Science.gov

Sample records for alcohol intestinal bacterial

  1. Intestinal REG3 Lectins Protect against Alcoholic Steatohepatitis by Reducing Mucosa-Associated Microbiota and Preventing Bacterial Translocation.

    PubMed

    Wang, Lirui; Fouts, Derrick E; Strkel, Peter; Hartmann, Phillipp; Chen, Peng; Llorente, Cristina; DePew, Jessica; Moncera, Kelvin; Ho, Samuel B; Brenner, David A; Hooper, Lora V; Schnabl, Bernd

    2016-02-10

    Approximately half of all deaths from liver cirrhosis, the tenth leading cause of mortality in the United States, are related to alcohol use. Chronic alcohol consumption is accompanied by intestinal dysbiosis and bacterial overgrowth, yet little is known about the factors that alter the microbial composition or their contribution to liver disease. We previously associated chronic alcohol consumption with lower intestinal levels of the antimicrobial-regenerating islet-derived (REG)-3 lectins. Here, we demonstrate that intestinal deficiency in REG3B or REG3G increases numbers of mucosa-associated bacteria and enhances bacterial translocation to the mesenteric lymph nodes and liver, promoting the progression of ethanol-induced fatty liver disease toward steatohepatitis. Overexpression of Reg3g in intestinal epithelial cells restricts bacterial colonization of mucosal surfaces, reduces bacterial translocation, and protects mice from alcohol-induced steatohepatitis. Thus, alcohol appears to impair control of the mucosa-associated microbiota, and subsequent breach of the mucosal barrier facilitates progression of alcoholic liver disease. PMID:26867181

  2. Alcohol and the Intestine.

    PubMed

    Patel, Sheena; Behara, Rama; Swanson, Garth R; Forsyth, Christopher B; Voigt, Robin M; Keshavarzian, Ali

    2015-01-01

    Alcohol abuse is a significant contributor to the global burden of disease and can lead to tissue damage and organ dysfunction in a subset of alcoholics. However, a subset of alcoholics without any of these predisposing factors can develop alcohol-mediated organ injury. The gastrointestinal tract (GI) could be an important source of inflammation in alcohol-mediated organ damage. The purpose of review was to evaluate mechanisms of alcohol-induced endotoxemia (including dysbiosis and gut leakiness), and highlight the predisposing factors for alcohol-induced dysbiosis and gut leakiness to endotoxins. Barriers, including immunologic, physical, and biochemical can regulate the passage of toxins into the portal and systemic circulation. In addition, a host of environmental interactions including those influenced by circadian rhythms can impact alcohol-induced organ pathology. There appears to be a role for therapeutic measures to mitigate alcohol-induced organ damage by normalizing intestinal dysbiosis and/or improving intestinal barrier integrity. Ultimately, the inflammatory process that drives progression into organ damage from alcohol appears to be multifactorial. Understanding the role of the intestine in the pathogenesis of alcoholic liver disease can pose further avenues for pathogenic and treatment approaches. PMID:26501334

  3. Alcohol and the Intestine

    PubMed Central

    Patel, Sheena; Behara, Rama; Swanson, Garth R.; Forsyth, Christopher B.; Voigt, Robin M.; Keshavarzian, Ali

    2015-01-01

    Alcohol abuse is a significant contributor to the global burden of disease and can lead to tissue damage and organ dysfunction in a subset of alcoholics. However, a subset of alcoholics without any of these predisposing factors can develop alcohol-mediated organ injury. The gastrointestinal tract (GI) could be an important source of inflammation in alcohol-mediated organ damage. The purpose of review was to evaluate mechanisms of alcohol-induced endotoxemia (including dysbiosis and gut leakiness), and highlight the predisposing factors for alcohol-induced dysbiosis and gut leakiness to endotoxins. Barriers, including immunologic, physical, and biochemical can regulate the passage of toxins into the portal and systemic circulation. In addition, a host of environmental interactions including those influenced by circadian rhythms can impact alcohol-induced organ pathology. There appears to be a role for therapeutic measures to mitigate alcohol-induced organ damage by normalizing intestinal dysbiosis and/or improving intestinal barrier integrity. Ultimately, the inflammatory process that drives progression into organ damage from alcohol appears to be multifactorial. Understanding the role of the intestine in the pathogenesis of alcoholic liver disease can pose further avenues for pathogenic and treatment approaches. PMID:26501334

  4. Modulation of Intestinal Barrier and Bacterial Endotoxin Production Contributes to the Beneficial Effect of Nicotinic Acid on Alcohol-Induced Endotoxemia and Hepatic Inflammation in Rats

    PubMed Central

    Zhong, Wei; Li, Qiong; Zhang, Wenliang; Sun, Qian; Sun, Xinguo; Zhou, Zhanxiang

    2015-01-01

    Alcohol consumption causes nicotinic acid deficiency. The present study was undertaken to determine whether dietary nicotinic acid supplementation provides beneficial effects on alcohol-induced endotoxin signaling and the possible mechanisms at the gut-liver axis. Male Sprague-Dawley rats were pair-fed the Lieber-DeCarli liquid diets containing ethanol or isocaloric maltose dextrin for eight weeks, with or without dietary supplementation with 750 mg/liter nicotinic acid. Chronic alcohol feeding elevated the plasma endotoxin level and activated hepatic endotoxin signaling cascade, which were attenuated by nicotinic acid supplementation. Alcohol consumption remarkably decreased the mRNA levels of claudin-1, claudin-5, and ZO-1 in the distal intestine, whereas nicotinic acid significantly up-regulated these genes. The concentrations of endotoxin, ethanol, and acetaldehyde in the intestinal contents were increased by alcohol exposure, and niacin supplementation reduced the intestinal endotoxin and acetaldehyde levels. Nicotinic acid supplementation upregulated the intestinal genes involved in aldehyde detoxification via transcriptional regulation. These results demonstrate that modulation of the intestinal barrier function and bacterial endotoxin production accounts for the inhibitory effects of nicotinic acid on alcohol-induced endotoxemia and hepatic inflammation. PMID:26501337

  5. Modulation of Intestinal Barrier and Bacterial Endotoxin Production Contributes to the Beneficial Effect of Nicotinic Acid on Alcohol-Induced Endotoxemia and Hepatic Inflammation in Rats.

    PubMed

    Zhong, Wei; Li, Qiong; Zhang, Wenliang; Sun, Qian; Sun, Xinguo; Zhou, Zhanxiang

    2015-01-01

    Alcohol consumption causes nicotinic acid deficiency. The present study was undertaken to determine whether dietary nicotinic acid supplementation provides beneficial effects on alcohol-induced endotoxin signaling and the possible mechanisms at the gut-liver axis. Male Sprague-Dawley rats were pair-fed the Lieber-DeCarli liquid diets containing ethanol or isocaloric maltose dextrin for eight weeks, with or without dietary supplementation with 750 mg/liter nicotinic acid. Chronic alcohol feeding elevated the plasma endotoxin level and activated hepatic endotoxin signaling cascade, which were attenuated by nicotinic acid supplementation. Alcohol consumption remarkably decreased the mRNA levels of claudin-1, claudin-5, and ZO-1 in the distal intestine, whereas nicotinic acid significantly up-regulated these genes. The concentrations of endotoxin, ethanol, and acetaldehyde in the intestinal contents were increased by alcohol exposure, and niacin supplementation reduced the intestinal endotoxin and acetaldehyde levels. Nicotinic acid supplementation upregulated the intestinal genes involved in aldehyde detoxification via transcriptional regulation. These results demonstrate that modulation of the intestinal barrier function and bacterial endotoxin production accounts for the inhibitory effects of nicotinic acid on alcohol-induced endotoxemia and hepatic inflammation. PMID:26501337

  6. Small Intestinal Bacterial Overgrowth

    PubMed Central

    Dukowicz, Andrew C.; Levine, Gary M.

    2007-01-01

    Small intestinal bacterial overgrowth (SIBO), defined as excessive bacteria in the small intestine, remains a poorly understood disease. Initially thought to occur in only a small number of patients, it is now apparent that this disorder is more prevalent than previously thought. Patients with SIBO vary in presentation, from being only mildly symptomatic to suffering from chronic diarrhea, weight loss, and malabsorption. A number of diagnostic tests are currently available, although the optimal treatment regimen remains elusive. Recently there has been renewed interest in SIBO and its putative association with irritable bowel syndrome. In this comprehensive review, we will discuss the epidemiology, pathogenesis, clinical manifestations, diagnosis, and treatment of SIBO. PMID:21960820

  7. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity

    PubMed Central

    Leclercq, Sophie; Matamoros, Sébastien; Cani, Patrice D.; Neyrinck, Audrey M.; Jamar, François; Stärkel, Peter; Windey, Karen; Tremaroli, Valentina; Bäckhed, Fredrik; Verbeke, Kristin; de Timary, Philippe; Delzenne, Nathalie M.

    2014-01-01

    Alcohol dependence has traditionally been considered a brain disorder. Alteration in the composition of the gut microbiota has recently been shown to be present in psychiatric disorders, which suggests the possibility of gut-to-brain interactions in the development of alcohol dependence. The aim of the present study was to explore whether changes in gut permeability are linked to gut-microbiota composition and activity in alcohol-dependent subjects. We also investigated whether gut dysfunction is associated with the psychological symptoms of alcohol dependence. Finally, we tested the reversibility of the biological and behavioral parameters after a short-term detoxification program. We found that some, but not all, alcohol-dependent subjects developed gut leakiness, which was associated with higher scores of depression, anxiety, and alcohol craving after 3 wk of abstinence, which may be important psychological factors of relapse. Moreover, subjects with increased gut permeability also had altered composition and activity of the gut microbiota. These results suggest the existence of a gut–brain axis in alcohol dependence, which implicates the gut microbiota as an actor in the gut barrier and in behavioral disorders. Thus, the gut microbiota seems to be a previously unidentified target in the management of alcohol dependence. PMID:25288760

  8. Alcohol Lowers Your (Intestinal) Inhibitions.

    PubMed

    Iyer, Namrata; Vaishnava, Shipra

    2016-02-10

    Alcohol causes microbiota dysbiosis and breaches intestinal integrity, resulting in liver inflammation and ultimately cirrhosis. In this issue of Cell Host & Microbe, Wang etal. (2016) demonstrate that ethanol suppresses the intestinal anti-microbial response. This enables gut bacteria to trespass to the liver and thus exacerbates the disease progression. PMID:26867168

  9. Small intestinal bacterial overgrowth syndrome

    PubMed Central

    Bures, Jan; Cyrany, Jiri; Kohoutova, Darina; Förstl, Miroslav; Rejchrt, Stanislav; Kvetina, Jaroslav; Vorisek, Viktor; Kopacova, Marcela

    2010-01-01

    Human intestinal microbiota create a complex polymicrobial ecology. This is characterised by its high population density, wide diversity and complexity of interaction. Any dysbalance of this complex intestinal microbiome, both qualitative and quantitative, might have serious health consequence for a macro-organism, including small intestinal bacterial overgrowth syndrome (SIBO). SIBO is defined as an increase in the number and/or alteration in the type of bacteria in the upper gastrointestinal tract. There are several endogenous defence mechanisms for preventing bacterial overgrowth: gastric acid secretion, intestinal motility, intact ileo-caecal valve, immunoglobulins within intestinal secretion and bacteriostatic properties of pancreatic and biliary secretion. Aetiology of SIBO is usually complex, associated with disorders of protective antibacterial mechanisms (e.g. achlorhydria, pancreatic exocrine insufficiency, immunodeficiency syndromes), anatomical abnormalities (e.g. small intestinal obstruction, diverticula, fistulae, surgical blind loop, previous ileo-caecal resections) and/or motility disorders (e.g. scleroderma, autonomic neuropathy in diabetes mellitus, post-radiation enteropathy, small intestinal pseudo-obstruction). In some patients more than one factor may be involved. Symptoms related to SIBO are bloating, diarrhoea, malabsorption, weight loss and malnutrition. The gold standard for diagnosing SIBO is still microbial investigation of jejunal aspirates. Non-invasive hydrogen and methane breath tests are most commonly used for the diagnosis of SIBO using glucose or lactulose. Therapy for SIBO must be complex, addressing all causes, symptoms and complications, and fully individualised. It should include treatment of the underlying disease, nutritional support and cyclical gastro-intestinal selective antibiotics. Prognosis is usually serious, determined mostly by the underlying disease that led to SIBO. PMID:20572300

  10. Periarrest intestinal bacterial translocation and resuscitation outcome.

    PubMed

    Chalkias, Athanasios; Scheetz, Marc H; Gulati, Anil; Xanthos, Theodoros

    2016-02-01

    During the periarrest period, intestinal ischemia may result in barrier dysfunction and bacterial translocation, which has clear mechanistic links to inflammation and cascade stimulation, especially in patients who are treated with therapeutic hypothermia. Despite optimal management, periarrest bacterial translocation may worsen the outcome of cardiac arrest victims. PMID:26481507

  11. Mucin Dynamics in Intestinal Bacterial Infection

    PubMed Central

    Lindén, Sara K.; Florin, Timothy H. J.; McGuckin, Michael A.

    2008-01-01

    Background Bacterial gastroenteritis causes morbidity and mortality in humans worldwide. Murine Citrobacter rodentium infection is a model for gastroenteritis caused by the human pathogens enteropathogenic Escherichia coli and enterohaemorrhagic E. coli. Mucin glycoproteins are the main component of the first barrier that bacteria encounter in the intestinal tract. Methodology/Principal Findings Using Immunohistochemistry, we investigated intestinal expression of mucins (Alcian blue/PAS, Muc1, Muc2, Muc4, Muc5AC, Muc13 and Muc3/17) in healthy and C. rodentium infected mice. The majority of the C. rodentium infected mice developed systemic infection and colitis in the mid and distal colon by day 12. C. rodentium bound to the major secreted mucin, Muc2, in vitro, and high numbers of bacteria were found in secreted MUC2 in infected animals in vivo, indicating that mucins may limit bacterial access to the epithelial surface. In the small intestine, caecum and proximal colon, the mucin expression was similar in infected and non-infected animals. In the distal colonic epithelium, all secreted and cell surface mucins decreased with the exception of the Muc1 cell surface mucin which increased after infection (p<0.05). Similarly, during human infection Salmonella St Paul, Campylobacter jejuni and Clostridium difficile induced MUC1 in the colon. Conclusion Major changes in both the cell-surface and secreted mucins occur in response to intestinal infection. PMID:19088856

  12. Bacterial census of poultry intestinal microbiome.

    PubMed

    Wei, S; Morrison, M; Yu, Z

    2013-03-01

    The objective of this study was to generate a phylogenetic diversity census of bacteria identified in the intestinal tract of chickens and turkeys using a naïve analysis of all the curated 16S rRNA gene sequences archived in public databases. High-quality sequences of chicken and turkey gastrointestinal origin (3,184 and 1,345, respectively) were collected from the GenBank, Ribosomal Database Project, and Silva comprehensive ribosomal RNA database. Through phylogenetic and statistical analysis, 915 and 464 species-equivalent operational taxonomic units (defined at 0.03 phylogenetic distance) were found in the chicken and the turkey sequence collections, respectively. Of the 13 bacterial phyla identified in both bird species, Firmicutes, Bacteroidetes, and Proteobacteria were the largest phyla, accounting for >90% of all the sequences. The chicken sequences represent 117 established bacterial genera, and the turkey sequences represent 69 genera. The most predominant genera found in both the chicken and the turkey sequence data sets were Clostridium, Ruminococcus, Lactobacillus, and Bacteroides, but with different distribution between the 2 bird species. The estimated coverage of bacterial diversity of chicken and turkey reached 89 and 68% at species-equivalent and 93 and 73% at genus-equivalent levels, respectively. Less than 7,000 bacterial sequences from each bird species from various locations would be needed to reach 99% coverage for either bird species. Based on annotation of the sequence records, cecum was the most sampled gut segment. Chickens and turkeys were shown to have distinct intestinal microbiomes, sharing only 16% similarity at the species-equivalent level. Besides identifying gaps in knowledge on bacterial diversity in poultry gastrointestinal tract, the bacterial census generated in this study may serve as a framework for future studies and development of analytic tools. PMID:23436518

  13. Lactobacillus GG Treatment Ameliorates Alcohol-induced Intestinal Oxidative Stress, Gut Leakiness, and Liver Injury in a Rat Model of Alcoholic Steatohepatitis

    PubMed Central

    Forsyth, Christopher B.; Farhadi, Ashkan; Jakate, Shriram M.; Tang, Yueming; Shaikh, Maliha; Keshavarzian, Ali

