isolated from yeast cells. Peptide derivatization of this sample produced an increase in the number of identified proteins, a >50% increase in the sequence coverage of these proteins, and a doubling of the number of peptide spectral matches. This carboxyl derivatization strategy greatly improves proteome coverage obtained from ETD-MS/MS of tryptic digests, and we anticipate that it will also enhance identification and localization of post-translational modifications. PMID:23918461

  16. Chemical Derivatization of Peptide Carboxyl Groups for Highly Efficient Electron Transfer Dissociation

    NASA Astrophysics Data System (ADS)

    Frey, Brian L.; Ladror, Daniel T.; Sondalle, Samuel B.; Krusemark, Casey J.; Jue, April L.; Coon, Joshua J.; Smith, Lloyd M.

    2013-11-01

    The carboxyl groups of tryptic peptides were derivatized with a tertiary or quaternary amine labeling reagent to generate more highly charged peptide ions that fragment efficiently by electron transfer dissociation (ETD). All peptide carboxyl groups—aspartic and glutamic acid side-chains as well as C-termini—were derivatized with an average reaction efficiency of 99 %. This nearly complete labeling avoids making complex peptide mixtures even more complex because of partially-labeled products, and it allows the use of static modifications during database searching. Alkyl tertiary amines were found to be the optimal labeling reagent among the four types tested. Charge states are substantially higher for derivatized peptides: a modified tryptic digest of bovine serum albumin (BSA) generates ~90% of its precursor ions with z > 2, compared with less than 40 % for the unmodified sample. The increased charge density of modified peptide ions yields highly efficient ETD fragmentation, leading to many additional peptide identifications and higher sequence coverage (e.g., 70 % for modified versus only 43 % for unmodified BSA). The utility of this labeling strategy was demonstrated on a tryptic digest of ribosomal proteins isolated from yeast cells. Peptide derivatization of this sample produced an increase in the number of identified proteins, a >50 % increase in the sequence coverage of these proteins, and a doubling of the number of peptide spectral matches. This carboxyl derivatization strategy greatly improves proteome coverage obtained from ETD-MS/MS of tryptic digests, and we anticipate that it will also enhance identification and localization of post-translational modifications.

  17. Enhanced Intracellular Hyperthermia Efficiency by Magnetic Nanoparticles Modified with Nucleus and Mitochondria Targeting Peptides.

    PubMed

    Wang, Xiaowen; Zhou, Jumei; Chen, Benke; Tang, Zhenghai; Zhang, Jieying; Li, Liya; Tang, Jintian

    2016-06-01

    In order to investigate whether cell organelle targeting peptide can transport magnetic nanoparticles (MNPs) into specific cell organelle, peptides bearing nuclear localization signal (NLS) or mitochondria targeting sequences were coagulated to MNPs. In vitro cytotoxicity study on the human liver cancer cells (HepG2) was tested by using MTT assay. Sub-cellular location of each peptide modified MNP (PEP-MNPs) was observed by transmission electron microscopy (TEM). The uptake of HepG2 cells growing in PEP-MNPs was measured by using ICP-OES. Magnetic induction heating efficacies of PEP-MNPs were analyzed by exposing the PEP-MNPs containing cells in an alternating magnetic field (AMF). It was demonstrated that PEP-MNPs were efficient agents for cancer nanothermotherapy with satisfactory biocompatibility. TEM showed that the fate of MNPs inside the cells depended on the peptide sequence attached to the particle surface. The uptake improvement was observed both in PEP-MNPs bearing NLS peptides and in PEP-MNPs bearing mitochondria targeting sequences. Virus original endocytosis sequence can enhance the uptake. MNP bearing mitochondria targeting sequence exerted a better magnetic induction hyperthermia performance comparing to that of NLS. Our investigation provides a strategy for fabrication cell organelle targeting magnetic nanoparticles. For instance, mitochondria targeting peptide conjugated MNPs for highly-efficiency magnetic nanothermotherapy and nuclear targeting peptides conjugated MNPs for gene magnetofection. PMID:27427753

  18. Efficient Expression of Stabilized mRNAPEG-Peptide Polyplexes in Liver

    PubMed Central

    Crowley, Samuel T.; Poliskey, Jacob A.; Baumhover, Nicholas J.; Rice, Kevin G.

    2015-01-01

    The expression efficiency in liver following hydrodynamic delivery of in vitro transcribed mRNA was improved 2000-fold using a codon-optimized mRNA luciferase construct with flanking 3' and 5' human β-globin untranslated regions (UTR mRNA) over an un-optimized mRNA without β-globin UTRs. Nanoparticle UTR mRNA polyplexes were formed using a novel polyacridine PEG-peptide, resulting in an additional 15-fold increase in expression efficiency in the liver. The combined increase in expression for UTR mRNA PEG-peptide polyplexes was 3500-fold over mRNA lacking UTRs and PEG-peptide. The expression efficiency of UTR mRNA polyplex was 10-fold greater than the expression from an equivalent 1 µg dose of pGL3. Maximal expression was maintained from 4 to 24 hours. Serum incubation established the unique ability of the polyacridine PEG-peptide to protect UTR mRNA polyplexes from RNase metabolism by binding to double stranded regions. UTR mRNA PEG-peptide polyplexes are efficient non-viral vectors that circumvent the need for nuclear uptake, representing an advancement toward the development of a targeted gene delivery system to transfect liver hepatocytes. PMID:26125604

  19. Efficient Gene Delivery of Primary Human Cells Using Peptide Linked Polyethylenimine Polymer Hybrid

    PubMed Central

    Dey, Devaveena; Inayathullah, Mohammed; Lee, Andrew S; Limiuex, Melbes; Zhang, Xuexiang; Wu, Yi; Nag, Divya; De Almeida, Patricia Eliza; Han, Leng; Rajadas, Jayakumar; Wu, Joseph C

    2011-01-01

    Polyethylenimine (PEI) based polymers are efficient agents for cell transfection. However, their use has been hampered due to high cell death associated with transfection thereby resulting in low efficiency of gene delivery within the cells. To circumvent the problem of cellular toxicity, metal binding peptides were linked to PEI. Eight peptide-PEI derivatives were synthesized to improve cell survival and transfection efficiency. TAT linked PEI was used as a control polymer. Peptides linked with PEI amines formed nano gels as shown by electron microscopy and atomic force microscopic measurements. Polymers were characterized by spectroscopic methods and their ability to form complexes with plasmids was tested using electrophoretic studies. These modifications improved polymer biocompatibility as well as cell survival markedly when compared to PEI alone. A subset of the modified peptide-polymers also showed significantly higher transfection efficiency in primary human cells with respect to the widely used transfection agent, lipofectamine. Study of the underlying mechanism of the observed phenomena revealed lower levels of ‘reactive oxygen species’ (ROS) in presence of the peptide-polymers when compared to PEI alone. This was further corroborated with global gene expression analysis which showed upregulation of multiple genes and pathways involved in regulating intracellular oxidative stress. PMID:21477858

  20. PLAP efficiently generates mature antigenic peptides in vitro but in patterns distinct from ERAP11

    PubMed Central

    Georgiadou, Dimitra; Hearn, Arron; Evnouchidou, Irini; Chroni, Angeliki; Leondiadis, Leondios; York, Ian A.; Rock, Kenneth L.; Stratikos, Efstratios

    2010-01-01

    All three members of the oxytocinase sub-family of M1 aminopeptidases, ERAP1 (ERAAP), ERAP2 and PLAP (IRAP), have been implicated in the generation of MHC class I-presented peptides. ERAP1 and 2 trim peptides in the endoplasmic reticulum for direct presentation whereas PLAP has been recently implicated in cross presentation. The best characterized member of the family, ERAP1, has unique enzymatic properties that fit well with its role in antigen processing. ERAP1 can trim a large variety of long peptide sequences and efficiently accumulate mature antigenic epitopes of 8–9 amino acids long. In this study we evaluate the ability of PLAP to process antigenic peptide precursors in vitro and compare it to ERAP1. We find that, similarly to ERAP1, PLAP can trim a variety of long peptide sequences efficiently and, in most cases, accumulates appreciable amounts of correct length mature antigenic epitope. Again, similarly to ERAP1, PLAP continued trimming some of the epitopes tested and accumulated smaller products effectively destroying the epitope. However, the intermediate accumulation properties of ERAP1 and PLAP are distinct and epitope dependent, suggesting that these two enzymes may impose different selective pressures on epitope generation. Overall, although PLAP has the necessary enzymatic properties to participate in generating or destroying MHC class I presented peptides, its trimming behavior is distinct from that of ERAP1, something that supports a separate role for these two enzymes in antigen processing. PMID:20592285

  1. Efficient generation of monoclonal antibodies against peptide in the context of MHCII using magnetic enrichment.

    PubMed

    Spanier, Justin A; Frederick, Daniel R; Taylor, Justin J; Heffernan, James R; Kotov, Dmitri I; Martinov, Tijana; Osum, Kevin C; Ruggiero, Jenna L; Rust, Blake J; Landry, Samuel J; Jenkins, Marc K; McLachlan, James B; Fife, Brian T

    2016-01-01

    Monoclonal antibodies specific for foreign antigens, auto-antigens, allogeneic antigens and tumour neo-antigens in the context of major histocompatibility complex II (MHCII) are highly desirable as novel immunotherapeutics. However, there is no standard protocol for the efficient generation of monoclonal antibodies that recognize peptide in the context of MHCII, and only a limited number of such reagents exist. In this report, we describe an approach for the generation and screening of monoclonal antibodies specific for peptide bound to MHCII. This approach exploits the use of recombinant peptide:MHC monomers as immunogens, and subsequently relies on multimers to pre-screen and magnetically enrich the responding antigen-specific B cells before fusion and validation, thus saving significant time and reagents. Using this method, we have generated two antibodies enabling us to interrogate antigen presentation and T-cell activation. This methodology sets the standard to generate monoclonal antibodies against the peptide-MHCII complexes. PMID:27292946

  2. Efficient Intracellular Delivery of a Pro-Apoptotic Peptide With A pH-Responsive Carrier

    PubMed Central

    Albarran, Brian; Hoffman, Allan S.; Stayton, Patrick S.

    2010-01-01

    A key challenge in developing protein therapeutics or imaging agents that work against cytosolic targets is the intracellular delivery barrier. Here, we show that the pH-responsive, membrane-destabilizing polymer, poly (propylacrylic acid) (PPAA), can strongly enhance target cell killing through the intracellular delivery of a functional proapoptotic peptide. The Bak BH3 peptide induces apoptosis via antagonization of suppressor targets such as Bcl-2 and Bcl-xL. A genetically-engineered streptavidin that contains an N-terminal TAT peptide sequence was used to optimize the pinocytotic cell uptake of biotinylated BH3 peptide and end-biotinylated PPAA. Fluorescence microscopic analysis of DAPI-stained HELA cells was used to quantitate apoptosis. Approximately 30% of cells treated with TAT-SA:BH3 complexes revealed morphologically distinct nuclear condensation, a hallmark of apoptosis. The incorporation of biotinylated PPAA had the effect of markedly enhancing the killing effect of BH3 peptides by an additional 55% (p<0.001) to a total cell killing efficiency of 85%. Caspase-3 activity was up-regulated in a TAT-SA:BH3:PPAA dose-dependent manner. The induction of apoptosis with the TAT-SA:BH3:PPAA complex was abrogated with the L78A BH3 peptide, that had been previously shown to knock-out antagonization activity. The caspase and L78A peptide results demonstrate that the delivered BH3 is indeed working through the biologically relevant apoptosis signaling pathway. These studies establish the ability of PPAA to strongly enhance the intracellular delivery of a functional pro-apoptotic peptide. Together with the PPAA, the TAT-SA adaptor complex could prove useful as a carrier of peptide/protein cargo to cultured cells. PMID:21499545

  3. Cleavage efficient 2A peptides for high level monoclonal antibody expression in CHO cells.

    PubMed

    Chng, Jake; Wang, Tianhua; Nian, Rui; Lau, Ally; Hoi, Kong Meng; Ho, Steven C L; Gagnon, Peter; Bi, Xuezhi; Yang, Yuansheng

    2015-01-01

    Linking the heavy chain (HC) and light chain (LC) genes required for monoclonal antibodies (mAb) production on a single cassette using 2A peptides allows control of LC and HC ratio and reduces non-expressing cells. Four 2A peptides derived from the foot-and-mouth disease virus (F2A), equine rhinitis A virus (E2A), porcine teschovirus-1 (P2A) and Thosea asigna virus (T2A), respectively, were compared for expression of 3 biosimilar IgG1 mAbs in Chinese hamster ovary (CHO) cell lines. HC and LC were linked by different 2A peptides both in the absence and presence of GSG linkers. Insertion of a furin recognition site upstream of 2A allowed removal of 2A residues that would otherwise be attached to the HC. Different 2A peptides exhibited different cleavage efficiencies that correlated to the mAb expression level. The relative cleavage efficiency of each 2A peptide remains similar for expression of different IgG1 mAbs in different CHO cells. While complete cleavage was not observed for any of the 2A peptides, GSG linkers did enhance the cleavage efficiency and thus the mAb expression level. T2A with the GSG linker (GT2A) exhibited the highest cleavage efficiency and mAb expression level. Stably amplified CHO DG44 pools generated using GT2A had titers 357, 416 and 600 mg/L for the 3 mAbs in shake flask batch cultures. Incomplete cleavage likely resulted in incorrectly processed mAb species and aggregates, which were removed with a chromatin-directed clarification method and protein A purification. The vector and methods presented provide an easy process beneficial for both mAb development and manufacturing. PMID:25621616

  4. Cleavage efficient 2A peptides for high level monoclonal antibody expression in CHO cells

    PubMed Central

    Chng, Jake; Wang, Tianhua; Nian, Rui; Lau, Ally; Hoi, Kong Meng; Ho, Steven CL; Gagnon, Peter; Bi, Xuezhi; Yang, Yuansheng

    2015-01-01

    Linking the heavy chain (HC) and light chain (LC) genes required for monoclonal antibodies (mAb) production on a single cassette using 2A peptides allows control of LC and HC ratio and reduces non-expressing cells. Four 2A peptides derived from the foot-and-mouth disease virus (F2A), equine rhinitis A virus (E2A), porcine teschovirus-1 (P2A) and Thosea asigna virus (T2A), respectively, were compared for expression of 3 biosimilar IgG1 mAbs in Chinese hamster ovary (CHO) cell lines. HC and LC were linked by different 2A peptides both in the absence and presence of GSG linkers. Insertion of a furin recognition site upstream of 2A allowed removal of 2A residues that would otherwise be attached to the HC. Different 2A peptides exhibited different cleavage efficiencies that correlated to the mAb expression level. The relative cleavage efficiency of each 2A peptide remains similar for expression of different IgG1 mAbs in different CHO cells. While complete cleavage was not observed for any of the 2A peptides, GSG linkers did enhance the cleavage efficiency and thus the mAb expression level. T2A with the GSG linker (GT2A) exhibited the highest cleavage efficiency and mAb expression level. Stably amplified CHO DG44 pools generated using GT2A had titers 357, 416 and 600 mg/L for the 3 mAbs in shake flask batch cultures. Incomplete cleavage likely resulted in incorrectly processed mAb species and aggregates, which were removed with a chromatin-directed clarification method and protein A purification. The vector and methods presented provide an easy process beneficial for both mAb development and manufacturing. PMID:25621616

  5. Efficient and Selective Chemical Labeling of Electrochemically Generated Peptides Based on Spirolactone Chemistry.

    PubMed

    Zhang, Tao; Niu, Xiaoyu; Yuan, Tao; Tessari, Marco; de Vries, Marcel P; Permentier, Hjalmar P; Bischoff, Rainer

    2016-06-21

    Specific digestion of proteins is an essential step for mass spectrometry-based proteomics, and the chemical labeling of the resulting peptides is often used for peptide enrichment or the introduction of desirable tags. Cleavage of the peptide bond following electrochemical oxidation of Tyr or Trp results in a spirolactone moiety at the newly formed C-terminus offering a handle for chemical labeling. In this work, we developed a highly efficient and selective chemical labeling approach based on spirolactone chemistry. Electrochemically generated peptide-spirolactones readily undergo an intramolecular rearrangement yielding isomeric diketopiperazines precluding further chemical labeling. A strategy was established to prevent intramolecular arrangement by acetylating the N-terminal amino group prior to electrochemical oxidation and cleavage allowing the complete and selective chemical labeling of the tripeptide LWL and the decapeptide ACTH 1-10 with amine-containing reagents. As examples, we show the successful introduction of a fluorescent label and biotin for detection or affinity enrichment. Electrochemical digestion of peptides and proteins followed by efficient chemical labeling constitutes a new, powerful tool in protein chemistry and protein analysis. PMID:27247048

  6. Efficient generation of monoclonal antibodies against peptide in the context of MHCII using magnetic enrichment

    PubMed Central

    Spanier, Justin A.; Frederick, Daniel R.; Taylor, Justin J.; Heffernan, James R.; Kotov, Dmitri I.; Martinov, Tijana; Osum, Kevin C.; Ruggiero, Jenna L.; Rust, Blake J.; Landry, Samuel J.; Jenkins, Marc K.; McLachlan, James B.; Fife, Brian T.

    2016-01-01

    Monoclonal antibodies specific for foreign antigens, auto-antigens, allogeneic antigens and tumour neo-antigens in the context of major histocompatibility complex II (MHCII) are highly desirable as novel immunotherapeutics. However, there is no standard protocol for the efficient generation of monoclonal antibodies that recognize peptide in the context of MHCII, and only a limited number of such reagents exist. In this report, we describe an approach for the generation and screening of monoclonal antibodies specific for peptide bound to MHCII. This approach exploits the use of recombinant peptide:MHC monomers as immunogens, and subsequently relies on multimers to pre-screen and magnetically enrich the responding antigen-specific B cells before fusion and validation, thus saving significant time and reagents. Using this method, we have generated two antibodies enabling us to interrogate antigen presentation and T-cell activation. This methodology sets the standard to generate monoclonal antibodies against the peptide–MHCII complexes. PMID:27292946

  7. Leader Peptide Establishes Dehydration Order, Promotes Efficiency, and Ensures Fidelity During Lacticin 481 Biosynthesis.

    PubMed

    Thibodeaux, Christopher J; Wagoner, Joshua; Yu, Yi; van der Donk, Wilfred A

    2016-05-25

    The mechanisms by which lanthipeptide synthetases control the order in which they catalyze multiple chemical processes are poorly understood. The lacticin 481 synthetase (LctM) cleaves eight chemical bonds and forms six new chemical bonds in a controlled and ordered process. Two general mechanisms have been suggested for the temporal and spatial control of these transformations. In the spatial positioning model, leader peptide binding promotes certain reactions by establishing the spatial orientation of the substrate peptide relative to the synthetase active sites. In the intermediate structure model, the LctM-catalyzed dehydration and cyclization reactions that occur in two distinct active sites orchestrate the overall process by imparting a specific structure into the maturing peptide that facilitates the ensuing reaction. Using isotopically labeled LctA analogues with engineered lacticin 481 biosynthetic machinery and mass spectrometry analysis, we show here that the LctA leader peptide plays critical roles in establishing the modification order and enhancing the catalytic efficiency and fidelity of the synthetase. The data are most consistent with a mechanistic model for LctM where both spatial positioning and intermediate structure contribute to efficient biosynthesis. PMID:27123925

  8. Improving pancreatic islet in vitro functionality and transplantation efficiency by using heparin mimetic peptide nanofiber gels.

    PubMed

    Uzunalli, Gozde; Tumtas, Yasin; Delibasi, Tuncay; Yasa, Oncay; Mercan, Sercan; Guler, Mustafa O; Tekinay, Ayse B

    2015-08-01

    Pancreatic islet transplantation is a promising treatment for type 1 diabetes. However, viability and functionality of the islets after transplantation are limited due to loss of integrity and destruction of blood vessel networks. Thus, it is important to provide a proper mechanically and biologically supportive environment for enhancing both in vitro islet culture and transplantation efficiency. Here, we demonstrate that heparin mimetic peptide amphiphile (HM-PA) nanofibrous network is a promising platform for these purposes. The islets cultured with peptide nanofiber gel containing growth factors exhibited a similar glucose stimulation index as that of the freshly isolated islets even after 7 days. After transplantation of islets to STZ-induced diabetic rats, 28 day-long monitoring displayed that islets that were transplanted in HM-PA nanofiber gels maintained better blood glucose levels at normal levels compared to the only islet transplantation group. In addition, intraperitoneal glucose tolerance test revealed that animals that were transplanted with islets within peptide gels showed a similar pattern with the healthy control group. Histological assessment showed that islets transplanted within peptide nanofiber gels demonstrated better islet integrity due to increased blood vessel density. This work demonstrates that using the HM-PA nanofiber gel platform enhances the islets function and islet transplantation efficiency both in vitro and in vivo. PMID:25931015

  9. Efficient Synthesis of Peptide and Protein Functionalized Pyrrole-Imidazole Polyamides Using Native Chemical Ligation

    PubMed Central

    Janssen, Brian M. G.; van Ommeren, Sven P. F. I.; Merkx, Maarten

    2015-01-01

    The advancement of DNA-based bionanotechnology requires efficient strategies to functionalize DNA nanostructures in a specific manner with other biomolecules, most importantly peptides and proteins. Common DNA-functionalization methods rely on laborious and covalent conjugation between DNA and proteins or peptides. Pyrrole-imidazole (Py–Im) polyamides, based on natural minor groove DNA-binding small molecules, can bind to DNA in a sequence specific fashion. In this study, we explore the use of Py–Im polyamides for addressing proteins and peptides to DNA in a sequence specific and non-covalent manner. A generic synthetic approach based on native chemical ligation was established that allows efficient conjugation of both peptides and recombinant proteins to Py–Im polyamides. The effect of Py–Im polyamide conjugation on DNA binding was investigated by Surface Plasmon Resonance (SPR). Although the synthesis of different protein-Py–Im-polyamide conjugates was successful, attenuation of DNA affinity was observed, in particular for the protein-Py–Im-polyamide conjugates. The practical use of protein-Py–Im-polyamide conjugates for addressing DNA structures in an orthogonal but non-covalent manner, therefore, remains to be established. PMID:26053396

  10. Enhancing tumor-specific intracellular delivering efficiency of cell-penetrating peptide by fusion with a peptide targeting to EGFR.

    PubMed

    Nguyen, Long The; Yang, Xu-Zhong; Du, Xuan; Wang, Jia-Wei; Zhang, Rui; Zhao, Jian; Wang, Fu-Jun; Dong, Yang; Li, Peng-Fei

    2015-05-01

    Cell-penetrating peptides (CPPs) are well known as intracellular delivery vectors. However, unsatisfactory delivery efficiency and poor specificity are challenging barriers to CPP applications at the clinical trial stage. Here, we showed that S3, an EGFR-binding domain derived from vaccinia virus growth factor, when fused to a CPP such as HBD or TAT can substantially enhance its internalization efficiency and tumor selectivity. The uptake of S3-HBD (S3H) recombinant molecule by tumor cells was nearly 80 folds increased compared to HBD alone. By contrast, the uptake of S3H by non-neoplastic cells still remained at a low level. The specific recognition between S3 and its receptor, EGFR, as well as between HBD and heparan sulfate proteoglycans on the cell surface was essential for these improvements, suggesting a syngeneic effect between the two functional domains in conjugation. This syngeneic effect is likely similar to that of the heparin-binding epidermal growth factor, which is highly abundant particularly in metastatic tumors. The process that S3H entered cells was dependent on time, dosage, and energy, via macropinocytosis pathway. With excellent cell-penetrating efficacy and a novel tumor-targeting ability, S3H appears as a promising candidate vector for targeted anti-cancer drug delivery. PMID:25655386

  11. Efficient Gene Knockdown in Mouse Oocytes through Peptide Nanoparticle-Mediated SiRNA Transfection.

    PubMed

    Jin, Zhen; Li, Ruichao; Zhou, Chunxiang; Shi, Liya; Zhang, Xiaolan; Yang, Zhixia; Zhang, Dong

    2016-01-01

    The use of mouse oocytes as a model for studying female meiosis is very important in reproductive medicine. Gene knockdown by specific small interfering RNA (siRNA) is usually the first step in the study of the function of a target gene in mouse oocytes during in vitro maturation. Traditionally, the only way to introduce siRNA into mouse oocytes is through microinjection, which is certainly less efficient and strenuous than siRNA transfection in somatic cells. Recently, in research using somatic cells, peptide nanoparticle-mediated siRNA transfection has been gaining popularity over liposome nanoparticle-mediated methods because of its high efficiency, low toxicity, good stability, and strong serum compatibility. However, no researchers have yet tried transfecting siRNA into mouse oocytes because of the existence of the protective zona pellucida surrounding the oocyte membrane (vitelline membrane). We therefore tested whether peptide nanoparticles can introduce siRNA into mouse oocytes. In the present study, we showed for the first time that our optimized program can efficiently knock down a target gene with high specificity. Furthermore, we achieved the expected meiotic phenotypes after we knocked down a test unknown target gene TRIM75. We propose that peptide nanoparticles may be superior for preliminary functional studies of unknown genes in mouse oocytes. PMID:26974323

  12. Efficient Gene Knockdown in Mouse Oocytes through Peptide Nanoparticle-Mediated SiRNA Transfection

    PubMed Central

    Jin, Zhen; Li, Ruichao; Zhou, Chunxiang; Shi, Liya; Zhang, Xiaolan; Yang, Zhixia; Zhang, Dong

    2016-01-01

    The use of mouse oocytes as a model for studying female meiosis is very important in reproductive medicine. Gene knockdown by specific small interfering RNA (siRNA) is usually the first step in the study of the function of a target gene in mouse oocytes during in vitro maturation. Traditionally, the only way to introduce siRNA into mouse oocytes is through microinjection, which is certainly less efficient and strenuous than siRNA transfection in somatic cells. Recently, in research using somatic cells, peptide nanoparticle-mediated siRNA transfection has been gaining popularity over liposome nanoparticle-mediated methods because of its high efficiency, low toxicity, good stability, and strong serum compatibility. However, no researchers have yet tried transfecting siRNA into mouse oocytes because of the existence of the protective zona pellucida surrounding the oocyte membrane (vitelline membrane). We therefore tested whether peptide nanoparticles can introduce siRNA into mouse oocytes. In the present study, we showed for the first time that our optimized program can efficiently knock down a target gene with high specificity. Furthermore, we achieved the expected meiotic phenotypes after we knocked down a test unknown target gene TRIM75. We propose that peptide nanoparticles may be superior for preliminary functional studies of unknown genes in mouse oocytes. PMID:26974323

  13. Fluorescence Correlation Spectroscopy Reveals Highly Efficient Cytosolic Delivery of Certain Penta-Arg Proteins and Stapled Peptides

    PubMed Central

    Steinauer, Angela; Rhoades, Elizabeth; Schepartz, Alanna

    2015-01-01

    We used fluorescence correlation spectroscopy (FCS) to accurately and precisely determine the relative efficiencies with which three families of “cell-penetrating peptides” traffic to the cytosol of mammalian cells. We find that certain molecules containing a “penta-arg” motif reach the cytosol, intact, with efficiencies greater than 50%. This value is at least 10-fold higher than that observed for the widely studied cationic sequence derived from HIV Tat or polyarginine Arg8, and equals that of hydrocarbon-stapled peptides that are active in cells and animals. Moreover, we show that the efficiency with which stapled peptides reach the cytosol, as determined by FCS, correlates directly with their efficacy in cell-based assays. We expect that these findings and the associated technology will aid the design of peptides, proteins, and peptide mimetics that predictably and efficiently reach the interior of mammalian cells. PMID:25679876

  14. Efficient Cargo Delivery into Adult Brain Tissue Using Short Cell-Penetrating Peptides

    PubMed Central

    Thomas, Alvin Kuriakose; Bhattarai, Prabesh; Zhang, Yixin; Brand, Michael

    2015-01-01

    Zebrafish brains can regenerate lost neurons upon neurogenic activity of the radial glial progenitor cells (RGCs) that reside at the ventricular region. Understanding the molecular events underlying this ability is of great interest for translational studies of regenerative medicine. Therefore, functional analyses of gene function in RGCs and neurons are essential. Using cerebroventricular microinjection (CVMI), RGCs can be targeted efficiently but the penetration capacity of the injected molecules reduces dramatically in deeper parts of the brain tissue, such as the parenchymal regions that contain the neurons. In this report, we tested the penetration efficiency of five known cell-penetrating peptides (CPPs) and identified two– polyR and Trans – that efficiently penetrate the brain tissue without overt toxicity in a dose-dependent manner as determined by TUNEL staining and L-Plastin immunohistochemistry. We also found that polyR peptide can help carry plasmid DNA several cell diameters into the brain tissue after a series of coupling reactions using DBCO-PEG4-maleimide-based Michael’s addition and azide-mediated copper-free click reaction. Combined with the advantages of CVMI, such as rapidness, reproducibility, and ability to be used in adult animals, CPPs improve the applicability of the CVMI technique to deeper parts of the central nervous system tissues. PMID:25894337

  15. Incorporation of Naked Peptide Nucleic Acids into Liposomes Leads to Fast and Efficient Delivery.

    PubMed

    Avitabile, Concetta; Accardo, Antonella; Ringhieri, Paola; Morelli, Giancarlo; Saviano, Michele; Montagner, Giulia; Fabbri, Enrica; Gallerani, Eleonora; Gambari, Roberto; Romanelli, Alessandra

    2015-08-19

    The delivery of peptide nucleic acids (PNAs) to cells is a very challenging task. We report here that a liposomal formulation composed of egg PC/cholesterol/DSPE-PEG2000 can be loaded, according to different encapsulation techniques, with PNA or fluorescent PNA oligomers. PNA loaded liposomes efficiently and quickly promote the uptake of a PNA targeting the microRNA miR-210 in human erythroleukemic K562 cells. By using this innovative delivery system for PNA, down-regulation of miR-210 is achieved at a low PNA concentration. PMID:26176882

  16. Efficient Covalent Bond Formation in Gas-Phase Peptide-Peptide Ion Complexes with the Photoleucine Stapler.

    PubMed

    Shaffer, Christopher J; Andrikopoulos, Prokopis C; Řezáč, Jan; Rulíšek, Lubomír; Tureček, František

    2016-04-01

    Noncovalent complexes of hydrophobic peptides GLLLG and GLLLK with photoleucine (L*) tagged peptides G(L* n L m )K (n = 1,3, m = 2,0) were generated as singly charged ions in the gas phase and probed by photodissociation at 355 nm. Carbene intermediates produced by photodissociative loss of N2 from the L* diazirine rings underwent insertion into X-H bonds of the target peptide moiety, forming covalent adducts with yields reaching 30%. Gas-phase sequencing of the covalent adducts revealed preferred bond formation at the C-terminal residue of the target peptide. Site-selective carbene insertion was achieved by placing the L* residue in different positions along the photopeptide chain, and the residues in the target peptide undergoing carbene insertion were identified by gas-phase ion sequencing that was aided by specific (13)C labeling. Density functional theory calculations indicated that noncovalent binding to GL*L*L*K resulted in substantial changes of the (GLLLK + H)(+) ground state conformation. The peptide moieties in [GL*L*LK + GLLLK + H](+) ion complexes were held together by hydrogen bonds, whereas dispersion interactions of the nonpolar groups were only secondary in ground-state 0 K structures. Born-Oppenheimer molecular dynamics for 100 ps trajectories of several different conformers at the 310 K laboratory temperature showed that noncovalent complexes developed multiple, residue-specific contacts between the diazirine carbons and GLLLK residues. The calculations pointed to the substantial fluidity of the nonpolar side chains in the complexes. Diazirine photochemistry in combination with Born-Oppenheimer molecular dynamics is a promising tool for investigations of peptide-peptide ion interactions in the gas phase. Graphical Abstract ᅟ. PMID:26817657

  17. Efficient Covalent Bond Formation in Gas-Phase Peptide-Peptide Ion Complexes with the Photoleucine Stapler

    NASA Astrophysics Data System (ADS)

    Shaffer, Christopher J.; Andrikopoulos, Prokopis C.; Řezáč, Jan; Rulíšek, Lubomír; Tureček, František

    2016-04-01

    Noncovalent complexes of hydrophobic peptides GLLLG and GLLLK with photoleucine (L*) tagged peptides G(L* n L m )K (n = 1,3, m = 2,0) were generated as singly charged ions in the gas phase and probed by photodissociation at 355 nm. Carbene intermediates produced by photodissociative loss of N2 from the L* diazirine rings underwent insertion into X-H bonds of the target peptide moiety, forming covalent adducts with yields reaching 30%. Gas-phase sequencing of the covalent adducts revealed preferred bond formation at the C-terminal residue of the target peptide. Site-selective carbene insertion was achieved by placing the L* residue in different positions along the photopeptide chain, and the residues in the target peptide undergoing carbene insertion were identified by gas-phase ion sequencing that was aided by specific 13C labeling. Density functional theory calculations indicated that noncovalent binding to GL*L*L*K resulted in substantial changes of the (GLLLK + H)+ ground state conformation. The peptide moieties in [GL*L*LK + GLLLK + H]+ ion complexes were held together by hydrogen bonds, whereas dispersion interactions of the nonpolar groups were only secondary in ground-state 0 K structures. Born-Oppenheimer molecular dynamics for 100 ps trajectories of several different conformers at the 310 K laboratory temperature showed that noncovalent complexes developed multiple, residue-specific contacts between the diazirine carbons and GLLLK residues. The calculations pointed to the substantial fluidity of the nonpolar side chains in the complexes. Diazirine photochemistry in combination with Born-Oppenheimer molecular dynamics is a promising tool for investigations of peptide-peptide ion interactions in the gas phase.

  18. Peptide modified polymer poly (glycerol- dodecanedioate co-fumarate) for efficient control of motor neuron differentiation.

    PubMed

    Dai, Xizi; Huang, Yen-Chih; Leichner, Jared; Nair, Madhvan; Lin, Wei-Chiang; Li, Chen-Zhong

    2015-12-01

    Neural tissue engineering is one of the most promising approaches for healing nerve damage, which bypasses the limits of contemporary conventional treatments. In a previous study, we developed a fibrous scaffold via electrospinning poly (glycerol dodecanedioate) (PGD) and gelatin that mimics the structure of a native extracellular matrix (ECM) for soft tissue engineering application. In this study, fumaric acid (FA) was incorporated into the PGD synthesis process, which produced a PGD derivative referred to as poly (glycerol dodecanedioate co-fumarate) (PGDF). This introduced a new functional group, a double bond, into the polymer thus providing new modification possibilities. Arg-Gly-Asp-Cys (RGDC) and laminin peptides were chosen as biomolecules to modify the fiber and facilitate cell attachment and differentiation efficiency. The release of FA into the medium was quantified to investigate the bioreactivity of the derived scaffolds. In combination with UV crosslinking, the developed PGDF fiber mats were able to withstand degradation processes for up to 2 months, which ensures that neural tissue engineering applications are viable. Cell viability and motor neuron differentiation efficiency were demonstrated to be significantly improved with the addition of FA, RGDC and laminin peptides. PMID:26584592

  19. N-triazinylammonium tetrafluoroborates. A new generation of efficient coupling reagents useful for peptide synthesis.

    PubMed

    Kamiński, Zbigniew J; Kolesińska, Beata; Kolesińska, Justyna; Sabatino, Giuseppina; Chelli, Mario; Rovero, Paolo; Błaszczyk, Michał; Główka, Marek L; Papini, Anna Maria

    2005-12-01

    A new generation of triazine-based coupling reagents (TBCRs), designed according to the concept of "superactive esters", was obtained by treatment of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium (DMTMM) chloride with lithium or silver tetrafluoroborate. The structure of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium tetrafluoroborate was confirmed by X-ray diffraction. Activation of carboxylic acids by using this reagent proceeds via triazine "superactive ester". The coupling reagent was successfully used for the synthesis of Z-, Boc-, and Fmoc-protected dipeptides derived from natural and unnatural sterically hindered amino acids and for fragment condensation, in 80-100% yield and with high enantiomeric purity. The manual SPPS of the ACP(65-74) peptide fragment (H-Val-Gln-Ala-Ala-Ile-Asp-Tyr-Ile-Asn-Gly-OH) proceeded significantly faster than with TBTU or HATU, as well as the automated SPPS of the same fragment gave a purer product than by using TBTU or PyBOP. The reagent was also demonstrated to be efficient in on-resin head-to-tail cyclization of constrained cyclopeptides, in SPPS synthesis of Aib peptides, and in the synthesis of esters from appropriate acids, alcohols, and phenols. The high efficiency and versatility of this new generation of TBCRs confirm, for the first time, the usefulness of the concept of "superactive esters" in rational design of the structure of coupling reagents. PMID:16316237

  20. A Peptide-based Vector for Efficient Gene Transfer In Vitro and In Vivo

    PubMed Central

    Lehto, Taavi; Simonson, Oscar E; Mäger, Imre; Ezzat, Kariem; Sork, Helena; Copolovici, Dana-Maria; Viola, Joana R; Zaghloul, Eman M; Lundin, Per; Moreno, Pedro MD; Mäe, Maarja; Oskolkov, Nikita; Suhorutšenko, Julia; Smith, CI Edvard; Andaloussi, Samir EL

    2011-01-01

    Finding suitable nonviral delivery vehicles for nucleic acid–based therapeutics is a landmark goal in gene therapy. Cell-penetrating peptides (CPPs) are one class of delivery vectors that has been exploited for this purpose. However, since CPPs use endocytosis to enter cells, a large fraction of peptides remain trapped in endosomes. We have previously reported that stearylation of amphipathic CPPs, such as transportan 10 (TP10), dramatically increases transfection of oligonucleotides in vitro partially by promoting endosomal escape. Therefore, we aimed to evaluate whether stearyl-TP10 could be used for the delivery of plasmids as well. Our results demonstrate that stearyl-TP10 forms stable nanoparticles with plasmids that efficiently enter different cell-types in a ubiquitous manner, including primary cells, resulting in significantly higher gene expression levels than when using stearyl-Arg9 or unmodified CPPs. In fact, the transfection efficacy of stearyl-TP10 almost reached the levels of Lipofectamine 2000 (LF2000), however, without any of the observed lipofection-associated toxicities. Most importantly, stearyl-TP10/plasmid nanoparticles are nonimmunogenic, mediate efficient gene delivery in vivo, when administrated intramuscularly (i.m.) or intradermally (i.d.) without any associated toxicity in mice. PMID:21343913

  1. Functionalization with C-terminal cysteine enhances transfection efficiency of cell-penetrating peptides through dimer formation

    SciTech Connect

    Amand, Helene L.

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Reversible CPP dimerisation is a simple yet efficient strategy to improve delivery. Black-Right-Pointing-Pointer Dimer formation enhances peptiplex stability, resulting in increased transfection. Black-Right-Pointing-Pointer By dimerisation, the CPP EB1 even gain endosomal escape properties while lowering cytotoxicity. -- Abstract: Cell-penetrating peptides have the ability to stimulate uptake of macromolecular cargo in mammalian cells in a non-toxic manner and therefore hold promise as efficient and well tolerated gene delivery vectors. Non-covalent peptide-DNA complexes ('peptiplexes') enter cells via endocytosis, but poor peptiplex stability and endosomal entrapment are considered as main barriers to peptide-mediated delivery. We explore a simple, yet highly efficient, strategy to improve the function of peptide-based vectors, by adding one terminal cysteine residue. This allows the peptide to dimerize by disulfide bond formation, increasing its affinity for nucleic acids by the 'chelate effect' and, when the bond is reduced intracellularly, letting the complex dissociate to deliver the nucleic acid. By introducing a single C-terminal cysteine in the classical CPP penetratin and the penetratin analogs PenArg and EB1, we show that this minor modification greatly enhances the transfection capacity for plasmid DNA in HEK293T cells. We conclude that this effect is mainly due to enhanced thermodynamic stability of the peptiplexes as endosome-disruptive chloroquine is still required for transfection and the effect is more pronounced for peptides with lower inherent DNA condensation capacity. Interestingly, for EB1, addition of one cysteine makes the peptide able to mediate transfection in absence of chloroquine, indicating that dimerisation can also improve endosomal escape properties. Further, the cytotoxicity of EB1 peptiplexes is considerably reduced, possibly due to lower concentration of free peptide dimer resulting from

  2. Construction of a high efficiency copper adsorption bacterial system via peptide display and its application on copper dye polluted wastewater.

    PubMed

    Maruthamuthu, Murali Kannan; Nadarajan, Saravanan Prabhu; Ganesh, Irisappan; Ravikumar, Sambandam; Yun, Hyungdon; Yoo, Ik-Keun; Hong, Soon Ho

    2015-11-01

    For the construction of an efficient copper waste treatment system, a cell surface display strategy was employed. The copper adsorption ability of recombinant bacterial strains displaying three different copper binding peptides were evaluated in LB Luria-Bertani medium (LB), artificial wastewater, and copper phthalocyanine containing textile dye industry wastewater samples. Structural characteristics of the three peptides were also analyzed by similarity-based structure modeling. The best binding peptide was chosen for the construction of a dimeric peptide display and the adsorption ability of the monomeric and dimeric peptide displayed strains were compared. The dimeric peptide displayed strain showed superior copper adsorption in all three tested conditions (LB, artificial wastewater, and textile dye industry wastewater). When the strains were exposed to copper phthalocyanine dye polluted wastewater, the dimeric peptide display [543.27 µmol/g DCW dry cell weight (DCW)] showed higher adsorption of copper when compared with the monomeric strains (243.53 µmol/g DCW). PMID:26219270

  3. Facile Peptides Functionalization of Lanthanide-Based Nanocrystals through Phosphorylation Tethering for Efficient in Vivo NIR-to-NIR Bioimaging.

    PubMed

    Yao, Chi; Wang, Peiyuan; Wang, Rui; Zhou, Lei; El-Toni, Ahmed Mohamed; Lu, Yiqing; Li, Xiaomin; Zhang, Fan

    2016-02-01

    Peptide modification of nanoparticles is a challenging task for bioapplications. Here, we show that noncovalent surface engineering based on ligand exchange of peptides for lanthanide based upconversion and downconversion near-infrared (NIR) luminescent nanoparticles can be efficiently realized by modifying the hydroxyl functional group of a side grafted serine of peptides into a phosphate group (phosphorylation). By using the phosphorylated peptide with the arginine-glycine-aspartic acid (RGD) targeting motifs as typical examples, the modification allows improving the selectivity, sensitivity, and signal-to-noise ratio for the cancer targeting and bioimaging and reducing the toxicity derived from nonspecific interactions of nanoparticles with cells. The in vivo NIR bioimaging signal could even be detected at low injection amounts down to 20 μg per animal. PMID:26750555

  4. Dual Functional Peptide-Driven Nanoparticles for Highly Efficient Glioma-Targeting and Drug Codelivery.

    PubMed

    Kuang, Yuyang; Jiang, Xutao; Zhang, Yu; Lu, Yifei; Ma, Haojun; Guo, Yubo; Zhang, Yujie; An, Sai; Li, Jianfeng; Liu, Lisha; Wu, Yinhao; Liang, Jianying; Jiang, Chen

    2016-05-01

    Compared with peripheral tumors, glioma is very difficult to treat, not only because it has general features of tumor but also because the therapy has been restricted by the brain-blood barrier (BBB). The two main features of tumor growth are angiogenesis and proliferation of tumor cells. RNA interference (RNAi) can downregulate VEGF overexpression to inhibit tumor neovascularization. Meanwhile, doxorubicin (DOX) has been used for cytotoxic chemotherapy to kill tumor cells. Thus, combining RNAi and chemotherapy has been regarded as a potential strategy for cancer treatment. However, the BBB limits the shVEGF-DOX codelivery system to direct into glioma. Here, a smart drug delivery system modified with a dual functional peptide was established, which could target to transferrin receptor (TfR) overexpressing on both the BBB and glioma. It showed that the dual-targeting delivery system had high tumor targeting efficiency in vitro and in vivo. PMID:27058780

  5. An efficient strategy for heterologous expression and purification of active peptide hainantoxin-IV.

    PubMed

    Zhang, Hui; Huang, Peng-Fei; Meng, Er; Li, Wen-Ying; Zhou, Lu; Zhu, Ling-Yun; Wu, Lei; Li, Meng-Jie; Liang, Song-Ping; Zhang, Dong-Yi

    2015-01-01

    Hainantoxin-IV (HNTX-IV) from the venom of the spider Selenocosmia hainana is a potent antagonist that specifically inhibits the tetrodotoxin-sensitive (TTX-S) sodium channels. The toxin peptide consists of 35 amino acids and adopts a typical inhibitory cystine knot (ICK) motif. To obtain adequate HNTX-IV peptides for further insight into the structure-activity relationships of the toxin, a novel strategy including cloning, expression and purification was developed in an E. coli expression system. For this purpose, a seamless restriction-free (RF) cloning method was employed for the construction of an expression vector to avoid introducing unwanted sequences into the target gene. Furthermore, the solubility of recombinant HNTX-IV could be promoted efficiently by the combination of a glutathione S-transferase (GST) tag and a small ubiquitin-related modifier (SUMO) tag. Finally, an affinity-chromatography-free purification strategy was developed by cut-off dialysis tubing combined with trichloroacetic acid (TCA) extraction. Further HPLC purification yielded recombinant, tag-free HNTX-IV with high yield and purity. The molecular weight of recombinant HNTX-IV (rHNTX-IV) is identical to its theoretical value according to Matrix-Assisted Laser Desorption / Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS) analysis. The recombinant toxin has similar activity (IC50 value of 120 nM) on the tetrodotoxin-sensitive (TTX-S) sodium channels in adult rat dorsal root ganglion (DRG) neurons to native toxins. In the report, an efficient and cost-effective strategy for producing rHNTX-IV was developed, which paved the way for the further study of structure-activity relationships of rHNTX-IV and its pharmaceutical applications. PMID:25647561

  6. Rationally Designed Interfacial Peptides Are Efficient In Vitro Inhibitors of HIV-1 Capsid Assembly with Antiviral Activity

    PubMed Central

    Bocanegra, Rebeca; Nevot, María; Doménech, Rosa; López, Inmaculada; Abián, Olga; Rodríguez-Huete, Alicia; Cavasotto, Claudio N.; Velázquez-Campoy, Adrián; Gómez, Javier; Martínez, Miguel Ángel; Neira, José Luis; Mateu, Mauricio G.

    2011-01-01

    Virus capsid assembly constitutes an attractive target for the development of antiviral therapies; a few experimental inhibitors of this process for HIV-1 and other viruses have been identified by screening compounds or by selection from chemical libraries. As a different, novel approach we have undertaken the rational design of peptides that could act as competitive assembly inhibitors by mimicking capsid structural elements involved in intersubunit interfaces. Several discrete interfaces involved in formation of the mature HIV-1 capsid through polymerization of the capsid protein CA were targeted. We had previously designed a peptide, CAC1, that represents CA helix 9 (a major part of the dimerization interface) and binds the CA C-terminal domain in solution. Here we have mapped the binding site of CAC1, and shown that it substantially overlaps with the CA dimerization interface. We have also rationally modified CAC1 to increase its solubility and CA-binding affinity, and designed four additional peptides that represent CA helical segments involved in other CA interfaces. We found that peptides CAC1, its derivative CAC1M, and H8 (representing CA helix 8) were able to efficiently inhibit the in vitro assembly of the mature HIV-1 capsid. Cocktails of several peptides, including CAC1 or CAC1M plus H8 or CAI (a previously discovered inhibitor of CA polymerization), or CAC1M+H8+CAI, also abolished capsid assembly, even when every peptide was used at lower, sub-inhibitory doses. To provide a preliminary proof that these designed capsid assembly inhibitors could eventually serve as lead compounds for development of anti-HIV-1 agents, they were transported into cultured cells using a cell-penetrating peptide, and tested for antiviral activity. Peptide cocktails that drastically inhibited capsid assembly in vitro were also able to efficiently inhibit HIV-1 infection ex vivo. This study validates a novel, entirely rational approach for the design of capsid assembly

  7. Efficient entry of cell-penetrating peptide nona-arginine into adherent cells involves a transient increase in intracellular calcium

    PubMed Central

    Melikov, Kamran; Hara, Ann; Yamoah, Kwabena; Zaitseva, Elena; Zaitsev, Eugene; Chernomordik, Leonid V.

    2015-01-01

    Understanding the mechanism of entry of cationic peptides such as nona-arginine (R9) into cells remains an important challenge to their use as efficient drug-delivery vehicles. At nanomolar to low micromolar R9 concentrations and at physiological temperature, peptide entry involves endocytosis. In contrast, at a concentration ≥10 μM, R9 induces a very effective non-endocytic entry pathway specific for cationic peptides. We found that a similar entry pathway is induced at 1–2 μM concentrations of R9 if peptide application is accompanied by a rapid temperature drop to 15°C. Both at physiological and at sub-physiological temperatures, this entry mechanism was inhibited by depletion of the intracellular ATP pool. Intriguingly, we found that R9 at 10–20 μM and 37°C induces repetitive spikes in intracellular Ca2+ concentration. This Ca2+ signalling correlated with the efficiency of the peptide entry. Pre-loading cells with the Ca2+ chelator BAPTA (1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid) inhibited both Ca2+ spikes and peptide entry, suggesting that an increase in intracellular Ca2+ precedes and is required for peptide entry. One of the hallmarks of Ca2+ signalling is a transient cell-surface exposure of phosphatidylserine (PS), a lipid normally residing only in the inner leaflet of the plasma membrane. Blocking the accessible PS with the PS-binding domain of lactadherin strongly inhibited non-endocytic R9 entry, suggesting the importance of PS externalization in this process. To conclude, we uncovered a novel mechanistic link between calcium signalling and entry of cationic peptides. This finding will enhance our understanding of the properties of plasma membrane and guide development of future drug-delivery vehicles. PMID:26272944

  8. Membrane penetrating peptides greatly enhance baculovirus transduction efficiency into mammalian cells

    SciTech Connect

    Chen, Hong-Zhang; Wu, Carol P.; Chao, Yu-Chan; Liu, Catherine Yen-Yen

    2011-02-11

    Research highlights: {yields} Ligation of CTP with GP64 enhances baculovirus transduction into mammalian cells. {yields} Fusion of PTD with VP39 enhances baculovirus transduction into mammalian cells. {yields} CTP and PTD-carrying viruses improve the transduction of co-transduced baculoviruses. {yields} Virus entry and gene expression can be separate events in different cell types. -- Abstract: The baculovirus group of insect viruses is widely used for foreign gene introduction into mammalian cells for gene expression and protein production; however, the efficiency of baculovirus entry into mammalian cells is in general still low. In this study, two recombinant baculoviruses were engineered and their ability to improve viral entry was examined: (1) cytoplasmic transduction peptide (CTP) was fused with baculovirus envelope protein, GP64, to produce a cytoplasmic membrane penetrating baculovirus (vE-CTP); and (2) the protein transduction domain (PTD) of HIV TAT protein was fused with the baculovirus capsid protein VP39 to form a nuclear membrane penetrating baculovirus (vE-PTD). Transduction experiments showed that both viruses had better transduction efficiency than vE, a control virus that only expresses EGFP in mammalian cells. Interestingly, vE-CTP and vE-PTD were also able to improve the transduction efficiency of a co-transduced baculovirus, resulting in higher levels of gene expression. Our results have described new routes to further enhance the development of baculovirus as a tool for gene delivery into mammalian cells.

  9. Novel Efficient Cell-Penetrating, Peptide-Mediated Strategy for Enhancing Telomerase Inhibitor Oligonucleotides.

    PubMed

    Muñoz-Alarcón, Andrés; Eriksson, Jonas; Langel, Ülo

    2015-12-01

    At present, there are several therapeutic approaches for targeting telomerase in tumors. One in particular, currently undergoing clinical trials, is based on synthetic lipid-modified oligonucleotide antagonists aimed at inhibiting the ribonucleoprotein subunit of human telomerase. However, while enabling efficient uptake, the lipid modifications reduce the potency of the therapeutic oligonucleotides compared to nonmodified oligonucleotides. Moreover, lipid modification may increase oligonucleotide accumulation in the liver causing undesirable hepatotoxicity. Noncovalent complexation strategies for cell-penetrating peptide (CPP)-mediated delivery present an option to circumvent the need for potency-reducing modifications, while allowing for a highly efficient uptake, and could significantly improve the efficiency of telomerase-targeting cancer therapeutics. Delivery of a nonlipidated locked nucleic acid/2'-O-methyl mixmer significantly inhibits the telomerase activity in treated HeLa cells. The inhibitory effect was further improved through addition of a CPP. Furthermore, calculated IC50-values for the oligonucleotide delivered by CPPs into HeLa cells are more than 20 times lower than telomerase inhibitor Imetelstat, currently undergoing clinical trials. These results emphasize the potential of CPP-mediated delivery of future pharmaceuticals and provide means by which to enhance an already promising therapeutic strategy for cancer treatment. PMID:26479411

  10. In Vitro Efficient Transfection by CM18-Tat11 Hybrid Peptide: A New Tool for Gene-Delivery Applications

    PubMed Central

    Salomone, Fabrizio; Cardarelli, Francesco; Signore, Giovanni; Boccardi, Claudia; Beltram, Fabio

    2013-01-01

    Cell penetrating peptides (CPPs) are actively researched as non-viral molecular carriers for the controlled delivery of nucleic acids into cells, but widespread application is severely hampered by their trapping into endosomes. Here we show that the recently introduced endosomolytic CM18-Tat11 hybrid peptide (KWKLFKKIGAVLKVLTTG-YGRKKRRQRRR, residues 1-7 of Cecropin-A, 2-12 of Melittin, and 47-57 of HIV-1 Tat protein) can be exploited to obtain a self-assembled peptide-DNA vector which maintains the CM18-Tat11 ability to enter cells and destabilize vesicular membranes, concomitantly yielding high DNA transfection efficiency with no detectable cytotoxic effects. Different peptide-DNA stoichiometric ratios were tested to optimize vector size, charge, and stability characteristics. The transfection efficiency of selected candidates is quantitatively investigated by the luciferase-reporter assay. Vector intracellular trafficking is monitored in real time and in live cells by confocal microscopy. In particular, fluorescence resonant energy transfer (FRET) between suitably-labeled peptide and DNA modules was exploited to monitor complex disassembly during endocytosis, and this process is correlated to transfection timing and efficiency. We argue that these results can open the way to the rational design and application of CM18-Tat11–based systems for gene-delivery purposes. PMID:23922923

  11. A new recombinant pituitary adenylate cyclase-activating peptide-derived peptide efficiently promotes glucose uptake and glucose-dependent insulin secretion.

    PubMed

    Ma, Yi; Luo, Tianjie; Xu, Wenna; Ye, Zulu; Hong, An

    2012-11-01

    The recombinant peptide, DBAYL, a promising therapeutic peptide for type 2 diabetes, is a new, potent, and highly selective agonist for VPAC2 generated through site-directed mutagenesis based on sequence alignments of pituitary adenylate cyclase-activating peptide (PACAP), vasoactive intestinal peptide (VIP), and related analogs. The recombinant DBAYL was used to evaluate its effect and mechanism in blood glucose metabolism and utilization. As much as 28.9 mg recombinant DBAYL peptide with purity over 98% can be obtained from 1 l of Luria-Bertani medium culture by the method established in this study and the prepared DBAYL with four mutations (N10Q, V18L, N29Q, and M added to the N-terminal) were much more stable than BAY55-9837. The half-life of recombinant DBAYL was about 25 folds compared with that of BAY55-9837 in vitro. The bioactivity assay of DBAYL showed that it displaced [(125)I]PACAP38 and [(125)I]VIP from VPAC2 with a half-maximal inhibitory concentration of 48.4 ± 6.9 and 47.1 ± 4.9 nM, respectively, which were significantly lower than that of BAY55-9837, one established VPAC2 agonists. DBAYL enhances the cAMP accumulation in CHO cells expressing human VPAC2 with a half-maximal stimulatory concentration (EC(50)) of 0.68 nM, whereas the receptor potency of DBAYL at human VPAC1 (EC(50) of 737 nM) was only 1/1083 of that at human VPAC2, and DBAYL had no activity toward human PAC1 receptor. Western blot analysis of the key proteins of insulin receptor signaling pathway: insulin receptor substrate 1 (IRS-1) and glucose transporter 4 (GLUT4) indicated that the DBAYL could significantly induce the insulin-stimulated IRS-1 and GLUT4 expression more efficiently than BAY55-9837 and VIP in adipocytes. Compared with BAY55-9837 and PACAP38, the recombinant peptide DBAYL can more efficiently promote insulin release and decrease plasma glucose level in Institute of Cancer Research (ICR) mice. These results suggested that DBAYL could efficiently improve glucose

  12. Stearylated antimicrobial peptide [D]-K6L9 with cell penetrating property for efficient gene transfer.

    PubMed

    Zhang, Wei; Song, Jingjing; Liang, Ranran; Zheng, Xin; Chen, Jianbo; Li, Guolin; Zhang, Bangzhi; Wang, Kairong; Yan, Xiang; Wang, Rui

    2013-08-01

    Stearyl-cell penetrating peptides (CPPs) have been proved to be efficient nonviral gene vectors. Due to the similarities between antimicrobial peptides and CPPs, we constructed a novel type of gene vectors by introducing stearyl moiety to the N-terminus of antimicrobial peptide [D]-K6L9. In this study, stearyl-[D]-K6L9 delivered plasmids into cells by clathrin- and caveolin-mediated endocytosis. Gratifyingly, stearyl-[D]-K6L9 exhibited high transfection efficiency and almost reached the level of Lipofectamine 2000. Taken together, the combination of the stearyl moiety with [D]-K6L9 provides a novel framework for the development of excellent nonviral gene vectors. PMID:23727033

  13. Receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient delivery system for MRTF silencing in conjunctival fibrosis

    NASA Astrophysics Data System (ADS)

    Yu-Wai-Man, Cynthia; Tagalakis, Aristides D.; Manunta, Maria D.; Hart, Stephen L.; Khaw, Peng T.

    2016-02-01

    There is increasing evidence that the Myocardin-related transcription factor/Serum response factor (MRTF/SRF) pathway plays a key role in fibroblast activation and that knocking down MRTF can lead to reduced scarring and fibrosis. Here, we have developed a receptor-targeted liposome-peptide-siRNA nanoparticle as a non-viral delivery system for MRTF-B siRNA in conjunctival fibrosis. Using 50 nM siRNA, the MRTF-B gene was efficiently silenced by 76% and 72% with LYR and LER nanoparticles, respectively. The silencing efficiency was low when non-targeting peptides or siRNA alone or liposome-siRNA alone were used. LYR and LER nanoparticles also showed higher silencing efficiency than PEGylated LYR-P and LER-P nanoparticles. The nanoparticles were not cytotoxic using different liposomes, targeting peptides, and 50 nM siRNA. Three-dimensional fibroblast-populated collagen matrices were also used as a functional assay to measure contraction in vitro, and showed that MRTF-B LYR nanoparticles completely blocked matrix contraction after a single transfection treatment. In conclusion, this is the first study to develop and show that receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient and safe non-viral siRNA delivery system that could be used to prevent fibrosis after glaucoma filtration surgery and other contractile scarring conditions in the eye.

  14. Receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient delivery system for MRTF silencing in conjunctival fibrosis.

    PubMed

    Yu-Wai-Man, Cynthia; Tagalakis, Aristides D; Manunta, Maria D; Hart, Stephen L; Khaw, Peng T

    2016-01-01

    There is increasing evidence that the Myocardin-related transcription factor/Serum response factor (MRTF/SRF) pathway plays a key role in fibroblast activation and that knocking down MRTF can lead to reduced scarring and fibrosis. Here, we have developed a receptor-targeted liposome-peptide-siRNA nanoparticle as a non-viral delivery system for MRTF-B siRNA in conjunctival fibrosis. Using 50 nM siRNA, the MRTF-B gene was efficiently silenced by 76% and 72% with LYR and LER nanoparticles, respectively. The silencing efficiency was low when non-targeting peptides or siRNA alone or liposome-siRNA alone were used. LYR and LER nanoparticles also showed higher silencing efficiency than PEGylated LYR-P and LER-P nanoparticles. The nanoparticles were not cytotoxic using different liposomes, targeting peptides, and 50 nM siRNA. Three-dimensional fibroblast-populated collagen matrices were also used as a functional assay to measure contraction in vitro, and showed that MRTF-B LYR nanoparticles completely blocked matrix contraction after a single transfection treatment. In conclusion, this is the first study to develop and show that receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient and safe non-viral siRNA delivery system that could be used to prevent fibrosis after glaucoma filtration surgery and other contractile scarring conditions in the eye. PMID:26905457

  15. Efficient Microscale Basic Reverse Phase Peptide Fractionation for Global and Targeted Proteomics.

    PubMed

    Lee, Hyoung-Joo; Kim, Hye-Jung; Liebler, Daniel C

    2016-07-01

    Analysis of small biological samples would benefit from an efficient microscale fractionation strategy that minimizes sample handling, transfer steps, and accompanying losses. Here we describe a microscale basic reverse phase liquid chromatographic (bRPLC) fractionation method that offers high reproducibility and efficiency for peptide mixtures from small (5-20 μg) samples. We applied our platform to detect differentially expressed proteins from lung tumor cell lines that are sensitive (11-18) and resistant (11-18R) to the tyrosine kinase inhibitor erlotinib. Label-free analyses of 5-20 μg samples yielded identifications of approximately 3,200 to 4,000 proteins with coefficients of variation of 1.9-8.9% in replicate analyses. iTRAQ analyses produced similar protein inventories. Label-free and iTRAQ analyses displayed high concordance in identifications of proteins differentially expressed in 11-18 and 11-18R cells. Micro-bRPLC fractionation of cell proteomes increased sensitivity by an average of 4.5-fold in targeted quantitation using parallel reaction monitoring for three representative receptor tyrosine kinases (EGFR, PDGFRA, and BMX), which are present at low abundance in 11-18 and 11-18R cells. These data illustrate the broad utility of micro-bRPLC fractionation for global and targeted proteomic analyses. Data are available through Proteome eXchange Accession PXD003604. PMID:27255222

  16. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent

    NASA Astrophysics Data System (ADS)

    Liu, Lihong; Xu, Kaijin; Wang, Huaying; Jeremy Tan, P. K.; Fan, Weimin; Venkatraman, Subbu S.; Li, Lanjuan; Yang, Yi-Yan

    2009-07-01

    Antimicrobial cationic peptides are of interest because they can combat multi-drug-resistant microbes. Most peptides form α-helices or β-sheet-like structures that can insert into and subsequently disintegrate negatively charged bacterial cell surfaces. Here, we show that a novel class of core-shell nanoparticles formed by self-assembly of an amphiphilic peptide have strong antimicrobial properties against a range of bacteria, yeasts and fungi. The nanoparticles show a high therapeutic index against Staphylococcus aureus infection in mice and are more potent than their unassembled peptide counterparts. Using Staphylococcus aureus-infected meningitis rabbits, we show that the nanoparticles can cross the blood-brain barrier and suppress bacterial growth in infected brains. Taken together, these nanoparticles are promising antimicrobial agents that can be used to treat brain infections and other infectious diseases.

  17. Coupling of importin beta binding peptide on plasmid DNA: transfection efficiency is increased by modification of lipoplex's physico-chemical properties

    PubMed Central

    Carrière, Marie; Escriou, Virginie; Savarin, Aline; Scherman, Daniel

    2003-01-01

    Background Non-viral vectors for gene transfer are less immunogenic than viral vectors but also less efficient. Significant effort has focused on enhancing non-viral gene transfer efficiency by increasing nuclear import of plasmid DNA, particularly by coupling nuclear localization peptidic sequences to plasmid DNA. Results We have coupled a 62-aminoacid peptide derived from hSRP1α importin beta binding domain, called the IBB peptide to plasmid DNA by using the heterobifunctional linker N-(4-azido-2,3,5,6 tetrafluorobenzyl)-6-maleimidyl hexanamide (TFPAM-6). When covalently coupled to plasmid DNA, IBB peptide did not increase the efficiency of cationic lipid mediated transfection. The IBB peptide was still able to interact with its nuclear import receptor, importin β, but non-specifically. However, we observed a 20-fold increase in reporter gene expression with plasmid DNA / IBB peptide complexes under conditions of inefficient transfection. In which case, IBB was associated with plasmid DNA through self assembling ionic interaction. Conclusions The improvement of transfection activity was not due to an improved nuclear import of DNA, but rather by the modification of physicochemical properties of IBB peptide / plasmid complexes. IBB peptide increased lipoplex size and these larger complexes were more efficient for gene transfer. PMID:12969505

  18. Use of lipolanthionine peptide, a toll-like receptor 2 inhibitor, enhances transdermal delivery efficiency

    PubMed Central

    CHEN, BIN; LIU, DA-LIE; PAN, WEN-YAN; YANG, XIAO-HUI; SHOU, JIA-BAO; WU, JU-HUA; MAO, QING-LONG; WANG, JIA

    2014-01-01

    The transdermal delivery system (TDS) is able to obtain a systemic therapeutic effect by administration through the skin, which has low side effects and is able to maintain a sustained blood concentration. However, due to the barrier presented by the stratum corneum, numerous drugs have poor percutaneous permeability. Therefore, the improvement of skin permeability is key to TDS. The main method of promoting transdermal absorption is through the usage of penetration enhancers. Dimethyl sulfoxide (DMSO) is a commonly used penetration enhancer, which has anti-inflammatory analgesic effects and is able to penetrate the skin. Retinoic acid (RA) and lipolanthionine peptide (LP) may also benefit the permeation efficiency of TDS. Therefore, the present study examined the function of DMSO, RA and LP as penetration enhancers in TDS. Firstly, the optimum concentration of DMSO was confirmed by detecting the expression of the LacZ gene in vitro. Secondly, different combinations of LP, RA and DMSO were applied to mouse skin to analyze the penetration enhancer combination with the greatest efficacy. All the animals were divided into five groups: The RA + LP + DMSO + pORF-LacZ group, the RA + DMSO + pORF-LacZ group, the LP + DMSO + pORF-LacZ group, the DMSO + pORF-LacZ group and the control group. Skin was soaked in combinations of LP, RA and DMSO for seven days and then the pORF-LacZ plasmids were daubed onto the skin once daily three days. On the 11th day, all the animals were sacrificed by cervical dislocation and the skin and blood samples were collected. The blood samples were used to detect the expression of the LacZ gene by quantitative polymerase chain reaction and the skin samples were used to detect the expression of claudin-4 and zonula occluden-1 (ZO-1) proteins by immunohistochemistry and western blot analysis. The results demonstrated that the combination of LP, RA and DMSO exhibited the greatest transdermal delivery efficiency, which verified that RA and LP were

  19. Efficient 18F-Labeling of Large 37-Amino Acid pHLIP Peptide Analogues and their Biological Evaluation

    PubMed Central

    Daumar, Pierre; Wanger-Baumann, Cindy A.; Pillarsetty, NagaVaraKishore; Fabrizio, Laura; Carlin, Sean D.; Andreev, Oleg A.; Reshetnyak, Yana K.; Lewis, Jason S.

    2012-01-01

    Solid tumors often develop an acidic microenvironment, which plays a critical role in tumor progression and is associated with increased level of invasion and metastasis. The 37-residue pH (low) insertion peptide (pHLIP®) is under study as an imaging platform because of its unique ability to insert into cell membranes at a low extracellular pH (pHe<7). Labeling of peptides with [18F]-fluorine is usually performed via prosthetic groups using chemoselective coupling reactions. One of the most successful procedures involves the alkyne-azide copper(I) catalyzed cycloaddition (CuAAC). However, none of the known “click” methods have been applied to peptides as large as pHLIP. We designed a novel prosthetic group and extended the use of the CuAAC “click chemistry” for the simple and efficient 18F-labeling of large peptides. For the evaluation of this labeling approach, a D-amino acid analogue of WT-pHLIP and a L-amino acid control peptide K-pHLIP, both functionalized at the N-terminus with 6-azidohexanoic acid, were used. The novel 6-[18F]fluoro-2-ethynylpyridine prosthetic group, was obtained via nucleophilic substitution on the corresponding bromo-precursor after 10 min at 130 °C with a radiochemical yield of 27.5 ± 6.6% (decay corrected) with high radiochemical purity ≥ 98%. The subsequent CuI catalyzed “click” reaction with the azido functionalized pHLIP peptides was quantitative within 5 min at 70 °C in a mixture of water and ethanol using Cu-acetate and sodium L-ascorbate. [18F]-D-WT-pHLIP and [18F]-L-K-pHLIP were obtained with total radiochemical yields of 5–20% after HPLC purification. The total reaction time was only 85 min including formulation. In vitro stability tests revealed high stability of the [18F]-D-WT-pHLIP in human and mouse plasma after 120 min, with the parent tracer remaining intact at 65 and 85%, respectively. PET imaging and biodistribution studies in LNCaP and PC-3 xenografted mice with the [18F]-D-WT-pHLIP and the negative

  20. Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase.

    PubMed

    Harris, Karen S; Durek, Thomas; Kaas, Quentin; Poth, Aaron G; Gilding, Edward K; Conlan, Brendon F; Saska, Ivana; Daly, Norelle L; van der Weerden, Nicole L; Craik, David J; Anderson, Marilyn A

    2015-01-01

    Cyclotides are diverse plant backbone cyclized peptides that have attracted interest as pharmaceutical scaffolds, but fundamentals of their biosynthetic origin remain elusive. Backbone cyclization is a key enzyme-mediated step of cyclotide biosynthesis and confers a measure of stability on the resultant cyclotide. Furthermore, cyclization would be desirable for engineered peptides. Here we report the identification of four asparaginyl endopeptidases (AEPs), proteases implicated in cyclization, from the cyclotide-producing plant Oldenlandia affinis. We recombinantly express OaAEP1b and find it functions preferably as a cyclase by coupling C-terminal cleavage of propeptide substrates with backbone cyclization. Interestingly, OaAEP1b cannot cleave at the N-terminal site of O. affinis cyclotide precursors, implicating additional proteases in cyclotide biosynthesis. Finally, we demonstrate the broad utility of this enzyme by cyclization of peptides unrelated to cyclotides. We propose that recombinant OaAEP1b is a powerful tool for use in peptide engineering applications where increased stability of peptide products is desired. PMID:26680698

  1. α-Enolase-binding peptide enhances drug delivery efficiency and therapeutic efficacy against colorectal cancer.

    PubMed

    Wu, Chien-Hsun; Kuo, Yi-Huei; Hong, Ruey-Long; Wu, Han-Chung

    2015-06-01

    Colorectal cancer is one of the most commonly diagnosed cancers and a leading cause of cancer mortality worldwide. Current treatment for colorectal cancer results in only limited success, and more effective therapeutic approaches are thus urgently needed. The development of new methods for early detection and effective treatments for cancer is contingent on the identification of biomarkers on the surface of cancer cells, as well as isolation of tumor-specific ligands with high binding affinity to such biomarkers. In vitro biopanning of a phage-displayed peptide library was used to identify specific peptides binding to human colorectal carcinoma cells. The targeting peptide pHCT74 showed the greatest potential for drug delivery in both in vitro and in vivo studies. The use of biotinylated peptides combined with an affinity trapping method and liquid chromatography-tandem mass spectrometry identified the target protein for the pHCT74 peptide as α-enolase. In animal model studies, combined pHCT74-conjugated liposomal doxorubicin (pHCT74-LD) and pHCT74-conjugated liposomal vinorelbine (pHCT74-sLV) therapy exhibited an enhanced antitumor effect and markedly extended the survival of mice with human colorectal cancer in subcutaneous and orthotopic models. Our findings indicate that α-enolase-targeted lipid nanoparticles have great potential for application in targeted drug delivery systems for colorectal cancer therapy. PMID:26041708

  2. Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase

    PubMed Central

    Harris, Karen S.; Durek, Thomas; Kaas, Quentin; Poth, Aaron G.; Gilding, Edward K.; Conlan, Brendon F.; Saska, Ivana; Daly, Norelle L.; van der Weerden, Nicole L.; Craik, David J.; Anderson, Marilyn A.

    2015-01-01

    Cyclotides are diverse plant backbone cyclized peptides that have attracted interest as pharmaceutical scaffolds, but fundamentals of their biosynthetic origin remain elusive. Backbone cyclization is a key enzyme-mediated step of cyclotide biosynthesis and confers a measure of stability on the resultant cyclotide. Furthermore, cyclization would be desirable for engineered peptides. Here we report the identification of four asparaginyl endopeptidases (AEPs), proteases implicated in cyclization, from the cyclotide-producing plant Oldenlandia affinis. We recombinantly express OaAEP1b and find it functions preferably as a cyclase by coupling C-terminal cleavage of propeptide substrates with backbone cyclization. Interestingly, OaAEP1b cannot cleave at the N-terminal site of O. affinis cyclotide precursors, implicating additional proteases in cyclotide biosynthesis. Finally, we demonstrate the broad utility of this enzyme by cyclization of peptides unrelated to cyclotides. We propose that recombinant OaAEP1b is a powerful tool for use in peptide engineering applications where increased stability of peptide products is desired. PMID:26680698

  3. Efficient Subcellular Targeting to the Cell Nucleus of Quantum Dots Densely Decorated with a Nuclear Localization Sequence Peptide.

