Science.gov

Sample records for albumin-derived peptides efficiently

  1. Effects of peptide acetylation and dimethylation on electrospray ionization efficiency.

    PubMed

    Cho, Kyung-Cho; Kang, Jeong Won; Choi, Yuri; Kim, Tae Woo; Kim, Kwang Pyo

    2016-02-01

    Peptide acetylation and dimethylation have been widely used to derivatize primary amino groups (peptide N-termini and the ε-amino group of lysines) for chemical isotope labeling of quantitative proteomics or for affinity tag labeling for selection and enrichment of labeled peptides. However, peptide acetylation results in signal suppression during electrospray ionization (ESI) due to charge neutralization. In contrast, dimethylated peptides show increased ionization efficiency after derivatization, since dimethylation increases hydrophobicity and maintains a positive charge on the peptide under common LC conditions. In this study, we quantitatively compared the ESI efficiencies of acetylated and dimethylated model peptides and tryptic peptides of BSA. Dimethylated peptides showed higher ionization efficiency than acetylated peptides for both model peptides and tryptic BSA peptides. At the proteome level, peptide dimethylation led to better protein identification than peptide acetylation when tryptic peptides of mouse brain lysate were analyzed with LC-ESI-MS/MS. These results demonstrate that dimethylation of tryptic peptides enhanced ESI efficiency and provided up to two-fold improved protein identification sensitivity in comparison with acetylation. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26889926

  2. The peptide carrier Pep-1 forms biologically efficient nanoparticle complexes

    SciTech Connect

    Munoz-Morris, Maria A.; Heitz, Frederic; Divita, Gilles . E-mail: gilles.divita@crbm.cnrs.fr; Morris, May C.

    2007-04-20

    Cell-penetrating peptides (CPPs) constitute a family of peptides whose unique characteristic is their ability to insert into and cross biological membranes. Cell-penetrating peptide carriers of the Pep family are amphipathic peptides which have been shown to deliver peptides and proteins into a wide variety of cells through formation of non-covalent complexes with their cargo. In this study, we have investigated the morphological features of different Pep-1/cargo complexes by scanning electron microscopy and light scattering measurements. We provide first-time evidence that biologically efficient complexes of Pep-1/p27Kip tumour suppressor physically exist in the form of discrete nanoparticles. Moreover, we have characterized the relationship between the Pep-1/cargo ratio, the size and homogeneity of the nanoparticles formed, and their efficiency in delivering the cargo into cells, and report that particle size and homogeneity is both directly dependent on the ratio of Pep-1/cargo formulations, and responsible for their biological efficiency.

  3. An Albumin-Derived Peptide Scaffold Capable of Binding and Catalysis

    PubMed Central

    Luisi, Immacolata; Pavan, Silvia; Fontanive, Giampaolo; Tossi, Alessandro; Benedetti, Fabio; Savoini, Adriano; Maurizio, Elisa; Sgarra, Riccardo; Sblattero, Daniele; Berti, Federico

    2013-01-01

    We have identified a 101-amino-acid polypeptide derived from the sequence of the IIA binding site of human albumin. The polypeptide contains residues that make contact with IIA ligands in the parent protein, and eight cysteine residues to form disulfide bridges, that stabilize the polypeptide structure. Seventy-four amino acids are located in six α-helical regions, while the remaining thirty-seven amino acids form six connecting coil/loop regions. A soluble GST fusion protein was expressed in E. coli in yields as high as 4 mg/l. This protein retains the IIA fragment’s capacity to bind typical ligands such as warfarin and efavirenz and other albumin’s functional properties such as aldolase activity and the ability to direct the stereochemical outcome of a diketone reduction. This newly cloned polypeptide thus represents a valuable starting point for the construction of libraries of binders and catalysts with improved proficiency. PMID:23451052

  4. Efficient synthesis of longer Aβ peptides via removable backbone modification.

    PubMed

    Zuo, Chao; Tang, Shan; Si, Yan-Yan; Wang, Zhipeng A; Tian, Chang-Lin; Zheng, Ji-Shen

    2016-06-14

    Longer amyloid-beta (Aβ) peptides (43 to 49 amino acids) play essential roles in the pathology of Alzheimer's disease (AD). The difficulty in the preparation of longer Aβ peptides is still an obstacle to elucidate their roles in AD. Herein we report a robust and efficient strategy for the chemical synthesis of longer Aβ peptides (Aβ48 and Aβ49). A key feature of this method is the installation of removable Arg4-tagged backbone modification groups into the hydrophobic region of Aβ. This modification can improve the handling properties of the purification, ligation and mass characterization of longer Aβ peptides. The practicability of the new method has been demonstrated by the successful synthesis of Aβ48 and Aβ49 peptides. PMID:27188564

  5. Fragmentation efficiencies of peptide ions following low energy collisional activation

    NASA Astrophysics Data System (ADS)

    Summerfield, Scott G.; Gaskell, Simon J.

    1997-11-01

    Low energy fragmentations of protonated peptides in the gas phase are generally attributed to charge-directed processes. The extent and location of peptide backbone fragmentation is accordingly influenced by the extent to which charge is sequestered on amino acid side-chains. We describe systematic studies of the efficiencies of decomposition of peptide ions to assess in particular the influence of the presence of basic amino acid residues and of the protonation state. In a set of analogues containing two arginine, two histidine or two lysine residues, the extent of fragmentation of [M + 2H]2+ ions decreases with increased basicity, reflecting decreased backbone protonation. The collisionally activated dissociation of multiply protonated melittin ions shows an increase in fragmentation efficiency with higher charge state (using activation conditions which are similar for each charge state). For a single charge state, acetylation of primary amine groups increases fragmentation efficiency, consistent with the reduction in basicity of lysine side-chains. Conversion of arginine residues to the less basic dimethylpyrimidylornithine, however, decreases fragmentation efficiency, suggesting more effective sequestering of ionizing protons; the effect may be attributable to a disfavouring of proton-bridged structures but this hypothesis requires further study. Preliminary data for the decompositions of [M- 2H]2- ions derived from peptides containing two acidic residues suggest that the sequestration of charge away from the backbone is again detrimental to efficient fragmentation. Apparently diagnostic cleavages adjacent to aspartic acid residues are observed.

  6. ERAP1-ERAP2 dimerization increases peptide-trimming efficiency.

    PubMed

    Evnouchidou, Irini; Weimershaus, Mirjana; Saveanu, Loredana; van Endert, Peter

    2014-07-15

    The endoplasmic reticulum aminopeptidases (ERAP)1 and ERAP2 play a critical role in the production of final epitopes presented by MHC class I molecules. Formation of heterodimers by ERAP1 and ERAP2 has been proposed to facilitate trimming of epitope precursor peptides, but the effects of dimerization on ERAP function remain unknown. In this study, we produced stabilized ERAP1-ERAP2 heterodimers and found that they produced several mature epitopes more efficiently than a mix of the two enzymes unable to dimerize. Physical interaction with ERAP2 changes basic enzymatic parameters of ERAP1 and improves its substrate-binding affinity. Thus, by bringing the two enzymes in proximity and by producing allosteric effects on ERAP1, dimerization of ERAP1/2 creates complexes with superior peptide-trimming efficacy. Such complexes are likely to enhance Ag presentation by cells displaying coordinated expression of the two enzymes. PMID:24928998

  7. Definition of Proteasomal Peptide Splicing Rules for High-Efficiency Spliced Peptide Presentation by MHC Class I Molecules

    PubMed Central

    Berkers, Celia R.; de Jong, Annemieke; Schuurman, Karianne G.; Linnemann, Carsten; Meiring, Hugo D.; Janssen, Lennert; Neefjes, Jacques J.; Schumacher, Ton N. M.; Rodenko, Boris

    2015-01-01

    Peptide splicing, in which two distant parts of a protein are excised and then ligated to form a novel peptide, can generate unique MHC class I–restricted responses. Because these peptides are not genetically encoded and the rules behind proteasomal splicing are unknown, it is difficult to predict these spliced Ags. In the current study, small libraries of short peptides were used to identify amino acid sequences that affect the efficiency of this transpeptidation process. We observed that splicing does not occur at random, neither in terms of the amino acid sequences nor through random splicing of peptides from different sources. In contrast, splicing followed distinct rules that we deduced and validated both in vitro and in cells. Peptide ligation was quantified using a model peptide and demonstrated to occur with up to 30% ligation efficiency in vitro, provided that optimal structural requirements for ligation were met by both ligating partners. In addition, many splicing products could be formed from a single protein. Our splicing rules will facilitate prediction and detection of new spliced Ags to expand the peptidome presented by MHC class I Ags. PMID:26401003

  8. Efficient generation of peptide hydrazides via direct hydrazinolysis of Peptidyl-Wang-TentaGel resins.

    PubMed

    Bello, Claudia; Kikul, Frauke; Becker, Christian F W

    2015-03-01

    Peptide hydrazides are valuable building blocks in peptide and protein chemistry, e.g. as precursors of peptide thioesters that allow the preparation of these important intermediates under mild conditions. Additional robust and versatile methods for the generation of peptide hydrazides from standard solid supports are therefore highly desired in order to facilitate access to peptide thioester via Fmoc-based SPPS. Here, the efficient generation of peptide hydrazides from conventional 4-hydroxymethyl phenol Wang-TentalGel peptidyl resins is described. Direct hydrazinolysis of a 19mer mucin1 peptide gives the protected peptide hydrazide in excellent yields. Testing a series of octapeptides carrying the 20 common proteinogenic amino acids at their C-terminus led to preparation of all corresponding peptide hydrazides in very good to excellent yields and purities. The available set of octapeptides allowed analyzing the influence of the nature of the C-terminal amino acid and of the solvent on the hydrazinolysis reaction. Furthermore, the compatibility of the method with posttranslational modifications (here glycosylation) and with potentially sensitive functional groups in amino acid side chains makes this approach a viable alternative for obtaining peptide hydrazides. It combines the advantages of a straightforward synthesis with stereochemical stability and flexibility, as it provides easy access to the peptide acid and the peptide thioester (via the hydrazide) from the same solid support. PMID:25648984

  9. Enhancing the efficiency of sortase-mediated ligations through nickel-peptide complex formation.

    PubMed

    David Row, R; Roark, Travis J; Philip, Marina C; Perkins, Lorena L; Antos, John M

    2015-08-14

    A modified sortase A recognition motif containing a masked Ni(2+)-binding peptide was employed to boost the efficiency of sortase-catalyzed ligation reactions. Deactivation of the Ni(2+)-binding peptide using a Ni(2+) additive improved reaction performance at low to equimolar ratios of the glycine amine nucleophile and sortase substrate. The success of this approach was demonstrated with both peptide and protein substrates. PMID:26152789

  10. The efficiency of peptide immunotherapy for respiratory allergy.

    PubMed

    Incorvaia, Cristoforo; Montagni, Marcello; Ridolo, Erminia

    2016-06-01

    Allergen immunotherapy (AIT) was introduced more than a century ago and is yet the only disease-modifying treatment for allergy. AIT is currently conducted with whole allergen extracts and several studies clearly support its efficacy in the treatment of respiratory allergies, however the need for a long treatment - that affects costs and patients compliance - and possible IgE-mediated adverse events are still unresolved issues. Peptide immunotherapy is based on the use of short synthetic peptides which represent major T-cell epitopes of the allergen with markedly reduced ability to cross-link IgE and activate mast cells and basophils. Data from clinical trials confirmed the efficacy and tolerability of peptide immunotherapy in patients with cat allergy, with a sustained clinical effect after a short course treatment. Peptide therapy is a promising safe and effective new specific treatment for allergy to be developed for the most important allergens causing rhinitis or asthma. PMID:26901667

  11. Effect of poly-glutamate on uptake efficiency and cytotoxicity of cell penetrating peptides.

    PubMed

    Farkhani, Samad Mussa; Shirani, Ali; Mohammadi, Samaneh; Zakeri-Milani, Parvin; Shahbazi Mojarrad, Javid; Valizadeh, Hadi

    2016-04-01

    Cell penetrating peptides (CPPs) were developed as vehicles for efficient delivery of various molecules. An ideal CPP-peptide should not display any toxicity against cancer cells as well as healthy cells and efficiently enter into the cell. Because of the cationic nature and the intrinsic vector capabilities, these peptides can cause cytotoxicity. One of the possible reasons for toxicity of CPPs is direct translocation and consequently, pore formation on the plasma membrane. In this study it was demonstrated that interaction of poly-glutamate with CPP considerably reduced their cytotoxicity in A549 cell. This strategy could be useful for efficient drug delivery mediated by CPP. PMID:27074859

  12. An accurate and efficient algorithm for Peptide and ptm identification by tandem mass spectrometry.

    PubMed

    Ning, Kang; Ng, Hoong Kee; Leong, Hon Wai

    2007-01-01

    Peptide identification by tandem mass spectrometry (MS/MS) is one of the most important problems in proteomics. Recent advances in high throughput MS/MS experiments result in huge amount of spectra. Unfortunately, identification of these spectra is relatively slow, and the accuracies of current algorithms are not high with the presence of noises and post-translational modifications (PTMs). In this paper, we strive to achieve high accuracy and efficiency for peptide identification problem, with special concern on identification of peptides with PTMs. This paper expands our previous work on PepSOM with the introduction of two accurate modified scoring functions: Slambda for peptide identification and Slambda* for identification of peptides with PTMs. Experiments showed that our algorithm is both fast and accurate for peptide identification. Experiments on spectra with simulated and real PTMs confirmed that our algorithm is accurate for identifying PTMs. PMID:18546510

  13. Acquisition of an insertion peptide for efficient aminoacylation by a halophile tRNA synthetase.

    PubMed

    Evilia, Caryn; Hou, Ya-Ming

    2006-06-01

    Enzymes of halophilic organisms contain unusual peptide motifs that are absent from their mesophilic counterparts. The functions of these halophile-specific peptides are largely unknown. Here we have identified an unusual peptide that is unique to several halophile archaeal cysteinyl-tRNA synthetases (CysRS), which catalyze attachment of cysteine to tRNA(Cys) to generate the essential cysteinyl-tRNA(Cys) required for protein synthesis. This peptide is located near the active site in the catalytic domain and is highly enriched with acidic residues. In the CysRS of the extreme halophile Halobacterium species NRC-1, deletion of the peptide reduces the catalytic efficiency of aminoacylation by a factor of 100 that largely results from a defect in kcat, rather than the Km for tRNA(Cys). In contrast, maintaining the peptide length but substituting acidic residues in the peptide with neutral or basic residues has no major deleterious effect, suggesting that the acidity of the peptide is not important for the kcat of tRNA aminoacylation. Analysis of general protein structure under physiological high salt concentrations, by circular dichroism and by fluorescence titration of tRNA binding, indicates little change due to deletion of the peptide. However, the presence of the peptide confers tolerance to lower salt levels, and fluorescence analysis in 30% sucrose reveals instability of the enzyme without the peptide. We suggest that the stability associated with the peptide can be used to promote proper enzyme conformation transitions in various stages of tRNA aminoacylation that are associated with catalysis. The acquisition of the peptide by the halophilic CysRS suggests an enzyme adaptation to high salinity. PMID:16734420

  14. Estimation of peptide N-Cα bond cleavage efficiency during MALDI-ISD using a cyclic peptide.

    PubMed

    Asakawa, Daiki; Smargiasso, Nicolas; De Pauw, Edwin

    2016-05-01

    Matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) induces N-Cα bond cleavage via hydrogen transfer from the matrix to the peptide backbone, which produces a c'/z• fragment pair. Subsequently, the z• generates z' and [z + matrix] fragments via further radical reactions because of the low stability of the z•. In the present study, we investigated MALDI-ISD of a cyclic peptide. The N-Cα bond cleavage in the cyclic peptide by MALDI-ISD produced the hydrogen-abundant peptide radical [M + 2H](+) • with a radical site on the α-carbon atom, which then reacted with the matrix to give [M + 3H](+) and [M + H + matrix](+) . For 1,5-diaminonaphthalene (1,5-DAN) adducts with z fragments, post-source decay of [M + H + 1,5-DAN](+) generated from the cyclic peptide showed predominant loss of an amino acid with 1,5-DAN. Additionally, MALDI-ISD with Fourier transform-ion cyclotron resonance mass spectrometry allowed for the detection of both [M + 3H](+) and [M + H](+) with two (13) C atoms. These results strongly suggested that [M + 3H](+) and [M + H + 1,5-DAN](+) were formed by N-Cα bond cleavage with further radical reactions. As a consequence, the cleavage efficiency of the N-Cα bond during MALDI-ISD could be estimated by the ratio of the intensity of [M + H](+) and [M + 3H](+) in the Fourier transform-ion cyclotron resonance spectrum. Because the reduction efficiency of a matrix for the cyclic peptide cyclo(Arg-Gly-Asp-D-Phe-Val) was correlated to its tendency to cleave the N-Cα bond in linear peptides, the present method could allow the evaluation of the efficiency of N-Cα bond cleavage for MALDI matrix development. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27194516

  15. Chemical derivatization of peptide carboxyl groups for highly efficient electron transfer dissociation

    PubMed Central

    Frey, Brian L.; Ladror, Daniel T.; Sondalle, Samuel B.; Krusemark, Casey J.; Jue, April L.; Coon, Joshua J.; Smith, Lloyd M.

    2013-01-01

    The carboxyl groups of tryptic peptides were derivatized with a tertiary or quaternary amine labeling reagent to generate more highly charged peptide ions that fragment efficiently by electron transfer dissociation (ETD). All peptide carboxyl groups—aspartic and glutamic acid side-chains as well as C-termini—were derivatized with an average reaction efficiency of 99%. This nearly complete labeling avoids making complex peptide mixtures even more complex due to partially-labeled products, and it allows the use of static modifications during database searching. Alkyl tertiary amines were found to be the optimal labeling reagent among the four types tested. Charge states are substantially higher for derivatized peptides: a modified tryptic digest of bovine serum albumin (BSA) generates ∼90% of its precursor ions with z > 2, compared to less than 40% for the unmodified sample. The increased charge density of modified peptide ions yields highly efficient ETD fragmentation, leading to many additional peptide identifications and higher sequence coverage (e.g. 70% for modified versus only 43% for unmodified BSA). The utility of this labeling strategy was demonstrated on a tryptic digest of ribosomal proteins isolated from yeast cells. Peptide derivatization of this sample produced an increase in the number of identified proteins, a >50% increase in the sequence coverage of these proteins, and a doubling of the number of peptide spectral matches. This carboxyl derivatization strategy greatly improves proteome coverage obtained from ETD-MS/MS of tryptic digests, and we anticipate that it will also enhance identification and localization of post-translational modifications. PMID:23918461

  16. Chemical Derivatization of Peptide Carboxyl Groups for Highly Efficient Electron Transfer Dissociation

    NASA Astrophysics Data System (ADS)

    Frey, Brian L.; Ladror, Daniel T.; Sondalle, Samuel B.; Krusemark, Casey J.; Jue, April L.; Coon, Joshua J.; Smith, Lloyd M.

    2013-11-01

    The carboxyl groups of tryptic peptides were derivatized with a tertiary or quaternary amine labeling reagent to generate more highly charged peptide ions that fragment efficiently by electron transfer dissociation (ETD). All peptide carboxyl groups—aspartic and glutamic acid side-chains as well as C-termini—were derivatized with an average reaction efficiency of 99 %. This nearly complete labeling avoids making complex peptide mixtures even more complex because of partially-labeled products, and it allows the use of static modifications during database searching. Alkyl tertiary amines were found to be the optimal labeling reagent among the four types tested. Charge states are substantially higher for derivatized peptides: a modified tryptic digest of bovine serum albumin (BSA) generates ~90% of its precursor ions with z > 2, compared with less than 40 % for the unmodified sample. The increased charge density of modified peptide ions yields highly efficient ETD fragmentation, leading to many additional peptide identifications and higher sequence coverage (e.g., 70 % for modified versus only 43 % for unmodified BSA). The utility of this labeling strategy was demonstrated on a tryptic digest of ribosomal proteins isolated from yeast cells. Peptide derivatization of this sample produced an increase in the number of identified proteins, a >50 % increase in the sequence coverage of these proteins, and a doubling of the number of peptide spectral matches. This carboxyl derivatization strategy greatly improves proteome coverage obtained from ETD-MS/MS of tryptic digests, and we anticipate that it will also enhance identification and localization of post-translational modifications.

  17. Enhanced Intracellular Hyperthermia Efficiency by Magnetic Nanoparticles Modified with Nucleus and Mitochondria Targeting Peptides.

    PubMed

    Wang, Xiaowen; Zhou, Jumei; Chen, Benke; Tang, Zhenghai; Zhang, Jieying; Li, Liya; Tang, Jintian

    2016-06-01

    In order to investigate whether cell organelle targeting peptide can transport magnetic nanoparticles (MNPs) into specific cell organelle, peptides bearing nuclear localization signal (NLS) or mitochondria targeting sequences were coagulated to MNPs. In vitro cytotoxicity study on the human liver cancer cells (HepG2) was tested by using MTT assay. Sub-cellular location of each peptide modified MNP (PEP-MNPs) was observed by transmission electron microscopy (TEM). The uptake of HepG2 cells growing in PEP-MNPs was measured by using ICP-OES. Magnetic induction heating efficacies of PEP-MNPs were analyzed by exposing the PEP-MNPs containing cells in an alternating magnetic field (AMF). It was demonstrated that PEP-MNPs were efficient agents for cancer nanothermotherapy with satisfactory biocompatibility. TEM showed that the fate of MNPs inside the cells depended on the peptide sequence attached to the particle surface. The uptake improvement was observed both in PEP-MNPs bearing NLS peptides and in PEP-MNPs bearing mitochondria targeting sequences. Virus original endocytosis sequence can enhance the uptake. MNP bearing mitochondria targeting sequence exerted a better magnetic induction hyperthermia performance comparing to that of NLS. Our investigation provides a strategy for fabrication cell organelle targeting magnetic nanoparticles. For instance, mitochondria targeting peptide conjugated MNPs for highly-efficiency magnetic nanothermotherapy and nuclear targeting peptides conjugated MNPs for gene magnetofection. PMID:27427753

  18. Efficient Expression of Stabilized mRNAPEG-Peptide Polyplexes in Liver

    PubMed Central

    Crowley, Samuel T.; Poliskey, Jacob A.; Baumhover, Nicholas J.; Rice, Kevin G.

    2015-01-01

    The expression efficiency in liver following hydrodynamic delivery of in vitro transcribed mRNA was improved 2000-fold using a codon-optimized mRNA luciferase construct with flanking 3' and 5' human β-globin untranslated regions (UTR mRNA) over an un-optimized mRNA without β-globin UTRs. Nanoparticle UTR mRNA polyplexes were formed using a novel polyacridine PEG-peptide, resulting in an additional 15-fold increase in expression efficiency in the liver. The combined increase in expression for UTR mRNA PEG-peptide polyplexes was 3500-fold over mRNA lacking UTRs and PEG-peptide. The expression efficiency of UTR mRNA polyplex was 10-fold greater than the expression from an equivalent 1 µg dose of pGL3. Maximal expression was maintained from 4 to 24 hours. Serum incubation established the unique ability of the polyacridine PEG-peptide to protect UTR mRNA polyplexes from RNase metabolism by binding to double stranded regions. UTR mRNA PEG-peptide polyplexes are efficient non-viral vectors that circumvent the need for nuclear uptake, representing an advancement toward the development of a targeted gene delivery system to transfect liver hepatocytes. PMID:26125604

  19. Efficient Gene Delivery of Primary Human Cells Using Peptide Linked Polyethylenimine Polymer Hybrid

    PubMed Central

    Dey, Devaveena; Inayathullah, Mohammed; Lee, Andrew S; Limiuex, Melbes; Zhang, Xuexiang; Wu, Yi; Nag, Divya; De Almeida, Patricia Eliza; Han, Leng; Rajadas, Jayakumar; Wu, Joseph C

    2011-01-01

    Polyethylenimine (PEI) based polymers are efficient agents for cell transfection. However, their use has been hampered due to high cell death associated with transfection thereby resulting in low efficiency of gene delivery within the cells. To circumvent the problem of cellular toxicity, metal binding peptides were linked to PEI. Eight peptide-PEI derivatives were synthesized to improve cell survival and transfection efficiency. TAT linked PEI was used as a control polymer. Peptides linked with PEI amines formed nano gels as shown by electron microscopy and atomic force microscopic measurements. Polymers were characterized by spectroscopic methods and their ability to form complexes with plasmids was tested using electrophoretic studies. These modifications improved polymer biocompatibility as well as cell survival markedly when compared to PEI alone. A subset of the modified peptide-polymers also showed significantly higher transfection efficiency in primary human cells with respect to the widely used transfection agent, lipofectamine. Study of the underlying mechanism of the observed phenomena revealed lower levels of ‘reactive oxygen species’ (ROS) in presence of the peptide-polymers when compared to PEI alone. This was further corroborated with global gene expression analysis which showed upregulation of multiple genes and pathways involved in regulating intracellular oxidative stress. PMID:21477858

  20. PLAP efficiently generates mature antigenic peptides in vitro but in patterns distinct from ERAP11

    PubMed Central

    Georgiadou, Dimitra; Hearn, Arron; Evnouchidou, Irini; Chroni, Angeliki; Leondiadis, Leondios; York, Ian A.; Rock, Kenneth L.; Stratikos, Efstratios

    2010-01-01

    All three members of the oxytocinase sub-family of M1 aminopeptidases, ERAP1 (ERAAP), ERAP2 and PLAP (IRAP), have been implicated in the generation of MHC class I-presented peptides. ERAP1 and 2 trim peptides in the endoplasmic reticulum for direct presentation whereas PLAP has been recently implicated in cross presentation. The best characterized member of the family, ERAP1, has unique enzymatic properties that fit well with its role in antigen processing. ERAP1 can trim a large variety of long peptide sequences and efficiently accumulate mature antigenic epitopes of 8–9 amino acids long. In this study we evaluate the ability of PLAP to process antigenic peptide precursors in vitro and compare it to ERAP1. We find that, similarly to ERAP1, PLAP can trim a variety of long peptide sequences efficiently and, in most cases, accumulates appreciable amounts of correct length mature antigenic epitope. Again, similarly to ERAP1, PLAP continued trimming some of the epitopes tested and accumulated smaller products effectively destroying the epitope. However, the intermediate accumulation properties of ERAP1 and PLAP are distinct and epitope dependent, suggesting that these two enzymes may impose different selective pressures on epitope generation. Overall, although PLAP has the necessary enzymatic properties to participate in generating or destroying MHC class I presented peptides, its trimming behavior is distinct from that of ERAP1, something that supports a separate role for these two enzymes in antigen processing. PMID:20592285

  1. Efficient generation of monoclonal antibodies against peptide in the context of MHCII using magnetic enrichment.

    PubMed

    Spanier, Justin A; Frederick, Daniel R; Taylor, Justin J; Heffernan, James R; Kotov, Dmitri I; Martinov, Tijana; Osum, Kevin C; Ruggiero, Jenna L; Rust, Blake J; Landry, Samuel J; Jenkins, Marc K; McLachlan, James B; Fife, Brian T

    2016-01-01

    Monoclonal antibodies specific for foreign antigens, auto-antigens, allogeneic antigens and tumour neo-antigens in the context of major histocompatibility complex II (MHCII) are highly desirable as novel immunotherapeutics. However, there is no standard protocol for the efficient generation of monoclonal antibodies that recognize peptide in the context of MHCII, and only a limited number of such reagents exist. In this report, we describe an approach for the generation and screening of monoclonal antibodies specific for peptide bound to MHCII. This approach exploits the use of recombinant peptide:MHC monomers as immunogens, and subsequently relies on multimers to pre-screen and magnetically enrich the responding antigen-specific B cells before fusion and validation, thus saving significant time and reagents. Using this method, we have generated two antibodies enabling us to interrogate antigen presentation and T-cell activation. This methodology sets the standard to generate monoclonal antibodies against the peptide-MHCII complexes. PMID:27292946

  2. Efficient Intracellular Delivery of a Pro-Apoptotic Peptide With A pH-Responsive Carrier

    PubMed Central

    Albarran, Brian; Hoffman, Allan S.; Stayton, Patrick S.

    2010-01-01

    A key challenge in developing protein therapeutics or imaging agents that work against cytosolic targets is the intracellular delivery barrier. Here, we show that the pH-responsive, membrane-destabilizing polymer, poly (propylacrylic acid) (PPAA), can strongly enhance target cell killing through the intracellular delivery of a functional proapoptotic peptide. The Bak BH3 peptide induces apoptosis via antagonization of suppressor targets such as Bcl-2 and Bcl-xL. A genetically-engineered streptavidin that contains an N-terminal TAT peptide sequence was used to optimize the pinocytotic cell uptake of biotinylated BH3 peptide and end-biotinylated PPAA. Fluorescence microscopic analysis of DAPI-stained HELA cells was used to quantitate apoptosis. Approximately 30% of cells treated with TAT-SA:BH3 complexes revealed morphologically distinct nuclear condensation, a hallmark of apoptosis. The incorporation of biotinylated PPAA had the effect of markedly enhancing the killing effect of BH3 peptides by an additional 55% (p<0.001) to a total cell killing efficiency of 85%. Caspase-3 activity was up-regulated in a TAT-SA:BH3:PPAA dose-dependent manner. The induction of apoptosis with the TAT-SA:BH3:PPAA complex was abrogated with the L78A BH3 peptide, that had been previously shown to knock-out antagonization activity. The caspase and L78A peptide results demonstrate that the delivered BH3 is indeed working through the biologically relevant apoptosis signaling pathway. These studies establish the ability of PPAA to strongly enhance the intracellular delivery of a functional pro-apoptotic peptide. Together with the PPAA, the TAT-SA adaptor complex could prove useful as a carrier of peptide/protein cargo to cultured cells. PMID:21499545

  3. Cleavage efficient 2A peptides for high level monoclonal antibody expression in CHO cells

    PubMed Central

    Chng, Jake; Wang, Tianhua; Nian, Rui; Lau, Ally; Hoi, Kong Meng; Ho, Steven CL; Gagnon, Peter; Bi, Xuezhi; Yang, Yuansheng

    2015-01-01

    Linking the heavy chain (HC) and light chain (LC) genes required for monoclonal antibodies (mAb) production on a single cassette using 2A peptides allows control of LC and HC ratio and reduces non-expressing cells. Four 2A peptides derived from the foot-and-mouth disease virus (F2A), equine rhinitis A virus (E2A), porcine teschovirus-1 (P2A) and Thosea asigna virus (T2A), respectively, were compared for expression of 3 biosimilar IgG1 mAbs in Chinese hamster ovary (CHO) cell lines. HC and LC were linked by different 2A peptides both in the absence and presence of GSG linkers. Insertion of a furin recognition site upstream of 2A allowed removal of 2A residues that would otherwise be attached to the HC. Different 2A peptides exhibited different cleavage efficiencies that correlated to the mAb expression level. The relative cleavage efficiency of each 2A peptide remains similar for expression of different IgG1 mAbs in different CHO cells. While complete cleavage was not observed for any of the 2A peptides, GSG linkers did enhance the cleavage efficiency and thus the mAb expression level. T2A with the GSG linker (GT2A) exhibited the highest cleavage efficiency and mAb expression level. Stably amplified CHO DG44 pools generated using GT2A had titers 357, 416 and 600 mg/L for the 3 mAbs in shake flask batch cultures. Incomplete cleavage likely resulted in incorrectly processed mAb species and aggregates, which were removed with a chromatin-directed clarification method and protein A purification. The vector and methods presented provide an easy process beneficial for both mAb development and manufacturing. PMID:25621616

  4. Cleavage efficient 2A peptides for high level monoclonal antibody expression in CHO cells.

    PubMed

    Chng, Jake; Wang, Tianhua; Nian, Rui; Lau, Ally; Hoi, Kong Meng; Ho, Steven C L; Gagnon, Peter; Bi, Xuezhi; Yang, Yuansheng

    2015-01-01

    Linking the heavy chain (HC) and light chain (LC) genes required for monoclonal antibodies (mAb) production on a single cassette using 2A peptides allows control of LC and HC ratio and reduces non-expressing cells. Four 2A peptides derived from the foot-and-mouth disease virus (F2A), equine rhinitis A virus (E2A), porcine teschovirus-1 (P2A) and Thosea asigna virus (T2A), respectively, were compared for expression of 3 biosimilar IgG1 mAbs in Chinese hamster ovary (CHO) cell lines. HC and LC were linked by different 2A peptides both in the absence and presence of GSG linkers. Insertion of a furin recognition site upstream of 2A allowed removal of 2A residues that would otherwise be attached to the HC. Different 2A peptides exhibited different cleavage efficiencies that correlated to the mAb expression level. The relative cleavage efficiency of each 2A peptide remains similar for expression of different IgG1 mAbs in different CHO cells. While complete cleavage was not observed for any of the 2A peptides, GSG linkers did enhance the cleavage efficiency and thus the mAb expression level. T2A with the GSG linker (GT2A) exhibited the highest cleavage efficiency and mAb expression level. Stably amplified CHO DG44 pools generated using GT2A had titers 357, 416 and 600 mg/L for the 3 mAbs in shake flask batch cultures. Incomplete cleavage likely resulted in incorrectly processed mAb species and aggregates, which were removed with a chromatin-directed clarification method and protein A purification. The vector and methods presented provide an easy process beneficial for both mAb development and manufacturing. PMID:25621616

  5. Efficient and Selective Chemical Labeling of Electrochemically Generated Peptides Based on Spirolactone Chemistry.

    PubMed

    Zhang, Tao; Niu, Xiaoyu; Yuan, Tao; Tessari, Marco; de Vries, Marcel P; Permentier, Hjalmar P; Bischoff, Rainer

    2016-06-21

    Specific digestion of proteins is an essential step for mass spectrometry-based proteomics, and the chemical labeling of the resulting peptides is often used for peptide enrichment or the introduction of desirable tags. Cleavage of the peptide bond following electrochemical oxidation of Tyr or Trp results in a spirolactone moiety at the newly formed C-terminus offering a handle for chemical labeling. In this work, we developed a highly efficient and selective chemical labeling approach based on spirolactone chemistry. Electrochemically generated peptide-spirolactones readily undergo an intramolecular rearrangement yielding isomeric diketopiperazines precluding further chemical labeling. A strategy was established to prevent intramolecular arrangement by acetylating the N-terminal amino group prior to electrochemical oxidation and cleavage allowing the complete and selective chemical labeling of the tripeptide LWL and the decapeptide ACTH 1-10 with amine-containing reagents. As examples, we show the successful introduction of a fluorescent label and biotin for detection or affinity enrichment. Electrochemical digestion of peptides and proteins followed by efficient chemical labeling constitutes a new, powerful tool in protein chemistry and protein analysis. PMID:27247048

  6. Efficient generation of monoclonal antibodies against peptide in the context of MHCII using magnetic enrichment

    PubMed Central

    Spanier, Justin A.; Frederick, Daniel R.; Taylor, Justin J.; Heffernan, James R.; Kotov, Dmitri I.; Martinov, Tijana; Osum, Kevin C.; Ruggiero, Jenna L.; Rust, Blake J.; Landry, Samuel J.; Jenkins, Marc K.; McLachlan, James B.; Fife, Brian T.

    2016-01-01

    Monoclonal antibodies specific for foreign antigens, auto-antigens, allogeneic antigens and tumour neo-antigens in the context of major histocompatibility complex II (MHCII) are highly desirable as novel immunotherapeutics. However, there is no standard protocol for the efficient generation of monoclonal antibodies that recognize peptide in the context of MHCII, and only a limited number of such reagents exist. In this report, we describe an approach for the generation and screening of monoclonal antibodies specific for peptide bound to MHCII. This approach exploits the use of recombinant peptide:MHC monomers as immunogens, and subsequently relies on multimers to pre-screen and magnetically enrich the responding antigen-specific B cells before fusion and validation, thus saving significant time and reagents. Using this method, we have generated two antibodies enabling us to interrogate antigen presentation and T-cell activation. This methodology sets the standard to generate monoclonal antibodies against the peptide–MHCII complexes. PMID:27292946

  7. Leader Peptide Establishes Dehydration Order, Promotes Efficiency, and Ensures Fidelity During Lacticin 481 Biosynthesis.

    PubMed

    Thibodeaux, Christopher J; Wagoner, Joshua; Yu, Yi; van der Donk, Wilfred A

    2016-05-25

    The mechanisms by which lanthipeptide synthetases control the order in which they catalyze multiple chemical processes are poorly understood. The lacticin 481 synthetase (LctM) cleaves eight chemical bonds and forms six new chemical bonds in a controlled and ordered process. Two general mechanisms have been suggested for the temporal and spatial control of these transformations. In the spatial positioning model, leader peptide binding promotes certain reactions by establishing the spatial orientation of the substrate peptide relative to the synthetase active sites. In the intermediate structure model, the LctM-catalyzed dehydration and cyclization reactions that occur in two distinct active sites orchestrate the overall process by imparting a specific structure into the maturing peptide that facilitates the ensuing reaction. Using isotopically labeled LctA analogues with engineered lacticin 481 biosynthetic machinery and mass spectrometry analysis, we show here that the LctA leader peptide plays critical roles in establishing the modification order and enhancing the catalytic efficiency and fidelity of the synthetase. The data are most consistent with a mechanistic model for LctM where both spatial positioning and intermediate structure contribute to efficient biosynthesis. PMID:27123925

  8. Improving pancreatic islet in vitro functionality and transplantation efficiency by using heparin mimetic peptide nanofiber gels.

    PubMed

    Uzunalli, Gozde; Tumtas, Yasin; Delibasi, Tuncay; Yasa, Oncay; Mercan, Sercan; Guler, Mustafa O; Tekinay, Ayse B

    2015-08-01

    Pancreatic islet transplantation is a promising treatment for type 1 diabetes. However, viability and functionality of the islets after transplantation are limited due to loss of integrity and destruction of blood vessel networks. Thus, it is important to provide a proper mechanically and biologically supportive environment for enhancing both in vitro islet culture and transplantation efficiency. Here, we demonstrate that heparin mimetic peptide amphiphile (HM-PA) nanofibrous network is a promising platform for these purposes. The islets cultured with peptide nanofiber gel containing growth factors exhibited a similar glucose stimulation index as that of the freshly isolated islets even after 7 days. After transplantation of islets to STZ-induced diabetic rats, 28 day-long monitoring displayed that islets that were transplanted in HM-PA nanofiber gels maintained better blood glucose levels at normal levels compared to the only islet transplantation group. In addition, intraperitoneal glucose tolerance test revealed that animals that were transplanted with islets within peptide gels showed a similar pattern with the healthy control group. Histological assessment showed that islets transplanted within peptide nanofiber gels demonstrated better islet integrity due to increased blood vessel density. This work demonstrates that using the HM-PA nanofiber gel platform enhances the islets function and islet transplantation efficiency both in vitro and in vivo. PMID:25931015

  9. Efficient Synthesis of Peptide and Protein Functionalized Pyrrole-Imidazole Polyamides Using Native Chemical Ligation

    PubMed Central

    Janssen, Brian M. G.; van Ommeren, Sven P. F. I.; Merkx, Maarten

    2015-01-01

    The advancement of DNA-based bionanotechnology requires efficient strategies to functionalize DNA nanostructures in a specific manner with other biomolecules, most importantly peptides and proteins. Common DNA-functionalization methods rely on laborious and covalent conjugation between DNA and proteins or peptides. Pyrrole-imidazole (Py–Im) polyamides, based on natural minor groove DNA-binding small molecules, can bind to DNA in a sequence specific fashion. In this study, we explore the use of Py–Im polyamides for addressing proteins and peptides to DNA in a sequence specific and non-covalent manner. A generic synthetic approach based on native chemical ligation was established that allows efficient conjugation of both peptides and recombinant proteins to Py–Im polyamides. The effect of Py–Im polyamide conjugation on DNA binding was investigated by Surface Plasmon Resonance (SPR). Although the synthesis of different protein-Py–Im-polyamide conjugates was successful, attenuation of DNA affinity was observed, in particular for the protein-Py–Im-polyamide conjugates. The practical use of protein-Py–Im-polyamide conjugates for addressing DNA structures in an orthogonal but non-covalent manner, therefore, remains to be established. PMID:26053396

  10. Enhancing tumor-specific intracellular delivering efficiency of cell-penetrating peptide by fusion with a peptide targeting to EGFR.