    2009-01-01

    Since only 30% of alcoholics develop alcoholic liver disease (ALD), a factor other than heavy alcohol consumption must be involved in development of alcohol-induced liver injury. Animal and human studies suggest that bacterial products such as endotoxin are the second key co-factor and oxidant-mediated gut leakiness is one of the sources of endotoxemia. Probiotics have been used to prevent and treat diseases associated with gut-derived bacterial products and disorders associated with gut leakiness. Indeed, “probiotic” Lactobacillus has been successfully used to treat alcohol-induced liver injury in rats. But, the mechanism of action of the potential beneficial effects of Lactobacillus in alcohol liver injury is not known. We hypothesized that probiotics could preserve normal barrier function in an animal model of ALD by preventing alcohol-induced oxidative stress and thus prevent development of hyperpermeability and subsequent alcoholic steatohepatitis. Male Sprague-Dawley rats were gavaged with alcohol twice daily (8gm/kg) for 10 weeks. In addition, alcoholic rats were also treated with once daily gavage of either 2.5 107 live Lactobacillus GG (LGG) or vehicle. Intestinal permeability (baseline and 10wk) was determined using a sugar bolus and GC analysis of urinary sugars. Intestinal and liver tissues were analyzed for markers of oxidative stress and inflammation. In addition livers were assessed histologically for severity of alcoholic steatohepatitis (ASH) and total fat (steatosis). Alcohol-LGG fed rats had significantly (p≤ .05) less severe ASH than alcohol-vehicle fed rats. LGG also improved alcohol-induced gut leakiness and significantly blunted alcohol-induced oxidative stress and inflammation in both intestine and the liver. LGG probiotic gavage significantly ameliorated alcoholic steatohepatitis in rats. This improvement was associated with reduced markers of intestinal and liver oxidative stress and inflammation and preserved gut barrier function. Our study provides a scientific rationale to test probiotics for treatment and/or prevention of alcoholic liver disease in man. PMID:19251117

  14. The intestinal microbiome and the leaky gut as therapeutic targets in alcoholic liver disease

    PubMed Central

    Hartmann, Phillipp; Chen, Wei-Chung; Schnabl, Bernd

    2012-01-01

    Alcoholic liver disease (ALD) encompasses hepatic steatosis, which may progress to alcoholic hepatitis, fibrosis, and cirrhosis. It remains a leading cause of morbidity and mortality in the US and worldwide. The severity of liver disease correlates with plasma levels of bacterial products in patients, and experimental ALD depends on the level of gut derived bacterial products in rodents. Since intestinal decontamination and deficiency of bacterial product receptors or their downstream signaling molecules protect from alcohol-induced liver disease, bacterial translocation (BT), qualitative, and quantitative changes of the enteric microbiome are considered as being of fundamental importance in the pathogenesis of ALD. Recent enhancements in diagnostic technologies provide a better insight into these shifts. This review highlights vital events in ALD such as BT, the importance of Toll-like receptor (TLR) signaling, intestinal bacterial overgrowth (IBO), and changes in the intestinal microbiome. Furthermore, a treatment trial section of patients reviews possible future options of therapy for ALD modifying the enteric microbiome. PMID:23087650

  15. Bacterial colonization and intestinal mucosal barrier development.

    PubMed

    Huang, Xiao-Zhong; Zhu, Li-Bin; Li, Zhong-Rong; Lin, Jing

    2013-11-01

    The intestinal tract is colonized soon after birth with a variety of ingested environmental and maternal microflora. This process is influenced by many factors including mode of delivery, diet, environment, and the use of antibiotics. Normal intestinal microflora provides protection against infection, ensures tolerance to foods, and contributes to nutrient digestion and energy harvest. In addition, enteral feeding and colonization with the normal commensal flora are necessary for the maintenance of intestinal barrier function and play a vital role in the regulation of intestinal barrier function. Intestinal commensal microorganisms also provide signals that foster normal immune system development and influence the ensuing immune responses. There is increasingly recognition that alterations of the microbial gut flora and associated changes in intestinal barrier function may be related to certain diseases of the gastrointestinal tract. This review summarizes recent advances in understanding the complex ecosystem of intestinal microbiota and its role in regulating intestinal barrier function and a few common pediatric diseases. Disruption in the establishment of a stable normal gut microflora may contribute to the pathogenesis of diseases including inflammatory bowel disease, nosocomial infection, and neonatal necrotizing enterocolitis. PMID:25254174

  16. Bacterial colonization and intestinal mucosal barrier development

    PubMed Central

    Huang, Xiao-Zhong; Zhu, Li-Bin; Li, Zhong-Rong; Lin, Jing

    2013-01-01

    The intestinal tract is colonized soon after birth with a variety of ingested environmental and maternal microflora. This process is influenced by many factors including mode of delivery, diet, environment, and the use of antibiotics. Normal intestinal microflora provides protection against infection, ensures tolerance to foods, and contributes to nutrient digestion and energy harvest. In addition, enteral feeding and colonization with the normal commensal flora are necessary for the maintenance of intestinal barrier function and play a vital role in the regulation of intestinal barrier function. Intestinal commensal microorganisms also provide signals that foster normal immune system development and influence the ensuing immune responses. There is increasingly recognition that alterations of the microbial gut flora and associated changes in intestinal barrier function may be related to certain diseases of the gastrointestinal tract. This review summarizes recent advances in understanding the complex ecosystem of intestinal microbiota and its role in regulating intestinal barrier function and a few common pediatric diseases. Disruption in the establishment of a stable normal gut microflora may contribute to the pathogenesis of diseases including inflammatory bowel disease, nosocomial infection, and neonatal necrotizing enterocolitis. PMID:25254174

  17. Bacterial chemotactic oligopeptides and the intestinal mucosal barrier

    SciTech Connect

    Ferry, D.M.; Butt, T.J.; Broom, M.F.; Hunter, J.; Chadwick, V.S.

    1989-07-01

    Intestinal absorption and enterohepatic circulation of N-formyl-methionyl-leucyl-/sup 125/I-tyrosine, a bioactive synthetic analog of the bacterial chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine has been investigated in the rat. In ileum and proximal and distal colon, dithiothreitol, which increases mucosal permeability, increased peptide absorption and biliary recovery fourfold, 70-fold, and 20-fold over control values, respectively. When dithiothreitol was combined with d-l-benzyl succinate, a potent inhibitor of intestinal carboxypeptidase, absorption and biliary recovery from ileal loops increased markedly to 40-fold over control, whereas there was no further increase in absorption from colon loops. There was a strong correlation between biliary N-formyl-methionyl-leucyl-/sup 125/I-tyrosine recovery and intestinal absorption of /sup 51/Cr-ethylenediaminetetraacetate, a marker of passive mucosal permeability (r = 0.97). We conclude that in the ileum both enzymic degradation and restricted mucosal permeability contribute to the intestinal barrier to luminal bacterial formyl oligopeptides. In the colon, however, enzymic mechanisms are less active and restricted mucosal permeability is the major factor. Abnormalities of the intestinal mucosal barrier to proinflammatory bacterial peptides could play a role in inflammatory disorders of the gut.

  18. Community-Acquired Bacterial Meningitis in Alcoholic Patients

    PubMed Central

    Weisfelt, Martijn; de Gans, Jan; van der Ende, Arie; van de Beek, Diederik

    2010-01-01

    Background Alcoholism is associated with susceptibility to infectious disease, particularly bacterial pneumonia. In the present study we described characteristics in alcoholic patients with bacterial meningitis and delineate the differences with findings in non-alcoholic adults with bacterial meningitis. Methods/Principal Findings This was a prospective nationwide observational cohort study including patients aged >16 years who had bacterial meningitis confirmed by culture of cerebrospinal fluid (696 episodes of bacterial meningitis occurring in 671 patients). Alcoholism was present in 27 of 686 recorded episodes of bacterial meningitis (4%) and alcoholics were more often male than non-alcoholics (82% vs 48%, P = 0.001). A higher proportion of alcoholics had underlying pneumonia (41% vs 11% P<0.001). Alcoholics were more likely to have meningitis due to infection with Streptococcus pneumoniae (70% vs 50%, P = 0.01) and Listeria monocytogenes (19% vs 4%, P = 0.005), whereas Neisseria meningitidis was more common in non-alcoholic patients (39% vs 4%, P = 0.01). A large proportion of alcoholics developed complications during clinical course (82% vs 62%, as compared with non-alcoholics; P = 0.04), often cardiorespiratory failure (52% vs 28%, as compared with non-alcoholics; P = 0.01). Alcoholic patients were at risk for unfavourable outcome (67% vs 33%, as compared with non-alcoholics; P<0.001). Conclusions/Significance Alcoholic patients are at high risk for complications resulting in high morbidity and mortality. They are especially at risk for cardiorespiratory failure due to underlying pneumonia, and therefore, aggressive supportive care may be crucial in the treatment of these patients. PMID:20161709

  19. Disruption of the Circadian Clock in Mice Increases Intestinal Permeability and Promotes Alcohol-Induced Hepatic Pathology and Inflammation

    PubMed Central

    Forsyth, Christopher B.; Shaikh, Maliha; Cavanaugh, Kate; Tang, Yueming; Vitaterna, Martha Hotz; Song, Shiwen

    2013-01-01

    The circadian clock orchestrates temporal patterns of physiology and behavior relative to the environmental light:dark cycle by generating and organizing transcriptional and biochemical rhythms in cells and tissues throughout the body. Circadian clock genes have been shown to regulate the physiology and function of the gastrointestinal tract. Disruption of the intestinal epithelial barrier enables the translocation of proinflammatory bacterial products, such as endotoxin, across the intestinal wall and into systemic circulation; a process that has been linked to pathologic inflammatory states associated with metabolic, hepatic, cardiovascular and neurodegenerative diseases many of which are commonly reported in shift workers. Here we report, for the first time, that circadian disorganization, using independent genetic and environmental strategies, increases permeability of the intestinal epithelial barrier (i.e., gut leakiness) in mice. Utilizing chronic alcohol consumption as a well-established model of induced intestinal hyperpermeability, we also found that both genetic and environmental circadian disruption promote alcohol-induced gut leakiness, endotoxemia and steatohepatitis, possibly through a mechanism involving the tight junction protein occludin. Circadian organization thus appears critical for the maintenance of intestinal barrier integrity, especially in the context of injurious agents, such as alcohol. Circadian disruption may therefore represent a previously unrecognized risk factor underlying the susceptibility to or development of alcoholic liver disease, as well as other conditions associated with intestinal hyperpermeability and an endotoxin-triggered inflammatory state. PMID:23825629

  20. Role for intestinal CYP2E1 in alcohol-induced circadian gene-mediated intestinal hyperpermeability

    PubMed Central

    Voigt, Robin M.; Shaikh, Maliha; Tang, Yueming; Cederbaum, Arthur I.; Turek, Fred W.; Keshavarzian, Ali

    2013-01-01

    We have shown that alcohol increases Caco-2 intestinal epithelial cell monolayer permeability in vitro by inducing the expression of redox-sensitive circadian clock proteins CLOCK and PER2 and that these proteins are necessary for alcohol-induced hyperpermeability. We hypothesized that alcohol metabolism by intestinal Cytochrome P450 isoform 2E1 (CYP2E1) could alter circadian gene expression (Clock and Per2), resulting in alcohol-induced hyperpermeability. In vitro Caco-2 intestinal epithelial cells were exposed to alcohol, and CYP2E1 protein, activity, and mRNA were measured. CYP2E1 expression was knocked down via siRNA and alcohol-induced hyperpermeability, and CLOCK and PER2 protein expression were measured. Caco-2 cells were also treated with alcohol or H2O2 with or without N-acetylcysteine (NAC) anti-oxidant, and CLOCK and PER2 proteins were measured at 4 or 2 h. In vivo Cyp2e1 protein and mRNA were also measured in colon tissue from alcohol-fed mice. Alcohol increased CYP2E1 protein by 93% and enzyme activity by 69% in intestinal cells in vitro. Alcohol feeding also increased mouse colonic Cyp2e1 protein by 73%. mRNA levels of Cyp2e1 were not changed by alcohol in vitro or in mouse intestine. siRNA knockdown of CYP2E1 in Caco-2 cells prevented alcohol-induced hyperpermeability and induction of CLOCK and PER2 proteins. Alcohol-induced and H2O2-induced increases in intestinal cell CLOCK and PER2 were significantly inhibited by treatment with NAC. We concluded that our data support a novel role for intestinal CYP2E1 in alcohol-induced intestinal hyperpermeability via a mechanism involving CYP2E1-dependent induction of oxidative stress and upregulation of circadian clock proteins CLOCK and PER2. PMID:23660503

  1. Enteric infection meets intestinal function: how bacterial pathogens cause diarrhoea

    PubMed Central

    Viswanathan, V. K.; Hodges, Kim; Hecht, Gail

    2012-01-01

    Infectious diarrhoea is a significant contributor to morbidity and mortality worldwide. In bacterium-induced diarrhoea, rapid loss of fluids and electrolytes results from inhibition of the normal absorptive function of the intestine as well as the activation of secretory processes. Advances in the past 10 years in the fields of gastrointestinal physiology, innate immunity and enteric bacterial virulence mechanisms highlight the multifactorial nature of infectious diarrhoea. This Review explores the various mechanisms that contribute to loss of fluids and electrolytes following bacterial infections, and attempts to link these events to specific virulence factors and toxins. PMID:19116615

  2. Analysis of Intestinal Bacterial Community Diversity of Adult Dastarcus helophoroides

    PubMed Central

    Zhang, Z. Q.; He, C.; Li, M. L.

    2014-01-01

    Polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE), and a culturedependent technique were used to study the diversity of the intestinal bacterial community in adult Dastarcus helophoroides (Fairmaire) (Coleoptera: Bothrideridae). Universal bacterial primers targeting 200 bp regions of the 16S rDNA gene were used in the PCR-DGGE assay, and 14 bright bands were obtained. The intestinal bacteria detected by PCR-DGGE were classified to Enterococcus (Lactobacillales: Enterococcaceae), Bacillus (Bacillales: Bacillaceae), Cellvibrio (Pseudomonadales: Pseudomonadaceae), Caulobacter (Caulobacterales: Caulobacteraceae), and uncultured bacteria, whereas those isolated by the culture-dependent technique belonged to Staphylococcus (Bacillales: Staphylococcaceae), Pectobacterium Enterobacteriales: Enterobacteriaceae), and Enterobacter (Enterobacteriales: Enterobacteriaceae). These intestinal bacteria represented the groups Lactobacillales (Enterococcus), Pseudomonadales (Cellvibrio), Caulobacterales (Caulobacter), Bacilli (Bacillus and Staphylococcus), and Gammaproteobacteria (Pectobacterium and Enterobacter). Our results demonstrated that PCR-DGGE analysis and the culture-dependent technique were useful in determining the intestinal bacteria of D. helophoroides and the two methods should be integrated to characterize the microbial community and diversity. PMID:25200108

  3. Intestinal bacterial overgrowth after Roux-en-Y gastric bypass.

    PubMed

    Machado, Juliana Deh Carvalho; Campos, Camila Scalassara; Lopes Dah Silva, Carolina; Marques Suen, Vivian Miguel; Barbosa Nonino-Borges, Carla; Dos Santos, José Ernesto; Ceneviva, Reginaldo; Marchini, Júlio Sérgio

    2008-01-01

    The aim of the present study was to report the occurrence of serious subnutrition, associated to intestinal bacterial overgrowth, in two patients submitted to bariatric surgery. Two female patients (body mass index, 49 and 50 kg/m(2), respectively) were submitted to Y-en-Roux gastric bypass. The first patient evolved a 52% loss of body weight within 21 months after surgery; the other, a 34% loss of initial body weight within 15 months after surgery, results corresponding, respectively, to 62 and 45 kg weight losses. However, both patients reported asthenia, hair fallout, and edema, and one also reported diarrhea, but none was feverish. Their respective albuminemias were of 24 and 23 g/l. A respiratory hydrogen test suggested bacterial hyperproliferation. Thirty days after ciprofloxacin and tetracyclin treatments, they showed improved albumin levels and nutritional states, both confirmed by results of hydrogen breath tests. Bacterial overgrowth is an important complication that can compromise clinical evolution of patients submitted to intestinal surgery like gastroplasty with Y-Roux anastomosis. In cases of clinical suspicion or a confirmed diagnosis, adequate antibiotics, sometimes requiring to be cyclically repeated, should be administered. PMID:18080824

  4. Emerging insights on intestinal dysbiosis during bacterial infections☆

    PubMed Central

    Pham, Tu Anh N; Lawley, Trevor D

    2014-01-01

    Infection of the gastrointestinal tract is commonly linked to pathological imbalances of the resident microbiota, termed dysbiosis. In recent years, advanced high-throughput genomic approaches have allowed us to examine the microbiota in an unprecedented manner, revealing novel biological insights about infection-associated dysbiosis at the community and individual species levels. A dysbiotic microbiota is typically reduced in taxonomic diversity and metabolic function, and can harbour pathobionts that exacerbate intestinal inflammation or manifest systemic disease. Dysbiosis can also promote pathogen genome evolution, while allowing the pathogens to persist at high density and transmit to new hosts. A deeper understanding of bacterial pathogenicity in the context of the intestinal microbiota should unveil new approaches for developing diagnostics and therapies for enteropathogens. PMID:24581695

  5. Small Intestine Bacterial Overgrowth and Environmental Enteropathy in Bangladeshi Children

    PubMed Central

    Haque, Rashidul; Kirkpatrick, Beth D.; Alam, Masud; Lu, Miao; Kabir, Mamun; Kakon, Shahria Hafiz; Islam, Bushra Zarin; Afreen, Sajia; Musa, Abu; Khan, Shaila Sharmeen; Colgate, E. Ross; Carmolli, Marya P.; Ma, Jennie Z.