    PubMed

    Maity, Amit Ranjan; Stepensky, David

    2016-01-27

    Organelle-targeted drug delivery can enhance the efficiency of the intracellularly acting drugs and reduce their toxicity. We generated core-shell type CdSe-ZnS quantum dots (QDs) densely decorated with NLS peptidic targeting residues using a 3-stage decoration approach and investigated their endocytosis and nuclear targeting efficiencies. The diameter of the generated QDs increased following the individual decoration stages (16.3, 18.9, and 21.9 nm), the ζ-potential became less negative (-33.2, -17.5, and -11.9 mV), and characteristic changes appeared in the FTIR spectra following decoration with the linker and NLS peptides. Quantitative analysis of the last decoration stage revealed that 37.9% and 33.2% of the alkyne-modified NLS groups that were added to the reaction mix became covalently attached or adsorbed to the QDs surface, respectively. These numbers correspond to 63.6 and 55.7 peptides conjugated or adsorbed to a single QD (the surface density of 42 and 37 conjugated and adsorbed peptides per 1000 nm(2) of the QDs surface), which is higher than in the majority of previous studies that reported decoration efficiencies of formulations intended for nuclear-targeted drug delivery. QDs decorated with NLS peptides undergo more efficient endocytosis, as compared to other investigated QDs formulations, and accumulated to a higher extent in the cell nucleus or in close vicinity to it (11.9%, 14.6%, and 56.1% of the QDs endocytosed by an average cell for the QD-COOH, QD-azide, and QD-NLS formulations, respectively). We conclude that dense decoration of QDs with NLS residues increased their endocytosis and led to their nuclear targeting (preferential accumulation in the cells nuclei or in close vicinity to them). The experimental system and research tools that were used in this study allow quantitative investigation of the mechanisms that govern the QDs nuclear targeting and their dependence on the formulation properties. These findings will contribute to the

  4. Peptide-mediated delivery: an overview of pathways for efficient internalization.

    PubMed

    Pae, Janely; Pooga, Margus

    2014-11-01

    Poor cellular delivery and low bioavailability of novel potent therapeutic molecules continue to remain the bottleneck of modern cancer and gene therapy. Cell-penetrating peptides have provided immense opportunities for the intracellular delivery of bioactive cargos and have led to the first exciting successes in experimental therapy of muscular dystrophies. This review focuses on the mechanisms by which cell-penetrating peptides gain access to the cell interior and deliver cargos. Recent advances in augmenting delivery efficacy and facilitation of endosomal escape of cargo are presented, and the cell-penetrating peptide-mediated delivery of two of the most popular classes of cargo molecules, oligonucleotides and proteins, is analyzed. The arsenal of tools for oligonucleotide delivery has dramatically expanded in the last decade enabling harnessing of cell-surface receptors for targeted delivery. PMID:25491671

  5. An Efficient Method for the In Vitro Production of Azol(in)e-Based Cyclic Peptides**

    PubMed Central

    Houssen, Wael E; Bent, Andrew F; McEwan, Andrew R; Pieiller, Nathalie; Tabudravu, Jioji; Koehnke, Jesko; Mann, Greg; Adaba, Rosemary I; Thomas, Louise; Hawas, Usama W; Liu, Huanting; Schwarz-Linek, Ulrich; Smith, Margaret C M; Naismith, James H; Jaspars, Marcel

    2014-01-01

    Heterocycle-containing cyclic peptides are promising scaffolds for the pharmaceutical industry but their chemical synthesis is very challenging. A new universal method has been devised to prepare these compounds by using a set of engineered marine-derived enzymes and substrates obtained from a family of ribosomally produced and post-translationally modified peptides called the cyanobactins. The substrate precursor peptide is engineered to have a non-native protease cleavage site that can be rapidly cleaved. The other enzymes used are heterocyclases that convert Cys or Cys/Ser/Thr into their corresponding azolines. A macrocycle is formed using a macrocyclase enzyme, followed by oxidation of the azolines to azoles with a specific oxidase. The work is exemplified by the production of 17 macrocycles containing 6–9 residues representing 11 out of the 20 canonical amino acids. PMID:25331823

  6. Protease-catalyzed peptide synthesis using inverse substrates: the influence of reaction conditions on the trypsin acyl transfer efficiency.

    PubMed

    Schellenberger, V; Jakubke, H D; Zapevalova, N P; Mitin, Y V

    1991-06-01

    Benzyloxycarbonyl-L-alanine p-guanidinophenyl ester behaves as a trypsin "inverse substrate," i.e., a cationic center is included in the leaving group instead of being in the acyl moiety. Using this substrate as an acyl donor, trypsin catalyzes the synthesis of peptide bonds that cannot be split by this enzyme. An optimal acyl transfer efficiency was achieved between pH 8 and 9 at 30 degrees C.The addition of as much as 50% cosolvent was shown to be of minor influence on the acyl transfer efficiency, whereas the reaction velocity decreases by more than one order of magnitude. The efficiency of H-Leu-NH(2) and H-Val-NH(2) in deacylation is almost the same for "inverse" and normal type substrates. PMID:18600704

  7. Improved Proteome Coverage by Using High Efficiency Cysteinyl-peptide Enrichment: The Human Mammary Epithelial Cell Proteome

    SciTech Connect

    Liu, Tao; Qian, Weijun; Chen, Wan-Nan U.; Jacobs, Jon M.; Moore, Ronald J.; Anderson, David J.; Gritsenko, Marina A.; Monroe, Matthew E.; Thrall, Brian D.; Camp, David G.; Smith, Richard D.

    2005-04-05

    Automated multidimensional capillary liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been increasingly applied in various large scale proteome profiling efforts. However, comprehensive global proteome analysis remains technically challenging due to issues associated with sample complexity and dynamic range of protein abundances, which is particularly apparent in mammalian biological systems. We report here the application of a high efficiency cysteinyl-peptide enrichment (CPE) approach to the global proteome analysis of human mammary epithelial cells (HMECs) which significantly improved both sequence coverage of protein identifications and the overall proteome coverage. The cysteinyl-peptides were specifically enriched by using a thiol-specific covalent resin, fractionated by strong cation exchange chromatography, and subsequently analyzed by reversed-phase capillary LC-MS/MS. An HMEC tryptic digest without CPE was also fractionated and analyzed under the same conditions for comparison. The combined analyses of HMEC tryptic digests with and without CPE resulted in a total of 14,416 confidently identified peptides covering 4,294 different proteins with an estimated 10% gene coverage of the human geome. By using the high efficiency CPE, an additional 1,096 relatively low abundance proteins were identified, resulting in 34.3% increase in proteome coverage; 1,390 proteomes were observed with increased sequence coverage. Comparative protein distribution analyses revealed that the CPE method is not biased by protein molecular weight, pI, gene location, cellular location, or biological functions. These results demonstrate that the use of the CPE approach provides improved efficiency in comprehensive proteome-wide analyses of highly complex mammalian biological systems.

  8. DNA Subtraction of In Vivo Selected Phage Repertoires for Efficient Peptide Pathology Biomarker Identification in Neuroinflammation Multiple Sclerosis Model

    PubMed Central

    Vargas-Sanchez, Karina; Vekris, Antonios; Petry, Klaus G.

    2016-01-01

    To streamline in vivo biomarker discovery, we developed a suppression subtractive DNA hybridization technique adapted for phage-displayed combinatorial libraries of 12 amino acid peptides (PhiSSH). Physical DNA subtraction is performed in a one-tube-all-reactions format by sequential addition of reagents, producing the enrichment of specific clones of one repertoire. High-complexity phage repertoires produced by in vivo selections in the multiple sclerosis rat model (experimental autoimmune encephalomyelitis, EAE) and matched healthy control rats were used to evaluate the technique. The healthy repertoire served as a physical DNA subtractor from the EAE repertoire to produce the subtraction repertoire. Full next-generation sequencing (NGS) of the three repertoires was performed to evaluate the efficiency of the subtraction technique. More than 96% of the clones common to the EAE and healthy repertoires were absent from the subtraction repertoire, increasing the probability of randomly selecting various specific peptides for EAE pathology to about 70%. Histopathology experiments were performed to confirm the quality of the subtraction repertoire clones, producing distinct labeling of the blood–brain barrier (BBB) affected by inflammation among healthy nervous tissue or the preferential binding to IL1-challenged vs. resting human BBB model. Combining PhiSSH with NGS will be useful for controlled in vivo screening of small peptide combinatorial libraries to discover biomarkers of specific molecular alterations interspersed within healthy tissues. PMID:26917946

  9. Seneca Valley Virus 3Cpro Substrate Optimization Yields Efficient Substrates for Use in Peptide-Prodrug Therapy

    PubMed Central

    Miles, Linde A.; Brennen, W. Nathaniel; Rudin, Charles M.; Poirier, John T.

    2015-01-01

    The oncolytic picornavirus Seneca Valley Virus (SVV-001) demonstrates anti-tumor activity in models of small cell lung cancer (SCLC), but may ultimately need to be combined with cytotoxic therapies to improve responses observed in patients. Combining SVV-001 virotherapy with a peptide prodrug activated by the viral protease 3Cpro is a novel strategy that may increase the therapeutic potential of SVV-001. Using recombinant SVV-001 3Cpro, we measured cleavage kinetics of predicted SVV-001 3Cpro substrates. An efficient substrate, L/VP4 (kcat/KM = 1932 ± 183 M-1s-1), was further optimized by a P2’ N→P substitution yielding L/VP4.1 (kcat/KM = 17446 ± 2203 M-1s-1). We also determined essential substrate amino acids by sequential N-terminal deletion and substitution of amino acids found in other picornavirus genera. A peptide corresponding to the L/VP4.1 substrate was selectively cleaved by SVV-001 3Cpro in vitro and was stable in human plasma. These data define an optimized peptide substrate for SVV-001 3Cpro, with direct implications for anti-cancer therapeutic development. PMID:26069962

  10. The Signal Peptide of a Vacuolar Protein Is Necessary and Sufficient for the Efficient Secretion of a Cytosolic Protein 1

    PubMed Central

    Hunt, Dale C.; Chrispeels, Maarten J.

    1991-01-01

    A cytosolic pea (Pisum sativum) seed albumin (ALB) and a chimeric protein (PHALB) consisting of the signal peptide and first three amino acids of phytohemagglutinin (PHA) and the amino acid sequence of ALB were expressed in parallel suspension cultures of tobacco (Nicotiana tabacum) cells and their intracellular fates examined. PHALB was efficiently secreted by the cells whereas ALB remained intracellular. These experiments show that the information contained in the signal peptide of a vacuolar protein is both necessary and sufficient for efficient secretion, and define secretion as a default or bulk-flow pathway. Entry into the secretory pathway was accompanied by glycosylation and the efficient conversion of the high mannose glycans into complex glycans indicating that transported glycoproteins do not need specific recognition domains for the modifying enzymes in the Golgi. Tunicamycin depressed the accumulation of the unglycosylated polypeptide in the culture medium much less than the accumulation of other glycoproteins. We interpret this as evidence that glycans on proteins that are not normally glycosylated do not have the same function of stabilizing and protecting the polypeptide as on natural glycoproteins. ImagesFigure 2Figure 3Figure 5Figure 6Figure 7Figure 8 PMID:16668149

  11. Efficient Secretion of Recombinant Proteins from Rice Suspension-Cultured Cells Modulated by the Choice of Signal Peptide

    PubMed Central

    Huang, Li-Fen; Tan, Chia-Chun; Yeh, Ju-Fang; Liu, Hsin-Yi; Liu, Yu-Kuo; Ho, Shin-Lon; Lu, Chung-An

    2015-01-01

    Plant-based expression systems have emerged as a competitive platform in the large-scale production of recombinant proteins. By adding a signal peptide, αAmy3sp, the desired recombinant proteins can be secreted outside transgenic rice cells, making them easy to harvest. In this work, to improve the secretion efficiency of recombinant proteins in rice expression systems, various signal peptides including αAmy3sp, CIN1sp, and 33KDsp have been fused to the N-terminus of green fluorescent protein (GFP) and introduced into rice cells to explore the efficiency of secretion of foreign proteins. 33KDsp had better efficiency than αAmy3sp and CIN1sp for the secretion of GFP from calli and suspension-cultured cells. 33KDsp was further applied for the secretion of mouse granulocyte-macrophage colony-stimulating factor (mGM-CSF) from transgenic rice suspension-cultured cells; approximately 76%–92% of total rice-derived mGM-CSF (rmGM-CSF) was detected in the culture medium. The rmGM-CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell line, NSF-60. The extracellular yield of rmGM-CSF reached 31.7 mg/L. Our study indicates that 33KDsp is better at promoting the secretion of recombinant proteins in rice suspension-cultured cell systems than the commonly used αAmy3sp. PMID:26473722

  12. Dual Receptor Recognizing Cell Penetrating Peptide for Selective Targeting, Efficient Intratumoral Diffusion and Synthesized Anti-Glioma Therapy

    PubMed Central

    Liu, Yayuan; Mei, Ling; Xu, Chaoqun; Yu, Qianwen; Shi, Kairong; Zhang, Li; Wang, Yang; Zhang, Qianyu; Gao, Huile; Zhang, Zhirong; He, Qin

    2016-01-01

    Cell penetrating peptides (CPPs) were widely used for drug delivery to tumor. However, the nonselective in vivo penetration greatly limited the application of CPPs-mediated drug delivery systems. And the treatment of malignant tumors is usually followed by poor prognosis and relapse due to the existence of extravascular core regions of tumor. Thus it is important to endue selective targeting and stronger intratumoral diffusion abilities to CPPs. In this study, an RGD reverse sequence dGR was conjugated to a CPP octa-arginine to form a CendR (R/KXXR/K) motif contained tandem peptide R8-dGR (RRRRRRRRdGR) which could bind to both integrin αvβ3 and neuropilin-1 receptors. The dual receptor recognizing peptide R8-dGR displayed increased cellular uptake and efficient penetration ability into glioma spheroids in vitro. The following in vivo studies indicated the active targeting and intratumoral diffusion capabilities of R8-dGR modified liposomes. When paclitaxel was loaded in the liposomes, PTX-R8-dGR-Lip induced the strongest anti-proliferation effect on both tumor cells and cancer stem cells, and inhibited the formation of vasculogenic mimicry channels in vitro. Finally, the R8-dGR liposomal drug delivery system prolonged the medium survival time of intracranial C6 bearing mice by 2.1-fold compared to the untreated group, and achieved an exhaustive anti-glioma therapy including anti-tumor cells, anti-vasculogenic mimicry and anti-brain cancer stem cells. To sum up, all the results demonstrated that R8-dGR was an ideal dual receptor recognizing CPP with selective glioma targeting and efficient intratumoral diffusion, which could be further used to equip drug delivery system for effective glioma therapy. PMID:26877777

  13. On-resin Diels-Alder reaction with inverse electron demand: an efficient ligation method for complex peptides with a varying spacer to optimize cell adhesion.

    PubMed

    Pagel, Mareen; Meier, René; Braun, Klaus; Wiessler, Manfred; Beck-Sickinger, Annette G

    2016-06-01

    Solid phase peptide synthesis (SPPS) is the method of choice to produce peptides. Several protecting groups enable specific modifications. However, complex peptide conjugates usually require a rather demanding conjugation strategy, which is mostly performed in solution. Herein, an efficient strategy is described using an on-resin Diels-Alder reaction with inverse electron demand (DARinv). This method is compatible with the standard Fmoc/tBu strategy and is easy to monitor. As a proof of concept a titanium binding peptide was modified with a cyclic cell binding peptide (RGD) by DARinv on a solid support applying different tetrazines and alkenes. The generated bulky DARinv linkers were employed to act as the required spacer for RGD mediated cell adhesion on titanium. In vitro studies demonstrated improved cell spreading on DARinv-conjugated peptides and revealed, in combination with molecular dynamics-simulation, new insights into the design of spacers between the RGD peptide and the surface. Performing the DARinv on resin expands the toolbox of SPPS to produce complex peptide conjugates under mild, catalyst free conditions with reduced purification steps. The resulting conjugate can be effectively exploited to promote cell adhesion on biomaterials. PMID:27117044

  14. Facile synthesis of yolk-shell magnetic mesoporous carbon microspheres for efficient enrichment of low abundance peptides.

    PubMed

    Wan, Hao; Qin, Hongqiang; Xiong, Zhichao; Zhang, Weibing; Zou, Hanfa

    2013-11-21

    Magnetic mesoporous carbon microspheres with a yolk-shell structure (YSMMCS) have been prepared via a new in situ carbon source strategy. The material was fabricated by two shells coated onto the Fe3O4 particles; the inner dense and thick silica shell could protect the magnetic core from harsh acidic solvents as well as induce the void between the core and the outer shell for the yolk-shell structure, while the outer organosilica shell was used as the template and carbon source for in situ preparation of a carbon shell with mesoporous structure. A C18-alkyl chain was incorporated in situ as the carbon precursor efficiently, avoiding the conventional infiltration step, which was very difficult to manipulate and time-consuming with the possibility of losing the carbon precursor. The resulting yolk-shell magnetic mesoporous carbon microspheres exhibited a high surface area (273.15 m(2) g(-1)), a large pore volume (0.31 cm(3) g(-1)), and a strong magnetic response (a saturation magnetization value of 34.57 emu g(-1)). As a result of the void between the core and the outer shell and the π-π stacking effect, adsorption capacity reached 191.64 mg g(-1) by using Rhodamine B as a standard analyte, indicating the great potential application of the material as drug carriers. Owing to the inherent hydrophobicity and high surface area, the composite material showed better performance in the enrichment of peptides than a magnetic mesoporous silica material (Fe2O3@nSiO2@mSiO2). According to the LC-MS/MS results, about 51 and 29 nonredundant peptides were identified from tryptic digests of 5 nM BSA. Additionally, taking advantage of the mesoporous structure and strong magnetic response, the material was utilized to selectively extract low abundance endogenous peptides from human serum in the presence of high abundance proteins. Based on the LC-MS/MS results, 962 endogenous peptides were obtained by 2.5 mg YSMMCS relative to 539 endogenous peptides by 5 mg Fe2O3@nSiO2@mSiO2

  15. Efficient Inhibition of Hepatitis B Virus Infection by a preS1-binding Peptide.

    PubMed

    Ye, Xiaoli; Zhou, Ming; He, Yonggang; Wan, Yanmin; Bai, Weiya; Tao, Shuai; Ren, Yanqin; Zhang, Xinxin; Xu, Jianqing; Liu, Jing; Zhang, Junqi; Hu, Kanghong; Xie, Youhua

    2016-01-01

    Entry inhibitors are promising novel antivirals against hepatitis B virus (HBV) infection. The existing potential entry inhibitors have targeted the cellular receptor(s). In this study, we aim to develop the first entry inhibitor that inhibits HBV infection via targeting viral particles. The preS1 segment of the large envelope glycoprotein of HBV is essential for virion attachment and infection. Previously, we obtained a preS1-binding short peptide B10 by screening a phage display peptide library using the N-terminal half of preS1 (residues 1 to 60, genotype C). We report here that by means of concatenation of B10, we identified a quadruple concatemer 4B10 that displayed a markedly increased preS1-binding activity. The main binding site of 4B10 in preS1 was mapped to the receptor binding enhancing region. 4B10 blocked HBV attachment to hepatic cells and inhibited HBV infection of primary human and tupaia hepatocytes at low nanomolar concentrations. The 4B10-mediated inhibition of HBV infection is specific as it did not inhibit the infection of vesicular stomatitis virus glycoprotein pseudotyped lentivirus or human immunodeficiency virus type 1. Moreover, 4B10 showed no binding activity to hepatic cells. In conclusion, we have identified 4B10 as a promising candidate for a novel class of HBV entry inhibitors. PMID:27384014

  16. Efficient Inhibition of Hepatitis B Virus Infection by a preS1-binding Peptide

    PubMed Central

    Ye, Xiaoli; Zhou, Ming; He, Yonggang; Wan, Yanmin; Bai, Weiya; Tao, Shuai; Ren, Yanqin; Zhang, Xinxin; Xu, Jianqing; Liu, Jing; Zhang, Junqi; Hu, Kanghong; Xie, Youhua

    2016-01-01

    Entry inhibitors are promising novel antivirals against hepatitis B virus (HBV) infection. The existing potential entry inhibitors have targeted the cellular receptor(s). In this study, we aim to develop the first entry inhibitor that inhibits HBV infection via targeting viral particles. The preS1 segment of the large envelope glycoprotein of HBV is essential for virion attachment and infection. Previously, we obtained a preS1-binding short peptide B10 by screening a phage display peptide library using the N-terminal half of preS1 (residues 1 to 60, genotype C). We report here that by means of concatenation of B10, we identified a quadruple concatemer 4B10 that displayed a markedly increased preS1-binding activity. The main binding site of 4B10 in preS1 was mapped to the receptor binding enhancing region. 4B10 blocked HBV attachment to hepatic cells and inhibited HBV infection of primary human and tupaia hepatocytes at low nanomolar concentrations. The 4B10-mediated inhibition of HBV infection is specific as it did not inhibit the infection of vesicular stomatitis virus glycoprotein pseudotyped lentivirus or human immunodeficiency virus type 1. Moreover, 4B10 showed no binding activity to hepatic cells. In conclusion, we have identified 4B10 as a promising candidate for a novel class of HBV entry inhibitors. PMID:27384014

  17. Facile synthesis of yolk-shell magnetic mesoporous carbon microspheres for efficient enrichment of low abundance peptides

    NASA Astrophysics Data System (ADS)

    Wan, Hao; Qin, Hongqiang; Xiong, Zhichao; Zhang, Weibing; Zou, Hanfa

    2013-10-01

    Magnetic mesoporous carbon microspheres with a yolk-shell structure (YSMMCS) have been prepared via a new in situ carbon source strategy. The material was fabricated by two shells coated onto the Fe3O4 particles; the inner dense and thick silica shell could protect the magnetic core from harsh acidic solvents as well as induce the void between the core and the outer shell for the yolk-shell structure, while the outer organosilica shell was used as the template and carbon source for in situ preparation of a carbon shell with mesoporous structure. A C18-alkyl chain was incorporated in situ as the carbon precursor efficiently, avoiding the conventional infiltration step, which was very difficult to manipulate and time-consuming with the possibility of losing the carbon precursor. The resulting yolk-shell magnetic mesoporous carbon microspheres exhibited a high surface area (273.15 m2 g-1), a large pore volume (0.31 cm3 g-1), and a strong magnetic response (a saturation magnetization value of 34.57 emu g-1). As a result of the void between the core and the outer shell and the π-π stacking effect, adsorption capacity reached 191.64 mg g-1 by using Rhodamine B as a standard analyte, indicating the great potential application of the material as drug carriers. Owing to the inherent hydrophobicity and high surface area, the composite material showed better performance in the enrichment of peptides than a magnetic mesoporous silica material (Fe2O3@nSiO2@mSiO2). According to the LC-MS/MS results, about 51 and 29 nonredundant peptides were identified from tryptic digests of 5 nM BSA. Additionally, taking advantage of the mesoporous structure and strong magnetic response, the material was utilized to selectively extract low abundance endogenous peptides from human serum in the presence of high abundance proteins. Based on the LC-MS/MS results, 962 endogenous peptides were obtained by 2.5 mg YSMMCS relative to 539 endogenous peptides by 5 mg Fe2O3@nSiO2@mSiO2, confirming the

  18. Highly efficient peptide formation from N-acetylaminoacyl-AMP anhydride and free amino acid

    NASA Technical Reports Server (NTRS)

    Mullins, D. W., Jr.; Lacey, J. C., Jr.

    1983-01-01

    The kinetics of formation of the N-blocked dipeptide, N-acetylglycylglycine, from N-acetylglycyl adenylate anhydride and glycine in aqueous solution at 25 C, and at various PH's are reported. The reaction is of interest in that over a physiologically relevant pH range (6-8), peptide synthesis proceeds more rapidly than hydrolysis, even at those pH's at which this compound becomes increasingly susceptible to base-catalyzed hydrolysis. Under similar conditions, the corresponding unblocked aminoacyl adenylate anhydrides are considerably more unstable, and undergo appreciable hydrlysis in the presence of free amino acid. Because N-blocked aminoacyl adenylate anhydrides serve as model compounds of peptidyl adenylate anhydrides, these results suggest that primitive amino acid polymerization systems may have operated by cyclic reactivation of the peptidyl carboxyl group, rather than that of the incoming amino acid.

  19. A specific aptamer-cell penetrating peptides complex delivered siRNA efficiently and suppressed prostate tumor growth in vivo.

    PubMed

    Diao, Yanjun; Liu, Jiayun; Ma, Yueyun; Su, Mingquan; Zhang, Hongyi; Hao, Xiaoke

    2016-05-01

    Specific and efficient delivery of siRNA into intended tumor cells remains as a challenge, even though RNAi has been exploited as a new strategy for prostate cancer therapy. This work aims to address both specificity and efficiency of SURVIVIN-siRNA delivery by constructing a therapeutic complex using combinatorial strategies. A fusion protein STD was first expressed to serve as a backbone, consisting of streptavidin, a cell-penetrating peptide called Trans-Activator of Transcription (TAT) and a double-stranded RNA binding domain. A biotinylated Prostate Specific Membrane Antigen (PSMA) specific aptamer A10 and SURVIVIN-siRNA were then linked to STD protein to form the therapeutic complex. This complex could specifically targeted PSMA(+) tumor cells. Compared to lipofectamine and A10-siRNA chimera, it demonstrated higher efficiency in delivering siRNA into target cells by 19.2% and 59.9%, and increased apoptosis by 16.8% and 26.1% respectively. Upon systemic administration, this complex also showed significant efficacy in suppressing tumor growth in athymic mice (p <0.001). We conclude that this therapeutic complex could specifically and efficiently deliver SURVIVIN-siRNA to target cells and suppressed tumor growth in vivo, which indicates its potential to be used as a new strategy in prostate cancer therapy. PMID:26954374

  20. Efficient Delivery of Cell Impermeable Phosphopeptides by a Cyclic Peptide Amphiphile Containing Tryptophan and Arginine

    PubMed Central

    Shirazi, Amir Nasrolahi; Tiwari, Rakesh Kumar; Oh, Donghoon; Banerjee, Antara; Yadav, Arpita; Parang, Keykavous

    2013-01-01

    Phosphopeptides are valuable reagent probes for studying protein-protein and protein-ligand interactions. The cellular delivery of phosphopeptides is challenging because of the presence of the negatively charged phosphate group. The cellular uptake of a number of fluorescent-labeled phosphopeptides, including F′-GpYLPQTV, F′-NEpYTARQ, F′-AEEEIYGEFEAKKKK, F′-PEpYLGLD, F′-pYVNVQN-NH2, and F′-GpYEEI (F′ = fluorescein) was evaluated in the presence or absence of a [WR]4, a cyclic peptide containing alternative arginine (R) and tryptophan (W) residues, in human leukemia cells (CCRF-CEM) after 2 h incubation using flow cytometry. [WR]4 improved significantly the cellular uptake of all phosphopeptides. PEpYLGLD is a sequence that mimics the pTyr1246 of ErbB2 that is responsible for binding to the Chk SH2 domain. The cellular uptake of F′-PEpYLGLD was enhanced dramatically by 27-fold in the presence of [WR]4 and was found to be time-dependent. Confocal microscopy of a mixture of F′-PEpYLGLD and [WR]4 in live cells exhibited intracellular localization and significantly higher cellular uptake compared to that of F′-PEpYLGLD alone. Transmission Electron Microscopy (TEM) and Isothermal Calorimetric (ITC) were used to study the interaction of PEpYLGLD and [WR]4. TEM results showed that the mixture of PEpYLGLD and [WR]4 formed noncircular nanosized structures with width and height of 125 and 60 nm, respectively. ITC binding studies confirmed the interaction between [WR]4 and PEpYLGLD. The binding isotherm curves, derived from sequential binding models, showed an exothermic interaction driven by entropy. These studies suggest that amphiphilic peptide [WR]4 can be used as a cellular delivery tool of cell-impermeable negatively charged phosphopeptides. PMID:23537165

  1. Effects of sizes and conformations of fish-scale collagen peptides on facial skin qualities and transdermal penetration efficiency.

    PubMed

    Chai, Huey-Jine; Li, Jing-Hua; Huang, Han-Ning; Li, Tsung-Lin; Chan, Yi-Lin; Shiau, Chyuan-Yuan; Wu, Chang-Jer

    2010-01-01

    Fish-scale collagen peptides (FSCPs) were prepared using a given combination of proteases to hydrolyze tilapia (Oreochromis sp.) scales. FSCPs were determined to stimulate fibroblast cells proliferation and procollagen synthesis in a time- and dose-dependent manner. The transdermal penetration capabilities of the fractionationed FSCPs were evaluated using the Franz-type diffusion cell model. The heavier FSCPs, 3500 and 4500 Da, showed higher cumulative penetration capability as opposed to the lighter FSCPs, 2000 and 1300 Da. In addition, the heavier seemed to preserve favorable coiled structures comparing to the lighter that presents mainly as linear under confocal scanning laser microscopy. FSCPs, particularly the heavier, were concluded to efficiently penetrate stratum corneum to epidermis and dermis, activate fibroblasts, and accelerate collagen synthesis. The heavier outweighs the lighter in transdermal penetration likely as a result of preserving the given desired structure feature. PMID:20625414

  2. Higher efficiency soluble prokaryotic expression, purification, and structural analysis of antimicrobial peptide G13.

    PubMed

    Che, Yuanyuan; Lu, Yinghu; Zha, Xiangdong; Huang, Huoqing; Yang, Peilong; Ma, Lijuan; Xu, Xuejiao

    2016-03-01

    G13 is a 19-residue cationic antimicrobial peptide derived from granulysin. In order to achieve high-level expression of G13 in Escherichia coli cells, and to reduce downstream processing costs, we introduced an Asp-Pro acid labile bond between the His-Patch thioredoxin and G13 and constructed the recombinant plasmid pThiohisA-DP-G13. The plasmid was transformed into E. coli BL21 (DE3). After induction with isopropyl-β-d-thiogalactopyranoside for 5 h, the fusion protein accumulated up to 200 mg/L in soluble form. The fusion protein was released by a high pressure homogenizer, cleaved using 13% acetic acid at 50 °C hydrolysis for 72 h. The recombinant G13 (r-G13) was then successively purified by fractional precipitation with ammonium sulfate and trichloroacetic acid, followed by one-step cation exchange chromatography. The purified r-G13 displayed a single band (about 2.2 kDa) as analyzed by Tris-Tricine buffered SDS-PAGE, and its precise molecular weight was confirmed using tandem mass spectrometry. Analysis of r-G13 by circular dichroism (CD) indicated that r-G13 contained predominantly β-sheet and random coil. Agar plate diffusion assay revealed that the r-G13 exhibited antibacterial activity against both Bacillus subtilis and E. coli. PMID:26581777

  3. Low-density lipoprotein peptide-combined DNA nanocomplex as an efficient anticancer drug delivery vehicle.

    PubMed

    Zhang, Nan; Tao, Jun; Hua, Haiying; Sun, Pengchao; Zhao, Yongxing

    2015-08-01

    DNA is a type of potential biomaterials for drug delivery due to its nanoscale geometry, loading capacity of therapeutics, biocompatibility, and biodegradability. Unfortunately, DNA is easily degraded by DNases in the body circulation and has low intracellular uptake. In the present study, we selected three cationic polymers polyethylenimine (PEI), hexadecyl trimethyl ammonium bromide (CTAB), and low-density lipoprotein (LDL) receptor targeted peptide (RLT), to modify DNA and improve the issues. A potent anti-tumor anthracycline-doxorubicin (DOX) was intercalated into DNA non-covalently and the DOX/DNA was then combined with PEI, CTAB, and RLT, respectively. Compact nanocomplexes were formed by electrostatic interaction and could potentially protect DNA from DNases. More importantly, RLT had the potential to enhance intracellular uptake by LDL receptor mediated endocytosis. In a series of in vitro experiments, RLT complexed DNA enhanced intracellular delivery of DOX, increased tumor cell death and intracellular ROS production, and reduced intracellular elimination of DOX. All results suggested that the easily prepared and targeted RLT/DNA nanocomplexes had great potential to be developed into a formulation for doxorubicin with enhanced anti-tumor activity. PMID:25960329

  4. Efficient expression of nattokinase in Bacillus licheniformis: host strain construction and signal peptide optimization.

    PubMed

    Wei, Xuetuan; Zhou, Yinhua; Chen, Jingbang; Cai, Dongbo; Wang, Dan; Qi, Gaofu; Chen, Shouwen

    2015-02-01

    Nattokinase (NK) possesses the potential for prevention and treatment of thrombus-related diseases. In this study, high-level expression of nattokinase was achieved in Bacillus licheniformis WX-02 via host strain construction and signal peptides optimization. First, ten genes (mpr, vpr, aprX, epr, bpr, wprA, aprE, bprA, hag, amyl) encoding for eight extracellular proteases, a flagellin and an amylase were deleted to obtain B. licheniformis BL10, which showed no extracellular proteases activity in gelatin zymography. Second, the gene fragments of P43 promoter, Svpr, nattokinase and TamyL were combined into pHY300PLK to form the expression vector pP43SNT. In BL10 (pP43SNT), the fermentation activity and product activity per unit of biomass of nattokinase reached 14.33 FU/mL and 2,187.71 FU/g respectively, which increased by 39 and 156 % compared to WX-02 (pP43SNT). Last, Svpr was replaced with SsacC and SbprA, and the maximum fermentation activity (33.83 FU/mL) was achieved using SsacC, which was 229 % higher than that of WX-02 (pP43SNT). The maximum NK fermentation activity in this study reaches the commercial production level of solid state fermentation, and this study provides a promising engineered strain for industrial production of nattokinase, as well as a potential platform host for expression of other target proteins. PMID:25475755

  5. RGD peptide-modified dendrimer-entrapped gold nanoparticles enable highly efficient and specific gene delivery to stem cells.

    PubMed

    Kong, Lingdan; Alves, Carla S; Hou, Wenxiu; Qiu, Jieru; Möhwald, Helmuth; Tomás, Helena; Shi, Xiangyang

    2015-03-01

    We report the use of arginine-glycine-aspartic (Arg-Gly-Asp, RGD) peptide-modified dendrimer-entrapped gold nanoparticles (Au DENPs) for highly efficient and specific gene delivery to stem cells. In this study, generation 5 poly(amidoamine) dendrimers modified with RGD via a poly(ethylene glycol) (PEG) spacer and with PEG monomethyl ether were used as templates to entrap gold nanoparticles (AuNPs). The native and the RGD-modified PEGylated dendrimers and the respective well characterized Au DENPs were used as vectors to transfect human mesenchymal stem cells (hMSCs) with plasmid DNA (pDNA) carrying both the enhanced green fluorescent protein and the luciferase (pEGFPLuc) reporter genes, as well as pDNA encoding the human bone morphogenetic protein-2 (hBMP-2) gene. We show that all vectors are capable of transfecting the hMSCs with both pDNAs. Gene transfection using pEGFPLuc was demonstrated by quantitative Luc activity assay and qualitative evaluation by fluorescence microscopy. For the transfection with hBMP-2, the gene delivery efficiency was evaluated by monitoring the hBMP-2 concentration and the level of osteogenic differentiation of the hMSCs via alkaline phosphatase activity, osteocalcin secretion, calcium deposition, and von Kossa staining assays. Our results reveal that the stem cell gene delivery efficiency is largely dependent on the composition and the surface functionality of the dendrimer-based vectors. The coexistence of RGD and AuNPs rendered the designed dendrimeric vector with specific stem cell binding ability likely via binding of integrin receptor on the cell surface and improved three-dimensional conformation of dendrimers, which is beneficial for highly efficient and specific stem cell gene delivery applications. PMID:25658033

  6. Highly efficient delivery of functional cargoes by the synergistic effect of GAG binding motifs and cell-penetrating peptides.

    PubMed

    Dixon, James E; Osman, Gizem; Morris, Gavin E; Markides, Hareklea; Rotherham, Michael; Bayoussef, Zahia; El Haj, Alicia J; Denning, Chris; Shakesheff, Kevin M

    2016-01-19

    Protein transduction domains (PTDs) are powerful nongenetic tools that allow intracellular delivery of conjugated cargoes to modify cell behavior. Their use in biomedicine has been hampered by inefficient delivery to nuclear and cytoplasmic targets. Here we overcame this deficiency by developing a series of novel fusion proteins that couple a membrane-docking peptide to heparan sulfate glycosaminoglycans (GAGs) with a PTD. We showed that this GET (GAG-binding enhanced transduction) system could deliver enzymes (Cre, neomycin phosphotransferase), transcription factors (NANOG, MYOD), antibodies, native proteins (cytochrome C), magnetic nanoparticles (MNPs), and nucleic acids [plasmid (p)DNA, modified (mod)RNA, and small inhibitory RNA] at efficiencies of up to two orders of magnitude higher than previously reported in cell types considered hard to transduce, such as mouse embryonic stem cells (mESCs), human ESCs (hESCs), and induced pluripotent stem cells (hiPSCs). This technology represents an efficient strategy for controlling cell labeling and directing cell fate or behavior that has broad applicability for basic research, disease modeling, and clinical application. PMID:26733682

  7. Highly efficient delivery of functional cargoes by the synergistic effect of GAG binding motifs and cell-penetrating peptides

    PubMed Central

    Dixon, James E.; Osman, Gizem; Morris, Gavin E.; Markides, Hareklea; Rotherham, Michael; Bayoussef, Zahia; El Haj, Alicia J.; Denning, Chris; Shakesheff, Kevin M.

    2016-01-01

    Protein transduction domains (PTDs) are powerful nongenetic tools that allow intracellular delivery of conjugated cargoes to modify cell behavior. Their use in biomedicine has been hampered by inefficient delivery to nuclear and cytoplasmic targets. Here we overcame this deficiency by developing a series of novel fusion proteins that couple a membrane-docking peptide to heparan sulfate glycosaminoglycans (GAGs) with a PTD. We showed that this GET (GAG-binding enhanced transduction) system could deliver enzymes (Cre, neomycin phosphotransferase), transcription factors (NANOG, MYOD), antibodies, native proteins (cytochrome C), magnetic nanoparticles (MNPs), and nucleic acids [plasmid (p)DNA, modified (mod)RNA, and small inhibitory RNA] at efficiencies of up to two orders of magnitude higher than previously reported in cell types considered hard to transduce, such as mouse embryonic stem cells (mESCs), human ESCs (hESCs), and induced pluripotent stem cells (hiPSCs). This technology represents an efficient strategy for controlling cell labeling and directing cell fate or behavior that has broad applicability for basic research, disease modeling, and clinical application. PMID:26733682

  8. An efficient transcriptome analysis pipeline to accelerate venom peptide discovery and characterisation.

    PubMed

    Prashanth, Jutty Rajan; Lewis, Richard J

    2015-12-01

    Transcriptome sequencing is now widely adopted as an efficient means to study the chemical diversity of venoms. To improve the efficiency of analysis of these large datasets, we have optimised an analysis pipeline for cone snail venom gland transcriptomes. The pipeline combines ConoSorter with sequence architecture-based elimination and similarity searching using BLAST to improve the accuracy of sequence identification and classification, while reducing requirements for manual intervention. As a proof-of-concept, we used this approach reanalysed three previously published cone snail transcriptomes from diverse dietary groups. Our pipeline method generated similar results to the published studies with significantly less manual intervention. We additionally found undiscovered sequences in the piscovorous Conus geographus and vermivorous Conus miles and identified sequences in incorrect superfamilies in the molluscivorus Conus marmoreus and C. geographus transcriptomes. Our results indicate that this method can improve toxin detection without extending analysis time. While this method was evaluated on cone snail transcriptomes it can be easily optimised to retrieve toxins from other venomous animals. PMID:26376071

  9. Efficient production of active chicken avidin using a bacterial signal peptide in Escherichia coli

    PubMed Central

    2004-01-01

    Chicken avidin is a highly popular tool with countless applications in the life sciences. In the present study, an efficient method for producing avidin protein in the periplasmic space of Escherichia coli in the active form is described. Avidin was produced by replacing the native signal sequence of the protein with a bacterial OmpA secretion signal. The yield after a single 2-iminobiotin–agarose affinity purification step was approx. 10 mg/l of virtually pure avidin. Purified avidin had 3.7 free biotin-binding sites per tetramer and showed the same biotin-binding affinity and thermal stability as egg-white avidin. Avidin crystallized under various conditions, which will enable X-ray crystallographic studies. Avidin produced in E. coli lacks the carbohydrate chains of chicken avidin and the absence of glycosylation should decrease the non-specific binding that avidin exhibits towards many materials [Rosebrough and Hartley (1996) J. Nucl. Med. 37, 1380–1384]. The present method provides a feasible and inexpensive alternative for the production of recombinant avidin, avidin mutants and avidin fusion proteins for novel avidin–biotin technology applications. PMID:15324300

  10. Improving chemotherapeutic efficiency in acute myeloid leukemia treatments by chemically synthesized peptide interfering with CXCR4/CXCL12 axis

    PubMed Central

    Li, Xiaojin; Guo, Hua; Duan, Hongyang; Yang, Yanlian; Meng, Jie; Liu, Jian; Wang, Chen; Xu, Haiyan

    2015-01-01

    Bone marrow stroma can protect acute myeloid leukemia (AML) cells against chemotherapeutic agents and provide anti-apoptosis and chemoresistance signals through secreting chemokine CXCL12 to activate its receptor CXCR4 on AML cells, resulting in minimal residual leukemia and relapse. Therefore disrupting the CXCR4/CXCL12 axis with antagonists is of great significance for improving chemosensitivity and decreasing relapse rate. In a previous study, we reported a novel synthetic peptide E5 with its remarkable effect on inhibiting CXCR4/CXCL12-mediated adhesion and migration of AML cells. Here we presented E5’s capacity of enhancing the therapeutic efficiency of various chemotherapeutics on AML in vitro and in vivo. Results showed that E5 can diminish bone marrow stromal cell-provided protection to leukemia cells, significantly increasing the apoptosis induced by various chemotherapeutics in multiple AML cell lines. In an AML mouse xenograft model, E5 induced 1.84-fold increase of circulating AML cells out of protective stroma niche. Combined with vincristine or cyclophosphamide, E5 inhibited infiltration of AML cells into bone marrow, liver and spleen, as well as prolonged the lifespan of AML mice compared with mice treated with chemotherapy alone. In addition, E5 presented no toxicity in vivo according to the histological analysis and routine clinical parameters of serum analysis. PMID:26538086

  11. A method for concentrating lipid peptide DNA and siRNA nanocomplexes that retains their structure and transfection efficiency

    PubMed Central

    Tagalakis, Aristides D; Castellaro, Sara; Zhou, Haiyan; Bienemann, Alison; Munye, Mustafa M; McCarthy, David; White, Edward A; Hart, Stephen L

    2015-01-01

    Nonviral gene and small interfering RNA (siRNA) delivery formulations are extensively used for biological and therapeutic research in cell culture experiments, but less so in in vivo and clinical research. Difficulties with formulating the nanoparticles for uniformity and stability at concentrations required for in vivo and clinical use are limiting their progression in these areas. Here, we report a simple but effective method of formulating monodisperse nanocomplexes from a ternary formulation of lipids, targeting peptides, and nucleic acids at a low starting concentration of 0.2 mg/mL of DNA, and we then increase their concentration up to 4.5 mg/mL by reverse dialysis against a concentrated polymer solution at room temperature. The nanocomplexes did not aggregate and they had maintained their biophysical properties, but, importantly, they also mediated DNA transfection and siRNA silencing in cultured cells. Moreover, concentrated anionic nanocomplexes administered by convection-enhanced delivery in the striatum showed efficient silencing of the β-secretase gene BACE1. This method of preparing nanocomplexes could probably be used to concentrate other nonviral formulations and may enable more widespread use of nanoparticles in vivo. PMID:25878500

  12. Development of Nanoparticles Incorporating a Novel Liposomal Membrane Destabilization Peptide for Efficient Release of Cargos into Cancer Cells

    PubMed Central

    Ohgita, Takashi; Kogure, Kentaro

    2014-01-01

    In anti-cancer therapy mediated by a nanoparticle-based drug delivery system (DDS), overall efficacy depends on the release efficiency of cargos from the nanoparticles in the cancer cells as well as the specificity of delivery to tumor tissue. However, conventional liposome-based DDS have no mechanism for specifically releasing the encapsulated cargos inside the cancer cells. To overcome this barrier, we developed nanoparticles containing a novel liposomal membrane destabilization peptide (LMDP) that can destabilize membranes by cleavage with intramembranous proteases on/in cancer cells. Calcein encapsulated in liposomes modified with LMDP (LMDP-lipo) was effectively released in the presence of a membrane fraction containing an LMDP-cleavable protease. The release was inhibited by a protease inhibitor, suggesting that LMDP-lipo could effectively release its cargo into cells in response to a cancer-specific protease. Moreover, when LMDP-lipo contained fusogenic lipids, the release of cargo was accelerated, suggesting that the fusion of LMDP-lipo with cellular membranes was the initial step in the intracellular delivery. Time-lapse microscopic observations showed that the release of cargo from LMDP-lipo occurred immediately after association of LMDP-lipo with target cells. Consequently, LMDP-lipo could be a useful nanoparticle capable of effective release of cargos specifically into targeted cancer cells. PMID:25343714

  13. Bactericidal Efficiency and Modes of Action of the Novel Antimicrobial Peptide T9W against Pseudomonas aeruginosa

    PubMed Central

    Zhu, Xin; Ma, Zhi; Xu, Wei; Wang, Jiajun; Chou, Shuli; Cheng, Baojing

    2015-01-01

    The antipseudomonal efficiency and mechanism of action of a novel engineered antimicrobial peptide, T9W, were evaluated in this study. T9W displayed high activity, with a lethal concentration (LC) of 1 to 4 μM against Pseudomonas aeruginosa, including against ciprofloxacin-, gentamicin-, and ceftazidime-resistant strains, even in the presence of 50 to 300 mM NaCl, 1 to 5 mM Ca2+, or 0.5 to 2 mM Mg2+. The time-kill curve (TKC) analysis demonstrated concentration-dependent activity, with T9W achieving complete killing in less than 30 min at 1× LC and in less than 5 min at 4× LC. Combination TKC analyses additionally demonstrated a synergistic effect with ciprofloxacin and gentamicin. The selectivity of T9W was further supported by its ability to specifically eliminate P. aeruginosa in a coculture with macrophages without toxicity to the mammalian cells. The results from fluorescent measurement indicated that T9W bound to lipopolysaccharide (LPS) and induced P. aeruginosa membrane depolarization, and microscopic observations and flow cytometry further indicated that T9W targeted the P. aeruginosa cell membrane and disrupted cytoplasmic membrane integrity, thereby causing cellular content release leading to cell death. This study revealed the potential usefulness of T9W as a novel antimicrobial agent against P. aeruginosa. PMID:25753629

  14. Peptide-presenting two-dimensional protein matrix on supported lipid bilayers: an efficient platform for cell adhesion.

    PubMed

    Bérat, Rémi; Rémy-Zolghadry, Murielle; Gounou, Céline; Manigand, Claude; Tan, Sisareuth; Saltó, Carmen; Arenas, Ernest; Bordenave, Laurence; Brisson, Alain R

    2007-12-01

    Understanding and controlling cell adhesion to biomaterials and synthetic materials are important issues in basic research and applied sciences. Supported lipid bilayers (SLBs) functionalized with cell adhesion peptides linked to lipid molecules are popular platforms of cell adhesion. In this paper, an alternative approach of peptide presentation is presented in which peptides are stereo-selectively linked to proteins self-assembling in a rigid two-dimensional (2D) matrix on SLBs. Annexin-A5 (Anx5) was used as prototype protein for its known properties of forming stable and rigid 2D matrices on lipid surfaces. Two types of Anx5-peptide complexes, containing either a RGD or an IKVAV sequence, were synthesized. The authors show that both Anx5-peptide complexes present the same properties of binding and 2D organization on lipid surfaces as Anx5, when investigated by quartz crystal microbalance with dissipation monitoring, atomic force microscopy, and transmission electron microscopy techniques. Anx5-RGD and Anx5-IKVAV 2D matrices were found to promote specific adhesion of human saphenous vein endothelial cells and mouse embryonic stem cells, respectively. The influence of the surface density of exposed peptides on cell adhesion was investigated, showing that cells attach to Anx5-peptide matrices when the average distance between peptides is smaller than about 60 nm. This cell adhesion platform provides control of the orientation and density of cell ligands, opening interesting possibilities for future applications. PMID:20408654

  15. Enhanced cellular internalization of CdTe quantum dots mediated by arginine- and tryptophan-rich cell-penetrating peptides as efficient carriers.

    PubMed

    Farkhani, Samad Mussa; Johari-Ahar, Mohammad; Zakeri-Milani, Parvin; Shahbazi Mojarrad, Javid; Valizadeh, Hadi

    2016-09-01

    Quantum dots (QDs), as a new class of fluorescent tags, have been widely used for biomedical applications. Despite their various advantages, QDs do not efficiently enter cells on their own, and aggregation often occurs following internalization. In the present study, we have designed three QD-cell-penetrating peptide (CPP) complexes to increase the uptake of QD into cells. The results demonstrated that R9 and R5W3R4 form relatively stable noncovalent complexes with QDs, considerably increasing the rate and efficiency of QD uptake by A549 cells. These data suggest that cationic CPPs could efficiently transfer QDs into cells in a non-toxic manner. PMID:25884240

  16. Construction of a highly active secretory expression system via an engineered dual promoter and a highly efficient signal peptide in Bacillus subtilis.

    PubMed

    Guan, Chengran; Cui, Wenjing; Cheng, Jintao; Liu, Rui; Liu, Zhongmei; Zhou, Li; Zhou, Zhemin

    2016-05-25

    A strong promoter and highly efficient signal peptides are essential for the secretory overproduction of recombinant proteins in Bacillus subtilis. To enhance the limited overexpression capability of natural promoters, various strategies for promoter engineering have been developed and used to construct gene expression systems in B. subtilis and other hosts. By applying a semi-rational approach for promoter engineering, a series of expression plasmids containing single and dual promoters were constructed using aminopeptidase (AP) with an intrinsic signal peptide as the reporter protein. Of the single and dual promoters investigated, the dual promoter PgsiB-PHpaII gave the best performance. To optimize secretion efficiency, the signal peptide YncM was selected after screening a library containing 19 different Sec-type signal peptides. The AP activity detected in the supernatants of a recombinant strain containing the plasmid pBSG24-YncM was as high as 88.86U/mL. The capacity of the expression plasmid pBSG24-YncM was also evaluated with batch fermentation in a 5-L fermentor. Increased production of AP (205U/mL, equal to 1.7g/L) was achieved after 45h of fermentation. These results suggest that this expression system can be used for high-level protein expression in B. subtilis. PMID:26820123

  17. Efficient siRNA Delivery Using Novel Cell-Penetrating Peptide-siRNA Conjugate-Loaded Nanobubbles and Ultrasound.

    PubMed

    Xie, Xiangyang; Lin, Wen; Li, Mingyuan; Yang, Yang; Deng, Jianping; Liu, Hui; Chen, Ying; Fu, Xudong; Liu, Hong; Yang, Yanfang

    2016-06-01

    Because of the absence of tolerable and effective carriers for in vivo delivery, the applications of small interfering RNA (siRNA) in the clinic for therapeutic purposes have been limited. In this study, development of a novel siRNA delivery system based on ultrasound-sensitive nanobubbles (NBs, nano-sized echogenic liposomes) and cell-permeable peptides (CPPs) is described. A CPP-siRNA conjugate was entrapped in an NB, (CPP-siRNA)-NB, and the penetration of CPP-siRNA was temporally masked; local ultrasound stimulation triggered the release of CPP-siRNA from the NBs and activated its penetration. Subsequent research revealed that the (CPP-siRNA)-NBs had a mean particle size of 201 ± 2.05 nm and a siRNA entrapment efficiency >85%. In vitro release results indicated that >90% of the encapsulated CPP-siRNA was released from NBs in the presence of ultrasound, whereas <1.5% (30 min) was released in the absence of ultrasound. Cell experiments indicated higher cellular CPP-siRNA uptake of (CPP-siRNA)-NBs with ultrasound among the various formulations in human breast adenocarcinoma cells (HT-1080). Additionally, after systemic administration in mice, (CPP-siRNA)-NBs accumulated in the tumor, augmented c-myc silencing and delayed tumor progression. In conclusion, the application of (CPP-siRNA)-NBs with ultrasound may constitute an approach to selective targeted delivery of siRNA. PMID:27012462

  18. Efficient inhibition of tumor angiogenesis and growth by a synthetic peptide blocking S100A4-methionine aminopeptidase 2 interaction

    PubMed Central

    Ochiya, Takahiro; Takenaga, Keizo; Asagiri, Masataka; Nakano, Kazumi; Satoh, Hitoshi; Watanabe, Toshiki; Imajoh-Ohmi, Shinobu; Endo, Hideya

    2015-01-01

    The prometastatic calcium-binding protein, S100A4, is expressed in endothelial cells, and its downregulation markedly suppresses tumor angiogenesis in a xenograft cancer model. Given that endothelial S100A4 can be a molecular target for inhibiting tumor angiogenesis, we addressed here whether synthetic peptide capable of blocking S100A4-effector protein interaction could be a novel antiangiogenic agent. To examine this hypothesis, we focused on the S100A4-binding domain of methionine aminopeptidase 2, an effector protein, which plays a role in endothelial cell growth. Overexpression of the domain in mouse endothelial MSS31 cells reduced DNA synthesis, and the corresponding synthetic peptide (named NBD) indeed interacted with S100A4 and inhibited capillary formation in vitro and new blood vessel formation in vivo. Intriguingly, a single intra-tumor administration of the NBD peptide in human prostate cancer xenografts significantly reduced vascularity, resulting in tumor regression. Mechanistically, the NBD peptide enhanced assembly of nonmuscle myosin IIA filaments along with Ser1943 phosphorylation, stimulated formation of focal adhesions without phosphorylation of focal adhesion kinase, and provoked G1/S arrest of the cell cycle. Altogether, the NBD peptide is a potent inhibitor for tumor angiogenesis, and is the first example of an anticancer peptide drug developed on the basis of an endothelial S100A4-targeted strategy. PMID:26029719

  19. Efficient inhibition of tumor angiogenesis and growth by a synthetic peptide blocking S100A4-methionine aminopeptidase 2 interaction.

    PubMed

    Ochiya, Takahiro; Takenaga, Keizo; Asagiri, Masataka; Nakano, Kazumi; Satoh, Hitoshi; Watanabe, Toshiki; Imajoh-Ohmi, Shinobu; Endo, Hideya

    2015-01-01

    The prometastatic calcium-binding protein, S100A4, is expressed in endothelial cells, and its downregulation markedly suppresses tumor angiogenesis in a xenograft cancer model. Given that endothelial S100A4 can be a molecular target for inhibiting tumor angiogenesis, we addressed here whether synthetic peptide capable of blocking S100A4-effector protein interaction could be a novel antiangiogenic agent. To examine this hypothesis, we focused on the S100A4-binding domain of methionine aminopeptidase 2, an effector protein, which plays a role in endothelial cell growth. Overexpression of the domain in mouse endothelial MSS31 cells reduced DNA synthesis, and the corresponding synthetic peptide (named NBD) indeed interacted with S100A4 and inhibited capillary formation in vitro and new blood vessel formation in vivo. Intriguingly, a single intra-tumor administration of the NBD peptide in human prostate cancer xenografts significantly reduced vascularity, resulting in tumor regression. Mechanistically, the NBD peptide enhanced assembly of nonmuscle myosin IIA filaments along with Ser1943 phosphorylation, stimulated formation of focal adhesions without phosphorylation of focal adhesion kinase, and provoked G1/S arrest of the cell cycle. Altogether, the NBD peptide is a potent inhibitor for tumor angiogenesis, and is the first example of an anticancer peptide drug developed on the basis of an endothelial S100A4-targeted strategy. PMID:26029719

  20. Efficient one-pot synthesis of CXCL14 and its derivative using an N-sulfanylethylanilide peptide as a peptide thioester equivalent and their biological evaluation.

    PubMed

    Tsuji, Kohei; Tanegashima, Kosuke; Sato, Kohei; Sakamoto, Ken; Shigenaga, Akira; Inokuma, Tsubasa; Hara, Takahiko; Otaka, Akira

    2015-09-01

    CXCL14 is a CXC-type chemokine that exhibits chemotactic activity for immature dendritic cells, activated macrophages, and activated natural killer cells. However, its specific receptor and signaling pathway remain obscure. Recently, it was reported that CXCL14 binds to CXCR4 with high affinity and inhibits CXCL12-mediated chemotaxis. Furthermore, the CXCL14 C-terminal α-helical region is important for binding to its receptor. In this context, we chemically synthesized CXCL14 and its derivative with a one-pot method using N-sulfanylethylanilide peptide as a thioester equivalent. The synthetic CXCL14 proteins possessed inhibitory activities to CXCL12-mediated chemotaxis comparable with that of recombinant CXCL14. Moreover, we proved that chemically biotinylated CXCL14 binds to CXCR4 on cells by flow cytometry analysis. PMID:26187016

  1. A Cancer Specific Cell-Penetrating Peptide, BR2, for the Efficient Delivery of an scFv into Cancer Cells

    PubMed Central

    Lim, Ki Jung; Sung, Bong Hyun; Shin, Ju Ri; Lee, Young Woong; Kim, Da Jung; Yang, Kyung Seok; Kim, Sun Chang

    2013-01-01

    Cell-penetrating peptides (CPPs) have proven very effective as intracellular delivery vehicles for various therapeutics. However, there are some concerns about non-specific penetration and cytotoxicity of CPPs for effective cancer treatments. Herein, based on the cell-penetrating motif of an anticancer peptide, buforin IIb, we designed several CPP derivatives with cancer cell specificity. Among the derivatives, a 17-amino acid peptide (BR2) was found to have cancer-specificity without toxicity to normal cells. After specifically targeting cancer cells through interaction with gangliosides, BR2 entered cells via lipid-mediated macropinocytosis. Moreover, BR2 showed higher membrane translocation efficiency than the well-known CPP Tat (49–57). The capability of BR2 as a cancer-specific drug carrier was demonstrated by fusion of BR2 to a single-chain variable fragment (scFv) directed toward a mutated K-ras (G12V). BR2-fused scFv induced a higher degree of apoptosis than Tat-fused scFv in K-ras mutated HCT116 cells. These results suggest that the novel cell-penetrating peptide BR2 has great potential as a useful drug delivery carrier with cancer cell specificity. PMID:23776609

  2. A Robust and Efficient Production and Purification Procedure of Recombinant Alzheimers Disease Methionine-Modified Amyloid-β Peptides

    PubMed Central

    Hoarau, Marie; Hureau, Christelle; Faller, Peter; Gras, Emmanuel; André, Isabelle; Remaud-Siméon, Magali

    2016-01-01

    An improved production and purification method for Alzheimer’s disease related methionine-modified amyloid-β 1–40 and 1–42 peptides is proposed, taking advantage of the formation of inclusion body in Escherichia coli. A Thioflavin-S assay was set-up to evaluate inclusion body formation during growth and optimize culture conditions for amyloid-β peptides production. A simple and fast purification protocol including first the isolation of the inclusion bodies and second, two cycles of high pH denaturation/ neutralization combined with an ultrafiltration step on 30-kDa cut-off membrane was established. Special attention was paid to purity monitoring based on a rational combination of UV spectrophotometry and SDS-PAGE analyses at the various stages of the process. It revealed that this chromatography-free protocol affords good yield of high quality peptides in term of purity. The resulting peptides were fully characterized and are appropriate models for highly reproducible in vitro aggregation studies. PMID:27532547

  3. A Robust and Efficient Production and Purification Procedure of Recombinant Alzheimers Disease Methionine-Modified Amyloid-β Peptides.

    PubMed

    Hoarau, Marie; Malbert, Yannick; Irague, Romain; Hureau, Christelle; Faller, Peter; Gras, Emmanuel; André, Isabelle; Remaud-Siméon, Magali

    2016-01-01

    An improved production and purification method for Alzheimer's disease related methionine-modified amyloid-β 1-40 and 1-42 peptides is proposed, taking advantage of the formation of inclusion body in Escherichia coli. A Thioflavin-S assay was set-up to evaluate inclusion body formation during growth and optimize culture conditions for amyloid-β peptides production. A simple and fast purification protocol including first the isolation of the inclusion bodies and second, two cycles of high pH denaturation/ neutralization combined with an ultrafiltration step on 30-kDa cut-off membrane was established. Special attention was paid to purity monitoring based on a rational combination of UV spectrophotometry and SDS-PAGE analyses at the various stages of the process. It revealed that this chromatography-free protocol affords good yield of high quality peptides in term of purity. The resulting peptides were fully characterized and are appropriate models for highly reproducible in vitro aggregation studies. PMID:27532547

  4. Folic Acid-Targeted and Cell Penetrating Peptide-Mediated Theranostic Nanoplatform for High-Efficiency Tri-Modal Imaging-Guided Synergistic Anticancer Phototherapy.

    PubMed

    Li, Na; Li, Tingting; Liu, Chen; Ye, Shiyi; Liang, Jiangong; Han, Heyou

    2016-05-01

    A novel nanomaterial with precisely-defined size and shape, biocompatible composition, and excellent stability, which can integrate multi modal targeted imaging and therapy into a single system for visualized therapeutics, has recently attracted significant research interest. Here, we developed a multifunctional nanoplatform based on silica-coated 4-mercaptobenzoic acid-modified gold nanorods (Au NRs) decorated with gold nanoclusters rich in the photosensitizer Ce6 (Au-Ce6 NCs). The nanoparticles also comprised folic acid and cell penetrating peptide molecules anchored on the surface, obtaining the Au@SiO2@Au-cell penetrating peptide nanocomposite. The Au-Ce6 NCs enhanced the photophysical stability, provided numerous bonding sites and offered a large surface-area and interior space to achieve a high drug loading efficiency (up to 55%). The anchored folic acid and cell penetrating peptide synergistically enhanced the efficiency of uptake of nanocomposites by HeLa cells (up to 70.7%) and improved therapeutic efficacy. The nanocomposite also has good water-solubility, excellent biocompatibility, and long-term stability against illumination and exposure to pH 3-12, thus facilitating their bioapplications in cancer theranostics. Here, the nanocomposite was established for high-resolution and noninvasive tri-modal surface-enhanced Raman spectrum/dark-field/fluorescence imaging-guided high-efficiency synergistic photodynamic/photothermal therapy of cancer. Our studies demonstrate that the multifunctional nanocomposite has the potential as a novel and sensitive contrast agent for complementary and synergistic theranostics in the clinic. PMID:27305812

  5. Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo

    PubMed Central

    EL Andaloussi, Samir; Lehto, Taavi; Mäger, Imre; Rosenthal-Aizman, Katri; Oprea, Iulian I.; Simonson, Oscar E.; Sork, Helena; Ezzat, Kariem; Copolovici, Dana M.; Kurrikoff, Kaido; Viola, Joana R.; Zaghloul, Eman M.; Sillard, Rannar; Johansson, Henrik J.; Said Hassane, Fatouma; Guterstam, Peter; Suhorutšenko, Julia; Moreno, Pedro M. D.; Oskolkov, Nikita; Hälldin, Jonas; Tedebark, Ulf; Metspalu, Andres; Lebleu, Bernard; Lehtiö, Janne; Smith, C. I. Edvard; Langel, Ülo

    2011-01-01

    While small interfering RNAs (siRNAs) have been rapidly appreciated to silence genes, efficient and non-toxic vectors for primary cells and for systemic in vivo delivery are lacking. Several siRNA-delivery vehicles, including cell-penetrating peptides (CPPs), have been developed but their utility is often restricted by entrapment following endocytosis. Hence, developing CPPs that promote endosomal escape is a prerequisite for successful siRNA implementation. We here present a novel CPP, PepFect 6 (PF6), comprising the previously reported stearyl-TP10 peptide, having pH titratable trifluoromethylquinoline moieties covalently incorporated to facilitate endosomal release. Stable PF6/siRNA nanoparticles enter entire cell populations and rapidly promote endosomal escape, resulting in robust RNAi responses in various cell types (including primary cells), with minimal associated transcriptomic or proteomic changes. Furthermore, PF6-mediated delivery is independent of cell confluence and, in most cases, not significantly hampered by serum proteins. Finally, these nanoparticles promote strong RNAi responses in different organs following systemic delivery in mice without any associated toxicity. Strikingly, similar knockdown in liver is achieved by PF6/siRNA nanoparticles and siRNA injected by hydrodynamic infusion, a golden standard technique for liver transfection. These results imply that the peptide, in addition to having utility for RNAi screens in vitro, displays therapeutic potential. PMID:21245043

  6. Efficient molecular mechanics simulations of the folding, orientation, and assembly of peptides in lipid bilayers using an implicit atomic solvation model

    PubMed Central

    Bordner, Andrew J.; Zorman, Barry; Abagyan, Ruben

    2014-01-01

    Membrane proteins comprise a significant fraction of the proteomes of sequenced organisms and are the targets of approximately half of marketed drugs. However, in spite of their prevalence and biomedical importance, relatively few experimental structures are available due to technical challenges. Computational simulations can potentially address this deficit by providing structural models of membrane proteins. Solvation within the spatially heterogeneous membrane/solvent environment provides a major component of the energetics driving protein folding and association within the membrane. We have developed an implicit solvation model for membranes that is both computationally efficient and accurate enough to enable molecular mechanics predictions for the folding and association of peptides within the membrane. We derived the new atomic solvation model parameters using an unbiased fitting procedure to experimental data and have applied it to diverse problems in order to test its accuracy and to gain insight into membrane protein folding. First, we predicted the positions and orientations of peptides and complexes within the lipid bilayer and compared the simulation results with solid-state NMR structures. Next, we performed folding simulations for a series of host-guest peptides with varying propensities to form alpha helices in a hydrophobic environment and compared the structures with experimental measurements. We were also able to successfully predict the structures of amphipathic peptides as well as the structures for dimeric complexes of short hexapeptides that have experimentally characterized propensities to form beta sheets within the membrane. Finally, we compared calculated relative transfer energies with data from experiments measuring the effects of mutations on the free energies of translocon-mediated insertion of proteins into lipid bilayers and of combined folding and membrane insertion of a beta barrel protein. PMID:21904908

  7. African Viper Poly-His Tag Peptide Fragment Efficiently Binds Metal Ions and Is Folded into an α-Helical Structure.

    PubMed

    Watly, Joanna; Simonovsky, Eyal; Barbosa, Nuno; Spodzieja, Marta; Wieczorek, Robert; Rodziewicz-Motowidlo, Sylwia; Miller, Yifat; Kozlowski, Henryk

    2015-08-17

    Snake venoms are complex mixtures of toxic and often spectacularly biologically active components. Some African vipers contain polyhistidine and polyglycine peptides, which play a crucial role in the interaction with metal ions during the inhibition of snake metalloproteases. Polyhistidine peptide fragments, known as poly-His tags, play many important functions, e.g., in metal ion transport in bacterial chaperon proteins. In this paper, we report a detailed characterization of Cu(2+), Ni(2+), and Zn(2+) complexes with the EDDHHHHHHHHHG peptide fragment (pHG) derived from the venom of the rough scale bush viper (Atheris squamigera). In order to determine the thermodynamic properties, stoichiometry, binding sites, and structures of the metal-pHG complexes, we used a combination of experimental techniques (potentiometric titrations, electrospray ionization mass spectrometry, UV-vis spectroscopy, circular dichroism spectroscopy, and electron paramagnetic resonance spectroscopy) and extensive computational tools (molecular dynamics simulations and density functional theory calculations). The results showed that pHG has a high affinity toward metal ions. The numerous histidine residues located along this sequence are efficient metal ion chelators with high affinities toward Cu(2+), Ni(2+), and Zn(2+) ions. The formation of an α-helical structure induced by metal ion coordination and the occurrence of polymorphic binding states were observed. It is proposed that metal ions can "move along" the poly-His tag, which serves as a metal ion transport pathway. The coordination of Cu(2+), Ni(2+), and Zn(2+) ions to the histidine tag is very effective in comparison with other histidine-rich peptides. The stabilities of the metal-pHG complexes increase in the order Zn(2+) < Ni(2+)≪ Cu(2+). PMID:26214303

  8. A novel chemosynthetic peptide with β-sheet motif efficiently kills Klebsiella pneumoniae in a mouse model.

    PubMed

    Tan, Shirui; Gan, Changpei; Li, Rongpeng; Ye, Yan; Zhang, Shuang; Wu, Xu; Yang, Yi Yan; Fan, Weimin; Wu, Min

    2015-01-01

    Klebsiella pneumoniae (Kp) is one of the most common pathogens in nosocomial infections and is increasingly becoming multiple drug resistant. However, the molecular pathogenesis of Kp in causing tissue injury and dysregulated host defense remains elusive, further dampening the development of novel therapeutic measures. We have previously screened a series of synthetic antimicrobial beta-sheet forming peptides and identified a peptide (IRIKIRIK; ie, IK8L) with a broad range of bactericidal activity and low cytotoxicity in vitro. Here, employing an animal model, we investigated the antibacterial effects of IK8L in acute infection and demonstrated that peritoneal injection of IK8L to mice down-regulated inflammatory cytokines, alleviated lung injury, and importantly, decreased mortality compared to sham-injected controls. In addition, a math model was used to evaluate in vivo imaging data and predict infection progression in infected live animals. Mechanistically, IK8L can kill Kp by inhibiting biofilm formation and modulating production of inflammatory cytokines through the STAT3/JAK signaling both in vitro and in vivo. Collectively, these findings reveal that IK8L may have potential for preventing or treating Kp infection. PMID:25709431

  9. A novel chemosynthetic peptide with β-sheet motif efficiently kills Klebsiella pneumoniae in a mouse model

    PubMed Central

    Tan, Shirui; Gan, Changpei; Li, Rongpeng; Ye, Yan; Zhang, Shuang; Wu, Xu; Yang, Yi Yan; Fan, Weimin; Wu, Min

    2015-01-01

    Klebsiella pneumoniae (Kp) is one of the most common pathogens in nosocomial infections and is increasingly becoming multiple drug resistant. However, the molecular pathogenesis of Kp in causing tissue injury and dysregulated host defense remains elusive, further dampening the development of novel therapeutic measures. We have previously screened a series of synthetic antimicrobial beta-sheet forming peptides and identified a peptide (IRIKIRIK; ie, IK8L) with a broad range of bactericidal activity and low cytotoxicity in vitro. Here, employing an animal model, we investigated the antibacterial effects of IK8L in acute infection and demonstrated that peritoneal injection of IK8L to mice down-regulated inflammatory cytokines, alleviated lung injury, and importantly, decreased mortality compared to sham-injected controls. In addition, a math model was used to evaluate in vivo imaging data and predict infection progression in infected live animals. Mechanistically, IK8L can kill Kp by inhibiting biofilm formation and modulating production of inflammatory cytokines through the STAT3/JAK signaling both in vitro and in vivo. Collectively, these findings reveal that IK8L may have potential for preventing or treating Kp infection. PMID:25709431

  10. Pooled-Peptide Epitope Mapping Strategies Are Efficient and Highly Sensitive: An Evaluation of Methods for Identifying Human T Cell Epitope Specificities in Large-Scale HIV Vaccine Efficacy Trials

    PubMed Central

    Fiore-Gartland, Andrew; Manso, Bryce A.; Friedrich, David P.; Gabriel, Erin E.; Finak, Greg; Moodie, Zoe; Hertz, Tomer; De Rosa, Stephen C.; Frahm, Nicole; Gilbert, Peter B.; McElrath, M. Juliana

    2016-01-01

    The interferon gamma, enzyme-linked immunospot (IFN-γ ELISpot) assay is widely used to identify viral antigen-specific T cells is frequently employed to quantify T cell responses in HIV vaccine studies. It can be used to define T cell epitope specificities using panels of peptide antigens, but with sample and cost constraints there is a critical need to improve the efficiency of epitope mapping for large and variable pathogens. We evaluated two epitope mapping strategies, based on group testing, for their ability to identify vaccine-induced T-cells from participants in the Step HIV-1 vaccine efficacy trial, and compared the findings to an approach of assaying each peptide individually. The group testing strategies reduced the number of assays required by >7-fold without significantly altering the accuracy of T-cell breadth estimates. Assays of small pools containing 7–30 peptides were highly sensitive and effective at detecting single positive peptides as well as summating responses to multiple peptides. Also, assays with a single 15-mer peptide, containing an identified epitope, did not always elicit a response providing validation that 15-mer peptides are not optimal antigens for detecting CD8+ T cells. Our findings further validate pooling-based epitope mapping strategies, which are critical for characterizing vaccine-induced T-cell responses and more broadly for informing iterative vaccine design. We also show ways to improve their application with computational peptide:MHC binding predictors that can accurately identify the optimal epitope within a 15-mer peptide and within a pool of 15-mer peptides. PMID:26863315

  11. Pooled-Peptide Epitope Mapping Strategies Are Efficient and Highly Sensitive: An Evaluation of Methods for Identifying Human T Cell Epitope Specificities in Large-Scale HIV Vaccine Efficacy Trials.

    PubMed

    Fiore-Gartland, Andrew; Manso, Bryce A; Friedrich, David P; Gabriel, Erin E; Finak, Greg; Moodie, Zoe; Hertz, Tomer; De Rosa, Stephen C; Frahm, Nicole; Gilbert, Peter B; McElrath, M Juliana

    2016-01-01

    The interferon gamma, enzyme-linked immunospot (IFN-γ ELISpot) assay is widely used to identify viral antigen-specific T cells is frequently employed to quantify T cell responses in HIV vaccine studies. It can be used to define T cell epitope specificities using panels of peptide antigens, but with sample and cost constraints there is a critical need to improve the efficiency of epitope mapping for large and variable pathogens. We evaluated two epitope mapping strategies, based on group testing, for their ability to identify vaccine-induced T-cells from participants in the Step HIV-1 vaccine efficacy trial, and compared the findings to an approach of assaying each peptide individually. The group testing strategies reduced the number of assays required by >7-fold without significantly altering the accuracy of T-cell breadth estimates. Assays of small pools containing 7-30 peptides were highly sensitive and effective at detecting single positive peptides as well as summating responses to multiple peptides. Also, assays with a single 15-mer peptide, containing an identified epitope, did not always elicit a response providing validation that 15-mer peptides are not optimal antigens for detecting CD8+ T cells. Our findings further validate pooling-based epitope mapping strategies, which are critical for characterizing vaccine-induced T-cell responses and more broadly for informing iterative vaccine design. We also show ways to improve their application with computational peptide:MHC binding predictors that can accurately identify the optimal epitope within a 15-mer peptide and within a pool of 15-mer peptides. PMID:26863315

  12. Production and characterization of two major Aspergillus oryzae secreted prolyl endopeptidases able to efficiently digest proline-rich peptides of gliadin.

    PubMed

    Eugster, Philippe J; Salamin, Karine; Grouzmann, Eric; Monod, Michel

    2015-12-01

    Prolyl endopeptidases are key enzymes in the digestion of proline-rich proteins. Fungal extracts rich in prolyl endopeptidases produced by a species such as Aspergillus oryzae used in food fermentation would be of particular interest for the development of an oral enzyme therapy product in patients affected by intolerance to gluten. Two major A. oryzae secreted prolyl endopeptidases of the MEROPS S28 peptidase family, AoS28A and AoS28B, were identified when this fungus was grown at acidic pH in a medium containing soy meal protein or wheat gliadin as the sole source of nitrogen. AoS28B was produced by 12 reference A. oryzae strains used in food fermentation. AoS28A was secreted by six of these 12 strains. This protease is the orthologue of the previously characterized Aspergillus fumigatus (AfuS28) and Aspergillus niger (AN-PEP) prolyl endopeptidases which are encoded by genes with a similar intron-exon structure. Large amounts of secreted AoS28A and AoS28B were obtained by gene overexpression in A. oryzae. AoS28A and AoS28B are endoproteases able to cleave N-terminally blocked proline substrates. Both enzymes very efficiently digested the proline-rich 33-mer of gliadin, the most representative immunotoxic peptide deriving from gliadin, with some differences in terms of specificity and optimal pH. Digestion of the gliadin peptide in short peptides with both enzymes was found to occur from its N terminus. PMID:26464108

  13. An efficient PEGylated liposomal nanocarrier containing cell-penetrating peptide and pH-sensitive hydrazone bond for enhancing tumor-targeted drug delivery.