    PubMed

    Nguyen, Long The; Yang, Xu-Zhong; Du, Xuan; Wang, Jia-Wei; Zhang, Rui; Zhao, Jian; Wang, Fu-Jun; Dong, Yang; Li, Peng-Fei

    2015-05-01

    Cell-penetrating peptides (CPPs) are well known as intracellular delivery vectors. However, unsatisfactory delivery efficiency and poor specificity are challenging barriers to CPP applications at the clinical trial stage. Here, we showed that S3, an EGFR-binding domain derived from vaccinia virus growth factor, when fused to a CPP such as HBD or TAT can substantially enhance its internalization efficiency and tumor selectivity. The uptake of S3-HBD (S3H) recombinant molecule by tumor cells was nearly 80 folds increased compared to HBD alone. By contrast, the uptake of S3H by non-neoplastic cells still remained at a low level. The specific recognition between S3 and its receptor, EGFR, as well as between HBD and heparan sulfate proteoglycans on the cell surface was essential for these improvements, suggesting a syngeneic effect between the two functional domains in conjugation. This syngeneic effect is likely similar to that of the heparin-binding epidermal growth factor, which is highly abundant particularly in metastatic tumors. The process that S3H entered cells was dependent on time, dosage, and energy, via macropinocytosis pathway. With excellent cell-penetrating efficacy and a novel tumor-targeting ability, S3H appears as a promising candidate vector for targeted anti-cancer drug delivery. PMID:25655386

  11. Efficient Gene Knockdown in Mouse Oocytes through Peptide Nanoparticle-Mediated SiRNA Transfection

    PubMed Central

    Jin, Zhen; Li, Ruichao; Zhou, Chunxiang; Shi, Liya; Zhang, Xiaolan; Yang, Zhixia; Zhang, Dong

    2016-01-01

    The use of mouse oocytes as a model for studying female meiosis is very important in reproductive medicine. Gene knockdown by specific small interfering RNA (siRNA) is usually the first step in the study of the function of a target gene in mouse oocytes during in vitro maturation. Traditionally, the only way to introduce siRNA into mouse oocytes is through microinjection, which is certainly less efficient and strenuous than siRNA transfection in somatic cells. Recently, in research using somatic cells, peptide nanoparticle-mediated siRNA transfection has been gaining popularity over liposome nanoparticle-mediated methods because of its high efficiency, low toxicity, good stability, and strong serum compatibility. However, no researchers have yet tried transfecting siRNA into mouse oocytes because of the existence of the protective zona pellucida surrounding the oocyte membrane (vitelline membrane). We therefore tested whether peptide nanoparticles can introduce siRNA into mouse oocytes. In the present study, we showed for the first time that our optimized program can efficiently knock down a target gene with high specificity. Furthermore, we achieved the expected meiotic phenotypes after we knocked down a test unknown target gene TRIM75. We propose that peptide nanoparticles may be superior for preliminary functional studies of unknown genes in mouse oocytes. PMID:26974323

  12. Efficient Gene Knockdown in Mouse Oocytes through Peptide Nanoparticle-Mediated SiRNA Transfection.

    PubMed

    Jin, Zhen; Li, Ruichao; Zhou, Chunxiang; Shi, Liya; Zhang, Xiaolan; Yang, Zhixia; Zhang, Dong

    2016-01-01

    The use of mouse oocytes as a model for studying female meiosis is very important in reproductive medicine. Gene knockdown by specific small interfering RNA (siRNA) is usually the first step in the study of the function of a target gene in mouse oocytes during in vitro maturation. Traditionally, the only way to introduce siRNA into mouse oocytes is through microinjection, which is certainly less efficient and strenuous than siRNA transfection in somatic cells. Recently, in research using somatic cells, peptide nanoparticle-mediated siRNA transfection has been gaining popularity over liposome nanoparticle-mediated methods because of its high efficiency, low toxicity, good stability, and strong serum compatibility. However, no researchers have yet tried transfecting siRNA into mouse oocytes because of the existence of the protective zona pellucida surrounding the oocyte membrane (vitelline membrane). We therefore tested whether peptide nanoparticles can introduce siRNA into mouse oocytes. In the present study, we showed for the first time that our optimized program can efficiently knock down a target gene with high specificity. Furthermore, we achieved the expected meiotic phenotypes after we knocked down a test unknown target gene TRIM75. We propose that peptide nanoparticles may be superior for preliminary functional studies of unknown genes in mouse oocytes. PMID:26974323

  13. Fluorescence Correlation Spectroscopy Reveals Highly Efficient Cytosolic Delivery of Certain Penta-Arg Proteins and Stapled Peptides

    PubMed Central

    Steinauer, Angela; Rhoades, Elizabeth; Schepartz, Alanna

    2015-01-01

    We used fluorescence correlation spectroscopy (FCS) to accurately and precisely determine the relative efficiencies with which three families of “cell-penetrating peptides” traffic to the cytosol of mammalian cells. We find that certain molecules containing a “penta-arg” motif reach the cytosol, intact, with efficiencies greater than 50%. This value is at least 10-fold higher than that observed for the widely studied cationic sequence derived from HIV Tat or polyarginine Arg8, and equals that of hydrocarbon-stapled peptides that are active in cells and animals. Moreover, we show that the efficiency with which stapled peptides reach the cytosol, as determined by FCS, correlates directly with their efficacy in cell-based assays. We expect that these findings and the associated technology will aid the design of peptides, proteins, and peptide mimetics that predictably and efficiently reach the interior of mammalian cells. PMID:25679876

  14. Efficient Cargo Delivery into Adult Brain Tissue Using Short Cell-Penetrating Peptides

    PubMed Central

    Thomas, Alvin Kuriakose; Bhattarai, Prabesh; Zhang, Yixin; Brand, Michael

    2015-01-01

    Zebrafish brains can regenerate lost neurons upon neurogenic activity of the radial glial progenitor cells (RGCs) that reside at the ventricular region. Understanding the molecular events underlying this ability is of great interest for translational studies of regenerative medicine. Therefore, functional analyses of gene function in RGCs and neurons are essential. Using cerebroventricular microinjection (CVMI), RGCs can be targeted efficiently but the penetration capacity of the injected molecules reduces dramatically in deeper parts of the brain tissue, such as the parenchymal regions that contain the neurons. In this report, we tested the penetration efficiency of five known cell-penetrating peptides (CPPs) and identified two– polyR and Trans – that efficiently penetrate the brain tissue without overt toxicity in a dose-dependent manner as determined by TUNEL staining and L-Plastin immunohistochemistry. We also found that polyR peptide can help carry plasmid DNA several cell diameters into the brain tissue after a series of coupling reactions using DBCO-PEG4-maleimide-based Michael’s addition and azide-mediated copper-free click reaction. Combined with the advantages of CVMI, such as rapidness, reproducibility, and ability to be used in adult animals, CPPs improve the applicability of the CVMI technique to deeper parts of the central nervous system tissues. PMID:25894337

  15. Incorporation of Naked Peptide Nucleic Acids into Liposomes Leads to Fast and Efficient Delivery.

    PubMed

    Avitabile, Concetta; Accardo, Antonella; Ringhieri, Paola; Morelli, Giancarlo; Saviano, Michele; Montagner, Giulia; Fabbri, Enrica; Gallerani, Eleonora; Gambari, Roberto; Romanelli, Alessandra

    2015-08-19

    The delivery of peptide nucleic acids (PNAs) to cells is a very challenging task. We report here that a liposomal formulation composed of egg PC/cholesterol/DSPE-PEG2000 can be loaded, according to different encapsulation techniques, with PNA or fluorescent PNA oligomers. PNA loaded liposomes efficiently and quickly promote the uptake of a PNA targeting the microRNA miR-210 in human erythroleukemic K562 cells. By using this innovative delivery system for PNA, down-regulation of miR-210 is achieved at a low PNA concentration. PMID:26176882

  16. Efficient Covalent Bond Formation in Gas-Phase Peptide-Peptide Ion Complexes with the Photoleucine Stapler

    NASA Astrophysics Data System (ADS)

    Shaffer, Christopher J.; Andrikopoulos, Prokopis C.; Řezáč, Jan; Rulíšek, Lubomír; Tureček, František

    2016-04-01

    Noncovalent complexes of hydrophobic peptides GLLLG and GLLLK with photoleucine (L*) tagged peptides G(L* n L m )K (n = 1,3, m = 2,0) were generated as singly charged ions in the gas phase and probed by photodissociation at 355 nm. Carbene intermediates produced by photodissociative loss of N2 from the L* diazirine rings underwent insertion into X-H bonds of the target peptide moiety, forming covalent adducts with yields reaching 30%. Gas-phase sequencing of the covalent adducts revealed preferred bond formation at the C-terminal residue of the target peptide. Site-selective carbene insertion was achieved by placing the L* residue in different positions along the photopeptide chain, and the residues in the target peptide undergoing carbene insertion were identified by gas-phase ion sequencing that was aided by specific 13C labeling. Density functional theory calculations indicated that noncovalent binding to GL*L*L*K resulted in substantial changes of the (GLLLK + H)+ ground state conformation. The peptide moieties in [GL*L*LK + GLLLK + H]+ ion complexes were held together by hydrogen bonds, whereas dispersion interactions of the nonpolar groups were only secondary in ground-state 0 K structures. Born-Oppenheimer molecular dynamics for 100 ps trajectories of several different conformers at the 310 K laboratory temperature showed that noncovalent complexes developed multiple, residue-specific contacts between the diazirine carbons and GLLLK residues. The calculations pointed to the substantial fluidity of the nonpolar side chains in the complexes. Diazirine photochemistry in combination with Born-Oppenheimer molecular dynamics is a promising tool for investigations of peptide-peptide ion interactions in the gas phase.

  17. Efficient Covalent Bond Formation in Gas-Phase Peptide-Peptide Ion Complexes with the Photoleucine Stapler.

    PubMed

    Shaffer, Christopher J; Andrikopoulos, Prokopis C; Řezáč, Jan; Rulíšek, Lubomír; Tureček, František

    2016-04-01

    Noncovalent complexes of hydrophobic peptides GLLLG and GLLLK with photoleucine (L*) tagged peptides G(L* n L m )K (n = 1,3, m = 2,0) were generated as singly charged ions in the gas phase and probed by photodissociation at 355 nm. Carbene intermediates produced by photodissociative loss of N2 from the L* diazirine rings underwent insertion into X-H bonds of the target peptide moiety, forming covalent adducts with yields reaching 30%. Gas-phase sequencing of the covalent adducts revealed preferred bond formation at the C-terminal residue of the target peptide. Site-selective carbene insertion was achieved by placing the L* residue in different positions along the photopeptide chain, and the residues in the target peptide undergoing carbene insertion were identified by gas-phase ion sequencing that was aided by specific (13)C labeling. Density functional theory calculations indicated that noncovalent binding to GL*L*L*K resulted in substantial changes of the (GLLLK + H)(+) ground state conformation. The peptide moieties in [GL*L*LK + GLLLK + H](+) ion complexes were held together by hydrogen bonds, whereas dispersion interactions of the nonpolar groups were only secondary in ground-state 0 K structures. Born-Oppenheimer molecular dynamics for 100 ps trajectories of several different conformers at the 310 K laboratory temperature showed that noncovalent complexes developed multiple, residue-specific contacts between the diazirine carbons and GLLLK residues. The calculations pointed to the substantial fluidity of the nonpolar side chains in the complexes. Diazirine photochemistry in combination with Born-Oppenheimer molecular dynamics is a promising tool for investigations of peptide-peptide ion interactions in the gas phase. Graphical Abstract ᅟ. PMID:26817657

  18. N-triazinylammonium tetrafluoroborates. A new generation of efficient coupling reagents useful for peptide synthesis.

    PubMed

    Kamiński, Zbigniew J; Kolesińska, Beata; Kolesińska, Justyna; Sabatino, Giuseppina; Chelli, Mario; Rovero, Paolo; Błaszczyk, Michał; Główka, Marek L; Papini, Anna Maria

    2005-12-01

    A new generation of triazine-based coupling reagents (TBCRs), designed according to the concept of "superactive esters", was obtained by treatment of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium (DMTMM) chloride with lithium or silver tetrafluoroborate. The structure of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium tetrafluoroborate was confirmed by X-ray diffraction. Activation of carboxylic acids by using this reagent proceeds via triazine "superactive ester". The coupling reagent was successfully used for the synthesis of Z-, Boc-, and Fmoc-protected dipeptides derived from natural and unnatural sterically hindered amino acids and for fragment condensation, in 80-100% yield and with high enantiomeric purity. The manual SPPS of the ACP(65-74) peptide fragment (H-Val-Gln-Ala-Ala-Ile-Asp-Tyr-Ile-Asn-Gly-OH) proceeded significantly faster than with TBTU or HATU, as well as the automated SPPS of the same fragment gave a purer product than by using TBTU or PyBOP. The reagent was also demonstrated to be efficient in on-resin head-to-tail cyclization of constrained cyclopeptides, in SPPS synthesis of Aib peptides, and in the synthesis of esters from appropriate acids, alcohols, and phenols. The high efficiency and versatility of this new generation of TBCRs confirm, for the first time, the usefulness of the concept of "superactive esters" in rational design of the structure of coupling reagents. PMID:16316237

  19. Peptide modified polymer poly (glycerol- dodecanedioate co-fumarate) for efficient control of motor neuron differentiation.

    PubMed

    Dai, Xizi; Huang, Yen-Chih; Leichner, Jared; Nair, Madhvan; Lin, Wei-Chiang; Li, Chen-Zhong

    2015-12-01

    Neural tissue engineering is one of the most promising approaches for healing nerve damage, which bypasses the limits of contemporary conventional treatments. In a previous study, we developed a fibrous scaffold via electrospinning poly (glycerol dodecanedioate) (PGD) and gelatin that mimics the structure of a native extracellular matrix (ECM) for soft tissue engineering application. In this study, fumaric acid (FA) was incorporated into the PGD synthesis process, which produced a PGD derivative referred to as poly (glycerol dodecanedioate co-fumarate) (PGDF). This introduced a new functional group, a double bond, into the polymer thus providing new modification possibilities. Arg-Gly-Asp-Cys (RGDC) and laminin peptides were chosen as biomolecules to modify the fiber and facilitate cell attachment and differentiation efficiency. The release of FA into the medium was quantified to investigate the bioreactivity of the derived scaffolds. In combination with UV crosslinking, the developed PGDF fiber mats were able to withstand degradation processes for up to 2 months, which ensures that neural tissue engineering applications are viable. Cell viability and motor neuron differentiation efficiency were demonstrated to be significantly improved with the addition of FA, RGDC and laminin peptides. PMID:26584592

  20. A Peptide-based Vector for Efficient Gene Transfer In Vitro and In Vivo

    PubMed Central

    Lehto, Taavi; Simonson, Oscar E; Mäger, Imre; Ezzat, Kariem; Sork, Helena; Copolovici, Dana-Maria; Viola, Joana R; Zaghloul, Eman M; Lundin, Per; Moreno, Pedro MD; Mäe, Maarja; Oskolkov, Nikita; Suhorutšenko, Julia; Smith, CI Edvard; Andaloussi, Samir EL

    2011-01-01

    Finding suitable nonviral delivery vehicles for nucleic acid–based therapeutics is a landmark goal in gene therapy. Cell-penetrating peptides (CPPs) are one class of delivery vectors that has been exploited for this purpose. However, since CPPs use endocytosis to enter cells, a large fraction of peptides remain trapped in endosomes. We have previously reported that stearylation of amphipathic CPPs, such as transportan 10 (TP10), dramatically increases transfection of oligonucleotides in vitro partially by promoting endosomal escape. Therefore, we aimed to evaluate whether stearyl-TP10 could be used for the delivery of plasmids as well. Our results demonstrate that stearyl-TP10 forms stable nanoparticles with plasmids that efficiently enter different cell-types in a ubiquitous manner, including primary cells, resulting in significantly higher gene expression levels than when using stearyl-Arg9 or unmodified CPPs. In fact, the transfection efficacy of stearyl-TP10 almost reached the levels of Lipofectamine 2000 (LF2000), however, without any of the observed lipofection-associated toxicities. Most importantly, stearyl-TP10/plasmid nanoparticles are nonimmunogenic, mediate efficient gene delivery in vivo, when administrated intramuscularly (i.m.) or intradermally (i.d.) without any associated toxicity in mice. PMID:21343913

  1. Functionalization with C-terminal cysteine enhances transfection efficiency of cell-penetrating peptides through dimer formation

    SciTech Connect

    Amand, Helene L.

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Reversible CPP dimerisation is a simple yet efficient strategy to improve delivery. Black-Right-Pointing-Pointer Dimer formation enhances peptiplex stability, resulting in increased transfection. Black-Right-Pointing-Pointer By dimerisation, the CPP EB1 even gain endosomal escape properties while lowering cytotoxicity. -- Abstract: Cell-penetrating peptides have the ability to stimulate uptake of macromolecular cargo in mammalian cells in a non-toxic manner and therefore hold promise as efficient and well tolerated gene delivery vectors. Non-covalent peptide-DNA complexes ('peptiplexes') enter cells via endocytosis, but poor peptiplex stability and endosomal entrapment are considered as main barriers to peptide-mediated delivery. We explore a simple, yet highly efficient, strategy to improve the function of peptide-based vectors, by adding one terminal cysteine residue. This allows the peptide to dimerize by disulfide bond formation, increasing its affinity for nucleic acids by the 'chelate effect' and, when the bond is reduced intracellularly, letting the complex dissociate to deliver the nucleic acid. By introducing a single C-terminal cysteine in the classical CPP penetratin and the penetratin analogs PenArg and EB1, we show that this minor modification greatly enhances the transfection capacity for plasmid DNA in HEK293T cells. We conclude that this effect is mainly due to enhanced thermodynamic stability of the peptiplexes as endosome-disruptive chloroquine is still required for transfection and the effect is more pronounced for peptides with lower inherent DNA condensation capacity. Interestingly, for EB1, addition of one cysteine makes the peptide able to mediate transfection in absence of chloroquine, indicating that dimerisation can also improve endosomal escape properties. Further, the cytotoxicity of EB1 peptiplexes is considerably reduced, possibly due to lower concentration of free peptide dimer resulting from

  2. Construction of a high efficiency copper adsorption bacterial system via peptide display and its application on copper dye polluted wastewater.

    PubMed

    Maruthamuthu, Murali Kannan; Nadarajan, Saravanan Prabhu; Ganesh, Irisappan; Ravikumar, Sambandam; Yun, Hyungdon; Yoo, Ik-Keun; Hong, Soon Ho

    2015-11-01

    For the construction of an efficient copper waste treatment system, a cell surface display strategy was employed. The copper adsorption ability of recombinant bacterial strains displaying three different copper binding peptides were evaluated in LB Luria-Bertani medium (LB), artificial wastewater, and copper phthalocyanine containing textile dye industry wastewater samples. Structural characteristics of the three peptides were also analyzed by similarity-based structure modeling. The best binding peptide was chosen for the construction of a dimeric peptide display and the adsorption ability of the monomeric and dimeric peptide displayed strains were compared. The dimeric peptide displayed strain showed superior copper adsorption in all three tested conditions (LB, artificial wastewater, and textile dye industry wastewater). When the strains were exposed to copper phthalocyanine dye polluted wastewater, the dimeric peptide display [543.27 µmol/g DCW dry cell weight (DCW)] showed higher adsorption of copper when compared with the monomeric strains (243.53 µmol/g DCW). PMID:26219270

  3. Facile Peptides Functionalization of Lanthanide-Based Nanocrystals through Phosphorylation Tethering for Efficient in Vivo NIR-to-NIR Bioimaging.

    PubMed

    Yao, Chi; Wang, Peiyuan; Wang, Rui; Zhou, Lei; El-Toni, Ahmed Mohamed; Lu, Yiqing; Li, Xiaomin; Zhang, Fan

    2016-02-01

    Peptide modification of nanoparticles is a challenging task for bioapplications. Here, we show that noncovalent surface engineering based on ligand exchange of peptides for lanthanide based upconversion and downconversion near-infrared (NIR) luminescent nanoparticles can be efficiently realized by modifying the hydroxyl functional group of a side grafted serine of peptides into a phosphate group (phosphorylation). By using the phosphorylated peptide with the arginine-glycine-aspartic acid (RGD) targeting motifs as typical examples, the modification allows improving the selectivity, sensitivity, and signal-to-noise ratio for the cancer targeting and bioimaging and reducing the toxicity derived from nonspecific interactions of nanoparticles with cells. The in vivo NIR bioimaging signal could even be detected at low injection amounts down to 20 μg per animal. PMID:26750555

  4. Dual Functional Peptide-Driven Nanoparticles for Highly Efficient Glioma-Targeting and Drug Codelivery.

    PubMed

    Kuang, Yuyang; Jiang, Xutao; Zhang, Yu; Lu, Yifei; Ma, Haojun; Guo, Yubo; Zhang, Yujie; An, Sai; Li, Jianfeng; Liu, Lisha; Wu, Yinhao; Liang, Jianying; Jiang, Chen

    2016-05-01

    Compared with peripheral tumors, glioma is very difficult to treat, not only because it has general features of tumor but also because the therapy has been restricted by the brain-blood barrier (BBB). The two main features of tumor growth are angiogenesis and proliferation of tumor cells. RNA interference (RNAi) can downregulate VEGF overexpression to inhibit tumor neovascularization. Meanwhile, doxorubicin (DOX) has been used for cytotoxic chemotherapy to kill tumor cells. Thus, combining RNAi and chemotherapy has been regarded as a potential strategy for cancer treatment. However, the BBB limits the shVEGF-DOX codelivery system to direct into glioma. Here, a smart drug delivery system modified with a dual functional peptide was established, which could target to transferrin receptor (TfR) overexpressing on both the BBB and glioma. It showed that the dual-targeting delivery system had high tumor targeting efficiency in vitro and in vivo. PMID:27058780

  5. Efficient entry of cell-penetrating peptide nona-arginine into adherent cells involves a transient increase in intracellular calcium

    PubMed Central

    Melikov, Kamran; Hara, Ann; Yamoah, Kwabena; Zaitseva, Elena; Zaitsev, Eugene; Chernomordik, Leonid V.

    2015-01-01

    Understanding the mechanism of entry of cationic peptides such as nona-arginine (R9) into cells remains an important challenge to their use as efficient drug-delivery vehicles. At nanomolar to low micromolar R9 concentrations and at physiological temperature, peptide entry involves endocytosis. In contrast, at a concentration ≥10 μM, R9 induces a very effective non-endocytic entry pathway specific for cationic peptides. We found that a similar entry pathway is induced at 1–2 μM concentrations of R9 if peptide application is accompanied by a rapid temperature drop to 15°C. Both at physiological and at sub-physiological temperatures, this entry mechanism was inhibited by depletion of the intracellular ATP pool. Intriguingly, we found that R9 at 10–20 μM and 37°C induces repetitive spikes in intracellular Ca2+ concentration. This Ca2+ signalling correlated with the efficiency of the peptide entry. Pre-loading cells with the Ca2+ chelator BAPTA (1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid) inhibited both Ca2+ spikes and peptide entry, suggesting that an increase in intracellular Ca2+ precedes and is required for peptide entry. One of the hallmarks of Ca2+ signalling is a transient cell-surface exposure of phosphatidylserine (PS), a lipid normally residing only in the inner leaflet of the plasma membrane. Blocking the accessible PS with the PS-binding domain of lactadherin strongly inhibited non-endocytic R9 entry, suggesting the importance of PS externalization in this process. To conclude, we uncovered a novel mechanistic link between calcium signalling and entry of cationic peptides. This finding will enhance our understanding of the properties of plasma membrane and guide development of future drug-delivery vehicles. PMID:26272944

  6. Rationally Designed Interfacial Peptides Are Efficient In Vitro Inhibitors of HIV-1 Capsid Assembly with Antiviral Activity

    PubMed Central

    Bocanegra, Rebeca; Nevot, María; Doménech, Rosa; López, Inmaculada; Abián, Olga; Rodríguez-Huete, Alicia; Cavasotto, Claudio N.; Velázquez-Campoy, Adrián; Gómez, Javier; Martínez, Miguel Ángel; Neira, José Luis; Mateu, Mauricio G.

    2011-01-01

    Virus capsid assembly constitutes an attractive target for the development of antiviral therapies; a few experimental inhibitors of this process for HIV-1 and other viruses have been identified by screening compounds or by selection from chemical libraries. As a different, novel approach we have undertaken the rational design of peptides that could act as competitive assembly inhibitors by mimicking capsid structural elements involved in intersubunit interfaces. Several discrete interfaces involved in formation of the mature HIV-1 capsid through polymerization of the capsid protein CA were targeted. We had previously designed a peptide, CAC1, that represents CA helix 9 (a major part of the dimerization interface) and binds the CA C-terminal domain in solution. Here we have mapped the binding site of CAC1, and shown that it substantially overlaps with the CA dimerization interface. We have also rationally modified CAC1 to increase its solubility and CA-binding affinity, and designed four additional peptides that represent CA helical segments involved in other CA interfaces. We found that peptides CAC1, its derivative CAC1M, and H8 (representing CA helix 8) were able to efficiently inhibit the in vitro assembly of the mature HIV-1 capsid. Cocktails of several peptides, including CAC1 or CAC1M plus H8 or CAI (a previously discovered inhibitor of CA polymerization), or CAC1M+H8+CAI, also abolished capsid assembly, even when every peptide was used at lower, sub-inhibitory doses. To provide a preliminary proof that these designed capsid assembly inhibitors could eventually serve as lead compounds for development of anti-HIV-1 agents, they were transported into cultured cells using a cell-penetrating peptide, and tested for antiviral activity. Peptide cocktails that drastically inhibited capsid assembly in vitro were also able to efficiently inhibit HIV-1 infection ex vivo. This study validates a novel, entirely rational approach for the design of capsid assembly

  7. An efficient strategy for heterologous expression and purification of active peptide hainantoxin-IV.

    PubMed

    Zhang, Hui; Huang, Peng-Fei; Meng, Er; Li, Wen-Ying; Zhou, Lu; Zhu, Ling-Yun; Wu, Lei; Li, Meng-Jie; Liang, Song-Ping; Zhang, Dong-Yi

    2015-01-01

    Hainantoxin-IV (HNTX-IV) from the venom of the spider Selenocosmia hainana is a potent antagonist that specifically inhibits the tetrodotoxin-sensitive (TTX-S) sodium channels. The toxin peptide consists of 35 amino acids and adopts a typical inhibitory cystine knot (ICK) motif. To obtain adequate HNTX-IV peptides for further insight into the structure-activity relationships of the toxin, a novel strategy including cloning, expression and purification was developed in an E. coli expression system. For this purpose, a seamless restriction-free (RF) cloning method was employed for the construction of an expression vector to avoid introducing unwanted sequences into the target gene. Furthermore, the solubility of recombinant HNTX-IV could be promoted efficiently by the combination of a glutathione S-transferase (GST) tag and a small ubiquitin-related modifier (SUMO) tag. Finally, an affinity-chromatography-free purification strategy was developed by cut-off dialysis tubing combined with trichloroacetic acid (TCA) extraction. Further HPLC purification yielded recombinant, tag-free HNTX-IV with high yield and purity. The molecular weight of recombinant HNTX-IV (rHNTX-IV) is identical to its theoretical value according to Matrix-Assisted Laser Desorption / Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS) analysis. The recombinant toxin has similar activity (IC50 value of 120 nM) on the tetrodotoxin-sensitive (TTX-S) sodium channels in adult rat dorsal root ganglion (DRG) neurons to native toxins. In the report, an efficient and cost-effective strategy for producing rHNTX-IV was developed, which paved the way for the further study of structure-activity relationships of rHNTX-IV and its pharmaceutical applications. PMID:25647561

  8. In Vitro Efficient Transfection by CM18-Tat11 Hybrid Peptide: A New Tool for Gene-Delivery Applications

    PubMed Central

    Salomone, Fabrizio; Cardarelli, Francesco; Signore, Giovanni; Boccardi, Claudia; Beltram, Fabio

    2013-01-01

    Cell penetrating peptides (CPPs) are actively researched as non-viral molecular carriers for the controlled delivery of nucleic acids into cells, but widespread application is severely hampered by their trapping into endosomes. Here we show that the recently introduced endosomolytic CM18-Tat11 hybrid peptide (KWKLFKKIGAVLKVLTTG-YGRKKRRQRRR, residues 1-7 of Cecropin-A, 2-12 of Melittin, and 47-57 of HIV-1 Tat protein) can be exploited to obtain a self-assembled peptide-DNA vector which maintains the CM18-Tat11 ability to enter cells and destabilize vesicular membranes, concomitantly yielding high DNA transfection efficiency with no detectable cytotoxic effects. Different peptide-DNA stoichiometric ratios were tested to optimize vector size, charge, and stability characteristics. The transfection efficiency of selected candidates is quantitatively investigated by the luciferase-reporter assay. Vector intracellular trafficking is monitored in real time and in live cells by confocal microscopy. In particular, fluorescence resonant energy transfer (FRET) between suitably-labeled peptide and DNA modules was exploited to monitor complex disassembly during endocytosis, and this process is correlated to transfection timing and efficiency. We argue that these results can open the way to the rational design and application of CM18-Tat11–based systems for gene-delivery purposes. PMID:23922923

  9. Novel Efficient Cell-Penetrating, Peptide-Mediated Strategy for Enhancing Telomerase Inhibitor Oligonucleotides.

    PubMed

    Muñoz-Alarcón, Andrés; Eriksson, Jonas; Langel, Ülo

    2015-12-01

    At present, there are several therapeutic approaches for targeting telomerase in tumors. One in particular, currently undergoing clinical trials, is based on synthetic lipid-modified oligonucleotide antagonists aimed at inhibiting the ribonucleoprotein subunit of human telomerase. However, while enabling efficient uptake, the lipid modifications reduce the potency of the therapeutic oligonucleotides compared to nonmodified oligonucleotides. Moreover, lipid modification may increase oligonucleotide accumulation in the liver causing undesirable hepatotoxicity. Noncovalent complexation strategies for cell-penetrating peptide (CPP)-mediated delivery present an option to circumvent the need for potency-reducing modifications, while allowing for a highly efficient uptake, and could significantly improve the efficiency of telomerase-targeting cancer therapeutics. Delivery of a nonlipidated locked nucleic acid/2'-O-methyl mixmer significantly inhibits the telomerase activity in treated HeLa cells. The inhibitory effect was further improved through addition of a CPP. Furthermore, calculated IC50-values for the oligonucleotide delivered by CPPs into HeLa cells are more than 20 times lower than telomerase inhibitor Imetelstat, currently undergoing clinical trials. These results emphasize the potential of CPP-mediated delivery of future pharmaceuticals and provide means by which to enhance an already promising therapeutic strategy for cancer treatment. PMID:26479411

  10. Membrane penetrating peptides greatly enhance baculovirus transduction efficiency into mammalian cells

    SciTech Connect

    Chen, Hong-Zhang; Wu, Carol P.; Chao, Yu-Chan; Liu, Catherine Yen-Yen

    2011-02-11

    Research highlights: {yields} Ligation of CTP with GP64 enhances baculovirus transduction into mammalian cells. {yields} Fusion of PTD with VP39 enhances baculovirus transduction into mammalian cells. {yields} CTP and PTD-carrying viruses improve the transduction of co-transduced baculoviruses. {yields} Virus entry and gene expression can be separate events in different cell types. -- Abstract: The baculovirus group of insect viruses is widely used for foreign gene introduction into mammalian cells for gene expression and protein production; however, the efficiency of baculovirus entry into mammalian cells is in general still low. In this study, two recombinant baculoviruses were engineered and their ability to improve viral entry was examined: (1) cytoplasmic transduction peptide (CTP) was fused with baculovirus envelope protein, GP64, to produce a cytoplasmic membrane penetrating baculovirus (vE-CTP); and (2) the protein transduction domain (PTD) of HIV TAT protein was fused with the baculovirus capsid protein VP39 to form a nuclear membrane penetrating baculovirus (vE-PTD). Transduction experiments showed that both viruses had better transduction efficiency than vE, a control virus that only expresses EGFP in mammalian cells. Interestingly, vE-CTP and vE-PTD were also able to improve the transduction efficiency of a co-transduced baculovirus, resulting in higher levels of gene expression. Our results have described new routes to further enhance the development of baculovirus as a tool for gene delivery into mammalian cells.

  11. A new recombinant pituitary adenylate cyclase-activating peptide-derived peptide efficiently promotes glucose uptake and glucose-dependent insulin secretion.

    PubMed

    Ma, Yi; Luo, Tianjie; Xu, Wenna; Ye, Zulu; Hong, An

    2012-11-01

    The recombinant peptide, DBAYL, a promising therapeutic peptide for type 2 diabetes, is a new, potent, and highly selective agonist for VPAC2 generated through site-directed mutagenesis based on sequence alignments of pituitary adenylate cyclase-activating peptide (PACAP), vasoactive intestinal peptide (VIP), and related analogs. The recombinant DBAYL was used to evaluate its effect and mechanism in blood glucose metabolism and utilization. As much as 28.9 mg recombinant DBAYL peptide with purity over 98% can be obtained from 1 l of Luria-Bertani medium culture by the method established in this study and the prepared DBAYL with four mutations (N10Q, V18L, N29Q, and M added to the N-terminal) were much more stable than BAY55-9837. The half-life of recombinant DBAYL was about 25 folds compared with that of BAY55-9837 in vitro. The bioactivity assay of DBAYL showed that it displaced [(125)I]PACAP38 and [(125)I]VIP from VPAC2 with a half-maximal inhibitory concentration of 48.4 ± 6.9 and 47.1 ± 4.9 nM, respectively, which were significantly lower than that of BAY55-9837, one established VPAC2 agonists. DBAYL enhances the cAMP accumulation in CHO cells expressing human VPAC2 with a half-maximal stimulatory concentration (EC(50)) of 0.68 nM, whereas the receptor potency of DBAYL at human VPAC1 (EC(50) of 737 nM) was only 1/1083 of that at human VPAC2, and DBAYL had no activity toward human PAC1 receptor. Western blot analysis of the key proteins of insulin receptor signaling pathway: insulin receptor substrate 1 (IRS-1) and glucose transporter 4 (GLUT4) indicated that the DBAYL could significantly induce the insulin-stimulated IRS-1 and GLUT4 expression more efficiently than BAY55-9837 and VIP in adipocytes. Compared with BAY55-9837 and PACAP38, the recombinant peptide DBAYL can more efficiently promote insulin release and decrease plasma glucose level in Institute of Cancer Research (ICR) mice. These results suggested that DBAYL could efficiently improve glucose

  12. Stearylated antimicrobial peptide [D]-K6L9 with cell penetrating property for efficient gene transfer.

    PubMed

    Zhang, Wei; Song, Jingjing; Liang, Ranran; Zheng, Xin; Chen, Jianbo; Li, Guolin; Zhang, Bangzhi; Wang, Kairong; Yan, Xiang; Wang, Rui

    2013-08-01

    Stearyl-cell penetrating peptides (CPPs) have been proved to be efficient nonviral gene vectors. Due to the similarities between antimicrobial peptides and CPPs, we constructed a novel type of gene vectors by introducing stearyl moiety to the N-terminus of antimicrobial peptide [D]-K6L9. In this study, stearyl-[D]-K6L9 delivered plasmids into cells by clathrin- and caveolin-mediated endocytosis. Gratifyingly, stearyl-[D]-K6L9 exhibited high transfection efficiency and almost reached the level of Lipofectamine 2000. Taken together, the combination of the stearyl moiety with [D]-K6L9 provides a novel framework for the development of excellent nonviral gene vectors. PMID:23727033

  13. Receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient delivery system for MRTF silencing in conjunctival fibrosis

    NASA Astrophysics Data System (ADS)

    Yu-Wai-Man, Cynthia; Tagalakis, Aristides D.; Manunta, Maria D.; Hart, Stephen L.; Khaw, Peng T.

    2016-02-01

    There is increasing evidence that the Myocardin-related transcription factor/Serum response factor (MRTF/SRF) pathway plays a key role in fibroblast activation and that knocking down MRTF can lead to reduced scarring and fibrosis. Here, we have developed a receptor-targeted liposome-peptide-siRNA nanoparticle as a non-viral delivery system for MRTF-B siRNA in conjunctival fibrosis. Using 50 nM siRNA, the MRTF-B gene was efficiently silenced by 76% and 72% with LYR and LER nanoparticles, respectively. The silencing efficiency was low when non-targeting peptides or siRNA alone or liposome-siRNA alone were used. LYR and LER nanoparticles also showed higher silencing efficiency than PEGylated LYR-P and LER-P nanoparticles. The nanoparticles were not cytotoxic using different liposomes, targeting peptides, and 50 nM siRNA. Three-dimensional fibroblast-populated collagen matrices were also used as a functional assay to measure contraction in vitro, and showed that MRTF-B LYR nanoparticles completely blocked matrix contraction after a single transfection treatment. In conclusion, this is the first study to develop and show that receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient and safe non-viral siRNA delivery system that could be used to prevent fibrosis after glaucoma filtration surgery and other contractile scarring conditions in the eye.

  14. Receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient delivery system for MRTF silencing in conjunctival fibrosis.

    PubMed

    Yu-Wai-Man, Cynthia; Tagalakis, Aristides D; Manunta, Maria D; Hart, Stephen L; Khaw, Peng T

    2016-01-01

    There is increasing evidence that the Myocardin-related transcription factor/Serum response factor (MRTF/SRF) pathway plays a key role in fibroblast activation and that knocking down MRTF can lead to reduced scarring and fibrosis. Here, we have developed a receptor-targeted liposome-peptide-siRNA nanoparticle as a non-viral delivery system for MRTF-B siRNA in conjunctival fibrosis. Using 50 nM siRNA, the MRTF-B gene was efficiently silenced by 76% and 72% with LYR and LER nanoparticles, respectively. The silencing efficiency was low when non-targeting peptides or siRNA alone or liposome-siRNA alone were used. LYR and LER nanoparticles also showed higher silencing efficiency than PEGylated LYR-P and LER-P nanoparticles. The nanoparticles were not cytotoxic using different liposomes, targeting peptides, and 50 nM siRNA. Three-dimensional fibroblast-populated collagen matrices were also used as a functional assay to measure contraction in vitro, and showed that MRTF-B LYR nanoparticles completely blocked matrix contraction after a single transfection treatment. In conclusion, this is the first study to develop and show that receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient and safe non-viral siRNA delivery system that could be used to prevent fibrosis after glaucoma filtration surgery and other contractile scarring conditions in the eye. PMID:26905457

  15. Efficient Microscale Basic Reverse Phase Peptide Fractionation for Global and Targeted Proteomics.

    PubMed

    Lee, Hyoung-Joo; Kim, Hye-Jung; Liebler, Daniel C

    2016-07-01

    Analysis of small biological samples would benefit from an efficient microscale fractionation strategy that minimizes sample handling, transfer steps, and accompanying losses. Here we describe a microscale basic reverse phase liquid chromatographic (bRPLC) fractionation method that offers high reproducibility and efficiency for peptide mixtures from small (5-20 μg) samples. We applied our platform to detect differentially expressed proteins from lung tumor cell lines that are sensitive (11-18) and resistant (11-18R) to the tyrosine kinase inhibitor erlotinib. Label-free analyses of 5-20 μg samples yielded identifications of approximately 3,200 to 4,000 proteins with coefficients of variation of 1.9-8.9% in replicate analyses. iTRAQ analyses produced similar protein inventories. Label-free and iTRAQ analyses displayed high concordance in identifications of proteins differentially expressed in 11-18 and 11-18R cells. Micro-bRPLC fractionation of cell proteomes increased sensitivity by an average of 4.5-fold in targeted quantitation using parallel reaction monitoring for three representative receptor tyrosine kinases (EGFR, PDGFRA, and BMX), which are present at low abundance in 11-18 and 11-18R cells. These data illustrate the broad utility of micro-bRPLC fractionation for global and targeted proteomic analyses. Data are available through Proteome eXchange Accession PXD003604. PMID:27255222

  16. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent

    NASA Astrophysics Data System (ADS)

    Liu, Lihong; Xu, Kaijin; Wang, Huaying; Jeremy Tan, P. K.; Fan, Weimin; Venkatraman, Subbu S.; Li, Lanjuan; Yang, Yi-Yan

    2009-07-01

    Antimicrobial cationic peptides are of interest because they can combat multi-drug-resistant microbes. Most peptides form α-helices or β-sheet-like structures that can insert into and subsequently disintegrate negatively charged bacterial cell surfaces. Here, we show that a novel class of core-shell nanoparticles formed by self-assembly of an amphiphilic peptide have strong antimicrobial properties against a range of bacteria, yeasts and fungi. The nanoparticles show a high therapeutic index against Staphylococcus aureus infection in mice and are more potent than their unassembled peptide counterparts. Using Staphylococcus aureus-infected meningitis rabbits, we show that the nanoparticles can cross the blood-brain barrier and suppress bacterial growth in infected brains. Taken together, these nanoparticles are promising antimicrobial agents that can be used to treat brain infections and other infectious diseases.