    2016-01-01

    ABSTRACT Recent studies suggest small intestine bacterial overgrowth (SIBO) is common among developing world children. SIBO’s pathogenesis and effect in the developing world are unclear. Our objective was to determine the prevalence of SIBO in Bangladeshi children and its association with malnutrition. Secondary objectives included determination of SIBO’s association with sanitation, diarrheal disease, and environmental enteropathy. We performed a cross-sectional analysis of 90 Bangladeshi 2-year-olds monitored since birth from an impoverished neighborhood. SIBO was diagnosed via glucose hydrogen breath testing, with a cutoff of a 12-ppm increase over baseline used for SIBO positivity. Multivariable logistic regression was performed to investigate SIBO predictors. Differences in concomitant inflammation and permeability between SIBO-positive and -negative children were compared with multiple comparison adjustment. A total of 16.7% (15/90) of the children had SIBO. The strongest predictors of SIBO were decreased length-for-age Z score since birth (odds ratio [OR], 0.13; 95% confidence interval [CI], 0.03 to 0.60) and an open sewer outside the home (OR, 4.78; 95% CI, 1.06 to 21.62). Recent or frequent diarrheal disease did not predict SIBO. The markers of intestinal inflammation fecal Reg 1β (116.8 versus 65.6 µg/ml; P = 0.02) and fecal calprotectin (1,834.6 versus 766.7 µg/g; P = 0.004) were elevated in SIBO-positive children. Measures of intestinal permeability and systemic inflammation did not differ between the groups. These findings suggest linear growth faltering and poor sanitation are associated with SIBO independently of recent or frequent diarrheal disease. SIBO is associated with intestinal inflammation but not increased permeability or systemic inflammation. PMID:26758185

  6. Small intestinal bacterial overgrowth and warfarin dose requirement variability.

    PubMed

    Giuliano, Vittorio; Bassotti, Gabrio; Mourvaki, Evangelia; Castellani, Danilo; Filippucci, Esmeralda; Sabatino, Giuseppe; Gizzi, Stefania; Palmerini, Francesco; Galli, Francesco; Morelli, Olivia; Baldoni, Monia; Morelli, Antonio; Iorio, Alfonso

    2010-07-01

    The dose of warfarin needed to obtain a therapeutic anticoagulation level varies widely among patients and can undergo abrupt changes for unknown reasons. Drug interactions and genetic factors may partially explain these differences. Intestinal flora produces vitamin K2 (VK2) and patients with small intestinal bacterial overgrowth (SIBO) rarely present reduced INR values due to insufficient dietary vitamin K. The present study was undertaken to investigate whether SIBO occurrence may affect warfarin dose requirements in anticoagulated patients. Based on their mean weekly dose of warfarin while on stable anticoagulation, 3 groups of 10 patients each were defined: low dose (LD, or=70 mg/wk). Each patient underwent a lactulose breath test to diagnose SIBO. Plasma levels of warfarin and vitamin K-analogues were also assessed. Patients with an altered breath test were 50% in the VHD group, 10% in the HD group, and none in the LD group (P=0.01). Predisposing factors to SIBO were more frequent in the VHD group, while warfarin interfering variables were not. VHD patients were younger and had a higher plasma vitamin K1 (VK1) concentration (P>0.05). On the contrary, the plasma VK2 levels tended to be lower. This pilot study suggests that SIBO may increase a patient's warfarin dose requirement by increasing dietary VK1 absorption through the potentially damaged intestinal mucosa rather than increasing intestinal VK2 biosynthesis. Larger studies are needed to confirm these preliminary data and to evaluate the effects of SIBO decontamination on warfarin dosage. PMID:20051286

  7. Pediatric Small Intestinal Bacterial Overgrowth in Low-Income Countries

    PubMed Central

    Donowitz, Jeffrey R.; Petri, William A.

    2015-01-01

    Small intestine bacterial overgrowth (SIBO) occurs when colonic quantities of commensal bacteria are present in the small bowel. SIBO is associated with conditions of disrupted GI motility leading to stasis of luminal contents. Recent data show that SIBO is also found in children living in unsanitary conditions that do not have access to clean water. SIBO leads to impaired micronutrient absorption and increased GI permeability, both of which may contribute to growth stunting in children. SIBO also disrupts mucosal immunity and has been implicated in oral vaccination underperformance and the development of celiac disease. SIBO in the setting of the impoverished human habitat may be an under recognized cause of pediatric morbidity and mortality in the developing world. PMID:25486880

  8. Lactobacillus rhamnosus GG Treatment Potentiates Intestinal Hypoxia-Inducible Factor, Promotes Intestinal Integrity and Ameliorates Alcohol-Induced Liver Injury

    PubMed Central

    Wang, Yuhua; Kirpich, Irina; Liu, Yanlong; Ma, Zhenhua; Barve, Shirish; McClain, Craig J.; Feng, Wenke

    2011-01-01

    Gut-derived endotoxin is a critical factor in the development and progression of alcoholic liver disease (ALD). Probiotics can treat alcohol-induced liver injury associated with gut leakiness and endotoxemia in animal models, as well as in human ALD; however, the mechanism or mechanisms of their beneficial action are not well defined. We hypothesized that alcohol impairs the adaptive response-induced hypoxia-inducible factor (HIF) and that probiotic supplementation could attenuate this impairment, restoring barrier function in a mouse model of ALD by increasing HIF-responsive proteins (eg, intestinal trefoil factor) and reversing established ALD. C57BJ/6N mice were fed the Lieber DeCarli diet containing 5% alcohol for 8 weeks. Animals received Lactobacillus rhamnosus GG (LGG) supplementation in the last 2 weeks. LGG supplementation significantly reduced alcohol-induced endotoxemia and hepatic steatosis and improved liver function. LGG restored alcohol-induced reduction of HIF-2α and intestinal trefoil factor levels. In vitro studies using the Caco-2 cell culture model showed that the addition of LGG supernatant prevented alcohol-induced epithelial monolayer barrier dysfunction. Furthermore, gene silencing of HIF-1α/2α abolished the LGG effects, indicating that the protective effect of LGG is HIF-dependent. The present study provides a mechanistic insight for utilization of probiotics for the treatment of ALD, and suggests a critical role for intestinal hypoxia and decreased trefoil factor in the development of ALD. PMID:22093263

  9. Changes in intestinal bacterial communities are closely associated with shrimp disease severity.

    PubMed

    Xiong, Jinbo; Wang, Kai; Wu, Jinfeng; Qiuqian, Linglin; Yang, Kunjie; Qian, Yunxia; Zhang, Demin

    2015-08-01

    Increasing evidence has revealed a close association between intestinal bacterial communities and human health. However, given that host phylogeny shapes the composition of intestinal microbiota, it is unclear whether changes in intestinal microbiota structure in relation to shrimp health status. In this study, we collected shrimp and seawater samples from ponds with healthy and diseased shrimps to understand variations in bacterial communities among habitats (water and intestine) and/or health status. The bacterial communities were clustered according to the original habitat and health status. Habitat and health status constrained 14.6 and 7.7 % of the variation in bacterial communities, respectively. Changes in shrimp intestinal bacterial communities occurred in parallel with changes in disease severity, reflecting the transition from a healthy to a diseased state. This pattern was further evidenced by 38 bacterial families that were significantly different in abundance between healthy and diseased shrimps; moderate changes were observed in shrimps with sub-optimal health. In addition, within a given bacterial family, the patterns of enrichment or decrease were consistent with the known functions of those bacteria. Furthermore, the identified 119 indicator taxa exhibited a discriminative pattern similar to the variation in the community as a whole. Overall, this study suggests that changes in intestinal bacterial communities are closely associated with the severity of shrimp disease and that indicator taxa can be used to evaluate shrimp health status. PMID:25947250

  10. Comparison of intestinal bacterial communities in grass carp, Ctenopharyngodon idellus, from two different habitats

    NASA Astrophysics Data System (ADS)

    Ni, Jiajia; Yu, Yuhe; Zhang, Tanglin; Gao, Lei

    2012-09-01

    The intestinal bacteria of vertebrates form a close relationship with their host. External and internal conditions of the host, including its habitat, affect the intestinal bacterial community. Similarly, the intestinal bacterial community can, in turn, influence the host, particularly with respect to disease resistance. We compared the intestinal bacterial communities of grass carp that were collected from farm-ponds or a lake. We conducted denaturing gradient gel electrophoresis of amplified 16S rRNA genes, from which 66 different operational taxonomic units were identified. Using both the unweighted pair-group method with arithmetic means clustering and principal component analysis ordination, we found that the intestinal bacterial communities from the two groups of pond fish were clustered together and inset into the clusters of wild fish, except for DF-7, and there was no significant correlation between genetic diversity of grass carp and their intestinal bacterial communities (Mantel one-tailed test, R=0.157, P=0.175). Cetobacterium appeared more frequently in the intestine of grass carp collected from pond. A more thorough understanding of the role played by intestinal microbiota on fish health would be of considerable benefit to the aquaculture industry.

  11. The Effects of Alcohol Intoxication and Burn Injury on the Expression of Claudins and Mucins in the Small and Large Intestines.

    PubMed

    Hammer, Adam M; Khan, Omair M; Morris, Niya L; Li, Xiaoling; Movtchan, Nellie V; Cannon, Abigail R; Choudhry, Mashkoor A

    2016-01-01

    Alcohol intoxication at the time of burn injury exacerbates postburn pathogenesis. Recent findings suggest gut barrier integrity is compromised after combined alcohol and burn insult, which could contribute to these complications. Tight junction proteins and mucins play critical roles in keeping the gut barrier intact. Therefore, the goal of this study was to examine the effects of alcohol and burn injury on claudin and mucin expression in the intestines. We also evaluated if the combined insult differentially influences their expression in the small and large intestines. Male C57BL/6 mice were given a single dose of 2.9 g/kg ethanol before an approximately 12.5% body area burn. One and three days after injury, we profiled expression of several tight junction proteins, mucin, and bacterial 16S rRNA genes in the small and large intestines, using qPCR. We observed >50% decrease in claudin-4 and claudin-8 genes in both ileal and colonic epithelial cells 1 day after injury. Claudin-2 was significantly upregulated, and occludin was downregulated in the small intestine 1 day after injury. Mucin-3 expression was substantially elevated (>50%) in the small intestine, whereas mucin-2 and mucin-4 were considerably diminished in the colon (>50%) 1 day after injury. Most of the parameters were normalized to sham levels on day 3, except for mucin-3 and claudin-8, which remained decreased in the large intestine. Neither alcohol nor burn alone resulted in changes in junction or mucin gene expression compared to shams. This was accompanied with increases in the family of Gram-negative bacteria, Enterobacteriaceae, in both the small and the large intestines 1 day after injury. These findings suggest that alcohol and burn injury disrupts the normal gut microbiota and alters tight junction and mucin expression in the small and large intestines. PMID:26368926

  12. Pentanol and Benzyl Alcohol Attack Bacterial Surface Structures Differently.

    PubMed

    Yano, Takehisa; Miyahara, Yoshiko; Morii, Noriyuki; Okano, Tetsuya; Kubota, Hiromi

    2015-01-01

    The genus Methylobacterium tolerates hygiene agents like benzalkonium chloride (BAC), and infection with this organism is an important public health issue. Here, we found that the combination of BAC with particular alcohols at nonlethal concentrations in terms of their solitary uses significantly reduced bacterial viability after only 5 min of exposure. Among the alcohols, Raman spectroscopic analyses showed that pentanol (pentyl alcohol [PeA]) and benzyl alcohol (BzA) accelerated the cellular accumulation of BAC. Fluorescence spectroscopic assays and morphological assays with giant vesicles indicated that PeA rarely attacked membrane structures, while BzA increased the membrane fluidity and destabilized the structures. Other fluorescent spectroscopic assays indicated that PeA and BzA inactivate bacterial membrane proteins, including an efflux pump for BAC transportation. These findings suggested that the inactivation of membrane proteins by PeA and BzA led to the cellular accumulation but that only BzA also enhanced BAC penetration by membrane fluidization at nonlethal concentrations. PMID:26519389

  13. Breath testing for small intestinal bacterial overgrowth: maximizing test accuracy.

    PubMed

    Saad, Richard J; Chey, William D

    2014-12-01

    The diagnosis of small intestinal bacterial overgrowth (SIBO) has increased considerably owing to a growing recognition of its association with common bowel symptoms including chronic diarrhea, bloating, abdominal distention, and the irritable bowel syndrome. Ideally, an accurate and objective diagnosis of SIBO should be established before initiating antibiotic treatment. Unfortunately, no perfect test exists for the diagnosis of SIBO. The current gold standard, small-bowel aspiration and quantitative culture, is limited by its high cost, invasive nature, lack of standardization, sampling error, and need for dedicated infrastructure. Although not without shortcomings, hydrogen breath testing provides the simplest noninvasive and widely available diagnostic modality for suspected SIBO. Carbohydrates such as lactulose and glucose are the most widely used substrates in hydrogen breath testing, with glucose arguably providing greater testing accuracy. Lactose, fructose, and sorbitol should not be used as substrates in the assessment of suspected SIBO. The measurement of methane in addition to hydrogen can increase the sensitivity of breath testing for SIBO. Diagnostic accuracy of hydrogen breath testing in SIBO can be maximized by careful patient selection for testing, proper test preparation, and standardization of test performance as well as test interpretation. PMID:24095975

  14. Meta-analysis: antibiotic therapy for small intestinal bacterial overgrowth

    PubMed Central

    Shah, Shailja C.; Day, Lukejohn W.; Somsouk, Ma; Sewell, Justin L.

    2013-01-01

    Background Small intestinal bacterial overgrowth (SIBO) is an under-recognized diagnosis with important clinical implications when untreated. However, optimal treatment regimen remains unclear. Aim Systematic review and meta-analysis to compare clinical effectiveness of antibiotic therapies for treatment of symptomatic patients with documented SIBO. Methods Four databases were searched to identify clinical trials comparing effectiveness of: (1) different antibiotics, (2) different doses of the same antibiotic, and (3) antibiotics compared with placebo. Data were independently extracted according to predetermined inclusion and exclusion criteria. Study quality was independently assessed. Primary outcome was normalization of post-treatment breath testing. Secondary outcome was post-treatment clinical response. Results Of 1,356 articles identified, ten met inclusion criteria. Rifaximin was the most commonly studied antibiotic (8 studies) with overall breath test normalization rate of 49.5% (95% CI 44.055.1). Antibiotic efficacy varied by antibiotic regimen and dose. Antibiotics were more effective than placebo, with a combined breath test normalization rate of 51.1% (95% CI 46.755.5) for antibiotics compared with 9.8% (95% CI 4.617.8) for placebo. Meta-analysis of 4 studies favored antibiotics over placebo for breath test normalization with odds ratio 2.55 (95% CI 1.295.04). Clinical response was heterogeneously evaluated among six studies, but tended to correlate with breath test normalization. Conclusions Antibiotics appear to be more effective than placebo for breath test normalization in patients with symptoms attributable to SIBO, and breath test normalization may correlate with clinical response. Studies were limited by modest quality, small sample size, and heterogeneous design. Additional higher-quality clinical trials of SIBO therapy are warranted. PMID:24004101

  15. Intestinal alkaline phosphatase promotes gut bacterial growth by reducing the concentration of luminal nucleotide triphosphates.