    PubMed

    Ding, Yuan; Sun, Dan; Wang, Gui-Ling; Yang, Hong-Ge; Xu, Hai-Feng; Chen, Jian-Hua; Xie, Ying; Wang, Zhi-Qiang

    2015-01-01

    Cell-penetrating peptides (CPPs) as small molecular transporters with abilities of cell penetrating, internalization, and endosomal escape have potential prospect in drug delivery systems. However, a bottleneck hampering their application is the poor specificity for cells. By utilizing the function of hydration shell of polyethylene glycol (PEG) and acid sensitivity of hydrazone bond, we constructed a kind of CPP-modified pH-sensitive PEGylated liposomes (CPPL) to improve the selectivity of these peptides for tumor targeting. In CPPL, CPP was directly attached to liposome surfaces via coupling with stearate (STR) to avoid the hindrance of PEG as a linker on the penetrating efficiency of CPP. A PEG derivative by conjugating PEG with STR via acid-degradable hydrazone bond (PEG2000-Hz-STR, PHS) was synthesized. High-performance liquid chromatography and flow cytometry demonstrated that PHS was stable at normal neutral conditions and PEG could be completely cleaved from liposome surface to expose CPP under acidic environments in tumor. An optimal CPP density on liposomes was screened to guaranty a maximum targeting efficiency on tumor cells as well as not being captured by normal cells that consequently lead to a long circulation in blood. In vitro and in vivo studies indicated, in 4 mol% CPP of lipid modified system, that CPP exerted higher efficiency on internalizing the liposomes into targeted subcellular compartments while remaining inactive and free from opsonins at a maximum extent in systemic circulation. The 4% CPPL as a drug delivery system will have great potential in the clinical application of anticancer drugs in future. PMID:26491292

  14. An efficient PEGylated liposomal nanocarrier containing cell-penetrating peptide and pH-sensitive hydrazone bond for enhancing tumor-targeted drug delivery

    PubMed Central

    Ding, Yuan; Sun, Dan; Wang, Gui-Ling; Yang, Hong-Ge; Xu, Hai-Feng; Chen, Jian-Hua; Xie, Ying; Wang, Zhi-Qiang

    2015-01-01

    Cell-penetrating peptides (CPPs) as small molecular transporters with abilities of cell penetrating, internalization, and endosomal escape have potential prospect in drug delivery systems. However, a bottleneck hampering their application is the poor specificity for cells. By utilizing the function of hydration shell of polyethylene glycol (PEG) and acid sensitivity of hydrazone bond, we constructed a kind of CPP-modified pH-sensitive PEGylated liposomes (CPPL) to improve the selectivity of these peptides for tumor targeting. In CPPL, CPP was directly attached to liposome surfaces via coupling with stearate (STR) to avoid the hindrance of PEG as a linker on the penetrating efficiency of CPP. A PEG derivative by conjugating PEG with STR via acid-degradable hydrazone bond (PEG2000-Hz-STR, PHS) was synthesized. High-performance liquid chromatography and flow cytometry demonstrated that PHS was stable at normal neutral conditions and PEG could be completely cleaved from liposome surface to expose CPP under acidic environments in tumor. An optimal CPP density on liposomes was screened to guaranty a maximum targeting efficiency on tumor cells as well as not being captured by normal cells that consequently lead to a long circulation in blood. In vitro and in vivo studies indicated, in 4 mol% CPP of lipid modified system, that CPP exerted higher efficiency on internalizing the liposomes into targeted subcellular compartments while remaining inactive and free from opsonins at a maximum extent in systemic circulation. The 4% CPPL as a drug delivery system will have great potential in the clinical application of anticancer drugs in future. PMID:26491292

  15. Development of a novel efficient method to construct an adenovirus library displaying random peptides on the fiber knob.

    PubMed

    Yamamoto, Yuki; Goto, Naoko; Miura, Kazuki; Narumi, Kenta; Ohnami, Shumpei; Uchida, Hiroaki; Miura, Yoshiaki; Yamamoto, Masato; Aoki, Kazunori

    2014-03-01

    Redirection of adenovirus vectors by engineering the capsid-coding region has shown limited success because proper targeting ligands are generally unknown. To overcome this limitation, we constructed an adenovirus library displaying random peptides on the fiber knob, and its screening led to successful selections of several particular targeted vectors. In the previous library construction method, the full length of an adenoviral genome was generated by a Cre-lox mediated in vitro recombination between a fiber-modified plasmid library and the enzyme-digested adenoviral DNA/terminal protein complex (DNA-TPC) before transfection to the producer cells. In this system, the procedures were complicated and time-consuming, and approximately 30% of the vectors in the library were defective with no displaying peptide. These may hinder further extensive exploration of cancer-targeting vectors. To resolve these problems, in this study, we developed a novel method with the transfection of a fiber-modified plasmid library and a fiberless adenoviral DNA-TPC in Cre-expressing 293 cells. The use of in-cell Cre recombination and fiberless adenovirus greatly simplified the library-making steps. The fiberless adenovirus was useful in suppressing the expansion of unnecessary adenovirus vectors. In addition, the complexity of the library was more than a 10(4) level in one well in a 6-well dish, which was 10-fold higher than that of the original method. The results demonstrated that this novel method is useful in producing a high quality live adenovirus library, which could facilitate the development of targeted adenovirus vectors for a variety of applications in medicine. PMID:24380399

  16. Antiplatelet Aggregation and Antithrombosis Efficiency of Peptides in the Snake Venom of Deinagkistrodon acutus: Isolation, Identification, and Evaluation

    PubMed Central

    Ding, Bin; Xu, Zhenghong; Qian, Chaodong; Jiang, Fusheng; Ding, Xinghong; Ruan, Yeping; Ding, Zhishan; Fan, Yongsheng

    2015-01-01

    Two peptides of Pt-A (Glu-Asn-Trp 429 Da) and Pt-B (Glu-Gln-Trp 443 Da) were isolated from venom liquor of Deinagkistrodon acutus. Their antiplatelet aggregation effects were evaluated with platelet-rich human plasma in vitro; the respective IC50 of Pt-A and Pt-B was 66 μM and 203 μM. Both peptides exhibited protection effects on ADP-induced paralysis in mice. After ADP administration, the paralysis time of different concentration of Pt-A and Pt-B lasted as the following: 80 mg/kg Pt-B (152.8 ± 57.8 s) < 40 mg/kg Pt-A (163.5 ± 59.8 s) < 20 mg/kg Pt-A (253.5 ± 74.5 s) < 4 mg/kg clopidogrel (a positive control, 254.5 ± 41.97 s) < 40 mg/kg Pt-B (400.8 ± 35.9 s) < 10 mg/kg Pt-A (422.8 ± 55.4 s), all of which were statistically shorter than the saline treatment (666 ± 28 s). Pulmonary tissue biopsy confirmed that Pt-A and Pt-B prevented the formation of thrombi in the lung. Unlike ADP injection alone, which caused significant reduction of peripheral platelet count, Pt-A treatment prevented the drop of peripheral platelet counts; interestingly, Pt-B could not, even though the same amount of Pt-B also showed protection effects on ADP-induced paralysis and thrombosis. More importantly, intravenous injection of Pt-A and Pt-B did not significantly increase the hemorrhage risks as clopidogrel. PMID:26483843

  17. Development of a novel efficient method to construct an adenovirus library displaying random peptides on the fiber knob

    PubMed Central

    Yamamoto, Yuki; Goto, Naoko; Miura, Kazuki; Narumi, Kenta; Ohnami, Shumpei; Uchida, Hiroaki; Miura, Yoshiaki; Yamamoto, Masato; Aoki, Kazunori

    2014-01-01

    Redirection of adenovirus vectors by engineering the capsid-coding region has shown limited success because proper targeting ligands are generally unknown. To overcome this limitation, we constructed an adenovirus library displaying random peptides on the fiber knob, and its screening led to successful selections of several particular targeted vectors. In the previous library construction method, the full length of an adenoviral genome was generated by a Cre-lox mediated in vitro recombination between a fiber-modified plasmid library and the enzyme-digested adenoviral DNA/terminal protein complex (DNA-TPC) before transfection to the producer cells. In this system, the procedures were complicated and time-consuming, and approximately 30% of the vectors in the library were defective with no displaying peptide. These may hinder further extensive exploration of cancer-targeting vectors. To resolve these problems, in this study, we developed a novel method with the transfection of a fiber-modified plasmid library and a fiberless adenoviral DNA-TPC in Cre-expressing 293 cells. The use of in-cell Cre recombination and fiberless adenovirus greatly simplified the library-making steps. The fiberless adenovirus was useful in suppressing the expansion of unnecessary adenovirus vectors. In addition, the complexity of the library was more than a 104 level in one well in a 6-well dish, which was 10-fold higher than that of the original method. The results demonstrated that this novel method is useful in producing a high quality live adenovirus library, which could facilitate the development of targeted adenovirus vectors for a variety of applications in medicine. PMID:24380399

  18. Selective encapsulation of cesium ions using the cyclic peptide moiety of surfactin: Highly efficient removal based on an aqueous giant micellar system.

    PubMed

    Taira, Toshiaki; Yanagisawa, Satohiro; Nagano, Takuto; Zhu, Yanbei; Kuroiwa, Takayoshi; Koumura, Nagatoshi; Kitamoto, Dai; Imura, Tomohiro

    2015-10-01

    Cyclic peptide of surfactin (SF) is one of the promising environment-friendly biosurfactants abundantly produced by microorganisms such as Bacillus subtilis. SF is also known to act as an ionophore, wherein alkali metal ions can be trapped in the cyclic peptide. Especially, SF is expected to show high affinity for Cs(+) because of the distinctive cavity size and coordination number. In this study, we reported the specific interaction between SF and Cs(+) and succeeded in the highly efficient removal of Cs(+) from water using giant SF micelles as a natural sorbent. The specific interaction between SF and Cs(+) to form their inclusion complex was revealed by nuclear magnetic resonance (NMR) and Fourier transform infrared (FT-IR) spectroscopy. We found that SF micelles selectively encapsulate Cs(+), which was suggested by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). A highly effective separation of Cs(+) immobilized on the surface of the SF micelles was also achieved through facile centrifugal ultrafiltration in 91% even in coexisting with other alkali metal ions such as Na(+) and K(+). Thus, the use of the giant micellar system of SF with its high Cs(+) affinity and distinctive assembling properties would be a new approach for the treatment of contaminated soil and water. PMID:26142629

  19. Efficient Production of a Bioactive Bevacizumab Monoclonal Antibody Using the 2A Self-cleavage Peptide in Transgenic Rice Callus

    PubMed Central

    Chen, Lei; Yang, Xiaoyu; Luo, Da; Yu, Weichang

    2016-01-01

    Bevacizumab, a humanized monoclonal antibody (mAb) targeting to the vascular endothelial growth factor (VEGF), has been widely used in clinical practice for the treatment of multiple cancers. Bevacizumab was mostly produced by the mammalian cell expression system. We here reported the first plant-derived Bevacizumab by using transgenic rice callus as an alternative gene expression system. Codon-optimized Bevacizumab light chain (BLC) and Bevacizumab heavy chain (BHC) genes were designed, synthesized as a polyprotein with a 2A self-cleavage linker peptide from the Foot-and-mouth disease virus, cloned into a plant binary vector under a constitutive maize ubiquitin promoter, and transformed into rice nuclear genome through Agrobacterium-mediated transformation. Southern blot and western blot analyses confirmed the integration and expression of BLC and BHC genes in transgenic rice callus. Enzyme-linked immunosorbent assay (ELISA) analysis indicated that the rice-derived Bevacizumab mAb was biologically active and the recombinant mAb was expressed at high levels (160.7–242.8 mg/Kg) in transgenic rice callus. The mAb was purified by using protein A affinity chromatography and the purified antibody was tested for its binding affinity with its target human VEGF (hVEGF) antigen by ELISA. Rice callus produced Bevacizumab and a commercial Bevacizumab (Avastin) were shown to have similar binding affinity to hVEGF. These results indicated that rice callus produced Bevacizumab could have similar biological activity and might potentially be used as a cost-effective biosimilar molecule in future cancer treatment. PMID:27555853

  20. Efficient Production of a Bioactive Bevacizumab Monoclonal Antibody Using the 2A Self-cleavage Peptide in Transgenic Rice Callus.

    PubMed

    Chen, Lei; Yang, Xiaoyu; Luo, Da; Yu, Weichang

    2016-01-01

    Bevacizumab, a humanized monoclonal antibody (mAb) targeting to the vascular endothelial growth factor (VEGF), has been widely used in clinical practice for the treatment of multiple cancers. Bevacizumab was mostly produced by the mammalian cell expression system. We here reported the first plant-derived Bevacizumab by using transgenic rice callus as an alternative gene expression system. Codon-optimized Bevacizumab light chain (BLC) and Bevacizumab heavy chain (BHC) genes were designed, synthesized as a polyprotein with a 2A self-cleavage linker peptide from the Foot-and-mouth disease virus, cloned into a plant binary vector under a constitutive maize ubiquitin promoter, and transformed into rice nuclear genome through Agrobacterium-mediated transformation. Southern blot and western blot analyses confirmed the integration and expression of BLC and BHC genes in transgenic rice callus. Enzyme-linked immunosorbent assay (ELISA) analysis indicated that the rice-derived Bevacizumab mAb was biologically active and the recombinant mAb was expressed at high levels (160.7-242.8 mg/Kg) in transgenic rice callus. The mAb was purified by using protein A affinity chromatography and the purified antibody was tested for its binding affinity with its target human VEGF (hVEGF) antigen by ELISA. Rice callus produced Bevacizumab and a commercial Bevacizumab (Avastin) were shown to have similar binding affinity to hVEGF. These results indicated that rice callus produced Bevacizumab could have similar biological activity and might potentially be used as a cost-effective biosimilar molecule in future cancer treatment. PMID:27555853

  1. Expanding the Versatility of Phage Display I: Efficient Display of Peptide-Tags on Protein VII of the Filamentous Phage

    PubMed Central

    Løset, Geir Åge; Bogen, Bjarne; Sandlie, Inger

    2011-01-01

    Background Phage display is a platform for selection of specific binding molecules and this is a clear-cut motivation for increasing its performance. Polypeptides are normally displayed as fusions to the major coat protein VIII (pVIII), or the minor coat protein III (pIII). Display on other coat proteins such as pVII allows for display of heterologous peptide sequences on the virions in addition to those displayed on pIII and pVIII. In addition, pVII display is an alternative to pIII or pVIII display. Methodology/Principal Findings Here we demonstrate how standard pIII or pVIII display phagemids are complemented with a helper phage which supports production of virions that are tagged with octa FLAG, HIS6 or AviTag on pVII. The periplasmic signal sequence required for pIII and pVIII display, and which has been added to pVII in earlier studies, is omitted altogether. Conclusions/Significance Tagging on pVII is an important and very useful add-on feature to standard pIII and pVII display. Any phagemid bearing a protein of interest on either pIII or pVIII can be tagged with any of the tags depending simply on choice of helper phage. We show in this paper how such tags may be utilized for immobilization and separation as well as purification and detection of monoclonal and polyclonal phage populations. PMID:21390217

  2. Efficient GLP-1 gene delivery using two-step transcription amplification plasmid system with a secretion signal peptide and arginine-grafted bioreducible polymer.

    PubMed

    Kim, Tae-Il; Lee, Minhyung; Kim, Sung Wan

    2012-01-30

    Glucagon-like peptide (GLP-1) encoding dual plasmid (pDNA) system (TSTA (SP-GLP-1)) which is composed of pβ-Gal4-p65 and pUAS-SP-GLP-1 was constructed to improve the production and secretion of expressed GLP-1 by combining the advantages of signal peptide (SP) and two-step transcription amplification (TSTA) system. Its potential for GLP-1 gene delivery system was investigated with employment of arginine-grafted bioreducible polymer (ABP) as a gene carrier. Their polyplexes have about 140nm-sizes and 20mV Zeta-potential values. ABP showed no cytotoxicity contrary to PEI25k. It was found in RT-PCR experiments that TSTA-SP pDNA systems showed increased GLP-1 gene transcription level in comparison with mono pDNA system (pβ-GLP-1). It was also observed in GLP-1 ELISA that GLP-1 secretion level of TSTA (SP-GLP-1) pDNA system was 2.7-3.4 times higher than those of pβ-GLP-1 and 1.5-1.7 times than TSTA (GLP-1). Additionally, 2.5-3.5 folds increased level of GLP-1 secretion was found in ABP gene carrier system in comparison with PEI25k. When transfection medium containing secreted GLP-1 was transferred to NIT-1 insulinoma cells, the highest secretion level of insulin was induced in ABP/TSTA (SP-GLP-1) polyplex medium-treated cells. Therefore, this novel system could be utilized as a safe and efficient GLP-1 gene delivery system for type 2 diabetes therapy. PMID:21945681

  3. Antimicrobial peptides

    PubMed Central

    2014-01-01

    With increasing antibiotics resistance, there is an urgent need for novel infection therapeutics. Since antimicrobial peptides provide opportunities for this, identification and optimization of such peptides have attracted much interest during recent years. Here, a brief overview of antimicrobial peptides is provided, with focus placed on how selected hydrophobic modifications of antimicrobial peptides can be employed to combat also more demanding pathogens, including multi-resistant strains, without conferring unacceptable toxicity. PMID:24758244

  4. Efficient Eradication of Mature Pseudomonas aeruginosa Biofilm via Controlled Delivery of Nitric Oxide Combined with Antimicrobial Peptide and Antibiotics.

    PubMed

    Ren, Hang; Wu, Jianfeng; Colletta, Alessandro; Meyerhoff, Mark E; Xi, Chuanwu

    2016-01-01

    Fast eradication of mature biofilms is the 'holy grail' in the clinical management of device-related infections. Endogenous nitric oxide (NO) produced by macrophages plays an important role in host defense against intracellular pathogens, and NO is a promising agent in preventing biofilms formation in vitro. However, the rate of delivery of NO by various NO donors (e.g., diazeniumdiolates, S-nitrosothiols, etc.) is difficult to control, which hinders fundamental studies aimed at understanding the role of NO in biofilm control. In this study, by using a novel precisely controlled electrochemical NO releasing catheter device, we examine the effect of physiological levels of NO on eradicating mature Pseudomonas aeruginosa biofilm (7 days), as well as the potential application of the combination of NO with antimicrobial agents. It is shown that physiological levels of NO exhibit mixed effects of killing bacteria and dispersing ambient biofilm. The overall biofilm-eradicating effect of NO is quite efficient in a dose-dependent manner over a 3 h period of NO treatment. Moreover, NO also greatly enhances the efficacy of antimicrobial agents, including human beta-defensin 2 (BD-2) and several antibiotics, in eradicating biofilm and its detached cells, which otherwise exhibited high recalcitrance to these antimicrobial agents. The electrochemical NO release technology offers a powerful tool in evaluating the role of NO in biofilm control as well as a promising approach when combined with antimicrobial agents to treat biofilm-associated infections in hospital settings, especially infections resulting from intravascular catheters. PMID:27582732

  5. Efficient secretion of biologically active Chondroitinase ABC from mammalian cells in the absence of an N-terminal signal peptide.

    PubMed

    Klüppel, Michael

    2011-05-01

    Proteoglycans carrying chondroitin sulfate side chains have been shown to fulfill important biological functions in development, disease, and signaling. One area of considerable interest is the functional importance of chondroitin sulfates as inhibitors of the regeneration of axonal projections in the mammalian central nervous system. In animal models of spinal cord injury, injections of the enzyme Chondroitinase ABC from the bacterium Proteus vulgaris into the lesion site leads to degradation of chondroitin sulfates, and promotes axonal regeneration and significant functional recovery. Here, a mammalian expression system of an epitope-tagged Chondroitinase ABC protein is described. It is demonstrated that the addition of a eukaryotic secretion signal sequence to the N-terminus of the bacterial Chondroitinase ABC sequence allowed secretion, but interfered with function of the secreted enzyme. In contrast, expression of the Chondroitinase ABC gene without N-terminal eukaryotic secretion sequence or bacterial hydrophobic leader sequence led to efficient secretion of a biologically active Chondroitinase ABC protein from both immortalized and primary cells. Moreover, the C-terminal epitope tag could be utilized to follow expression of this protein. This novel Chondroitinase ABC gene is a valuable tool for a better understanding of the in vivo roles of chondroitin sulfates in mammalian development and disease, as well as in gene therapy approaches, including the treatment of spinal chord injuries. PMID:21213020

  6. Efficient in vitro inhibition of HIV-1 gag reverse transcription by peptide nucleic acid (PNA) at minimal ratios of PNA/RNA.

    PubMed Central

    Koppelhus, U; Zachar, V; Nielsen, P E; Liu, X; Eugen-Olsen, J; Ebbesen, P

    1997-01-01

    We have tested the inhibitory potential of peptide nucleic acid (PNA) on in vitro reverse transcription of the HIV-1 gag gene. PNA was designed to target different regions of the HIV-1 gag gene and the effect on reverse transcription by HIV-1, MMLV and AMV reverse transcriptases (RTs) was investigated. We found that a bis-PNA (parallel antisense 10mer linked to antiparallel antisense 10mer) was superior to both the parallel antisense 10mer and antiparallel antisense 10mer in inhibiting reverse transcription of the gene, thus indicating triplex formation at the target sequence. A complete arrest of reverse transcription was obtained at approximately 6-fold molar excess of the bis-PNA with respect to the gag RNA. At this molar ratio we found no effect on in vitro translation of gag RNA. A 15mer duplex-forming PNA was also found to inhibit reverse transcription at very low molar ratios of PNA/ gag RNA. Specificity of the inhibition of reverse transcription by PNA was confirmed by RNA sequencing, which revealed that all tested RTs were stopped by the PNA/RNA complex at the predicted site. We propose that the effect of PNA is exclusively due to steric hindrance, as we found no signs of RNA degradation that would indicate PNA-mediated RNase H activation of the tested RTs. In conclusion, PNA appears to have a potential to become a specific and efficient inhibitor of reverse transcription in vivo , provided sufficient intracellular levels are achievable. PMID:9153317

  7. Efficient Eradication of Mature Pseudomonas aeruginosa Biofilm via Controlled Delivery of Nitric Oxide Combined with Antimicrobial Peptide and Antibiotics

    PubMed Central

    Ren, Hang; Wu, Jianfeng; Colletta, Alessandro; Meyerhoff, Mark E.; Xi, Chuanwu

    2016-01-01

    Fast eradication of mature biofilms is the ‘holy grail’ in the clinical management of device-related infections. Endogenous nitric oxide (NO) produced by macrophages plays an important role in host defense against intracellular pathogens, and NO is a promising agent in preventing biofilms formation in vitro. However, the rate of delivery of NO by various NO donors (e.g., diazeniumdiolates, S-nitrosothiols, etc.) is difficult to control, which hinders fundamental studies aimed at understanding the role of NO in biofilm control. In this study, by using a novel precisely controlled electrochemical NO releasing catheter device, we examine the effect of physiological levels of NO on eradicating mature Pseudomonas aeruginosa biofilm (7 days), as well as the potential application of the combination of NO with antimicrobial agents. It is shown that physiological levels of NO exhibit mixed effects of killing bacteria and dispersing ambient biofilm. The overall biofilm-eradicating effect of NO is quite efficient in a dose-dependent manner over a 3 h period of NO treatment. Moreover, NO also greatly enhances the efficacy of antimicrobial agents, including human beta-defensin 2 (BD-2) and several antibiotics, in eradicating biofilm and its detached cells, which otherwise exhibited high recalcitrance to these antimicrobial agents. The electrochemical NO release technology offers a powerful tool in evaluating the role of NO in biofilm control as well as a promising approach when combined with antimicrobial agents to treat biofilm-associated infections in hospital settings, especially infections resulting from intravascular catheters. PMID:27582732

  8. A novel system of artificial antigen-presenting cells efficiently stimulates Flu peptide-specific cytotoxic T cells in vitro

    SciTech Connect

    Han, Hui; Peng, Ji-Run; Chen, Peng-Cheng; Gong, Lei; Qiao, Shi-Shi; Wang, Wen-Zhen; Cui, Zhu-Qingqing; Yu, Xin; Wei, Yu-Hua; Leng, Xi-Sheng

    2011-08-05

    Highlights: {yields} Adoptive immunotherapy depends on relevant numbers of cytolytic T lymphocytes. {yields} An ideal artificial APCs system was successfully prepared in vivo. {yields} Controlled release of IL-2 leads to much more T-cell expansion. {yields} This system is better than general cellular APCs on T-cell expansion. -- Abstract: Therapeutic numbers of antigen-specific cytotoxic T lymphocytes (CTLs) are key effectors in successful adoptive immunotherapy. However, efficient and reproducible methods to meet the qualification remain poor. To address this issue, we designed the artificial antigen-presenting cell (aAPC) system based on poly(lactic-co-glycolic acid) (PLGA). A modified emulsion method was used for the preparation of PLGA particles encapsulating interleukin-2 (IL-2). Biotinylated molecular ligands for recognition and co-stimulation of T cells were attached to the particle surface through the binding of avidin-biotin. These formed the aAPC system. The function of aAPCs in the proliferation of specific CTLs against human Flu antigen was detected by enzyme-linked immunospot assay (ELISPOT) and MTT staining methods. Finally, we successfully prepared this suitable aAPC system. The results show that IL-2 is released from aAPCs in a sustained manner over 30 days. This dramatically improves the stimulatory capacity of this system as compared to the effect of exogenous addition of cytokine. In addition, our aAPCs promote the proliferation of Flu antigen-specific CTLs more effectively than the autologous cellular APCs. Here, this aAPC platform is proved to be suitable for expansion of human antigen-specific T cells.

  9. Designing an efficient multi-epitope peptide vaccine against Vibrio cholerae via combined immunoinformatics and protein interaction based approaches.

    PubMed

    Nezafat, Navid; Karimi, Zeinab; Eslami, Mahboobeh; Mohkam, Milad; Zandian, Sanam; Ghasemi, Younes

    2016-06-01

    Cholera continues to be a major global health concern. Among different Vibrio cholerae strains, only O1 and O139 cause acute diarrheal diseases that are related to epidemic and pandemic outbreaks. The currently available cholera vaccines are mainly lived and attenuated vaccines consisting of V. cholerae virulence factors such as toxin-coregulated pili (TCP), outer membrane proteins (Omps), and nontoxic cholera toxin B subunit (CTB). Nowadays, there is a great interest in designing an efficient epitope vaccine against cholera. Epitope vaccines consisting of immunodominant epitopes and adjuvant molecules enhance the possibility of inciting potent protective immunity. In this study, V. cholerae protective antigens (OmpW, OmpU, TcpA and TcpF) and the CTB, which is broadly used as an immunostimulatory adjuvant, were analyzed using different bioinformatics and immunoinformatics tools. The common regions between promiscuous epitopes, binding to various HLA-II supertype alleles, and B-cell epitopes were defined based upon the aforementioned protective antigens. The ultimately selected epitopes and CTB adjuvant were fused together using proper GPGPG linkers to enhance vaccine immunogenicity. A three-dimensional model of the thus constructed vaccine was generated using I-TASSER. The model was structurally validated using the ProSA-web error-detection software and the Ramachandran plot. The validation results indicated that the initial 3D model needed refinement. Subsequently, a high-quality model obtained after various refinement cycles was used for defining conformational B-cell epitopes. Several linear and conformational B-cell epitopes were determined within the epitope vaccine, suggesting likely antibody triggering features of our designed vaccine. Next, molecular docking was performed between the 3D vaccine model and the tertiary structure of the toll like receptor 2 (TLR2). To gain further insight into the interaction between vaccine and TLR2, molecular dynamics

  10. Efficient model chemistries for peptides. I. General framework and a study of the heterolevel approximation in RHF and MP2 with Pople split-valence basis sets.

    PubMed

    Echenique, Pablo; Alonso, José Luis

    2008-07-15

    We present an exhaustive study of more than 250 ab initio potential energy surfaces (PESs) of the model dipeptide HCO-L-Ala-NH(2). The model chemistries (MCs) investigated are constructed as homo- and heterolevels involving possibly different RHF and MP2 calculations for the geometry and the energy. The basis sets used belong to a sample of 39 representants from Pople's split-valence families, ranging from the small 3-21G to the large 6-311++G(2df,2pd). The reference PES to which the rest are compared is the MP2/6-311++G(2df,2pd) homolevel, which, as far as we are aware, is the most accurate PES in the literature. All data sets have been analyzed according to a general framework, which can be extended to other complex problems and which captures the nearness concept in the space of MCs. The great number of MCs evaluated has allowed us to significantly explore this space and show that the correlation between accuracy and computational cost of the methods is imperfect, thus justifying a systematic search for the combination of features in a MC that is optimal to deal with peptides. Regarding the particular MCs studied, the most important conclusion is that the potentially very cost-saving heterolevel approximation is a very efficient one to describe the whole PES of HCO-L-Ala-NH(2). Finally, we show that, although RHF may be used to calculate the geometry if a MP2 single-point energy calculation follows, pure RHF//RHF homolevels are not recommendable for this problem. PMID:18270966

  11. Understanding the highly efficient catalysis of prokaryotic peptide deformylases by shedding light on the determinants specifying the low activity of the human counterpart.

    PubMed

    Fieulaine, Sonia; Desmadril, Michel; Meinnel, Thierry; Giglione, Carmela

    2014-02-01

    Peptide deformylases (PDFs), which are essential and ubiquitous enzymes involved in the removal of the N-formyl group from nascent chains, are classified into four subtypes based on the structural and sequence similarity of specific conserved domains. All PDFs share a similar three-dimensional structure, are functionally interchangeable in vivo and display similar properties in vitro, indicating that their molecular mechanism has been conserved during evolution. The human mitochondrial PDF is the only exception as despite its conserved fold it reveals a unique substrate-binding pocket together with an unusual kinetic behaviour. Unlike human PDF, the closely related mitochondrial PDF1As from plants have catalytic efficiencies and enzymatic parameters that are similar to those of other classes of PDFs. Here, the aim was to identify the structural basis underlying the properties of human PDF compared with all other PDFs by focusing on plant mitochondrial PDF1A. The construction of a chimaera composed of plant PDF1A with the nonrandom substitutions found in a conserved motif of its human homologue converted it into an enzyme with properties similar to the human enzyme, indicating the crucial role of these positions. The crystal structure of this human-like plant PDF revealed that substitution of two residues leads to a reduction in the volume of the ligand-binding site together with the introduction of negative charges, unravelling the origin of the weak affinity of human PDF for its substrate. In addition, the substitution of the two residues of human PDF modifies the transition state of the reaction through alteration of the network of interactions between the catalytic residues and the substrate, leading to an overall reduced reaction rate. PMID:24531459

  12. Exploration of the Medicinal Peptide Space.

    PubMed

    Gevaert, Bert; Stalmans, Sofie; Wynendaele, Evelien; Taevernier, Lien; Bracke, Nathalie; D'Hondt, Matthias; De Spiegeleer, Bart

    2016-01-01

    The chemical properties of peptide medicines, known as the 'medicinal peptide space' is considered a multi-dimensional subset of the global peptide space, where each dimension represents a chemical descriptor. These descriptors can be linked to biofunctional, medicinal properties to varying degrees. Knowledge of this space can increase the efficiency of the peptide-drug discovery and development process, as well as advance our understanding and classification of peptide medicines. For 245 peptide drugs, already available on the market or in clinical development, multivariate dataexploration was performed using peptide relevant physicochemical descriptors, their specific peptidedrug target and their clinical use. Our retrospective analysis indicates that clusters in the medicinal peptide space are located in a relatively narrow range of the physicochemical space: dense and empty regions were found, which can be explored for the discovery of novel peptide drugs. PMID:26876881

  13. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight.

    PubMed

    Mohan, Aishwarya; McClements, David Julian; Udenigwe, Chibuike C

    2016-12-15

    Encapsulation of peptides can be used to enhance their stability, delivery and bioavailability. This study focused on the effect of the molecular weight range of whey peptides on their encapsulation within soy lecithin-derived nanoliposomes. Peptide molecular weight did not have a major impact on encapsulation efficiency or liposome size. However, it influenced peptide distribution amongst the surface, core, and bilayer regions of the liposomes, as determined by electrical charge (ζ-potential) and FTIR analysis. The liposome ζ-potential depended on peptide molecular weight, suggesting that the peptide charged groups were in different locations relative to the liposome surfaces. FTIR analysis indicated that the least hydrophobic peptide fractions interacted more strongly with choline on the liposome surfaces. The results suggested that the peptides were unequally distributed within the liposomes, even at the same encapsulation efficiency. These findings are important for designing delivery systems for commercial production of encapsulated peptides with improved functional attributes. PMID:27451165

  14. Peptide identification

    DOEpatents

    Jarman, Kristin H [Richland, WA; Cannon, William R [Richland, WA; Jarman, Kenneth D [Richland, WA; Heredia-Langner, Alejandro [Richland, WA

    2011-07-12

    Peptides are identified from a list of candidates using collision-induced dissociation tandem mass spectrometry data. A probabilistic model for the occurrence of spectral peaks corresponding to frequently observed partial peptide fragment ions is applied. As part of the identification procedure, a probability score is produced that indicates the likelihood of any given candidate being the correct match. The statistical significance of the score is known without necessarily having reference to the actual identity of the peptide. In one form of the invention, a genetic algorithm is applied to candidate peptides using an objective function that takes into account the number of shifted peaks appearing in the candidate spectrum relative to the test spectrum.

  15. Electromembrane extraction of peptides.

    PubMed

    Balchen, Marte; Reubsaet, Léon; Pedersen-Bjergaard, Stig

    2008-06-20

    Rapid extraction of eight different peptides using electromembrane extraction (EME) was demonstrated for the first time. During an extraction time of 5 min, the model peptides migrated from a 500 microL aqueous acidic sample solution, through a thin supported liquid membrane (SLM) of an organic liquid sustained in the pores in the wall of a porous hollow fiber, and into a 25 microL aqueous acidic acceptor solution present inside the lumen of the hollow fiber. The driving force of the extraction was a 50 V potential sustained across the SLM, with the positive electrode in the sample and the negative electrode in the acceptor solution. The nature and the composition of the SLM were highly important for the EME process, and a mixture of 1-octanol and 15% di(2-ethylhexyl) phosphate was found to work properly. Using 1mM HCl as background electrolyte in the sample and 100 mM HCl in the acceptor solution, and agitation at 1050 rpm, enrichment up to 11 times was achieved. Recoveries were found to be dependent on the structure of the peptide, indicating that the polarity and the number of ionized groups were important parameters affecting the extraction efficiency. The experimental findings suggested that electromembrane extraction of peptides is possible and may be a valuable tool for future extraction of peptides. PMID:18479691

  16. Sustainable efficient way for opioid peptide LVV-h7 preparation from enzymatic proteolysis in a microfluidic-based reaction-extraction process with solvent recycling.

    PubMed

    Elagli, Adil; Belhacene, Kalim; Dhulster, Pascal; Froidevaux, Renato

    2016-05-01

    LVV-h7 (LVVYPWTQFR) is a bioactive peptide that can be obtained from blood as waste of food industry, more precisely from hemoglobin hydrolysis by pepsin. This opioid peptide belongs to the hemorphins family and have strong physiological effects that bring its use in pharmaceutics and various therapeutic treatments attractive, in particular for substituting its costly chemically synthetized analogous. Hemoglobin hydrolysis by pepsin generates a huge variety of peptides among whose LVV-h7 can be purified by liquid-liquid extraction (LLE). Herein, selective preparation of this peptide is proposed by a microfluidic-based continuous reaction-separation process. Hemoglobin hydrolysis in microreactor was firstly coupled to LVV-h7 LLE in octan-1-ol and then coupled to LVV-h7 back LLE in acidic water. This continuous process allowed to prepare pure LVV-h7, as confirmed by liquid chromatography and mass spectrometry. The microfluidic circuit also allowed octan-1-ol recycling in a closed loop, making this method more sustainable than similar biphasic batch process. PMID:26998857

  17. High-efficiency secretory expression of human neutrophil gelatinase-associated lipocalin from mammalian cell lines with human serum albumin signal peptide.

    PubMed

    Chen, Wei; Zhao, Xiaozhi; Zhang, Mingxin; Yuan, Yimin; Ge, Liyuan; Tang, Bo; Xu, Xiaoyu; Cao, Lin; Guo, Hongqian

    2016-02-01

    Human neutrophil gelatinase associated lipocalin (NGAL) is a secretory glycoprotein initially isolated from neutrophils. It is thought to be involved in the incidence and development of immunological diseases and cancers. Urinary and serum levels of NGAL have been investigated as a new biomarker of acute kidney injury (AKI), for an earlier and more accurate detection method than with creatinine level. However, expressing high-quality recombinant NGAL is difficult both in Escherichia coli and mammalian cells for the low yield. Here, we cloned and fused NGAL to the C-terminus of signal peptides of human NGAL, human interleukin-2 (IL2), gaussia luciferase (Gluc), human serum albumin preproprotein (HSA) or an hidden Markov model-generated signal sequence (HMM38) respectively for transient expression in Expi293F suspension cells to screen for their ability to improve the secretory expression of recombinant NGAL. The best results were obtained with signal peptide derived from HSA. The secretory recombinant protein could react specifically with NGAL antibody. For scaled production, we used HSA signal peptide to establish stable Chinese hamster ovary cell lines. Then we developed a convenient colony-selection system to select high-expression, stable cell lines. Moreover, we purified the NGAL with Ni-Sepharose column. The recombinant human NGAL displayed full biological activity. We provide a method to enhance the secretory expression of recombinant human NGAL by using the HSA signal peptide and produce the glycoprotein in mammalian cells. PMID:26518367

  18. Thermodynamic and Biophysical Analysis of the Membrane-Association of a Histidine-Rich Peptide with Efficient Antimicrobial and Transfection Activities.

    PubMed

    Voievoda, Nataliia; Schulthess, Therese; Bechinger, Burkhard; Seelig, Joachim

    2015-07-30

    LAH4-L1 is a synthetic amphipathic peptide with antimicrobial activity. The sequence of the 23 amino acid peptide was inspired by naturally occurring frog peptides such as PGLa and magainin. LAH4-L1 also facilitates the transport of nucleic acids through the cell membrane. We have investigated the membrane binding properties and energetics of LAH4-L1 at pH 5.5 with physical-chemical methods. CD spectroscopy was employed to quantitate the membrane-induced random coil-to-helix transition of LAH4-L1. Binding isotherms were obtained with CD spectroscopy as a function of the lipid-to-protein ratio for neutral and negatively charged membranes and were analyzed with both the Langmuir multisite adsorption model and the surface partition/Gouy-Chapman model. According to the Langmuir adsorption model each molecule LAH4-L1 binds 4 POPS molecules, independent of the POPS concentration in the membrane. This is supported by the surface partition/Gouy-Chapman model which predicts an electric charge of LAH4-L1 of z = 4. Binding affinity is dominated by electrostatic attraction. The thermodynamics of the binding process was elucidated with isothermal titration calorimetry. The ITC data revealed that the binding process is composed of at least three different reactions, that is, a coil-to-helix transition with an exothermic enthalpy of about -11 kcal/mol and two endothermic processes with enthalpies of ∼4 and ∼8 kcal/mol, respectively, which partly compensate the exothermic enthalpy of the conformational change. The major endothermic reaction is interpreted as a deprotonation reaction following the insertion of a highly charged cationic peptide into a nonpolar environment. PMID:26134591

  19. Novel Cysteine Tags for the Sequencing of Non-Tryptic Disulfide Peptides of Anurans: ESI-MS Study of Fragmentation Efficiency

    NASA Astrophysics Data System (ADS)

    Samgina, Tatyana Y.; Vorontsov, Egor A.; Gorshkov, Vladimir A.; Artemenko, Konstantin A.; Nifant'ev, Ilya E.; Kanawati, Basem; Schmitt-Kopplin, Philippe; Zubarev, Roman A.; Lebedev, Albert T.

    2011-12-01

    Mass spectrometry faces considerable difficulties in de novo sequencing of long non-tryptic peptides with S-S bonds. Long disulfide-containing peptides brevinins 1E and 2Ec from frog Rana ridibunda were reduced and alkylated with nine novel and three known derivatizing agents. Eight of the novel reagents are maleimide derivatives. Modified samples were subjected to MS/MS studies on FT-ICR and Orbitrap mass spectrometers using CAD/HCD or ECD/ETD techniques. Procedures, fragmentation patterns, and sequence coverage for two peptides modified with 12 tags are described. ECD/ETD and CAD fragmentation revealed complementary sequence information. Higher-energy collisionally activated dissociation (HCD) sufficiently enhanced y-ions formation for brevinin 1E, but not for brevinin 2Ec. Some novel tags [ N-benzylmaleimide, N-(2,6-dimethylphenyl)maleimide] along with known N-phenylmaleimide and iodoacetic acid showed high total sequence coverage taking into account combined ETD and HCD fragmentation. Moreover, modification of long (34 residues) brevinin 2Ec with N-benzylmaleimide or N-(2,6-dimethylphenyl)maleimide yielded high sequence coverage and full C-terminal sequence determination with ECD alone.

  20. Two interdependent mechanisms of antimicrobial activity allow for efficient killing in nylon-3-based polymeric mimics of innate immunity peptides

    PubMed Central

    Lee, Michelle W.; Chakraborty, Saswata; Schmidt, Nathan W.; Murgai, Rajan; Gellman, Samuel H.; Wong, Gerard C.L.

    2015-01-01

    Novel synthetic mimics of antimicrobial peptides have been developed to exhibit structural properties and antimicrobial activity similar to those of natural antimicrobial peptides (AMPs) of the innate immune system. These molecules have a number of potential advantages over conventional antibiotics, including reduced bacterial resistance, cost-effective preparation, and customizable designs. In this study, we investigate a family of nylon-3 polymer-based antimicrobials. By combining vesicle dye leakage, bacterial permeation, and bactericidal assays with small-angle X-ray scattering (SAXS), we find that these polymers are capable of two interdependent mechanisms of action: permeation of bacterial membranes and binding to intracellular targets such as DNA, with the latter necessarily dependent on the former. We systemically examine polymer-induced membrane deformation modes across a range of lipid compositions that mimic both bacteria and mammalian cell membranes. The results show that the polymers' ability to generate negative Gaussian curvature (NGC), a topological requirement for membrane permeation and cellular entry, in model Escherichia coli membranes correlates with their ability to permeate membranes without complete membrane disruption and kill E. coli cells. Our findings suggest that these polymers operate with a concentration dependent mechanism of action: at low concentrations permeation and DNA binding occur without membrane disruption, while at high concentrations complete disruption of the membrane occurs. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. PMID:24743021

  1. Facile removal of high mannose structures prior to extracting complex type N-glycans from de-N-glycosylated peptides retained by C18 solid phase to allow more efficient glycomic mapping

    PubMed Central

    Lin, Chi-Hung; Kuo, Chu-Wei; Jarvis, Donald L; Khoo, Kay-Hooi

    2014-01-01

    The relative amount of high mannose structures within an N-glycomic pool differs from one source to another but quite often it predominates over the larger size complex type structures carrying biologically important glyco-epitopes. An efficient method to separate these two classes of N-glycans would significantly aid in detecting the lower abundant components by mass spectrometry. Capitalizing on an initial observation that only high mannose type structures were recovered in the flow through fraction when PNGase F digested peptides were passed through a C18 cartridge in 0.1% formic acid, we demonstrated here that native complex type N-glycans can be retained by C18 cartridge and to be efficiently separated from both the smaller high mannose type structures, as well as de-N-glycosylated peptides by stepwise elution with increasing acetonitrile concentration. The weak retention of the largely hydrophilic N-glycans on C18 resin is dependent not only on size but also increased by the presence of α6-fucosylation. This was shown by comparing the resulting N-glycomic profiles of the washed and low acetonitrile eluted fractions derived from both a human cancer cell line and an insect cell line. PMID:24174266

  2. Immunoglobulin Fc-fused, neuropilin-1-specific peptide shows efficient tumor tissue penetration and inhibits tumor growth via anti-angiogenesis.

    PubMed

    Kim, Ye-Jin; Bae, Jeomil; Shin, Tae-Hwan; Kang, Se Hun; Jeong, Moonkyoung; Han, Yunho; Park, Ji-Ho; Kim, Seok-Ki; Kim, Yong-Sung

    2015-10-28

    Neuropilin-1 (NRP1) receptor, involved in vascular endothelial growth factor (VEGF)-mediated vascular permeability and tumor angiogenesis, is targeted by peptides that bind to its VEGF-binding site. However, these peptides also cross-react with the structurally related receptor, NRP2. Here, we describe an immunoglobulin Fc-fused peptide, Fc-TPP11, which specifically binds to the VEGF-binding site of NRP1 with approximately 2nM affinity, but negligibly to that of NRP2. Fc-TPP11 triggered NRP1-dependent signaling, enhanced vascular permeability via vascular endothelial (VE)-cadherin downregulation, and increased paracellular permeability via E-cadherin downregulation in tumor tissues. Fc-TPP11 also significantly enhanced the tumor penetration of co-injected anti-cancer drug, doxorubicin, leading to the improved in vivo anti-tumor efficacy. Fc-TPP11 was easily adapted to the full-length anti-epidermal growth factor receptor (EGFR) monoclonal antibody (mAb) cetuximab (Erbitux), cetuximab-TPP11, exhibiting more than 2-fold improved tumor penetration than the parent cetuximab. Fc-TPP11 exhibited a similar whole-body half-life to that of intact Fc in tumor bearing mice. In addition to the tumor-penetrating activity, Fc-TPP11 suppressed VEGF-dependent angiogenesis by blocking VEGF binding to NRP1, thereby inhibiting tumor growth without promoting metastasis in the mouse model. Our results show that NRP1-specific, high-affinity binding of Fc-TPP11, is useful to validate NRP1 signaling, independent of NRP2. Thus, Fc-TPP11 can be used as a tumor penetration-promoting agent with anti-angiogenic activity or directly adapted to mAb-TPP11 format for more potent anti-cancer antibody therapy. PMID:26260451

  3. NK cells: tuned by peptide?

    PubMed

    Das, Jayajit; Khakoo, Salim I

    2015-09-01

    Natural killer cells express multiple receptors for major histocompatibility complex (MHC) class I, including the killer cell immunoglobulin-like receptors (KIRs) and the C-type lectin-like CD94:NKG2 receptors. The KIR locus is extremely polymorphic, paralleling the diversity of its classical MHC class I ligands. Similarly, the conservation of the NKG2 family of receptors parallels the conservation of MHC-E, the ligand for CD94:NKG2A/C/E. Binding of both CD94:NKG2 heterodimers and KIR to their respective MHC class I ligand is peptide dependent, and despite the evolution of these receptors, they have retained the property of peptide selectivity. Such peptide selectivity affects these two systems in different ways. HLA-E binding non-inhibitory peptides augment inhibition at CD94:NKG2A, while HLA-C binding non-inhibitory peptides antagonize inhibition at KIR2DL2/3, implying that KIRs are specialized to respond positively to changes in peptide repertoire. Thus, while specific KIRs, such as KIR2DL3, are associated with beneficial outcomes from viral infections, viral peptides augment inhibition at CD94:NKGA. Conversely, NKG2A-positive NK cells sense MHC class I downregulation more efficiently than KIRs. Thus, these two receptor:ligand systems appear to have complementary functions in recognizing changes in MHC class I. PMID:26284480

  4. Antimicrobial peptides.

    PubMed

    Zhang, Ling-Juan; Gallo, Richard L

    2016-01-11

    Antimicrobial peptides and proteins (AMPs) are a diverse class of naturally occurring molecules that are produced as a first line of defense by all multicellular organisms. These proteins can have broad activity to directly kill bacteria, yeasts, fungi, viruses and even cancer cells. Insects and plants primarily deploy AMPs as an antibiotic to protect against potential pathogenic microbes, but microbes also produce AMPs to defend their environmental niche. In higher eukaryotic organisms, AMPs can also be referred to as 'host defense peptides', emphasizing their additional immunomodulatory activities. These activities are diverse, specific to the type of AMP, and include a variety of cytokine and growth factor-like effects that are relevant to normal immune homeostasis. In some instances, the inappropriate expression of AMPs can also induce autoimmune diseases, thus further highlighting the importance of understanding these molecules and their complex activities. This Primer will provide an update of our current understanding of AMPs. PMID:26766224

  5. [Progress on parasiticidal activity of anitimicrobial peptides].

    PubMed

    Liu, Ze-hua; Zhao, Jun-long

    2014-10-01

    Antimicrobial peptides are a kind of gene encoded, ribosome synthesized, small molecular polypeptides that have high efficiency, wide antibacterial spectrum, and low immunogenicity. Many studies have indicated that antimicrobial peptides can inhibit the growth of parasites or even kill them. This paper reviews the research progress on parasiticidal activity of the antimicrobial peptides in recent years, and presents the problems in the research. PMID:25726604

  6. High-level secretion and very efficient isotopic labeling of tick anticoagulant peptide (TAP) expressed in the methylotrophic yeast, Pichia pastoris.

    PubMed

    Laroche, Y; Storme, V; De Meutter, J; Messens, J; Lauwereys, M

    1994-11-01

    Tick anticoagulant peptide (TAP) is a potent and specific inhibitor of the blood coagulation protease Factor Xa. We designed and assembled a synthetic TAP-encoding gene (tapo) based on codons preferentially observed in the highly expressed Pichia pastoris alcohol oxidase 1 gene (AOX1), and fused it to a novel hybrid secretory prepro leader sequence. Expression from this gene yielded biologically active rTAP, which was correctly processed at the amino-terminal fusion site, and accumulated in the medium to approximately 1.7 g/l. This corresponds to a molar concentration of 0.24 mM, and is the highest yet described for a recombinant product secreted from P. pastoris. It also represents a seven-fold improvement in productivity compared to rTAP secretion from Saccharomyces cerevisiae, making P. pastoris an attractive host for the industrial-scale production of this potential therapeutic agent. This system was also used to prepare 21 mg 15N-rTAP, 11 mg 13C-rTAP and 27 mg 15N/13C-rTAP, with isotope incorporation levels higher than 98%, and purities sufficient to allow their use in determining the solution structure of the tick anticoagulant peptide using high field NMR. PMID:7765555

  7. Peptide modulators of alpha-glucosidase

    PubMed Central

    Roskar, Irena; Molek, Peter; Vodnik, Miha; Stempelj, Mateja; Strukelj, Borut; Lunder, Mojca

    2015-01-01

    Aims/Introduction Acute glucose fluctuations during the postprandial period pose great risk for cardiovascular complications and thus represent an important therapeutic approach in type 2 diabetes. In the present study, screening of peptide libraries was used to select peptides with an affinity towards mammalian intestinal alpha-glucosidase as potential leads in antidiabetic agent development. Materials and Methods Three phage-displayed peptide libraries were used in independent selections with different elution strategies to isolate target-binding peptides. Selected peptides displayed on phage were tested to compete for an enzyme-binding site with known competitive inhibitors, acarbose and voglibose. The four best performing peptides were synthesized. Their binding to the mammalian alpha-glucosidase and their effect on enzyme activity were evaluated. Results Two linear and two cyclic heptapeptides with high affinity towards intestinal alpha-glucosidase were selected. Phage-displayed as well as synthetic peptides bind into or to the vicinity of the active site on the enzyme. Both cyclic peptides inhibited enzyme activity, whereas both linear peptides increased enzyme activity. Conclusions Although natural substrates of glycosidase are polysaccharides, in the present study we successfully isolated novel peptide modulators of alpha-glucosidase. Modulatory activity of selected peptides could be further optimized through peptidomimetic design. They represent promising leads for development of efficient alpha-glucosidase inhibitors. PMID:26543535

  8. Peptide arrays for screening cancer specific peptides.

    PubMed

    Ahmed, Sahar; Mathews, Anu Stella; Byeon, Nara; Lavasanifar, Afsaneh; Kaur, Kamaljit

    2010-09-15

    In this paper, we describe a novel method to screen peptides for specific recognition by cancer cells. Seventy peptides were synthesized on a cellulose membrane in an array format, and a direct method to study the peptide-whole cell interaction was developed. The relative binding affinity of the cells for different peptides with respect to a lead 12-mer p160 peptide, identified by phage display, was evaluated using the CyQUANT fluorescence of the bound cells. Screening allowed identification of at least five new peptides that displayed higher affinity (up to 3-fold) for MDA-MB-435 and MCF-7 human cancer cells compared to the p160 peptide. These peptides showed very little binding to the control (noncancerous) human umbilical vein endothelial cells (HUVECs). Three of these peptides were synthesized separately and labeled with fluorescein isothiocyanate (FITC) to study their uptake and interaction with the cancer and control cells using confocal laser scanning microscopy and flow cytometry. The results confirmed the high and specific affinity of an 11-mer peptide 11 (RGDPAYQGRFL) and a 10-mer peptide 18 (WXEAAYQRFL) for the cancer cells versus HUVECs. Peptide 11 binds different receptors on target cancer cells as its sequence contains multiple recognition motifs, whereas peptide 18 binds mainly to the putative p160 receptor. The peptide array-whole cell binding assay reported here is a complementary method to phage display for further screening and optimization of cancer targeting peptides for cancer therapy and diagnosis. PMID:20799711

  9. Delivery of oligonucleotides into mammalian cells by anionic peptides: comparison between monomeric and dimeric peptides.

    PubMed Central

    Freulon, I; Roche, A C; Monsigny, M; Mayer, R

    2001-01-01

    The use of antisense oligonucleotides as putative therapeutic agents is limited by their poor delivery into the cytosol and/or the nucleus because they are not able to efficiently cross lipid bilayers. To circumvent this pitfall, anionic amphipathic peptides derived from the influenza virus fusogenic peptide have been used to destabilize membranes in an acidic environment. In this paper, we compare the ability of a monomeric and a dimeric peptide to introduce oligonucleotides into the cytosol and nuclei of several types of cultured cells. Cells incubated at pH 6.2 or at a slightly lower pH in the presence of the monomeric peptide but not the dimeric peptide were efficiently permeabilized. The location of fluorescent derivatives of peptides and of oligonucleotides was assessed by confocal microscopy. Both the peptides and oligonucleotides remained entrapped in vesicular compartments at neutral pH; at acidic pH, oligonucleotides in the presence of the monomeric peptide were mainly in the nucleus, while in the presence of the dimeric peptide they co-localized with the peptide into vesicles. The data are interpreted on the basis of the spectroscopic behaviour of monomeric and dimeric peptides in relation to the environmental pH. PMID:11237872

  10. C-Peptide Test

    MedlinePlus

    ... C-peptide is a useful marker of insulin production. The following are some purposes of C-peptide ... it nearly impossible to directly evaluate endogenous insulin production. In these cases, C-peptide measurement is a ...

  11. Predicting protein-peptide interactions from scratch

    NASA Astrophysics Data System (ADS)

    Yan, Chengfei; Xu, Xianjin; Zou, Xiaoqin; Zou lab Team

    Protein-peptide interactions play an important role in many cellular processes. The ability to predict protein-peptide complex structures is valuable for mechanistic investigation and therapeutic development. Due to the high flexibility of peptides and lack of templates for homologous modeling, predicting protein-peptide complex structures is extremely challenging. Recently, we have developed a novel docking framework for protein-peptide structure prediction. Specifically, given the sequence of a peptide and a 3D structure of the protein, initial conformations of the peptide are built through protein threading. Then, the peptide is globally and flexibly docked onto the protein using a novel iterative approach. Finally, the sampled modes are scored and ranked by a statistical potential-based energy scoring function that was derived for protein-peptide interactions from statistical mechanics principles. Our docking methodology has been tested on the Peptidb database and compared with other protein-peptide docking methods. Systematic analysis shows significantly improved results compared to the performances of the existing methods. Our method is computationally efficient and suitable for large-scale applications. Nsf CAREER Award 0953839 (XZ) NIH R01GM109980 (XZ).

  12. Reducible chimeric polypeptide consisting of octa-d-arginine and tetra-l-histidine peptides as an efficient gene delivery vector

    PubMed Central

    Wang, Xiaoyu; Tai, Zongguang; Tian, Jing; Zhang, Wei; Yao, Chong; Zhang, Lijuan; Gao, Yuan; Zhu, Quangang; Gao, Jing; Gao, Shen

    2015-01-01

    Cationic oligopeptide as a nonviral gene delivery vector has aroused much research interest recently, but its further application is limited by its low transfection efficiency. In the present study, we have created a high-efficiency gene vector by using octa-d-arginine and tetra-l-histidine to form a disulfide cross-linked chimeric polypeptide and used this vector to deliver the therapeutic gene tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL) to see whether the gene could be transferred and could exert antitumor effects in vitro and in vivo. The result showed that the newly designed vector was able to condense DNA into nanosized polyplexes effectively, thus facilitating its transmembrane transport, promoting its endosomal escape, and finally enabling degradation within the cell. Our study has demonstrated that this chimeric polypeptide is an effective gene carrier in cancer therapy. PMID:26229469

  13. Antimicrobial Peptides from Marine Proteobacteria

    PubMed Central

    Desriac, Florie; Jégou, Camille; Balnois, Eric; Brillet, Benjamin; Le Chevalier, Patrick; Fleury, Yannick

    2013-01-01

    After years of inadequate use and the emergence of multidrug resistant (MDR) strains, the efficiency of “classical” antibiotics has decreased significantly. New drugs to fight MDR strains are urgently needed. Bacteria hold much promise as a source of unusual bioactive metabolites. However, the potential of marine bacteria, except for Actinomycetes and Cyanobacteria, has been largely underexplored. In the past two decades, the structures of several antimicrobial compounds have been elucidated in marine Proteobacteria. Of these compounds, polyketides (PKs), synthesised by condensation of malonyl-coenzyme A and/or acetyl-coenzyme A, and non-ribosomal peptides (NRPs), obtained through the linkage of (unusual) amino acids, have recently generated particular interest. NRPs are good examples of naturally modified peptides. Here, we review and compile the data on the antimicrobial peptides isolated from marine Proteobacteria, especially NRPs. PMID:24084784

  14. Salt-resistant short antimicrobial peptides.

    PubMed

    Mohanram, Harini; Bhattacharjya, Surajit

    2016-05-01

    Antimicrobial peptides (AMPs) are promising leads for the development of antibiotics against drug resistant bacterial pathogens. However, in vivo applications of AMPs remain obscure due to salt and serum mediated inactivation. The high cost of chemical synthesis of AMPs also impedes potential clinical application. Consequently, short AMPs resistant toward salt and serum inactivation are desirable for the development of peptide antibiotics. In this work, we designed a 12-residue amphipathic helical peptide RR12 (R-R-L-I-R-L-I-L-R-L-L-R-amide) and two Trp containing analogs of RR12 namely RR12Wpolar (R-R-L-I-W-L-I-L-R-L-L-R-amide), and RR12Whydro (R-R-L-I-R-L-W-L-R-L-L-R-amide). Designed peptides demonstrated potent antibacterial activity; MIC ranging from 2 to 8 μM, in the presence of sodium chloride (150 mM and 300 mM). Antibacterial activity of these peptides was also detected in the presence of human serum. Designed peptides, in particular RR12 and RR12Whydro, were only poorly hemolytic. As a mode of action; these peptides demonstrated efficient permeabilization of bacterial cell membrane and lysis of cell structure. We further investigated interactions of the designed peptides with lipopolysaccharide (LPS), the major component of the outer membrane permeability barrier of Gram-negative bacteria. Designed peptides adopted helical conformations in complex with LPS. Binding of peptides with LPS has yielded dissociation the aggregated structures of LPS. Collectively, these designed peptides hold ability to be developed for salt-resistant antimicrobial compounds. Most importantly, current work provides insights for designing salt-resistant antimicrobial peptides. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 345-356, 2016. PMID:26849911

  15. Production of recombinant peptides as fusions with SUMO.

    PubMed

    Satakarni, Makkapati; Curtis, Robin

    2011-08-01

    Recombinant production of non-native peptides requires using protein fusion technology to prevent peptide degradation by host-cell proteases. In this work, we have used SUMO protein as a fusion partner for the production of difficult-to-express, antimicrobial, self-assembling and amyloidogenic peptides using Escherichia coli. SUMO-peptide fusions were expressed as intracellular products by utilizing pET based expression vectors constructed by Life Sensors Inc., USA. Histidine tagged SUMO-peptide fusions were purified using Ni-NTA affinity chromatography. Complete (100%) cleavage of the SUMO-peptide fusion was achieved using SUMO protease-1. Our findings demonstrate that SUMO fusion technology is a promising alternative for production of peptides in E. coli. The key advantage of this technology is that the enzymatic activity of SUMO protease-1 is specific and efficient leading to inexpensive costs for cleaving the peptide fusion when compared with other fusion systems. PMID:21586326

  16. A Cell-Penetrating Peptide with a Guanidinylethyl Amine Structure Directed to Gene Delivery

    PubMed Central

    Oba, Makoto; Kato, Takuma; Furukawa, Kaori; Tanaka, Masakazu

    2016-01-01

    A peptide composed of lysine with a guanidinylethyl (GEt) amine structure in the side chain [Lys(GEt)] was developed as a cell-penetrating peptide directed to plasmid DNA (pDNA) delivery. The GEt amine adopted a diprotonated form at neutral pH, which may have led to the more efficient cellular uptake of a Lys(GEt)-peptide than an arginine-peptide at a low concentration. Lys(GEt)-peptide/pDNA complexes showed the highest transfection efficiency due to efficient endosomal escape without any cytotoxicity. Lys(GEt)-peptide may be a promising candidate as a gene delivery carrier. PMID:26814673

  17. A Cell-Penetrating Peptide with a Guanidinylethyl Amine Structure Directed to Gene Delivery

    NASA Astrophysics Data System (ADS)

    Oba, Makoto; Kato, Takuma; Furukawa, Kaori; Tanaka, Masakazu

    2016-01-01

    A peptide composed of lysine with a guanidinylethyl (GEt) amine structure in the side chain [Lys(GEt)] was developed as a cell-penetrating peptide directed to plasmid DNA (pDNA) delivery. The GEt amine adopted a diprotonated form at neutral pH, which may have led to the more efficient cellular uptake of a Lys(GEt)-peptide than an arginine-peptide at a low concentration. Lys(GEt)-peptide/pDNA complexes showed the highest transfection efficiency due to efficient endosomal escape without any cytotoxicity. Lys(GEt)-peptide may be a promising candidate as a gene delivery carrier.

  18. Engineered Adhesion Peptides for Improved Silicon Adsorption.

    PubMed

    Ramakrishnan, Sathish Kumar; Jebors, Said; Martin, Marta; Cloitre, Thierry; Agarwal, Vivechana; Mehdi, Ahmad; Martinez, Jean; Subra, Gilles; Gergely, Csilla

    2015-11-01

    Engineering peptides that present selective recognition and high affinity for a material is a major challenge for assembly-driven elaboration of complex systems with wide applications in the field of biomaterials, hard-tissue regeneration, and functional materials for therapeutics. Peptide-material interactions are of vital importance in natural processes but less exploited for the design of novel systems for practical applications because of our poor understanding of mechanisms underlying these interactions. Here, we present an approach based on the synthesis of several truncated peptides issued from a silicon-specific peptide recovered via phage display technology. We use the photonic response provided by porous silicon microcavities to evaluate the binding efficiency of 14 different peptide derivatives. We identify and engineer a short peptide sequence (SLVSHMQT), revealing the highest affinity for p(+)-Si. The molecular recognition behavior of the obtained peptide fragment can be revealed through mutations allowing identification of the preferential affinity of certain amino acids toward silicon. These results constitute an advance in both the engineering of peptides that reveal recognition properties for silicon and the understanding of biomolecule-material interactions. PMID:26440047

  19. Brain natriutetic peptide test

    MedlinePlus

    ... medlineplus.gov/ency/article/007509.htm Brain natriuretic peptide test To use the sharing features on this page, please enable JavaScript. Brain natriuretic peptide (BNP) test is a blood test that measures ...

  20. Vasoactive intestinal peptide test

    MedlinePlus

    ... medlineplus.gov/ency/article/003508.htm Vasoactive intestinal peptide test To use the sharing features on this page, please enable JavaScript. Vasoactive intestinal peptide (VIP) is a test that measures the amount ...

  1. [SYNTHETIC PEPTIDE VACCINES].

    PubMed

    Sergeyev, O V; Barinsky, I F

    2016-01-01

    An update on the development and trials of synthetic peptide vaccines is reviewed. The review considers the successful examples of specific protection as a result of immunization with synthetic peptides using various protocols. The importance of conformation for the immunogenicity of the peptide is pointed out. An alternative strategy of the protection of the organism against the infection using synthetic peptides is suggested. PMID:27145593

  2. PH dependent adhesive peptides

    DOEpatents

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  3. Antimicrobial Peptides in 2014

    PubMed Central

    Wang, Guangshun; Mishra, Biswajit; Lau, Kyle; Lushnikova, Tamara; Golla, Radha; Wang, Xiuqing

    2015-01-01

    This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms. PMID:25806720

  4. Antimicrobial peptides in 2014.

    PubMed

    Wang, Guangshun; Mishra, Biswajit; Lau, Kyle; Lushnikova, Tamara; Golla, Radha; Wang, Xiuqing

    2015-01-01

    This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms. PMID:25806720

  5. A statistical approach to determining responses to individual peptides from pooled-peptide ELISpot data.

    PubMed

    Ström, Peter; Støer, Nathalie; Borthwick, Nicola; Dong, Tao; Hanke, Tomáš; Reilly, Marie

    2016-08-01

    To investigate in detail the effect of infection or vaccination on the human immune system, ELISpot assays are used to simultaneously test the immune response to a large number of peptides of interest. Scientists commonly use "peptide pools", where, instead of an individual peptide, a test well contains a group of peptides. Since the response from a well may be due to any or many of the peptides in the pool, pooled assays usually need to be followed by confirmatory assays of a number of individual peptides. We present a statistical method that enables estimation of individual peptide responses from pool responses using the Expectation Maximization (EM) algorithm for "incomplete data". We demonstrate the accuracy and precision of these estimates in simulation studies of ELISpot plates with 90 pools of 6 or 7 peptides arranged in three dimensions and three Mock wells for the estimation of background. In analysis of real pooled data from 6 subjects in a HIV-1 vaccine trial, where 199 peptides were arranged in 80 pools if size 9 or 10, our estimates were in very good agreement with the results from individual-peptide confirmatory assays. Compared to the classical approach, we could identify almost all the same peptides with high or moderate response, with less than half the number of confirmatory tests. Our method facilitates efficient use of the information available in pooled ELISpot data to avoid or reduce the need for confirmatory testing. We provide an easy-to-use free online application for implementing the method, where on uploading two spreadsheets with the pool design and pool responses, the user obtains the estimates of the individual peptide responses. PMID:27196788

  6. Cyclic Peptides Made by Linking Synthetic and Genetically Encoded Fragments.

    PubMed

    Palei, Shubhendu; Mootz, Henning D

    2016-03-01

    Cyclic peptides can be highly valuable as bioactive molecules, both for biomedical applications and in basic research. We introduce a new fragment-based approach to access cyclic peptide structures in which one fragment is of synthetic origin and the other is genetically encoded. The synthetic peptide, which can contain one or more non-proteinogenic building blocks, is coupled to the recombinantly expressed peptide through two bonds, one formed by protein trans-splicing with a split intein and the other by oxime ligation. Semisynthetic macrocycles were obtained with high efficiency for various sequences and ring sizes; they can be prepared in quantities sufficient for initial bioactivity tests. We also prepared lipidated and d-amino-acid-containing peptides that were inspired by the peptide antibiotic daptomycin. Such structures are not accessible by other methods that harness the power of simple genetic diversification in the DNA-encoded part of the peptide. PMID:26691013

  7. Identification of short peptide sequences in complex milk protein hydrolysates.

    PubMed

    O'Keeffe, Martina B; FitzGerald, Richard J

    2015-10-01

    Numerous low molecular mass bioactive peptides (BAPs) can be generated during the hydrolysis of bovine milk proteins. Low molecular mass BAP sequences are less likely to be broken down by digestive enzymes and are thus more likely to be active in vivo. However, the identification of short peptides remains a challenge during mass spectrometry (MS) analysis due to issues with the transfer and over-fragmentation of low molecular mass ions. A method is described herein using time-of-flight ESI-MS/MS to effectively fragment and identify short peptides. This includes (a) short synthetic peptides, (b) short peptides within a defined hydrolysate sample, i.e. a prolyl endoproteinase hydrolysate of β-casein and (c) short peptides within a complex hydrolysate, i.e. a Corolase PP digest of sodium caseinate. The methodology may find widespread utilisation in the efficient identification of low molecular mass peptide sequences in food protein hydrolysates. PMID:25872436

  8. Recent advances in peptide-based subunit nanovaccines.

    PubMed

    Skwarczynski, Mariusz; Toth, Istvan

    2014-12-01

    Vaccination is the most efficient way to protect humans against pathogens. Peptide-based vaccines offer several advantages over classical vaccines, which utilized whole organisms or proteins. However, peptides alone are not immunogenic and need a delivery system that can boost their recognition by the immune system. In recent years, nanotechnology-based approaches have become one of the most promising strategies in peptide vaccine delivery. This review summarizes knowledge on peptide vaccines and nanotechnology-based approaches for their delivery. The recently reported nano-sized delivery platforms for peptide antigens are reviewed, including nanoparticles composed of polymers, peptides, lipids, inorganic materials and nanotubes. The future prospects for peptide-based nanovaccines are discussed. PMID:25529569

  9. Preparation of Peptide p-Nitroanilides using an Aryl Hydrazine Solid Support

    SciTech Connect

    Kwon, Y; Welsh, K; Mitchell, A R; Camarero, J A

    2004-08-05

    Peptide p-nitroanilides are useful compounds for studying protease activity, however the poor nucleophilicity of p-nitroaniline makes their preparation difficult. We describe a new efficient approach for the Fmoc-based synthesis of peptide p-nitroanilides using an aryl hydrazine resin. Mild oxidation of the peptide hydrazide resin yields a highly reactive acyl diazene, which efficiently reacts with weak nucleophiles. We have prepared several peptide p-nitroanilides, including substrates for the Lethal Factor protease from B. anthracis.

  10. A peptide & peptide nucleic acid synthesis technology for transporter molecules and theranostics--the SPPS.

    PubMed

    Pipkorn, Ruediger; Braun, Klaus; Wiessler, Manfred; Waldeck, Waldemar; Schrenk, Hans-Hermann; Koch, Mario; Semmler, Wolfhard; Komljenovic, Dorde

    2014-01-01

    Advances in imaging diagnostics using magnetic resonance tomography (MRT), positron emission tomography (PET) and fluorescence imaging including near infrared (NIR) imaging methods are facilitated by constant improvement of the concepts of peptide synthesis. Feasible patient-specific theranostic platforms in the personalized medicine are particularly dependent on efficient and clinically applicable peptide constructs. The role of peptides in the interrelations between the structure and function of proteins is widely investigated, especially by using computer-assisted methods. Nowadays the solid phase synthesis (SPPS) chemistry emerges as a key technology and is considered as a promising methodology to design peptides for the investigation of molecular pharmacological processes at the transcriptional level. SPPS syntheses could be carried out in core facilities producing peptides for large-scale scientific implementations as presented here. PMID:24843319

  11. A Peptide & Peptide Nucleic Acid Synthesis Technology for Transporter Molecules and Theranostics - The SPPS

    PubMed Central

    Pipkorn, Ruediger; Braun, Klaus; Wiessler, Manfred; Waldeck, Waldemar; Schrenk, Hans-Hermann; Koch, Mario; Semmler, Wolfhard; Komljenovic, Dorde

    2014-01-01

    Advances in imaging diagnostics using magnetic resonance tomography (MRT), positron emission tomography (PET) and fluorescence imaging including near infrared (NIR) imaging methods are facilitated by constant improvement of the concepts of peptide synthesis. Feasible patient-specific theranostic platforms in the personalized medicine are particularly dependent on efficient and clinically applicable peptide constructs. The role of peptides in the interrelations between the structure and function of proteins is widely investigated, especially by using computer-assisted methods. Nowadays the solid phase synthesis (SPPS) chemistry emerges as a key technology and is considered as a promising methodology to design peptides for the investigation of molecular pharmacological processes at the transcriptional level. SPPS syntheses could be carried out in core facilities producing peptides for large-scale scientific implementations as presented here. PMID:24843319

  12. Peptide separation in hydrophilic interaction capillary electrochromatography.

    PubMed

    Fu, Hongjing; Jin, Wenhai; Xiao, Hua; Huang, Haiwei; Zou, Hanfa

    2003-06-01

    Separation of small peptides by hydrophilic interaction capillary electrochromatography (HI-CEC) has been investigated. The negative surface charge of a hydrophilic, strong-cation-exchange stationary phase (PolySULFOETHYL A) provided a substantial cathodic electroosmotic flow (EOF). The influence of acetonitrile content, ionic strength, mobile phase pH as well as applied voltage on the migration of the peptides was studied. Possible retention mechanisms of the peptides in HI-CEC were discussed. It was found that hydrophilic interaction between the solutes and the stationary phase played a major role in this system, especially when mobile phases with high acetonitrile content were used. However, an ion-exchange mechanism and electrophoretic mobility also affect the migration of the peptides in HI-CEC. Elution order and selectivity was proved to be different in HI-CEC and capillary zone electrophoresis (CZE), thus revealing the potential of HI-CEC as a complementary technique to CZE for the separation of peptides. Efficiency and selectivity of HI-CEC for the separation of peptides were demonstrated by baseline separating nine peptides in 6 min. PMID:12858379

  13. Multiplex De Novo Sequencing of Peptide Antibiotics

    NASA Astrophysics Data System (ADS)

    Mohimani, Hosein; Liu, Wei-Ting; Yang, Yu-Liang; Gaudêncio, Susana P.; Fenical, William; Dorrestein, Pieter C.; Pevzner, Pavel A.

    Proliferation of drug-resistant diseases raises the challenge of searching for new, more efficient antibiotics. Currently, some of the most effective antibiotics (i.e., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. The isolation and sequencing of cyclic peptide antibiotics, unlike the same activity with linear peptides, is time-consuming and error-prone. The dominant technique for sequencing cyclic peptides is NMR-based and requires large amounts (milligrams) of purified materials that, for most compounds, are not possible to obtain. Given these facts, there is a need for new tools to sequence cyclic NRPs using picograms of material. Since nearly all cyclic NRPs are produced along with related analogs, we develop a mass spectrometry approach for sequencing all related peptides at once (in contrast to the existing approach that analyzes individual peptides). Our results suggest that instead of attempting to isolate and NMR-sequence the most abundant compound, one should acquire spectra of many related compounds and sequence all of them simultaneously using tandem mass spectrometry. We illustrate applications of this approach by sequencing new variants of cyclic peptide antibiotics from Bacillus brevis, as well as sequencing a previously unknown familiy of cyclic NRPs produced by marine bacteria.

  14. [Plant signaling peptides. Cysteine-rich peptides].

