Science.gov

Sample records for alcaligenes eutrophus ch34

  1. Denitrification by Alcaligenes eutrophus is plasmid dependent.

    PubMed Central

    Römermann, D; Friedrich, B

    1985-01-01

    Curing of the hydrogenase-specifying megaplasmid pHG indigenous to strains of the facultative lithoautotrophic bacterium Alcaligenes eutrophus was correlated with a loss of denitrifying ability (Nitd). The retransfer of plasmid pHG1 reconstituted the Nitd phenotype. Plasmid-free mutants were still capable of converting some nitrate to nitrite, but they did not metabolize nitrite under anaerobic conditions. PMID:3886640

  2. Physiology and molecular genetics of poly(beta-hydroxy-alkanoic acid) synthesis in Alcaligenes eutrophus.

    PubMed

    Steinbüchel, A; Schlegel, H G

    1991-03-01

    The Alcaligenes eutrophus genes for beta-ketothiolase, NADPH-dependent acetoacetyl-CoA reductase and poly(beta-hydroxybutyric acid) synthase (PHB synthase) which comprise the three-step PHB-biosynthetic pathway, were cloned. Molecular studies revealed that these genes are organized in a single operon. The A. eutrophus PHB-biosynthetic genes are readily expressed in other bacteria, and DNA fragments harbouring the operon can be used as a cartridge to confer to other bacteria the ability to synthesize PHB from acetyl-CoA. The biochemical and physiological capabilities of A. eutrophus for the synthesis of a wide variety of polyhydroxyalkanoates are discussed. PMID:2046547

  3. Biochemical and genetic analyses of acetoin catabolism in Alcaligenes eutrophus.

    PubMed Central

    Fründ, C; Priefert, H; Steinbüchel, A; Schlegel, H G

    1989-01-01

    In genetic studies on the catabolism of acetoin in Alcaligenes eutrophus, we used Tn5::mob-induced mutants which were impaired in the utilization of acetoin as the sole carbon source for growth. The transposon-harboring EcoRI restriction fragments from 17 acetoin-negative and slow-growing mutants (class 2a) and from six pleiotropic mutants of A. eutorphus, which were acetoin-negative and did not grow chemolithoautotrophically (class 2b), were cloned from pHC79 gene banks. The insertions of Tn5 were mapped on four different chromosomal EcoRI restriction fragments (A, C, D, and E) in class 2a mutants. The native DNA fragments were cloned from a lambda L47 or from a cosmid gene bank. Evidence is provided that fragments A (21 kilobase pairs [kb]) and C (7.7 kb) are closely linked in the genome; the insertions of Tn5 covered a region of approximately 5 kb. Physiological experiments revealed that this region encodes for acetoin:dichlorophenol-indophenol oxidoreductase, a fast-migrating protein, and probably for one additional protein that is as yet unknown. In mutants which were not completely impaired in growth on acetoin but which grew much slower and after a prolonged lag phase, fragments D (7.2 kb) and E (8.1 kb) were inactivated by insertion of Tn5::mob. No structural gene could be assigned to the D or E fragments. In class 2b mutants, insertions of Tn5 were mapped on fragment B (11.3 kb). This fragment complemented pleiotropic hno mutants in trans; these mutants were impaired in the formation of a rpoN-like protein. The expression of the gene cluster on fragments A and C seemed to be rpoN dependent. PMID:2556366

  4. Antigenic determinants of the membrane-bound hydrogenase in Alcaligenes eutrophus are exposed toward the periplasm.

    PubMed Central

    Eismann, K; Mlejnek, K; Zipprich, D; Hoppert, M; Gerberding, H; Mayer, F

    1995-01-01

    Electron microscopic immunogold labeling experiments were performed with ultrathin sections of plasmolyzed cells of Alcaligenes eutrophus and "whole-mount" samples of spheroplasts and protoplasts. They demonstrated that antigenic determinants of the membrane-bound hydrogenase are exposed, at the outside of the cytoplasmic membrane, to the periplasm. PMID:7592402

  5. SEQUENCE SIMILARITIES IN THE GENES ENCODING POLY- CHLORINATED BIPHENYL DEGRADATION BY PSEUDOMONAS STRAIN LB400 AND ALCALIGENES EUTROPHUS H850

    EPA Science Inventory

    DNA-DNA hybridization was used to compare the Pseudomonas strain LB400 genes for polychlorinated biphenyl (PCB) degradation with those from seven other PCB-degrading strains. Significant hybridization was detected to the genome of Alcaligenes eutrophus H850, a strain similar to L...

  6. Benzoate degradation via the ortho pathway in Alcaligenes eutrophus is perturbed by succinate.

    PubMed Central

    Ampe, F; Uribelarrea, J L; Aragao, G M; Lindley, N D

    1997-01-01

    During batch growth of Alcaligenes eutrophus on benzoate-plus-succinate mixtures, substrates were simultaneously metabolized, leading to a higher specific growth rate (mu = 0.56 h-1) than when a single substrate was used (mu = 0.51 h-1 for benzoate alone and 0.44 h-1 for succinate alone), without adversely affecting the growth yield (0.57 Cmol/Cmol). Flux distribution analysis revealed that succinate dehydrogenase most probably controls the rate of total succinate consumption (the maximum flux being 9.7 mmol.g-1.h-1). It is postulated that the relative consumption rate of each substrate is in part related to modified levels of gene expression but to a large extent is dependent upon the presence of succinate, end product of the beta-ketoadipate pathway. Indeed, the in vitro beta-ketoadipate-succinyl coenzyme A transferase activity was seen to be inhibited by succinate, a coproduct of the reaction. PMID:9212423

  7. Evidence for novel mechanisms of polychlorinated biphenyl metabolism in Alcaligenes eutrophus H850

    SciTech Connect

    Bedard, D.L.; Haberl, M.L.; May, R.J.; Brennan, M.J.

    1987-05-01

    Previous studies indicated that Alcaligenes eutrophus H850 attacks a different spectrum of polychlorinated biphenyl (PCB) congeners than do most PCB-degrading bacteria and that novel mechanisms of PCB degradation might be involved. To delineate this, the authors have investigated the differences in congener selectivity and metabolite production between H850 and Corynebacterium sp. strain MB1, an organism that apparently degrades PCBs via a 2,3-dioxygenase. H850 exhibited a superior ability to degrade congeners via attack on 2-, 2,4-, 2,5-, or 2,4,5-chlorophenyl rings in PCBs but an inferior ability to degrade congeners via attack on a 4-chlorophenyl ring. Reactivity preferences were also reflected in the products formed from unsymmetrical PCBs; thus, MB1 attacked the 2,3-chlorophenyl ring of 2,3,2',5'-tetrachlorobiphenyl to yield 2,5-dichlorobenzoic acid, while H850 attacked the 2,5-chlorophenyl ring to yield 2,3-dichlorobenzoic acid and a novel metabolite, 2',3'-dichloroacetophenone. Furthermore, H850 oxidized 2,4,5,2',4',5'-hexachlorobiphenyl, a congener with no adjacent unsubstituted carbons, to 2',4',5'-trichloroacetophenone. The atypical congener selectivity pattern and novel metabolites produced suggest that A. eutrophus H850 may degrade certain PCB congeners by a new route beginning with attack by some enzyme other than the usual 2,3-dioxygenase.

  8. Effect of phosphoglycerate mutase deficiency on heterotrophic and autotrophic carbon metabolism of Alcaligenes eutrophus.

    PubMed Central

    Reutz, I; Schobert, P; Bowien, B

    1982-01-01

    Mutants of Alcaligenes eutrophus were isolated on the basis of their inability to grow on succinate as the sole source of carbon and energy. The mutants also failed to grow on other gluconeogenic substrates, including pyruvate, acetate, and citrate. Simultaneously, they had lost their capability for autotrophic growth. The mutants grew, but slower than the wild type, on fructose or gluconate. Growth retardation on gluconate was more pronounced. The mutants lacked phosphoglycerate mutase activity, and spontaneous revertants of normal growth phenotype had regained the activity. The physiological characteristics of the mutants indicate the role of phosphoglycerate mutase in heterotrophic and autotrophic carbon metabolism of A. eutrophus. Although the enzyme is necessary for gluconeogenesis during heterotrophic growth on three- or four-carbon substrates, its glycolytic function is not essential for the catabolism of fructose or gluconate via the Entner-Doudoroff pathway. The enzyme is required during autotrophic growth as a catalyst in the biosynthetic route leading from glycerate 3-phosphate to pyruvate. It is suggested that the mutants accomplish the complete degradation of fructose and gluconate mutase lesion. The catabolically produced triose phosphates are converted to fructose 6-phosphate which is rechanneled into the Entner-Doudoroff pathway. This carbon recycling mechanism operates less effectively in mutant cells growing on gluconate. PMID:6282814

  9. Fluoride, hydrogen, and formate activate ribulosebisphosphate carboxylase formation in Alcaligenes eutrophus.

    PubMed Central

    Im, D S; Friedrich, C G

    1983-01-01

    Alcaligenes eutrophus formed ribulosebisphosphate carboxylase (RuBPCase; EC 4.1.1.39) when grown on fructose. Addition of sodium fluoride (NaF) to fructose minimal medium resulted in a slightly decreased growth rate and a rapid fivefold increase in RuBPCase specific activity. With citrate, a glucogenic carbon source, RuBPCase was also formed, However, addition of NaF to cells growing on citrate resulted in a 50% decrease in RuBPCase specific activity. Among the enzymes of fructose catabolism, NaF (10 mM) inhibited enolase in vitro by 98% and gluconate 6-phosphate dehydratase by 87%. Inhibition of the dehydratase by NaF was insignificant in vivo, as determined with a mutant defective in phosphoglycerate mutase activity. Growth of this mutant on fructose was not inhibited by NaF, and only a minor increase in RuBPCase activity was observed. From these results, we concluded that the product of the enolase reaction, phosphoenolpyruvate, played a role in RuBPCase formation. Addition of H2 or formate to the wild type growing on fructose or citrate did not affect the growth rate but resulted in rapid formation of RuBPCase activity. Mutants impaired in H2 metabolism formed RuBPCase at a low rate during growth on fructose plus H2 but at a high rate on formate. Apparently, additional reductant from H2 or formate metabolism induced RuBPCase formation in A. eutrophus. PMID:6841316

  10. The cbb operons of the facultative chemoautotroph Alcaligenes eutrophus encode phosphoglycolate phosphatase.

    PubMed Central

    Schäferjohann, J; Yoo, J G; Kusian, B; Bowien, B

    1993-01-01

    The two highly homologous cbb operons of Alcaligenes eutrophus H16 that are located on the chromosome and on megaplasmid pHG1 contain genes encoding several enzymes of the Calvin carbon reduction cycle. Sequence analysis of a region from the promoter-distal part revealed two open reading frames, designated cbbT and cbbZ, at equivalent positions within the operons. Comparisons with known sequences suggested cbbT to encode transketolase (TK; EC 2.2.1.1) as an additional enzyme of the cycle. No significant overall sequence similarities were observed for cbbZ. Although both regions exhibited very high nucleotide identities, 93% (cbbZ) and 96% (cbbT), only the chromosomally encoded genes were heterologously expressed to high levels in Escherichia coli. The molecular masses of the observed gene products, CbbT (74 kDa) and CbbZ (24 kDa), correlated well with the values calculated on the basis of the sequence information. TK activities were strongly elevated in E. coli clones expressing cbbT, confirming the identity of the gene. Strains of E. coli harboring the chromosomal cbbZ gene showed high levels of activity of 2-phosphoglycolate phosphatase (PGP; EC 3.1.3.18), a key enzyme of glycolate metabolism in autotrophic organisms that is not present in wild-type E. coli. Derepression of the cbb operons during autotrophic growth resulted in considerably increased levels of TK activity and the appearance of PGP activity in A. eutrophus, although the pHG1-encoded cbbZ gene was apparently not expressed. To our knowledge, this study represents the first cloning and sequencing of a PGP gene from any organism. Images PMID:8226680

  11. Extensive degradation of aroclors and environmentally transformed polychlorinated biphenyls by Alcaligenes eutrophus H850

    SciTech Connect

    Bedard, D.L.; Wagner, R.E.; Brennan, M.J.; Haberl, M.L.; Brown, J.F. Jr.

    1987-05-01

    The authors have isolated and characterized a strain of Alcaligenes eutrophus, designated H850, that rapidly degrades a broad and unusual spectrum of polychlorinated biphenyls (PCBs) including many tetra- and pentachlorobiphenyls and several hexachlorobiphenyls. This strains, which was isolated from PCB-containing dredge spoils by enrichment on biphenyl, grows well on biphenyl and 2-chlorobiphenyl but poorly on 3- and 4-chlorobiphenyl. Capillary gas-chromatographic analysis showed that biphenyl-grown resting cells of H850 degraded the components of 38 of the 41 largest peaks of Aroclor 1242 and 15 of the 44 largest peaks of Aroclor 1254, resulting in an overall reduction of PCBs by 81% for Aroclor 1242 (10 ppm) and 35% for the Aroclor 1254 (10 ppm) in 2 days. Furthermore, H850 metabolized the predominantly ortho-substituted PCB congeners that the resulted from the environmental transformation of the more highly chlorinated congeners of Aroclor 1242 by the upper Hudson River anaerobic meta-, and para-dechlorination agent system. The congener selectivity patterns indicate that a two-step process consisting of anaerobic dechlorination followed by oxidation by H850 can effectively degrade all to congeners in Aroclor 1242 and possibly all those in Aroclor 1254.

  12. Influence of Ammonium Salts and Cane Molasses on Growth of Alcaligenes eutrophus and Production of Polyhydroxybutyrate

    PubMed Central

    Beaulieu, M.; Beaulieu, Y.; Melinard, J.; Pandian, S.; Goulet, J.

    1995-01-01

    The production of polyhydroxybutyrate (PHB) by Alcaligenes eutrophus DSM 545 was studied in a synthetic medium with 3% glucose at pH 7.0 supplemented with several ammonium substrates and cane molasses. Growth was measured by dry cell weight, and the PHB content was measured by gas chromatography. The effects of ammonium sources such as sulfate, nitrate, phosphate, and chloride salts and those of different ammonium sulfate concentrations were evaluated. The best growth and PHB production were obtained with ammonium sulfate; however, NH(inf4)(sup+) concentrations between 0.5 and 1.5 g/liter showed no significant difference. Ammonium sulfate was therefore used as the sole source of NH(inf4)(sup+) for experiments with cane molasses as the growth activator. Optimal growth and PHB production were obtained with 0.3% molasses. However, the yields of biomass (39 to 48%) and PHB (17 to 26%) varied significantly among the different ammonium substrates and cane molasses concentrations. PMID:16534900

  13. Reversible and irreversible effects of nitric oxide on the soluble hydrogenase from Alcaligenes eutrophus H16.

    PubMed Central

    Hyman, M R; Arp, D J

    1988-01-01

    The effects of NO on the H2-oxidizing and diaphorase activities of the soluble hydrogenase from Alcaligenes eutrophus H16 were investigated. With fully activated enzyme, NO (8-150 nM in solution) inhibited H2 oxidation in a time- and NO-concentration-dependent process. Neither H2 nor NAD+ appeared to protect the enzyme against the inhibition. Loss of activity in the absence of an electron acceptor was about 10 times slower than under turnover conditions. The inhibition was partially reversible; approx. 50% of full activity was recoverable after removal of the NO. Recovery was slower in the absence of an electron acceptor than in the presence of H2 plus an electron acceptor. The diaphorase activity of the unactivated hydrogenase was not affected by NO concentrations of up to 200 microM in solution. Exposure of the unactivated hydrogenase to NO irreversibly inhibited the ability of the enzyme to be fully activated for H2-oxidizing activity. The enzyme also lost its ability to respond to H2 during activation in the presence of NADH. The results are interpreted in terms of a complex inhibition that displays elements of (1) a reversible slow-binding inhibition of H2-oxidizing activity, (2) an irreversible effect on H2-oxidizing activity and (30 an irreversible inhibition of a regulatory component of the enzyme. Possible sites of action for NO are discussed. PMID:3052436

  14. Construction and use of a gene bank of Alcaligenes eutrophus in the analysis of ribulose bisphosphate carboxylase genes.

    PubMed Central

    Andersen, K; Wilke-Douglas, M

    1984-01-01

    A gene bank of the DNA from the hydrogen bacterium Alcaligenes eutrophus ATCC 17707 was constructed in the broad host range cosmid vector pVK102 and established in Escherichia coli. A triparental replica plating procedure was developed to allow rapid screening of large numbers of isolated E. coli gene bank clones for complementation of A. eutrophus mutants. This procedure was used to identify hybrid cosmids that complemented CO2 fixation-negative (Cfx-), H2 uptake-negative (Hup-), and auxotrophic A. eutrophus mutants. The average insert DNA size in these hybrid cosmids was 22 kilobases. Nine hybrid cosmids that complemented ribulose bisphosphate carboxylase-negative (RuBPCase-) mutants were characterized. They fell into two distinct groups with respect to their restriction patterns. Complementing subclones from the two groups contained no common restriction fragments, but hybridization experiments indicated a high degree of sequence homology. Restriction fragments corresponding to one of the subclones were absent in total DNA from a cured strain that had lost plasmid pAE7, indigenous to the wild type. It is concluded that functional CO2 fixation genes in the A. eutrophus ATCC 17707 chromosome are reiterated on plasmid pAE7. Images PMID:6090401

  15. Identification of a novel gene, aut, involved in autotrophic growth of Alcaligenes eutrophus.

    PubMed Central

    Freter, A; Bowien, B

    1994-01-01

    The aerobic facultative chemoautotroph Alcaligenes eutrophus was found to possess a novel gene, designated aut, required for both lithoautotrophic (hydrogen plus carbon dioxide) and organoautotrophic (formate) growth (Aut+ phenotype). Insertional mutagenesis by transposon Tn5-Mob localized the gene on a chromosomal 13-kbp EcoRI fragment. Physiological characterization of various Aut- mutants revealed pleiotropic effects caused by the transposon insertion. Heterotrophic growth of the mutants on substrates catabolized via the glycolytic pathway was slower than that of the parent strains, and the colony morphology of the mutants was altered when grown on nutrient agar. The heterotrophic derepression of the cbb operons encoding Calvin cycle enzymes was abolished, although their expression was still inducible in the presence of formate. Apparently, the mutation did not affect the cbb genes directly but impaired the autotrophic growth in a more general manner. The conjugally transferred wild-type EcoRI fragment allowed phenotypic in trans complementation of the mutants. Further subcloning and sequencing identified a single open reading frame (aut) of 495 bp that was sufficient for complementation. The monocistronic aut gene was constitutively transcribed into a 0.65-kb mRNA. However, its expression appeared to be low. Heterologous expression of aut was achieved in Escherichia coli, resulting in overproduction of an 18-kDa protein. Database searches yielded weak partial sequence similarities of the deduced Aut protein sequence to some cytidylyltransferases, but no indication for the exact function of the aut gene was obtained. Hybridizing DNA sequences that might be similar to the aut gene were detected by Southern hybridization in the genome of two other autotrophic bacteria. Images PMID:8071217

  16. Mobilization of selenite by Ralstonia metallidurans CH34.

    PubMed

    Roux, M; Sarret, G; Pignot-Paintrand, I; Fontecave, M; Coves, J

    2001-02-01

    Ralstonia metallidurans CH34 (formerly Alcaligenes eutrophus CH34) is a soil bacterium characteristic of metal-contaminated biotopes, as it is able to grow in the presence of a variety of heavy metals. R. metallidurans CH34 is reported now to resist up to 6 mM selenite and to reduce selenite to elemental red selenium as shown by extended X-ray absorption fine-structure analysis. Growth kinetics analysis suggests an adaptation of the cells to the selenite stress during the lag-phase period. Depending on the culture conditions, the medium can be completely depleted of selenite. Selenium accumulates essentially in the cytoplasm as judged from electron microscopy and energy-dispersive X-ray analysis. Elemental selenium, highly insoluble, represents a nontoxic storage form for the bacterium. The ability of R. metallidurans CH34 to reduce large amounts of selenite may be of interest for bioremediation processes targeting selenite-polluted sites. PMID:11157242

  17. Expression of the Escherichia coli pfkA gene in Alcaligenes eutrophus and in other gram-negative bacteria.

    PubMed

    Steinbüchel, A

    1986-04-01

    The Escherichia coli pfkA gene has been cloned in the non-self-transmissible vector pVK101 from hybrid plasmids obtained from the Clarke and Carbon clone bank, resulting in the plasmids pAS300 and pAS100; the latter plasmid also encoded the E. coli tpi gene. These plasmids were transferred by conjugation to mutants of Alcaligenes eutrophus which are unable to grow on fructose and gluconate due to lack of 2-keto-3-deoxy-6-phosphogluconate aldolase activity. These transconjugants recovered the ability to grow on fructose and harbored pAS100 or pAS300. After growth on fructose, the transconjugants contained phosphofructokinase at specific activities between 0.73 and 1.83 U/mg of protein, indicating that the E. coli pfkA gene is readily expressed in A. eutrophus and that the utilization of fructose occurs via the Embden-Meyerhof pathway instead of the Entner-Doudoroff pathway. In contrast, transconjugants of the wild type of A. eutrophus, which are potentially able to catabolize fructose via both pathways, grew at a decreased rate on fructose and during growth on fructose did not stably maintain pAS100 or pAS300. Indications for a glycolytic futile cycling of fructose 6-phosphate and fructose 1,6-bisphosphate are discussed. Plasmid pA 100 was also transferred to 14 different species of gram-negative bacteria. The pfkA gene was expressed in most of these species. In addition, most transconjugants of these strains and of A. eutrophus exhibited higher specific activities of triosephosphate isomerase than did the corresponding parent strains. PMID:2937774

  18. Metabolic pathway for biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from 4-hydroxybutyrate by Alcaligenes eutrophus.

    PubMed

    Valentin, H E; Zwingmann, G; Schönebaum, A; Steinbüchel, A

    1995-01-15

    Various aerobic Gram-negative bacteria have been examined for their ability to use 4-hydroxybutyrate and 1,4-butanediol as carbon source for growth. Alcaligenes eutrophus strains H16, HF39, PHB-4 and Pseudomonas denitrificans 'Morris' were not able to grow with 1,4-butanediol or 4-hydroxybutyrate. From A. eutrophus HF39 spontaneous primary mutants (e.g. SK4040) were isolated which grew on 4-hydroxybutyrate with doubling times of approximately 3 h. Tn5::mob mutagenesis of mutant SK4040 led to the isolation of two phenotypically different classes of secondary mutants which were affected in the utilization of 4-hydroxybutyrate. Mutants exhibiting the phenotype 4-hydroxybutyrate-negative did not grow with 4-hydroxybutyrate, and mutants exhibiting the phenotype 4-hydroxybutyrate-leaky grew at a significantly lower rate with 4-hydroxybutyrate. Hybridization experiments led to the identification of a 10-kbp genomic EcoRI fragment of A. eutrophus SK4040, which was altered in mutants with the phenotype 4-hydroxybutyrate-negative, and of two 1-kbp and 4.5-kbp genomic EcoRI fragments, which were altered in mutants with the phenotype 4-hydroxybutyrate-leaky. This 10-kbp EcoRI fragment was cloned from A. eutrophus SK4040, and conjugative transfer of a pVDZ'2 hybrid plasmid to A. eutrophus H16 conferred the ability to grow with 4-hydroxybutyrate to the wild type. DNA-sequence analysis of this fragment, enzymic analysis of the wild type and of mutants of A. eutrophus as well as of recombinant strains of Escherichia coli led to the identification of a structural gene encoding for a 4-hydroxybutyrate dehydrogenase which was affected by transposon mutagenesis in five of six available 4-hydroxybutyrate-negative mutants. Enzymic studies also provided evidence for the presence of an active succinate-semialdehyde dehydrogenase in 4-hydroxybutyrate-grown cells. This indicated that degradation of 4-hydroxybutyrate occurs via succinate semialdehyde and succinate and that the latter is

  19. Recombination of a 3-chlorobenzoate catabolic plasmid from Alcaligenes eutrophus NH9 mediated by direct repeat elements.

    PubMed

    Ogawa, N; Miyashita, K

    1995-11-01

    Alcaligenes eutrophus NH9 was isolated from soil. This strain can utilize 3-chlorobenzoate (3-CB) as a sole source of carbon and energy. Most of the 3-CB-negative segregants had lost one of the plasmids present in the parent strain. The genes for catabolism of 3-CB were located within a 9.2-kb SacI fragment of this plasmid (pENH91). The genes were found to hybridize with genes for components of the modified ortho cleavage pathway from Pseudomonas putida. In one of the 3-CB-negative segregants, the plasmid had undergone the deletion of a segment with a size of about 12.5 kb that covered the catabolic genes. The deletion event seemed to be the result of reciprocal recombination between two highly homologous sequences with sizes of 2.5 kb that were present as a direct repeat at the two ends of the region that included the catabolic genes. Nucleotide sequence analysis of homologous fragments revealed a structure that resembled an insertion sequence and relatedness to IS21. During repeated subculturing of NH9 on liquid media with 3-CB, the culture was taken over by a derivative strain (designated NH9A) in which the degradative plasmid carried a duplicate copy of the 12.5-kb region that contained the catabolic genes. The duplication of these genes seemed again to have been mediated by recombination between the direct repeat sequences. PMID:8526487

  20. Identification and molecular characterization of the acetyl coenzyme A synthetase gene (acoE) of Alcaligenes eutrophus.

    PubMed Central

    Priefert, H; Steinbüchel, A

    1992-01-01

    The gene locus acoE, which is involved in the utilization of acetoin in Alcaligenes eutrophus, was identified as the structural gene of an acetyl coenzyme A synthetase (acetate:coenzyme A ligase [AMP forming]; EC 6.2.1.1). This gene was localized on a 3.8-kbp SmaI-EcoRI subfragment of an 8.1-kbp EcoRI restriction fragment (fragment E) that was cloned recently (C. Fründ, H. Priefert, A. Steinbüchel, and H. G. Schlegel, J. Bacteriol. 171:6539-6548, 1989). The 1,983 bp acoE gene encoded a protein with a relative molecular weight of 72,519, and it was preceded by a putative Shine-Dalgarno sequence. A comparison analysis of the amino acid sequence deduced from acoE revealed a high degree of homology to primary structures of acetyl coenzyme A synthetases from other sources (amounting to up to 50.5% identical amino acids). Tn5 insertions in two transposon-induced mutants of A. eutrophus, that were impaired in the catabolism of acetoin were mapped 481 and 1,159 bp downstream from the translational start codon of acoE. The expression of acoE in Escherichia coli led to the formation of an acyl coenzyme A synthetase that accepted acetate as the preferred substrate (100% relative activity) but also reacted with propionate (46%) and hydroxypropionate (87%); fatty acids consisting of four or more carbon atoms were not accepted. In addition, evidence for the presence of a second acyl coenzyme A synthetase was obtained; this enzyme exhibited a different substrate specificity. The latter enzyme is obviously required for the activation of propionate, e.g., during the formation of the storage compound poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) when propionate is provided as the sole carbon source. An analysis of mutants provided evidence that the expression of the uptake protein for propionate depends on the presence of alternate sigma factor sigma 54. Images PMID:1356967

  1. Acetate utilization is inhibited by benzoate in Alcaligenes eutrophus: evidence for transcriptional control of the expression of acoE coding for acetyl coenzyme A synthetase.

    PubMed Central

    Ampe, F; Lindley, N D

    1995-01-01

    During batch growth of Alcaligenes eutrophus on benzoate-acetate mixtures, benzoate was the preferred substrate, with acetate consumption being delayed until the rate of benzoate consumption had diminished. This effect was attributed to a transcriptional control of the synthesis of acetyl coenzyme A (acetyl-CoA) synthetase, an enzyme necessary for the entry of acetate into the central metabolic pathways, rather than to a biochemical modulation of the activity of this enzyme. Analysis of a 2.4-kb mRNA transcript hybridizing with the A. eutrophus acoE gene confirmed this repression effect. In a benzoate-limited chemostat culture, derepression was observed, with no increase in the level of expression following an acetate pulse. Benzoate itself was not the signal triggering the repression of acetyl-CoA synthetase. This role was played by catechol, which transiently accumulated in the medium when high specific rates of benzoate consumption were reached. The lack of rapid inactivation of the functional acetyl-CoA synthetase after synthesis has been stopped enables A. eutrophus to retain the capacity to metabolize acetate for prolonged periods while conserving minimal protein expenditure. PMID:7592330

  2. Fate of Enterobacter cloacae JP120 and Alcaligenes eutrophus AEO106(pRO101) in soil during water stress: effects on culturability and viability.

    PubMed

    Pedersen, J C; Jacobsen, C S

    1993-05-01

    A sandy loam soil near field capacity moisture content (psi = -0.050 MPa) or air dried (psi = -300 MPa) was inoculated with about 3 x 10(7) CFU of Enterobacter cloacae JP120 and Alcaligenes eutrophus AEO106(pRO101) per g and incubated in 40-g portions at 17 degrees C in closed or open Erlenmeyer flasks. In the field-moist soil, selective plating, direct viable counts, and DNA hybridization showed only minor changes in the numbers of E. cloacae and A. eutrophus cells with time (14 days), and the results obtained with the three detection methods generally agreed. In the air-dried soil, the majority of both bacteria were found as intact DNA-carrying cells that were neither culturable nor viable by the methods employed in this study. The numbers of culturable E. cloacae and A. eutrophus cells dropped to 10(5) and 10(2) CFU/g, respectively, 2 h after inoculation. Direct viable counts showed that only about 1% of the cells detected by immunofluorescence microscopy were viable, but a fraction of viable nonculturable cells of both bacteria was present. A. eutrophus did not tolerate desiccation as well as E. cloacae. Only a minor fraction of the two test organisms regained their culturability or viability after rewetting of the air-dried soil; the number of total heterotrophic culturable bacteria, however, increased more than 10-fold and reached 73% of the level found in the field-moist soil at day 14. PMID:8517752

  3. Catechol dioxygenases from Escherichia coli (MhpB) and Alcaligenes eutrophus (MpcI): sequence analysis and biochemical properties of a third family of extradiol dioxygenases.

    PubMed Central

    Spence, E L; Kawamukai, M; Sanvoisin, J; Braven, H; Bugg, T D

    1996-01-01

    The nucleotide sequence of the Escherichia coli mhpB gene, encoding 2,3-dihydroxyphenylpropionate 1,2-dioxygenase, was determined by sequencing of a 3.1-kb fragment of DNA from Kohara phage 139. The inferred amino acid sequence showed 58% sequence identity with the sequence of an extradiol dioxygenase, MpcI, from Alcaligenes eutrophus and 10 to 20% sequence identity with protocatechuate 4,5-dioxygenase from Pseudomonas paucimobilis, with 3,4-dihydroxyphenylacetate 2,3-dioxygenase from E. coli, and with human 3-hydroxyanthranilate dioxygenase. Sequence similarity between the N- and C-terminal halves of this new family of dioxygenases was detected, with conserved histidine residues in the N-terminal domain. A model is proposed to account for the relationship between this family of enzymes and other extradiol dioxygenases. The A. eutrophus MpcI enzyme was expressed in E. coli, purified, and characterized as a protein with a subunit size of 33.8 kDa. Purified MhpB and MpcI showed similar substrate specificities for a range of 3-substituted catechols, and evidence for essential histidine and cysteine residues in both enzymes was obtained. PMID:8752345

  4. CzcR and CzcD, gene products affecting regulation of resistance to cobalt, zinc, and cadmium (czc system) in Alcaligenes eutrophus.

    PubMed

    Nies, D H

    1992-12-01

    The czcR gene, one of the two control genes responsible for induction of resistance to Co2+, Zn2+, and Cd2+ (czc system) in the Alcaligenes eutrophus plasmid pMOL30, was cloned and characterized. The 1,376-bp sequence upstream of the czcCBAD structural genes encodes a 41.4-kDa protein, the czcR gene product, transcribed in the opposite direction of that of the czcCBAD genes. The putative CzcR polypeptide (355 amino acid residues) contains 11 cysteine and 14 histidine residues which might form metal cation-binding sites. A czcC::lacZ reporter gene translational fusion was constructed, inserted into plasmid pMOL30 in A. eutrophus, and expressed under the control of CzcR. Zn2+, Co2+, and Cd2+, as well as Ni2+, Cu2+, Hg2+, and Mn2+ and even Al3+, served as inducers of beta-galactosidase activity. Besides the CzcR protein, the membrane-bound CzcD protein was essential for induction of czc. The CzcR and CzcD proteins display no sequence similarity to two-component regulatory systems of a sensor and a response activator type; however, CzcD has 34% identity with the ZRC-1 protein, which mediates zinc resistance in Saccharomyces cerevisiae (A. Kamizomo, M. Nishizawa, Y. Teranishi, K. Murata, and A. Kimura, Mol. Gen. Genet. 219:161-167, 1989). PMID:1459958

  5. Analysis, cloning, and high-level expression of 2,4-dichlorophenoxyacetate monooxygenase gene tfdA of Alcaligenes eutrophus JMP134.

    PubMed Central

    Streber, W R; Timmis, K N; Zenk, M H

    1987-01-01

    Plasmid pJP4 of Alcaligenes eutrophus JMP134 contains all genes for the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D). Five of these genes, tfdB, tfdC, tfdD, tfdE, and tfdF, have recently been localized and cloned (R. H. Don, A. J. Weightman, H.-J. Knackmuss, and K. N. Timmis, J. Bacteriol. 161:85-90, 1985). Gene tfdA, which codes for the 2,4-D monooxygenase, has now been found by mutagenesis with transposon Tn5. A 3-kilobase fragment of pJP4 cloned in a broad-host-range vector could complement the 2,4-D-negative phenotype of two mutants which lacked 2,4-D monooxygenase activity. The cloned tfdA gene was also transferred to A. eutrophus JMP222, which is a cured derivative of JMP134. The recombinant strain could utilize phenoxyacetic acid as a sole source of carbon and energy. Pseudomonas sp. strain B13, containing the cloned tfdA, was able to degrade phenoxyacetic acid and 4-chlorophenoxyacetic acid. Gene tfdA was subcloned and analyzed by deletions. Expression of 2,4-D monooxygenase in Escherichia coli containing a 1.4-kilobase subfragment was demonstrated by radioisotopic enzyme assay, and a protein of 32,000-dalton molecular mass was detected by labeling experiments. A 2-kilobase subfragment containing tfdA has been sequenced. Sequence analysis revealed an open reading frame of 861 bases which was identified as the coding region of tfdA by insertion mutagenesis. Images PMID:3036764

  6. Measurement of Growth at Very Low Rates ((mu) >= 0), an Approach To Study the Energy Requirement for the Survival of Alcaligenes eutrophus JMP 134

    PubMed Central

    Muller, R. H.; Babel, W.

    1996-01-01

    Alcaligenes eutrophus JMP 134 was grown in a recycling-mode fermenter with 100% biomass retention on 2,4-dichlorophenoxyacetic acid (2,4-D), phenol, and fructose. The growth pattern obtained given a constant supply of substrates exhibited three phases of linear growth on all three substrates. The transition from phase 1 to phase 2, considered to correspond to the onset of stringent (growth) control as indicated by a significant increase in guanosine 5(prm1)-bisphosphate 3(prm1)-bisphosphate (ppGpp), took place at 0.016 h(sup-1) with 2,4-D and at about 0.02 h(sup-1) with phenol and fructose. In the final phase, phase 4, which was achieved after the growth rate on the respective substrates fell below 0.003 to 0.001 h(sup-1), a constant level of biomass was obtained irrespective of further feeding of substrate at the same rate. The yield coefficients decreased by 70 to 80% from phase 1 to phase 3 and were 0 in phase 4. The stationary substrate concentrations s(infmin) in phase 4, calculated from the kinetic constants of the strain, were 1.23, 0.34, and 0.23 (mu)M for 2,4-D, phenol, and fructose, respectively. These figures characterize the minimum stationary substrate concentrations required in a dynamic system to keep A. eutrophus alive. This is caused by a substrate flux which enables growth at a rate >=0 due to the provision of energy to an extent at least satisfying maintenance requirements. According to the constant feed rates of the substrates and the final and stable biomass concentrations, this maintenance energy amounts to 14.4, 4.0, and 2.4 (mu)mol of ATP (middot) mg of dry mass(sup-1) h(sup-1) for 2,4-D, phenol, and fructose, respectively, after correction for the fraction of living cells. The increased energy expenditure in the case of 2,4-D is discussed with respect to uncoupling. PMID:16535205

  7. Growth kinetics, nutrient uptake, and expression of the Alcaligenes eutrophus poly(beta-hydroxybutyrate) synthesis pathway in transgenic maize cell suspension cultures.

    PubMed

    Hahn, J J; Eschenlauer, A C; Narrol, M H; Somers, D A; Srienc, F

    1997-01-01

    Transgenic suspension cultures of Black Mexican Sweet maize (Zea mays L.) expressing the Alcaligenes eutrophus genes encoding enzymes of the pathway for biosynthesis of the biodegradable polymer poly(beta-hydroxybutyrate) (PHB) were established as a tool for investigating metabolic regulation of the PHB pathway in plant cells. Cultures were grown in a 2 L modified mammalian cell bioreactor and in shake flasks. Biomass doubling times for transgenic bioreactor cultures (3.42 +/- 0.76 days) were significantly higher than those for untransformed cultures (2.01 +/- 0.33 days). Transgenic expression of the bacterial enzymes beta-ketothiolase (0.140 units/mg protein) and acetoacetyl-CoA reductase (0.636 units/mg protein) was detected by enzyme assays and immunoblots. However, over the first 2 years of cultivation, reductase activity decreased to 0.120 units/mg proteins. Furthermore, the PHB synthase gene, although initially present, was not detectable after 1.5 years of cultivation in suspension culture. These facts suggest that transgenic expression of PHB pathway genes in plant cells may not be stable. A hydroxybutyrate derivative was detected via gas chromatography even after 4 years of cultivation. Although the method used to prepare samples for gas chromatography cannot directly distinguish among PHB polymer, hydroxybutyryl-CoA (HB-CoA), and hydroxybutyric acid, solvent washing experiments indicated that most or all of the signal was non-polymeric, presumably H-CoA. The synthesis of HB-CoA appeared to be linked to substrate growth limitation, with HB-CoA accumulation increasing dramatically and cell growth ceasing upon depletion of ammonium. This suggests that the PHB synthesis pathway in plants is subject to regulatory mechanisms similar to those in prokaryotic cells. PMID:9265773

  8. Combined nickel-cobalt-cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A.

    PubMed Central

    Schmidt, T; Schlegel, H G

    1994-01-01

    The nickel-cobalt-cadmium resistance genes carried by plasmid pTOM9 of Alcaligenes xylosoxidans 31A are located on a 14.5-kb BamHI fragment. By random Tn5 insertion mutagenesis, the fragment was shown to contain two distinct nickel resistance loci, ncc and nre. The ncc locus causes a high-level combined nickel, cobalt, and cadmium resistance in strain AE104, which is a cured derivative of the metal-resistant bacterium Alcaligenes eutrophus CH34. ncc is not expressed in Escherichia coli. The nre locus causes low-level nickel resistance in both Alcaligenes and E. coli strains. The nucleotide sequence of the ncc locus revealed seven open reading frames designated nccYXHCBAN. The corresponding predicted proteins share strong similarities with proteins encoded by the metal resistance loci cnr (cnrYXHCBA) and czc (czcRCBAD) of A. eutrophus CH34. When different DNA fragments carrying ncc genes were heterologously expressed under the control of the bacteriophage T7 promoter, five protein bands representing NccA (116 kDa), NccB (40 kDa), NccC (46 kDa), NccN (23.5 kDa), and NccX (16.5 kDa) were detected. Images PMID:7961470

  9. Control of acetic acid concentration by pH-stat continuous substrate feeding in heterotrophic culture phase of two-stage cultivation of Alcaligenes eutrophus for production of P(3HB) from CO2, H2, and O2 under non-explosive conditions.

    PubMed

    Sugimoto; Tsuge; Tanaka; Ishizaki

    1999-03-01

    A-two stage culture method of hydrogen-oxidizing bacterium, Alcaligenes eutrophus, is used to produce poly-D-3-hydroxybutyrate, P(3HB) from CO2, O2, and H2 without using a very high oxygen transfer rate while maintaining the O2 concentration in gas phase below 6.9 (v/v)% to prevent detonation of the gas mixture. The two-stage method consists of a heterotrophic culture using fructose as carbon source for exponential cell growth and an autotrophic culture for P(3HB) accumulation. We investigated the use of acetic acid as a cheaper carbon source than fructose for the heterotrophic culture in the two-stage method. However, the acetate concentration in the culture system must be maintained at 1.0 g. dm-3 since its inhibitory effect on the cell growth is very strong. Then, high cell density cultivation of A. eutrophus was investigated by pH-stat continuous feeding of acetic acid to control acetate concentration. As a result, acetate concentration was automatically maintained around 1.0 g. dm-3 by using a feed with a composition in CH3COOH/CH3COONH4/KH2PO4 molar ratio of 5:1:0.084. Cell concentration increased to 48.6 g. dm-3 after 21 h of cultivation. The cell mass grown in the fed-batch culture on acetic acid was useful for P(3HB) production from CO2 in the subsequent autotrophic culture stage. Copyright 1999 John Wiley & Sons, Inc. PMID:10099572

  10. The chlorocatechol-catabolic transposon Tn5707 of Alcaligenes eutrophus NH9, carrying a gene cluster highly homologous to that in the 1,2,4-trichlorobenzene-degrading bacterium Pseudomonas sp. strain P51, confers the ability to grow on 3-chlorobenzoate

    SciTech Connect

    Ogawa, Naoto; Miyashita, Kiyotaka

    1999-02-01

    Alcaligenes eutrophus (Ralstonia eutropha) NH9, isolated in Japan, utilizes 3-chlorobenzoate as its sole source of carbon and energy. Sequencing of the relevant region of plasmid pENH91 from strain NH9 revealed that the genes for the catabolic enzymes were homologous to the genes of the modified ortho-cleavage pathway. The genes from strain NH9 (cbnR-ABCD) showed the highest homology to the tcbR-CDEF genes on plasmid pP51 of the 1,2,4-trichlorobenzene-degrading bacterium Pseudomonas sp. strain P51, which was isolated in The Netherlands. The structure of the operon, including the lengths of open reading frames and intervening sequences, was completely conserved between the cbn and tcb genes. Most nucleotide substitutions were localized within and proximal to the cbnB (tcbD) gene. The difference in the chloroaromatics that the two strains could use as growth substrates seemed to be due to differences in enzymes that convert substrates to chlorocatechols. The restriction map of plasmid pENH91 was clearly different from that of pP51 except in the regions that contained the cbnR-ABCD and tcbR-CDEF genes, respectively, suggesting that the chlorocatechol gene clusters might have been transferred as units. Two homologous sequences, present as direct repeats in both flanking regions of the cbnR-ABCD genes on pENH91, were found to be identical insertion sequences (ISs), designated IS1600, which formed a composite transposon designated Tn5707. Although the tcbR-CDEF genes were not associated with similar ISs, a DNA fragment homologous to IS/1600 was cloned from the chromosome of strain P51. The sequence of the fragment suggested that it might be a remnant of an IS. The two sequences, together with IS1326 and nmoT, formed a distinct cluster on a phylogenetic tree of the IS21 family. The diversity of the sources of these IS or IS-like elements suggests the prevalence of ISs of this type.