    PubMed

    Malo, Madhu S; Moaven, Omeed; Muhammad, Nur; Biswas, Brishti; Alam, Sayeda N; Economopoulos, Konstantinos P; Gul, Sarah Shireen; Hamarneh, Sulaiman R; Malo, Nondita S; Teshager, Abeba; Mohamed, Mussa M Rafat; Tao, Qingsong; Narisawa, Sonoko; Milln, Jos Luis; Hohmann, Elizabeth L; Warren, H Shaw; Robson, Simon C; Hodin, Richard A

    2014-05-15

    The intestinal microbiota plays a pivotal role in maintaining human health and well-being. Previously, we have shown that mice deficient in the brush-border enzyme intestinal alkaline phosphatase (IAP) suffer from dysbiosis and that oral IAP supplementation normalizes the gut flora. Here we aimed to decipher the molecular mechanism by which IAP promotes bacterial growth. We used an isolated mouse intestinal loop model to directly examine the effect of exogenous IAP on the growth of specific intestinal bacterial species. We studied the effects of various IAP targets on the growth of stool aerobic and anaerobic bacteria as well as on a few specific gut organisms. We determined the effects of ATP and other nucleotides on bacterial growth. Furthermore, we examined the effects of IAP on reversing the inhibitory effects of nucleotides on bacterial growth. We have confirmed that local IAP bioactivity creates a luminal environment that promotes the growth of a wide range of commensal organisms. IAP promotes the growth of stool aerobic and anaerobic bacteria and appears to exert its growth promoting effects by inactivating (dephosphorylating) luminal ATP and other luminal nucleotide triphosphates. We observed that compared with wild-type mice, IAP-knockout mice have more ATP in their luminal contents, and exogenous IAP can reverse the ATP-mediated inhibition of bacterial growth in the isolated intestinal loop. In conclusion, IAP appears to promote the growth of intestinal commensal bacteria by inhibiting the concentration of luminal nucleotide triphosphates. PMID:24722905

  16. Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress

    PubMed Central

    Zareie, M; Johnson‐Henry, K; Jury, J; Yang, P‐C; Ngan, B‐Y; McKay, D M; Soderholm, J D; Perdue, M H; Sherman, P M

    2006-01-01

    Background and aim Chronic psychological stress, including water avoidance stress (WAS), induces intestinal mucosal barrier dysfunction and impairs mucosal defences against luminal bacteria. The aim of this study was to determine the ability of a defined probiotic regimen to prevent WAS induced intestinal pathophysiology. Methods Male rats were subjected to either WAS or sham stress for one hour per day for 10 consecutive days. Additional animals received seven days of Lactobacillus helveticus and L rhamnosus in the drinking water prior to stress and remained on these probiotics for the duration of the study. Rats were then sacrificed, intestinal segments assessed in Ussing chambers, and mesenteric lymph nodes cultured to determine bacterial translocation. Results All animals remained healthy for the duration of the study. Chronic WAS induced excess ion secretion (elevated baseline short circuit current) and barrier dysfunction (increased conductance) in both the ileum and colon, associated with increased bacterial adhesion and penetration into surface epithelial cells. Approximately 70% of rats subjected to WAS had bacterial translocation to mesenteric lymph nodes while there was no bacterial translocation in controls. Probiotic pretreatment alone had no effect on intestinal barrier function. However, WAS induced increased ileal short circuit current was reduced with probiotics whereas there was no impact on altered conductance. Pretreatment of animals with probiotics also completely abrogated WAS induced bacterial adhesion and prevented translocation of bacteria to mesenteric lymph nodes. Conclusion These findings indicate that probiotics can prevent chronic stress induced intestinal abnormalities and, thereby, exert beneficial effects in the intestinal tract. PMID:16638791

  17. Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress.

    TOXLINE Toxicology Bibliographic Information

    Zareie M; Johnson-Henry K; Jury J; Yang PC; Ngan BY; McKay DM; Soderholm JD; Perdue MH; Sherman PM

    2006-11-01

    BACKGROUND AND AIMS: Chronic psychological stress, including water avoidance stress (WAS), induces intestinal mucosal barrier dysfunction and impairs mucosal defences against luminal bacteria. The aim of this study was to determine the ability of a defined probiotic regimen to prevent WAS induced intestinal pathophysiology.METHODS: Male rats were subjected to either WAS or sham stress for one hour per day for 10 consecutive days. Additional animals received seven days of Lactobacillus helveticus and L rhamnosus in the drinking water prior to stress and remained on these probiotics for the duration of the study. Rats were then sacrificed, intestinal segments assessed in Ussing chambers, and mesenteric lymph nodes cultured to determine bacterial translocation.RESULTS: All animals remained healthy for the duration of the study. Chronic WAS induced excess ion secretion (elevated baseline short circuit current) and barrier dysfunction (increased conductance) in both the ileum and colon, associated with increased bacterial adhesion and penetration into surface epithelial cells. Approximately 70% of rats subjected to WAS had bacterial translocation to mesenteric lymph nodes while there was no bacterial translocation in controls. Probiotic pretreatment alone had no effect on intestinal barrier function. However, WAS induced increased ileal short circuit current was reduced with probiotics whereas there was no impact on altered conductance. Pretreatment of animals with probiotics also completely abrogated WAS induced bacterial adhesion and prevented translocation of bacteria to mesenteric lymph nodes.CONCLUSION: These findings indicate that probiotics can prevent chronic stress induced intestinal abnormalities and, thereby, exert beneficial effects in the intestinal tract.

  18. Intestinal alkaline phosphatase promotes gut bacterial growth by reducing the concentration of luminal nucleotide triphosphates

    PubMed Central

    Malo, Madhu S.; Moaven, Omeed; Muhammad, Nur; Biswas, Brishti; Alam, Sayeda N.; Economopoulos, Konstantinos P.; Gul, Sarah Shireen; Hamarneh, Sulaiman R.; Malo, Nondita S.; Teshager, Abeba; Mohamed, Mussa M. Rafat; Tao, Qingsong; Narisawa, Sonoko; Milln, Jos Luis; Hohmann, Elizabeth L.; Warren, H. Shaw; Robson, Simon C.

    2014-01-01

    The intestinal microbiota plays a pivotal role in maintaining human health and well-being. Previously, we have shown that mice deficient in the brush-border enzyme intestinal alkaline phosphatase (IAP) suffer from dysbiosis and that oral IAP supplementation normalizes the gut flora. Here we aimed to decipher the molecular mechanism by which IAP promotes bacterial growth. We used an isolated mouse intestinal loop model to directly examine the effect of exogenous IAP on the growth of specific intestinal bacterial species. We studied the effects of various IAP targets on the growth of stool aerobic and anaerobic bacteria as well as on a few specific gut organisms. We determined the effects of ATP and other nucleotides on bacterial growth. Furthermore, we examined the effects of IAP on reversing the inhibitory effects of nucleotides on bacterial growth. We have confirmed that local IAP bioactivity creates a luminal environment that promotes the growth of a wide range of commensal organisms. IAP promotes the growth of stool aerobic and anaerobic bacteria and appears to exert its growth promoting effects by inactivating (dephosphorylating) luminal ATP and other luminal nucleotide triphosphates. We observed that compared with wild-type mice, IAP-knockout mice have more ATP in their luminal contents, and exogenous IAP can reverse the ATP-mediated inhibition of bacterial growth in the isolated intestinal loop. In conclusion, IAP appears to promote the growth of intestinal commensal bacteria by inhibiting the concentration of luminal nucleotide triphosphates. PMID:24722905

  19. Diagnosis and treatment of small intestinal bacterial overgrowth.

    PubMed

    Ponziani, Francesca Romana; Gerardi, Viviana; Gasbarrini, Antonio

    2016-02-01

    A huge number of bacteria are hosted in the gastrointestinal tract, following a gradient increasing towards the colon. Gastric acid secretion and intestinal clearance provide the qualitative and quantitative partitioning of intestinal bacteria; small intestinal bacteria overgrowth (SIBO) occurs when these barrier mechanisms fail. Diagnosis of SIBO is challenging due to the low specificity of symptoms, the frequent association with other diseases of the gastrointestinal tract and the absence of optimal objective diagnostic tests. The therapeutic approach to SIBO is oriented towards resolving predisposing conditions, and is supported by antibiotic treatment to restore the normal small intestinal microflora and by modifications of dietary habits for symptomatic relief. In the near future, metagenomics and metabolomics will help to overcome the uncertainties of SIBO diagnosis and the pitfalls of therapeutic management, allowing the design of a personalized strategy based on the direct insight into the small intestinal microbial community. PMID:26636484

  20. Lactobacillus rhamnosus GG supernatant promotes intestinal barrier function, balances Treg and TH17 cells and ameliorates hepatic injury in a mouse model of chronic-binge alcohol feeding.

    PubMed

    Chen, Rui-Cong; Xu, Lan-Man; Du, Shan-Jie; Huang, Si-Si; Wu, He; Dong, Jia-Jia; Huang, Jian-Rong; Wang, Xiao-Dong; Feng, Wen-Ke; Chen, Yong-Ping

    2016-01-22

    Impaired intestinal barrier function plays a critical role in alcohol-induced hepatic injury, and the subsequent excessive absorbed endotoxin and bacterial translocation activate the immune response that aggravates the liver injury. Lactobacillus rhamnosus GG supernatant (LGG-s) has been suggested to improve intestinal barrier function and alleviate the liver injury induced by chronic and binge alcohol consumption, but the underlying mechanisms are still not clear. In this study, chronic-binge alcohol fed model was used to determine the effects of LGG-s on the prevention of alcoholic liver disease in C57BL/6 mice and investigate underlying mechanisms. Mice were fed Lieber-DeCarli diet containing 5% alcohol for 10 days, and one dose of alcohol was gavaged on Day 11. In one group, LGG-s was supplemented along with alcohol. Control mice were fed isocaloric diet. Nine hours later the mice were sacrificed for analysis. Chronic-binge alcohol exposure induced an elevation in liver enzymes, steatosis and morphology changes, while LGG-s supplementation attenuated these changes. Treatment with LGG-s significantly improved intestinal barrier function reflected by increased mRNA expression of tight junction (TJ) proteins and villus-crypt histology in ileum, and decreased Escherichia coli (E. coli) protein level in liver. Importantly, flow cytometry analysis showed that alcohol reduced Treg cell population while increased TH17 cell population as well as IL-17 secretion, which was reversed by LGG-s administration. In conclusion, our findings indicate that LGG-s is effective in preventing chronic-binge alcohol exposure-induced liver injury and shed a light on the importance of the balance of Treg and TH17 cells in the role of LGG-s application. PMID:26617183

  1. Serum and intestinal secretory IgA in alcoholic cirrhosis of the liver.

    PubMed Central

    Pelletier, G; Briantais, M J; Buffet, C; Pillot, J; Etienne, J P

    1982-01-01

    Serum and intestinal secretory IgA (sIgA) were investigated in control subjects and patients with alcoholic cirrhosis of the liver. Intestinal secretions were sampled by intraluminal perfusion with a balloon catheter. Monomeric IgA and sIgA were assayed by reversed radial immunodiffusion and nephelometry after separation by Ultrogel column filtration. High levels of serum sIgA were found only in patients with severe cirrhosis accompanied by jaundice. The intestinal rate of secretion of sIgA measured in these patients was significantly lower than that observed in either controls or the patients with compensated cirrhosis. Such an intestinal sIgA deficiency, which could be explained either by a fall in small intestinal immunocyte synthesis or by a defect in the transenterocyte transport system, could be partially responsible for the high incidence of intestinal infection observed in severe cirrhosis. PMID:7076021

  2. Bacterial Population in Intestines of the Black Tiger Shrimp (Penaeus monodon) under Different Growth Stages

    PubMed Central

    Rungrassamee, Wanilada; Klanchui, Amornpan; Chaiyapechara, Sage; Maibunkaew, Sawarot; Tangphatsornruang, Sithichoke; Jiravanichpaisal, Pikul; Karoonuthaisiri, Nitsara

    2013-01-01

    Intestinal bacterial communities in aquaculture have been drawn to attention due to potential benefit to their hosts. To identify core intestinal bacteria in the black tiger shrimp (Penaeus monodon), bacterial populations of disease-free shrimp were characterized from intestines of four developmental stages (15-day-old post larvae (PL15), 1- (J1), 2- (J2), and 3-month-old (J3) juveniles) using pyrosequencing, real-time PCR and denaturing gradient gel electrophoresis (DGGE) approaches. A total of 25,121 pyrosequencing reads (reading length = 442±24 bases) were obtained, which were categorized by barcode for PL15 (7,045 sequences), J1 (3,055 sequences), J2 (13,130 sequences) and J3 (1,890 sequences). Bacteria in the phyla Bacteroides, Firmicutes and Proteobacteria were found in intestines at all four growth stages. There were 88, 14, 27, and 20 bacterial genera associated with the intestinal tract of PL15, J1, J2 and J3, respectively. Pyrosequencing analysis revealed that Proteobacteria (class Gammaproteobacteria) was a dominant bacteria group with a relative abundance of 89% for PL15 and 99% for J1, J2 and J3. Real-time PCR assay also confirmed that Gammaproteobacteria had the highest relative abundance in intestines from all growth stages. Intestinal bacterial communities from the three juvenile stages were more similar to each other than that of the PL shrimp based on PCA analyses of pyrosequencing results and their DGGE profiles. This study provides descriptive bacterial communities associated to the black tiger shrimp intestines during these growth development stages in rearing facilities. PMID:23577162

  3. Cd1d-dependent regulation of bacterial colonization in the intestine of mice

    PubMed Central

    Nieuwenhuis, Edward E.S.; Matsumoto, Tetsuya; Lindenbergh, Dicky; Willemsen, Rob; Kaser, Arthur; Simons-Oosterhuis, Ytje; Brugman, Sylvia; Yamaguchi, Keizo; Ishikawa, Hiroki; Aiba, Yuji; Koga, Yasuhiro; Samsom, Janneke N.; Oshima, Kenshiro; Kikuchi, Mami; Escher, Johanna C.; Hattori, Masahira; Onderdonk, Andrew B.; Blumberg, Richard S.

    2009-01-01

    The accumulation of certain species of bacteria in the intestine is involved in both tissue homeostasis and immune-mediated pathologies. The host mechanisms involved in controlling intestinal colonization with commensal bacteria are poorly understood. We observed that under specific pathogenfree or germ-free conditions, intragastric administration of Pseudomonas aeruginosa, E. coli, Staphylococcus aureus, or Lactobacillus gasseri resulted in increased colonization of the small intestine and bacterial translocation in mice lacking Cd1d, an MHC class Ilike molecule, compared with WT mice. In contrast, activation of Cd1d-restricted T cells (NKT cells) with ?-galactosylceramide caused diminished intestinal colonization with the same bacterial strains. We also found prominent differences in the composition of intestinal microbiota, including increased adherent bacteria, in Cd1d/ mice in comparison to WT mice under specific pathogenfree conditions. Germ-free Cd1d/ mice exhibited a defect in Paneth cell granule ultrastructure and ability to degranulate after bacterial colonization. In vitro, NKT cells were shown to induce the release of lysozyme from intestinal crypts. Together, these data support a role for Cd1d in regulating intestinal colonization through mechanisms that include the control of Paneth cell function. PMID:19349688

  4. Comparative analysis of the composition of intestinal bacterial communities in Dastarcus helophoroides fed different diets.

    PubMed

    Wang, Wei-Wei; He, Cai; Cui, Jun; Wang, Hai-Dong; Li, Meng-Lou

    2014-01-01

    The diversity of the intestinal bacterial communities in Dastarcus helophoroides (Fairmaire) (Coleoptera: Bothrideridae) larvae and adults was assayed by PCR-DGGE to determine whether different artificial diets could influence these bacterial communities. Two diets were used for feeding the larvae and four for the adults. Escherichia, Desemzia, Staphylococcus, Asticcacaulis, Cellvibrio, Aurantimonas, and Planomicrobium were isolated from the gut of the adults, with Escherichia and Staphylococcus being the main bacterial communities, and the quantities of intestinal bacterial were different in the adults fed different diets. Specifically, the amount of intestinal bacteria from the adults fed different diets had the following ranking according to the major component of the diet: ant powder > darkling beetle pupa powder > cricket powder > silkworm pupa powder. Escherichia, Bacillus, Staphylococcus, Kurthia, Planococcaceae, Ralstonia, Leptothrix, Acinetobacter, and Pseudomonas were isolated from the gut of the larvae. The quantity of intestinal bacteria from the larvae fed the darkling beetle pupae was greater than that from the larvae fed other artificial diets. This study, for the first time, investigated the effect of artificial diets on the bacterial community and the intestinal microbial diversity of D. helophoroides. PMID:25373234

  5. Comparative Analysis of the Composition of Intestinal Bacterial Communities in Dastarcus helophoroides Fed Different Diets

    PubMed Central

    Wang, Wei-Wei; He, Cai; Cui, Jun; Wang, Hai-Dong; Li, Meng-Lou

    2014-01-01

    The diversity of the intestinal bacterial communities in Dastarcus helophoroides (Fairmaire) (Coleoptera: Bothrideridae) larvae and adults was assayed by PCR-DGGE to determine whether different artificial diets could influence these bacterial communities. Two diets were used for feeding the larvae and four for the adults. Escherichia, Desemzia, Staphylococcus, Asticcacaulis, Cellvibrio, Aurantimonas, and Planomicrobium were isolated from the gut of the adults, with Escherichia and Staphylococcus being the main bacterial communities, and the quantities of intestinal bacterial were different in the adults fed different diets. Specifically, the amount of intestinal bacteria from the adults fed different diets had the following ranking according to the major component of the diet: ant powder > darkling beetle pupa powder > cricket powder > silkworm pupa powder. Escherichia, Bacillus, Staphylococcus, Kurthia, Planococcaceae, Ralstonia, Leptothrix, Acinetobacter, and Pseudomonas were isolated from the gut of the larvae. The quantity of intestinal bacteria from the larvae fed the darkling beetle pupae was greater than that from the larvae fed other artificial diets. This study, for the first time, investigated the effect of artificial diets on the bacterial community and the intestinal microbial diversity of D. helophoroides. PMID:25199878

  6. Comparative analysis of the composition of intestinal bacterial communities in Dastarcus helophoroides fed different diets.