    PubMed

    Ostrowski, Maciej; Kowalczyk, Stanisław

    2015-01-01

    Recent bioinformatic and genetic analyses of several model plant genomes have revealed the existence of a highly abundant group of signaling peptides that are defined as cysteine-rich peptides (CRPs). CRPs are usually in size between 50 and 90 amino acid residues, they are positively charged, and they contain 4-16 cysteine residues that are important for the correct conformational folding. Despite the structural differences among CRP classes, members from each class have striking similarities in their molecular properties and function. The present review presents the recent progress in research on signaling peptides from several families including: EPF/EPFL, SP11/SCR, PrsS, RALF, LURE, and some other peptides belonging to CRP group. There is convincing evidence indicating multiple roles for these CRPs as signaling molecules during the plant life cycle, ranging from stomata development and patterning, self-incompatibility, pollen tube growth and guidance, reproductive processes, and nodule formation. PMID:26281357

  15. Cell Penetrating Peptides and Cationic Antibacterial Peptides

    PubMed Central

    Rodriguez Plaza, Jonathan G.; Morales-Nava, Rosmarbel; Diener, Christian; Schreiber, Gabriele; Gonzalez, Zyanya D.; Lara Ortiz, Maria Teresa; Ortega Blake, Ivan; Pantoja, Omar; Volkmer, Rudolf; Klipp, Edda; Herrmann, Andreas; Del Rio, Gabriel

    2014-01-01

    Cell penetrating peptides (CPP) and cationic antibacterial peptides (CAP) have similar physicochemical properties and yet it is not understood how such similar peptides display different activities. To address this question, we used Iztli peptide 1 (IP-1) because it has both CPP and CAP activities. Combining experimental and computational modeling of the internalization of IP-1, we show it is not internalized by receptor-mediated endocytosis, yet it permeates into many different cell types, including fungi and human cells. We also show that IP-1 makes pores in the presence of high electrical potential at the membrane, such as those found in bacteria and mitochondria. These results provide the basis to understand the functional redundancy of CPPs and CAPs. PMID:24706763

  16. Matrix-assisted laser desorption-ionization mass spectrometry peptide mass fingerprinting for proteome analysis: identification efficiency after on-blot or in-gel digestion with and without desalting procedures.

    PubMed

    Lamer, S; Jungblut, P R

    2001-03-10

    In theory, peptide mass fingerprinting by matrix assisted laser desorption-ionization mass spectrometry (MALDI-MS) has the potential to identify all of the proteins detected by silver staining on gels. In practice, if the genome of the organism investigated is completely sequenced, using current techniques, all proteins stained by Coomassie Brilliant Blue can be identified. This loss of identification sensitivity of ten to hundred-fold is caused by loss of peptides by surface contacts. Therefore, we performed digestion and transfer of peptides in the lower microl range and reduced the number of steps. The peptide mix obtained from in-gel or on-blot digestion was analyzed directly after digestion or after concentration on POROS R2 beads. Eight protein spots of a 2-DE gel from Mycobacterium bovis BCG were identified using these four preparation procedures for MALDI-MS. Overall, on-blot digestion was as effective as in-gel digestion. Whereas higher signal intensities resulted after concentration, hydrophilic peptides are better detected by direct measurement of the peptide mix without POROS R2 concentration. PMID:11270870

  17. Lipid-based nanoformulations for peptide delivery.

    PubMed

    Matougui, Nada; Boge, Lukas; Groo, Anne-Claire; Umerska, Anita; Ringstad, Lovisa; Bysell, Helena; Saulnier, Patrick

    2016-04-11

    Nanoformulations have attracted a lot of attention because of their size-dependent properties. Among the array of nanoformulations, lipid nanoformulations (LNFs) have evoked increasing interest because of the advantages of their high degree of biocompatibility and versatility. The performance of lipid nanoformulations is greatly influenced by their composition and structure. Therapeutic peptides represent a growing share of the pharmaceutical market. However, the main challenge for their development into commercial products is their inherent physicochemical and biological instability. Important peptides such as insulin, calcitonin and cyclosporin A have been incorporated into LNFs. The association or encapsulation of peptides within lipid-based carriers has shown to protect the labile molecules against enzymatic degradation. This review describes strategies used for the formulation of peptides and some methods used for the assessment of association efficiency. The advantages and drawbacks of such carriers are also described. PMID:26899976

  18. Plant peptide hormone signalling.

    PubMed

    Motomitsu, Ayane; Sawa, Shinichiro; Ishida, Takashi

    2015-01-01

    The ligand-receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone-receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions. PMID:26374891

  19. Electron Capture Dissociation of Trivalent Metal Ion-Peptide Complexes

    NASA Astrophysics Data System (ADS)

    Flick, Tawnya G.; Donald, William A.; Williams, Evan R.

    2013-02-01

    With electrospray ionization from aqueous solutions, trivalent metal ions readily adduct to small peptides resulting in formation of predominantly (peptide + MT - H)2+, where MT = La, Tm, Lu, Sm, Ho, Yb, Pm, Tb, or Eu, for peptides with molecular weights below ~1000 Da, and predominantly (peptide + MT)3+ for larger peptides. ECD of (peptide + MT - H)2+ results in extensive fragmentation from which nearly complete sequence information can be obtained, even for peptides for which only singly protonated ions are formed in the absence of the metal ions. ECD of these doubly charged complexes containing MT results in significantly higher electron capture efficiency and sequence coverage than peptide-divalent metal ion complexes that have the same net charge. Formation of salt-bridge structures in which the metal ion coordinates to a carboxylate group are favored even for (peptide + MT)3+. ECD of these latter complexes for large peptides results in electron capture by the protonation site located remotely from the metal ion and predominantly c/ z fragments for all metals, except Eu3+, which undergoes a one electron reduction and only loss of small neutral molecules and b/ y fragments are formed. These results indicate that solvation of the metal ion in these complexes is extensive, which results in the electrochemical properties of these metal ions being similar in both the peptide environment and in bulk water.

  20. Stereoselective terminal functionalization of small peptides for catalytic asymmetric synthesis of unnatural peptides

    PubMed Central

    Maruoka, Keiji; Tayama, Eiji; Ooi, Takashi

    2004-01-01

    The asymmetric phase-transfer catalytic alkylation of peptides has been achieved by the use of designed C2-symmetric chiral quaternary ammonium bromide 1 as catalyst. Excellent stereoselectivities were uniformly observed in the alkylation with a variety of alkyl halides and the efficiency of the transmission of stereochemical information was not affected by the side-chain structure of the preexisting amino acid residues. This method also enables an asymmetric construction of noncoded α,α-dialkyl-α-amino acid residues at the peptide terminal. Since this chirality can be efficiently transferred to the adjacent amino acid moiety, our approach provides a general procedure not only for the highly stereoselective terminal functionalization of peptides but also for the sequential asymmetric construction of unnatural oligopeptides, which should play a vital role in the peptide-based drug discovery process. PMID:15079083

  1. Synthesis and studies on cell-penetrating peptides.

    PubMed

    Bertrand, Jean-Remi; Malvy, Claude; Auguste, Tiphanie; Tóth, Gábor K; Kiss-Ivánkovits, Orsolya; Illyés, Eszter; Hollósi, Miklós; Bottka, Sándor; Laczkó, Ilona

    2009-07-01

    The ability of different synthetic cell penetrating peptides, as Antennapedia (wild and Phe(6) mutated penetratins), flock house virus, and integrin peptides to form complexes with a 25mer antisense oligonucleotide was compared and their conformation was determined by circular dichroism spectroscopy. The efficiency for oligonucleotide delivery into cells was measured using peptides labeled with a coumarin derivative showing blue fluorescence and the fluorescein-labeled antisense oligonucleotide showing green fluorescence. Fluorescence due to the excitation energy transfer confirmed the interaction of the antisense oligonucleotide and cell-penetrating peptides. The most efficient oligonucleotide delivery was found for penetratins. Comparison of the two types of penetratins shows that the wild-type penetratin proved to be more efficient than mutated penetratin. The paper also emphasizes that the attachment of a fluorescent label may have an effect on the conformation and flexibility of cell-penetrating peptides that must be taken into consideration when evaluating biological experiments. PMID:19552459

  2. Selective enrichment and desalting of hydrophilic peptides using graphene oxide.

    PubMed

    Jiang, Miao; Qi, Linyu; Liu, Peiru; Wang, Zijun; Duan, Zhigui; Wang, Ying; Liu, Zhonghua; Chen, Ping

    2016-08-01

    The wide variety and low abundance of peptides in tissue brought great difficulties to the separation and identification of peptides, which is not in favor of the development of peptidomics. RP-HPLC, which could purify small molecules based on their hydrophobicity, has been widely used in the separation and enrichment of peptide due to its fast, good reproducibility and high resolution. However, RP-HPLC requires the instrument and expensive C18 column and its sample capacity is also limited. Recently, graphene oxide has been applied to the adsorption of amino acids. However, the enrichment efficiency and selectivity of graphene oxide for peptides remain unclear. In this study, the adsorption efficiency and selectivity of graphene oxide and RP-C18 matrix were compared on trypsinized α-actin and also on tissue extracts from pituitary gland and hippocampus. For α-actin, there exhibit similar elution peaks for total trypsinized products and those adsorpted by GO and C18 matrix. But peptides adsorbed by GO showed the higher hydrophilic peaks than which adsorbed by C18 matrix. The resulted RP-HPLC profile showed that most of peptides enriched by graphene oxide were eluted at low concentration of organic solvent, while peptides adsorbed by RP-C18 matrix were mostly eluted at relatively high concentration. Moreover, mass spectrometry analysis suggested that, in pituitary sample, there were 495 peptides enriched by graphene oxide, 447 peptides enriched by RP-C18 matrix while in hippocampus sample 333 and 243 peptides respectively. The GRAVY value analysis suggested that the graphene oxide has a stronger adsorption for highly hydrophilic peptides compared to the RP-C18 matrix. Furthermore, the combination of these two methods could notably increase the number of identification peptides but also the number of predicted protein precursors. Our study provided a new thought to the role of graphene oxide during the enrichment of peptides from tissue which should be useful for

  3. Antihypertensive peptides from curd

    PubMed Central

    Dabarera, Melani Chathurika; Athiththan, Lohini V.; Perera, Rasika P.

    2015-01-01

    Introduction: Curd (Dadhi) peptides reduce hypertension by inhibiting angiotensin converting enzyme (ACE) and serum cholesterol. Peptides vary with bacterial species and milk type used during fermentation. Aim: To isolate and assay the antihypertensive peptides, before and after digestion, in two commercially available curd brands in Sri Lanka. Materials and Methods: Whey (Dadhi Mastu) separated by high-speed centrifugation was isolated using reverse-phase-high- performance liquid chromatography (HPLC). Eluted fractions were analyzed for ACE inhibitory activity using modified Cushman and Cheung method. Curd samples were subjected to enzymatic digestion with pepsin, trypsin, and carboxypeptidase-A at their optimum pH and temperature. Peptides isolated using reverse-phase-HPLC was assayed for ACE inhibitory activity. Results: Whey peptides of both brands gave similar patterns (seven major and five minor peaks) in HPLC elution profile. Smaller peptides concentration was higher in brand 1 and penta-octapeptides in brand 2. Pentapeptide had the highest ACE inhibitory activity (brand 2–90% and brand 1–73%). After digestion, di and tri peptides with similar inhibitory patterns were obtained in both which were higher than before digestion. Thirteen fractions were obtained, where nine fractions showed more than 70% inhibition in both brands with 96% ACE inhibition for a di-peptide. Conclusion: Curd has ACE inhibitory peptides and activity increases after digestion. PMID:27011726

  4. Antimicrobial Peptides in Reptiles

    PubMed Central

    van Hoek, Monique L.

    2014-01-01

    Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. PMID:24918867

  5. Polycyclic peptide therapeutics.

    PubMed

    Baeriswyl, Vanessa; Heinis, Christian

    2013-03-01

    Owing to their excellent binding properties, high stability, and low off-target toxicity, polycyclic peptides are an attractive molecule format for the development of therapeutics. Currently, only a handful of polycyclic peptides are used in the clinic; examples include the antibiotic vancomycin, the anticancer drugs actinomycin D and romidepsin, and the analgesic agent ziconotide. All clinically used polycyclic peptide drugs are derived from natural sources, such as soil bacteria in the case of vancomycin, actinomycin D and romidepsin, or the venom of a fish-hunting coil snail in the case of ziconotide. Unfortunately, nature provides peptide macrocyclic ligands for only a small fraction of therapeutic targets. For the generation of ligands of targets of choice, researchers have inserted artificial binding sites into natural polycyclic peptide scaffolds, such as cystine knot proteins, using rational design or directed evolution approaches. More recently, large combinatorial libraries of genetically encoded bicyclic peptides have been generated de novo and screened by phage display. In this Minireview, the properties of existing polycyclic peptide drugs are discussed and related to their interesting molecular architectures. Furthermore, technologies that allow the development of unnatural polycyclic peptide ligands are discussed. Recent application of these technologies has generated promising results, suggesting that polycyclic peptide therapeutics could potentially be developed for a broad range of diseases. PMID:23355488

  6. Peptide folding simulations.

    PubMed

    Gnanakaran, S; Nymeyer, Hugh; Portman, John; Sanbonmatsu, Kevin Y; García, Angel E

    2003-04-01

    Developments in the design of small peptides that mimic proteins in complexity, recent advances in nanosecond time-resolved spectroscopy methods to study peptides and the development of modern, highly parallel simulation algorithms have come together to give us a detailed picture of peptide folding dynamics. Two newly implemented simulation techniques, parallel replica dynamics and replica exchange molecular dynamics, can now describe directly from simulations the kinetics and thermodynamics of peptide formation, respectively. Given these developments, the simulation community now has the tools to verify and validate simulation protocols and models (forcefields). PMID:12727509

  7. Insulin C-peptide test

    MedlinePlus

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin produced by the body and insulin injected ...

  8. Kinins and peptide receptors.

    PubMed

    Regoli, Domenico; Gobeil, Fernand

    2016-04-01

    This paper is divided into two sections: the first contains the essential elements of the opening lecture presented by Pr. Regoli to the 2015 International Kinin Symposium in S. Paulo, Brazil on June 28th and the second is the celebration of Dr. Regoli's 60 years of research on vasoactive peptides. The cardiovascular homeostasis derives from a balance of two systems, the renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS). The biologically active effector entity of RAS is angiotensin receptor-1 (AT-1R), and that of KKS is bradykinin B2 receptor (B2R). The first mediates vasoconstriction, the second is the most potent and efficient vasodilator. Thanks to its complex and multi-functional mechanism of action, involving nitric oxide (NO), prostacyclin and endothelial hyperpolarizing factor (EDHF). B2R is instrumental for the supply of blood, oxygen and nutrition to tissues. KKS is present on the vascular endothelium and functions as an autacoid playing major roles in cardiovascular diseases (CVDs) and diabetes. KKS exerts a paramount role in the prevention of thrombosis and atherosclerosis. Such knowledge emphasizes the already prominent value of the ACE-inhibitors (ACEIs) for the treatment of CVDs and diabetes. Indeed, the ACEIs, thanks to their double action (block of the RAS and potentiation of the KKS) are the ideal agents for a rational treatment of these diseases. PMID:26408609

  9. Porcine parvovirus removal using trimer and biased hexamer peptides

    PubMed Central

    Heldt, Caryn L.; Gurgel, Patrick V.; Jaykus, Lee-Ann; Carbonell, Ruben G.

    2014-01-01

    Assuring the microbiological safety of biological therapeutics remains an important concern. Our group has recently reported small trimeric peptides that have the ability to bind and remove a model non-enveloped virus, porcine parvovirus (PPV), from complex solutions containing human blood plasma. In an effort to improve the removal efficiency of these small peptides, we created a biased library of hexamer peptides that contain two previously reported trimeric peptides designated WRW and KYY. This library was screened and several hexamer peptides were discovered that also removed PPV from solution, but there was no marked improvement in removal efficiency when compared to the trimeric peptides. Based on simulated docking experiments, it appeared that hexamer peptide binding is dictated more by secondary structure, whereas the binding of trimeric peptides is dominated by charge and hydrophobicity. This study demonstrates that trimeric and hexameric peptides may have different, matrix-specific roles to play in virus removal applications. In general, the hexamer ligand may perform better for binding of specific viruses, whereas the trimer ligand may have more broadly reactive virus-binding properties. PMID:21751387

  10. Biomathematical Description of Synthetic Peptide Libraries

    PubMed Central

    Trepel, Martin

    2015-01-01

    Libraries of randomised peptides displayed on phages or viral particles are essential tools in a wide spectrum of applications. However, there is only limited understanding of a library's fundamental dynamics and the influences of encoding schemes and sizes on their quality. Numeric properties of libraries, such as the expected number of different peptides and the library's coverage, have long been in use as measures of a library's quality. Here, we present a graphical framework of these measures together with a library's relative efficiency to help to describe libraries in enough detail for researchers to plan new experiments in a more informed manner. In particular, these values allow us to answer-in a probabilistic fashion-the question of whether a specific library does indeed contain one of the "best" possible peptides. The framework is implemented in a web-interface based on two packages, discreteRV and peptider, to the statistical software environment R. We further provide a user-friendly web-interface called PeLiCa (Peptide Library Calculator, http://www.pelica.org), allowing scientists to plan and analyse their peptide libraries. PMID:26042419

  11. Biomathematical description of synthetic peptide libraries.

    PubMed

    Sieber, Timo; Hare, Eric; Hofmann, Heike; Trepel, Martin

    2015-01-01

    Libraries of randomised peptides displayed on phages or viral particles are essential tools in a wide spectrum of applications. However, there is only limited understanding of a library's fundamental dynamics and the influences of encoding schemes and sizes on their quality. Numeric properties of libraries, such as the expected number of different peptides and the library's coverage, have long been in use as measures of a library's quality. Here, we present a graphical framework of these measures together with a library's relative efficiency to help to describe libraries in enough detail for researchers to plan new experiments in a more informed manner. In particular, these values allow us to answer-in a probabilistic fashion-the question of whether a specific library does indeed contain one of the "best" possible peptides. The framework is implemented in a web-interface based on two packages, discreteRV and peptider, to the statistical software environment R. We further provide a user-friendly web-interface called PeLiCa (Peptide Library Calculator, http://www.pelica.org), allowing scientists to plan and analyse their peptide libraries. PMID:26042419

  12. Optimization of reversed-phase chromatography methods for peptide analytics.

    PubMed

    Khalaf, Rushd; Baur, Daniel; Pfister, David

    2015-12-18

    The analytical description and quantification of peptide solutions is an essential part in the quality control of peptide production processes and in peptide mapping techniques. Traditionally, an important tool is analytical reversed phase liquid chromatography. In this work, we develop a model-based tool to find optimal analytical conditions in a clear, efficient and robust manner. The model, based on the Van't Hoff equation, the linear solvent strength correlation, and an analytical solution of the mass balance on a chromatographic column describing peptide retention in gradient conditions is used to optimize the analytical scale separation between components in a peptide mixture. The proposed tool is then applied in the design of analytical reversed phase liquid chromatography methods of five different peptide mixtures. PMID:26620597

  13. Characterization of selective antibacterial peptides by polarity index.

    PubMed

    Polanco, C; Samaniego, J L; Buhse, T; Mosqueira, F G; Negron-Mendoza, A; Ramos-Bernal, S; Castanon-Gonzalez, J A

    2012-01-01

    In the recent decades, antibacterial peptides have occupied a strategic position for pharmaceutical drug applications and became subject of intense research activities since they are used to strengthen the immune system of all living organisms by protecting them from pathogenic bacteria. This work proposes a simple and easy statistical/computational method through a peptide polarity index measure by which an antibacterial peptide subgroup can be efficiently identified, that is, characterized by a high toxicity to bacterial membranes but presents a low toxicity to mammal cells. These peptides also have the feature not to adopt to an alpha-helicoidal structure in aqueous solution. The double-blind test carried out to the whole Antimicrobial Peptide Database (November 2011) showed an accuracy of 90% applying the polarity index method for the identification of such antibacterial peptide groups. PMID:22611416

  14. Characterization of Selective Antibacterial Peptides by Polarity Index

    PubMed Central

    Polanco, C.; Samaniego, J. L.; Buhse, T.; Mosqueira, F. G.; Negron-Mendoza, A.; Ramos-Bernal, S.; Castanon-Gonzalez, J. A.

    2012-01-01

    In the recent decades, antibacterial peptides have occupied a strategic position for pharmaceutical drug applications and became subject of intense research activities since they are used to strengthen the immune system of all living organisms by protecting them from pathogenic bacteria. This work proposes a simple and easy statistical/computational method through a peptide polarity index measure by which an antibacterial peptide subgroup can be efficiently identified, that is, characterized by a high toxicity to bacterial membranes but presents a low toxicity to mammal cells. These peptides also have the feature not to adopt to an alpha-helicoidal structure in aqueous solution. The double-blind test carried out to the whole Antimicrobial Peptide Database (November 2011) showed an accuracy of 90% applying the polarity index method for the identification of such antibacterial peptide groups. PMID:22611416

  15. Bacteriocin Inducer Peptides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel peptides produced by bacteriocin-producing bacteria stimulate the production of bacteriocins in vitro. The producer bacteria are cultured in the presence of a novel inducer bacteria and a peptide having a carboxy terminal sequence of VKGLT in order to achieve an increase in bacteriocin produc...

  16. Improving short antimicrobial peptides despite elusive rules for activity.

    PubMed

    Mikut, Ralf; Ruden, Serge; Reischl, Markus; Breitling, Frank; Volkmer, Rudolf; Hilpert, Kai

    2016-05-01

    Antimicrobial peptides (AMPs) can effectively kill a broad range of life threatening multidrug-resistant bacteria, a serious threat to public health worldwide. However, despite great hopes novel drugs based on AMPs are still rare. To accelerate drug development we studied different approaches to improve the antibacterial activity of short antimicrobial peptides. Short antimicrobial peptides seem to be ideal drug candidates since they can be synthesized quickly and easily, modified and optimized. In addition, manufacturing a short peptide drug will be more cost efficient than long and structured ones. In contrast to longer and structured peptides short AMPs seem hard to design and predict. Here, we designed, synthesized and screened five different peptide libraries, each consisting of 600 9-mer peptides, against Pseudomonas aeruginosa. Each library is presenting a different approach to investigate effectiveness of an optimization strategy. The data for the 3000 peptides were analyzed using models based on fuzzy logic bioinformatics and plausible descriptors. The rate of active or superior active peptides was improved from 31.0% in a semi-random library from a previous study to 97.8% in the best new designed library. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26687790

  17. Antimicrobial Peptides from Fish

    PubMed Central

    Masso-Silva, Jorge A.; Diamond, Gill

    2014-01-01

    Antimicrobial peptides (AMPs) are found widely distributed through Nature, and participate in the innate host defense of each species. Fish are a great source of these peptides, as they express all of the major classes of AMPs, including defensins, cathelicidins, hepcidins, histone-derived peptides, and a fish-specific class of the cecropin family, called piscidins. As with other species, the fish peptides exhibit broad-spectrum antimicrobial activity, killing both fish and human pathogens. They are also immunomodulatory, and their genes are highly responsive to microbes and innate immuno-stimulatory molecules. Recent research has demonstrated that some of the unique properties of fish peptides, including their ability to act even in very high salt concentrations, make them good potential targets for development as therapeutic antimicrobials. Further, the stimulation of their gene expression by exogenous factors could be useful in preventing pathogenic microbes in aquaculture. PMID:24594555

  18. Preparation and antihypertensive activity of peptides from Porphyra yezoensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research was to develop an antihypertensive peptide, an efficient angiotensin converting enzyme (ACE) inhibitor (ACEI), from Porphyra yezoensis. Seven commercial enzymes were screened and then enzymatic hydrolysis conditions were optimised. The results showed that alcalase was the most effectiv...

  19. Peptide synthesis on glass substrate using acoustic droplet ejector.

    PubMed

    Youngki Choe; Shih-Jui Chen; Eun Sok Kim

    2014-03-01

    This paper describes the synthesis of a 9-mers-long peptide ladder structure of glycine on a modified glass surface using a nanoliter droplet ejector. To synthesize peptide on a glass substrate, SPOT peptide synthesis protocol was followed with a nozzleless acoustic droplet ejector being used to eject about 300 droplets of preactivated amino acid solution to dispense 60 nL of the solution per mer. The coupling efficiency of each mer was measured with FITC fluorescent tag to be 96%, resulting in net 70% efficiency for the whole 9-mer-long peptide of glycine. Usage of a nanoliter droplet ejector for SPOT peptide synthesis increases the density of protein array on a chip. PMID:24235271

  20. Review: Formation of Peptide Radical Ions Through Dissociative Electron Transfer in Ternary Metal-Ligand-Peptide Complexes

    SciTech Connect

    Chu, Ivan K.; Laskin, Julia

    2011-12-31

    The formation and fragmentation of odd-electron ions of peptides and proteins is of interest to applications in biological mass spectrometry. Gas-phase redox chemistry occurring during collision-induced dissociation of ternary metal-ligand-peptide complexes enables the formation of a variety of peptide radicals including the canonical radical cations, M{sup +{sm_bullet}}, radical dications, [M{sup +}H]{sup 2+{sm_bullet}}, radical anions, [M-2H]{sup -{sm_bullet}}. In addition, odd-electron peptide ions with well-defined initial location of the radical site are produced through side chain losses from the radical ions. Subsequent fragmentation of these species provides information on the role of charge and the location of the radical site on the competition between radical-induced and proton-driven fragmentation of odd-electron peptide ions. This account summarizes current understanding of the factors that control the efficiency of the intramolecular electron transfer (ET) in ternary metal-ligand-peptide complexes resulting in formation of odd-electron peptide ions. Specifically, we discuss the effect of the metal center, the ligand and the peptide structure on the competition between the ET, proton transfer (PT), and loss of neutral peptide and neutral peptide fragments from the complex. Fundamental studies of the structures, stabilities, and the energetics and dynamics of fragmentation of such complexes are also important for detailed molecular-level understanding of photosynthesis and respiration in biological systems.

  1. Preparative reversed-phase high-performance liquid chromatography collection efficiency for an antimicrobial peptide on columns of varying diameters (1 mm to 9.4 mm I.D.)

    PubMed Central

    Chen, Yuxin; Mant, Colin T.; Hodges, Robert S.

    2009-01-01

    The present study examines the effect of reversed-phase high-performance liquid chromatography (RP-HPLC) column diameter (1 mm to 9.4 mm I.D.) on the one-step slow gradient preparative purification of a 26-residue synthetic antimicrobial peptide. When taken together, the semi-preparative column (9.4 mm I.D.) provided the highest yields of purified product (an average of 90.7% recovery from hydrophilic and hydrophobic impurities) over a wide range of sample load (0.75–200 mg). Columns with smaller diameters, such as narrowbore columns (150 × 2.1 mm I.D.) and microbore columns (150 × 1.0 mm I.D.), can be employed to purify peptides with reasonable recovery of purified product but the range of the crude peptide that can be applied to the column is limited. In addition, the smaller diameter columns require more extensive fraction analysis to locate the fractions of pure product than the larger diameter column with the same load. Our results show the excellent potential of the one-step slow gradient preparative protocol as a universal method for purification of synthetic peptides. PMID:17156789

  2. Rational design of a series of novel amphipathic cell-penetrating peptides.

    PubMed

    Regberg, Jakob; Srimanee, Artita; Erlandsson, Mikael; Sillard, Rannar; Dobchev, Dimitar A; Karelson, Mati; Langel, Ulo

    2014-04-10

    A series of novel, amphipathic cell-penetrating peptides was developed based on a combination of the model amphipathic peptide sequence and modifications based on the strategies developed for PepFect and NickFect peptides. The aim was to study the role of amphipathicity for peptide uptake and to investigate if the modifications developed for PepFect peptides could be used to improve the uptake of another class of cell-penetrating peptides. The peptides were synthesized by solid phase peptide synthesis and characterized by circular dichroism spectroscopy. Non-covalent peptide-plasmid complexes were formed by co-incubation of the peptides and plasmids in water solution. The complexes were characterized by dynamic light scattering and cellular uptake of the complexes was studied in a luciferase-based plasmid transfection assay. A quantitative structure-activity relationship (QSAR) model of cellular uptake was developed using descriptors including hydrogen bonding, peptide charge and positions of nitrogen atoms. The peptides were found to be non-toxic and could efficiently transfect cells with plasmid DNA. Cellular uptake data was correlated to QSAR predictions and the predicted biological effects obtained from the model correlated well with experimental data. The QSAR model could improve the understanding of structural requirements for cell penetration, or could potentially be used to predict more efficient cell-penetrating peptides. PMID:24463071

  3. Cancer Treatment Using Peptides: Current Therapies and Future Prospects

    PubMed Central

    Thundimadathil, Jyothi

    2012-01-01

    This paper discusses the role of peptides in cancer therapy with special emphasis on peptide drugs which are already approved and those in clinical trials. The potential of peptides in cancer treatment is evident from a variety of different strategies that are available to address the progression of tumor growth and propagation of the disease. Use of peptides that can directly target cancer cells without affecting normal cells (targeted therapy) is evolving as an alternate strategy to conventional chemotherapy. Peptide can be utilized directly as a cytotoxic agent through various mechanisms or can act as a carrier of cytotoxic agents and radioisotopes by specifically targeting cancer cells. Peptide-based hormonal therapy has been extensively studied and utilized for the treatment of breast and prostate cancers. Tremendous amount of clinical data is currently available attesting to the efficiency of peptide-based cancer vaccines. Combination therapy is emerging as an important strategy to achieve synergistic effects in fighting cancer as a single method alone may not be efficient enough to yield positive results. Combining immunotherapy with conventional therapies such as radiation and chemotherapy or combining an anticancer peptide with a nonpeptidic cytotoxic drug is an example of this emerging field. PMID:23316341

  4. Chimeric Glutathione S-Transferases Containing Inserts of Kininogen Peptides

    PubMed Central

    Bentley, Amber A.; Merkulov, Sergei M.; Peng, Yi; Rozmarynowycz, Rita; Qi, Xiaoping; Pusztai-Carey, Marianne; Merrick, William C.; Yee, Vivien C.; McCrae, Keith R.; Komar, Anton A.

    2012-01-01

    The study of synthetic peptides corresponding to discrete regions of proteins has facilitated the understanding of protein structure-activity relationships. Short peptides can also be used as powerful therapeutic agents. However, in many instances, small peptides are prone to rapid degradation or aggregation and may lack the conformation required to mimic the functional motifs of the protein. For peptides to function as pharmacologically active agents, efficient production or expression, high solubility, and retention of biological activity through purification and storage steps are required. We report here the design, expression, and functional analysis of eight engineered GST proteins (denoted GSHKTs) in which peptides ranging in size from 8 to 16 amino acids and derived from human high molecular weight kininogen (HK) domain 5 were inserted into GST (between Gly-49 and Leu-50). Peptides derived from HK are known to inhibit cell proliferation, angiogenesis, and tumor metastasis, and the biological activity of the HK peptides was dramatically (>50-fold) enhanced following insertion into GST. GSHKTs are soluble and easily purified from Escherichia coli by affinity chromatography. Functionally, these hybrid proteins cause inhibition of endothelial cell proliferation. Crystallographic analysis of GSHKT10 and GSHKT13 (harboring 10- and 13-residue HK peptides, respectively) showed that the overall GST structure was not perturbed. These results suggest that the therapeutic efficacy of short peptides can be enhanced by insertion into larger proteins that are easily expressed and purified and that GST may potentially be used as such a carrier. PMID:22577144

  5. LPS interactions with immobilized and soluble antimicrobial peptides.

    PubMed

    Gustafsson, Anna; Olin, Anders I; Ljunggren, Lennart

    2010-04-19

    A promising approach in sepsis therapy is the use of peptides truncated from serum- and membrane-proteins with binding domains for LPS: antimicrobial peptides (AMPs). AMPs can be useful in combination with conventional antibiotics to increase killing and neutralize LPS. Although many AMPs show a high specificity towards bacterial membranes, they can also exhibit toxicity, i.e. non-specific membrane lysis, of mammalian cells such as erythrocytes and therefore, unsuitable as systemic drugs. A way to overcome this problem may be an extracorporeal therapy with immobilized peptides. This study will compare neutralization of LPS using different AMPs in solution and when immobilized on to solid phases. The peptides ability to neutralize LPS-induced cytokine release in whole blood will also be tested. The peptides are truncated derivates from the known AMPs LL-37, SC4, BPI, S3 Delta and CEME. Two different methods were used to immobilize peptides, biomolecular interaction analysis, and Pierce SulfoLink Coupling Gel. To investigate LPS binding in solution the LAL test was used. After whole blood incubation with LPS and AMPs ELISA was used to measure TNFalpha, IL-1 beta and IL-6 production. The results suggest that immobilization of antimicrobial peptides does not inhibit their capacity to neutralize LPS, although there are differences between the peptides tested. Thus, peptides derived from LL-37 and CEME were more efficient both in LPS binding and neutralizing LPS-induced cytokine production. PMID:20233038

  6. Tumor-Penetrating Peptides

    PubMed Central

    Teesalu, Tambet; Sugahara, Kazuki N.; Ruoslahti, Erkki

    2013-01-01

    Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC), contains the integrin-binding RGD motif. RGD mediates tumor-homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR) motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular “zip code” of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies, and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is present in the

  7. Synthetic antimicrobial peptide design.

    PubMed

    Powell, W A; Catranis, C M; Maynard, C A

    1995-01-01

    To guide the design of potential plant pathogen-resistance genes, synthetic variants of naturally occurring antimicrobial gene products were evaluated. Five 20-amino acid (ESF1, ESF4, ESF5, ESF6, ESF13), one 18-amino acid (ESF12), and one 17-amino acid (ESF17) amphipathic peptide sequences were designed, synthesized, and tested with in vitro bioassays. Positive charges on the hydrophilic side of the peptide were shown to be essential for antifungal activity, yet the number of positive charges could be varied with little or no change in activity. The size could be reduced to 18 amino acids, but at 17 amino acids a significant reduction in activity was observed. ESF1, 5, 6, and 12 peptides were inhibitory to the germination of conidia from Cryphonectria parasitica, Fusarium oxysporum f. sp. lycopersici, and Septoria musiva but did not inhibit the germination of pollen from Castanea mollissima and Salix lucida. ESF12 also had no effect on the germination of Malus sylvestris and Lycopersicon esculentum pollen, but inhibited the growth of the bacteria Agrobacterium tumefaciens, Erwinia amylovora, and Pseudomonas syringae. The minimal inhibitory concentrations of the active ESF peptides were similar to those of the naturally occurring control peptides, magainin II and cecropin B. The significant differential in sensitivity between the microbes and plant cells indicated that the active ESF peptides are potentially useful models for designing plant pathogen-resistance genes. PMID:7579625

  8. Antimitotic peptides and depsipeptides.

    PubMed

    Hamel, Ernest; Covell, David G

    2002-01-01

    Tubulin is the target for an ever increasing number of unusual peptides and depsipeptides that were originally isolated from a wide variety of organisms. Since tubulin is the major component of cellular microtubules, which maintain cell shape in interphase and form the mitotic spindle, most of these compounds are highly toxic to mammalian cells. These peptides and depsipeptides disrupt cellular microtubules and prevent formation of a functional spindle, resulting in the accumulation of cultured cells in the G2/M phase of the cell cycle through specific inhibition of mitosis. At the biochemical level, the compounds all inhibit the assembly of tubulin into polymer and, in the cases where it has been studied, strongly suppress microtubule dynamics at low concentrations. In most cases the peptides and depsipeptides inhibit the binding of vinblastine and vincristine to tubulin in a noncompetitive manner, inhibit tubulin-dependent GTP hydrolysis, and interfere with nucleotide turnover at the exchangeable GTP site on beta-tubulin. Most of the peptides and depsipeptides induce tubulin to form oligomers of aberrant morphology, including tubulin rings that vary in diameter depending on the (depsi) peptide under study. The purpose of this review is to give an overview of the cellular, biochemical, in vivo, and SAR aspects of this group of compounds. We also summarize initial efforts by computer modeling to decipher a pharmacophore among the diverse structures of these peptides and depsipeptides. PMID:12678750

  9. A viral peptide for intracellular delivery

    NASA Astrophysics Data System (ADS)

    Falanga, Annarita; Tarallo, Rossella; Cantisani, Marco; Della Pepa, Maria Elena; Galdiero, Massimiliano; Galdiero, Stefania

    2012-10-01

    Biological membranes represent a critical hindrance for administering active molecules which are often unable to reach their designated intracellular target sites. In order to overcome this barrier-like behavior not easily circumvented by many pharmacologically-active molecules, synthetic transporters have been exploited to promote cellular uptake. Linking or complexing therapeutic molecules to peptides that can translocate through the cellular membranes could enhance their internal delivery, and consequently, a higher amount of active compound would reach the site of action. Use of cell penetrating peptides (CPPs) is one of the most promising strategy to efficiently translocate macromolecules through the plasma membrane, and have attracted a lot of attention. New translocating peptides are continuously described and in the present review, we will focus on viral derived peptides, and in particular a peptide (gH625) derived from the herpes simplex virus type 1 (HSV-1) glycoprotein H (gH) that has proved to be a useful delivery vehicle due to its intrinsic properties of inducing membrane perturbation.

  10. One-step surface modification of polyurethane using affinity binding peptides for enhanced fouling resistance.

    PubMed

    Wang, Yibing; Yu, Yong; Zhang, Liting; Qin, Peng; Wang, Ping

    2015-01-01

    Affinity binding peptides were examined for surface fabrication of synthetic polymeric materials. Peptides possessing strong binding affinities toward polyurethane (PU) were discovered via biopanning of M13 phage peptide library. The apparent binding constant (K(app)) was as high as 2.68 × 10(9) M(-1) with surface peptide density exceeded 1.8 μg/cm(2). Structural analysis showed that the ideal peptide had a high content (75%) of H-donor amino acid residues, and that intensified hydrogen bond interaction was the key driving force for the highly stable binding of peptides on PU. PU treated with such affinity peptides promises applications as low-fouling materials, as peptides increased its wettability and substantially reduced protein adsorption and cell adhesion. These results demonstrated a facile but highly efficient one-step strategy for surface property modification of polymeric materials for biotechnological applications. PMID:25732121

  11. Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis.

    PubMed

    Nguyen, Giang K T; Wang, Shujing; Qiu, Yibo; Hemu, Xinya; Lian, Yilong; Tam, James P

    2014-09-01

    Proteases are ubiquitous in nature, whereas naturally occurring peptide ligases, enzymes catalyzing the reverse reactions of proteases, are rare occurrences. Here we describe the discovery of butelase 1, to our knowledge the first asparagine/aspartate (Asx) peptide ligase to be reported. This highly efficient enzyme was isolated from Clitoria ternatea, a cyclic peptide-producing medicinal plant. Butelase 1 shares 71% sequence identity and the same catalytic triad with legumain proteases but does not hydrolyze the protease substrate of legumain. Instead, butelase 1 cyclizes various peptides of plant and animal origin with yields greater than 95%. With Kcat values of up to 17 s(-1) and catalytic efficiencies as high as 542,000 M(-1) s(-1), butelase 1 is the fastest peptide ligase known. Notably, butelase 1 also displays broad specificity for the N-terminal amino acids of the peptide substrate, thus providing a new tool for C terminus-specific intermolecular peptide ligations. PMID:25038786

  12. The Use of Aryl Hydrazide Linkers for the Solid Phase Synthesis of Chemically Modified Peptides

    SciTech Connect

    Woo, Y; Mitchell, A R; Camarero, J A

    2006-11-03

    Since Merrifield introduced the concept of solid phase synthesis in 1963 for the rapid preparation of peptides, a large variety of different supports and resin-linkers have been developed that improve the efficiency of peptide assembly and expand the myriad of synthetically feasible peptides. The aryl hydrazide is one of the most useful resin-linkers for the synthesis of chemically modified peptides. This linker is completely stable during Boc- and Fmoc-based solid phase synthesis and yet it can be cleaved under very mild oxidative conditions. The present article reviews the use of this valuable linker for the rapid and efficient synthesis of C-terminal modified peptides, head-to-tail cyclic peptides and lipidated peptides.

  13. Membranotropic Cell Penetrating Peptides: The Outstanding Journey

    PubMed Central

    Falanga, Annarita; Galdiero, Massimiliano; Galdiero, Stefania

    2015-01-01

    The membrane bilayer delimits the interior of individual cells and provides them with the ability to survive and function properly. However, the crossing of cellular membranes constitutes the principal impediment to gaining entry into cells, and the potential therapeutic application of many drugs is predominantly dependent on the development of delivery tools that should take the drug to target cells selectively and efficiently with only minimal toxicity. Cell-penetrating peptides are short and basic peptides are widely used due to their ability to deliver a cargo across the membrane both in vitro and in vivo. It is widely accepted that their uptake mechanism involves mainly the endocytic pathway, the drug is catched inside endosomes and lysosomes, and only a small quantity is able to reach the intracellular target. In this wide-ranging scenario, a fascinating novel hypothesis is that membranotropic peptides that efficiently cross biological membranes, promote lipid-membrane reorganizing processes and cause a local and temporary destabilization and reorganization of the membrane bilayer, may also be able to enter cells circumventing the endosomal entrapment; in particular, by either favoring the escape from the endosome or by direct translocation. This review summarizes current data on membranotropic peptides for drug delivery. PMID:26512649

  14. CXCR4-antagonist Peptide R-liposomes for combined therapy against lung metastasis.

    PubMed

    Ieranò, Caterina; Portella, Luigi; Lusa, Sara; Salzano, Giuseppina; D'Alterio, Crescenzo; Napolitano, Maria; Buoncervello, Maria; Macchia, Daniele; Spada, Massimo; Barbieri, Antonio; Luciano, Antonio; Barone, Maria Vittoria; Gabriele, Lucia; Caraglia, Michele; Arra, Claudio; De Rosa, Giuseppe; Scala, Stefania

    2016-03-31

    The chemokine CXCL12 activates CXCR4, initiating multiple pathways that control immune cell trafficking, angiogenesis and embryogenesis; CXCR4 is also overexpressed in multiple tumors affecting metastatic dissemination. While there has been great enthusiasm for exploiting the CXCR4-CXCL12 axis as a target in cancer therapy, to date the promise has yet to be fulfilled. A new class of CXCR4-antagonist cyclic peptides was recently developed and the compound named Peptide R was identified as the most active. With the intent to improve the efficacy and biodistribution of Peptide R, stealth liposomes decorated with Peptide R were developed (PL-Peptide R). In vitro PL-Peptide R efficiently inhibited CXCR4-dependent migration and in vivo it significantly reduced lung metastases and increased overall survival in B16-CXCR4 injected C57BL/6 mice. To evaluate if PL-Peptide R could also be a drug delivery system for CXCR4 expressing tumors, the PL-Peptide R was loaded with doxorubicin (DOX) (PL-Peptide R-DOX). PL-Peptide R-DOX efficiently delivered DOX to CXCR4 expressing cell lines with a consequent decrease in the DOX IC50 efficient dose. In vivo, B16-CXCR4 injected C57BL/6 mice treated with PL-Peptide R-DOX developed fewer lung metastases compared to PL-DOX treated mice. This work provides the proof-of-concept to prevent metastasis by using combined nanomedicine. PMID:26983756

  15. Conformational Restriction of Peptides Using Dithiol Bis-Alkylation.

    PubMed

    Peraro, L; Siegert, T R; Kritzer, J A

    2016-01-01

    Macrocyclic peptides are highly promising as inhibitors of protein-protein interactions. While many bond-forming reactions can be used to make cyclic peptides, most have limitations that make this chemical space challenging to access. Recently, a variety of cysteine alkylation reactions have been used in rational design and library approaches for cyclic peptide discovery and development. We and others have found that this chemistry is versatile and robust enough to produce a large variety of conformationally constrained cyclic peptides. In this chapter, we describe applications, methods, mechanistic insights, and troubleshooting for dithiol bis-alkylation reactions for the production of cyclic peptides. This method for efficient solution-phase macrocyclization is highly useful for the rapid production and screening of loop-based inhibitors of protein-protein interactions. PMID:27586339

  16. Low-Cost Peptide Microarrays for Mapping Continuous Antibody Epitopes.

    PubMed

    McBride, Ryan; Head, Steven R; Ordoukhanian, Phillip; Law, Mansun

    2016-01-01

    With the increasing need for understanding antibody specificity in antibody and vaccine research, pepscan assays provide a rapid method for mapping and profiling antibody responses to continuous epitopes. We have developed a relatively low-cost method to generate peptide microarray slides for studying antibody binding. Using a setup of an IntavisAG MultiPep RS peptide synthesizer, a Digilab MicroGrid II 600 microarray printer robot, and an InnoScan 1100 AL scanner, the method allows the interrogation of up to 1536 overlapping, alanine-scanning, and mutant peptides derived from the target antigens. Each peptide is tagged with a polyethylene glycol aminooxy terminus to improve peptide solubility, orientation, and conjugation efficiency to the slide surface. PMID:26490468

  17. Evaluating the role of HLA-DM in MHC II-peptide association reactions1

    PubMed Central

    Yin, Liusong; Maben, Zachary; Becerra, Aniuska; Stern, Lawrence J.

    2015-01-01

    Antigen presentation by major histocompatibility complex class II molecules (MHC II) to CD4+ T cells plays a key role in the regulation of the adaptive immune response. Loading of antigenic peptides onto MHC II is catalyzed by HLA-DM (DM), a non-classical MHC II molecule. The mechanism of DM-facilitated peptide loading is an outstanding problem in the field of antigen presentation. In this study we systemically explored possible kinetic mechanisms for DM-catalyzed peptide association, by measuring real time peptide association kinetics using fluorescence polarization assays and comparing the experimental data with numerically modeled peptide association reactions. We found that DM does not facilitate peptide association by stabilizing peptide-free MHC II against aggregation. Moreover, DM does not promote transition of an inactive peptide-averse conformation of MHC II to an active peptide-receptive conformation. Instead, DM forms an intermediate with MHC II that binds peptide with faster kinetics than MHC II in the absence of DM. In the absence of peptides, interaction of MHC II with DM leads to inactivation and formation of a peptide-averse form. This study provides novel insights into how DM efficiently catalyzes peptide loading during antigen presentation. PMID:26062997

  18. Antimicrobial Peptides from Plants.

    PubMed

    Tam, James P; Wang, Shujing; Wong, Ka H; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  19. Antimicrobial Peptides from Plants

    PubMed Central

    Tam, James P.; Wang, Shujing; Wong, Ka H.; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  20. Synthetic antibiofilm peptides.

    PubMed

    de la Fuente-Núñez, César; Cardoso, Marlon Henrique; de Souza Cândido, Elizabete; Franco, Octavio Luiz; Hancock, Robert E W

    2016-05-01

    Bacteria predominantly exist as multicellular aggregates known as biofilms that are associated with at least two thirds of all infections and exhibit increased adaptive resistance to conventional antibiotic therapies. Therefore, biofilms are major contributors to the global health problem of antibiotic resistance, and novel approaches to counter them are urgently needed. Small molecules of the innate immune system called host defense peptides (HDPs) have emerged as promising templates for the design of potent, broad-spectrum antibiofilm agents. Here, we review recent developments in the new field of synthetic antibiofilm peptides, including mechanistic insights, synergistic interactions with available antibiotics, and their potential as novel antimicrobials against persistent infections caused by biofilms. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26724202

  1. Signal peptide of cellulase.

    PubMed

    Yan, Shaomin; Wu, Guang

    2014-06-01

    Cellulase is an enzyme playing a crucial role in biotechnology industries ranging from textile to biofuel because of tremendous amount of cellulose produced in plant. In order to improve cellulase productivity, huge resource has been spent in search for good cellulases from microorganism in remote areas and in creation of ideal cellulase by engineering. However, not much attention is given to the secretion of cellulases from cell into extracellular space, where a cellulase plays its enzymatic role. In this minireview, the signal peptides, which lead secreted proteins to specific secretion systems and scatter in literature, are reviewed. The patterns of signal peptides are checked against 4,101 cellulases documented in UniProtKB, the largest protein database in the world, to determine how these cellulases are secreted. Simultaneous review on both literature and cellulases from the database not only provides updated knowledge on signal peptides but also indicates the gap in our research. PMID:24743986

  2. Phage Selection of Chemically Stabilized α-Helical Peptide Ligands.

    PubMed

    Diderich, Philippe; Bertoldo, Davide; Dessen, Pierre; Khan, Maola M; Pizzitola, Irene; Held, Werner; Huelsken, Joerg; Heinis, Christian

    2016-05-20

    Short α-helical peptides stabilized by linkages between constituent amino acids offer an attractive format for ligand development. In recent years, a range of excellent ligands based on stabilized α-helices were generated by rational design using α-helical peptides of natural proteins as templates. Herein, we developed a method to engineer chemically stabilized α-helical ligands in a combinatorial fashion. In brief, peptides containing cysteines in position i and i + 4 are genetically encoded by phage display, the cysteines are modified with chemical bridges to impose α-helical conformations, and binders are isolated by affinity selection. We applied the strategy to affinity mature an α-helical peptide binding β-catenin. We succeeded in developing ligands with Kd's as low as 5.2 nM, having >200-fold improved affinity. The strategy is generally applicable for affinity maturation of any α-helical peptide. Compared to hydrocarbon stapled peptides, the herein evolved thioether-bridged peptide ligands can be synthesized more easily, as no unnatural amino acids are required and the cyclization reaction is more efficient and yields no stereoisomers. A further advantage of the thioether-bridged peptide ligands is that they can be expressed recombinantly as fusion proteins. PMID:26929989

  3. Cullin3 - BTB Interface: A Novel Target for Stapled Peptides

    PubMed Central

    Palmieri, Maddalena; Balasco, Nicole; Esposito, Luciana; Russo, Luigi; Mazzà, Daniela; Di Marcotullio, Lucia; Di Gaetano, Sonia; Malgieri, Gaetano; Vitagliano, Luigi; Pedone, Emilia; Zaccaro, Laura

    2015-01-01

    Cullin3 (Cul3), a key factor of protein ubiquitination, is able to interact with dozens of different proteins containing a BTB (Bric-a-brac, Tramtrack and Broad Complex) domain. We here targeted the Cul3–BTB interface by using the intriguing approach of stabilizing the α-helical conformation of Cul3-based peptides through the “stapling” with a hydrocarbon cross-linker. In particular, by combining theoretical and experimental techniques, we designed and characterized stapled Cul3-based peptides embedding the helix 2 of the protein (residues 49–68). Intriguingly, CD and NMR experiments demonstrate that these stapled peptides were able to adopt the helical structure that the fragment assumes in the parent protein. We also show that some of these peptides were able to bind to the BTB of the tetrameric KCTD11, a substrate adaptor involved in HDAC1 degradation, with high affinity (~ 300–600 nM). Cul3-derived staple peptides are also able to bind the BTB of the pentameric KCTD5. Interestingly, the affinity of these peptides is of the same order of magnitude of that reported for the interaction of full-length Cul3 with some BTB containing proteins. Moreover, present data indicate that stapling endows these peptides with an increased serum stability. Altogether, these findings indicate that the designed stapled peptides can efficiently mimic protein-protein interactions and are potentially able to modulate fundamental biological processes involving Cul3. PMID:25848797

  4. Antimicrobial peptides in the centipede Scolopendra subspinipes mutilans.

    PubMed

    Yoo, Won Gi; Lee, Joon Ha; Shin, Younhee; Shim, Jae-Young; Jung, Myunghee; Kang, Byeong-Chul; Oh, Jaedon; Seong, Jiyeon; Lee, Hak Kyo; Kong, Hong Sik; Song, Ki-Duk; Yun, Eun-Young; Kim, In-Woo; Kwon, Young-Nam; Lee, Dong Gun; Hwang, Ui-Wook; Park, Junhyung; Hwang, Jae Sam

    2014-06-01

    The centipede Scolopendra subspinipes mutilans is an environmentally beneficial and medically important arthropod species. Although this species is increasingly applied as a reliable source of new antimicrobial peptides, the transcriptome of this species is a prerequisite for more rational selection of antimicrobial peptides. In this report, we isolated total RNA from the whole body of adult centipedes, S. subspinipes mutilans, that were nonimmunized and immunized against Escherichia coli, and we generated a total of 77,063 pooled contigs and singletons using high-throughput sequencing. To screen putative antimicrobial peptides, in silico analyses of the S. subspinipes mutilans transcriptome were performed based on the physicochemical evidence of length, charge, isoelectric point, and in vitro and in vivo aggregation scores together with the existence of continuous antimicrobial peptide stretches. Moreover, we excluded some transcripts that showed similarity with both previously known antimicrobial peptides and the human proteome, had a proteolytic cleavage site, and had downregulated expression compared with the nonimmunized sample. As a result, we selected 17 transcripts and tested their antimicrobial activity with a radial diffusion assay. Among them, ten synthetic peptides experimentally showed antimicrobial activity against microbes and no toxicity to mouse erythrocytes. Our results provide not only a useful set of antimicrobial peptide candidates and an efficient strategy for novel antimicrobial peptide development but also the transcriptome data of a big centipede as a valuable resource. PMID:24652097

  5. New method of peptide cleavage based on Edman degradation.

    PubMed

    Bąchor, Remigiusz; Kluczyk, Alicja; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2013-08-01

    A straightforward cleavage method for N- acylated peptides based on the phenylthiohydantoin (PTH) formation is presented. The procedure could be applied to acid-stable resins, such as TentaGel HL-NH[Formula: see text]. We designed a cleavable linker that consists of a lysine residue with the [Formula: see text]-amino group blocked by Boc, whereas the [Formula: see text]-amino group is used for peptide synthesis. After the peptide assembly is completed, the protecting groups in peptide side chains are removed using trifluoroacetic acid, thus liberating also the [Formula: see text]-amino group of the lysine in the linker. Then the reaction with phenyl isothiocyanate followed by acidolysis causes an efficient peptide release from the resin as a stable PTH derivative. Furthermore, the application of a fixed charge tag in the form of 2-(4-aza-1-azoniabicyclo[2.2.2]octylammonium)acetyl group increases ionization efficiency and reduces the detection limit, allowing ESI-MS/MS sequencing of peptides in the subfemtomolar range. The proposed strategy is compatible with standard conditions during one-bead-one-compound peptide library synthesis. The applicability of the developed strategy in combinatorial chemistry was confirmed using a small training library of [Formula: see text]-chymotrypsin substrates. PMID:23690169

  6. Biomimetic peptide nanosensors.

    PubMed

    Cui, Yue; Kim, Sang N; Naik, Rajesh R; McAlpine, Michael C

    2012-05-15

    The development of a miniaturized sensing platform tailored for sensitive and selective detection of a variety of biochemical analytes could offer transformative fundamental and technological opportunities. Due to their high surface-to-volume ratios, nanoscale materials are extremely sensitive sensors. Likewise, peptides represent robust substrates for selective recognition due to the potential for broad chemical diversity within their relatively compact size. Here we explore the possibilities of linking peptides to nanosensors for the selective detection of biochemical targets. Such systems raise a number of interesting fundamental challenges: What are the peptide sequences, and how can rational design be used to derive selective binders? What nanomaterials should be used, and what are some strategies for assembling hybrid nanosensors? What role does molecular modeling play in elucidating response mechanisms? What is the resulting performance of these sensors, in terms of sensitivity, selectivity, and response time? What are some potential applications? This Account will highlight our early attempts to address these research challenges. Specifically, we use natural peptide sequences or sequences identified from phage display as capture elements. The sensors are based on a variety of nanomaterials including nanowires, graphene, and carbon nanotubes. We couple peptides to the nanomaterial surfaces via traditional surface functionalization methods or self-assembly. Molecular modeling provides detailed insights into the hybrid nanostructure, as well as the sensor detection mechanisms. The peptide nanosensors can distinguish chemically camouflaged mixtures of vapors and detect chemical warfare agents with sensitivities as low as parts-per-billion levels. Finally, we anticipate future uses of this technology in biomedicine: for example, devices based on these sensors could detect disease from the molecular components in human breath. Overall, these results provide a

  7. Aerosolized Medications for Gene and Peptide Therapy.

    PubMed

    Laube, Beth L

    2015-06-01

    Inhalation therapy has matured to include drugs that: (1) deliver nucleic acids that either lead to the restoration of a gene construct or protein coding sequence in a population of cells or suppress or disrupt production of an abnormal gene product (gene therapy); (2) deliver peptides that target lung diseases such as asthma, sarcoidosis, pulmonary hypertension, and cystic fibrosis; and (3) deliver peptides to treat diseases outside the lung whose target is the systemic circulation (systemic drug delivery). These newer applications for aerosol therapy are the focus of this paper, and I discuss the status of each and the challenges that remain to their successful development. Drugs that are highlighted include: small interfering ribonucleic acid to treat lung cancer and Mycobacterium tuberculosis; vectors carrying the normal alpha-1 antitrypsin gene to treat alpha-1 antitrypsin deficiency; vectors carrying the normal cystic fibrosis transmembrane conductance regulator gene to treat cystic fibrosis; vasoactive intestinal peptide to treat asthma, pulmonary hypertension, and sarcoidosis; glutathione to treat cystic fibrosis; granulocyte-macrophage colony-stimulating factor to treat pulmonary alveolar proteinosis; calcitonin for postmenopausal osteoporosis; and insulin to treat diabetes. The success of these new aerosol applications will depend on many factors, such as: (1) developing gene therapy formulations that are safe for acute and chronic administrations to the lung, (2) improving the delivery of the genetic material beyond the airway mucus barrier and cell membrane and transferring the material to the cell cytoplasm or the cell nucleus, (3) developing aerosol devices that efficiently deliver genetic material and peptides to their lung targets over a short period of time, (4) developing devices that increase aerosol delivery to the lungs of infants, (5) optimizing the bioavailability of systemically delivered peptides, and (6) developing peptide formulations for

  8. Replica exchange molecular dynamics simulations of amyloid peptide aggregation

    NASA Astrophysics Data System (ADS)

    Cecchini, M.; Rao, F.; Seeber, M.; Caflisch, A.

    2004-12-01

    The replica exchange molecular dynamics (REMD) approach is applied to four oligomeric peptide systems. At physiologically relevant temperature values REMD samples conformation space and aggregation transitions more efficiently than constant temperature molecular dynamics (CTMD). During the aggregation process the energetic and structural properties are essentially the same in REMD and CTMD. A condensation stage toward disordered aggregates precedes the β-sheet formation. Two order parameters, borrowed from anisotropic fluid analysis, are used to monitor the aggregation process. The order parameters do not depend on the peptide sequence and length and therefore allow to compare the amyloidogenic propensity of different peptides.

  9. Monolithic capillary columns based on pentaerythritol tetraacrylate for peptide analysis

    NASA Astrophysics Data System (ADS)

    Kucherenko, E. V.; Melnik, D. M.; Korolev, A. A.; Kanateva, A. Yu.; Pirogov, A. V.; Kurganov, A. A.

    2015-09-01

    Monolythic medium-polar capillary columns based on pentaerythritol tetraacrylate were optimized for separation of peptides. The synthesis temperature and time, the fraction of monomer in the initial polymerization mixture, and the nature of alcohol contained in the complex porogen were chosen as optimization parameters. The highest efficiency was attained for columns obtained with 33 and 34% monomer at a polymerization time of 75 min and a temperature of 75°C. The columns with the optimum structure were effective in separation of a model mixture of five peptides. The sensitivity of the method was 200 ng of peptide per column.

  10. Multidimensional signatures in antimicrobial peptides

    PubMed Central

    Yount, Nannette Y.; Yeaman, Michael R.

    2004-01-01

    Conventional analyses distinguish between antimicrobial peptides by differences in amino acid sequence. Yet structural paradigms common to broader classes of these molecules have not been established. The current analyses examined the potential conservation of structural themes in antimicrobial peptides from evolutionarily diverse organisms. Using proteomics, an antimicrobial peptide signature was discovered to integrate stereospecific sequence patterns and a hallmark three-dimensional motif. This striking multidimensional signature is conserved among disulfide-containing antimicrobial peptides spanning biological kingdoms, and it transcends motifs previously limited to defined peptide subclasses. Experimental data validating this model enabled the identification of previously unrecognized antimicrobial activity in peptides of known identity. The multidimensional signature model provides a unifying structural theme in broad classes of antimicrobial peptides, will facilitate discovery of antimicrobial peptides as yet unknown, and offers insights into the evolution of molecular determinants in these and related host defense effector molecules. PMID:15118082

  11. Development of a candidate influenza vaccine based on virus-like particles displaying influenza M2e peptide into the immunodominant loop region of hepatitis B core antigen: Insertion of multiple copies of M2e increases immunogenicity and protective efficiency.

    PubMed

    Ravin, Nikolai V; Blokhina, Elena A; Kuprianov, Victor V; Stepanova, Liudmila A; Shaldjan, Aram A; Kovaleva, Anna A; Tsybalova, Liudmila M; Skryabin, Konstantin G

    2015-06-26

    The extracellular domain of the transmembrane protein M2 (M2e) of influenza A virus is a promising target for the development of "universal" vaccines against influenza. M2e is a poor immunogen by itself; however, when M2e is linked to an appropriate carrier, such as hepatitis B virus core (HBc) particles, it becomes highly immunogenic. Insertions of target peptides into the surface-exposed major immunodominant loop region (MIR) of the HBc antigen are especially immunogenic, but such insertions often affect the protein folding and formation of recombinant virus-like particles. To facilitate an appropriate conformation of the M2e insert, we introduced flexible linkers at the junction points between the insert and flanking HBc sequences. This approach allowed the construction of recombinant HBc particles carrying 1, 2 and 4 copies of M2e in the MIR region. These particles were produced in Escherichia coli and purified to homogeneity. The immune response and protective activity of hybrid HBc particles in mice correlated with the number of inserted M2e peptides: the highest immunogenicity and complete protection of mice against the lethal challenge by influenza virus was observed with particles carrying four copies of M2e. The possibility of the simultaneous presentation of M2e peptides from several important influenza strains on a single HBc particle could also facilitate the development of a broad-specificity vaccine efficient not only against influenza A strains of human origin but also for newly emerging strains of animal origin, such as the avian influenza. PMID:25937448

  12. Self-assembly of fibronectin mimetic peptide-amphiphile nanofibers

    NASA Astrophysics Data System (ADS)

    Rexeisen, Emilie Lynn

    Many therapeutic strategies incorporate peptides into their designs to mimic the natural protein ligands found in vivo. A few examples are the short peptide sequences RGD and PHSRN that mimic the primary and synergy-binding domains of the extracellular matrix protein, fibronectin, which is recognized by the cell surface receptor, alpha5beta 1 integrin. Even though scaffold modification with biomimetic peptides remains one of the most promising approaches for tissue engineering, the use of these peptides in therapeutic tissue-engineered products and drug delivery systems available on the commercial market is limited because the peptides are not easily able to mimic the natural protein. The design of a peptide that can effectively target the alpha5beta1 integrin would greatly increase biomimetic scaffold therapeutic potential. A novel peptide containing both the RGD primary binding domain and PHSRN synergy-binding domain for fibronectin joined with the appropriate linker should bind alpha 5beta1 integrin more efficiently and lead to greater cell adhesion over RGD alone. Several fibronectin mimetic peptides were designed and coupled to dialkyl hydrocarbon tails to make peptide-amphiphiles. The peptides contained different linkers connecting the two binding domains and different spacers separating the hydrophobic tails from the hydrophilic headgroups. The peptide-amphiphiles were deposited on mica substrates using the Langmuir-Blodgett technique. Langmuir isotherms indicated that the peptide-amphiphiles that contained higher numbers of serine residues formed a more tightly packed monolayer, but the increased number of serines also made transferring the amphiphiles to the mica substrate more difficult. Atomic force microscopy (AFM) images of the bilayers showed that the headgroups might be bent, forming small divots in the surface. These divots may help expose the PHSRN synergy-binding domain. Parallel studies undertaken by fellow group members showed that human

  13. Peptide o-aminoanilides as crypto-thioesters for protein chemical synthesis.

    PubMed

    Wang, Jia-Xing; Fang, Ge-Min; He, Yao; Qu, Da-Liang; Yu, Min; Hong, Zhang-Yong; Liu, Lei

    2015-02-01

    Fully unprotected peptide o-aminoanilides can be efficiently activated by NaNO2 in aqueous solution to furnish peptide thioesters for use in native chemical ligation. This finding enables the convergent synthesis of proteins from readily synthesizable peptide o-aminoanilides as a new type of crypto-thioesters. The practicality of this approach is shown by the synthesis of histone H2B from five peptide segments. Purification or solubilization tags, which are sometimes needed to improve the efficiency of protein chemical synthesis, can be incorporated into the o-aminoanilide moiety, as demonstrated in the preparation of the cyclic protein lactocyclicin Q. PMID:25475965

  14. Brain Peptides and Psychopharmacology

    ERIC Educational Resources Information Center

    Arehart-Treichel, Joan

    1976-01-01

    Proteins isolated from the brain and used as drugs can improve and apparently even transfer mental states and behavior. Much of the pioneering work and recent research with humans and animals is reviewed and crucial questions that are being posed about the psychologically active peptides are related. (BT)

  15. Enthalpy-driven interactions with sulfated glycosaminoglycans promote cell membrane penetration of arginine peptides.

    PubMed

    Takechi-Haraya, Yuki; Nadai, Ryo; Kimura, Hitoshi; Nishitsuji, Kazuchika; Uchimura, Kenji; Sakai-Kato, Kumiko; Kawakami, Kohsaku; Shigenaga, Akira; Kawakami, Toru; Otaka, Akira; Hojo, Hironobu; Sakashita, Naomi; Saito, Hiroyuki

    2016-06-01

    The first step of cell membrane penetration of arginine peptides is thought to occur via electrostatic interactions between positive charges of arginine residues and negative charges of sulfated glycosaminoglycans (GAGs) on the cell surface. However, the molecular interaction of arginine peptides with GAG still remains unclear. Here, we compared the interactions of several arginine peptides of Tat, R8, and Rev and their analogues with heparin in relation to the cell membrane penetration efficiency. The high-affinity binding of arginine peptides to heparin was shown to be driven by large favorable enthalpy contributions, possibly reflecting multidentate hydrogen bondings of arginine residues with sulfate groups of heparin. Interestingly, the lysine peptides in which all arginine residues are substituted with lysine residues exhibited negligible binding enthalpy despite of their considerable binding to heparin. In CHO-K1 cells, arginine peptides exhibited a great cell-penetrating ability whereas their corresponding lysine peptides did not penetrate into cells. The degree of cell penetration of arginine peptides markedly decreased by the chlorate treatment of cells which prevents the sulfation of GAG chains. Significantly, the cell penetration efficiency of arginine peptides was found to be correlated with the favorable enthalpy of binding to heparin. These results suggest that the enthalpy-driven strong interaction with sulfated GAGs such as heparan sulfate plays a critical role in the efficient cell membrane penetration of arginine peptides. PMID:27003128

  16. Pronase E-Based Generation of Fluorescent Peptide Fragments: Tracking Intracellular Peptide Fate in Single Cells.

    PubMed

    Mainz, Emilie R; Dobes, Nicholas C; Allbritton, Nancy L

    2015-08-01

    The ability to track intracellular peptide proteolysis at the single cell level is of growing interest, particularly as short peptide sequences continue to play important roles as biosensors, therapeutics, and endogenous participants in antigen processing and intracellular signaling. We describe a rapid and inexpensive methodology to generate fluorescent peptide fragments from a parent sequence with diverse chemical properties, including aliphatic, nonpolar, basic, acidic, and non-native amino acids. Four peptide sequences with existing biochemical applications were fragmented using incubation with Pronase E and/or formic acid, and in each case a complete set of fluorescent fragments was generated for use as proteolysis standards in chemical cytometry. Fragment formation and identity was monitored with capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) and matrix assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-MS) to confirm the presence of all sequences and yield fragmentation profiles across Pronase E concentrations which can readily be used by others. As a pilot study, Pronase E-generated standards from an Abl kinase sensor and an ovalbumin antigenic peptide were then employed to identify proteolysis products arising from the metabolism of these sequences in single cells. The Abl kinase sensor fragmented at 4.2 ± 4.8 zmol μM(-1) s(-1) and the majority of cells possessed similar fragment identities. In contrast, an ovalbumin epitope peptide was degraded at 8.9 ± 0.1 zmol μM(-1) s(-1), but with differential fragment formation between individual cells. Overall, Pronase E-generated peptide standards were a rapid and efficient method to identify proteolysis products from cells. PMID:26171808

  17. Antagonistic peptide technology for functional dissection of CLE peptides revisited

    PubMed Central

    Czyzewicz, Nathan; Wildhagen, Mari; Cattaneo, Pietro; Stahl, Yvonne; Pinto, Karine Gustavo; Aalen, Reidunn B.; Butenko, Melinka A.; Simon, Rüdiger; Hardtke, Christian S.; De Smet, Ive

    2015-01-01

    In the Arabidopsis thaliana genome, over 1000 putative genes encoding small, presumably secreted, signalling peptides can be recognized. However, a major obstacle in identifying the function of genes encoding small signalling peptides is the limited number of available loss-of-function mutants. To overcome this, a promising new tool, antagonistic peptide technology, was recently developed. Here, this antagonistic peptide technology was tested on selected CLE peptides and the related IDA peptide and its usefulness in the context of studies of peptide function discussed. Based on the analyses, it was concluded that the antagonistic peptide approach is not the ultimate means to overcome redundancy or lack of loss-of-function lines. However, information collected using antagonistic peptide approaches (in the broad sense) can be very useful, but these approaches do not work in all cases and require a deep insight on the interaction between the ligand and its receptor to be successful. This, as well as peptide ligand structure considerations, should be taken into account before ordering a wide range of synthetic peptide variants and/or generating transgenic plants. PMID:26136270

  18. Antagonistic peptide technology for functional dissection of CLE peptides revisited.

    PubMed

    Czyzewicz, Nathan; Wildhagen, Mari; Cattaneo, Pietro; Stahl, Yvonne; Pinto, Karine Gustavo; Aalen, Reidunn B; Butenko, Melinka A; Simon, Rüdiger; Hardtke, Christian S; De Smet, Ive

    2015-08-01

    In the Arabidopsis thaliana genome, over 1000 putative genes encoding small, presumably secreted, signalling peptides can be recognized. However, a major obstacle in identifying the function of genes encoding small signalling peptides is the limited number of available loss-of-function mutants. To overcome this, a promising new tool, antagonistic peptide technology, was recently developed. Here, this antagonistic peptide technology was tested on selected CLE peptides and the related IDA peptide and its usefulness in the context of studies of peptide function discussed. Based on the analyses, it was concluded that the antagonistic peptide approach is not the ultimate means to overcome redundancy or lack of loss-of-function lines. However, information collected using antagonistic peptide approaches (in the broad sense) can be very useful, but these approaches do not work in all cases and require a deep insight on the interaction between the ligand and its receptor to be successful. This, as well as peptide ligand structure considerations, should be taken into account before ordering a wide range of synthetic peptide variants and/or generating transgenic plants. PMID:26136270

  19. Biochemical functionalization of peptide nanotubes with phage displayed peptides

    NASA Astrophysics Data System (ADS)

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering.

  20. Biochemical functionalization of peptide nanotubes with phage displayed peptides.

    PubMed

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering. PMID:27479451

  1. Ribosomal Synthesis of Peptides with Multiple β-Amino Acids.

    PubMed

    Fujino, Tomoshige; Goto, Yuki; Suga, Hiroaki; Murakami, Hiroshi

    2016-02-17

    The compatibility of β-amino acids with ribosomal translation was studied for decades, but it has been still unclear whether the ribosome can accept various β-amino acids, and whether the ribosome can introduce multiple β-amino acids in a peptide. In the present study, by using the Escherichia coli reconstituted cell-free translation system with a reprogramed genetic code, we screened β-amino acids that give high single incorporation efficiency and used them to synthesize peptides containing multiple β-amino acids. The experiments of single β-amino acid incorporation into a peptide revealed that 13 β-amino acids are compatible with ribosomal translation. Six of the tested β-amino acids (βhGly, l-βhAla, l-βhGln, l-βhPhg, l-βhMet, and d-βhPhg) showed high incorporation efficiencies, and seven (l-βhLeu, l-βhIle, l-βhAsn, l-βhPhe, l-βhLys, d-βhAla, and d-βhLeu) showed moderate incorporation efficiencies; whereas no full-length peptide was produced using other β-amino acids (l-βhPro, l-βhTrp, and l-βhGlu). Subsequent double-incorporation experiments using β-amino acids with high single incorporation efficiency revealed that elongation of peptides with successive β-amino acids is prohibited. Efficiency of the double-incorporation of the β-amino acids was restored by the insertion of Tyr or Ile between the two β-amino acids. On the basis of these experiments, we also designed mRNA sequences of peptides, and demonstrated the ribosomal synthesis of peptides containing different types of β-amino acids at multiple positions. PMID:26807980

  2. Antimicrobial peptides: premises and promises.

    PubMed

    Reddy, K V R; Yedery, R D; Aranha, C

    2004-12-01

    Antimicrobial peptides (AMPs) are an important component of the natural defences of most living organisms against invading pathogens. These are relatively small (< 10kDa), cationic and amphipathic peptides of variable length, sequence and structure. During the past two decades several AMPs have been isolated from a wide variety of animals, both vertebrates and invertebrates, and plants as well as from bacteria and fungi. Most of these peptides are obtained from different sources like macrophages, neutrophils, epithelial cells, haemocytes, fat body, reproductive tract, etc. These peptides exhibit broad-spectrum activity against a wide range of microorganisms including Gram-positive and Gram-negative bacteria, protozoa, yeast, fungi and viruses. A few peptides have also been found to be cytotoxic to sperm and tumour cells. AMPs are classified based on the three dimensional structural studies carried out with the help of NMR. The peptides are broadly classified into five major groups namely (a) peptides that form alpha-helical structures, (b) peptides rich in cysteine residues, (c) peptides that form beta-sheet, (d) peptides rich in regular amino acids namely histatin, arginine and proline and (e) peptides composed of rare and modified amino acids. Most of these peptides are believed to act by disrupting the plasma membrane leading to the lysis of the cell. AMPs have been found to be excellent candidates for developing novel antimicrobial agents and a few of these peptides show antimicrobial activity against pathogens causing sexually transmitted infection (STI), including HIV/HSV. Peptides, namely magainin and nisin have been shown to demonstrate contraceptive properties in vitro and in vivo. A few peptides have already entered clinical trials for the treatment of impetigo, diabetic foot ulcers and gastric helicobacter infections. In this review, we discuss the source, structures and mode of action with special reference to therapeutic considerations of various AMPs

  3. Phage-displayed peptide libraries

    PubMed Central

    Zwick, Michael B; Shen, Juqun; Scott, Jamie K

    2014-01-01

    Over the past year, significant advances have been achieved through the use of phage-displayed peptide libraries. A wide variety of bioactive molecules, including antibodies, receptors and enzymes, have selected high-affinity and/or highly-specific peptide ligands from a number of different types of peptide library. The demonstrated therapeutic potential of some of these peptides, as well as new insights into protein structure and function that peptide ligands have provided, highlight the progress made within this rapidly-expanding field. PMID:9720267

  4. Optimization for Peptide Sample Preparation for Urine Peptidomics

    SciTech Connect

    Sigdel, Tara K.; Nicora, Carrie D.; Hsieh, Szu-Chuan; Dai, Hong; Qian, Weijun; Camp, David G.; Sarwal, Minnie M.