  17. Coupling of importin beta binding peptide on plasmid DNA: transfection efficiency is increased by modification of lipoplex's physico-chemical properties

    PubMed Central

    Carrière, Marie; Escriou, Virginie; Savarin, Aline; Scherman, Daniel

    2003-01-01

    Background Non-viral vectors for gene transfer are less immunogenic than viral vectors but also less efficient. Significant effort has focused on enhancing non-viral gene transfer efficiency by increasing nuclear import of plasmid DNA, particularly by coupling nuclear localization peptidic sequences to plasmid DNA. Results We have coupled a 62-aminoacid peptide derived from hSRP1α importin beta binding domain, called the IBB peptide to plasmid DNA by using the heterobifunctional linker N-(4-azido-2,3,5,6 tetrafluorobenzyl)-6-maleimidyl hexanamide (TFPAM-6). When covalently coupled to plasmid DNA, IBB peptide did not increase the efficiency of cationic lipid mediated transfection. The IBB peptide was still able to interact with its nuclear import receptor, importin β, but non-specifically. However, we observed a 20-fold increase in reporter gene expression with plasmid DNA / IBB peptide complexes under conditions of inefficient transfection. In which case, IBB was associated with plasmid DNA through self assembling ionic interaction. Conclusions The improvement of transfection activity was not due to an improved nuclear import of DNA, but rather by the modification of physicochemical properties of IBB peptide / plasmid complexes. IBB peptide increased lipoplex size and these larger complexes were more efficient for gene transfer. PMID:12969505

  18. Use of lipolanthionine peptide, a toll-like receptor 2 inhibitor, enhances transdermal delivery efficiency

    PubMed Central

    CHEN, BIN; LIU, DA-LIE; PAN, WEN-YAN; YANG, XIAO-HUI; SHOU, JIA-BAO; WU, JU-HUA; MAO, QING-LONG; WANG, JIA

    2014-01-01

    The transdermal delivery system (TDS) is able to obtain a systemic therapeutic effect by administration through the skin, which has low side effects and is able to maintain a sustained blood concentration. However, due to the barrier presented by the stratum corneum, numerous drugs have poor percutaneous permeability. Therefore, the improvement of skin permeability is key to TDS. The main method of promoting transdermal absorption is through the usage of penetration enhancers. Dimethyl sulfoxide (DMSO) is a commonly used penetration enhancer, which has anti-inflammatory analgesic effects and is able to penetrate the skin. Retinoic acid (RA) and lipolanthionine peptide (LP) may also benefit the permeation efficiency of TDS. Therefore, the present study examined the function of DMSO, RA and LP as penetration enhancers in TDS. Firstly, the optimum concentration of DMSO was confirmed by detecting the expression of the LacZ gene in vitro. Secondly, different combinations of LP, RA and DMSO were applied to mouse skin to analyze the penetration enhancer combination with the greatest efficacy. All the animals were divided into five groups: The RA + LP + DMSO + pORF-LacZ group, the RA + DMSO + pORF-LacZ group, the LP + DMSO + pORF-LacZ group, the DMSO + pORF-LacZ group and the control group. Skin was soaked in combinations of LP, RA and DMSO for seven days and then the pORF-LacZ plasmids were daubed onto the skin once daily three days. On the 11th day, all the animals were sacrificed by cervical dislocation and the skin and blood samples were collected. The blood samples were used to detect the expression of the LacZ gene by quantitative polymerase chain reaction and the skin samples were used to detect the expression of claudin-4 and zonula occluden-1 (ZO-1) proteins by immunohistochemistry and western blot analysis. The results demonstrated that the combination of LP, RA and DMSO exhibited the greatest transdermal delivery efficiency, which verified that RA and LP were

  19. Efficient 18F-Labeling of Large 37-Amino Acid pHLIP Peptide Analogues and their Biological Evaluation

    PubMed Central

    Daumar, Pierre; Wanger-Baumann, Cindy A.; Pillarsetty, NagaVaraKishore; Fabrizio, Laura; Carlin, Sean D.; Andreev, Oleg A.; Reshetnyak, Yana K.; Lewis, Jason S.

    2012-01-01

    Solid tumors often develop an acidic microenvironment, which plays a critical role in tumor progression and is associated with increased level of invasion and metastasis. The 37-residue pH (low) insertion peptide (pHLIP®) is under study as an imaging platform because of its unique ability to insert into cell membranes at a low extracellular pH (pHe<7). Labeling of peptides with [18F]-fluorine is usually performed via prosthetic groups using chemoselective coupling reactions. One of the most successful procedures involves the alkyne-azide copper(I) catalyzed cycloaddition (CuAAC). However, none of the known “click” methods have been applied to peptides as large as pHLIP. We designed a novel prosthetic group and extended the use of the CuAAC “click chemistry” for the simple and efficient 18F-labeling of large peptides. For the evaluation of this labeling approach, a D-amino acid analogue of WT-pHLIP and a L-amino acid control peptide K-pHLIP, both functionalized at the N-terminus with 6-azidohexanoic acid, were used. The novel 6-[18F]fluoro-2-ethynylpyridine prosthetic group, was obtained via nucleophilic substitution on the corresponding bromo-precursor after 10 min at 130 °C with a radiochemical yield of 27.5 ± 6.6% (decay corrected) with high radiochemical purity ≥ 98%. The subsequent CuI catalyzed “click” reaction with the azido functionalized pHLIP peptides was quantitative within 5 min at 70 °C in a mixture of water and ethanol using Cu-acetate and sodium L-ascorbate. [18F]-D-WT-pHLIP and [18F]-L-K-pHLIP were obtained with total radiochemical yields of 5–20% after HPLC purification. The total reaction time was only 85 min including formulation. In vitro stability tests revealed high stability of the [18F]-D-WT-pHLIP in human and mouse plasma after 120 min, with the parent tracer remaining intact at 65 and 85%, respectively. PET imaging and biodistribution studies in LNCaP and PC-3 xenografted mice with the [18F]-D-WT-pHLIP and the negative

  20. α-Enolase-binding peptide enhances drug delivery efficiency and therapeutic efficacy against colorectal cancer.

    PubMed

    Wu, Chien-Hsun; Kuo, Yi-Huei; Hong, Ruey-Long; Wu, Han-Chung

    2015-06-01

    Colorectal cancer is one of the most commonly diagnosed cancers and a leading cause of cancer mortality worldwide. Current treatment for colorectal cancer results in only limited success, and more effective therapeutic approaches are thus urgently needed. The development of new methods for early detection and effective treatments for cancer is contingent on the identification of biomarkers on the surface of cancer cells, as well as isolation of tumor-specific ligands with high binding affinity to such biomarkers. In vitro biopanning of a phage-displayed peptide library was used to identify specific peptides binding to human colorectal carcinoma cells. The targeting peptide pHCT74 showed the greatest potential for drug delivery in both in vitro and in vivo studies. The use of biotinylated peptides combined with an affinity trapping method and liquid chromatography-tandem mass spectrometry identified the target protein for the pHCT74 peptide as α-enolase. In animal model studies, combined pHCT74-conjugated liposomal doxorubicin (pHCT74-LD) and pHCT74-conjugated liposomal vinorelbine (pHCT74-sLV) therapy exhibited an enhanced antitumor effect and markedly extended the survival of mice with human colorectal cancer in subcutaneous and orthotopic models. Our findings indicate that α-enolase-targeted lipid nanoparticles have great potential for application in targeted drug delivery systems for colorectal cancer therapy. PMID:26041708

  1. Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase

    PubMed Central

    Harris, Karen S.; Durek, Thomas; Kaas, Quentin; Poth, Aaron G.; Gilding, Edward K.; Conlan, Brendon F.; Saska, Ivana; Daly, Norelle L.; van der Weerden, Nicole L.; Craik, David J.; Anderson, Marilyn A.

    2015-01-01

    Cyclotides are diverse plant backbone cyclized peptides that have attracted interest as pharmaceutical scaffolds, but fundamentals of their biosynthetic origin remain elusive. Backbone cyclization is a key enzyme-mediated step of cyclotide biosynthesis and confers a measure of stability on the resultant cyclotide. Furthermore, cyclization would be desirable for engineered peptides. Here we report the identification of four asparaginyl endopeptidases (AEPs), proteases implicated in cyclization, from the cyclotide-producing plant Oldenlandia affinis. We recombinantly express OaAEP1b and find it functions preferably as a cyclase by coupling C-terminal cleavage of propeptide substrates with backbone cyclization. Interestingly, OaAEP1b cannot cleave at the N-terminal site of O. affinis cyclotide precursors, implicating additional proteases in cyclotide biosynthesis. Finally, we demonstrate the broad utility of this enzyme by cyclization of peptides unrelated to cyclotides. We propose that recombinant OaAEP1b is a powerful tool for use in peptide engineering applications where increased stability of peptide products is desired. PMID:26680698

  2. Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase.

    PubMed

    Harris, Karen S; Durek, Thomas; Kaas, Quentin; Poth, Aaron G; Gilding, Edward K; Conlan, Brendon F; Saska, Ivana; Daly, Norelle L; van der Weerden, Nicole L; Craik, David J; Anderson, Marilyn A

    2015-01-01

    Cyclotides are diverse plant backbone cyclized peptides that have attracted interest as pharmaceutical scaffolds, but fundamentals of their biosynthetic origin remain elusive. Backbone cyclization is a key enzyme-mediated step of cyclotide biosynthesis and confers a measure of stability on the resultant cyclotide. Furthermore, cyclization would be desirable for engineered peptides. Here we report the identification of four asparaginyl endopeptidases (AEPs), proteases implicated in cyclization, from the cyclotide-producing plant Oldenlandia affinis. We recombinantly express OaAEP1b and find it functions preferably as a cyclase by coupling C-terminal cleavage of propeptide substrates with backbone cyclization. Interestingly, OaAEP1b cannot cleave at the N-terminal site of O. affinis cyclotide precursors, implicating additional proteases in cyclotide biosynthesis. Finally, we demonstrate the broad utility of this enzyme by cyclization of peptides unrelated to cyclotides. We propose that recombinant OaAEP1b is a powerful tool for use in peptide engineering applications where increased stability of peptide products is desired. PMID:26680698

  3. Efficient Subcellular Targeting to the Cell Nucleus of Quantum Dots Densely Decorated with a Nuclear Localization Sequence Peptide.

    PubMed

    Maity, Amit Ranjan; Stepensky, David

    2016-01-27

    Organelle-targeted drug delivery can enhance the efficiency of the intracellularly acting drugs and reduce their toxicity. We generated core-shell type CdSe-ZnS quantum dots (QDs) densely decorated with NLS peptidic targeting residues using a 3-stage decoration approach and investigated their endocytosis and nuclear targeting efficiencies. The diameter of the generated QDs increased following the individual decoration stages (16.3, 18.9, and 21.9 nm), the ζ-potential became less negative (-33.2, -17.5, and -11.9 mV), and characteristic changes appeared in the FTIR spectra following decoration with the linker and NLS peptides. Quantitative analysis of the last decoration stage revealed that 37.9% and 33.2% of the alkyne-modified NLS groups that were added to the reaction mix became covalently attached or adsorbed to the QDs surface, respectively. These numbers correspond to 63.6 and 55.7 peptides conjugated or adsorbed to a single QD (the surface density of 42 and 37 conjugated and adsorbed peptides per 1000 nm(2) of the QDs surface), which is higher than in the majority of previous studies that reported decoration efficiencies of formulations intended for nuclear-targeted drug delivery. QDs decorated with NLS peptides undergo more efficient endocytosis, as compared to other investigated QDs formulations, and accumulated to a higher extent in the cell nucleus or in close vicinity to it (11.9%, 14.6%, and 56.1% of the QDs endocytosed by an average cell for the QD-COOH, QD-azide, and QD-NLS formulations, respectively). We conclude that dense decoration of QDs with NLS residues increased their endocytosis and led to their nuclear targeting (preferential accumulation in the cells nuclei or in close vicinity to them). The experimental system and research tools that were used in this study allow quantitative investigation of the mechanisms that govern the QDs nuclear targeting and their dependence on the formulation properties. These findings will contribute to the

  4. Peptide-mediated delivery: an overview of pathways for efficient internalization.

    PubMed

    Pae, Janely; Pooga, Margus

    2014-11-01

    Poor cellular delivery and low bioavailability of novel potent therapeutic molecules continue to remain the bottleneck of modern cancer and gene therapy. Cell-penetrating peptides have provided immense opportunities for the intracellular delivery of bioactive cargos and have led to the first exciting successes in experimental therapy of muscular dystrophies. This review focuses on the mechanisms by which cell-penetrating peptides gain access to the cell interior and deliver cargos. Recent advances in augmenting delivery efficacy and facilitation of endosomal escape of cargo are presented, and the cell-penetrating peptide-mediated delivery of two of the most popular classes of cargo molecules, oligonucleotides and proteins, is analyzed. The arsenal of tools for oligonucleotide delivery has dramatically expanded in the last decade enabling harnessing of cell-surface receptors for targeted delivery. PMID:25491671

  5. An Efficient Method for the In Vitro Production of Azol(in)e-Based Cyclic Peptides**

    PubMed Central

    Houssen, Wael E; Bent, Andrew F; McEwan, Andrew R; Pieiller, Nathalie; Tabudravu, Jioji; Koehnke, Jesko; Mann, Greg; Adaba, Rosemary I; Thomas, Louise; Hawas, Usama W; Liu, Huanting; Schwarz-Linek, Ulrich; Smith, Margaret C M; Naismith, James H; Jaspars, Marcel

    2014-01-01

    Heterocycle-containing cyclic peptides are promising scaffolds for the pharmaceutical industry but their chemical synthesis is very challenging. A new universal method has been devised to prepare these compounds by using a set of engineered marine-derived enzymes and substrates obtained from a family of ribosomally produced and post-translationally modified peptides called the cyanobactins. The substrate precursor peptide is engineered to have a non-native protease cleavage site that can be rapidly cleaved. The other enzymes used are heterocyclases that convert Cys or Cys/Ser/Thr into their corresponding azolines. A macrocycle is formed using a macrocyclase enzyme, followed by oxidation of the azolines to azoles with a specific oxidase. The work is exemplified by the production of 17 macrocycles containing 6–9 residues representing 11 out of the 20 canonical amino acids. PMID:25331823

  6. Protease-catalyzed peptide synthesis using inverse substrates: the influence of reaction conditions on the trypsin acyl transfer efficiency.

    PubMed

    Schellenberger, V; Jakubke, H D; Zapevalova, N P; Mitin, Y V

    1991-06-01

    Benzyloxycarbonyl-L-alanine p-guanidinophenyl ester behaves as a trypsin "inverse substrate," i.e., a cationic center is included in the leaving group instead of being in the acyl moiety. Using this substrate as an acyl donor, trypsin catalyzes the synthesis of peptide bonds that cannot be split by this enzyme. An optimal acyl transfer efficiency was achieved between pH 8 and 9 at 30 degrees C.The addition of as much as 50% cosolvent was shown to be of minor influence on the acyl transfer efficiency, whereas the reaction velocity decreases by more than one order of magnitude. The efficiency of H-Leu-NH(2) and H-Val-NH(2) in deacylation is almost the same for "inverse" and normal type substrates. PMID:18600704

  7. Improved Proteome Coverage by Using High Efficiency Cysteinyl-peptide Enrichment: The Human Mammary Epithelial Cell Proteome

    SciTech Connect

    Liu, Tao; Qian, Weijun; Chen, Wan-Nan U.; Jacobs, Jon M.; Moore, Ronald J.; Anderson, David J.; Gritsenko, Marina A.; Monroe, Matthew E.; Thrall, Brian D.; Camp, David G.; Smith, Richard D.

    2005-04-05

    Automated multidimensional capillary liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been increasingly applied in various large scale proteome profiling efforts. However, comprehensive global proteome analysis remains technically challenging due to issues associated with sample complexity and dynamic range of protein abundances, which is particularly apparent in mammalian biological systems. We report here the application of a high efficiency cysteinyl-peptide enrichment (CPE) approach to the global proteome analysis of human mammary epithelial cells (HMECs) which significantly improved both sequence coverage of protein identifications and the overall proteome coverage. The cysteinyl-peptides were specifically enriched by using a thiol-specific covalent resin, fractionated by strong cation exchange chromatography, and subsequently analyzed by reversed-phase capillary LC-MS/MS. An HMEC tryptic digest without CPE was also fractionated and analyzed under the same conditions for comparison. The combined analyses of HMEC tryptic digests with and without CPE resulted in a total of 14,416 confidently identified peptides covering 4,294 different proteins with an estimated 10% gene coverage of the human geome. By using the high efficiency CPE, an additional 1,096 relatively low abundance proteins were identified, resulting in 34.3% increase in proteome coverage; 1,390 proteomes were observed with increased sequence coverage. Comparative protein distribution analyses revealed that the CPE method is not biased by protein molecular weight, pI, gene location, cellular location, or biological functions. These results demonstrate that the use of the CPE approach provides improved efficiency in comprehensive proteome-wide analyses of highly complex mammalian biological systems.

  8. Seneca Valley Virus 3Cpro Substrate Optimization Yields Efficient Substrates for Use in Peptide-Prodrug Therapy

    PubMed Central

    Miles, Linde A.; Brennen, W. Nathaniel; Rudin, Charles M.; Poirier, John T.

    2015-01-01

    The oncolytic picornavirus Seneca Valley Virus (SVV-001) demonstrates anti-tumor activity in models of small cell lung cancer (SCLC), but may ultimately need to be combined with cytotoxic therapies to improve responses observed in patients. Combining SVV-001 virotherapy with a peptide prodrug activated by the viral protease 3Cpro is a novel strategy that may increase the therapeutic potential of SVV-001. Using recombinant SVV-001 3Cpro, we measured cleavage kinetics of predicted SVV-001 3Cpro substrates. An efficient substrate, L/VP4 (kcat/KM = 1932 ± 183 M-1s-1), was further optimized by a P2’ N→P substitution yielding L/VP4.1 (kcat/KM = 17446 ± 2203 M-1s-1). We also determined essential substrate amino acids by sequential N-terminal deletion and substitution of amino acids found in other picornavirus genera. A peptide corresponding to the L/VP4.1 substrate was selectively cleaved by SVV-001 3Cpro in vitro and was stable in human plasma. These data define an optimized peptide substrate for SVV-001 3Cpro, with direct implications for anti-cancer therapeutic development. PMID:26069962

  9. DNA Subtraction of In Vivo Selected Phage Repertoires for Efficient Peptide Pathology Biomarker Identification in Neuroinflammation Multiple Sclerosis Model

    PubMed Central

    Vargas-Sanchez, Karina; Vekris, Antonios; Petry, Klaus G.

    2016-01-01

    To streamline in vivo biomarker discovery, we developed a suppression subtractive DNA hybridization technique adapted for phage-displayed combinatorial libraries of 12 amino acid peptides (PhiSSH). Physical DNA subtraction is performed in a one-tube-all-reactions format by sequential addition of reagents, producing the enrichment of specific clones of one repertoire. High-complexity phage repertoires produced by in vivo selections in the multiple sclerosis rat model (experimental autoimmune encephalomyelitis, EAE) and matched healthy control rats were used to evaluate the technique. The healthy repertoire served as a physical DNA subtractor from the EAE repertoire to produce the subtraction repertoire. Full next-generation sequencing (NGS) of the three repertoires was performed to evaluate the efficiency of the subtraction technique. More than 96% of the clones common to the EAE and healthy repertoires were absent from the subtraction repertoire, increasing the probability of randomly selecting various specific peptides for EAE pathology to about 70%. Histopathology experiments were performed to confirm the quality of the subtraction repertoire clones, producing distinct labeling of the blood–brain barrier (BBB) affected by inflammation among healthy nervous tissue or the preferential binding to IL1-challenged vs. resting human BBB model. Combining PhiSSH with NGS will be useful for controlled in vivo screening of small peptide combinatorial libraries to discover biomarkers of specific molecular alterations interspersed within healthy tissues. PMID:26917946

  10. The Signal Peptide of a Vacuolar Protein Is Necessary and Sufficient for the Efficient Secretion of a Cytosolic Protein 1

    PubMed Central

    Hunt, Dale C.; Chrispeels, Maarten J.

    1991-01-01

    A cytosolic pea (Pisum sativum) seed albumin (ALB) and a chimeric protein (PHALB) consisting of the signal peptide and first three amino acids of phytohemagglutinin (PHA) and the amino acid sequence of ALB were expressed in parallel suspension cultures of tobacco (Nicotiana tabacum) cells and their intracellular fates examined. PHALB was efficiently secreted by the cells whereas ALB remained intracellular. These experiments show that the information contained in the signal peptide of a vacuolar protein is both necessary and sufficient for efficient secretion, and define secretion as a default or bulk-flow pathway. Entry into the secretory pathway was accompanied by glycosylation and the efficient conversion of the high mannose glycans into complex glycans indicating that transported glycoproteins do not need specific recognition domains for the modifying enzymes in the Golgi. Tunicamycin depressed the accumulation of the unglycosylated polypeptide in the culture medium much less than the accumulation of other glycoproteins. We interpret this as evidence that glycans on proteins that are not normally glycosylated do not have the same function of stabilizing and protecting the polypeptide as on natural glycoproteins. ImagesFigure 2Figure 3Figure 5Figure 6Figure 7Figure 8 PMID:16668149

  11. Efficient Secretion of Recombinant Proteins from Rice Suspension-Cultured Cells Modulated by the Choice of Signal Peptide

    PubMed Central

    Huang, Li-Fen; Tan, Chia-Chun; Yeh, Ju-Fang; Liu, Hsin-Yi; Liu, Yu-Kuo; Ho, Shin-Lon; Lu, Chung-An

    2015-01-01

    Plant-based expression systems have emerged as a competitive platform in the large-scale production of recombinant proteins. By adding a signal peptide, αAmy3sp, the desired recombinant proteins can be secreted outside transgenic rice cells, making them easy to harvest. In this work, to improve the secretion efficiency of recombinant proteins in rice expression systems, various signal peptides including αAmy3sp, CIN1sp, and 33KDsp have been fused to the N-terminus of green fluorescent protein (GFP) and introduced into rice cells to explore the efficiency of secretion of foreign proteins. 33KDsp had better efficiency than αAmy3sp and CIN1sp for the secretion of GFP from calli and suspension-cultured cells. 33KDsp was further applied for the secretion of mouse granulocyte-macrophage colony-stimulating factor (mGM-CSF) from transgenic rice suspension-cultured cells; approximately 76%–92% of total rice-derived mGM-CSF (rmGM-CSF) was detected in the culture medium. The rmGM-CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell line, NSF-60. The extracellular yield of rmGM-CSF reached 31.7 mg/L. Our study indicates that 33KDsp is better at promoting the secretion of recombinant proteins in rice suspension-cultured cell systems than the commonly used αAmy3sp. PMID:26473722

  12. Dual Receptor Recognizing Cell Penetrating Peptide for Selective Targeting, Efficient Intratumoral Diffusion and Synthesized Anti-Glioma Therapy

    PubMed Central

    Liu, Yayuan; Mei, Ling; Xu, Chaoqun; Yu, Qianwen; Shi, Kairong; Zhang, Li; Wang, Yang; Zhang, Qianyu; Gao, Huile; Zhang, Zhirong; He, Qin

    2016-01-01

    Cell penetrating peptides (CPPs) were widely used for drug delivery to tumor. However, the nonselective in vivo penetration greatly limited the application of CPPs-mediated drug delivery systems. And the treatment of malignant tumors is usually followed by poor prognosis and relapse due to the existence of extravascular core regions of tumor. Thus it is important to endue selective targeting and stronger intratumoral diffusion abilities to CPPs. In this study, an RGD reverse sequence dGR was conjugated to a CPP octa-arginine to form a CendR (R/KXXR/K) motif contained tandem peptide R8-dGR (RRRRRRRRdGR) which could bind to both integrin αvβ3 and neuropilin-1 receptors. The dual receptor recognizing peptide R8-dGR displayed increased cellular uptake and efficient penetration ability into glioma spheroids in vitro. The following in vivo studies indicated the active targeting and intratumoral diffusion capabilities of R8-dGR modified liposomes. When paclitaxel was loaded in the liposomes, PTX-R8-dGR-Lip induced the strongest anti-proliferation effect on both tumor cells and cancer stem cells, and inhibited the formation of vasculogenic mimicry channels in vitro. Finally, the R8-dGR liposomal drug delivery system prolonged the medium survival time of intracranial C6 bearing mice by 2.1-fold compared to the untreated group, and achieved an exhaustive anti-glioma therapy including anti-tumor cells, anti-vasculogenic mimicry and anti-brain cancer stem cells. To sum up, all the results demonstrated that R8-dGR was an ideal dual receptor recognizing CPP with selective glioma targeting and efficient intratumoral diffusion, which could be further used to equip drug delivery system for effective glioma therapy. PMID:26877777

  13. On-resin Diels-Alder reaction with inverse electron demand: an efficient ligation method for complex peptides with a varying spacer to optimize cell adhesion.

    PubMed

    Pagel, Mareen; Meier, René; Braun, Klaus; Wiessler, Manfred; Beck-Sickinger, Annette G

    2016-06-01

    Solid phase peptide synthesis (SPPS) is the method of choice to produce peptides. Several protecting groups enable specific modifications. However, complex peptide conjugates usually require a rather demanding conjugation strategy, which is mostly performed in solution. Herein, an efficient strategy is described using an on-resin Diels-Alder reaction with inverse electron demand (DARinv). This method is compatible with the standard Fmoc/tBu strategy and is easy to monitor. As a proof of concept a titanium binding peptide was modified with a cyclic cell binding peptide (RGD) by DARinv on a solid support applying different tetrazines and alkenes. The generated bulky DARinv linkers were employed to act as the required spacer for RGD mediated cell adhesion on titanium. In vitro studies demonstrated improved cell spreading on DARinv-conjugated peptides and revealed, in combination with molecular dynamics-simulation, new insights into the design of spacers between the RGD peptide and the surface. Performing the DARinv on resin expands the toolbox of SPPS to produce complex peptide conjugates under mild, catalyst free conditions with reduced purification steps. The resulting conjugate can be effectively exploited to promote cell adhesion on biomaterials. PMID:27117044

  14. Facile synthesis of yolk-shell magnetic mesoporous carbon microspheres for efficient enrichment of low abundance peptides.

    PubMed

    Wan, Hao; Qin, Hongqiang; Xiong, Zhichao; Zhang, Weibing; Zou, Hanfa

    2013-11-21

    Magnetic mesoporous carbon microspheres with a yolk-shell structure (YSMMCS) have been prepared via a new in situ carbon source strategy. The material was fabricated by two shells coated onto the Fe3O4 particles; the inner dense and thick silica shell could protect the magnetic core from harsh acidic solvents as well as induce the void between the core and the outer shell for the yolk-shell structure, while the outer organosilica shell was used as the template and carbon source for in situ preparation of a carbon shell with mesoporous structure. A C18-alkyl chain was incorporated in situ as the carbon precursor efficiently, avoiding the conventional infiltration step, which was very difficult to manipulate and time-consuming with the possibility of losing the carbon precursor. The resulting yolk-shell magnetic mesoporous carbon microspheres exhibited a high surface area (273.15 m(2) g(-1)), a large pore volume (0.31 cm(3) g(-1)), and a strong magnetic response (a saturation magnetization value of 34.57 emu g(-1)). As a result of the void between the core and the outer shell and the π-π stacking effect, adsorption capacity reached 191.64 mg g(-1) by using Rhodamine B as a standard analyte, indicating the great potential application of the material as drug carriers. Owing to the inherent hydrophobicity and high surface area, the composite material showed better performance in the enrichment of peptides than a magnetic mesoporous silica material (Fe2O3@nSiO2@mSiO2). According to the LC-MS/MS results, about 51 and 29 nonredundant peptides were identified from tryptic digests of 5 nM BSA. Additionally, taking advantage of the mesoporous structure and strong magnetic response, the material was utilized to selectively extract low abundance endogenous peptides from human serum in the presence of high abundance proteins. Based on the LC-MS/MS results, 962 endogenous peptides were obtained by 2.5 mg YSMMCS relative to 539 endogenous peptides by 5 mg Fe2O3@nSiO2@mSiO2

  15. Efficient Inhibition of Hepatitis B Virus Infection by a preS1-binding Peptide.

    PubMed

    Ye, Xiaoli; Zhou, Ming; He, Yonggang; Wan, Yanmin; Bai, Weiya; Tao, Shuai; Ren, Yanqin; Zhang, Xinxin; Xu, Jianqing; Liu, Jing; Zhang, Junqi; Hu, Kanghong; Xie, Youhua

    2016-01-01

    Entry inhibitors are promising novel antivirals against hepatitis B virus (HBV) infection. The existing potential entry inhibitors have targeted the cellular receptor(s). In this study, we aim to develop the first entry inhibitor that inhibits HBV infection via targeting viral particles. The preS1 segment of the large envelope glycoprotein of HBV is essential for virion attachment and infection. Previously, we obtained a preS1-binding short peptide B10 by screening a phage display peptide library using the N-terminal half of preS1 (residues 1 to 60, genotype C). We report here that by means of concatenation of B10, we identified a quadruple concatemer 4B10 that displayed a markedly increased preS1-binding activity. The main binding site of 4B10 in preS1 was mapped to the receptor binding enhancing region. 4B10 blocked HBV attachment to hepatic cells and inhibited HBV infection of primary human and tupaia hepatocytes at low nanomolar concentrations. The 4B10-mediated inhibition of HBV infection is specific as it did not inhibit the infection of vesicular stomatitis virus glycoprotein pseudotyped lentivirus or human immunodeficiency virus type 1. Moreover, 4B10 showed no binding activity to hepatic cells. In conclusion, we have identified 4B10 as a promising candidate for a novel class of HBV entry inhibitors. PMID:27384014

  16. Efficient Inhibition of Hepatitis B Virus Infection by a preS1-binding Peptide

    PubMed Central

    Ye, Xiaoli; Zhou, Ming; He, Yonggang; Wan, Yanmin; Bai, Weiya; Tao, Shuai; Ren, Yanqin; Zhang, Xinxin; Xu, Jianqing; Liu, Jing; Zhang, Junqi; Hu, Kanghong; Xie, Youhua

    2016-01-01

    Entry inhibitors are promising novel antivirals against hepatitis B virus (HBV) infection. The existing potential entry inhibitors have targeted the cellular receptor(s). In this study, we aim to develop the first entry inhibitor that inhibits HBV infection via targeting viral particles. The preS1 segment of the large envelope glycoprotein of HBV is essential for virion attachment and infection. Previously, we obtained a preS1-binding short peptide B10 by screening a phage display peptide library using the N-terminal half of preS1 (residues 1 to 60, genotype C). We report here that by means of concatenation of B10, we identified a quadruple concatemer 4B10 that displayed a markedly increased preS1-binding activity. The main binding site of 4B10 in preS1 was mapped to the receptor binding enhancing region. 4B10 blocked HBV attachment to hepatic cells and inhibited HBV infection of primary human and tupaia hepatocytes at low nanomolar concentrations. The 4B10-mediated inhibition of HBV infection is specific as it did not inhibit the infection of vesicular stomatitis virus glycoprotein pseudotyped lentivirus or human immunodeficiency virus type 1. Moreover, 4B10 showed no binding activity to hepatic cells. In conclusion, we have identified 4B10 as a promising candidate for a novel class of HBV entry inhibitors. PMID:27384014

  17. Facile synthesis of yolk-shell magnetic mesoporous carbon microspheres for efficient enrichment of low abundance peptides

    NASA Astrophysics Data System (ADS)

    Wan, Hao; Qin, Hongqiang; Xiong, Zhichao; Zhang, Weibing; Zou, Hanfa

    2013-10-01

    Magnetic mesoporous carbon microspheres with a yolk-shell structure (YSMMCS) have been prepared via a new in situ carbon source strategy. The material was fabricated by two shells coated onto the Fe3O4 particles; the inner dense and thick silica shell could protect the magnetic core from harsh acidic solvents as well as induce the void between the core and the outer shell for the yolk-shell structure, while the outer organosilica shell was used as the template and carbon source for in situ preparation of a carbon shell with mesoporous structure. A C18-alkyl chain was incorporated in situ as the carbon precursor efficiently, avoiding the conventional infiltration step, which was very difficult to manipulate and time-consuming with the possibility of losing the carbon precursor. The resulting yolk-shell magnetic mesoporous carbon microspheres exhibited a high surface area (273.15 m2 g-1), a large pore volume (0.31 cm3 g-1), and a strong magnetic response (a saturation magnetization value of 34.57 emu g-1). As a result of the void between the core and the outer shell and the π-π stacking effect, adsorption capacity reached 191.64 mg g-1 by using Rhodamine B as a standard analyte, indicating the great potential application of the material as drug carriers. Owing to the inherent hydrophobicity and high surface area, the composite material showed better performance in the enrichment of peptides than a magnetic mesoporous silica material (Fe2O3@nSiO2@mSiO2). According to the LC-MS/MS results, about 51 and 29 nonredundant peptides were identified from tryptic digests of 5 nM BSA. Additionally, taking advantage of the mesoporous structure and strong magnetic response, the material was utilized to selectively extract low abundance endogenous peptides from human serum in the presence of high abundance proteins. Based on the LC-MS/MS results, 962 endogenous peptides were obtained by 2.5 mg YSMMCS relative to 539 endogenous peptides by 5 mg Fe2O3@nSiO2@mSiO2, confirming the

  18. A specific aptamer-cell penetrating peptides complex delivered siRNA efficiently and suppressed prostate tumor growth in vivo.

    PubMed

    Diao, Yanjun; Liu, Jiayun; Ma, Yueyun; Su, Mingquan; Zhang, Hongyi; Hao, Xiaoke

    2016-05-01

    Specific and efficient delivery of siRNA into intended tumor cells remains as a challenge, even though RNAi has been exploited as a new strategy for prostate cancer therapy. This work aims to address both specificity and efficiency of SURVIVIN-siRNA delivery by constructing a therapeutic complex using combinatorial strategies. A fusion protein STD was first expressed to serve as a backbone, consisting of streptavidin, a cell-penetrating peptide called Trans-Activator of Transcription (TAT) and a double-stranded RNA binding domain. A biotinylated Prostate Specific Membrane Antigen (PSMA) specific aptamer A10 and SURVIVIN-siRNA were then linked to STD protein to form the therapeutic complex. This complex could specifically targeted PSMA(+) tumor cells. Compared to lipofectamine and A10-siRNA chimera, it demonstrated higher efficiency in delivering siRNA into target cells by 19.2% and 59.9%, and increased apoptosis by 16.8% and 26.1% respectively. Upon systemic administration, this complex also showed significant efficacy in suppressing tumor growth in athymic mice (p <0.001). We conclude that this therapeutic complex could specifically and efficiently deliver SURVIVIN-siRNA to target cells and suppressed tumor growth in vivo, which indicates its potential to be used as a new strategy in prostate cancer therapy. PMID:26954374

  19. Highly efficient peptide formation from N-acetylaminoacyl-AMP anhydride and free amino acid

    NASA Technical Reports Server (NTRS)

    Mullins, D. W., Jr.; Lacey, J. C., Jr.

    1983-01-01

    The kinetics of formation of the N-blocked dipeptide, N-acetylglycylglycine, from N-acetylglycyl adenylate anhydride and glycine in aqueous solution at 25 C, and at various PH's are reported. The reaction is of interest in that over a physiologically relevant pH range (6-8), peptide synthesis proceeds more rapidly than hydrolysis, even at those pH's at which this compound becomes increasingly susceptible to base-catalyzed hydrolysis. Under similar conditions, the corresponding unblocked aminoacyl adenylate anhydrides are considerably more unstable, and undergo appreciable hydrlysis in the presence of free amino acid. Because N-blocked aminoacyl adenylate anhydrides serve as model compounds of peptidyl adenylate anhydrides, these results suggest that primitive amino acid polymerization systems may have operated by cyclic reactivation of the peptidyl carboxyl group, rather than that of the incoming amino acid.

  20. Efficient Delivery of Cell Impermeable Phosphopeptides by a Cyclic Peptide Amphiphile Containing Tryptophan and Arginine

    PubMed Central

    Shirazi, Amir Nasrolahi; Tiwari, Rakesh Kumar; Oh, Donghoon; Banerjee, Antara; Yadav, Arpita; Parang, Keykavous

    2013-01-01

    Phosphopeptides are valuable reagent probes for studying protein-protein and protein-ligand interactions. The cellular delivery of phosphopeptides is challenging because of the presence of the negatively charged phosphate group. The cellular uptake of a number of fluorescent-labeled phosphopeptides, including F′-GpYLPQTV, F′-NEpYTARQ, F′-AEEEIYGEFEAKKKK, F′-PEpYLGLD, F′-pYVNVQN-NH2, and F′-GpYEEI (F′ = fluorescein) was evaluated in the presence or absence of a [WR]4, a cyclic peptide containing alternative arginine (R) and tryptophan (W) residues, in human leukemia cells (CCRF-CEM) after 2 h incubation using flow cytometry. [WR]4 improved significantly the cellular uptake of all phosphopeptides. PEpYLGLD is a sequence that mimics the pTyr1246 of ErbB2 that is responsible for binding to the Chk SH2 domain. The cellular uptake of F′-PEpYLGLD was enhanced dramatically by 27-fold in the presence of [WR]4 and was found to be time-dependent. Confocal microscopy of a mixture of F′-PEpYLGLD and [WR]4 in live cells exhibited intracellular localization and significantly higher cellular uptake compared to that of F′-PEpYLGLD alone. Transmission Electron Microscopy (TEM) and Isothermal Calorimetric (ITC) were used to study the interaction of PEpYLGLD and [WR]4. TEM results showed that the mixture of PEpYLGLD and [WR]4 formed noncircular nanosized structures with width and height of 125 and 60 nm, respectively. ITC binding studies confirmed the interaction between [WR]4 and PEpYLGLD. The binding isotherm curves, derived from sequential binding models, showed an exothermic interaction driven by entropy. These studies suggest that amphiphilic peptide [WR]4 can be used as a cellular delivery tool of cell-impermeable negatively charged phosphopeptides. PMID:23537165

  1. Effects of sizes and conformations of fish-scale collagen peptides on facial skin qualities and transdermal penetration efficiency.

    PubMed

    Chai, Huey-Jine; Li, Jing-Hua; Huang, Han-Ning; Li, Tsung-Lin; Chan, Yi-Lin; Shiau, Chyuan-Yuan; Wu, Chang-Jer

    2010-01-01

    Fish-scale collagen peptides (FSCPs) were prepared using a given combination of proteases to hydrolyze tilapia (Oreochromis sp.) scales. FSCPs were determined to stimulate fibroblast cells proliferation and procollagen synthesis in a time- and dose-dependent manner. The transdermal penetration capabilities of the fractionationed FSCPs were evaluated using the Franz-type diffusion cell model. The heavier FSCPs, 3500 and 4500 Da, showed higher cumulative penetration capability as opposed to the lighter FSCPs, 2000 and 1300 Da. In addition, the heavier seemed to preserve favorable coiled structures comparing to the lighter that presents mainly as linear under confocal scanning laser microscopy. FSCPs, particularly the heavier, were concluded to efficiently penetrate stratum corneum to epidermis and dermis, activate fibroblasts, and accelerate collagen synthesis. The heavier outweighs the lighter in transdermal penetration likely as a result of preserving the given desired structure feature. PMID:20625414

  2. Low-density lipoprotein peptide-combined DNA nanocomplex as an efficient anticancer drug delivery vehicle.

    PubMed

    Zhang, Nan; Tao, Jun; Hua, Haiying; Sun, Pengchao; Zhao, Yongxing

    2015-08-01

    DNA is a type of potential biomaterials for drug delivery due to its nanoscale geometry, loading capacity of therapeutics, biocompatibility, and biodegradability. Unfortunately, DNA is easily degraded by DNases in the body circulation and has low intracellular uptake. In the present study, we selected three cationic polymers polyethylenimine (PEI), hexadecyl trimethyl ammonium bromide (CTAB), and low-density lipoprotein (LDL) receptor targeted peptide (RLT), to modify DNA and improve the issues. A potent anti-tumor anthracycline-doxorubicin (DOX) was intercalated into DNA non-covalently and the DOX/DNA was then combined with PEI, CTAB, and RLT, respectively. Compact nanocomplexes were formed by electrostatic interaction and could potentially protect DNA from DNases. More importantly, RLT had the potential to enhance intracellular uptake by LDL receptor mediated endocytosis. In a series of in vitro experiments, RLT complexed DNA enhanced intracellular delivery of DOX, increased tumor cell death and intracellular ROS production, and reduced intracellular elimination of DOX. All results suggested that the easily prepared and targeted RLT/DNA nanocomplexes had great potential to be developed into a formulation for doxorubicin with enhanced anti-tumor activity. PMID:25960329

  3. Higher efficiency soluble prokaryotic expression, purification, and structural analysis of antimicrobial peptide G13.

    PubMed

    Che, Yuanyuan; Lu, Yinghu; Zha, Xiangdong; Huang, Huoqing; Yang, Peilong; Ma, Lijuan; Xu, Xuejiao

    2016-03-01

    G13 is a 19-residue cationic antimicrobial peptide derived from granulysin. In order to achieve high-level expression of G13 in Escherichia coli cells, and to reduce downstream processing costs, we introduced an Asp-Pro acid labile bond between the His-Patch thioredoxin and G13 and constructed the recombinant plasmid pThiohisA-DP-G13. The plasmid was transformed into E. coli BL21 (DE3). After induction with isopropyl-β-d-thiogalactopyranoside for 5 h, the fusion protein accumulated up to 200 mg/L in soluble form. The fusion protein was released by a high pressure homogenizer, cleaved using 13% acetic acid at 50 °C hydrolysis for 72 h. The recombinant G13 (r-G13) was then successively purified by fractional precipitation with ammonium sulfate and trichloroacetic acid, followed by one-step cation exchange chromatography. The purified r-G13 displayed a single band (about 2.2 kDa) as analyzed by Tris-Tricine buffered SDS-PAGE, and its precise molecular weight was confirmed using tandem mass spectrometry. Analysis of r-G13 by circular dichroism (CD) indicated that r-G13 contained predominantly β-sheet and random coil. Agar plate diffusion assay revealed that the r-G13 exhibited antibacterial activity against both Bacillus subtilis and E. coli. PMID:26581777

  4. Efficient expression of nattokinase in Bacillus licheniformis: host strain construction and signal peptide optimization.