  11. The response of Cupriavidus metallidurans CH34 to spaceflight in the international space station.

    PubMed

    Leys, Natalie; Baatout, Sarah; Rosier, Caroline; Dams, Annik; s'Heeren, Catherine; Wattiez, Ruddy; Mergeay, Max

    2009-08-01

    The survival and behavior of Cupriavidus metallidurans strain CH34 were tested in space. In three spaceflight experiments, during three separate visits to the 'International Space Station' (ISS), strain CH34 was grown for 10-12 days at ambient temperature on mineral agar medium. Space- and earth-grown cells were compared post-flight by flow cytometry and using 2D-gel protein analysis. Pre-, in- and post-flight incubation conditions and experiment design had a significant impact on the survival and growth of CH34 in space. In the CH34 cells returning from spaceflight, 16 proteins were identified which were present in higher concentration in cells developed in spaceflight conditions. These proteins were involved in a specific response of CH34 to carbon limitation and oxidative stress, and included an acetone carboxylase subunit, fructose biphosphate aldolase, a DNA protection during starvation protein, chaperone protein, universal stress protein, and alkyl hydroperoxide reductase. The reproducible observation of the over-expression of these same proteins in multiple flight experiments, indicated that the CH34 cells could experience a substrate limitation and oxidative stress in spaceflight where cells and substrates are exposed to lower levels of gravity and higher doses of ionizing radiation. Bacterium C. metallidurans CH34 was able to grow normally under spaceflight conditions with very minor to no effects on cell physiology, but nevertheless specifically altered the expression of a few proteins in response to the environmental changes. PMID:19572210

  12. Cadmium-resistance mechanism in the bacteria Cupriavidus metallidurans CH34 and Pseudomonas putida mt2.

    PubMed

    Shamim, Saba; Rehman, Abdul; Qazi, Mahmood Hussain

    2014-08-01

    Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 were used as cadmium (Cd)-resistant and -sensitive bacteria, respectively, to study Cd uptake, sorption, intracellular accumulation, metallothionein (MT) induction, and bioremediation potential of both isolates. According to this research work, Cd had a stimulatory effect on the growth of CH34 cells (OD578 = 1.43) compared with mt2 cells (OD578 = 0.8). Addition of N,N'-dicyclohexylcarbodiimide (DCCD) and 2,4-dinitrophenol (DNP) along with Cd resulted in more cell growth in mt2 (OD578 = 0.71) compared with CH34 (OD578 = 0.34). DCCD and DNP inhibited this active uptake only in CH34 but not in mt2. Greater Cd interaction with the cell surface was observed in mt2 cells compared with CH34 cells. Intracellular Cd accumulation was interrupted by DCCD and DNP in CH34 (only 1.81 ± 0.04 μg L(-1) at 5 h) but not in mt2 (24.41 ± 0.01 μg L(-1) at 5 h). Intracellular Cd uptake was observed in even killed mt2 cells (7.11 ± 0.05 μg L(-1) at 5 h) compared with CH34 cells (2.50 ± 0.08 μg L(-1) at 5 h). This result showed that the Cd accumulation mechanism in CH34 is ATPase-dependent, whereas in mt2 uptake mechanism is not ATPase-dependent because mt2 ATPase was not inhibited by DCCD and DNP. CH34 removed 93 mg L(-1) of Cd after 8 days from original industrial effluent, which was more than Cd removal by CH34 from distilled water (i.e. 90 mg L(-1) after 8 days). mt2 was able to remove 80 mg L(-1) of Cd after 8 days from original industrial effluent, which was more than Cd removal by mt2 from distilled water (i.e. 77 mg L(-1) after 8 days). Cd did not induce any MT in CH34, but it did so in mt2 (14 kDa), which was thought to be a Cd-resistance mechanism operative in mt2. PMID:24595738

  13. Purification and Characterization of the Acetone Carboxylase of Cupriavidus metallidurans Strain CH34

    PubMed Central

    Rosier, Caroline; Leys, Natalie; Henoumont, Céline; Mergeay, Max

    2012-01-01

    Acetone carboxylase (Acx) is a key enzyme involved in the biodegradation of acetone by bacteria. Except for the Helicobacteraceae family, genome analyses revealed that bacteria that possess an Acx, such as Cupriavidus metallidurans strain CH34, are associated with soil. The Acx of CH34 forms the heterohexameric complex α2β2γ2 and can carboxylate only acetone and 2-butanone in an ATP-dependent reaction to acetoacetate and 3-keto-2-methylbutyrate, respectively. PMID:22492439

  14. Physicochemical surface properties of Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 under cadmium stress.

    PubMed

    Shamim, Saba; Rehman, Abdul

    2014-04-01

    Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 were used as cadmium (Cd) resistant and sensitive bacteria, respectively to study the effect of Cd on physicochemical surface properties which include the study of surface charge and hydrophobicity which are subjected to vary under stress conditions. In this research work, effective concentration 50 (EC50 ) was calculated to exclude the doubt that dead cells were also responding and used as reference point to study the changes in cell surface properties in the presence of Cd. EC50 of C. metallidurans CH34 was found to be 2.5 and 0.25 mM for P. putida mt2. The zeta potential analysis showed that CH34 cells were slightly less unstable than mt2 cells as CH34 cells exhibited -8.5 mV more negative potential than mt2 cells in the presence of Cd in growth medium. Cd made P. putida mt2 surface to behave as intermediate hydrophilic (θw  = 25.32°) while C. metallidurans CH34 as hydrophobic (θw  = 57.26°) at their respective EC50 . Although belonging to the same gram-negative group, both bacteria behaved differently in terms of changes in membrane fluidity. Expression of trans fatty acids was observed in mt2 strain (0.45%) but not in CH34 strain (0%). Similarly, cyclopropane fatty acids were observed more in mt2 strain (0.06-0.14%) but less in CH34 strain (0.01-0.02%). Degree of saturation of fatty acids decreased in P. putida mt2 (36.8-33.75%) while increased in C. metallidurans CH34 (35.6-39.3%). Homeoviscous adaptation is a survival strategy in harsh environments which includes expression of trans fatty acids and cyclo fatty acids in addition to altered degree of saturation. Different bacteria show different approaches to homeoviscous adaptation. PMID:23564035

  15. Purification and characterization of the acetone carboxylase of Cupriavidus metallidurans strain CH34.

    PubMed

    Rosier, Caroline; Leys, Natalie; Henoumont, Céline; Mergeay, Max; Wattiez, Ruddy

    2012-06-01

    Acetone carboxylase (Acx) is a key enzyme involved in the biodegradation of acetone by bacteria. Except for the Helicobacteraceae family, genome analyses revealed that bacteria that possess an Acx, such as Cupriavidus metallidurans strain CH34, are associated with soil. The Acx of CH34 forms the heterohexameric complex α(2)β(2)γ(2) and can carboxylate only acetone and 2-butanone in an ATP-dependent reaction to acetoacetate and 3-keto-2-methylbutyrate, respectively. PMID:22492439

  16. Insertion sequence elements in Cupriavidus metallidurans CH34: distribution and role in adaptation.

    PubMed

    Mijnendonckx, Kristel; Provoost, Ann; Monsieurs, Pieter; Leys, Natalie; Mergeay, Max; Mahillon, Jacques; Van Houdt, Rob

    2011-05-01

    Cupriavidus metallidurans CH34 is a β-proteobacterium well equipped to cope with harsh environmental conditions such as heavy metal pollution. The strain carries two megaplasmids specialized in the response to heavy metals and a considerable number of genomic islands, transposons and insertion sequence (IS) elements. The latter were characterized in detail in this study, which revealed nine new IS elements totaling to 21 distinct IS elements from 10 different IS families and reaching a total of 57 intact IS copies in CH34. Analysis of all fully sequenced bacterial genomes revealed that relatives of these IS elements were mostly found in the Burkholderiaceae family (β-proteobacteria) to which C. metallidurans belongs. Three IS elements were 100% conserved in other bacteria suggesting recent interaction and horizontal transfer between these strains. In addition, a number of these IS elements were associated with genomic islands, gene inactivation or rearrangements that alter the autotrophic growth capacities of CH34. The latter rearrangements gave the first molecular evidence for the mutator phenotype that is characteristic for various C. metallidurans strains. Furthermore, differential expression of some IS elements (or adjacent genes in the same strand orientation) was found under heavy metal stress, an environmental stress to which C. metallidurans CH34 is well adapted. These observations indicate that these IS elements play an active role in C. metallidurans CH34 lifestyle, including its metabolic potential and adaptation under selective pressure. PMID:21185859

  17. Soil solid phases effects on the proteomic analysis of Cupriavidus metallidurans CH34

    SciTech Connect

    Giagnoni L.; Taghavi S.; Magherini, F.; Landi, L.; van der Lelie, D.; Puglia, M.; Bianchi, L.; Bini, L.; Nannipieri, P.; Renella, G.; Modesti, A.

    2012-05-01

    Cupriavidus metallidurans CH34 is a completely sequenced soil-borne beta-proteobacterium with known genome and proteome. Comparative 2-D electrophoresis and protein mass spectrometry were used to compare the proteome of C. metallidurans CH34 from liquid culture and after incubation for 1, 3, and 12 days in microcosms containing quartz sand, kaolinite, montmorillonite, or an artificial soil. Results showed that proteome from liquid culture was similar to CH34 proteins extracted from sand and kaolinite, whereas the proteins extracted from artificial soil differed significantly and no proteins were detected from C. metallidurans CH34 incubated in the montmorillonite microcosms. Protein recovery decreased on prolonging incubation time in all microcosms. Mass spectrometry identification showed that the trend of lower recovery upon incubation time was independent on the putative function of protein. These results suggest that the soil solid phase influences the protein recovery and soil proteomic analysis and that distinction between protein recovery and protein expression in soil will be a challenging for soil proteomic researchers.

  18. Alcaligenes faecalis rhinotracheitis in Manitoba turkeys.

    PubMed

    Boycott, B R; Wyman, H R; Wong, F C

    1984-01-01

    An outbreak of alcaligenes rhinotracheitis occurred on one premises housing five turkey flocks totaling 25,000 poults. Prominent findings were severe respiratory difficulty resulting from excess mucus in the nasopharynx, lachrimation, and tracheal collapse. Sinus and tracheal cultures consistently yielded Alcaligenes faecalis. An adenovirus was isolated and four flocks became positive for CELO virus by agar-gel-precipitin (AGP) tests. Mortality by flocks ranged from 4% to 48%. Treatment was unsuccessful and appeared to increase the mortality rate. The course of the disease was about 6 weeks, and recovered turkeys were marketed 1 week later than the usual date. PMID:6525132

  19. ArsR arsenic-resistance regulatory protein from Cupriavidus metallidurans CH34.

    PubMed

    Zhang, Yian-Biao; Monchy, Sébastien; Greenberg, Bill; Mergeay, Max; Gang, Oleg; Taghavi, Safiyh; van der Lelie, Daniel

    2009-08-01

    The Cupriavidus metallidurans CH34 arsR gene, which is part of the arsRIC(2)BC(1)HP operon, and its putative arsenic-resistance regulatory protein were identified and characterized. The arsenic-induced transcriptome of C. metallidurans CH34 showed that the genes most upregulated in the presence of arsenate were all located within the ars operon, with none of the other numerous heavy metal resistance systems present in CH34 being induced. A transcriptional fusion between the luxCDABE operon and the arsR promoter/operator (P/O) region was used to confirm the in vivo induction of the ars operon by arsenite and arsenate. The arsR gene was cloned into expression vectors allowing for the overexpression of the ArsR protein as either his-tagged or untagged protein. The ability of the purified ArsR proteins to bind to the ars P/O region was analyzed in vitro by gel mobility shift assays. ArsR showed an affinity almost exclusively to its own ars P/O region. Dissociation of ArsR and its P/O region was metal dependent, and based on decreasing degrees of dissociation three groups of heavy metals could be distinguished: As(III), Bi(III), Co(II), Cu(II), Ni(II); Cd(II); Pb(II) and Zn(II), while no dissociation was observed in the presence of As(V). PMID:19238575

  20. ArsR arsenic-resistance regulatory protein from Cupriavidus metallidurans CH34

    SciTech Connect

    Zhang, Y.; van der Lelie, D.; Monchy, S.; Greenberg, B.; Gang, O.; Taghavi, S.

    2009-08-01

    The Cupriavidus metallidurans CH34 arsR gene, which is part of the arsRIC{sub 2}BC{sub 1}HP operon, and its putative arsenic-resistance regulatory protein were identified and characterized. The arsenic-induced transcriptome of C. metallidurans CH34 showed that the genes most upregulated in the presence of arsenate were all located within the ars operon, with none of the other numerous heavy metal resistance systems present in CH34 being induced. A transcriptional fusion between the luxCDABE operon and the arsR promoter/operator (P/O) region was used to confirm the in vivo induction of the ars operon by arsenite and arsenate. The arsR gene was cloned into expression vectors allowing for the overexpression of the ArsR protein as either his-tagged or untagged protein. The ability of the purified ArsR proteins to bind to the ars P/O region was analyzed in vitro by gel mobility shift assays. ArsR showed an affinity almost exclusively to its own ars P/O region. Dissociation of ArsR and its P/O region was metal dependent, and based on decreasing degrees of dissociation three groups of heavy metals could be distinguished: As(III), Bi(III), Co(II), Cu(II), Ni(II); Cd(II); Pb(II) and Zn(II), while no dissociation was observed in the presence of As(V).

  1. The stress response of bacterium Cupriavidus metallidurans CH34 into simulated microgravity

    NASA Astrophysics Data System (ADS)

    van Houdt, Rob; de Boever, Patrick; Coninx, Ilse; Janssen, Ann; Benotmane, Rafi; Leys, Natalie; Mergeay, Max

    The stress response of bacterium Cupriavidus metallidurans CH34 into simulated microgravity R. Van Houdt, P. De Boever, I. Coninx, A. Janssen, M.A. Benotmane, N. Leys, and M. Mergeay Expertise group for Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400 Mol, Belgium. We have studied the response of Cupriavidus (formerly Ralstonia) metallidurans CH34 to simulated microgravity by culturing in a Rotating Wall Vessel (RWV) bioreactor. This bioreactor technology generates a unique Low-Shear Modeled Microgravity (LSMMG) environment and is exploited as analogue for in vivo medical and space environments. Cupriavidus and Ralstonia species are relevant model bacteria since they are often isolated from the floor, air and surfaces of spacecraft assembly rooms and not only contaminate the clean rooms but have also been found prior-to-flight on surfaces of space robots such as the Mars Odyssey Orbiter and even in-flight in ISS cooling water and Shuttle drinking water. In addition, C. metallidurans CH34 is also being used in fundamental space flight experiments aimed to gain a better insight in the bacterial adaptation to space. The first objective was to elucidate the stress response of C. metallidurans CH34 grown in LSMMG compared to a normal gravity control. Transcriptomic analysis revealed that a significant part of the heat shock response was induced in LSMMG. Transcription of d naK, encoding the major heat-shock protein and a prokaryotic homologue of the eukaryotic Hsp70 protein, was induced 6.4 fold in LSMMG. DnaK is assisted by partner chaperones DnaJ and GrpE for which transcription respectively were induced 2.0 and 2.6 fold. Transcription of other chaperones known to belong to the heat shock response was also induced in LSMMG: hslV and hsl U, encoding the HslVU protease, were induced respectively 5.5 and 3.4 fold; htpG, encoding a Hsp90 family chaperone, was induced 4.6 fold

  2. Differentiation of Alcaligenes-like bacteria of avian origin and comparison with Alcaligenes spp. reference strains.

    PubMed

    Berkhoff, H A; Riddle, G D

    1984-04-01

    Although standard biochemical tests used for the identification of Alcaligenes spp. revealed only minor differences, the oxidative low-peptone technique clearly differentiated between Alcaligenes-like bacteria of avian origin and Alcaligenes spp. reference strains. Based on their colonial morphology, biochemical profiles, and hemagglutination, the Alcaligenes-like bacteria of avian origin were further divided into two subgroups, C1-T1 and C2-T2. Colonies of subgroup C1-T1 were nondescript, round, raised, glistening, translucent, greyish, and about 2 mm in diameter. Colonies of subgroup C2-T2 were off-white, flat, dry and wrinkled, generally round, and resembled tiny lily pads. Biochemical profiles by the oxidative low-peptone method showed the C1-T1 subgroup alkalinizing only three substrates (citrate, acetate, and succinate), whereas the C2-T2 subgroup alkalinized eight substrates (citrate, acetate, butyrate, itaconate, malonate, saccharate, succinate, and M-tartrate). Subgroup C1-T1 agglutinated human, chicken, and turkey erythrocytes, whereas subgroup C2-T2 did not. The recognition of these two subgroups within the Alcaligenes-like bacteria of avian origin is important, since it may explain the differences seen in pathogenicity among isolates. PMID:6715517

  3. Degradation of indole by Alcaligenes spec.

    PubMed

    Claus, G; Kutzner, H J

    1983-01-01

    Alcaligenes spec. strain In 3 was isolated from an enrichment culture with indole inoculated with activated sludge. The organism was able to grow with indole as sole source of carbon and nitrogen. During growth with this substrate indigo and anthranilate accumulated in the culture broth. By measurement of the oxidation of intermediates (O(2)-uptake) and determination of the activity of enzymes responsible for ring cleavage the following pathway for indole degradation could be established: indole → indoxyl → isatin → anthranilate → gentisate → maleyl pyruvate → fumaryl pyruvate → fumarate + pyruvate. - Alcaligenes spec. strain In 3 was also able to grow with various aromatic compounds; these were degraded by ortho- or meta-cleavage or via the gentisinic acid pathway. PMID:23194589

  4. Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network.

    PubMed

    Monsieurs, Pieter; Moors, Hugo; Van Houdt, Rob; Janssen, Paul J; Janssen, Ann; Coninx, Ilse; Mergeay, Max; Leys, Natalie

    2011-12-01

    The soil bacterium Cupriavidus metallidurans CH34 contains a high number of heavy metal resistance genes making it an interesting model organism to study microbial responses to heavy metals. In this study the transcriptional response of strain CH34 was measured when challenged to sub-lethal concentrations of various essential or toxic metals. Based on the global transcriptional responses for each challenge and the overlap in upregulated genes between different metal responses, the sixteen metals were clustered in three groups. In addition, the transcriptional response of already known metal resistance genes was assessed, and new metal response gene clusters were identified. The majority of the studied metal response loci showed similar expression profiles when cells were exposed to different metals, suggesting complex interplay at transcriptional level between the different metal responses. The pronounced redundancy of these metal resistant regions-as illustrated by the large number of paralogous genes-combined with the phylogenetic distribution of these metal response regions within either evolutionary related or other metal resistant bacteria, provides important insights on the recent evolutionary forces shaping this naturally soil-dwelling bacterium into a highly metal-resistant strain well adapted to harsh and anthropogenic environments. PMID:21706166

  5. Antioxidative enzyme profiling and biosorption ability of Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 under cadmium stress.

    PubMed

    Shamim, Saba; Rehman, Abdul

    2015-03-01

    Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 were used as cadmium (Cd)-resistant and -sensitive bacteria, respectively, to study their biosorption ability and their antioxidative enzymes. The minimal inhibitory concentration of C. metallidurans CH34 for Cd was found to be 30 mM, and for P. putida mt2 it was 1.25 mM. The tube dilution method revealed the heavy-metal resistance pattern of C. metallidurans CH34 as Ni(2+) (10 mM)>Zn(2+) (4 mM)>Cu(2+) (2 mM)>Hg(2+) (1 mM)>Cr(2+) (1 mM)>Pb(2+) (0 mM), whereas P. putida mt2 was only resistant to Zn(2+) (1 mM). Under Cd stress, the induction of GSH was higher in C. metallidurans CH34 (0.359 ± 0.010 mM g(-1)  FW) than in P. putida mt2 (0.286 ± 0.005 mM g(-1)  FW). Glutathione reductase was more highly expressed in the mt2 strain, in contrast to non-protein thiols and peroxidase. Unlike dead bacterial cells, live cells of both bacteria showed significant Cd biosorption, i.e. more than 80% at 48 h. C. metallidurans CH34 used only catalase, whereas P. putida mt2 used superoxide dismutase and ascorbate peroxidase to combat Cd stress. This study investigated the Cd biosorption ability and enzymes involved in the Cd detoxification mechanisms of C. metallidurans CH34 and P. putida mt2. PMID:23832807

  6. Uranium interaction with two multi-resistant environmental bacteria: Cupriavidus metallidurans CH34 and Rhodopseudomonas palustris.

    PubMed

    Llorens, Isabelle; Untereiner, Guillaume; Jaillard, Danielle; Gouget, Barbara; Chapon, Virginie; Carriere, Marie

    2012-01-01

    Depending on speciation, U environmental contamination may be spread through the environment or inversely restrained to a limited area. Induction of U precipitation via biogenic or non-biogenic processes would reduce the dissemination of U contamination. To this aim U oxidation/reduction processes triggered by bacteria are presently intensively studied. Using X-ray absorption analysis, we describe in the present article the ability of Cupriavidus metallidurans CH34 and Rhodopseudomonas palustris, highly resistant to a variety of metals and metalloids or to organic pollutants, to withstand high concentrations of U and to immobilize it either through biosorption or through reduction to non-uraninite U(IV)-phosphate or U(IV)-carboxylate compounds. These bacterial strains are thus good candidates for U bioremediation strategies, particularly in the context of multi-pollutant or mixed-waste contaminations. PMID:23251623

  7. CzcE from Cupriavidus metallidurans CH34 is a copper-binding protein

    SciTech Connect

    Zoropogui, Anthony; Gambarelli, Serge; Coves, Jacques

    2008-01-25

    CzcE is encoded by the most distal gene of the czc determinant that allows Cupriavidus metallidurans CH34 to modulate its internal concentrations of cobalt, zinc and cadmium by regulation of the expression of the efflux pump CzcCBA. We have overproduced and purified CzcE. CzcE is a periplasm-located dimeric protein able to bind specifically 4 Cu-equivalent per dimer. Spectrophotometry and EPR are indicative of type II copper with typical d-d transitions. Re-oxidation of fully reduced CzcE led to the formation of an air stable semi-reduced form binding both 2 Cu(I) and 2 Cu(II) ions. The spectroscopic characteristics of the semi-reduced form are different of those of the oxidized one, suggesting a change in the environment of Cu(II)

  8. Uranium Interaction with Two Multi-Resistant Environmental Bacteria: Cupriavidus metallidurans CH34 and Rhodopseudomonas palustris

    PubMed Central

    Llorens, Isabelle; Untereiner, Guillaume; Jaillard, Danielle; Gouget, Barbara; Chapon, Virginie; Carriere, Marie

    2012-01-01

    Depending on speciation, U environmental contamination may be spread through the environment or inversely restrained to a limited area. Induction of U precipitation via biogenic or non-biogenic processes would reduce the dissemination of U contamination. To this aim U oxidation/reduction processes triggered by bacteria are presently intensively studied. Using X-ray absorption analysis, we describe in the present article the ability of Cupriavidus metallidurans CH34 and Rhodopseudomonas palustris, highly resistant to a variety of metals and metalloids or to organic pollutants, to withstand high concentrations of U and to immobilize it either through biosorption or through reduction to non-uraninite U(IV)-phosphate or U(IV)-carboxylate compounds. These bacterial strains are thus good candidates for U bioremediation strategies, particularly in the context of multi-pollutant or mixed-waste contaminations. PMID:23251623

  9. Synthetic phytochelatin surface display in Cupriavidus metallidurans CH34 for enhanced metals bioremediation.

    PubMed

    Biondo, Ronaldo; da Silva, Felipe Almeida; Vicente, Elisabete José; Souza Sarkis, Jorge Eduardo; Schenberg, Ana Clara Guerrini

    2012-08-01

    This work describes the effects of the cell surface display of a synthetic phytochelatin in the highly metal tolerant bacterium Cupriavidus metallidurans CH34. The EC20sp synthetic phytochelatin gene was fused between the coding sequences of the signal peptide (SS) and of the autotransporter β-domain of the Neisseria gonorrhoeae IgA protease precursor (IgAβ), which successfully targeted the hybrid protein toward the C. metallidurans outer membrane. The expression of the SS-EC20sp-IgAβ gene fusion was driven by a modified version of the Bacillus subtilis mrgA promoter showing high level basal gene expression that is further enhanced by metal presence in C. metallidurans. The recombinant strain showed increased ability to immobilize Pb(2+), Zn(2+), Cu(2+), Cd(2+), Mn(2+), and Ni(2+) ions from the external medium when compared to the control strain. To ensure plasmid stability and biological containment, the MOB region of the plasmid was replaced by the E. coli hok/sok coding sequence. PMID:22794785

  10. The Complete Genome Sequence of Cupriavidus metallidurans Strain CH34, a Master Survivalist in Harsh and Antropogenic Environments

    SciTech Connect

    Janssen, P.J.; van der Lelie, D.; Van Houdt, R.; Moors, H.; Monsieurs, P.; Morin, N.; Michaux, A.; Benotmane, M. A.; Leys, N.; Vallaeys, T.; Lapidus, A.; Monchy, S.; Medique, C.; Taghavi, S.; McCorkle, S.; Dunn, J.; Mergeay, M.

    2010-05-01

    Many bacteria in the environment have adapted to the presence of toxic heavy metals. Over the last 30 years, this heavy metal tolerance was the subject of extensive research. The bacterium Cupriavidus metallidurans strain CH34, originally isolated by us in 1976 from a metal processing factory, is considered a major model organism in this field because it withstands milli-molar range concentrations of over 20 different heavy metal ions. This tolerance is mostly achieved by rapid ion efflux but also by metal-complexation and -reduction. We present here the full genome sequence of strain CH34 and the manual annotation of all its genes. The genome of C. metallidurans CH34 is composed of two large circular chromosomes CHR1 and CHR2 of, respectively, 3,928,089 bp and 2,580,084 bp, and two megaplasmids pMOL28 and pMOL30 of, respectively, 171,459 bp and 233,720 bp in size. At least 25 loci for heavy-metal resistance (HMR) are distributed over the four replicons. Approximately 67% of the 6,717 coding sequences (CDSs) present in the CH34 genome could be assigned a putative function, and 9.1% (611 genes) appear to be unique to this strain. One out of five proteins is associated with either transport or transcription while the relay of environmental stimuli is governed by more than 600 signal transduction systems. The CH34 genome is most similar to the genomes of other Cupriavidus strains by correspondence between the respective CHR1 replicons but also displays similarity to the genomes of more distantly related species as a result of gene transfer and through the presence of large genomic islands. The presence of at least 57 IS elements and 19 transposons and the ability to take in and express foreign genes indicates a very dynamic and complex genome shaped by evolutionary forces. The genome data show that C. metallidurans CH34 is particularly well equipped to live in extreme conditions and anthropogenic environments that are rich in metals.

  11. The Complete Genome Sequence of Cupriavidus metallidurans Strain CH34, a Master Survivalist in Harsh and Anthropogenic Environments

    PubMed Central

    Janssen, Paul J.; Van Houdt, Rob; Moors, Hugo; Monsieurs, Pieter; Morin, Nicolas; Michaux, Arlette; Benotmane, Mohammed A.; Leys, Natalie; Vallaeys, Tatiana; Lapidus, Alla; Monchy, Sébastien; Médigue, Claudine; Taghavi, Safiyh; McCorkle, Sean; Dunn, John; van der Lelie, Daniël; Mergeay, Max

    2010-01-01

    Many bacteria in the environment have adapted to the presence of toxic heavy metals. Over the last 30 years, this heavy metal tolerance was the subject of extensive research. The bacterium Cupriavidus metallidurans strain CH34, originally isolated by us in 1976 from a metal processing factory, is considered a major model organism in this field because it withstands milli-molar range concentrations of over 20 different heavy metal ions. This tolerance is mostly achieved by rapid ion efflux but also by metal-complexation and -reduction. We present here the full genome sequence of strain CH34 and the manual annotation of all its genes. The genome of C. metallidurans CH34 is composed of two large circular chromosomes CHR1 and CHR2 of, respectively, 3,928,089 bp and 2,580,084 bp, and two megaplasmids pMOL28 and pMOL30 of, respectively, 171,459 bp and 233,720 bp in size. At least 25 loci for heavy-metal resistance (HMR) are distributed over the four replicons. Approximately 67% of the 6,717 coding sequences (CDSs) present in the CH34 genome could be assigned a putative function, and 9.1% (611 genes) appear to be unique to this strain. One out of five proteins is associated with either transport or transcription while the relay of environmental stimuli is governed by more than 600 signal transduction systems. The CH34 genome is most similar to the genomes of other Cupriavidus strains by correspondence between the respective CHR1 replicons but also displays similarity to the genomes of more distantly related species as a result of gene transfer and through the presence of large genomic islands. The presence of at least 57 IS elements and 19 transposons and the ability to take in and express foreign genes indicates a very dynamic and complex genome shaped by evolutionary forces. The genome data show that C. metallidurans CH34 is particularly well equipped to live in extreme conditions and anthropogenic environments that are rich in metals. PMID:20463976

  12. The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments.

    PubMed

    Janssen, Paul J; Van Houdt, Rob; Moors, Hugo; Monsieurs, Pieter; Morin, Nicolas; Michaux, Arlette; Benotmane, Mohammed A; Leys, Natalie; Vallaeys, Tatiana; Lapidus, Alla; Monchy, Sébastien; Médigue, Claudine; Taghavi, Safiyh; McCorkle, Sean; Dunn, John; van der Lelie, Daniël; Mergeay, Max

    2010-01-01

    Many bacteria in the environment have adapted to the presence of toxic heavy metals. Over the last 30 years, this heavy metal tolerance was the subject of extensive research. The bacterium Cupriavidus metallidurans strain CH34, originally isolated by us in 1976 from a metal processing factory, is considered a major model organism in this field because it withstands milli-molar range concentrations of over 20 different heavy metal ions. This tolerance is mostly achieved by rapid ion efflux but also by metal-complexation and -reduction. We present here the full genome sequence of strain CH34 and the manual annotation of all its genes. The genome of C. metallidurans CH34 is composed of two large circular chromosomes CHR1 and CHR2 of, respectively, 3,928,089 bp and 2,580,084 bp, and two megaplasmids pMOL28 and pMOL30 of, respectively, 171,459 bp and 233,720 bp in size. At least 25 loci for heavy-metal resistance (HMR) are distributed over the four replicons. Approximately 67% of the 6,717 coding sequences (CDSs) present in the CH34 genome could be assigned a putative function, and 9.1% (611 genes) appear to be unique to this strain. One out of five proteins is associated with either transport or transcription while the relay of environmental stimuli is governed by more than 600 signal transduction systems. The CH34 genome is most similar to the genomes of other Cupriavidus strains by correspondence between the respective CHR1 replicons but also displays similarity to the genomes of more distantly related species as a result of gene transfer and through the presence of large genomic islands. The presence of at least 57 IS elements and 19 transposons and the ability to take in and express foreign genes indicates a very dynamic and complex genome shaped by evolutionary forces. The genome data show that C. metallidurans CH34 is particularly well equipped to live in extreme conditions and anthropogenic environments that are rich in metals. PMID:20463976

  13. Overproduction, purification and preliminary X-ray diffraction analysis of CzcE from Cupriavidus metallidurans CH34

    SciTech Connect

    Pompidor, Guillaume; Zoropogui, Anthony; Kahn, Richard; Covès, Jacques

    2007-10-01

    Crystals of the mature form of CzcE from C. metallidurans CH34 were obtained which diffracted synchrotron radiation to 1.96 Å. CzcE is encoded by the czc determinant that allows Cupriavidus metallidurans CH34 to modulate its internal concentrations of cobalt, zinc and cadmium. This periplasmic protein was overproduced in its mature form in Escherichia coli and purified in two steps. After preliminary screening of crystallization conditions using a robot, well diffracting crystals were obtained using the hanging-drop vapour-diffusion method. Crystals diffracted to 1.96 Å using synchrotron radiation. They belonged to the monoclinic space group C2, with unit-cell parameters a = 105.54, b = 29.68, c = 71.10 Å. The asymmetric unit is expected to contain a dimer, in agreement with the quaternary structure deduced from gel-filtration experiments.

  14. Response of the bacterium Cupriavidus metallidurans CH34 to space flight conditions.

    NASA Astrophysics Data System (ADS)

    Leys, N.; Wattiez, R.; Rosier, C.; de Boever, P.; Baatout, S.; Mergeay, M.

    Background When man goes to space inevitably microbes hitchhike along some needed others unwanted Knowledge is required to understand the behaviour of bacteria in spaceflight conditions Aim The aim of this work was to investigate the physiological and metabolic response and adaptation of the environmental model bacterium Cupriavidus metallidurans CH34 to space flight conditions The strain was grown in the International Space Station ISS during 2 separated Soyuz missions MESSAGE 1 2 experiments and in the Rotating Wall Vessel RWV mimicking microgravity on ground Results It was clear that pre- in- and post-flight incubation conditions are critical in spaceflight experiments and should be controlled monitored and taken into account as much as possible when comparing space flight with ground grown cells Distinct changes in physiology and metabolism were observed in the cell cultures grown in space flight when compared to correct ground control cultures A total of 12 proteins over-produced in space conditions were identified and divided in functional groups One group are proteins that protect the cell against physical damage such as heat-shock GrpE UspA and oxidative agents AhpC TrxB DpsA Another group of proteins is probably involved in a metabolic pathway to produce the energy-rich Acetyl-CoA Ald ExaC LpsJ CaiA with the help of a de carboxylase AcxABC Higher concentrations of this group of proteins were also detected in cells grown with acetone or 2-propanol as

  15. Cloning and characterization of an epoxide hydrolase from Cupriavidus metallidurans-CH34.

    PubMed

    Kumar, Ranjai; Wani, Shadil Ibrahim; Chauhan, Nar Singh; Sharma, Rakesh; Sareen, Dipti

    2011-09-01

    A putative epoxide hydrolase-encoding gene was identified from the genome sequence of Cupriavidus metallidurans CH34. The gene was cloned and overexpressed in Escherichia coli with His(6)-tag at its N-terminus. The epoxide hydrolase (CMEH) was purified to near homogeneity and was found to be a homodimer, with subunit molecular weight of 36 kDa. The CMEH had broad substrate specificity as it could hydrolyze 13 epoxides, out of 15 substrates tested. CMEH had high specific activity with 1,2-epoxyoctane, 1,2-epoxyhexane, styrene oxide (SO) and was also found to be active with meso-epoxides. The enzyme had optimum pH and temperature of 7.5 and 37°C respectively, with racemic SO. Biotransformation of 80 mM SO with recombinant whole E. coli cells expressing CMEH led to 56% ee(P) of (R)-diol with 77.23% conversion in 30 min. The enzyme could hydrolyze (R)-SO, ∼2-fold faster than (S)-SO, though it accepted both (R)- and (S)-SO with similar affinity as K(m)(R) and K(m)(S) of CMEH were 2.05±0.42 and 2.11±0.16 mM, respectively. However, the k(cat)(R) and k(cat)(S) for the two enantiomers of SO were 4.80 and 3.34 s(-1), respectively. The wide substrate spectrum exhibited by CMEH combined with the fast conversion rate makes it a robust biocatalyst for industrial use. Regioselectivity studies with enantiopure (R)- and (S)-SO revealed that with slightly altered regioselectivity, CMEH has a high potential to synthesize an enantiopure (R)-PED, through an enantioconvergent hydrolytic process. PMID:21515382

  16. The interactions of the bacterium Cupriavidus metallidurans CH34 with basalt rock, on Earth and in Space

    NASA Astrophysics Data System (ADS)

    Byloos, Bo; Van Houdt, Rob; Leys, Natalie; Ilyin, Vyacheslav; Nicholson, Natasha; Childers, Delma; Cockell, Charles; Boon, Nico

    2016-07-01

    Microbe-mineral interactions have become of interest for space exploration as microorganisms can biomine elements from extra-terrestrial materials, which could be used as nutrients in a life support system. This research is aimed at identifying the molecular mechanisms behind the interaction of Cupriavidus metallidurans CH34 with basalt, a lunar-type rock, and determining the influence of space flight conditions on this interaction. Survival and physiology of CH34 was monitored, with and without basalt, in mineral water over several months by flow cytometry, plate counts, ICP-MS, microscopy and proteomics. To study the influence of space conditions, a flight experiment on board the Russian FOTON-M4 capsule was performed. The results obtained from from water survival experiments on ground showed that CH34 was able to survive in mineral water, in the absence and presence of basalt, for several months. The total cell concentration remained stable but the cultivable fraction dropped to 10%, indicating a transition to a more dormant state. In the presence of basalt, this transition was less pronounced and cultivability was enhanced. In addition, with basalt, CH34 attached to the rock surface and formed a biofilm. The space flight experiment indicated more viable and cultivable cells compared to the ground experiment, both in the absence and presence of basalt, indicating a positive effect of space flight on survival. Chemical analysis indicated that basalt leaches out elements which may contribute to a positive effect of basalt on survival. Basalt may thus enhance survival and viability of CH34 both in ground and space flight experimental conditions. This study hopefully can contribute to a better understanding of microbe-mineral interactions, opening the door to future applications, in space, and on Earth. Acknowledgments: This work is supported by the European Space Agency (ESA-PRODEX) and the Belgian Science Policy (Belspo) through the BIOROCK project. We thank Kai

  17. Size of diffusion pore of Alcaligenes faecalis.

    PubMed

    Ishii, J; Nakae, T

    1988-03-01

    The diffusion pore of the outer membrane of Alcaligenes faecalis was shown to be substantially smaller than the Escherichia coli porin pore. In experiments with intact cells, pentoses and hexoses penetrated into the NaCl-expanded periplasm, whereas saccharides of Mr greater than 342 did not. Cells treated with 0.5 M saccharides of Mr greater than 342 weighed 33 to 38% less than cells treated with isotonic solution, suggesting that these saccharides do not permeate through the outer membrane. The diffusion rates of various solutes through the liposome membranes reconstituted from the Mr-43,000 outer membrane protein showed the following characteristics. (i) The relative diffusion rates of pentoses, hexoses, and methylhexoses appeared to be about 1.0, 0.6, and negligibly small, respectively. (ii) The diffusion rate of glucose appeared to be about 1/10th that with the E. coli B porin. (iii) The diffusion rate of gluconic acid was five to seven times higher than that of glucose. (iv) The diffusion rates of beta-lactam antibiotics appeared to be 40 to less than 10% of those with the E. coli B porin. PMID:2835003

  18. Size of diffusion pore of Alcaligenes faecalis.

    PubMed Central

    Ishii, J; Nakae, T

    1988-01-01

    The diffusion pore of the outer membrane of Alcaligenes faecalis was shown to be substantially smaller than the Escherichia coli porin pore. In experiments with intact cells, pentoses and hexoses penetrated into the NaCl-expanded periplasm, whereas saccharides of Mr greater than 342 did not. Cells treated with 0.5 M saccharides of Mr greater than 342 weighed 33 to 38% less than cells treated with isotonic solution, suggesting that these saccharides do not permeate through the outer membrane. The diffusion rates of various solutes through the liposome membranes reconstituted from the Mr-43,000 outer membrane protein showed the following characteristics. (i) The relative diffusion rates of pentoses, hexoses, and methylhexoses appeared to be about 1.0, 0.6, and negligibly small, respectively. (ii) The diffusion rate of glucose appeared to be about 1/10th that with the E. coli B porin. (iii) The diffusion rate of gluconic acid was five to seven times higher than that of glucose. (iv) The diffusion rates of beta-lactam antibiotics appeared to be 40 to less than 10% of those with the E. coli B porin. Images PMID:2835003

  19. Swimming, swarming, twitching, and chemotactic responses of Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 in the presence of cadmium.

    PubMed

    Shamim, Saba; Rehman, Abdul; Qazi, Mahmood Hussain

    2014-04-01

    To use of microorganisms for bioremediation purposes, the study of their motility behavior toward metals is essential. In the present study, Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 were used as cadmium (Cd)-resistant and -sensitive bacteria, respectively, to evaluate the effects of Cd on their motility behaviors. Potassium morpholinopropane sulfonate (MOPS) buffer was used to observe the motility behavior of both isolates. Movement of mt2 was less in MOPS buffer compared with CH34, likely reflecting the mono-flagellated nature of mt2 and the peritrichous nature of CH34. The swimming, swarming, twitching, and chemotaxis behaviors of mt2 were greater in the presence of glucose than that of Cd. mt2 exhibited negative motility behaviors when exposed to Cd, but the opposite effect was seen in CH34. Cd was found to be a chemorepellent for mt2 but a chemoattractant for CH34, suggesting that CH34 is a potential candidate for metal (Cd) bioremediation. PMID:24306627

  20. Bile acid transformations by Alcaligenes recti.

    PubMed

    Mazumder, I; Mahato, S B

    1993-02-01

    Metabolism of cholic acid, chenodeoxycholic acid, ursodeoxycholic acid, and deoxycholic acid by the grown cells of the bacterium Alcaligenes recti suspended in water was studied. Each isolated metabolite was characterized by the application of various spectroscopic methods. Cholic acid, chenodeoxycholic acid, ursodeoxycholic acid, and deoxycholic acid yielded methylated derivatives 3 alpha-methoxy-7 alpha, 12 alpha-dihydroxy-5 beta-cholanoic acid, 3 alpha-methoxy-7 alpha-hydroxy-5 beta-cholanoic acid, 3 alpha-methoxy-7 beta-hydroxy-5 beta-cholanoic acid, and 3 alpha-methoxy-12 alpha-hydroxy-5 beta-cholanoic acid, respectively. In addition, cholic acid furnished 7 alpha, 12 alpha-dihydroxy-3-oxochol-4-en-24-oic acid; chenodeoxycholic acid gave 7 alpha-hydroxy-3-oxo-5 beta-cholanoic acid and 7 alpha-hydroxy-3-oxochol-4-en-24-oic acid while ursodeoxycholic acid yielded 7 beta-hydroxy-3-oxochol-4-en-24-oic acid and 3-oxochola-4,6-dien-24-oic acid. The formation of various metabolites showed that two competitive enzymic reactions, i.e., selective methylation of the 3 alpha-hydroxy group and dehydrogenation in the A/B rings, were operative. The methylation process was found to be enzymic involving an S-adenosyl-L-methionine (AdoMet)-dependent methyl transferase, and this reaction appeared to be inhibitory to the process of degradation of the ring system. In the other reaction sequence, degradation of the ring system was initiated by dehydrogenation of the 3 alpha-hydroxy group. A 7 beta-dehydratase activity producing the delta 6 double bond was also noticeable in the metabolism of ursodeoxycholic acid. PMID:8484188

  1. Effect of humidity on infection of turkeys with Alcaligenes faecalis.

    PubMed

    Slavik, M F; Skeeles, J K; Beasley, J N; Harris, G C; Roblee, P; Hellwig, D

    1981-01-01

    Turkeys maintained at 75% to 80% relative humidity were more adversely affected by Alcaligenes faecalis infection than turkeys maintained at 20 to 35% relative humidity. Alcaligenes faecalis was reisolated earlier and more often from turkeys maintained at the higher humidity. Clinically, the turkeys maintained at high humidity exhibited both sinusitis and conjunctivitis earlier than the turkeys at low humidity. In both groups, antibody titers as determined by a microagglutination test developed by 2 weeks postinoculation and started to decline after the third week, lymphocytosis was demonstrated at 1 week postinoculation, and a lymphopenia developed at 5 weeks postinoculation. PMID:7337613

  2. Partial characterization of the hemagglutinin of Alcaligenes faecalis.

    PubMed

    Simmons, D G; Rose, L P; Brogden, K A; Rimler, R B

    1984-01-01

    The hemagglutinin of Alcaligenes faecalis was partially characterized. Hemagglutination (HA) was blocked by enzymes inactivating proteins, by heat, and by antisera but not by sugar-blocking substances. Pili were not determined to be a factor in HA activity. There was no connection between virulence and HA activity. PMID:6148928

  3. POSSIBLE USE OF 'ALCALIGENES PARADOXUS' AS A BIOLOGICAL MONITOR

    EPA Science Inventory

    A tritium (3H2)-oxidizing soil isolate was identified as Alcaligenes paradoxus, a gram-negative, rod-shaped bacterium. This organism belongs to a group of facultative autotrophs referred to as the 'hydrogen bacteria' due to their unique ability to utilize hydrogen as a sole sourc...

  4. Atypical stress response to temperature and NaOCl exposure leading to septation defect during cell division in Cupriavidus metallidurans CH34.