    2014-02-25

    Analysis of native or endogenous peptides in biofluids can provide valuable insights into disease mechanisms. Furthermore, the detected peptides may also have utility as potential biomarkers for non-invasive monitoring of human diseases. The non-invasive nature of urine collection and the abundance of peptides in the urine makes analysis by high-throughput ‘peptidomics’ methods , an attractive approach for investigating the pathogenesis of renal disease. However, urine peptidomics methodologies can be problematic with regards to difficulties associated with sample preparation. The urine matrix can provide significant background interference in making the analytical measurements that it hampers both the identification of peptides and the depth of the peptidomics read when utilizing LC-MS based peptidome analysis. We report on a novel adaptation of the standard solid phase extraction (SPE) method to a modified SPE (mSPE) approach for improved peptide yield and analysis sensitivity with LC-MS based peptidomics in terms of time, cost, clogging of the LC-MS column, peptide yield, peptide quality, and number of peptides identified by each method. Expense and time requirements were comparable for both SPE and mSPE, but more interfering contaminants from the urine matrix were evident in the SPE preparations (e.g., clogging of the LC-MS columns, yellowish background coloration of prepared samples due to retained urobilin, lower peptide yields) when compared to the mSPE method. When we compared data from technical replicates of 4 runs, the mSPE method provided significantly improved efficiencies for the preparation of samples from urine (e.g., mSPE peptide identification 82% versus 18% with SPE; p = 8.92E-05). Additionally, peptide identifications, when applying the mSPE method, highlighted the biology of differential activation of urine peptidases during acute renal transplant rejection with distinct laddering of specific peptides, which was obscured for most proteins

  5. HER2 Targeting Peptides Screening and Applications in Tumor Imaging and Drug Delivery

    PubMed Central

    Geng, Lingling; Wang, Zihua; Jia, Xiangqian; Han, Qiuju; Xiang, Zhichu; Li, Dan; Yang, Xiaoliang; Zhang, Di; Bu, Xiangli; Wang, Weizhi; Hu, Zhiyuan; Fang, Qiaojun

    2016-01-01

    Herein, computational-aided one-bead-one-compound (OBOC) peptide library design combined with in situ single-bead sequencing microarray methods were successfully applied in screening peptides targeting at human epidermal growth factor receptor-2 (HER2), a biomarker of human breast cancer. As a result, 72 novel peptides clustered into three sequence motifs which are PYL***NP, YYL***NP and PPL***NP were acquired. Particularly one of the peptides, P51, has nanomolar affinity and high specificity for HER2 in ex vivo and in vivo tests. Moreover, doxorubicin (DOX)-loaded liposome nanoparticles were modified with peptide P51 or P25 and demonstrated to improve the targeted delivery against HER2 positive cells. Our study provides an efficient peptide screening method with a combination of techniques and the novel screened peptides with a clear binding site on HER2 can be used as probes for tumor imaging and targeted drug delivery. PMID:27279916

  6. Twin disulfides for orthogonal disulfide pairing and the directed folding of multicyclic peptides

    NASA Astrophysics Data System (ADS)

    Wu, Chuanliu; Leroux, Jean-Christophe; Gauthier, Marc A.

    2012-12-01

    Multicyclic peptides are emerging as an exciting platform for drug and targeted ligand discovery owing to their expected greater target affinity/selectivity/stability versus linear or monocyclic peptides. However, although the precise pairing of cysteine residues in proteins is routinely achieved in nature, the rational pairing of cysteine residues within polypeptides is a long-standing challenge for the preparation of multicyclic species containing several disulfide bridges. Here, we present an efficient and straightforward approach for directing the intermolecular and intramolecular pairing of cysteine residues within peptides using a minimal CXC motif. Orthogonal disulfide pairing can be exploited in complex redox media to rationally produce dimeric peptides and bi/tricyclic peptides from fully reduced peptides containing 1-6 cysteine residues. This strategy, which does not rely on extensive manipulation of the primary sequence, post-translational modification or protecting groups, should greatly benefit the development of multicyclic peptide therapeutics and targeting ligands.

  7. Antibody Production with Synthetic Peptides.

    PubMed

    Lee, Bao-Shiang; Huang, Jin-Sheng; Jayathilaka, Lasanthi P; Lee, Jenny; Gupta, Shalini

    2016-01-01

    Peptides (usually 10-20 amino acid residues in length) can be used as effectively as proteins in raising antibodies producing both polyclonal and monoclonal antibodies routinely with titers higher than 20,000. Peptide antigens do not function as immunogens unless they are conjugated to proteins. Production of high quality antipeptide antibodies is dependent upon peptide sequence selection, the success of peptide synthesis, peptide-carrier protein conjugation, the humoral immune response in the host animal, the adjuvant used, the peptide dose administered, the injection method, and the purification of the antibody. Peptide sequence selection is probably the most critical step in the production of antipeptide antibodies. Although the process for designing peptide antigens is not exact, several guidelines and computational B-cell epitope prediction methods can help maximize the likelihood of producing antipeptide antibodies that recognize the protein. Antibodies raised by peptides have become essential tools in life science research. Virtually all phospho-specific antibodies are now produced using phosphopeptides as antigens. Typically, 5-20 mg of peptide is enough for antipeptide antibody production. It takes 3 months to produce a polyclonal antipeptide antibody in rabbits that yields ~100 mL of serum which corresponds to ~8-10 mg of the specific antibody after affinity purification using a peptide column. PMID:27515072

  8. Synthesis of a large library of macrocyclic peptides containing multiple and diverse N-alkylated residues.

    PubMed

    Morimoto, Jumpei; Kodadek, Thomas

    2015-10-01

    Large combinatorial libraries of macrocyclic peptides are a useful source of bioactive compounds. However, peptides are not generally cell permeable, so there is great interest in the development of methods to create large libraries of modified peptides. In particular, N-alkylation of peptides is known to improve their bioavailability significantly. Incorporation of some level of N-methylated amino acids into peptide libraries has been accomplished with ribosome display or related methods, but the modest efficiency and the inability to employ more diverse N-alkylated amino acids in this type of system argue for the development of synthetic libraries. Here we present optimized procedures for synthesizing macrocyclic peptides containing multiple N-alkylated units and show that this chemistry is efficient enough for the creation of high quality combinatorial libraries by split and pool solid-phase synthesis. PMID:26067000

  9. Concepts for Biologically Active Peptides

    PubMed Central

    Kastin, Abba J.; Pan, Weihong

    2012-01-01

    Here we review a unique aspect of CNS research on biologically active peptides that started against a background of prevalent dogmas but ended by exerting considerable influence on the field. During the course of refuting some doctrines, we introduced several concepts that were unconventional and paradigm-shifting at the time. We showed that (1) hypothalamic peptides can act ‘up’ on the brain as well as ‘down’ on the pituitary, (2) peripheral peptides can affect the brain, (3) peptides can cross the blood-brain barrier, (4) the actions of peptides can persist longer than their half-lives in blood, (5) perinatal administration of peptides can exert actions persisting into adulthood, (6) a single peptide can have more than one action, (7) dose-response relationships of peptides need not be linear, (8) the brain produces antiopiate as well as opiate peptides, (9) there is a selective high affinity endogenous peptide ligand for the mu-opiate receptor, (10) a peptide’s name does not restrict its effects, and (11) astrocytes assume an active role in response to metabolic disturbance and hyperleptinemia. The evolving questions in our laboratories reflect the diligent effort of the neuropeptide community to identify the roles of peptides in the CNS. The next decade is expected to see greater progress in the following areas: (a) interactions of peptides with other molecules in the CNS; (b) peptide involvement in cell-cell interactions; and (c) peptides in neuropsychiatric, autoimmune, and neurodegenerative diseases. The development of peptidomics and gene silencing approaches will expedite the formation of many new concepts in a new era. PMID:20726835

  10. Natriuretic peptides in fish physiology.

    PubMed

    Loretz, C A; Pollina, C

    2000-02-01

    Natriuretic peptides exist in the fishes as a family of structurally-related isohormones including atrial natriuretic peptide (ANP), C-type natriuretic peptide (CNP) and ventricular natriuretic peptide (VNP); to date, brain natriuretic peptide (or B-type natriuretic peptide, BNP) has not been definitively identified in the fishes. Based on nucleotide and amino acid sequence similarity, the natriuretic peptide family of isohormones may have evolved from a neuromodulatory, CNP-like brain peptide. The primary sites of synthesis for the circulating hormones are the heart and brain; additional extracardiac and extracranial sites, including the intestine, synthesize and release natriuretic peptides locally for paracrine regulation of various physiological functions. Membrane-bound, guanylyl cyclase-coupled natriuretic peptide receptors (A- and B-types) are generally implicated in mediating natriuretic peptide effects via the production of cyclic GMP as the intracellular messenger. C- and D-type natriuretic peptide receptors lacking the guanylyl cyclase domain may influence target cell function through G(i) protein-coupled inhibition of membrane adenylyl cyclase activity, and they likely also act as clearance receptors for circulating hormone. In the few systems examined using homologous or piscine reagents, differential receptor binding and tissue responsiveness to specific natriuretic peptide isohormones is demonstrated. Similar to their acute physiological effects in mammals, natriuretic peptides are vasorelaxant in all fishes examined. In contrast to mammals, where natriuretic peptides act through natriuresis and diuresis to bring about long-term reductions in blood volume and blood pressure, in fishes the primary action appears to be the extrusion of excess salt at the gills and rectal gland, and the limiting of drinking-coupled salt uptake by the alimentary system. In teleosts, both hypernatremia and hypervolemia are effective stimuli for cardiac secretion of

  11. Insights into the Unique Phosphorylation of the Lasso Peptide Paeninodin.

    PubMed

    Zhu, Shaozhou; Hegemann, Julian D; Fage, Christopher D; Zimmermann, Marcel; Xie, Xiulan; Linne, Uwe; Marahiel, Mohamed A

    2016-06-24

    Lasso peptides are a new class of ribosomally synthesized and post-translationally modified peptides and thus far are only isolated from proteo- and actinobacterial sources. Typically, lasso peptide biosynthetic gene clusters encode enzymes for biosynthesis and export but not for tailoring. Here, we describe the isolation of the novel lasso peptide paeninodin from the firmicute Paenibacillus dendritiformis C454 and reveal within its biosynthetic cluster a gene encoding a kinase, which we have characterized as a member of a new class of lasso peptide-tailoring kinases. By employing a wide variety of peptide substrates, it was shown that this novel type of kinase specifically phosphorylates the C-terminal serine residue while ignoring those located elsewhere. These experiments also reveal that no other recognition motif is needed for efficient enzymatic phosphorylation of the C-terminal serine. Furthermore, through comparison with homologous HPr kinases and subsequent mutational analysis, we confirmed the essential catalytic residues. Our study reveals how lasso peptides are chemically diversified and sets the foundation for rational engineering of these intriguing natural products. PMID:27151214

  12. Peptides@mica: from affinity to adhesion mechanism.

    PubMed

    Gladytz, A; John, T; Gladytz, T; Hassert, R; Pagel, M; Risselada, H J; Naumov, S; Beck-Sickinger, A G; Abel, B

    2016-09-14

    Investigating the adsorption of peptides on inorganic surfaces, on the molecular level, is fundamental for medicinal and analytical applications. Peptides can be potent as linkers between surfaces and living cells in biochips or in implantation medicine. Here, we studied the adsorption process of the positively charged pentapeptide RTHRK, a recently identified binding sequence for surface oxidized silicon, and novel analogues thereof to negatively charged mica surfaces. Homogeneous formation of monolayers in the nano- and low micromolar peptide concentration range was observed. We propose an alternative and efficient method to both quantify binding affinity and follow adhesion behavior. This method makes use of the thermodynamic relationship between surface coverage, measured by atomic force microscopy (AFM), and the concomitant free energy of adhesion. A knowledge-based fit to the autocorrelation of the AFM images was used to correct for a biased surface coverage introduced by the finite lateral resolution of the AFM. Binding affinities and mechanisms were further explored by large scale molecular dynamics (MD) simulations. The combination of well validated MD simulations with topological data from AFM revealed a better understanding of peptide adsorption processes on the atomistic scale. We demonstrate that binding affinity is strongly determined by a peptide's ability to form salt bridges and hydrogen bonds with the surface lattice. Consequently, differences in hydrogen bond formation lead to substantial differences in binding affinity despite conservation of the peptide's overall charge. Further, MD simulations give access to relative changes in binding energy of peptide variations in comparison to a lead compound. PMID:27491508

  13. [Brain natriuretic peptide].

    PubMed

    La Villa, G; Lazzeri, C; Fronzaroli, C; Franchi, F; Gentilini, P

    1995-01-01

    Brain natriuretic peptide (BNP) is a cardiac hormone with a spectrum of activities quite similar to those of atrial natriuretic peptide (ANP), including diuretic, natriuretic, hypotensive and smooth muscle relaxant activities. These effects are due to the stimulation of guanylate cyclase-linked natriuretic peptide receptors, leading to an increase in cyclic GMP concentration in target cells. BNP has a lower affinity than ANP for C (clearance) receptors, and is less susceptible to degradation by neutral endopeptidase-24.11, resulting in a longer half-life. In the kidney, BNP increases the glomerular filtration rate and inhibits sodium reabsorption in the distal tubule. It also inhibits the release of renin and aldosterone. Unlike ANP, produced by the atria, BNP is mainly synthesized and released into circulation by the left ventricle and is therefore influenced by stimuli involving this cardiac chamber, such as an increase in arterial pressure, left ventricular hypertrophy and dilation. Plasma BNP levels are very low in healthy subjects, and respond modestly, although significantly to physiological stimuli such as changes in posture or sodium intake. In contrast, plasma BNP concentrations increase in disease states such as cirrhosis with ascites, hypertension, chronic renal failure, acute myocardial infarction and congestive heart failure. In the latter condition, plasma BNP concentration is a reliable prognostic index. Evidence obtained by administering BNP to healthy subjects and hypertensive patients suggests that BNP, at physiological and pathophysiological plasma concentrations, markedly influences cardiovascular homeostasis, mainly due to its effects on sodium excretion and the renin-aldosterone axis. PMID:8718658

  14. Peptide Synthesis through Cell-Free Expression of Fusion Proteins Incorporating Modified Amino Acids as Latent Cleavage Sites for Peptide Release.

    PubMed

    Liutkus, Mantas; Fraser, Samuel A; Caron, Karine; Stigers, Dannon J; Easton, Christopher J

    2016-05-17

    Chlorinated analogues of Leu and Ile are incorporated during cell-free expression of peptides fused to protein, by exploiting the promiscuity of the natural biosynthetic machinery. They then act as sites for clean and efficient release of the peptides simply by brief heat treatment. Dehydro analogues of Leu and Ile are similarly incorporated as latent sites for peptide release through treatment with iodine under cold conditions. These protocols complement enzyme-catalyzed methods and have been used to prepare calcitonin, gastrin-releasing peptide, cholecystokinin-7, and prolactin-releasing peptide prohormones, as well as analogues substituted with unusual amino acids, thus illustrating their practical utility as alternatives to more traditional chemical peptide synthesis. PMID:26918308

  15. Strategies to stabilize cell penetrating peptides for in vivo applications.

    PubMed

    Fominaya, Jesús; Bravo, Jerónimo; Rebollo, Angelita

    2015-10-01

    In the era of biomedicines and engineered carrier systems, cell penetrating peptides (CPPs) have been established as a promising tool for therapeutic application. Likewise, other therapeutic peptides, successful in vivo application of CPPs will strongly depend on peptide stability, the bottleneck for this type of biodegradable molecules. In this review, the authors describe the current knowledge of the in vivo degradation for known CPPs and the different strategies available to provide a higher resistance to metabolic degradation while preserving cell penetration efficiency. Peptide stability can be improved by different means, either modifying the structure to make it unrecognizable to proteases, or preventing access of proteolytic enzymes by applying conformation restriction or shielding strategies. PMID:26448473

  16. Cell-penetrating peptides: Possible transduction mechanisms and therapeutic applications

    PubMed Central

    GUO, ZHENGRONG; PENG, HUANYAN; KANG, JIWEN; SUN, DIANXING

    2016-01-01

    Cell-penetrating peptides (CPPs), also known as protein transduction domains, are a class of diverse peptides with 5–30 amino acids. CPPs are divided into cationic, amphipathic and hydrophobic CPPs. They are able to carry small molecules, plasmid DNA, small interfering RNA, proteins, viruses, imaging agents and other various nanoparticles across the cellular membrane, resulting in internalization of the intact cargos. However, the mechanisms of CPP internalization remain to be elucidated. Recently, CPPs have received considerable attention due to their high transduction efficiency and low cytotoxicity. These peptides have a significant potential for diagnostic and therapeutic applications, such as delivery of fluorescent or radioactive compounds for imaging, delivery of peptides and proteins for therapeutic application, and delivery of molecules into induced pluripotent stem cells for directing differentiation. The present study reviews the classifications and transduction mechanisms of CPPs, as well as their potential applications. PMID:27123243

  17. Bioinformatics Tools for the Discovery of New Nonribosomal Peptides.

    PubMed

    Leclère, Valérie; Weber, Tilmann; Jacques, Philippe; Pupin, Maude

    2016-01-01

    This chapter helps in the use of bioinformatics tools relevant to the discovery of new nonribosomal peptides (NRPs) produced by microorganisms. The strategy described can be applied to draft or fully assembled genome sequences. It relies on the identification of the synthetase genes and the deciphering of the domain architecture of the nonribosomal peptide synthetases (NRPSs). In the next step, candidate peptides synthesized by these NRPSs are predicted in silico, considering the specificity of incorporated monomers together with their isomery. To assess their novelty, the two-dimensional structure of the peptides can be compared with the structural patterns of all known NRPs. The presented workflow leads to an efficient and rapid screening of genomic data generated by high throughput technologies. The exploration of such sequenced genomes may lead to the discovery of new drugs (i.e., antibiotics against multi-resistant pathogens or anti-tumors). PMID:26831711

  18. Peptide-based Antifungal Therapies against Emerging Infections

    PubMed Central

    Matejuk, A.; Leng, Q.; Begum, M.D.; Woodle, M.C.; Scaria, P.; Chou, S-T; Mixson, A.J.

    2010-01-01

    Acquired drug resistance to mycotic infections is rapidly emerging as a major medical problem. Opportunistic fungal infections create therapeutic challenges, particularly in high risk immunocompromised patients with AIDS, cancer, and those undergoing transplantation. Higher mortality and/or morbidity rates due to invasive mycosis have been increasing over the last 20 years, and in light of growing resistance to commonly used antibiotics, novel antifungal drugs and approaches are required. Currently there is considerable interest in antifungal peptides that are ubiquitous in plant and animal kingdoms. These small cationic peptides may have specific targets or may be multifunctional in their mechanism of action. On the basis of recent advances in protein engineering and solid phase syntheses, the utility and potential of selected peptides as efficient antifungal drugs with acceptable toxicity profiles are being realized. This review will discuss recent advances in peptide therapy for opportunistic fungal infections. PMID:20495663

  19. The Specificity of Peptide Chain Extension by N-Carboxyanhydrides

    NASA Technical Reports Server (NTRS)

    Wen, Ke; Orgel, Leslie E.

    2001-01-01

    We have used amino acids activated by carbonyldiimidazole to study the enantiospecificity of peptide elongation in aqueous solution. Peptide primers Glu(sub 10) and Ala3Glulo were elongated with the enantiomers of arginine, glutamic acid, asparagine, phenylalanine, serine and valine. The homochiral addition was always the more efficient reaction; the enantiospecificity was large in some cases but very small in others. In every case Ala(sub 3)Glu(sub l0) was elongated more efficiently than Glu(sub 10).

  20. Exhaustive extraction of peptides by electromembrane extraction.

    PubMed

    Huang, Chuixiu; Gjelstad, Astrid; Pedersen-Bjergaard, Stig

    2015-01-01

    This fundamental work illustrates for the first time the possibility of exhaustive extraction of peptides using electromembrane extraction (EME) under low system-current conditions (<50 μA). Bradykinin acetate, angiotensin II antipeptide, angiotensin II acetate, neurotensin, angiotensin I trifluoroacetate, and leu-enkephalin were extracted from 600 μL of 25 mM phosphate buffer (pH 3.5), through a supported liquid membrane (SLM) containing di-(2-ethylhexyl)-phosphate (DEHP) dissolved in an organic solvent, and into 600 μL of an acidified aqueous acceptor solution using a thin flat membrane-based EME device. Mass transfer of peptides across the SLM was enhanced by complex formation with the negatively charged DEHP. The composition of the SLM and the extraction voltage were important factors influencing recoveries and current with the EME system. 1-nonanol diluted with 2-decanone (1:1 v/v) containing 15% (v/v) DEHP was selected as a suitable SLM for exhaustive extraction of peptides under low system-current conditions. Interestingly, increasing the SLM volume from 5 to 10 μL was found to be beneficial for stable and efficient EME. The pH of the sample strongly affected the EME process, and pH 3.5 was found to be optimal. The EME efficiency was also dependent on the acceptor solution composition, and the extraction time was found to be an important element for exhaustive extraction. When EME was carried out for 25 min with an extraction voltage of 15 V, the system-current across the SLM was less than 50 μA, and extraction recoveries for the model peptides were in the range of 77-94%, with RSD values less than 10%. PMID:25467476

  1. Membrane processes and devices for separation of bioactive peptides.

    PubMed

    Bazinet, Laurent; Firdaous, Loubna

    2009-01-01

    In recent years, functional foods and nutraceuticals has attracted much attention, particularly for their impact on human health and prevention of certain diseases. Consequently, the production and properties of bioactive peptides has received an increasing scientific interest over the past few years. Considering that most functional peptides are present in complex matrices containing a large number of hydrolyzed protein fractions, their separation and purification are required. Conventional pressure-driven processes can be used for amino acids and peptides separation but are limited by their fouling problems and their low selectivity when separating similar sized biomolecules. To improve the separation efficiency, an external electric field was applied during pressure-driven filtration. However, the pressure gradient brings about the accumulation of peptides at the nearby membrane surface and affects the membrane transport selectivity. Processes combining an electrical field as a driving force to porous membranes have been developed for the separation of biopeptides to obtain better purified products. Compounds of higher molecular weights than the membrane cut-off can be separated. The first trials were carried-out to perform the separation of amino acids and peptides with a filtration module specially designed and using one ultrafiltration membrane. More recently, electrodialysis with ultrafiltration membranes has been developed to fractionate simultaneously acidic and basic peptides, using a conventional electrodialysis cell, in which some ion exchange membranes are replaced by ultrafiltration ones. The perspectives in this field will be the understanding of the interactions of peptides and membrane as well as the development of new membrane materials limitating or increasing these interactions to improve the selectivity and the yield of production of specific peptides. This review article also discusses recent patents related to bioactive peptides. PMID

  2. Metal Organic Frameworks Combining CoFe2O4 Magnetic Nanoparticles as Highly Efficient SERS Sensing Platform for Ultrasensitive Detection of N-Terminal Pro-Brain Natriuretic Peptide.

    PubMed

    He, Yi; Wang, Yue; Yang, Xia; Xie, Shunbi; Yuan, Ruo; Chai, Yaqin

    2016-03-30

    N-terminal pro-brain natriuretic peptide (NT-proBNP) has been demonstrated to be a sensitive and specific biomarker for heart failure (HF). Surface-enhanced Raman spectroscopy (SERS) technology can be used to accurately detect NT-proBNP at an early stage for its advantages of high sensitivity, less wastage and time consumption. In this work, we have demonstrated a new SERS-based immunosensor for ultrasensitive analysis of NT-proBNP by using metal-organic frameworks (MOFs)@Au tetrapods (AuTPs) immobilized toluidine blue as SERS tag. Here, MOFs@AuTPs complexes were utilized to immobilize antibody and Raman probe for their excellent characteristics of high porosity, large surface area, and good biocompatibility which can obviously enhance the fixing amount of biomolecule. To simplify the experimental operation and improve the uniformity of the substrate, Au nanoparticles functionalized CoFe2O4 magnetic nanospheres (CoFe2O4@AuNPs) were further prepared to assemble primary antibody. Through sandwiched antibody-antigen interactions, the immunosensor can produce a strong SERS signal to detect NT-proBNP fast and effectively. With such design, the proposed immunosensor can achieve a large dynamic range of 6 orders of magnitude from 1 fg mL(-1) to 1 ng mL(-1) with a detection limit of 0.75 fg mL(-1). And this newly designed amplification strategy holds high probability for ultrasensitive immunoassay of NT-proBNP. PMID:26953735

  3. Peptide Aptamers: Development and Applications

    PubMed Central

    Reverdatto, Sergey; Burz, David S.; Shekhtman, Alexander

    2015-01-01

    Peptide aptamers are small combinatorial proteins that are selected to bind to specific sites on their target molecules. Peptide aptamers consist of short, 5-20 amino acid residues long sequences, typically embedded as a loop within a stable protein scaffold. Various peptide aptamer scaffolds and in vitro and in vivo selection techniques are reviewed with emphasis on specific biomedical, bioimaging, and bioanalytical applications. PMID:25866267

  4. Macrocyclization of Unprotected Peptide Isocyanates.

    PubMed

    Vinogradov, Alexander A; Choo, Zi-Ning; Totaro, Kyle A; Pentelute, Bradley L

    2016-03-18

    A chemistry for the facile two-component macrocyclization of unprotected peptide isocyanates is described. Starting from peptides containing two glutamic acid γ-hydrazide residues, isocyanates can be readily accessed and cyclized with hydrazides of dicarboxylic acids. The choice of a nucleophilic linker allows for the facile modulation of biochemical properties of a macrocyclic peptide. Four cyclic NYAD-1 analogues were synthesized using the described method and displayed a range of biological activities. PMID:26948900

  5. Biodiscovery of aluminum binding peptides

    NASA Astrophysics Data System (ADS)

    Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Hurley, Margaret M.; Stratis-Cullum, Dimitra

    2013-05-01

    Cell surface peptide display systems are large and diverse libraries of peptides (7-15 amino acids) which are presented by a display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high affinity binders to a given target of interest, and those binders quickly identified. Peptide display systems have traditionally been utilized in conjunction with organic-based targets, such as protein toxins or carbon nanotubes. However, this technology has been expanded for use with inorganic targets, such as metals, for biofabrication, hybrid material assembly and corrosion prevention. While most current peptide display systems employ viruses to host the display scaffold, we have recently shown that a bacterial host, Escherichia coli, displaying peptides in the ubiquitous, membrane protein scaffold eCPX can also provide specific peptide binders to an organic target. We have, for the first time, extended the use of this bacterial peptide display system for the biodiscovery of aluminum binding 15mer peptides. We will present the process of biopanning with macroscopic inorganic targets, binder enrichment, and binder isolation and discovery.

  6. Improving Peptide Applications Using Nanotechnology.

    PubMed

    Narayanaswamy, Radhika; Wang, Tao; Torchilin, Vladimir P

    2016-01-01

    Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology. PMID:26279082

  7. Peptides that influence membrane topology

    NASA Astrophysics Data System (ADS)

    Wong, Gerard C. L.

    2014-03-01

    We examine the mechanism of a range of polypeptides that influence membrane topology, including antimicrobial peptides, cell penetrating peptides, viral fusion peptides, and apoptosis proteins, and show how a combination of geometry, coordination chemistry, and soft matter physics can be used to approach a unified understanding. We will also show how such peptides can impact biomedical problems such as auto-immune diseases (psoriasis, lupus), infectious diseases (viral and bacterial infections), and mitochondrial pathologies (under-regulated apoptosis leads to neurodegenerative diseases whereas over-regulated apoptosis leads to cancer.)

  8. Peptides and food intake.

    PubMed

    Sobrino Crespo, Carmen; Perianes Cachero, Aránzazu; Puebla Jiménez, Lilian; Barrios, Vicente; Arilla Ferreiro, Eduardo

    2014-01-01

    The mechanisms for controlling food intake involve mainly an interplay between gut, brain, and adipose tissue (AT), among the major organs. Parasympathetic, sympathetic, and other systems are required for communication between the brain satiety center, gut, and AT. These neuronal circuits include a variety of peptides and hormones, being ghrelin the only orexigenic molecule known, whereas the plethora of other factors are inhibitors of appetite, suggesting its physiological relevance in the regulation of food intake and energy homeostasis. Nutrients generated by food digestion have been proposed to activate G-protein-coupled receptors on the luminal side of enteroendocrine cells, e.g., the L-cells. This stimulates the release of gut hormones into the circulation such as glucagon-like peptide-1 (GLP-1), oxyntomodulin, pancreatic polypeptides, peptide tyrosine tyrosine, and cholecystokinin, which inhibit appetite. Ghrelin is a peptide secreted from the stomach and, in contrast to other gut hormones, plasma levels decrease after a meal and potently stimulate food intake. Other circulating factors such as insulin and leptin relay information regarding long-term energy stores. Both hormones circulate at proportional levels to body fat content, enter the CNS proportionally to their plasma levels, and reduce food intake. Circulating hormones can influence the activity of the arcuate nucleus (ARC) neurons of the hypothalamus, after passing across the median eminence. Circulating factors such as gut hormones may also influence the nucleus of the tractus solitarius (NTS) through the adjacent circumventricular organ. On the other hand, gastrointestinal vagal afferents converge in the NTS of the brainstem. Neural projections from the NTS, in turn, carry signals to the hypothalamus. The ARC acts as an integrative center, with two major subpopulations of neurons influencing appetite, one of them coexpressing neuropeptide Y and agouti-related protein (AgRP) that increases food

  9. Peptides and Food Intake

    PubMed Central

    Sobrino Crespo, Carmen; Perianes Cachero, Aránzazu; Puebla Jiménez, Lilian; Barrios, Vicente; Arilla Ferreiro, Eduardo

    2014-01-01

    The mechanisms for controlling food intake involve mainly an interplay between gut, brain, and adipose tissue (AT), among the major organs. Parasympathetic, sympathetic, and other systems are required for communication between the brain satiety center, gut, and AT. These neuronal circuits include a variety of peptides and hormones, being ghrelin the only orexigenic molecule known, whereas the plethora of other factors are inhibitors of appetite, suggesting its physiological relevance in the regulation of food intake and energy homeostasis. Nutrients generated by food digestion have been proposed to activate G-protein-coupled receptors on the luminal side of enteroendocrine cells, e.g., the L-cells. This stimulates the release of gut hormones into the circulation such as glucagon-like peptide-1 (GLP-1), oxyntomodulin, pancreatic polypeptides, peptide tyrosine tyrosine, and cholecystokinin, which inhibit appetite. Ghrelin is a peptide secreted from the stomach and, in contrast to other gut hormones, plasma levels decrease after a meal and potently stimulate food intake. Other circulating factors such as insulin and leptin relay information regarding long-term energy stores. Both hormones circulate at proportional levels to body fat content, enter the CNS proportionally to their plasma levels, and reduce food intake. Circulating hormones can influence the activity of the arcuate nucleus (ARC) neurons of the hypothalamus, after passing across the median eminence. Circulating factors such as gut hormones may also influence the nucleus of the tractus solitarius (NTS) through the adjacent circumventricular organ. On the other hand, gastrointestinal vagal afferents converge in the NTS of the brainstem. Neural projections from the NTS, in turn, carry signals to the hypothalamus. The ARC acts as an integrative center, with two major subpopulations of neurons influencing appetite, one of them coexpressing neuropeptide Y and agouti-related protein (AgRP) that increases food

  10. Peptide Assembly-Driven Metal-Organic Framework (MOF) Motors for Micro Electric Generator

    PubMed Central

    Ikezoe, Yasuhiro; Fang, Justin; Wasik, Tomasz L.; Uemura, Takashi; Zheng, Yongtai; Kitagawa, Susumu

    2014-01-01

    Peptide-MOF motors, whose motions are driven by anisotropic surface gradients created via peptide self-assembly around nanopores of MOFs, can rotate microscopic rotors and magnet fast enough to generate electric power of 0.1 µW. To make the peptide-MOF generator recyclable, a new MOF is applied as a host motor engine, which has a more rigid framework with higher H2O affinity so that peptide release occurs more efficiently via guest exchange without the destruction of MOF. PMID:25418936

  11. Peptide-mediated interference with baculovirus transduction.

    PubMed

    Mäkelä, Anna R; Närvänen, Ale; Oker-Blom, Christian

    2008-03-20

    Baculovirus represents a multifunctional platform with potential for biomedical applications including disease therapies. The importance of F3, a tumor-homing peptide, in baculovirus transduction was previously recognized by the ability of F3 to augment viral binding and gene delivery to human cancer cells following display on the viral envelope. Here, F3 was utilized as a molecular tool to expand understanding of the poorly characterized baculovirus-mammalian cell interactions. Baculovirus-mediated transduction of HepG2 hepatocarcinoma cells was strongly inhibited by coincubating the virus with synthetic F3 or following incorporation of F3 into viral nucleocapsid by genetic engineering, the former suggesting direct interaction of the soluble peptide with the virus particles. Since internalization and nuclear accumulation of the virus were significantly inhibited or delayed, but the kinetics of viral binding, initial uptake, and endosomal release were unaffected, F3 likely interferes with cytoplasmic trafficking and subsequent nuclear transport of the virus. A polyclonal antibody raised against nucleolin, the internalizing receptor of F3, failed to inhibit cellular binding, but considerably reduced viral transduction efficiency, proposing the involvement of nucleolin in baculovirus entry. Together, these results render the F3 peptide a tool for elucidating the mechanism and molecular details conferring to baculovirus-mediated gene transduction in mammalian cells. PMID:18294718

  12. Recognition of Bacterial Signal Peptides by Mammalian Formyl Peptide Receptors

    PubMed Central

    Bufe, Bernd; Schumann, Timo; Kappl, Reinhard; Bogeski, Ivan; Kummerow, Carsten; Podgórska, Marta; Smola, Sigrun; Hoth, Markus; Zufall, Frank

    2015-01-01

    Formyl peptide receptors (FPRs) are G-protein-coupled receptors that function as chemoattractant receptors in innate immune responses. Here we perform systematic structure-function analyses of FPRs from six mammalian species using structurally diverse FPR peptide agonists and identify a common set of conserved agonist properties with typical features of pathogen-associated molecular patterns. Guided by these results, we discover that bacterial signal peptides, normally used to translocate proteins across cytoplasmic membranes, are a vast family of natural FPR agonists. N-terminally formylated signal peptide fragments with variable sequence and length activate human and mouse FPR1 and FPR2 at low nanomolar concentrations, thus establishing FPR1 and FPR2 as sensitive and broad signal peptide receptors. The vomeronasal receptor mFpr-rs1 and its sequence orthologue hFPR3 also react to signal peptides but are much more narrowly tuned in signal peptide recognition. Furthermore, all signal peptides examined here function as potent activators of the innate immune system. They elicit robust, FPR-dependent calcium mobilization in human and mouse leukocytes and trigger a range of classical innate defense mechanisms, such as the production of reactive oxygen species, metalloprotease release, and chemotaxis. Thus, bacterial signal peptides constitute a novel class of immune activators that are likely to contribute to mammalian immune defense against bacteria. This evolutionarily conserved detection mechanism combines structural promiscuity with high specificity and enables discrimination between bacterial and eukaryotic signal sequences. With at least 175,542 predicted sequences, bacterial signal peptides represent the largest and structurally most heterogeneous class of G-protein-coupled receptor agonists currently known for the innate immune system. PMID:25605714

  13. Phytosulfokine peptide signalling.

    PubMed

    Sauter, Margret

    2015-08-01

    Phytosulfokine (PSK) belongs to the group of plant peptide growth factors. It is a disulfated pentapeptide encoded by precursor genes that are ubiquitously present in higher plants, suggestive of universal functions. Processing of the preproprotein involves sulfonylation by a tyrosylprotein sulfotransferase in the trans-golgi and proteolytic cleavage in the apoplast. The secreted peptide is perceived at the cell surface by a membrane-bound receptor kinase of the leucine-rich repeat family. The PSK receptor PSKR1 from Arabidopsis thaliana is an active kinase and has guanylate cyclase activity resulting in dual-signal outputs. Receptor activity is regulated by calmodulin. While PSK may be an autocrine growth factor, it also acts non-cell autonomously by promoting growth of cells that are receptor-deficient. In planta, PSK has multiple functions. It promotes cell growth, acts in the quiescent centre cells of the root apical meristem, contributes to funicular pollen tube guidance, and differentially alters immune responses depending on the pathogen. It has been suggested that PSK integrates growth and defence signals to balance the competing metabolic costs of these responses. This review summarizes our current understanding of PSK synthesis, signalling, and activity. PMID:25754406

  14. HCD Fragmentation of Glycated Peptides.

    PubMed

    Keilhauer, Eva C; Geyer, Philipp E; Mann, Matthias

    2016-08-01

    Protein glycation is a concentration-dependent nonenzymatic reaction of reducing sugars with amine groups of proteins to form early as well as advanced glycation (end-) products (AGEs). Glycation is a highly disease-relevant modification but is typically only studied on a few blood proteins. To complement our blood proteomics studies in diabetics, we here investigate protein glycation by higher energy collisional dissociation (HCD) fragmentation on Orbitrap mass spectrometers. We established parameters to most efficiently fragment and identify early glycation products on in vitro glycated model proteins. Retaining standard collision energies does not degrade performance if the most dominant neutral loss of H6O3 is included into the database search strategy. Glycation analysis of the entire HeLa proteome revealed an unexpected intracellular preponderance for arginine over lysine modification in early and advanced glycation (end-) products. Single-run analysis from 1 μL of undepleted and unenriched blood plasma identified 101 early glycation sites as well as numerous AGE sites on diverse plasma proteins. We conclude that HCD fragmentation is well-suited for analyzing glycated peptides and that the diabetic status of patients can be directly diagnosed from single-run plasma proteomics measurements. PMID:27425404

  15. Development of a lytic peptide derived from BH3-only proteins.

    PubMed

    Liu, Q; Zhao, H; Jiang, Y; Wu, M; Tian, Y; Wang, D; Lao, Y; Xu, N; Li, Z

    2016-01-01

    Despite great advances in cancer therapy, drug resistance is a difficult hurdle to overcome that requires development of anticancer agents with novel and effective modes of action. In a number of studies, lytic peptides have shown remarkable ability to eliminate cancer cells through a different way from traditional treatments. Lytic peptides are positively charged, amphiphilic, and are efficient at binding and disrupting the negatively charged cell membrane of cancer cells. In this study, we described the anticancer properties of a lytic peptide that was developed on the basis of the alignment of amphiphilic BH3 peptides. Our results demonstrated that the positive charge and conformation constraint were favourable for efficient cancer cell elimination. Artificial BCL-2 homology 3 peptides (ABH3) exhibited effective anticancer effects against a series of cancer cell lines in vitro and in HeLa human cervical tumour xenografts in vivo. ABH3 induced cell death in an apoptosis-independent manner through the lytic properties of the peptide that caused disruption of cell membrane. Our results showed that charge tuning and conformation constraining in a lytic peptide could be applied to optimise the anticancer activity of lytic peptides. These results also suggest that ABH3 may be a promising beginning for the development of additional lytic peptides as anticancer reagents. PMID:27551502

  16. Development of a lytic peptide derived from BH3-only proteins

    PubMed Central

    Liu, Q; Zhao, H; Jiang, Y; Wu, M; Tian, Y; Wang, D; Lao, Y; Xu, N; Li, Z

    2016-01-01

    Despite great advances in cancer therapy, drug resistance is a difficult hurdle to overcome that requires development of anticancer agents with novel and effective modes of action. In a number of studies, lytic peptides have shown remarkable ability to eliminate cancer cells through a different way from traditional treatments. Lytic peptides are positively charged, amphiphilic, and are efficient at binding and disrupting the negatively charged cell membrane of cancer cells. In this study, we described the anticancer properties of a lytic peptide that was developed on the basis of the alignment of amphiphilic BH3 peptides. Our results demonstrated that the positive charge and conformation constraint were favourable for efficient cancer cell elimination. Artificial BCL-2 homology 3 peptides (ABH3) exhibited effective anticancer effects against a series of cancer cell lines in vitro and in HeLa human cervical tumour xenografts in vivo. ABH3 induced cell death in an apoptosis-independent manner through the lytic properties of the peptide that caused disruption of cell membrane. Our results showed that charge tuning and conformation constraining in a lytic peptide could be applied to optimise the anticancer activity of lytic peptides. These results also suggest that ABH3 may be a promising beginning for the development of additional lytic peptides as anticancer reagents. PMID:27551502

  17. Separation of bioactive peptides by membrane processes: technologies and devices.

    PubMed

    Bazinet, Laurent; Firdaous, Loubna

    2013-04-01

    Although many patents reported bioactive peptides with numerous demonstrated bioactivities and potential applications, there exist some limitations to the production of large quantities to satisfy the growing market demands. Indeed, considering that most functional peptides are present in complex matrices containing a large number of hydrolyzed protein fractions, their separation and purification are required. Some advances have been made in the use of conventional pressure-driven processes for the continuous production and separation of peptides, however, most of these patented technologies are not scalable and demonstrate a low selectivity when separating similar sized biomolecules. To improve the separation efficiency, the use of an external electric field during pressure-driven filtration was proposed and patented. However, whatever the claims, the pressure gradient brings about the accumulation of peptides at the nearby membrane surface and affects the membrane transport selectivity. To overcome these drawbacks, a recent patent proposed the simultaneous fractionation of acidic and basic peptides, using a conventional electrodialysis cell, in which some ion exchange membranes are replaced by ultrafiltration ones. The perspectives in the field of peptide separation will be the development of new membrane materials and new equipments such as microfluidic devices to improve selectivity and yield of production. PMID:23003009

  18. Spectral Library Searching To Identify Cross-Linked Peptides.

    PubMed

    Schweppe, Devin K; Chavez, Juan D; Navare, Arti T; Wu, Xia; Ruiz, Bianca; Eng, Jimmy K; Lam, Henry; Bruce, James E

    2016-05-01

    Methods harnessing protein cross-linking and mass spectrometry (XL-MS) offer high-throughput means to identify protein-protein interactions (PPIs) and structural interfaces of protein complexes. Yet, specialized data dependent methods and search algorithms are often required to confidently assign peptide identifications to spectra. To improve the efficiency of matching high confidence spectra, we developed a spectral library based approach to search cross-linked peptide data derived from Protein Interaction Reporter (PIR) methods using the spectral library search algorithm, SpectraST. Spectral library matching of cross-linked peptide data from query spectra increased the absolute number of confident peptide relationships matched to spectra and thereby the number of PPIs identified. By matching library spectra from bona fide, previously established PIR-cross-linked peptide relationships, spectral library searching reduces the need for continued, complex mass spectrometric methods to identify peptide relationships, increases coverage of relationship identifications, and improves the accessibility of XL-MS technologies. PMID:27089058

  19. Anti-HIV screening for cell-penetrating peptides using chloroquine and identification of anti-HIV peptides derived from matrix proteins.

    PubMed

    Mizuguchi, Takaaki; Ohashi, Nami; Nomura, Wataru; Komoriya, Mao; Hashimoto, Chie; Yamamoto, Naoki; Murakami, Tsutomu; Tamamura, Hirokazu

    2015-08-01

    Previously, compounds which inhibit the HIV-1 replication cycle were found in overlapping peptide libraries covering the whole sequence of an HIV-1 matrix (MA) protein constructed with the addition of an octa-arginyl group. The two top lead compounds are sequential fragments MA-8L and MA-9L. In the present study, the addition of chloroquine in cell-based anti-HIV assays was proven to be an efficient method with which to find anti-HIV compounds among several peptides conjugated by cell-penetrating signals such as an octa-arginyl group: the conjugation of an octa-arginyl group to individual peptides contained in whole proteins in combination with the addition of chloroquine in cells is a useful assay method to search active peptides. To find more potent fragment peptides, individual peptides between MA-8L and MA-9L, having the same peptide chain length but with sequences shifted by one amino acid residue, were synthesized in this paper and their anti-HIV activity was evaluated with an anti-HIV assay using chloroquine. As a result, the peptides in the C-terminal side of the series, which are relatively close to MA-9L, showed more potent inhibitory activity against both X4-HIV-1 and R5-HIV-1 than the peptides in the N-terminal side. PMID:26094944

  20. Histidine-containing peptide catalysts developed by a facile library screening method.

    PubMed

    Akagawa, Kengo; Sakai, Nobutaka; Kudo, Kazuaki

    2015-02-01

    Although peptide catalysts have a high potential for the use as organocatalysts, the optimization of peptide sequences is laborious and time-consuming. To address this issue, a facile screening method for finding efficient aminocatalysts from a peptide library has been developed. In the screening for the Michael addition of a malonate to an enal, a dye-labeled product is immobilized on resin-bound peptides through reductive amination to visualize active catalysts. This procedure allows for the monitoring of the reactivity of entire peptides without modifying the resin beads beforehand. Peptides containing histidine at an appropriate position were identified by this method. A novel function of the histidyl residue, which enhances the binding of a substrate to the catalyst by capturing an iminium intermediate, was indicated. PMID:25521645

  1. Urinary Peptides in Rett Syndrome.

    ERIC Educational Resources Information Center

    Solaas, K. M.; Skjeldal, O.; Gardner, M. L. G.; Kase, B. F.; Reichelt, K. L.

    2002-01-01

    A study found a significantly higher level of peptides in the urine of 53 girls with Rett syndrome compared with controls. The elevation was similar to that in 35 girls with infantile autism. Levels of peptides were lower in girls with classic Rett syndrome than those with congenital Rett syndrome. (Contains references.) (Author/CR)

  2. Macrocyclization and labeling of helix-loop-helix peptide with intramolecular bis-thioether linkage.

    PubMed

    Nishihara, Toshio; Kitada, Hidekazu; Fujiwara, Daisuke; Fujii, Ikuo

    2016-11-01

    Conformationally constrained peptides have been developed as an inhibitor for protein-protein interactions (PPIs), and we have de novo designed cyclized helix-loop-helix (cHLH) peptide with a disulfide bond consisting of 40 amino acids to generate molecular-targeting peptides. However, synthesis of long peptides has sometimes resulted in low yield according to the respective amino acid sequences. Here we developed a method for efficient synthesis and labeling for cHLH peptides. First, we synthesized two peptide fragments and connected them by the copper-mediated alkyne and azide cycloaddition (CuAAC) reaction. Cyclization was performed by bis-thioether linkage using 1,3-dibromomethyl-5-propargyloxybenzene, and subsequently, the cHLH peptide was labeled with an azide-labeled probe. Finally, we designed and synthesized a peptide inhibitor for the p53-HDM2 interaction using a structure-guided design and successfully labeled it with a fluorescent probe or a functional peptide, respectively, by click chemistry. This macrocyclization and labeling method for cHLH peptide would facilitate the discovery of de novo bioactive ligands and therapeutic leads. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 415-421, 2016. PMID:26917088

  3. Structurally diverse cyclisation linkers impose different backbone conformations in bicyclic peptides.

    PubMed

    Chen, Shiyu; Morales-Sanfrutos, Julia; Angelini, Alessandro; Cutting, Brian; Heinis, Christian

    2012-05-01

    Combinatorial libraries of structurally diverse peptide macrocycles offer a rich source for the development of high-affinity ligands to targets of interest. In this work we have developed linkers for the generation of genetically encoded bicyclic peptides and tested whether the peptides cyclised by them have significant variations in their backbone conformations. Two new cyclisation reagents, each containing three thiol-reactive groups, efficiently and selectively cyclised linear peptides containing three cysteine moieties. When the mesitylene linker of the bicyclic peptide PK15, a potent inhibitor of plasma kallikrein (K(i)=2 nM), was replaced by the new linkers, its inhibitory activity dropped by a factor of more than 1000, suggesting that the linkers impose different conformations on the peptide. Indeed, structural analysis by solution-state NMR revealed different NOE constraints in the three bicyclic peptides, indicating that these relatively small linkers at the centres of bicyclic peptide structures significantly influence the conformations of the peptides. These results demonstrate the prominent structural role of linkers in peptide macrocycles and suggest that application of different cyclisation linkers in a combinatorial fashion could be an attractive means to generate topologically diverse macrocycle libraries. PMID:22492661

  4. Immunogenicity of polysaccharides conjugated to peptides containing T- and B-cell epitopes.

    PubMed Central

    Lett, E; Gangloff, S; Zimmermann, M; Wachsmann, D; Klein, J P

    1994-01-01

    To develop a general model of polysaccharide-peptide vaccine, we have investigated the efficiency of linear peptides derived from protein SR, and adhesin of the I/II protein antigen family of oral streptococci, to act as carriers for two T cell-independent polysaccharides: serogroup f polysaccharide from Streptococcus mutans OMZ 175 (poly f) and Saccharomyces cerevisiae mannan. Peptide 3 (YEKEPTPPTRTPDQ) and peptide 6 (TPEDPTDPTDPQDPSS), accessible on the native SR protein as demonstrated by their reactivity in enzyme-linked immunosorbent assays with rat antisera raised against protein SR, correspond to immunodominant regions of SR. Peptide 3 contains at least one B- and one T-cell epitope, as demonstrated by its ability to induce peptide- and SR-specific antibody responses without any carrier and to stimulate the proliferation of rat lymph node cells primed either with free peptide or native SR, whereas peptide 6 contains only B-cell epitope(s). Peptide 3 was then covalently coupled though reductive amination to either poly f or mannan, and peptide 6 was coupled to poly f. Subcutaneous immunizations of rats with poly f-peptide 3 or mannan-peptide 3 conjugates produced a systemic immunoglobulin M (IgM) and IgG antibody response, and the elicited antibodies reacted with free poly f or mannan, peptide 3, protein SR, and S. mutans or S. cerevisiae whole cells. Rats immunized with poly f-peptide 6 did not develop any antipeptide or anti-SR response. Furthermore, a booster immunization of animals with poly f-peptide 3 or mannan-peptide 3 conjugates induced high titers of anti-peptide 3, anti-poly f, and antimannan antibodies, which occurred quickly. The response is anamnestic for the peptide and the polysaccharides and is characterized by an Ig switch from IgM to IgG. The data presented here confirm that the presence of B- and T-cell epitopes is necessary to induce an anamnestic antipeptide response and that a peptide containing relevant B- and T-cell epitopes can act

  5. CXCR4-antagonist Peptide R-liposomes for combined therapy against lung metastasis

    NASA Astrophysics Data System (ADS)

    Ieranò, Caterina; Portella, Luigi; Lusa, Sara; Salzano, Giuseppina; D'Alterio, Crescenzo; Napolitano, Maria; Buoncervello, Maria; Macchia, Daniele; Spada, Massimo; Barbieri, Antonio; Luciano, Antonio; Barone, Maria Vittoria; Gabriele, Lucia; Caraglia, Michele; Arra, Claudio; De Rosa, Giuseppe; Scala, Stefania

    2016-03-01

    The chemokine CXCL12 activates CXCR4, initiating multiple pathways that control immune cell trafficking, angiogenesis and embryogenesis; CXCR4 is also overexpressed in multiple tumors affecting metastatic dissemination. While there has been great enthusiasm for exploiting the CXCR4-CXCL12 axis as a target in cancer therapy, to date the promise has yet to be fulfilled. A new class of CXCR4-antagonist cyclic peptides was recently developed and the compound named Peptide R was identified as the most active. With the intent to improve the efficacy and biodistribution of Peptide R, stealth liposomes decorated with Peptide R were developed (PL-Peptide R). In vitro PL-Peptide R efficiently inhibited CXCR4-dependent migration and in vivo it significantly reduced lung metastases and increased overall survival in B16-CXCR4 injected C57BL/6 mice. To evaluate if PL-Peptide R could also be a drug delivery system for CXCR4 expressing tumors, the PL-Peptide R was loaded with doxorubicin (DOX) (PL-Peptide R-DOX). PL-Peptide R-DOX efficiently delivered DOX to CXCR4 expressing cell lines with a consequent decrease in the DOX IC50 efficient dose. In vivo, B16-CXCR4 injected C57BL/6 mice treated with PL-Peptide R-DOX developed fewer lung metastases compared to PL-DOX treated mice. This work provides the proof-of-concept to prevent metastasis by using combined nanomedicine.The chemokine CXCL12 activates CXCR4, initiating multiple pathways that control immune cell trafficking, angiogenesis and embryogenesis; CXCR4 is also overexpressed in multiple tumors affecting metastatic dissemination. While there has been great enthusiasm for exploiting the CXCR4-CXCL12 axis as a target in cancer therapy, to date the promise has yet to be fulfilled. A new class of CXCR4-antagonist cyclic peptides was recently developed and the compound named Peptide R was identified as the most active. With the intent to improve the efficacy and biodistribution of Peptide R, stealth liposomes decorated with Peptide

  6. From antimicrobial to anticancer peptides. A review.

    PubMed

    Gaspar, Diana; Veiga, A Salomé; Castanho, Miguel A R B

    2013-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms. Although AMPs have been essentially studied and developed as potential alternatives for fighting infectious diseases, their use as anticancer peptides (ACPs) in cancer therapy either alone or in combination with other conventional drugs has been regarded as a therapeutic strategy to explore. As human cancer remains a cause of high morbidity and mortality worldwide, an urgent need of new, selective, and more efficient drugs is evident. Even though ACPs are expected to be selective toward tumor cells without impairing the normal body physiological functions, the development of a selective ACP has been a challenge. It is not yet possible to predict antitumor activity based on ACPs structures. ACPs are unique molecules when compared to the actual chemotherapeutic arsenal available for cancer treatment and display a variety of modes of action which in some types of cancer seem to co-exist. Regardless the debate surrounding the definition of structure-activity relationships for ACPs, great effort has been invested in ACP design and the challenge of improving effective killing of tumor cells remains. As detailed studies on ACPs mechanisms of action are crucial for optimizing drug development, in this review we provide an overview of the literature concerning peptides' structure, modes of action, selectivity, and efficacy and also summarize some of the many ACPs studied and/or developed for targeting different solid and hematologic malignancies with special emphasis on the first group. Strategies described for drug development and for increasing peptide selectivity toward specific cells while reducing toxicity are also discussed. PMID:24101917

  7. From antimicrobial to anticancer peptides. A review

    PubMed Central

    Gaspar, Diana; Veiga, A. Salomé; Castanho, Miguel A. R. B.

    2013-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms. Although AMPs have been essentially studied and developed as potential alternatives for fighting infectious diseases, their use as anticancer peptides (ACPs) in cancer therapy either alone or in combination with other conventional drugs has been regarded as a therapeutic strategy to explore. As human cancer remains a cause of high morbidity and mortality worldwide, an urgent need of new, selective, and more efficient drugs is evident. Even though ACPs are expected to be selective toward tumor cells without impairing the normal body physiological functions, the development of a selective ACP has been a challenge. It is not yet possible to predict antitumor activity based on ACPs structures. ACPs are unique molecules when compared to the actual chemotherapeutic arsenal available for cancer treatment and display a variety of modes of action which in some types of cancer seem to co-exist. Regardless the debate surrounding the definition of structure-activity relationships for ACPs, great effort has been invested in ACP design and the challenge of improving effective killing of tumor cells remains. As detailed studies on ACPs mechanisms of action are crucial for optimizing drug development, in this review we provide an overview of the literature concerning peptides' structure, modes of action, selectivity, and efficacy and also summarize some of the many ACPs studied and/or developed for targeting different solid and hematologic malignancies with special emphasis on the first group. Strategies described for drug development and for increasing peptide selectivity toward specific cells while reducing toxicity are also discussed. PMID:24101917

  8. Natriuretic Peptides and Cardiometabolic Health.

    PubMed

    Gupta, Deepak K; Wang, Thomas J

    2015-01-01

    Natriuretic peptides are cardiac-derived hormones with a range of protective functions, including natriuresis, diuresis, vasodilation, lusitropy, lipolysis, weight loss, and improved insulin sensitivity. Their actions are mediated through membrane-bound guanylyl cyclases that lead to production of the intracellular second-messenger cyclic guanosine monophosphate. A growing body of evidence demonstrates that genetic and acquired deficiencies of the natriuretic peptide system can promote hypertension, cardiac hypertrophy, obesity, diabetes mellitus, the metabolic syndrome, and heart failure. Clinically, natriuretic peptides are robust diagnostic and prognostic markers, and augmenting natriuretic peptides is a target for therapeutic strategies in cardiometabolic disease. This review will summarize current understanding and highlight novel aspects of natriuretic peptide biology. PMID:26103984

  9. Engineered peptide-based nanobiomaterials for electrochemical cell chip

    NASA Astrophysics Data System (ADS)

    Kafi, Md. Abdul; Cho, Hyeon-Yeol; Choi, Jeong-Woo

    2016-07-01

    Biomaterials having cell adhesion ability are considered to be integral part of a cell chip. A number of researches have been carried out to search for a suitable material for effective immobilization of cell on substrate. Engineered ECM materials or their components like collagen, Poly- l-Lysine (PLL), Arg-Gly-Asp (RGD) peptide have been extensively used for mammalian cell adhesion and proliferation with the aim of tissue regeneration or cell based sensing application. This review focuses on the various approaches for two- and three-dimensionally patterned nanostructures of a short peptide i.e. RGD peptide on chip surfaces together with their effects on cell behaviors and electrochemical measurements. Most of the study concluded with positive remarks on the well-oriented engineered RGD peptide over their homogenous thin film. The engineered RGD peptide not only influences cell adhesion, spreading and proliferation but also their periodic nano-arrays directly influence electrochemical measurements of the chips. The electrochemical signals found to be enhanced when RGD peptides were used in well-defined two-dimensional nano-arrays. The topographic alteration of three-dimensional structure of engineered RGD peptide was reported to be suitably contacted with the integrin receptors of cellular membrane which results indicated the enhanced cell-electrode adhesion and efficient electron exchange phenomenon. This enhanced electrochemical signal increases the sensitivity of the chip against the target analytes. Therefore, development of engineered cellular recognizable peptides and its 3D topological design for fabrication of cell chip will provide the synergetic effect on bio-affinity, sensitivity and accuracy for the in situ real-time monitoring of analytes.

  10. Structural and Functional Analysis of Horse Cathelicidin Peptides

    PubMed Central

    Skerlavaj, Barbara; Scocchi, Marco; Gennaro, Renato; Risso, Angela; Zanetti, Margherita

    2001-01-01

    Cathelicidin-derived antimicrobial peptides are a component of the peptide-based host defense of neutrophils and epithelia, with a widespread distribution in mammals. We recently reported the cDNA sequences of three putative horse myeloid cathelicidins, named eCATH-1, -2, and -3. A Western analysis was performed to investigate their presence in neutrophils and processing to mature peptides. eCATH-2 and eCATH-3, but not eCATH-1, were found to be present in uncleaved forms in horse neutrophils. The corresponding mature peptides were detected in inflammatory sites, suggesting that processing of the propeptides takes place upon neutrophil activation. A functional characterization was then performed with synthetic eCATH peptides. Circular dichroism measurements indicated an amphipathic α-helical conformation of these peptides in an anisotropic environment, and in vitro assays revealed a potent activity and a broad spectrum of antimicrobial activity for eCATH-1 and a somewhat more restricted spectrum of activity for eCATH-2. Conversely, a strong dependence on salt concentration was observed when the activity of eCATH-3 was tested. This peptide efficiently killed bacteria and some fungal species, i.e., Cryptococcus neoformans and Rhodotorula rubra, in low-ionic-strength media, but the activity was inhibited in the presence of physiological salt medium. This behavior could be modified by modulating the amphipathicity of the molecule. In fact, the synthetic analogue LLK-eCATH-3, with a slightly modified sequence that increases the hydrophobic moment of the peptide, displayed a potent activity in physiological salt medium against the strains resistant to eCATH-3 under these conditions. PMID:11181349

  11. High throughput comparative proteome analysis using a quantitative cysteinyl-peptide enrichment technology

    SciTech Connect

    Liu, Tao; Qian, Weijun; Strittmatter, Eric F.; Camp, David G.; Anderson, Gordon A.; Thrall, Brian D.; Smith, Richard D.

    2004-09-15

    A new quantitative cysteinyl-peptide enrichment technology (QCET) was developed to achieve higher efficiency, greater dynamic range, and higher throughput in quantitative proteomics that use stable-isotope labeling techniques combined with high resolution liquid chromatography (LC)-mass spectrometry (MS). This approach involves {sup 18}O labeling of tryptic peptides, high efficiency enrichment of cysteine-containing peptides, and confident protein identification and quantification using the accurate mass and time tag strategy. Proteome profiling of naive and in vitro-differentiated human mammary epithelial cells using QCET resulted in the identification and quantification of 603 proteins in a single LC-Fourier transform ion cyclotron resonance MS analysis. Advantages of this technology include: (1) a simple, highly efficient method for enriching cysteinyl-peptides; (2) a high throughput strategy suitable for extensive proteome analysis; and (3) improved labeling efficiency for better quantitative measurements. This technology enhances both the functional analysis of biological systems and the detection of potential clinical biomarkers.

  12. Design of a Multicomponent Peptide-Woven Nanocomplex for Delivery of siRNA

    PubMed Central

    Jun, Eunsung; Kim, Soyoun; Kim, Jong-Ho; Cha, Kiweon; So, In-Seop; Son, Hye-Nam; Lee, Byung-Heon; Kim, Kwangmeyung; Kwon, Ick Chan; Kim, Sang Yoon; Kim, In-San

    2015-01-01

    We developed and tested a multicomponent peptide-woven siRNA nanocomplex (PwSN) comprising different peptides designed for efficient cellular targeting, endosomal escape, and release of siRNA. To enhance tumor-specific cellular uptake, we connected an interleukin-4 receptor-targeting peptide (I4R) to a nine-arginine peptide (9r), yielding I4R-9r. To facilitate endosomal escape, we blended endosomolytic peptides into the I4R-9r to form a multicomponent nanocomplex. Lastly, we modified 9r peptides by varying the number and positions of positive charges to obtain efficient release of siRNA from the nanocomplex in the cytosol. Using this step-wise approach for overcoming the biological challenges of siRNA delivery, we obtained an optimized PwSN with significant biological activity in vitro and in vivo. Interestingly, surface plasmon resonance analyses and three-dimensional peptide models demonstrated that our designed peptide adopted a unique structure that was correlated with faster complex disassembly and a better gene-silencing effect. These studies further elucidate the siRNA nanocomplex delivery pathway and demonstrate the applicability of our stepwise strategy to the design of siRNA carriers capable of overcoming multiple challenges and achieving efficient delivery. PMID:25705892

  13. Label-free detection microarray for novel peptide ligands screening base on MS-SPRi combination.

    PubMed

    Wang, Weizhi; Zhang, Di; Wei, Zewen; Wang, Zihua; Bu, Xiangli; Yang, Shu; Fang, Qiaojun; Hu, Zhiyuan

    2015-03-01

    Peptides ligands with high affinity and high specificity towards specific targets is catching a good deal of interests in biomedical field. Traditional peptide screening procedure involves selection, sequencing and characterization and each step is time-consuming and labor-intensive. The combination between different analytical methods could provide an integrated plan for efficient peptide screening. We report herein a label-free detection microarray system to facilitate the whole one-bead-one-compound (OBOC) peptide screening process. A microwell array chip with two identical units can trap the candidate peptide beads in one-well-one-bead manner. Peptides on beads were photo-released in situ in the well and partly transferred to two identical chips for Surface Plasmon Resonance imaging (SPRi), and peptide left in the bi-unit microwell array chip was remain for in situ single bead sequencing by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). Using the bi-unit imprinted chip system, affinity peptides towards AD protein were efficiently screened out both qualitatively and quantitatively from 10(4) candidates. The method provides a universal solution for high efficiency and high throughput ligands screening. PMID:25618725

  14. SABinder: A Web Service for Predicting Streptavidin-Binding Peptides

    PubMed Central

    Kang, Juanjuan; Ru, Beibei; Zhou, Peng

    2016-01-01

    Streptavidin is sometimes used as the intended target to screen phage-displayed combinatorial peptide libraries for streptavidin-binding peptides (SBPs). More often in the biopanning system, however, streptavidin is just a commonly used anchoring molecule that can efficiently capture the biotinylated target. In this case, SBPs creeping into the biopanning results are not desired binders but target-unrelated peptides (TUP). Taking them as intended binders may mislead subsequent studies. Therefore, it is important to find if a peptide is likely to be an SBP when streptavidin is either the intended target or just the anchoring molecule. In this paper, we describe an SVM-based ensemble predictor called SABinder. It is the first predictor for SBP. The model was built with the feature of optimized dipeptide composition. It was observed that 89.20% (MCC = 0.78; AUC = 0.93; permutation test, p < 0.001) of peptides were correctly classified. As a web server, SABinder is freely accessible. The tool provides a highly efficient way to exclude potential SBP when they are TUP or to facilitate identification of possibly new SBP when they are the desired binders. In either case, it will be helpful and can benefit related scientific community. PMID:27610387

  15. SABinder: A Web Service for Predicting Streptavidin-Binding Peptides.

    PubMed

    He, Bifang; Kang, Juanjuan; Ru, Beibei; Ding, Hui; Zhou, Peng; Huang, Jian

    2016-01-01

    Streptavidin is sometimes used as the intended target to screen phage-displayed combinatorial peptide libraries for streptavidin-binding peptides (SBPs). More often in the biopanning system, however, streptavidin is just a commonly used anchoring molecule that can efficiently capture the biotinylated target. In this case, SBPs creeping into the biopanning results are not desired binders but target-unrelated peptides (TUP). Taking them as intended binders may mislead subsequent studies. Therefore, it is important to find if a peptide is likely to be an SBP when streptavidin is either the intended target or just the anchoring molecule. In this paper, we describe an SVM-based ensemble predictor called SABinder. It is the first predictor for SBP. The model was built with the feature of optimized dipeptide composition. It was observed that 89.20% (MCC = 0.78; AUC = 0.93; permutation test, p < 0.001) of peptides were correctly classified. As a web server, SABinder is freely accessible. The tool provides a highly efficient way to exclude potential SBP when they are TUP or to facilitate identification of possibly new SBP when they are the desired binders. In either case, it will be helpful and can benefit related scientific community. PMID:27610387

  16. Chromatographic biopanning for the selection of peptides with high specificity to Pb2+ from phage displayed peptide library.

    PubMed

    Nian, Rui; Kim, Duck Sang; Nguyen, Thuong; Tan, Lihan; Kim, Chan-Wha; Yoo, Ik-Keun; Choe, Woo-Seok

    2010-09-17

    Toxic heavy metal pollution is a global problem occurring in air, soil as well as water. There is a need for a more cost effective, renewable remediation technique, but most importantly, for a recovery method that is selective for one specific metal of concern. Phage display technology has been used as a powerful tool in the discovery of peptides capable of exhibiting specific affinity to various metals or metal ions. However, traditional phage display is mainly conducted in batch mode, resulting in only one equilibrium state hence low-efficiency selection. It is also unable to monitor the selection process in real time mode. In this study, phage display technique was incorporated with chromatography procedure with the use of a monolithic column, facilitating multiple phage-binding equilibrium states and online monitoring of the selection process in search of affinity peptides to Pb2+. In total, 17 candidate peptides were found and their specificity toward Pb2+ was further investigated with bead-based enzyme immunoassay (EIA). A highly specific Pb2+ binding peptide ThrAsnThrLeuSerAsnAsn (TNTLSNN) was obtained. Based on our knowledge, this is the first report on a new chromatographic biopanning method coupled with monolithic column for the selection of metal ion specific binding peptides. It is expected that this monolith-based chromatographic biopanning will provide a promising approach for a high throughput screening of affinity peptides cognitive of a wide range of target species. PMID:20709321

  17. Rational Design of a Carrier Protein for the Production of Recombinant Toxic Peptides in Escherichia coli.

    PubMed

    Pane, Katia; Durante, Lorenzo; Pizzo, Elio; Varcamonti, Mario; Zanfardino, Anna; Sgambati, Valeria; Di Maro, Antimo; Carpentieri, Andrea; Izzo, Viviana; Di Donato, Alberto; Cafaro, Valeria; Notomista, Eugenio

    2016-01-01

    Commercial uses of bioactive peptides require low cost, effective methods for their production. We developed a new carrier protein for high yield production of recombinant peptides in Escherichia coli very well suited for the production of toxic peptides like antimicrobial peptides. GKY20, a short antimicrobial peptide derived from the C-terminus of human thrombin, was fused to the C-terminus of Onconase, a small ribonuclease (104 amino acids), which efficiently drove the peptide into inclusion bodies with very high expression levels (about 200-250 mg/L). After purification of the fusion protein by immobilized metal ion affinity chromatography, peptide was obtained by chemical cleavage in diluted acetic acid of an acid labile Asp-Pro sequence with more than 95% efficiency. To improve peptide purification, Onconase was mutated to eliminate all acid labile sequences thus reducing the release of unwanted peptides during the acid cleavage. Mutations were chosen to preserve the differential solubility of Onconase as function of pH, which allows its selective precipitation at neutral pH after the cleavage. The improved carrier allowed the production of 15-18 mg of recombinant peptide per liter of culture with 96-98% purity without the need of further chromatographic steps after the acid cleavage. The antimicrobial activity of the recombinant peptide, with an additional proline at the N-terminus, was tested on Gram-negative and Gram-positive strains and was found to be identical to that measured for synthetic GKY20. This finding suggests that N-terminal proline residue does not change the antimicrobial properties of recombinant (P)GKY20. The improved carrier, which does not contain cysteine and methionine residues, Asp-Pro and Asn-Gly sequences, is well suited for the production of peptides using any of the most popular chemical cleavage methods. PMID:26808536

  18. Rational Design of a Carrier Protein for the Production of Recombinant Toxic Peptides in Escherichia coli

    PubMed Central

    Pizzo, Elio; Varcamonti, Mario; Zanfardino, Anna; Sgambati, Valeria; Di Maro, Antimo; Carpentieri, Andrea; Izzo, Viviana; Di Donato, Alberto; Cafaro, Valeria; Notomista, Eugenio

    2016-01-01

    Commercial uses of bioactive peptides require low cost, effective methods for their production. We developed a new carrier protein for high yield production of recombinant peptides in Escherichia coli very well suited for the production of toxic peptides like antimicrobial peptides. GKY20, a short antimicrobial peptide derived from the C-terminus of human thrombin, was fused to the C-terminus of Onconase, a small ribonuclease (104 amino acids), which efficiently drove the peptide into inclusion bodies with very high expression levels (about 200–250 mg/L). After purification of the fusion protein by immobilized metal ion affinity chromatography, peptide was obtained by chemical cleavage in diluted acetic acid of an acid labile Asp-Pro sequence with more than 95% efficiency. To improve peptide purification, Onconase was mutated to eliminate all acid labile sequences thus reducing the release of unwanted peptides during the acid cleavage. Mutations were chosen to preserve the differential solubility of Onconase as function of pH, which allows its selective precipitation at neutral pH after the cleavage. The improved carrier allowed the production of 15–18 mg of recombinant peptide per liter of culture with 96–98% purity without the need of further chromatographic steps after the acid cleavage. The antimicrobial activity of the recombinant peptide, with an additional proline at the N-terminus, was tested on Gram-negative and Gram-positive strains and was found to be identical to that measured for synthetic GKY20. This finding suggests that N-terminal proline residue does not change the antimicrobial properties of recombinant (P)GKY20. The improved carrier, which does not contain cysteine and methionine residues, Asp-Pro and Asn-Gly sequences, is well suited for the production of peptides using any of the most popular chemical cleavage methods. PMID:26808536

  19. Applications of Convertible Isonitriles in the Ligation and Macrocyclization of Multicomponent Reaction-Derived Peptides and Depsipeptides.

    PubMed

    Wessjohann, Ludger A; Morejón, Micjel C; Ojeda, Gerardo M; Rhoden, Cristiano R B; Rivera, Daniel G

    2016-08-01

    Peptide ligation and macrocyclization are among the most relevant approaches in the field of peptide chemistry. Whereas a variety of strategies relying on coupling reagents and native chemical ligation are available, there is a continuous need for efficient peptide ligation and cyclization methods. Herein we report on the utilization of convertible isonitriles as effective synthetic tools for the ligation and macrocyclization of peptides arising from isocyanide-based multicomponent reactions. The strategy relies on the use of convertible isonitriles-derived from Fukuyama amines-and peptide carboxylic acids in Ugi and Passerini reactions to afford N-alkylated peptides and depsipeptides, respectively, followed by conversion of the C-terminal amide onto either N-peptidoacyl indoles or pyrroles. Such activated peptides proved efficient in the ligation to peptidic, lipidic and fluorescently labeled amines and in macrocyclization protocols. As a result, a wide set of N-substituted peptides (with methyl, glycosyl and amino acids as N-substituents), cyclic N-methylated peptides and a depsipeptide were produced in good yields using conditions that involve either classical heating or microwave irradiation. This report improves the repertoire of peptide covalent modification methods by exploiting the synthetic potential of multicomponent reactions and convertible isonitriles. PMID:27390908

  20. Highly Angiogenic Peptide Nanofibers

    PubMed Central

    Kumar, Vivek A.; Taylor, Nichole L.; Shi, Siyu; Wang, Benjamin K.; Jalan, Abhishek A.; Kang, Marci K.; Wickremasinghe, Navindee C.; Hartgerink, Jeffrey D.

    2015-01-01

    Major limitations of current tissue regeneration approaches using artificial scaffolds are fibrous encapsulation, lack of host cellular infiltration, unwanted immune responses, surface degradation preceding biointegration, and artificial degradation byproducts. Specifically, for scaffolds larger than 200 500 μm, implants must be accompanied by host angiogenesis in order to provide adequate nutrient/waste exchange in the newly forming tissue. In the current work, we design a peptide-based self-assembling nanofibrous hydrogel containing cell-mediated degradation and proangiogenic moieties that specifically address these challenges. This hydrogel can be easily delivered by syringe, is rapidly infiltrated by cells of hematopoietic and mesenchymal origin, and rapidly forms an extremely robust mature vascular network. scaffolds show no signs of fibrous encapsulation and after 3 weeks are resorbed into the native tissue. These supramolecular assemblies may prove a vital paradigm for tissue regeneration and specifically for ischemic tissue disease. PMID:25584521

  1. Peptide-formation on cysteine-containing peptide scaffolds

    NASA Technical Reports Server (NTRS)

    Chu, B. C.; Orgel, L. E.

    1999-01-01

    Monomeric cysteine residues attached to cysteine-containing peptides by disulfide bonds can be activated by carbonyldiimidazole. If two monomeric cysteine residues, attached to a 'scaffold' peptide Gly-Cys-Glyn-Cys-Glu10, (n = 0, 1, 2, 3) are activated, they react to form the dipeptide Cys-Cys. in 25-65% yield. Similarly, the activation of a cysteine residue attached to the 'scaffold' peptide Gly-Cys-Gly-Glu10 in the presence of Arg5 leads to the formation of Cys-Arg5 in 50% yield. The significance of these results for prebiotic chemistry is discussed.