    PubMed

    Wei, Xuetuan; Zhou, Yinhua; Chen, Jingbang; Cai, Dongbo; Wang, Dan; Qi, Gaofu; Chen, Shouwen

    2015-02-01

    Nattokinase (NK) possesses the potential for prevention and treatment of thrombus-related diseases. In this study, high-level expression of nattokinase was achieved in Bacillus licheniformis WX-02 via host strain construction and signal peptides optimization. First, ten genes (mpr, vpr, aprX, epr, bpr, wprA, aprE, bprA, hag, amyl) encoding for eight extracellular proteases, a flagellin and an amylase were deleted to obtain B. licheniformis BL10, which showed no extracellular proteases activity in gelatin zymography. Second, the gene fragments of P43 promoter, Svpr, nattokinase and TamyL were combined into pHY300PLK to form the expression vector pP43SNT. In BL10 (pP43SNT), the fermentation activity and product activity per unit of biomass of nattokinase reached 14.33 FU/mL and 2,187.71 FU/g respectively, which increased by 39 and 156 % compared to WX-02 (pP43SNT). Last, Svpr was replaced with SsacC and SbprA, and the maximum fermentation activity (33.83 FU/mL) was achieved using SsacC, which was 229 % higher than that of WX-02 (pP43SNT). The maximum NK fermentation activity in this study reaches the commercial production level of solid state fermentation, and this study provides a promising engineered strain for industrial production of nattokinase, as well as a potential platform host for expression of other target proteins. PMID:25475755

  5. RGD peptide-modified dendrimer-entrapped gold nanoparticles enable highly efficient and specific gene delivery to stem cells.

    PubMed

    Kong, Lingdan; Alves, Carla S; Hou, Wenxiu; Qiu, Jieru; Möhwald, Helmuth; Tomás, Helena; Shi, Xiangyang

    2015-03-01

    We report the use of arginine-glycine-aspartic (Arg-Gly-Asp, RGD) peptide-modified dendrimer-entrapped gold nanoparticles (Au DENPs) for highly efficient and specific gene delivery to stem cells. In this study, generation 5 poly(amidoamine) dendrimers modified with RGD via a poly(ethylene glycol) (PEG) spacer and with PEG monomethyl ether were used as templates to entrap gold nanoparticles (AuNPs). The native and the RGD-modified PEGylated dendrimers and the respective well characterized Au DENPs were used as vectors to transfect human mesenchymal stem cells (hMSCs) with plasmid DNA (pDNA) carrying both the enhanced green fluorescent protein and the luciferase (pEGFPLuc) reporter genes, as well as pDNA encoding the human bone morphogenetic protein-2 (hBMP-2) gene. We show that all vectors are capable of transfecting the hMSCs with both pDNAs. Gene transfection using pEGFPLuc was demonstrated by quantitative Luc activity assay and qualitative evaluation by fluorescence microscopy. For the transfection with hBMP-2, the gene delivery efficiency was evaluated by monitoring the hBMP-2 concentration and the level of osteogenic differentiation of the hMSCs via alkaline phosphatase activity, osteocalcin secretion, calcium deposition, and von Kossa staining assays. Our results reveal that the stem cell gene delivery efficiency is largely dependent on the composition and the surface functionality of the dendrimer-based vectors. The coexistence of RGD and AuNPs rendered the designed dendrimeric vector with specific stem cell binding ability likely via binding of integrin receptor on the cell surface and improved three-dimensional conformation of dendrimers, which is beneficial for highly efficient and specific stem cell gene delivery applications. PMID:25658033

  6. Highly efficient delivery of functional cargoes by the synergistic effect of GAG binding motifs and cell-penetrating peptides.

    PubMed

    Dixon, James E; Osman, Gizem; Morris, Gavin E; Markides, Hareklea; Rotherham, Michael; Bayoussef, Zahia; El Haj, Alicia J; Denning, Chris; Shakesheff, Kevin M

    2016-01-19

    Protein transduction domains (PTDs) are powerful nongenetic tools that allow intracellular delivery of conjugated cargoes to modify cell behavior. Their use in biomedicine has been hampered by inefficient delivery to nuclear and cytoplasmic targets. Here we overcame this deficiency by developing a series of novel fusion proteins that couple a membrane-docking peptide to heparan sulfate glycosaminoglycans (GAGs) with a PTD. We showed that this GET (GAG-binding enhanced transduction) system could deliver enzymes (Cre, neomycin phosphotransferase), transcription factors (NANOG, MYOD), antibodies, native proteins (cytochrome C), magnetic nanoparticles (MNPs), and nucleic acids [plasmid (p)DNA, modified (mod)RNA, and small inhibitory RNA] at efficiencies of up to two orders of magnitude higher than previously reported in cell types considered hard to transduce, such as mouse embryonic stem cells (mESCs), human ESCs (hESCs), and induced pluripotent stem cells (hiPSCs). This technology represents an efficient strategy for controlling cell labeling and directing cell fate or behavior that has broad applicability for basic research, disease modeling, and clinical application. PMID:26733682

  7. Highly efficient delivery of functional cargoes by the synergistic effect of GAG binding motifs and cell-penetrating peptides

    PubMed Central

    Dixon, James E.; Osman, Gizem; Morris, Gavin E.; Markides, Hareklea; Rotherham, Michael; Bayoussef, Zahia; El Haj, Alicia J.; Denning, Chris; Shakesheff, Kevin M.

    2016-01-01

    Protein transduction domains (PTDs) are powerful nongenetic tools that allow intracellular delivery of conjugated cargoes to modify cell behavior. Their use in biomedicine has been hampered by inefficient delivery to nuclear and cytoplasmic targets. Here we overcame this deficiency by developing a series of novel fusion proteins that couple a membrane-docking peptide to heparan sulfate glycosaminoglycans (GAGs) with a PTD. We showed that this GET (GAG-binding enhanced transduction) system could deliver enzymes (Cre, neomycin phosphotransferase), transcription factors (NANOG, MYOD), antibodies, native proteins (cytochrome C), magnetic nanoparticles (MNPs), and nucleic acids [plasmid (p)DNA, modified (mod)RNA, and small inhibitory RNA] at efficiencies of up to two orders of magnitude higher than previously reported in cell types considered hard to transduce, such as mouse embryonic stem cells (mESCs), human ESCs (hESCs), and induced pluripotent stem cells (hiPSCs). This technology represents an efficient strategy for controlling cell labeling and directing cell fate or behavior that has broad applicability for basic research, disease modeling, and clinical application. PMID:26733682

  8. An efficient transcriptome analysis pipeline to accelerate venom peptide discovery and characterisation.

    PubMed

    Prashanth, Jutty Rajan; Lewis, Richard J

    2015-12-01

    Transcriptome sequencing is now widely adopted as an efficient means to study the chemical diversity of venoms. To improve the efficiency of analysis of these large datasets, we have optimised an analysis pipeline for cone snail venom gland transcriptomes. The pipeline combines ConoSorter with sequence architecture-based elimination and similarity searching using BLAST to improve the accuracy of sequence identification and classification, while reducing requirements for manual intervention. As a proof-of-concept, we used this approach reanalysed three previously published cone snail transcriptomes from diverse dietary groups. Our pipeline method generated similar results to the published studies with significantly less manual intervention. We additionally found undiscovered sequences in the piscovorous Conus geographus and vermivorous Conus miles and identified sequences in incorrect superfamilies in the molluscivorus Conus marmoreus and C. geographus transcriptomes. Our results indicate that this method can improve toxin detection without extending analysis time. While this method was evaluated on cone snail transcriptomes it can be easily optimised to retrieve toxins from other venomous animals. PMID:26376071

  9. Efficient production of active chicken avidin using a bacterial signal peptide in Escherichia coli

    PubMed Central

    2004-01-01

    Chicken avidin is a highly popular tool with countless applications in the life sciences. In the present study, an efficient method for producing avidin protein in the periplasmic space of Escherichia coli in the active form is described. Avidin was produced by replacing the native signal sequence of the protein with a bacterial OmpA secretion signal. The yield after a single 2-iminobiotin–agarose affinity purification step was approx. 10 mg/l of virtually pure avidin. Purified avidin had 3.7 free biotin-binding sites per tetramer and showed the same biotin-binding affinity and thermal stability as egg-white avidin. Avidin crystallized under various conditions, which will enable X-ray crystallographic studies. Avidin produced in E. coli lacks the carbohydrate chains of chicken avidin and the absence of glycosylation should decrease the non-specific binding that avidin exhibits towards many materials [Rosebrough and Hartley (1996) J. Nucl. Med. 37, 1380–1384]. The present method provides a feasible and inexpensive alternative for the production of recombinant avidin, avidin mutants and avidin fusion proteins for novel avidin–biotin technology applications. PMID:15324300

  10. Development of Nanoparticles Incorporating a Novel Liposomal Membrane Destabilization Peptide for Efficient Release of Cargos into Cancer Cells

    PubMed Central

    Ohgita, Takashi; Kogure, Kentaro

    2014-01-01

    In anti-cancer therapy mediated by a nanoparticle-based drug delivery system (DDS), overall efficacy depends on the release efficiency of cargos from the nanoparticles in the cancer cells as well as the specificity of delivery to tumor tissue. However, conventional liposome-based DDS have no mechanism for specifically releasing the encapsulated cargos inside the cancer cells. To overcome this barrier, we developed nanoparticles containing a novel liposomal membrane destabilization peptide (LMDP) that can destabilize membranes by cleavage with intramembranous proteases on/in cancer cells. Calcein encapsulated in liposomes modified with LMDP (LMDP-lipo) was effectively released in the presence of a membrane fraction containing an LMDP-cleavable protease. The release was inhibited by a protease inhibitor, suggesting that LMDP-lipo could effectively release its cargo into cells in response to a cancer-specific protease. Moreover, when LMDP-lipo contained fusogenic lipids, the release of cargo was accelerated, suggesting that the fusion of LMDP-lipo with cellular membranes was the initial step in the intracellular delivery. Time-lapse microscopic observations showed that the release of cargo from LMDP-lipo occurred immediately after association of LMDP-lipo with target cells. Consequently, LMDP-lipo could be a useful nanoparticle capable of effective release of cargos specifically into targeted cancer cells. PMID:25343714

  11. A method for concentrating lipid peptide DNA and siRNA nanocomplexes that retains their structure and transfection efficiency

    PubMed Central

    Tagalakis, Aristides D; Castellaro, Sara; Zhou, Haiyan; Bienemann, Alison; Munye, Mustafa M; McCarthy, David; White, Edward A; Hart, Stephen L

    2015-01-01

    Nonviral gene and small interfering RNA (siRNA) delivery formulations are extensively used for biological and therapeutic research in cell culture experiments, but less so in in vivo and clinical research. Difficulties with formulating the nanoparticles for uniformity and stability at concentrations required for in vivo and clinical use are limiting their progression in these areas. Here, we report a simple but effective method of formulating monodisperse nanocomplexes from a ternary formulation of lipids, targeting peptides, and nucleic acids at a low starting concentration of 0.2 mg/mL of DNA, and we then increase their concentration up to 4.5 mg/mL by reverse dialysis against a concentrated polymer solution at room temperature. The nanocomplexes did not aggregate and they had maintained their biophysical properties, but, importantly, they also mediated DNA transfection and siRNA silencing in cultured cells. Moreover, concentrated anionic nanocomplexes administered by convection-enhanced delivery in the striatum showed efficient silencing of the β-secretase gene BACE1. This method of preparing nanocomplexes could probably be used to concentrate other nonviral formulations and may enable more widespread use of nanoparticles in vivo. PMID:25878500

  12. Improving chemotherapeutic efficiency in acute myeloid leukemia treatments by chemically synthesized peptide interfering with CXCR4/CXCL12 axis

    PubMed Central

    Li, Xiaojin; Guo, Hua; Duan, Hongyang; Yang, Yanlian; Meng, Jie; Liu, Jian; Wang, Chen; Xu, Haiyan

    2015-01-01

    Bone marrow stroma can protect acute myeloid leukemia (AML) cells against chemotherapeutic agents and provide anti-apoptosis and chemoresistance signals through secreting chemokine CXCL12 to activate its receptor CXCR4 on AML cells, resulting in minimal residual leukemia and relapse. Therefore disrupting the CXCR4/CXCL12 axis with antagonists is of great significance for improving chemosensitivity and decreasing relapse rate. In a previous study, we reported a novel synthetic peptide E5 with its remarkable effect on inhibiting CXCR4/CXCL12-mediated adhesion and migration of AML cells. Here we presented E5’s capacity of enhancing the therapeutic efficiency of various chemotherapeutics on AML in vitro and in vivo. Results showed that E5 can diminish bone marrow stromal cell-provided protection to leukemia cells, significantly increasing the apoptosis induced by various chemotherapeutics in multiple AML cell lines. In an AML mouse xenograft model, E5 induced 1.84-fold increase of circulating AML cells out of protective stroma niche. Combined with vincristine or cyclophosphamide, E5 inhibited infiltration of AML cells into bone marrow, liver and spleen, as well as prolonged the lifespan of AML mice compared with mice treated with chemotherapy alone. In addition, E5 presented no toxicity in vivo according to the histological analysis and routine clinical parameters of serum analysis. PMID:26538086

  13. Bactericidal Efficiency and Modes of Action of the Novel Antimicrobial Peptide T9W against Pseudomonas aeruginosa

    PubMed Central

    Zhu, Xin; Ma, Zhi; Xu, Wei; Wang, Jiajun; Chou, Shuli; Cheng, Baojing

    2015-01-01

    The antipseudomonal efficiency and mechanism of action of a novel engineered antimicrobial peptide, T9W, were evaluated in this study. T9W displayed high activity, with a lethal concentration (LC) of 1 to 4 μM against Pseudomonas aeruginosa, including against ciprofloxacin-, gentamicin-, and ceftazidime-resistant strains, even in the presence of 50 to 300 mM NaCl, 1 to 5 mM Ca2+, or 0.5 to 2 mM Mg2+. The time-kill curve (TKC) analysis demonstrated concentration-dependent activity, with T9W achieving complete killing in less than 30 min at 1× LC and in less than 5 min at 4× LC. Combination TKC analyses additionally demonstrated a synergistic effect with ciprofloxacin and gentamicin. The selectivity of T9W was further supported by its ability to specifically eliminate P. aeruginosa in a coculture with macrophages without toxicity to the mammalian cells. The results from fluorescent measurement indicated that T9W bound to lipopolysaccharide (LPS) and induced P. aeruginosa membrane depolarization, and microscopic observations and flow cytometry further indicated that T9W targeted the P. aeruginosa cell membrane and disrupted cytoplasmic membrane integrity, thereby causing cellular content release leading to cell death. This study revealed the potential usefulness of T9W as a novel antimicrobial agent against P. aeruginosa. PMID:25753629

  14. Peptide-presenting two-dimensional protein matrix on supported lipid bilayers: an efficient platform for cell adhesion.

    PubMed

    Bérat, Rémi; Rémy-Zolghadry, Murielle; Gounou, Céline; Manigand, Claude; Tan, Sisareuth; Saltó, Carmen; Arenas, Ernest; Bordenave, Laurence; Brisson, Alain R

    2007-12-01

    Understanding and controlling cell adhesion to biomaterials and synthetic materials are important issues in basic research and applied sciences. Supported lipid bilayers (SLBs) functionalized with cell adhesion peptides linked to lipid molecules are popular platforms of cell adhesion. In this paper, an alternative approach of peptide presentation is presented in which peptides are stereo-selectively linked to proteins self-assembling in a rigid two-dimensional (2D) matrix on SLBs. Annexin-A5 (Anx5) was used as prototype protein for its known properties of forming stable and rigid 2D matrices on lipid surfaces. Two types of Anx5-peptide complexes, containing either a RGD or an IKVAV sequence, were synthesized. The authors show that both Anx5-peptide complexes present the same properties of binding and 2D organization on lipid surfaces as Anx5, when investigated by quartz crystal microbalance with dissipation monitoring, atomic force microscopy, and transmission electron microscopy techniques. Anx5-RGD and Anx5-IKVAV 2D matrices were found to promote specific adhesion of human saphenous vein endothelial cells and mouse embryonic stem cells, respectively. The influence of the surface density of exposed peptides on cell adhesion was investigated, showing that cells attach to Anx5-peptide matrices when the average distance between peptides is smaller than about 60 nm. This cell adhesion platform provides control of the orientation and density of cell ligands, opening interesting possibilities for future applications. PMID:20408654

  15. Enhanced cellular internalization of CdTe quantum dots mediated by arginine- and tryptophan-rich cell-penetrating peptides as efficient carriers.

    PubMed

    Farkhani, Samad Mussa; Johari-Ahar, Mohammad; Zakeri-Milani, Parvin; Shahbazi Mojarrad, Javid; Valizadeh, Hadi

    2016-09-01

    Quantum dots (QDs), as a new class of fluorescent tags, have been widely used for biomedical applications. Despite their various advantages, QDs do not efficiently enter cells on their own, and aggregation often occurs following internalization. In the present study, we have designed three QD-cell-penetrating peptide (CPP) complexes to increase the uptake of QD into cells. The results demonstrated that R9 and R5W3R4 form relatively stable noncovalent complexes with QDs, considerably increasing the rate and efficiency of QD uptake by A549 cells. These data suggest that cationic CPPs could efficiently transfer QDs into cells in a non-toxic manner. PMID:25884240

  16. Construction of a highly active secretory expression system via an engineered dual promoter and a highly efficient signal peptide in Bacillus subtilis.

    PubMed

    Guan, Chengran; Cui, Wenjing; Cheng, Jintao; Liu, Rui; Liu, Zhongmei; Zhou, Li; Zhou, Zhemin

    2016-05-25

    A strong promoter and highly efficient signal peptides are essential for the secretory overproduction of recombinant proteins in Bacillus subtilis. To enhance the limited overexpression capability of natural promoters, various strategies for promoter engineering have been developed and used to construct gene expression systems in B. subtilis and other hosts. By applying a semi-rational approach for promoter engineering, a series of expression plasmids containing single and dual promoters were constructed using aminopeptidase (AP) with an intrinsic signal peptide as the reporter protein. Of the single and dual promoters investigated, the dual promoter PgsiB-PHpaII gave the best performance. To optimize secretion efficiency, the signal peptide YncM was selected after screening a library containing 19 different Sec-type signal peptides. The AP activity detected in the supernatants of a recombinant strain containing the plasmid pBSG24-YncM was as high as 88.86U/mL. The capacity of the expression plasmid pBSG24-YncM was also evaluated with batch fermentation in a 5-L fermentor. Increased production of AP (205U/mL, equal to 1.7g/L) was achieved after 45h of fermentation. These results suggest that this expression system can be used for high-level protein expression in B. subtilis. PMID:26820123

  17. Efficient siRNA Delivery Using Novel Cell-Penetrating Peptide-siRNA Conjugate-Loaded Nanobubbles and Ultrasound.

    PubMed

    Xie, Xiangyang; Lin, Wen; Li, Mingyuan; Yang, Yang; Deng, Jianping; Liu, Hui; Chen, Ying; Fu, Xudong; Liu, Hong; Yang, Yanfang

    2016-06-01

    Because of the absence of tolerable and effective carriers for in vivo delivery, the applications of small interfering RNA (siRNA) in the clinic for therapeutic purposes have been limited. In this study, development of a novel siRNA delivery system based on ultrasound-sensitive nanobubbles (NBs, nano-sized echogenic liposomes) and cell-permeable peptides (CPPs) is described. A CPP-siRNA conjugate was entrapped in an NB, (CPP-siRNA)-NB, and the penetration of CPP-siRNA was temporally masked; local ultrasound stimulation triggered the release of CPP-siRNA from the NBs and activated its penetration. Subsequent research revealed that the (CPP-siRNA)-NBs had a mean particle size of 201 ± 2.05 nm and a siRNA entrapment efficiency >85%. In vitro release results indicated that >90% of the encapsulated CPP-siRNA was released from NBs in the presence of ultrasound, whereas <1.5% (30 min) was released in the absence of ultrasound. Cell experiments indicated higher cellular CPP-siRNA uptake of (CPP-siRNA)-NBs with ultrasound among the various formulations in human breast adenocarcinoma cells (HT-1080). Additionally, after systemic administration in mice, (CPP-siRNA)-NBs accumulated in the tumor, augmented c-myc silencing and delayed tumor progression. In conclusion, the application of (CPP-siRNA)-NBs with ultrasound may constitute an approach to selective targeted delivery of siRNA. PMID:27012462

  18. Efficient inhibition of tumor angiogenesis and growth by a synthetic peptide blocking S100A4-methionine aminopeptidase 2 interaction

    PubMed Central

    Ochiya, Takahiro; Takenaga, Keizo; Asagiri, Masataka; Nakano, Kazumi; Satoh, Hitoshi; Watanabe, Toshiki; Imajoh-Ohmi, Shinobu; Endo, Hideya

    2015-01-01

    The prometastatic calcium-binding protein, S100A4, is expressed in endothelial cells, and its downregulation markedly suppresses tumor angiogenesis in a xenograft cancer model. Given that endothelial S100A4 can be a molecular target for inhibiting tumor angiogenesis, we addressed here whether synthetic peptide capable of blocking S100A4-effector protein interaction could be a novel antiangiogenic agent. To examine this hypothesis, we focused on the S100A4-binding domain of methionine aminopeptidase 2, an effector protein, which plays a role in endothelial cell growth. Overexpression of the domain in mouse endothelial MSS31 cells reduced DNA synthesis, and the corresponding synthetic peptide (named NBD) indeed interacted with S100A4 and inhibited capillary formation in vitro and new blood vessel formation in vivo. Intriguingly, a single intra-tumor administration of the NBD peptide in human prostate cancer xenografts significantly reduced vascularity, resulting in tumor regression. Mechanistically, the NBD peptide enhanced assembly of nonmuscle myosin IIA filaments along with Ser1943 phosphorylation, stimulated formation of focal adhesions without phosphorylation of focal adhesion kinase, and provoked G1/S arrest of the cell cycle. Altogether, the NBD peptide is a potent inhibitor for tumor angiogenesis, and is the first example of an anticancer peptide drug developed on the basis of an endothelial S100A4-targeted strategy. PMID:26029719

  19. Efficient inhibition of tumor angiogenesis and growth by a synthetic peptide blocking S100A4-methionine aminopeptidase 2 interaction.

    PubMed

    Ochiya, Takahiro; Takenaga, Keizo; Asagiri, Masataka; Nakano, Kazumi; Satoh, Hitoshi; Watanabe, Toshiki; Imajoh-Ohmi, Shinobu; Endo, Hideya

    2015-01-01

    The prometastatic calcium-binding protein, S100A4, is expressed in endothelial cells, and its downregulation markedly suppresses tumor angiogenesis in a xenograft cancer model. Given that endothelial S100A4 can be a molecular target for inhibiting tumor angiogenesis, we addressed here whether synthetic peptide capable of blocking S100A4-effector protein interaction could be a novel antiangiogenic agent. To examine this hypothesis, we focused on the S100A4-binding domain of methionine aminopeptidase 2, an effector protein, which plays a role in endothelial cell growth. Overexpression of the domain in mouse endothelial MSS31 cells reduced DNA synthesis, and the corresponding synthetic peptide (named NBD) indeed interacted with S100A4 and inhibited capillary formation in vitro and new blood vessel formation in vivo. Intriguingly, a single intra-tumor administration of the NBD peptide in human prostate cancer xenografts significantly reduced vascularity, resulting in tumor regression. Mechanistically, the NBD peptide enhanced assembly of nonmuscle myosin IIA filaments along with Ser1943 phosphorylation, stimulated formation of focal adhesions without phosphorylation of focal adhesion kinase, and provoked G1/S arrest of the cell cycle. Altogether, the NBD peptide is a potent inhibitor for tumor angiogenesis, and is the first example of an anticancer peptide drug developed on the basis of an endothelial S100A4-targeted strategy. PMID:26029719

  20. Efficient one-pot synthesis of CXCL14 and its derivative using an N-sulfanylethylanilide peptide as a peptide thioester equivalent and their biological evaluation.

    PubMed

    Tsuji, Kohei; Tanegashima, Kosuke; Sato, Kohei; Sakamoto, Ken; Shigenaga, Akira; Inokuma, Tsubasa; Hara, Takahiko; Otaka, Akira

    2015-09-01

    CXCL14 is a CXC-type chemokine that exhibits chemotactic activity for immature dendritic cells, activated macrophages, and activated natural killer cells. However, its specific receptor and signaling pathway remain obscure. Recently, it was reported that CXCL14 binds to CXCR4 with high affinity and inhibits CXCL12-mediated chemotaxis. Furthermore, the CXCL14 C-terminal α-helical region is important for binding to its receptor. In this context, we chemically synthesized CXCL14 and its derivative with a one-pot method using N-sulfanylethylanilide peptide as a thioester equivalent. The synthetic CXCL14 proteins possessed inhibitory activities to CXCL12-mediated chemotaxis comparable with that of recombinant CXCL14. Moreover, we proved that chemically biotinylated CXCL14 binds to CXCR4 on cells by flow cytometry analysis. PMID:26187016

  1. A Cancer Specific Cell-Penetrating Peptide, BR2, for the Efficient Delivery of an scFv into Cancer Cells

    PubMed Central

    Lim, Ki Jung; Sung, Bong Hyun; Shin, Ju Ri; Lee, Young Woong; Kim, Da Jung; Yang, Kyung Seok; Kim, Sun Chang

    2013-01-01

    Cell-penetrating peptides (CPPs) have proven very effective as intracellular delivery vehicles for various therapeutics. However, there are some concerns about non-specific penetration and cytotoxicity of CPPs for effective cancer treatments. Herein, based on the cell-penetrating motif of an anticancer peptide, buforin IIb, we designed several CPP derivatives with cancer cell specificity. Among the derivatives, a 17-amino acid peptide (BR2) was found to have cancer-specificity without toxicity to normal cells. After specifically targeting cancer cells through interaction with gangliosides, BR2 entered cells via lipid-mediated macropinocytosis. Moreover, BR2 showed higher membrane translocation efficiency than the well-known CPP Tat (49–57). The capability of BR2 as a cancer-specific drug carrier was demonstrated by fusion of BR2 to a single-chain variable fragment (scFv) directed toward a mutated K-ras (G12V). BR2-fused scFv induced a higher degree of apoptosis than Tat-fused scFv in K-ras mutated HCT116 cells. These results suggest that the novel cell-penetrating peptide BR2 has great potential as a useful drug delivery carrier with cancer cell specificity. PMID:23776609

  2. A Robust and Efficient Production and Purification Procedure of Recombinant Alzheimers Disease Methionine-Modified Amyloid-β Peptides

    PubMed Central

    Hoarau, Marie; Hureau, Christelle; Faller, Peter; Gras, Emmanuel; André, Isabelle; Remaud-Siméon, Magali

    2016-01-01

    An improved production and purification method for Alzheimer’s disease related methionine-modified amyloid-β 1–40 and 1–42 peptides is proposed, taking advantage of the formation of inclusion body in Escherichia coli. A Thioflavin-S assay was set-up to evaluate inclusion body formation during growth and optimize culture conditions for amyloid-β peptides production. A simple and fast purification protocol including first the isolation of the inclusion bodies and second, two cycles of high pH denaturation/ neutralization combined with an ultrafiltration step on 30-kDa cut-off membrane was established. Special attention was paid to purity monitoring based on a rational combination of UV spectrophotometry and SDS-PAGE analyses at the various stages of the process. It revealed that this chromatography-free protocol affords good yield of high quality peptides in term of purity. The resulting peptides were fully characterized and are appropriate models for highly reproducible in vitro aggregation studies. PMID:27532547

  3. A Robust and Efficient Production and Purification Procedure of Recombinant Alzheimers Disease Methionine-Modified Amyloid-β Peptides.

    PubMed

    Hoarau, Marie; Malbert, Yannick; Irague, Romain; Hureau, Christelle; Faller, Peter; Gras, Emmanuel; André, Isabelle; Remaud-Siméon, Magali

    2016-01-01

    An improved production and purification method for Alzheimer's disease related methionine-modified amyloid-β 1-40 and 1-42 peptides is proposed, taking advantage of the formation of inclusion body in Escherichia coli. A Thioflavin-S assay was set-up to evaluate inclusion body formation during growth and optimize culture conditions for amyloid-β peptides production. A simple and fast purification protocol including first the isolation of the inclusion bodies and second, two cycles of high pH denaturation/ neutralization combined with an ultrafiltration step on 30-kDa cut-off membrane was established. Special attention was paid to purity monitoring based on a rational combination of UV spectrophotometry and SDS-PAGE analyses at the various stages of the process. It revealed that this chromatography-free protocol affords good yield of high quality peptides in term of purity. The resulting peptides were fully characterized and are appropriate models for highly reproducible in vitro aggregation studies. PMID:27532547

  4. Folic Acid-Targeted and Cell Penetrating Peptide-Mediated Theranostic Nanoplatform for High-Efficiency Tri-Modal Imaging-Guided Synergistic Anticancer Phototherapy.

    PubMed

    Li, Na; Li, Tingting; Liu, Chen; Ye, Shiyi; Liang, Jiangong; Han, Heyou

    2016-05-01

    A novel nanomaterial with precisely-defined size and shape, biocompatible composition, and excellent stability, which can integrate multi modal targeted imaging and therapy into a single system for visualized therapeutics, has recently attracted significant research interest. Here, we developed a multifunctional nanoplatform based on silica-coated 4-mercaptobenzoic acid-modified gold nanorods (Au NRs) decorated with gold nanoclusters rich in the photosensitizer Ce6 (Au-Ce6 NCs). The nanoparticles also comprised folic acid and cell penetrating peptide molecules anchored on the surface, obtaining the Au@SiO2@Au-cell penetrating peptide nanocomposite. The Au-Ce6 NCs enhanced the photophysical stability, provided numerous bonding sites and offered a large surface-area and interior space to achieve a high drug loading efficiency (up to 55%). The anchored folic acid and cell penetrating peptide synergistically enhanced the efficiency of uptake of nanocomposites by HeLa cells (up to 70.7%) and improved therapeutic efficacy. The nanocomposite also has good water-solubility, excellent biocompatibility, and long-term stability against illumination and exposure to pH 3-12, thus facilitating their bioapplications in cancer theranostics. Here, the nanocomposite was established for high-resolution and noninvasive tri-modal surface-enhanced Raman spectrum/dark-field/fluorescence imaging-guided high-efficiency synergistic photodynamic/photothermal therapy of cancer. Our studies demonstrate that the multifunctional nanocomposite has the potential as a novel and sensitive contrast agent for complementary and synergistic theranostics in the clinic. PMID:27305812

  5. Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo

    PubMed Central

    EL Andaloussi, Samir; Lehto, Taavi; Mäger, Imre; Rosenthal-Aizman, Katri; Oprea, Iulian I.; Simonson, Oscar E.; Sork, Helena; Ezzat, Kariem; Copolovici, Dana M.; Kurrikoff, Kaido; Viola, Joana R.; Zaghloul, Eman M.; Sillard, Rannar; Johansson, Henrik J.; Said Hassane, Fatouma; Guterstam, Peter; Suhorutšenko, Julia; Moreno, Pedro M. D.; Oskolkov, Nikita; Hälldin, Jonas; Tedebark, Ulf; Metspalu, Andres; Lebleu, Bernard; Lehtiö, Janne; Smith, C. I. Edvard; Langel, Ülo

    2011-01-01

    While small interfering RNAs (siRNAs) have been rapidly appreciated to silence genes, efficient and non-toxic vectors for primary cells and for systemic in vivo delivery are lacking. Several siRNA-delivery vehicles, including cell-penetrating peptides (CPPs), have been developed but their utility is often restricted by entrapment following endocytosis. Hence, developing CPPs that promote endosomal escape is a prerequisite for successful siRNA implementation. We here present a novel CPP, PepFect 6 (PF6), comprising the previously reported stearyl-TP10 peptide, having pH titratable trifluoromethylquinoline moieties covalently incorporated to facilitate endosomal release. Stable PF6/siRNA nanoparticles enter entire cell populations and rapidly promote endosomal escape, resulting in robust RNAi responses in various cell types (including primary cells), with minimal associated transcriptomic or proteomic changes. Furthermore, PF6-mediated delivery is independent of cell confluence and, in most cases, not significantly hampered by serum proteins. Finally, these nanoparticles promote strong RNAi responses in different organs following systemic delivery in mice without any associated toxicity. Strikingly, similar knockdown in liver is achieved by PF6/siRNA nanoparticles and siRNA injected by hydrodynamic infusion, a golden standard technique for liver transfection. These results imply that the peptide, in addition to having utility for RNAi screens in vitro, displays therapeutic potential. PMID:21245043

  6. African Viper Poly-His Tag Peptide Fragment Efficiently Binds Metal Ions and Is Folded into an α-Helical Structure.

    PubMed

    Watly, Joanna; Simonovsky, Eyal; Barbosa, Nuno; Spodzieja, Marta; Wieczorek, Robert; Rodziewicz-Motowidlo, Sylwia; Miller, Yifat; Kozlowski, Henryk

    2015-08-17

    Snake venoms are complex mixtures of toxic and often spectacularly biologically active components. Some African vipers contain polyhistidine and polyglycine peptides, which play a crucial role in the interaction with metal ions during the inhibition of snake metalloproteases. Polyhistidine peptide fragments, known as poly-His tags, play many important functions, e.g., in metal ion transport in bacterial chaperon proteins. In this paper, we report a detailed characterization of Cu(2+), Ni(2+), and Zn(2+) complexes with the EDDHHHHHHHHHG peptide fragment (pHG) derived from the venom of the rough scale bush viper (Atheris squamigera). In order to determine the thermodynamic properties, stoichiometry, binding sites, and structures of the metal-pHG complexes, we used a combination of experimental techniques (potentiometric titrations, electrospray ionization mass spectrometry, UV-vis spectroscopy, circular dichroism spectroscopy, and electron paramagnetic resonance spectroscopy) and extensive computational tools (molecular dynamics simulations and density functional theory calculations). The results showed that pHG has a high affinity toward metal ions. The numerous histidine residues located along this sequence are efficient metal ion chelators with high affinities toward Cu(2+), Ni(2+), and Zn(2+) ions. The formation of an α-helical structure induced by metal ion coordination and the occurrence of polymorphic binding states were observed. It is proposed that metal ions can "move along" the poly-His tag, which serves as a metal ion transport pathway. The coordination of Cu(2+), Ni(2+), and Zn(2+) ions to the histidine tag is very effective in comparison with other histidine-rich peptides. The stabilities of the metal-pHG complexes increase in the order Zn(2+) < Ni(2+)≪ Cu(2+). PMID:26214303

  7. Efficient molecular mechanics simulations of the folding, orientation, and assembly of peptides in lipid bilayers using an implicit atomic solvation model

    PubMed Central

    Bordner, Andrew J.; Zorman, Barry; Abagyan, Ruben

    2014-01-01

    Membrane proteins comprise a significant fraction of the proteomes of sequenced organisms and are the targets of approximately half of marketed drugs. However, in spite of their prevalence and biomedical importance, relatively few experimental structures are available due to technical challenges. Computational simulations can potentially address this deficit by providing structural models of membrane proteins. Solvation within the spatially heterogeneous membrane/solvent environment provides a major component of the energetics driving protein folding and association within the membrane. We have developed an implicit solvation model for membranes that is both computationally efficient and accurate enough to enable molecular mechanics predictions for the folding and association of peptides within the membrane. We derived the new atomic solvation model parameters using an unbiased fitting procedure to experimental data and have applied it to diverse problems in order to test its accuracy and to gain insight into membrane protein folding. First, we predicted the positions and orientations of peptides and complexes within the lipid bilayer and compared the simulation results with solid-state NMR structures. Next, we performed folding simulations for a series of host-guest peptides with varying propensities to form alpha helices in a hydrophobic environment and compared the structures with experimental measurements. We were also able to successfully predict the structures of amphipathic peptides as well as the structures for dimeric complexes of short hexapeptides that have experimentally characterized propensities to form beta sheets within the membrane. Finally, we compared calculated relative transfer energies with data from experiments measuring the effects of mutations on the free energies of translocon-mediated insertion of proteins into lipid bilayers and of combined folding and membrane insertion of a beta barrel protein. PMID:21904908

  8. A novel chemosynthetic peptide with β-sheet motif efficiently kills Klebsiella pneumoniae in a mouse model

    PubMed Central

    Tan, Shirui; Gan, Changpei; Li, Rongpeng; Ye, Yan; Zhang, Shuang; Wu, Xu; Yang, Yi Yan; Fan, Weimin; Wu, Min

    2015-01-01

    Klebsiella pneumoniae (Kp) is one of the most common pathogens in nosocomial infections and is increasingly becoming multiple drug resistant. However, the molecular pathogenesis of Kp in causing tissue injury and dysregulated host defense remains elusive, further dampening the development of novel therapeutic measures. We have previously screened a series of synthetic antimicrobial beta-sheet forming peptides and identified a peptide (IRIKIRIK; ie, IK8L) with a broad range of bactericidal activity and low cytotoxicity in vitro. Here, employing an animal model, we investigated the antibacterial effects of IK8L in acute infection and demonstrated that peritoneal injection of IK8L to mice down-regulated inflammatory cytokines, alleviated lung injury, and importantly, decreased mortality compared to sham-injected controls. In addition, a math model was used to evaluate in vivo imaging data and predict infection progression in infected live animals. Mechanistically, IK8L can kill Kp by inhibiting biofilm formation and modulating production of inflammatory cytokines through the STAT3/JAK signaling both in vitro and in vivo. Collectively, these findings reveal that IK8L may have potential for preventing or treating Kp infection. PMID:25709431

  9. A novel chemosynthetic peptide with β-sheet motif efficiently kills Klebsiella pneumoniae in a mouse model.

    PubMed

    Tan, Shirui; Gan, Changpei; Li, Rongpeng; Ye, Yan; Zhang, Shuang; Wu, Xu; Yang, Yi Yan; Fan, Weimin; Wu, Min

    2015-01-01

    Klebsiella pneumoniae (Kp) is one of the most common pathogens in nosocomial infections and is increasingly becoming multiple drug resistant. However, the molecular pathogenesis of Kp in causing tissue injury and dysregulated host defense remains elusive, further dampening the development of novel therapeutic measures. We have previously screened a series of synthetic antimicrobial beta-sheet forming peptides and identified a peptide (IRIKIRIK; ie, IK8L) with a broad range of bactericidal activity and low cytotoxicity in vitro. Here, employing an animal model, we investigated the antibacterial effects of IK8L in acute infection and demonstrated that peritoneal injection of IK8L to mice down-regulated inflammatory cytokines, alleviated lung injury, and importantly, decreased mortality compared to sham-injected controls. In addition, a math model was used to evaluate in vivo imaging data and predict infection progression in infected live animals. Mechanistically, IK8L can kill Kp by inhibiting biofilm formation and modulating production of inflammatory cytokines through the STAT3/JAK signaling both in vitro and in vivo. Collectively, these findings reveal that IK8L may have potential for preventing or treating Kp infection. PMID:25709431

  10. Pooled-Peptide Epitope Mapping Strategies Are Efficient and Highly Sensitive: An Evaluation of Methods for Identifying Human T Cell Epitope Specificities in Large-Scale HIV Vaccine Efficacy Trials.