    PubMed

    Arroua, Boussad; Bellanger, Xavier; Guilloteau, Hélène; Mathieu, Laurence; Merlin, Christophe

    2014-04-01

    Cupriavidus metallidurans CH34 has long been known for its temperature-induced mutagenesis and mortality phenotype (TIMM), for which a genetic origin has been suggested repeatedly. In this report, we present microscopic-based evidences that the TIMM process actually starts with a septation defect, leading to aberrant cell morphologies. Moreover, the septation defect of CH34 could be induced by NaOCl, thus showing that the TIMM phenotype may be part of a more general stress response. Sequence analysis of a TIMM survivor exhibiting a recurrent recognizable lysA mutation ruled out the possibility of a genetic ground linking TIMM survival and peptidoglycan synthesis. PMID:24822276

  5. The ABC-transporter AtmA is involved in nickel and cobalt resistance of Cupriavidus metallidurans strain CH34.

    PubMed

    Mikolay, André; Nies, Dietrich H

    2009-08-01

    Cupriavidus metallidurans CH34 genome contains an ortholog of Atm1p named AtmA (Rmet_0391, YP_582546). In Saccharomyces cerevisiae, the ABC-type transport system Atm1p is involved in export of iron-sulfur clusters from mitochondria into the cytoplasm for assembly of cytoplasmic iron-sulfur containing proteins. An atmA mutant of C. metallidurans was sensitive to nickel and cobalt but not iron cations. AtmA increased also resistance to these cations in Escherichia coli strains that carry deletions of the genes for other nickel and cobalt transport systems. In C. metallidurans, atmA expression was not significantly induced by nickel and cobalt, but repressed by zinc. AtmA was purified as a 70 kDa protein after expression in E. coli. ATPase activity of AtmA was stimulated by nickel and cobalt. PMID:19132541

  6. New mobile genetic elements in Cupriavidus metallidurans CH34, their possible roles and occurrence in other bacteria.

    PubMed

    Van Houdt, Rob; Monchy, Sébastien; Leys, Natalie; Mergeay, Max

    2009-08-01

    Cupriavidus metallidurans strain CH34 is a beta-Proteobacterium that thrives in low concentrations of heavy metals. The genetic determinants of resistance to heavy metals are located on its two chromosomes, and are particularly abundant in the two megaplasmids, pMOL28 and pMOL30. We explored the involvement of mobile genetic elements in acquiring these and others traits that might be advantageous in this strain using genome comparison of Cupriavidus/Ralstonia strains and related beta-Proteobacteria. At least eleven genomic islands were identified on the main replicon, three on pMOL28 and two on pMOL30. Multiple islands contained genes for heavy metal resistance or other genetic determinants putatively responding to harsh environmental conditions. However, cryptic elements also were noted. New mobile genetic elements (or variations of known ones) were identified through synteny analysis, allowing the detection of mobile genetic elements outside the bias of a selectable marker. Tn4371-like conjugative transposons involved in chemolithotrophy and degradation of aromatic compounds were identified in strain CH34, while similar elements involved in heavy metal resistance were found in Delftia acidovorans SPH-1 and Bordetella petrii DSM12804. We defined new transposons, viz., Tn6048 putatively involved in the response to heavy metals and Tn6050 carrying accessory genes not classically associated with transposons. Syntenic analysis also revealed new transposons carrying metal response genes in Burkholderia xenovorans LB400, and other bacteria. Finally, other putative mobile elements, which were previously unnoticed but apparently common in several bacteria, were also revealed. This was the case for triads of tyrosine-based site-specific recombinases and for an int gene paired with a putative repressor and associated with chromate resistance. PMID:19390985

  7. Biodegradation of phenol at high initial concentration by Alcaligenes faecalis.

    PubMed

    Jiang, Yan; Wen, Jianping; Bai, Jing; Jia, Xiaoqiang; Hu, Zongding

    2007-08-17

    Strain Alcaligenes faecalis was isolated and identified as a member of the genus Alcaligenes by using BIOLOG and 16S rDNA sequence analysis. The phenol biodegradation tests showed that the phenol-degrading potential of A. faecalis related greatly to the different physiological phases of inoculum. The maximum phenol degradation occurred at the late phase of the exponential growth stages, where 1600 mg L(-1) phenol was completely degraded within 76 h. A. faecalis secreted and accumulated a vast quantity of phenol hydroxylase in this physiological phase, which ensured that the cells could quickly utilize phenol as a sole carbon and energy source. In addition, the kinetic behavior of A. faecalis in batch cultures was also investigated over a wide range of initial phenol concentrations (0-1600 mg L(-1)) by using Haldane model. It was clear that the Haldane kinetic model adequately described the dynamic behavior of the phenol biodegradation by the strain of A. faecalis. PMID:17597295

  8. Metabolic energy from arsenite oxidation in Alcaligenes faecalis

    NASA Astrophysics Data System (ADS)

    Anderson, G. L.; Love, M.; Zeider, B. K.

    2003-05-01

    The aerobic soil bacterium, Alcaligenes faecalis, survives in cultures containing greater than 10 g/L of aqueous arsenic. Toleration of arsenite occurs by the enzymatic oxidation of arsenite (As^III), to the less toxic arsenate (As^V). In defined media, the bacterium grows faster in the presence of arsenite than in its absence. This suggests that the bacterium uses the redox potential of arsenite oxidation as metabolic energy. The oxidation occurs via periplasmic arsenite oxidase, azurin, and cytochrome c [11] which presumably pass electron equivalents through an electron transport chain involving cytochrome c oxidase aud oxygen as the terminal electron acceptor. The associated proton translocation would allow synthesis of ATP and provide a useful means of harnessing the redox potential of arsenite oxidation. Arsenite and arsenate assays of the media during bacterial growth indicate that arsenite is depleted during the exponential growth phase and occurs concomitantly with the expression of arsenite oxidase. These results suggest that arsenite is detoxified to arsenate during bacterial growth and are inconsistent with previous reported interpretations of growth data. Alcaligenes faecalis is dependent on organic carbon sources and is therefore not chemolithoautotrophic. The relationship between succinate and arsenite utilisation provides evidence for the use of arsenite as a supplemental energy source. Because Alcaligenes faecalis not only tolerates, but thrives, in very high concentrations of arsenic has important implications in bioremediation of environments contaminated by aqueous arsenic.

  9. Draft Genome Sequence of Alcaligenes faecalis Strain IITR89, an Indole-Oxidizing Bacterium.

    PubMed

    Regar, Raj Kumar; Gaur, Vivek Kumar; Mishra, Gayatri; Jadhao, Sudhir; Kamthan, Mohan; Manickam, Natesan

    2016-01-01

    We report the draft genome sequence of Alcaligenes faecalis strain IITR89, a bacterium able to form indigo by utilizing indole as the sole carbon source. The Alcaligenes species is increasingly reported for biodegradation of diverse toxicants and thus complete sequencing may provide insight into biodegradation capabilities and other phenotypes. PMID:26941148

  10. Draft Genome Sequence of Alcaligenes faecalis Strain IITR89, an Indole-Oxidizing Bacterium

    PubMed Central

    Regar, Raj Kumar; Gaur, Vivek Kumar; Mishra, Gayatri; Jadhao, Sudhir; Kamthan, Mohan

    2016-01-01

    We report the draft genome sequence of Alcaligenes faecalis strain IITR89, a bacterium able to form indigo by utilizing indole as the sole carbon source. The Alcaligenes species is increasingly reported for biodegradation of diverse toxicants and thus complete sequencing may provide insight into biodegradation capabilities and other phenotypes. PMID:26941148

  11. Lead(II) resistance in Cupriavidus metallidurans CH34: interplay between plasmid and chromosomally-located functions

    SciTech Connect

    Taghavi, S.; van der Lelie, D.; Lesaulnier, C.; Monchy, S.; Wattier, R.; Mergeay, M.

    2009-08-01

    Proteome and transcriptome analysis, combined with mutagenesis, were used to better understand the response of Cupriavidus metallidurans CH34 against lead(II). Structural Pb(II)-resistance genes of the pMOL30-encoded pbrUTRABCD operon formed the major line of defense against Pb(II). However, several general stress response mechanisms under the control of alternative sigma factors such as {sigma}24/rpoK, {sigma}32/rpoH and {sigma}28/fliA were also induced. In addition, the expression of the pbrR 2 cadA pbrC 2 operon of the CMGI-1 region and the chromosomally encoded zntA were clearly induced in the presence of Pb(II), although their respective gene products were not detected via proteomics. After inactivation of the pbrA, pbrB or pbrD genes, the expression of the pbrR 2 cadA pbrC 2 operon went up considerably. This points towards synergistic interactions between pbrUTRABCD and pbrR 2 cadA pbrC 2 to maintain a low intracellular Pb(II) concentration, where pbrR 2 cadA pbrC 2 gene functions can complement and compensate for the mutations in the pbrA and pbrD genes. This role of zntA and cadA to complement for the loss of pbrA was further confirmed by mutation analysis. The pbrB:Tn(Km2) mutation resulted in the most significant decrease of Pb(II) resistance, indicating that Pb(II) sequestration, avoiding re-entry of this toxic metal ion, forms a critical step in the pbr-encoded Pb(II) resistance mechanism.

  12. Deletion of the zupT gene for a zinc importer influences zinc pools in Cupriavidus metallidurans CH34.

    PubMed

    Herzberg, M; Bauer, L; Nies, D H

    2014-03-01

    Cupriavidus metallidurans strain CH34 accomplishes a high level of transition metal resistance by a combination of rather unspecific transition metal import and controlled efflux of surplus metals. Using the plasmid-free mutant strain AE104 that possesses only a limited number of metal efflux systems, cellular metal pools were identified as counterparts of these transport reactions. At low zinc concentrations strain AE104 took up Zn(II) until the zinc content reached an optimum level of 70,000 Zn(II) per cell in the exponential phase of growth, whereas a ΔzupT mutant lacking the zinc importer ZupT contained only 20,000 Zn(II)/cell, possibly the minimum zinc content. Mutant and parent cells accumulated up to 125,000 Zn(II) per cell at high (100 μM) external zinc concentrations (optimum zinc content). When the mutant strain Δe4, which has all the known genes for zinc efflux systems deleted, was cultivated in the presence of zinc concentrations close to its upper tolerance level (10 μM), these cells contained 250,000 Zn(II) per cell, probably the maximum zinc content. Instead of zinc, 120,000 cobalt or cadmium ions could also fill-up parts of this zinc pool, showing that it is in fact an undefined pool of divalent transition metal cations bound with low substrate specificity. Even when the cells contained sufficient numbers of total zinc, the zinc importer ZupT was required for important cellular processes, indicating the presence of a pool of tightly bound zinc ions, which depends on ZupT for efficient replenishment. The absence of ZupT led to the formation of inclusion bodies, perturbed oxidative stress resistance and decreased efficiency in the synthesis of the zinc-dependent subunit RpoC of the RNA polymerase, leading to RpoC accumulation. Moreover, when a czc allele for a zinc-exporting transenvelope efflux system CzcCBA was constitutively expressed in a ΔzupT mutant, this led to the disappearance of the CzcA protein and the central subunit of the protein

  13. Specific and sensitive detection of Alcaligenes species from an agricultural environment.

    PubMed

    Nakano, Miyo; Niwa, Masumi; Nishimura, Norihiro

    2013-03-01

    A quantitative real-time PCR assay to specifically detect and quantify the genus Alcaligenes in samples from the agricultural environment, such as vegetables and farming soils, was developed. The minimum detection sensitivity was 106 fg of pure culture DNA, corresponding to DNA extracted from two cells of Alcaligenes faecalis. To evaluate the detection limit of A. faecalis, serially diluted genomic DNA from this organism was mixed with DNA extracted from soil and vegetables and then a standard curve was constructed. It was found that Alcaligenes species are present in the plant phytosphere at levels 10(2)-10(4) times lower than those in soil. The approach presented here will be useful for tracking or quantifying species of the genus Alcaligenes in the agricultural environment. PMID:23489084

  14. The cnrY gene, a tool to monitor DNA rearrangements by IS translocation in Cupriavidus metallidurans CH34 in response to space flight

    NASA Astrophysics Data System (ADS)

    Leys, N.; Monchy, S.; Vallaeys, T.; Dams, A.; Mergeay, M.

    Background The beta -Proteobacterium Cupriavidus metallidurans CH34 carries a chromosome 3 9 Mb a megaplasmid 2 6 Mb and many different Mobile Genetic Elements MGEs including 2 large plasmids 234 kb and 170 kb and at least 1 genomic island 7 transposons and 13 IS elements Mobility and rearrangements of these MGEs could play a direct part in genome adaptation and evolution in response to environmental stresses such as space flight conditions Aim In this study a new tool was developed and tested to detect the mobility and functionality of the IS elements in response to environmental stresses such as space flight Method The cnrYXHCBAT gene cluster on the pMOL28 plasmid of CH34 Tibazarwa et al 2000 governs the efficient efflux of Co 2 and Ni 2 and a slight unspecific efflux of Zn 2 Mutations inactivating the cnrY gene 300 bp encoding an antisigma repressor protein allow a constitutive over-expression of nickel cobalt resistance Collard et al 1993 Such cnrY mutants can be positively selected when the medium is supplemented with 0 6mM Zn 2 ZnR mutants As functional test 35 independent cultures of CH34 were incubated on agar containing 0 6mM Zn 2 during 10 days in the International Space Station ISS and on corresponding control plates at the ground From these cultures in total ca 600 ZnR mutants were selected and the promoter- cnrY fragment was amplified and sequenced Result This study revealed that the

  15. Structural and metal binding characterization of the C-terminal metallochaperone domain of membrane fusion protein SilB from Cupriavidus metallidurans CH34.

    PubMed

    Bersch, Beate; Derfoufi, Kheiro-Mouna; De Angelis, Fabien; Auquier, Vanessa; Ekendé, Elisabeth Ngonlong; Mergeay, Max; Ruysschaert, Jean-Marie; Vandenbussche, Guy

    2011-03-29

    Detoxification of heavy metal ions in Proteobacteria is tightly controlled by various systems regulating their sequestration and transport. In Cupriavidus metallidurans CH34, a model organism for heavy metal resistance studies, the sil determinant is potentially involved in the efflux of silver and copper ions. Proteins SilA, SilB, and SilC form a resistance nodulation cell division (RND)-based transport system in which SilB is the periplasmic adaptor protein belonging to the membrane fusion protein (MFP) family. In addition to the four domains typical of known MFPs, SilB has a fifth additional C-terminal domain, called SilB(440-521), which is characterized here. Structure and backbone dynamics of SilB(440-521) have been investigated using nuclear magnetic resonance, and the residues of the metal site were identified from (15)N- and (13)C-edited HSQC spectra. The solution structure and additional metal binding experiments demonstrated that this C-terminal domain folds independently of the rest of the protein and has a conformation and a Ag(+) and Cu(+) binding specificity similar to those determined for CusF from Escherichia coli. The small protein CusF plays a role in metal trafficking in the periplasm. The similarity with CusF suggests a potential metallochaperone role for SilB(440-521) that is discussed in the context of simultaneous expression of different determinants involved in copper resistance in C. metallidurans CH34. PMID:21299248

  16. Metabolism of Cyclohexane Carboxylic Acid by Alcaligenes Strain W1

    PubMed Central

    Taylor, David G.; Trudgill, Peter W.

    1978-01-01

    Thirty-three microorganisms capable of growth with cyclohexane carboxylate as the sole source of carbon were isolated from mud, water, and soil samples from the Aberystwyth area. Preliminary screening and whole-cell oxidation studies suggested that, with one exception, all of the strains metabolized the growth substrate by beta-oxidation of the coenzyme A ester. This single distinctive strain, able to oxidize rapidly trans-4-hydroxycyclohexane carboxylate, 4-ketocyclohexane carboxylate, p-hydroxybenzoate, and protocatechuate when grown with cyclohexane carboxylate, was classified as a strain of Alcaligenes and given the number W1. Enzymes capable of converting cyclohexane carboxylate to p-hydroxybenzoate were induced by growth with the alicyclic acid and included the first unambiguous specimen of a cyclohexane carboxylate hydroxylase. Because it is a very fragile protein, attempts to stabilize the cyclohexane carboxylate hydroxylase so that a purification procedure could be developed have consistently failed. In limited studies with crude cell extracts, we found that hydroxylation occurred at the 4 position, probably yielding the trans isomer of 4-hydroxycyclohexane carboxylate. Simultaneous measurement of oxygen consumption and reduced nicotinamide adenine dinucleotide oxidation, coupled with an assessment of reactant stoichiometry, showed the enzyme to be a mixed-function oxygenase. Mass spectral analysis enabled the conversion of cyclohexane carboxylate to p-hydroxybenzoate by cell extracts to be established unequivocally, and all of our data were consistent with the pathway: cyclohexane carboxylate → trans-4-hydroxycyclohexane carboxylate → 4-ketocyclohexane carboxylate → p-hydroxybenzoate. The further metabolism of p-hydroxybenzoate proceeded by meta fission and by the oxidative branch of the 2-hydroxy-4-carboxymuconic semialde-hyde-cleaving pathway. PMID:207665

  17. Degradation of dexamethasone by acclimated strain of Pseudomonas Alcaligenes

    PubMed Central

    Zhu, Lili; Yang, Zhibang; Yang, Qian; Tu, Zeng; Ma, Lianju; Shi, Zhongquan; Li, Xiaoyu

    2015-01-01

    This study is to investigate the use of microbial remediation technology for degradation of dexamethasone in polluted water. A strain of Pseudomonas Alcaligenes with the ability of dexamethasone degradation was isolated from hospital polluted water. This strain was further acclimated into a bacterial strain that could highly degrade dexamethasone. Domesticated bacterial proteins were separated by osmotic shock method and were analyzed using SDS-PAGE. Enzyme activity of dexamethasone degradation was detected by high performance liquid chromatography. Protein bands with different molecular weight were found in all regions of the bacteria and a band with molecular weight of about 100 kDa was most obvious. In intracellular and periplasmic liquid, there was a band with molecular weight of about 41 kDa. Enzyme activity mainly existed in intracellular liquid. The 41 kDa protease was purified using ammonium sulfate precipitation, DEAE-52 ion exchange column and Sephadex G-100 column. Dexamethasone and dexamethasone sodium phosphate degrading rates of the purified enzyme were 36% and 95%, respectively. The 100 kDa protein had a 19% coverage rate to TonB receptor dependent protein, with 11 peptides matching. The 41 kDa protein had a 56% coverage rate to isovaleryl coenzyme A dehydrogenase, with 5 peptides matching. The 41 kDa protein had good degradation between the temperature of 25-40°C and PH value of 6.5-8.5. The enzyme kinetics equation was Ct = C0 e-0.1769t, in accordance with the first-order kinetic equation. This study laid the foundation for further preparation of bioremediation agents for clearance of dexamethasone pollution in water. PMID:26379892

  18. Beta-lactamase-free penicillin amidase from Alcaligenes sp.: isolation strategy, strain characteristics, and enzyme immobilization.

    PubMed

    Pal, A; Samanta, T B

    1999-11-01

    Isolation and characterization of a beta-lactamase (EC 3.5.2.6)-free, penicillin amidase (penicillin amidohydrolase, EC 3.5.1. 11)-producing organism is reported. The test strain was isolated by an enrichment technique with a substrate other than penicillins. The isolated strain belongs to the genus Alcaligenes. Phenylacetic acid was found to be the inducer of penicillin amidase. The amidase has a broad substrate spectrum. It is very active against penicillin G and semisynthetic cephalosporins, whereas penicillin V and semisynthetic penicillins acted moderately as a substrate. Immobilized cells of Alcaligenes sp. were shown to act as a reversible enzyme. PMID:10489431

  19. Unusual causes of peritonitis in a peritoneal dialysis patient: Alcaligenes faecalis and Pantoea agglomerans

    PubMed Central

    2011-01-01

    An 87 -year-old female who was undergoing peritoneal dialysis presented with peritonitis caused by Alcaligenes faecalis and Pantoea agglomerans in consecutive years. With the following report we discuss the importance of these unusual microorganisms in peritoneal dialysis patients. PMID:21477370

  20. A Newly Sequenced Alcaligenes faecalis Strain: Implications for Novel Temporal Symbiotic Relationships.

    PubMed

    Hernández-Mendoza, Armando; Lozano-Aguirre Beltrán, Luis Fernando; Martínez-Ocampo, Fernando; Quiroz-Castañeda, Rosa Estela; Dantán-González, Edgar

    2014-01-01

    We report here the draft genome sequence of Alcaligenes faecalis strain MOR02, a bacterium that is able to colonize nematodes in a temporary fashion and kill insects for their own benefit. The availability of the genome should enable us to explain these phenotypes. PMID:25540337

  1. The characterisation of Bordetella/Alcaligenes-like organisms and their effects on turkey poults and chicks.

    PubMed

    Varley, J

    1986-01-01

    Eight isolates of the Bordetella or Alcaligenes-like organisms associated with turkey rhino-tracheitis were examined. Five of these isolates had been recovered from the United Kingdom and three were foreign isolates. Four of the UK isolates came from flocks with mild respiratory disease. The fifth isolate came from birds with no respiratory signs and this appears to be the first report of the recovery of Bordetella/Alcaligenes from apparently normal turkeys. The field isolates and type strains Alcaligenes faecalis NCTC 415 and Bordetella bronchiseptica NCTC 452 were characterised by biochemical tests, but these did not include any electrophoresis or nucleic acid studies. Cluster analysis using the group average method and the similarly coefficient of Sokal and Sneath indicated that all the strains were distinct from Alcaligenes faecalis but were quite closely related to Bordetella bronchiseptica. Each field isolate was used to infect separate groups of day-old turkey poults and chicks, and each group contained birds which were experimentally infected and others which were in-contact. Observations were made over a 32-day period. In turkey poults, some of the isolates induced severe respiratory disease and mortality, and others very little or none. The UK isolates were less pathogenic than the foreign isolates. It was not possible to correlate the pathogenicity of the isolates for turkey poults with their biochemical characteristics. Chicks infected with two of the eight isolates showed slight respiratory signs, but there was no significant mortality. PMID:18766500

  2. Draft genome sequence of Alcaligenes faecalis subsp. faecalis NCIB 8687 (CCUG 2071).

    PubMed

    Phung, Le T; Trimble, William L; Meyer, Folker; Gilbert, Jack A; Silver, Simon

    2012-09-01

    Alcaligenes faecalis subsp. faecalis NCIB 8687, the betaproteobacterium from which arsenite oxidase had its structure solved and the first "arsenate gene island" identified, provided a draft genome of 3.9 Mb in 186 contigs (with the largest 15 comprising 90% of the total) for this opportunistic pathogen species. PMID:22933773

  3. Isolation and characterization of the pesticide-degrading plasmid pJP1 from Alcaligenes paradoxus.

    PubMed Central

    Fisher, P R; Appleton, J; Pemberton, J M

    1978-01-01

    A strain of Alcaligenes paradoxus, unable to degrade phenoxyacetic acid, was shown to degrade two synthetic derivatives of this molecule, the herbicides 2,4-dichlorophenoxyacetic acid and 2-methyl-4-chlorophenoxyacetic acid. The ability to degrade these pesticides is encoded by a 58-megadalton conjugal plasmid, pJP1. PMID:690076

  4. Potential of Cupriavidus metallidurans CH34 for in situ resource utilization from basalt by determining the molecular micro-mineral interactions

    NASA Astrophysics Data System (ADS)

    Byloos, Bo; Van Houdt, Rob; Boon, Nico; Leys, Natalie

    In order to maintain a persistent human presence in space, materials must either be provided from Earth or generated from material already present in space, in a process referred to as 'in situ resource utilization (ISRU)'. Microorganisms can biomine useful elements from extra-terrestrial materials for use as nutrients in a life support system or to aid in the creation of soil. To effectively use bacteria in an ISRU process more needs to be known about the molecular mechanisms behind microbe-mineral interaction and the influence of microgravity and radiation that affect bioleaching. The aim of this research project is to define the microbe-mineral interactions on basalt, which is a major constituent of Lunar or Martian regolith, the mechanisms that are important in bioleaching and how this process will be altered by space flight conditions. In particular, the research will be focussed on the determination of the genes and proteins involved in the biosynthesis of metallophores and exopolysaccharides (EPS), and biofilm formation. Iron, copper and phosphate uptake mechanisms are investigated in detail because these have been shown to be essential for life and bacteria are faced with limitation of these nutrients in the environment. In this study the bacterium Cupriavidus metallidurans CH34 is used to study these interactions. C. metallidurans CH34 is a soil bacterium which is resistant to up to 20 different heavy metal ions. Its behaviour in space has already been determined with earlier flight experiments to the ISS. It was recently discovered that C. metallidurans forms a biofilm and is capable of leaching calcium, magnesium and iron from basalt to sustain its growth First, C. metallidurans was grown in conditions with and without basalt, iron, copper and phosphate and the production of EPS and metallophores was examined. The iron, copper and phosphate concentrations which are limiting and optimal to allow C. metallidurans cell proliferation could be determined as

  5. Comparison of chemical washing and physical cell-disruption approaches to assess the surface adsorption and internalization of cadmium by Cupriavidus metallidurans CH34.

    PubMed

    Desaunay, Aurélien; Martins, Jean M F

    2014-05-30

    Bacterial biosorption of heavy metals is often considered as a surface complexation process, without considering other retention compartments than cell walls. Although this approach gives a good description of the global biosorption process, it hardly permits the prediction of the fate of biosorbed metals in the environment. This study examines the subcellular distribution of cadmium (Cd) in the metal-tolerant bacterium Cupriavidus metallidurans CH34 through the comparison of an indirect chemical method (washing cells with EDTA) and a direct physical method (physical disruption of cells). The chemical washing approach presented strong experimental biases leading to the overestimation of washed amount of Cd, supposedly bound to cell membranes. On the contrary, the physical disruption approach gave reproducible and robust results of Cd subcellular distribution. Unexpectedly, these results showed that over 80% of passively biosorbed Cd is internalized in the cytoplasm. In disagreement with the common concept of surface complexation of metals onto bacteria the cell wall was poorly reactive to Cd. Our results indicate that metal sorption onto bacterial surfaces is only a first step in metal management by bacteria and open new perspectives on metal biosorption by bacteria in the environment, with implications for soil bioremediation or facilitated transport of metals by bacteria. PMID:24747375

  6. Differential proteomic analysis using isotope-coded protein-labeling strategies: comparison, improvements and application to simulated microgravity effect on Cupriavidus metallidurans CH34.

    PubMed

    Leroy, Baptiste; Rosier, Caroline; Erculisse, Vanessa; Leys, Natalie; Mergeay, Max; Wattiez, Ruddy

    2010-06-01

    Among differential proteomic methods based on stable isotopic labeling, isotope-coded protein labeling (ICPL) is a recent non-isobaric technique devised to label primary amines found in proteins. ICPL overcomes some of the disadvantages found in other chemical-labeling techniques, such as iTRAQ or ICAT. However, previous analyses revealed that more than 30% of the proteins identified in regular ICPL generally remain unquantified. In this study, we describe a modified version of ICPL, named Post-digest ICPL, that makes it possible to label and thus to quantify all the peptides in a sample (bottom-up approach). Optimization and validation of this Post-digest ICPL approach were performed using a standard protein mixture and complex protein samples. Using this strategy, the number of proteins that were identified and quantified was greatly increased in comparison with regular ICPL and cICAT approaches. The pros and cons of this improvement are discussed. This complementary approach to traditional ICPL was applied to the analysis of modification of protein abundances in the model bacterium Cupriavidus metallidurans CH34 after cultivation under simulated microgravity. In this context, two different systems - a 2-D clinorotation and 3-D random positioning device - were used and the results were compared and discussed. PMID:20391527

  7. Alcaligenes faecalis subsp. parafaecalis subsp. nov., a bacterium accumulating poly-beta-hydroxybutyrate from acetone-butanol bioprocess residues.

    PubMed

    Schroll, G; Busse, H J; Parrer, G; Rölleke, S; Lubitz, W; Denner, E B

    2001-04-01

    The authors have previously isolated a solvent tolerant bacterium, strain G(T), (T = type strain) capable to convert acetone-butanol bioprocess residues into poly-beta-hydroxybutyrate. Strain G(T) was initially identified as Alcaligenes spp by standard bacteriological tests. In this study the taxonomic position of the bacterium was investigated in detail. The 165 rDNA sequence analysis, the G + C content of DNA (56 mol%) and the presence of ubiquinone Q-8 confirmed strain G(T) as a representative of the genus Alcaligenes. In the polyamine pattern of the bacterium putrescine and cadaverine were detected, but only trace amounts of 2-hydroxyputrescine. The extremely low content of 2-hydroxyputrescine is remarkable, since this unique diamine is a common marker for beta-proteobacteria. Phylogenetic analyses of 16S rDNA demonstrated that Alcaligenes sp. G(T) is most closely related to the species Alcaligenes faecalis (99.6% sequence similarity to A. faecalis HR4 and 98.7% sequence similarity to A. faecalis [ATCC 8750T = DSM 30030T]. On the basis of DNA-DNA relatedness (56% similarity), the unique polyamine pattern, the physiological and biochemical differences strain G(T) could be distinguished from the species A. faecalis. Therefore, a new subspecies for the species Alcaligenes faecalis is proposed; Alcaligenes faecalis subsp. parafaecalis subsp. nov. PMID:11403397

  8. Characterization of protease from Alcaligens faecalis and its antibacterial activity on fish pathogens.

    PubMed

    Annamalai, N; Kumar, Arun; Saravanakumar, A; Vijaylakshmi, S; Balasubramanian, T

    2011-11-01

    Alcaligens faecalis AU01 isolated from seafood industry effluent produced an alkaline protease. The optimum culture conditions for growth as well as enzyme production were 37 degrees C and pH 8. The partially purified protease had specific activity of 9.66 with 17.77% recovery with the molecular weight of 33 kDa and it was active between 30-70 degrees C and optimum being at 55 degrees C and pH 9. The enzyme retains more than 85% activity at 70 degrees C and 78% even at pH 10. The enzyme inhibited the growth of fish pathogens such as Flavobacterium sp., Pseudomonas fluorescens, Vibrio harveyi, Proteus sp. and Vibrio parahaemolyticus. From the present study it can be concluded that Alcaligens faecalis AU01 has the potential for aquaculture as probiotic agent and other several applications. PMID:22471216

  9. Lipase Expression in Pseudomonas alcaligenes Is Under the Control of a Two-Component Regulatory System▿

    PubMed Central

    Krzeslak, Joanna; Gerritse, Gijs; van Merkerk, Ronald; Cool, Robbert H.; Quax, Wim J.

    2008-01-01

    Preliminary observations in a large-scale fermentation process suggested that the lipase expression of Pseudomonas alcaligenes can be switched on by the addition of certain medium components, such as soybean oil. In an attempt to elucidate the mechanism of induction of lipase expression, we have set up a search method for genes controlling lipase expression by use of a cosmid library containing fragments of P. alcaligenes genomic DNA. A screen for lipase hyperproduction resulted in the selection of multiple transformants, of which the best-producing strains comprised cosmids that shared an overlapping genomic fragment. Within this fragment, two previously unidentified genes were found and named lipQ and lipR. Their encoded proteins belong to the NtrBC family of regulators that regulate gene expression via binding to a specific upstream activator sequence (UAS). Such an NtrC-like UAS was identified in a previous study in the P. alcaligenes lipase promoter, strongly suggesting that LipR acts as a positive regulator of lipase expression. The regulating role could be confirmed by down-regulated lipase expression in a strain with an inactivated lipR gene and a threefold increase in lipase yield in a large-scale fermentation when expressing the lipQR operon from the multicopy plasmid pLAFR3. Finally, cell extracts of a LipR-overexpressing strain caused a retardation of the lipase promoter fragment in a band shift assay. Our results indicate that lipase expression in Pseudomonas alcaligenes is under the control of the LipQR two-component system. PMID:18192420

  10. Arsenic Methylation and Volatilization by Arsenite S-Adenosylmethionine Methyltransferase in Pseudomonas alcaligenes NBRC14159

    PubMed Central

    Zhang, Jun; Cao, Tingting; Tang, Zhu; Shen, Qirong; Rosen, Barry P.

    2015-01-01

    Inorganic arsenic (As) is highly toxic and ubiquitous in the environment. Inorganic As can be transformed by microbial methylation, which constitutes an important part of the As biogeochemical cycle. In this study, we investigated As biotransformation by Pseudomonas alcaligenes NBRC14159. P. alcaligenes was able to methylate arsenite [As(III)] rapidly to dimethylarsenate and small amounts of trimethylarsenic oxide. An arsenite S-adenosylmethionine methyltransferase, PaArsM, was identified and functionally characterized. PaArsM shares low similarities with other reported ArsM enzymes (<55%). When P. alcaligenes arsM gene (PaarsM) was disrupted, the mutant lost As methylation ability and became more sensitive to As(III). PaarsM was expressed in the absence of As(III) and the expression was further enhanced by As(III) exposure. Heterologous expression of PaarsM in an As-hypersensitive strain of Escherichia coli conferred As(III) resistance. Purified PaArsM protein methylated As(III) to dimethylarsenate as the main product in the medium and also produced dimethylarsine and trimethylarsine gases. We propose that PaArsM plays a role in As methylation and detoxification of As(III) and could be exploited in bioremediation of As-contaminated environments. PMID:25681184

  11. Production, purification, and characterization of D-aminoacylase from Alcaligenes xylosoxydans subsp. xylosoxydans A-6.

    PubMed

    Moriguchi, M; Sakai, K; Miyamoto, Y; Wakayama, M

    1993-07-01

    The best inducers for D-aminoacylase from Alcaligenes xylosoxydans subsp. xylosoxydans A-6 (Alcaligenes A-6) were a poor substrate, N-acetyl-gamma-methyl-D-leucine, and an inhibitor, N-acetyl-D-alloisoleucine. The enzyme has been homogeneously purified. The molecular weight of the native enzyme was estimated to be 58,000 by gel filtration. A subunit molecular weight of 52,000 was measured by SDS-PAGE, indicating that the native protein is a monomer. The isoelectric point was 5.2. The enzyme was specific to the D-isomer and hydrolyzed N-acetyl derivatives of D-leucine, D-phenylalanine, D-norleucine, D-methionine, and D-valine, and also N-formyl, N-butyryl, and N-propionyl derivatives of D-leucine. The Km for N-acetyl-D-leucine was 9.8 mM. The optimum pH and temperature were 7.0 and 50 degrees C, respectively. The stabilities of pH and temperature were 8.1 and 40 degrees C. D-Aminoacylases from three species of the genus Alcaligenes differ in inducer and substrate specificities, but are similar with respect to molecular weight and N-terminal amino acid sequence. PMID:7763986

  12. Isolation of Indole Utilizing Bacteria Arthrobacter sp. and Alcaligenes sp. From Livestock Waste.

    PubMed

    Kim, Minsu; Lee, Jin-Hyung; Kim, Eonmi; Choi, Hyukjae; Kim, Younghoon; Lee, Jintae

    2016-06-01

    Indole is an interspecies and interkingdom signaling molecule widespread in different environmental compartment. Although multifaceted roles of indole in different biological systems have been established, little information is available on the microbial utilization of indole in the context of combating odor emissions from different types of waste. The present study was aimed at identifying novel bacteria capable of utilizing indole as the sole carbon and energy source. From the selective enrichment of swine waste and cattle feces, we identified Gram-positive and Gram-negative bacteria belonging to the genera Arthrobacter and Alcaligenes. Bacteria belonging to the genus Alcaligenes showed higher rates of indole utilization than Arthrobacter. Indole at 1.0 mM for growth was completely utilized by Alcaligenes sp. in 16 h. Both strains produced two intermediates, anthranilic acid and isatin, during aerobic indole metabolism. These isolates were also able to grow on several indole derivatives. Interestingly, an adaptive response in terms of a decrease in cell size was observed in both strains in the presence of indole. The present study will help to explain the degradation of indole by different bacteria and also the pathways through which it is catabolized. Furthermore, these novel bacterial isolates could be potentially useful for the in situ attenuation of odorant indole and its derivatives emitted from different types of livestock waste. PMID:27570307

  13. Structural and Functional Investigation of the Ag(+)/Cu(+) Binding Domains of the Periplasmic Adaptor Protein SilB from Cupriavidus metallidurans CH34.

    PubMed

    Urbina, Patricia; Bersch, Beate; De Angelis, Fabien; Derfoufi, Kheiro-Mouna; Prévost, Martine; Goormaghtigh, Erik; Vandenbussche, Guy

    2016-05-24

    Silver ion resistance in bacteria mainly relies on efflux systems, and notably on tripartite efflux complexes involving a transporter from the resistance-nodulation-cell division (RND) superfamily, such as the SilCBA system from Cupriavidus metallidurans CH34. The periplasmic adaptor protein SilB hosts two specific metal coordination sites, located in the N-terminal and C-terminal domains, respectively, that are believed to play a different role in the efflux mechanism and the trafficking of metal ions from the periplasm to the RND transporter. On the basis of the known domain structure of periplasmic adaptor proteins, we designed different protein constructs derived from SilB domains with either one or two metal binding sites per protein chain. ITC data acquired on proteins with single metal sites suggest a slightly higher affinity of Ag(+) for the N-terminal metal site, compared to that for the C-terminal one. Remarkably, via the study of a protein construct featuring both metal sites, nuclear magnetic resonance (NMR) and fluorescence spectroscopies concordantly show that the C-terminal site is saturated prior to the N-terminal one. The C-terminal binding site is supposed to transfer the metal ions to the RND protein, while the transport driven by this latter is activated upon binding of the metal ion to the N-terminal site. Our results suggest that the filling of the C-terminal metal site is a key prerequisite for preventing futile activation of the transport system. Exhaustive NMR studies reveal for the first time the structure and dynamics of the functionally important N-terminal domain connected to the membrane proximal domain as well as of its Ag(+) binding site. PMID:27145046

  14. CopK from Cupriavidus metallidurans CH34 binds Cu(I) in a tetrathioether site: characterization by X-ray absorption and NMR spectroscopy.

    PubMed

    Sarret, Géraldine; Favier, Adrien; Covès, Jacques; Hazemann, Jean-Louis; Mergeay, Max; Bersch, Beate

    2010-03-24

    Cupriavidus metallidurans CH34 is a bacterium that is resistant to high metal concentrations in the environment. Increased copper resistance is associated with the cop cluster on the large plasmid pMOL30 that is composed of at least 21 genes. The copK gene encodes a 74 residue periplasmic protein whose expression is strongly upregulated in the presence of copper. CopK was previously shown to cooperatively bind Cu(I) and Cu(II) in distinct, specific sites. The solution structure of Cu(I)-CopK and the characterization of the Cu(I) site by X-ray absorption spectroscopy and NMR are reported here. EXAFS spectra are in agreement with a tetrathioether Cu(I) site, providing so far unique spectral information on a 4S-coordinated Cu(I) in a protein. The methionine residues forming the Cu(I) site, M28, M38, M44, and M54, are identified by NMR. We propose the chemical shift of the methionine C(epsilon) as a new and sensitive probe for the detection of Cu(I) bound to thioether groups. The solution structure of Cu(I)-CopK demonstrates that Cu(I) binding induces a complete structural modification with the disruption of the second beta-sheet and a rotation of the C-terminal part of nearly 180 degrees around a hinge formed by asparagine 57. This conformational change is directly related to the loss of the dimer interface and most probably to the formation of the Cu(II) site involving histidine 70. The solution structure of Cu(I)-CopK therefore provides the molecular basis for the understanding of the Cu(I)/Cu(II) binding cooperativity. PMID:20192263

  15. Spectroscopic characterization of the metal-binding sites in the periplasmic metal-sensor domain of CnrX from Cupriavidus metallidurans CH34.

    PubMed

    Trepreau, Juliette; de Rosny, Eve; Duboc, Carole; Sarret, Géraldine; Petit-Hartlein, Isabelle; Maillard, Antoine P; Imberty, Anne; Proux, Olivier; Covès, Jacques

    2011-10-25

    CnrX, the dimeric metal sensor of the three-protein transmembrane signal transduction complex CnrYXH of Cupriavidus metallidurans CH34, contains one metal-binding site per monomer. Both Ni and Co elicit a biological response and bind the protein in a 3N2O1S coordination sphere with a nearly identical octahedral geometry as shown by the X-ray structure of CnrXs, the soluble domain of CnrX. However, in solution CnrXs is titrated by 4 Co-equiv and exhibits an unexpected intense band at 384 nm that was detected neither by single-crystal spectroscopy nor under anaerobiosis. The data from a combination of spectroscopic techniques (spectrophotometry, electron paramagnetic resonance, X-ray absorption spectroscopy) showed that two sites correspond to those identified by crystallography. The two extra binding sites accommodate Co(II) in an octahedral geometry in the absence of oxygen and are occupied in air by a mixture of low-spin Co(II) as well as EPR-silent Co(III). These extra sites, located at the N-terminus of the protein, are believed to participate to the formation of peroxo-bridged dimers. Accordingly, we hypothesize that the intense band at 384 nm relies on the formation of a binuclear μ-peroxo Co(III) complex. These metal binding sites are not physiologically relevant since they are not detected in full-length NccX, the closest homologue of CnrX. X-ray absorption spectroscopy demonstrates that NccX stabilizes Co(II) in two-binding sites similar to those characterized by crystallography in its soluble counterpart. Nevertheless, the original spectroscopic properties of the extra Co-binding sites are of interest because they are susceptible to be detected in other Co-bound proteins. PMID:21942751

  16. Biophysical characterization of the MerP-like amino-terminal extension of the mercuric reductase from Ralstonia metallidurans CH34.

    PubMed

    Rossy, Emmanuel; Champier, Ludovic; Bersch, Beate; Brutscher, Bernhard; Blackledge, Martin; Covès, Jacques

    2004-01-01

    The purified native mercuric reductase (MerA) from Ralstonia metallidurans CH34 contains an N-terminal sequence of 68 amino acids predicted to be homologous to MerP, the periplasmic mercury-binding protein. This MerP-like protein has now been expressed independently. The protein was named MerAa by homology with Ccc2a, the first soluble domain of the copper-transporting ATPase from yeast. Deltaa has been characterized using a set of biophysical techniques. The binding of mercury was followed using circular dichroism spectroscopy and electrospray mass spectrometry. The two cysteine residues contained in the consensus sequence GMTC XXC are involved in the binding of one mercury atom, with an apparent affinity comparable to that of MerP for the same metal. The metal-binding site is confirmed by NMR chemical shift changes observed between apo- and metal-bound MerAa in solution. NMR shift and NOE data also indicate that only minor structural changes occur upon metal binding. Further NMR investigation of the fold of MerAa using long-range methyl-methyl NOE and backbone residual dipolar coupling data confirm the expected close structural homology with MerP. (15)N relaxation data show that MerAa is a globally rigid molecule. An increased backbone mobility was observed for the loop region connecting the first beta-strand and the first alpha-helix and comprising the metal-binding domain. Although significantly reduced, this loop region keeps some conformational flexibility upon metal binding. Altogether, our data suggest a role of MerAa in mercury trafficking. PMID:14624351

  17. Development of a PCR-based method for monitoring the status of Alcaligenes species in the agricultural environment.

    PubMed

    Nakano, Miyo; Niwa, Masumi; Nishimura, Norihiro

    2014-01-01

    To analyze the status of the genus Alcaligenes in the agricultural environment, we developed a PCR method for detection of these species from vegetables and farming soil. The selected PCR primers amplified a 107-bp fragment of the 16S rRNA gene in a specific PCR assay with a detection limit of 1.06 pg of pure culture DNA, corresponding to DNA extracted from approximately 23 cells of Alcaligenes faecalis. Meanwhile, PCR primers generated a detectable amount of the amplicon from 2.2×10(2) CFU/ml cell suspensions from the soil. Analysis of vegetable phylloepiphytic and farming soil microbes showed that bacterial species belonging to the genus Alcaligenes were present in the range from 0.9×10(0) CFU per gram (or cm(2)) (Japanese radish: Raphanus sativus var. longipinnatus) to more than 1.1×10(4) CFU/g (broccoli flowers: Brassica oleracea var. italic), while 2.4×10(2) to 4.4×10(3) CFU/g were detected from all soil samples. These results indicated that Alcaligenes species are present in the phytosphere at levels 10-1000 times lower than those in soil. Our approach may be useful for tracking or quantifying species of the genus Alcaligenes in the agricultural environment. PMID:24670615

  18. Septic arthritis caused by a gram-negative bacterium representing a new species related to the Bordetella-Alcaligenes complex.