  2. Analysis of Intrinsic Peptide Detectability via Integrated Label-Free and SRM-Based Absolute Quantitative Proteomics.

    PubMed

    Jarnuczak, Andrew F; Lee, Dave C H; Lawless, Craig; Holman, Stephen W; Eyers, Claire E; Hubbard, Simon J

    2016-09-01

    Quantitative mass spectrometry-based proteomics of complex biological samples remains challenging in part due to the variability and charge competition arising during electrospray ionization (ESI) of peptides and the subsequent transfer and detection of ions. These issues preclude direct quantification from signal intensity alone in the absence of a standard. A deeper understanding of the governing principles of peptide ionization and exploitation of the inherent ionization and detection parameters of individual peptides is thus of great value. Here, using the yeast proteome as a model system, we establish the concept of peptide F-factor as a measure of detectability, closely related to ionization efficiency. F-factor is calculated by normalizing peptide precursor ion intensity by absolute abundance of the parent protein. We investigated F-factor characteristics in different shotgun proteomics experiments, including across multiple ESI-based LC-MS platforms. We show that F-factors mirror previously observed physicochemical predictors as peptide detectability but demonstrate a nonlinear relationship between hydrophobicity and peptide detectability. Similarly, we use F-factors to show how peptide ion coelution adversely affects detectability and ionization. We suggest that F-factors have great utility for understanding peptide detectability and gas-phase ion chemistry in complex peptide mixtures, selection of surrogate peptides in targeted MS studies, and for calibration of peptide ion signal in label-free workflows. Data are available via ProteomeXchange with identifier PXD003472. PMID:27454336

  3. Conus venom peptide pharmacology.

    PubMed

    Lewis, Richard J; Dutertre, Sébastien; Vetter, Irina; Christie, MacDonald J

    2012-04-01

    Conopeptides are a diverse group of recently evolved venom peptides used for prey capture and/or defense. Each species of cone snails produces in excess of 1000 conopeptides, with those pharmacologically characterized (≈ 0.1%) targeting a diverse range of membrane proteins typically with high potency and specificity. The majority of conopeptides inhibit voltage- or ligand-gated ion channels, providing valuable research tools for the dissection of the role played by specific ion channels in excitable cells. It is noteworthy that many of these targets are found to be expressed in pain pathways, with several conopeptides having entered the clinic as potential treatments for pain [e.g., pyroglutamate1-MrIA (Xen2174)] and one now marketed for intrathecal treatment of severe pain [ziconotide (Prialt)]. This review discusses the diversity, pharmacology, structure-activity relationships, and therapeutic potential of cone snail venom peptide families acting at voltage-gated ion channels (ω-, μ-, μO-, δ-, ι-, and κ-conotoxins), ligand-gated ion channels (α-conotoxins, σ-conotoxin, ikot-ikot, and conantokins), G-protein-coupled receptors (ρ-conopeptides, conopressins, and contulakins), and neurotransmitter transporters (χ-conopeptides), with expanded discussion on the clinical potential of sodium and calcium channel inhibitors and α-conotoxins. Expanding the discovery of new bioactives using proteomic/transcriptomic approaches combined with high-throughput platforms and better defining conopeptide structure-activity relationships using relevant membrane protein crystal structures are expected to grow the already significant impact conopeptides have had as both research probes and leads to new therapies. PMID:22407615

  4. Entrapment enhancement of peptide drugs in niosomes.

    PubMed

    Manosroi, Aranya; Khanrin, Penpan; Werner, Rolf G; Götz, Friedrich; Manosroi, Worapaka; Manosroi, Jiradej

    2010-05-01

    The objective of this study was to enhance the entrapment of various charged peptide drugs [(bacitracin (BCT), insulin and bovine serum albumin (BSA)] in niosomes by modifying the vesicular charge compositions. Cationic, anionic and neutral niosomes were prepared from sorbitan monostearate (Span 60) or polyoxyethylene sorbitan monostearate (Tween 61), cholesterol (CHL), dimethyldioctadecylammonium bromide (DDAB) and/or dicetyl phosphate (DP) in distilled water, by freeze dried empty liposome (FDEL) method. Morphology and vesicular sizes of the vesicles were investigated by optical microscope, TEM, X-ray diffractometry and dynamic light scattering. The entrapment efficiency of the peptides in niosomes was determined by gel electrophoresis and gel documentation. After reconstitution of the empty niosomal powder in phosphate buffer pH 7.0 containing the peptide drugs, they were oligolamellar membrane structure, with the sizes of 40-60 nm, except the neutral niosomes entrapped with insulin and cationic niosomes entrapped with BSA which showed the sizes of 0.1-1.3 microm and 100-150 nm, respectively. The zeta potential values of neutral, cationic and anionic niosomes entrapped with BSA, insulin and BCT were -22.3 +/- 1.52, -30.7 +/- 2.92 and +22.68+/- 1.31 mV, respectively. The entrapment efficiency of BSA, BCT and insulin in neutral niosomes (Tween 61/CHL at 1 : 1 molar ratio) was 72.94, 69.89 and 10.26%, in cationic niosomes (Tween 61/CHL/DDAB at 1 : 1 : 0.05 molar ratio) was 84.54, 32.85 and 87.15% and in anionic niosomes (Tween 61/CHL/DP at 1 : 1 : 0.05 molar ratio) was 50.13, 90.88 and 44.31%, respectively. The highest entrapment efficiency of BSA, BCT and insulin at 72.94, 90.88 and 87.15 was observed in neutral, anionic and cationic niosomes, respectively. The results from this study has suggested the appropriate niosomal formulation to entrap the peptides with different charges and polarity for pharmaceutical application. PMID:20113169

  5. Expression and one-step purification of the antimicrobial peptide cathelicidin-BF using the intein system in Bacillus subtilis.

    PubMed

    He, Qing; Fu, Ai-yun; Li, Tian-jiao

    2015-04-01

    The intein expression system has been widely applied in Escherichia coli to express various proteins and peptides. However, the removal of endotoxin from the recombinant proteins expressed in E. coli is very difficult and therefore complicates the purification process. In this study, we constructed an intein-based expression vector for an antimicrobial peptide (cathelicidin from Bungarus fasciatus) and expressed the intein fusion peptide in a Bacillus subtilis expression system. The fusion peptide was secreted into the culture medium, identified by Western blot and purified by affinity chromatography and intein self-cleavage in just one step. Approximately, 0.5 mg peptide was obtained from 1 litre of culture medium. The purified peptide showed antimicrobial activity. Our results indicate that the intein expression system may be a safe and efficient method to produce soluble peptides and proteins in B. subtilis. PMID:25578306

  6. Peptide modified gold nanoparticles for improved cellular uptake, nuclear transport, and intracellular retention

    NASA Astrophysics Data System (ADS)

    Yang, C.; Uertz, J.; Yohan, D.; Chithrani, B. D.

    2014-09-01

    Gold nanoparticles (GNPs) are being extensively used in cancer therapeutic applications due to their ability to act both as an anticancer drug carrier in chemotherapy and as a dose enhancer in radiotherapy. The therapeutic response can be further enhanced if nanoparticles (NPs) can be effectively targeted into the nucleus. Here, we present an uptake and removal of GNPs functionalized with three peptides. The first peptide (RGD peptide) enhanced the uptake, the second peptide (NLS peptide) facilitated the nuclear delivery, while the third one (pentapeptide) covered the rest of the surface and protected it from the binding of serum proteins onto the NP surface. The pentapeptide also stabilized the conjugated GNP complex. The peptide-capped GNPs showed a five-fold increase in NP uptake followed by effective nuclear localization. The fraction of NPs exocytosed was less for peptide-capped NPs as compared to citrate-capped ones. Enhanced uptake and prolonged intracellular retention of peptide-capped GNPs could allow NPs to perform their desired applications more efficiently in cells. These studies will provide guidelines for developing NPs for therapeutic applications, which will require ``controlling'' of the NP accumulation rate while maintaining low toxicity.Gold nanoparticles (GNPs) are being extensively used in cancer therapeutic applications due to their ability to act both as an anticancer drug carrier in chemotherapy and as a dose enhancer in radiotherapy. The therapeutic response can be further enhanced if nanoparticles (NPs) can be effectively targeted into the nucleus. Here, we present an uptake and removal of GNPs functionalized with three peptides. The first peptide (RGD peptide) enhanced the uptake, the second peptide (NLS peptide) facilitated the nuclear delivery, while the third one (pentapeptide) covered the rest of the surface and protected it from the binding of serum proteins onto the NP surface. The pentapeptide also stabilized the conjugated GNP

  7. Targeting lipopolyplexes using bifunctional peptides incorporating hydrophobic spacer amino acids: synthesis, transfection, and biophysical studies.

    PubMed

    Pilkington-Miksa, Michael A; Writer, Michele J; Sarkar, Supti; Meng, Qing-Hai; Barker, Suzie E; Shamlou, Parviz Ayazi; Hailes, Helen C; Hart, Stephen L; Tabor, Alethea B

    2007-01-01

    We have developed efficient synthetic routes to two hydrophobic amino acids, suitably protected for solid-phase peptide synthesis, and have successfully synthesized peptides containing these or other hydrophobic amino acids as spacers between a Lys16 moiety and an integrin-targeting motif. These peptides have in turn been used to formulate a range of lipopolyplex vectors with Lipofectin and plasmid DNA. The transfection efficiencies of these vectors and their aggregation behavior in buffers and in serum have been studied. We have shown that vectors containing peptides incorporating long linkers that are entirely hydrophobic are less efficient transfection agents. However, linkers of equivalent length that are in part hydrophobic show improved transfection properties, which is probably due to the improved accessibility of the integrin-binding motif. PMID:17915956

  8. Marine Peptides: Bioactivities and Applications.

    PubMed

    Cheung, Randy Chi Fai; Ng, Tzi Bun; Wong, Jack Ho

    2015-07-01

    Peptides are important bioactive natural products which are present in many marine species. These marine peptides have high potential nutraceutical and medicinal values because of their broad spectra of bioactivities. Their antimicrobial, antiviral, antitumor, antioxidative, cardioprotective (antihypertensive, antiatherosclerotic and anticoagulant), immunomodulatory, analgesic, anxiolytic anti-diabetic, appetite suppressing and neuroprotective activities have attracted the attention of the pharmaceutical industry, which attempts to design them for use in the treatment or prevention of various diseases. Some marine peptides or their derivatives have high commercial values and had reached the pharmaceutical and nutraceutical markets. A large number of them are already in different phases of the clinical and preclinical pipeline. This review highlights the recent research in marine peptides and the trends and prospects for the future, with special emphasis on nutraceutical and pharmaceutical development into marketed products. PMID:26132844

  9. Marine Peptides: Bioactivities and Applications

    PubMed Central

    Cheung, Randy Chi Fai; Ng, Tzi Bun; Wong, Jack Ho

    2015-01-01

    Peptides are important bioactive natural products which are present in many marine species. These marine peptides have high potential nutraceutical and medicinal values because of their broad spectra of bioactivities. Their antimicrobial, antiviral, antitumor, antioxidative, cardioprotective (antihypertensive, antiatherosclerotic and anticoagulant), immunomodulatory, analgesic, anxiolytic anti-diabetic, appetite suppressing and neuroprotective activities have attracted the attention of the pharmaceutical industry, which attempts to design them for use in the treatment or prevention of various diseases. Some marine peptides or their derivatives have high commercial values and had reached the pharmaceutical and nutraceutical markets. A large number of them are already in different phases of the clinical and preclinical pipeline. This review highlights the recent research in marine peptides and the trends and prospects for the future, with special emphasis on nutraceutical and pharmaceutical development into marketed products. PMID:26132844

  10. Synthetic Peptides as Protein Mimics

    PubMed Central

    Groß, Andrea; Hashimoto, Chie; Sticht, Heinrich; Eichler, Jutta

    2016-01-01

    The design and generation of molecules capable of mimicking the binding and/or functional sites of proteins represents a promising strategy for the exploration and modulation of protein function through controlled interference with the underlying molecular interactions. Synthetic peptides have proven an excellent type of molecule for the mimicry of protein sites because such peptides can be generated as exact copies of protein fragments, as well as in diverse chemical modifications, which includes the incorporation of a large range of non-proteinogenic amino acids as well as the modification of the peptide backbone. Apart from extending the chemical and structural diversity presented by peptides, such modifications also increase the proteolytic stability of the molecules, enhancing their utility for biological applications. This article reviews recent advances by this and other laboratories in the use of synthetic protein mimics to modulate protein function, as well as to provide building blocks for synthetic biology. PMID:26835447

  11. Food-derived immunomodulatory peptides.

    PubMed

    Santiago-López, Lourdes; Hernández-Mendoza, Adrián; Vallejo-Cordoba, Belinda; Mata-Haro, Verónica; González-Córdova, Aarón F

    2016-08-01

    Food proteins contain specific amino acid sequences within their structures that may positively impact bodily functions and have multiple immunomodulatory effects. The functional properties of these specific sequences, also referred to as bioactive peptides, are revealed only after the degradation of native proteins during digestion processes. Currently, milk proteins have been the most explored source of bioactive peptides, which presents an interesting opportunity for the dairy industry. However, plant- and animal-derived proteins have also been shown to be important sources of bioactive peptides. This review summarizes the in vitro and in vivo evidence of the role of various food proteins as sources of immunomodulatory peptides and discusses the possible pathways involving these properties. © 2016 Society of Chemical Industry. PMID:26940008

  12. Moonlighting Peptides with Emerging Function

    PubMed Central

    Rodríguez Plaza, Jonathan G.; Villalón Rojas, Amanda; Herrera, Sur; Garza-Ramos, Georgina; Torres Larios, Alfredo; Amero, Carlos; Zarraga Granados, Gabriela; Gutiérrez Aguilar, Manuel; Lara Ortiz, María Teresa; Polanco Gonzalez, Carlos; Uribe Carvajal, Salvador; Coria, Roberto; Peña Díaz, Antonio; Bredesen, Dale E.; Castro-Obregon, Susana; del Rio, Gabriel

    2012-01-01

    Hunter-killer peptides combine two activities in a single polypeptide that work in an independent fashion like many other multi-functional, multi-domain proteins. We hypothesize that emergent functions may result from the combination of two or more activities in a single protein domain and that could be a mechanism selected in nature to form moonlighting proteins. We designed moonlighting peptides using the two mechanisms proposed to be involved in the evolution of such molecules (i.e., to mutate non-functional residues and the use of natively unfolded peptides). We observed that our moonlighting peptides exhibited two activities that together rendered a new function that induces cell death in yeast. Thus, we propose that moonlighting in proteins promotes emergent properties providing a further level of complexity in living organisms so far unappreciated. PMID:22808104

  13. Moonlighting peptides with emerging function.

    PubMed

    Rodríguez Plaza, Jonathan G; Villalón Rojas, Amanda; Herrera, Sur; Garza-Ramos, Georgina; Torres Larios, Alfredo; Amero, Carlos; Zarraga Granados, Gabriela; Gutiérrez Aguilar, Manuel; Lara Ortiz, María Teresa; Polanco Gonzalez, Carlos; Uribe Carvajal, Salvador; Coria, Roberto; Peña Díaz, Antonio; Bredesen, Dale E; Castro-Obregon, Susana; del Rio, Gabriel

    2012-01-01

    Hunter-killer peptides combine two activities in a single polypeptide that work in an independent fashion like many other multi-functional, multi-domain proteins. We hypothesize that emergent functions may result from the combination of two or more activities in a single protein domain and that could be a mechanism selected in nature to form moonlighting proteins. We designed moonlighting peptides using the two mechanisms proposed to be involved in the evolution of such molecules (i.e., to mutate non-functional residues and the use of natively unfolded peptides). We observed that our moonlighting peptides exhibited two activities that together rendered a new function that induces cell death in yeast. Thus, we propose that moonlighting in proteins promotes emergent properties providing a further level of complexity in living organisms so far unappreciated. PMID:22808104

  14. Peptide nanostructures in biomedical technology.

    PubMed

    Feyzizarnagh, Hamid; Yoon, Do-Young; Goltz, Mark; Kim, Dong-Shik

    2016-09-01

    Nanostructures of peptides have been investigated for biomedical applications due to their unique mechanical and electrical properties in addition to their excellent biocompatibility. Peptides may form fibrils, spheres and tubes in nanoscale depending on the formation conditions. These peptide nanostructures can be used in electrical, medical, dental, and environmental applications. Applications of these nanostructures include, but are not limited to, electronic devices, biosensing, medical imaging and diagnosis, drug delivery, tissue engineering and stem cell research. This review offers a discussion of basic synthesis methods, properties and application of these nanomaterials. The review concludes with recommendations and future directions for peptide nanostructures. WIREs Nanomed Nanobiotechnol 2016, 8:730-743. doi: 10.1002/wnan.1393 For further resources related to this article, please visit the WIREs website. PMID:26846352

  15. Chemical Synthesis of Human Insulin-Like Peptide-6.

    PubMed

    Wu, Fangzhou; Mayer, John P; Zaykov, Alexander N; Zhang, Fa; Liu, Fa; DiMarchi, Richard D

    2016-07-01

    Human insulin-like peptide-6 (INSL-6) belongs to the insulin superfamily and shares the distinctive disulfide bond configuration of human insulin. In this report we present the first chemical synthesis of INSL-6 utilizing fluorenylmethyloxycarbonyl-based (Fmoc) solid-phase peptide chemistry and regioselective disulfide bond construction protocols. Due to the presence of an oxidation-sensitive tryptophan residue, two new orthogonal synthetic methodologies were developed. The first method involved the identification of an additive to suppress the oxidation of tryptophan during iodine-mediated S-acetamidomethyl (Acm) deprotection and the second utilized iodine-free, sulfoxide-directed disulfide bond formation. The methodologies presented here offer an efficient synthetic route to INSL-6 and will further improve synthetic access to other multiple-disulfide-containing peptides with oxidation-sensitive residues. PMID:27259101

  16. Fluorous-based Peptide Microarrays for Protease Screening

    PubMed Central

    Collet, Beatrice Y. M.; Nagashima, Tadamichi; Yu, Marvin S.; Pohl, Nicola L. B.

    2009-01-01

    As ever more protease sequences are uncovered through genome sequencing projects, efficient parallel methods to discover the potential substrates of these proteases becomes crucial. Herein we describe the first use of fluorous-based microarrays to probe peptide sequences and begin to define the scope and limitations of fluorous microarray technologies for the screening of proteases. Comparison of a series of serine proteases showed that their ability to cleave peptide substrates in solution was maintained upon immobilization of these substrates onto fluorous-coated glass slides. The fluorous surface did not serve to significantly inactivate the enzymes. However, addition of hydrophilic components to the peptide sequences could induce lower rates of substrate cleavage with enzymes such as chymotrypsin with affinities to hydrophobic moieties. This work represents the first step to creating robust protease screening platforms using noncovalent microarray interface that can easily incorporate a range of compounds on the same slide. PMID:20161483

  17. Plasticity of empty major histocompatibility complex class I molecules determines peptide-selector function.

    PubMed

    van Hateren, Andy; Bailey, Alistair; Werner, Jörn M; Elliott, Tim

    2015-12-01

    Major histocompatibility complex class I (MHC I) proteins provide protection from intracellular pathogens and cancer via each of a cell's MHC I molecules binding and presenting a peptide to cytotoxic T lymphocytes. MHC I genes are highly polymorphic and can have significant diversity, with polymorphisms predominantly localised in the peptide-binding groove where they can change peptide-binding specificity. However, polymorphic residues may also determine other functional properties, such as how dependent MHC I alleles are on the peptide-loading complex for optimal acquisition of peptide cargo. We describe how differences in the peptide-binding properties of two MHC I alleles correlates with altered conformational flexibility in the peptide-empty state. We hypothesise that plasticity is an intrinsic property encoded by the protein sequence, and that co-ordinated movements of the membrane-proximal and membrane-distal domains collectively determines how dependent MHC I are on the peptide-loading complex for efficient assembly with high affinity peptides. PMID:25818313

  18. Inhibitory effect of midkine-binding peptide on tumor proliferation and migration

    PubMed Central

    Huang, Hui-Lian; Shen, Jian-Fen; Min, Li-Shan; Ping, Jin-Liang; Lu, Yong-Liang; Dai, Li-Cheng

    2015-01-01

    Background: To investigate the inhibitory effect of midkine-binding peptides on human umbilical vein endothelial cells (HUVECs) proliferation and angiogenesis of xenograft tumor. Methods: The midkine-binding peptides were panned by Ph.D.-7™ Phage Display Peptide Library Kit, and the specific binding activities of positive clones to target protein were examined by phage ELISA. The effect of midkine-binding peptides on proliferation of HUVECs was confirmed by MTT test. The xenograft tumor model was formed in BALB/c mice with the murine hepatocarcinoma cells H22 (H22). Microvessel density (MVD) was analyzed by immunohistochemistry of factor VIII staining. Results: Midkine-binding peptides have the inhibitory effects on tumor angiogenesis, a proliferation assay using human umbilical vein endothelial cells (HUVECs) indicated that particular midkine-binding peptides significantly inhibited the proliferation of the HUVECs. Midkine-binding peptides were also observed to efficiently suppress angiogenesis induced by murine hepatocarcinoma H22 cells in BALB/c nude mice. Conclusion: The midkine-binding peptides can inhibit solid tumor growth by retarding the formation of new blood vessels. The results indicate that midkine-binding peptides may represent potent anti-angiogenesis agents in vivo. PMID:26191241

  19. MULTIVALENT DISPLAY OF PENDANT PRO-APOPTOTIC PEPTIDES INCREASES CYTOTOXIC ACTIVITY

    PubMed Central

    Chu, David S.H.; Bocek, Michael J.; Shi, Julie; Ta, Anh; Ngambenjawong, Chayanon; Rostomily, Robert C.; Pun, Suzie H.

    2015-01-01

    Several cationic antimicrobial peptides have been investigated as potential anti-cancer drugs due to their demonstrated selective toxicity towards cancer cells relative to normal cells. For example, intracellular delivery of KLA, a pro-apoptotic peptide, results in toxicity against a variety of cancer cell lines; however, the relatively low activity and small size leads to rapid renal excretion when applied in vivo, limiting its therapeutic potential. In this work, apoptotic peptide-polymer hybrid materials were developed to increase apoptotic peptide activity via multivalent display. Multivalent peptide materials were prepared with comb-like structure by RAFT copolymerization of peptide macromonomers with N-(2-hydroxypropyl) methacrylamide (HPMA). Polymers displayed a GKRK peptide sequence for targeting p32, a protein often overexpressed on the surface of cancer cells, either fused with or as a comonomer to a KLA macromonomer. In three tested cancer cell lines, apoptotic polymers were significantly more cytotoxic than free peptides as evidenced by an order of magnitude decrease in IC50 values for the polymers compared to free peptide. The uptake efficiency and intracellular trafficking of one polymer construct was determined by radiolabeling and subcellular fractionation. Despite their more potent cytotoxic profile, polymeric KLA constructs have poor cellular uptake efficiency (<1%). A significant fraction (20%) of internalized constructs localize with intact mitochondrial fractions. In an effort to increase cellular uptake, polymer amines were converted to guanidines by reaction with O-methylisourea. Guanidinylated polymers disrupted function of isolated mitochondria more than their lysine-based analogs, but overall toxicity was decreased, likely due to inefficient mitochondrial trafficking. Thus, while multivalent KLA polymers are more potent than KLA peptides, these materials can be substantially improved by designing next generation materials with improved

  20. Peptides and proteins

    SciTech Connect

    Bachovchin, W.W.; Unkefer, C.J.

    1994-12-01

    Advances in magnetic resonance and vibrational spectroscopy make it possible to derive detailed structural information about biomolecular structures in solution. These techniques are critically dependent on the availability of labeled compounds. For example, NMR techniques used today to derive peptide and protein structures require uniformity {sup 13}C-and {sup 15}N-labeled samples that are derived biosynthetically from (U-6-{sup 13}C) glucose. These experiments are possible now because, during the 1970s, the National Stable Isotope Resource developed algal methods for producing (U-6-{sup 13}C) glucose. If NMR techniques are to be used to study larger proteins, we will need sophisticated labelling patterns in amino acids that employ a combination of {sup 2}H, {sup 13}C, and {sup 15}N labeling. The availability of these specifically labeled amino acids requires a renewed investment in new methods for chemical synthesis of labeled amino acids. The development of new magnetic resonance or vibrational techniques to elucidate biomolecular structure will be seriously impeded if we do not see rapid progress in labeling technology. Investment in labeling chemistry is as important as investment in the development of advanced spectroscopic tools.

  1. Collagen-like antimicrobial peptides.

    PubMed

    Masuda, Ryo; Kudo, Masakazu; Dazai, Yui; Mima, Takehiko; Koide, Takaki

    2016-11-01

    Combinatorial library composed of rigid rod-like peptides with a triple-helical scaffold was constructed. The component peptides were designed to have various combinations of basic and neutral (or hydrophobic) amino acid residues based on collagen-like (Gly-Pro-Yaa)-repeating sequences, inspired from the basic and amphiphilic nature of naturally occurring antimicrobial peptides. Screening of the peptide pools resulted in identification of antimicrobial peptides. A structure-activity relationship study revealed that the position of Arg-cluster at N-terminus and cystine knots at C-terminus in the triple helix significantly contributed to the antimicrobial activity. The most potent peptide RO-A showed activity against Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. In addition, Escherichia coli exposed to RO-A resulted in abnormal elongation of the cells. RO-A was also shown to have remarkable stability in human serum and low cytotoxicity to mammalian cells. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 453-459, 2016. PMID:27271210

  2. Latarcins: versatile spider venom peptides.

    PubMed

    Dubovskii, Peter V; Vassilevski, Alexander A; Kozlov, Sergey A; Feofanov, Alexey V; Grishin, Eugene V; Efremov, Roman G

    2015-12-01

    Arthropod venoms feature the presence of cytolytic peptides believed to act synergetically with neurotoxins to paralyze prey or deter aggressors. Many of them are linear, i.e., lack disulfide bonds. When isolated from the venom, or obtained by other means, these peptides exhibit common properties. They are cationic; being mostly disordered in aqueous solution, assume amphiphilic α-helical structure in contact with lipid membranes; and exhibit general cytotoxicity, including antifungal, antimicrobial, hemolytic, and anticancer activities. To suit the pharmacological needs, the activity spectrum of these peptides should be modified by rational engineering. As an example, we provide a detailed review on latarcins (Ltc), linear cytolytic peptides from Lachesana tarabaevi spider venom. Diverse experimental and computational techniques were used to investigate the spatial structure of Ltc in membrane-mimicking environments and their effects on model lipid bilayers. The antibacterial activity of Ltc was studied against a panel of Gram-negative and Gram-positive bacteria. In addition, the action of Ltc on erythrocytes and cancer cells was investigated in detail with confocal laser scanning microscopy. In the present review, we give a critical account of the progress in the research of Ltc. We explore the relationship between Ltc structure and their biological activity and derive molecular characteristics, which can be used for optimization of other linear peptides. Current applications of Ltc and prospective use of similar membrane-active peptides are outlined. PMID:26286896

  3. Role of enzyme-peptide substrate backbone hydrogen bonding in determining protein kinase substrate specificities.

    PubMed

    Thomas, N E; Bramson, H N; Miller, W T; Kaiser, E T

    1987-07-14

    As part of a search for peptides that have specificity for selected protein kinases, the possibility that adenosine cyclic 3',5'-phosphate dependent protein kinase (A-kinase) recognizes the hydrogen-bonding potential of its peptide substrates was investigated. A-Kinase catalyzes the phosphorylation of five N alpha-methylated and four depsipeptide derivatives of Leu-Arg-Arg-Ala-Ser-Leu-Gly (peptide 1) at rates that differ by at least 7 orders of magnitude. These peptide 1 analogues each lack the ability to donate a hydrogen bond at selected positions in the peptide chain. If a particular amide hydrogen of a peptide amide is involved in hydrogen bonding, which is important for enzyme recognition, the prediction is that peptides which contain an ester or a N-methylated bond at that position in peptide 1 will be comparatively poor substrates. In contrast, if a depsipeptide has a reactivity comparable to that of peptide 1 but the analogous N-methylated peptide has a poor reactivity with A-kinase, the result might indicate that the N-methyl group causes unfavorable steric effects. The depsipeptide that lacks a Leu6 amide proton is a good substrate for A-kinase, but the corresponding N-methylated peptide is phosphorylated far less efficiently. This result and others presented in this paper suggest that although enzyme-substrate hydrogen bonding may play some role in A-kinase catalysis of phosphoryl group transfer, other explanations are necessary to account for the relative reactivities of N alpha-methylated and depsi-containing peptide 1 analogues.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3663600

  4. Development of a Backbone Cyclic Peptide Library as Potential Antiparasitic Therapeutics Using Microwave Irradiation.

    PubMed

    Qvit, Nir; Kornfeld, Opher S

    2016-01-01

    Protein-protein interactions (PPIs) are intimately involved in almost all biological processes and are linked to many human diseases. Therefore, there is a major effort to target PPIs in basic research and in the pharmaceutical industry. Protein-protein interfaces are usually large, flat, and often lack pockets, complicating the discovery of small molecules that target such sites. Alternative targeting approaches using antibodies have limitations due to poor oral bioavailability, low cell-permeability, and production inefficiency. Using peptides to target PPI interfaces has several advantages. Peptides have higher conformational flexibility, increased selectivity, and are generally inexpensive. However, peptides have their own limitations including poor stability and inefficiency crossing cell membranes. To overcome such limitations, peptide cyclization can be performed. Cyclization has been demonstrated to improve peptide selectivity, metabolic stability, and bioavailability. However, predicting the bioactive conformation of a cyclic peptide is not trivial. To overcome this challenge, one attractive approach it to screen a focused library to screen in which all backbone cyclic peptides have the same primary sequence, but differ in parameters that influence their conformation, such as ring size and position. We describe a detailed protocol for synthesizing a library of backbone cyclic peptides targeting specific parasite PPIs. Using a rational design approach, we developed peptides derived from the scaffold protein Leishmania receptor for activated C-kinase (LACK). We hypothesized that sequences in LACK that are conserved in parasites, but not in the mammalian host homolog, may represent interaction sites for proteins that are critical for the parasites' viability. The cyclic peptides were synthesized using microwave irradiation to reduce reaction times and increase efficiency. Developing a library of backbone cyclic peptides with different ring sizes facilitates a

  5. Low-Energy Collision-Induced Dissociation Fragmentation Analysis of Cysteinyl-Modified Peptides

    SciTech Connect

    Borisov, Oleg V.; Goshe, Michael B. ); Conrads, Thomas P. ); Rakov, Vsevolod S. ); Veenstra, Timothy D. ); Smith, Richard D. )

    2002-05-15

    The development of methods to chemically modify and isolate cysteinyl-residue containing peptides (Cys-peptides) for LC-MS/MS analysis has generated considerable interest in the field of proteomics. Methods using isotope-coded affinity tags (ICAT) and (+)-biotinyl-iodoacetamidyl-3,6-dioxaoctanediamine (iodoacetyl-PEO-biotin) employ similar Cys-modifying reagents that contain a thiolate-specific biotin group to modify and isolate Cys-containing peptides in conjunction with immobilized avidin. For these strategies to be effective on a proteome-wide level, the presence of the ICAT or acetyl-PEO-biotin tag should not interfere with the efficiency of induced dissociation in MS/MS experiments or with the identification of the modified Cys-peptides by automated database searching algorithms. We have compared the collision-induced dissociation (CID) fragmentation patterns of peptides labeled with iodoacetyl-PEO-biotin and the ICAT reagent to those of the unmodified peptides. CID of Cys-peptides modified with either reagent resulted in the formation of ions attributed to the modified Cys-peptides as well as those unique to the labeling reagent. As demonstrated by analyzing acetyl-PEO-biotin labeled peptides from ribonuclease A and the ICAT-labeled proteome of D. radiodurans, the presence of these labeled-specific product ions provides a useful identifier to discern whether a peptide has been modified with the Cys-specific reagent, especially when a number of peptides analyzed using these methods do not contain a modified Cys-residue, and to differentiate identical Cys-peptides labeled with either ICAT-D0 or ICAT-D8.

  6. Alkaline Phosphatase-Mimicking Peptide Nanofibers for Osteogenic Differentiation.

    PubMed

    Gulseren, Gulcihan; Yasa, I Ceren; Ustahuseyin, Oya; Tekin, E Deniz; Tekinay, Ayse B; Guler, Mustafa O

    2015-07-13

    Recognition of molecules and regulation of extracellular matrix synthesis are some of the functions of enzymes in addition to their catalytic activity. While a diverse array of enzyme-like materials have been developed, these efforts have largely been confined to the imitation of the chemical structure and catalytic activity of the enzymes, and it is unclear whether enzyme-mimetic molecules can also be used to replicate the matrix-regulatory roles ordinarily performed by natural enzymes. Self-assembled peptide nanofibers can provide multifunctional enzyme-mimetic properties, as the active sequences of the target enzymes can be directly incorporated into the peptides. Here, we report enhanced bone regeneration efficiency through peptide nanofibers carrying both catalytic and matrix-regulatory functions of alkaline phosphatase, a versatile enzyme that plays a critical role in bone formation by regulating phosphate homeostasis and calcifiable bone matrix formation. Histidine presenting peptide nanostructures were developed to function as phosphatases. These molecules are able to catalyze phosphate hydrolysis and serve as bone-like nodule inducing scaffolds. Alkaline phosphatase-like peptide nanofibers enabled osteogenesis for both osteoblast-like and mesenchymal cell lines. PMID:26039144

  7. Protected peptide disulfides by oxidative detachment from a support.

    PubMed

    Rietman, B H; Smulders, R H; Eggen, I F; van Vliet, A; van de Werken, G; Tesser, G I

    1994-09-01

    A new and efficient procedure for the preparation of protected cyclized and protected symmetrical dimeric peptide disulfides is described. A thiol is immobilized onto a solid phase through coupling of the thiol function with a resin-linked trityl group. Following conventional peptide assembly using the Fmoc-strategy, detachment is performed by oxidation with iodine in a suitable organic solvent. When N,N-dimethylformamide is used as the solvent, and the peptide chain contains an acetamidomethylthio function, located N-terminally in a N alpha-(9-fluorenylmethyloxycarbonyl), or N alpha-tert-butyloxycarbonyl cysteinyl residue, or occurring in the chain, then the corresponding fully protected cyclic peptide disulfide will be obtained in high yield and purity. In other solvents (e.g. dioxane or chloroform-methanol 1:1, v/v), the iodine-mediated oxidation gave not only the cyclic product, but also substantial amounts of the parallel symmetrical dimeric peptide retaining Cys(Acm) at the two identical N-termini. PMID:7822095

  8. Automated solid-phase peptide synthesis to obtain therapeutic peptides

    PubMed Central

    Mäde, Veronika; Els-Heindl, Sylvia

    2014-01-01

    Summary The great versatility and the inherent high affinities of peptides for their respective targets have led to tremendous progress for therapeutic applications in the last years. In order to increase the drugability of these frequently unstable and rapidly cleared molecules, chemical modifications are of great interest. Automated solid-phase peptide synthesis (SPPS) offers a suitable technology to produce chemically engineered peptides. This review concentrates on the application of SPPS by Fmoc/t-Bu protecting-group strategy, which is most commonly used. Critical issues and suggestions for the synthesis are covered. The development of automated methods from conventional to essentially improved microwave-assisted instruments is discussed. In order to improve pharmacokinetic properties of peptides, lipidation and PEGylation are described as covalent conjugation methods, which can be applied by a combination of automated and manual synthesis approaches. The synthesis and application of SPPS is described for neuropeptide Y receptor analogs as an example for bioactive hormones. The applied strategies represent innovative and potent methods for the development of novel peptide drug candidates that can be manufactured with optimized automated synthesis technologies. PMID:24991269

  9. Intracellular Delivery of Proteins via Fusion Peptides in Intact Plants

    PubMed Central

    Ng, Kiaw Kiaw; Motoda, Yoko; Watanabe, Satoru; Sofiman Othman, Ahmad; Kigawa, Takanori; Kodama, Yutaka; Numata, Keiji

    2016-01-01

    In current plant biotechnology, the introduction of exogenous DNA encoding desired traits is the most common approach used to modify plants. However, general plant transformation methods can cause random integration of exogenous DNA into the plant genome. To avoid these events, alternative methods, such as a direct protein delivery system, are needed to modify the plant. Although there have been reports of the delivery of proteins into cultured plant cells, there are currently no methods for the direct delivery of proteins into intact plants, owing to their hierarchical structures. Here, we demonstrate the efficient fusion-peptide-based delivery of proteins into intact Arabidopsis thaliana. Bovine serum albumin (BSA, 66 kDa) was selected as a model protein to optimize conditions for delivery into the cytosol. The general applicability of our method to large protein cargo was also demonstrated by the delivery of alcohol dehydrogenase (ADH, 150 kDa) into the cytosol. The compatibility of the fusion peptide system with the delivery of proteins to specific cellular organelles was also demonstrated using the fluorescent protein Citrine (27 kDa) conjugated to either a nuclear localization signal (NLS) or a peroxisomal targeting signal (PTS). In conclusion, our designed fusion peptide system can deliver proteins with a wide range of molecular weights (27 to 150 kDa) into the cells of intact A. thaliana without interfering with the organelle-targeting peptide conjugated to the protein. We expect that this efficient protein delivery system will be a powerful tool in plant biotechnology. PMID:27100681

  10. An integrated artificial photosynthesis system based on peptide nanotubes

    NASA Astrophysics Data System (ADS)

    Xue, Bin; Li, Ying; Yang, Fan; Zhang, Chunfeng; Qin, Meng; Cao, Yi; Wang, Wei

    2014-06-01

    A peptide nanotube platform that integrates both light-harvesting and catalytic units was successfully engineered for artificial photosynthesis. Peptide nanotubes not only serve as a hub for physically combining both units, but also work as mediators that transfer the energy from photo-excited chromophores to catalytic centers. The direct conversion of NAD+ to NADH upon light illumination was demonstrated. This represents a promising step towards efficient and fully integrated artificial photosynthesis systems.A peptide nanotube platform that integrates both light-harvesting and catalytic units was successfully engineered for artificial photosynthesis. Peptide nanotubes not only serve as a hub for physically combining both units, but also work as mediators that transfer the energy from photo-excited chromophores to catalytic centers. The direct conversion of NAD+ to NADH upon light illumination was demonstrated. This represents a promising step towards efficient and fully integrated artificial photosynthesis systems. Electronic supplementary information (ESI) available: Experimental procedures and supporting figures. See DOI: 10.1039/c4nr00295d

  11. Mass spectrometric identification of glycosylphosphatidylinositol-anchored peptides.

    PubMed

    Masuishi, Yusuke; Nomura, Ayako; Okayama, Akiko; Kimura, Yayoi; Arakawa, Noriaki; Hirano, Hisashi

    2013-10-01

    Glycosylphosphatidylinositol (GPI) anchoring is a post-translational modification widely observed among eukaryotic membrane proteins. GPI anchors are attached to proteins via the carboxy-terminus in the outer leaflet of the cell membrane, where GPI-anchored proteins (GPI-APs) perform important functions as coreceptors and enzymes. Precursors of GPI-APs (Pre-GPI-APs) contain a C-terminal hydrophobic sequence that is involved in cleavage of the signal sequence from the protein and addition of the GPI anchor by the transamidase complex. In order to confirm that a given protein contains a GPI anchor, it is essential to identify the C-terminal peptide containing the GPI-anchor modification site (ω-site). Previously, efficient identification of GPI-anchored C-terminal peptides by mass spectrometry has been difficult, in part because of complex structure of the GPI-anchor moiety. We developed a method to experimentally identify GPI-APs and their ω-sites. In this method, a part of GPI-anchor moieties are removed from GPI-anchored peptides using phosphatidylinositol-specific phospholipase C (PI-PLC) and aqueous hydrogen fluoride (HF), and peptide sequence is then determined by mass spectrometry. Using this method, we successfully identified 10 GPI-APs and 12 ω-sites in the cultured ovarian adenocarcinoma cells, demonstrating that this method is useful for identifying efficiently GPI-APs. PMID:24001144

  12. Autocrine-Based Selection of Drugs That Target Ion Channels from Combinatorial Venom Peptide Libraries.

    PubMed

    Zhang, Hongkai; Du, Mingjuan; Xie, Jia; Liu, Xiao; Sun, Jingying; Wang, Wei; Xin, Xiu; Possani, Lourival D; Yea, Kyungmoo; Lerner, Richard A

    2016-08-01

    Animal venoms represent a rich source of pharmacologically active peptides that interact with ion channels. However, a challenge to discovering drugs remains because of the slow pace at which venom peptides are discovered and refined. An efficient autocrine-based high-throughput selection system was developed to discover and refine venom peptides that target ion channels. The utility of this system was demonstrated by the discovery of novel Kv1.3 channel blockers from a natural venom peptide library that was formatted for autocrine-based selection. We also engineered a Kv1.3 blocker peptide (ShK) derived from sea anemone to generate a subtype-selective Kv1.3 blocker with a long half-life in vivo. PMID:27197631

  13. Immunization of cattle with synthetic peptides derived from the Boophilus microplus gut protein (Bm86).

    PubMed

    Patarroyo, J H; Portela, R W; De Castro, R O; Pimentel, J Couto; Guzman, F; Patarroyo, M E; Vargas, M I; Prates, A A; Mendes, M A Dias

    2002-09-25

    Three synthetic peptides (SBm4912, SBm7462 and SBm19733), derived from the Bm86 glycoprotein from Boophilus microplus gut, were constructed and used to immunize cattle from a tick-free area. The immunized animals received three subcutaneous doses of the peptides, with saponin as adjuvant, at 30-day intervals. The immune response was evaluated by IgG elicited against the peptides by the detection of anti-Bm86 specific antibodies in situ and by Western blotting analysis. After tick challenge, reduction in the number, weight and oviposition capacity of engorged females was observed in the tick population that had fed on immunized animals. The results pointed a high efficacy (81.05%) for the SBm7462 synthetic peptide in relation to the others (p<0.01), demonstrating the efficiency of the immune response elicited by synthetic peptides to control the cattle tick B. microplus. PMID:12127414

  14. Development of the affinity materials for phosphorylated proteins/peptides enrichment in phosphoproteomics analysis.

    PubMed

    Wang, Zhi-Gang; Lv, Nan; Bi, Wen-Zhi; Zhang, Ji-Lin; Ni, Jia-Zuan

    2015-04-29

    Reversible protein phosphorylation is a key event in numerous biological processes. Mass spectrometry (MS) is the most powerful analysis tool in modern phosphoproteomics. However, the direct MS analysis of phosphorylated proteins/peptides is still a big challenge because of the low abundance and insufficient ionization of phosphorylated proteins/peptides as well as the suppression effects of nontargets. Enrichment of phosphorylated proteins/peptides by affinity materials from complex biosamples is the most widely used strategy to enhance the MS detection. The demand of efficiently enriching phosphorylated proteins/peptides has spawned diverse affinity materials based on different enrichment principles (e.g., electronic attraction, chelating). In this review, we summarize the recent development of various affinity materials for phosphorylated proteins/peptides enrichment. We will highlight the design and fabrication of these affinity materials, discuss the enrichment mechanisms involved in different affinity materials, and suggest the future challenges and research directions in this field. PMID:25845677

  15. Peptide purification using the chemoselective reaction between N-(methoxy)glycine and isothiocyanato-functionalized resin.

    PubMed

    Hara, Toshiaki; Tainosyo, Akira; Kawakami, Toru; Aimoto, Saburo; Murata, Michio

    2016-06-01

    An efficient peptide purification strategy is established, comprising the selective reaction of an N-terminal N-(methoxy)glycine residue of the peptide and isothiocyanato-functionalized resins, and subsequent Edman degradation. These reactions take place in acidic media; in particular, the Edman degradation proceeds smoothly in media containing more than 50% trifluoroacetic acid (v/v). These acidic conditions offer increased solubility, making them advantageous for the purification of hydrophobic and aggregation-prone peptides. The effectiveness of this method, together with scope and limitations, is demonstrated using model peptides and the practical purification of the loop region of the human dopamine D2 receptor long isoform (residues 240-272). Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27282134

  16. Perspectives and Peptides of the Next Generation

    NASA Astrophysics Data System (ADS)

    Brogden, Kim A.

    Shortly after their discovery, antimicrobial peptides from prokaryotes and eukaryotes were recognized as the next potential generation of pharmaceuticals to treat antibiotic-resistant bacterial infections and septic shock, to preserve food, or to sanitize surfaces. Initial research focused on identifying the spectrum of antimicrobial agents, determining the range of antimicrobial activities against bacterial, fungal, and viral pathogens, and assessing the antimicrobial activity of synthetic peptides versus their natural counterparts. Subsequent research then focused on the mechanisms of antimicrobial peptide activity in model membrane systems not only to identify the mechanisms of antimicrobial peptide activity in microorganisms but also to discern differences in cytotoxicity for prokaryotic and eukaryotic cells. Recent, contemporary work now focuses on current and future efforts to construct hybrid peptides, peptide congeners, stabilized peptides, peptide conjugates, and immobilized peptides for unique and specific applications to control the growth of microorganisms in vitro and in vivo.

  17. Targeted gene delivery to human airway epithelial cells with synthetic vectors incorporating novel targeting peptides selected by phage display.

    PubMed

    Writer, Michele J; Marshall, Barry; Pilkington-Miksa, Michael A; Barker, Susie E; Jacobsen, Marianne; Kritz, Angelika; Bell, Paul C; Lester, Douglas H; Tabor, Alethea B; Hailes, Helen C; Klein, Nigel; Hart, Stephen L

    2004-05-01

    Human airway epithelial cell targeting peptides were identified by biopanning on 1HAEo-cells, a well characterised epithelial cell line. Bound phage were recovered after three rounds of binding, high stringency washing and elution, leading to the production of an enriched phage peptide population. DNA sequencing of 56 clones revealed 14 unique sequences. Subsequent binding analysis revealed that 13 of these peptides bound 1HAEo-cells with high affinity. Three peptides, SERSMNF, YGLPHKF and PSGAARA were represented at high frequency. Three clearly defined families of peptide were identified on the basis of sequence motifs including (R/K)SM, L(P/Q)HK and PSG(A/T)ARA. Two peptides, LPHKSMP and LQHKSMP contained two motifs. Further detailed sequence analysis by comparison of peptide sequences with the SWISSPROT protein database revealed that some of the peptides closely resembled the cell binding proteins of viral and bacterial pathogens including Herpes Simplex Virus, rotavirus, Mycoplasma pneumoniae and rhinovirus, the latter two being respiratory pathogens, as well as peptide YGLPHKF having similarity to a protein of unknown function from the respiratory pathogen Legionella pneumophila. Peptides were incorporated into gene delivery formulations with the cationic lipid Lipofectin and plasmid DNA and shown to confer a high degree of transfection efficiency and specificity in 1HAEo-cells. Improved transfection efficiency and specificity was also observed in human endothelial cells, fibroblasts and keratinocytes. Therefore, on the basis of clone frequency after biopanning, cell binding affinity, peptide sequence conservation and pathogenic similarity, we have identified 3 novel peptide families and 5 specific peptides that have the potential for gene transfer to respiratory epithelium in vivo as well as providing useful in vitro transfection reagents for primary human cell types of scientific and commercial interest. PMID:15506167

  18. Infrared Multiphoton Dissociation of Peptide Cations in a Dual Pressure Linear Ion Trap Mass Spectrometer

    PubMed Central

    Gardner, Myles W.; Smith, Suncerae I.; Ledvina, Aaron R.; Madsen, James A.; Coon, Joshua J.; Schwartz, Jae C.; Stafford, George C.; Brodbelt, Jennifer S.

    2009-01-01

    A dual pressure linear ion trap mass spectrometer was modified to permit infrared multiphoton dissociation (IRMPD) in each of the two cells - the first a high pressure cell operated at nominally 5 × 10-3 Torr and the second a low pressure cell operated at nominally 3 × 10-4 Torr. When IRMPD was performed in the high pressure cell, most peptide ions did not undergo significant photodissociation; however, in the low pressure cell peptide cations were efficiently dissociated with less than 25 ms of IR irradiation regardless of charge state. IRMPD of peptide cations allowed the detection of low m/z product ions including the y1 fragments and immonium ions which are not typically observed by ion trap collision induced dissociation (CID). Photodissociation efficiencies of ~100% and MS/MS (tandem mass spectrometry) efficiencies of greater than 60% were observed for both multiply and singly protonated peptides. In general, higher sequence coverage of peptides was obtained using IRMPD over CID. Further, greater than 90% of the product ion current in the IRMPD mass spectra of doubly charged peptide ions was composed of singly charged product ions compared to the CID mass spectra in which the abundances of the multiply and singly charged product ions were equally divided. Highly charged primary product ions also underwent efficient photodissociation to yield singly charged secondary product ions, thus simplifying the IRMPD product ion mass spectra. PMID:19739654

  19. Peptide Vaccine: Progress and Challenges

    PubMed Central

    Li, Weidang; Joshi, Medha D.; Singhania, Smita; Ramsey, Kyle H.; Murthy, Ashlesh K.

    2014-01-01

    Conventional vaccine strategies have been highly efficacious for several decades in reducing mortality and morbidity due to infectious diseases. The bane of conventional vaccines, such as those that include whole organisms or large proteins, appear to be the inclusion of unnecessary antigenic load that, not only contributes little to the protective immune response, but complicates the situation by inducing allergenic and/or reactogenic responses. Peptide vaccines are an attractive alternative strategy that relies on usage of short peptide fragments to engineer the induction of highly targeted immune responses, consequently avoiding allergenic and/or reactogenic sequences. Conversely, peptide vaccines used in isolation are often weakly immunogenic and require particulate carriers for delivery and adjuvanting. In this article, we discuss the specific advantages and considerations in targeted induction of immune responses by peptide vaccines and progresses in the development of such vaccines against various diseases. Additionally, we also discuss the development of particulate carrier strategies and the inherent challenges with regard to safety when combining such technologies with peptide vaccines. PMID:26344743

  20. Atomic Coordination Reflects Peptide Immunogenicity

    PubMed Central

    Antipas, Georgios S. E.; Germenis, Anastasios E.

    2016-01-01

    We demonstrated that the immunological identity of variant peptides may be accurately predicted on the basis of atomic coordination of both unprotonated and protonated tertiary structures, provided that the structure of the native peptide (index) is known. The metric which was discovered to account for this discrimination is the coordination difference between the variant and the index; we also showed that increasing coordination difference in respect to the index was correlated to a correspondingly weakening immunological outcome of the variant. Additionally, we established that this metric quickly seizes to operate beyond the peptide scale, e.g., within a coordination shell inclusive of atoms up to a distance of 7 Å away from the peptide or over the entire pMHC-TCR complex. Analysis of molecular orbital interactions for a range of formal charges further revealed that the N-terminus of the agonists was always able to sustain a stable ammonium (NH3+) group which was consistently absent in antagonists. We deem that the presence of NH3+ constitutes a secondary observable with a biological consequence, signifying a change in T cell activation. While our analysis of protonated structures relied on the quantum chemical relaxation of the H species, the results were consistent across a wide range of peptide charge and spin polarization conditions. PMID:26793714

  1. Cancer vaccination with telomerase peptide GV1001.

    PubMed

    Kyte, Jon Amund

    2009-05-01

    Telomerase is highly expressed in essentially all cancer forms, while the expression in normal tissues is restricted. Moreover, telomerase activity is considered indispensable for tumor immortalization and growth. Human telomerase reverse transcriptase (hTERT), the rate-limiting subunit of the telomerase complex, is therefore an attractive target for cancer vaccination. The present review provides an update on the development of GV1001, a peptide vaccine representing a 16-aa hTERT sequence. GV1001 binds multiple HLA class II molecules and harbors putative HLA class I epitopes. The peptide may therefore elicit combined CD4/CD8 T-cell responses, considered important to initiate tumor eradication and long-term memory. Phase I/II trials in advanced pancreatic and pulmonary cancer patients have demonstrated GV1001-specific T-cell responses in > 50% of subjects, without clinically important toxicity. The results indicate a correlation between development of GV1001-specific responses and prolonged survival. However, as in most cancer vaccine trials, a large proportion of immune responders experience no clinical benefit. Long-term survivors harbor durable GV1001-specific T-cell responses with high IFN-gamma/IL-10 ratios and polyfunctional cytokine patterns. Interestingly, the cytokine profiles do not follow a T(H)1/T(H)2 delineation. Here, the author discusses how immunomonitoring may be improved to discriminate between efficient and pointless immune responses, and which questions to address in the further development of GV1001. PMID:19388882

  2. Peptide Conjugation to a Polymer Coating via Native Chemical Ligation of Azlactones for Cell Culture.

    PubMed

    Schmitt, Samantha K; Trebatoski, David J; Krutty, John D; Xie, Angela W; Rollins, Benjamin; Murphy, William L; Gopalan, Padma

    2016-03-14

    Conjugation of biomolecules for stable presentation is an essential step toward reliable chemically defined platforms for cell culture studies. In this work, we describe the formation of a stable and site-specific amide bond via the coupling of a cysteine terminated peptide at low concentration to an azlactone containing copolymer coating. A copolymer of polyethylene glycol methyl ether methacrylate-ran-vinyl azlactone-ran-glycidyl methacrylate P(PEGMEMA-r-VDM-r-GMA) was used to form a thin coating (20-30 nm) on silicon and polycarbonate substrates. The formation and stability of coating-peptide bonds for peptides containing free thiols and amines were quantified by X-ray photoelectron spectroscopy (XPS) after exposure to cell culture conditions. Peptides containing a thiol as the only nucleophile coupled via a thioester bond; however, the bond was labile under cell culture conditions and almost all the bound peptides were displaced from the surface over a period of 2 days. Coupling with N-terminal primary amine peptides resulted in the formation of an amide bond with low efficiency (<20%). In contrast, peptides containing an N-terminal cysteine, which contain both nucleophiles (free thiol and amine) in close proximity, bound with 67% efficiency under neutral pH, and were stable under the same conditions for 2 weeks. Control studies confirm that the stable amide formation was a result of an intramolecular rearrangement through a N-acyl intermediate that resembles native chemical ligation. Through a combination of XPS and cell culture studies, we show that the cysteine terminated peptides undergo a native chemical ligation process at low peptide concentration in aqueous media, short reaction time, and at room temperature resulting in the stable presentation of peptides beyond 2 weeks for cell culture studies. PMID:26835552

  3. LL-37-Derived Peptides Eradicate Multidrug-Resistant Staphylococcus aureus from Thermally Wounded Human Skin Equivalents

    PubMed Central

    de Breij, Anna; Chan, Heelam; van Dissel, Jaap T.; Drijfhout, Jan W.; Hiemstra, Pieter S.; El Ghalbzouri, Abdoelwaheb; Nibbering, Peter H.

    2014-01-01

    Burn wound infections are often difficult to treat due to the presence of multidrug-resistant bacterial strains and biofilms. Currently, mupirocin is used to eradicate methicillin-resistant Staphylococcus aureus (MRSA) from colonized persons; however, mupirocin resistance is also emerging. Since we consider antimicrobial peptides to be promising candidates for the development of novel anti-infective agents, we studied the antibacterial activities of a set of synthetic peptides against different strains of S. aureus, including mupirocin-resistant MRSA strains. The peptides were derived from P60.4Ac, a peptide based on the human cathelicidin LL-37. The results showed that peptide 10 (P10) was the only peptide more efficient than P60.4Ac, which is better than LL-37, in killing MRSA strain LUH14616. All three peptides displayed good antibiofilm activities. However, both P10 and P60.4Ac were more efficient than LL-37 in eliminating biofilm-associated bacteria. No toxic effects of these three peptides on human epidermal models were detected, as observed morphologically and by staining for mitochondrial activity. In addition, P60.4Ac and P10, but not LL-37, eradicated MRSA LUH14616 and the mupirocin-resistant MRSA strain LUH15051 from thermally wounded human skin equivalents (HSE). Interestingly, P60.4Ac and P10, but not mupirocin, eradicated LUH15051 from the HSEs. None of the peptides affected the excretion of interleukin 8 (IL-8) by thermally wounded HSEs upon MRSA exposure. In conclusion, the synthetic peptides P60.4Ac and P10 appear to be attractive candidates for the development of novel local therapies to treat patients with burn wounds infected with multidrug-resistant bacteria. PMID:24841266

  4. LL-37-derived peptides eradicate multidrug-resistant Staphylococcus aureus from thermally wounded human skin equivalents.

    PubMed

    Haisma, Elisabeth M; de Breij, Anna; Chan, Heelam; van Dissel, Jaap T; Drijfhout, Jan W; Hiemstra, Pieter S; El Ghalbzouri, Abdoelwaheb; Nibbering, Peter H

    2014-08-01

    Burn wound infections are often difficult to treat due to the presence of multidrug-resistant bacterial strains and biofilms. Currently, mupirocin is used to eradicate methicillin-resistant Staphylococcus aureus (MRSA) from colonized persons; however, mupirocin resistance is also emerging. Since we consider antimicrobial peptides to be promising candidates for the development of novel anti-infective agents, we studied the antibacterial activities of a set of synthetic peptides against different strains of S. aureus, including mupirocin-resistant MRSA strains. The peptides were derived from P60.4Ac, a peptide based on the human cathelicidin LL-37. The results showed that peptide 10 (P10) was the only peptide more efficient than P60.4Ac, which is better than LL-37, in killing MRSA strain LUH14616. All three peptides displayed good antibiofilm activities. However, both P10 and P60.4Ac were more efficient than LL-37 in eliminating biofilm-associated bacteria. No toxic effects of these three peptides on human epidermal models were detected, as observed morphologically and by staining for mitochondrial activity. In addition, P60.4Ac and P10, but not LL-37, eradicated MRSA LUH14616 and the mupirocin-resistant MRSA strain LUH15051 from thermally wounded human skin equivalents (HSE). Interestingly, P60.4Ac and P10, but not mupirocin, eradicated LUH15051 from the HSEs. None of the peptides affected the excretion of interleukin 8 (IL-8) by thermally wounded HSEs upon MRSA exposure. In conclusion, the synthetic peptides P60.4Ac and P10 appear to be attractive candidates for the development of novel local therapies to treat patients with burn wounds infected with multidrug-resistant bacteria. PMID:24841266

  5. Cationic polymethacrylates with covalently linked membrane destabilizing peptides as gene delivery vectors.

    PubMed

    Funhoff, Arjen M; van Nostrum, Cornelus F; Lok, Martin C; Kruijtzer, John A W; Crommelin, Daan J A; Hennink, Wim E

    2005-01-01

    A membrane-disrupting peptide derived from the influenza virus was covalently linked to different polymethacrylates (pDMAEMA, pDAMA and the degradable pHPMA-DMAE, monomers depicted in Fig. 1) using N-succinimidyl 3-(2-pyridyldithio)propionate (SPDP) as coupling agent to increase the transfection efficiency of polyplexes based on these polymers. It was shown by circular dichroism (CD) measurements that the polymer-conjugated peptide was, as the free peptide, able to undergo a conformational change of a random coil to an alpha helix upon lowering the pH to 5.0. This indicates that the property of the peptide to destabilize the endosomal membrane was preserved after its conjugation to the cationic polymers. In line herewith, a liposome leakage assay revealed that the polymer-bound peptide has comparable activity as the free peptide. The DNA condensing properties of the synthesized polymer-peptide conjugates were studied with dynamic light scattering and zeta-potential measurements, and it was shown that small (100 to 250 nm), positively charged (+15 to +20 mV) particles were formed. In vitro transfection and toxicity was tested in COS-7 cells, and these experiments showed that the polyplexes with grafted peptide had a substantially higher transfection activity than the control polyplexes, while the toxicity remained unchanged. Cellular uptake of the polyplexes was visualized with confocal laser scanning microscopy, and no differences in cellular uptake could be determined between the peptide containing systems and the control formulation. This shows that the increased transfection activity is indeed due to a better endosomal escape of the peptide grafted polyplexes. This study demonstrates that it is possible to covalently conjugate an endosome disruptive peptide to cationic gene delivery polymers with preservation of its membrane destabilization activity, making these conjugates suitable for in vivo DNA delivery. PMID:15588908

  6. Antiviral active peptide from oyster

    NASA Astrophysics Data System (ADS)

    Zeng, Mingyong; Cui, Wenxuan; Zhao, Yuanhui; Liu, Zunying; Dong, Shiyuan; Guo, Yao

    2008-08-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster ( Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10 5 kDa, 5 1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10 5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  7. Antimicrobial activity of polycationic peptides.

    PubMed

    Giacometti, A; Cirioni, O; Barchiesi, F; Del Prete, M S; Scalise, G

    1999-11-01

    The in vitro activity of six polycationic peptides, buforin II, cecropin P1, indolicidin, magainin II, nisin, and ranalexin, were evaluated against several clinical isolates of gram-positive and gram-negative aerobic bacteria, yeasts, Pneumocystis carinii and Cryptosporidium parvum, by using microbroth dilution methods. The peptides exhibited different antibacterial activities and rapid time-dependent killing. The gram-negative organisms were more susceptible to buforin II and cecropin P1, whereas buforin II and ranalexin were the most active compounds against the gram-positive strains. Similarly, ranalexin showed the highest activity against Candida spp., whereas magainin II exerted the highest anticryptococcal activity. Finally, the peptides showed high anti-Pneumocystis activity, whereas no compound had strong inhibitory effect on C. parvum. PMID:10612440

  8. Systematic Comparisons of Formulations of Linear Oligolysine Peptides with siRNA and Plasmid DNA.

    PubMed

    Kwok, Albert; McCarthy, David; Hart, Stephen L; Tagalakis, Aristides D

    2016-05-01

    The effects of lysine peptide lengths on DNA and siRNA packaging and delivery were studied using four linear oligolysine peptides with 8 (K8), 16 (K16), 24 (K24) and 32 (K32) lysines. Oligolysine peptides with 16 lysines or longer were effective for stable monodisperse particle formation and optimal transfection efficiency with plasmid DNA (pDNA), but K8 formulations were less stable under anionic heparin challenge and consequently displayed poor transfection efficiency. However, here we show that the oligolysines were not able to package siRNA to form stable complexes, and consequently, siRNA transfection was unsuccessful. These results indicate that the physical structure and length of cationic peptides and their charge ratios are critical parameters for stable particle formation with pDNA and siRNA and that without packaging, delivery and transfection cannot be achieved. PMID:26684657

  9. Beyond Helper Phage: Using "Helper Cells" to Select Peptide Affinity Ligands.

    PubMed

    Phipps, M Lisa; Lillo, Antoinetta M; Shou, Yulin; Schmidt, Emily N; Paavola, Chad D; Naranjo, Leslie; Bemdich, Sara; Swanson, Basil I; Bradbury, Andrew R M; Martinez, Jennifer S

    2016-01-01

    Peptides are important affinity ligands for microscopy, biosensing, and targeted delivery. However, because they can have low affinity for their targets, their selection from large naïve libraries can be challenging. When selecting peptidic ligands from display libraries, it is important to: 1) ensure efficient display; 2) maximize the ability to select high affinity ligands; and 3) minimize the effect of the display context on binding. The "helper cell" packaging system has been described as a tool to produce filamentous phage particles based on phagemid constructs with varying display levels, while remaining free of helper phage contamination. Here we report on the first use of this system for peptide display, including the systematic characterization and optimization of helper cells, their inefficient use in antibody display and their use in creating and selecting from a set of phage display peptide libraries. Our libraries were analyzed with unprecedented precision by standard or deep sequencing, and shown to be superior in quality than commercial gold standards. Using our helper cell libraries, we have obtained ligands recognizing Yersinia pestis surface antigen F1V and L-glutamine-binding periplasmic protein QBP. In the latter case, unlike any of the peptide library selections described so far, we used a combination of phage and yeast display to select intriguing peptide ligands. Based on the success of our selections we believe that peptide libraries obtained with helper cells are not only suitable, but preferable to traditional phage display libraries for selection of peptidic ligands. PMID:27626637

  10. Improved biological activity of antisense oligonucleotides conjugated to a fusogenic peptide.

    PubMed Central

    Bongartz, J P; Aubertin, A M; Milhaud, P G; Lebleu, B

    1994-01-01

    Recently several groups reported a dramatic improvement of reporter gene transfection efficiency using a fusogenic peptide, derived from the Influenza hemagglutinin envelop protein. This peptide changes conformation at acidic pH and destabilizes the endosomal membranes thus resulting in an increased cytoplasmic gene delivery. We describe the use of a similar fusogenic peptide in order to improve the antiviral potency of antisense oligodeoxynucleotides (anti TAT) and oligophosphorothioates (S-dC28) on de novo HIV infected CEM-SS lymphocytes in serum-free medium. We observed as 5 to 10 fold improvement of the anti HIV activities of the phosphodiester antisense oligonucleotides after chemical coupling to the peptide in a one to one ratio by a disulfide or thioether bond. No toxicities were observed at the effective doses (0.1-1 microM). No sequence specificity was obtained and the fusogenic peptide possessed some antiviral activities on its own (IC50: 6 microM). A S-dC28-peptide disulfide linked conjugate and a streptavidin-peptide-biotinylated S-dC28 adduct showed similar activities as the free S-dC28 oligonucleotide (IC50: 0.1-1 nM). As expected, all the compounds were less potent in the presence of serum but the relative contribution of peptide coupling was maintained. Images PMID:7984418

  11. Homogenous Phase Enrichment of Cysteine-Containing Peptides for Improved Proteome Coverage.

    PubMed

    Wiśniewski, Jacek R; Pruś, Gabriela

    2015-07-01

    We describe a proteomic reactor-based homogeneous phase enrichment of cysteine-containing peptides in a filter aided sample preparation (FASP) format. In this approach thiol-reduced proteins are derivatized with thiol-activated polyethylene glycol (TAPEG) before protein cleavage. Consecutive digestion with endoproteinase LysC and trypsin allows isolation of two fractions of nonderivatized peptides. After reduction of disulfide bonds between cysteine-containing peptides and the polyethylene glycol moieties, a third fraction of peptides is collected. LC-MS/MS analyses revealed that on average this fraction consists of 95% cysteine-containing peptides. Since 85-93% of all peptides are unique to a single subfraction, the combination of TAPEG and FASP offers an efficient peptide separation strategy. Analysis of whole cell lysates of mouse brain, liver, red muscle fibers, and CaCo-2 cells using the TAPEG FASP approach allowed identification of 6,900, 5,800, 4,200 and 7,900 proteins, 10-30% more than were identified using two-step digestion without isolation of Cys-containing peptides. The fractionation also increased the protein sequence coverage by 10-30%. PMID:26028250

  12. A simple contact mapping algorithm for identifying potential peptide mimetics in protein–protein interaction partners

    PubMed Central

    Krall, Alex; Brunn, Jonathan; Kankanala, Spandana; Peters, Michael H

    2014-01-01

    A simple, static contact mapping algorithm has been developed as a first step at identifying potential peptide biomimetics from protein interaction partner structure files. This rapid and simple mapping algorithm, “OpenContact” provides screened or parsed protein interaction files based on specified criteria for interatomic separation distances and interatomic potential interactions. The algorithm, which uses all-atom Amber03 force field models, was blindly tested on several unrelated cases from the literature where potential peptide mimetics have been experimentally developed to varying degrees of success. In all cases, the screening algorithm efficiently predicted proposed or potential peptide biomimetics, or close variations thereof, and provided complete atom-atom interaction data necessary for further detailed analysis and drug development. In addition, we used the static parsing/mapping method to develop a peptide mimetic to the cancer protein target, epidermal growth factor receptor. In this case, secondary, loop structure for the peptide was indicated from the intra-protein mapping, and the peptide was subsequently synthesized and shown to exhibit successful binding to the target protein. The case studies, which all involved experimental peptide drug advancement, illustrate many of the challenges associated with the development of peptide biomimetics, in general. Proteins 2014; 82:2253–2262. © 2014 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:24756879

  13. Stability and efficacy of synthetic cationic antimicrobial peptides nebulized using high frequency acoustic waves.

    PubMed

    Wang, Ying; Rezk, Amgad R; Khara, Jasmeet Singh; Yeo, Leslie Y; Ee, Pui Lai Rachel

    2016-05-01

    Surface acoustic wave (SAW), a nanometer amplitude electroelastic wave generated and propagated on low-loss piezoelectric substrates (such as LiNbO3), is an extremely efficient solid-fluid energy transfer mechanism. The present study explores the use of SAW nebulization as a solution for effective pulmonary peptide delivery. In vitro deposition characteristics of the nebulized peptides were determined using a Next Generation Cascade Impactor. 70% of the peptide-laden aerosols generated were within a size distribution favorable for deep lung distribution. The integrity of the nebulized peptides was found to be retained, as shown via mass spectrometry. The anti-mycobacterial activity of the nebulized peptides was found to be uncompromised compared with their non-nebulized counterparts, as demonstrated by the minimum inhibition concentration and the colony forming inhibition activity. The peptide concentration and volume recoveries for the SAW nebulizer were significantly higher than 90% and found to be insensitive to variation in the peptide sequences. These results demonstrate the potential of the SAW nebulization platform as an effective delivery system of therapeutic peptides through the respiratory tract to the deep lung. PMID:27375820

  14. Cysteine-reactive covalent capture tags for enrichment of cysteine-containing peptides.

    PubMed

    Giron, Priscille; Dayon, Loïc; Mihala, Nikolett; Sanchez, Jean-Charles; Rose, Keith

    2009-11-01

    Considering the tremendous complexity and the wide dynamic range of protein samples from biological origin and their proteolytic peptide mixtures, proteomics largely requires simplification strategies. One common approach to reduce sample complexity is to target a particular amino acid in proteins or peptides, such as cysteine (Cys), with chemical tags in order to reduce the analysis to a subset of the whole proteome. The present work describes the synthesis and the use of two new cysteinyl tags, so-called cysteine-reactive covalent capture tags (C3T), for the isolation of Cys-containing peptides. These bifunctional molecules were specifically designed to react with cysteines through iodoacetyl and acryloyl moieties and permit efficient selection of the tagged peptides. To do so, a thioproline was chosen as the isolating group to form, after a deprotection/activation step, a thiazolidine with an aldehyde resin by the covalent capture (CC) method. The applicability of the enrichment strategy was demonstrated on small synthetic peptides as well as on peptides derived from digested proteins. Mass spectrometric (MS) analysis and tandem mass spectrometric (MS/MS) sequencing confirmed the efficient and straightforward selection of the cysteine-containing peptides. The combination of C3T and CC methods provides an effective alternative to reduce sample complexity and access low abundance proteins. PMID:19813279

  15. Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems.

    PubMed

    Sheih, I-Chuan; Wu, Tung-Kung; Fang, Tony J

    2009-07-01

    Microalgae have been a popular edible food, but there are no known reports on the antioxidative peptides derived from microalgae. The algae protein waste, which is normally discarded as animal feed, is a by-product during production of algae essence from microalgae, Chlorella vulgaris. Algae protein waste was hydrolyzed using pepsin, and a potent antioxidative peptide of VECYGPNRPQF was separated and isolated. The peptide could efficiently quench a variety of free radicals, including hydroxyl radical, superoxide radical, peroxyl radical, DPPH radical and ABTS radicals, and performed more efficiently than that observed for BHT, Trolox and peptides from marine protein sources in most cases. The purified peptide also has significant protective effects on DNA and prevents cellular damage caused by hydroxyl radicals. In addition, the peptide has gastrointestinal enzyme-resistance and no cytotoxicity observed in human lung fibroblasts cell lines (WI-38) in vitro. These results demonstrate that inexpensive algae protein waste could be a new alternative to produce antioxidative peptides. PMID:19299123

  16. High-sensitivity HLA class I peptidome analysis enables a precise definition of peptide motifs and the identification of peptides from cell lines and patients' sera.

    PubMed

    Ritz, Danilo; Gloger, Andreas; Weide, Benjamin; Garbe, Claus; Neri, Dario; Fugmann, Tim

    2016-05-01

    The characterization of peptides bound to human leukocyte antigen (HLA) class I is of fundamental importance for understanding CD8+ T cell-driven immunological processes and for the development of immunomodulatory therapeutic strategies. However, until now, the mass spectrometric analysis of HLA-bound peptides has typically required billions of cells, still resulting in relatively few high-confidence peptide identifications. Capitalizing on the recent developments in mass spectrometry and bioinformatics, we have implemented a methodology for the efficient recovery of acid-eluted HLA peptides after purification with the pan-reactive antibody W6/32 and have identified a total of 27 862 unique peptides with high confidence (1% false discovery rate) from five human cancer cell lines. More than 93% of the identified peptides were eight to 11 amino acids in length and contained signatures that were in excellent agreement with published HLA binding motifs. Furthermore, by purifying soluble HLA class I complexes (sHLA) from sera of melanoma patients, up to 972 high-confidence peptides could be identified, including melanoma-associated antigens already described in the literature. Knowledge of the HLA class I peptidome should facilitate multiplex tetramer technology-based characterization of T cells, and allow the development of patient selection, stratification and immunomodulatory therapeutic strategies. PMID:26992070

  17. Evidence for a novel natriuretic peptide receptor that prefers brain natriuretic peptide over atrial natriuretic peptide.

    PubMed Central

    Goy, M F; Oliver, P M; Purdy, K E; Knowles, J W; Fox, J E; Mohler, P J; Qian, X; Smithies, O; Maeda, N

    2001-01-01

    Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) exert their physiological actions by binding to natriuretic peptide receptor A (NPRA), a receptor guanylate cyclase (rGC) that synthesizes cGMP in response to both ligands. The family of rGCs is rapidly expanding, and it is plausible that there might be additional, as yet undiscovered, rGCs whose function is to provide alternative signalling pathways for one or both of these peptides, particularly given the low affinity of NPRA for BNP. We have investigated this hypothesis, using a genetically modified (knockout) mouse in which the gene encoding NPRA has been disrupted. Enzyme assays and NPRA-specific Western blots performed on tissues from wild-type mice demonstrate that ANP-activated cGMP synthesis provides a good index of NPRA protein expression, which ranges from maximal in adrenal gland, lung, kidney, and testis to minimal in heart and colon. In contrast, immunoreactive NPRA is not detectable in tissues isolated from NPRA knockout animals and ANP- and BNP-stimulatable GC activities are markedly reduced in all mutant tissues. However, testis and adrenal gland retain statistically significant, high-affinity responses to BNP. This residual response to BNP cannot be accounted for by natriuretic peptide receptor B, or any other known mammalian rGC, suggesting the presence of a novel receptor in these tissues that prefers BNP over ANP. PMID:11513736

  18. Accelerated chemical synthesis of peptides and small proteins

    PubMed Central

    Miranda, Les P.; Alewood, Paul F.