    PubMed

    Fiore-Gartland, Andrew; Manso, Bryce A; Friedrich, David P; Gabriel, Erin E; Finak, Greg; Moodie, Zoe; Hertz, Tomer; De Rosa, Stephen C; Frahm, Nicole; Gilbert, Peter B; McElrath, M Juliana

    2016-01-01

    The interferon gamma, enzyme-linked immunospot (IFN-γ ELISpot) assay is widely used to identify viral antigen-specific T cells is frequently employed to quantify T cell responses in HIV vaccine studies. It can be used to define T cell epitope specificities using panels of peptide antigens, but with sample and cost constraints there is a critical need to improve the efficiency of epitope mapping for large and variable pathogens. We evaluated two epitope mapping strategies, based on group testing, for their ability to identify vaccine-induced T-cells from participants in the Step HIV-1 vaccine efficacy trial, and compared the findings to an approach of assaying each peptide individually. The group testing strategies reduced the number of assays required by >7-fold without significantly altering the accuracy of T-cell breadth estimates. Assays of small pools containing 7-30 peptides were highly sensitive and effective at detecting single positive peptides as well as summating responses to multiple peptides. Also, assays with a single 15-mer peptide, containing an identified epitope, did not always elicit a response providing validation that 15-mer peptides are not optimal antigens for detecting CD8+ T cells. Our findings further validate pooling-based epitope mapping strategies, which are critical for characterizing vaccine-induced T-cell responses and more broadly for informing iterative vaccine design. We also show ways to improve their application with computational peptide:MHC binding predictors that can accurately identify the optimal epitope within a 15-mer peptide and within a pool of 15-mer peptides. PMID:26863315

  11. Pooled-Peptide Epitope Mapping Strategies Are Efficient and Highly Sensitive: An Evaluation of Methods for Identifying Human T Cell Epitope Specificities in Large-Scale HIV Vaccine Efficacy Trials

    PubMed Central

    Fiore-Gartland, Andrew; Manso, Bryce A.; Friedrich, David P.; Gabriel, Erin E.; Finak, Greg; Moodie, Zoe; Hertz, Tomer; De Rosa, Stephen C.; Frahm, Nicole; Gilbert, Peter B.; McElrath, M. Juliana

    2016-01-01

    The interferon gamma, enzyme-linked immunospot (IFN-γ ELISpot) assay is widely used to identify viral antigen-specific T cells is frequently employed to quantify T cell responses in HIV vaccine studies. It can be used to define T cell epitope specificities using panels of peptide antigens, but with sample and cost constraints there is a critical need to improve the efficiency of epitope mapping for large and variable pathogens. We evaluated two epitope mapping strategies, based on group testing, for their ability to identify vaccine-induced T-cells from participants in the Step HIV-1 vaccine efficacy trial, and compared the findings to an approach of assaying each peptide individually. The group testing strategies reduced the number of assays required by >7-fold without significantly altering the accuracy of T-cell breadth estimates. Assays of small pools containing 7–30 peptides were highly sensitive and effective at detecting single positive peptides as well as summating responses to multiple peptides. Also, assays with a single 15-mer peptide, containing an identified epitope, did not always elicit a response providing validation that 15-mer peptides are not optimal antigens for detecting CD8+ T cells. Our findings further validate pooling-based epitope mapping strategies, which are critical for characterizing vaccine-induced T-cell responses and more broadly for informing iterative vaccine design. We also show ways to improve their application with computational peptide:MHC binding predictors that can accurately identify the optimal epitope within a 15-mer peptide and within a pool of 15-mer peptides. PMID:26863315

  12. Production and characterization of two major Aspergillus oryzae secreted prolyl endopeptidases able to efficiently digest proline-rich peptides of gliadin.

    PubMed

    Eugster, Philippe J; Salamin, Karine; Grouzmann, Eric; Monod, Michel

    2015-12-01

    Prolyl endopeptidases are key enzymes in the digestion of proline-rich proteins. Fungal extracts rich in prolyl endopeptidases produced by a species such as Aspergillus oryzae used in food fermentation would be of particular interest for the development of an oral enzyme therapy product in patients affected by intolerance to gluten. Two major A. oryzae secreted prolyl endopeptidases of the MEROPS S28 peptidase family, AoS28A and AoS28B, were identified when this fungus was grown at acidic pH in a medium containing soy meal protein or wheat gliadin as the sole source of nitrogen. AoS28B was produced by 12 reference A. oryzae strains used in food fermentation. AoS28A was secreted by six of these 12 strains. This protease is the orthologue of the previously characterized Aspergillus fumigatus (AfuS28) and Aspergillus niger (AN-PEP) prolyl endopeptidases which are encoded by genes with a similar intron-exon structure. Large amounts of secreted AoS28A and AoS28B were obtained by gene overexpression in A. oryzae. AoS28A and AoS28B are endoproteases able to cleave N-terminally blocked proline substrates. Both enzymes very efficiently digested the proline-rich 33-mer of gliadin, the most representative immunotoxic peptide deriving from gliadin, with some differences in terms of specificity and optimal pH. Digestion of the gliadin peptide in short peptides with both enzymes was found to occur from its N terminus. PMID:26464108

  13. An efficient PEGylated liposomal nanocarrier containing cell-penetrating peptide and pH-sensitive hydrazone bond for enhancing tumor-targeted drug delivery.

    PubMed

    Ding, Yuan; Sun, Dan; Wang, Gui-Ling; Yang, Hong-Ge; Xu, Hai-Feng; Chen, Jian-Hua; Xie, Ying; Wang, Zhi-Qiang

    2015-01-01

    Cell-penetrating peptides (CPPs) as small molecular transporters with abilities of cell penetrating, internalization, and endosomal escape have potential prospect in drug delivery systems. However, a bottleneck hampering their application is the poor specificity for cells. By utilizing the function of hydration shell of polyethylene glycol (PEG) and acid sensitivity of hydrazone bond, we constructed a kind of CPP-modified pH-sensitive PEGylated liposomes (CPPL) to improve the selectivity of these peptides for tumor targeting. In CPPL, CPP was directly attached to liposome surfaces via coupling with stearate (STR) to avoid the hindrance of PEG as a linker on the penetrating efficiency of CPP. A PEG derivative by conjugating PEG with STR via acid-degradable hydrazone bond (PEG2000-Hz-STR, PHS) was synthesized. High-performance liquid chromatography and flow cytometry demonstrated that PHS was stable at normal neutral conditions and PEG could be completely cleaved from liposome surface to expose CPP under acidic environments in tumor. An optimal CPP density on liposomes was screened to guaranty a maximum targeting efficiency on tumor cells as well as not being captured by normal cells that consequently lead to a long circulation in blood. In vitro and in vivo studies indicated, in 4 mol% CPP of lipid modified system, that CPP exerted higher efficiency on internalizing the liposomes into targeted subcellular compartments while remaining inactive and free from opsonins at a maximum extent in systemic circulation. The 4% CPPL as a drug delivery system will have great potential in the clinical application of anticancer drugs in future. PMID:26491292

  14. An efficient PEGylated liposomal nanocarrier containing cell-penetrating peptide and pH-sensitive hydrazone bond for enhancing tumor-targeted drug delivery

    PubMed Central

    Ding, Yuan; Sun, Dan; Wang, Gui-Ling; Yang, Hong-Ge; Xu, Hai-Feng; Chen, Jian-Hua; Xie, Ying; Wang, Zhi-Qiang

    2015-01-01

    Cell-penetrating peptides (CPPs) as small molecular transporters with abilities of cell penetrating, internalization, and endosomal escape have potential prospect in drug delivery systems. However, a bottleneck hampering their application is the poor specificity for cells. By utilizing the function of hydration shell of polyethylene glycol (PEG) and acid sensitivity of hydrazone bond, we constructed a kind of CPP-modified pH-sensitive PEGylated liposomes (CPPL) to improve the selectivity of these peptides for tumor targeting. In CPPL, CPP was directly attached to liposome surfaces via coupling with stearate (STR) to avoid the hindrance of PEG as a linker on the penetrating efficiency of CPP. A PEG derivative by conjugating PEG with STR via acid-degradable hydrazone bond (PEG2000-Hz-STR, PHS) was synthesized. High-performance liquid chromatography and flow cytometry demonstrated that PHS was stable at normal neutral conditions and PEG could be completely cleaved from liposome surface to expose CPP under acidic environments in tumor. An optimal CPP density on liposomes was screened to guaranty a maximum targeting efficiency on tumor cells as well as not being captured by normal cells that consequently lead to a long circulation in blood. In vitro and in vivo studies indicated, in 4 mol% CPP of lipid modified system, that CPP exerted higher efficiency on internalizing the liposomes into targeted subcellular compartments while remaining inactive and free from opsonins at a maximum extent in systemic circulation. The 4% CPPL as a drug delivery system will have great potential in the clinical application of anticancer drugs in future. PMID:26491292

  15. Development of a novel efficient method to construct an adenovirus library displaying random peptides on the fiber knob

    PubMed Central

    Yamamoto, Yuki; Goto, Naoko; Miura, Kazuki; Narumi, Kenta; Ohnami, Shumpei; Uchida, Hiroaki; Miura, Yoshiaki; Yamamoto, Masato; Aoki, Kazunori

    2014-01-01

    Redirection of adenovirus vectors by engineering the capsid-coding region has shown limited success because proper targeting ligands are generally unknown. To overcome this limitation, we constructed an adenovirus library displaying random peptides on the fiber knob, and its screening led to successful selections of several particular targeted vectors. In the previous library construction method, the full length of an adenoviral genome was generated by a Cre-lox mediated in vitro recombination between a fiber-modified plasmid library and the enzyme-digested adenoviral DNA/terminal protein complex (DNA-TPC) before transfection to the producer cells. In this system, the procedures were complicated and time-consuming, and approximately 30% of the vectors in the library were defective with no displaying peptide. These may hinder further extensive exploration of cancer-targeting vectors. To resolve these problems, in this study, we developed a novel method with the transfection of a fiber-modified plasmid library and a fiberless adenoviral DNA-TPC in Cre-expressing 293 cells. The use of in-cell Cre recombination and fiberless adenovirus greatly simplified the library-making steps. The fiberless adenovirus was useful in suppressing the expansion of unnecessary adenovirus vectors. In addition, the complexity of the library was more than a 104 level in one well in a 6-well dish, which was 10-fold higher than that of the original method. The results demonstrated that this novel method is useful in producing a high quality live adenovirus library, which could facilitate the development of targeted adenovirus vectors for a variety of applications in medicine. PMID:24380399

  16. Development of a novel efficient method to construct an adenovirus library displaying random peptides on the fiber knob.

    PubMed

    Yamamoto, Yuki; Goto, Naoko; Miura, Kazuki; Narumi, Kenta; Ohnami, Shumpei; Uchida, Hiroaki; Miura, Yoshiaki; Yamamoto, Masato; Aoki, Kazunori

    2014-03-01

    Redirection of adenovirus vectors by engineering the capsid-coding region has shown limited success because proper targeting ligands are generally unknown. To overcome this limitation, we constructed an adenovirus library displaying random peptides on the fiber knob, and its screening led to successful selections of several particular targeted vectors. In the previous library construction method, the full length of an adenoviral genome was generated by a Cre-lox mediated in vitro recombination between a fiber-modified plasmid library and the enzyme-digested adenoviral DNA/terminal protein complex (DNA-TPC) before transfection to the producer cells. In this system, the procedures were complicated and time-consuming, and approximately 30% of the vectors in the library were defective with no displaying peptide. These may hinder further extensive exploration of cancer-targeting vectors. To resolve these problems, in this study, we developed a novel method with the transfection of a fiber-modified plasmid library and a fiberless adenoviral DNA-TPC in Cre-expressing 293 cells. The use of in-cell Cre recombination and fiberless adenovirus greatly simplified the library-making steps. The fiberless adenovirus was useful in suppressing the expansion of unnecessary adenovirus vectors. In addition, the complexity of the library was more than a 10(4) level in one well in a 6-well dish, which was 10-fold higher than that of the original method. The results demonstrated that this novel method is useful in producing a high quality live adenovirus library, which could facilitate the development of targeted adenovirus vectors for a variety of applications in medicine. PMID:24380399

  17. Antiplatelet Aggregation and Antithrombosis Efficiency of Peptides in the Snake Venom of Deinagkistrodon acutus: Isolation, Identification, and Evaluation

    PubMed Central

    Ding, Bin; Xu, Zhenghong; Qian, Chaodong; Jiang, Fusheng; Ding, Xinghong; Ruan, Yeping; Ding, Zhishan; Fan, Yongsheng

    2015-01-01

    Two peptides of Pt-A (Glu-Asn-Trp 429 Da) and Pt-B (Glu-Gln-Trp 443 Da) were isolated from venom liquor of Deinagkistrodon acutus. Their antiplatelet aggregation effects were evaluated with platelet-rich human plasma in vitro; the respective IC50 of Pt-A and Pt-B was 66 μM and 203 μM. Both peptides exhibited protection effects on ADP-induced paralysis in mice. After ADP administration, the paralysis time of different concentration of Pt-A and Pt-B lasted as the following: 80 mg/kg Pt-B (152.8 ± 57.8 s) < 40 mg/kg Pt-A (163.5 ± 59.8 s) < 20 mg/kg Pt-A (253.5 ± 74.5 s) < 4 mg/kg clopidogrel (a positive control, 254.5 ± 41.97 s) < 40 mg/kg Pt-B (400.8 ± 35.9 s) < 10 mg/kg Pt-A (422.8 ± 55.4 s), all of which were statistically shorter than the saline treatment (666 ± 28 s). Pulmonary tissue biopsy confirmed that Pt-A and Pt-B prevented the formation of thrombi in the lung. Unlike ADP injection alone, which caused significant reduction of peripheral platelet count, Pt-A treatment prevented the drop of peripheral platelet counts; interestingly, Pt-B could not, even though the same amount of Pt-B also showed protection effects on ADP-induced paralysis and thrombosis. More importantly, intravenous injection of Pt-A and Pt-B did not significantly increase the hemorrhage risks as clopidogrel. PMID:26483843

  18. Selective encapsulation of cesium ions using the cyclic peptide moiety of surfactin: Highly efficient removal based on an aqueous giant micellar system.

    PubMed

    Taira, Toshiaki; Yanagisawa, Satohiro; Nagano, Takuto; Zhu, Yanbei; Kuroiwa, Takayoshi; Koumura, Nagatoshi; Kitamoto, Dai; Imura, Tomohiro

    2015-10-01

    Cyclic peptide of surfactin (SF) is one of the promising environment-friendly biosurfactants abundantly produced by microorganisms such as Bacillus subtilis. SF is also known to act as an ionophore, wherein alkali metal ions can be trapped in the cyclic peptide. Especially, SF is expected to show high affinity for Cs(+) because of the distinctive cavity size and coordination number. In this study, we reported the specific interaction between SF and Cs(+) and succeeded in the highly efficient removal of Cs(+) from water using giant SF micelles as a natural sorbent. The specific interaction between SF and Cs(+) to form their inclusion complex was revealed by nuclear magnetic resonance (NMR) and Fourier transform infrared (FT-IR) spectroscopy. We found that SF micelles selectively encapsulate Cs(+), which was suggested by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). A highly effective separation of Cs(+) immobilized on the surface of the SF micelles was also achieved through facile centrifugal ultrafiltration in 91% even in coexisting with other alkali metal ions such as Na(+) and K(+). Thus, the use of the giant micellar system of SF with its high Cs(+) affinity and distinctive assembling properties would be a new approach for the treatment of contaminated soil and water. PMID:26142629

  19. Efficient Production of a Bioactive Bevacizumab Monoclonal Antibody Using the 2A Self-cleavage Peptide in Transgenic Rice Callus

    PubMed Central

    Chen, Lei; Yang, Xiaoyu; Luo, Da; Yu, Weichang

    2016-01-01

    Bevacizumab, a humanized monoclonal antibody (mAb) targeting to the vascular endothelial growth factor (VEGF), has been widely used in clinical practice for the treatment of multiple cancers. Bevacizumab was mostly produced by the mammalian cell expression system. We here reported the first plant-derived Bevacizumab by using transgenic rice callus as an alternative gene expression system. Codon-optimized Bevacizumab light chain (BLC) and Bevacizumab heavy chain (BHC) genes were designed, synthesized as a polyprotein with a 2A self-cleavage linker peptide from the Foot-and-mouth disease virus, cloned into a plant binary vector under a constitutive maize ubiquitin promoter, and transformed into rice nuclear genome through Agrobacterium-mediated transformation. Southern blot and western blot analyses confirmed the integration and expression of BLC and BHC genes in transgenic rice callus. Enzyme-linked immunosorbent assay (ELISA) analysis indicated that the rice-derived Bevacizumab mAb was biologically active and the recombinant mAb was expressed at high levels (160.7–242.8 mg/Kg) in transgenic rice callus. The mAb was purified by using protein A affinity chromatography and the purified antibody was tested for its binding affinity with its target human VEGF (hVEGF) antigen by ELISA. Rice callus produced Bevacizumab and a commercial Bevacizumab (Avastin) were shown to have similar binding affinity to hVEGF. These results indicated that rice callus produced Bevacizumab could have similar biological activity and might potentially be used as a cost-effective biosimilar molecule in future cancer treatment. PMID:27555853

  20. Expanding the Versatility of Phage Display I: Efficient Display of Peptide-Tags on Protein VII of the Filamentous Phage

    PubMed Central

    Løset, Geir Åge; Bogen, Bjarne; Sandlie, Inger

    2011-01-01

    Background Phage display is a platform for selection of specific binding molecules and this is a clear-cut motivation for increasing its performance. Polypeptides are normally displayed as fusions to the major coat protein VIII (pVIII), or the minor coat protein III (pIII). Display on other coat proteins such as pVII allows for display of heterologous peptide sequences on the virions in addition to those displayed on pIII and pVIII. In addition, pVII display is an alternative to pIII or pVIII display. Methodology/Principal Findings Here we demonstrate how standard pIII or pVIII display phagemids are complemented with a helper phage which supports production of virions that are tagged with octa FLAG, HIS6 or AviTag on pVII. The periplasmic signal sequence required for pIII and pVIII display, and which has been added to pVII in earlier studies, is omitted altogether. Conclusions/Significance Tagging on pVII is an important and very useful add-on feature to standard pIII and pVII display. Any phagemid bearing a protein of interest on either pIII or pVIII can be tagged with any of the tags depending simply on choice of helper phage. We show in this paper how such tags may be utilized for immobilization and separation as well as purification and detection of monoclonal and polyclonal phage populations. PMID:21390217

  1. Efficient Production of a Bioactive Bevacizumab Monoclonal Antibody Using the 2A Self-cleavage Peptide in Transgenic Rice Callus.

    PubMed

    Chen, Lei; Yang, Xiaoyu; Luo, Da; Yu, Weichang

    2016-01-01

    Bevacizumab, a humanized monoclonal antibody (mAb) targeting to the vascular endothelial growth factor (VEGF), has been widely used in clinical practice for the treatment of multiple cancers. Bevacizumab was mostly produced by the mammalian cell expression system. We here reported the first plant-derived Bevacizumab by using transgenic rice callus as an alternative gene expression system. Codon-optimized Bevacizumab light chain (BLC) and Bevacizumab heavy chain (BHC) genes were designed, synthesized as a polyprotein with a 2A self-cleavage linker peptide from the Foot-and-mouth disease virus, cloned into a plant binary vector under a constitutive maize ubiquitin promoter, and transformed into rice nuclear genome through Agrobacterium-mediated transformation. Southern blot and western blot analyses confirmed the integration and expression of BLC and BHC genes in transgenic rice callus. Enzyme-linked immunosorbent assay (ELISA) analysis indicated that the rice-derived Bevacizumab mAb was biologically active and the recombinant mAb was expressed at high levels (160.7-242.8 mg/Kg) in transgenic rice callus. The mAb was purified by using protein A affinity chromatography and the purified antibody was tested for its binding affinity with its target human VEGF (hVEGF) antigen by ELISA. Rice callus produced Bevacizumab and a commercial Bevacizumab (Avastin) were shown to have similar binding affinity to hVEGF. These results indicated that rice callus produced Bevacizumab could have similar biological activity and might potentially be used as a cost-effective biosimilar molecule in future cancer treatment. PMID:27555853

  2. Antimicrobial peptides

    PubMed Central

    2014-01-01

    With increasing antibiotics resistance, there is an urgent need for novel infection therapeutics. Since antimicrobial peptides provide opportunities for this, identification and optimization of such peptides have attracted much interest during recent years. Here, a brief overview of antimicrobial peptides is provided, with focus placed on how selected hydrophobic modifications of antimicrobial peptides can be employed to combat also more demanding pathogens, including multi-resistant strains, without conferring unacceptable toxicity. PMID:24758244

  3. Efficient GLP-1 gene delivery using two-step transcription amplification plasmid system with a secretion signal peptide and arginine-grafted bioreducible polymer.

    PubMed

    Kim, Tae-Il; Lee, Minhyung; Kim, Sung Wan

    2012-01-30

    Glucagon-like peptide (GLP-1) encoding dual plasmid (pDNA) system (TSTA (SP-GLP-1)) which is composed of pβ-Gal4-p65 and pUAS-SP-GLP-1 was constructed to improve the production and secretion of expressed GLP-1 by combining the advantages of signal peptide (SP) and two-step transcription amplification (TSTA) system. Its potential for GLP-1 gene delivery system was investigated with employment of arginine-grafted bioreducible polymer (ABP) as a gene carrier. Their polyplexes have about 140nm-sizes and 20mV Zeta-potential values. ABP showed no cytotoxicity contrary to PEI25k. It was found in RT-PCR experiments that TSTA-SP pDNA systems showed increased GLP-1 gene transcription level in comparison with mono pDNA system (pβ-GLP-1). It was also observed in GLP-1 ELISA that GLP-1 secretion level of TSTA (SP-GLP-1) pDNA system was 2.7-3.4 times higher than those of pβ-GLP-1 and 1.5-1.7 times than TSTA (GLP-1). Additionally, 2.5-3.5 folds increased level of GLP-1 secretion was found in ABP gene carrier system in comparison with PEI25k. When transfection medium containing secreted GLP-1 was transferred to NIT-1 insulinoma cells, the highest secretion level of insulin was induced in ABP/TSTA (SP-GLP-1) polyplex medium-treated cells. Therefore, this novel system could be utilized as a safe and efficient GLP-1 gene delivery system for type 2 diabetes therapy. PMID:21945681

  4. Efficient Eradication of Mature Pseudomonas aeruginosa Biofilm via Controlled Delivery of Nitric Oxide Combined with Antimicrobial Peptide and Antibiotics.

    PubMed

    Ren, Hang; Wu, Jianfeng; Colletta, Alessandro; Meyerhoff, Mark E; Xi, Chuanwu

    2016-01-01

    Fast eradication of mature biofilms is the 'holy grail' in the clinical management of device-related infections. Endogenous nitric oxide (NO) produced by macrophages plays an important role in host defense against intracellular pathogens, and NO is a promising agent in preventing biofilms formation in vitro. However, the rate of delivery of NO by various NO donors (e.g., diazeniumdiolates, S-nitrosothiols, etc.) is difficult to control, which hinders fundamental studies aimed at understanding the role of NO in biofilm control. In this study, by using a novel precisely controlled electrochemical NO releasing catheter device, we examine the effect of physiological levels of NO on eradicating mature Pseudomonas aeruginosa biofilm (7 days), as well as the potential application of the combination of NO with antimicrobial agents. It is shown that physiological levels of NO exhibit mixed effects of killing bacteria and dispersing ambient biofilm. The overall biofilm-eradicating effect of NO is quite efficient in a dose-dependent manner over a 3 h period of NO treatment. Moreover, NO also greatly enhances the efficacy of antimicrobial agents, including human beta-defensin 2 (BD-2) and several antibiotics, in eradicating biofilm and its detached cells, which otherwise exhibited high recalcitrance to these antimicrobial agents. The electrochemical NO release technology offers a powerful tool in evaluating the role of NO in biofilm control as well as a promising approach when combined with antimicrobial agents to treat biofilm-associated infections in hospital settings, especially infections resulting from intravascular catheters. PMID:27582732

  5. Efficient secretion of biologically active Chondroitinase ABC from mammalian cells in the absence of an N-terminal signal peptide.

    PubMed

    Klüppel, Michael

    2011-05-01

    Proteoglycans carrying chondroitin sulfate side chains have been shown to fulfill important biological functions in development, disease, and signaling. One area of considerable interest is the functional importance of chondroitin sulfates as inhibitors of the regeneration of axonal projections in the mammalian central nervous system. In animal models of spinal cord injury, injections of the enzyme Chondroitinase ABC from the bacterium Proteus vulgaris into the lesion site leads to degradation of chondroitin sulfates, and promotes axonal regeneration and significant functional recovery. Here, a mammalian expression system of an epitope-tagged Chondroitinase ABC protein is described. It is demonstrated that the addition of a eukaryotic secretion signal sequence to the N-terminus of the bacterial Chondroitinase ABC sequence allowed secretion, but interfered with function of the secreted enzyme. In contrast, expression of the Chondroitinase ABC gene without N-terminal eukaryotic secretion sequence or bacterial hydrophobic leader sequence led to efficient secretion of a biologically active Chondroitinase ABC protein from both immortalized and primary cells. Moreover, the C-terminal epitope tag could be utilized to follow expression of this protein. This novel Chondroitinase ABC gene is a valuable tool for a better understanding of the in vivo roles of chondroitin sulfates in mammalian development and disease, as well as in gene therapy approaches, including the treatment of spinal chord injuries. PMID:21213020

  6. Efficient in vitro inhibition of HIV-1 gag reverse transcription by peptide nucleic acid (PNA) at minimal ratios of PNA/RNA.

    PubMed Central

    Koppelhus, U; Zachar, V; Nielsen, P E; Liu, X; Eugen-Olsen, J; Ebbesen, P

    1997-01-01

    We have tested the inhibitory potential of peptide nucleic acid (PNA) on in vitro reverse transcription of the HIV-1 gag gene. PNA was designed to target different regions of the HIV-1 gag gene and the effect on reverse transcription by HIV-1, MMLV and AMV reverse transcriptases (RTs) was investigated. We found that a bis-PNA (parallel antisense 10mer linked to antiparallel antisense 10mer) was superior to both the parallel antisense 10mer and antiparallel antisense 10mer in inhibiting reverse transcription of the gene, thus indicating triplex formation at the target sequence. A complete arrest of reverse transcription was obtained at approximately 6-fold molar excess of the bis-PNA with respect to the gag RNA. At this molar ratio we found no effect on in vitro translation of gag RNA. A 15mer duplex-forming PNA was also found to inhibit reverse transcription at very low molar ratios of PNA/ gag RNA. Specificity of the inhibition of reverse transcription by PNA was confirmed by RNA sequencing, which revealed that all tested RTs were stopped by the PNA/RNA complex at the predicted site. We propose that the effect of PNA is exclusively due to steric hindrance, as we found no signs of RNA degradation that would indicate PNA-mediated RNase H activation of the tested RTs. In conclusion, PNA appears to have a potential to become a specific and efficient inhibitor of reverse transcription in vivo , provided sufficient intracellular levels are achievable. PMID:9153317

  7. A novel system of artificial antigen-presenting cells efficiently stimulates Flu peptide-specific cytotoxic T cells in vitro

    SciTech Connect

    Han, Hui; Peng, Ji-Run; Chen, Peng-Cheng; Gong, Lei; Qiao, Shi-Shi; Wang, Wen-Zhen; Cui, Zhu-Qingqing; Yu, Xin; Wei, Yu-Hua; Leng, Xi-Sheng

    2011-08-05

    Highlights: {yields} Adoptive immunotherapy depends on relevant numbers of cytolytic T lymphocytes. {yields} An ideal artificial APCs system was successfully prepared in vivo. {yields} Controlled release of IL-2 leads to much more T-cell expansion. {yields} This system is better than general cellular APCs on T-cell expansion. -- Abstract: Therapeutic numbers of antigen-specific cytotoxic T lymphocytes (CTLs) are key effectors in successful adoptive immunotherapy. However, efficient and reproducible methods to meet the qualification remain poor. To address this issue, we designed the artificial antigen-presenting cell (aAPC) system based on poly(lactic-co-glycolic acid) (PLGA). A modified emulsion method was used for the preparation of PLGA particles encapsulating interleukin-2 (IL-2). Biotinylated molecular ligands for recognition and co-stimulation of T cells were attached to the particle surface through the binding of avidin-biotin. These formed the aAPC system. The function of aAPCs in the proliferation of specific CTLs against human Flu antigen was detected by enzyme-linked immunospot assay (ELISPOT) and MTT staining methods. Finally, we successfully prepared this suitable aAPC system. The results show that IL-2 is released from aAPCs in a sustained manner over 30 days. This dramatically improves the stimulatory capacity of this system as compared to the effect of exogenous addition of cytokine. In addition, our aAPCs promote the proliferation of Flu antigen-specific CTLs more effectively than the autologous cellular APCs. Here, this aAPC platform is proved to be suitable for expansion of human antigen-specific T cells.

  8. Efficient Eradication of Mature Pseudomonas aeruginosa Biofilm via Controlled Delivery of Nitric Oxide Combined with Antimicrobial Peptide and Antibiotics

    PubMed Central

    Ren, Hang; Wu, Jianfeng; Colletta, Alessandro; Meyerhoff, Mark E.; Xi, Chuanwu

    2016-01-01

    Fast eradication of mature biofilms is the ‘holy grail’ in the clinical management of device-related infections. Endogenous nitric oxide (NO) produced by macrophages plays an important role in host defense against intracellular pathogens, and NO is a promising agent in preventing biofilms formation in vitro. However, the rate of delivery of NO by various NO donors (e.g., diazeniumdiolates, S-nitrosothiols, etc.) is difficult to control, which hinders fundamental studies aimed at understanding the role of NO in biofilm control. In this study, by using a novel precisely controlled electrochemical NO releasing catheter device, we examine the effect of physiological levels of NO on eradicating mature Pseudomonas aeruginosa biofilm (7 days), as well as the potential application of the combination of NO with antimicrobial agents. It is shown that physiological levels of NO exhibit mixed effects of killing bacteria and dispersing ambient biofilm. The overall biofilm-eradicating effect of NO is quite efficient in a dose-dependent manner over a 3 h period of NO treatment. Moreover, NO also greatly enhances the efficacy of antimicrobial agents, including human beta-defensin 2 (BD-2) and several antibiotics, in eradicating biofilm and its detached cells, which otherwise exhibited high recalcitrance to these antimicrobial agents. The electrochemical NO release technology offers a powerful tool in evaluating the role of NO in biofilm control as well as a promising approach when combined with antimicrobial agents to treat biofilm-associated infections in hospital settings, especially infections resulting from intravascular catheters. PMID:27582732

  9. Designing an efficient multi-epitope peptide vaccine against Vibrio cholerae via combined immunoinformatics and protein interaction based approaches.

    PubMed

    Nezafat, Navid; Karimi, Zeinab; Eslami, Mahboobeh; Mohkam, Milad; Zandian, Sanam; Ghasemi, Younes

    2016-06-01

    Cholera continues to be a major global health concern. Among different Vibrio cholerae strains, only O1 and O139 cause acute diarrheal diseases that are related to epidemic and pandemic outbreaks. The currently available cholera vaccines are mainly lived and attenuated vaccines consisting of V. cholerae virulence factors such as toxin-coregulated pili (TCP), outer membrane proteins (Omps), and nontoxic cholera toxin B subunit (CTB). Nowadays, there is a great interest in designing an efficient epitope vaccine against cholera. Epitope vaccines consisting of immunodominant epitopes and adjuvant molecules enhance the possibility of inciting potent protective immunity. In this study, V. cholerae protective antigens (OmpW, OmpU, TcpA and TcpF) and the CTB, which is broadly used as an immunostimulatory adjuvant, were analyzed using different bioinformatics and immunoinformatics tools. The common regions between promiscuous epitopes, binding to various HLA-II supertype alleles, and B-cell epitopes were defined based upon the aforementioned protective antigens. The ultimately selected epitopes and CTB adjuvant were fused together using proper GPGPG linkers to enhance vaccine immunogenicity. A three-dimensional model of the thus constructed vaccine was generated using I-TASSER. The model was structurally validated using the ProSA-web error-detection software and the Ramachandran plot. The validation results indicated that the initial 3D model needed refinement. Subsequently, a high-quality model obtained after various refinement cycles was used for defining conformational B-cell epitopes. Several linear and conformational B-cell epitopes were determined within the epitope vaccine, suggesting likely antibody triggering features of our designed vaccine. Next, molecular docking was performed between the 3D vaccine model and the tertiary structure of the toll like receptor 2 (TLR2). To gain further insight into the interaction between vaccine and TLR2, molecular dynamics

  10. Efficient model chemistries for peptides. I. General framework and a study of the heterolevel approximation in RHF and MP2 with Pople split-valence basis sets.

    PubMed

    Echenique, Pablo; Alonso, José Luis

    2008-07-15

    We present an exhaustive study of more than 250 ab initio potential energy surfaces (PESs) of the model dipeptide HCO-L-Ala-NH(2). The model chemistries (MCs) investigated are constructed as homo- and heterolevels involving possibly different RHF and MP2 calculations for the geometry and the energy. The basis sets used belong to a sample of 39 representants from Pople's split-valence families, ranging from the small 3-21G to the large 6-311++G(2df,2pd). The reference PES to which the rest are compared is the MP2/6-311++G(2df,2pd) homolevel, which, as far as we are aware, is the most accurate PES in the literature. All data sets have been analyzed according to a general framework, which can be extended to other complex problems and which captures the nearness concept in the space of MCs. The great number of MCs evaluated has allowed us to significantly explore this space and show that the correlation between accuracy and computational cost of the methods is imperfect, thus justifying a systematic search for the combination of features in a MC that is optimal to deal with peptides. Regarding the particular MCs studied, the most important conclusion is that the potentially very cost-saving heterolevel approximation is a very efficient one to describe the whole PES of HCO-L-Ala-NH(2). Finally, we show that, although RHF may be used to calculate the geometry if a MP2 single-point energy calculation follows, pure RHF//RHF homolevels are not recommendable for this problem. PMID:18270966

  11. Understanding the highly efficient catalysis of prokaryotic peptide deformylases by shedding light on the determinants specifying the low activity of the human counterpart.

    PubMed

    Fieulaine, Sonia; Desmadril, Michel; Meinnel, Thierry; Giglione, Carmela

    2014-02-01

    Peptide deformylases (PDFs), which are essential and ubiquitous enzymes involved in the removal of the N-formyl group from nascent chains, are classified into four subtypes based on the structural and sequence similarity of specific conserved domains. All PDFs share a similar three-dimensional structure, are functionally interchangeable in vivo and display similar properties in vitro, indicating that their molecular mechanism has been conserved during evolution. The human mitochondrial PDF is the only exception as despite its conserved fold it reveals a unique substrate-binding pocket together with an unusual kinetic behaviour. Unlike human PDF, the closely related mitochondrial PDF1As from plants have catalytic efficiencies and enzymatic parameters that are similar to those of other classes of PDFs. Here, the aim was to identify the structural basis underlying the properties of human PDF compared with all other PDFs by focusing on plant mitochondrial PDF1A. The construction of a chimaera composed of plant PDF1A with the nonrandom substitutions found in a conserved motif of its human homologue converted it into an enzyme with properties similar to the human enzyme, indicating the crucial role of these positions. The crystal structure of this human-like plant PDF revealed that substitution of two residues leads to a reduction in the volume of the ligand-binding site together with the introduction of negative charges, unravelling the origin of the weak affinity of human PDF for its substrate. In addition, the substitution of the two residues of human PDF modifies the transition state of the reaction through alteration of the network of interactions between the catalytic residues and the substrate, leading to an overall reduced reaction rate. PMID:24531459

  12. Exploration of the Medicinal Peptide Space.

    PubMed

    Gevaert, Bert; Stalmans, Sofie; Wynendaele, Evelien; Taevernier, Lien; Bracke, Nathalie; D'Hondt, Matthias; De Spiegeleer, Bart

    2016-01-01

    The chemical properties of peptide medicines, known as the 'medicinal peptide space' is considered a multi-dimensional subset of the global peptide space, where each dimension represents a chemical descriptor. These descriptors can be linked to biofunctional, medicinal properties to varying degrees. Knowledge of this space can increase the efficiency of the peptide-drug discovery and development process, as well as advance our understanding and classification of peptide medicines. For 245 peptide drugs, already available on the market or in clinical development, multivariate dataexploration was performed using peptide relevant physicochemical descriptors, their specific peptidedrug target and their clinical use. Our retrospective analysis indicates that clusters in the medicinal peptide space are located in a relatively narrow range of the physicochemical space: dense and empty regions were found, which can be explored for the discovery of novel peptide drugs. PMID:26876881

  13. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight.

    PubMed

    Mohan, Aishwarya; McClements, David Julian; Udenigwe, Chibuike C

    2016-12-15

    Encapsulation of peptides can be used to enhance their stability, delivery and bioavailability. This study focused on the effect of the molecular weight range of whey peptides on their encapsulation within soy lecithin-derived nanoliposomes. Peptide molecular weight did not have a major impact on encapsulation efficiency or liposome size. However, it influenced peptide distribution amongst the surface, core, and bilayer regions of the liposomes, as determined by electrical charge (ζ-potential) and FTIR analysis. The liposome ζ-potential depended on peptide molecular weight, suggesting that the peptide charged groups were in different locations relative to the liposome surfaces. FTIR analysis indicated that the least hydrophobic peptide fractions interacted more strongly with choline on the liposome surfaces. The results suggested that the peptides were unequally distributed within the liposomes, even at the same encapsulation efficiency. These findings are important for designing delivery systems for commercial production of encapsulated peptides with improved functional attributes. PMID:27451165

  14. Peptide identification

    DOEpatents

    Jarman, Kristin H [Richland, WA; Cannon, William R [Richland, WA; Jarman, Kenneth D [Richland, WA; Heredia-Langner, Alejandro [Richland, WA

    2011-07-12

    Peptides are identified from a list of candidates using collision-induced dissociation tandem mass spectrometry data. A probabilistic model for the occurrence of spectral peaks corresponding to frequently observed partial peptide fragment ions is applied. As part of the identification procedure, a probability score is produced that indicates the likelihood of any given candidate being the correct match. The statistical significance of the score is known without necessarily having reference to the actual identity of the peptide. In one form of the invention, a genetic algorithm is applied to candidate peptides using an objective function that takes into account the number of shifted peaks appearing in the candidate spectrum relative to the test spectrum.

  15. Electromembrane extraction of peptides.

    PubMed

    Balchen, Marte; Reubsaet, Léon; Pedersen-Bjergaard, Stig

    2008-06-20

    Rapid extraction of eight different peptides using electromembrane extraction (EME) was demonstrated for the first time. During an extraction time of 5 min, the model peptides migrated from a 500 microL aqueous acidic sample solution, through a thin supported liquid membrane (SLM) of an organic liquid sustained in the pores in the wall of a porous hollow fiber, and into a 25 microL aqueous acidic acceptor solution present inside the lumen of the hollow fiber. The driving force of the extraction was a 50 V potential sustained across the SLM, with the positive electrode in the sample and the negative electrode in the acceptor solution. The nature and the composition of the SLM were highly important for the EME process, and a mixture of 1-octanol and 15% di(2-ethylhexyl) phosphate was found to work properly. Using 1mM HCl as background electrolyte in the sample and 100 mM HCl in the acceptor solution, and agitation at 1050 rpm, enrichment up to 11 times was achieved. Recoveries were found to be dependent on the structure of the peptide, indicating that the polarity and the number of ionized groups were important parameters affecting the extraction efficiency. The experimental findings suggested that electromembrane extraction of peptides is possible and may be a valuable tool for future extraction of peptides. PMID:18479691

  16. High-efficiency secretory expression of human neutrophil gelatinase-associated lipocalin from mammalian cell lines with human serum albumin signal peptide.

    PubMed

    Chen, Wei; Zhao, Xiaozhi; Zhang, Mingxin; Yuan, Yimin; Ge, Liyuan; Tang, Bo; Xu, Xiaoyu; Cao, Lin; Guo, Hongqian

    2016-02-01

    Human neutrophil gelatinase associated lipocalin (NGAL) is a secretory glycoprotein initially isolated from neutrophils. It is thought to be involved in the incidence and development of immunological diseases and cancers. Urinary and serum levels of NGAL have been investigated as a new biomarker of acute kidney injury (AKI), for an earlier and more accurate detection method than with creatinine level. However, expressing high-quality recombinant NGAL is difficult both in Escherichia coli and mammalian cells for the low yield. Here, we cloned and fused NGAL to the C-terminus of signal peptides of human NGAL, human interleukin-2 (IL2), gaussia luciferase (Gluc), human serum albumin preproprotein (HSA) or an hidden Markov model-generated signal sequence (HMM38) respectively for transient expression in Expi293F suspension cells to screen for their ability to improve the secretory expression of recombinant NGAL. The best results were obtained with signal peptide derived from HSA. The secretory recombinant protein could react specifically with NGAL antibody. For scaled production, we used HSA signal peptide to establish stable Chinese hamster ovary cell lines. Then we developed a convenient colony-selection system to select high-expression, stable cell lines. Moreover, we purified the NGAL with Ni-Sepharose column. The recombinant human NGAL displayed full biological activity. We provide a method to enhance the secretory expression of recombinant human NGAL by using the HSA signal peptide and produce the glycoprotein in mammalian cells. PMID:26518367

  17. Sustainable efficient way for opioid peptide LVV-h7 preparation from enzymatic proteolysis in a microfluidic-based reaction-extraction process with solvent recycling.