    PubMed

    Wang, Wei-Wei; He, Cai; Cui, Jun; Wang, Hai-Dong; Li, Meng-Lou

    2014-01-01

    The diversity of the intestinal bacterial communities in Dastarcus helophoroides (Fairmaire) (Coleoptera: Bothrideridae) larvae and adults was assayed by PCR-DGGE to determine whether different artificial diets could influence these bacterial communities. Two diets were used for feeding the larvae and four for the adults. Escherichia, Desemzia, Staphylococcus, Asticcacaulis, Cellvibrio, Aurantimonas, and Planomicrobium were isolated from the gut of the adults, with Escherichia and Staphylococcus being the main bacterial communities, and the quantities of intestinal bacterial were different in the adults fed different diets. Specifically, the amount of intestinal bacteria from the adults fed different diets had the following ranking according to the major component of the diet: ant powder > darkling beetle pupa powder > cricket powder > silkworm pupa powder. Escherichia, Bacillus, Staphylococcus, Kurthia, Planococcaceae, Ralstonia, Leptothrix, Acinetobacter, and Pseudomonas were isolated from the gut of the larvae. The quantity of intestinal bacteria from the larvae fed the darkling beetle pupae was greater than that from the larvae fed other artificial diets. This study, for the first time, investigated the effect of artificial diets on the bacterial community and the intestinal microbial diversity of D. helophoroides. PMID:25199878

  7. Intestinal permeability and bacterial translocation following small bowel transplantation in the rat

    SciTech Connect

    Grant, D.; Hurlbut, D.; Zhong, R.; Wang, P.Z.; Chen, H.F.; Garcia, B.; Behme, R.; Stiller, C.; Duff, J. )

    1991-08-01

    In addition to its role in absorbing nutrients, the intestinal mucosa provides an important barrier against toxins and bacteria in the bowel lumen. The present study evaluated gut barrier function following orthotopic (in continuity) intestinal grafting in rats. Graft histology, intestinal permeability, and bacterial translocation to the grafted mesenteric lymph nodes, the host's liver, and the host's spleen were assessed on the 3rd, 5th, and 7th postoperative days. The study group received no immunosuppression after allotransplantation. The two control groups included rats with isografts and rats with cyclosporine-treated allografts. On the 7th POD, the study animals had moderate transmural inflammation due to rejection, with normal histology in the isografts and CsA-treated allografts; increased intestinal permeability, measured by urinary excretion of oral 51Cr-EDTA (P less than 0.01); and increased number of bacteria in the MLN and spleen (P less than 0.05). The number of bacteria in the MLN and spleen of the study group positively correlated with the changes in intestinal permeability (P less than 0.05). Rejection of the orthotopic intestinal graft leads to increased intestinal permeability and bacterial translocation from the lumen of the graft to the host's reticuloendothelial system. Measures to improve gut barrier function and antibiotic therapy during rejection episodes may help reduce the incidence of septic complications after intestinal grafting.

  8. Cohabitation in the Intestine: Interactions among Helminth Parasites, Bacterial Microbiota, and Host Immunity.

    PubMed

    Reynolds, Lisa A; Finlay, B Brett; Maizels, Rick M

    2015-11-01

    Both intestinal helminth parasites and certain bacterial microbiota species have been credited with strong immunomodulatory effects. Recent studies reported that the presence of helminth infection alters the composition of the bacterial intestinal microbiota and, conversely, that the presence and composition of the bacterial microbiota affect helminth colonization and persistence within mammalian hosts. This article reviews recent findings on these reciprocal relationships, in both human populations and mouse models, at the level of potential mechanistic pathways and the implications these bear for immunomodulatory effects on allergic and autoimmune disorders. Understanding the multidirectional complex interactions among intestinal microbes, helminth parasites, and the host immune system allows for a more holistic approach when using probiotics, prebiotics, synbiotics, antibiotics, and anthelmintics, as well as when designing treatments for autoimmune and allergic conditions. PMID:26477048

  9. Bacterial Community Assembly and Turnover within the Intestines of Developing Zebrafish

    PubMed Central

    Yan, Qingyun; van der Gast, Christopher J.; Yu, Yuhe

    2012-01-01

    Background The majority of animal associated microorganisms are present in digestive tract communities. These intestinal communities arise from selective pressures of the gut habitats as well as host's genotype are regarded as an extra ‘organ’ regulate functions that have not evolved wholly on the host. They are functionally essential in providing nourishment, regulating epithelial development, and influencing immunity in the vertebrate host. As vertebrates are born free of microorganisms, what is poorly understood is how intestinal bacterial communities assemble and develop in conjunction with the development of the host. Methodology/Principal Findings Set within an ecological framework, we investigated the bacterial community assembly and turnover within the intestinal habitats of developing zebrafish (from larvae to adult animals). Spatial and temporal species-richness relationships and Mantel and partial Mantel tests revealed that turnover was low and that richness and composition was best predicted by time and not intestinal volume (habitat size) or changes in food diet. We also observed that bacterial communities within the zebrafish intestines were deterministically assembled (reflected by the observed low turnover) switching to stochastic assembly in the later stages of zebrafish development. Conclusions/Significance This study is of importance as it provides a novel insight into how intestinal bacterial communities assemble in tandem with the host's development (from early to adult stages). It is our hope that by studying intestinal microbiota of this vertebrate model with such or some more refined approaches in the future could well provide ecological insights for clinical benefit. In addition, this study also adds to our still fledgling knowledge of how spatial and temporal species-richness relationships are shaped and provides further mounting evidence that bacterial community assembly and dynamics are shaped by both deterministic and stochastic considerations. PMID:22276219

  10. Identification of a Core Bacterial Community within the Large Intestine of the Horse

    PubMed Central

    Dougal, Kirsty; de la Fuente, Gabriel; Harris, Patricia A.; Girdwood, Susan E.; Pinloche, Eric; Newbold, C. Jamie

    2013-01-01

    The horse has a rich and complex microbial community within its gastrointestinal tract that plays a central role in both health and disease. The horse receives much of its dietary energy through microbial hydrolysis and fermentation of fiber predominantly in the large intestine/hindgut. The presence of a possible core bacterial community in the equine large intestine was investigated in this study. Samples were taken from the terminal ileum and 7 regions of the large intestine from ten animals, DNA extracted and the V1-V2 regions of 16SrDNA 454-pyrosequenced. A specific group of OTUs clustered in all ileal samples and a distinct and different signature existed for the proximal regions of the large intestine and the distal regions. A core group of bacterial families were identified in all gut regions with clear differences shown between the ileum and the various large intestine regions. The core in the ileum accounted for 32% of all sequences and comprised of only seven OTUs of varying abundance; the core in the large intestine was much smaller (5-15% of all sequences) with a much larger number of OTUs present but in low abundance. The most abundant member of the core community in the ileum was Lactobacillaceae, in the proximal large intestine the Lachnospiraceae and in the distal large intestine the Prevotellaceae. In conclusion, the presence of a core bacterial community in the large intestine of the horse that is made up of many low abundance OTUs may explain in part the susceptibility of horses to digestive upset. PMID:24204908

  11. The First Line of Defense: The Effects of Alcohol on Post-Burn Intestinal Barrier, Immune Cells, and Microbiome.

    PubMed

    Hammer, Adam M; Morris, Niya L; Earley, Zachary M; Choudhry, Mashkoor A

    2015-01-01

    Alcohol (ethanol) is one of the most globally abused substances, and is one of the leading causes of premature death in the world. As a result of its complexity and direct contact with ingested alcohol, the intestine represents the primary source from which alcohol-associated pathologies stem. The gut is the largest reservoir of bacteria in the body, and under healthy conditions, it maintains a barrier preventing bacteria from translocating out of the intestinal lumen. The intestinal barrier is compromised following alcohol exposure, which can lead to life-threatening systemic complications including sepsis and multiple organ failure. Furthermore, alcohol is a major confounding factor in pathology associated with trauma. Experimental data from both human and animal studies suggest that alcohol perturbs the intestinal barrier and its function, which is exacerbated by a "second hit" from traumatic injury. This article highlights the role of alcohol-mediated alterations of the intestinal epithelia and its defense against bacteria within the gut, and the impact of alcohol on intestinal immunity, specifically on T cells and neutrophils. Finally, it discusses how the gut microbiome both contributes to and protects the intestines from dysbiosis after alcohol exposure and trauma. PMID:26695746

  12. [Combination use of kampo-medicines and drugs affecting intestinal bacterial flora].

    PubMed

    Ishihara, Miya; Homma, Masato; Kuno, Eiko; Watanabe, Machiko; Kohda, Yukinao

    2002-09-01

    The intestinal bacteria, Eubacterium sp. and Bifidobacterium sp., participate in the metabolism of active kampo-ingredients, glycyrrhizin (GL), sennoside (SEN) and baicalin (BL). Since antibiotics and bacterial preparations, Bifidobacterium longum (LAC-B), Clostridium butyricum (MIYA-BM), and Streptococcus faecalis (BIOFERMIN), affect the bacterial population in intestinal bacterial flora, metabolism of the active kampo-ingredients in the bacterial flora may be altered by their combined administration. We investigated 1199 prescriptions including kampo-medicines for 308 patients. Combination use of kampo-medicines with antibiotics and bacterial preparations occurred with 7% and 10% of the kampo-prescription, respectively. Most antibiotics have activity against intestinal bacteria, except that cephems and macrolides are not active against to E. coli. This means that antibiotics may lower the metabolism of GL, SEN and BL when administered in combination. On the other hand, it is also highly possible that bacterial preparations increase the number of Eubacterium sp. and Bifidobacterium sp., resulting in enhanced metabolism of GL and SEN when they are used concomitantly with kampo-medicines. The present results suggested that the drug interactions of kampo-medicines with antibiotics and bacterial preparations should be confirmed in clinical studies. PMID:12235860

  13. The Role of Milk Sialyllactose in Intestinal Bacterial Colonization123

    PubMed Central

    Weiss, G. Adrienne; Hennet, Thierry

    2012-01-01

    Milk oligosaccharides influence the composition of intestinal microbiota and thereby mucosal inflammation. Some of the major milk oligosaccharides are ?2,3-sialyllactose (3SL) and ?2,6-sialyllactose, which are mainly produced by the sialyltransferases ST3GAL4 and ST6GAL1, respectively. Recently, we showed that mice fed milk deficient in 3SL were more resistant to dextran sulfate sodium-induced colitis. By contrast, the exposure to milk containing or deficient in 3SL had no impact on the development of mucosal leukocyte populations. Milk 3SL mainly affected the colonization of the intestine by clostridial cluster IV bacteria. PMID:22585928

  14. Bacterial community structures in honeybee intestines and their response to two insecticidal proteins.

    PubMed

    Babendreier, Dirk; Joller, David; Romeis, Jrg; Bigler, Franz; Widmer, Franco

    2007-03-01

    In this study, the effects of the Bt-toxin Cry1Ab and a soybean trypsin inhibitor (SBTI) on intestinal bacterial communities of adult honeybees (Apis mellifera) were investigated. It was hypothesized that changes in intestinal bacterial communities of honeybees may represent a sensitive indicator for altered intestinal physiology. Honeybees were fed in a laboratory set-up with maize pollen from the Bt-transgenic cultivar MON810 or from the non-transgenic near isoline. Purified Cry1Ab (0.0014% w/v) and SBTI (0.1% or 1% w/v) represented supplementary treatments. For comparison, free-flying honeybees from two locations in Switzerland were analysed. PCR-amplification of bacterial 16S rRNA gene fragments and terminal restriction fragment length polymorphism analyses revealed a total of 17 distinct terminal restriction fragments (T-RFs), which were highly consistent between laboratory-reared and free-flying honeybees. The T-RFs were affiliated to Alpha-, Beta-, and Gammaproteobacteria, to Firmicutes, and to Bacteriodetes. Neither Bt-maize pollen nor high concentrations of Cry1Ab significantly affected bacterial communities in honeybee intestines. Only the high concentration of SBTI significantly reduced the number of T-RFs detected in honeybee midguts, a concentration that also increases bee mortality. Therefore, total bacterial community structures may not be a sensitive indicator for providing evidence for the impact of insecticidal proteins on honeybees at sublethal levels. PMID:17381517

  15. Hemocompatibility study of a bacterial cellulose/polyvinyl alcohol nanocomposite.

    PubMed

    Leito, Alexandre F; Gupta, Swati; Silva, Joo Pedro; Reviakine, Ilya; Gama, Miguel

    2013-11-01

    Bacterial cellulose (BC) has been suggested to be a suitable biomaterial for the development of cardiovascular grafts. The combination of BC with polyvinyl alcohol (PVA) results in nanocomposites with improved properties. Surprisingly, there are very few studies on the BC-blood interaction. This is the focus of this paper. We present the first thorough assessment of the hemocompatibility of the BC/PVA nanocomposite. Whole blood clotting time, plasma recalcification, Factor XII activation, platelet adhesion and activation, hemolytic index and complement activation are all determined. The platelet activation profiles on BC and BC/PVA surfaces are comprehensively characterized. BC and BC/PVA outperformed ePTFE--used as a point of comparison--thus evidencing their suitability for cardiovascular applications. PMID:23880088

  16. The intestinal bacterial community in the food waste-reducing larvae of Hermetia illucens.

    PubMed

    Jeon, Hyunbum; Park, Soyoung; Choi, Jiyoung; Jeong, Gilsang; Lee, Sang-Beom; Choi, Youngcheol; Lee, Sung-Jae

    2011-05-01

    As it is known that food waste can be reduced by the larvae of Hermetia illucens (Black soldier fly, BSF), the scientific and commercial value of BSF larvae has increased recently. We hypothesised that the ability of catabolic degradation by BSF larvae might be due to intestinal microorganisms. Herein, we analysed the bacterial communities in the gut of BSF larvae by pyrosequencing of extracting intestinal metagenomic DNA from larvae that had been fed three different diets. The 16S rRNA sequencing results produced 9737, 9723 and 5985 PCR products from larval samples fed food waste, cooked rice and calf forage, respectively. A BLAST search using the EzTaxon program showed that the bacterial community in the gut of larvae fed three different diets was mainly composed of the four phyla with dissimilar proportions. Although the composition of the bacterial communities depended on the different nutrient sources, the identified bacterial strains in the gut of BSF larvae represented unique bacterial species that were unlike the intestinal microflora of other insects. Thus, our study analysed the structure of the bacterial communities in the gut of BSF larvae after three different feedings and assessed the application of particular bacteria for the efficient degradation of organic compounds. PMID:21267722

  17. Bacterial diversity in the intestine of young farmed puffer fish Takifugu rubripes

    NASA Astrophysics Data System (ADS)

    Li, Yanyu; Zhang, Tao; Zhang, Congyao; Zhu, Ying; Ding, Jianfeng; Ma, Yuexin

    2015-07-01

    The aim of the study was to examine the bacterial community associated with the intestinal mucus of young farmed puffer fish Takifugu rubripes. Polymerase chain reaction and partial 16S rDNA sequencing was performed on DNA from bacteria cultivated on Zobell 2216E medium. All the isolates were classified into two phyla—Proteobacteria and Firmicutes. Proteobacteria were the dominant, culturable intestinal microbiota (68.3%). At the genus level, Vibrio, Enterobacter, Bacillus, Pseudomonas, Exiguobacterium, Staphylococcus, Acinetobacter, Pseudoalteromonas and Shewanella were isolated from the intestine, with representatives of the genera Vibrio, Enterobacter and Bacillus accounting for 70.7% of the total. This is the first report of Enterobacter, Bacillus, Exiguobacterium and Staphylococcus as part of the intestinal bacterial microflora in T. rubripes. The profile of the culturable bacterial community differed between samples collected from the same tank at 2-month intervals, as indicated by Bray-Curtis and Sorensen indices, and the impact on the intestinal physiology and health of puffer fish requires further investigation.

  18. Curcumin utilizes the anti-inflammatory response pathway to protect the intestine against bacterial invasion

    PubMed Central

    Cho, Jin Ah

    2015-01-01

    BACKGROUND/OBJECTIVES Curcumin, a major component of the Curcuma species, contains antioxidant and anti-inflammatory properties. Although it was found to induce apoptosis in cancer cells, the functional role of curcumin as well as its molecular mechanism in anti-inflammatory response, particularly in intestinal cells, has been less investigated. The intestine epithelial barrier is the first barrier and the most important location for the substrate coming from the lumen of the gut. SUBJECTS/METHODS We administered curcumin treatment in the human intestinal epithelial cell lines, T84 and Caco-2. We examined endoplasmic reticulum (ER) stress response by thapsigargin, qPCR of XBP1 and BiP, electrophysiology by wild-type cholera toxin in the cells. RESULTS In this study, we showed that curcumin treatment reduces ER stress and thereby decreases inflammatory response in human intestinal epithelial cells. In addition, curcumin confers protection without damaging the membrane tight junction or actin skeleton change in intestine epithelial cells. Therefore, curcumin treatment protects the gut from bacterial invasion via reduction of ER stress and anti-inflammatory response in intestinal epithelial cells. CONCLUSIONS Taken together, our data demonstrate the important role of curcumin in protecting the intestine by modulating ER stress and inflammatory response post intoxication. PMID:25861416

  19. Bacterial dynamics in intestines of the black tiger shrimp and the Pacific white shrimp during Vibrio harveyi exposure.