    1999-01-01

    The chemical synthesis of peptides and small proteins is a powerful complementary strategy to recombinant protein overexpression and is widely used in structural biology, immunology, protein engineering, and biomedical research. Despite considerable improvements in the fidelity of peptide chain assembly, side-chain protection, and postsynthesis analysis, a limiting factor in accessing polypeptides containing greater than 50 residues remains the time taken for chain assembly. The ultimate goal of this work is to establish highly efficient chemical procedures that achieve chain-assembly rates of approximately 10–15 residues per hour, thus underpinning the rapid chemical synthesis of long polypeptides and proteins, including cytokines, growth factors, protein domains, and small enzymes. Here we report Boc chemistry that employs O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU)/dimethyl sulfoxide in situ neutralization as the coupling agent and incorporates a protected amino acid residue every 5 min to produce peptides of good quality. This rapid coupling chemistry was successfully demonstrated by synthesizing several small to medium peptides, including the “difficult” C-terminal sequence of HIV-1 proteinase (residues 81–99); fragment 65–74 of the acyl carrier protein; conotoxin PnIA(A10L), a potent neuronal nicotinic receptor antagonist; and the pro-inflammatory chemotactic protein CP10, an 88-residue protein, by means of native chemical ligation. The benefits of this approach include enhanced ability to identify and characterize “difficult couplings,” rapid access to peptides for biological and structure–activity studies, and accelerated synthesis of tailored large peptide segments (<50 residues) for use in chemoselective ligation methods. PMID:9989998

  19. Membrane peptides and their role in protobiological evolution

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael A.; Chipot, Christophe

    2003-01-01

    How simple membrane peptides performed such essential protocellular functions as transport of ions and organic matter across membranes separating the interior of the cell from the environment, capture and utilization of energy, and transduction of environmental signals, is a key question in protobiological evolution. On the basis of detailed, molecular-level computer simulations we explain how these peptides fold at water-membrane interfaces, insert into membranes, self-assemble into higher-order structures and acquire functions. We have investigated the interfacial behavior and folding of several peptides built of leucine and glutamine residues and have demonstrated that many of them tend to adopt ordered structures. Further, we have studied the insertion of an alpha-helical peptide containing leucine (L) and serine (S) of the form (LSLLLSL)3 into a model membrane. The transmembrane state is metastable, and approximately 15 kcal mol(-1) is required to insert the peptide into the membrane. Investigations of dimers formed by (LSLLLSL)3 and glycophorin A demonstrate how the favorable free energy of helix association can offset the unfavorable free energy of insertion, leading to self-assembly of peptide helices in the membrane. An example of a self-assembled structure is the tetrameric transmembrane pore of the influenza virus M2 protein, which is an efficient and selective voltage-gated proton channel. Our simulations explain the gating mechanism and provide guidelines how to re-engineer the channel to act as a simple proton pump. In general, emergence of integral membrane proteins appears to be quite feasible and may be easier to envision than the emergence of water-soluble proteins.

  20. Allylic Amines as Key Building Blocks in the Synthesis of (E)-Alkene Peptide Isosteres

    PubMed Central

    Skoda, Erin M.; Davis, Gary C.

    2012-01-01

    Nucleophilic imine additions with vinyl organometallics have developed into efficient, high yielding, and robust methodologies to generate structurally diverse allylic amines. We have used the hydrozirconation-transmetalation-imine addition protocol in the synthesis of allylic amine intermediates for peptide bond isosteres, phosphatase inhibitors, and mitochondria-targeted peptide mimetics. The gramicidin S-derived XJB-5-131 and JP4-039 and their analogs have been prepared on up to 160 g scale for preclinical studies. These (E)-alkene peptide isosteres adopt type II′ β-turn secondary structures and display impressive biological properties, including selective reactions with reactive oxygen species (ROS) and prevention of apoptosis. PMID:22323894

  1. An Investigation on a Novel Anti-tumor Fusion Peptide of FSH33-53-IIKK

    PubMed Central

    Yang, Runlin; Liu, Ping; Pan, Donghui; zhang, Pengjun; Bai, Zhicheng; Xu, Yuping; Wang, Lizhen; Yan, Junjie; Yan, Yongjun; Liu, Xingdang; Yang, Min

    2016-01-01

    A novel fusion peptide FSH33-53-IIKK was designed and expected to combine the follicle stimulating hormone receptor (FSHR) targeting and tumor toxicity. In vitro and in vivo study showed the anti-tumor activity of FSH33-53-IIKK was enhanced compared to that of IIKK only. FSH33-53-IIKK could inhibit the growth of tumor via apoptosis and autophagy pathways. In summary, combining the tumor marker-target peptide and anti-tumor peptide together may be an efficient way to search for better anti-tumor candidates. PMID:27313792

  2. An Investigation on a Novel Anti-tumor Fusion Peptide of FSH33-53-IIKK.

    PubMed

    Yang, Runlin; Liu, Ping; Pan, Donghui; Zhang, Pengjun; Bai, Zhicheng; Xu, Yuping; Wang, Lizhen; Yan, Junjie; Yan, Yongjun; Liu, Xingdang; Yang, Min

    2016-01-01

    A novel fusion peptide FSH33-53-IIKK was designed and expected to combine the follicle stimulating hormone receptor (FSHR) targeting and tumor toxicity. In vitro and in vivo study showed the anti-tumor activity of FSH33-53-IIKK was enhanced compared to that of IIKK only. FSH33-53-IIKK could inhibit the growth of tumor via apoptosis and autophagy pathways. In summary, combining the tumor marker-target peptide and anti-tumor peptide together may be an efficient way to search for better anti-tumor candidates. PMID:27313792

  3. Novel Formulations for Antimicrobial Peptides

    PubMed Central

    Carmona-Ribeiro, Ana Maria; Carrasco, Letícia Dias de Melo

    2014-01-01

    Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy. PMID:25302615

  4. Peptides and the new endocrinology

    NASA Astrophysics Data System (ADS)

    Schwyzer, Robert

    1982-01-01

    The discovery of regulatory peptides common to the nervous and the endocrine systems (brain, gut, and skin) has brought about a revolution in our concepts of endocrinology and neurology. We are beginning to understand some of the complex interrelationships between soma and psyche that might, someday, be important for an integrated treatment of diseases. Examples of the actions of certain peptides in the periphery and in the central nervous system are given, and their biosynthesis and molecular anatomy as carriers for information are discussed.

  5. Tuning Liposome Membrane Permeability by Competitive Peptide Dimerization and Partitioning-Folding Interactions Regulated by Proteolytic Activity

    PubMed Central

    Lim, Seng Koon; Sandén, Camilla; Selegård, Robert; Liedberg, Bo; Aili, Daniel

    2016-01-01

    Membrane active peptides are of large interest for development of drug delivery vehicles and therapeutics for treatment of multiple drug resistant infections. Lack of specificity can be detrimental and finding routes to tune specificity and activity of membrane active peptides is vital for improving their therapeutic efficacy and minimize harmful side effects. We describe a de novo designed membrane active peptide that partition into lipid membranes only when specifically and covalently anchored to the membrane, resulting in pore-formation. Dimerization with a complementary peptide efficiently inhibits formation of pores. The effect can be regulated by proteolytic digestion of the inhibitory peptide by the matrix metalloproteinase MMP-7, an enzyme upregulated in many malignant tumors. This system thus provides a precise and specific route for tuning the permeability of lipid membranes and a novel strategy for development of recognition based membrane active peptides and indirect enzymatically controlled release of liposomal cargo. PMID:26892926

  6. Tuning Liposome Membrane Permeability by Competitive Peptide Dimerization and Partitioning-Folding Interactions Regulated by Proteolytic Activity.

    PubMed

    Lim, Seng Koon; Sandén, Camilla; Selegård, Robert; Liedberg, Bo; Aili, Daniel

    2016-01-01

    Membrane active peptides are of large interest for development of drug delivery vehicles and therapeutics for treatment of multiple drug resistant infections. Lack of specificity can be detrimental and finding routes to tune specificity and activity of membrane active peptides is vital for improving their therapeutic efficacy and minimize harmful side effects. We describe a de novo designed membrane active peptide that partition into lipid membranes only when specifically and covalently anchored to the membrane, resulting in pore-formation. Dimerization with a complementary peptide efficiently inhibits formation of pores. The effect can be regulated by proteolytic digestion of the inhibitory peptide by the matrix metalloproteinase MMP-7, an enzyme upregulated in many malignant tumors. This system thus provides a precise and specific route for tuning the permeability of lipid membranes and a novel strategy for development of recognition based membrane active peptides and indirect enzymatically controlled release of liposomal cargo. PMID:26892926

  7. Orthogonal ring-closing alkyne and olefin metathesis for the synthesis of small GTPase-targeting bicyclic peptides.

    PubMed

    Cromm, Philipp M; Schaubach, Sebastian; Spiegel, Jochen; Fürstner, Alois; Grossmann, Tom N; Waldmann, Herbert

    2016-01-01

    Bicyclic peptides are promising scaffolds for the development of inhibitors of biological targets that proved intractable by typical small molecules. So far, access to bioactive bicyclic peptide architectures is limited due to a lack of appropriate orthogonal ring-closing reactions. Here, we report chemically orthogonal ring-closing olefin (RCM) and alkyne metathesis (RCAM), which enable an efficient chemo- and regioselective synthesis of complex bicyclic peptide scaffolds with variable macrocycle geometries. We also demonstrate that the formed alkyne macrocycle can be functionalized subsequently. The orthogonal RCM/RCAM system was successfully used to evolve a monocyclic peptide inhibitor of the small GTPase Rab8 into a bicyclic ligand. This modified peptide shows the highest affinity for an activated Rab GTPase that has been reported so far. The RCM/RCAM-based formation of bicyclic peptides provides novel opportunities for the design of bioactive scaffolds suitable for the modulation of challenging protein targets. PMID:27075966

  8. Tuning Liposome Membrane Permeability by Competitive Peptide Dimerization and Partitioning-Folding Interactions Regulated by Proteolytic Activity

    NASA Astrophysics Data System (ADS)

    Lim, Seng Koon; Sandén, Camilla; Selegård, Robert; Liedberg, Bo; Aili, Daniel

    2016-02-01

    Membrane active peptides are of large interest for development of drug delivery vehicles and therapeutics for treatment of multiple drug resistant infections. Lack of specificity can be detrimental and finding routes to tune specificity and activity of membrane active peptides is vital for improving their therapeutic efficacy and minimize harmful side effects. We describe a de novo designed membrane active peptide that partition into lipid membranes only when specifically and covalently anchored to the membrane, resulting in pore-formation. Dimerization with a complementary peptide efficiently inhibits formation of pores. The effect can be regulated by proteolytic digestion of the inhibitory peptide by the matrix metalloproteinase MMP-7, an enzyme upregulated in many malignant tumors. This system thus provides a precise and specific route for tuning the permeability of lipid membranes and a novel strategy for development of recognition based membrane active peptides and indirect enzymatically controlled release of liposomal cargo.

  9. Orthogonal ring-closing alkyne and olefin metathesis for the synthesis of small GTPase-targeting bicyclic peptides

    PubMed Central

    Cromm, Philipp M.; Schaubach, Sebastian; Spiegel, Jochen; Fürstner, Alois; Grossmann, Tom N.; Waldmann, Herbert

    2016-01-01

    Bicyclic peptides are promising scaffolds for the development of inhibitors of biological targets that proved intractable by typical small molecules. So far, access to bioactive bicyclic peptide architectures is limited due to a lack of appropriate orthogonal ring-closing reactions. Here, we report chemically orthogonal ring-closing olefin (RCM) and alkyne metathesis (RCAM), which enable an efficient chemo- and regioselective synthesis of complex bicyclic peptide scaffolds with variable macrocycle geometries. We also demonstrate that the formed alkyne macrocycle can be functionalized subsequently. The orthogonal RCM/RCAM system was successfully used to evolve a monocyclic peptide inhibitor of the small GTPase Rab8 into a bicyclic ligand. This modified peptide shows the highest affinity for an activated Rab GTPase that has been reported so far. The RCM/RCAM-based formation of bicyclic peptides provides novel opportunities for the design of bioactive scaffolds suitable for the modulation of challenging protein targets. PMID:27075966

  10. Sample Limited Characterization of a Novel Disulfide-Rich Venom Peptide Toxin from Terebrid Marine Snail Terebra variegata

    PubMed Central

    Anand, Prachi; Grigoryan, Alexandre; Bhuiyan, Mohammed H.; Ueberheide, Beatrix; Russell, Victoria; Quinoñez, Jose; Moy, Patrick; Chait, Brian T.; Poget, Sébastien F.; Holford, Mandë

    2014-01-01

    Disulfide-rich peptide toxins found in the secretions of venomous organisms such as snakes, spiders, scorpions, leeches, and marine snails are highly efficient and effective tools for novel therapeutic drug development. Venom peptide toxins have been used extensively to characterize ion channels in the nervous system and platelet aggregation in haemostatic systems. A significant hurdle in characterizing disulfide-rich peptide toxins from venomous animals is obtaining significant quantities needed for sequence and structural analyses. Presented here is a strategy for the structural characterization of venom peptide toxins from sample limited (4 ng) specimens via direct mass spectrometry sequencing, chemical synthesis and NMR structure elucidation. Using this integrated approach, venom peptide Tv1 from Terebra variegata was discovered. Tv1 displays a unique fold not witnessed in prior snail neuropeptides. The novel structural features found for Tv1 suggest that the terebrid pool of peptide toxins may target different neuronal agents with varying specificities compared to previously characterized snail neuropeptides. PMID:24713808

  11. Dendroaspis natriuretic peptide binds to the natriuretic peptide clearance receptor

    SciTech Connect

    Johns, Douglas G. . E-mail: Douglas.G.Johns@gsk.com; Ao, Zhaohui; Heidrich, Bradley J.; Hunsberger, Gerald E.; Graham, Taylor; Payne, Lisa; Elshourbagy, Nabil; Lu, Quinn; Aiyar, Nambi; Douglas, Stephen A.

    2007-06-22

    Dendroaspis natriuretic peptide (DNP) is a newly-described natriuretic peptide which lowers blood pressure via vasodilation. The natriuretic peptide clearance receptor (NPR-C) removes natriuretic peptides from the circulation, but whether DNP interacts with human NPR-C directly is unknown. The purpose of this study was to test the hypothesis that DNP binds to NPR-C. ANP, BNP, CNP, and the NPR-C ligands AP-811 and cANP(4-23) displaced [{sup 125}I]-ANP from NPR-C with pM-to-nM K {sub i} values. DNP displaced [{sup 125}I]-ANP from NPR-C with nM potency, which represents the first direct demonstration of binding of DNP to human NPR-C. DNP showed high pM affinity for the GC-A receptor and no affinity for GC-B (K {sub i} > 1000 nM). DNP was nearly 10-fold more potent than ANP at stimulating cGMP production in GC-A expressing cells. Blockade of NPR-C might represent a novel therapeutic approach in augmenting the known beneficial actions of DNP in cardiovascular diseases such as hypertension and heart failure.

  12. Transduction of peptides and proteins into live cells by cell penetrating peptides.

    PubMed

    Mussbach, Franziska; Franke, Martin; Zoch, Ansgar; Schaefer, Buerk; Reissmann, Siegmund

    2011-12-01

    Internalization of peptides and proteins into live cells is an essential prerequisite for studies on intracellular signal pathways, for treatment of certain microbial diseases and for signal transduction therapy, especially for cancer treatment. Cell penetrating peptides (CPPs) facilitate the transport of cargo-proteins through the cell membrane into live cells. CPPs which allow formation of non-covalent complexes with the cargo are used primarily in this study due to the relatively easy handling procedure. Efficiency of the protein uptake is estimated qualitatively by fluorescence microscopy and quantitatively by SDS-PAGE. Using the CPP cocktail JBS-Proteoducin, the intracellular concentrations of a secondary antibody and bovine serum albumin can reach the micromolar range. Internalization of antibodies allows mediation of intracellular pathways including knock down of signal transduction. The high specificity and affinity of antibodies makes them potentially more powerful than siRNA. Thus, CPPs represent a significant new possibility to study signal transduction processes in competition or in comparison to the commonly used other techniques. To estimate the highest attainable intracellular concentrations of cargo proteins, the CPPs are tested for cytotoxicity. Cell viability and membrane integrity relative to concentration of CPPs are investigated. Viability as estimated by the reductive activity of mitochondria (MTT-test) is more sensitive to higher concentrations of CPPs versus membrane integrity, as measured by the release of dead cell protease. Distinct differences in uptake efficiency and cytotoxic effects are found using six different CPPs and six different adhesion and suspension cell lines. PMID:21826709

  13. Visible-Light-Induced Specific Desulfurization of Cysteinyl Peptide and Glycopeptide in Aqueous Solution.

    PubMed

    Gao, Xiao-Fei; Du, Jing-Jing; Liu, Zheng; Guo, Jun

    2016-03-01

    Visible-light-induced specific desulfurization of cysteinyl peptides has been explored. The photocatalytic desulfurization catalyzed by Ru(bpy)3(2+) can proceed efficiently at room temperature in aqueous solution or in binary mixtures of aqueous/organic solvent and be compatible with the presence of residues of amino acids, carbohydrates, and various sulfur-containing functional groups. This approach was successfully applied to synthesize linear and cyclic peptides through the ligation-desulfurization protocol. PMID:26892036

  14. S-peptide as a potent peptidyl linker for protein cross-linking by microbial transglutaminase from Streptomyces mobaraensis.

    PubMed

    Kamiya, Noriho; Tanaka, Tsutomu; Suzuki, Tsutomu; Takazawa, Takeshi; Takeda, Shuji; Watanabe, Kimitsuna; Nagamune, Teruyuki

    2003-01-01

    We have found that ribonuclease S-peptide can work as a novel peptidyl substrate in protein cross-linking reactions catalyzed by microbial transglutaminase (MTG) from Streptomyces mobaraensis. Enhanced green fluorescent protein tethered to S-peptide at its N-terminus (S-tag-EGFP) appeared to be efficiently cross-linked by MTG. As wild-type EGFP was not susceptible to cross-linking, the S-peptide moiety is likely to be responsible for the cross-linking. A site-directed mutation study assigned Gln15 in the S-peptide sequence as the sole acyl donor. Mass spectrometric analysis showed that two Lys residues (Lys5 and Lys11) in the S-peptide sequence functioned as acyl acceptors. We also succeeded in direct monitoring of the cross-linking process by virtue of fluorescence resonance energy transfer (FRET) between S-tag-EGFP and its blue fluorescent color variant (S-tag-EBFP). The protein cross-linking was tunable by either engineering S-peptide sequence or capping the S-peptide moiety with S-protein, the partner protein of S-peptide for the formation of ribonuclease A. The latter indicates that S-protein can be used as a specific inhibitor of S-peptide-directed protein cross-linking by MTG. The controllable protein cross-linking of S-peptide as a potent substrate of MTG will shed new light on biomolecule conjugation. PMID:12643745

  15. Strategic approaches to optimizing peptide ADME properties.

    PubMed

    Di, Li

    2015-01-01

    Development of peptide drugs is challenging but also quite rewarding. Five blockbuster peptide drugs are currently on the market, and six new peptides received first marketing approval as new molecular entities in 2012. Although peptides only represent 2% of the drug market, the market is growing twice as quickly and might soon occupy a larger niche. Natural peptides typically have poor absorption, distribution, metabolism, and excretion (ADME) properties with rapid clearance, short half-life, low permeability, and sometimes low solubility. Strategies have been developed to improve peptide drugability through enhancing permeability, reducing proteolysis and renal clearance, and prolonging half-life. In vivo, in vitro, and in silico tools are available to evaluate ADME properties of peptides, and structural modification strategies are in place to improve peptide developability. PMID:25366889

  16. Membrane disruption mechanism of antimicrobial peptides

    NASA Astrophysics Data System (ADS)

    Lee, Ka Yee

    2012-04-01

    Largely distributed among living organisms, antimicrobial peptides are a class of small (<100 residues) host defense peptides that induce selective membrane lytic activity against microbial pathogens. The permeabilizing behavior of these diverse peptides has been commonly attributed to the formation of pores, and such pore formation has been categorized as barrel-stave, toroidal, or carpet-like. With the continuing discovery of new peptide species, many are uncharacterized and the exact mechanism is unknown. Through the use of atomic force microscopy, the disruption of supported lipid bilayer patches by protegrin-1 is concentration-dependent. The intercalation of antimicrobial peptide into the bilayer results in structures beyond that of pore formation, but with the formation of worm-like micelles at high peptide concentration. Our results suggest that antimicrobial peptide acts to lower the interfacial energy of the bilayer in a way similar to detergents. Antimicrobial peptides with structural differences, magainin-1 and aurein 1.1, exhibit a mechanistic commonality.

  17. Boosting production yield of biomedical peptides

    NASA Technical Reports Server (NTRS)

    Manatt, S. L.

    1978-01-01

    Nuclear magnetic resonance (NMR) technique is employed to monitor synthesis of biomedical peptides. Application of NMR technique may improve production yields of insulin, ACTH, and growth hormones, as well as other synthesized biomedical peptides.

  18. Streptavidin-binding peptides and uses thereof

    NASA Technical Reports Server (NTRS)

    Szostak, Jack W. (Inventor); Wilson, David S. (Inventor); Keefe, Anthony D. (Inventor)

    2006-01-01

    The invention provides peptides with high affinity for streptavidin. These peptides may be expressed as part of fusion proteins to facilitate the detection, quantitation, and purification of proteins of interest.

  19. Streptavidin-binding peptides and uses thereof

    NASA Technical Reports Server (NTRS)

    Szostak, Jack W. (Inventor); Wilson, David S. (Inventor); Keefe, Anthony D. (Inventor)

    2005-01-01

    The invention provides peptides with high affinity for streptavidin. These peptides may be expressed as part of fusion proteins to facilitate the detection, quantitation, and purification of proteins of interest.

  20. Investigating Endogenous Peptides and Peptidases using Peptidomics

    PubMed Central

    Tinoco, Arthur D.; Saghatelian, Alan

    2012-01-01

    Rather than simply being protein degradation products, peptides have proven to be important bioactive molecules. Bioactive peptides act as hormones, neurotransmitters and antimicrobial agents in vivo. The dysregulation of bioactive peptide signaling is also known to be involved in disease, and targeting peptide hormone pathways has been successful strategy in the development of novel therapeutics. The importance of bioactive peptides in biology has spurred research to elucidate the function and regulation of these molecules. Classical methods for peptide analysis have relied on targeted immunoassays, but certain scientific questions necessitated a broader and more detailed view of the peptidome–all the peptides in a cell, tissue or organism. In this review we discuss how peptidomics has emerged to fill this need through the application of advanced liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods that provide unique insights into peptide activity and regulation. PMID:21786763

  1. STM studies of synthetic peptide monolayers

    SciTech Connect

    Bergeron, David J.; Clauss, Wilfried; Johnson, Alan T.; Pilloud, Denis L.; Leslie Dutton, P.

    1998-08-11

    We have used scanning probe microscopy to investigate self-assembled monolayers of chemically synthesized peptides. We find that the peptides form a dense uniform monolayer, above which is found a sparse additional layer. Using scanning tunneling microscopy, submolecular resolution can be obtained, revealing the alpha helices which constitute the peptide. The nature of the images is not significantly affected by the incorporation of redox cofactors (hemes) in the peptides.

  2. Towards rice bran protein utilization: In silico insight on the role of oryzacystatins in biologically-active peptide production.

    PubMed

    Udenigwe, Chibuike C

    2016-01-15

    Rice bran proteins (RBP) have been demonstrated to harbour biologically active peptides, which can be released by proteases and applied in human health promotion. In this study, the roles of rice bran cysteine protease inhibitors, oryzacystatins, were considered for efficient production of bioactive peptides from RBP. In silico evidence demonstrates that aspartate protease (pepsin at pH>2) and metalloproteinase (thermolysin) have strong prospects for use in simultaneously cleaving the QXVXGX motif of oryzacystatins, which can lead to their inactivation, and in releasing bioactive sequences from the protease inhibitors. The cleaved bioactive peptides are known to possess activities that can be applied in the management of hypertension, oxidative stress, type 2 diabetes mellitus and other aberrant cellular processes. Moreover, several potentially bioactive di- and tripeptides were identified in oryzacystatin peptide pools. This study provides an important consideration and a direction that can lead to efficient release of bioactive peptides from rice bran proteins for functional food applications. PMID:26258712

  3. Dual-purpose linker for alpha helix stabilization and imaging agent conjugation to glucagon-like peptide-1 receptor ligands.

    PubMed

    Zhang, Liang; Navaratna, Tejas; Liao, Jianshan; Thurber, Greg M

    2015-02-18

    Peptides display many characteristics of efficient imaging agents such as rapid targeting, fast background clearance, and low non-specific cellular uptake. However, poor stability, low affinity, and loss of binding after labeling often preclude their use in vivo. Using glucagon-like peptide-1 receptor (GLP-1R) ligands exendin and GLP-1 as a model system, we designed a novel α-helix-stabilizing linker to simultaneously address these limitations. The stabilized and labeled peptides showed an increase in helicity, improved protease resistance, negligible loss or an improvement in binding affinity, and excellent in vivo targeting. The ease of incorporating azidohomoalanine in peptides and efficient reaction with the dialkyne linker enable this technique to potentially be used as a general method for labeling α helices. This strategy should be useful for imaging beta cells in diabetes research and in developing and testing other peptide targeting agents. PMID:25594741

  4. Toxins and antimicrobial peptides: interactions with membranes

    NASA Astrophysics Data System (ADS)

    Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2009-08-01

    The innate immunity to pathogenic invasion of organisms in the plant and animal kingdoms relies upon cationic antimicrobial peptides (AMPs) as the first line of defense. In addition to these natural peptide antibiotics, similar cationic peptides, such as the bee venom toxin melittin, act as nonspecific toxins. Molecular details of AMP and peptide toxin action are not known, but the universal function of these peptides to disrupt cell membranes of pathogenic bacteria (AMPs) or a diverse set of eukaryotes and prokaryotes (melittin) is widely accepted. Here, we have utilized spectroscopic techniques to elucidate peptide-membrane interactions of alpha-helical human and mouse AMPs of the cathelicidin family as well as the peptide toxin melittin. The activity of these natural peptides and their engineered analogs was studied on eukaryotic and prokaryotic membrane mimics consisting of <200-nm bilayer vesicles composed of anionic and neutral lipids as well as cholesterol. Vesicle disruption, or peptide potency, was monitored with a sensitive fluorescence leakage assay. Detailed molecular information on peptidemembrane interactions and peptide structure was further gained through vibrational spectroscopy combined with circular dichroism. Finally, steady-state fluorescence experiments yielded insight into the local environment of native or engineered tryptophan residues in melittin and human cathelicidin embedded in bilayer vesicles. Collectively, our results provide clues to the functional structures of the engineered and toxic peptides and may impact the design of synthetic antibiotic peptides that can be used against the growing number of antibiotic-resistant pathogens.

  5. Identification of multifunctional peptides from human milk.

    PubMed

    Mandal, Santi M; Bharti, Rashmi; Porto, William F; Gauri, Samiran S; Mandal, Mahitosh; Franco, Octavio L; Ghosh, Ananta K

    2014-06-01

    Pharmaceutical industries have renewed interest in screening multifunctional bioactive peptides as a marketable product in health care applications. In this context, several animal and plant peptides with potential bioactivity have been reported. Milk proteins and peptides have received much attention as a source of health-enhancing components to be incorporated into nutraceuticals and functional foods. By using this source, 24 peptides have been fractionated and purified from human milk using RP-HPLC. Multifunctional roles including antimicrobial, antioxidant and growth stimulating activity have been evaluated in all 24 fractions. Nevertheless, only four fractions show multiple combined activities among them. Using a proteomic approach, two of these four peptides have been identified as lactoferrin derived peptide and kappa casein short chain peptide. Lactoferrin derived peptide (f8) is arginine-rich and kappa casein derived (f12) peptide is proline-rich. Both peptides (f8 and f12) showed antimicrobial activities against both Gram-positive and Gram-negative bacteria. Fraction 8 (f8) exhibits growth stimulating activity in 3T3 cell line and f12 shows higher free radical scavenging activity in comparison to other fractions. Finally, both peptides were in silico evaluated and some insights into their mechanism of action were provided. Thus, results indicate that these identified peptides have multiple biological activities which are valuable for the quick development of the neonate and may be considered as potential biotechnological products for nutraceutical industry. PMID:24703967

  6. Diversity of wheat anti-microbial peptides.

    PubMed

    Egorov, Tsezi A; Odintsova, Tatyana I; Pukhalsky, Vitaliy A; Grishin, Eugene V

    2005-11-01

    From seeds of Triticum kiharae Dorof. et Migusch., 24 novel anti-microbial peptides were isolated and characterized by a combination of three-step HPLC (affinity, size-exclusion and reversed-phase) with matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and Edman degradation. Based on sequence similarity and cysteine motifs, partially sequenced peptides were assigned to 7 families: defensins, thionins, lipid-transfer proteins, hevein-like peptides, knottin-like peptides, glycine-rich peptides, and MBP-1 homologs. A novel subfamily of defensins consisting of 6 peptides and a new family of glycine-rich (8 peptides with different repeat motifs) were identified. Three 6-cysteine knottin-like peptides represented by N- and C-terminally truncated variants revealed no sequence homology to any known plant anti-microbial peptides. A new 8-cysteine hevein-like peptide and three 4-cysteine peptides homologous to MBP-1 from maize were isolated. This is the first communication on the occurrence of nearly all families of plant anti-microbial peptides in a single species. PMID:16269343

  7. Unsupervised Identification of Isotope-Labeled Peptides.

    PubMed

    Goldford, Joshua E; Libourel, Igor G L

    2016-06-01

    In vivo isotopic labeling coupled with high-resolution proteomics is used to investigate primary metabolism in techniques such as stable isotope probing (protein-SIP) and peptide-based metabolic flux analysis (PMFA). Isotopic enrichment of carbon substrates and intracellular metabolism determine the distribution of isotopes within amino acids. The resulting amino acid mass distributions (AMDs) are convoluted into peptide mass distributions (PMDs) during protein synthesis. With no a priori knowledge on metabolic fluxes, the PMDs are therefore unknown. This complicates labeled peptide identification because prior knowledge on PMDs is used in all available peptide identification software. An automated framework for the identification and quantification of PMDs for nonuniformly labeled samples is therefore lacking. To unlock the potential of peptide labeling experiments for high-throughput flux analysis and other complex labeling experiments, an unsupervised peptide identification and quantification method was developed that uses discrete deconvolution of mass distributions of identified peptides to inform on the mass distributions of otherwise unidentifiable peptides. Uniformly (13)C-labeled Escherichia coli protein was used to test the developed feature reconstruction and deconvolution algorithms. The peptide identification was validated by comparing MS(2)-identified peptides to peptides identified from PMDs using unlabeled E. coli protein. Nonuniformly labeled Glycine max protein was used to demonstrate the technology on a representative sample suitable for flux analysis. Overall, automatic peptide identification and quantification were comparable or superior to manual extraction, enabling proteomics-based technology for high-throughput flux analysis studies. PMID:27145348

  8. Diverse CLE peptides from cyst nematode species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant CLAVATA3/ESR (CLE)-like peptides play diverse roles in plant growth and development including maintenance of the stem cell population in the root meristem. Small secreted peptides sharing similarity to plant CLE signaling peptides have been isolated from several cyst nematode species including...

  9. Bi- or multifunctional peptide drugs

    PubMed Central

    Schiller, Peter W.

    2009-01-01

    Strategies for the design of bi- or multifunctional drugs are reviewed. A distinction is made between bifunctional drugs interacting in a monovalent fashion with two targets and ligands containing two distinct pharmacophores binding in a bivalent mode to the two binding sites in a receptor heterodimer. Arguments are presented to indicate that some of the so-called “bivalent” ligands reported in the literature are unlikely to simultaneously interact with two binding sites. Aspects related to the development of bi- or multifunctional drugs are illustrated with examples from the field of opioid analgesics. The drug-like properties of the tetrapeptide Dmt1[DALDA] with triple action as a μ opioid agonist, norepinephrine uptake inhibitor and releaser of endogenous opioid peptides to produce potent spinal analgesia are reviewed. Rationales for the development of opioid peptides with mixed agonist/antagonist profiles as analgesics with reduced side effects are presented. Progress in the development of mixed μ opioid agonist/δ opioid antagonists with low propensity to produce tolerance and physical dependence is reviewed. Efforts to develop bifunctional peptides containing a μ opioid agonist and a cholecystokinin antagonist or an NK1 receptor antagonist as analgesics expected to produce less tolerance and dependence are also reviewed. A strategy to improve the drug-like properties of bifunctional opioid peptide analgesics is presented. PMID:19285088

  10. Free-living nematode peptides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All nematodes employ a wide array of peptide messengers to control nearly all aspects of the life cycle, including hatching, locomotion, feeding, defense, mating, reproduction, and other behavioral and metabolic events. There are molecular and biological similarities, as well as significant differen...

  11. Degradation and Stabilization of Peptide Hormones in Human Blood Specimens

    PubMed Central

    Yi, Jizu; Warunek, David; Craft, David

    2015-01-01

    Plasma hormone peptides, including GLP-1, GIP, Glucagon, and OXM, possess multiple physiological roles and potential therapeutic and diagnostic utility as biomarkers in the research of metabolic disorders. These peptides are subject to proteolytic degradation causing preanalytical variations. Stabilization for accurate quantitation of these active peptides in ex vivo blood specimens is essential for drug and biomarker development. We investigated the protease-driven instability of these peptides in conventional serum, plasma, anticoagulated whole blood, as well as whole blood and plasma stabilized with protease inhibitors. The peptide was monitored by both time-course Matrix-Assisted Laser Desorption Ionization Time-to-Flight Mass Spectrometry (MALDI –TOF MS) and Ab-based assay (ELISA or RIA). MS enabled the identification of proteolytic fragments. In non-stabilized blood samples, the results clearly indicated that dipeptidyl peptidase-IV (DPP-IV) removed the N-terminal two amino acid residues from GLP-1, GIP and OXM(1-37) and not-yet identified peptidase(s) cleave(s) the full-length OXM(1-37) and its fragments. DPP-IV also continued to remove two additional N-terminal residues of processed OXM(3–37) to yield OXM(5–37). Importantly, both DPP-IV and other peptidase(s) activities were inhibited efficiently by the protease inhibitors included in the BD P800* tube. There was preservation of GLP-1, GIP, OXM and glucagon in the P800 plasma samples with half-lives > 96, 96, 72, and 45 hours at room temperature (RT), respectively. In the BD P700* plasma samples, the stabilization of GLP-1 was also achieved with half-life > 96 hours at RT. The stabilization of these variable peptides increased their utility in drug and/or biomarker development. While stability results of GLP-1 obtained with Ab-based assay were consistent with those obtained by MS analysis, the Ab-based results of GIP, Glucagon, and OXM did not reflect the time-dependent degradations revealed by MS

  12. Peptide Biosynthesis with Stable Isotope Labeling from a Cell-free Expression System for Targeted Proteomics with Absolute Quantification.

    PubMed

    Xian, Feng; Zi, Jin; Wang, Quanhui; Lou, Xiaomin; Sun, Haidan; Lin, Liang; Hou, Guixue; Rao, Weiqiao; Yin, Changcheng; Wu, Lin; Li, Shuwei; Liu, Siqi

    2016-08-01

    Because of its specificity and sensitivity, targeted proteomics using mass spectrometry for multiple reaction monitoring is a powerful tool to detect and quantify pre-selected peptides from a complex background and facilitates the absolute quantification of peptides using isotope-labeled forms as internal standards. How to generate isotope-labeled peptides remains an urgent challenge for accurately quantitative targeted proteomics on a large scale. Herein, we propose that isotope-labeled peptides fused with a quantitative tag could be synthesized through an expression system in vitro, and the homemade peptides could be enriched by magnetic beads with tag-affinity and globally quantified based on the corresponding multiple reaction monitoring signals provided by the fused tag. An Escherichia coli cell-free protein expression system, protein synthesis using recombinant elements, was adopted for the synthesis of isotope-labeled peptides fused with Strep-tag. Through a series of optimizations, we enabled efficient expression of the labeled peptides such that, after Strep-Tactin affinity enrichment, the peptide yield was acceptable in scale for quantification, and the peptides could be completely digested by trypsin to release the Strep-tag for quantification. Moreover, these recombinant peptides could be employed in the same way as synthetic peptides for multiple reaction monitoring applications and are likely more economical and useful in a laboratory for the scale of targeted proteomics. As an application, we synthesized four isotope-labeled glutathione S-transferase (GST) peptides and added them to mouse sera pre-treated with GST affinity resin as internal standards. A quantitative assay of the synthesized GST peptides confirmed the absolute GST quantification in mouse sera to be measurable and reproducible. PMID:27234506

  13. Novor: Real-Time Peptide de Novo Sequencing Software

    NASA Astrophysics Data System (ADS)

    Ma, Bin

    2015-11-01

    De novo sequencing software has been widely used in proteomics to sequence new peptides from tandem mass spectrometry data. This study presents a new software tool, Novor, to greatly improve both the speed and accuracy of today's peptide de novo sequencing analyses. To improve the accuracy, Novor's scoring functions are based on two large decision trees built from a peptide spectral library with more than 300,000 spectra with machine learning. Important knowledge about peptide fragmentation is extracted automatically from the library and incorporated into the scoring functions. The decision tree model also enables efficient score calculation and contributes to the speed improvement. To further improve the speed, a two-stage algorithmic approach, namely dynamic programming and refinement, is used. The software program was also carefully optimized. On the testing datasets, Novor sequenced 7%-37% more correct residues than the state-of-the-art de novo sequencing tool, PEAKS, while being an order of magnitude faster. Novor can de novo sequence more than 300 MS/MS spectra per second on a laptop computer. The speed surpasses the acquisition speed of today's mass spectrometer and, therefore, opens a new possibility to de novo sequence in real time while the spectrometer is acquiring the spectral data.

  14. Peptide-templating dye-sensitized solar cells.

    PubMed

    Han, Tae Hee; Moon, Hyoung-Seok; Hwang, Jin Ok; Seok, Sang Il; Im, Sang Hyuk; Kim, Sang Ouk

    2010-05-01

    A hollow TiO(2) nanoribbon network electrode for dye-sensitized solar cells (DSSC) was fabricated by a biotemplating process combining peptide self-assembly and atomic layer deposition (ALD). An aromatic peptide of diphenylalanine was assembled into a three-dimensional network consisting of highly entangled nanoribbons. A thin TiO(2) layer was deposited at the surface of the peptide template via the ALD process. After the pyrolysis of the peptide template, a highly entangled nanotubular TiO(2) framework was successfully prepared. Evolution of the crystal phase and crystallite size of the TiO(2) nanostructure was exploited by controlling the calcination temperature. Finally, the hollow TiO(2) nanoribbon network electrode was integrated into DSSC devices and their photochemical performances were investigated. Hollow TiO(2) nanoribbon-based DSSCs exhibited a power conversion efficiency of 3.8%, which is comparable to the conventional TiO(2) nanoparticle-based DSSCs (3.5%). Our approach offers a novel pathway for DSSCs consisting of TiO(2) electrodes via biotemplating. PMID:20378945

  15. Peptide-templating dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Han, Tae Hee; Moon, Hyoung-Seok; Hwang, Jin Ok; Seok, Sang Il; Im, Sang Hyuk; Ouk Kim, Sang

    2010-05-01

    A hollow TiO2 nanoribbon network electrode for dye-sensitized solar cells (DSSC) was fabricated by a biotemplating process combining peptide self-assembly and atomic layer deposition (ALD). An aromatic peptide of diphenylalanine was assembled into a three-dimensional network consisting of highly entangled nanoribbons. A thin TiO2 layer was deposited at the surface of the peptide template via the ALD process. After the pyrolysis of the peptide template, a highly entangled nanotubular TiO2 framework was successfully prepared. Evolution of the crystal phase and crystallite size of the TiO2 nanostructure was exploited by controlling the calcination temperature. Finally, the hollow TiO2 nanoribbon network electrode was integrated into DSSC devices and their photochemical performances were investigated. Hollow TiO2 nanoribbon-based DSSCs exhibited a power conversion efficiency of 3.8%, which is comparable to the conventional TiO2 nanoparticle-based DSSCs (3.5%). Our approach offers a novel pathway for DSSCs consisting of TiO2 electrodes via biotemplating.

  16. Behavior of amino acids and peptides exposed in Earth orbit

    NASA Astrophysics Data System (ADS)

    Barbier, Bernard; Boillot, François; Chabin, Annie; Venet, Michel; Bure, Corinne; Jacquet, Romain; Bertrand-Urbaniak, Marylène; Brack, André

    2001-08-01

    In order to understand the chemical comportment of organic molecules of prebiotic interest when exposed to space conditions, amino acids, derivatives and peptides where exposed in Earth orbit during the CNES "Perseus-Exobiologie" mission. Dry films of samples were exposed free or associated with mineral powders to vacuum and to solar light down to 120 nm during three months outside the MIR station. After the mission, the remaining products were analyzed with respect of chemical degradation, racemization and polymerization. The analyses revealed a higher sensitivity of amino acids comparatively to peptides. The identification of by-products has allowed determining some photolysis pathways where decarboxylation and decarbonylation were found to be the major chemical reactions for amino acids and peptides, respectively. The study of associated minerals have shown that meteoritic powder was the most efficient to protect samples against UV light. The exposure of different peptides associated to meteorite powder of various thickness have allowed to determine that 5μm films were at least necessary to protect associated organics. Implications for the exogenous origin of organics are discussed.

  17. Combinatorial approach for large-scale identification of linked peptides from tandem mass spectrometry spectra.

    PubMed

    Wang, Jian; Anania, Veronica G; Knott, Jeff; Rush, John; Lill, Jennie R; Bourne, Philip E; Bandeira, Nuno

    2014-04-01

    The combination of chemical cross-linking and mass spectrometry has recently been shown to constitute a powerful tool for studying protein-protein interactions and elucidating the structure of large protein complexes. However, computational methods for interpreting the complex MS/MS spectra from linked peptides are still in their infancy, making the high-throughput application of this approach largely impractical. Because of the lack of large annotated datasets, most current approaches do not capture the specific fragmentation patterns of linked peptides and therefore are not optimal for the identification of cross-linked peptides. Here we propose a generic approach to address this problem and demonstrate it using disulfide-bridged peptide libraries to (i) efficiently generate large mass spectral reference data for linked peptides at a low cost and (ii) automatically train an algorithm that can efficiently and accurately identify linked peptides from MS/MS spectra. We show that using this approach we were able to identify thousands of MS/MS spectra from disulfide-bridged peptides through comparison with proteome-scale sequence databases and significantly improve the sensitivity of cross-linked peptide identification. This allowed us to identify 60% more direct pairwise interactions between the protein subunits in the 20S proteasome complex than existing tools on cross-linking studies of the proteasome complexes. The basic framework of this approach and the MS/MS reference dataset generated should be valuable resources for the future development of new tools for the identification of linked peptides. PMID:24493012

  18. Enhanced cellular uptake of short polyarginine peptides through fatty acylation and cyclization.

    PubMed

    Oh, Donghoon; Nasrolahi Shirazi, Amir; Northup, Kevin; Sullivan, Brian; Tiwari, Rakesh Kumar; Bisoffi, Marco; Parang, Keykavous

    2014-08-01

    Many of the reported arginine-rich cell-penetrating peptides (CPPs) for the enhanced delivery of drugs are linear peptides composed of more than seven arginine residues to retain the cell penetration properties. Herein, we synthesized a class of nine polyarginine peptides containing 5 and 6 arginines, namely, R5 and R6. We further explored the effect of acylation with long chain fatty acids (i.e., octanoic acid, dodecanoic acid, and hexadecanoic acid) and cyclization on the cell penetrating properties of the peptides. The fluorescence-labeled acylated cyclic peptide dodecanoyl-[R5] and linear peptide dodecanoyl-(R5) showed approximately 13.7- and 10.2-fold higher cellular uptake than that of control 5,6-carboxyfluorescein, respectively. The mechanism of the peptide internalization into cells was found to be energy-dependent endocytosis. Dodecanoyl-[R5] and dodecanoyl-[R6] enhanced the intracellular uptake of a fluorescence-labeled cell-impermeable negatively charged phosphopeptide (F'-GpYEEI) in human ovarian cancer cells (SK-OV-3) by 3.4-fold and 5.5-fold, respectively, as shown by flow cytometry. The cellular uptake of F'-GpYEEI in the presence of hexadecanoyl-[R5] was 9.3- and 6.0-fold higher than that in the presence of octanoyl-[R5] and dodecanoyl-[R5], respectively. Dodecanoyl-[R5] enhanced the cellular uptake of the phosphopeptide by 1.4-2.5-fold higher than the corresponding linear peptide dodecanoyl-(R5) and those of representative CPPs, such as hepta-arginine (CR7) and TAT peptide. These results showed that a combination of acylation by long chain fatty acids and cyclization on short arginine-containing peptides can improve their cell-penetrating property, possibly through efficient interaction of rigid positively charged R and hydrophobic dodecanoyl moiety with the corresponding residues in the cell membrane phospholipids. PMID:24978295

  19. Sustained delivery of VEGF from designer self-assembling peptides improves cardiac function after myocardial infarction

    SciTech Connect

    Guo, Hai-dong; Cui, Guo-hong; Yang, Jia-jun; Wang, Cun; Zhu, Jing; Zhang, Li-sheng; Jiang, Jun; Shao, Shui-jin

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer The designer peptide LRKKLGKA could self-assemble into nanofibers. Black-Right-Pointing-Pointer Injection of LRKKLGKA peptides could promote the sustained delivery of VEGF. Black-Right-Pointing-Pointer Injection of VEGF with LRKKLGKA peptides lead to sufficient angiogenesis. Black-Right-Pointing-Pointer Injection of VEGF with LRKKLGKA peptides improves heart function. -- Abstract: Poor vascularization and insufficient oxygen supply are detrimental to the survival of residual cardiomyocytes or transplanted stem cells after myocardial infarction. To prolong and slow the release of angiogenic factors, which stimulate both angiogenesis and vasculogenesis, we constructed a novel self-assembling peptide by attaching the heparin-binding domain sequence LRKKLGKA to the self-assembling peptide RADA16. This designer self-assembling peptide self-assembled into nanofiber scaffolds under physiological conditions, as observed by atomic force microscopy. The injection of designer self-assembling peptides can efficiently provide the sustained delivery of VEGF for at least 1 month. At 4 weeks after transplantation, cardiac function was improved, and scar size and collagen deposition were markedly reduced in the group receiving VEGF with the LRKKLGKA scaffolds compared with groups receiving VEGF alone, LRKKLGKA scaffolds alone or VEGF with RADA16 scaffolds. The microvessel density in the VEGF with LRKKLGKA group was higher than that in the VEGF with RADA16 group. TUNEL and cleaved caspase-3 expression assays showed that the transplantation of VEGF with LRKKLGKA enhanced cell survival in the infarcted heart. These results present the tailor-made peptide scaffolds as a new generation of sustained-release biomimetic biomaterials and suggest that the use of angiogenic factors along with designer self-assembling peptides can lead to myocardial protection, sufficient angiogenesis, and improvement in cardiac function.

  20. Fabrication of Odor Sensor Using Peptide

    NASA Astrophysics Data System (ADS)

    Hotokebuchi, Yuta; Hayashi, Kenshi; Toko, Kiyoshi; Chen, Ronggang; Ikezaki, Hidekazu

    We report fabrication of an odor sensor using peptides. Peptides were designed to acquire the specific reception for a target odor molecule. Au surface of the sensor electrode was coated by the designed peptide using the method of self assembled monolayers (SAMs). Functionalized Au surfaces by the peptides were confirmed by ellipsometry and cyclic voltammetry. The odorants of vanillin, phenethyl alcohol and hexanol were discriminated by QCM sensor with the peptide surface. Moreover, we verified specific interaction between amino acid (Trp) and vanillin by fluorescence assay.

  1. Isoelectric focusing of proteins and peptides

    NASA Technical Reports Server (NTRS)

    Egen, N.

    1979-01-01

    Egg-white solution was chosen as the reference solution in order to assess the effects of operational parameters (voltage, flow rate, ampholine pH range and concentration, and protein concentration) of the RIEF apparatus on protein resolution. Topics of discussion include: (1) comparison of RIEF apparatus to conventional IEF techniques (column and PAG) with respect to resolution and throughput; (2) peptide and protein separation (AHF, Thymosin - Fraction 5, vasoactive peptide, L-asparaginase and ACP); and (3) detection of peptides - dansyl derivatives of amino acids and peptides, post-focusing fluorescent labeling of amino acids, peptides and proteins, and ampholine extraction from focused gels.

  2. Peptide ligation from alkoxyamine based radical addition.

    PubMed

    Trimaille, Thomas; Autissier, Laurent; Rakotonirina, Mamy Daniel; Guillaneuf, Yohann; Villard, Claude; Bertin, Denis; Gigmes, Didier; Mabrouk, Kamel

    2014-03-14

    Intermolecular radical 1,2-addition (IRA) of N-tert-butyl-N-(1-diethylphosphono-2,2-dimethylpropyl)aminoxyl (SG1) based alkoxyamines onto activated olefins is used as a tool for peptide ligation. This strategy relies on simple peptide pre-derivatization to obtain (i) a SG1 nitroxide functionalized resin peptide at its N-terminus (SG1-peptide alkoxyamine), (ii) a vinyl functionalized peptide (either at its C-terminus or N-terminus), and does not require any coupling agents. PMID:24476638

  3. How antimicrobial peptides disrupt lipid bilayers?

    NASA Astrophysics Data System (ADS)

    Sengupta, Durba

    2011-03-01

    The molecular basis for the activity of cyclic and linear antimicrobial peptides is analysed. We performed multi-scale molecular dynamics simulations and biophysical measurements to probe the interaction of antimicrobial peptides with model membranes. Two linear antimicrobial peptides, magainin and melittin and a cyclic one, BPC194 have been studied. We test different models to determine the generic and specific forces that lead to bilayer disruption. We probe whether interfacial stress or local membrane perturbation is more likely to lead to the porated state. We further analyse the reasons that determine specificity and increase of activity in antimicrobial peptides. The results provide detailed insight in the mode of action of antimicrobial peptides.

  4. Comparative conformational analysis of peptide T analogs

    NASA Astrophysics Data System (ADS)

    Akverdieva, Gulnare; Godjayev, Niftali; Akyuz, Sevim

    2009-01-01

    A series of peptide T analogs were investigated within the molecular mechanics framework. In order to determine the role of the aminoacid residues in spatial formation of peptide T the conformational peculiarities of the glycine-substituted analogs were investigated. The conformational profiles of some biologically tested analogs of this peptide were determined independently. The received data permit to assess the active form of this peptide. It is characterized by β-turn at the C-terminal physiologically active pentapeptide fragment of peptide molecule. The received results are important for the investigation of the structure-activity relationship and may be used at design of a rigid-molecule drug against HIV.

  5. Peptides and Peptidomimetics for Antimicrobial Drug Design

    PubMed Central

    Mojsoska, Biljana; Jenssen, Håvard

    2015-01-01

    The purpose of this paper is to introduce and highlight a few classes of traditional antimicrobial peptides with a focus on structure-activity relationship studies. After first dissecting the important physiochemical properties that influence the antimicrobial and toxic properties of antimicrobial peptides, the contributions of individual amino acids with respect to the peptides antibacterial properties are presented. A brief discussion of the mechanisms of action of different antimicrobials as well as the development of bacterial resistance towards antimicrobial peptides follows. Finally, current efforts on novel design strategies and peptidomimetics are introduced to illustrate the importance of antimicrobial peptide research in the development of future antibiotics. PMID:26184232

  6. A Method for Selective Enrichment and Analysis of Nitrotyrosine-Containing Peptides in Complex Proteome Samples

    SciTech Connect

    Zhang, Qibin; Qian, Weijun; Knyushko, Tanya V.; Clauss, Therese RW; Purvine, Samuel O.; Moore, Ronald J.; Sacksteder, Colette A.; Chin, Mark H.; Smith, Desmond J.; Camp, David G.; Bigelow, Diana J.; Smith, Richard D.

    2007-06-01

    Elevated levels of protein tyrosine nitration have been found in various neurodegenerative diseases and aging related pathologies; however, the lack of an efficient enrichment method has prevented the analysis of this important low level protein modification. We have developed an efficient method for specific enrichment of nitrotyrosine containing peptides that permits nitrotyrosine peptides and specific nitration sites to be unambiguously identified with LC-MS/MS. The method is based on the derivatization of nitrotyrosine into free sulfhydryl groups followed by high efficiency enrichment of sulfhydryl-containing peptides with thiopropyl sepharose beads. The derivatization process starts with acetylation with acetic anhydride to block all primary amines, followed by reduction of nitrotyrosine to aminotyrosine, then derivatization of aminotyrosine with N-Succinimidyl S-Acetylthioacetate (SATA), and finally deprotecting of S-acetyl on SATA to form free sulfhydryl groups. This method was evaluated using nitrotyrosine containing peptides, in-vitro nitrated human histone 1.2, and bovine serum albumin (BSA). 91% and 62% of the identified peptides from enriched histone and BSA samples were nitrotyrosine derivatized peptides, respectively, suggesting relative high specificity of the enrichment method. The application of this method to in-vitro nitrated mouse brain homogenate resulted in 35% of identified peptides containing nitrotyrosine (compared to only 5.9% observed from the global analysis of unenriched sample), and a total of 150 unique nitrated peptides covering 102 proteins were identified with a false discovery rate estimated at 3.3% from duplicate LC-MS/MS analyses of a single enriched sample.

  7. Peptides in headlock – a novel high-affinity and versatile peptide-binding nanobody for proteomics and microscopy

    PubMed Central

    Braun, Michael B.; Traenkle, Bjoern; Koch, Philipp A.; Emele, Felix; Weiss, Frederik; Poetz, Oliver; Stehle, Thilo; Rothbauer, Ulrich

    2016-01-01

    Nanobodies are highly valuable tools for numerous bioanalytical and biotechnical applications. Here, we report the characterization of a nanobody that binds a short peptide epitope with extraordinary affinity. Structural analysis reveals an unusual binding mode where the extended peptide becomes part of a β-sheet structure in the nanobody. This interaction relies on sequence-independent backbone interactions augmented by a small number of specificity-determining side chain contacts. Once bound, the peptide is fastened by two nanobody side chains that clamp it in a headlock fashion. Exploiting this unusual binding mode, we generated a novel nanobody-derived capture and detection system. Matrix-coupled nanobody enables the fast and efficient isolation of epitope-tagged proteins from prokaryotic and eukaryotic expression systems. Additionally, the fluorescently labeled nanobody visualizes subcellular structures in different cellular compartments. The high-affinity-binding and modifiable peptide tag of this system renders it a versatile and robust tool to combine biochemical analysis with microscopic studies. PMID:26791954

  8. Effect of peptide conformation on membrane permeability.

    PubMed

    Boguslavsky, V; Hruby, V J; O'Brien, D F; Misicka, A; Lipkowski, A W

    2003-06-01

    The effect of peptide conformational constraint on the peptide permeation across the model membranes was examined by determining the permeability of pairs of cyclic and acyclic peptides related to c[d-Pen2, d-Pen5] enkephalin (DPDPE). The peptides were cyclized by formation of an intramolecular disulfide bridge between the second and fifth residues composed of either d-penicillamine or cysteine. In each case the acyclic peptide was three to seven times more permeable than corresponding cyclic peptide. The possibility that the differences in permeability of cyclic and acyclic peptides is based on the greater conformational freedom of the acyclic peptides in the presence of membrane was examined in more detail by isothermal titration calorimetric studies of Trp6-DPDPE and its acyclic analog. The membrane binding of the acyclic peptide is a more exothermic process than binding of its cyclic Trp6-DPDPE. The transfer of acyclic peptide from water to membrane is an enthalpy driven process, whereas the transfer of the cyclic peptide is driven by entropy. PMID:12753376

  9. Natural and synthetic peptides with antifungal activity.

    PubMed

    Ciociola, Tecla; Giovati, Laura; Conti, Stefania; Magliani, Walter; Santinoli, Claudia; Polonelli, Luciano

    2016-08-01

    In recent years, the increase of invasive fungal infections and the emergence of antifungal resistance stressed the need for new antifungal drugs. Peptides have shown to be good candidates for the development of alternative antimicrobial agents through high-throughput screening, and subsequent optimization according to a rational approach. This review presents a brief overview on antifungal natural peptides of different sources (animals, plants, micro-organisms), peptide fragments derived by proteolytic cleavage of precursor physiological proteins (cryptides), synthetic unnatural peptides and peptide derivatives. Antifungal peptides are schematically reported based on their structure, antifungal spectrum and reported effects. Natural or synthetic peptides and their modified derivatives may represent the basis for new compounds active against fungal infections. PMID:27502155

  10. The First Salamander Defensin Antimicrobial Peptide

    PubMed Central

    Jiang, Ke; Rong, Mingqiang; Lai, Ren

    2013-01-01

    Antimicrobial peptides have been widely identified from amphibian skins except salamanders. A novel antimicrobial peptide (CFBD) was isolated and characterized from skin secretions of the salamander, Cynops fudingensis. The cDNA encoding CFBD precursor was cloned from the skin cDNA library of C. fudingensis. The precursor was composed of three domains: signal peptide of 17 residues, mature peptide of 41 residues and intervening propeptide of 3 residues. There are six cysteines in the sequence of mature CFBD peptide, which possibly form three disulfide-bridges. CFBD showed antimicrobial activities against Staphylococcus aureus, Bacillus subtilis, Candida albicans and Escherichia coli. This peptide could be classified into family of β-defensin based on its seqeuence similarity with β-defensins from other vertebrates. Evolution analysis indicated that CFBD was close to fish β-defensin. As far as we know, CFBD is the first β-defensin antimicrobial peptide from salamanders. PMID:24386139

  11. Bioinformatic analysis of peptide precursor proteins.

    PubMed

    Baggerman, G; Liu, F; Wets, G; Schoofs, L

    2005-04-01

    Neuropeptides are among the most important signal molecules in animals. Traditional identification of peptide hormones through peptide purification is a tedious and time-consuming process. With the advent of the genome sequencing projects, putative peptide precursor can be mined from the genome. However, because bioactive peptides are usually quite short in length and because the active core of a peptide is often limited to only a few amino acids, using the BLAST search engine to identify neuropeptide precursors in the genome is difficult and sometimes impossible. To overcome these shortcomings, we subject the entire set of all known Drosophila melanogaster peptide precursor sequences to motif-finding algorithms in search of a motif that is common for all prepropeptides and that could be used in the search for new peptide precursors. PMID:15891006

  12. RFamide peptides in agnathans and basal chordates.

    PubMed

    Osugi, Tomohiro; Son, You Lee; Ubuka, Takayoshi; Satake, Honoo; Tsutsui, Kazuyoshi

    2016-02-01

    Since a peptide with a C-terminal Arg-Phe-NH2 (RFamide peptide) was first identified in the ganglia of the venus clam in 1977, RFamide peptides have been found in the nervous system of both invertebrates and vertebrates. In vertebrates, the RFamide peptide family includes gonadotropin-inhibitory hormone (GnIH), neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP), pyroglutamylated RFamide peptide/26RFamide peptide (QRFP/26RFa), and kisspeptins (kiss1 and kiss2). They are involved in important functions such as the release of hormones, regulation of sexual or social behavior, pain transmission, reproduction, and feeding. In contrast to tetrapods and jawed fish, the information available on RFamide peptides in agnathans and basal chordates is limited, thus preventing further insights into the evolution of RFamide peptides in vertebrates. In this review, we focus on the previous research and recent advances in the studies on RFamide peptides in agnathans and basal chordates. In agnathans, the genes encoding GnIH, NPFF, and PrRP precursors and the mature peptides have been identified in lamprey (Petromyzon marinus) and hagfish (Paramyxine atami). Putative kiss1 and kiss2 genes have also been found in the genome database of lamprey. In basal chordates, namely, in amphioxus (Branchiostoma japonicum), a common ancestral form of GnIH and NPFF genes and their mature peptides, as well as the ortholog of the QRFP gene have been identified. The studies revealed that the number of orthologs of vertebrate RFamide peptides present in agnathans and basal chordates is greater than expected, suggesting that the vertebrate RFamide peptides might have emerged and expanded at an early stage of chordate evolution. PMID:26130238

  13. Cation-exchange chromatography of peptides on poly(2-sulfoethyl aspartamide)-silica.

    PubMed

    Alpert, A J; Andrews, P C

    1988-06-29

    A strong cation-exchange material, poly(2-sulfoethyl aspartamide)-silica (PolySULFOETHYL Aspartamide) was developed for purification and analysis of peptides by high-performance liquid chromatography. All peptides examined were retained at pH 3, even when the amino terminus was the only basic group. Peptides were eluted in order of increasing number of basic residues with a salt gradient. Capacity was high, as was selectivity and column efficiency. This new column material displays modest mixed-mode effects, allowing the resolution of peptides having identical charges at a given pH. The selectivity can be manipulated by the addition of organic solvent to the mobile phases; this increases the retention of some peptides and decreases the retention of others. The retention in any given case may reflect a combination of steric factors and non-electrostatic interactions. Selectivity was complementary to that of reversed-phase chromatography (RPC) materials. Excellent purifications were obtained by sequential use of PolySULFOETHYL Aspartamide and RPC columns for purification of peptides from crude tissue extracts. The new cation exchanger is quite promising as a supplement to RPC for general peptide chromatography. PMID:2844843

  14. Peptide cotransmitter release from motorneuron B16 in aplysia californica: costorage, corelease, and functional implications.

    PubMed

    Vilim, F S; Cropper, E C; Price, D A; Kupfermann, I; Weiss, K R

    2000-03-01

    Many neurons contain multiple peptide cotransmitters in addition to their classical transmitters. We are using the accessory radula closer neuromuscular system of Aplysia, which participates in feeding in these animals, to define the possible consequences of multiple modulators converging on single targets. How these modulators are released onto their targets is of critical importance in understanding the outcomes of their modulatory actions and their physiological role. Here we provide direct evidence that the partially antagonistic families of modulatory peptides, the myomodulins and buccalins, synthesized by motorneuron B16 are costored and coreleased in fixed ratios. We show that this release is calcium-dependent and independent of muscle contraction. Furthermore, we show that peptide release is initiated at the low end of the physiological range of motorneuron firing frequency and that it increases with increasing motorneuron firing frequency. The coordination of peptide release with the normal operating range of a neuron may be a general phenomenon and suggests that the release of peptide cotransmitters may exhibit similar types of regulation and plasticity as have been observed for classical transmitters. Stimulation paradigms that increase muscle contraction amplitude or frequency also increase peptide release from motor neuron B16. The net effect of the modulatory peptide cotransmitters released from motorneuron B16 would be to increase relaxation rate and therefore allow more frequent and/or larger contractions to occur without increased resistance to antagonist muscles. The end result of this modulation could be to maximize the efficiency of feeding. PMID:10684904

  15. SpyLigase peptide–peptide ligation polymerizes affibodies to enhance magnetic cancer cell capture

    PubMed Central

    Fierer, Jacob O.; Veggiani, Gianluca; Howarth, Mark

    2014-01-01

    Individual proteins can now often be modified with atomic precision, but there are still major obstacles to connecting proteins into larger assemblies. To direct protein assembly, ideally, peptide tags would be used, providing the minimal perturbation to protein function. However, binding to peptides is generally weak, so assemblies are unstable over time and disassemble with force or harsh conditions. We have recently developed an irreversible protein–peptide interaction (SpyTag/SpyCatcher), based on a protein domain from Streptococcus pyogenes, that locks itself together via spontaneous isopeptide bond formation. Here we develop irreversible peptide–peptide interaction, through redesign of this domain and genetic dissection into three parts: a protein domain termed SpyLigase, which now ligates two peptide tags to each other. All components expressed efficiently in Escherichia coli and peptide tags were reactive at the N terminus, at the C terminus, or at internal sites. Peptide–peptide ligation enabled covalent and site-specific polymerization of affibodies or antibodies against the tumor markers epidermal growth factor receptor (EGFR) and HER2. Magnetic capture of circulating tumor cells (CTCs) is one of the most promising approaches to improve cancer prognosis and management, but CTC capture is limited by inefficient recovery of cells expressing low levels of tumor antigen. SpyLigase-assembled protein polymers made possible the isolation of cancerous cells expressing lower levels of tumor antigen and should have general application in enhancing molecular capture. PMID:24639550

  16. Immunomodulatory and Anti-Inflammatory Activities of Chicken Cathelicidin-2 Derived Peptides.

    PubMed

    van Dijk, Albert; van Eldik, Mandy; Veldhuizen, Edwin J A; Tjeerdsma-van Bokhoven, Hanne L M; de Zoete, Marcel R; Bikker, Floris J; Haagsman, Henk P

    2016-01-01

    Host Defence Peptides and derived peptides are promising classes of antimicrobial and immunomodulatory lead compounds. For this purpose we examined whether chicken cathelicidin-2 (CATH-2)-derived peptides modulate the function and inflammatory response of avian immune cells. Using a chicken macrophage cell line (HD11) we found that full-length CATH-2 dose-dependently induced transcription of chemokines CXCLi2/IL-8, MCP-3 and CCLi4/RANTES, but not of pro-inflammatory cytokine IL-1β. In addition, CATH-2 efficiently inhibited IL-1β and nitric oxide production by HD11 cells induced by different sources of lipopolysaccharides (LPS). N-terminal truncated CATH-2 derived peptides maintained the capacity to selectively induce chemokine transcription, but despite their high LPS affinity several analogs lacked LPS-neutralizing capacity. Substitution of phenylalanine residues by tryptophan introduced endotoxin neutralization capacity in inactive truncated CATH-2 derived peptides. In contrast, amino acid substitution of phenylalanine by tyrosine abrogated endotoxin neutralization activity of CATH-2 analogs. These findings support a pivotal role for aromatic residues in peptide-mediated endotoxin neutralization by CATH-2 analogs and were shown to be independent of LPS affinity. The capacity to modulate chemokine production and dampen endotoxin-induced pro-inflammatory responses in chicken immune cells implicates that small CATH-2 based peptides could serve as leads for the design of CATH-2 based immunomodulatory anti-infectives. PMID:26848845

  17. Cell-Penetrating HIV1 TAT Peptides Can Generate Pores in Model Membranes

    PubMed Central

    Ciobanasu, Corina; Siebrasse, Jan Peter; Kubitscheck, Ulrich

    2010-01-01

    Abstract Cell-penetrating peptides like the cationic human immunodeficiency virus-1 trans-acting activator of transcription (TAT) peptide have the capability to traverse cell membranes and to deliver large molecular cargoes into the cellular interior. We used optical sectioning and state-of-the-art single-molecule microscopy to examine the passive membrane permeation of fluorescently labeled TAT peptides across the membranes of giant unilamellar vesicles (GUVs). In GUVs formed by phosphatidylcholine and cholesterol only, no translocation of TAT up to a concentration of 2 μM into the GUVs could be observed. At the same peptide concentration, but with 40 mol % of anionic phosphatidylserine in the membrane, rapid translocation of TAT peptides across the bilayers was detected. Efficient translocation of TAT peptides was observed across GUVs containing 20 mol % of phosphatidylethanolamine, which is known to induce a negative curvature into membranes. We discovered that TAT peptides are not only capable of penetrating membranes directly in a passive manner, but they were also able to form physical pores with sizes in the nanometer range, which could be passed by small dye tracer molecules. Lipid topology and anionic charge of the lipid bilayer are decisive parameters for pore formation. PMID:20655843

  18. Computer-aided design of peptide near infrared fluorescent probe for tumor diagnosis

    NASA Astrophysics Data System (ADS)

    Zhang, Congying; Gu, Yueqing

    2014-09-01

    Integrin αvβ3 receptors are expressed on activated endothelial cells during neovascularization to maintain tumor growth, so they become hot research tagets in cancer diagnosis. Peptides possess several attractive features when compared to protein and small molecule, such as small size and high structural compatibility with target proteins. Efficient design of high-affinity peptide ligands to Integrin αvβ3 receptors has been an important problem. Designed peptides in silico provide a valuable and high-selectivity peptide, meanwhile decrease the time of drug screening. In this study, we design peptide which can bind with integrin αvβ3 via computer, and then synthesis near infrared fluorescent probe. The characterization of this near infrared fluorescent probe was detected by UV. To investigate the tumor cell targeting of this probe, it was labeled with visible fluorescent dye Rhodamine B (RhB) for microscopy. To evaluate the targeting capability of this near infrared fluorescent probe, mice bearing integrin αvβ3 positive tumor xenografts were used. In vitro cellular experiments indicated that this probe have a clear binding affinity to αvβ3-positive tumor cells. In vivo experiments confirmed the receptor binding specificity of this probe. The peptide of computational design can bind with integrin αvβ3. Combined peptide near-infrared fluorescent probe with imaging technology use for clinical and tumor diagnosis have a greater development in future.

  19. Peptides in Receptor-Mediated Radiotherapy: From Design to the Clinical Application in Cancers

    PubMed Central

    Lozza, Catherine; Navarro-Teulon, Isabelle; Pèlegrin, André; Pouget, Jean-Pierre; Vivès, Eric

    2013-01-01

    Short peptides can show high affinity for specific receptors overexpressed on tumor cells. Some of these are already used in cancerology as diagnostic tools and others are in clinical trials for therapeutic applications. Therefore, peptides exhibit great potential as a diagnostic tool but also as an alternative or an additional antitumoral approach upon the covalent attachment of a therapeutic moiety such as a radionuclide or a cytotoxic drug. The chemistry offers flexibility to graft onto the targeting-peptide either fluorine or iodine directly, or metallic radionuclides through appropriate chelating agent. Since short peptides are straightforward to synthesize, there is an opportunity to further improve existing peptides or to design new ones for clinical applications. However, several considerations have to be taken into account to optimize the recognition properties of the targeting-peptide to its receptor, to improve its stability in the biological fluids and its residence in the body, or to increase its overall therapeutic effect. In this review, we highlight the different aspects which need to be considered for the development of an efficient peptide receptor-mediated radionuclide therapy in different neoplasms. PMID:24093086

  20. Immunomodulatory and Anti-Inflammatory Activities of Chicken Cathelicidin-2 Derived Peptides

    PubMed Central

    van Dijk, Albert; van Eldik, Mandy; Veldhuizen, Edwin J. A.; Tjeerdsma-van Bokhoven, Hanne L. M.; de Zoete, Marcel R.; Bikker, Floris J.; Haagsman, Henk P.

    2016-01-01

    Host Defence Peptides and derived peptides are promising classes of antimicrobial and immunomodulatory lead compounds. For this purpose we examined whether chicken cathelicidin-2 (CATH-2)-derived peptides modulate the function and inflammatory response of avian immune cells. Using a chicken macrophage cell line (HD11) we found that full-length CATH-2 dose-dependently induced transcription of chemokines CXCLi2/IL-8, MCP-3 and CCLi4/RANTES, but not of pro-inflammatory cytokine IL-1β. In addition, CATH-2 efficiently inhibited IL-1β and nitric oxide production by HD11 cells induced by different sources of lipopolysaccharides (LPS). N-terminal truncated CATH-2 derived peptides maintained the capacity to selectively induce chemokine transcription, but despite their high LPS affinity several analogs lacked LPS-neutralizing capacity. Substitution of phenylalanine residues by tryptophan introduced endotoxin neutralization capacity in inactive truncated CATH-2 derived peptides. In contrast, amino acid substitution of phenylalanine by tyrosine abrogated endotoxin neutralization activity of CATH-2 analogs. These findings support a pivotal role for aromatic residues in peptide-mediated endotoxin neutralization by CATH-2 analogs and were shown to be independent of LPS affinity. The capacity to modulate chemokine production and dampen endotoxin-induced pro-inflammatory responses in chicken immune cells implicates that small CATH-2 based peptides could serve as leads for the design of CATH-2 based immunomodulatory anti-infectives. PMID:26848845

  1. Requirements of the engineered leader peptide of nisin for inducing modification, export, and cleavage.

    PubMed

    Plat, Annechien; Kluskens, Leon D; Kuipers, Anneke; Rink, Rick; Moll, Gert N

    2011-01-01

    Nisin A is a pentacyclic peptide antibiotic produced by Lactococcus lactis. The leader peptide of prenisin keeps nisin inactive and has a role in inducing NisB- and NisC-catalyzed modifications of the propeptide and NisT-mediated export. The highly specific NisP cleaves off the leader peptide from fully modified and exported prenisin. We present here a detailed mutagenesis analysis of the nisin leader peptide. For alternative cleavage, we successfully introduced a putative NisP autocleavage site and sites for thrombin, enterokinase, Glu-C, and factor Xa in the C-terminal part of the leader peptide. Replacing residue F-18 with Trp or Thr strongly reduced production. On the other hand, D-19A, F-18H, F-18M, L-16D, L-16K, and L-16A enhanced production. Substitutions within and outside the FNLD box enhanced or reduced the transport efficiency. None of the above substitutions nor even an internal 6His tag from positions -13 to -8 had any effect on the capacity of the leader peptide to induce NisB and NisC modifications. Therefore, these data demonstrate a large mutational freedom. However, simultaneous replacement of the FNLD amino acids by four alanines strongly reduced export and even led to a complete loss of the capacity to induce modifications. Reducing the leader peptide to MSTKDFNLDLR led to 3- or 4-fold dehydration. Taken together, the FNLD box is crucial for inducing posttranslational modifications. PMID:21097596

  2. Plasma proteome coverage is increased by unique peptide recovery from sodium deoxycholate precipitate.

    PubMed

    Serra, Aida; Zhu, Hongbin; Gallart-Palau, Xavier; Park, Jung Eun; Ho, Hee Haw; Tam, James P; Sze, Siu Kwan

    2016-03-01

    The ionic detergent sodium deoxycholate (SDC) is compatible with in-solution tryptic digestion and LC-MS/MS-based shotgun proteomics by virtue of being easy to separate from the peptide products via precipitation in acidic buffers. However, it remains unclear whether unique human peptides co-precipitate with SDC during acid treatment of complex biological samples. In this study, we demonstrate for the first time that a large quantity of unique peptides in human blood plasma can be co-precipitated with SDC using an optimized sample preparation method prior to shotgun proteomic analysis. We show that the plasma peptides co-precipitated with SDC can be successfully recovered using a sequential re-solubilization and precipitation procedure, and that this approach is particularly efficient at the extraction of long peptides. Recovery of peptides from the SDC pellet dramatically increased overall proteome coverage (>60 %), thereby improving the identification of low-abundance proteins and enhancing the identification of protein components of membrane-bound organelles. In addition, when we analyzed the physiochemical properties of the co-precipitated peptides, we observed that SDC-based sample preparation improved the identification of mildly hydrophilic/hydrophobic proteins that would otherwise be lost upon discarding the pellet. These data demonstrate that the optimized SDC protocol is superior to sodium dodecyl sulfate (SDS)/urea treatment for identifying plasma biomarkers by shotgun proteomics. PMID:26804737

  3. Protective immunogenicity of two synthetic peptides selected from the amino acid sequence of Bordetella pertussis toxin subunit S1.