    PubMed

    Elagli, Adil; Belhacene, Kalim; Dhulster, Pascal; Froidevaux, Renato

    2016-05-01

    LVV-h7 (LVVYPWTQFR) is a bioactive peptide that can be obtained from blood as waste of food industry, more precisely from hemoglobin hydrolysis by pepsin. This opioid peptide belongs to the hemorphins family and have strong physiological effects that bring its use in pharmaceutics and various therapeutic treatments attractive, in particular for substituting its costly chemically synthetized analogous. Hemoglobin hydrolysis by pepsin generates a huge variety of peptides among whose LVV-h7 can be purified by liquid-liquid extraction (LLE). Herein, selective preparation of this peptide is proposed by a microfluidic-based continuous reaction-separation process. Hemoglobin hydrolysis in microreactor was firstly coupled to LVV-h7 LLE in octan-1-ol and then coupled to LVV-h7 back LLE in acidic water. This continuous process allowed to prepare pure LVV-h7, as confirmed by liquid chromatography and mass spectrometry. The microfluidic circuit also allowed octan-1-ol recycling in a closed loop, making this method more sustainable than similar biphasic batch process. PMID:26998857

  18. Thermodynamic and Biophysical Analysis of the Membrane-Association of a Histidine-Rich Peptide with Efficient Antimicrobial and Transfection Activities.

    PubMed

    Voievoda, Nataliia; Schulthess, Therese; Bechinger, Burkhard; Seelig, Joachim

    2015-07-30

    LAH4-L1 is a synthetic amphipathic peptide with antimicrobial activity. The sequence of the 23 amino acid peptide was inspired by naturally occurring frog peptides such as PGLa and magainin. LAH4-L1 also facilitates the transport of nucleic acids through the cell membrane. We have investigated the membrane binding properties and energetics of LAH4-L1 at pH 5.5 with physical-chemical methods. CD spectroscopy was employed to quantitate the membrane-induced random coil-to-helix transition of LAH4-L1. Binding isotherms were obtained with CD spectroscopy as a function of the lipid-to-protein ratio for neutral and negatively charged membranes and were analyzed with both the Langmuir multisite adsorption model and the surface partition/Gouy-Chapman model. According to the Langmuir adsorption model each molecule LAH4-L1 binds 4 POPS molecules, independent of the POPS concentration in the membrane. This is supported by the surface partition/Gouy-Chapman model which predicts an electric charge of LAH4-L1 of z = 4. Binding affinity is dominated by electrostatic attraction. The thermodynamics of the binding process was elucidated with isothermal titration calorimetry. The ITC data revealed that the binding process is composed of at least three different reactions, that is, a coil-to-helix transition with an exothermic enthalpy of about -11 kcal/mol and two endothermic processes with enthalpies of ∼4 and ∼8 kcal/mol, respectively, which partly compensate the exothermic enthalpy of the conformational change. The major endothermic reaction is interpreted as a deprotonation reaction following the insertion of a highly charged cationic peptide into a nonpolar environment. PMID:26134591

  19. Novel Cysteine Tags for the Sequencing of Non-Tryptic Disulfide Peptides of Anurans: ESI-MS Study of Fragmentation Efficiency

    NASA Astrophysics Data System (ADS)

    Samgina, Tatyana Y.; Vorontsov, Egor A.; Gorshkov, Vladimir A.; Artemenko, Konstantin A.; Nifant'ev, Ilya E.; Kanawati, Basem; Schmitt-Kopplin, Philippe; Zubarev, Roman A.; Lebedev, Albert T.

    2011-12-01

    Mass spectrometry faces considerable difficulties in de novo sequencing of long non-tryptic peptides with S-S bonds. Long disulfide-containing peptides brevinins 1E and 2Ec from frog Rana ridibunda were reduced and alkylated with nine novel and three known derivatizing agents. Eight of the novel reagents are maleimide derivatives. Modified samples were subjected to MS/MS studies on FT-ICR and Orbitrap mass spectrometers using CAD/HCD or ECD/ETD techniques. Procedures, fragmentation patterns, and sequence coverage for two peptides modified with 12 tags are described. ECD/ETD and CAD fragmentation revealed complementary sequence information. Higher-energy collisionally activated dissociation (HCD) sufficiently enhanced y-ions formation for brevinin 1E, but not for brevinin 2Ec. Some novel tags [ N-benzylmaleimide, N-(2,6-dimethylphenyl)maleimide] along with known N-phenylmaleimide and iodoacetic acid showed high total sequence coverage taking into account combined ETD and HCD fragmentation. Moreover, modification of long (34 residues) brevinin 2Ec with N-benzylmaleimide or N-(2,6-dimethylphenyl)maleimide yielded high sequence coverage and full C-terminal sequence determination with ECD alone.

  20. Two interdependent mechanisms of antimicrobial activity allow for efficient killing in nylon-3-based polymeric mimics of innate immunity peptides

    PubMed Central

    Lee, Michelle W.; Chakraborty, Saswata; Schmidt, Nathan W.; Murgai, Rajan; Gellman, Samuel H.; Wong, Gerard C.L.

    2015-01-01

    Novel synthetic mimics of antimicrobial peptides have been developed to exhibit structural properties and antimicrobial activity similar to those of natural antimicrobial peptides (AMPs) of the innate immune system. These molecules have a number of potential advantages over conventional antibiotics, including reduced bacterial resistance, cost-effective preparation, and customizable designs. In this study, we investigate a family of nylon-3 polymer-based antimicrobials. By combining vesicle dye leakage, bacterial permeation, and bactericidal assays with small-angle X-ray scattering (SAXS), we find that these polymers are capable of two interdependent mechanisms of action: permeation of bacterial membranes and binding to intracellular targets such as DNA, with the latter necessarily dependent on the former. We systemically examine polymer-induced membrane deformation modes across a range of lipid compositions that mimic both bacteria and mammalian cell membranes. The results show that the polymers' ability to generate negative Gaussian curvature (NGC), a topological requirement for membrane permeation and cellular entry, in model Escherichia coli membranes correlates with their ability to permeate membranes without complete membrane disruption and kill E. coli cells. Our findings suggest that these polymers operate with a concentration dependent mechanism of action: at low concentrations permeation and DNA binding occur without membrane disruption, while at high concentrations complete disruption of the membrane occurs. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. PMID:24743021

  1. Facile removal of high mannose structures prior to extracting complex type N-glycans from de-N-glycosylated peptides retained by C18 solid phase to allow more efficient glycomic mapping

    PubMed Central

    Lin, Chi-Hung; Kuo, Chu-Wei; Jarvis, Donald L; Khoo, Kay-Hooi

    2014-01-01

    The relative amount of high mannose structures within an N-glycomic pool differs from one source to another but quite often it predominates over the larger size complex type structures carrying biologically important glyco-epitopes. An efficient method to separate these two classes of N-glycans would significantly aid in detecting the lower abundant components by mass spectrometry. Capitalizing on an initial observation that only high mannose type structures were recovered in the flow through fraction when PNGase F digested peptides were passed through a C18 cartridge in 0.1% formic acid, we demonstrated here that native complex type N-glycans can be retained by C18 cartridge and to be efficiently separated from both the smaller high mannose type structures, as well as de-N-glycosylated peptides by stepwise elution with increasing acetonitrile concentration. The weak retention of the largely hydrophilic N-glycans on C18 resin is dependent not only on size but also increased by the presence of α6-fucosylation. This was shown by comparing the resulting N-glycomic profiles of the washed and low acetonitrile eluted fractions derived from both a human cancer cell line and an insect cell line. PMID:24174266

  2. NK cells: tuned by peptide?

    PubMed

    Das, Jayajit; Khakoo, Salim I

    2015-09-01

    Natural killer cells express multiple receptors for major histocompatibility complex (MHC) class I, including the killer cell immunoglobulin-like receptors (KIRs) and the C-type lectin-like CD94:NKG2 receptors. The KIR locus is extremely polymorphic, paralleling the diversity of its classical MHC class I ligands. Similarly, the conservation of the NKG2 family of receptors parallels the conservation of MHC-E, the ligand for CD94:NKG2A/C/E. Binding of both CD94:NKG2 heterodimers and KIR to their respective MHC class I ligand is peptide dependent, and despite the evolution of these receptors, they have retained the property of peptide selectivity. Such peptide selectivity affects these two systems in different ways. HLA-E binding non-inhibitory peptides augment inhibition at CD94:NKG2A, while HLA-C binding non-inhibitory peptides antagonize inhibition at KIR2DL2/3, implying that KIRs are specialized to respond positively to changes in peptide repertoire. Thus, while specific KIRs, such as KIR2DL3, are associated with beneficial outcomes from viral infections, viral peptides augment inhibition at CD94:NKGA. Conversely, NKG2A-positive NK cells sense MHC class I downregulation more efficiently than KIRs. Thus, these two receptor:ligand systems appear to have complementary functions in recognizing changes in MHC class I. PMID:26284480

  3. Immunoglobulin Fc-fused, neuropilin-1-specific peptide shows efficient tumor tissue penetration and inhibits tumor growth via anti-angiogenesis.

    PubMed

    Kim, Ye-Jin; Bae, Jeomil; Shin, Tae-Hwan; Kang, Se Hun; Jeong, Moonkyoung; Han, Yunho; Park, Ji-Ho; Kim, Seok-Ki; Kim, Yong-Sung

    2015-10-28

    Neuropilin-1 (NRP1) receptor, involved in vascular endothelial growth factor (VEGF)-mediated vascular permeability and tumor angiogenesis, is targeted by peptides that bind to its VEGF-binding site. However, these peptides also cross-react with the structurally related receptor, NRP2. Here, we describe an immunoglobulin Fc-fused peptide, Fc-TPP11, which specifically binds to the VEGF-binding site of NRP1 with approximately 2nM affinity, but negligibly to that of NRP2. Fc-TPP11 triggered NRP1-dependent signaling, enhanced vascular permeability via vascular endothelial (VE)-cadherin downregulation, and increased paracellular permeability via E-cadherin downregulation in tumor tissues. Fc-TPP11 also significantly enhanced the tumor penetration of co-injected anti-cancer drug, doxorubicin, leading to the improved in vivo anti-tumor efficacy. Fc-TPP11 was easily adapted to the full-length anti-epidermal growth factor receptor (EGFR) monoclonal antibody (mAb) cetuximab (Erbitux), cetuximab-TPP11, exhibiting more than 2-fold improved tumor penetration than the parent cetuximab. Fc-TPP11 exhibited a similar whole-body half-life to that of intact Fc in tumor bearing mice. In addition to the tumor-penetrating activity, Fc-TPP11 suppressed VEGF-dependent angiogenesis by blocking VEGF binding to NRP1, thereby inhibiting tumor growth without promoting metastasis in the mouse model. Our results show that NRP1-specific, high-affinity binding of Fc-TPP11, is useful to validate NRP1 signaling, independent of NRP2. Thus, Fc-TPP11 can be used as a tumor penetration-promoting agent with anti-angiogenic activity or directly adapted to mAb-TPP11 format for more potent anti-cancer antibody therapy. PMID:26260451

  4. Antimicrobial peptides.

    PubMed

    Zhang, Ling-Juan; Gallo, Richard L

    2016-01-11

    Antimicrobial peptides and proteins (AMPs) are a diverse class of naturally occurring molecules that are produced as a first line of defense by all multicellular organisms. These proteins can have broad activity to directly kill bacteria, yeasts, fungi, viruses and even cancer cells. Insects and plants primarily deploy AMPs as an antibiotic to protect against potential pathogenic microbes, but microbes also produce AMPs to defend their environmental niche. In higher eukaryotic organisms, AMPs can also be referred to as 'host defense peptides', emphasizing their additional immunomodulatory activities. These activities are diverse, specific to the type of AMP, and include a variety of cytokine and growth factor-like effects that are relevant to normal immune homeostasis. In some instances, the inappropriate expression of AMPs can also induce autoimmune diseases, thus further highlighting the importance of understanding these molecules and their complex activities. This Primer will provide an update of our current understanding of AMPs. PMID:26766224

  5. [Progress on parasiticidal activity of anitimicrobial peptides].

    PubMed

    Liu, Ze-hua; Zhao, Jun-long

    2014-10-01

    Antimicrobial peptides are a kind of gene encoded, ribosome synthesized, small molecular polypeptides that have high efficiency, wide antibacterial spectrum, and low immunogenicity. Many studies have indicated that antimicrobial peptides can inhibit the growth of parasites or even kill them. This paper reviews the research progress on parasiticidal activity of the antimicrobial peptides in recent years, and presents the problems in the research. PMID:25726604

  6. High-level secretion and very efficient isotopic labeling of tick anticoagulant peptide (TAP) expressed in the methylotrophic yeast, Pichia pastoris.

    PubMed

    Laroche, Y; Storme, V; De Meutter, J; Messens, J; Lauwereys, M

    1994-11-01

    Tick anticoagulant peptide (TAP) is a potent and specific inhibitor of the blood coagulation protease Factor Xa. We designed and assembled a synthetic TAP-encoding gene (tapo) based on codons preferentially observed in the highly expressed Pichia pastoris alcohol oxidase 1 gene (AOX1), and fused it to a novel hybrid secretory prepro leader sequence. Expression from this gene yielded biologically active rTAP, which was correctly processed at the amino-terminal fusion site, and accumulated in the medium to approximately 1.7 g/l. This corresponds to a molar concentration of 0.24 mM, and is the highest yet described for a recombinant product secreted from P. pastoris. It also represents a seven-fold improvement in productivity compared to rTAP secretion from Saccharomyces cerevisiae, making P. pastoris an attractive host for the industrial-scale production of this potential therapeutic agent. This system was also used to prepare 21 mg 15N-rTAP, 11 mg 13C-rTAP and 27 mg 15N/13C-rTAP, with isotope incorporation levels higher than 98%, and purities sufficient to allow their use in determining the solution structure of the tick anticoagulant peptide using high field NMR. PMID:7765555

  7. Peptide modulators of alpha-glucosidase

    PubMed Central

    Roskar, Irena; Molek, Peter; Vodnik, Miha; Stempelj, Mateja; Strukelj, Borut; Lunder, Mojca

    2015-01-01

    Aims/Introduction Acute glucose fluctuations during the postprandial period pose great risk for cardiovascular complications and thus represent an important therapeutic approach in type 2 diabetes. In the present study, screening of peptide libraries was used to select peptides with an affinity towards mammalian intestinal alpha-glucosidase as potential leads in antidiabetic agent development. Materials and Methods Three phage-displayed peptide libraries were used in independent selections with different elution strategies to isolate target-binding peptides. Selected peptides displayed on phage were tested to compete for an enzyme-binding site with known competitive inhibitors, acarbose and voglibose. The four best performing peptides were synthesized. Their binding to the mammalian alpha-glucosidase and their effect on enzyme activity were evaluated. Results Two linear and two cyclic heptapeptides with high affinity towards intestinal alpha-glucosidase were selected. Phage-displayed as well as synthetic peptides bind into or to the vicinity of the active site on the enzyme. Both cyclic peptides inhibited enzyme activity, whereas both linear peptides increased enzyme activity. Conclusions Although natural substrates of glycosidase are polysaccharides, in the present study we successfully isolated novel peptide modulators of alpha-glucosidase. Modulatory activity of selected peptides could be further optimized through peptidomimetic design. They represent promising leads for development of efficient alpha-glucosidase inhibitors. PMID:26543535

  8. Peptide arrays for screening cancer specific peptides.

    PubMed

    Ahmed, Sahar; Mathews, Anu Stella; Byeon, Nara; Lavasanifar, Afsaneh; Kaur, Kamaljit

    2010-09-15

    In this paper, we describe a novel method to screen peptides for specific recognition by cancer cells. Seventy peptides were synthesized on a cellulose membrane in an array format, and a direct method to study the peptide-whole cell interaction was developed. The relative binding affinity of the cells for different peptides with respect to a lead 12-mer p160 peptide, identified by phage display, was evaluated using the CyQUANT fluorescence of the bound cells. Screening allowed identification of at least five new peptides that displayed higher affinity (up to 3-fold) for MDA-MB-435 and MCF-7 human cancer cells compared to the p160 peptide. These peptides showed very little binding to the control (noncancerous) human umbilical vein endothelial cells (HUVECs). Three of these peptides were synthesized separately and labeled with fluorescein isothiocyanate (FITC) to study their uptake and interaction with the cancer and control cells using confocal laser scanning microscopy and flow cytometry. The results confirmed the high and specific affinity of an 11-mer peptide 11 (RGDPAYQGRFL) and a 10-mer peptide 18 (WXEAAYQRFL) for the cancer cells versus HUVECs. Peptide 11 binds different receptors on target cancer cells as its sequence contains multiple recognition motifs, whereas peptide 18 binds mainly to the putative p160 receptor. The peptide array-whole cell binding assay reported here is a complementary method to phage display for further screening and optimization of cancer targeting peptides for cancer therapy and diagnosis. PMID:20799711

  9. Delivery of oligonucleotides into mammalian cells by anionic peptides: comparison between monomeric and dimeric peptides.

    PubMed Central

    Freulon, I; Roche, A C; Monsigny, M; Mayer, R

    2001-01-01

    The use of antisense oligonucleotides as putative therapeutic agents is limited by their poor delivery into the cytosol and/or the nucleus because they are not able to efficiently cross lipid bilayers. To circumvent this pitfall, anionic amphipathic peptides derived from the influenza virus fusogenic peptide have been used to destabilize membranes in an acidic environment. In this paper, we compare the ability of a monomeric and a dimeric peptide to introduce oligonucleotides into the cytosol and nuclei of several types of cultured cells. Cells incubated at pH 6.2 or at a slightly lower pH in the presence of the monomeric peptide but not the dimeric peptide were efficiently permeabilized. The location of fluorescent derivatives of peptides and of oligonucleotides was assessed by confocal microscopy. Both the peptides and oligonucleotides remained entrapped in vesicular compartments at neutral pH; at acidic pH, oligonucleotides in the presence of the monomeric peptide were mainly in the nucleus, while in the presence of the dimeric peptide they co-localized with the peptide into vesicles. The data are interpreted on the basis of the spectroscopic behaviour of monomeric and dimeric peptides in relation to the environmental pH. PMID:11237872

  10. C-Peptide Test

    MedlinePlus

    ... C-peptide is a useful marker of insulin production. The following are some purposes of C-peptide ... it nearly impossible to directly evaluate endogenous insulin production. In these cases, C-peptide measurement is a ...

  11. Predicting protein-peptide interactions from scratch

    NASA Astrophysics Data System (ADS)

    Yan, Chengfei; Xu, Xianjin; Zou, Xiaoqin; Zou lab Team

    Protein-peptide interactions play an important role in many cellular processes. The ability to predict protein-peptide complex structures is valuable for mechanistic investigation and therapeutic development. Due to the high flexibility of peptides and lack of templates for homologous modeling, predicting protein-peptide complex structures is extremely challenging. Recently, we have developed a novel docking framework for protein-peptide structure prediction. Specifically, given the sequence of a peptide and a 3D structure of the protein, initial conformations of the peptide are built through protein threading. Then, the peptide is globally and flexibly docked onto the protein using a novel iterative approach. Finally, the sampled modes are scored and ranked by a statistical potential-based energy scoring function that was derived for protein-peptide interactions from statistical mechanics principles. Our docking methodology has been tested on the Peptidb database and compared with other protein-peptide docking methods. Systematic analysis shows significantly improved results compared to the performances of the existing methods. Our method is computationally efficient and suitable for large-scale applications. Nsf CAREER Award 0953839 (XZ) NIH R01GM109980 (XZ).

  12. Antimicrobial Peptides from Marine Proteobacteria

    PubMed Central

    Desriac, Florie; Jégou, Camille; Balnois, Eric; Brillet, Benjamin; Le Chevalier, Patrick; Fleury, Yannick

    2013-01-01

    After years of inadequate use and the emergence of multidrug resistant (MDR) strains, the efficiency of “classical” antibiotics has decreased significantly. New drugs to fight MDR strains are urgently needed. Bacteria hold much promise as a source of unusual bioactive metabolites. However, the potential of marine bacteria, except for Actinomycetes and Cyanobacteria, has been largely underexplored. In the past two decades, the structures of several antimicrobial compounds have been elucidated in marine Proteobacteria. Of these compounds, polyketides (PKs), synthesised by condensation of malonyl-coenzyme A and/or acetyl-coenzyme A, and non-ribosomal peptides (NRPs), obtained through the linkage of (unusual) amino acids, have recently generated particular interest. NRPs are good examples of naturally modified peptides. Here, we review and compile the data on the antimicrobial peptides isolated from marine Proteobacteria, especially NRPs. PMID:24084784

  13. Reducible chimeric polypeptide consisting of octa-d-arginine and tetra-l-histidine peptides as an efficient gene delivery vector

    PubMed Central

    Wang, Xiaoyu; Tai, Zongguang; Tian, Jing; Zhang, Wei; Yao, Chong; Zhang, Lijuan; Gao, Yuan; Zhu, Quangang; Gao, Jing; Gao, Shen

    2015-01-01

    Cationic oligopeptide as a nonviral gene delivery vector has aroused much research interest recently, but its further application is limited by its low transfection efficiency. In the present study, we have created a high-efficiency gene vector by using octa-d-arginine and tetra-l-histidine to form a disulfide cross-linked chimeric polypeptide and used this vector to deliver the therapeutic gene tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL) to see whether the gene could be transferred and could exert antitumor effects in vitro and in vivo. The result showed that the newly designed vector was able to condense DNA into nanosized polyplexes effectively, thus facilitating its transmembrane transport, promoting its endosomal escape, and finally enabling degradation within the cell. Our study has demonstrated that this chimeric polypeptide is an effective gene carrier in cancer therapy. PMID:26229469

  14. Salt-resistant short antimicrobial peptides.

    PubMed

    Mohanram, Harini; Bhattacharjya, Surajit

    2016-05-01

    Antimicrobial peptides (AMPs) are promising leads for the development of antibiotics against drug resistant bacterial pathogens. However, in vivo applications of AMPs remain obscure due to salt and serum mediated inactivation. The high cost of chemical synthesis of AMPs also impedes potential clinical application. Consequently, short AMPs resistant toward salt and serum inactivation are desirable for the development of peptide antibiotics. In this work, we designed a 12-residue amphipathic helical peptide RR12 (R-R-L-I-R-L-I-L-R-L-L-R-amide) and two Trp containing analogs of RR12 namely RR12Wpolar (R-R-L-I-W-L-I-L-R-L-L-R-amide), and RR12Whydro (R-R-L-I-R-L-W-L-R-L-L-R-amide). Designed peptides demonstrated potent antibacterial activity; MIC ranging from 2 to 8 μM, in the presence of sodium chloride (150 mM and 300 mM). Antibacterial activity of these peptides was also detected in the presence of human serum. Designed peptides, in particular RR12 and RR12Whydro, were only poorly hemolytic. As a mode of action; these peptides demonstrated efficient permeabilization of bacterial cell membrane and lysis of cell structure. We further investigated interactions of the designed peptides with lipopolysaccharide (LPS), the major component of the outer membrane permeability barrier of Gram-negative bacteria. Designed peptides adopted helical conformations in complex with LPS. Binding of peptides with LPS has yielded dissociation the aggregated structures of LPS. Collectively, these designed peptides hold ability to be developed for salt-resistant antimicrobial compounds. Most importantly, current work provides insights for designing salt-resistant antimicrobial peptides. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 345-356, 2016. PMID:26849911

  15. Production of recombinant peptides as fusions with SUMO.

    PubMed

    Satakarni, Makkapati; Curtis, Robin

    2011-08-01

    Recombinant production of non-native peptides requires using protein fusion technology to prevent peptide degradation by host-cell proteases. In this work, we have used SUMO protein as a fusion partner for the production of difficult-to-express, antimicrobial, self-assembling and amyloidogenic peptides using Escherichia coli. SUMO-peptide fusions were expressed as intracellular products by utilizing pET based expression vectors constructed by Life Sensors Inc., USA. Histidine tagged SUMO-peptide fusions were purified using Ni-NTA affinity chromatography. Complete (100%) cleavage of the SUMO-peptide fusion was achieved using SUMO protease-1. Our findings demonstrate that SUMO fusion technology is a promising alternative for production of peptides in E. coli. The key advantage of this technology is that the enzymatic activity of SUMO protease-1 is specific and efficient leading to inexpensive costs for cleaving the peptide fusion when compared with other fusion systems. PMID:21586326

  16. A Cell-Penetrating Peptide with a Guanidinylethyl Amine Structure Directed to Gene Delivery

    PubMed Central

    Oba, Makoto; Kato, Takuma; Furukawa, Kaori; Tanaka, Masakazu

    2016-01-01

    A peptide composed of lysine with a guanidinylethyl (GEt) amine structure in the side chain [Lys(GEt)] was developed as a cell-penetrating peptide directed to plasmid DNA (pDNA) delivery. The GEt amine adopted a diprotonated form at neutral pH, which may have led to the more efficient cellular uptake of a Lys(GEt)-peptide than an arginine-peptide at a low concentration. Lys(GEt)-peptide/pDNA complexes showed the highest transfection efficiency due to efficient endosomal escape without any cytotoxicity. Lys(GEt)-peptide may be a promising candidate as a gene delivery carrier. PMID:26814673

  17. A Cell-Penetrating Peptide with a Guanidinylethyl Amine Structure Directed to Gene Delivery

    NASA Astrophysics Data System (ADS)

    Oba, Makoto; Kato, Takuma; Furukawa, Kaori; Tanaka, Masakazu

    2016-01-01

    A peptide composed of lysine with a guanidinylethyl (GEt) amine structure in the side chain [Lys(GEt)] was developed as a cell-penetrating peptide directed to plasmid DNA (pDNA) delivery. The GEt amine adopted a diprotonated form at neutral pH, which may have led to the more efficient cellular uptake of a Lys(GEt)-peptide than an arginine-peptide at a low concentration. Lys(GEt)-peptide/pDNA complexes showed the highest transfection efficiency due to efficient endosomal escape without any cytotoxicity. Lys(GEt)-peptide may be a promising candidate as a gene delivery carrier.

  18. Engineered Adhesion Peptides for Improved Silicon Adsorption.

    PubMed

    Ramakrishnan, Sathish Kumar; Jebors, Said; Martin, Marta; Cloitre, Thierry; Agarwal, Vivechana; Mehdi, Ahmad; Martinez, Jean; Subra, Gilles; Gergely, Csilla

    2015-11-01

    Engineering peptides that present selective recognition and high affinity for a material is a major challenge for assembly-driven elaboration of complex systems with wide applications in the field of biomaterials, hard-tissue regeneration, and functional materials for therapeutics. Peptide-material interactions are of vital importance in natural processes but less exploited for the design of novel systems for practical applications because of our poor understanding of mechanisms underlying these interactions. Here, we present an approach based on the synthesis of several truncated peptides issued from a silicon-specific peptide recovered via phage display technology. We use the photonic response provided by porous silicon microcavities to evaluate the binding efficiency of 14 different peptide derivatives. We identify and engineer a short peptide sequence (SLVSHMQT), revealing the highest affinity for p(+)-Si. The molecular recognition behavior of the obtained peptide fragment can be revealed through mutations allowing identification of the preferential affinity of certain amino acids toward silicon. These results constitute an advance in both the engineering of peptides that reveal recognition properties for silicon and the understanding of biomolecule-material interactions. PMID:26440047

  19. Brain natriutetic peptide test

    MedlinePlus

    ... medlineplus.gov/ency/article/007509.htm Brain natriuretic peptide test To use the sharing features on this page, please enable JavaScript. Brain natriuretic peptide (BNP) test is a blood test that measures ...

  20. Vasoactive intestinal peptide test

    MedlinePlus

    ... medlineplus.gov/ency/article/003508.htm Vasoactive intestinal peptide test To use the sharing features on this page, please enable JavaScript. Vasoactive intestinal peptide (VIP) is a test that measures the amount ...

  1. [SYNTHETIC PEPTIDE VACCINES].

    PubMed

    Sergeyev, O V; Barinsky, I F

    2016-01-01

    An update on the development and trials of synthetic peptide vaccines is reviewed. The review considers the successful examples of specific protection as a result of immunization with synthetic peptides using various protocols. The importance of conformation for the immunogenicity of the peptide is pointed out. An alternative strategy of the protection of the organism against the infection using synthetic peptides is suggested. PMID:27145593

  2. Antimicrobial Peptides in 2014

    PubMed Central

    Wang, Guangshun; Mishra, Biswajit; Lau, Kyle; Lushnikova, Tamara; Golla, Radha; Wang, Xiuqing

    2015-01-01

    This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms. PMID:25806720

  3. PH dependent adhesive peptides

    DOEpatents

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  4. Antimicrobial peptides in 2014.

    PubMed

    Wang, Guangshun; Mishra, Biswajit; Lau, Kyle; Lushnikova, Tamara; Golla, Radha; Wang, Xiuqing

    2015-01-01

    This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms. PMID:25806720

  5. A statistical approach to determining responses to individual peptides from pooled-peptide ELISpot data.

    PubMed

    Ström, Peter; Støer, Nathalie; Borthwick, Nicola; Dong, Tao; Hanke, Tomáš; Reilly, Marie

    2016-08-01

    To investigate in detail the effect of infection or vaccination on the human immune system, ELISpot assays are used to simultaneously test the immune response to a large number of peptides of interest. Scientists commonly use "peptide pools", where, instead of an individual peptide, a test well contains a group of peptides. Since the response from a well may be due to any or many of the peptides in the pool, pooled assays usually need to be followed by confirmatory assays of a number of individual peptides. We present a statistical method that enables estimation of individual peptide responses from pool responses using the Expectation Maximization (EM) algorithm for "incomplete data". We demonstrate the accuracy and precision of these estimates in simulation studies of ELISpot plates with 90 pools of 6 or 7 peptides arranged in three dimensions and three Mock wells for the estimation of background. In analysis of real pooled data from 6 subjects in a HIV-1 vaccine trial, where 199 peptides were arranged in 80 pools if size 9 or 10, our estimates were in very good agreement with the results from individual-peptide confirmatory assays. Compared to the classical approach, we could identify almost all the same peptides with high or moderate response, with less than half the number of confirmatory tests. Our method facilitates efficient use of the information available in pooled ELISpot data to avoid or reduce the need for confirmatory testing. We provide an easy-to-use free online application for implementing the method, where on uploading two spreadsheets with the pool design and pool responses, the user obtains the estimates of the individual peptide responses. PMID:27196788

  6. Identification of short peptide sequences in complex milk protein hydrolysates.

    PubMed

    O'Keeffe, Martina B; FitzGerald, Richard J

    2015-10-01

    Numerous low molecular mass bioactive peptides (BAPs) can be generated during the hydrolysis of bovine milk proteins. Low molecular mass BAP sequences are less likely to be broken down by digestive enzymes and are thus more likely to be active in vivo. However, the identification of short peptides remains a challenge during mass spectrometry (MS) analysis due to issues with the transfer and over-fragmentation of low molecular mass ions. A method is described herein using time-of-flight ESI-MS/MS to effectively fragment and identify short peptides. This includes (a) short synthetic peptides, (b) short peptides within a defined hydrolysate sample, i.e. a prolyl endoproteinase hydrolysate of β-casein and (c) short peptides within a complex hydrolysate, i.e. a Corolase PP digest of sodium caseinate. The methodology may find widespread utilisation in the efficient identification of low molecular mass peptide sequences in food protein hydrolysates. PMID:25872436

  7. Cyclic Peptides Made by Linking Synthetic and Genetically Encoded Fragments.

    PubMed

    Palei, Shubhendu; Mootz, Henning D

    2016-03-01

    Cyclic peptides can be highly valuable as bioactive molecules, both for biomedical applications and in basic research. We introduce a new fragment-based approach to access cyclic peptide structures in which one fragment is of synthetic origin and the other is genetically encoded. The synthetic peptide, which can contain one or more non-proteinogenic building blocks, is coupled to the recombinantly expressed peptide through two bonds, one formed by protein trans-splicing with a split intein and the other by oxime ligation. Semisynthetic macrocycles were obtained with high efficiency for various sequences and ring sizes; they can be prepared in quantities sufficient for initial bioactivity tests. We also prepared lipidated and d-amino-acid-containing peptides that were inspired by the peptide antibiotic daptomycin. Such structures are not accessible by other methods that harness the power of simple genetic diversification in the DNA-encoded part of the peptide. PMID:26691013

  8. Recent advances in peptide-based subunit nanovaccines.

    PubMed

    Skwarczynski, Mariusz; Toth, Istvan

    2014-12-01

    Vaccination is the most efficient way to protect humans against pathogens. Peptide-based vaccines offer several advantages over classical vaccines, which utilized whole organisms or proteins. However, peptides alone are not immunogenic and need a delivery system that can boost their recognition by the immune system. In recent years, nanotechnology-based approaches have become one of the most promising strategies in peptide vaccine delivery. This review summarizes knowledge on peptide vaccines and nanotechnology-based approaches for their delivery. The recently reported nano-sized delivery platforms for peptide antigens are reviewed, including nanoparticles composed of polymers, peptides, lipids, inorganic materials and nanotubes. The future prospects for peptide-based nanovaccines are discussed. PMID:25529569

  9. Preparation of Peptide p-Nitroanilides using an Aryl Hydrazine Solid Support

    SciTech Connect

    Kwon, Y; Welsh, K; Mitchell, A R; Camarero, J A

    2004-08-05

    Peptide p-nitroanilides are useful compounds for studying protease activity, however the poor nucleophilicity of p-nitroaniline makes their preparation difficult. We describe a new efficient approach for the Fmoc-based synthesis of peptide p-nitroanilides using an aryl hydrazine resin. Mild oxidation of the peptide hydrazide resin yields a highly reactive acyl diazene, which efficiently reacts with weak nucleophiles. We have prepared several peptide p-nitroanilides, including substrates for the Lethal Factor protease from B. anthracis.

  10. A peptide & peptide nucleic acid synthesis technology for transporter molecules and theranostics--the SPPS.

    PubMed

    Pipkorn, Ruediger; Braun, Klaus; Wiessler, Manfred; Waldeck, Waldemar; Schrenk, Hans-Hermann; Koch, Mario; Semmler, Wolfhard; Komljenovic, Dorde

    2014-01-01

    Advances in imaging diagnostics using magnetic resonance tomography (MRT), positron emission tomography (PET) and fluorescence imaging including near infrared (NIR) imaging methods are facilitated by constant improvement of the concepts of peptide synthesis. Feasible patient-specific theranostic platforms in the personalized medicine are particularly dependent on efficient and clinically applicable peptide constructs. The role of peptides in the interrelations between the structure and function of proteins is widely investigated, especially by using computer-assisted methods. Nowadays the solid phase synthesis (SPPS) chemistry emerges as a key technology and is considered as a promising methodology to design peptides for the investigation of molecular pharmacological processes at the transcriptional level. SPPS syntheses could be carried out in core facilities producing peptides for large-scale scientific implementations as presented here. PMID:24843319

  11. A Peptide & Peptide Nucleic Acid Synthesis Technology for Transporter Molecules and Theranostics - The SPPS

    PubMed Central

    Pipkorn, Ruediger; Braun, Klaus; Wiessler, Manfred; Waldeck, Waldemar; Schrenk, Hans-Hermann; Koch, Mario; Semmler, Wolfhard; Komljenovic, Dorde

    2014-01-01

    Advances in imaging diagnostics using magnetic resonance tomography (MRT), positron emission tomography (PET) and fluorescence imaging including near infrared (NIR) imaging methods are facilitated by constant improvement of the concepts of peptide synthesis. Feasible patient-specific theranostic platforms in the personalized medicine are particularly dependent on efficient and clinically applicable peptide constructs. The role of peptides in the interrelations between the structure and function of proteins is widely investigated, especially by using computer-assisted methods. Nowadays the solid phase synthesis (SPPS) chemistry emerges as a key technology and is considered as a promising methodology to design peptides for the investigation of molecular pharmacological processes at the transcriptional level. SPPS syntheses could be carried out in core facilities producing peptides for large-scale scientific implementations as presented here. PMID:24843319

  12. Multiplex De Novo Sequencing of Peptide Antibiotics

    NASA Astrophysics Data System (ADS)

    Mohimani, Hosein; Liu, Wei-Ting; Yang, Yu-Liang; Gaudêncio, Susana P.; Fenical, William; Dorrestein, Pieter C.; Pevzner, Pavel A.

    Proliferation of drug-resistant diseases raises the challenge of searching for new, more efficient antibiotics. Currently, some of the most effective antibiotics (i.e., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. The isolation and sequencing of cyclic peptide antibiotics, unlike the same activity with linear peptides, is time-consuming and error-prone. The dominant technique for sequencing cyclic peptides is NMR-based and requires large amounts (milligrams) of purified materials that, for most compounds, are not possible to obtain. Given these facts, there is a need for new tools to sequence cyclic NRPs using picograms of material. Since nearly all cyclic NRPs are produced along with related analogs, we develop a mass spectrometry approach for sequencing all related peptides at once (in contrast to the existing approach that analyzes individual peptides). Our results suggest that instead of attempting to isolate and NMR-sequence the most abundant compound, one should acquire spectra of many related compounds and sequence all of them simultaneously using tandem mass spectrometry. We illustrate applications of this approach by sequencing new variants of cyclic peptide antibiotics from Bacillus brevis, as well as sequencing a previously unknown familiy of cyclic NRPs produced by marine bacteria.

  13. Peptide separation in hydrophilic interaction capillary electrochromatography.

    PubMed

    Fu, Hongjing; Jin, Wenhai; Xiao, Hua; Huang, Haiwei; Zou, Hanfa

    2003-06-01

    Separation of small peptides by hydrophilic interaction capillary electrochromatography (HI-CEC) has been investigated. The negative surface charge of a hydrophilic, strong-cation-exchange stationary phase (PolySULFOETHYL A) provided a substantial cathodic electroosmotic flow (EOF). The influence of acetonitrile content, ionic strength, mobile phase pH as well as applied voltage on the migration of the peptides was studied. Possible retention mechanisms of the peptides in HI-CEC were discussed. It was found that hydrophilic interaction between the solutes and the stationary phase played a major role in this system, especially when mobile phases with high acetonitrile content were used. However, an ion-exchange mechanism and electrophoretic mobility also affect the migration of the peptides in HI-CEC. Elution order and selectivity was proved to be different in HI-CEC and capillary zone electrophoresis (CZE), thus revealing the potential of HI-CEC as a complementary technique to CZE for the separation of peptides. Efficiency and selectivity of HI-CEC for the separation of peptides were demonstrated by baseline separating nine peptides in 6 min. PMID:12858379

  14. [Plant signaling peptides. Cysteine-rich peptides].

    PubMed

    Ostrowski, Maciej; Kowalczyk, Stanisław

    2015-01-01

    Recent bioinformatic and genetic analyses of several model plant genomes have revealed the existence of a highly abundant group of signaling peptides that are defined as cysteine-rich peptides (CRPs). CRPs are usually in size between 50 and 90 amino acid residues, they are positively charged, and they contain 4-16 cysteine residues that are important for the correct conformational folding. Despite the structural differences among CRP classes, members from each class have striking similarities in their molecular properties and function. The present review presents the recent progress in research on signaling peptides from several families including: EPF/EPFL, SP11/SCR, PrsS, RALF, LURE, and some other peptides belonging to CRP group. There is convincing evidence indicating multiple roles for these CRPs as signaling molecules during the plant life cycle, ranging from stomata development and patterning, self-incompatibility, pollen tube growth and guidance, reproductive processes, and nodule formation. PMID:26281357

  15. Cell Penetrating Peptides and Cationic Antibacterial Peptides

    PubMed Central

    Rodriguez Plaza, Jonathan G.; Morales-Nava, Rosmarbel; Diener, Christian; Schreiber, Gabriele; Gonzalez, Zyanya D.; Lara Ortiz, Maria Teresa; Ortega Blake, Ivan; Pantoja, Omar; Volkmer, Rudolf; Klipp, Edda; Herrmann, Andreas; Del Rio, Gabriel

    2014-01-01

    Cell penetrating peptides (CPP) and cationic antibacterial peptides (CAP) have similar physicochemical properties and yet it is not understood how such similar peptides display different activities. To address this question, we used Iztli peptide 1 (IP-1) because it has both CPP and CAP activities. Combining experimental and computational modeling of the internalization of IP-1, we show it is not internalized by receptor-mediated endocytosis, yet it permeates into many different cell types, including fungi and human cells. We also show that IP-1 makes pores in the presence of high electrical potential at the membrane, such as those found in bacteria and mitochondria. These results provide the basis to understand the functional redundancy of CPPs and CAPs. PMID:24706763

  16. Lipid-based nanoformulations for peptide delivery.

    PubMed

    Matougui, Nada; Boge, Lukas; Groo, Anne-Claire; Umerska, Anita; Ringstad, Lovisa; Bysell, Helena; Saulnier, Patrick

    2016-04-11

    Nanoformulations have attracted a lot of attention because of their size-dependent properties. Among the array of nanoformulations, lipid nanoformulations (LNFs) have evoked increasing interest because of the advantages of their high degree of biocompatibility and versatility. The performance of lipid nanoformulations is greatly influenced by their composition and structure. Therapeutic peptides represent a growing share of the pharmaceutical market. However, the main challenge for their development into commercial products is their inherent physicochemical and biological instability. Important peptides such as insulin, calcitonin and cyclosporin A have been incorporated into LNFs. The association or encapsulation of peptides within lipid-based carriers has shown to protect the labile molecules against enzymatic degradation. This review describes strategies used for the formulation of peptides and some methods used for the assessment of association efficiency. The advantages and drawbacks of such carriers are also described. PMID:26899976

  17. Plant peptide hormone signalling.

    PubMed

    Motomitsu, Ayane; Sawa, Shinichiro; Ishida, Takashi

    2015-01-01

    The ligand-receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone-receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions. PMID:26374891

  18. Matrix-assisted laser desorption-ionization mass spectrometry peptide mass fingerprinting for proteome analysis: identification efficiency after on-blot or in-gel digestion with and without desalting procedures.