    PubMed

    Rungrassamee, Wanilada; Klanchui, Amornpan; Maibunkaew, Sawarot; Karoonuthaisiri, Nitsara

    2016-01-01

    The intestinal microbiota play important roles in health of their host, contributing to maintaining the balance and resilience against pathogen. To investigate effects of pathogen to intestinal microbiota, the bacterial dynamics upon a shrimp pathogen, Vibrio harveyi, exposures were determined in two economically important shrimp species; the black tiger shrimp (BT) and the Pacific white shrimp (PW). Both shrimp species were reared under the same diet and environmental conditions. Shrimp survival rates after the V. harveyi exposure revealed that the PW shrimp had a higher resistance to the pathogen than the BT shrimp. The intestinal bacterial profiles were determined by denaturing gradient gel electrophoresis (DGGE) and barcoded pyrosequencing of the 16S rRNA sequences under no pathogen challenge control and under pathogenic V. harveyi challenge. The DGGE profiles showed that the presence of V. harveyi altered the intestinal bacterial patterns in comparison to the control in BT and PW intestines. This implies that bacterial balance in shrimp intestines was disrupted in the presence of V. harveyi. The barcoded pyrosequencing analysis showed the similar bacterial community structures in intestines of BT and PW shrimp under a normal condition. However, during the time course exposure to V. harveyi, the relative abundance of bacteria belong to Vibrio genus was higher in the BT intestines at 12h after the exposure, whereas relative abundance of vibrios was more stable in PW intestines. The principle coordinates analysis based on weighted-UniFrac analysis showed that intestinal bacterial population in the BT shrimp lost their ability to restore their bacterial balance during the 72-h period of exposure to the pathogen, while the PW shrimp were able to reestablish their bacterial population to resemble those seen in the unexposed control group. This observation of bacterial disruption might correlate to different mortality rates observed between the two shrimp species. Our findings provide evidence of intestinal bacterial population altered by a presence of the pathogen in shrimp intestines and intestinal bacterial stability might provide colonization resistance against the invading pathogen in the host shrimp. Hence, intestinal microbial ecology management may potentially contribute to disease prevention in aquaculture. PMID:26585302

  20. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation

    PubMed Central

    Jenq, Robert R.; Perales, Miguel-Angel; Littmann, Eric R.; Morjaria, Sejal; Ling, Lilan; No, Daniel; Gobourne, Asia; Viale, Agnes; Dahi, Parastoo B.; Ponce, Doris M.; Barker, Juliet N.; Giralt, Sergio; van den Brink, Marcel; Pamer, Eric G.

    2014-01-01

    Highly diverse bacterial populations inhabit the gastrointestinal tract and modulate host inflammation and promote immune tolerance. In allogeneic hematopoietic stem cell transplantation (allo-HSCT), the gastrointestinal mucosa is damaged, and colonizing bacteria are impacted, leading to an impaired intestinal microbiota with reduced diversity. We examined the impact of intestinal diversity on subsequent mortality outcomes following transplantation. Fecal specimens were collected from 80 recipients of allo-HSCT at the time of stem cell engraftment. Bacterial 16S rRNA gene sequences were characterized, and microbial diversity was estimated using the inverse Simpson index. Subjects were classified into high, intermediate, and low diversity groups and assessed for differences in outcomes. Mortality outcomes were significantly worse in patients with lower intestinal diversity; overall survival at 3 years was 36%, 60%, and 67% for low, intermediate, and high diversity groups, respectively (P = .019, log-rank test). Low diversity showed a strong effect on mortality after multivariate adjustment for other clinical predictors (transplant related mortality: adjusted hazard ratio, 5.25; P = .014). In conclusion, the diversity of the intestinal microbiota at engraftment is an independent predictor of mortality in allo-HSCT recipients. These results indicate that the intestinal microbiota may be an important factor in the success or failure in allo-HSCT. PMID:24939656

  1. Identification of Population Bottlenecks and Colonization Factors during Assembly of Bacterial Communities within the Zebrafish Intestine

    PubMed Central

    Stephens, W. Zac; Wiles, Travis J.; Martinez, Emily S.; Jemielita, Matthew; Burns, Adam R.; Parthasarathy, Raghuveer; Bohannan, Brendan J. M.

    2015-01-01

    ABSTRACT The zebrafish, Danio rerio, is a powerful model for studying bacterial colonization of the vertebrate intestine, but the genes required by commensal bacteria to colonize the zebrafish gut have not yet been interrogated on a genome-wide level. Here we apply a high-throughput transposon mutagenesis screen to Aeromonas veronii Hm21 and Vibrio sp. strain ZWU0020 during their colonization of the zebrafish intestine alone and in competition with each other, as well as in different colonization orders. We use these transposon-tagged libraries to track bacterial population sizes in different colonization regimes and to identify gene functions required during these processes. We show that intraspecific, but not interspecific, competition with a previously established bacterial population greatly reduces the ability of these two bacterial species to colonize. Further, using a simple binomial sampling model, we show that under conditions of interspecific competition, genes required for colonization cannot be identified because of the population bottleneck experienced by the second colonizer. When bacteria colonize the intestine alone or at the same time as the other species, we find shared suites of functional requirements for colonization by the two species, including a prominent role for chemotaxis and motility, regardless of the presence of another species. PMID:26507229

  2. Decreased melatonin secretion is associated with increased intestinal permeability and marker of endotoxemia in alcoholics.

    PubMed

    Swanson, Garth R; Gorenz, Annika; Shaikh, Maliha; Desai, Vishal; Forsyth, Christopher; Fogg, Louis; Burgess, Helen J; Keshavarzian, Ali

    2015-06-15

    Chronic heavy alcohol use is known to cause gut leakiness and alcoholic liver disease (ALD), but only 30% of heavy drinkers develop increased intestinal permeability and ALD. The hypothesis of this study was that disruption of circadian rhythms is a potential risk factor in actively drinking alcoholics for gut leakiness and endotoxemia. We studied 20 subjects with alcohol use disorder (AD) and 17 healthy controls (HC, 6 day workers, 11 night workers). Subjects wore a wrist actiwatch for 7 days and underwent a 24-h dim light phase assessment and urine collection for intestinal permeability. The AD group had significantly less total sleep time and increased fragmentation of sleep (P < 0.05). AD also had significantly lower plasma melatonin levels compared with the HC [mean area under the curve (AUC) 322.78 228.21 vs. 568.75 304.26 pg/ml, P = 0.03]. In the AD group, AUC of melatonin was inversely correlated with small bowel and colonic intestinal permeability (lactulose-to-mannitol ratio, r = -0.39, P = 0.03; urinary sucralose, r = -0.47, P = 0.01). Cosinor analysis of lipopolysaccharide-binding protein (marker of endotoxemia) and lipopolysaccharide every 4 h for 24 h in HC and AD subjects had a midline estimating statistic of rhythm of 5,026.15 409.56 vs. 6,818.02 628.78 ng/ml (P < 0.01) and 0.09 0.03 vs. 0.15 0.19 EU/ml (P < 0.05), respectively. We found plasma melatonin was significantly lower in the AD group, and lower melatonin levels correlated with increased intestinal permeability and a marker of endotoxemia. Our study suggests the suppression of melatonin in AD may promote gut leakiness and endotoxemia. PMID:25907689

  3. Transfer of intestinal bacterial components to mammary secretions in the cow.

    PubMed

    Young, Wayne; Hine, Brad C; Wallace, Olivia A M; Callaghan, Megan; Bibiloni, Rodrigo

    2015-01-01

    Results from large multicentre epidemiological studies suggest an association between the consumption of raw milk and a reduced incidence of allergy and asthma in children. Although the underlying mechanisms for this association are yet to be confirmed, researchers have investigated whether bacteria or bacterial components that naturally occur in cow's milk are responsible for modulating the immune system to reduce the risk of allergic diseases. Previous research in human and mice suggests that bacterial components derived from the maternal intestine are transported to breast milk through the bloodstream. The aim of our study was to assess whether a similar mechanism of bacterial trafficking could occur in the cow. Through the application of culture-independent methodology, we investigated the microbial composition and diversity of milk, blood and feces of healthy lactating cows. We found that a small number of bacterial OTUs belonging to the genera Ruminococcus and Bifidobacterium, and the Peptostreptococcaceae family were present in all three samples from the same individual animals. Although these results do not confirm the hypothesis that trafficking of intestinal bacteria into mammary secretions does occur in the cow, they support the existence of an endogenous entero-mammary pathway for some bacterial components during lactation in the cow. Further research is required to define the specific mechanisms by which gut bacteria are transported into the mammary gland of the cow, and the health implications of such bacteria being present in milk. PMID:25922791

  4. Transfer of intestinal bacterial components to mammary secretions in the cow

    PubMed Central

    Young, Wayne; Hine, Brad C.; Wallace, Olivia A.M.; Callaghan, Megan

    2015-01-01

    Results from large multicentre epidemiological studies suggest an association between the consumption of raw milk and a reduced incidence of allergy and asthma in children. Although the underlying mechanisms for this association are yet to be confirmed, researchers have investigated whether bacteria or bacterial components that naturally occur in cow’s milk are responsible for modulating the immune system to reduce the risk of allergic diseases. Previous research in human and mice suggests that bacterial components derived from the maternal intestine are transported to breast milk through the bloodstream. The aim of our study was to assess whether a similar mechanism of bacterial trafficking could occur in the cow. Through the application of culture-independent methodology, we investigated the microbial composition and diversity of milk, blood and feces of healthy lactating cows. We found that a small number of bacterial OTUs belonging to the genera Ruminococcus and Bifidobacterium, and the Peptostreptococcaceae family were present in all three samples from the same individual animals. Although these results do not confirm the hypothesis that trafficking of intestinal bacteria into mammary secretions does occur in the cow, they support the existence of an endogenous entero-mammary pathway for some bacterial components during lactation in the cow. Further research is required to define the specific mechanisms by which gut bacteria are transported into the mammary gland of the cow, and the health implications of such bacteria being present in milk. PMID:25922791

  5. Gastrointestinal complaints in runners are not due to small intestinal bacterial overgrowth

    PubMed Central

    2011-01-01

    Background Gastrointestinal complaints are common among long distance runners. We hypothesised that small intestinal bacterial overgrowth (SIBO) is present in long distance runners frequently afflicted with gastrointestinal complaints. Findings Seven long distance runners (5 female, mean age 29.1 years) with gastrointestinal complaints during and immediately after exercise without known gastrointestinal diseases performed Glucose hydrogen breath tests for detection of SIBO one week after a lactose hydrogen breath test checking for lactose intolerance. The most frequent symptoms were diarrhea (5/7, 71%) and flatulence (6/7, 86%). The study was conducted at a laboratory. In none of the subjects a pathological hydrogen production was observed after the intake of glucose. Only in one athlete a pathological hydrogen production was measured after the intake of lactose suggesting lactose intolerance. Conclusions Gastrointestinal disorders in the examined long distance runners were not associated with small intestinal bacterial overgrowth. PMID:21794099

  6. Role of the High Affinity Immunoglobulin E Receptor in Bacterial Translocation and Intestinal Inflammation

    PubMed Central

    Dombrowicz, David; Nutten, Sophie; Desreumaux, Pierre; Neut, Christel; Torpier, Grard; Peeters, Marc; Colombel, Jean-Frdric; Capron, Monique

    2001-01-01

    A role for immunoglobulin E and its high affinity receptor (Fc?RI) in the control of bacterial pathogenicity and intestinal inflammation has been suggested, but relevant animal models are lacking. Here we compare transgenic mice expressing a humanized Fc?RI (hFc?RI), with a cell distribution similar to that in humans, to Fc?RI-deficient animals. In hFc?RI transgenic mice, levels of colonic interleukin 4 were higher, the composition of fecal flora was greatly modified, and bacterial translocation towards mesenteric lymph nodes was increased. In hFc?RI transgenic mice, 2,4,6-tri-nitrobenzenesulfonic acid (TNBS)-induced colitis was also more pronounced, whereas Fc?RI-deficient animals were protected from colitis, demonstrating that Fc?RI can affect the onset of intestinal inflammation. PMID:11136818

  7. Rye Affects Bacterial Translocation, Intestinal Viscosity, Microbiota Composition and Bone Mineralization in Turkey Poults

    PubMed Central

    Tellez, Guillermo; Latorre, Juan D.; Kuttappan, Vivek A.; Hargis, Billy M.; Hernandez-Velasco, Xochitl

    2015-01-01

    Previously, we have reported that rye significantly increased both viscosity and Clostridium perfringens proliferation when compared with corn in an in vitro digestive model. Two independent trials were conducted to evaluate the effect of rye as a source of energy on bacterial translocation, intestinal viscosity, gut microbiota composition, and bone mineralization, when compared with corn in turkey poults. In each experiment, day-of-hatch, turkey poults were randomly assigned to either a corn or a rye diet (n = 0 /group). At 10 d of age, in both experiments, 12 birds/group were given an oral gavage dose of fluorescein isothiocyanate dextran (FITC-d). After 2.5 h of oral gavage, blood and liver samples were collected to evaluate the passage of FITC-d and bacterial translocation (BT) respectively. Duodenum, ileum and cecum gut sections were collected to evaluate intestinal viscosity and to enumerate gut microbiota. Tibias were collected for observation of bone parameters. Broilers fed with a rye diet showed increased (p<0.05) intestinal viscosity, BT, and serum FITC-d. Bacterial enumeration revealed that turkey poults fed with rye had increased the number of total lactic acid bacteria (LAB) in all three sections of the gastrointestinal tract evaluated when compared to turkey poults fed with corn. Turkey poults fed with rye also had significantly higher coliforms in duodenum and ileum but not in the ceca, whereas the total number of anaerobes increased only in duodenum. A significant reduction in bone strength and bone mineralization was observed in turkey poults fed with rye when compared with corn fed turkey poults. In conclusion, rye evoked mucosal damage in turkey poults that increased intestinal viscosity, increased leakage through the intestinal tract, and altered the microbiota composition and bone mineralization. Studies to evaluate dietary inclusion of selected Direct-Fed Microbial (DFM) candidates that produce exogenous enzymes in rye fed turkey poults are currently being evaluated. PMID:25849537

  8. Rye affects bacterial translocation, intestinal viscosity, microbiota composition and bone mineralization in Turkey poults.

    PubMed

    Tellez, Guillermo; Latorre, Juan D; Kuttappan, Vivek A; Hargis, Billy M; Hernandez-Velasco, Xochitl

    2015-01-01

    Previously, we have reported that rye significantly increased both viscosity and Clostridium perfringens proliferation when compared with corn in an in vitro digestive model. Two independent trials were conducted to evaluate the effect of rye as a source of energy on bacterial translocation, intestinal viscosity, gut microbiota composition, and bone mineralization, when compared with corn in turkey poults. In each experiment, day-of-hatch, turkey poults were randomly assigned to either a corn or a rye diet (n = 0 /group). At 10 d of age, in both experiments, 12 birds/group were given an oral gavage dose of fluorescein isothiocyanate dextran (FITC-d). After 2.5 h of oral gavage, blood and liver samples were collected to evaluate the passage of FITC-d and bacterial translocation (BT) respectively. Duodenum, ileum and cecum gut sections were collected to evaluate intestinal viscosity and to enumerate gut microbiota. Tibias were collected for observation of bone parameters. Broilers fed with a rye diet showed increased (p<0.05) intestinal viscosity, BT, and serum FITC-d. Bacterial enumeration revealed that turkey poults fed with rye had increased the number of total lactic acid bacteria (LAB) in all three sections of the gastrointestinal tract evaluated when compared to turkey poults fed with corn. Turkey poults fed with rye also had significantly higher coliforms in duodenum and ileum but not in the ceca, whereas the total number of anaerobes increased only in duodenum. A significant reduction in bone strength and bone mineralization was observed in turkey poults fed with rye when compared with corn fed turkey poults. In conclusion, rye evoked mucosal damage in turkey poults that increased intestinal viscosity, increased leakage through the intestinal tract, and altered the microbiota composition and bone mineralization. Studies to evaluate dietary inclusion of selected Direct-Fed Microbial (DFM) candidates that produce exogenous enzymes in rye fed turkey poults are currently being evaluated. PMID:25849537

  9. Reduction of endotoxin attenuates liver fibrosis through suppression of hepatic stellate cell activation and remission of intestinal permeability in a rat non-alcoholic steatohepatitis model.