    PubMed

    Kronvall, G; Hanson, H S; von Stedingk, L V; Törnqvist, E; Falsen, E

    2000-03-01

    A knee-joint exudate culture yielded on two occasions a gram-negative bacterium. Regular methods for speciation did not provide an identification. The infection was successfully treated with ciprofloxacin. The unknown isolate, CCUG 36768, was subjected to further investigation, including 16S rDNA sequencing, protein profiling, cellular fatty acid analysis, and various biochemical tests, in order to produce a species identification. The 1469 bp-long 16S rDNA sequence did not reveal identity with any known species sequence. CCUG 36768 clustered in a group of species, including Alcaligenes defragrans, Denitrobacter permanens, Taylorella equigenitalis, Alcaligenes faecalis, and four strains of Alcaligenes species without a specific species name. Bordetella species also showed a high degree of similarity with CCUG 36768. Protein profiling, cellular fatty acid analysis and computer-assisted analysis of biochemical profiles indicated similarity with Bordetella-Alcaligenes species, often close to B. holmesii and B. avium. API 20 NE indicated the profile of Moraxella species of poor identity. It is concluded that CCUG 36768 represents a new bacterial species of pathogenic potential in humans. It is related to the Bordetella-Alcaligenes group. Powerful new methods for speciation are available and it is recommended that unknown isolates from normally sterile sites be submitted for further analysis. Several isolates are required for the definition of new species. PMID:10752687

  19. Metal sensing and signal transduction by CnrX from Cupriavidus metallidurans CH34: role of the only methionine assessed by a functional, spectroscopic, and theoretical study.

    PubMed

    Trepreau, Juliette; Grosse, Cornelia; Mouesca, Jean-Marie; Sarret, Géraldine; Girard, Eric; Petit-Haertlein, Isabelle; Kuennemann, Sandra; Desbourdes, Céline; de Rosny, Eve; Maillard, Antoine P; Nies, Dietrich H; Covès, Jacques

    2014-02-01

    When CnrX, the periplasmic sensor protein in the CnrYXH transmembrane signal transduction complex of Cupriavidus metallidurans CH34, binds the cognate metal ions Ni(II) or Co(II), the ECF-type sigma factor CnrH is made available in the cytoplasm for the RNA-polymerase to initiate transcription at the cnrYp and cnrCp promoters. Ni(II) or Co(II) are sensed by a metal-binding site with a N3O2S coordination sphere with octahedral geometry, where S stands for the thioether sulfur of the only methionine (Met123) residue of CnrX. The M123A-CnrX derivative has dramatically reduced signal propagation in response to metal sensing while the X-ray structure of Ni-bound M123A-CnrXs showed that the metal-binding site was not affected by the mutation. Ni(II) remained six-coordinate in M123A-CnrXs, with a water molecule replacing the sulfur as the sixth ligand. H32A-CnrXs, the soluble model of the wild-type membrane-anchored CnrX, was compared to the double mutants H32A-M123A-CnrXs and H32A-M123C-CnrXs to spectroscopically evaluate the role of this unique ligand in the binding site of Ni or Co. The Co- and Ni-bound forms of the protein display unusually blue-shifted visible spectra. TD-DFT calculations using structure-based models allowed identification and assignment of the electronic transitions of Co-bound form of the protein and its M123A derivative. Among them, the signature of the S-Co transition is distinguishable in the shoulder at 530 nm. In vitro affinity measurements point out the crucial role of Met123 in the selectivity for Ni or Co, and in vivo data support the conclusion that Met123 is a trigger of the signal transduction. PMID:24154823

  20. Molecular basis of the cooperative binding of Cu(I) and Cu(II) to the CopK protein from Cupriavidus metallidurans CH34.

    PubMed

    Ash, Miriam-Rose; Chong, Lee Xin; Maher, Megan J; Hinds, Mark G; Xiao, Zhiguang; Wedd, Anthony G

    2011-11-01

    The bacterium Cupriavidus metallidurans CH34 is resistant to high environmental concentrations of many metal ions. Upon copper challenge, it upregulates the periplasmic protein CopK (8.3 kDa). The function of CopK in the copper resistance response is ill-defined, but CopK demonstrates an intriguing cooperativity: occupation of a high-affinity Cu(I) binding site generates a high-affinity Cu(II) binding site, and the high-affinity Cu(II) binding enhances Cu(I) binding. Native CopK and targeted variants were examined by chromatographic, spectroscopic, and X-ray crystallographic probes. Structures of two distinct forms of Cu(I)Cu(II)-CopK were defined, and structural changes associated with occupation of the Cu(II) site were demonstrated. In solution, monomeric Cu(I)Cu(II)-CopK features the previously elucidated Cu(I) site in Cu(I)-CopK, formed from four S(δ) atoms of Met28, -38, -44, and -54 (site 4S). Binding of Cu(I) to apo-CopK induces a conformational change that releases the C-terminal β-strand from the β-sandwich structure. In turn, this allows His70 and N-terminal residues to form a large loop that includes the Cu(II) binding site. In crystals, a polymeric form of Cu(I)Cu(II)-CopK displays a Cu(I) site defined by the S(δ) atoms of Met26, -38, and -54 (site 3S) and an exogenous ligand (modeled as H(2)O) and a Cu(II) site that bridges dimeric CopK molecules. The 3S Cu(I) binding mode observed in crystals was demonstrated in solution in protein variant M44L where site 4S is disabled. The intriguing copper binding chemistry of CopK provides molecular insight into Cu(I) transfer processes. The adaptable nature of the Cu(I) coordination sphere in methionine-rich clusters allows copper to be relayed between clusters during transport across membranes in molecular pumps such as CusA and Ctr1. PMID:21936507

  1. Growth kinetics of Pseudomonas alcaligenes C-0 relative to inoculation and 3-chlorobenzoate metabolism in soil.

    PubMed

    Focht, D D; Shelton, D

    1987-08-01

    Pseudomonas alcaligenes C-0 was isolated from activated sewage sludge by enrichment with 3-chlorobenzoate (3CB) as the sole carbon source. The carbon balance from [14C]3CB in pure culture could be accounted for in substrate, biomass, and CO2 from all sampling periods and inoculum densities (0.012, 0.092, 0.20, and 0.92 micrograms of dry cells X ml-1), and inorganic chloride was produced stoichiometrically. Monod parameters as determined in culture were compared with the kinetics of 3CB metabolism in soil with decreasing inoculum densities (1.9 X 10(-1), 1.9 X 10(-3), and 1.9 X 10(-5) micrograms of cells X g-1). 3CB was refractile to attack in soil by indigenous microflora, but it was completely metabolized upon inoculation with P. alcaligenes C-0. The saturation constant KS was much higher in soil than in culture, but the yield coefficient Y and the growth rate constant were the same in both systems: mu max = 0.32 h-1; Y = 34 micrograms cells X mumol-1; KS = 0.18 mM in culture and 6.0 mM in soil solution (1.1 mumol X g-1 of soil). The parameter estimates obtained from the highest inoculum density could be used for the lower inoculum densities with reasonable agreement between predicted and observed 3CB concentrations in soil, although the residual sum of squares was progressively higher. Since the growth rate of P. alcaligenes C-0 in soil was comparable to its growth rate in culture, inoculation should be a viable strategy for biodegradation of 3CB in soil if indigenous microflora are unable to exploit this metabolic niche. PMID:3662518

  2. The complete genome sequence of Alcaligenes faecalis ZD02, a novel potential bionematocide.

    PubMed

    Ju, Shouyong; Zheng, Jinshui; Lin, Jian; Geng, Ce; Zhu, Lei; Guan, Ziyu; Zheng, Ziqiang; Sun, Ming

    2016-01-20

    Root-knot nematodes (RKNs) can infect almost all crops, and result in huge economic losses in agriculture. There is no effective and environmentally safe means available to control RKNs. Alcaligenes faecalis ZD02 isolated from free living nematode Caenorhabditis elegans cadavers shows toxicity against RKN Meloidogyne incognita, that makes this strain to be a good bionematicide candidate for controlling of RKNs. Here, we firstly report the complete genome of A. faecalis ZD02 and describe its features. Additionally, we found two potential virulence factors in this genome, which play important roles for the nematocidal activity of A. faecalis ZD02. PMID:26656226

  3. Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions

    SciTech Connect

    Otte, S.; Grobben, N.G.; Robertson, L.A.; Jetten, M.S.M.; Kuenen, J.G.

    1996-07-01

    Nitrous oxide production contributes to both greenhouse effect and ozone depletion in the stratosphere. A significant part of the global N2O emission can be attributed to microbial processes, especially nitrification and denitrification, used in biological wastewater treatment systems. This study looks at the efficiency of denitrification and the enzymes involved, with the emphasis on N2O production during the transient phase from aerobic to anaerobic conditions and vice versa. The effect of repetitive changing aerobic-anaerobic conditions on N2O was also studied. Alcaligenes faecalis was used as the model denitrofing organism. 35 refs., 3 figs., 1 tab.

  4. Negative findings concerning Alcaligenes faecalis as an etiologic agent in acute respiratory disease of turkeys.

    PubMed

    Singer, N; Weisman, Y; Aronovici, A

    1981-01-01

    An acute respiratory disease of turkeys in Israel was first reported in November 1978. Alcaligenes faecalis was isolated from sick turkeys and from chickens not affected by the disease. Plate agglutination tests with A. faecalis antigen of 1,067 turkey and 494 chicken serum samples gave variable results: healthy turkeys gave positive reactions and sick turkeys sometimes gave negative ones. All isolated strains were highly sensitive in vitro drug sensitivity tests, but chemotherapy failed in the field. Pathogenicity trials with A. faecalis, given alone or in combination with Yucaipa virus to 8-day-old turkey poults, failed to reproduce the disease. PMID:7259671

  5. Proton translocation during denitrification by a nitrifying--denitrifying Alcaligenes sp.

    PubMed

    Castignetti, D; Hollocher, T C

    1983-04-01

    A heterotrophic nitrifying Alcaligenes sp. from soil was grown as a denitrifier on nitrate and subjected to oxidant pulse experiments to ascertain the apparent efficiencies of proton translocations during O2 and nitrogen-oxide respirations. With endogenous substrate as the reducing agent the leads to H+/2e- ratios, extrapolated to zero amount of oxidant per pulse, were 9.4, 3.7, 4.3 and 3.5 for O2, nitrate, nitrite and N2O, respectively. The value for O2 and those for the N-oxides are, respectively, somewhat larger and smaller than corresponding values for Paracoccus denitrificans. None of the three permeant ions employed with the Alcaligenes sp. (valinomycin-K+, thiocyanate and triphenylmethylphosphonium) was ideal for all purposes. Thiocyanate provided highest ratios for O2 but abolished the oxidant pulse response for nitrate and N2O. Valinomycin was slow to penetrate to the cytoplasmic membrane and relatively high concentrations were required for optimal performance. Triphenylmethylphosphonium enhanced passive proton permeability and diminished proton translocation at concentrations required to realize the maximal oxidant pulse response. PMID:6311094

  6. Degradation of h-acid by free and immobilized cells of Alcaligenes latus

    PubMed Central

    Usha, M.S.; Sanjay, M.K.; Gaddad, S.M.; Shivannavar, C.T.

    2010-01-01

    Alcaligenes latus, isolated from industrial effluent, was able to grow in mineral salts medium with 50 ppm (0.15 mM) of H-acid as a sole source of carbon. Immobilization of Alcaligenes latus in Ca-alginate and polyurethane foam resulted in cells embedded in the matrices. When free cells and immobilized cells were used for biodegradation studies at concentration ranging from 100 ppm (0.3 mM) to 500 ppm (1.15 mM) degradation rate was enhanced with immobilized cells. Cells immobilized in polyurethane foam showed 100% degradation up to 350 ppm (1.05 mM) and 57% degradation at 500 ppm (1.5 mM). Degradation rate of Ca-alginate immobilized cells was less as compared to that of polyurethane foam immobilized cells. With Ca-alginate immobilized cells 100% degradation was recorded up to 200 ppm (0.6 mM) of H-acid and only 33% degradation was recorded at 500 ppm (1.5 mM) of H-acid. Spectral analysis of the products after H-acid utilization showed that the spent medium did not contain any aromatic compounds indicating H-acid degradation by A. latus. PMID:24031573

  7. Studies of the polysaccharide fraction from the lipopolysaccharide of Pseudomonas alcaligenes

    PubMed Central

    Lomax, James A.; Gray, George W.; Wilkinson, Stephen G.

    1974-01-01

    Studies of the lipopolysaccharide of Pseudomonas alcaligenes strain BR 1/2 were extended to the polysaccharide moiety. The crude polysaccharide, obtained by mild acid hydrolysis of the lipopolysaccharide, was fractionated by gel filtration. The major fraction was the phosphorylated polysaccharide, for which the approximate proportions of residues were; glucose (2), rhamnose (0.7), heptose (2–3), galactosamine (1), alanine (1), 3-deoxy-2-octulonic acid (1), phosphorus (5–6). The heptose was l-glycero-d-manno-heptose. The minor fractions from gel filtration contained free 3-deoxy-2-octulonic acid, Pi and PPi. The purified polysaccharide was studied by periodate oxidation, methylation analysis, partial hydrolysis, and dephosphorylation. All the rhamnose and part of the glucose and heptose occur as non-reducing terminal residues. Other glucose residues are 3-substituted, and most heptose residues are esterified with condensed phosphate residues, possibly in the C-4 position. Free heptose and a heptosylglucose were isolated from a partial hydrolysate of the polysaccharide. The location of galactosamine in the polysaccharide was not established, but either the C-3 or C-4 position appears to be substituted and a linkage to alanine was indicated. In its composition, the polysaccharide from Ps. alcaligenes resembles core polysaccharides from other pseudomonads: no possible side-chain polysaccharide was detected. PMID:4369226

  8. The Genome Sequence of Alcaligenes faecalis NBIB-017 Contains Genes with Potentially High Activities against Erwinia carotovora.

    PubMed

    Liu, Xiaoyan; Huang, Daye; Wu, Jinping; Yu, Cui; Zhou, Ronghua; Liu, Cuijun; Zhang, Wei; Yao, Jingwu; Cheng, Meng; Guo, Suxia

    2016-01-01

    Alcaligenes faecalisNBIB-017, a Gram-negative bacterium, was isolated from soil in China. Here, we provide the complete genome sequence of this bacterium, which possesses a high number of genes encoding antibacterial factors, including proteins and small molecular peptides. PMID:27056227

  9. The Genome Sequence of Alcaligenes faecalis NBIB-017 Contains Genes with Potentially High Activities against Erwinia carotovora

    PubMed Central

    Liu, Xiaoyan; Huang, Daye; Wu, Jinping; Yu, Cui; Zhou, Ronghua; Liu, Cuijun; Zhang, Wei; Yao, Jingwu; Cheng, Meng

    2016-01-01

    Alcaligenes faecalis NBIB-017, a Gram-negative bacterium, was isolated from soil in China. Here, we provide the complete genome sequence of this bacterium, which possesses a high number of genes encoding antibacterial factors, including proteins and small molecular peptides. PMID:27056227

  10. Fluorescence in situ hybridization for rapid identification of Achromobacter xylosoxidans and Alcaligenes faecalis recovered from cystic fibrosis patients.

    PubMed

    Wellinghausen, Nele; Wirths, Beate; Poppert, Sven

    2006-09-01

    Achromobacter xylosoxidans is frequently isolated from the respiratory secretions of cystic fibrosis (CF) patients, but identification with biochemical tests is unreliable. We describe fluorescence in situ hybridization assays for the rapid identification of Achromobacter xylosoxidans and Alcaligenes faecalis. Both assays showed high sensitivities and high specificities with a collection of 155 nonfermenters from CF patients. PMID:16954289

  11. Degradation of poly(3-hydroxybutyrate) by poly(3-hydroxybutyrate) depolymerase from Alcaligenes faecalis T1.

    PubMed

    Shirakura, Y; Fukui, T; Saito, T; Okamoto, Y; Narikawa, T; Koide, K; Tomita, K; Takemasa, T; Masamune, S

    1986-01-15

    The extracellular poly(3-hydroxybutyrate) depolymerase purified from Alcaligenes faecalis T1 has two disulfide bonds, one of which appears to be necessary for the full enzyme activity. This depolymerase hydrolyzed not only hydrophobic poly(3-hydroxybutyrate) but also water-soluble trimer and larger oligomers of D-(-)-3-hydroxybutyrate, regardless of their solubilities in water. Kinetic analyses with oligomers of various sizes indicated that the substrate cleaving site of the enzyme consisted of four subsites with individual affinities for monomer units of the substrate. Analyses of the hydrolytic products of oligomers, which had labeled D-(-)-3-hydroxybutyrate at the hydroxy terminus, showed that the enzyme cleaved only the second ester linkage from the hydroxy terminus of the trimer and tetramer, and acted as an endo-type hydrolase toward the pentamer and higher oligomers. The enzyme appeared to have a hydrophobic site which interacted with poly(3-hydroxybutyrate) and determined the affinity of the enzyme toward the hydrophobic substrate. PMID:3942778

  12. N2O and N2 production during heterotrophic nitrification by Alcaligenes faecalis strain NR.

    PubMed

    Zhao, Bin; An, Qiang; He, Yi Liang; Guo, Jin Song

    2012-07-01

    A heterotrophic nitrifier, strain NR, was isolated from a membrane bioreactor. Strain NR was identified as Alcaligenes faecalis by Auto-Microbic system and 16S rRNA gene sequence analysis. A. faecalis strain NR shows a capability of heterotrophic nitrification and N(2)O and N(2) production as well under the aerobic condition. Further tests demonstrated that neither nitrite nor nitrate could be denitrified aerobically by strain NR. However, when hydroxylamine was used as the sole nitrogen source, nitrogenous gases were detected. With an enzyme assay, a 0.063 U activity of hydroxylamine oxidase was observed, while nitrate reductase and nitrite reductase were undetectable. Thus, nitrogenous gas was speculated to be produced via hydroxylamine. Therefore, two different metabolic pathways might exist in A. faecalis NR. One is heterotrophic nitrification by oxidizing ammonium to nitrite and nitrate. The other is oxidizing ammonium to nitrogenous gas directly via hydroxylamine. PMID:22534373

  13. Tributyltin chloride (TBTCl)-enhanced exopolysaccharide and siderophore production in an estuarine Alcaligenes faecalis strain.

    PubMed

    Khanolkar, Dnyanada; Dubey, S K; Naik, Milind Mohan

    2015-05-01

    Tributyltin chloride (TBTCl) has been used extensively as an antifouling agent in ship paints, which results in the contamination of aquatic sites. These contaminated sites serve as enrichment areas for TBTCl-resistant bacterial strains. One TBTCl-resistant bacterial strain was isolated from the sediments of Zuari estuary, Goa, India, which is a major hub of various ship-building activities. Based on biochemical characteristics and 16S rDNA sequence analysis, this bacterial strain was identified as Alcaligenes faecalis and designated as strain SD5. It could degrade ≥3 mM TBTCl by using it as a sole carbon source and transform it into the less toxic dibutyltin chloride, which was confirmed by nuclear magnetic resonance and mass spectroscopy. Interestingly, this bacterial strain also showed enhanced exopolysaccharide and siderophore production when cells were exposed to toxic levels of TBTCl, suggesting their involvement in conferring resistance to this antifouling biocide as well as degradative capability respectively. PMID:25612551

  14. Effect of nitrogen source on curdlan production by Alcaligenes faecalis ATCC 31749.

    PubMed

    Jiang, Longfa

    2013-01-01

    This study aims to investigate the effect of nitrogen source on curdlan production by Alcaligenes faecalis ATCC 31749. Curdlan production fell when excess nitrogen source was present, while biomass accumulation increased as the level of nitrogen source raised. Curdlan production and biomass accumulation were greater with urea compared with those with other nitrogen sources. The highest production of curdlan and biomass accumulation by A. faecalis ATCC 31749 was 28.16 g L(-1) and 9.58 g L(-1), respectively, with urea, whereas those with NH(4)Cl were 15.17 g L(-1) and 6.25 g L(-1), respectively. The optimum fermentation time for curdlan production was also affected by the nitrogen source in the medium. PMID:23085490

  15. Alcaligenes faecalis: an unusual cause of skin and soft tissue infection.

    PubMed

    Tena, Daniel; Fernández, Cristina; Lago, María R

    2015-01-01

    Skin and soft tissue infection (SSTI) due to Alcaligenes faecalis is very rare and has never been studied. The aim of the present study was to investigate the clinical and microbiological characteristics of this infection. We conducted a retrospective review of 5 cases that occurred at our institution over a period of 6 years. All patients had underlying diseases, and infection was secondary to vascular disease or recent surgery in 4 of them. The most common clinical presentations were vascular ulcer infection and surgical site infection. The clinical outcome was uniformly good after treatment, except in 1 patient. In conclusion, A. faecalis should be considered a potential pathogen of SSTI, particularly in patients with vascular diseases or after surgery. The history of contact with water or aqueous solutions should be investigated in all cases. The clinical outcome is usually good, but treatment can be difficult in some cases due to the high level of resistance to commonly used antibiotics. PMID:25420652

  16. Purification and properties of inducible penicillin beta-lactamase isolated from Alcaligenes faecalis.

    PubMed

    Fujii, T; Sato, K; Inoue, M; Mitsuhashi, S

    1985-04-01

    An inducible penicillin beta-lactamase was purified from a strain of Alcaligenes faecalis resistant to beta-lactam antibiotics. The purified enzyme preparation gave a single protein band on polyacrylamide gel electrophoresis, and its molecular weight was 29,000 based on sodium dodecyl sulfate-acrylamide gel electrophoresis. Its isoelectric point was 5.9. The enzyme more rapidly hydrolyzed penicillins, such as penicillin G, ampicillin, carbenicillin, piperacillin, and cloxacillin, than it hydrolyzed cephalosporins. For the hydrolysis of penicillin G, the optimal pH was 5.5, and the optimal temperature was 35 degrees C. The enzyme activity was inhibited by iodine, Cu2+, Hg2+, and EDTA but was not inhibited by clavulanic acid and sulbactam. PMID:3873902

  17. Strain of alcaligenes latus bacteria used for the decomposition of polychlorinated biphenyls

    DOEpatents

    Dyadischev, Nikolai Romanovich; Zharikov, Gennady Alekseevich; Kapranov, Vladimir Vladimirovich

    2001-09-11

    Alcaligenes latus bacterial strain TXD-13 VKPM B 75-05 is capable of degrading polychlorinated biphenyls (PCBs). The strain may be employed to detoxicate environment media and PCB-containing industrial waste. To produce biomass, the strain is incubated on media which contain carbon sources, nitrogen sources and mineral salts. The strain is cultivated by a subsurface method up to a titer from 6.0.multidot.10.sup.8 to 2.0.times.10.sup.9 cells per cu cm. The produced biomass is used for degrading PCBs in concentrations from 10.sup.7 to 10.sup.8 cells per cu cm. The strain ensures from 35 to 50% reduction in PCB content in soil and water.

  18. Potential application of Alcaligenes faecalis strain No. 4 in mitigating ammonia emissions from dairy wastewater.

    PubMed

    Neerackal, George M; Ndegwa, Pius M; Joo, Hung-Soo; Wang, Xiang; Frear, Craig S; Harrison, Joseph H; Beutel, Marc W

    2016-04-01

    This research examined the potential mitigation of NH3 emissions from dairy manure via an enhanced aerobic bio-treatment with bacterium Alcaligenes faecalis strain No. 4. The studies were conducted in aerated batch reactors using air and pure oxygen. Aeration with air and oxygen removed approximately 40% and 100% total ammoniacal nitrogen (TAN), respectively. Intermittent oxygenation (every 2 or 4 h) reduced oxygen consumption by 95%, while attaining nearly identical TAN removal to continuous aeration. The results revealed that adequate oxygen supply and supplementing dairy wastewater with carbon are essential for this bioprocess. Based on the nitrogen mass balance, only 4% of TAN was released as NH3 gas, while the majority was retained in either the microbial biomass (58%) or converted to nitrogen gas (36%). The mass balance results reveal high potential for environmentally friendly bio-treatment of dairy wastewater using A. faecalis strain No. 4 with respect to NH3 emissions. PMID:26845217

  19. Production optimization of cyanophycinase ChpEal from Pseudomonas alcaligenes DIP1

    PubMed Central

    2011-01-01

    Pseudomonas alcaligenes DIP1 produces an extracellular cyanophycinase (CphEal). The corresponding gene (cphEal) was identified from subclones of a genomic DNA gene library by heterologously expressing the functionally active enzyme in Escherichia coli. The nucleotide sequence of the gene (1260 base pairs) was determined indicating a theoretical mass of 43.6 kDa (mature CphEal) plus a leader peptide of 2,6 kDa which corresponds well to the apparent molecular mass of 45 kDa as revealed by SDS-PAGE. The enzyme exhibited a high sequence identity of 91% with the extracellular cyanophycinase from P. anguilliseptica strain BI and carried an N-terminal Sec secretion signal peptide. Analysis of the amino acid sequence of cphE revealed a putative catalytic triad consisting of the serine motif GXSXG plus a histidine and a glutamate residue, suggesting a catalytic mechanism similar to serine-type proteases. The cyanophycinase (CphEal) was heterologously produced in two different E. coli strains (Top10 and BL21(DE3)) from two plasmid vectors (pBBR1MCS-4 and pET-23a(+)). The signal peptide of CphEal was cleaved in E. coli, suggesting active export of the protein at least to the periplasm. Substantial enzyme activity was also present in the culture supernatants. The extracellular cyanophycinase activities in E. coli were higher than activities in the wild type P. alcaligenes DIP1 in complex LB medium. Highest extracellular enzyme production was achieved with E. coli BL21(DE3) expressing CphEal from pBBR1MCS-4. Using M9 minimal medium was less effective, but the relatively low cost of mineral salt media makes these results important for the industrial-scale production of dipeptides from cyanophycin. PMID:22060187

  20. A heavy-metal tolerant novel bacterium, Alcaligenes pakistanensis sp. nov., isolated from industrial effluent in Pakistan.

    PubMed

    Abbas, Saira; Ahmed, Iftikhar; Iida, Toshiya; Lee, Yong-Jae; Busse, Hans-Jürgen; Fujiwara, Toru; Ohkuma, Moriya

    2015-10-01

    Two strains, NCCP-650(T) and NCCP-667, were isolated from industrial effluent and their taxonomic positions were investigated using a polyphasic taxonomic approach. The strains were found to be Gram-stain negative, strictly aerobic, motile short rods, which are tolerant to heavy-metals (Cr(+2), As(+2), Pb(+2) and Cu(+2)). Cells were observed to grow at a temperature range of 10-37 °C (optimal 25-33 °C), pH range of 5.5-10.0 (optimal 6.5-7.5) and can tolerate 0-7 % NaCl (w/v) (optimum 0-1 %) in tryptic soya agar medium. Sequencing of the 16S rRNA gene and two housekeeping genes, gyrB and nirK, of the isolated strains revealed that both strains belong to the Betaproteobacteria showing highest sequence similarities with members of the genus Alcaligenes. The chemotaxonomic data [major quinones as Q-8; predominant cellular fatty acids as summed features 3 (C16 :1 ω7c/iso-C15 :0 2OH) and C16:0 followed by Summed features 2 (iso-C16 :1 I/C14 :0 3OH), C17:0 Cyclo and C18:1 ω7c; major polar lipids as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and one unidentified aminolipid] also supported the affiliation of the isolated strains with the genus Alcaligenes. DNA-DNA hybridizations between the two strains and with closely related type strains of species of the genus Alcaligenes confirmed that both isolates belong to a single novel species within the genus Alcaligenes. On the basis of phylogenetic analyses, physiological, biochemical characteristics and DNA-DNA hybridization, the isolated strains can be differentiated from established Alcaligenes species and thus represent a novel species, for which the name Alcaligenes pakistanensis sp. nov. is proposed with the type strain NCCP-650(T) (=LMG 28368(T) = KCTC42083(T) = JCM 30216(T)). PMID:26238381

  1. Cell growth and accumulation of polyhydroxyalkanoates from CO2 and H2 of a hydrogen-oxidizing bacterium, Cupriavidus eutrophus B-10646.

    PubMed

    Volova, Tatiana G; Kiselev, Evgeniy G; Shishatskaya, Ekaterina I; Zhila, Natalia O; Boyandin, Anatoly N; Syrvacheva, Daria A; Vinogradova, Olga N; Kalacheva, Galina S; Vasiliev, Alexander D; Peterson, Ivan V

    2013-10-01

    Synthesis of polyhydroxyalkanoates (PHAs) by a new strain of Cupriavidus - Cupriavidus eutrophus B-10646 - was investigated under autotrophic growth conditions. Under chemostat, at the specific flow rate D=0.1h(-1), on sole carbon substrate (CO2), with nitrogen, sulfur, phosphorus, potassium, and manganese used as growth limiting elements, the highest poly(3-hydroxybutyrate) [P(3HB)] yields were obtained under nitrogen deficiency. In batch autotrophic culture, in the fermenter with oxygen mass transfer coefficient 0.460 h(-1), P(3HB) yields reached 85% of dry cell weight (DCW) and DCW reached 50 g/l. Concentrations of supplementary PHA precursor substrates (valerate, hexanoate, γ-butyrolactone) and culture conditions were varied to produce, for the first time under autotrophic growth conditions, PHA ter- and tetra-polymers with widely varying major fractions of 3-hydroxybutyrate, 4-hydroxybutyrate, 3-hydroxyvalerate, and 3-hydroxyhexanoate monomer units. Investigation of the high-purity PHA specimens showed significant differences in their physicochemical and physicomechanical properties. PMID:23934338

  2. Alcaligenes faecalis subsp. phenolicus subsp. nov. a phenol-degrading, denitrifying bacterium isolated from a graywater bioprocessor.

    PubMed

    Rehfuss, Marc; Urban, James

    2005-07-01

    A Gram (-) coccobacillary bacterium, J(T), was isolated from a graywater bioprocessor. 16S rRNA and biochemical analysis has revealed strain J(T) closely resembles Alcaligenes faecalis ATCC 8750T and A. faecalis subsp. parafaecalis DSM 13975T, but is a distinct, previously uncharacterized isolate. Strain J(T), along with the type strain of A. faecalis and its previously described subspecies share the ability to aerobically degrade phenol. The degradation rates of phenol for strain J(T) and reference phenol degrading bacteria were determined by photometrically measuring the change in optical density when grown on 0.1% phenol as the sole carbon source, followed by addition of Gibb's reagent to measure depletion of substrate. The phenol degradation rates of strain J(T) was found to exceed that of the phenol hydroxylase group III bacterium Pseudomonas pseudoalcaligenes, with isolate J(T) exhibiting a doubling time of 4.5 h. The presence of the large subunit of the multicomponent phenol hydroxylase gene in strain J(T) was confirmed by PCR. The presence of the nirK nitrite reductase gene as demonstrated by PCR as well as results obtained from nitrite media indicated denitrification at least to N2O. Based on phenotypic, phylogenetic, fatty acid analysis and results from DNA DNA hybridization, we propose assigning a novel subspecies of Alcaligenes faecalis, to be named Alcaligenes faecalis subsp. phenolicus with the type strain J(T) (= DSM 16503) (= NRRL B-41076). PMID:16094869

  3. Characterization of the novel dimethyl sulfide-degrading bacterium Alcaligenes sp. SY1 and its biochemical degradation pathway.

    PubMed

    Sun, Yiming; Qiu, Jiguo; Chen, Dongzhi; Ye, Jiexu; Chen, Jianmeng

    2016-03-01

    Recently, the biodegradation of volatile organic sulfur compounds (VOSCs) has become a burgeoning field, with a growing focus on the reduction of VOSCs. The reduction of VOSCs encompasses both organic emission control and odor control. Herein, Alcaligenes sp. SY1 was isolated from active sludge and found to utilize dimethyl sulfide (DMS) as a growth substrate in a mineral salt medium. Response surface methodology (RSM) analysis was applied to optimize the incubation conditions. The following conditions for optimal degradation were identified: temperature 27.03°C; pH 7.80; inoculum salinity 0.84%; and initial DMS concentration 1585.39 μM. Under these conditions, approximately 99% of the DMS was degraded within 30 h of incubation. Two metabolic compounds were detected and identified by gas chromatography-mass spectrometry (GC-MS): dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS). The DMS degradation kinetics for different concentrations were evaluated using the Haldane-Andrews model and the pseudo first-order model. The maximum specific growth rate and degradation rate of Alcaligenes sp. SY1 were 0.17 h(-1) and 0.63 gs gx(-1)h(-1). A possible degradation pathway is proposed, and the results suggest that Alcaligenes sp. SY1 has the potential to control odor emissions under aerobic conditions. PMID:26623933

  4. Structure of the 2, 4′-dihydroxyacetophenone dioxygenase from Alcaligenes sp. 4HAP

    SciTech Connect

    Keegan, R.; Lebedev, A.; Erskine, P.; Guo, J.; Wood, S. P.; Hopper, D. J.; Rigby, S. E. J.; Cooper, J. B.

    2014-09-01

    The first X-ray structure of a 2, 4′-dihydroxyacetophenone dioxygenase from Alcaligenes sp. 4HAP at a resolution of 2.2 Å is reported. This structure establishes that the enzyme adopts the cupin-fold, forming compact dimers with a pronounced hydrophobic interface between the monomers. Each monomer possesses a catalytic ferrous iron that is coordinated by three histidines (76, 78 and 114) and an additional ligand which has been putatively assigned as a carbonate, although formate and acetate are possibilities. The enzyme 2, 4′-dihydroxyacetophenone dioxygenase (DAD) catalyses the conversion of 2, 4′-dihydroxyacetophenone to 4-hydroxybenzoic acid and formic acid with the incorporation of molecular oxygen. Whilst the vast majority of dioxygenases cleave within the aromatic ring of the substrate, DAD is very unusual in that it is involved in C—C bond cleavage in a substituent of the aromatic ring. There is evidence that the enzyme is a homotetramer of 20.3 kDa subunits, each containing nonhaem iron, and its sequence suggests that it belongs to the cupin family of dioxygenases. In this paper, the first X-ray structure of a DAD enzyme from the Gram-negative bacterium Alcaligenes sp. 4HAP is reported, at a resolution of 2.2 Å. The structure establishes that the enzyme adopts a cupin fold, forming dimers with a pronounced hydrophobic interface between the monomers. The catalytic iron is coordinated by three histidine residues (76, 78 and 114) within a buried active-site cavity. The iron also appears to be tightly coordinated by an additional ligand which was putatively assigned as a carbonate dianion since this fits the electron density optimally, although it might also be the product formate. The modelled carbonate is located in a position which is highly likely to be occupied by the α-hydroxyketone group of the bound substrate during catalysis. Modelling of a substrate molecule in this position indicates that it will interact with many conserved amino acids in

  5. Improved welan gum production by Alcaligenes sp. ATCC31555 from pretreated cane molasses.

    PubMed

    Ai, Hongxia; Liu, Min; Yu, Pingru; Zhang, Shaozhi; Suo, Yukai; Luo, Ping; Li, Shuang; Wang, Jufang

    2015-09-20

    Welan gum production by Alcaligenes sp. ATCC31555 from cane molasses was studied in batch fermentation to reduce production costs and enhance gum production. The pretreatment of cane molasses, agitation speed and the addition of supplements were investigated to optimize the process. Sulfuric acid hydrolysis was found to be the optimal pretreatment, resulting in a maximum gum concentration of 33.5 g/L, which is 50.0% higher than those obtained from the molasses' mother liquor. Agitation at 600 rpm at 30°C and addition of 10% n-dodecane following fermentation for 36 h increased the maximum gum production up to 41.0 ± 1.41 g/L, which is 49.1% higher than the greatest welan gum concentration in the literature so far. The welan gum product showed an acceptable molecular weight, similar rheological properties and better thermal stability to that obtained from glucose. These results indicate that cane molasses may be a suitable and inexpensive substrate for cost-effective industrial-scale welan gum production. PMID:26050885

  6. Characterization of Alcaligenes faecalis strain AD15 indicating biocontrol activity against plant pathogens.

    PubMed

    Yokoyama, Shin-ichiro; Adachi, Yoshitomi; Asakura, Shuichi; Kohyama, Erina

    2013-01-01

    Bacterial strain possessing both bacteriostatic and fungistatic activity (biocontrol activity) against pathogens of cyclamen (Cyclamen sp.) was isolated from the soil in Gifu Prefecture, Japan, and characterized with respect to its taxonomic and biocontrol properties. The sequence of its 16S rRNA gene, morphology, biochemistry, and fatty acid composition demonstrated that it is a strain most closely related to Alcaligenes faecalis subsp. faecalis LMG 1229(T). The isolate was named A. faecalis strain AD15. A. faecalis AD15 produced hydroxylamine at maximum yields of 33.3±1.7 mg/L after 16 h cultivation in LB medium and 19.0±0.44 mg/L after 19 h cultivation in synthetic medium. Moreover, minimum inhibitory concentrations of hydroxylamine against the cyclamen pathogens Pantoea agglomerans and Colletotrichum gloeosporioides were 4.20±0.98 and 16.5±0.67 mg/L. These results indicated that the biocontrol activity of strain AD15 might be attributed to hydroxylamine, a metabolite in the culture medium, and it had the potential for biopesticide application. PMID:23759862

  7. Aspartate beta-decarboxylase from Alcaligenes faecalis: carbon-13 kinetic isotope effect and deuterium exchange experiments

    SciTech Connect

    Rosenberg, R.M.; O'Leary, M.H.

    1985-03-26

    The authors have measured the /sup 13/C kinetic isotope effect at pH 4.0, 5.0, 6.0, and 6.5 and in D/sub 2/O at pH 5.0 and the rate of D-H exchange of the alpha and beta protons of aspartic acid in D/sub 2/O at pH 5.0 for the reaction catalyzed by the enzyme aspartate beta-decarboxylase from Alcaligenes faecalis. The /sup 13/C kinetic isotope effect, with a value of 1.0099 +/- 0.0002 at pH 5.0, is less than the intrinsic isotope effect for the decarboxylation step, indicating that the decarboxylation step is not entirely rate limiting. The authors have been able to estimate probable values of the relative free energies of the transition states of the enzymatic reaction up to and including the decarboxylation step from the /sup 13/C kinetic isotope effect and the rate of D-H exchange of alpha-H. The pH dependence of the kinetic isotope effect reflects the pKa of the pyridine nitrogen of the coenzyme pyridoxal 5'-phosphate but not that of the imine nitrogen. A mechanism is proposed for the exchange of aspartate beta-H that is consistent with the stereochemistry suggested earlier.

  8. Enzymatic properties of immobilized Alcaligenes faecalis cells with cell-associated beta-glucosidase activity

    SciTech Connect

    Wheatly, M.A.; Phillips, C.R.

    1984-06-01

    Enzymatic properties of Alcaligenes faecalis cells immobilized in polyacrylamide were characterized and compared with those reported for the extracted enzyme, and with those measured for free cells. Many of the properties reflected those of the extracted enzyme rather than those measured in the free whole cells prior to immobilization, suggesting cell disruption during immobilization. These properties included the pH activity profile, a slightly broader pH stability profile, and the activation energy. Electron micrographs showed evidence of cell debris among the polymer matrix. The immobilized cells were not viable, and did not consume glucose. Thermal stability was less after immobilization with a half-line of 16 h at 45 degrees C, and 3.5 h at 50 degrees C. The immobilized preparation was more stable when stored lyophilized rather than in buffer, losing 23 and 52% activity, respectively, after six months. The enzyme was irreversibly inhibited by both acetate and citrate buffers. If the immobilized enzyme is to be used in conjunction with cellulases from Trichoderma reesei for cellulase saccharification, the optimal conditions would be pH 5.5 and 45 degrees C in a buffer containing no carboxylic acid groups.