    PubMed Central

    Askelöf, P; Rodmalm, K; Wrangsell, G; Larsson, U; Svenson, S B; Cowell, J L; Undén, A; Bartfai, T

    1990-01-01

    Two peptides, corresponding to amino acids 1-17 and 169-186 of the amino acid sequence of pertussis toxin (PT) subunit S1, were synthesized and coupled to the diphtheria toxin cross-reactive mutant protein CRM 197 and evaluated for immunogenicity and protective capacity against PT challenge in vivo. The peptide-CRM conjugates induced high antibody titers against native toxin in mice (BALB/c, C57/Black, and outbred NMRI) as measured by ELISA. Upon PT challenge (0.5 microgram of toxin) of the NMRI mice, the CRM conjugates of peptides 1-17 and 169-186 fully protected the mice from PT-induced leukocytosis. Immunization with the corresponding bovine serum albumin conjugates of these two peptides also fully protected mice. Rabbit antiserum to the peptide 1-17-CRM conjugate was highly efficient in inhibiting the ADP-ribosylating activity of PT but did not neutralize the clustering effect of PT on Chinese hamster ovary cells. In contrast, the rabbit antiserum raised against the peptide 169-186-CRM conjugate neutralized the clustering effect of PT on Chinese hamster ovary cells but did not inhibit the enzymatic activity of PT. Peptide 169-186-CRM conjugates mimic the immunoglobulin binding properties of PT and also cause clustering of Chinese hamster ovary cells. The CRM conjugates of these two peptides constitute a synthetic pertussis vaccine candidate with the ability to provide a chemically well-defined, safe, and efficient pertussis vaccine. Images PMID:2304902

  4. Chiral Heteroditopic Baskets Designed from Triazolated Calixarenes and Short Peptides.

    PubMed

    Gorbunov, Alexander; Sokolova, Nadezhda; Kudryashova, Elena; Nenajdenko, Valentine; Kovalev, Vladimir; Vatsouro, Ivan

    2016-08-22

    Cone calix[4]arenes and calix[6]arenes bearing two, three, and four short peptide units each having two chiral carbon atoms were prepared. The syntheses were performed by using an efficient modular approach that includes the Ugi preparation of the azido-peptide followed by its reactions with the propargylated calixarenes under CuAAC (Cu(I) -catalyzed azide-alkyne cycloaddition) conditions. The three novel multitopic hosts were probed for their ability to bind metal ions by UV titration, and showed the highest complexation efficiency towards copper(II) and lead(II). These two cations possessed quite different complexation modes with copper(II) bound predominantly by multiple-triazole sites, in contrast to lead(II), which is stabilized mainly by multiple interactions with amide groups of the peptide units. Circular dichroism data for the free chiral hosts, their equimolar mixtures with copper(II) perchlorate and lead(II) perchlorate, and for tertiary mixtures of all three compounds showed the formation of mono- and binuclear complexes, or a switching behavior, depending on the structure of the host and the addition order of the cations. PMID:27444143

  5. Peptides and methods against diabetes

    DOEpatents

    Albertini, Richard J.; Falta, Michael T.

    2000-01-01

    This invention relates to methods of preventing or reducing the severity of diabetes. In one embodiment, the method involves administering to the individual a peptide having substantially the sequence of a on-conserved region sequence of a T cell receptor present on the surface of T cells mediating diabetes or a fragment thereof, wherein the peptide or fragment is capable of causing an effect on the immune system to regulate the T cells. In particular, the T cell receptor has the V.beta. regional V.beta.6 or V.beta.14. In another embodiment, the method involves gene therapy. The invention also relates to methods of diagnosing diabetes by determining the presence of diabetes predominant T cell receptors.

  6. A simple three-step method for design and affinity testing of new antisense peptides: an example of erythropoietin.

    PubMed

    Štambuk, Nikola; Manojlović, Zoran; Turčić, Petra; Martinić, Roko; Konjevoda, Paško; Weitner, Tin; Wardega, Piotr; Gabričević, Mario

    2014-01-01

    Antisense peptide technology is a valuable tool for deriving new biologically active molecules and performing peptide-receptor modulation. It is based on the fact that peptides specified by the complementary (antisense) nucleotide sequences often bind to each other with a higher specificity and efficacy. We tested the validity of this concept on the example of human erythropoietin, a well-characterized and pharmacologically relevant hematopoietic growth factor. The purpose of the work was to present and test simple and efficient three-step procedure for the design of an antisense peptide targeting receptor-binding site of human erythropoietin. Firstly, we selected the carboxyl-terminal receptor binding region of the molecule (epitope) as a template for the antisense peptide modeling; Secondly, we designed an antisense peptide using mRNA transcription of the epitope sequence in the 3'→5' direction and computational screening of potential paratope structures with BLAST; Thirdly, we evaluated sense-antisense (epitope-paratope) peptide binding and affinity by means of fluorescence spectroscopy and microscale thermophoresis. Both methods showed similar Kd values of 850 and 816 µM, respectively. The advantages of the methods were: fast screening with a small quantity of the sample needed, and measurements done within the range of physicochemical parameters resembling physiological conditions. Antisense peptides targeting specific erythropoietin region(s) could be used for the development of new immunochemical methods. Selected antisense peptides with optimal affinity are potential lead compounds for the development of novel diagnostic substances, biopharmaceuticals and vaccines. PMID:24865486

  7. The functional interaction between abaecin and pore-forming peptides indicates a general mechanism of antibacterial potentiation.

    PubMed

    Rahnamaeian, Mohammad; Cytryńska, Małgorzata; Zdybicka-Barabas, Agnieszka; Vilcinskas, Andreas

    2016-04-01

    Long-chain proline-rich antimicrobial peptides such as bumblebee abaecin show minimal activity against Gram-negative bacteria despite binding efficiently to specific intracellular targets. We recently reported that bumblebee abaecin interacts with Escherichia coli DnaK but shows negligible antibacterial activity unless it is combined with sublethal doses of the pore-forming peptide hymenoptaecin. These two bumblebee peptides are co-expressed in vivo in response to a bacterial challenge. Here we investigated whether abaecin interacts similarly with pore-forming peptides from other organisms by replacing hymenoptaecin with sublethal concentrations of cecropin A (0.3μM) or stomoxyn (0.05μM). We found that abaecin increased the membrane permeabilization effects of both peptides, confirming that it can reduce the minimal inhibitory concentrations of pore-forming peptides from other species. We also used atomic force microscopy to show that 20μM abaecin combined with sublethal concentrations of cecropin A or stomoxyn causes profound structural changes to the bacterial cell surface. Our data indicate that the potentiating functional interaction between abaecin and pore-forming peptides is not restricted to specific co-expressed peptides from the same species but is likely to be a general mechanism. Combination therapies based on diverse insect-derived peptides could therefore be used to tackle bacteria that are recalcitrant to current antibiotics. PMID:26845197

  8. α-RgIB: A Novel Antagonist Peptide of Neuronal Acetylcholine Receptor Isolated from Conus regius Venom

    PubMed Central

    Braga, Maria Cristina Vianna; Nery, Arthur Andrade; Ulrich, Henning; Konno, Katsuhiro; Sciani, Juliana Mozer; Pimenta, Daniel Carvalho

    2013-01-01

    Conus venoms are rich sources of biologically active peptides that act specifically on ionic channels and metabotropic receptors present at the neuromuscular junction, efficiently paralyzing the prey. Each species of Conus may have 50 to 200 uncharacterized bioactive peptides with pharmacological interest. Conus regius is a vermivorous species that inhabits Northeastern Brazilian tropical waters. In this work, we characterized one peptide with activity on neuronal acetylcholine receptor (nAChR). Crude venom was purified by reverse-phase HPLC and selected fractions were screened and sequenced by mass spectrometry, MALDI-ToF, and ESI-Q-ToF, respectively. A new peptide was identified, bearing two disulfide bridges. The novel 2,701 Da peptide belongs to the cysteine framework I, corresponding to the cysteine pattern CC-C-C. The biological activity of the purified peptide was tested by intracranial injection in mice, and it was observed that high concentrations induced hyperactivity in the animals, whereas lower doses caused breathing difficulty. The activity of this peptide was assayed in patch-clamp experiments, on nAChR-rich cells, in whole-cell configuration. The peptide blocked slow rise-time neuronal receptors, probably α3β4 and/or α3β4α5 subtype. According to the nomenclature, the new peptide was designated as α-RgIB. PMID:23533449

  9. Heat-enhanced peptide synthesis on Teflon-patterned paper.

    PubMed

    Deiss, Frédérique; Yang, Yang; Matochko, Wadim L; Derda, Ratmir

    2016-06-14

    In this report, we describe the methodology for 96 parallel organic syntheses of peptides on Teflon-patterned paper assisted by heating with an infra-red lamp. SPOT synthesis is an important technology for production of peptide arrays on a paper-based support for rapid identification of peptide ligands, epitope mapping, and identification of bio-conjugation reactions. The major drawback of the SPOT synthesis methodology published to-date is suboptimal reaction conversion due to mass transport limitations in the unmixed reaction spot. The technology developed in this report overcomes these problems by changing the environment of the reaction from static to dynamic (flow-through), and further accelerating the reaction by selective heating of the reaction support in contact with activated amino acids. Patterning paper with Teflon allows for droplets of organic solvents to be confined in a zone on the paper array and flow through the paper at a well-defined rate and provide a convenient, power-free setup for flow-through solid-phase synthesis and efficient assembly of peptide arrays. We employed an infra-red (IR) lamp to locally heat the cellulosic support during the flow-through delivery of the reagents to each zone of the paper-based array. We demonstrate that IR-heating in solid phase peptide synthesis shortened the reaction time necessary for amide bond formation down to 3 minutes; in some couplings of alpha amino acids, conversion rates increased up to fifteen folds. The IR-heating improved the assembly of difficult sequences, such as homo-oligomers of all 20 natural amino acids. PMID:27184468

  10. Complexes of DNA with cationic peptides: conditions of formation and factors effecting internalization by mammalian cells.

    PubMed

    Dizhe, E B; Ignatovich, I A; Burov, S V; Pohvoscheva, A V; Akifiev, B N; Efremov, A M; Perevozchikov, A P; Orlov, S V

    2006-12-01

    This work was devoted to the study of conditions of the formation of DNA/K8 complex and analysis of factors effecting the entry of DNA/K8 complex into mammalian cells in comparison with DNA complexes with arginine-rich fragment (47-57) of human immunodeficiency virus (type 1) transcription factor Tat (Tat peptide). The stoichiometry of positively charged DNA/K8 complexes has been studied for the first time. Non-cooperative character of DNA-K8 interaction was revealed. It has been shown that along with the positive charge of such complexes, the presence of an excess of free K8 peptide in the culture medium is a necessary condition for maximal efficiency of cell transfection with DNA/K8 complexes. A stimulatory effect of free K8 peptide on the efficiency of mammalian cell transfection by DNA/K8 complexes is likely to be mediated by the interactions of cationic peptide K8 with negatively charged proteoglycans on the cell surface, which leads to protection of DNA/K8 complexes from disruption by cellular heparan sulfates. However, the protective role of free cationic peptides depends not only on their positive charge, but also on the primary structure of the peptide. In contrast with the results obtained for DNA complexes with molecular conjugates based on poly-L-lysine, the aggregation of DNA/K8 complexes leads to a significant increase in the expression of transferred gene. PMID:17223788

  11. Self-assembled, photoluminescent peptide hydrogel as a versatile platform for enzyme-based optical biosensors.

    PubMed

    Kim, Jae Hong; Lim, Seong Yoon; Nam, Dong Heon; Ryu, Jungki; Ku, Sook Hee; Park, Chan Beum

    2011-01-15

    A self-assembled peptide hydrogel consisting of Fmoc-diphenylalanine has been employed as a biosensing platform through the encapsulation of enzyme bioreceptors (e.g., glucose oxidase or horseradish peroxidase) and fluorescent reporters (e.g., CdTe and CdSe quantum dots). Enzymes and quantum dots (QDs) were physically immobilized within the hydrogel matrix in situ in a single step by simply mixing aqueous solution containing QDs and enzymes with monomeric peptide (Fmoc-diphenylalanine) solution. By using atomic force microscopy and scanning transmission electron microscopy, we observed that the self-assembled peptide hydrogel had a three-dimensional network of nanofibers (with a diameter of approximately 70-90 nm) that physically hybridized with QDs and encapsulated enzyme bioreceptors with a minimal leakage. We successfully applied the peptide hydrogel to the detection of analytes such as glucose and toxic phenolic compounds by using a photoluminescence quenching of the hybridized QDs. The Michaelis-Menten constant (K(M)) of the photoluminescent peptide hydrogel was found to be 3.12 mM (GOx for glucose) and 0.82 mM (HRP for hydroquinone), respectively, which were much lower than those of conventional gel materials. These results suggest that the peptide hydrogel is an alternative optical biosensing platform with practical advantages such as simple fabrication via self-assembly, efficient diffusion of target analytes, and high encapsulation efficiencies for fluorescent reporters and bioreceptors. PMID:20171868

  12. Phosphorylated Peptide Functionalization of Lanthanide Upconversion Nanoparticles for Tuning Nanomaterial-Cell Interactions.

    PubMed

    Yao, Chi; Wei, Caiyi; Huang, Zhi; Lu, Yiqing; El-Toni, Ahmed Mohamed; Ju, Dianwen; Zhang, Xiangmin; Wang, Wenning; Zhang, Fan

    2016-03-23

    Peptide modification of nanoparticles with high efficiency is critical in determining the properties and bioapplications of nanoparticles, but the methodology remains a challenging task. Here, by using the phosphorylated linear and cyclic peptide with the arginine-glycine-aspartic acid (RGD) targeting motifs as typical examples, the peptides binding efficiency for the inorganic metal compound nanoparticles was increased significantly after the phosphorylation treatment, and the modification allowed for improving the selectivity and signal-to-noise ratio for cancer targeting and reduced the toxicity derived from nonspecific interactions of nanoparticles with cells owing to the higher amount of phosphopeptide binding. In addition, molecular dynamics (MD) simulations of various peptides on inorganic metal compound surfaces revealed that the peptide adsorption on the surface is mainly driven by electrostatic interactions between phosphate oxygen and the polarized interfacial water layer, consistent with the experimental observation of the strong binding propensity of phosphorylated peptides. Significantly, with the RGD phosphopeptide surface modification, these nanoparticles provide a versatile tool for tuning material-cell interactions to achieve the desired level of autophagy and may prove useful for various diagnostic and therapeutic applications. PMID:26927957

  13. Facile preparation of mesoporous carbon-silica-coated graphene for the selective enrichment of endogenous peptides.

    PubMed

    Zhang, Quanqing; Zhang, Qinghe; Xiong, Zhichao; Wan, Hao; Chen, Xiaoting; Li, Hongmei; Zou, Hanfa

    2016-01-01

    A sandwich-like composite composed of ordered mesoporous carbon-silica shell-coated graphene (denoted as graphene@mSiO2-C) was prepared by an in-situ carbonation strategy. A mesoporous silica shell was synthesized by a sol-gel method, and cetyltrimethyl ammonium bromide inside the mesopores were in-situ carbonized as a carbon source to obtain a carbon-silica shell. The resulting mesoporous carbon-silica material with a sandwich structure possesses a high surface area (600 m(2) g(-1)), large pore volume (0.587 cm(3) g(-1)), highly ordered mesoporous pore (3 nm), and high carbon content (30%). This material shows not only high hydrophobicity of graphene and mesoporous carbon but also a hydrophilic silica framework that ensures excellent dispersibility in aqueous solution. The material can capture many more peptides from bovine serum albumin tryptic digests than mesoporous silica shell-coated graphene, demonstrating great enrichment efficiency for peptides. Furthermore, the prepared composite was applied to the enrichment of low-abundance endogenous peptides in human serum. Based on Matrix-Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrometry identification, the graphene@mSiO2-C could efficiently size-exclude proteins and enriches the low-abundant peptides on the graphene and mesoporous carbon. And based on the LC-MS/MS results, 892 endogenous peptides were obtained by graphene@mSiO2-C, hinting at its great potential in peptides analysis. PMID:26695263

  14. Antimicrobial Peptides in Human Sepsis.

    PubMed

    Martin, Lukas; van Meegern, Anne; Doemming, Sabine; Schuerholz, Tobias

    2015-01-01

    Nearly 100 years ago, antimicrobial peptides (AMPs) were identified as an important part of innate immunity. They exist in species from bacteria to mammals and can be isolated in body fluids and on surfaces constitutively or induced by inflammation. Defensins have anti-bacterial effects against Gram-positive and Gram-negative bacteria as well as anti-viral and anti-yeast effects. Human neutrophil peptides (HNP) 1-3 and human beta-defensins (HBDs) 1-3 are some of the most important defensins in humans. Recent studies have demonstrated higher levels of HNP 1-3 and HBD-2 in sepsis. The bactericidal/permeability-increasing protein (BPI) attenuates local inflammatory response and decreases systemic toxicity of endotoxins. Moreover, BPI might reflect the severity of organ dysfunction in sepsis. Elevated plasma lactoferrin is detected in patients with organ failure. HNP 1-3, lactoferrin, BPI, and heparin-binding protein are increased in sepsis. Human lactoferrin peptide 1-11 (hLF 1-11) possesses antimicrobial activity and modulates inflammation. The recombinant form of lactoferrin [talactoferrin alpha (TLF)] has been shown to decrease mortality in critically ill patients. A phase II/III study with TLF in sepsis did not confirm this result. The growing number of multiresistant bacteria is an ongoing problem in sepsis therapy. Furthermore, antibiotics are known to promote the liberation of pro-inflammatory cell components and thus augment the severity of sepsis. Compared to antibiotics, AMPs kill bacteria but also neutralize pathogenic factors such as lipopolysaccharide. The obstacle to applying naturally occurring AMPs is their high nephro- and neurotoxicity. Therefore, the challenge is to develop peptides to treat septic patients effectively without causing harm. This overview focuses on natural and synthetic AMPs in human and experimental sepsis and their potential to provide significant improvements in the treatment of critically ill with severe infections. PMID

  15. Antimicrobial Peptides in Human Sepsis

    PubMed Central

    Martin, Lukas; van Meegern, Anne; Doemming, Sabine; Schuerholz, Tobias

    2015-01-01

    Nearly 100 years ago, antimicrobial peptides (AMPs) were identified as an important part of innate immunity. They exist in species from bacteria to mammals and can be isolated in body fluids and on surfaces constitutively or induced by inflammation. Defensins have anti-bacterial effects against Gram-positive and Gram-negative bacteria as well as anti-viral and anti-yeast effects. Human neutrophil peptides (HNP) 1–3 and human beta-defensins (HBDs) 1–3 are some of the most important defensins in humans. Recent studies have demonstrated higher levels of HNP 1–3 and HBD-2 in sepsis. The bactericidal/permeability-increasing protein (BPI) attenuates local inflammatory response and decreases systemic toxicity of endotoxins. Moreover, BPI might reflect the severity of organ dysfunction in sepsis. Elevated plasma lactoferrin is detected in patients with organ failure. HNP 1–3, lactoferrin, BPI, and heparin-binding protein are increased in sepsis. Human lactoferrin peptide 1–11 (hLF 1–11) possesses antimicrobial activity and modulates inflammation. The recombinant form of lactoferrin [talactoferrin alpha (TLF)] has been shown to decrease mortality in critically ill patients. A phase II/III study with TLF in sepsis did not confirm this result. The growing number of multiresistant bacteria is an ongoing problem in sepsis therapy. Furthermore, antibiotics are known to promote the liberation of pro-inflammatory cell components and thus augment the severity of sepsis. Compared to antibiotics, AMPs kill bacteria but also neutralize pathogenic factors such as lipopolysaccharide. The obstacle to applying naturally occurring AMPs is their high nephro- and neurotoxicity. Therefore, the challenge is to develop peptides to treat septic patients effectively without causing harm. This overview focuses on natural and synthetic AMPs in human and experimental sepsis and their potential to provide significant improvements in the treatment of critically ill with severe infections

  16. PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses.

    PubMed

    Ma, Wenxue; Chen, Mingshui; Kaushal, Sharmeela; McElroy, Michele; Zhang, Yu; Ozkan, Cengiz; Bouvet, Michael; Kruse, Carol; Grotjahn, Douglas; Ichim, Thomas; Minev, Boris

    2012-01-01

    The peptide vaccine clinical trials encountered limited success because of difficulties associated with stability and delivery, resulting in inefficient antigen presentation and low response rates in patients with cancer. The purpose of this study was to develop a novel delivery approach for tumor antigenic peptides in order to elicit enhanced immune responses using poly(DL-lactide-co-glycolide) nanoparticles (PLGA-NPs) encapsulating tumor antigenic peptides. PLGA-NPs were made using the double emulsion-solvent evaporation method. Artificial antigen-presenting cells were generated by human dendritic cells (DCs) loaded with PLGA-NPs encapsulating tumor antigenic peptide(s). The efficiency of the antigen presentation was measured by interferon-γ ELISpot assay (Vector Laboratories, Burlingame, CA). Antigen-specific cytotoxic T lymphocytes (CTLs) were generated and evaluated by CytoTox 96(®) Non-Radioactive Cytotoxicity Assay (Promega, Fitchburg, WI). The efficiency of the peptide delivery was compared between the methods of emulsification in incomplete Freund's adjuvant and encapsulation in PLGA-NPs. Our results showed that most of the PLGA-NPs were from 150 nm to 500 nm in diameter, and were negatively charged at pH 7.4 with a mean zeta potential of -15.53 ± 0.71 mV; the PLGA-NPs could be colocalized in human DCs in 30 minutes of incubation. Human DCs loaded with PLGA-NPs encapsulating peptide induced significantly stronger CTL cytotoxicity than those pulsed with free peptide, while human DCs loaded with PLGA-NPs encapsulating a three-peptide cocktail induced a significantly greater CTL response than those encapsulating a two-peptide cocktail. Most importantly, the peptide dose encapsulated in PLGA-NPs was 63 times less than that emulsified in incomplete Freund's adjuvant, but it induced a more powerful CTL response in vivo. These results demonstrate that the delivery of peptides encapsulated in PLGA-NPs is a promising approach to induce effective antitumor CTL

  17. Antimicrobial Peptides: Versatile Biological Properties

    PubMed Central

    Pushpanathan, Muthuirulan; Rajendhran, Jeyaprakash

    2013-01-01

    Antimicrobial peptides are diverse group of biologically active molecules with multidimensional properties. In recent past, a wide variety of AMPs with diverse structures have been reported from different sources such as plants, animals, mammals, and microorganisms. The presence of unusual amino acids and structural motifs in AMPs confers unique structural properties to the peptide that attribute for their specific mode of action. The ability of these active AMPs to act as multifunctional effector molecules such as signalling molecule, immune modulators, mitogen, antitumor, and contraceptive agent makes it an interesting candidate to study every aspect of their structural and biological properties for prophylactic and therapeutic applications. In addition, easy cloning and recombinant expression of AMPs in heterologous plant host systems provided a pipeline for production of disease resistant transgenic plants. Besides these properties, AMPs were also used as drug delivery vectors to deliver cell impermeable drugs to cell interior. The present review focuses on the diversity and broad spectrum antimicrobial activity of AMPs along with its multidimensional properties that could be exploited for the application of these bioactive peptides as a potential and promising drug candidate in pharmaceutical industries. PMID:23935642

  18. Solid-Phase Synthesis, Characterization, and Cellular Activities of Collagen-Model Nanodiamond-Peptide Conjugates

    PubMed Central

    Knapinska, Anna M.; Tokmina-Roszyk, Dorota; Amar, Sabrina; Tokmina-Roszyk, Michal; Mochalin, Vadym N.; Gogotsi, Yury; Cosme, Patrick; Terentis, Andrew C.; Fields, Gregg B.

    2015-01-01

    Nanodiamonds (NDs) have received considerable attention as potential drug delivery vehicles. NDs are small (~5 nm diameter), can be surface modified in a controllable fashion with a variety of functional groups, and have little observed toxicity in vitro and in vivo. However, most biomedical applications of NDs utilize surface adsorption of biomolecules, as opposed to covalent attachment. Covalent modification provides reliable and reproducible ND–biomolecule ratios, and alleviates concerns over biomolecule desorption prior to delivery. The present study has outlined methods for the efficient solid-phase conjugation of ND to peptides and characterization of ND–peptide conjugates. Utilizing collagen-derived peptides, the ND was found to support or even enhance the cell adhesion and viability activities of the conjugated sequence. Thus, NDs can be incorporated into peptides and proteins in a selective manner, where the presence of the ND could potentially enhance the in vivo activities of the biomolecule it is attached to. PMID:25753561

  19. Antimicrobial Peptide-Driven Colloidal Transformations in Liquid-Crystalline Nanocarriers.

    PubMed

    Gontsarik, Mark; Buhmann, Matthias T; Yaghmur, Anan; Ren, Qun; Maniura-Weber, Katharina; Salentinig, Stefan

    2016-09-01

    Designing efficient colloidal systems for the delivery of membrane active antimicrobial peptides requires in-depth understanding of their structural and morphological characteristics. Using dispersions of inverted type bicontinuous cubic phase (cubosomes), we examine the effect of integrating the amphiphilic peptide LL-37 at different concentrations on the self-assembled structure and evaluate its bactericidal ability against Escherichia coli. Small-angle X-ray scattering, dynamic light scattering, and cryogenic transmission electron microscopy show that LL-37 integrates into the bicontinuous cubic structure, inducing colloidal transformations to sponge and lamellar phases and micelles in a concentration-dependent manner. These investigations, together with in vitro evaluation studies using a clinically relevant bacterial strain, established the composition-nanostructure-activity relationship that can guide the design of new nanocarriers for antimicrobial peptides and may provide essential knowledge on the mechanisms underlying the bacterial membrane disruption with peptide-loaded nanostructures. PMID:27541048

  20. Modulating Charge Transfer Through Cyclic D,L α-Peptide Self-Assembly

    PubMed Central

    Horne, W. Seth; Ashkenasy, Nurit; Ghadiri, M. Reza

    2007-01-01

    We describe a concise solid support-based synthetic method for the preparation of cyclic D,L α-peptides bearing 1,4,5,8-naphthalenetetracarboxylic diimide (NDI) side chains. Studies of the structural and photoluminescence properties of these molecules in solution show that the hydrogen bond directed self-assembly of the cyclic D,L α-peptide backbone promotes intermolecular NDI excimer formation. The efficiency of NDI charge transfer in the resulting supramolecular assemblies is shown to depend on the length of the linker between the NDI and the peptide backbone, the distal NDI substituent, and the number of NDIs incorporated in a given structure. The design rationale and synthetic strategies described here should provide a basic blueprint for a series of self-assembling cyclic D,L α-peptide nanotubes with interesting optical and electronic properties. PMID:15624124

  1. Gene introduction into the mitochondria of Arabidopsis thaliana via peptide-based carriers

    NASA Astrophysics Data System (ADS)

    Chuah, Jo-Ann; Yoshizumi, Takeshi; Kodama, Yutaka; Numata, Keiji

    2015-01-01

    Available methods in plant genetic transformation are nuclear and plastid transformations because similar procedures have not yet been established for the mitochondria. The double membrane and small size of the organelle, in addition to its large population in cells, are major obstacles in mitochondrial transfection. Here we report the intracellular delivery of exogenous DNA localized to the mitochondria of Arabidopsis thaliana using a combination of mitochondria-targeting peptide and cell-penetrating peptide. Low concentrations of peptides were sufficient to deliver DNA into the mitochondria and expression of imported DNA reached detectable levels within a short incubation period (12 h). We found that electrostatic interaction with the cell membrane is not a critical factor for complex internalization, instead, improved intracellular penetration of mitochondria-targeted complexes significantly enhanced gene transfer efficiency. Our results delineate a simple and effective peptide-based method, as a starting point for the development of more sophisticated plant mitochondrial transfection strategies.

  2. Gene introduction into the mitochondria of Arabidopsis thaliana via peptide-based carriers

    PubMed Central

    Chuah, Jo-Ann; Yoshizumi, Takeshi; Kodama, Yutaka; Numata, Keiji

    2015-01-01

    Available methods in plant genetic transformation are nuclear and plastid transformations because similar procedures have not yet been established for the mitochondria. The double membrane and small size of the organelle, in addition to its large population in cells, are major obstacles in mitochondrial transfection. Here we report the intracellular delivery of exogenous DNA localized to the mitochondria of Arabidopsis thaliana using a combination of mitochondria-targeting peptide and cell-penetrating peptide. Low concentrations of peptides were sufficient to deliver DNA into the mitochondria and expression of imported DNA reached detectable levels within a short incubation period (12 h). We found that electrostatic interaction with the cell membrane is not a critical factor for complex internalization, instead, improved intracellular penetration of mitochondria-targeted complexes significantly enhanced gene transfer efficiency. Our results delineate a simple and effective peptide-based method, as a starting point for the development of more sophisticated plant mitochondrial transfection strategies. PMID:25583214

  3. Anticancer Activity of the Antimicrobial Peptide Scolopendrasin VII Derived from the Centipede, Scolopendra subspinipes mutilans.

    PubMed

    Lee, Joon Ha; Kim, In-Woo; Kim, Sang-Hee; Kim, Mi-Ae; Yun, Eun-Young; Nam, Sung-Hee; Ahn, Mi-Young; Kang, Dongchul; Hwang, Jae Sam

    2015-08-01

    Previously, we performed de novo RNA sequencing of Scolopendra subspinipes mutilans using high-throughput sequencing technology and identified several antimicrobial peptide candidates. Among them, a cationic antimicrobial peptide, scolopendrasin VII, was selected based on its physicochemical properties, such as length, charge, and isoelectric point. Here, we assessed the anticancer activities of scolopendrasin VII against U937 and Jurkat leukemia cell lines. The results showed that scolopendrasin VII decreased the viability of the leukemia cells in MTS assays. Furthermore, flow cytometric analysis and acridine orange/ethidium bromide staining revealed that scolopendrasin VII induced necrosis in the leukemia cells. Scolopendrasin VII-induced necrosis was mediated by specific interaction with phosphatidylserine, which is enriched in the membrane of cancer cells. Taken together, these data indicated that scolopendrasin VII induced necrotic cell death in leukemia cells, probably through interaction with phosphatidylserine. The results provide a useful anticancer peptide candidate and an efficient strategy for new anticancer peptide development. PMID:25907065

  4. Stability of peptide drugs in the colon.

    PubMed

    Wang, Jie; Yadav, Vipul; Smart, Alice L; Tajiri, Shinichiro; Basit, Abdul W

    2015-10-12

    This study was the first to investigate the colonic stability of 17 peptide molecules (insulin, calcitonin, glucagon, secretin, somatostatin, desmopressin, oxytocin, Arg-vasopressin, octreotide, ciclosporin, leuprolide, nafarelin, buserelin, histrelin, [D-Ser(4)]-gonadorelin, deslorelin, and goserelin) in a model of the large intestine using mixed human faecal bacteria. Of these, the larger peptides - insulin, calcitonin, somatostatin, glucagon and secretin - were metabolized rapidly, with complete degradation observed within 5 min. In contrast, a number of the smaller peptides - Arg-vasopressin, desmopressin, oxytocin, gonadorelin, goserelin, buserelin, leuprolide, nafarelin and deslorelin - degraded more slowly, while octreotide, histrelin and ciclosporin were seen to be more stable as compared to the other small peptides under the same conditions. Peptide degradation rate was directly correlated to peptide lipophilicity (logP); those peptides with a higher logP were more stable in the colonic model (R(2)=0.94). In the absence of human faecal bacteria, all peptides were stable. This study highlights the impact of the colonic environment - in particular, the gut microbiota - on the metabolism of peptide drugs, and identifies potential peptide candidates for drug delivery to the colon. PMID:26111980

  5. Construction of Lasso Peptide Fusion Proteins.

    PubMed

    Zong, Chuhan; Maksimov, Mikhail O; Link, A James

    2016-01-15

    Lasso peptides are a family of ribosomally synthesized and post-translationally modified peptides (RiPPs) typified by an isopeptide-bonded macrocycle between the peptide N-terminus and an aspartate or glutamate side chain. The C-terminal portion of the peptide threads through the N-terminal macrocycle to give the characteristic lasso fold. Because of the inherent stability, both proteolytic and often thermal, of lasso peptides, we became interested in whether proteins could be fused to the free C-terminus of lasso peptides. Here, we demonstrate fusion of two model proteins, the artificial leucine zipper A1 and the superfolder variant of GFP, to the C-terminus of the lasso peptide astexin-1. Successful lasso cyclization of the N-terminus of these fusion proteins requires a flexible linker in between the C-terminus of the lasso peptide and the N-terminus of the protein of interest. The ability to fuse lasso peptides to a protein of interest is an important step toward phage and bacterial display systems for the high-throughput screening of lasso peptide libraries for new functions. PMID:26492187

  6. Peptide mass fingerprinting peak intensity prediction: extracting knowledge from spectra.

    PubMed

    Gay, Steven; Binz, Pierre-Alain; Hochstrasser, Denis F; Appel, Ron D

    2002-10-01

    Matrix-assisted laser desorption/ionization-time of flight mass spectrometry has become a valuable tool in proteomics. With the increasing acquisition rate of mass spectrometers, one of the major issues is the development of accurate, efficient and automatic peptide mass fingerprinting (PMF) identification tools. Current tools are mostly based on counting the number of experimental peptide masses matching with theoretical masses. Almost all of them use additional criteria such as isoelectric point, molecular weight, PTMs, taxonomy or enzymatic cleavage rules to enhance prediction performance. However, these identification tools seldom use peak intensities as parameter as there is currently no model predicting the intensities based on the physicochemical properties of peptides. In this work, we used standard datamining methods such as classification and regression methods to find correlations between peak intensities and the properties of the peptides composing a PMF spectrum. These methods were applied on a dataset comprising a series of PMF experiments involving 157 proteins. We found that the C4.5 method gave the more informative results for the classification task (prediction of the presence or absence of a peptide in a spectra) and M5' for the regression methods (prediction of the normalized intensity of a peptide peak). The C4.5 result correctly classified 88% of the theoretical peaks; whereas the M5' peak intensities had a correlation coefficient of 0.6743 with the experimental peak intensities. These methods enabled us to obtain decision and model trees that can be directly used for prediction and identification of PMF results. The work performed permitted to lay the foundations of a method to analyze factors influencing the peak intensity of PMF spectra. A simple extension of this analysis could lead to improve the accuracy of the results by using a larger dataset. Additional peptide characteristics or even PMF experimental parameters can also be taken into

  7. A synthetic route to human insulin using isoacyl peptides.

    PubMed

    Liu, Fa; Luo, Ethan Y; Flora, David B; Mezo, Adam R

    2014-04-01

    The chemical synthesis of insulin has been a longstanding challenge, mainly because of the notorious hydrophobicity of the A chain and the complicated topology of this 51-mer peptide hormone consisting of two chains and three disulfide bonds. Reported herein is a new synthetic route utilizing the isoacyl peptide approach to address the hydrophobicity problems. The incorporation of isoacyl dipeptide segments into both A and B chains greatly improved their preparation and purification, and the RP-HPLC recovery of the chain ligation intermediates. The new route affords human insulin with a yield of 68 % based on the starting purified A chain and an overall yield of 24 % based on the substitution of the resin used for the preparation of A chain. To the best of our knowledge, this represents the most efficient route of human insulin chemical synthesis reported to date. PMID:24615765

  8. Peptide agonists of the thrombopoietin receptor.

    PubMed

    Dower, W J; Cwirla, S E; Balasubramanian, P; Schatz, P J; Baccanari, D P; Barrett, R W

    1998-01-01

    We have screened a variety of L-amino acid peptide libraries against the extracellular domain of the human thrombopoietin (HuTPO) receptor, c-Mpl. A large number of peptide ligands were recovered and categorized into two families. Peptides from each family compete with the binding of HuTPO and with the binding of peptides from the other familiy. Representative peptides were synthesized and found to activate the full-length HuTPO receptor expressed in Ba/F3 cells to promote proliferation. These peptide families show no apparent homology to the primary sequence of TPO. We have focused our optimization efforts on one of the peptides, a linear 14-mer (IEGPTLRQWLAARA) with an IC50 of 2 nM in a competition binding assay and an EC50 of 400 nM in the proliferation assay. In order to enhance the potency of the compound, we constructed dimeric peptides by linking the carboxy-termini of the 14-mers to a lysine branch. These molecules exhibited slightly higher affinity (0.5 nM) and greatly increased potency (0.1 nM). The EC50 of the dimeric peptide was equivalent to that of the 332 aa form of baculovirus-expressed recombinant HuTPO. As previously shown for the erythropoietin-mimetic peptides, the TPO-mimetic peptides probably activate the TPO receptor by binding and inducing receptor dimerization. This supposition is supported by the observation that covalent dimerization of the peptide enhances its potency by 4,000-fold over that of the monomer. The peptide dimer is also active in stimulating in vitro proliferation of progenitors and maturation of megakaryocytes from human bone marrow, and in promoting an increase in platelet count when administered to normal mice. PMID:11012174

  9. Position 156 influences the peptide repertoire and tapasin dependency of human leukocyte antigen B*44 allotypes

    PubMed Central

    Badrinath, Soumya; Saunders, Philippa; Huyton, Trevor; Aufderbeck, Susanne; Hiller, Oliver; Blasczyk, Rainer; Bade-Doeding, Christina

    2012-01-01

    Background Polymorphic differences between donor and recipient human leukocyte antigen class I molecules can result in graft-versus-host disease due to distinct peptide presentation. As part of the peptide-loading complex, tapasin plays an important role in selecting peptides from the pool of potential ligands. Class I polymorphisms can significantly alter the tapasin-mediated interaction with the peptide-loading complex and although most class I allotypes are highly dependent upon tapasin, some are able to load peptides independently of tapasin. Several human leukocyte antigen B*44 allotypes differ exclusively at position 156 (B*44:02156Asp, 44:03156Leu, 44:28156Arg, 44:35156Glu). From these alleles, only the high tapasin-dependency of human leukocyte antigen B*44:02 has been reported. Design and Methods We investigated the influence of position 156 polymorphisms on both the requirement of tapasin for efficient surface expression of each allotype and their peptide features. Genes encoding human leukocyte antigen B*44 variants bearing all possible substitutions at position 156 were lentivirally transduced into human leukocyte antigen class I-negative LCL 721.221 cells and the tapasin-deficient cell line LCL 721.220. Results Exclusively human leukocyte antigen B*44:28156Arg was expressed on the surface of tapasin-deficient cells, suggesting that the remaining B*44/156 variants are highly tapasin-dependent. Our computational analysis suggests that the tapasin-independence of human leukocyte antigen B*44:28156Arg is a result of stabilization of the peptide binding region and generation of a more peptide receptive state. Sequencing of peptides eluted from human leukocyte antigen B*44 molecules by liquid chromatography-electrospray ionization-mass spectrometry (LTQ-Orbitrap) demonstrated that both B*44:02 and B*44:28 share the same overall peptide motif and a certain percentage of their individual peptide repertoires in the presence and/or absence of tapasin

  10. A novel single-domain peptide, anti-LPS factor from prawn: synthesis of peptide, antimicrobial properties and complete molecular characterization.

    PubMed

    Arockiaraj, Jesu; Kumaresan, Venkatesh; Bhatt, Prasanth; Palanisamy, Rajesh; Gnanam, Annie J; Pasupuleti, Mukesh; Kasi, Marimuthu; Chaurasia, Mukesh Kumar

    2014-03-01

    In this study, we reported a complete molecular characterization including bioinformatics features, gene expression, peptide synthesis and its antimicrobial activities of an anti-lipopolysaccharide (LPS) factor (ALF) cDNA identified from the established cDNA library of freshwater prawn Macrobrachium rosenbergii (named as MrALF). The mature protein has an estimated molecular weight of 11.240 kDa with an isoelectric point of 9.46. The bioinformatics analysis showed that the MrALF contains an antimicrobial peptide (AMP) region between T54 and P77 with two conserved cysteine residues (Cys55 and Cys76) which have an anti-parallel β-sheet confirmation. The β-sheet is predicted as cationic with hydrophobic nature containing a net charge of +5. The depicted AMP region is determined to be amphipathic with a predicted hydrophobic face 'FPVFI'. A highest MrALF gene expression was observed in hemocytes and is up-regulated with virus [white spot syndrome baculovirus (WSBV)], bacteria (Aeromonas hydrophila) and Escherichia coli LPS at various time points. The LPS binding region of MrALF peptide was synthesized to study the antimicrobial property, bactericidal efficiency and hemolytic capacity. The peptide showed antimicrobial activity against both the Gram-negative and Gram-positive bacteria. The bactericidal assay showed that the peptide recognized the LPS of bacterial cell walls and binding on its substrate and thereby efficiently distinguishing the pathogens. The hemolytic activity of MrALF peptide is functioning in a concentration dependant manner. In summary, the comprehensive analysis of MrALF showed it to be an effective antimicrobial peptide and thus it plays a crucial role in the defense mechanism of M. rosenbergii. PMID:24269604

  11. Lysine-tagged peptide coupling onto polylactide nanoparticles coated with activated ester-based amphiphilic copolymer: a route to highly peptide-functionalized biodegradable carriers.

    PubMed

    Handké, Nadège; Ficheux, Damien; Rollet, Marion; Delair, Thierry; Mabrouk, Kamel; Bertin, Denis; Gigmes, Didier; Verrier, Bernard; Trimaille, Thomas

    2013-03-01

    Efficient biomolecule conjugation to the surface of biodegradable colloidal carriers is crucial for their targeting efficiency in drug/vaccine delivery applications. We here propose a potent strategy to drastically improve peptide immobilization on biodegradable polylactide (PLA) nanoparticles (NPs). Our approach particularly relies on the use of an amphiphilic block copolymer PLA-b-poly(N-acryloxysuccinimide-co-N-vinylpyrrolidone) (PLA-b-P(NAS-co-NVP)) as NP surface modifier, whose the N-succinimidyl (NS) ester functions of the NAS units along the polymer chain ensure N-terminal amine peptide coupling. The well-known immunostimulatory peptide sequence derived from the human interleukin 1β (IL-1β), VQGEESNDK, was coupled on the NPs of 169 nm mean diameter in phosphate buffer (pH 8, 10 mM). A maximum amount of 2 mg immobilized per gram of NPs (i.e. 0.042 peptidenm(-2)) was obtained. Introduction of a three lysine tag at the peptide N-terminus (KKKVQGEESNDK) resulted in a dramatic improvement of the immobilized peptide amounts (27.5 mg/g NP, i.e. 0.417 peptidenm(-2)). As a comparison, the density of tagged peptide achievable on surfactant free PLA NPs of similar size (140 nm), through classical EDC or EDC/NHS activation of the surface PLA carboxylic end-groups, was found to be 6 mg/g NP (i.e. 0.075 peptidenm(-2)), showing the decisive impact of the P(NAS-co-NVP)-based hairy corona for high peptide coupling. These results demonstrate that combined use of lysine tag and PLA-b-P(NAS-co-NVP) surfactant represents a valuable platform to tune and optimize surface bio-functionalization of PLA-based biodegradable carriers. PMID:23277324

  12. Glycosylated cell-penetrating peptides and their conjugates to a proapoptotic peptide: preparation by click chemistry and cell viability studies

    PubMed Central

    Dutot, Laurence; Lécorché, Pascaline; Burlina, Fabienne; Marquant, Rodrigue; Point, Vanessa; Sagan, Sandrine; Chassaing, Gérard; Mallet, Jean-Maurice

    2009-01-01

    Cell-penetrating peptides (CPPs), which are usually short basic peptides, are able to cross cell membranes and convey bioactive cargoes inside cells. CPPs have been widely used to deliver inside cells peptides, proteins, and oligonucleotides; however, their entry mechanisms still remain controversial. A major problem concerning CPPs remains their lack of selectivity to target a specific type of cell and/or an intracellular component. We have previously shown that myristoylation of one of these CPPs affected the intracellular distribution of the cargo. We report here on the synthesis of glycosylated analogs of the cell-penetrating peptide (R6/W3): Ac-RRWWRRWRR-NH2. One, two, or three galactose(s), with or without a spacer, were introduced into the sequence of this nonapeptide via a triazole link, the Huisgen reaction being achieved on a solid support. Four of these glycosylated CPPs were coupled via a disulfide bridge to the proapoptotic KLAK peptide, (KLAKLAKKLAKLAK), which alone does not enter into cells. The effect on cell viability and the uptake efficiency of different glycosylated conjugates were studied on CHO cells and were compared to those of the nonglycosylated conjugates: (R6/W3)S-S-KLAK and penetratinS-S-KLAK. We show that glycosylation significantly increases the cell viability of CHO cells compared to the nonglycosylated conjugates and concomitantly decreases the internalization of the KLAK cargo. These results suggest that glycosylation of CPP may be a key point in targeting specific cells. Electronic supplementary material The online version of this article (doi:10.1007/s12154-009-0031-9) contains supplementary material, which is available to authorized users. PMID:19899012

  13. Human Antimicrobial Peptides and Proteins

    PubMed Central

    Wang, Guangshun

    2014-01-01

    As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32) can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized medicine to

  14. Engineering and expression of a RhoA peptide against respiratory syncytial virus infection in plants.

    PubMed

    Ortega-Berlanga, Benita; Musiychuk, Konstantin; Shoji, Yoko; Chichester, Jessica A; Yusibov, Vidadi; Patiño-Rodríguez, Omar; Noyola, Daniel E; Alpuche-Solís, Ángel G

    2016-02-01

    MAIN CONCLUSION : A RhoA-derived peptide fused to carrier molecules from plants showed enhanced biological activity of in vitro assays against respiratory syncytial virus compared to the RhoA peptide alone or the synthetic RhoA peptide. A RhoA-derived peptide has been reported for over a decade as a potential inhibitor of respiratory syncytial virus (RSV) infection both in vitro and in vivo and is anticipated to be a promising alternative to monoclonal antibody-based therapy against RSV infection. However, there are several challenges to furthering development of this antiviral peptide, including improvement in the peptide’s bioavailability, development of an efficient delivery system and identification of a cost-effective production platform. In this study, we have engineered a RhoA peptide as a genetic fusion to two carrier molecules, either lichenase (LicKM) or the coat protein (CP) of Alfalfa mosaic virus. These constructs were introduced into Nicotiana benthamiana plants using a tobacco mosaic virus-based expression vector and targets purified. The results demonstrated that the RhoA peptide fusion proteins were efficiently expressed in N. benthamiana plants, and that two of the resulting fusion proteins, RhoA-LicKM and RhoA2-FL-d25CP, inhibited RSV growth in vitro by 50 and 80 %, respectively. These data indicate the feasibility of transient expression of this biologically active antiviral RhoA peptide in plants and the advantage of using a carrier molecule to enhance target expression and efficacy. PMID:26474991

  15. Antibacterial peptides and mitochondrial presequences affect mitochondrial coupling, respiration and protein import.

    PubMed

    Hugosson, M; Andreu, D; Boman, H G; Glaser, E

    1994-08-01

    Cecropins A and P1, antibacterial peptides from insects and from pig and some related peptides released respiratory control, inhibited protein import and at higher concentrations also inhibited respiration. However, PR-39, an antibacterial peptide from pig intestine, was found to be almost inert towards mitochondria. The concentrations at which the three mitochondrial functions were effected varied for different peptides. Melittin, magainin and Cecropin-A-(1,13)-Melittin(1,13)-NH2, a hybrid between cecropin A and melittin, were most potent, while the two cecropins acted at higher concentrations. The biosynthesis of cecropin A is known and the intermediates are synthesized. We have used four peptides from this pathway to investigate their effects on coupling, respiration and protein import into mitochondria. Mature cecropin A followed by the preproprotein were most aggressive whereas the intermediates were less active or inert. The efficiency of different derivatives of cecropin A as uncouplers correlates well with their capacity to release membrane potential measured as fluorescence quenching of Rhodamine 123. Inhibition of respiration was found to be dependent on membrane potential and was most pronounced with mature cecropin A, less so with its three precursors. We also found that three peptides derived from mitochondrial presequences showed antibacterial activity. It is concluded that, there are similarities in the functions of antibacterial peptides and mitochondrial presequences, uncoupling activity in mitochondria cannot be correlated with the antibacterial activity (contrary to a previous suggestion), the processing of preprocecropin A may have evolved in such a way that there is a minimum of membrane damage from the intermediates in the pathway, and peptides produced for delivery outside of an animal have evolved to be more aggressive against mitochondria than peptides for delivery inside of the animal. PMID:8055943

  16. Design of self-assembling peptide hydrogelators amenable to bacterial expression.

    PubMed

    Sonmez, Cem; Nagy, Katelyn J; Schneider, Joel P

    2015-01-01

    Hydrogels formed from self-assembling peptides are finding use in tissue engineering and drug delivery applications. Given the notorious difficulties associated with producing self-assembling peptides by recombinant expression, most are typically prepared by chemical synthesis. Herein, we report the design of a family of self-assembling β-hairpin peptides amenable to efficient production using an optimized bacterial expression system. Expressing peptides, EX1, EX2 and EX3 contain identical eight-residue amphiphilic β-strands connected by varying turn sequences that are responsible for ensuring chain reversal and the proper intramolecular folding and consequent self-assembly of the peptide into a hydrogel network under physiological conditions. EX1 was initially used to establish and optimize the bacterial expression system by which all the peptides could be eventually individually expressed. Expression clones were designed to allow exploration of possible fusion partners and investigate both enzymatic and chemical cleavage as means to liberate the target peptide. A systematic analysis of possible expression systems followed by fermentation optimization lead to a system in which all three peptides could be expressed as fusions with BAD-BH3, the BH3 domain of the proapoptotic BAD (Bcl-2 Associated Death) Protein. CNBr cleavage followed by purification afforded 50, 31, and 15 mg/L yields of pure EX1, EX2 and EX3, respectively. CD spectroscopy, TEM, and rheological analysis indicate that these peptides fold and assembled into well-defined fibrils that constitute hydrogels having shear-thin/recovery properties. PMID:25453938

  17. Design of Self-Assembling Peptide Hydrogelators Amenable to Bacterial Expression

    PubMed Central

    Sonmez, Cem; Nagy, Katelyn J.; Schneider, Joel P.

    2014-01-01

    Hydrogels formed from self-assembling peptides are finding use in tissue engineering and drug delivery applications. Given the notorious difficulties associated with producing self-assembling peptides by recombinant expression, most are typically prepared by chemical synthesis. Herein, we report the design of a family of self-assembling β-hairpin peptides amenable to efficient production using an optimized bacterial expression system. Expressing peptides, EX1, EX2 and EX3 contain identical eight-residue amphiphilic β-strands connected by varying turn sequences that are responsible for ensuring chain reversal and the proper intramolecular folding and consequent self-assembly of the peptide into a hydrogel network under physiological conditions. EX1 was initially used to establish and optimize the bacterial expression system by which all the peptides could be eventually individually expressed. Expression clones were designed to allow exploration of possible fusion partners and investigate both enzymatic and chemical cleavage as means to liberate the target peptide. A systematic analysis of possible expression systems followed by fermentation optimization lead to a system in which all three peptides could be expressed as fusions with BAD-BH3, the BH3 domain of the proapoptotic BAD (Bcl-2 Associated Death) Protein. CNBr cleavage followed by purification afforded 50, 31, and 15 mg/L yields of pure EX1, EX2 and EX3, respectively. CD spectroscopy, TEM, and rheological analysis indicate that these peptides fold and assembled into well-defined fibrils that constitute hydrogels having shear-thin/recovery properties. PMID:25453938

  18. Linear short histidine and cysteine modified arginine peptides constitute a potential class of DNA delivery agents.

    PubMed

    Mann, Anita; Shukla, Vasundhara; Khanduri, Richa; Dabral, Spoorti; Singh, Harpal; Ganguli, Munia

    2014-03-01

    The success of gene therapy relies on the development of safe and efficient multifunctional carriers of nucleic acids that can overcome extra- and intracellular barriers, protect the nucleic acid and mediate its release at the desired site allowing gene expression. Peptides bear unique properties that are indispensable for any carrier, e.g., they can mediate DNA condensation, cellular targeting, membrane translocation, endosomal escape and nuclear localization. In an effort to design a multifunctional peptide, we have modified an arginine homopeptide R16 by replacement of seven arginines with histidines and addition of one cysteine at each end respectively to impart endosomal escape property while maintaining the DNA condensation and release balance. Addition of histidines imparts endosomal escape property to arginine homopeptide, but their arrangement with respect to arginines is more critical in controlling DNA condensation, release and transfection efficiency. Intriguingly, R5H7R4 peptide where charge/arginine is distributed in blocks is preferred for strong condensation while more efficient transfection is seen in the variants R9H7 and H4R9H3, which exhibit weak condensation and strong release. Addition of cysteine to each of these peptides further fine-tuned the condensation-release balance without application of any oxidative procedure unlike other similar systems reported in the literature. This resulted in a large increase in the transfection efficiency in all of the histidine modified peptides irrespective of the arginine and histidine positions. This series of multifunctional peptides shows comparable transfection efficiency to commercially available transfection reagent Lipofectamine 2000 at low charge ratios, with simple preparative procedure and exhibits much less toxicity. PMID:24476132

  19. Molecular imaging probes derived from natural peptides.

    PubMed

    Charron, C L; Hickey, J L; Nsiama, T K; Cruickshank, D R; Turnbull, W L; Luyt, L G

    2016-06-01

    Covering: up to the end of 2015.Peptides are naturally occurring compounds that play an important role in all living systems and are responsible for a range of essential functions. Peptide receptors have been implicated in disease states such as oncology, metabolic disorders and cardiovascular disease. Therefore, natural peptides have been exploited as diagnostic and therapeutic agents due to the unique target specificity for their endogenous receptors. This review discusses a variety of natural peptides highlighting their discovery, endogenous receptors, as well as their derivatization to create molecular imaging agents, with an emphasis on the design of radiolabelled peptides. This review also highlights methods for discovering new and novel peptides when knowledge of specific targets and endogenous ligands are not available. PMID:26911790

  20. Synthesis of peptide .alpha.-thioesters

    DOEpatents

    Camarero, Julio A.; Mitchell, Alexander R.; De Yoreo, James J.

    2008-08-19

    Disclosed herein is a new method for the solid phase peptide synthesis (SPPS) of C-terminal peptide .alpha. thioesters using Fmoc/t-Bu chemistry. This method is based on the use of an aryl hydrazine linker, which is totally stable to conditions required for Fmoc-SPPS. When the peptide synthesis has been completed, activation of the linker is achieved by mild oxidation. The oxidation step converts the acyl-hydrazine group into a highly reactive acyl-diazene intermediate which reacts with an .alpha.-amino acid alkylthioester (H-AA-SR) to yield the corresponding peptide .alpha.-thioester in good yield. A variety of peptide thioesters, cyclic peptides and a fully functional Src homology 3 (SH3) protein domain have been successfully prepared.

  1. Peptide YY receptors in the brain

    SciTech Connect

    Inui, A.; Oya, M.; Okita, M.; Inoue, T.; Sakatani, N.; Morioka, H.; Shii, K.; Yokono, K.; Mizuno, N.; Baba, S.

    1988-01-15

    Radiolabelled ligand binding studies demonstrated that specific receptors for peptide YY are present in the porcine as well as the canine brains. Peptide YY was bound to brain tissue membranes via high-affinity (dissociation constant, 1.39 X 10(-10)M) and low-affinity (dissociation constant, 3.72 X 10(-8)M) components. The binding sites showed a high specificity for peptide YY and neuropeptide Y, but not for pancreatic polypeptide or structurally unrelated peptides. The specific activity of peptide YY binding was highest in the hippocampus, followed by the pituitary gland, the hypothalamus, and the amygdala of the porcine brain, this pattern being similarly observed in the canine brain. The results suggest that peptide YY and neuropeptide Y may regulate the function of these regions of the brain through interaction with a common receptor site.

  2. Use of Galerina marginata genes and proteins for peptide production

    DOEpatents

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.; Luo, Hong

    2016-03-01

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  3. Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides

    PubMed Central

    Mulder, Kelly C. L.; Lima, Loiane A.; Miranda, Vivian J.; Dias, Simoni C.; Franco, Octávio L.

    2013-01-01

    Cationic antimicrobial peptides (AMPs) and host defense peptides (HDPs) show vast potential as peptide-based drugs. Great effort has been made in order to exploit their mechanisms of action, aiming to identify their targets as well as to enhance their activity and bioavailability. In this review, we will focus on both naturally occurring and designed antiviral and antitumor cationic peptides, including those here called promiscuous, in which multiple targets are associated with a single peptide structure. Emphasis will be given to their biochemical features, selectivity against extra targets, and molecular mechanisms. Peptides which possess antitumor activity against different cancer cell lines will be discussed, as well as peptides which inhibit virus replication, focusing on their applications for human health, animal health and agriculture, and their potential as new therapeutic drugs. Moreover, the current scenario for production and the use of nanotechnology as delivery tool for both classes of cationic peptides, as well as the perspectives on improving them is considered. PMID:24198814

  4. Screening peptide array library for the identification of cancer cell-binding peptides.

    PubMed

    Kaur, Kamaljit; Ahmed, Sahar; Soudy, Rania; Azmi, Sarfuddin

    2015-01-01

    The identification of cancer cell-specific ligands is a key requirement for the targeted delivery of chemotherapeutic agents. Usually phage display system is employed to discover cancer-specific peptides through a biopanning process. Synthetic peptide array libraries can be used as a complementary method to phage display for screening and identifying cancer cell-specific ligands. Here, we describe a peptide array-whole cell binding assay to identify cancer cell-specific peptides. A peptide array library based on a lead dodecapeptide, p160, is synthesized on a functionalized cellulose membrane using solid phase chemistry and a robotic synthesizer. The relative binding affinity of the peptide library is evaluated by incubating the library with fluorescently labeled cancerous or non-cancerous cells. Thereby the assay allows picking peptides that show selective and high binding to cancerous cells. These peptides represent potential candidates for use in cancer-targeted drug delivery, imaging, and diagnosis. PMID:25616337

  5. Microwave-assisted solid-phase synthesis of side-chain to side-chain lactam-bridge cyclic peptides.

    PubMed

    Tala, Srinivasa R; Schnell, Sathya M; Haskell-Luevano, Carrie

    2015-12-15

    Side-chain to side-chain lactam-bridged cyclic peptides have been utilized as therapeutic agents and biochemical tools. Previous synthetic methods of these peptides need special reaction conditions, form side products and take longer reaction times. Herein, an efficient microwave-assisted synthesis of side-chain to side-chain lactam-bridge cyclic peptides SHU9119 and MTII is reported. The synthesis time and efforts are significantly reduced in the present method, without side product formation. The analytical and pharmacological data of the synthesized cyclic peptides are in accordance with the commercially obtained compounds. This new method could be used to synthesize other side-chain to side-chain lactam-bridge peptides and amenable to automation and extensive SAR compound derivatization. PMID:26555357

  6. Backbone rigidity and static presentation of guanidinium groups increases cellular uptake of arginine-rich cell-penetrating peptides.

    PubMed

    Lättig-Tünnemann, Gisela; Prinz, Manuel; Hoffmann, Daniel; Behlke, Joachim; Palm-Apergi, Caroline; Morano, Ingo; Herce, Henry D; Cardoso, M Cristina

    2011-01-01

    In addition to endocytosis-mediated cellular uptake, hydrophilic cell-penetrating peptides are able to traverse biological membranes in a non-endocytic mode termed transduction, resulting in immediate bioavailability. Here we analysed structural requirements for the non-endocytic uptake mode of arginine-rich cell-penetrating peptides, by a combination of live-cell microscopy, molecular dynamics simulations and analytical ultracentrifugation. We demonstrate that the transduction efficiency of arginine-rich peptides increases with higher peptide structural rigidity. Consequently, cyclic arginine-rich cell-penetrating peptides showed enhanced cellular uptake kinetics relative to their linear and more flexible counterpart. We propose that guanidinium groups are forced into maximally distant positions by cyclization. This orientation increases membrane contacts leading to enhanced cell penetration. PMID:21878907

  7. Backbone rigidity and static presentation of guanidinium groups increases cellular uptake of arginine-rich cell-penetrating peptides

    PubMed Central

    Lättig-Tünnemann, Gisela; Prinz, Manuel; Hoffmann, Daniel; Behlke, Joachim; Palm-Apergi, Caroline; Morano, Ingo; Herce, Henry D.; Cardoso, M. Cristina

    2011-01-01

    In addition to endocytosis-mediated cellular uptake, hydrophilic cell-penetrating peptides are able to traverse biological membranes in a non-endocytic mode termed transduction, resulting in immediate bioavailability. Here we analysed structural requirements for the non-endocytic uptake mode of arginine-rich cell-penetrating peptides, by a combination of live-cell microscopy, molecular dynamics simulations and analytical ultracentrifugation. We demonstrate that the transduction efficiency of arginine-rich peptides increases with higher peptide structural rigidity. Consequently, cyclic arginine-rich cell-penetrating peptides showed enhanced cellular uptake kinetics relative to their linear and more flexible counterpart. We propose that guanidinium groups are forced into maximally distant positions by cyclization. This orientation increases membrane contacts leading to enhanced cell penetration. PMID:21878907

  8. Solution structure of a bacterial microcompartment targeting peptide and its application in the construction of an ethanol bioreactor

    PubMed Central

    Newnham, Sarah; Lee, Matthew J.; Brown, Ian R.; Xue, Wei-Feng; Rowe, Michelle L.; Mulvihill, Daniel P.; Prentice, Michael B; Howard, Mark J.; Warren, Martin J.

    2016-01-01

    The targeting of proteins to bacterial microcompartments (BMCs) is mediated by a short peptide sequence of 18 amino acids. Herein, we report the solution structure of the N-terminal targeting peptide (P18) of PduP, the aldehyde dehydrogenase associated with the 1,2-propanediol utilization metabolosome. The solution structure reveals the peptide to have a well defined-helical conformation along its whole length. Saturation transfer difference and transferred NOE NMR has highlighted the observed interaction surface on the peptide with its main interacting protein, PduK, a component of the outer shell of the microcompartment. By tagging both a pyruvate decarboxylase and an alcohol dehydrogenase with targeting peptides it has been possible to direct these enzymes to empty BMCs in vivo and to generate an ethanol bioreactor. Purification of the re-designed BMCs reveals that not only do they contain the ethanogenic enzymes but that they are able to transform pyruvate into ethanol efficiently. PMID:24933391

  9. HPLC analysis and purification of peptides.

    PubMed

    Mant, Colin T; Chen, Yuxin; Yan, Zhe; Popa, Traian V; Kovacs, James M; Mills, Janine B; Tripet, Brian P; Hodges, Robert S

    2007-01-01

    High-performance liquid chromatography (HPLC) has proved extremely versatile over the past 25 yr for the isolation and purification of peptides varying widely in their sources, quantity and complexity. This article covers the major modes of HPLC utilized for peptides (size-exclusion, ion-exchange, and reversed-phase), as well as demonstrating the potential of a novel mixed-mode hydrophilic interaction/cation-exchange approach developed in this laboratory. In addition to the value of these HPLC modes for peptide separations, the value of various HPLC techniques for structural characterization of peptides and proteins will be addressed, e.g., assessment of oligomerization state of peptides/proteins by size-exclusion chromatography and monitoring the hydrophilicity/hydrophobicity of amphipathic alpha-helical peptides, a vital precursor for the development of novel antimicrobial peptides. The value of capillary electrophoresis for peptide separations is also demonstrated. Preparative reversed-phase chromatography purification protocols for sample loads of up to 200 mg on analytical columns and instrumentation are introduced for both peptides and recombinant proteins. PMID:18604941

  10. Turning peptides in comb silicone polymers.

    PubMed

    Jebors, Said; Pinese, Coline; Nottelet, Benjamin; Parra, Karine; Amblard, Muriel; Mehdi, Ahmad; Martinez, Jean; Subra, Gilles

    2015-03-01

    We have recently reported on a new class of silicone-peptide' biopolymers obtained by polymerization of di-functionalized chlorodimethylsilyl hybrid peptides. Herein, we describe a related strategy based on dichloromethylsilane-derived peptides, which yield novel polymers with a polysiloxane backbone, comparable with a silicone-bearing pendent peptide chains. Interestingly, polymerization is chemoselective toward amino acids side-chains and proceeds in a single step in very mild conditions (neutral pH, water, and room temperature). As potential application, a cationic sequence was polymerized and used for antibacterial coating. PMID:25688748

  11. APD2: the updated antimicrobial peptide database and its application in peptide design

    PubMed Central

    Wang, Guangshun; Li, Xia; Wang, Zhe

    2009-01-01

    The antimicrobial peptide database (APD, http://aps.unmc.edu/AP/main.php) has been updated and expanded. It now hosts 1228 entries with 65 anticancer, 76 antiviral (53 anti-HIV), 327 antifungal and 944 antibacterial peptides. The second version of our database (APD2) allows users to search peptide families (e.g. bacteriocins, cyclotides, or defensins), peptide sources (e.g. fish, frogs or chicken), post-translationally modified peptides (e.g. amidation, oxidation, lipidation, glycosylation or d-amino acids), and peptide binding targets (e.g. membranes, proteins, DNA/RNA, LPS or sugars). Statistical analyses reveal that the frequently used amino acid residues (>10%) are Ala and Gly in bacterial peptides, Cys and Gly in plant peptides, Ala, Gly and Lys in insect peptides, and Leu, Ala, Gly and Lys in amphibian peptides. Using frequently occurring residues, we demonstrate database-aided peptide design in different ways. Among the three peptides designed, GLK-19 showed a higher activity against Escherichia coli than human LL-37. PMID:18957441

  12. Protein-templated peptide ligation.

    PubMed

    Brauckhoff, Nicolas; Hahne, Gernot; Yeh, Johannes T-H; Grossmann, Tom N

    2014-04-22

    Molecular templates bind particular reactants, thereby increasing their effective concentrations and accelerating the corresponding reaction. This concept has been successfully applied to a number of chemical problems with a strong focus on nucleic acid templated reactions. We present the first protein-templated reaction that allows N-terminal linkage of two peptides. In the presence of a protein template, ligation reactions were accelerated by more than three orders of magnitude. The templated reaction is highly selective and proved its robustness in a protein-labeling reaction that was performed in crude cell lysate. PMID:24644125

  13. PGx: Putting Peptides to BED

    PubMed Central

    2015-01-01

    Every molecular player in the cast of biology’s central dogma is being sequenced and quantified with increasing ease and coverage. To bring the resulting genomic, transcriptomic, and proteomic data sets into coherence, tools must be developed that do not constrain data acquisition and analytics in any way but rather provide simple links across previously acquired data sets with minimal preprocessing and hassle. Here we present such a tool: PGx, which supports proteogenomic integration of mass spectrometry proteomics data with next-generation sequencing by mapping identified peptides onto their putative genomic coordinates. PMID:26638927

  14. PGx: Putting Peptides to BED.

    PubMed

    Askenazi, Manor; Ruggles, Kelly V; Fenyö, David

    2016-03-01

    Every molecular player in the cast of biology's central dogma is being sequenced and quantified with increasing ease and coverage. To bring the resulting genomic, transcriptomic, and proteomic data sets into coherence, tools must be developed that do not constrain data acquisition and analytics in any way but rather provide simple links across previously acquired data sets with minimal preprocessing and hassle. Here we present such a tool: PGx, which supports proteogenomic integration of mass spectrometry proteomics data with next-generation sequencing by mapping identified peptides onto their putative genomic coordinates. PMID:26638927

  15. Peptide Membranes in Chemical Evolution*

    PubMed Central

    Childers, W. Seth; Ni, Rong; Mehta, Anil K.; Lynn, David G.

    2009-01-01

    SUMMARY Simple surfactants achieve remarkable long-range order in aqueous environments. This organizing potential is seen most dramatically in biological membranes where phospholipid assemblies both define cell boundaries and provide a ubiquitous structural scaffold for controlling cellular chemistry. Here we consider simple peptides that also spontaneously assemble into exceptionally ordered scaffolds, and review early data suggesting that these structures maintain the functional diversity of proteins. We argue that such scaffolds can achieve the required molecular order and catalytic agility for the emergence of chemical evolution. PMID:19879180

  16. Programmed Nanomaterial Assemblies in Large Scales: Applications of Synthetic and Genetically- Engineered Peptides to Bridge Nano-Assemblies and Macro-Assemblies

    SciTech Connect

    Matsui, Hiroshi

    2014-09-09

    Work is reported in these areas: Large-scale & reconfigurable 3D structures of precise nanoparticle assemblies in self-assembled collagen peptide grids; Binary QD-Au NP 3D superlattices assembled with collagen-like peptides and energy transfer between QD and Au NP in 3D peptide frameworks; Catalytic peptides discovered by new hydrogel-based combinatorial phage display approach and their enzyme-mimicking 2D assembly; New autonomous motors of metal-organic frameworks (MOFs) powered by reorganization of self-assembled peptides at interfaces; Biomimetic assembly of proteins into microcapsules on oil-in-water droplets with structural reinforcement via biomolecular recognition-based cross-linking of surface peptides; and Biomimetic fabrication of strong freestanding genetically-engineered collagen peptide films reinforced by quantum dot joints. We gained the broad knowledge about biomimetic material assembly from nanoscale to microscale ranges by coassembling peptides and NPs via biomolecular recognition. We discovered: Genetically-engineered collagen-like peptides can be self-assembled with Au NPs to generate 3D superlattices in large volumes (> μm{sup 3}); The assembly of the 3D peptide-Au NP superstructures is dynamic and the interparticle distance changes with assembly time as the reconfiguration of structure is triggered by pH change; QDs/NPs can be assembled with the peptide frameworks to generate 3D superlattices and these QDs/NPs can be electronically coupled for the efficient energy transfer; The controlled assembly of catalytic peptides mimicking the catalytic pocket of enzymes can catalyze chemical reactions with high selectivity; and, For the bacteria-mimicking swimmer fabrication, peptide-MOF superlattices can power translational and propellant motions by the reconfiguration of peptide assembly at the MOF-liquid interface.

  17. Natriuretic peptides and their therapeutic potential.

    PubMed

    Cho, Y; Somer, B G; Amatya, A

    1999-01-01

    Natriuretic peptides are a group of naturally occurring substances that act in the body to oppose the activity of the renin-angiotensin system. There are three major natriuretic peptides: atrial natriuretic peptide (ANP), which is synthesized in the atria; brain natriuretic peptide (BNP), which is synthesized in the ventricles; and C-type natriuretic peptide (CNP), which is synthesized in the brain. Both ANP and BNP are released in response to atrial and ventricular stretch, respectively, and will cause vasorelaxation, inhibition of aldosterone secretion in the adrenal cortex, and inhibition of renin secretion in the kidney. Both ANP and BNP will cause natriuresis and a reduction in intravascular volume, effects amplified by antagonism of antidiuretic hormone (ADH). The physiologic effects of CNP are different from those of ANP and BNP. CNP has a hypotensive effect, but no significant diuretic or natriuretic actions. Three natriuretic peptide receptors (NPRs) have been described that have different binding capacities for ANP, BNP, and CNP. Removal of the natriuretic peptides from the circulation is affected mainly by binding to clearance receptors and enzymatic degradation in the circulation. Increased blood levels of natriuretic peptides have been found in certain disease states, suggesting a role in the pathophysiology of those diseases, including congestive heart failure (CHF), systemic hypertension, and acute myocardial infarction. The natriuretic peptides also serve as disease markers and indicators of prognosis in various cardiovascular conditions. The natriuretic peptides have been used in the treatment of disease, with the most experience with intravenous BNP in the treatment of CHF. Another pharmacologic approach being used is the inhibition of natriuretic peptide metabolism by neutral endopeptidase (NEP) inhibitor drugs. The NEP inhibitors are currently being investigated as treatments for CHF and systemic hypertension. PMID:11720638

  18. Differential tapasin dependence of MHC class I molecules correlates with conformational changes upon peptide dissociation: A molecular dynamics simulation study

    SciTech Connect

    Sieker, Florian; Straatsma, TP; Springer, Sebastian; Zacharias, Martin W

    2008-08-01

    Efficiency of peptide loading to MHC class I molecules in the endoplasmatic reticulum depends on the class I allele and can involve interaction with tapasin and other proteins of the loading complex. Allele HLA-B*4402 (Asp at position 116) depends on tapasin for efficient peptide loading whereas HLA-B*4405 (identical to B*4402 except for Tyr116) can efficiently load peptides in the absence of tapasin. Both alleles adopt very similar structures in the presence of the same peptide. Molecular dynamics (MD) simulations on induced peptide termini dissociation from the α1/α2 peptide binding domains have been performed to characterize free energy changes and associated structural changes in the two alleles. A smooth free energy change along the distance dissociation coordinate was obtained for N terminus dissociation. A different shape and magnitude of the calculated free energy change and was obtained for induced peptide C terminus dissociation in case of the tapasin independent allele B*4405 compared to B*4402. Structural changes during C terminus dissociation occurred mainly in the first segment of the α2-1 helix that flanks the peptide C-terminus binding region (F-pocket) and contacts residue 116. This segment is also close to the proposed tapasin contact region. For B*4402, a stable shift towards an altered open F-pocket structure deviating significantly from the bound form was observed. In contrast, B*4405 showed only a transient opening of the F-pocket followed by relaxation towards a structure close to the bound form upon C terminus dissociation. The greater tendency for peptide-receptive conformation in the absence of peptide combined with a more long-range character of the interactions with the peptide C terminus facilitates peptide binding to B*4405 and could be responsible for the tapasin independence of this allele. A possible role of tapasin in case of HLA-B*4402 and other tapasin-dependent alleles could be the stabilization of a peptide receptive class I

  19. Leader Peptide-Free In Vitro Reconstitution of Microviridin Biosynthesis Enables Design of Synthetic Protease-Targeted Libraries.

    PubMed

    Reyna-González, Emmanuel; Schmid, Bianca; Petras, Daniel; Süssmuth, Roderich D; Dittmann, Elke

    2016-08-01

    Microviridins are a family of ribosomally synthesized and post-translationally modified peptides with a highly unusual architecture featuring non-canonical lactone as well as lactam rings. Individual variants specifically inhibit different types of serine proteases. Here we have established an efficient in vitro reconstitution approach based on two ATP-grasp ligases that were constitutively activated using covalently attached leader peptides and a GNAT-type N-acetyltransferase. The method facilitates the efficient in vitro one-pot transformation of microviridin core peptides to mature microviridins. The engineering potential of the chemo-enzymatic technology was demonstrated for two synthetic peptide libraries that were used to screen and optimize microviridin variants targeting the serine proteases trypsin and subtilisin. Successive analysis of intermediates revealed distinct structure-activity relationships for respective target proteases. PMID:27336908