    PubMed

    Douhara, Akitoshi; Moriya, Kei; Yoshiji, Hitoshi; Noguchi, Ryuichi; Namisaki, Tadashi; Kitade, Mitsuteru; Kaji, Kosuke; Aihara, Yosuke; Nishimura, Norihisa; Takeda, Kosuke; Okura, Yasushi; Kawaratani, Hideto; Fukui, Hiroshi

    2015-03-01

    Previous clinical studies have demonstrated that endotoxin/toll?like receptor 4 (TLR4) signaling is critical in the inflammatory pathways associated with non?alcoholic steatohepatitis (NASH). In human and animal studies, NASH was associated with portal lipopolysaccharide (LPS) and the plasma LPS level was hypothesized to be associated with small intestinal bacterial overgrowth, change in composition of the microbiota and increased intestinal permeability. The aim of the present study was to investigate the roles of endogenous endotoxin and TLR4 in the pathogenesis of NASH. The effects of antibiotics were assessed in vivo using a choline deficiency amino acid (CDAA)?induced experimental liver fibrosis model. Antibiotics, including polymyxins and neomycins, were orally administered in drinking water. Antibiotics attenuated hepatic stellate cell (HSC) activation and liver fibrosis via TGF?? and collagen in an experimental hepatic fibrosis model. The mechanism by which antibiotics attenuated LPS?TLR4 signaling and liver fibrosis was assessed. Notably, TLR4 mRNA level in the liver was elevated in the CDAA group and the CDAA?induced increase was significantly reduced by antibiotics. However, no significant differences were observed in the intestine among all groups. Elevated mRNA levels of LPS binding protein, which was correlated with serum endotoxin levels, were recognized in the CDAA group and the CDAA?induced increase was significantly reduced by antibiotics. The intestinal permeability of the CDAA group was increased compared with the choline?supplemented amino acid group. The tight junction protein (TJP) in the intestine, determined by immunohistochemical analysis was inversely associated with intestinal permeability. Antibiotics improved the intestinal permeability and enhanced TJP expression. Inhibition of LPS?TLR4 signaling with antibiotics attenuated liver fibrosis development associated with NASH via the inhibition of HSC activation. These results indicated that reduction of LPS and restoration of intestinal TJP may be a novel therapeutic strategy for treatment of liver fibrosis development in NASH. PMID:25421042

  10. Reduction of endotoxin attenuates liver fibrosis through suppression of hepatic stellate cell activation and remission of intestinal permeability in a rat non-alcoholic steatohepatitis model

    PubMed Central

    DOUHARA, AKITOSHI; MORIYA, KEI; YOSHIJI, HITOSHI; NOGUCHI, RYUICHI; NAMISAKI, TADASHI; KITADE, MITSUTERU; KAJI, KOSUKE; AIHARA, YOSUKE; NISHIMURA, NORIHISA; TAKEDA, KOSUKE; OKURA, YASUSHI; KAWARATANI, HIDETO; FUKUI, HIROSHI

    2015-01-01

    Previous clinical studies have demonstrated that endotoxin/toll-like receptor 4 (TLR4) signaling is critical in the inflammatory pathways associated with non-alcoholic steatohepatitis (NASH). In human and animal studies, NASH was associated with portal lipopolysaccharide (LPS) and the plasma LPS level was hypothesized to be associated with small intestinal bacterial overgrowth, change in composition of the microbiota and increased intestinal permeability. The aim of the present study was to investigate the roles of endogenous endotoxin and TLR4 in the pathogenesis of NASH. The effects of antibiotics were assessed in vivo using a choline deficiency amino acid (CDAA)-induced experimental liver fibrosis model. Antibiotics, including polymyxins and neomycins, were orally administered in drinking water. Antibiotics attenuated hepatic stellate cell (HSC) activation and liver fibrosis via TGF-? and collagen in an experimental hepatic fibrosis model. The mechanism by which antibiotics attenuated LPS-TLR4 signaling and liver fibrosis was assessed. Notably, TLR4 mRNA level in the liver was elevated in the CDAA group and the CDAA-induced increase was significantly reduced by antibiotics. However, no significant differences were observed in the intestine among all groups. Elevated mRNA levels of LPS binding protein, which was correlated with serum endotoxin levels, were recognized in the CDAA group and the CDAA-induced increase was significantly reduced by antibiotics. The intestinal permeability of the CDAA group was increased compared with the choline-supplemented amino acid group. The tight junction protein (TJP) in the intestine, determined by immunohistochemical analysis was inversely associated with intestinal permeability. Antibiotics improved the intestinal permeability and enhanced TJP expression. Inhibition of LPS-TLR4 signaling with antibiotics attenuated liver fibrosis development associated with NASH via the inhibition of HSC activation. These results indicated that reduction of LPS and restoration of intestinal TJP may be a novel therapeutic strategy for treatment of liver fibrosis development in NASH. PMID:25421042

  11. Bacterial DNA Content in the Intestinal Wall from Infants with Necrotizing Enterocolitis

    PubMed Central

    Bucher, Brian T.; McDuffie, Lucas A.; Shaikh, Nurmohammad; Tarr, Phillip I.; Warner, Barbara B.; Hamvas, Aaron; White, Francis V.; Erwin, Christopher R.; Warner, Brad W.

    2011-01-01

    PURPOSE The objectives of our study were to quantify mucosal bacterial DNA within specimens from neonates undergoing small bowel resection for necrotizing enterocolitis (NEC). METHODS We obtained clinical information and pathologic specimens from all infants diagnosed with NEC who underwent surgical treatment at our institution from 1999–2008. Bacterial and human DNA were isolated from paraffin-embedded surgical specimens and real-time PCR was used to amplify bacterial and human genes. Linear regression was used to quantify the amount of human and bacterial DNA in our specimens. RESULTS From a cohort of fifty infants, we identified twenty-three infants who underwent both surgical resection and subsequent intestinal reanastomosis. Thirteen (59%) of the neonates had Bell's Stage III NEC, and nine (41%) had Stage II. There was significantly more bacterial DNA in the resection specimens than in the reanastomosis specimens. This corresponds to a median (IQR) increase of 1.81 (1.11–4.69) fold bacterial DNA in the resection specimen compared to the reanastomosis specimen (p<0.05). CONCLUSION There is more bacterial DNA in infants with acute NEC compared with the same infants after the NEC had clinically resolved. These findings underscore the potential relevance of adherent or invasive bacteria across the bowel wall in the pathogenesis of NEC. PMID:21683193

  12. Wnt2 inhibits enteric bacterial-induced inflammation in intestinal epithelial cells

    PubMed Central

    Liu, Xingyin; Lu, Rong; Wu, Shaoping; Zhang, Yong-guo; Xia, Yinglin; Sartor, R. Balfour; Sun, Jun

    2012-01-01

    Background Wnt signaling plays an essential role in gastrointestinal epithelial proliferation. Most investigations have focused on developmental and immune responses. Bacterial infection can be chronic and increases the risk of inflammatory bowel disease and colitis-associated cancer. However, we lack studies on how bacteria regulate Wnt proteins and how Wnts modulate the host responses to enteric bacteria. This study investigated the effects of Salmonella and E. coli on Wnt2, one of the Wnt family members, in intestinal epithelia cells. Methodology/Findings Using cultured epithelial cells, a Salmonella-colitis mouse model, and a gnotobiotic mouse model, we found that Wnt2 mRNA and protein expression levels were elevated after bacterial infection. Enteric bacteria regulate Wnt2 location in the intestine. Furthermore, we found that elevation of Wnt2 was a strategy for host defense by inhibiting cell apoptosis and inflammatory responses to infection. Using Wnt2 siRNA analysis, we show enhanced inflammatory cytokine IL-8 in epithelial cells. Cells over-expressed Wnt2 had less bacterial-induced IL-8 secretion. AvrA is a bacterial protein that inhibits inflammation by stabilizing beta-catenin, the down-stream target of Wnt. We found that the stabilization of Wnt2 was regulated through ubiquitination. Moreover, the bacterial protein AvrA from Salmonella and E. coli stabilized Wnt2 protein expression in vivo. In an ex-germ-free system, E. coli F18 expressing AvrA increased Wnt2 expression and changed Wnt2 distribution in intestine. Conclusion Wnt2 contributes to host protection in response to enteric bacteria. Our findings thus reveal a previously undefined role of Wnt for host-pathogen interaction and inflammation. PMID:21674728

  13. Active Transport of Phosphorylated Carbohydrates Promotes Intestinal Colonization and Transmission of a Bacterial Pathogen

    PubMed Central

    Sit, Brandon; Crowley, Shauna M.; Bhullar, Kirandeep; Lai, Christine Chieh-Lin; Tang, Calvin; Hooda, Yogesh; Calmettes, Charles; Khambati, Husain; Ma, Caixia; Brumell, John H.; Schryvers, Anthony B.; Vallance, Bruce A.; Moraes, Trevor F.

    2015-01-01

    Efficient acquisition of extracellular nutrients is essential for bacterial pathogenesis, however the identities and mechanisms for transport of many of these substrates remain unclear. Here, we investigate the predicted iron-binding transporter AfuABC and its role in bacterial pathogenesis in vivo. By crystallographic, biophysical and in vivo approaches, we show that AfuABC is in fact a cyclic hexose/heptose-phosphate transporter with high selectivity and specificity for a set of ubiquitous metabolites (glucose-6-phosphate, fructose-6-phosphate and sedoheptulose-7-phosphate). AfuABC is conserved across a wide range of bacterial genera, including the enteric pathogens EHEC O157:H7 and its murine-specific relative Citrobacter rodentium, where it lies adjacent to genes implicated in sugar sensing and acquisition. C. rodentium ΔafuA was significantly impaired in an in vivo murine competitive assay as well as its ability to transmit infection from an afflicted to a naïve murine host. Sugar-phosphates were present in normal and infected intestinal mucus and stool samples, indicating that these metabolites are available within the intestinal lumen for enteric bacteria to import during infection. Our study shows that AfuABC-dependent uptake of sugar-phosphates plays a critical role during enteric bacterial infection and uncovers previously unrecognized roles for these metabolites as important contributors to successful pathogenesis. PMID:26295949

  14. The murine lung microbiome in relation to the intestinal and vaginal bacterial communities

    PubMed Central

    2013-01-01

    Background This work provides the first description of the bacterial population of the lung microbiota in mice. The aim of this study was to examine the lung microbiome in mice, the most used animal model for inflammatory lung diseases such as COPD, cystic fibrosis and asthma. Bacterial communities from broncho-alveolar lavage fluids and lung tissue were compared to samples taken from fecal matter (caecum) and vaginal lavage fluid from female BALB/cJ mice. Results Using a customized 16S rRNA sequencing protocol amplifying the V3-V4 region our study shows that the mice have a lung microbiome that cluster separately from mouse intestinal microbiome (caecum). The mouse lung microbiome is dominated by Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Cyanobacteria overlapping the vaginal microbiome. We also show that removal of host tissue or cells from lung fluid during the DNA extraction step has an impact on the resulting bacterial community profile. Sample preparation needs to be considered when choosing an extraction method and interpreting data. Conclusions We have consistently amplified bacterial DNA from mouse lungs that is distinct from the intestinal microbiome in these mice. The gut microbiome has been extensively studied for its links to development of disease. Here we suggest that also the lung microbiome could be important in relation to inflammatory lung diseases. Further research is needed to understand the contribution of the lung microbiome and the gut-lung axis to the development of lung diseases such as COPD and asthma. PMID:24373613

  15. Active Transport of Phosphorylated Carbohydrates Promotes Intestinal Colonization and Transmission of a Bacterial Pathogen.

    PubMed

    Sit, Brandon; Crowley, Shauna M; Bhullar, Kirandeep; Lai, Christine Chieh-Lin; Tang, Calvin; Hooda, Yogesh; Calmettes, Charles; Khambati, Husain; Ma, Caixia; Brumell, John H; Schryvers, Anthony B; Vallance, Bruce A; Moraes, Trevor F

    2015-08-01

    Efficient acquisition of extracellular nutrients is essential for bacterial pathogenesis, however the identities and mechanisms for transport of many of these substrates remain unclear. Here, we investigate the predicted iron-binding transporter AfuABC and its role in bacterial pathogenesis in vivo. By crystallographic, biophysical and in vivo approaches, we show that AfuABC is in fact a cyclic hexose/heptose-phosphate transporter with high selectivity and specificity for a set of ubiquitous metabolites (glucose-6-phosphate, fructose-6-phosphate and sedoheptulose-7-phosphate). AfuABC is conserved across a wide range of bacterial genera, including the enteric pathogens EHEC O157:H7 and its murine-specific relative Citrobacter rodentium, where it lies adjacent to genes implicated in sugar sensing and acquisition. C. rodentium ?afuA was significantly impaired in an in vivo murine competitive assay as well as its ability to transmit infection from an afflicted to a nave murine host. Sugar-phosphates were present in normal and infected intestinal mucus and stool samples, indicating that these metabolites are available within the intestinal lumen for enteric bacteria to import during infection. Our study shows that AfuABC-dependent uptake of sugar-phosphates plays a critical role during enteric bacterial infection and uncovers previously unrecognized roles for these metabolites as important contributors to successful pathogenesis. PMID:26295949

  16. Intestinal microbiota in metabolic diseases: from bacterial community structure and functions to species of pathophysiological relevance.

    PubMed

    Clavel, Thomas; Desmarchelier, Charles; Haller, Dirk; Grard, Philippe; Rohn, Sascha; Lepage, Patricia; Daniel, Hannelore

    2014-07-01

    The trillions of bacterial cells that colonize the mammalian digestive tract influence both host physiology and the fate of dietary compounds. Gnotobionts and fecal transplantation have been instrumental in revealing the causal role of intestinal bacteria in energy homeostasis and metabolic dysfunctions such as type-2 diabetes. However, the exact contribution of gut bacterial metabolism to host energy balance is still unclear and knowledge about underlying molecular mechanisms is scant. We have previously characterized cecal bacterial community functions and host responses in diet-induced obese mice using omics approaches. Based on these studies, we here discuss issues on the relevance of mouse models, give evidence that the metabolism of cholesterol-derived compounds by gut bacteria is of particular importance in the context of metabolic disorders and that dominant species of the family Coriobacteriaceae are good models to study these functions. PMID:25003516

  17. In vitro evaluation of effects of gut region and fiber structure on the intestinal dominant bacterial diversity and functional bacterial species.

    PubMed

    Jiao, Jinzhen; Lu, Qi; Tan, Zhiliang; Guan, Leluo; Zhou, Chuanshe; Tang, Shaoxun; Han, Xuefeng

    2014-08-01

    Understanding the intestinal bacteria in ruminants and their population kinetics is essential for their ecological function, as well as their interaction with the host. In this in vitro study, we aimed to determine whether gut region and fiber structure can influence bacterial diversity and functional bacterial population, together with the kinetics of functional bacterial species in the cecal inocula using PCR-DGGE and qPCR. A split plot design was conducted with gut regions (jejunum, ileum, cecum and colon) as main plot, and substrates (neutral detergent fiber (NDF) and cellulose (CEL)) as subplot. Incubation time and gut region affected dominant bacterial diversity. The numbers of total bacteria, cellulolytic bacteria, genus Prevotella and amylolytic bacteria in the hindgut inocula were greater (P < 0.05) than those in the small intestinal inocula. Fiber structure did not significantly influence the dominant bacterial diversity and the numbers of most examined functional bacterial species. The greatest increase rate of cellulolytic bacteria occurred earlier than amylolytic bacteria except for R. albus incubated with NDF. Changes in cellulolytic bacterial populations were not coordinative with alteration of fiber disappearance as well as CMCase and xylanase activities. All these suggest that the hindgut contents have greater potential to digest fiber than small intestinal contents, and cellulolytic bacteria are of significant value at the initial stage of fiber digestion among the fiber digestive microbes in the intestine. PMID:24972096

  18. Effects of compound Ginkgo biloba on intestinal permeability in rats with alcohol-induced liver injury.

    PubMed

    Li, Huanzhou; Qiu, Ping; Wang, Juanhong; Niu, Congcong; Pan, Suhua

    2015-02-01

    This study aimed to investigate the effects of Compound Ginkgo biloba (CGB) on alterations in intestinal permeability and inflammation caused by endotoxin in chronic alcohol-induced liver injury. CGB was prepared by Ginkgo biloba extract and Rosa roxburghii in a 1?:?1 proportion. Rats were divided into four groups: control, ethanol, high-dosage CGB (0.6 g kg(-1) d(-1)) and low-dosage CGB (0.2 g kg(-1) d(-1)) group. Rats in the control group ingested a Lieber-DeCarli control liquid diet, while rats in the ethanol and CGB-treated groups ingested a Lieber-DeCarli alcohol liquid diet for eight weeks. CGB was orally administered from the beginning of the third week until the end of the experiment. CGB was observed to significantly reduce the activities of serum ALT, AST, diamine oxidase (DAO) as well as levels of serum TG, D-lactic acid and plasma endotoxin in rats fed with Lieber-DeCarli ethanol liquid. Further, the hepatic steatosis was improved and the damage to intestinal tight junctions was also relieved effectively after CGB administration. Moreover, CGB significantly downregulated the expressions of TNF-?, lipopolysaccharide binding protein (LBP), CD14 and TLR4 in the liver and upregulated the expressions of tight junction proteins including ZO-1, occludin and claudin-1. In summary, this study demonstrated that CGB alleviated alcohol-induced liver injury and hepatic lipopolysaccharide signaling as well as gut barrier dysfunction through restoring tight junctions. PMID:25473797

  19. Depth of Bacterial Invasion in Resected Intestinal Tissue Predicts Mortality in Surgical Necrotizing Enterocolitis

    PubMed Central

    Remon, Juan I.; Amin, Sachin C.; Mehendale, Sangeeta R.; Rao, Rakesh; Luciano, Angel A.; Garzon, Steven A.; Maheshwari, Akhil

    2015-01-01

    Objective Up to a third of all infants who develop necrotizing enterocolitis (NEC) require surgical resection of necrotic bowel. We hypothesized that the histopathological findings in surgically-resected bowel can predict the clinical outcome of these infants. Study design We reviewed the medical records and archived pathology specimens from all patients who underwent bowel resection/autopsy for NEC at a regional referral center over a 10-year period. Pathology specimens were graded for the depth and severity of necrosis, inflammation, bacteria invasion, and pneumatosis, and histopathological findings were correlated with clinical outcomes. Results We performed clinico-pathological analysis on 33 infants with confirmed NEC, of which 18 (54.5%) died. Depth of bacterial invasion in resected intestinal tissue predicted death from NEC (odds ratio 5.39 per unit change in the depth of bacterial invasion, 95% confidence interval 1.33-21.73). The presence of transmural necrosis and bacteria in the surgical margins of resected bowel was also associated with increased mortality. Conclusions Depth of bacterial invasion in resected intestinal tissue predicts mortality in surgical NEC. PMID:25950918

  20. Regulation of Bacterial Pathogenesis by Intestinal Short-Chain Fatty Acids

    PubMed Central

    Sun, Yvonne; O’Riordan, Mary X. D.