  9. Efficient enzymatic synthesis of ampicillin by mutant Alcaligenes faecalis penicillin G acylase.

    PubMed

    Deng, Senwen; Su, Erzheng; Ma, Xiaoqiang; Yang, Shengli; Wei, Dongzhi

    2015-04-10

    Semi-synthetic β-lactam antibiotics (SSBAs) are one of the most important antibiotic families in the world market. Their enzymatic synthesis can be catalyzed by penicillin G acylases (PGAs). In this study, to improve enzymatic synthesis of ampicillin, site-saturating mutagenesis was performed on three conserved amino acid residues: βF24, αR146, and αF147 of thermo-stable penicillin G acylase from Alcaligenes faecalis (Af PGA). Four mutants βF24G, βF24A, βF24S, and βF24P were recovered by screening the mutant bank. Kinetic analysis of them showed up to 800-fold increased kcat/Km value for activated acyl donor D-phenylglycine methyl ester (D-PGME). When βF24G was used for ampicillin synthesis under kinetic control at industrially relevant conditions, 95% of nucleophile 6-aminopenicillanic acid (6-APA) was converted to ampicillin in aqueous medium at room temperature while 12% process time is needed to reach maximum product accumulation at 25% enzyme concentration compared with the wild-type Af PGA. Consequently, process productivity of enzymatic synthesis of ampicillin catalyzed by Af PGA was improved by more than 130 times, which indicated an enzyme viable for efficient SSBAs synthesis. PMID:25681630

  10. Colonization of Alcaligenes faecalis strain JBW4 in natural soils and its detoxification of endosulfan.

    PubMed

    Kong, Lingfen; Zhu, Shaoyuan; Zhu, Lusheng; Xie, Hui; Wei, Kai; Yan, Tongxiang; Wang, Jun; Wang, Jinhua; Wang, Fenghua; Sun, Fengxia

    2014-02-01

    Alcaligenes faecalis strain JBW4, a strain of bacteria that is capable of degrading endosulfan, was inoculated into sterilized and natural soils spiked with endosulfan. JBW4 degraded 75.8 and 87.0 % of α-endosulfan and 58.5 and 69.5 % of β-endosulfan in sterilized and natural soils, respectively, after 77 days. Endosulfan ether and endosulfan lactone were the major metabolites that were detected by gas chromatography-mass spectrometry. This result suggested that A. faecalis strain JBW4 degrades endosulfan using a non-oxidative pathway in soils. The ability of strain JBW4 to colonize endosulfan-contaminated soils was confirmed by polymerase chain reaction-denaturing gradient gel electrophoresis. This result suggested that strain JBW4 competed with the original inhabitants in the soil to establish a balance and successfully colonize the soils. In addition, the detoxification of endosulfan by strain JBW4 was evaluated using single-cell gel electrophoresis and by determining the soil microbial biomass carbon and enzymatic activities. The results showed that the genotoxicity and ecotoxicity of endosulfan in soil were reduced after degradation. The natural degradation of endosulfan in soil is inadequate; therefore, JBW4 shows potential for the bioremediation of industrial soils that are contaminated with endosulfan residues. PMID:23812277

  11. Biodegradation of nicosulfuron by a novel Alcaligenes faecalis strain ZWS11.

    PubMed

    Zhao, Weisong; Wang, Chen; Xu, Li; Zhao, Chunqing; Liang, Hongwu; Qiu, Lihong

    2015-09-01

    A bacterial strain ZWS11 was isolated from sulfonylurea herbicide-contaminated farmland soil and identified as a potential nicosulfuron-degrading bacterium. Based on morphological and physicochemical characterization of the bacterium and phylogenetic analysis of the 16S rRNA sequence, strain ZWS11 was identified as Alcaligenes faecalis. The effects of the initial concentration of nicosulfuron, inoculation volume, and medium pH on degradation of nicosulfuron were investigated. Strain ZWS11 could degrade 80.56% of the initial nicosulfuron supplemented at 500.0mg/L under the conditions of pH7.0, 180r/min and 30°C after incubation for 6days. Strain ZWS11 was also capable of degrading rimsulfuron, tribenuron-methyl and thifensulfuron-methyl. Four metabolites from biodegradation of nicosulfuron were identified, which were 2-aminosulfonyl-N, N-dimethylnicotinamide (M1), 4, 6-dihydroxypyrimidine (M2), 2-amino-4, 6-dimethoxypyrimidine (M3) and 2-(1-(4,6-dimethoxy-pyrimidin-2-yl)-ureido)-N,N-dimethyl-nicotinamide (M4). Among the metabolites detected, M2 was reported for the first time. Possible biodegradation pathways of nicosulfuron by strain ZWS11 were proposed. The degradation proceeded mainly via cleavage of the sulfonylurea bridge, O-dealkylation, and contraction of the sulfonylurea bridge by elimination of a sulfur dioxide group. The results provide valuable information for degradation of nicosulfuron in contaminated environments. PMID:26354704

  12. Alcaligenes faecalis ZD02, a Novel Nematicidal Bacterium with an Extracellular Serine Protease Virulence Factor.

    PubMed

    Ju, Shouyong; Lin, Jian; Zheng, Jinshui; Wang, Shaoying; Zhou, Hongying; Sun, Ming

    2016-01-01

    Root knot nematodes (RKNs) are the world's most damaging plant-parasitic nematodes (PPNs), and they can infect almost all crops. At present, harmful chemical nematicides are applied to control RKNs. Using microbial nematicides has been proposed as a better management strategy than chemical control. In this study, we describe a novel nematicidal bacterium named Alcaligenes faecalis ZD02. A. faecalis ZD02 was isolated from Caenorhabditis elegans cadavers and has nematostatic and nematicidal activity, as confirmed by C. elegans growth assay and life span assay. In addition, A. faecalis ZD02 fermentation broth showed toxicity against C. elegans and Meloidogyne incognita. To identify the nematicidal virulence factor, the genome of strain ZD02 was sequenced. By comparing all of the predicted proteins of strain ZD02 to reported nematicidal virulence factors, we determined that an extracellular serine protease (Esp) has potential to be a nematicidal virulence factor, which was confirmed by bioassay on C. elegans and M. incognita. Using C. elegans as the target model, we found that both A. faecalis ZD02 and the virulence factor Esp can damage the intestines of C. elegans. The discovery that A. faecalis ZD02 has nematicidal activity provides a novel bacterial resource for the control of RKNs. PMID:26826227

  13. Crystallization and X-ray structure analysis of a thermostable penicillin G acylase from Alcaligenes faecalis.

    PubMed

    Varshney, Nishant Kumar; Kumar, R Suresh; Ignatova, Zoya; Prabhune, Asmita; Pundle, Archana; Dodson, Eleanor; Suresh, C G

    2012-03-01

    The enzyme penicillin G acylase (EC 3.5.1.11) catalyzes amide-bond cleavage in benzylpenicillin (penicillin G) to yield 6-aminopenicillanic acid, an intermediate chemical used in the production of semisynthetic penicillins. A thermostable penicillin G acylase from Alcaligenes faecalis (AfPGA) has been crystallized using the hanging-drop vapour-diffusion method in two different space groups: C222(1), with unit-cell parameters a = 72.9, b = 86.0, c = 260.2 , and P4(1)2(1)2, with unit-cell parameters a = b = 85.6, c = 298.8 . Data were collected at 293 and the structure was determined using the molecular-replacement method. Like other penicillin acylases, AfPGA belongs to the N-terminal nucleophilic hydrolase superfamily, has undergone post-translational processing and has a serine as the N-terminal residue of the β-chain. A disulfide bridge has been identified in the structure that was not found in the other two known penicillin G cylase structures. The presence of the disulfide bridge is perceived to be one factor that confers higher stability to this enzyme. PMID:22442220

  14. Kinetic characteristics and modelling of growth and substrate removal by Alcaligenes faecalis strain NR.

    PubMed

    Chen, Jie; Zhao, Bin; An, Qiang; Wang, Xia; Zhang, Yi Xin

    2016-04-01

    Alcaligenes faecalis strain NR has the capability of simultaneous ammonium and organic carbon removal under sole aerobic conditions. The growth and substrate removal characteristics of A. faecalis strain NR were studied and appropriate kinetic models were developed. The maximum substrate removal rate of NH4 (+)-N and TOC were determined as 2.27 mg NH4 (+)-N/L/h and 30.00 mg TOC/L/h, respectively with initial NH4 (+)-N = 80 mg/L and TOC = 800 mg/L. Single-substrate models and double-substrate models based on Monod, Contois, Moser and Teissier were employed to describe the bioprocess kinetic coefficients. As a result, two double-substrate models, Teissier-Contois and Contois-Contois, were considered to be appropriate to model growth kinetics with both NH4 (+)-N and TOC as limiting substrates. The kinetic constants of maximum growth rate (μ max) and half-saturation constant (K S and B S) were obtained by solving multiple equations with regression. This work can be used to further understand and predict the performance of heterotrophic nitrifiers, and thus provides specific guidance of these functional strains in practical wastewater treatment process. PMID:26796583

  15. Wheat Bran Enhances the Cytotoxicity of Immobilized Alcaligenes aquatilis F8 against Microcystis aeruginosa

    PubMed Central

    Sun, Pengfei; Lin, Hui; Wang, Guan; Zhang, Ximing; Zhang, Qichun; Zhao, Yuhua

    2015-01-01

    Algicidal bacteria offer a promising option for killing cyanobacteria. Therefore, a new Alcaligenes aquatilis strain F8 was isolated to control Microcystis aeruginosa in this study. The algicidal activity of strain F8 was dependent on the cell density of M. aeruginosa, and the maximal algicidal rate of the free bacterium reached 88.45% within 72 h. With a view to its application to the control of M. aeruginosa in the natural environment, strain F8 was immobilized in sodium alginate beads, but immobilization of the strain decreased its algicidal rate compared to that of the free bacterium. However, addition of wheat bran to the sodium alginate matrix used to immobilize strain F8 not only eliminated the adverse effects of immobilization on the bacteria but also resulted in an 8.83% higher algicidal rate of the immobilized than free bacteria. Exclusion and recovery methods were used to identify key ingredients of wheat bran and gain insight into the mechanism underlying the observed enhancement of algicidal activity. This analysis indicated that certain factors in wheat bran, including vitamins B1, B2, B9, and E were responsible for promoting bacterial growth and thereby improving the algicidal rate of immobilized strain F8. Our findings indicate that wheat bran is able to improve the algicidal efficiency of A. aquatilis strain F8 for killing M. aeruginosa and is a good source of not only carbon and nitrogen but also vitamins for bacteria. PMID:26295573

  16. Maintenance and induction of naphthalene degradation activity in Pseudomonas putida and an Alcaligenes sp. under different culture conditions

    SciTech Connect

    Guerin, W.F.; Boyd, S.A.

    1995-11-01

    The expression of xenobiotic-degradative genes in indigenous bacteria or in bacteria introduced into an ecosystem is essential for the successful bioremediation of contaminated environments. The maintenance of naphthalene utilization activity is studied in Pseudomonas putida (ATCC 17484) and an Alcaligenes sp. (strain NP-Alk) under different batch culture conditions. Levels of activity decreased exponentially in stationary phase with half-lives of 43 and 13 h for strains ATCC 17484 nad NP-Alk, respectively. Activity half-lives were 2.7 and 5.3 times longer, respectively, in starved cultures than in stationary-phase cultures following growth on naphthalene. The treatment of starved cultures with chloramphenicol caused a loss of activity more rapid than that measured in untreated starved cultures, suggesting a continued enzyme synthesis in starved cultures in the absence of a substrate. Following growth in nutrient medium, activity decreased to undetectable levels in the Alcaligenes sp. but remained at measureable levels int he pseudomonad even after 9 months. The induction of naphthalene degradation activities in these cultures, when followed by radiorespirometry with {sup 14}C-labeled naphthalene as the substrate, was consistent with activity maintenance data. In the pseudomonad, naphthalene degradation activity was present constitutively at low levels under all growth conditions and was rapidly (in approximately 15 min) induced to high levels upon exposure to naphthalene. Adaptation in the uninduced Alcaligenes sp. occurred after many hours of exposure to naphthalene. In vivo labeling with {sup 35}S, to monitor the extent of de novo enzyme synthesis by naphthalene-challenged cells, provided an independent confirmation of the results. 43 refs., 9 figs., 1 tab.

  17. Site-directed mutagenesis reveals a conservation of the copper-binding site and the crucial role of His24 in CopH from Cupriavidus metallidurans CH34.

    PubMed

    Sendra, Véronique; Gambarelli, Serge; Bersch, Beate; Covès, Jacques

    2009-12-01

    CopH is a periplasmic copper-binding protein from Cupriavidus metallidurans CH34 that contains two histidine residues. Both His24 and His26 contribute to the formation of two high-affinity copper-binding sites in wild-type CopH and are likely involved in a 2N2O coordination sphere in the equatorial plane. We have used site-directed mutagenesis, and a series of spectroscopic and calorimetric studies to further characterize the copper-binding sites in CopH. While His24 plays a predominant role in copper affinity, one Cu-binding site was lost when either histidine residue was mutated. However, as shown by NMR and EPR, the mutation of the His residues does not affect the structural organization of the Cu-binding site nor the number of nitrogen ligands involved in copper ligation. In the absence of structural data, we propose a model that conciliates most of the spectroscopic data recorded during this study. PMID:19857899

  18. Enhanced Alcaligenes faecalis Denitrification Rate with Electrodes as the Electron Donor

    PubMed Central

    Wang, Xin; Yu, Ping; Zeng, Cuiping; Ding, Hongrui; Wang, Changqiu

    2015-01-01

    The utilization by Alcaligenes faecalis of electrodes as the electron donor for denitrification was investigated in this study. The denitrification rate of A. faecalis with a poised potential was greatly enhanced compared with that of the controls without poised potentials. For nitrate reduction, although A. faecalis could not reduce nitrate, at three poised potentials of +0.06, −0.06, and −0.15 V (versus normal hydrogen electrode [NHE]), the nitrate was partially reduced with −0.15- and −0.06-V potentials at rates of 17.3 and 28.5 mg/liter/day, respectively. The percentages of reduction for −0.15 and −0.06 V were 52.4 and 30.4%, respectively. Meanwhile, for nitrite reduction, the poised potentials greatly enhanced the nitrite reduction. The nitrite reduction rates for three poised potentials (−0.06, −0.15, and −0.30 V) were 1.98, 4.37, and 3.91 mg/liter/h, respectively. When the potentials were cut off, the nitrite reduction rate was maintained for 1.5 h (from 2.3 to 2.25 mg/liter/h) and then greatly decreased, and the reduction rate (0.38 mg/liter/h) was about 1/6 compared with the rate (2.3 mg/liter/h) when potential was on. Then the potentials resumed, but the reduction rate did not resume and was only 2 times higher than the rate when the potential was off. PMID:26048940

  19. Enhanced Alcaligenes faecalis Denitrification Rate with Electrodes as the Electron Donor.

    PubMed

    Wang, Xin; Yu, Ping; Zeng, Cuiping; Ding, Hongrui; Li, Yan; Wang, Changqiu; Lu, Anhuai

    2015-08-15

    The utilization by Alcaligenes faecalis of electrodes as the electron donor for denitrification was investigated in this study. The denitrification rate of A. faecalis with a poised potential was greatly enhanced compared with that of the controls without poised potentials. For nitrate reduction, although A. faecalis could not reduce nitrate, at three poised potentials of +0.06, -0.06, and -0.15 V (versus normal hydrogen electrode [NHE]), the nitrate was partially reduced with -0.15- and -0.06-V potentials at rates of 17.3 and 28.5 mg/liter/day, respectively. The percentages of reduction for -0.15 and -0.06 V were 52.4 and 30.4%, respectively. Meanwhile, for nitrite reduction, the poised potentials greatly enhanced the nitrite reduction. The nitrite reduction rates for three poised potentials (-0.06, -0.15, and -0.30 V) were 1.98, 4.37, and 3.91 mg/liter/h, respectively. When the potentials were cut off, the nitrite reduction rate was maintained for 1.5 h (from 2.3 to 2.25 mg/liter/h) and then greatly decreased, and the reduction rate (0.38 mg/liter/h) was about 1/6 compared with the rate (2.3 mg/liter/h) when potential was on. Then the potentials resumed, but the reduction rate did not resume and was only 2 times higher than the rate when the potential was off. PMID:26048940

  20. Inhibition of Serratia marcescens Smj-11 biofilm formation by Alcaligenes faecalis STN17 crude extract

    NASA Astrophysics Data System (ADS)

    Lutfi, Zainal; Usup, Gires; Ahmad, Asmat

    2014-09-01

    Serratia marcescens biofilms are formed when they are bound to surfaces in aqueous environments. S. marcescens utilizes N-acylhomoserine lactone (AHL) as its quorum sensing signal molecule. The accumulation of AHL indicates the bacteria to produce matrices to form biofilms. Prodigiosin (2-methyl-3-pentyl-6-methoxyprodigiosin), which causes red pigmentation in the colonies, are also produced when the AHL reaches a certain threshold. The Alcaligenes faecalis STN17 crude extract is believed to inhibit quorum sensing in the S. marcescens Smj-11 and, thus, impedes its biofilm formation ability. A. faecalis STN17 was grown in marine broth, and ethyl acetate extraction was carried out. The crude compound of A. faecalis STN17 was diluted at high concentration (0.2-6.4 mg/mL) and was taken to confirm anti-biofilm activity through the crystal violet method in 96-wells plate. Then, the crude extract underwent purification using simple solvents partitioning test to discern the respective compounds that had the anti-biofilm activity under the crystal violet method. The crystal violet test showed that the crude did have anti-biofilm activity on S. marcescens Smj-11, but did not kill the cells. This finding signifies that the suppression of biofilm formation in S. marcescens by A. faecalis STN17 has a strong correlation. The partitioning test showed that A. faecalis STN17 crude extract has several compounds and only the compound(s) in chloroform showed activities. In conclusion, the crude extract of A. faecalis STN17 has the ability to inhibit S. marcescens Smj-11 biofilm formation.

  1. Immunostimulatory activities of a decapeptide derived from Alcaligenes faecalis FY-3 to crucian carp.

    PubMed

    Wang, G-X; Li, F-Y; Cui, J; Wang, Y; Liu, Y-T; Han, J; Lei, Y

    2011-07-01

    A strain was isolated from a soil sample collected from Weihe river in Shaanxi province (108°03'E 34°14'N), which was identified as Alcaligenes faecalis by 16S rRNA analysis. A compound M showing potent immune activity was isolated from secondary metabolites of the strain through bioassay-guided isolation techniques. The structure of the compound M was elucidated using FT-IR, EI-MS, 1H NMR and 13C NMR spectra and identified as cyclo-(L-Pro-Gly)5 which was first time reported as a natural product. We evaluated the immune effects of the cyclo-(L-Pro-Gly)5 on the basis of serum lysozyme activity, bacterial agglutination titre assay, superoxide anion production and phagocytic activity assay, and they were found to be significantly increased by cyclo-(L-Pro-Gly)5. The effects of cyclo-(L-Pro-Gly)5 on immune-related gene expression were further investigated. The outcomes of real-time quantitative polymerase chain reaction (RQ-PCR) proved that the transcribing level of interleukin 6β (IL-6β) and inducible nitric oxide synthase 1β (iNOS-1β) mRNA in the blood leucocytes have been augmented by cyclo-(L-Pro-Gly)5. The challenge experiment showed that crucian carp injected the cyclo-(L-Pro-Gly)5 had significantly (P < 0.05) lower cumulative mortality (13.0%) compared with the control (45.4%) after infection with live Aeromonas hydrophila. These results suggested that cyclo-(L-Pro-Gly)5 is a possible immunostimulant and may strengthen the immune response and protect the heath status of crucian carp against A. hydrophila. PMID:21332568

  2. Development and use of amicroagglutination test to detect antibodies to Alcaligenes faecalis in turkeys.

    PubMed

    Jackwood, D J; Saif, Y M

    1980-01-01

    A neotetrazolium-chloride-stained Alcaligenes faecalis antigen was developed for use in the microagglutination (MA) test. The test was used to detect serum antibodies in naturally and experimentally infected turkeys. The highest titer observed in naturally infected birds was 1:320. In one commercial flock, antibodies were detected at 12 and 15 weeks after the initial disease outbreak. Four experiments were conducted to study the serologic responses of turkeys to A. faecalis. Antibodies were first detected at 2 weeks postexposure (PE) in poults that were exposed to the organism at 1 week of age. Peak antibody titers were detected at 3 weeks PE; isolations of the organism then declined. No antibodies were detected at 7 weeks PE in these birds. Birds infected at 5 weeks of age via various routes developed maximum antibody titers 2 weeks PE. Birds inoculated subcutaneously had the highest titers, whereas those inoculated intramuscularly had the lowest titers. Antibodies were still detected at 56 days PE in some birds. Hens vaccinated with an inactivated A. faecalis bacterin developed antibody titers. Titers not higher than 1:40 were detected at hatching in progeny of these hens. However, these poults were not protected from disease after challenge. There was some evidence that birds exposed to live or inactivated A. faecalis develop some protection against challenge. Antigens were prepared using 4 Ohio A. faecalis isolates (A, B, C, and D) and 1 North Carolina isolate for use in the MA test. The results indicated that the 5 isolates were antigenically similar. Antigens prepared using isolate B reacted best in the MA test. PMID:7447837

  3. Structural-based mutational analysis of d-aminoacylase from Alcaligenes faecalis DA1

    PubMed Central

    Hsu, Cheng-Sheng; Lai, Wen-Lin; Chang, Wei-Wei; Liaw, Shwu-Huey; Tsai, Ying-Chieh

    2002-01-01

    d-Aminoacylase is an attractive candidate for commercial production of d-amino acids through its catalysis in the zinc-assistant hydrolysis of N-acyl-d-amino acids. We report here the cloning, expression, and structural-based mutation of the d-aminoacylase from Alcaligenes faecalis DA1. A 1,007-bp PCR product amplified with degenerate primers, was used to isolate a 4-kb genomic fragment, encoding a 484-residue d-aminoacylase. The enzyme amino-terminal segment shared significant homology within a variety of enzymes including urease. The structural fold was predicted by 3D-PSSM to be similar to urease and dihydroorotase, which have grouped into a novel α/β-barrel amidohydrolase superfamily with a virtually indistinguishable binuclear metal centers containing six ligands, four histidines, one aspartate, and one carboxylated lysine. Three histidines, His-67, His-69, and His-250, putative metal ligands in d-aminoacylase, have been mutated previously, the remaining histidine (His-220) and aspartate (Asp-366) Asp-65, and four cysteines were then characterized. Substitution of Asp-65, Cys-96, His-220, and Asp-366 with alanine abolished the enzyme activity. The H220A mutant bound approximately half the normal complement of zinc ion as did H250N. However, the C96A mutant showed little zinc-binding ability, revealing that Cys-96 may replace the carboxylated lysine to serve as a bridging ligand. According to the urease structure, the conserved amino-terminal segment including Asp-65 may be responsible for structural stabilization. PMID:12381838

  4. Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation.

    PubMed

    Ruff, Jürgen; Denger, Karin; Cook, Alasdair M

    2003-01-15

    The facultatively anaerobic bacterium Alcaligenes defragrans NKNTAU was found to oxidize taurine (2-aminoethanesulphonate) with nitrate as the terminal electron acceptor. Taurine was transaminated to 2-sulphoacetaldehyde. This was not converted into sulphite and acetate by a "sulphoacetaldehyde sulpho-lyase" (EC 4.4.1.12), but into sulphite and acetyl phosphate, which was identified by three methods. The enzyme, which required the addition of phosphate, thiamin diphosphate and Mg(2+) ions for activity, was renamed sulphoacetaldehyde acetyltransferase (Xsc; EC 2.3.1.-). Inducible Xsc was expressed at high levels, and a three-step 11-fold purification yielded an essentially homogeneous soluble protein, which was a homotetramer in its native form; the molecular mass of the subunit was found to be between about 63 kDa (SDS/PAGE) and 65.3 kDa (matrix-assisted laser-desorption ionization-time-of-flight MS). The N-terminal and two internal amino acid sequences were determined, and PCR primers were generated. The xsc gene was amplified and sequenced; the derived molecular mass of the processed protein was 65.0 kDa. The downstream gene presumably encoded the inducible phosphate acetyltransferase (Pta) found in crude extracts. The desulphonative enzymes ("EC 4.4.1.12") from Achromobacter xylosoxidans NCIMB 10751 and Desulfonispora thiosulfatigenes GKNTAU were shown to be Xscs. We detected at least three subclasses of xsc in Proteobacteria and in Gram-positive bacteria, and they comprised a distinct group within the acetohydroxyacid synthase supergene family. Genome sequencing data revealed xsc genes in Burkholderia fungorum (80% sequence identity) and Sinorhizobium meliloti (61%) with closely linked pta genes. Different patterns of regulation for the transport and dissimilation of taurine were hypothesized for S. meliloti and B. fungorum. PMID:12358600

  5. Structure of the 2,4′-dihydroxyacetophenone dioxygenase from Alcaligenes sp. 4HAP

    PubMed Central

    Keegan, R.; Lebedev, A.; Erskine, P.; Guo, J.; Wood, S. P.; Hopper, D. J.; Rigby, S. E. J.; Cooper, J. B.

    2014-01-01

    The enzyme 2,4′-dihydroxyacetophenone dioxygenase (DAD) catalyses the conversion of 2,4′-dihydroxyacetophenone to 4-hydroxybenzoic acid and formic acid with the incorporation of molecular oxygen. Whilst the vast majority of dioxygenases cleave within the aromatic ring of the substrate, DAD is very unusual in that it is involved in C—C bond cleavage in a substituent of the aromatic ring. There is evidence that the enzyme is a homotetramer of 20.3 kDa subunits, each containing nonhaem iron, and its sequence suggests that it belongs to the cupin family of dioxygenases. In this paper, the first X-ray structure of a DAD enzyme from the Gram-negative bacterium Alcaligenes sp. 4HAP is reported, at a resolution of 2.2 Å. The structure establishes that the enzyme adopts a cupin fold, forming dimers with a pronounced hydrophobic interface between the monomers. The catalytic iron is coordinated by three histidine residues (76, 78 and 114) within a buried active-site cavity. The iron also appears to be tightly coordinated by an additional ligand which was putatively assigned as a carbonate dianion since this fits the electron density optimally, although it might also be the product formate. The modelled carbonate is located in a position which is highly likely to be occupied by the α-hydroxyketone group of the bound substrate during catalysis. Modelling of a substrate molecule in this position indicates that it will interact with many conserved amino acids in the predominantly hydrophobic active-site pocket where it undergoes peroxide radical-mediated heterolysis. PMID:25195757

  6. Inhibition of Serratia marcescens Smj-11 biofilm formation by Alcaligenes faecalis STN17 crude extract

    SciTech Connect

    Lutfi, Zainal; Ahmad, Asmat; Usup, Gires

    2014-09-03

    Serratia marcescens biofilms are formed when they are bound to surfaces in aqueous environments. S. marcescens utilizes N-acylhomoserine lactone (AHL) as its quorum sensing signal molecule. The accumulation of AHL indicates the bacteria to produce matrices to form biofilms. Prodigiosin (2-methyl-3-pentyl-6-methoxyprodigiosin), which causes red pigmentation in the colonies, are also produced when the AHL reaches a certain threshold. The Alcaligenes faecalis STN17 crude extract is believed to inhibit quorum sensing in the S. marcescens Smj-11 and, thus, impedes its biofilm formation ability. A. faecalis STN17 was grown in marine broth, and ethyl acetate extraction was carried out. The crude compound of A. faecalis STN17 was diluted at high concentration (0.2-6.4 mg/mL) and was taken to confirm anti-biofilm activity through the crystal violet method in 96-wells plate. Then, the crude extract underwent purification using simple solvents partitioning test to discern the respective compounds that had the anti-biofilm activity under the crystal violet method. The crystal violet test showed that the crude did have anti-biofilm activity on S. marcescens Smj-11, but did not kill the cells. This finding signifies that the suppression of biofilm formation in S. marcescens by A. faecalis STN17 has a strong correlation. The partitioning test showed that A. faecalis STN17 crude extract has several compounds and only the compound(s) in chloroform showed activities. In conclusion, the crude extract of A. faecalis STN17 has the ability to inhibit S. marcescens Smj-11 biofilm formation.

  7. Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation.

    PubMed Central

    Ruff, Jürgen; Denger, Karin; Cook, Alasdair M

    2003-01-01

    The facultatively anaerobic bacterium Alcaligenes defragrans NKNTAU was found to oxidize taurine (2-aminoethanesulphonate) with nitrate as the terminal electron acceptor. Taurine was transaminated to 2-sulphoacetaldehyde. This was not converted into sulphite and acetate by a "sulphoacetaldehyde sulpho-lyase" (EC 4.4.1.12), but into sulphite and acetyl phosphate, which was identified by three methods. The enzyme, which required the addition of phosphate, thiamin diphosphate and Mg(2+) ions for activity, was renamed sulphoacetaldehyde acetyltransferase (Xsc; EC 2.3.1.-). Inducible Xsc was expressed at high levels, and a three-step 11-fold purification yielded an essentially homogeneous soluble protein, which was a homotetramer in its native form; the molecular mass of the subunit was found to be between about 63 kDa (SDS/PAGE) and 65.3 kDa (matrix-assisted laser-desorption ionization-time-of-flight MS). The N-terminal and two internal amino acid sequences were determined, and PCR primers were generated. The xsc gene was amplified and sequenced; the derived molecular mass of the processed protein was 65.0 kDa. The downstream gene presumably encoded the inducible phosphate acetyltransferase (Pta) found in crude extracts. The desulphonative enzymes ("EC 4.4.1.12") from Achromobacter xylosoxidans NCIMB 10751 and Desulfonispora thiosulfatigenes GKNTAU were shown to be Xscs. We detected at least three subclasses of xsc in Proteobacteria and in Gram-positive bacteria, and they comprised a distinct group within the acetohydroxyacid synthase supergene family. Genome sequencing data revealed xsc genes in Burkholderia fungorum (80% sequence identity) and Sinorhizobium meliloti (61%) with closely linked pta genes. Different patterns of regulation for the transport and dissimilation of taurine were hypothesized for S. meliloti and B. fungorum. PMID:12358600

  8. Influence of different chemical treatments on transport of Alcaligenes paradoxus in porous media.

    PubMed Central

    Gross, M J; Logan, B E

    1995-01-01

    Seven chemicals, three buffers, and a salt solution known to affect bacterial attachment were tested to quantify their abilities to enhance the penetration of Alcaligenes paradoxus in porous media. Chemical treatments included Tween 20 (a nonionic surfactant that affects hydrophobic interactions), sodium dodecyl sulfate (an anionic surfactant), EDTA (a cell membrane permeabilizer that removes outer membrane lipopolysaccharides), sodium PPi (a surface charge modifier), sodium periodate (an oxidizer that cleaves surface polysaccharides), lysozyme (an enzyme that cleaves cell wall components), and proteinase K (a nonspecific protease that cleaves peptide bonds). Buffers included MOPS [3-(N-morpholino)propanesulfonic acid], Tris, phosphate, and an unbuffered solution containing only NaCl. Transport characteristics in the porous media were compared by using a sticking coefficient, alpha, defined as the rate at which particles stick to a grain of medium divided by the rate at which they strike the grain. Tween 20 reduced alpha by 2.5 orders of magnitude, to alpha = 0.0016, and was the most effective chemical treatment for decreasing bacterial attachment to glass beads in buffered solutions. Similar reductions in alpha were achieved in unbuffered solutions by reducing the solution ionic strength to 0.01 mM. EDTA, protease, and other treatments designed to alter cell structures did not reduce alpha by more than an order of magnitude. The number of bacteria retained by the porous media was decreased by treatments that made A. paradoxus more hydrophobic and less electrostatically charged, although alpha was poorly correlated with electrophoretic mobility and hydrophobicity index measurements at lower alpha values.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7646012

  9. Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov.

    PubMed

    Coenye, T; Falsen, E; Vancanneyt, M; Hoste, B; Govan, J R; Kersters, K; Vandamme, P

    1999-04-01

    A polyphasic taxonomic study that included DNA-DNA hybridizations, DNA base ratio determinations, 16S rDNA sequence analysis, whole-cell protein and fatty acid analyses, AFLP (amplified fragment length polymorphism) fingerprinting and an extensive biochemical characterization was performed on 10 strains provisionally identified as Alcaligenes faecalis-like bacteria. The six environmental and four human isolates belonged to the genus Ralstonia and were assigned to a new species for which the name Ralstonia gilardii sp. nov. is proposed. The type strain is LMG 5886T. PMID:10319461

  10. Optimization of biodemulsifier production from Alcaligenes sp. S-XJ-1 and its application in breaking crude oil emulsion.

    PubMed

    Liu, Jia; Huang, Xiang-Feng; Lu, Li-Jun; Xu, Jing-Cheng; Wen, Yue; Yang, Dian-Hai; Zhou, Qi

    2010-11-15

    A biodemulsifier-producing strain of Alcaligenes sp. S-XJ-1, isolated from petroleum-contaminated soil of the Karamay Oilfield, exhibited excellent demulsifying ability. The application of this biodemulsifier significantly improved the quality of separated water compared with the chemical demulsifier, polyether, which clearly indicates that it has potential applications in the crude oil extraction industry. To optimize its biosynthesis, the impacts of carbon sources, nitrogen sources and pH were studied in detail. Paraffin, a hydrophobic carbon source, favored the synthesis of this cell wall associated biodemulsifier. The nitrogen source ammonium citrate stimulated the production and demulsifying performance of the biodemulsifier. An alkaline environment (pH 9.5) of the initial culture medium favored the strain's growth and improved its demulsifying ability. The results showed paraffin, ammonium citrate and pH had significant effects on the production of the biodemulsifier. These three variables were further investigated using a response surface methodology based on a central composite design to optimize the biodemulsifier yield. The optimal yield conditions were found at a paraffin concentration of 4.01%, an ammonium citrate concentration of 8.08 g/L and a pH of 9.35. Under optimal conditions, the biodemulsifier yield from Alcaligenes sp. S-XJ-1 was increased to 3.42 g/L. PMID:20702035

  11. Exogenous cofactors for the improvement of bioremoval and biotransformation of sulfamethoxazole by Alcaligenes faecalis.

    PubMed

    Zhang, Yi-Bi; Zhou, Jiao; Xu, Qiu-Man; Cheng, Jing-Sheng; Luo, Yu-Lu; Yuan, Ying-Jin

    2016-09-15

    Sulfamethoxazole (SMX), an extensively prescribed or administered antibiotic pharmaceutical product, is usually detected in aquatic environments, because of its incomplete metabolism and elimination. This study investigated the effects of exogenous cofactors on the bioremoval and biotransformation of SMX by Alcaligenes faecalis. High concentration (100mg·L(-1)) of exogenous vitamin C (VC), vitamin B6 (VB6) and oxidized glutathione (GSSG) enhanced SMX bioremoval, while the additions of vitamin B2 (VB2) and vitamin B12 (VB12) did not significantly alter the SMX removal efficiency. Globally, cellular growth of A. faecalis and SMX removal both initially increased and then gradually decreased, indicating that SMX bioremoval is likely dependent on the primary biomass activity of A. faecalis. The decreases in the SMX removal efficiency indicated that some metabolites of SMX might be transformed into parent compound at the last stage of incubation. Two transformation products of SMX, N-hydroxy sulfamethoxazole (HO-SMX) and N4-acetyl sulfamethoxazole (Ac-SMX), were identified by a high-performance liquid chromatograph coupled with mass spectrometer. High concentrations of VC, nicotinamide adenine dinucleotide hydrogen (NADH, 7.1mg·L(-1)), and nicotinamide adenine dinucleotide (NAD(+), 6.6mg·L(-1)), and low concentrations of reduced glutathione (GSH, 0.1 and 10mg·L(-1)) and VB2 (1mg·L(-1)) remarkably increased the formation of HO-SMX, while VB12 showed opposite effects on HO-SMX formation. In addition, low concentrations of GSH and NADH enhanced Ac-SMX formation by the addition of A. faecalis, whereas cofactors (VC, VB2, VB12, NAD(+), and GSSG) had no obvious impact on the formation of Ac-SMX compared with the controls. The levels of Ac-SMX were stable when biomass of A. faecalis gradually decreased, indicating the direct effect of biomass on the formation of Ac-SMX by A. faecalis. In sum, these results help us understand the roles played by exogenous cofactors in

  12. Efficient cascade synthesis of ampicillin from penicillin G potassium salt using wild and mutant penicillin G acylase from Alcaligenes faecalis.

    PubMed

    Deng, Senwen; Ma, Xiaoqiang; Su, Erzheng; Wei, Dongzhi

    2016-02-10

    To avoid isolation and purification of the intermediate 6-aminopenicillanic acid (6-APA), a two-enzyme two-step cascade synthesis of ampicillin from penicillin G was established. In purely aqueous medium, penicillin G hydrolysis and ampicillin synthesis were catalyzed by immobilized wild-type and mutagenized penicillin G acylases from Alcaligenes faecalis (Af PGA), respectively (Fig. 1). The βF24 G mutant Af PGA (the 24th Phenylalanine of the β-subunit was replaced by Glycine) was employed for its superior performance in enzymatic synthesis of ampicillin. By optimizing the reaction conditions, including enzyme loading, temperature, initial pH and D-PGME/6-APA ratio, the conversion of the second step of ampicillin synthesis reached approximately 90% in 240 min and less than 1.7 mole D-PGME were required to produce 1 mole ampicillin. Overall, in a 285 min continuous two-step procedure, an ampicillin yield of 87% was achieved, demonstrating the possibility of improving the cascade synthesis of ampicillin by mutagenized PGA, providing an economically efficient and environmentally benign procedure for semi-synthetic penicillins antibiotics synthesis. PMID:26732414

  13. Enantioselective acylation of β-phenylalanine acid and its derivatives catalyzed by penicillin G acylase from Alcaligenes faecalis.

    PubMed

    Li, Dengchao; Ji, Lilian; Wang, Xinfeng; Wei, Dongzhi

    2013-01-01

    This study developed a simple, efficient method for producing racemic β-phenylalanine acid (BPA) and its derivatives via the enantioselective acylation catalyzed by the penicillin G acylase from Alcaligenes faecalis (Af-PGA). When the reaction was run at 25°C and pH 10 in an aqueous medium containing phenylacetamide and BPA in a molar ratio of 2:1, 8 U/mL enzyme and 0.1 M BPA, the maximum BPA conversion efficiency at 40 min only reached 36.1%, which, however, increased to 42.9% as the pH value and the molar ratio of phenylacetamide to BPA were elevated to 11 and 3:1, respectively. Under the relatively optimum reaction conditions, the maximum conversion efficiencies of BPA derivatives all reached about 50% in a relatively short reaction time (45-90 min). The enantiomeric excess value of product (ee(p)) and enantiomeric excess value of substrate (ee(s)) were all above 98% and 95%, respectively. These results suggest that the method established in this study is practical, effective, and environmentally benign and may be applied to industrial production of enantiomerically pure BPA and its derivatives. PMID:23302108

  14. Identification of a new Alcaligenes faecalis strain MOR02 and assessment of its toxicity and pathogenicity to insects.

    PubMed

    Quiroz-Castañeda, Rosa Estela; Mendoza-Mejía, Ared; Obregón-Barboza, Verónica; Martínez-Ocampo, Fernando; Hernández-Mendoza, Armando; Martínez-Garduño, Felipe; Guillén-Solís, Gabriel; Sánchez-Rodríguez, Federico; Peña-Chora, Guadalupe; Ortíz-Hernández, Laura; Gaytán-Colín, Paul; Dantán-González, Edgar

    2015-01-01

    We report the isolation of a bacterium from Galleria mellonella larva and its identification using genome sequencing and phylogenomic analysis. This bacterium was named Alcaligenes faecalis strain MOR02. Microscopic analyses revealed that the bacteria are located in the esophagus and intestine of the nematodes Steinernema feltiae, S. carpocapsae, and H. bacteriophora. Using G. mellonella larvae as a model, when the larvae were injected with 24,000 CFU in their hemocoel, more than 96% mortality was achieved after 24 h. Additionally, toxicity assays determined that 1 μg of supernatant extract from A. faecalis MOR02 killed more than 70% G. mellonella larvae 96 h after injection. A correlation of experimental data with sequence genome analyses was also performed. We discovered genes that encode proteins and enzymes that are related to pathogenicity, toxicity, and host/environment interactions that may be responsible for the observed phenotypic characteristics. Our data demonstrates that the bacteria are able to use different strategies to colonize nematodes and kill insects to their own benefit. However, there remains an extensive group of unidentified microorganisms that could be participating in the infection process. Additionally, a nematode-bacterium association could be established probably as a strategy of dispersion and colonization. PMID:25667924

  15. Purification and characterization of chitinase from Alcaligenes faecalis AU02 by utilizing marine wastes and its antioxidant activity.

    PubMed

    Annamalai, Neelamegam; Veeramuthu Rajeswari, Mayavan; Vijayalakshmi, Shanmugam; Balasubramanian, Thangavel

    2011-12-01

    Marine waste is an abundant renewable source for the recovery of several value added metabolites with potential industrial applications. This study describes the production of chitinase on marine waste, with the subsequent use of the same marine waste for the extraction of antioxidants. A chitinase-producing bacterium isolated from seafood effluent was identified as Alcaligenes faecalis AU02. Optimal chitinase production was obtained in culture conditions of 37°C for 72 h in 100 ml medium containing 1% shrimp and crab shell powder (1:1) (w/v), 0.1% K(2)HPO(4), and 0.05% MgSO(4)·7H(2)O. The molecular weight of chitinase was determined by SDS-PAGE to be 36 kDa. The optimum pH, temperature, pH stability, and thermal stability of chitinase were about 8, 37°C, 5-12, and 40-80°C, respectively. The antioxidant activity of A. faecalis AU02 culture supernatant was determined through scavenging ability on 1,1-diphenyl-2-picrylhydrazyl (DPPH) as 84%, and the antioxidant compound was characterized by TLC and its FT-IR spectrum. The present study proposed that marine wastes can be utilized to generate a high-value-added product and that pharmacological studies can extend its use to the field of medicine. PMID:22131949

  16. Optimization of nitrilase production from Alcaligenes faecalis MTCC 10757 (IICT-A3): effect of inducers on substrate specificity.

    PubMed

    Nageshwar, Y V D; Sheelu, Gurrala; Shambhu, Rekha Rao; Muluka, Hemalatha; Mehdi, Nooreen; Malik, M Shaheer; Kamal, Ahmed

    2011-06-01

    Microbial nitrilases are biocatalysts of interest and the enzyme produced using various inducers exhibits altered substrate specificity, which is of great interest in bioprocess development. The aim of the present study is to investigate the nitrilase-producing Alcaligenes faecalis MTCC 10757 (IICT-A3) for its ability to transform various nitriles in the presence of different inducers after optimization of various parameters for maximum enzyme production and activity. The production of A. faecalis MTCC 10757 (IICT-A3) nitrilase was optimum with glucose (1.0%), acrylonitrile (0.1%) at pH 7.0. The nitrilase activity of A. faecalis MTCC 10757 (IICT-A3) was optimum at 35 °C, pH 8.0 and the enzyme was stable up to 6 h at 50 °C. The nitrilase enzyme produced using different inducers was investigated for substrate specificity. The enzyme hydrolyzed aliphatic, heterocyclic and aromatic nitriles with different substitutions. Acrylonitrile was the most preferred substrate (~40 U) as well as inducer. Benzonitrile was hydrolyzed with almost twofold higher relative activity than acrylonitrile when it was used as an inducer. The versatile nitrilase-producing A. faecalis MTCC 10757 (IICT-A3) exhibits efficient conversion of both aliphatic and aromatic nitriles. The aromatic nitriles, which show not much or no affinity towards nitrilase from A. faecalis, are hydrolyzed effectively with this nitrilase-producing organism. Studies are in progress to exploit this organism for synthesis of industrially important compounds. PMID:21188422

  17. Heterotrophic nitrification and aerobic denitrification of high-strength ammonium in anaerobically digested sludge by Alcaligenes faecalis strain No. 4.

    PubMed

    Shoda, Makoto; Ishikawa, Yoichi

    2014-06-01

    Alcaligenes faecalis strain No. 4 which is capable of heterogeneous nitrification and aerobic denitrification, was used to remove high-strength ammonium (approximately 1 g NH4(+)-N/l) from digested sludge, the product of an anaerobic digestion reactor, in which methane was produced from excess municipal sewage sludge. Repeated batch operations were conducted at 20°C and 30°C for 550 h, using a jar fermentor. The removal ratios of high-strength ammonium reached 90-100% within 24 h, and the average ammonium removal rate was 2.9 kg-N/m(3)/day, more than 200 times higher than that in conventional nitrification-denitrification processes. During these operations, the cell density was maintained at 10(8)-10(9) cells of A. faecalis strain No. 4/ml. At 3% NaCl in the digested sludge, strain No. 4 exhibited an ammonium removal rate of 3 kg-N/m(3)/day. PMID:24411668

  18. Application of waste frying oils in the biosynthesis of biodemulsifier by a demulsifying strain Alcaligenes sp. S-XJ-1.

    PubMed

    Liu, Jia; Peng, Kaiming; Huang, Xiangfeng; Lu, Lijun; Cheng, Hang; Yang, Dianhai; Zhou, Qi; Deng, Huiping

    2011-01-01

    Exploration of biodemulsifiers has become a new research aspect. Using waste frying oils (WFOs) as carbon source to synthesize biodemulsifiers has a potential prospect to decrease production cost and to improve the application of biodemulsifiers in the oilfield. In this study, a demulsifying strain, Alcaligenes sp. S-XJ-1, was investigated to synthesize a biodemulsifier using waste frying oils as carbon source. It was found that the increase of initial pH of culture medium could increase the biodemulsifier yield but decrease the demulsification ratio compared to that using paraffin as carbon source. In addition, a biodemulsifier produced by waste frying oils and paraffin as mixed carbon source had a lower demulsification capability compared with that produced by paraffin or waste frying oil as sole carbon source. Fed-batch fermentation of biodemulsifier using waste frying oils as supplementary carbon source was found to be a suitable method. Mechanism of waste frying oils utilization was studied by using tripalmitin, olein and tristearin as sole carbon sources to synthesize biodemulsifier. The results showed saturated long-chain fatty acid was difficult for S-XJ-1 to utilize but could effectively enhance the demulsification ability of the produced biodemulsifier. Moreover, FT-IR result showed that the demulsification capability of biodemulsifiers was associated with the content of C=O group and nitrogen element. PMID:22066226

  19. Identification of a New Alcaligenes faecalis Strain MOR02 and Assessment of Its Toxicity and Pathogenicity to Insects

    PubMed Central

    Mendoza-Mejía, Ared; Obregón-Barboza, Verónica; Martínez-Ocampo, Fernando; Hernández-Mendoza, Armando; Martínez-Garduño, Felipe; Guillén-Solís, Gabriel; Sánchez-Rodríguez, Federico; Peña-Chora, Guadalupe; Ortíz-Hernández, Laura; Gaytán-Colín, Paul; Dantán-González, Edgar

    2015-01-01

    We report the isolation of a bacterium from Galleria mellonella larva and its identification using genome sequencing and phylogenomic analysis. This bacterium was named Alcaligenes faecalis strain MOR02. Microscopic analyses revealed that the bacteria are located in the esophagus and intestine of the nematodes Steinernema feltiae, S. carpocapsae, and H. bacteriophora. Using G. mellonella larvae as a model, when the larvae were injected with 24,000 CFU in their hemocoel, more than 96% mortality was achieved after 24 h. Additionally, toxicity assays determined that 1 μg of supernatant extract from A. faecalis MOR02 killed more than 70% G. mellonella larvae 96 h after injection. A correlation of experimental data with sequence genome analyses was also performed. We discovered genes that encode proteins and enzymes that are related to pathogenicity, toxicity, and host/environment interactions that may be responsible for the observed phenotypic characteristics. Our data demonstrates that the bacteria are able to use different strategies to colonize nematodes and kill insects to their own benefit. However, there remains an extensive group of unidentified microorganisms that could be participating in the infection process. Additionally, a nematode-bacterium association could be established probably as a strategy of dispersion and colonization. PMID:25667924

  20. Phenazine-1-carboxylic acid mediated anti-oomycete activity of the endophytic Alcaligenes sp. EIL-2 against Phytophthora meadii.