    PubMed

    Lamer, S; Jungblut, P R

    2001-03-10

    In theory, peptide mass fingerprinting by matrix assisted laser desorption-ionization mass spectrometry (MALDI-MS) has the potential to identify all of the proteins detected by silver staining on gels. In practice, if the genome of the organism investigated is completely sequenced, using current techniques, all proteins stained by Coomassie Brilliant Blue can be identified. This loss of identification sensitivity of ten to hundred-fold is caused by loss of peptides by surface contacts. Therefore, we performed digestion and transfer of peptides in the lower microl range and reduced the number of steps. The peptide mix obtained from in-gel or on-blot digestion was analyzed directly after digestion or after concentration on POROS R2 beads. Eight protein spots of a 2-DE gel from Mycobacterium bovis BCG were identified using these four preparation procedures for MALDI-MS. Overall, on-blot digestion was as effective as in-gel digestion. Whereas higher signal intensities resulted after concentration, hydrophilic peptides are better detected by direct measurement of the peptide mix without POROS R2 concentration. PMID:11270870

  19. Electron Capture Dissociation of Trivalent Metal Ion-Peptide Complexes

    NASA Astrophysics Data System (ADS)

    Flick, Tawnya G.; Donald, William A.; Williams, Evan R.

    2013-02-01

    With electrospray ionization from aqueous solutions, trivalent metal ions readily adduct to small peptides resulting in formation of predominantly (peptide + MT - H)2+, where MT = La, Tm, Lu, Sm, Ho, Yb, Pm, Tb, or Eu, for peptides with molecular weights below ~1000 Da, and predominantly (peptide + MT)3+ for larger peptides. ECD of (peptide + MT - H)2+ results in extensive fragmentation from which nearly complete sequence information can be obtained, even for peptides for which only singly protonated ions are formed in the absence of the metal ions. ECD of these doubly charged complexes containing MT results in significantly higher electron capture efficiency and sequence coverage than peptide-divalent metal ion complexes that have the same net charge. Formation of salt-bridge structures in which the metal ion coordinates to a carboxylate group are favored even for (peptide + MT)3+. ECD of these latter complexes for large peptides results in electron capture by the protonation site located remotely from the metal ion and predominantly c/ z fragments for all metals, except Eu3+, which undergoes a one electron reduction and only loss of small neutral molecules and b/ y fragments are formed. These results indicate that solvation of the metal ion in these complexes is extensive, which results in the electrochemical properties of these metal ions being similar in both the peptide environment and in bulk water.

  20. Stereoselective terminal functionalization of small peptides for catalytic asymmetric synthesis of unnatural peptides

    PubMed Central

    Maruoka, Keiji; Tayama, Eiji; Ooi, Takashi

    2004-01-01

    The asymmetric phase-transfer catalytic alkylation of peptides has been achieved by the use of designed C2-symmetric chiral quaternary ammonium bromide 1 as catalyst. Excellent stereoselectivities were uniformly observed in the alkylation with a variety of alkyl halides and the efficiency of the transmission of stereochemical information was not affected by the side-chain structure of the preexisting amino acid residues. This method also enables an asymmetric construction of noncoded α,α-dialkyl-α-amino acid residues at the peptide terminal. Since this chirality can be efficiently transferred to the adjacent amino acid moiety, our approach provides a general procedure not only for the highly stereoselective terminal functionalization of peptides but also for the sequential asymmetric construction of unnatural oligopeptides, which should play a vital role in the peptide-based drug discovery process. PMID:15079083

  1. Synthesis and studies on cell-penetrating peptides.

    PubMed

    Bertrand, Jean-Remi; Malvy, Claude; Auguste, Tiphanie; Tóth, Gábor K; Kiss-Ivánkovits, Orsolya; Illyés, Eszter; Hollósi, Miklós; Bottka, Sándor; Laczkó, Ilona

    2009-07-01

    The ability of different synthetic cell penetrating peptides, as Antennapedia (wild and Phe(6) mutated penetratins), flock house virus, and integrin peptides to form complexes with a 25mer antisense oligonucleotide was compared and their conformation was determined by circular dichroism spectroscopy. The efficiency for oligonucleotide delivery into cells was measured using peptides labeled with a coumarin derivative showing blue fluorescence and the fluorescein-labeled antisense oligonucleotide showing green fluorescence. Fluorescence due to the excitation energy transfer confirmed the interaction of the antisense oligonucleotide and cell-penetrating peptides. The most efficient oligonucleotide delivery was found for penetratins. Comparison of the two types of penetratins shows that the wild-type penetratin proved to be more efficient than mutated penetratin. The paper also emphasizes that the attachment of a fluorescent label may have an effect on the conformation and flexibility of cell-penetrating peptides that must be taken into consideration when evaluating biological experiments. PMID:19552459

  2. Selective enrichment and desalting of hydrophilic peptides using graphene oxide.

    PubMed

    Jiang, Miao; Qi, Linyu; Liu, Peiru; Wang, Zijun; Duan, Zhigui; Wang, Ying; Liu, Zhonghua; Chen, Ping

    2016-08-01

    The wide variety and low abundance of peptides in tissue brought great difficulties to the separation and identification of peptides, which is not in favor of the development of peptidomics. RP-HPLC, which could purify small molecules based on their hydrophobicity, has been widely used in the separation and enrichment of peptide due to its fast, good reproducibility and high resolution. However, RP-HPLC requires the instrument and expensive C18 column and its sample capacity is also limited. Recently, graphene oxide has been applied to the adsorption of amino acids. However, the enrichment efficiency and selectivity of graphene oxide for peptides remain unclear. In this study, the adsorption efficiency and selectivity of graphene oxide and RP-C18 matrix were compared on trypsinized α-actin and also on tissue extracts from pituitary gland and hippocampus. For α-actin, there exhibit similar elution peaks for total trypsinized products and those adsorpted by GO and C18 matrix. But peptides adsorbed by GO showed the higher hydrophilic peaks than which adsorbed by C18 matrix. The resulted RP-HPLC profile showed that most of peptides enriched by graphene oxide were eluted at low concentration of organic solvent, while peptides adsorbed by RP-C18 matrix were mostly eluted at relatively high concentration. Moreover, mass spectrometry analysis suggested that, in pituitary sample, there were 495 peptides enriched by graphene oxide, 447 peptides enriched by RP-C18 matrix while in hippocampus sample 333 and 243 peptides respectively. The GRAVY value analysis suggested that the graphene oxide has a stronger adsorption for highly hydrophilic peptides compared to the RP-C18 matrix. Furthermore, the combination of these two methods could notably increase the number of identification peptides but also the number of predicted protein precursors. Our study provided a new thought to the role of graphene oxide during the enrichment of peptides from tissue which should be useful for

  3. Antihypertensive peptides from curd

    PubMed Central

    Dabarera, Melani Chathurika; Athiththan, Lohini V.; Perera, Rasika P.

    2015-01-01

    Introduction: Curd (Dadhi) peptides reduce hypertension by inhibiting angiotensin converting enzyme (ACE) and serum cholesterol. Peptides vary with bacterial species and milk type used during fermentation. Aim: To isolate and assay the antihypertensive peptides, before and after digestion, in two commercially available curd brands in Sri Lanka. Materials and Methods: Whey (Dadhi Mastu) separated by high-speed centrifugation was isolated using reverse-phase-high- performance liquid chromatography (HPLC). Eluted fractions were analyzed for ACE inhibitory activity using modified Cushman and Cheung method. Curd samples were subjected to enzymatic digestion with pepsin, trypsin, and carboxypeptidase-A at their optimum pH and temperature. Peptides isolated using reverse-phase-HPLC was assayed for ACE inhibitory activity. Results: Whey peptides of both brands gave similar patterns (seven major and five minor peaks) in HPLC elution profile. Smaller peptides concentration was higher in brand 1 and penta-octapeptides in brand 2. Pentapeptide had the highest ACE inhibitory activity (brand 2–90% and brand 1–73%). After digestion, di and tri peptides with similar inhibitory patterns were obtained in both which were higher than before digestion. Thirteen fractions were obtained, where nine fractions showed more than 70% inhibition in both brands with 96% ACE inhibition for a di-peptide. Conclusion: Curd has ACE inhibitory peptides and activity increases after digestion. PMID:27011726

  4. Antimicrobial Peptides in Reptiles

    PubMed Central

    van Hoek, Monique L.

    2014-01-01

    Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. PMID:24918867

  5. Polycyclic peptide therapeutics.

    PubMed

    Baeriswyl, Vanessa; Heinis, Christian

    2013-03-01

    Owing to their excellent binding properties, high stability, and low off-target toxicity, polycyclic peptides are an attractive molecule format for the development of therapeutics. Currently, only a handful of polycyclic peptides are used in the clinic; examples include the antibiotic vancomycin, the anticancer drugs actinomycin D and romidepsin, and the analgesic agent ziconotide. All clinically used polycyclic peptide drugs are derived from natural sources, such as soil bacteria in the case of vancomycin, actinomycin D and romidepsin, or the venom of a fish-hunting coil snail in the case of ziconotide. Unfortunately, nature provides peptide macrocyclic ligands for only a small fraction of therapeutic targets. For the generation of ligands of targets of choice, researchers have inserted artificial binding sites into natural polycyclic peptide scaffolds, such as cystine knot proteins, using rational design or directed evolution approaches. More recently, large combinatorial libraries of genetically encoded bicyclic peptides have been generated de novo and screened by phage display. In this Minireview, the properties of existing polycyclic peptide drugs are discussed and related to their interesting molecular architectures. Furthermore, technologies that allow the development of unnatural polycyclic peptide ligands are discussed. Recent application of these technologies has generated promising results, suggesting that polycyclic peptide therapeutics could potentially be developed for a broad range of diseases. PMID:23355488

  6. Peptide folding simulations.

    PubMed

    Gnanakaran, S; Nymeyer, Hugh; Portman, John; Sanbonmatsu, Kevin Y; García, Angel E

    2003-04-01

    Developments in the design of small peptides that mimic proteins in complexity, recent advances in nanosecond time-resolved spectroscopy methods to study peptides and the development of modern, highly parallel simulation algorithms have come together to give us a detailed picture of peptide folding dynamics. Two newly implemented simulation techniques, parallel replica dynamics and replica exchange molecular dynamics, can now describe directly from simulations the kinetics and thermodynamics of peptide formation, respectively. Given these developments, the simulation community now has the tools to verify and validate simulation protocols and models (forcefields). PMID:12727509

  7. Insulin C-peptide test

    MedlinePlus

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin produced by the body and insulin injected ...

  8. Kinins and peptide receptors.

    PubMed

    Regoli, Domenico; Gobeil, Fernand

    2016-04-01

    This paper is divided into two sections: the first contains the essential elements of the opening lecture presented by Pr. Regoli to the 2015 International Kinin Symposium in S. Paulo, Brazil on June 28th and the second is the celebration of Dr. Regoli's 60 years of research on vasoactive peptides. The cardiovascular homeostasis derives from a balance of two systems, the renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS). The biologically active effector entity of RAS is angiotensin receptor-1 (AT-1R), and that of KKS is bradykinin B2 receptor (B2R). The first mediates vasoconstriction, the second is the most potent and efficient vasodilator. Thanks to its complex and multi-functional mechanism of action, involving nitric oxide (NO), prostacyclin and endothelial hyperpolarizing factor (EDHF). B2R is instrumental for the supply of blood, oxygen and nutrition to tissues. KKS is present on the vascular endothelium and functions as an autacoid playing major roles in cardiovascular diseases (CVDs) and diabetes. KKS exerts a paramount role in the prevention of thrombosis and atherosclerosis. Such knowledge emphasizes the already prominent value of the ACE-inhibitors (ACEIs) for the treatment of CVDs and diabetes. Indeed, the ACEIs, thanks to their double action (block of the RAS and potentiation of the KKS) are the ideal agents for a rational treatment of these diseases. PMID:26408609

  9. Porcine parvovirus removal using trimer and biased hexamer peptides

    PubMed Central

    Heldt, Caryn L.; Gurgel, Patrick V.; Jaykus, Lee-Ann; Carbonell, Ruben G.

    2014-01-01

    Assuring the microbiological safety of biological therapeutics remains an important concern. Our group has recently reported small trimeric peptides that have the ability to bind and remove a model non-enveloped virus, porcine parvovirus (PPV), from complex solutions containing human blood plasma. In an effort to improve the removal efficiency of these small peptides, we created a biased library of hexamer peptides that contain two previously reported trimeric peptides designated WRW and KYY. This library was screened and several hexamer peptides were discovered that also removed PPV from solution, but there was no marked improvement in removal efficiency when compared to the trimeric peptides. Based on simulated docking experiments, it appeared that hexamer peptide binding is dictated more by secondary structure, whereas the binding of trimeric peptides is dominated by charge and hydrophobicity. This study demonstrates that trimeric and hexameric peptides may have different, matrix-specific roles to play in virus removal applications. In general, the hexamer ligand may perform better for binding of specific viruses, whereas the trimer ligand may have more broadly reactive virus-binding properties. PMID:21751387

  10. Biomathematical Description of Synthetic Peptide Libraries

    PubMed Central

    Trepel, Martin

    2015-01-01

    Libraries of randomised peptides displayed on phages or viral particles are essential tools in a wide spectrum of applications. However, there is only limited understanding of a library's fundamental dynamics and the influences of encoding schemes and sizes on their quality. Numeric properties of libraries, such as the expected number of different peptides and the library's coverage, have long been in use as measures of a library's quality. Here, we present a graphical framework of these measures together with a library's relative efficiency to help to describe libraries in enough detail for researchers to plan new experiments in a more informed manner. In particular, these values allow us to answer-in a probabilistic fashion-the question of whether a specific library does indeed contain one of the "best" possible peptides. The framework is implemented in a web-interface based on two packages, discreteRV and peptider, to the statistical software environment R. We further provide a user-friendly web-interface called PeLiCa (Peptide Library Calculator, http://www.pelica.org), allowing scientists to plan and analyse their peptide libraries. PMID:26042419

  11. Biomathematical description of synthetic peptide libraries.

    PubMed

    Sieber, Timo; Hare, Eric; Hofmann, Heike; Trepel, Martin

    2015-01-01

    Libraries of randomised peptides displayed on phages or viral particles are essential tools in a wide spectrum of applications. However, there is only limited understanding of a library's fundamental dynamics and the influences of encoding schemes and sizes on their quality. Numeric properties of libraries, such as the expected number of different peptides and the library's coverage, have long been in use as measures of a library's quality. Here, we present a graphical framework of these measures together with a library's relative efficiency to help to describe libraries in enough detail for researchers to plan new experiments in a more informed manner. In particular, these values allow us to answer-in a probabilistic fashion-the question of whether a specific library does indeed contain one of the "best" possible peptides. The framework is implemented in a web-interface based on two packages, discreteRV and peptider, to the statistical software environment R. We further provide a user-friendly web-interface called PeLiCa (Peptide Library Calculator, http://www.pelica.org), allowing scientists to plan and analyse their peptide libraries. PMID:26042419

  12. Optimization of reversed-phase chromatography methods for peptide analytics.

    PubMed

    Khalaf, Rushd; Baur, Daniel; Pfister, David

    2015-12-18

    The analytical description and quantification of peptide solutions is an essential part in the quality control of peptide production processes and in peptide mapping techniques. Traditionally, an important tool is analytical reversed phase liquid chromatography. In this work, we develop a model-based tool to find optimal analytical conditions in a clear, efficient and robust manner. The model, based on the Van't Hoff equation, the linear solvent strength correlation, and an analytical solution of the mass balance on a chromatographic column describing peptide retention in gradient conditions is used to optimize the analytical scale separation between components in a peptide mixture. The proposed tool is then applied in the design of analytical reversed phase liquid chromatography methods of five different peptide mixtures. PMID:26620597

  13. Characterization of selective antibacterial peptides by polarity index.

    PubMed

    Polanco, C; Samaniego, J L; Buhse, T; Mosqueira, F G; Negron-Mendoza, A; Ramos-Bernal, S; Castanon-Gonzalez, J A

    2012-01-01

    In the recent decades, antibacterial peptides have occupied a strategic position for pharmaceutical drug applications and became subject of intense research activities since they are used to strengthen the immune system of all living organisms by protecting them from pathogenic bacteria. This work proposes a simple and easy statistical/computational method through a peptide polarity index measure by which an antibacterial peptide subgroup can be efficiently identified, that is, characterized by a high toxicity to bacterial membranes but presents a low toxicity to mammal cells. These peptides also have the feature not to adopt to an alpha-helicoidal structure in aqueous solution. The double-blind test carried out to the whole Antimicrobial Peptide Database (November 2011) showed an accuracy of 90% applying the polarity index method for the identification of such antibacterial peptide groups. PMID:22611416

  14. Characterization of Selective Antibacterial Peptides by Polarity Index

    PubMed Central

    Polanco, C.; Samaniego, J. L.; Buhse, T.; Mosqueira, F. G.; Negron-Mendoza, A.; Ramos-Bernal, S.; Castanon-Gonzalez, J. A.

    2012-01-01

    In the recent decades, antibacterial peptides have occupied a strategic position for pharmaceutical drug applications and became subject of intense research activities since they are used to strengthen the immune system of all living organisms by protecting them from pathogenic bacteria. This work proposes a simple and easy statistical/computational method through a peptide polarity index measure by which an antibacterial peptide subgroup can be efficiently identified, that is, characterized by a high toxicity to bacterial membranes but presents a low toxicity to mammal cells. These peptides also have the feature not to adopt to an alpha-helicoidal structure in aqueous solution. The double-blind test carried out to the whole Antimicrobial Peptide Database (November 2011) showed an accuracy of 90% applying the polarity index method for the identification of such antibacterial peptide groups. PMID:22611416

  15. Bacteriocin Inducer Peptides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel peptides produced by bacteriocin-producing bacteria stimulate the production of bacteriocins in vitro. The producer bacteria are cultured in the presence of a novel inducer bacteria and a peptide having a carboxy terminal sequence of VKGLT in order to achieve an increase in bacteriocin produc...

  16. Improving short antimicrobial peptides despite elusive rules for activity.

    PubMed

    Mikut, Ralf; Ruden, Serge; Reischl, Markus; Breitling, Frank; Volkmer, Rudolf; Hilpert, Kai

    2016-05-01

    Antimicrobial peptides (AMPs) can effectively kill a broad range of life threatening multidrug-resistant bacteria, a serious threat to public health worldwide. However, despite great hopes novel drugs based on AMPs are still rare. To accelerate drug development we studied different approaches to improve the antibacterial activity of short antimicrobial peptides. Short antimicrobial peptides seem to be ideal drug candidates since they can be synthesized quickly and easily, modified and optimized. In addition, manufacturing a short peptide drug will be more cost efficient than long and structured ones. In contrast to longer and structured peptides short AMPs seem hard to design and predict. Here, we designed, synthesized and screened five different peptide libraries, each consisting of 600 9-mer peptides, against Pseudomonas aeruginosa. Each library is presenting a different approach to investigate effectiveness of an optimization strategy. The data for the 3000 peptides were analyzed using models based on fuzzy logic bioinformatics and plausible descriptors. The rate of active or superior active peptides was improved from 31.0% in a semi-random library from a previous study to 97.8% in the best new designed library. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26687790

  17. Antimicrobial Peptides from Fish

    PubMed Central

    Masso-Silva, Jorge A.; Diamond, Gill

    2014-01-01

    Antimicrobial peptides (AMPs) are found widely distributed through Nature, and participate in the innate host defense of each species. Fish are a great source of these peptides, as they express all of the major classes of AMPs, including defensins, cathelicidins, hepcidins, histone-derived peptides, and a fish-specific class of the cecropin family, called piscidins. As with other species, the fish peptides exhibit broad-spectrum antimicrobial activity, killing both fish and human pathogens. They are also immunomodulatory, and their genes are highly responsive to microbes and innate immuno-stimulatory molecules. Recent research has demonstrated that some of the unique properties of fish peptides, including their ability to act even in very high salt concentrations, make them good potential targets for development as therapeutic antimicrobials. Further, the stimulation of their gene expression by exogenous factors could be useful in preventing pathogenic microbes in aquaculture. PMID:24594555

  18. Preparation and antihypertensive activity of peptides from Porphyra yezoensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research was to develop an antihypertensive peptide, an efficient angiotensin converting enzyme (ACE) inhibitor (ACEI), from Porphyra yezoensis. Seven commercial enzymes were screened and then enzymatic hydrolysis conditions were optimised. The results showed that alcalase was the most effectiv...

  19. Review: Formation of Peptide Radical Ions Through Dissociative Electron Transfer in Ternary Metal-Ligand-Peptide Complexes

    SciTech Connect

    Chu, Ivan K.; Laskin, Julia

    2011-12-31

    The formation and fragmentation of odd-electron ions of peptides and proteins is of interest to applications in biological mass spectrometry. Gas-phase redox chemistry occurring during collision-induced dissociation of ternary metal-ligand-peptide complexes enables the formation of a variety of peptide radicals including the canonical radical cations, M{sup +{sm_bullet}}, radical dications, [M{sup +}H]{sup 2+{sm_bullet}}, radical anions, [M-2H]{sup -{sm_bullet}}. In addition, odd-electron peptide ions with well-defined initial location of the radical site are produced through side chain losses from the radical ions. Subsequent fragmentation of these species provides information on the role of charge and the location of the radical site on the competition between radical-induced and proton-driven fragmentation of odd-electron peptide ions. This account summarizes current understanding of the factors that control the efficiency of the intramolecular electron transfer (ET) in ternary metal-ligand-peptide complexes resulting in formation of odd-electron peptide ions. Specifically, we discuss the effect of the metal center, the ligand and the peptide structure on the competition between the ET, proton transfer (PT), and loss of neutral peptide and neutral peptide fragments from the complex. Fundamental studies of the structures, stabilities, and the energetics and dynamics of fragmentation of such complexes are also important for detailed molecular-level understanding of photosynthesis and respiration in biological systems.

  20. Peptide synthesis on glass substrate using acoustic droplet ejector.

    PubMed

    Youngki Choe; Shih-Jui Chen; Eun Sok Kim

    2014-03-01

    This paper describes the synthesis of a 9-mers-long peptide ladder structure of glycine on a modified glass surface using a nanoliter droplet ejector. To synthesize peptide on a glass substrate, SPOT peptide synthesis protocol was followed with a nozzleless acoustic droplet ejector being used to eject about 300 droplets of preactivated amino acid solution to dispense 60 nL of the solution per mer. The coupling efficiency of each mer was measured with FITC fluorescent tag to be 96%, resulting in net 70% efficiency for the whole 9-mer-long peptide of glycine. Usage of a nanoliter droplet ejector for SPOT peptide synthesis increases the density of protein array on a chip. PMID:24235271

  1. Preparative reversed-phase high-performance liquid chromatography collection efficiency for an antimicrobial peptide on columns of varying diameters (1 mm to 9.4 mm I.D.)

    PubMed Central

    Chen, Yuxin; Mant, Colin T.; Hodges, Robert S.

    2009-01-01

    The present study examines the effect of reversed-phase high-performance liquid chromatography (RP-HPLC) column diameter (1 mm to 9.4 mm I.D.) on the one-step slow gradient preparative purification of a 26-residue synthetic antimicrobial peptide. When taken together, the semi-preparative column (9.4 mm I.D.) provided the highest yields of purified product (an average of 90.7% recovery from hydrophilic and hydrophobic impurities) over a wide range of sample load (0.75–200 mg). Columns with smaller diameters, such as narrowbore columns (150 × 2.1 mm I.D.) and microbore columns (150 × 1.0 mm I.D.), can be employed to purify peptides with reasonable recovery of purified product but the range of the crude peptide that can be applied to the column is limited. In addition, the smaller diameter columns require more extensive fraction analysis to locate the fractions of pure product than the larger diameter column with the same load. Our results show the excellent potential of the one-step slow gradient preparative protocol as a universal method for purification of synthetic peptides. PMID:17156789

  2. Rational design of a series of novel amphipathic cell-penetrating peptides.

    PubMed

    Regberg, Jakob; Srimanee, Artita; Erlandsson, Mikael; Sillard, Rannar; Dobchev, Dimitar A; Karelson, Mati; Langel, Ulo

    2014-04-10

    A series of novel, amphipathic cell-penetrating peptides was developed based on a combination of the model amphipathic peptide sequence and modifications based on the strategies developed for PepFect and NickFect peptides. The aim was to study the role of amphipathicity for peptide uptake and to investigate if the modifications developed for PepFect peptides could be used to improve the uptake of another class of cell-penetrating peptides. The peptides were synthesized by solid phase peptide synthesis and characterized by circular dichroism spectroscopy. Non-covalent peptide-plasmid complexes were formed by co-incubation of the peptides and plasmids in water solution. The complexes were characterized by dynamic light scattering and cellular uptake of the complexes was studied in a luciferase-based plasmid transfection assay. A quantitative structure-activity relationship (QSAR) model of cellular uptake was developed using descriptors including hydrogen bonding, peptide charge and positions of nitrogen atoms. The peptides were found to be non-toxic and could efficiently transfect cells with plasmid DNA. Cellular uptake data was correlated to QSAR predictions and the predicted biological effects obtained from the model correlated well with experimental data. The QSAR model could improve the understanding of structural requirements for cell penetration, or could potentially be used to predict more efficient cell-penetrating peptides. PMID:24463071

  3. Cancer Treatment Using Peptides: Current Therapies and Future Prospects

    PubMed Central

    Thundimadathil, Jyothi

    2012-01-01

    This paper discusses the role of peptides in cancer therapy with special emphasis on peptide drugs which are already approved and those in clinical trials. The potential of peptides in cancer treatment is evident from a variety of different strategies that are available to address the progression of tumor growth and propagation of the disease. Use of peptides that can directly target cancer cells without affecting normal cells (targeted therapy) is evolving as an alternate strategy to conventional chemotherapy. Peptide can be utilized directly as a cytotoxic agent through various mechanisms or can act as a carrier of cytotoxic agents and radioisotopes by specifically targeting cancer cells. Peptide-based hormonal therapy has been extensively studied and utilized for the treatment of breast and prostate cancers. Tremendous amount of clinical data is currently available attesting to the efficiency of peptide-based cancer vaccines. Combination therapy is emerging as an important strategy to achieve synergistic effects in fighting cancer as a single method alone may not be efficient enough to yield positive results. Combining immunotherapy with conventional therapies such as radiation and chemotherapy or combining an anticancer peptide with a nonpeptidic cytotoxic drug is an example of this emerging field. PMID:23316341

  4. Chimeric Glutathione S-Transferases Containing Inserts of Kininogen Peptides

    PubMed Central

    Bentley, Amber A.; Merkulov, Sergei M.; Peng, Yi; Rozmarynowycz, Rita; Qi, Xiaoping; Pusztai-Carey, Marianne; Merrick, William C.; Yee, Vivien C.; McCrae, Keith R.; Komar, Anton A.

    2012-01-01

    The study of synthetic peptides corresponding to discrete regions of proteins has facilitated the understanding of protein structure-activity relationships. Short peptides can also be used as powerful therapeutic agents. However, in many instances, small peptides are prone to rapid degradation or aggregation and may lack the conformation required to mimic the functional motifs of the protein. For peptides to function as pharmacologically active agents, efficient production or expression, high solubility, and retention of biological activity through purification and storage steps are required. We report here the design, expression, and functional analysis of eight engineered GST proteins (denoted GSHKTs) in which peptides ranging in size from 8 to 16 amino acids and derived from human high molecular weight kininogen (HK) domain 5 were inserted into GST (between Gly-49 and Leu-50). Peptides derived from HK are known to inhibit cell proliferation, angiogenesis, and tumor metastasis, and the biological activity of the HK peptides was dramatically (>50-fold) enhanced following insertion into GST. GSHKTs are soluble and easily purified from Escherichia coli by affinity chromatography. Functionally, these hybrid proteins cause inhibition of endothelial cell proliferation. Crystallographic analysis of GSHKT10 and GSHKT13 (harboring 10- and 13-residue HK peptides, respectively) showed that the overall GST structure was not perturbed. These results suggest that the therapeutic efficacy of short peptides can be enhanced by insertion into larger proteins that are easily expressed and purified and that GST may potentially be used as such a carrier. PMID:22577144

  5. LPS interactions with immobilized and soluble antimicrobial peptides.

    PubMed

    Gustafsson, Anna; Olin, Anders I; Ljunggren, Lennart

    2010-04-19

    A promising approach in sepsis therapy is the use of peptides truncated from serum- and membrane-proteins with binding domains for LPS: antimicrobial peptides (AMPs). AMPs can be useful in combination with conventional antibiotics to increase killing and neutralize LPS. Although many AMPs show a high specificity towards bacterial membranes, they can also exhibit toxicity, i.e. non-specific membrane lysis, of mammalian cells such as erythrocytes and therefore, unsuitable as systemic drugs. A way to overcome this problem may be an extracorporeal therapy with immobilized peptides. This study will compare neutralization of LPS using different AMPs in solution and when immobilized on to solid phases. The peptides ability to neutralize LPS-induced cytokine release in whole blood will also be tested. The peptides are truncated derivates from the known AMPs LL-37, SC4, BPI, S3 Delta and CEME. Two different methods were used to immobilize peptides, biomolecular interaction analysis, and Pierce SulfoLink Coupling Gel. To investigate LPS binding in solution the LAL test was used. After whole blood incubation with LPS and AMPs ELISA was used to measure TNFalpha, IL-1 beta and IL-6 production. The results suggest that immobilization of antimicrobial peptides does not inhibit their capacity to neutralize LPS, although there are differences between the peptides tested. Thus, peptides derived from LL-37 and CEME were more efficient both in LPS binding and neutralizing LPS-induced cytokine production. PMID:20233038

  6. Tumor-Penetrating Peptides

    PubMed Central

    Teesalu, Tambet; Sugahara, Kazuki N.; Ruoslahti, Erkki

    2013-01-01

    Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC), contains the integrin-binding RGD motif. RGD mediates tumor-homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR) motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular “zip code” of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies, and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is present in the

  7. Synthetic antimicrobial peptide design.

    PubMed

    Powell, W A; Catranis, C M; Maynard, C A

    1995-01-01

    To guide the design of potential plant pathogen-resistance genes, synthetic variants of naturally occurring antimicrobial gene products were evaluated. Five 20-amino acid (ESF1, ESF4, ESF5, ESF6, ESF13), one 18-amino acid (ESF12), and one 17-amino acid (ESF17) amphipathic peptide sequences were designed, synthesized, and tested with in vitro bioassays. Positive charges on the hydrophilic side of the peptide were shown to be essential for antifungal activity, yet the number of positive charges could be varied with little or no change in activity. The size could be reduced to 18 amino acids, but at 17 amino acids a significant reduction in activity was observed. ESF1, 5, 6, and 12 peptides were inhibitory to the germination of conidia from Cryphonectria parasitica, Fusarium oxysporum f. sp. lycopersici, and Septoria musiva but did not inhibit the germination of pollen from Castanea mollissima and Salix lucida. ESF12 also had no effect on the germination of Malus sylvestris and Lycopersicon esculentum pollen, but inhibited the growth of the bacteria Agrobacterium tumefaciens, Erwinia amylovora, and Pseudomonas syringae. The minimal inhibitory concentrations of the active ESF peptides were similar to those of the naturally occurring control peptides, magainin II and cecropin B. The significant differential in sensitivity between the microbes and plant cells indicated that the active ESF peptides are potentially useful models for designing plant pathogen-resistance genes. PMID:7579625

  8. Antimitotic peptides and depsipeptides.

    PubMed

    Hamel, Ernest; Covell, David G

    2002-01-01

    Tubulin is the target for an ever increasing number of unusual peptides and depsipeptides that were originally isolated from a wide variety of organisms. Since tubulin is the major component of cellular microtubules, which maintain cell shape in interphase and form the mitotic spindle, most of these compounds are highly toxic to mammalian cells. These peptides and depsipeptides disrupt cellular microtubules and prevent formation of a functional spindle, resulting in the accumulation of cultured cells in the G2/M phase of the cell cycle through specific inhibition of mitosis. At the biochemical level, the compounds all inhibit the assembly of tubulin into polymer and, in the cases where it has been studied, strongly suppress microtubule dynamics at low concentrations. In most cases the peptides and depsipeptides inhibit the binding of vinblastine and vincristine to tubulin in a noncompetitive manner, inhibit tubulin-dependent GTP hydrolysis, and interfere with nucleotide turnover at the exchangeable GTP site on beta-tubulin. Most of the peptides and depsipeptides induce tubulin to form oligomers of aberrant morphology, including tubulin rings that vary in diameter depending on the (depsi) peptide under study. The purpose of this review is to give an overview of the cellular, biochemical, in vivo, and SAR aspects of this group of compounds. We also summarize initial efforts by computer modeling to decipher a pharmacophore among the diverse structures of these peptides and depsipeptides. PMID:12678750

  9. A viral peptide for intracellular delivery

    NASA Astrophysics Data System (ADS)

    Falanga, Annarita; Tarallo, Rossella; Cantisani, Marco; Della Pepa, Maria Elena; Galdiero, Massimiliano; Galdiero, Stefania

    2012-10-01

    Biological membranes represent a critical hindrance for administering active molecules which are often unable to reach their designated intracellular target sites. In order to overcome this barrier-like behavior not easily circumvented by many pharmacologically-active molecules, synthetic transporters have been exploited to promote cellular uptake. Linking or complexing therapeutic molecules to peptides that can translocate through the cellular membranes could enhance their internal delivery, and consequently, a higher amount of active compound would reach the site of action. Use of cell penetrating peptides (CPPs) is one of the most promising strategy to efficiently translocate macromolecules through the plasma membrane, and have attracted a lot of attention. New translocating peptides are continuously described and in the present review, we will focus on viral derived peptides, and in particular a peptide (gH625) derived from the herpes simplex virus type 1 (HSV-1) glycoprotein H (gH) that has proved to be a useful delivery vehicle due to its intrinsic properties of inducing membrane perturbation.

  10. One-step surface modification of polyurethane using affinity binding peptides for enhanced fouling resistance.

    PubMed

    Wang, Yibing; Yu, Yong; Zhang, Liting; Qin, Peng; Wang, Ping

    2015-01-01

    Affinity binding peptides were examined for surface fabrication of synthetic polymeric materials. Peptides possessing strong binding affinities toward polyurethane (PU) were discovered via biopanning of M13 phage peptide library. The apparent binding constant (K(app)) was as high as 2.68 × 10(9) M(-1) with surface peptide density exceeded 1.8 μg/cm(2). Structural analysis showed that the ideal peptide had a high content (75%) of H-donor amino acid residues, and that intensified hydrogen bond interaction was the key driving force for the highly stable binding of peptides on PU. PU treated with such affinity peptides promises applications as low-fouling materials, as peptides increased its wettability and substantially reduced protein adsorption and cell adhesion. These results demonstrated a facile but highly efficient one-step strategy for surface property modification of polymeric materials for biotechnological applications. PMID:25732121

  11. The Use of Aryl Hydrazide Linkers for the Solid Phase Synthesis of Chemically Modified Peptides

    SciTech Connect

    Woo, Y; Mitchell, A R; Camarero, J A

    2006-11-03

    Since Merrifield introduced the concept of solid phase synthesis in 1963 for the rapid preparation of peptides, a large variety of different supports and resin-linkers have been developed that improve the efficiency of peptide assembly and expand the myriad of synthetically feasible peptides. The aryl hydrazide is one of the most useful resin-linkers for the synthesis of chemically modified peptides. This linker is completely stable during Boc- and Fmoc-based solid phase synthesis and yet it can be cleaved under very mild oxidative conditions. The present article reviews the use of this valuable linker for the rapid and efficient synthesis of C-terminal modified peptides, head-to-tail cyclic peptides and lipidated peptides.

  12. Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis.

    PubMed

    Nguyen, Giang K T; Wang, Shujing; Qiu, Yibo; Hemu, Xinya; Lian, Yilong; Tam, James P

    2014-09-01

    Proteases are ubiquitous in nature, whereas naturally occurring peptide ligases, enzymes catalyzing the reverse reactions of proteases, are rare occurrences. Here we describe the discovery of butelase 1, to our knowledge the first asparagine/aspartate (Asx) peptide ligase to be reported. This highly efficient enzyme was isolated from Clitoria ternatea, a cyclic peptide-producing medicinal plant. Butelase 1 shares 71% sequence identity and the same catalytic triad with legumain proteases but does not hydrolyze the protease substrate of legumain. Instead, butelase 1 cyclizes various peptides of plant and animal origin with yields greater than 95%. With Kcat values of up to 17 s(-1) and catalytic efficiencies as high as 542,000 M(-1) s(-1), butelase 1 is the fastest peptide ligase known. Notably, butelase 1 also displays broad specificity for the N-terminal amino acids of the peptide substrate, thus providing a new tool for C terminus-specific intermolecular peptide ligations. PMID:25038786

  13. Membranotropic Cell Penetrating Peptides: The Outstanding Journey

    PubMed Central

    Falanga, Annarita; Galdiero, Massimiliano; Galdiero, Stefania

    2015-01-01

    The membrane bilayer delimits the interior of individual cells and provides them with the ability to survive and function properly. However, the crossing of cellular membranes constitutes the principal impediment to gaining entry into cells, and the potential therapeutic application of many drugs is predominantly dependent on the development of delivery tools that should take the drug to target cells selectively and efficiently with only minimal toxicity. Cell-penetrating peptides are short and basic peptides are widely used due to their ability to deliver a cargo across the membrane both in vitro and in vivo. It is widely accepted that their uptake mechanism involves mainly the endocytic pathway, the drug is catched inside endosomes and lysosomes, and only a small quantity is able to reach the intracellular target. In this wide-ranging scenario, a fascinating novel hypothesis is that membranotropic peptides that efficiently cross biological membranes, promote lipid-membrane reorganizing processes and cause a local and temporary destabilization and reorganization of the membrane bilayer, may also be able to enter cells circumventing the endosomal entrapment; in particular, by either favoring the escape from the endosome or by direct translocation. This review summarizes current data on membranotropic peptides for drug delivery. PMID:26512649

  14. CXCR4-antagonist Peptide R-liposomes for combined therapy against lung metastasis.

    PubMed

    Ieranò, Caterina; Portella, Luigi; Lusa, Sara; Salzano, Giuseppina; D'Alterio, Crescenzo; Napolitano, Maria; Buoncervello, Maria; Macchia, Daniele; Spada, Massimo; Barbieri, Antonio; Luciano, Antonio; Barone, Maria Vittoria; Gabriele, Lucia; Caraglia, Michele; Arra, Claudio; De Rosa, Giuseppe; Scala, Stefania

    2016-03-31

    The chemokine CXCL12 activates CXCR4, initiating multiple pathways that control immune cell trafficking, angiogenesis and embryogenesis; CXCR4 is also overexpressed in multiple tumors affecting metastatic dissemination. While there has been great enthusiasm for exploiting the CXCR4-CXCL12 axis as a target in cancer therapy, to date the promise has yet to be fulfilled. A new class of CXCR4-antagonist cyclic peptides was recently developed and the compound named Peptide R was identified as the most active. With the intent to improve the efficacy and biodistribution of Peptide R, stealth liposomes decorated with Peptide R were developed (PL-Peptide R). In vitro PL-Peptide R efficiently inhibited CXCR4-dependent migration and in vivo it significantly reduced lung metastases and increased overall survival in B16-CXCR4 injected C57BL/6 mice. To evaluate if PL-Peptide R could also be a drug delivery system for CXCR4 expressing tumors, the PL-Peptide R was loaded with doxorubicin (DOX) (PL-Peptide R-DOX). PL-Peptide R-DOX efficiently delivered DOX to CXCR4 expressing cell lines with a consequent decrease in the DOX IC50 efficient dose. In vivo, B16-CXCR4 injected C57BL/6 mice treated with PL-Peptide R-DOX developed fewer lung metastases compared to PL-DOX treated mice. This work provides the proof-of-concept to prevent metastasis by using combined nanomedicine. PMID:26983756

  15. Conformational Restriction of Peptides Using Dithiol Bis-Alkylation.

    PubMed

    Peraro, L; Siegert, T R; Kritzer, J A

    2016-01-01

    Macrocyclic peptides are highly promising as inhibitors of protein-protein interactions. While many bond-forming reactions can be used to make cyclic peptides, most have limitations that make this chemical space challenging to access. Recently, a variety of cysteine alkylation reactions have been used in rational design and library approaches for cyclic peptide discovery and development. We and others have found that this chemistry is versatile and robust enough to produce a large variety of conformationally constrained cyclic peptides. In this chapter, we describe applications, methods, mechanistic insights, and troubleshooting for dithiol bis-alkylation reactions for the production of cyclic peptides. This method for efficient solution-phase macrocyclization is highly useful for the rapid production and screening of loop-based inhibitors of protein-protein interactions. PMID:27586339

  16. Low-Cost Peptide Microarrays for Mapping Continuous Antibody Epitopes.

    PubMed

    McBride, Ryan; Head, Steven R; Ordoukhanian, Phillip; Law, Mansun

    2016-01-01

    With the increasing need for understanding antibody specificity in antibody and vaccine research, pepscan assays provide a rapid method for mapping and profiling antibody responses to continuous epitopes. We have developed a relatively low-cost method to generate peptide microarray slides for studying antibody binding. Using a setup of an IntavisAG MultiPep RS peptide synthesizer, a Digilab MicroGrid II 600 microarray printer robot, and an InnoScan 1100 AL scanner, the method allows the interrogation of up to 1536 overlapping, alanine-scanning, and mutant peptides derived from the target antigens. Each peptide is tagged with a polyethylene glycol aminooxy terminus to improve peptide solubility, orientation, and conjugation efficiency to the slide surface. PMID:26490468

  17. Evaluating the role of HLA-DM in MHC II-peptide association reactions1

    PubMed Central

    Yin, Liusong; Maben, Zachary; Becerra, Aniuska; Stern, Lawrence J.