    PubMed

    Abraham, Amith; Philip, Shaji; Jacob, Manoj Kurian; Narayanan, Sunilkumar Puthenpurackel; Jacob, C Kuruvilla; Kochupurackal, Jayachandran

    2015-01-01

    The oomycete pathogen, Phytophthora meadii, causes various diseases in Hevea brasiliensis at different stages of its life cycle. The study reports the structural characterization of the active principle from the culture filtrate of Alcaligenes sp. EIL-2 (GenBank ID: HQ641257) offering antagonistic activity against P. meadii. Gas Chromatography Mass Spectroscopy (GC-MS) analysis showed the similarity of the compound with phenazine derivatives. The specific representations of FT-IR spectrum such as 3200 cm(-1) (OH stretching, NH stretching and presence of aromatic ring), 1737 cm(-1) (carboxylic acid), 2200-2400 cm(-1) (conjugated dienes) and 1467 cm(-1), and 1422 cm(-1) (CN bonds) were an indicative of phenazine-1-carboxylic acid (PCA). The structure of the compound was further confirmed by (1)H NMR/(13)C NMR spectroscopy, DEPT experiments, and two-dimensional NMR spectral studies, including (1)H-(1)H COSY and (1)H-(13)C HSQC as PCA with the molecular formula of C₁₃H₈N₂O₂. P. meadii was sensitive to purified PCA extract from the endophyte and a concentration of 5 μg/ml completely inhibited the mycelia growth. PCA also showed zoosporicidal activity against P. meadii zoospores. This is the first study of this kind where PCA from an endophyte of H. brasiliensis is being confirmed to carry antagonistic activity against P. meadii. PMID:24985092

  1. [Evaluation of occurrence of Alcaligenes faecalis in clinical samples of patients of the university hospital in Bydgoszcz].

    PubMed

    Jachna-Sawicka, Katarzyna; Gospodarek, Eugenia

    2009-01-01

    Alcaligenes faecalis is an aerobic Gram-negative, non-fermentative rod. It's saprophyte of water and soil. It may be recovered from wet places of hospital environment. It is considered as an opportunistic pathogen. The aim of this review was evaluation of occurrence in clinical samples and susceptibility to antibiotics of 72 A. faecalis strains isolated in years 2003-2008. Over 30% of strains were isolated from patients in surgical ward, 19.6% from patients in outpatient clinic and almost 14% from patients in Department of Dermatology. 70.8% of strains were isolated from purulent material samples, whereas from urine--16.7% of strains. Nearly 88% out of examined strains were grown in mixed culture together with one (26.4%), two (32.0%), three (23.6%) or four (5.6%) microorganisms. All out of strains were sensitive to piperacyline, piperacyline/tazobactam and carbapenems. Sensitivity to aztreonam was observed at 22.2% of strains and to co-trimoxazole at 57.1% of strains. PMID:19517818

  2. Genetic Diversity and Horizontal Transfer of Genes Involved in Oxidation of Reduced Phosphorus Compounds by Alcaligenes faecalis WM2072

    PubMed Central

    Wilson, Marlena M.; Metcalf, William W.

    2005-01-01

    Enrichment was performed to isolate organisms that could utilize reduced phosphorus compounds as their sole phosphorus sources. One isolate that grew well with either hypophosphite or phosphite was identified by 16S rRNA gene analysis as a strain of Alcaligenes faecalis. The genes required for oxidation of hypophosphite and phosphite by this organism were identified by using transposon mutagenesis and include homologs of the ptxD and htxA genes of Pseudomonas stutzeri WM88, which encode an NAD-dependent phosphite dehydrogenase (PtxD) and 2-oxoglutarate-dependent hypophosphite dioxygenase (HtxA). This organism also has the htxB, htxC, and htxD genes that comprise an ABC-type transporter, presumably for hypophosphite and phosphite transport. The role of these genes in reduced phosphorus metabolism was confirmed by analyzing the growth of mutants in which these genes were deleted. Sequencing data showed that htxA, htxB, htxC, and htxD are virtually identical to their homologs in P. stutzeri at the DNA level, indicating that horizontal gene transfer occurred. However, A. faecalis ptxD is very different from its P. stutzeri homolog and represents a new ptxD lineage. Therefore, this gene has ancient evolutionary roots in bacteria. These data suggest that there is strong evolutionary selection for the ability of microorganisms to oxidize hypophosphite and phosphite. PMID:15640200

  3. Evaluation of screening methods for demulsifying bacteria and characterization of lipopeptide bio-demulsifier produced by Alcaligenes sp.

    PubMed

    Huang, Xiang-Feng; Liu, Jia; Lu, Li-Jun; Wen, Yue; Xu, Jing-Cheng; Yang, Dian-Hai; Zhou, Qi

    2009-02-01

    In this paper, surface tension measurement, oil-spreading test and blood-plate hemolysis test were attempted in the screening of demulsifying bacteria. After the comparison to the screening results obtained in demulsification test, 50 mN/m of surface tension of culture was proposed as a preliminary screening standard for potential demulsifying bacteria. For the identification of efficient demulsifying strains, surface tension level was set at 40 mN/m. The detected strains were further verified in demulsification test. Compared to using demulsification test alone as screening method, the proposed screening protocol would be more efficient. From the screening, a highly efficient demulsifying stain, S-XJ-1, was isolated from petroleum-contaminated soil and identified as Alcaligenes sp. by 16S rRNA gene and physiological test. It achieved 96.5% and 49.8% of emulsion breaking ratio in W/O and O/W kerosene emulsion within 24h, respectively, and also showed 95% of water separation ratio in oilfield petroleum emulsion within 2h. The bio-demulsifier was found to be cell-wall combined. After soxhlet extraction and purification through silicon-gel column, the bio-demulsifier was then identified as lipopeptide biosurfactant by TLC and FT-IR. PMID:18799309

  4. Production and characterization of poly(3-hydroxybutyrate) generated by Alcaligenes latus using lactose and whey after acid protein precipitation process.

    PubMed

    Berwig, Karina Hammel; Baldasso, Camila; Dettmer, Aline

    2016-10-01

    Whey after acid protein precipitation was used as substrate for PHB production in orbital shaker using Alcaligenes latus. Statistical analysis determined the most appropriate hydroxide for pH neutralization of whey after protein precipitation among NH4OH, KOH and NaOH 10%w/v. The results were compared to those of commercial lactose. A scale-up test in a 4L bioreactor was done at 35°C, 750rpm, 7L/min air flow, and 6.5 pH. The PHB was characterized through Fourier Transform Infrared Spectroscopy, thermogravimetry and differential scanning calorimetry. NH4OH provided the best results for productivity (p), 0.11g/L.h, and for polymer yield, (YP/S), 1.08g/g. The bioreactor experiment resulted in lower p and YP/S. PHB showed maximum degradation temperature (291°C), melting temperature (169°C), and chemical properties similar to those of standard PHB. The use of whey as a substrate for PHB production did not affect significantly the final product quality. PMID:27347795

  5. Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria.

    PubMed Central

    Schlömann, M; Schmidt, E; Knackmuss, H J

    1990-01-01

    Of various benzoate-utilizing bacteria tested, Alcaligenes eutrophus 335, A. eutrophus H16, A. eutrophus JMP222, A. eutrophus JMP134, Alcaligenes strain A7, and Pseudomonas cepacia were able to grow with 4-fluorobenzoate as the sole source of carbon and energy. P. cepacia also utilizes 3-fluorobenzoate. Except for A. eutrophus JMP134, which is known to grow with 2,4-dichlorophenoxyacetate and 3-chlorobenzoate (R. H. Don and J. M. Pemberton, J. Bacteriol. 145:681-686, 1981), the strains were unable to grow at the expense of these compounds or 4-chlorobenzoate. Assays of cell extracts revealed that all strains express dienelactone hydrolase and maleylacetate reductase activities in addition to enzymes of the catechol branch of the 3-oxoadipate pathway when growing with 4-fluorobenzoate. Induction of dienelactone hydrolase and maleylacetate reductase apparently is not necessarily connected to synthesis of catechol 1,2-dioxygenase type II and chloromuconate cycloisomerase activities, which are indispensable for the degradation of chlorocatechols. Substrate specificities of the dienelactone hydrolases provisionally differentiate among three types of this activity. (i) Extracts of A. eutrophus 335, A. eutrophus H16, A. eutrophus JMP222, and Alcaligenes strain A7 convert trans-4-carboxymethylenebut-2-en-4-olide (trans-dienelactone) much faster than the cis-isomer (type I). (ii) The enzyme present in P. cepacia shows the opposite preference for the isomeric substrates (type II). (iii) Cell extracts of A. eutrophus JMP134, as well as purified dienelactone hydrolase from Pseudomonas strain B13 (E. Schmidt and H.-J. Knackmuss, Biochem. J. 192:339-347, 1980), hydrolyze both dienelactones at rates that are of the same order of magnitude (type III). This classification implies that A. eutrophus JMP134 possesses at least two different dienelactone hydrolases, one of type III encoded by the plasmid pJP4 and one of type I, which is also present in the cured strain JMP222. PMID

  6. An isobutyronitrile-induced bienzymatic system of Alcaligenes sp. MTCC 10674 and its application in the synthesis of α-hydroxyisobutyric acid.

    PubMed

    Bhatia, S K; Mehta, P K; Bhatia, R K; Bhalla, T C

    2013-05-01

    Alcaligenes sp. MTCC 10674 was isolated as acetone cyanohydrin hydrolyzing bacterium from soil of orchid gardens of Himachal Pradesh. Acetone cyanohydrin hydrolyzing activity of this organism comprised nitrile hydratase and amidase activities. It exhibited higher substrate specificity towards aliphatic hydroxynitrile (acetone cyanohydrin) in comparison to arylaliphatic hydroxynitrile. Isobutyronitrile (40 mM) acted as a carbon source as well as inducer for growth of Alcaligenes sp. MTCC 10674 and expression of acetone cyanohydrin hydrolyzing activity. Optimization of culture condition using response surface methodology increased acetone cyanohydrin hydrolyzing activity by 1.3-fold, while inducer mediation approach increased the activity by 1.2-fold. The half life of this enzyme was 25 h at 15 °C. V max and K m value for acetone cyanohydrin hydrolyzing enzyme was 0.71 μmol mg(-1) min(-1) and 14.3 mM, when acetone cyanohydrin was used as substrate. Acetone cyanohydrin hydrolyzing enzyme encountered product inhibition and IC50 and K i value were calculated to be 28 and 10.2 mM, respectively, when product α-hydroxyisobutyric acid was added in the reaction. Under optimized reaction conditions at 40 ml fed batch scale, 3 mg dcw ml (-) resting cells of Alcaligenes sp. MTCC 10674 fully converted 0.33 M acetone cyanohydrin into α-hydroxyisobutyric acid (1.02 g) in 6 h 40 min. The characterization of acetone cyanohydrins hydrolyzing activity revealed that it comprises bienzymatic nitrile hydrolyzing system, i.e. nitrile hydratase and amidase for the production of α-hydroxyisobutyric acid from acetone cyanohydrin and maximum 70 % yield is being reported for the first time. PMID:22945851

  7. The effect of combined and separate infection by Alcaligenes faecalis and paramyxovirus (Yucaipa) on the surface morphology of the trachea in turkey poults.

    PubMed

    Yegana, Y; Weismen, Y; Herz, A; Schapira, R; Hod, I

    1985-10-01

    Sixty-seven 1-day-old turkey poults were inoculated in the infra orbital sinus with 3 x 10(8) Alcaligenes faecalis bacteria and/or by 10(5.8)EID 50/ ml of Yucaipa virus. Twenty-five similar birds served as controls. Identification of the agents inoculated was made during the development of disease by means of isolation and serological tests. During the development of the disease, the surface morphology of the trachea in the affected animals revealed cellular oedema associated with a mucus coating of the cilia. PMID:18766948

  8. Efficacy of polysaccharide from Alcaligenes xylosoxidans MSA3 administration as protection against γ-radiation in female rats.

    PubMed

    Hassan, Amal I; Ghoneim, Mona A M; Mahmoud, Manal G; Asker, Mohsen M S; Mohamed, Saher S

    2016-03-01

    Damage to normal tissues is a consequence of both therapeutic and accidental exposures to ionizing radiation. A water-soluble heteropolysaccharide called AXEPS, composed of glucose, galactose, rhamnose and glucouronic acid in a molar ratio of nearly 1.0:1.6:0.4:2.3, respectively, was isolated from culture medium of strain Alcaligenes xylosoxidans MSA3 by ethanol precipitation followed by freeze-drying. Chemical analysis, Fourier-transform infrared (FTIR) and chromatographic studies revealed that the molecular weight was 1.6 × 10(4) g mol(-1). This study was designed to investigate the radioprotective and biological effects of AXEPS in alleviating the toxicity of ionizing radiation in female albino rats. A total of 32 female albino rats were divided into four groups. In the control group, rats were administered vehicle by tube for four weeks. The second group was administered AXEPS (100 mg/kg) orally by gavage for four weeks. Animals in the third group were exposed to whole-body γ-rays (5 Gy) and remained for 2 weeks without treatment. The fourth group received AXEPS (100 mg/kg) orally by gavage for two weeks before being exposed to whole-body γ-rays (5 Gy), then 24 h post γ-rays, they received AXEPS (100 mg/kg) in a treatment continuing till the end of the experiment (15 days after the whole-body γ-irradiation). Oral administration of AXEPS (100 mg/kg) significantly reversed the oxidative stress effects of radiation, as evidenced by the decrease in DNA damage in the bone marrow. Assessment of apoptosis and cell proliferation markers revealed that caspase-3 significantly increased in the irradiated group. Moreover, a significant decrease in the hematological constituents of peripheral blood, the chemotactic index and CD8+ T cells were observed in animals in the irradiation-only group, whereas an increase in the lymphocyte index was observed in animals in that group. In contrast, AXEPS treatment prevented these alterations. From our results, we conclude that

  9. Uptake of benzoic acid and chloro-substituted benzoic acids by alcaligenes denitrificans BRI 3010 and BRI 6011

    SciTech Connect

    Miguez, C.B.; Ingram, J.M.; MacLeod, R.A.

    1995-12-01

    The mechanism of uptake of benzoic and 2,4-dichlorobenzoic acid (2,4-DCBA) by Alcaligenes denitrificans BRI 3010 and BRI 6011 and Pseudomonas sp. strain B13, three organisms capable of degrading isomers of chlorinated benzoic acids, was investigated. In all three organisms, uptake of benzoic acid was inducible. For benzoic acid uptake into BRI 3010, monophasic saturation kinetics with apparent K{sub m} and V{sub max} values of 1.4 {mu}M and 3.2 nmol/min/mg of cell dry weight, respectively, were obtained. For BRI 6011, biphasic saturation kinetics were observed, suggesting presence of two uptake systems for benzoic acid with distinct K{sub m} (0.72 and 5.3 {mu}M) and V{sub max} (3.3 and 4.6 nmol/min/mg of cell dry weight) values. BRI 3010 and BRI 6011 accumulated benzoic acid against a concentration gradient by a factor of 8 and 10, respectively. A wide range of structural analogs, at 50-fold excess concentrations, inhibited benzoic acid uptake by BRI 3010 and BRI 6011, whereas with B13, only 3-chlorobenzoic acid was an effective inhibitor. For BRI 3010 and BRI 6011, the inhibition by the structural analogs was not of a competitive nature. Uptake of benzoic acid by BRI 3010 and BRI 6011 was inhibited by KCN, by the protonophore 3,5,3`, 4`-tetrachlorosalicylanilide (TCS), and, for BRI 6011, by anaerobiosis unless nitrate was present, thus indicating that energy was required for the uptake process. Uptake of 2,4-DCBA by BRI 6011 was constitutive and saturation uptake kinetics were not observed. Uptake of 2,4-DCBA by BRI 6011 was inhibited by KCN, TCS, and anaerobiosis even if nitrate was present, but the compound was not accumulated intracellularly against a concentration gradient. Uptake of 2,4-DCBA by BRI 6011 appears to occur by passive diffusion into the cell down its concentration gradient, which is maintained by the intracellular metabolism of the compound. This process could play an important role in the degradation of xenobiotic compounds by microorganisms.

  10. Efficacy of polysaccharide from Alcaligenes xylosoxidans MSA3 administration as protection against γ-radiation in female rats

    PubMed Central

    Hassan, Amal I.; Ghoneim, Mona A. M.; Mahmoud, Manal G.; Asker, Mohsen M. S.; Mohamed, Saher S.

    2016-01-01

    Damage to normal tissues is a consequence of both therapeutic and accidental exposures to ionizing radiation. A water-soluble heteropolysaccharide called AXEPS, composed of glucose, galactose, rhamnose and glucouronic acid in a molar ratio of nearly 1.0:1.6:0.4:2.3, respectively, was isolated from culture medium of strain Alcaligenes xylosoxidans MSA3 by ethanol precipitation followed by freeze-drying. Chemical analysis, Fourier-transform infrared (FTIR) and chromatographic studies revealed that the molecular weight was 1.6 × 104 g mol−1. This study was designed to investigate the radioprotective and biological effects of AXEPS in alleviating the toxicity of ionizing radiation in female albino rats. A total of 32 female albino rats were divided into four groups. In the control group, rats were administered vehicle by tube for four weeks. The second group was administered AXEPS (100 mg/kg) orally by gavage for four weeks. Animals in the third group were exposed to whole-body γ-rays (5 Gy) and remained for 2 weeks without treatment. The fourth group received AXEPS (100 mg/kg) orally by gavage for two weeks before being exposed to whole-body γ-rays (5 Gy), then 24 h post γ-rays, they received AXEPS (100 mg/kg) in a treatment continuing till the end of the experiment (15 days after the whole–body γ-irradiation). Oral administration of AXEPS (100 mg/kg) significantly reversed the oxidative stress effects of radiation, as evidenced by the decrease in DNA damage in the bone marrow. Assessment of apoptosis and cell proliferation markers revealed that caspase-3 significantly increased in the irradiated group. Moreover, a significant decrease in the hematological constituents of peripheral blood, the chemotactic index and CD8+ T cells were observed in animals in the irradiation-only group, whereas an increase in the lymphocyte index was observed in animals in that group. In contrast, AXEPS treatment prevented these alterations. From our results, we conclude that

  11. Reductive dechlorination of 2,4-dichlorobenzoate to 4-chlorobenzoate and hydrolytic dehalogenation of 4-chloro-, 4-bromo-, and 4-iodobenzoate by Alcaligenes denitrificans NTB-1.

    PubMed Central

    van den Tweel, W J; Kok, J B; de Bont, J A

    1987-01-01

    Alcaligenes denitrificans NTB-1, previously isolated on 4-chlorobenzoate, also utilized 4-bromo-, 4-iodo-, and 2,4-dichlorobenzoate but not 4-fluorobenzoate as a sole carbon and energy source. During growth, stoichiometric amounts of halide were released. Experiments with whole cells and cell extracts revealed that 4-bromo- and 4-iodobenzoate were metabolized like 4-chlorobenzoate, involving an initial hydrolytic dehalogenation yielding 4-hydroxybenzoate, which in turn was hydroxylated to 3,4-dihydroxybenzoate. The initial step in the metabolism of 2,4-dichlorobenzoate was catalyzed by a novel type of reaction for aerobic organisms, involving inducible reductive dechlorination to 4-chlorobenzoate. Under conditions of low and controlled oxygen concentrations, A. denitrificans NTB-1 converted all 4-halobenzoates and 2,4-dichlorobenzoate almost quantitatively to 4-hydroxybenzoate. PMID:3579283

  12. Crystallization and preliminary X-ray characterization of the 2,4′-dihydroxyaceto­phenone dioxygenase from Alcaligenes sp. 4HAP

    PubMed Central

    Beaven, G.; Bowyer, A.; Erskine, P.; Wood, S. P.; McCoy, A.; Coates, L.; Keegan, R.; Lebedev, A.; Hopper, D. J.; Kaderbhai, M. A.; Cooper, J. B.

    2014-01-01

    The enzyme 2,4′-dihydroxyacetophenone dioxygenase (or DAD) catalyses the conversion of 2,4′-dihydroxyacetophenone to 4-hydroxybenzoic acid and formic acid with the incorporation of molecular oxygen. Whilst the vast majority of dioxygenases cleave within the aromatic ring of the substrate, DAD is very unusual in that it is involved in C—C bond cleavage in a substituent of the aromatic ring. There is evidence that the enzyme is a homotetramer of 20.3 kDa subunits each containing nonhaem iron and its sequence suggests that it belongs to the cupin family of dioxygenases. By the use of limited chymotrypsinolysis, the DAD enzyme from Alcaligenes sp. 4HAP has been crystallized in a form that diffracts synchrotron radiation to a resolution of 2.2 Å. PMID:24915102

  13. Heterotrophic nitrification by Alcaligenes faecalis: NO sub 2 sup minus , NO sub 3 sup minus , N sub 2 O, and NO production in exponentially growing cultures

    SciTech Connect

    Papen, H.; von Berg, R.; Hinkel, I.; Thoene, B.; Rennenberg, H. )

    1989-08-01

    Heterotrophic nitrification by Alcaligenes faecalis DSM 30030 was not restricted to media containing organic forms of nitrogen. In both peptone-meat extract and defined media with ammonium and citrate as the sole nitrogen and carbon sources, respectively, NO{sub 2}{sup {minus}}, NO{sub 3}{sup {minus}}, NO, and N{sub 2}O were produced under aerobic growth conditions. Heterotrophic nitrification was not attributable to old or dying cell populations. Production of NO{sub 2}{sup {minus}}, NO{sub 3}{sup {minus}}, NO, and N{sub 2}O was detectable shortly after cultures started growth and proceeded exponentially during the logarithmic growth phase. NO{sub 2}{sup {minus}} and NO{sub 3}{sup {minus}} production rates were higher for cultures inoculated in media with pH values below 7 than for those in media at alkaline pH. Neither assimilatory nor dissimilatory nitrate or nitrite reductase activities were detectable in aerobic cultures.

  14. Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea.

    PubMed

    Ndeddy Aka, Robinson Junior; Babalola, Olubukola Oluranti

    2016-01-01

    Bacterial inoculation may influence Brassica juncea growth and heavy metal (Ni, Cr, and Cd) accumulation. Three metal tolerant bacterial isolates (BCr3, BCd33, and BNi11) recovered from mine tailings, identified as Pseudomonas aeruginosa KP717554, Alcaligenes feacalis KP717561, and Bacillus subtilis KP717559 were used. The isolates exhibited multiple plant growth beneficial characteristics including the production of indole-3-acetic acid, hydrogen cyanide, ammonia, insoluble phosphate solubilization together with the potential to protect plants against fungal pathogens. Bacterial inoculation improved seeds germination of B. juncea plant in the presence of 0.1 mM Cr, Cd, and Ni, as compared to the control treatment. Compared with control treatment, soil inoculation with bacterial isolates significantly increased the amount of soluble heavy metals in soil by 51% (Cr), 50% (Cd), and 44% (Ni) respectively. Pot experiment of B. juncea grown in soil spiked with 100 mg kg(-1) of NiCl2, 100 mg kg(-1) of CdCl2, and 150 mg kg(-1) of K2Cr2O7, revealed that inoculation with metal tolerant bacteria not only protected plants against the toxic effects of heavy metals, but also increased growth and metal accumulation of plants significantly. These findings suggest that such metal tolerant, plant growth promoting bacteria are valuable tools which could be used to develop bio-inoculants for enhancing the efficiency of phytoextraction. PMID:26503637

  15. DEGRADATION OF THE CHLORINATED PHENOXYACETATE HERBICIDES 2,4-DICHLOROPHENOXYACETIC ACID AND 2,4,5- TRICHLOROPHENOXYACETIC BY PURE AND MIXED BACTERIAL CULTURES

    EPA Science Inventory

    Combined cell suspensions of the 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-metabolizing organism Pseudomonas cepacia AC1100, and the 2,4-dichlorophenoxyacetic acid (2,4-D)-metabolizing organism Alcaligenes eutrophus JMP134 were shown to effectively degrade either of these compo...

  16. PHENOXYACETIC ACID DEGRADATION BY THE 2,4-DICHLOROPHENOXYACETIC ACID (TFD) PATHWAY OF PLASMID PJP4: MAPPING AND CHARACTERIZATION OF THE TFD REGULATORY GENE

    EPA Science Inventory

    Plasmid pJP4 enables Alcaligenes eutrophus JMP134 to degrade 3-chlorobenzoate and 2,4-dichlorophenoxyacetic acid (TFD), Plasmid pROl0 is a derivative of pJP4 obtained by insertion of TN1721 into a nonessential region of pJP4. lasmid pROl0l was transferred by conjugation to severa...

  17. Metabolism of acrylate to {beta}-hydroxypropionate and its role in dimethylsulfoniopropionate lyase induction by a salt marsh sediment bacterium, Alcaligenes faecalis M3A

    SciTech Connect

    Ansede, J.H.; Pellechia, P.J.; Yoch, D.C.

    1999-11-01

    Dimethylsulfoniopropionate (DMSP) is degraded to dimethylsulfide (DMS) and acrylate by the enzyme DMSP lyase. DMS or acrylate can serve as a carbon source for both free-living and endophytic bacteria in the marine environment. In this study, the authors report on the mechanism of DMSP-acrylate metabolism by Alcaligenes faecalis M3A. Suspensions of citrate-grown cells expressed a low level of DMSP lyase activity that could be induced to much higher levels in the presence of DMSP, acrylate, and its metabolic product, {beta}-hydroxypropionate. DMSP was degraded outside the cell, resulting in an extracellular accumulation of acrylate, which in suspensions of citrate-grown cells was then metabolized at a low endogenous rate. The inducible nature of acrylate metabolism was evidenced by both an increase in the rate of its degradation over time and the ability of acrylate-grown cells to metabolize this molecule at about an eight times higher rate than citrate-grown cells. Therefore, acrylate induces both its production (from DMSP) and its degradation by an acrylase enzyme. {sup 1}H and {sup 13}C nuclear magnetic resonance analyses were used to identify the products resulting from [1-{sup 13}C]acrylate metabolism. The results indicated that A.faecalis first metabolized acrylate to {beta}-hydroxypropionate outside the cell, which was followed by its intracellular accumulation and subsequent induction of DMSP lyase activity. In summary, the mechanism of DMSP degradation to acrylate and the subsequent degradation of acrylate to {beta}-hydroxypropionate in the aerobic {beta}-Proteobacterium A.faecalis has been described.

  18. Induction of immune-related gene expression in Ctenopharyngodon idella kidney cells by secondary metabolites from immunostimulatory Alcaligenes faecalis FY-3.

    PubMed

    Wu, Z-F; Liu, G-L; Zhou, Z; Wang, G-X; Xia, L; Liu, J-L

    2012-08-01

    This study was undertaken to isolate active secondary metabolites from immunostimulatory Alcaligenes faecalis FY-3 and evaluate their activities using grass carp Ctenopharyngodon idella kidney (CIK) cells. By applying chromatography techniques and successive recrystallization, three purified metabolites were obtained and identified by spectral data (mass spectrometry and nuclear magnetic resonance) as: (1) phenylacetic acid, (2) p-hydroxyphenylacetylamide and (3) cyclo-(Gly-(L)-Pro). CIK cells were stimulated by different concentrations (1, 10 and 100 μg/ml) of the isolated compounds, and expression of MyD88, IL-1β, TNF-α, type I-IFN and IL-8 genes at different time points (2, 8 and 24 h) post-stimulation was quantified by real-time PCR. The known immunostimulatory agent lipopolysaccharide (LPS) was used as a positive control. To analyse whether these compounds are toxic to the cells, the methyl tetrazolium assay was employed to measure changes in cell viability. The obtained results revealed that transcribing level of MyD88, an important adaptor molecule in toll-like receptor signalling pathway, was augmented remarkably by all the three isolated compounds and LPS as early as 2-h exposure. These compounds also induced gene expression of cytokines such as IL-1β, TNF-α and type I-IFN. Under the experimental conditions, none of the test compounds is toxic to the CIK cells. These findings demonstrate that the immunostimulatory properties of the three metabolites [phenylacetic acid, p-hydroxyphenylacetylamide and cyclo-(Gly-(L)-Pro)] from A. faecalis FY-3 in CIK cells and highlight the potential of using these metabolites as immunostimulants in fish aquaculture. PMID:22606987

  19. Improvement of Alcaligenes faecalis nitrilase by gene site saturation mutagenesis and its application in stereospecific biosynthesis of (R)-(-)-mandelic acid.

    PubMed

    Liu, Zhi-Qiang; Zhang, Xin-Hong; Xue, Ya-Ping; Xu, Ming; Zheng, Yu-Guo

    2014-05-21

    Nitrilases have recently received considerable attention as the biocatalysts for stereospecific production of carboxylic acids. To improve the activity, the nitrilase from Alcaligenes faecalis was selected for further modification by the gene site saturation mutagenesis method (GSSM), based on homology modeling and previous reports about mutations. After mutagenesis, the positive mutants were selected using a convenient two-step high-throughput screening method based on product formation and pH indicator combined with the HPLC method. After three rounds of GSSM, Mut3 (Gln196Ser/Ala284Ile) with the highest activity and ability of tolerance to the substrate was selected. As compared to the wild-type A. faecalis nitrilase, Mut3 showed 154% higher specific activity. Mut3 could retain 91.6% of its residual activity after incubation at pH 6.5 for 6 h. In a fed-batch reaction with 800 mM mandelonitrile as the substrate, the cumulative production of (R)-(-)-mandelic acid after 7.5 h of conversion reached 693 mM with an enantiomeric excess of 99%, and the space-time productivity of Mut3 was 21.50-fold higher than that of wild-type nitrilase. The Km, Vmax, and k(cat) of wild-type and Mut3 for mandelonitrile were 20.64 mM, 33.74 μmol mg(-1) min(-1), 24.45 s(-1), and 9.24 mM, 47.68 μmol mg(-1) min(-1), and 34.55 s(-1), respectively. A homology modeling and molecular docking study showed that the diameter of the catalytic tunnel of Mut3 became longer and that the tunnel volume was smaller. These structural changes are proposed to improve the hydrolytic activity and pH stability of Mut3. Mut3 has the potential for industrial applications in the upscale production of (R)-(-)-mandelic acid. PMID:24766313

  20. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers. [Pseudomonas fluorescens; Serratia marcescens; Alcaligenes faecalis

    SciTech Connect

    Anderson, I.C.; Levine, J.S.

    1986-05-01

    The authors investigated the effect of the partial pressure of oxygen (pO/sub 2/) on the production of NO and N/sub 2/O by a wide variety of common soil nitrifying, denitrifying, and nitrate-respiring bacteria under laboratory conditions. The production of NO per cell was highest by autotrophic nitrifiers and was independent of pO/sub 2/ in the range tested (0.5 to 10%), whereas N/sub 2/O production was inversely proportional to pO/sub 2/. Nitrous oxide production was highest in the denitrifier Pseudomonas fluorescens, but only under anaerobic conditions. The molar ratio of NO/N/sub 2/O produced was usually greater than unity for nitrifiers and much less than unity for denitrifiers. Chemodenitrification was the major source of both the NO and N/sub 2/O produced by the nitrate respirer Serratia marcescens. Chemodenitrification was also a possible source of NO and N/sub 2/O produced by the nitrate respirer Serratia marcescens. Chemodenitrification was also a possible source of No and N/sub 2/O in nitrifier cultures but only when high concentrations of nitrite had accumulated or were added to the medium. Although most of the denitrifiers produced NO and N/sub 2/O only under anaerobic conditions, chemostat cultures of Alcaligenes faecalis continued to emit these gases even when the cultures were sprayed with air. Based upon these results, we predict that aerobic soils are primary sources of NO and that N/sub 2/O is produced only when there is sufficient soil moisture to provide the anaerobic microsites necessary for denitrification by either denitrifiers or nitrifiers.

  1. Antibacterial and toxicological evaluation of beta-lactams synthesized by immobilized beta-lactamase-free penicillin amidase produced by Alcaligenes sp.

    PubMed

    Gayen, Jiaur R; Majee, Sutapa B; Das, Shuvendu; Samanta, Timir B

    2007-12-01

    Search for anti-beta-lactamase and synthesis of newer penicillin were suggested to overcome resistance to penicillin in chemotherapy. It was found that clavulanic acid, an ant-beta-lactamase was ineffective due to its structural modification by bacteria. Thus, there is a need for the synthesis of newer pencillins. Retro-synthesis was inspired by the success of forward reaction i.e.conversion of penicillin G to 6-aminopenicillanic acid (6-APA) by biological process. In the present study a better enzymatic method of synthesis of newer pencillin by a beta-lactamase-free penicillin amidase produced by Alcaligenes sp. is attempted. Antibacterial and toxicological evaluation of the enzymatically synthesized beta-lactams are reported. Condensation of 6-APA with acyl donor was found to be effective when the reaction is run in dimethyl formamide (DMF 50% v/v) in acetate buffer (25 mM pH 5.0) at 37 degrees C. Periplasm entrapped in calcium alginate exihibited the highest yield (approximately 34%) in synthesis. The minimum inhibitory concentration of the synthetic products against Staphylococcus aureus and Salmonella typhi varied between 20-80 microg/ml. Some of the products exhibited antibacterial activity against enteric pathogens. It was interesting to note that product A was potent like penicillin G. LD50 value of three products (product A, B and C) was more than 12 mg/kg. Furthermore, these synthetic beta-lactams did not exihibit any adverse effect on house keeping enzymes viz., serum glutamate oxalacetate-trans-aminase, serum glutamate pyruvate -trans-aminase, acid phosphatase, alkaline phosphatase of the test animals. The hematological profile (RBC and WBC) of the test animals also remained unaffected. PMID:18254214

  2. The Crystal Structure of D-Threonine Aldolase from Alcaligenes xylosoxidans Provides Insight into a Metal Ion Assisted PLP-Dependent Mechanism

    PubMed Central

    Uhl, Michael K.; Oberdorfer, Gustav; Steinkellner, Georg; Riegler-Berket, Lina; Mink, Daniel; van Assema, Friso; Schürmann, Martin; Gruber, Karl

    2015-01-01

    Threonine aldolases catalyze the pyridoxal phosphate (PLP) dependent cleavage of threonine into glycine and acetaldehyde and play a major role in the degradation of this amino acid. In nature, L- as well as D-specific enzymes have been identified, but the exact physiological function of D-threonine aldolases (DTAs) is still largely unknown. Both types of enantio-complementary enzymes have a considerable potential in biocatalysis for the stereospecific synthesis of various β-hydroxy amino acids, which are valuable building blocks for the production of pharmaceuticals. While several structures of L-threonine aldolases (LTAs) have already been determined, no structure of a DTA is available to date. Here, we report on the determination of the crystal structure of the DTA from Alcaligenes xylosoxidans (AxDTA) at 1.5 Å resolution. Our results underline the close relationship of DTAs and alanine racemases and allow the identification of a metal binding site close to the PLP-cofactor in the active site of the enzyme which is consistent with the previous observation that divalent cations are essential for DTA activity. Modeling of AxDTA substrate complexes provides a rationale for this metal dependence and indicates that binding of the β-hydroxy group of the substrate to the metal ion very likely activates this group and facilitates its deprotonation by His193. An equivalent involvement of a metal ion has been implicated in the mechanism of a serine dehydratase, which harbors a metal ion binding site in the vicinity of the PLP cofactor at the same position as in DTA. The structure of AxDTA is completely different to available structures of LTAs. The enantio-complementarity of DTAs and LTAs can be explained by an approximate mirror symmetry of crucial active site residues relative to the PLP-cofactor. PMID:25884707

  3. Molecular weight-dependent degradation of D-lactate-containing polyesters by polyhydroxyalkanoate depolymerases from Variovorax sp. C34 and Alcaligenes faecalis T1.

    PubMed

    Sun, Jian; Matsumoto, Ken'ichiro; Tabata, Yuta; Kadoya, Ryosuke; Ooi, Toshihiko; Abe, Hideki; Taguchi, Seiichi

    2015-11-01

    Polyhydroxyalkanoate depolymerase derived from Variovorax sp. C34 (PhaZVs) was identified as the first enzyme that is capable of degrading isotactic P[67 mol% (R)-lactate(LA)-co-(R)-3-hydroxybutyrate(3HB)] [P(D-LA-co-D-3HB)]. This study aimed at analyzing the monomer sequence specificity of PhaZVs for hydrolyzing P(LA-co-3HB) in comparison with a P(3HB) depolymerase from Alcaligenes faecalis T1 (PhaZAf) that did not degrade the same copolymer. Degradation of P(LA-co-3HB) by action of PhaZVs generated dimers, 3HB-3HB, 3HB-LA, LA-3HB, and LA-LA, and the monomers, suggesting that PhaZVs cleaved the linkages between LA and 3HB units and between LA units. To provide a direct evidence for the hydrolysis of these sequences, the synthetic methyl trimers, 3HB-3HB-3HB, LA-LA-3HB, LA-3HB-LA, and 3HB-LA-LA, were treated with the PhaZs. Unexpectedly, not only PhaZVs but also PhaZAf hydrolyzed all of these substrates, namely PhaZAf also cleaved LA-LA linkage. Considering the fact that both PhaZs did not degrade P[(R)-LA] (PDLA) homopolymer, the cleavage capability of LA-LA linkage by PhaZs was supposed to depend on the length of the LA-clustering region in the polymer chain. To test this hypothesis, PDLA oligomers (6 to 40 mer) were subjected to the PhaZ assay, revealing that there was an inverse relationship between molecular weight of the substrates and their hydrolysis efficiency. Moreover, PhaZVs exhibited the degrading activity toward significantly longer PDLA oligomers compared to PhaZAf. Therefore, the cleaving capability of PhaZs used here toward the D-LA-based polymers containing the LA-clustering region was strongly associated with the substrate length, rather than the monomer sequence specificity of the enzyme. PMID:26109003

  4. Contribution of permeability and sensitivity to inhibition of DNA synthesis in determining susceptibilities of Escherichia coli, Pseudomonas aeruginosa, and Alcaligenes faecalis to ciprofloxacin.

    PubMed

    Bedard, J; Chamberland, S; Wong, S; Schollaardt, T; Bryan, L E

    1989-09-01

    To examine the correlation between bacterial cell susceptibility to ciprofloxacin and the magnitude of uptake and cell target sensitivity, the relative contribution of ciprofloxacin accumulation in intact cells and its ability to inhibit DNA synthesis were investigated among strains of Escherichia coli, Pseudomonas aeruginosa, and Alcaligenes faecalis. Uptake studies of [14C]ciprofloxacin demonstrated diffusion kinetics for P. aeruginosa and E. coli. Ciprofloxacin was more readily removed from E. coli J53 and A. faecalis ATCC 19018 by washing than from P. aeruginosa PAO503. These results indicate that the process of cell accumulation is different for P. aeruginosa in that the drug is firmly bound at an extracellular site. Whatever the washing conditions, A. faecalis accumulated less drug than either of the other two bacteria. Magnesium chloride (10 mM) caused a substantial decrease of ciprofloxacin accumulated and an increase in the MIC, depending upon the nature of the medium. The addition of carbonyl cyanide m-chlorophenylhydrazone caused a variable increase in drug accumulated, depending on the medium and the bacterial strain. The concentration of ciprofloxacin required to obtain 50% inhibition (ID50) of DNA synthesis for P. aeruginosa PAO503 and A. faecalis ATCC 19018 did not correlate with their corresponding MICs but did for E. coli J53. Treatment with EDTA decreased the ID50 of ciprofloxacin for P. aeruginosa PAO503 and its gyrA derivative by 5- and 2-fold, respectively, and decreased the ID50 for E. coli JB5R, a strain with a known decrease in OmpF, by 1.4-fold but did not decrease the ID50 for the normally susceptible E. coli J53. The ID(50) for P. aeruginosa obtained after EDTA treatment or in ether-permeabilized cells was higher than that obtained for the other two strains. The protonophore carbonyl cyanide m-chlorophenylhydrazone prevented killing by low ciprofloxacin concentrtaions, but sodium azide did not. The latter compound did not enhance killing

  5. Chemical and physical characterization of the activation of ribulosebiphosphate carboxylase/oxygenase

    SciTech Connect

    Donnelly, M.I.; Ramakrishnan, V.; Hartman, F.C.

    1983-01-01

    Molecular structure of ribulosebiphosphate carboxylase/oxygenase isolated from Rhodospirillium was compared with the enzyme isolated from Alcaligens eutrophus. Peptides derived from the active center of the bacterial enzyme were highly homologous with those isolated from spinach. Molecular shapes of the carboxylases were estimated using neutron scattering data. These studies suggested that the enzyme as isolated from R. rubrum is a solid prolate ellipsoid or cylinder, while the spinach enzyme resembles a hollow sphere. 1 drawing.

  6. Chemical and Physical Characterization of the Activation of Ribulosebiphosphate Carboxylase/Oxygenase

    DOE R&D Accomplishments Database

    Donnelly, M. I.; Ramakrishnan, V.; Hartman, F. C.

    1983-08-01

    Molecular structure of ribulosebiphosphate carboxylase/oxygenase isolated from Rhodospirillium was compared with the enzyme isolated from Alcaligens eutrophus. Peptides derived from the active center of the bacterial enzyme were highly homologous with those isolated from spinach. Molecular shapes of the carboxylases were estimated using neutron scattering data. These studies suggested that the enzyme as isolated from R. rubrum is a solid prolate ellipsoid or cylinder, while the spinach enzyme resembles a hollow sphere.

  7. Characterization of an Indole-3-Acetamide Hydrolase from Alcaligenes faecalis subsp. parafaecalis and Its Application in Efficient Preparation of Both Enantiomers of Chiral Building Block 2,3-Dihydro-1,4-Benzodioxin-2-Carboxylic Acid.

    PubMed

    Mishra, Pradeep; Kaur, Suneet; Sharma, Amar Nath; Jolly, Ravinder S

    2016-01-01

    Both the enantiomers of 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid are valuable chiral synthons for enantiospecific synthesis of therapeutic agents such as (S)-doxazosin mesylate, WB 4101, MKC 242, 2,3-dihydro-2-hydroxymethyl-1,4-benzodioxin, and N-[2,4-oxo-1,3-thiazolidin-3-yl]-2,3-dihydro-1,4-benzodioxin-2-carboxamide. Pharmaceutical applications require these enantiomers in optically pure form. However, currently available methods suffer from one drawback or other, such as low efficiency, uncommon and not so easily accessible chiral resolving agent and less than optimal enantiomeric purity. Our interest in finding a biocatalyst for efficient production of enantiomerically pure 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid lead us to discover an amidase activity from Alcaligenes faecalis subsp. parafaecalis, which was able to kinetically resolve 2,3-dihydro-1,4-benzodioxin-2-carboxyamide with E value of >200. Thus, at about 50% conversion, (R)-2,3-dihydro-1,4-benzodioxin-2-carboxylic acid was produced in >99% e.e. The remaining amide had (S)-configuration and 99% e.e. The amide and acid were easily separated by aqueous (alkaline)-organic two phase extraction method. The same amidase was able to catalyse, albeit at much lower rate the hydrolysis of (S)-amide to (S)-acid without loss of e.e. The amidase activity was identified as indole-3-acetamide hydrolase (IaaH). IaaH is known to catalyse conversion of indole-3-acetamide (IAM) to indole-3-acetic acid (IAA), which is phytohormone of auxin class and is widespread among plants and bacteria that inhabit plant rhizosphere. IaaH exhibited high activity for 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which was about 65% compared to its natural substrate, indole-3-acetamide. The natural substrate for IaaH indole-3-acetamide shared, at least in part a similar bicyclic structure with 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which may account for high activity of enzyme towards this un-natural substrate. To the best of

  8. Characterization of an Indole-3-Acetamide Hydrolase from Alcaligenes faecalis subsp. parafaecalis and Its Application in Efficient Preparation of Both Enantiomers of Chiral Building Block 2,3-Dihydro-1,4-Benzodioxin-2-Carboxylic Acid

    PubMed Central

    Mishra, Pradeep; Kaur, Suneet; Sharma, Amar Nath; Jolly, Ravinder S.

    2016-01-01

    Both the enantiomers of 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid are valuable chiral synthons for enantiospecific synthesis of therapeutic agents such as (S)-doxazosin mesylate, WB 4101, MKC 242, 2,3-dihydro-2-hydroxymethyl-1,4-benzodioxin, and N-[2,4-oxo-1,3-thiazolidin-3-yl]-2,3-dihydro-1,4-benzodioxin-2-carboxamide. Pharmaceutical applications require these enantiomers in optically pure form. However, currently available methods suffer from one drawback or other, such as low efficiency, uncommon and not so easily accessible chiral resolving agent and less than optimal enantiomeric purity. Our interest in finding a biocatalyst for efficient production of enantiomerically pure 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid lead us to discover an amidase activity from Alcaligenes faecalis subsp. parafaecalis, which was able to kinetically resolve 2,3-dihydro-1,4-benzodioxin-2-carboxyamide with E value of >200. Thus, at about 50% conversion, (R)-2,3-dihydro-1,4-benzodioxin-2-carboxylic acid was produced in >99% e.e. The remaining amide had (S)-configuration and 99% e.e. The amide and acid were easily separated by aqueous (alkaline)-organic two phase extraction method. The same amidase was able to catalyse, albeit at much lower rate the hydrolysis of (S)-amide to (S)-acid without loss of e.e. The amidase activity was identified as indole-3-acetamide hydrolase (IaaH). IaaH is known to catalyse conversion of indole-3-acetamide (IAM) to indole-3-acetic acid (IAA), which is phytohormone of auxin class and is widespread among plants and bacteria that inhabit plant rhizosphere. IaaH exhibited high activity for 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which was about 65% compared to its natural substrate, indole-3-acetamide. The natural substrate for IaaH indole-3-acetamide shared, at least in part a similar bicyclic structure with 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which may account for high activity of enzyme towards this un-natural substrate. To the best of

  9. Contributions of five secondary metal uptake systems to metal homeostasis of Cupriavidus metallidurans CH34.

    PubMed

    Kirsten, Andreas; Herzberg, Martin; Voigt, Alexander; Seravalli, Javier; Grass, Gregor; Scherer, Judith; Nies, Dietrich H

    2011-09-01

    Cupriavidus metallidurans is adapted to high concentrations of transition metal cations and is a model system for studying metal homeostasis in difficult environments. The elemental composition of C. metallidurans cells cultivated under various conditions was determined, revealing the ability of the bacterium to shield homeostasis of one essential metal from the toxic action of another. The contribution of metal uptake systems to this ability was studied. C. metallidurans contains three CorA members of the metal inorganic transport (MIT) protein family of putative magnesium uptake systems, ZupT of the ZRT/IRT protein, or ZIP, family, and PitA, which imports metal phosphate complexes. Expression of the genes for all these transporters was regulated by zinc availability, as shown by reporter gene fusions. While expression of zupT was upregulated under conditions of zinc starvation, expression of the other genes was downregulated at high zinc concentrations. Only corA(1) expression was influenced by magnesium starvation. Deletion mutants were constructed to characterize the contribution of each system to transition metal import. This identified ZupT as the main zinc uptake system under conditions of low zinc availability, CorA(1) as the main secondary magnesium uptake system, and CorA(2) and CorA(3) as backup systems for metal cation import. PitA may function as a cation-phosphate uptake system, the main supplier of divalent metal cations and phosphate in phosphate-rich environments. Thus, metal homeostasis in C. metallidurans is achieved by highly redundant metal uptake systems, which have only minimal cation selectivity and are in combination with efflux systems that "worry later" about surplus cations. PMID:21742896

  10. Influence of copper resistance determinants on gold transformation by Cupriavidus metallidurans strain CH34.

    PubMed

    Wiesemann, Nicole; Mohr, Juliane; Grosse, Cornelia; Herzberg, Martin; Hause, Gerd; Reith, Frank; Nies, Dietrich H

    2013-05-01

    Cupriavidus metallidurans is associated with gold grains and may be involved in their formation. Gold(III) complexes influence the transcriptome of C. metallidurans (F. Reith et al., Proc. Natl. Acad. Sci. U. S. A. 106:17757-17762, 2009), leading to the upregulation of genes involved in the detoxification of reactive oxygen species and metal ions. In a systematic study, the involvement of these systems in gold transformation was investigated. Treatment of C. metallidurans cells with Au(I) complexes, which occur in this organism's natural environment, led to the upregulation of genes similar to those observed for treatment with Au(III) complexes. The two indigenous plasmids of C. metallidurans, which harbor several transition metal resistance determinants, were not involved in resistance to Au(I/III) complexes nor in their transformation to metallic nanoparticles. Upregulation of a cupA-lacZ fusion by the MerR-type regulator CupR with increasing Au(III) concentrations indicated the presence of gold ions in the cytoplasm. A hypothesis stating that the Gig system detoxifies gold complexes by the uptake and reduction of Au(III) to Au(I) or Au(0) reminiscent to detoxification of Hg(II) was disproven. ZupT and other secondary uptake systems for transition metal cations influenced Au(III) resistance but not the upregulation of the cupA-lacZ fusion. The two copper-exporting P-type ATPases CupA and CopF were also not essential for gold resistance. The copABCD determinant on chromosome 2, which encodes periplasmic proteins involved in copper resistance, was required for full gold resistance in C. metallidurans. In conclusion, biomineralization of gold particles via the reduction of mobile Au(I/III) complexes in C. metallidurans appears to primarily occur in the periplasmic space via copper-handling systems. PMID:23475973

  11. Response of CnrX from Cupriavidus metallidurans CH34 to nickel binding.

    PubMed

    Maillard, Antoine P; Künnemann, Sandra; Große, Cornelia; Volbeda, Anne; Schleuder, Grit; Petit-Härtlein, Isabelle; de Rosny, Eve; Nies, Dietrich H; Covès, Jacques

    2015-04-01

    Resistance to high concentration of nickel ions is mediated in Cupriavidus metallidurans by the CnrCBA transenvelope efflux complex. Expression of the cnrCBA genes is regulated by the transmembrane signal transduction complex CnrYXH. Together, the metal sensor CnrX and the transmembrane antisigma factor CnrY control the availability of the extracytoplasmic function sigma factor CnrH. Release of CnrH from sequestration by CnrY at the cytoplasmic side of the membrane depends essentially on the binding of the agonist metal ion Ni(ii) to the periplasmic metal sensor domain of CnrX. CnrH availability leads to transcription initiation at the promoters cnrYp and cnrCp and to the expression of the genes in the cnrYXHCBA nickel resistance determinant. The first steps of signal propagation by CnrX rely on subtle metal-dependent allosteric modifications. To study the nickel-mediated triggering process by CnrX, we have altered selected residues, F66, M123, and Y135, and explored the physiological consequences of these changes with respect to metal resistance, expression of a cnrCBA-lacZ reporter fusion and protein production. M123C- and Y135F-CnrXs have been further characterized in vitro by metal affinity measurements and crystallographic structure analysis. Atomic-resolution structures of metal-bound M123C- and Y135F-CnrXs showed that Ni(ii) binds two of the three canonical conformations identified and that Ni(ii) sensing likely proceeds by conformation selection. PMID:25628016

  12. Influence of Copper Resistance Determinants on Gold Transformation by Cupriavidus metallidurans Strain CH34

    PubMed Central

    Wiesemann, Nicole; Mohr, Juliane; Grosse, Cornelia; Herzberg, Martin; Hause, Gerd; Reith, Frank

    2013-01-01

    Cupriavidus metallidurans is associated with gold grains and may be involved in their formation. Gold(III) complexes influence the transcriptome of C. metallidurans (F. Reith et al., Proc. Natl. Acad. Sci. U. S. A. 106:17757–17762, 2009), leading to the upregulation of genes involved in the detoxification of reactive oxygen species and metal ions. In a systematic study, the involvement of these systems in gold transformation was investigated. Treatment of C. metallidurans cells with Au(I) complexes, which occur in this organism's natural environment, led to the upregulation of genes similar to those observed for treatment with Au(III) complexes. The two indigenous plasmids of C. metallidurans, which harbor several transition metal resistance determinants, were not involved in resistance to Au(I/III) complexes nor in their transformation to metallic nanoparticles. Upregulation of a cupA-lacZ fusion by the MerR-type regulator CupR with increasing Au(III) concentrations indicated the presence of gold ions in the cytoplasm. A hypothesis stating that the Gig system detoxifies gold complexes by the uptake and reduction of Au(III) to Au(I) or Au(0) reminiscent to detoxification of Hg(II) was disproven. ZupT and other secondary uptake systems for transition metal cations influenced Au(III) resistance but not the upregulation of the cupA-lacZ fusion. The two copper-exporting P-type ATPases CupA and CopF were also not essential for gold resistance. The copABCD determinant on chromosome 2, which encodes periplasmic proteins involved in copper resistance, was required for full gold resistance in C. metallidurans. In conclusion, biomineralization of gold particles via the reduction of mobile Au(I/III) complexes in C. metallidurans appears to primarily occur in the periplasmic space via copper-handling systems. PMID:23475973

  13. Plasmids captured in C. metallidurans CH34: defining the PromA family of broad-host-range plasmids.

    PubMed

    Van der Auwera, Géraldine A; Król, Jaroslaw E; Suzuki, Haruo; Foster, Brian; Van Houdt, Rob; Brown, Celeste J; Mergeay, Max; Top, Eva M

    2009-08-01

    The self-transmissible, broad-host-range (BHR) plasmid pMOL98 was previously isolated from polluted soil using a triparental plasmid capture approach and shown to possess a replicon similar to that of the BHR plasmids pSB102 and pIPO2. Here, complete sequence analysis and comparative genomics reveal that the 55.5 kb nucleotide sequence of pMOL98 shows extensive sequence similarity and synteny with the BHR plasmid family that now includes pIPO2, pSB102, pTER331, and pMRAD02. They share a plasmid backbone comprising replication, partitioning and conjugative transfer functions. Comparison of the variable accessory regions of these plasmids shows that the majority of natural transposons, as well as the mini-transposon used to mark the plasmids, are inserted in the parA locus. The transposon unique to pMOL98 appears to have inserted from the chromosome of the recipient strain used in the plasmid capture procedure. This demonstrates the necessity for careful screening of plasmids and host chromosomes to avoid mis-interpretation of plasmid genome content. The presence of very similar BHR plasmids with different accessory genes in geographically distinct locations suggests an important role in horizontal gene exchange and bacterial adaptation for this recently defined plasmid group, which we propose to name "PromA". PMID:19259779

  14. Enzymatic formation, stability, and spontaneous reactions of 4-fluoromuconolactone, a metabolite of the bacterial degradation of 4-fluorobenzoate.

    PubMed Central

    Schlömann, M; Fischer, P; Schmidt, E; Knackmuss, H J

    1990-01-01

    Enzymatic conversion of 4-fluorocatechol in the simultaneous presence of partially purified preparations of catechol 1,2-dioxygenase from Pseudomonas cepacia and muconate cycloisomerase from Alcaligenes eutrophus 335 yielded a product that was unambiguously identified as (+)-4-fluoromuconolactone [(+)-4-carboxymethyl-4-fluoro-but-2-en-4-olide]. This compound was shown to be the only major product formed from 3-fluoro-cis,cis-muconate by the action of muconate cycloisomerases from A. eutrophus 335, A. eutrophus JMP134, and P. cepacia as well as by the action of dichloromuconate cycloisomerase from A. eutrophus JMP134. This finding implies that dichloromuconate cycloisomerase, like the muconate cycloisomerases, catalyzes primarily a cycloisomerization reaction, which only in the case of chloro- and bromo-substituted substrates is connected to a dehalogenation. 4-Fluoromuconolactone at pH 7 decomposes by spontaneous reactions mainly to maleylacetate, which then decarboxylates to give cis-acetylacrylate. Although significant amounts of an unidentified compound are also formed from the fluorolactone, HF elimination to the two isomeric dienelactones (4-carboxymethylenebut-2-en-4-olides) is negligible. However, all spontaneous reactions proceed so slowly that an enzymatic conversion of 4-fluoromuconolactone must be assumed. Participation of dienelactone hydrolases in this reaction is indicated by their induction during growth of various strains with 4-fluorobenzoate. However, experiments with cell extracts of P. putida A3.12 suggest that at least one other hydrolytic enzyme is able to contribute to 4-fluoromuconolactone conversion. In light of these observations, earlier proposals for a 4-fluorobenzoate degradative pathway are discussed. PMID:2394680

  15. Natural transfer of conjugative transposon Tn916 between gram-positive and gram-negative bacteria.

    PubMed

    Bertram, J; Strätz, M; Dürre, P

    1991-01-01

    The conjugative streptococcal transposon Tn916 was found to transfer naturally between a variety of gram-positive and gram-negative eubacteria. Enterococcus faecalis hosting the transposon could serve as a donor for Alcaligenes eutrophus, Citrobacter freundii, and Escherichia coli at frequencies of 10(-6) to 10(-8). No transfer was observed with several phototrophic species. Mating of an E. coli strain carrying Tn916 yielded transconjugants with Bacillus subtilis, Clostridium acetobutylicum, Enterococcus faecalis, and Streptococcus lactis subsp. diacetylactis at frequencies of 10(-4) to 10(-6). Acetobacterium woodii was the only gram-positive organism tested that did not accept the transposon from a gram-negative donor. The results prove the ability of conjugative transposable elements such as Tn916 for natural cross-species gene transfer, thus potentially contributing to bacterial evolution. PMID:1846142

  16. Primary structure and phylogeny of the Calvin cycle enzymes transketolase and fructosebisphosphate aldolase of Xanthobacter flavus.

    PubMed Central

    van den Bergh, E R; Baker, S C; Raggers, R J; Terpstra, P; Woudstra, E C; Dijkhuizen, L; Meijer, W G

    1996-01-01

    Xanthobacter flavus, a gram-negative facultatively autotrophic bacterium, employs the Calvin cycle for the fixation of carbon dioxide. Cells grown under autotrophic growth conditions possess an Fe(2+)-dependent fructosebisphosphate (FBP) aldolase (class II) in addition to a class I FBP aldolase. By nucleotide sequencing and heterologous expression in Escherichia coli, genes encoding transketolase (EC 2.2.1.1.; CbbT) and class II FBP aldolase (EC 4.1.2.13; CbbA) were identified. A partial open reading frame encoding a protein similar to pentose-5-phosphate 3-epimerase was identified downstream from cbbA. A phylogenetic tree of transketolase proteins displays a conventional branching order. However, the class II FBP aldolase protein from X. flavus is only distantly related to that of E. coli. The autotrophic FBP aldolase proteins from X. flavus, Alcaligenes eutrophus, and Rhodobacter sphaeroides form a tight cluster, with the proteins from gram-positive bacteria as the closest relatives. PMID:8550527

  17. Degradation of poly(3-hydroxyoctanoic acid) [P(3HO)] by bacteria: Purification and properties of a P(3HO) depolymerase from Pseudomonas fluorescens GK13

    SciTech Connect

    Schirmer, A.; Jendrossek, D.; Schlegel, H.G. )

    1993-04-01

    Poly(3-hydroxyoctanoic acid)[P(3HO)] and other poly(hydroxyalkanoic acids) PHA are widespread bacterial storage compounds of carbon and reducing power. They are biodegradable to carbon dioxide and water, and both aerobic and anaerobic P(3HB)-degradable bacteria are widely distributed in various ecosytems: soil, activated sludge, lake water and air, sea water, estuarine sediment, and anaerobic sewage sludge. This study describes the isolation and characterization of P(3HO) degrading bacteria: Alcaligenes eutrophus, Comamonas violaceum, Pseudomonas citronellolis, and P. fluorescenes (2 strains). The authors also describe purified P(3HO) depolymerase and compared it to PHB and PHA deploymerases. P(3HO) depolymerase activity was found not only in the sulture supernatant but also in the soluble fraction and membrane fractions of P(3HO) grown cells.39 refs.,5 figs.,3 tabs.

  18. [Characterization of aldehyde dehydrogenase gene fragment from mung bean Vigna radiata using the polymerase chain reaction].

    PubMed

    Ponomarev, A G; Bubiakina, V V; Tatarinova, T D; Zelenin, S M

    1998-01-01

    Two degenerate oligonucleotide sequence primers and polymerase chain reactions on total DNA have been utilized to clone on 651--bp gene fragment coding the central part of amino acid sequence of an earlier unknown aldehyde dehydrogenase (ALDH) from mung bean. The deduced partial amino acid sequence for this aldehyde dehydrogenase shows about 65% sequence identity to ALDHs of Vibrio cholerae Rhodococcus sp., Alcaligenes eutrophus and about 45% sequence identity to mammalian ALDHs 1 and 2, ALDHs of Aspergillus niger and A, nidulans, the betain aldehyde dehydrogenase from spinach. Alignment of the mung bean aldehyde dehydrogenase partial amino acid sequence with the sequence of 16 NAD(P)(+)-dependent aldehyde dehydrogenases has demonstrated that all strictly conserved amino acid residues and all three conservative regions are identical. PMID:9778740

  19. Characterization of the first enzyme in 2,4-dichlorophenoxyacetic acid metabolism.

    PubMed Central

    Hausinger, R P; Fukumori, F

    1995-01-01

    This paper reviews the properties of the Alcaligenes eutrophus JMP134 tfdA gene product, the enzyme responsible for the first step in 2,4-dichlorophenoxyacetic acid (2,4-D) biodegradation. The gene was overexpressed in Escherichia coli and several of its enzymatic properties were characterized. Although this enzyme catalyzes a hydroxylation reaction, it is not a monooxygenase. Rather, TfdA is an Fe(II) and alpha-ketoglutarate-dependent dioxygenase that metabolizes the latter cosubstrate to succinate and carbon dioxide. A variety of other phenoxyacetates and alpha-ketoacids can be used by the enzyme, but the greatest catalytic efficiencies were found using 2,4-D and alpha-ketoglutarate. The enzyme possesses multiple essential histidine residues, whereas catalytically essential cysteine and lysine groups do not appear to be present. PMID:8565907

  20. Acetylene is an active-site-directed, slow-binding, reversible inhibitor of Azotobacter vinelandii hydrogenase

    SciTech Connect

    Hyman, M.R.; Arp, D.J.

    1987-10-06

    The inhibition of purified and membrane-bound hydrogenase from Azotobacter vinelandii by dihydrogen-free acetylene was investigated. The inhibition was a time-dependent process which exhibited first-order kinetics. Both H/sub 2/ and CO protected against the inhibition by acetylene. K/sub protect(app)/ values of 0.41 and 24 ..mu..M were derived for these gases, respectively. Both H/sub 2/-oxidizing activity and the tritium exchange capacity of the purified enzyme were inhibited at the same rate by acetylene. Removal of acetylene reversed the inhibition for both the purified and the membrane-associated form of the enzyme. The purified hydrogenases from both Rhizobium japonicum and Alcaligenes eutrophus H16 were also inhibited by acetylene in a time-dependent fashion. These findings suggest that acetylene is an active-site-directed, slow-binding, reversible inhibitor of some membrane-bound hydrogenases from aerobic bacteria.

  1. Purification and properties of a protein linked to the soluble hydrogenase of hydrogen-oxidizing bacteria.

    PubMed Central

    Kärst, U; Suetin, S; Friedrich, C G

    1987-01-01

    In Alcaligenes eutrophus, the formation of the hydrogenases and of five new peptides is subject to the hydrogenase control system. Of these, the B peptide was purified to homogeneity. This protein (Mr, 37,500) was composed of two identical subunits (Mr, 18,800). Antibodies against the B protein were used for its quantification by rocket immunoelectrophoresis. About 4% of the total protein consisted of the B protein; its molar ratio to the NAD-linked hydrogenase was about 4:1. The B protein appeared to be associated with the NAD-linked hydrogenase, as shown by gel filtration analysis with Sephadex G-200. The B protein was not detected in cells that had not expressed the hydrogenase proteins or that lacked the genetic information of the hydrogen-oxidizing character; it was also not detected in Tn5 insertional mutants that were unable to form soluble hydrogenase antigens. Immunochemical analysis of other species and genera than A. eutrophus revealed that only strains able to form a NAD-linked hydrogenase also formed B-protein antigens. The B protein is not required for the catalytic activity of soluble hydrogenase in vitro; its function is at present unknown. Images PMID:3553156

  2. Biochemical and molecular characterization of the Clostridium magnum acetoin dehydrogenase enzyme system.

    PubMed Central

    Krüger, N; Oppermann, F B; Lorenzl, H; Steinbüchel, A

    1994-01-01

    E2 (dihydrolipoamide acetyltransferase) and E3 (dihydrolipoamide dehydrogenase) of the Clostridium magnum acetoin dehydrogenase enzyme system were copurified in a three-step procedure from acetoin-grown cells. The denatured E2-E3 preparation comprised two polypeptides with M(r)s of 49,000 and 67,000, respectively. Microsequencing of both proteins revealed identical amino acid sequences. By use of oligonucleotide probes based on the N-terminal sequences of the alpha and beta subunits of E1 (acetoin dehydrogenase, thymine PPi dependent), which were purified recently (H. Lorenzl, F.B. Oppermann, B. Schmidt, and A. Steinbüchel, Antonie van Leeuwenhoek 63:219-225, 1993), and of E2-E3, structural genes acoA (encoding E1 alpha), acoB (encoding E1 beta), acoC (encoding E2), and acoL (encoding E3) were identified on a single ClaI restriction fragment and expressed in Escherichia coli. The nucleotide sequences of acoA (978 bp), acoB (999 bp), acoC (1,332 bp), and acoL (1,734 bp), as well as those of acoX (996 bp) and acoR (1,956 bp), were determined. The amino acid sequences deduced from acoA, acoB, acoC, and acoL for E1 alpha (M(r), 35,532), E1 beta (M(r), 35,541), E2 (M(r), 48,149), and E3 (M(r), 61,255) exhibited striking similarities to the amino acid sequences of the corresponding components of the Pelobacter carbinolicus acetoin dehydrogenase enzyme system and the Alcaligenes eutrophus acetoin-cleaving system, respectively. Significant homologies to the enzyme components of various 2-oxo acid dehydrogenase complexes were also found, indicating a close relationship between the two enzyme systems. As a result of the partial repetition of the 5' coding region of acoC into the corresponding part of acoL, the E3 component of the C. magnum acetoin dehydrogenase enzyme system contains an N-terminal lipoyl domain, which is unique among dihydrolipoamide dehydrogenases. We found strong similarities between the AcoR and AcoX sequences and the A. eutrophus acoR gene product

  3. Plasmid Transfer between Spatially Separated Donor and Recipient Bacteria in Earthworm-Containing Soil Microcosms

    PubMed Central

    Daane, L. L.; Molina, J.; Sadowsky, M. J.

    1997-01-01

    Most gene transfer studies have been performed with relatively homogeneous soil systems in the absence of soil macrobiota, including invertebrates. In this study we examined the influence of earthworm activity (burrowing, casting, and feeding) on transfer of plasmid pJP4 between spatially separated donor (Alcaligenes eutrophus) and recipient (Pseudomonas fluorescens) bacteria in nonsterile soil columns. A model system was designed such that the activity of earthworms would act to mediate cell contact and gene transfer. Three different earthworm species (Aporrectodea trapezoides, Lumbricus rubellus, and Lumbricus terrestris), representing each of the major ecological categories (endogeic, epigeic, and anecic), were evaluated. Inoculated soil microcosms, with and without added earthworms, were analyzed for donor, recipient, and transconjugant bacteria at 5-cm-depth intervals by using selective plating techniques. Transconjugants were confirmed by colony hybridization with a mer gene probe. The presence of earthworms significantly increased dispersal of the donor and recipient strains. In situ gene transfer of plasmid pJP4 from A. eutrophus to P. fluorescens was detected only in earthworm-containing microcosms, at a frequency of (symbl)10(sup2) transconjugants per g of soil. The depth of recovery was dependent on the burrowing behavior of each earthworm species; however, there was no significant difference in the total number of transconjugants among the earthworm species. Donor and recipient bacteria were recovered from earthworm feces (casts) of all three earthworm species, with numbers up to 10(sup6) and 10(sup4) bacteria per g of cast, respectively. A. trapezoides egg capsules (cocoons) formed in the inoculated soil microcosms contained up to 10(sup7) donor and 10(sup6) recipient bacteria per g of cocoon. No transconjugant bacteria, however, were recovered from these microhabitats. To our knowledge, this is the first report of gene transfer between physically

  4. Identification of the region of a 14-kilodalton protein of Rhodococcus ruber that is responsible for the binding of this phasin to polyhydroxyalkanoic acid granules.

    PubMed Central

    Pieper-Fürst, U; Madkour, M H; Mayer, F; Steinbüchel, A

    1995-01-01

    The function of the polyhydroxyalkanoic acid (PHA) granule-associated GA14 protein of Rhodococcus ruber was investigated in Escherichia coli XL1-Blue, which coexpressed this protein with the polyhydroxybutyric acid (PHB) biosynthesis operon of Alcaligenes eutrophus. The GA14 protein had no influence on the biosynthesis rate of PHB in E. coli XL1-Blue(pSKCO7), but this recombinant E. coli strain formed smaller PHB granules than were formed by an E. coli strain that expressed only the PHB operon. Immunoelectron microscopy with GA14-specific antibodies demonstrated the binding of GA14 protein to these mini granules. In a previous study, two hydrophobic domains close to the C terminus of the GA14 protein were analyzed, and a working hypothesis that suggested an anchoring of the GA14 protein in the phospholipid monolayer surrounding the PHA granule core by these hydrophobic domains was developed (U. Pieper-Fürst, M. H. Madkour, F. Mayer, and A. Steinbüchel, J. Bacteriol. 176:4328-4337, 1994). This hypothesis was confirmed by the construction of C-terminally truncated variants of the GA14 protein lacking the second or both hydrophobic domains and by the demonstration of their inability to bind to PHB granules. Further confirmation of the hypothesis was obtained by the construction of a fusion protein composed of the acetaldehyde dehydrogenase II of A. eutrophus and the C terminus of the GA14 protein containing both hydrophobic domains and by its affinity to native and artificial PHB granules. PMID:7730285

  5. Characterization of diverse 2,4-dichlorophenoxyacetic acid-degradative plasmids isolated from soil by complementation.

    PubMed Central

    Top, E M; Holben, W E; Forney, L J

    1995-01-01

    The diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)-degradative plasmids in the microbial community of an agricultural soil was examined by complementation. This technique involved mixing a suitable Alcaligenes eutrophus (Rifr) recipient strain with the indigenous microbial populations extracted from soil. After incubation of this mixture, Rifr recipient strains which grow with 2,4-D as the only C source were selected. Two A. eutrophus strains were used as recipients: JMP228 (2,4-D-), which was previously derived from A. eutrophus JMP134 by curing of the 2,4-D-degradative plasmid pJP4, and JMP228 carrying pBH501aE (a plasmid derived from pJP4 by deletion of a large part of the tfdA gene which encodes the first step in the mineralization of 2,4-D). By using agricultural soil that had been treated with 2,4-D for several years, transconjugants were obtained with both recipients. However, when untreated control soil was used, no transconjugants were isolated. The various transconjugants had plasmids with seven different EcoRI restriction patterns. The corresponding plasmids are designated pEMT1 to pEMT7. Unlike pJP4, pEMT1 appeared not to be an IncP1 plasmid, but all the others (pEMT2 to pEMT7) belong to the IncP1 group. Hybridization with individual probes for the tfdA to tfdF genes of pJP4 demonstrated that all plasmids showed high degrees of homology to the tfdA gene. Only pEMT1 showed a high degree of homology to tfdB, tfdC, tfdD, tfdE, and tfdF, while the others showed only moderate degrees of homology to tfdB and low degrees of homology to tfdC.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7646006

  6. Gene cloning, expression, and characterization of a nitrilase from Alcaligenes faecalis ZJUTB10.

    PubMed

    Liu, Zhi-Qiang; Dong, Li-Zhu; Cheng, Feng; Xue, Ya-Ping; Wang, Yuan-Shan; Ding, Jie-Nv; Zheng, Yu-Guo; Shen, Yin-Chu

    2011-11-01

    Nitrilases are important industrial enzymes that convert nitriles directly into the corresponding carboxylic acids. In the current work, the fragment with a length of 1068 bp that encodes the A. faecalis ZJUTB10 nitrilase was obtained. Moreover, a catalytic triad was proposed and verified by site-directed mutagenesis, and the detailed mechanism of this nitrilase was clarified. The substrate specificity study demonstrated that the A. faecalis ZJUTB10 nitrilase belongs to the family of arylacetonitrilases. The optimum pH and temperature for the purified nitrilase was 7-8 and 40 °C, respectively. Mg(2+) stimulated hydrolytic activity, whereas Cu(2+), Co(2+), Ni(2+), Ag(+), and Hg(2+) showed a strong inhibitory effect. The K(m) and v(max) for mandelonitrile were 4.74 mM and 15.85 μmol min(-1) mg(-1) protein, respectively. After 30 min reaction using the nitrilase, mandelonitrile at the concentration of 20 mM was completely hydrolyzed and the enantiomeric excess against (R)-(-)-mandelic acid was >99%. Characteristics investigation indicates that this nitrilase is promising in catalysis applications. PMID:21913706

  7. Biodegradation of organochlorine pesticide endosulfan by bacterial strain Alcaligenes faecalis JBW4.

    PubMed

    Kong, Lingfen; Zhu, Shaoyuan; Zhu, Lusheng; Xie, Hui; Su, Kunchang; Yan, Tongxiang; Wang, Jun; Wang, Jinhua; Wang, Fenghua; Sun, Fengxia

    2013-11-01

    The recently discovered endosulfan-degrading bacterial strain Alcaligenesfaecalis JBW4 was isolated from activated sludge. This strain is able to use endosulfan as a carbon and energy source. The optimal conditions for the growth of strain JBW4 and for biodegradation by this strain were identified, and the metabolic products of endosulfan degradation were studied in detail. The maximum level of endosulfan biodegradation by strain JBW4 was obtained using broth at an initial pH of 7.0, an incubation temperature of 40 degreeC and an endosulfan concentration of 100 mg/L. The concentration of endosulfan was determined by gas chromatography. Strain JBW4 was able to degrade 87.5% of alpha-endosulfan and 83.9% of beta-endosulfan within 5 days. These degradation rates are much higher than the previously reported bacterial strains. Endosulfan diol and endosulfan lactone were the major metabolites detected by gas chromatography-mass spectrometry; endosulfan sulfate, which is a persistent and toxic metabolite, was not detected. These results suggested that A. faecalis JBW4 degrades endosulfan via a non-oxidative pathway. The biodegradation of endosulfan by A. faecalis is reported for the first time. Additionally, the present study indicates that strain JBW4 may have potential for the biodegradation of endosulfan residues. PMID:24552054

  8. Effect of Tween 80 on the production of curdlan by Alcaligenes faecalis ATCC 31749.

    PubMed

    Xia, Zhenqiang

    2013-10-15

    This study aims to investigate the effects of Tween 80 on curdlan production, cell growth, and glucosyltransferase activity. The addition of Tween 80 to the culture medium increased curdlan production. However, curdlan production did not increase further when excessive Tween 80 (>0.3% Tween 80) was added to the culture medium. The addition of Tween 80 to the culture medium did not affect cell growth. The glucosyltransferase activity involved in the curdlan synthesis increased with the increase of Tween 80 concentration. The glucosyltransferase activity did not increase further when excessive Tween 80 (>0.3% Tween 80) was added to the culture medium. Maximum curdlan was observed at day 5 and then levelled off. The biomass continued to increase until the end of the experimental period (6d). Maximum glucosyltransferase activity was also observed at day 5 and decreased thereafter. The results indicate that the enhanced curdlan production by Tween 80 is highly correlated with glucosyltransferase activity. PMID:23987333

  9. Characterization of partially transesterified poly(beta-hydroxyalkanoate)s using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Saeed; Ayorinde; Eribo; Gordon; Collier

    1999-10-15

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) was used for the characterization of a partially transesterified poly(beta-hydroxyalkanoate), PHA, polymer produced by the bacterial strain Alcaligenes eutrophus using saponified vegetable oils as the sole carbon sources. The transesterification was carried out separately under acidic and basic conditions to obtain PHA oligomers weighing less than 10 kDa. The intact oligomers were detected in their cationized [M + Na](+) and [M + K](+) forms by MALDI-TOFMS. A composition analysis, using the MALDI-TOF spectra, indicate that the oligomers obtained via acid catalysis were terminated with a methyl 3-hydroxybutyrate end group, and those obtained by base catalysis had a methyl crotonate (olefinic) termination. In addition to HB (hydroxy butyrate), the oligomers were found to contain a small percentage of HV (hydroxy valerate). This was independently confirmed using gas chromatography/mass spectrometry (GC/MS). In comparison, the analysis of a commercial PHA polymer, transesterified under identical conditions, only showed the presence of HB, i.e. a pure PHB homopolymer. Copyright 1999 John Wiley & Sons, Ltd. PMID:10487942

  10. Cloning of a carbofuran hydrolase gene from Achromobacter sp. strain WM111 and its expression in gram-negative bacteria.

    PubMed Central

    Tomasek, P H; Karns, J S

    1989-01-01

    A 14-kilobase-pair (kbp) EcoRI DNA fragment that encodes an enzyme capable of rapid hydrolysis of N-methylcarbamate insecticides (carbofuran hydrolase) was cloned from carbofuran-degrading Achromobacter sp. strain WM111. When used to probe Southern blots containing plasmid and total DNAs from WM111, this 14-kbp fragment hybridized strongly to a 14-kbp EcoRI fragment from the greater than 100-kbp plasmid harbored by this strain but weakly to EcoRI-digested total DNA from Achromobacter sp. strain WM111, indicating that the gene for N-methylcarbamate degradation (mcd) is plasmid encoded. Further subcloning localized the mcd gene on a 3-kbp ScaI-ClaI fragment. There was little or no expression of this gene in the alternative gram-negative hosts Pseudomonas putida, Alcaligenes eutrophus, Acinetobacter calcoaceticus, and Achromobacter pestifer. Western blotting (immunoblotting) of the protein products produced by low-level expression in P. putida confirmed that this 3-kbp fragment encodes the two 70+-kilodalton protein products seen in sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified carbofuran hydrolase. Images PMID:2661544

  11. Effects of microbial trophic interactions on the fate and mobility of soil contaminants. Final report, 1 May 1994-30 April 1998

    SciTech Connect

    Snyder, R.A.

    1998-04-30

    This project will be initiated by the establishment of a culture collection isolated from contaminated drag strip soil (DSS) and clean Hudson River Sediment (HRS). Careful isolation, characterization, and long term maintenance of these bacteria and protists is critical for the success of the project. Bacteria will be characterized by sole carbon source utilization as well as standard morphological and chemical characteristics. Clonal cultures of protists will be identified by staining of morphological features for light microscopy, and characterized for their feeding and growth on the bacterial isolates obtained. Stable consortia of bacteria and protists in biphenyl cultures will be established and characterized. Retrieval of frozen consortia of bacteria and protists will be assessed. In addition, protists will be characterized for their sensitivity to biphenyl and Aroclors(R), and assayed for acquired resistance. Studies of sorption and transfer for Aroclors(R), in bacteria and protist cells will be conducted. This very basic microbial ecology work is time consuming, but is essential to lay the ground work for future experiments. Analysis of the role of protists in situ biodegradation will begin with inhibition and/or stimulation of native bacteria and protist populations. Experiments to determent the fate of Alcaligenes eutrophus H850 in soil samples with and without protists will also begin. The effects of nutrient limited growth and predation pressure as pre-adaptations to inoculation will also be determined.

  12. Enzyme-catalyzed synthesis of poly[(R)-(-)-3-hydroxybutyrate]: Formation of macroscopic granules in vitro

    SciTech Connect

    Gerngross, T.U.; Martin, D.P.

    1995-07-03

    A combined chemical and enzymatic procedure has been developed to synthesize macroscopic poly[(R)-(-)-3-hydroxybutyrate] (PHB) granules in vitro. The granules form in a matter of minutes when purified polyhydroxyalkanoate (PHA) synthase from Alcaligenes eutrophus is exposed to synthetically prepared (R)-3-hydroxybutyryl coenzyme A, thereby establishing the minimal requirements for PHB granule formation. The artificial granules are spherical with diameters of up to 3 {mu}m and significantly larger than their native counterparts (0.5 {mu}m). The isolated PHB was characterized by {sup 1}H and {sup 13}C NMR, gel-permeation chromatography, and chemical analysis. The in vitro polymerization system yields PHB with a molecular mass > 10 x 10{sup 6} Da, exceeding by an order of magnitude the mass of PHAs typically extracted from microorganisms. We also demonstrate that the molecular mass of the polymer can be controlled by the initial PHA synthase concentration. Preliminary kinetic analysis of de novo granule formation confirms earlier findings of a lag time for the enzyme but suggests the involvement of an additional granule assembly step. Minimal requirements for substrate recognition were investigated. Since substrate analogs lacking the adenosine 3{prime}, 5{prime}-bisphosphate moiety of (R)-3-hydroxybutyryl coenzyme A were not accepted by the PHA synthase, we provide evidence that this structural element of the substrate is essential for catalysis. PHAs provide a range of natural, renewable, biodegradable thermoplastics with a broad range of useful material properties. 33 refs., 6 figs., 1 tab.

  13. Metabolic modeling of polyhydroxybutyrate biosynthesis

    SciTech Connect

    Leaf, T.A.; Srienc, F.

    1998-03-05

    A mathematical model describing intracellular polyhydroxybutyrate (PHB) synthesis in Alcaligenes eutrophus has been constructed. The model allows investigation of issues such as the existence of rate-limiting enzymatic steps, possible regulatory mechanisms in PHB synthesis, and the effects different types of rate expressions have on model behavior. Simulations with the model indicate that activities of all PHB pathway enzymes influence overall PHB flux and that no single enzymatic step can easily be identified as rate limiting. Simulations also support regulatory roles for both thiolase and reductase, mediated through AcCoA/CoASH and NADPH/NADP+ ratios, respectively. To make the model more realistic, complex rate expressions for enzyme-catalyzed reactions were used which reflect both the reversibility of the reactions and the reaction mechanisms. Use of the complex kinetic expressions dramatically changed the behavior of the system compared to a simple model containing only Michaelis-Menten kinetic expressions; the more complicated model displayed different responses to changes in enzyme activities as well as inhibition of flux by the reaction products CoASH and NADP+. These effects can be attributed to reversible rate expressions, which allow prediction of reaction rates under conditions both near and far from equilibrium.

  14. The NADH-binding subunit of the energy-transducing NADH-ubiquinone oxidoreductase of Paracoccus denitrificans: Gene cloning and deduced primary structure

    SciTech Connect

    Xu, Xuemin; Matsuno-Yagi, Akemi; Yagi, Takao )

    1991-07-02

    The NADH dehydrogenase complex isolated from Paracoccus denitrificans is composed of approximately 10 unlike polypeptides and contains noncovalently bound FMN, non-heme iron, and acid-labile sulfide. The NADH-binding subunit of this enzyme complex was identified by direct photoaffinity labeling with ({sup 32}P)NADH. primers were synthesized on the basis of the N-terminal amino acid sequency of this polypeptide, and these primers were used to synthesize an oligonucleotide probe by the polymerase chain reaction. This probe was utilized to isolate the gene encoding the NADH-binding subunit from a genomic library of P. denitrificans. The nucleotide sequence of the gene and the deduced amino acid sequence of the entire NADH-binding subunit were determined. The NADH-binding subunit has 431 amino acid residues and a calculated molecular weight of 47 191. The encoded protein contains a putative NAD(H)-binding and an iron-sulfur cluster-binding consensus sequence. The deduced amino acid sequence of the Paracoccus NADH-binding subunit shows remarkable similarity to the {alpha} subunit of the NAD-linked hydrogenase of Alcaligenes eutrophus H16. When partial DNA sequencing of the regions surrounding the gene encoding the NADH-binding subunit was carried out, sequences homologous to the 24-, 49-, and 75-kDa polypeptides of bovine complex 1 were detected, suggesting that the structural genes of the Paracoccus NADH dehydrogenase complex constitute a gene cluster.

  15. Microbial degradation of 2,4-dichlorophenoxyacetic acid: Insight into the enzymes and catabolic genes involved, their regulation and biotechnological implications.

    PubMed

    Kumar, Ajit; Trefault, Nicole; Olaniran, Ademola Olufolahan

    2016-01-01

    A considerable progress has been made to understand the mechanisms of biodegradation of 2,4-dichlorophenoxyacetic acid (2,4-D). 2,4-D biodegradation pathway has been elucidated in many microorganisms including Cupriavidus necator JMP134 (previously known as Wautersia eutropha, Ralstonia eutropha and Alcaligenes eutrophus) and Pseudomonas strains. It generally involves the side chain removal of 2,4-D by α-ketoglutarate-dependent 2,4-D dioxygenase (tfdA) to form 2,4-dichlorophenol (2,4-DCP); hydroxylation of 2,4-DCP by 2,4-DCP hydroxylase (tfdB) to form dichlorocatechol; ortho or meta cleavage of dichlorocatechol by chlorocatechol 1,2-dioxygenase (tfdC) to form 2,4-dichloro-cis,cis-muconate; conversion of 2,4-dichloro-cis,cis-muconate to 2-chlorodienelactone by chloromuconate cycloisomerase (tfdD); conversion of 2-chlorodienelactone to 2-chloromaleylacetate by chlorodienelactone hydrolase (tfdE) and, finally, conversion of 2-chloromaleylacetate to 3-oxoadepate via maleylacetate by chloromaleylacetate reductase and maleylacetate reductase (tfdF), respectively, which is funnelled to the tricarboxylic acid cycle. The latest review on microbial breakdown of 2,4-D, other halogenated aromatic pesticides, and related compounds was compiled by Haggblom, however, a considerable progress has been made in this area of research since then. Thus, this review focuses on the recent advancement on 2,4-D biodegradation, the enzymes, and genes involved and their biotechlogical implications. PMID:25058513

  16. Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation

    SciTech Connect

    Nawrath, C.; Poirier, Y.; Somerville, C. )

    1994-12-20

    In the bacterium Alcaligenes eutrophus, three genes encode the enzymes necessary to catalyze the synthesis of poly[(R)-(-)-3-hydroxybutyrate] (PHB) from acetyl-CoA. In order to target these enzymes into the plastids of higher plants, the genes were modified by addition of DNA fragments encoding a pea chloroplast transit peptide, a constitutive plant promoter, and a poly(A) addition sequence. Each of the modified bacterial genes was introduced into Arabidopsis thaliana by Agrobacterium-mediated transformation, and plants containing all three genes were obtained by sexual crosses. These plans accumulated PHB up to 14% of the dry weight as 0.2- to 0.7-[mu]m granules within plastids. In contrast to earlier experiments in which expression of the PHB biosynthetic pathway in the cytoplasm led to a deleterious effect on growth, expression of the PHB biosynthetic pathway in plastids had no obvious effect on the growth or fertility of the transgenic plants and resulted in a 100-fold increase in the amount of PHB in higher plants. The high level of PHB accumulation also suggests that the synthesis of plastid acetyl-CoA is regulated by a mechanism which responds to metabolic demand. 20 refs., 6 figs.

  17. Bioavailability of zinc in runoff water from roofing materials.

    PubMed

    Heijerick, D G; Janssen, C R; Karlèn, C; Wallinder, I Odnevall; Leygraf, C

    2002-06-01

    Corrosion and runoff from zinc-coated materials and outdoor structures is an important source for the dispersion of zinc in the environment. Being part of a large inter-disciplinary research project, this study presents the bioavailability of zinc in runoff water immediately after release from the surface of 15 different commercially available zinc-based materials exposed to the urban environment of Stockholm, Sweden. Runoff water was analysed chemically and evaluated for its possible environmental impact, using both a biosensor test with the bacteria Alcaligenes eutrophus (Biomet) and the conventional 72 h growth inhibition test with the green alga Raphidocelis subcapitata. Chemical speciation modelling revealed that most zinc (94.3-99.9%) was present as the free Zn ion, the most bioavailable speciation form. These findings were confirmed by the results of the biosensor test (Biomet) which indicated that all zinc was indeed bioavailable. Analysis of the ecotoxicity data also suggested that the observed toxic effects were due to the presence of Zn2+ ions. Finally, regression analysis showed that, for this type of runoff samples, the rapid screening biosensor was capable of predicting (a) the total amount of zinc present in the runoff samples (R2 of 0.93-0.98; p < 0.05) and (b) the observed 72 h-EbC50s (R2 of 0.69-0.97; p < 0.05). PMID:12137040

  18. Effect of passivated iron powder on final-product distribution in Fe-supported denitrification.

    PubMed

    An, Yi; Zhang, Keqiang; Zhang, Lei; Dong, Qi

    2013-01-01

    An integrated nitrate treatment using passivated iron powder (PIP) and Alcaligenes eutrophus, which is a kind of hydrogenotrophic denitrifying bacteria, was conducted to investigate the effect of iron oxide coating on final-product distribution in hydrogenotrophic denitrification. Based on the results, the autotrophic denitrification supported by PIP could completely remove about 50 mg·L(-1) of nitrate within 4 days, and almost 80% of nitrate was changed into N2O (under acetylene blocking) without residual nitrite or ammonium. While only 53% of the nitrate was removed using acid-washed iron (AWI) instead of PIP, about 70% was converted into ammonium. Furthermore, a layer of FeOOH converted from hematite (α-Fe2O3) and magnetite (Fe3O4), which may block direct chemical nitrate reduction, was observed on the iron surface when PIP was used to support hydrogenotrophic denitrification. In addition, increasing pH from 5 to 8 increased nitrite generation from 1.19 to 4.91%, and decreased ammonium formation from 4.23 to 0%. PMID:23579818

  19. Specific binding of Thiobacillus ferrooxidans RbcR to the intergenic sequence between the rbc operon and the rbcR gene.