    2015-01-01

    Antigen presentation by major histocompatibility complex class II molecules (MHC II) to CD4+ T cells plays a key role in the regulation of the adaptive immune response. Loading of antigenic peptides onto MHC II is catalyzed by HLA-DM (DM), a non-classical MHC II molecule. The mechanism of DM-facilitated peptide loading is an outstanding problem in the field of antigen presentation. In this study we systemically explored possible kinetic mechanisms for DM-catalyzed peptide association, by measuring real time peptide association kinetics using fluorescence polarization assays and comparing the experimental data with numerically modeled peptide association reactions. We found that DM does not facilitate peptide association by stabilizing peptide-free MHC II against aggregation. Moreover, DM does not promote transition of an inactive peptide-averse conformation of MHC II to an active peptide-receptive conformation. Instead, DM forms an intermediate with MHC II that binds peptide with faster kinetics than MHC II in the absence of DM. In the absence of peptides, interaction of MHC II with DM leads to inactivation and formation of a peptide-averse form. This study provides novel insights into how DM efficiently catalyzes peptide loading during antigen presentation. PMID:26062997

  18. Antimicrobial Peptides from Plants.

    PubMed

    Tam, James P; Wang, Shujing; Wong, Ka H; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  19. Antimicrobial Peptides from Plants

    PubMed Central

    Tam, James P.; Wang, Shujing; Wong, Ka H.; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  20. Signal peptide of cellulase.

    PubMed

    Yan, Shaomin; Wu, Guang

    2014-06-01

    Cellulase is an enzyme playing a crucial role in biotechnology industries ranging from textile to biofuel because of tremendous amount of cellulose produced in plant. In order to improve cellulase productivity, huge resource has been spent in search for good cellulases from microorganism in remote areas and in creation of ideal cellulase by engineering. However, not much attention is given to the secretion of cellulases from cell into extracellular space, where a cellulase plays its enzymatic role. In this minireview, the signal peptides, which lead secreted proteins to specific secretion systems and scatter in literature, are reviewed. The patterns of signal peptides are checked against 4,101 cellulases documented in UniProtKB, the largest protein database in the world, to determine how these cellulases are secreted. Simultaneous review on both literature and cellulases from the database not only provides updated knowledge on signal peptides but also indicates the gap in our research. PMID:24743986

  1. Synthetic antibiofilm peptides.

    PubMed

    de la Fuente-Núñez, César; Cardoso, Marlon Henrique; de Souza Cândido, Elizabete; Franco, Octavio Luiz; Hancock, Robert E W

    2016-05-01

    Bacteria predominantly exist as multicellular aggregates known as biofilms that are associated with at least two thirds of all infections and exhibit increased adaptive resistance to conventional antibiotic therapies. Therefore, biofilms are major contributors to the global health problem of antibiotic resistance, and novel approaches to counter them are urgently needed. Small molecules of the innate immune system called host defense peptides (HDPs) have emerged as promising templates for the design of potent, broad-spectrum antibiofilm agents. Here, we review recent developments in the new field of synthetic antibiofilm peptides, including mechanistic insights, synergistic interactions with available antibiotics, and their potential as novel antimicrobials against persistent infections caused by biofilms. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26724202

  2. Antimicrobial peptides in the centipede Scolopendra subspinipes mutilans.

    PubMed

    Yoo, Won Gi; Lee, Joon Ha; Shin, Younhee; Shim, Jae-Young; Jung, Myunghee; Kang, Byeong-Chul; Oh, Jaedon; Seong, Jiyeon; Lee, Hak Kyo; Kong, Hong Sik; Song, Ki-Duk; Yun, Eun-Young; Kim, In-Woo; Kwon, Young-Nam; Lee, Dong Gun; Hwang, Ui-Wook; Park, Junhyung; Hwang, Jae Sam

    2014-06-01

    The centipede Scolopendra subspinipes mutilans is an environmentally beneficial and medically important arthropod species. Although this species is increasingly applied as a reliable source of new antimicrobial peptides, the transcriptome of this species is a prerequisite for more rational selection of antimicrobial peptides. In this report, we isolated total RNA from the whole body of adult centipedes, S. subspinipes mutilans, that were nonimmunized and immunized against Escherichia coli, and we generated a total of 77,063 pooled contigs and singletons using high-throughput sequencing. To screen putative antimicrobial peptides, in silico analyses of the S. subspinipes mutilans transcriptome were performed based on the physicochemical evidence of length, charge, isoelectric point, and in vitro and in vivo aggregation scores together with the existence of continuous antimicrobial peptide stretches. Moreover, we excluded some transcripts that showed similarity with both previously known antimicrobial peptides and the human proteome, had a proteolytic cleavage site, and had downregulated expression compared with the nonimmunized sample. As a result, we selected 17 transcripts and tested their antimicrobial activity with a radial diffusion assay. Among them, ten synthetic peptides experimentally showed antimicrobial activity against microbes and no toxicity to mouse erythrocytes. Our results provide not only a useful set of antimicrobial peptide candidates and an efficient strategy for novel antimicrobial peptide development but also the transcriptome data of a big centipede as a valuable resource. PMID:24652097

  3. Cullin3 - BTB Interface: A Novel Target for Stapled Peptides

    PubMed Central

    Palmieri, Maddalena; Balasco, Nicole; Esposito, Luciana; Russo, Luigi; Mazzà, Daniela; Di Marcotullio, Lucia; Di Gaetano, Sonia; Malgieri, Gaetano; Vitagliano, Luigi; Pedone, Emilia; Zaccaro, Laura

    2015-01-01

    Cullin3 (Cul3), a key factor of protein ubiquitination, is able to interact with dozens of different proteins containing a BTB (Bric-a-brac, Tramtrack and Broad Complex) domain. We here targeted the Cul3–BTB interface by using the intriguing approach of stabilizing the α-helical conformation of Cul3-based peptides through the “stapling” with a hydrocarbon cross-linker. In particular, by combining theoretical and experimental techniques, we designed and characterized stapled Cul3-based peptides embedding the helix 2 of the protein (residues 49–68). Intriguingly, CD and NMR experiments demonstrate that these stapled peptides were able to adopt the helical structure that the fragment assumes in the parent protein. We also show that some of these peptides were able to bind to the BTB of the tetrameric KCTD11, a substrate adaptor involved in HDAC1 degradation, with high affinity (~ 300–600 nM). Cul3-derived staple peptides are also able to bind the BTB of the pentameric KCTD5. Interestingly, the affinity of these peptides is of the same order of magnitude of that reported for the interaction of full-length Cul3 with some BTB containing proteins. Moreover, present data indicate that stapling endows these peptides with an increased serum stability. Altogether, these findings indicate that the designed stapled peptides can efficiently mimic protein-protein interactions and are potentially able to modulate fundamental biological processes involving Cul3. PMID:25848797

  4. Phage Selection of Chemically Stabilized α-Helical Peptide Ligands.

    PubMed

    Diderich, Philippe; Bertoldo, Davide; Dessen, Pierre; Khan, Maola M; Pizzitola, Irene; Held, Werner; Huelsken, Joerg; Heinis, Christian

    2016-05-20

    Short α-helical peptides stabilized by linkages between constituent amino acids offer an attractive format for ligand development. In recent years, a range of excellent ligands based on stabilized α-helices were generated by rational design using α-helical peptides of natural proteins as templates. Herein, we developed a method to engineer chemically stabilized α-helical ligands in a combinatorial fashion. In brief, peptides containing cysteines in position i and i + 4 are genetically encoded by phage display, the cysteines are modified with chemical bridges to impose α-helical conformations, and binders are isolated by affinity selection. We applied the strategy to affinity mature an α-helical peptide binding β-catenin. We succeeded in developing ligands with Kd's as low as 5.2 nM, having >200-fold improved affinity. The strategy is generally applicable for affinity maturation of any α-helical peptide. Compared to hydrocarbon stapled peptides, the herein evolved thioether-bridged peptide ligands can be synthesized more easily, as no unnatural amino acids are required and the cyclization reaction is more efficient and yields no stereoisomers. A further advantage of the thioether-bridged peptide ligands is that they can be expressed recombinantly as fusion proteins. PMID:26929989

  5. Biomimetic peptide nanosensors.

    PubMed

    Cui, Yue; Kim, Sang N; Naik, Rajesh R; McAlpine, Michael C

    2012-05-15

    The development of a miniaturized sensing platform tailored for sensitive and selective detection of a variety of biochemical analytes could offer transformative fundamental and technological opportunities. Due to their high surface-to-volume ratios, nanoscale materials are extremely sensitive sensors. Likewise, peptides represent robust substrates for selective recognition due to the potential for broad chemical diversity within their relatively compact size. Here we explore the possibilities of linking peptides to nanosensors for the selective detection of biochemical targets. Such systems raise a number of interesting fundamental challenges: What are the peptide sequences, and how can rational design be used to derive selective binders? What nanomaterials should be used, and what are some strategies for assembling hybrid nanosensors? What role does molecular modeling play in elucidating response mechanisms? What is the resulting performance of these sensors, in terms of sensitivity, selectivity, and response time? What are some potential applications? This Account will highlight our early attempts to address these research challenges. Specifically, we use natural peptide sequences or sequences identified from phage display as capture elements. The sensors are based on a variety of nanomaterials including nanowires, graphene, and carbon nanotubes. We couple peptides to the nanomaterial surfaces via traditional surface functionalization methods or self-assembly. Molecular modeling provides detailed insights into the hybrid nanostructure, as well as the sensor detection mechanisms. The peptide nanosensors can distinguish chemically camouflaged mixtures of vapors and detect chemical warfare agents with sensitivities as low as parts-per-billion levels. Finally, we anticipate future uses of this technology in biomedicine: for example, devices based on these sensors could detect disease from the molecular components in human breath. Overall, these results provide a

  6. New method of peptide cleavage based on Edman degradation.

    PubMed

    Bąchor, Remigiusz; Kluczyk, Alicja; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2013-08-01

    A straightforward cleavage method for N- acylated peptides based on the phenylthiohydantoin (PTH) formation is presented. The procedure could be applied to acid-stable resins, such as TentaGel HL-NH[Formula: see text]. We designed a cleavable linker that consists of a lysine residue with the [Formula: see text]-amino group blocked by Boc, whereas the [Formula: see text]-amino group is used for peptide synthesis. After the peptide assembly is completed, the protecting groups in peptide side chains are removed using trifluoroacetic acid, thus liberating also the [Formula: see text]-amino group of the lysine in the linker. Then the reaction with phenyl isothiocyanate followed by acidolysis causes an efficient peptide release from the resin as a stable PTH derivative. Furthermore, the application of a fixed charge tag in the form of 2-(4-aza-1-azoniabicyclo[2.2.2]octylammonium)acetyl group increases ionization efficiency and reduces the detection limit, allowing ESI-MS/MS sequencing of peptides in the subfemtomolar range. The proposed strategy is compatible with standard conditions during one-bead-one-compound peptide library synthesis. The applicability of the developed strategy in combinatorial chemistry was confirmed using a small training library of [Formula: see text]-chymotrypsin substrates. PMID:23690169

  7. Aerosolized Medications for Gene and Peptide Therapy.

    PubMed

    Laube, Beth L

    2015-06-01

    Inhalation therapy has matured to include drugs that: (1) deliver nucleic acids that either lead to the restoration of a gene construct or protein coding sequence in a population of cells or suppress or disrupt production of an abnormal gene product (gene therapy); (2) deliver peptides that target lung diseases such as asthma, sarcoidosis, pulmonary hypertension, and cystic fibrosis; and (3) deliver peptides to treat diseases outside the lung whose target is the systemic circulation (systemic drug delivery). These newer applications for aerosol therapy are the focus of this paper, and I discuss the status of each and the challenges that remain to their successful development. Drugs that are highlighted include: small interfering ribonucleic acid to treat lung cancer and Mycobacterium tuberculosis; vectors carrying the normal alpha-1 antitrypsin gene to treat alpha-1 antitrypsin deficiency; vectors carrying the normal cystic fibrosis transmembrane conductance regulator gene to treat cystic fibrosis; vasoactive intestinal peptide to treat asthma, pulmonary hypertension, and sarcoidosis; glutathione to treat cystic fibrosis; granulocyte-macrophage colony-stimulating factor to treat pulmonary alveolar proteinosis; calcitonin for postmenopausal osteoporosis; and insulin to treat diabetes. The success of these new aerosol applications will depend on many factors, such as: (1) developing gene therapy formulations that are safe for acute and chronic administrations to the lung, (2) improving the delivery of the genetic material beyond the airway mucus barrier and cell membrane and transferring the material to the cell cytoplasm or the cell nucleus, (3) developing aerosol devices that efficiently deliver genetic material and peptides to their lung targets over a short period of time, (4) developing devices that increase aerosol delivery to the lungs of infants, (5) optimizing the bioavailability of systemically delivered peptides, and (6) developing peptide formulations for

  8. Replica exchange molecular dynamics simulations of amyloid peptide aggregation

    NASA Astrophysics Data System (ADS)

    Cecchini, M.; Rao, F.; Seeber, M.; Caflisch, A.

    2004-12-01

    The replica exchange molecular dynamics (REMD) approach is applied to four oligomeric peptide systems. At physiologically relevant temperature values REMD samples conformation space and aggregation transitions more efficiently than constant temperature molecular dynamics (CTMD). During the aggregation process the energetic and structural properties are essentially the same in REMD and CTMD. A condensation stage toward disordered aggregates precedes the β-sheet formation. Two order parameters, borrowed from anisotropic fluid analysis, are used to monitor the aggregation process. The order parameters do not depend on the peptide sequence and length and therefore allow to compare the amyloidogenic propensity of different peptides.

  9. Monolithic capillary columns based on pentaerythritol tetraacrylate for peptide analysis

    NASA Astrophysics Data System (ADS)

    Kucherenko, E. V.; Melnik, D. M.; Korolev, A. A.; Kanateva, A. Yu.; Pirogov, A. V.; Kurganov, A. A.

    2015-09-01

    Monolythic medium-polar capillary columns based on pentaerythritol tetraacrylate were optimized for separation of peptides. The synthesis temperature and time, the fraction of monomer in the initial polymerization mixture, and the nature of alcohol contained in the complex porogen were chosen as optimization parameters. The highest efficiency was attained for columns obtained with 33 and 34% monomer at a polymerization time of 75 min and a temperature of 75°C. The columns with the optimum structure were effective in separation of a model mixture of five peptides. The sensitivity of the method was 200 ng of peptide per column.

  10. Multidimensional signatures in antimicrobial peptides

    PubMed Central

    Yount, Nannette Y.; Yeaman, Michael R.

    2004-01-01

    Conventional analyses distinguish between antimicrobial peptides by differences in amino acid sequence. Yet structural paradigms common to broader classes of these molecules have not been established. The current analyses examined the potential conservation of structural themes in antimicrobial peptides from evolutionarily diverse organisms. Using proteomics, an antimicrobial peptide signature was discovered to integrate stereospecific sequence patterns and a hallmark three-dimensional motif. This striking multidimensional signature is conserved among disulfide-containing antimicrobial peptides spanning biological kingdoms, and it transcends motifs previously limited to defined peptide subclasses. Experimental data validating this model enabled the identification of previously unrecognized antimicrobial activity in peptides of known identity. The multidimensional signature model provides a unifying structural theme in broad classes of antimicrobial peptides, will facilitate discovery of antimicrobial peptides as yet unknown, and offers insights into the evolution of molecular determinants in these and related host defense effector molecules. PMID:15118082

  11. Self-assembly of fibronectin mimetic peptide-amphiphile nanofibers

    NASA Astrophysics Data System (ADS)

    Rexeisen, Emilie Lynn

    Many therapeutic strategies incorporate peptides into their designs to mimic the natural protein ligands found in vivo. A few examples are the short peptide sequences RGD and PHSRN that mimic the primary and synergy-binding domains of the extracellular matrix protein, fibronectin, which is recognized by the cell surface receptor, alpha5beta 1 integrin. Even though scaffold modification with biomimetic peptides remains one of the most promising approaches for tissue engineering, the use of these peptides in therapeutic tissue-engineered products and drug delivery systems available on the commercial market is limited because the peptides are not easily able to mimic the natural protein. The design of a peptide that can effectively target the alpha5beta1 integrin would greatly increase biomimetic scaffold therapeutic potential. A novel peptide containing both the RGD primary binding domain and PHSRN synergy-binding domain for fibronectin joined with the appropriate linker should bind alpha 5beta1 integrin more efficiently and lead to greater cell adhesion over RGD alone. Several fibronectin mimetic peptides were designed and coupled to dialkyl hydrocarbon tails to make peptide-amphiphiles. The peptides contained different linkers connecting the two binding domains and different spacers separating the hydrophobic tails from the hydrophilic headgroups. The peptide-amphiphiles were deposited on mica substrates using the Langmuir-Blodgett technique. Langmuir isotherms indicated that the peptide-amphiphiles that contained higher numbers of serine residues formed a more tightly packed monolayer, but the increased number of serines also made transferring the amphiphiles to the mica substrate more difficult. Atomic force microscopy (AFM) images of the bilayers showed that the headgroups might be bent, forming small divots in the surface. These divots may help expose the PHSRN synergy-binding domain. Parallel studies undertaken by fellow group members showed that human

  12. Development of a candidate influenza vaccine based on virus-like particles displaying influenza M2e peptide into the immunodominant loop region of hepatitis B core antigen: Insertion of multiple copies of M2e increases immunogenicity and protective efficiency.

    PubMed

    Ravin, Nikolai V; Blokhina, Elena A; Kuprianov, Victor V; Stepanova, Liudmila A; Shaldjan, Aram A; Kovaleva, Anna A; Tsybalova, Liudmila M; Skryabin, Konstantin G

    2015-06-26

    The extracellular domain of the transmembrane protein M2 (M2e) of influenza A virus is a promising target for the development of "universal" vaccines against influenza. M2e is a poor immunogen by itself; however, when M2e is linked to an appropriate carrier, such as hepatitis B virus core (HBc) particles, it becomes highly immunogenic. Insertions of target peptides into the surface-exposed major immunodominant loop region (MIR) of the HBc antigen are especially immunogenic, but such insertions often affect the protein folding and formation of recombinant virus-like particles. To facilitate an appropriate conformation of the M2e insert, we introduced flexible linkers at the junction points between the insert and flanking HBc sequences. This approach allowed the construction of recombinant HBc particles carrying 1, 2 and 4 copies of M2e in the MIR region. These particles were produced in Escherichia coli and purified to homogeneity. The immune response and protective activity of hybrid HBc particles in mice correlated with the number of inserted M2e peptides: the highest immunogenicity and complete protection of mice against the lethal challenge by influenza virus was observed with particles carrying four copies of M2e. The possibility of the simultaneous presentation of M2e peptides from several important influenza strains on a single HBc particle could also facilitate the development of a broad-specificity vaccine efficient not only against influenza A strains of human origin but also for newly emerging strains of animal origin, such as the avian influenza. PMID:25937448

  13. Peptide o-aminoanilides as crypto-thioesters for protein chemical synthesis.

    PubMed

    Wang, Jia-Xing; Fang, Ge-Min; He, Yao; Qu, Da-Liang; Yu, Min; Hong, Zhang-Yong; Liu, Lei

    2015-02-01

    Fully unprotected peptide o-aminoanilides can be efficiently activated by NaNO2 in aqueous solution to furnish peptide thioesters for use in native chemical ligation. This finding enables the convergent synthesis of proteins from readily synthesizable peptide o-aminoanilides as a new type of crypto-thioesters. The practicality of this approach is shown by the synthesis of histone H2B from five peptide segments. Purification or solubilization tags, which are sometimes needed to improve the efficiency of protein chemical synthesis, can be incorporated into the o-aminoanilide moiety, as demonstrated in the preparation of the cyclic protein lactocyclicin Q. PMID:25475965

  14. Brain Peptides and Psychopharmacology

    ERIC Educational Resources Information Center

    Arehart-Treichel, Joan

    1976-01-01

    Proteins isolated from the brain and used as drugs can improve and apparently even transfer mental states and behavior. Much of the pioneering work and recent research with humans and animals is reviewed and crucial questions that are being posed about the psychologically active peptides are related. (BT)

  15. Enthalpy-driven interactions with sulfated glycosaminoglycans promote cell membrane penetration of arginine peptides.

    PubMed

    Takechi-Haraya, Yuki; Nadai, Ryo; Kimura, Hitoshi; Nishitsuji, Kazuchika; Uchimura, Kenji; Sakai-Kato, Kumiko; Kawakami, Kohsaku; Shigenaga, Akira; Kawakami, Toru; Otaka, Akira; Hojo, Hironobu; Sakashita, Naomi; Saito, Hiroyuki

    2016-06-01

    The first step of cell membrane penetration of arginine peptides is thought to occur via electrostatic interactions between positive charges of arginine residues and negative charges of sulfated glycosaminoglycans (GAGs) on the cell surface. However, the molecular interaction of arginine peptides with GAG still remains unclear. Here, we compared the interactions of several arginine peptides of Tat, R8, and Rev and their analogues with heparin in relation to the cell membrane penetration efficiency. The high-affinity binding of arginine peptides to heparin was shown to be driven by large favorable enthalpy contributions, possibly reflecting multidentate hydrogen bondings of arginine residues with sulfate groups of heparin. Interestingly, the lysine peptides in which all arginine residues are substituted with lysine residues exhibited negligible binding enthalpy despite of their considerable binding to heparin. In CHO-K1 cells, arginine peptides exhibited a great cell-penetrating ability whereas their corresponding lysine peptides did not penetrate into cells. The degree of cell penetration of arginine peptides markedly decreased by the chlorate treatment of cells which prevents the sulfation of GAG chains. Significantly, the cell penetration efficiency of arginine peptides was found to be correlated with the favorable enthalpy of binding to heparin. These results suggest that the enthalpy-driven strong interaction with sulfated GAGs such as heparan sulfate plays a critical role in the efficient cell membrane penetration of arginine peptides. PMID:27003128

  16. Pronase E-Based Generation of Fluorescent Peptide Fragments: Tracking Intracellular Peptide Fate in Single Cells.

    PubMed

    Mainz, Emilie R; Dobes, Nicholas C; Allbritton, Nancy L

    2015-08-01

    The ability to track intracellular peptide proteolysis at the single cell level is of growing interest, particularly as short peptide sequences continue to play important roles as biosensors, therapeutics, and endogenous participants in antigen processing and intracellular signaling. We describe a rapid and inexpensive methodology to generate fluorescent peptide fragments from a parent sequence with diverse chemical properties, including aliphatic, nonpolar, basic, acidic, and non-native amino acids. Four peptide sequences with existing biochemical applications were fragmented using incubation with Pronase E and/or formic acid, and in each case a complete set of fluorescent fragments was generated for use as proteolysis standards in chemical cytometry. Fragment formation and identity was monitored with capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) and matrix assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-MS) to confirm the presence of all sequences and yield fragmentation profiles across Pronase E concentrations which can readily be used by others. As a pilot study, Pronase E-generated standards from an Abl kinase sensor and an ovalbumin antigenic peptide were then employed to identify proteolysis products arising from the metabolism of these sequences in single cells. The Abl kinase sensor fragmented at 4.2 ± 4.8 zmol μM(-1) s(-1) and the majority of cells possessed similar fragment identities. In contrast, an ovalbumin epitope peptide was degraded at 8.9 ± 0.1 zmol μM(-1) s(-1), but with differential fragment formation between individual cells. Overall, Pronase E-generated peptide standards were a rapid and efficient method to identify proteolysis products from cells. PMID:26171808

  17. Antagonistic peptide technology for functional dissection of CLE peptides revisited

    PubMed Central

    Czyzewicz, Nathan; Wildhagen, Mari; Cattaneo, Pietro; Stahl, Yvonne; Pinto, Karine Gustavo; Aalen, Reidunn B.; Butenko, Melinka A.; Simon, Rüdiger; Hardtke, Christian S.; De Smet, Ive

    2015-01-01

    In the Arabidopsis thaliana genome, over 1000 putative genes encoding small, presumably secreted, signalling peptides can be recognized. However, a major obstacle in identifying the function of genes encoding small signalling peptides is the limited number of available loss-of-function mutants. To overcome this, a promising new tool, antagonistic peptide technology, was recently developed. Here, this antagonistic peptide technology was tested on selected CLE peptides and the related IDA peptide and its usefulness in the context of studies of peptide function discussed. Based on the analyses, it was concluded that the antagonistic peptide approach is not the ultimate means to overcome redundancy or lack of loss-of-function lines. However, information collected using antagonistic peptide approaches (in the broad sense) can be very useful, but these approaches do not work in all cases and require a deep insight on the interaction between the ligand and its receptor to be successful. This, as well as peptide ligand structure considerations, should be taken into account before ordering a wide range of synthetic peptide variants and/or generating transgenic plants. PMID:26136270

  18. Antagonistic peptide technology for functional dissection of CLE peptides revisited.

    PubMed

    Czyzewicz, Nathan; Wildhagen, Mari; Cattaneo, Pietro; Stahl, Yvonne; Pinto, Karine Gustavo; Aalen, Reidunn B; Butenko, Melinka A; Simon, Rüdiger; Hardtke, Christian S; De Smet, Ive

    2015-08-01

    In the Arabidopsis thaliana genome, over 1000 putative genes encoding small, presumably secreted, signalling peptides can be recognized. However, a major obstacle in identifying the function of genes encoding small signalling peptides is the limited number of available loss-of-function mutants. To overcome this, a promising new tool, antagonistic peptide technology, was recently developed. Here, this antagonistic peptide technology was tested on selected CLE peptides and the related IDA peptide and its usefulness in the context of studies of peptide function discussed. Based on the analyses, it was concluded that the antagonistic peptide approach is not the ultimate means to overcome redundancy or lack of loss-of-function lines. However, information collected using antagonistic peptide approaches (in the broad sense) can be very useful, but these approaches do not work in all cases and require a deep insight on the interaction between the ligand and its receptor to be successful. This, as well as peptide ligand structure considerations, should be taken into account before ordering a wide range of synthetic peptide variants and/or generating transgenic plants. PMID:26136270

  19. Biochemical functionalization of peptide nanotubes with phage displayed peptides.

    PubMed

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering. PMID:27479451

  20. Biochemical functionalization of peptide nanotubes with phage displayed peptides

    NASA Astrophysics Data System (ADS)

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering.

  1. Ribosomal Synthesis of Peptides with Multiple β-Amino Acids.

    PubMed

    Fujino, Tomoshige; Goto, Yuki; Suga, Hiroaki; Murakami, Hiroshi

    2016-02-17

    The compatibility of β-amino acids with ribosomal translation was studied for decades, but it has been still unclear whether the ribosome can accept various β-amino acids, and whether the ribosome can introduce multiple β-amino acids in a peptide. In the present study, by using the Escherichia coli reconstituted cell-free translation system with a reprogramed genetic code, we screened β-amino acids that give high single incorporation efficiency and used them to synthesize peptides containing multiple β-amino acids. The experiments of single β-amino acid incorporation into a peptide revealed that 13 β-amino acids are compatible with ribosomal translation. Six of the tested β-amino acids (βhGly, l-βhAla, l-βhGln, l-βhPhg, l-βhMet, and d-βhPhg) showed high incorporation efficiencies, and seven (l-βhLeu, l-βhIle, l-βhAsn, l-βhPhe, l-βhLys, d-βhAla, and d-βhLeu) showed moderate incorporation efficiencies; whereas no full-length peptide was produced using other β-amino acids (l-βhPro, l-βhTrp, and l-βhGlu). Subsequent double-incorporation experiments using β-amino acids with high single incorporation efficiency revealed that elongation of peptides with successive β-amino acids is prohibited. Efficiency of the double-incorporation of the β-amino acids was restored by the insertion of Tyr or Ile between the two β-amino acids. On the basis of these experiments, we also designed mRNA sequences of peptides, and demonstrated the ribosomal synthesis of peptides containing different types of β-amino acids at multiple positions. PMID:26807980

  2. Antimicrobial peptides: premises and promises.

    PubMed

    Reddy, K V R; Yedery, R D; Aranha, C

    2004-12-01

    Antimicrobial peptides (AMPs) are an important component of the natural defences of most living organisms against invading pathogens. These are relatively small (< 10kDa), cationic and amphipathic peptides of variable length, sequence and structure. During the past two decades several AMPs have been isolated from a wide variety of animals, both vertebrates and invertebrates, and plants as well as from bacteria and fungi. Most of these peptides are obtained from different sources like macrophages, neutrophils, epithelial cells, haemocytes, fat body, reproductive tract, etc. These peptides exhibit broad-spectrum activity against a wide range of microorganisms including Gram-positive and Gram-negative bacteria, protozoa, yeast, fungi and viruses. A few peptides have also been found to be cytotoxic to sperm and tumour cells. AMPs are classified based on the three dimensional structural studies carried out with the help of NMR. The peptides are broadly classified into five major groups namely (a) peptides that form alpha-helical structures, (b) peptides rich in cysteine residues, (c) peptides that form beta-sheet, (d) peptides rich in regular amino acids namely histatin, arginine and proline and (e) peptides composed of rare and modified amino acids. Most of these peptides are believed to act by disrupting the plasma membrane leading to the lysis of the cell. AMPs have been found to be excellent candidates for developing novel antimicrobial agents and a few of these peptides show antimicrobial activity against pathogens causing sexually transmitted infection (STI), including HIV/HSV. Peptides, namely magainin and nisin have been shown to demonstrate contraceptive properties in vitro and in vivo. A few peptides have already entered clinical trials for the treatment of impetigo, diabetic foot ulcers and gastric helicobacter infections. In this review, we discuss the source, structures and mode of action with special reference to therapeutic considerations of various AMPs

  3. Phage-displayed peptide libraries

    PubMed Central

    Zwick, Michael B; Shen, Juqun; Scott, Jamie K

    2014-01-01

    Over the past year, significant advances have been achieved through the use of phage-displayed peptide libraries. A wide variety of bioactive molecules, including antibodies, receptors and enzymes, have selected high-affinity and/or highly-specific peptide ligands from a number of different types of peptide library. The demonstrated therapeutic potential of some of these peptides, as well as new insights into protein structure and function that peptide ligands have provided, highlight the progress made within this rapidly-expanding field. PMID:9720267

  4. Optimization for Peptide Sample Preparation for Urine Peptidomics

    SciTech Connect

    Sigdel, Tara K.; Nicora, Carrie D.; Hsieh, Szu-Chuan; Dai, Hong; Qian, Weijun; Camp, David G.; Sarwal, Minnie M.

    2014-02-25

    Analysis of native or endogenous peptides in biofluids can provide valuable insights into disease mechanisms. Furthermore, the detected peptides may also have utility as potential biomarkers for non-invasive monitoring of human diseases. The non-invasive nature of urine collection and the abundance of peptides in the urine makes analysis by high-throughput ‘peptidomics’ methods , an attractive approach for investigating the pathogenesis of renal disease. However, urine peptidomics methodologies can be problematic with regards to difficulties associated with sample preparation. The urine matrix can provide significant background interference in making the analytical measurements that it hampers both the identification of peptides and the depth of the peptidomics read when utilizing LC-MS based peptidome analysis. We report on a novel adaptation of the standard solid phase extraction (SPE) method to a modified SPE (mSPE) approach for improved peptide yield and analysis sensitivity with LC-MS based peptidomics in terms of time, cost, clogging of the LC-MS column, peptide yield, peptide quality, and number of peptides identified by each method. Expense and time requirements were comparable for both SPE and mSPE, but more interfering contaminants from the urine matrix were evident in the SPE preparations (e.g., clogging of the LC-MS columns, yellowish background coloration of prepared samples due to retained urobilin, lower peptide yields) when compared to the mSPE method. When we compared data from technical replicates of 4 runs, the mSPE method provided significantly improved efficiencies for the preparation of samples from urine (e.g., mSPE peptide identification 82% versus 18% with SPE; p = 8.92E-05). Additionally, peptide identifications, when applying the mSPE method, highlighted the biology of differential activation of urine peptidases during acute renal transplant rejection with distinct laddering of specific peptides, which was obscured for most proteins

  5. Twin disulfides for orthogonal disulfide pairing and the directed folding of multicyclic peptides

    NASA Astrophysics Data System (ADS)

    Wu, Chuanliu; Leroux, Jean-Christophe; Gauthier, Marc A.

    2012-12-01

    Multicyclic peptides are emerging as an exciting platform for drug and targeted ligand discovery owing to their expected greater target affinity/selectivity/stability versus linear or monocyclic peptides. However, although the precise pairing of cysteine residues in proteins is routinely achieved in nature, the rational pairing of cysteine residues within polypeptides is a long-standing challenge for the preparation of multicyclic species containing several disulfide bridges. Here, we present an efficient and straightforward approach for directing the intermolecular and intramolecular pairing of cysteine residues within peptides using a minimal CXC motif. Orthogonal disulfide pairing can be exploited in complex redox media to rationally produce dimeric peptides and bi/tricyclic peptides from fully reduced peptides containing 1-6 cysteine residues. This strategy, which does not rely on extensive manipulation of the primary sequence, post-translational modification or protecting groups, should greatly benefit the development of multicyclic peptide therapeutics and targeting ligands.

  6. HER2 Targeting Peptides Screening and Applications in Tumor Imaging and Drug Delivery

    PubMed Central

    Geng, Lingling; Wang, Zihua; Jia, Xiangqian; Han, Qiuju; Xiang, Zhichu; Li, Dan; Yang, Xiaoliang; Zhang, Di; Bu, Xiangli; Wang, Weizhi; Hu, Zhiyuan; Fang, Qiaojun

    2016-01-01

    Herein, computational-aided one-bead-one-compound (OBOC) peptide library design combined with in situ single-bead sequencing microarray methods were successfully applied in screening peptides targeting at human epidermal growth factor receptor-2 (HER2), a biomarker of human breast cancer. As a result, 72 novel peptides clustered into three sequence motifs which are PYL***NP, YYL***NP and PPL***NP were acquired. Particularly one of the peptides, P51, has nanomolar affinity and high specificity for HER2 in ex vivo and in vivo tests. Moreover, doxorubicin (DOX)-loaded liposome nanoparticles were modified with peptide P51 or P25 and demonstrated to improve the targeted delivery against HER2 positive cells. Our study provides an efficient peptide screening method with a combination of techniques and the novel screened peptides with a clear binding site on HER2 can be used as probes for tumor imaging and targeted drug delivery. PMID:27279916

  7. Antibody Production with Synthetic Peptides.

    PubMed

    Lee, Bao-Shiang; Huang, Jin-Sheng; Jayathilaka, Lasanthi P; Lee, Jenny; Gupta, Shalini

    2016-01-01

    Peptides (usually 10-20 amino acid residues in length) can be used as effectively as proteins in raising antibodies producing both polyclonal and monoclonal antibodies routinely with titers higher than 20,000. Peptide antigens do not function as immunogens unless they are conjugated to proteins. Production of high quality antipeptide antibodies is dependent upon peptide sequence selection, the success of peptide synthesis, peptide-carrier protein conjugation, the humoral immune response in the host animal, the adjuvant used, the peptide dose administered, the injection method, and the purification of the antibody. Peptide sequence selection is probably the most critical step in the production of antipeptide antibodies. Although the process for designing peptide antigens is not exact, several guidelines and computational B-cell epitope prediction methods can help maximize the likelihood of producing antipeptide antibodies that recognize the protein. Antibodies raised by peptides have become essential tools in life science research. Virtually all phospho-specific antibodies are now produced using phosphopeptides as antigens. Typically, 5-20 mg of peptide is enough for antipeptide antibody production. It takes 3 months to produce a polyclonal antipeptide antibody in rabbits that yields ~100 mL of serum which corresponds to ~8-10 mg of the specific antibody after affinity purification using a peptide column. PMID:27515072

  8. Synthesis of a large library of macrocyclic peptides containing multiple and diverse N-alkylated residues.

    PubMed

    Morimoto, Jumpei; Kodadek, Thomas

    2015-10-01

    Large combinatorial libraries of macrocyclic peptides are a useful source of bioactive compounds. However, peptides are not generally cell permeable, so there is great interest in the development of methods to create large libraries of modified peptides. In particular, N-alkylation of peptides is known to improve their bioavailability significantly. Incorporation of some level of N-methylated amino acids into peptide libraries has been accomplished with ribosome display or related methods, but the modest efficiency and the inability to employ more diverse N-alkylated amino acids in this type of system argue for the development of synthetic libraries. Here we present optimized procedures for synthesizing macrocyclic peptides containing multiple N-alkylated units and show that this chemistry is efficient enough for the creation of high quality combinatorial libraries by split and pool solid-phase synthesis. PMID:26067000

  9. Concepts for Biologically Active Peptides

    PubMed Central

    Kastin, Abba J.; Pan, Weihong

    2012-01-01

    Here we review a unique aspect of CNS research on biologically active peptides that started against a background of prevalent dogmas but ended by exerting considerable influence on the field. During the course of refuting some doctrines, we introduced several concepts that were unconventional and paradigm-shifting at the time. We showed that (1) hypothalamic peptides can act ‘up’ on the brain as well as ‘down’ on the pituitary, (2) peripheral peptides can affect the brain, (3) peptides can cross the blood-brain barrier, (4) the actions of peptides can persist longer than their half-lives in blood, (5) perinatal administration of peptides can exert actions persisting into adulthood, (6) a single peptide can have more than one action, (7) dose-response relationships of peptides need not be linear, (8) the brain produces antiopiate as well as opiate peptides, (9) there is a selective high affinity endogenous peptide ligand for the mu-opiate receptor, (10) a peptide’s name does not restrict its effects, and (11) astrocytes assume an active role in response to metabolic disturbance and hyperleptinemia. The evolving questions in our laboratories reflect the diligent effort of the neuropeptide community to identify the roles of peptides in the CNS. The next decade is expected to see greater progress in the following areas: (a) interactions of peptides with other molecules in the CNS; (b) peptide involvement in cell-cell interactions; and (c) peptides in neuropsychiatric, autoimmune, and neurodegenerative diseases. The development of peptidomics and gene silencing approaches will expedite the formation of many new concepts in a new era. PMID:20726835

  10. Natriuretic peptides in fish physiology.

    PubMed

    Loretz, C A; Pollina, C

    2000-02-01

    Natriuretic peptides exist in the fishes as a family of structurally-related isohormones including atrial natriuretic peptide (ANP), C-type natriuretic peptide (CNP) and ventricular natriuretic peptide (VNP); to date, brain natriuretic peptide (or B-type natriuretic peptide, BNP) has not been definitively identified in the fishes. Based on nucleotide and amino acid sequence similarity, the natriuretic peptide family of isohormones may have evolved from a neuromodulatory, CNP-like brain peptide. The primary sites of synthesis for the circulating hormones are the heart and brain; additional extracardiac and extracranial sites, including the intestine, synthesize and release natriuretic peptides locally for paracrine regulation of various physiological functions. Membrane-bound, guanylyl cyclase-coupled natriuretic peptide receptors (A- and B-types) are generally implicated in mediating natriuretic peptide effects via the production of cyclic GMP as the intracellular messenger. C- and D-type natriuretic peptide receptors lacking the guanylyl cyclase domain may influence target cell function through G(i) protein-coupled inhibition of membrane adenylyl cyclase activity, and they likely also act as clearance receptors for circulating hormone. In the few systems examined using homologous or piscine reagents, differential receptor binding and tissue responsiveness to specific natriuretic peptide isohormones is demonstrated. Similar to their acute physiological effects in mammals, natriuretic peptides are vasorelaxant in all fishes examined. In contrast to mammals, where natriuretic peptides act through natriuresis and diuresis to bring about long-term reductions in blood volume and blood pressure, in fishes the primary action appears to be the extrusion of excess salt at the gills and rectal gland, and the limiting of drinking-coupled salt uptake by the alimentary system. In teleosts, both hypernatremia and hypervolemia are effective stimuli for cardiac secretion of