    PubMed Central

    Kusano, T; Sugawara, K

    1993-01-01

    The presence of two sets (rbcL1-rbcS1 and rbcL2-rbcS2) of rbc operons has been demonstrated in Thiobacillus ferrooxidans Fe1 (T. Kusano, T. Takeshima, C. Inoue, and K. Sugawara, J. Bacteriol. 173:7313-7323, 1991). A possible regulatory gene, rbcR, 930 bp long and possibly translated into a 309-amino-acid protein, was found upstream from the rbcL1 gene as a single copy. The gene is located divergently to rbcL1 with a 144-bp intergenic sequence. As in the cases of the Chromatium vinosum RbcR and Alcaligenes eutrophus CfxR, T. ferrooxidans RbcR is thought to be a new member of the LysR family, and these proteins share 46.5 and 42.8% identity, respectively. Gel mobility shift assays showed that T. ferrooxidans RbcR, produced in Escherichia coli, binds specifically to the intergenic sequence between rbcL1 and rbcR. Footprinting and site-directed mutagenesis experiments further demonstrated that RbcR binds to overlapping promoter elements of the rbcR and rbcL1 genes. The above data strongly support the participation of RbcR in regulation of the rbcL1-rbcS1 operon and the rbcR gene in T. ferrooxidans. Images PMID:8432695

  20. Substrate diversity and expression of the 2,4,5-trichlorophenoxyacetic acid oxygenase from Burkholderia cepacia AC1100.

    PubMed Central

    Danganan, C E; Shankar, S; Ye, R W; Chakrabarty, A M

    1995-01-01

    Burkholderia cepacia AC1100 uses the chlorinated aromatic compound 2,4,5-trichlorophenoxyacetic acid as a sole source of carbon and energy. The genes encoding the proteins involved in the first step (tftA and tftB [previously designated tftA1 and tftA2, respectively]) have been cloned and sequenced. The oxygenase, TftAB, is capable of converting not only 2,4,5-trichlorophenoxyacetic acid to 2,4,5-trichlorophenol but also a wide range of chlorinated aromatic phenoxyacetates to their corresponding phenolic derivatives, as shown by whole-cell and cell-free assays. The rate of substrate utilization by TftAB depends upon the extent of chlorination of the substrate, the positions of the chlorines, and the phenoxy group. These results indicate a mechanistic similarity between TftAB and the 2,4-dichlorophenoxyacetic acid/alpha-ketoglutarate-dependent dioxygenase, TfdA, from Alcaligenes eutrophus JMP134. The promoter of the oxygenase genes was localized by promoter-probe analysis, and the transcriptional start site was identified by primer extension. The beta-galactosidase activity of the construct containing the promoter region cloned upstream of the beta-galactosidase gene in the promoter-probe vector pKRZ-1 showed that this construct is constitutively expressed in Escherichia coli and in AC1100. The -35 and -10 regions of the oxygenase genes show significant sequence identity to typical Escherichia coli sigma 70 promoters. PMID:8534119

  1. Pristine environments harbor a new group of oligotrophic 2,4-dichlorophenoxyacetic acid-degrading bacteria.

    PubMed Central

    Kamagata, Y; Fulthorpe, R R; Tamura, K; Takami, H; Forney, L J; Tiedje, J M

    1997-01-01

    2,4-Dichlorophenoxyacetic acid (2,4-D)-degrading bacteria were isolated from pristine environments which had no history of 2,4-D exposure. By using 2,4-D dye indicator medium or 14C-labeled 2,4-D medium, six strains were isolated from eight enrichment cultures capable of degrading 2,4-D. Phylogenetic analyses based on 16S ribosomal DNA (rDNA) sequencing and physiological properties revealed that one isolate from Hawaiian volcanic soil could be classified in the genus Variovorax (a member of the beta subdivision of the class Proteobacteria) and that the other five isolates from Hawaiian volcanic soils, Saskatchewan forest soil, and Chilean forest soil have 16S rDNAs with high degrees of similarity to those of the Bradyrhizobium group (a member of the alpha subdivision of the class Proteobacteria). All the isolates grow slowly on either nutrient media (0.1 x Bacto Peptone-tryptone-yeast extract-glucose [PTYG] or 0.1 x Luria broth [LB] medium) or 2,4-D medium, with mean generation times of 16 to 30 h, which are significantly slower than previously known 2,4-D degraders. Nutrient-rich media such as full-strength PTYG and LB medium did not allow their growth. PCR amplification using internal consensus sequences of tfdA (a gene encoding an enzyme for the first step of 2,4-D mineralization, found in pJP4 of Alcaligenes eutrophus JMP134 and some other 2,4-D-degrading bacteria) as primers and Southern hybridization with pJP4-tfdA as a probe revealed that the isolate belonging to the genus Variovorax carried the tfdA gene. This gene was transmissible to A. eutrophus JMP228 carrying a plasmid with a mutant tfdA gene. The other five isolates did not appear to carry tfdA, and 2,4-D-specific alpha-ketoglutarate-dependent dioxygenase activity could not be detected in cell lysates. These results indicate that 2,4-D-degrading bacteria in pristine environments are slow-growing bacteria and that most of their phylogenies and catabolic genes differ from those of 2,4-D degraders

  2. Biodegradation and detoxification of melanoidin from distillery effluent using an aerobic bacterial strain SAG5 of Alcaligenes faecalis.

    PubMed

    Santal, Anita Rani; Singh, N P; Saharan, Baljeet Singh

    2011-10-15

    Distillery effluent retains very dark brown color even after anaerobic treatment due to presence of various water soluble, recalcitrant and coloring compounds mainly melanoidins. In laboratory conditions, melanoidin decolorizing bacteria was isolated and optimized the cultural conditions at various incubation temperatures, pH, carbon sources, nitrogen sources and combined effect of both carbon and nitrogen sources. The optimum decolorization (72.6 ± 0.56%) of melanoidins was achieved at pH 7.5 and temperature 37 °C on 5th day of cultivation. The toxicity evaluation with mung bean (Vigna radiata) revealed that the raw distillery effluent was environmentally highly toxic as compared to biologically treated distillery effluent, which indicated that the effluent after bacterial treatment is environmentally safe. This proves to be novel biological treatment technique for biodegradation and detoxification of melanoidin from distillery effluent using the bacterial strain SAG(5). PMID:21880418

  3. Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans Are Specialized in the Maximal Viable Response to Heavy Metals▿ †

    PubMed Central

    Monchy, Sébastien; Benotmane, Mohammed A.; Janssen, Paul; Vallaeys, Tatiana; Taghavi, Safiyh; van der Lelie, Daniel; Mergeay, Max

    2007-01-01

    We fully annotated two large plasmids, pMOL28 (164 open reading frames [ORFs]; 171,459 bp) and pMOL30 (247 ORFs; 233,720 bp), in the genome of Cupriavidus metallidurans CH34. pMOL28 contains a backbone of maintenance and transfer genes resembling those found in plasmid pSym of C. taiwanensis and plasmid pHG1 of C. eutrophus, suggesting that they belong to a new class of plasmids. Genes involved in resistance to the heavy metals Co(II), Cr(VI), Hg(II), and Ni(II) are concentrated in a 34-kb region on pMOL28, and genes involved in resistance to Ag(I), Cd(II), Co(II), Cu(II), Hg(II), Pb(II), and Zn(II) occur in a 132-kb region on pMOL30. We identified three putative genomic islands containing metal resistance operons flanked by mobile genetic elements, one on pMOL28 and two on pMOL30. Transcriptomic analysis using quantitative PCR and microarrays revealed metal-mediated up-regulation of 83 genes on pMOL28 and 143 genes on pMOL30 that coded for all known heavy metal resistance proteins, some new heavy metal resistance proteins (czcJ, mmrQ, and pbrU), membrane proteins, truncated transposases, conjugative transfer proteins, and many unknown proteins. Five genes on each plasmid were down-regulated; for one of them, chrI localized on pMOL28, the down-regulation occurred in the presence of five cations. We observed multiple cross-responses (induction of specific metal resistance by other metals), suggesting that the cellular defense of C. metallidurans against heavy metal stress involves various regulons and probably has multiple stages, including a more general response and a more metal-specific response. PMID:17675385

  4. Metabolic Engineering of Poly(3-Hydroxyalkanoates): From DNA to Plastic

    PubMed Central

    Madison, Lara L.; Huisman, Gjalt W.

    1999-01-01

    Poly(3-hydroxyalkanoates) (PHAs) are a class of microbially produced polyesters that have potential applications as conventional plastics, specifically thermoplastic elastomers. A wealth of biological diversity in PHA formation exists, with at least 100 different PHA constituents and at least five different dedicated PHA biosynthetic pathways. This diversity, in combination with classical microbial physiology and modern molecular biology, has now opened up this area for genetic and metabolic engineering to develop optimal PHA-producing organisms. Commercial processes for PHA production were initially developed by W. R. Grace in the 1960s and later developed by Imperial Chemical Industries, Ltd., in the United Kingdom in the 1970s and 1980s. Since the early 1990s, Metabolix Inc. and Monsanto have been the driving forces behind the commercial exploitation of PHA polymers in the United States. The gram-negative bacterium Ralstonia eutropha, formerly known as Alcaligenes eutrophus, has generally been used as the production organism of choice, and intracellular accumulation of PHA of over 90% of the cell dry weight have been reported. The advent of molecular biological techniques and a developing environmental awareness initiated a renewed scientific interest in PHAs, and the biosynthetic machinery for PHA metabolism has been studied in great detail over the last two decades. Because the structure and monomeric composition of PHAs determine the applications for each type of polymer, a variety of polymers have been synthesized by cofeeding of various substrates or by metabolic engineering of the production organism. Classical microbiology and modern molecular bacterial physiology have been brought together to decipher the intricacies of PHA metabolism both for production purposes and for the unraveling of the natural role of PHAs. This review provides an overview of the different PHA biosynthetic systems and their genetic background, followed by a detailed summation of

  5. Chain termination in polyhydroxyalkanoate synthesis: involvement of exogenous hydroxy-compounds as chain transfer agents.

    PubMed

    Madden, L A; Anderson, A J; Shah, D T; Asrar, J

    1999-01-01

    We have identified a range of compounds which, when present during poly(3-hydroxybutyrate) [P(3HB)] accumulation by Ralstonia eutropha (reclassified from Alcaligenes eutrophus), can act as chain transfer agents in the chain termination step of polymerization. End-group analysis by 31P NMR of polymer derivatized with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane revealed that all these compounds were covalently linked to P(3HB) at the carboxyl terminus. All chain transfer agents possessed one or more hydroxyl groups, and glycerol was selected for further investigation. The number-average molecular mass (Mn) of P(3HB) produced by R. eutropha from glycerol was substantially lower than for polymer produced from glucose, and we identified two new end-group structures. These were attributed to a glycerol molecule bound to the P(3HB) chain via the primary or secondary hydroxyl groups. When a primary hydroxyl group of glycerol is involved in chain transfer, the end-group structure is in both [R] and [S] configurations, implying that chain transfer to glycerol is a random transesterification and that PHA synthase does not catalyse chain transfer. 3-Hydroxybutyric acid is the most probable chain transfer agent in vivo, with propagation and termination reactions involving transfer of the P(3HB) chain to enzyme-bound and free 3-hydroxybutyrate, respectively. Only carboxyl end-groups were detected in P(3HB) extracted from exponentially growing bacteria. It is proposed that a compound other than 3-hydroxybutyryl-CoA acts as a primer in the initiation of polymer synthesis. PMID:10416649

  6. Cloning, sequencing, and expression of thermophilic Bacillus sp. strain TB-90 urease gene complex in Escherichia coli.

    PubMed

    Maeda, M; Hidaka, M; Nakamura, A; Masaki, H; Uozumi, T

    1994-01-01

    The urease of thermophilic Bacillus sp. strain TB-90 is composed of three subunits with molecular masses of 61, 12, and 11 kDa. By using synthetic oligonucleotide probes based on N-terminal amino acid sequences of each subunit, we cloned a 3.2-kb EcoRI fragment of TB-90 genomic DNA. Moreover, we cloned two other DNA fragments by gene walking starting from this fragment. Finally, we reconstructed in vitro a 6.2-kb DNA fragment which expressed catalytically active urease in Escherichia coli by combining these three DNA fragments. Nucleotide sequencing analysis revealed that the urease gene complex consists of nine genes, which were designed ureA, ureB, ureC, ureE, ureF, ureG, ureD, ureH, and ureI in order of arrangement. The structural genes ureA, ureB, and ureC encode the 11-, 12-, and 61-kDa subunits, respectively. The deduced amino acid sequences of UreD, UreE, UreF, and UreG, the gene products of four accessory genes, are homologous to those of the corresponding Ure proteins of Klebsiella aerogenes. UreD, UreF, and UreG were essential for expression of urease activity in E. coli and are suggested to play important roles in the maturation step of the urease in a co- and/or posttranslational manner. On the other hand, UreH and UreI exhibited no significant similarity to the known accessory proteins of other bacteria. However, UreH showed 23% amino acid identity to the Alcaligenes eutrophus HoxN protein, a high-affinity nickel transporter. PMID:8288539

  7. Cloning, sequencing, and expression of thermophilic Bacillus sp. strain TB-90 urease gene complex in Escherichia coli.

    PubMed Central

    Maeda, M; Hidaka, M; Nakamura, A; Masaki, H; Uozumi, T

    1994-01-01

    The urease of thermophilic Bacillus sp. strain TB-90 is composed of three subunits with molecular masses of 61, 12, and 11 kDa. By using synthetic oligonucleotide probes based on N-terminal amino acid sequences of each subunit, we cloned a 3.2-kb EcoRI fragment of TB-90 genomic DNA. Moreover, we cloned two other DNA fragments by gene walking starting from this fragment. Finally, we reconstructed in vitro a 6.2-kb DNA fragment which expressed catalytically active urease in Escherichia coli by combining these three DNA fragments. Nucleotide sequencing analysis revealed that the urease gene complex consists of nine genes, which were designed ureA, ureB, ureC, ureE, ureF, ureG, ureD, ureH, and ureI in order of arrangement. The structural genes ureA, ureB, and ureC encode the 11-, 12-, and 61-kDa subunits, respectively. The deduced amino acid sequences of UreD, UreE, UreF, and UreG, the gene products of four accessory genes, are homologous to those of the corresponding Ure proteins of Klebsiella aerogenes. UreD, UreF, and UreG were essential for expression of urease activity in E. coli and are suggested to play important roles in the maturation step of the urease in a co- and/or posttranslational manner. On the other hand, UreH and UreI exhibited no significant similarity to the known accessory proteins of other bacteria. However, UreH showed 23% amino acid identity to the Alcaligenes eutrophus HoxN protein, a high-affinity nickel transporter. Images PMID:8288539

  8. Metabolic pathway engineering in cotton: Biosynthesis of polyhydroxybutyrate in fiber cells

    PubMed Central

    John, Maliyakal E.; Keller, Greg

    1996-01-01

    Alcaligenes eutrophus genes encoding the enzymes, β-ketothiolase (phaA), acetoacetyl-CoA reductase (phaB), and polyhydroxyalkanoate synthase (phaC) catalyze the production of aliphatic polyester poly-d-(−)-3-hydroxybutyrate (PHB) from acetyl-CoA. PHB is a thermoplastic polymer that may modify fiber properties when synthesized in cotton. Endogenous β-ketothiolase activity is present in cotton fibers. Hence cotton was transformed with engineered phaB and phaC genes by particle bombardment, and transgenic plants were selected based on marker gene, β-glucuronidase (GUS), expression. Fibers of 10 transgenic plants expressed phaB gene, while eight plants expressed both phaB and phaC genes. Electron microscopy examination of fibers expressing both genes indicated the presence of electron-lucent granules in the cytoplasm. High pressure liquid chromatography, gas chromatography, and mass spectrometry evidence suggested that the new polymer produced in transgenic fibers is PHB. Sixty-six percent of the PHB in fibers is in the molecular mass range of 0.6 × 106 to 1.8 × 106 Da. The presence of PHB granules in transgenic fibers resulted in measurable changes of thermal properties. The fibers exhibited better insulating characteristics. The rate of heat uptake and cooling was slower in transgenic fibers, resulting in higher heat capacity. These data show that metabolic pathway engineering in cotton may enhance fiber properties by incorporating new traits from other genetic sources. This is an important step toward producing new generation fibers for the textile industry. PMID:11038522

  9. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates.

    PubMed Central

    Anderson, A J; Dawes, E A

    1990-01-01

    Polyhydroxyalkanoates (PHAs), of which polyhydroxybutyrate (PHB) is the most abundant, are bacterial carbon and energy reserve materials of widespread occurrence. They are composed of 3-hydroxyacid monomer units and exist as a small number of cytoplasmic granules per cell. The properties of the C4 homopolymer PHB as a biodegradable thermoplastic first attracted industrial attention more than 20 years ago. Copolymers of C4 (3-hydroxybutyrate [3HB]) and C5 (3-hydroxyvalerate [3HV]) monomer units have modified physical properties; e.g., the plastic is less brittle than PHB, whereas PHAs containing C8 to C12 monomers behave as elastomers. This family of materials is the centre of considerable commercial interest, and 3HB-co-3HV copolymers have been marketed by ICI plc as Biopol. The known polymers exist as 2(1) helices with the fiber repeat decreasing from 0.596 nm for PHB to about 0.45 nm for C8 to C10 polymers. Novel copolymers with a backbone of 3HB and 4HB have been obtained. The native granules contain noncrystalline polymer, and water may possibly act as a plasticizer. Although the biosynthesis and regulation of PHB are generally well understood, the corresponding information for the synthesis of long-side-chain PHAs from alkanes, alcohols, and organic acids is still incomplete. The precise mechanisms of action of the polymerizing and depolymerizing enzymes also remain to be established. The structural genes for the three key enzymes of PHB synthesis from acetyl coenzyme A in Alcaligenes eutrophus have been cloned, sequenced, and expressed in Escherichia coli. Polymer molecular weights appear to be species specific. The factors influencing the commercial choice of organism, substrate, and isolation process are discussed. The physiological functions of PHB as a reserve material and in symbiotic nitrogen fixation and its presence in bacterial plasma membranes and putative role in transformability and calcium signaling are also considered. PMID:2087222

  10. Nucleotide sequences and genetic analysis of hydrogen oxidation (hox) genes in Azotobacter vinelandii.

    PubMed Central

    Menon, A L; Mortenson, L E; Robson, R L

    1992-01-01

    Azotobacter vinelandii contains a heterodimeric, membrane-bound [NiFe]hydrogenase capable of catalyzing the reversible oxidation of H2. The beta and alpha subunits of the enzyme are encoded by the structural genes hoxK and hoxG, respectively, which appear to form part of an operon that contains at least one further potential gene (open reading frame 3 [ORF3]). In this study, determination of the nucleotide sequence of a region of 2,344 bp downstream of ORF3 revealed four additional closely spaced or overlapping ORFs. These ORFs, ORF4 through ORF7, potentially encode polypeptides with predicted masses of 22.8, 11.4, 16.3, and 31 kDa, respectively. Mutagenesis of the chromosome of A. vinelandii in the area sequenced was carried out by introduction of antibiotic resistance gene cassettes. Disruption of hoxK and hoxG by a kanamycin resistance gene abolished whole-cell hydrogenase activity coupled to O2 and led to loss of the hydrogenase alpha subunit. Insertional mutagenesis of ORF3 through ORF7 with a promoterless lacZ-Kmr cassette established that the region is transcriptionally active and involved in H2 oxidation. We propose to call ORF3 through ORF7 hoxZ, hoxM, hoxL, hoxO, and hoxQ, respectively. The predicted hox gene products resemble those encoded by genes from hydrogenase-related operons in other bacteria, including Escherichia coli and Alcaligenes eutrophus. Images PMID:1624446

  11. Runoff rates and ecotoxicity of zinc induced by atmospheric corrosion.

    PubMed

    Karlén, C; Wallinde, I O; Heijerick, D; Leygraf, C; Janssen, C R

    2001-09-28

    Initiated by regulatory restrictions on the use of zinc for various building and construction applications, together with a lack of knowledge related to the release of zinc induced by atmospheric corrosion, a major interdisciplinary research project was implemented to generate data to be used in future risk assessment. Runoff rates from a large number of commercially available zinc-based materials have been determined on panels inclined 45 degrees from the horizon, facing south, during a 1-year atmospheric exposure in an urban environment in Sweden. Possible environmental effects of runoff water immediately after leaving the surface of the various materials have been evaluated during two different sampling periods of varying season and zinc concentration, using the standard growth inhibition test with algae. Raphidocelis subcapitata (formerly Selenastrum capricornutum). Zinc-specific biosensors with the bacterial strain of Alcaligenes eutrophus, and computer modeling using the water-ligand model MINTEQA2 and the humic aquatic model WHAM, have been used to assess the bioavailability and chemical speciation of zinc in the runoff water. An excellent consistency between the different methods was observed. The results show considerably lower runoff rates of zinc (0.07-3.5 g m(-2) year(-1)) than previously being used for regulatory restrictions, and the concentration of zinc to be predominantly responsible for the observed toxicity of the runoff water towards the green algae. The majority of the released zinc quantity was found to be present as free hydrated zinc ions and, hence, bioavailable. The data do not consider changes in bioavailability and chemical speciation or dilution effects during entry into the environment, and should therefore only be used as an initial assessment of the potential environmental effect of zinc runoff from building applications. This interdisciplinary approach has the potential for studies on the environmental fate of zinc in soil or

  12. Widespread occurrence of the tfd-II genes in soil bacteria revealed by nucleotide sequence analysis of 2,4-dichlorophenoxyacetic acid degradative plasmids pDB1 and p712.

    PubMed

    Kim, Dong-Uk; Kim, Min-Sun; Lim, Jong-Sung; Ka, Jong-Ok

    2013-05-01

    Variovorax sp. strain DB1 and Pseudomonas pickettii strain 712 are 2,4-dicholorophenoxy-acetic acid (2,4-D)-degrading bacteria, which were isolated from agricultural soils in Republic of Korea and USA, respectively. Each strain harbors a 2,4-D degradative plasmid and is able to utilize 2,4-D as the sole source of carbon for its growth. The 2,4-D degradative plasmid pDB1 of strain DB1 consisted of a 65,269-bp circular molecule with a G+C content of 66.23% and had 68 ORFs. The 2,4-D degradative plasmid p712 of strain 712 was composed of a 62,798-bp circular molecule with a 62.11% G+C content and had 62 ORFs. The plasmids pDB1 and p712 share significantly homologous 2,4-D degradative genes with high similarity to the tfdR, tfdB-II, tfdC-II, tfdD-II, tfdE-II, tfdF-II, tfdK and tfdA genes of plasmid pJP4 of Alcaligenes eutrophus isolated from Australia. In a phylogenetic analysis with trfA, traL, and trbA genes, pDB1 belonged to IncP-1β with pJP4, while p712 belonged to IncP-1ε with pKJK5 and pEMT3. The results indicated that, in spite of the differences in their backbone regions, the 2,4-D catabolic genes of the two plasmids were closely related and also related to the well-known 2,4-D degradative plasmid pJP4 even though all were isolated from different geographic regions. Other similarities in the genetic organization and the presence of IS1071 suggested that these catabolic genes may be on a transposable element, leading to widespread occurrence in soil bacteria. PMID:23376020

  13. Characterization of an operon encoding an NADP-reducing hydrogenase in Desulfovibrio fructosovorans.

    PubMed Central

    Malki, S; Saimmaime, I; De Luca, G; Rousset, M; Dermoun, Z; Belaich, J P

    1995-01-01

    A genomic DNA fragment from Desulfovibrio fructosovorans, which strongly hybridized with the hydAB genes from Desulfovibrio vulgaris Hildenborough, was cloned and sequenced. This fragment was found to contain four genes, named hndA, hndB, hndC, and hndD. Analysis of the sequence homologies indicated that HndA shows 29, 21, and 26% identity with the 24-kDa subunit from Bos taurus complex I, the 25-kDa subunit from Paracoccus denitrificans NADH dehydrogenase type I, and the N-terminal domain of HoxF subunit of the NAD-reducing hydrogenase from Alcaligenes eutrophus, respectively. HndB does not show any significant homology with any known protein. HndC shows 37 and 33% identity with the C-terminal domain of HoxF and the 51-kDa subunit from B. taurus complex I, respectively, and has the requisite structural features to be able to bind one flavin mononucleotide, one NAD, and three [4Fe-4S] clusters. HndD has 40, 42, and 48% identity with hydrogenase I from Clostridium pasteurianum and HydC and HydA from D. vulgaris Hildenborough, respectively. The 4.5-kb length of the transcripts expressed in D. fructosovorans and in Escherichia coli (pSS13) indicated that all four genes were present on the same transcription unit. The sizes of the four polypeptides were measured by performing heterologous expression of hndABCD in E. coli, using the T7 promoter/polymerase system. The products of hndA, hndB, hndC, and hndD were 18.8, 13.8, 52, and 63.4 kDa, respectively. One hndC deletion mutant, called SM3, was constructed by performing marker exchange mutagenesis. Immunoblotting studies carried out on cell extracts from D. fructosovorans wild-type and SM3 strains, using antibodies directed against HndC, indicated that the 52-kDa protein was recognized in extracts from the wild-type strain only. In soluble extracts from D. fructosovorans wild type, a 10-fold induction of NADP reduction was observed when H(2) was present, but no H(2)-dependent NAD reduction ever occurred. This H(2

  14. Runoff rates, chemical speciation and bioavailability of copper released from naturally patinated copper.

    PubMed

    Karlén, C; Wallinder, I Odnevall; Heijerick, D; Leygraf, C

    2002-01-01

    The release of copper, induced by atmospheric corrosion, from naturally patinated copper of varying age (0 and 30 years) has been investigated together with its potential ecotoxic effect. Results were generated in an interdisciplinary research effort in which corrosion science and ecotoxicology aspects were combined. The aim of the investigation was to elucidate the situation when copper-containing rainwater leaves a roof in terms of runoff rate, chemical speciation, bioavailability and ecotoxicity effects. Data have been collected during a three-year field exposure conducted in the urban environment of Stockholm, Sweden. The potential environmental effects have been evaluated using a combination of a copper specific biosensor test with the bacterium Alcaligenes eutrophus and the conventional 72-h growth inhibition test with the green alga Raphidocelis subcapitata. The results show annual runoff rates between 1.0 and 1.5 g/m2 year for naturally patinated copper of varying age. The runoff rate increased slightly with patina age, which mainly is attributed to the enhanced first flush effect observed on thicker patina layers. The total copper concentration in investigated runoff samplings ranged from 0.9 to 9.7 mg/l. Both computer modeling and experimental studies revealed that the majority (60-100%) of released copper was present as the free hydrated cupric ion, Cu(H2O)6(2+), the most bioavailable copper species. However, other copper species in the runoff water, such as, e.g. Cu(OH)+ and Cu2(OH)2(2+), were also bioavailable. The copper-containing runoff water, sampled directly after release from the roof, caused significant reduction in growth rate of the green alga. It should be emphasized that the results describe the runoff situation immediately after release from the copper roof and not the real environmental ecotoxicity. Therefore the data should only be used as an initial assessment of the potential environmental effect of copper runoff from building

  15. PER-1 extended-spectrum beta-lactamase production in an Alcaligenes faecalis clinical isolate resistant to expanded-spectrum cephalosporins and monobactams from a hospital in Northern Italy.

    PubMed

    Pereira, M; Perilli, M; Mantengoli, E; Luzzaro, F; Toniolo, A; Rossolini, G M; Amicosante, G

    2000-01-01

    An Alicaligenes faecalis (FL-424/98) resistant to expanded-spectrum cephalosporins and aztreonam was isolated from the urine of an inpatient at the Intensive Care Unit of the Varese Hospital (Northern Italy) after antimicrobial chemotherapy with cefazolin, vancomycin, and amikacin. Clavulanic acid restored the activity of expanded-spectrum cephalosporins, suggesting the production of an extended-spectrum beta-lactamase (ESbetaL). A crude extract of FL-424/98 showed the presence of two beta-lactamase activities focusing at pH 5.3 and 7.6, respectively. The ESbetaL activity, purified by means of three chromatographic steps, was found to correspond to the pI 5.3 enzyme. Determination of kinetic parameters confirmed that the enzyme efficiently hydrolyzed expanded-spectrum cephalosporins and aztreonam. A colony-blot hybridization revealed the presence of blaPER-related sequences in FL-424/98, and sequencing confirmed the identity of this determinant with blaPER-1, previously detected in Pseudomonas aeruginosa, Acinetobacter, and Salmonella clinical isolates from Turkey. Finding of blaPER-1 in a species that can be part of the resident human microbiota raises the possibility that it could be an efficient shuttle for spreading of this resistance gene among other opportunistic pathogens that are normally members of the resident microbiota. Kinetic parameters determined for the PER-1 enzyme with some cephalosporin substrates were somewhat different from those previously reported. PMID:10868812

  16. Rhodospirillium rubrum CO-dehydrogenase. Part 1. Spectroscopic studies of CODH variant C531A indicate the presence of a binuclear [FeNi] cluster

    SciTech Connect

    Staples, C.R.; Heo, J.; Spangler, N.J.; Kerby, R.L.; Roberts, G.P.; Ludden, P.W.

    1999-12-08

    A variant of the carbon monoxide dehydrogenase (CODH) from Rhodospirillum rubrum was constructed by site-directed mutagenesis of the cooS gene to yield a CODH with ala in place of cys-531. This variant form of CODH (C531A) has a metal content identical to that of wild-type CODH but has an extremely slow turnover rate. Cys-531 is not essential for construction of the [Fe{sub 4}S{sub 4}] clusters or for incorporation of nickel. The K{sub m} for methyl viologen is identical to that of wild-type CODH, but the K{sub m} for CO is approximately 30% that of wild-type CODH. The data suggest that in C531A CODH a rate-limiting step has been introduced at the point of electron transfer from the Ni site to an associated [Fe{sub 4}S{sub 4}]{sub C} cluster. Examination of indigo carmine-poised, CO-pretreated C531A CODH revealed the presence of a paramagnetic species (g = 2.33, 2.10, 2.03; g{sub ave} = 2.16), which was also observed in dithionite-treated samples. This species was shown to represent as much as 0.90 {+-} 0.10 spins/molecule, yet production of the species from fully oxidized C531A CODH did not involve a concurrent decrease in the molar extinction coefficient at 420 nm, indicating that the [Fe{sub 4}S{sub 4}] clusters remained in the 2+ oxidation state. {sup 61}Ni-substituted CO-pretreated C531A CODH, when poised with indigo carmine, showed no broadening of the resonances, indicating that no detectable spin density resides upon Ni. Comparisons of the EPR spectrum of the g{sub ave} = 2.16 species to Ni-C(CO) and Ni-C of Alcaligenes eutrophus [NiFe] hydrogenase are presented. On the basis of these comparisons and on the lack of {sup 61}Ni broadening, the g{sub ave} = 2.16 resonance is interpreted as arising from a [(CO{sub L})Fe{sup 3+}-Ni{sup 2+}-H{sup {minus}}]{sup 4+} (S = 1/2) system, where CO{sub L} is an activating nonsubstrate CO ligand. On the basis of the absence of spectroscopic features present in wild-type CODH, and representing coupled forms of the putative

  17. Microarray Analysis of Microbial Weathering

    NASA Astrophysics Data System (ADS)

    Olsson-Francis, K.; van Houdt, R.; Leys, N.; Mergeay, M.; Cockell, C. S.

    2010-04-01

    Microarray analysis of the heavy metal resistant bacterium, Cupriavidus metallidurans CH34 was used to investigate the genes involved in the weathering. The results demonstrated that large porin and membrane transporter genes were unregulated.

  18. In vitro antimicrobial activity of ceftizoxime against glucose-nonfermentative gram-negative rods.

    PubMed

    Yabuuchi, E; Ito, T; Tanimura, E; Yamamoto, N; Ohyama, A

    1981-07-01

    Ceftizoxime, a new cephalosporin, was active against Pseudomonas cepacia, Flavobacterium meningosepticum, Alcaligenes faecalis, and Acinetobacter calcoaceticus and was more potent against Pseudomonas aeruginosa and Pseudomonas putida than was carbenicillin. PMID:6269480

  19. Studies on the biodegradation of nonionic surfactants applied in the polyester fiber industry. I. Activated sludge bacteria degrading the surfactants.

    PubMed

    Rzechowska, E

    1976-01-01

    The paper presents characteristics of 76 strains of bacteria capable of utilizing nonionic surfactants Cirrasol FP, Cirrasol SF 200 and Cirrasol TCS as the source of carbon. The strains were isolated from two activated sludges adapted to the purification of wastes containing the above compounds at concentration 150--200 mg/l. The isolated strains belonged to the genera: Achromobacter, Alcaligenes, Arthrobacter, Flavobacterium, Mycobacterium, Nocardia, Pseudomonas and Xanthomonas. With load 0.11 mg surfactant/mg d.w./day bacteria belonging to Alcaligenes were dominating. With load 0.18--0.31 mg surfactant/mg d.w./day microorganisms were dominated by Pseudomonas. The highest intensity of degradation of the studied surfactant was shown by species: Alcaligenes viscolactis, Nocardia blackwellii and Pseudomonas rathonis. PMID:62497

  20. DddY, a periplasmic dimethylsulfoniopropionate lyase found in taxonomically diverse species of Proteobacteria

    PubMed Central

    Curson, Andrew R J; Sullivan, Matthew J; Todd, Jonathan D; Johnston, Andrew W B

    2011-01-01

    The abundant compatible solute dimethylsulfoniopropionate (DMSP) is made by many marine algae. Different marine bacteria catabolise DMSP by various mechanisms, some of which liberate the environmentally important gas dimethyl sulfide (DMS). We describe an enzyme, DddY, which cleaves DMSP into DMS plus acrylate and is located in the bacterial periplasm, unlike other DMSP lyases that catalyse this reaction. There are dddY-like genes in strains of Alcaligenes, Arcobacter and Shewanella, in the β-, ɛ- and γ-proteobacteria, respectively. In Alcaligenes, dddY is in a cluster of ddd and acu genes that resemble, but also have significant differences to, those in other bacteria that catabolise both DMSP and acrylate. Although production of DMS and transcription of Alcaligenes dddY are both apparently inducible by pre-growth of cells with DMSP, this substrate must be catabolised to form acrylate, the bona fide coinducer. PMID:21248856

  1. Improved Degradation of Monochlorophenols by a Constructed Strain

    PubMed Central

    Schwien, Uwe; Schmidt, Eberhard

    1982-01-01

    Pseudomonas sp. strain B13, a strain able to degrade 3-chlorobenzoate and, after prolonged adaptation (40 days), 4-chlorophenol, could transfer the ability to degrade chlorocatechols to a recipient, Alcaligenes sp. strain A7, which is able to grow with benzoate and phenol. Representative transconjugants, such as Alcaligenes sp. strain A7-2, were able to utilize all three isomeric chlorophenols; this property was not possessed by the donor or the recipient. The ability to grow readily with 4-chlorophenol may be attributable to a more rapid induction of phenol hydroxylase by Alcaligenes sp. strain A7-2 than by Pseudomonas sp. strain B13, a property which correlates with the greater level of resistance to chlorophenols shown by the transconjugant. PMID:16346066

  2. Evaluation of the rapid NFT system for identification of gram-negative, nonfermenting rods.

    PubMed

    Appelbaum, P C; Leathers, D J

    1984-10-01

    This study evaluated the ability of the Rapid NFT system (API System SA, Montalieu-Vercieu, France) to accurately identify 262 clinically isolated, gram-negative, nonfermentative rods without additional tests. Identifications were classified as correct; low discrimination, with a spectrum of two or more possibilities (additional tests necessary for accurate identification); and incorrect. Correct identification rates were analyzed in two categories: (i) correct to species or biotype for all organism groups except Alcaligenes faecalis-odorans, Moraxella, Pseudomonas testosteroni-alcaligenes-pseudoalcaligenes, and Acinetobacter calcoaceticus biotype haemolyticus-alcaligenes (in this category, the latter four genus-biotype group identifications were taken as correct) and (ii) correct to species or biotype in all cases, including the above four groups. In category i, 87.4% of the strains were correctly identified, with 4.2% low discrimination and 8.4% incorrect. When the criteria of category ii were used, 71.8% of the strains were correctly identified, with 19.9% low discrimination. The Rapid NFT system provided excellent species identification of Pseudomonas and Flavobacterium spp., Bordetella bronchiseptica, and Achromobacter xylosoxidans strains. Within Acinetobacter calcoaceticus, differentiation between biotypes anitratus and lwoffi was satisfactory, but the system did not differentiate between biotypes haemolyticus and alcaligenes. Species resolution within the genera Moraxella and Alcaligenes was incomplete. All Alcaligenes faecalis strains were misidentified and accounted for 50% of misidentifications with the Rapid NFT system; however, these results may reflect taxonomic differences rather than true misidentifications. The Rapid NFT system is easy to inoculate and interpret and represents a worthwhile advance in the identification of gram-negative, nonfermentative rods. PMID:6490857

  3. [Non-fermentative gram-negative bacilli: their distribution to clinical materials and antibiotic susceptibility (author's transl)].

    PubMed

    Akalin, H E; Baykal, M

    1980-01-01

    A total of 7898 non-fermentative Gram-negative bacilli were isolated from various clinical materials. Pseudomonas (7526) was the most common among them. Alcaligenes faecalis (273), Acinetobacter sp. (93) and Flavobacterium (6) were the other non-fermentative Gram-negative bacilli. Most of them were found in urine and pus cultures, however they were also isolated from sputum, blood, and cerebrospinal fluid. Gentamicin was the most effective antibiotic in vitro. Fifty four per cent of Pseudomonas, 100% of Acinetobacter, and 70% of Alcaligenes faecalis were inhibited by tobramycin. PMID:7453583

  4. Development of eco-friendly bioplastic like PHB by distillery effluent microorganisms.

    PubMed

    Gangurde, Nilesh S; Sayyed, Riyaz Z; Kiran, Shashi; Gulati, Arvind

    2013-01-01

    During screening for poly-β-hydroxybutyrate (PHB) producing bacteria from distillery effluent sample, six out of 30 isolates comprising of three strains of Alcaligenes sp., two strains of Bacillus sp., and one strain of Pseudomonas sp. were found to accumulate varying levels of intracellular PHB. Amongst the various isolates, Alcaligenes sp. RZS4 was found as the potent PHB-producing organism, accumulating higher amounts of PHB. PHB productivity was further enhanced in the presence of oxygen, nitrogen-limiting conditions, and cloning of PHB synthesizing genes of Alcaligenes sp. RZS 4 into Escherichia coli. A twofold increase in PHB yield was obtained from recombinant E. coli vis-à-vis Alcaligenes sp.; the recombinant E. coli accumulated more PHB in NDMM, produced good amount of PHB in a single-stage cultivation process under both nutrient-rich and nutrient-deficient conditions. Extraction of PHB with acetone-alcohol (1:1) was found as suitable method for optimum extraction of PHB as this mixture selectively extracted PHB without affecting the non-PHB cell mass. PHB extract from recombinant E. coli showed the presence of C-H, =O stretching, =C-H deformation, =C-H, =CH, and =C-O functional groups characteristic of PHB. PMID:22723248

  5. Selection of trichloroethene (TCE) degrading bacteria that resist inactivation by TCE.

    PubMed

    Ewers, J; Freier-Schröder, D; Knackmuss, H J

    1990-01-01

    Two isoprene (2-methyl-1,3-butadiene) utilizing bacteria, Alcaligenes denitrificans ssp. xylosoxidans JE 75 and Rhodococcus erythropolis JE 77, were identified as highly efficient cooxidizers of TCE, cis- and trans-dichloroethene, 1,1-dichloroethene and vinyl-chloride. Isoprene grown cells eliminate chloride from TCE in stoichiometric amounts and tolerate high concentrations of TCE. PMID:2244792

  6. PHENOXYACETIC ACID DEGRADATION BY THE 2,4-DICHLOROPHENOXYACETIC ACID (TFD) PATHWAY TO PLASMID PJP4: MAPPING AND CHARACTERIZATION OF THE TFD REGULATORY GENE, TFDR

    EPA Science Inventory

    Plasmid pJP4 enables Alcaligenes eutrophys JMP134 to dedegrade 3-chlorobenzoate and 2,4-dichlorophenoxyacetic acid (TFD). lasmid pR0101 is a derivative of pJP4 obtained by insertion of Tn1721 into a nonessential region of pJP4. lasmid pR0101 was transferred by conjugation to seve...

  7. Degradation of polychlorinated biphenyls by microorganisms

    SciTech Connect

    Yagi, O.; Sudo, R.

    1980-05-01

    The biodegradation of PCB's by microorganisms and the degradation pathway of PCB's are investigated. Experimental methods and materials are described. Only several strains of bacteria, Achromobacter sp., Alcaligenes sp., Acinetobacter sp., Pseudomonas sp., and soil microorganisms were able to decompose PCB's. A possible relationships between the structure and biodegradability of related biphenyl compounds was examined. (5 diagrams, 11 graphs, 18 references, 1 table)

  8. Strain-specific virulence of Bordetella hinzii in turkeys

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bordetella hinzii is commonly acquired from the respiratory tract of diseased poultry but regarded as nonpathogenic in avian hosts. Recently, it was recognized that some previously used isolates were misidentified at the time of their acquisition as B. avium, B. avium-like or Alcaligenes faecalis ty...

  9. Method for treating waste water

    SciTech Connect

    Masaki, Y.; Odawara, Y.; Shimizu, N.

    1982-10-26

    The invention relates to an improvement of the floc-formation property of activated sludge contained in waste water. A waste water treatment process comprises steps culturing a novel strain-alcaligenes faecalis hrl-1-and adding the cultured cells to to-be-treated waste water.

  10. Evaluation of the 4-hour RapID NF Plus method for identification of 345 gram-negative nonfermentative rods.

    PubMed

    Kitch, T T; Jacobs, M R; Appelbaum, P C

    1992-05-01

    The ability of the RapID NF Plus system (Innovative Diagnostic Systems, Inc., Atlanta, Ga.) to identify 345 nonfermentative gram-negative rods was evaluated. Kits were inoculated with no. 1 McFarland suspensions, and reactions were interpreted after a 4-h incubation at 35 degrees C. Overall, the method correctly identified 311 strains (90.1%) without additional tests and 21 strains (6.1%) with additional tests, and 13 strains (3.8%) were misidentified. Five of 13 misidentified strains were Alcaligenes faecalis-Alcaligenes odorans misidentified as Alcaligenes xylosoxidans; however, all strains were xylose negative but nitrate positive and could have been A. faecalis group I-Alcaligenes piechaudii. The system does not differentiate between Pseudomonas fluorescens and Pseudomonas putida, and all Acinetobacter species are identified as Acetinobacter calcoaceticus. Additionally, no subspecies differentiation is made between A. xylosoxidans subsp. xylosoxidans and A. xylosoxidans subsp. denitrificans. All strains of the former Flavobacterium group IIb are identified as Flavobacterium indologenes-Flavobacterium gleum, and no species identification of the genus Methylobacterium is attempted. The system is easy to set up and interpret and provides an accurate commercial nonautomated method for same-day identification of gram-negative nonfermenters. PMID:1583129