    2013-01-01

    The human gut microbiota is inextricably linked to health and disease. One important function of the commensal organisms living in the intestine is to provide colonization resistance against invading enteric pathogens. Because of the complex nature of the interaction between the microbiota and its host, multiple mechanisms likely contribute to resistance. In this review, we dissect the biological role of short-chain fatty acids (SCFA), which are fermentation end products of the intestinal microbiota, in host–pathogen interactions. SCFA exert an extensive influence on host physiology through nutritional, regulatory, and immunomodulatory functions and can also affect bacterial fitness as a form of acid stress. Moreover, SCFA act as a signal for virulence gene regulation in common enteric pathogens. Taken together, these studies highlight the importance of the chemical environment where the biology of the host, the microbiota, and the pathogen intersects, which provides a basis for designing effective infection prevention and control. PMID:23942149

  1. M2b Monocytes Provoke Bacterial Pneumonia and Gut Bacteria-Associated Sepsis in Alcoholics.

    PubMed

    Tsuchimoto, Yusuke; Asai, Akira; Tsuda, Yasuhiro; Ito, Ichiaki; Nishiguchi, Tomoki; Garcia, Melanie C; Suzuki, Sumihiro; Kobayashi, Makiko; Higuchi, Kazuhide; Suzuki, Fujio

    2015-12-01

    Chronic alcohol consumption markedly impairs host antibacterial defense against opportunistic infections. γ-irradiated NOD-SCID IL-2Rγ(null) mice inoculated with nonalcoholic PBMCs (control PBMC chimeras) resisted Klebsiella pneumonia and gut bacteria-associated sepsis, whereas the chimeras created with alcoholic PBMCs (alcoholic PBMC chimeras) were very susceptible to these infections. M1 monocytes (IL-12(+)IL-10(-)CD163(-)CD14(+) cells), major effector cells in antibacterial innate immunity, were not induced by a bacterial Ag in alcoholic PBMC cultures, and M2b monocytes (CCL1(+)CD163(+)CD14(+) cells), which predominated in alcoholic PBMCs, were shown to be inhibitor cells on the Ag-stimulated monocyte conversion from quiescent monocytes to M1 monocytes. CCL1, which functions to maintain M2b macrophage properties, was produced by M2b monocytes isolated from alcoholic PBMCs. These M2b monocytes reverted to quiescent monocytes (IL-12(-)IL-10(-)CCL1(-)CD163(-)CD14(+) cells) in cultures supplemented with CCL1 antisense oligodeoxynucleotide, and the subsequent quiescent monocytes easily converted to M1 monocytes under bacterial Ag stimulation. Alcoholic PBMC chimeras treated with CCL1 antisense oligodeoxynucleotide were resistant against pulmonary infection by K. pneumoniae and sepsis stemming from enterococcal translocation. These results indicate that a majority of monocytes polarize to an M2b phenotype in association with alcohol abuse, and this polarization contributes to the increased susceptibility of alcoholics to gut and lung infections. Bacterial pneumonia and gut bacteria-associated sepsis, frequently seen in alcoholics, can be controlled through the polarization of macrophage phenotypes. PMID:26525287

  2. Role of small intestinal bacterial overgrowth in severe small intestinal damage in chronic non-steroidal anti-inflammatory drug users.

    PubMed

    Muraki, Motoko; Fujiwara, Yasuhiro; Machida, Hirohisa; Okazaki, Hirotoshi; Sogawa, Mitsue; Yamagami, Hirokazu; Tanigawa, Tetsuya; Shiba, Masatsugu; Watanabe, Kenji; Tominaga, Kazunari; Watanabe, Toshio; Arakawa, Tetsuo

    2014-03-01

    OBJECTIVE. Enteric bacteria play a significant role in the pathogenesis of non-steroidal anti-inflammatory drug (NSAID)-induced small intestinal damage. However, the association between small intestinal bacterial overgrowth (SIBO) and NSAID-induced small intestinal damage remains unclear. The aim of the study was to examine the association between SIBO and the presence of NSAID-induced severe small intestinal damage or its symptoms in chronic NSAID users. MATERIALS AND METHODS. Forty-three patients who had been using NSAIDs for over 3 months were enrolled. They were examined by capsule endoscopy and a lactulose hydrogen breath test (LHBT). We defined severe small intestinal damage as the presence of more than four small erosions or large erosions/ulcers. The LHBT result was considered positive if there was an increase in the level of breath hydrogen gas of >20 ppm above baseline. RESULTS. Out of 43 patients, 22 (51%) had severe small intestinal damage. The LHBT was positive in 5 of 21 patients (24%) without severe small intestinal damage and in 13 of 21 patients (59%) with severe small intestinal damage. Multiple logistic regression analysis showed that an LHBT-positive result was significantly associated with increased odds ratio for severe small intestinal damage (OR, 6.54; 95% CI, 1.40-30.50). There was no significant difference in the presence of symptoms between the LHBT-positive and LHBT-negative patients with severe small intestinal damage. CONCLUSION. SIBO might have a role in the development of severe small intestinal damage in chronic NSAID users. PMID:24417613

  3. Intestine.

    PubMed

    Smith, J M; Skeans, M A; Horslen, S P; Edwards, E B; Harper, A M; Snyder, J J; Israni, A K; Kasiske, B L

    2016-01-01

    Intestine and intestine-liver transplant plays an important role in the treatment of intestinal failure, despite decreased morbidity associated with parenteral nutrition. In 2014, 210 new patients were added to the intestine transplant waiting list. Among prevalent patients on the list at the end of 2014, 65% were waiting for an intestine transplant and 35% were waiting for an intestine-liver transplant. The pretransplant mortality rate decreased dramatically over time for all age groups. Pretransplant mortality was highest for adult candidates, at 22.1 per 100 waitlist years compared with less than 3 per 100 waitlist years for pediatric candidates, and notably higher for candidates for intestine-liver transplant than for candidates for intestine transplant without a liver. Numbers of intestine transplants without a liver increased from a low of 51 in 2013 to 67 in 2014. Intestine-liver transplants increased from a low of 44 in 2012 to 72 in 2014. Short-gut syndrome (congenital and other) was the main cause of disease leading to both intestine and intestine-liver transplant. Graft survival improved over the past decade. Patient survival was lowest for adult intestine-liver recipients and highest for pediatric intestine recipients. PMID:26755265

  4. Increased Bacterial Translocation in Gluten-Sensitive Mice Is Independent of Small Intestinal Paracellular Permeability Defect

    PubMed Central

    Jury, Jennifer; Sanz, Yolanda; Wiepjes, Michelle; Huang, Xianxi; Murray, Joseph A.; David, Chella S.; Fasano, Alessio; Verd, Elena F.

    2012-01-01

    Aim We investigated whether treatment with gliadin induces a paracellular permeability defect that enhances bacterial translocation to mesenteric lymph nodes (MLN) via resident dendritic cells (DC) expressing TLR-2 or 4 in HCD4/HLA-DQ8 transgenic mice. Methods HLA-DQ8 transgenic mice were sensitized and subsequently gavaged with gliadin, in the presence or absence of AT1001 (paracellular permeability inhibitor). Non-sensitized mice were gavaged with indomethacin (permeability inducer) or rice cereal. CD11c and CD103 (DC markers) and TLR-2 and 4 were investigated by immunostaining. Intestinal permeability was assessed by paracellular flux of 51Cr-EDTA in Ussing chambers. Bacterial translocation to MLN was performed by plate counting on aerobic and anaerobic conditions. Results In gliadin-treated mice, both 51Cr-EDTA flux in jejunal mucosa and aerobic and anaerobic bacterial counts in MLN were increased (p < 0.05) compared to indomethacin-treated mice and controls. The inhibitor AT1001 normalized 51Cr-EDTA flux, but had no effect on bacterial translocation in gliadin-treated mice. In addition, changes in mucosal DC marker distribution such as increased (p < 0.05) trans-epithelial CD103+ cells and reduction (p < 0.05) of CD11c immunostaining were detected in gliadin-treated mice. Moreover, changes in DC markers and TLR-2 or 4 immunophenotypes were not associated. Conclusions Pharmacological restoration of paracellular permeability was not sufficient to prevent bacterial translocation in gluten-sensitive mice. We hypothesize that transcellular mechanisms involving CD103+DC and CD11c+DC may explain in gluten-sensitive HCD4/HLA-DQ8 transgenic mice the sustained increased bacterial translocation observed in the absence of a significant inflammatory response. PMID:21822909

  5. How to Test and Treat Small Intestinal Bacterial Overgrowth: an Evidence-Based Approach.

    PubMed

    Rezaie, Ali; Pimentel, Mark; Rao, Satish S

    2016-01-01

    Small intestinal bacterial overgrowth (SIBO) is characterized by an excessive amount of bacteria in the small intestine and a constellation of symptoms that include bloating, pain, gas, and diarrhea. Although known for many decades, there is a lack of consensus and clarity regarding the natural history and methods for its diagnosis. Several tests have been proposed, including the glucose breath test, lactulose breath test, small intestinal aspiration and culture, and others. However, there is a lack of standardization of these tests and their interpretation. Treatment of SIBO remains empirical; generally, broad spectrum antibiotics are recommended for 2weeks (amoxicillin, rifaximin, ciprofloxacin, etc.) but evidence for their use is fair. Clearly, there is a strong need to develop a systematic approach for the management of SIBO and to perform multicenter clinical trials for the treatment of SIBO. In this review, we will discuss the current evidence for the diagnosis and treatment of SIBO, which includes (1) elimination/modification of the underlying causes, (2) induction of remission (antibiotics and elemental diet), and (3) maintenance of remission (promotility drugs, dietary modifications, repeat or cyclical antibiotics). PMID:26780631

  6. The impact of hypoxia on intestinal epithelial cell functions: consequences for invasion by bacterial pathogens.

    PubMed

    Zeitouni, Nathalie E; Chotikatum, Sucheera; von Köckritz-Blickwede, Maren; Naim, Hassan Y

    2016-12-01

    The maintenance of oxygen homeostasis in human tissues is mediated by several cellular adaptations in response to low-oxygen stress, called hypoxia. A decrease in tissue oxygen levels is initially counteracted by increasing local blood flow to overcome diminished oxygenation and avoid hypoxic stress. However, studies have shown that the physiological oxygen concentrations in several tissues are much lower than atmospheric (normoxic) conditions, and the oxygen supply is finely regulated in individual cell types. The gastrointestinal tract has been described to subsist in a state of physiologically low oxygen level and is thus depicted as a tissue in the state of constant low-grade inflammation. The intestinal epithelial cell layer plays a vital role in the immune response to inflammation and infections that occur within the intestinal tissue and is involved in many of the adaptation responses to hypoxic stress. This is especially relevant in the context of inflammatory disorders, such as inflammatory bowel disease (IBD). Therefore, this review aims to describe the intestinal epithelial cellular response to hypoxia and the consequences for host interactions with invading gastrointestinal bacterial pathogens. PMID:27002817

  7. Large intestine bacterial flora of nonhibernating and hibernating leopard frogs (Rana pipiens).

    PubMed Central

    Gossling, J; Loesche, W J; Nace, G W

    1982-01-01

    The bacteria in the large intestines of 10 northern leopard frogs (Rana pipiens) were enumerated and partially characterized. Four nonhibernating frogs were collected in the summer, four hibernating frogs were collected in the winter, and two frogs just emerged from hibernation were collected in the spring. All frogs had about 10(10) bacteria per g (wet weight) of intestinal contents and about 10(9) bacteria per g (wet weight) of mucosal scraping, although the counts from the winter frogs were slightly less than those from the other two groups of frogs. Another group of 14 summer frogs, after treatment to induce hibernation, showed a drop in bacterial counts accompanied by a change in the composition of the flora. In most frogs, Bacteroides was the dominant organism. Other bacteria repeatedly isolated at high dilutions were strict anaerobes, including butyrigenic and acetogenic helically coiled bacteria; fusobacteria; and acetogenic, small, gram-positive bacilli. These data indicate that the intestinal flora of frogs is similar to that of mammals and birds and that this flora can be maintained at temperatures close to freezing. PMID:6982025

  8. Safety and risk assessment of the genetically modified Lactococci on rats intestinal bacterial flora.

    PubMed

    Lee, Kai-Chien; Liu, Chin-Feng; Lin, Tzu-Hsing; Pan, Tzu-Ming

    2010-08-15

    The interaction between Lactococcus lactis NZ9000/pNZPNK and intestinal microflora was evaluated as a method to assess safety of genetically modified microorganisms (GMMs). L. lactis NZ9000/pNZPNK is one kind of GMM and able to produce the intracellular subtilisin NAT (nattokinase) under induction with nisin. The host strain L. lactis NZ9000 was a generally recognized as safe (GRAS) microorganism. Six groups of Wistar rats were orally administered with L. lactis NZ9000/pNZPNK and L. lactis NZ9000 for 6 weeks. Fecal and cecal contents were collected to determine the number of L. lactis NZ9000, L. lactis NZ9000/pNZPNK, Lactobacillus, coliform bacteria, beneficial bacteria Bifidobacterium and harmful bacteria Clostridium perfringens. The liver, spleen, kidney and blood were evaluated for the bacterial translocation. After 6 weeks consumption with GM and non-GM Lactococcus, no adverse effects were observed on the rat's body weight, hematological or serum biochemical parameters, or intestinal microflora. The bacterial translocation test showed that L. lactis NZ9000/pNZPNK did not translocate to any organ or blood. Bifidobacterium was significantly increased in feces after administration of both Lactococcus strains (L. lactis NZ9000 and L. lactis NZ9000/pNZPNK), while C. perfringens remained undetectable during the experiment. These results suggested that L. lactis NZ9000/pNZPNK could be safe in animal experiments and monitoring of the interaction between test strains and intestinal microflora might be applied as a method for other GMM safety assessments. PMID:20619909

  9. Propolis reduces bacterial translocation and intestinal villus atrophy in experimental obstructive jaundice

    PubMed Central

    Sabuncuoglu, Mehmet Zafer; Kismet, Kemal; Kilicoglu, Sibel Serin; Kilicoglu, Bulent; Erel, Serap; Muratoglu, Sabahattin; Sunay, Asli Elif; Erdemli, Esra; Akkus, Mehmet Ali

    2007-01-01

    AIM: To investigate the effects of propolis on bacterial translocation and ultrastructure of intestinal morphology in experimental obstructive jaundice. METHODS: Thirty Wistar-Albino male rats were randomly divided into three groups, each including 10 animals: groupI, sham-operated; group II, ligation and division of the common bile duct (BDL); group III, BDL followed by oral supplementation of propolis 100 mg/kg per day. Liver, blood, spleen, mesenteric lymph nodes, and ileal samples were taken for microbiological, light and transmission electron microscopic examination on postoperative 7th d after sacrification. RESULTS: The mean number of villi per centimeter and mean mucosal height of the propolis group were significantly different in the BDL group (P = 0.001 and 0.012, respectively). The electron microscopic changes were also different between these groups. Sham and BDL + propolis groups had similar incidence of bacterial translocation (BT). The BDL group had significantly higher rates of BT as compared with sham and BDL + propolis groups. BT was predominantly detected in MLNs and the most commonly isolated bacteria was Escherichia coli. CONCLUSION: Propolis showed a significant protective effect on ileal mucosa and reduced bacterial translocation in the experimental obstructive jaundice model. Further studies should be carried out to explain the mechanisms of these effects. PMID:17876893

  10. Role of Ankaferd on bacterial translocation and inflammatory response in an experimental rat model of intestinal obstruction.

    PubMed

    Sen, Velat; Uluca, Unal; Ece, Ayd?n; Gne?, Ali; Zeytun, Hikmet; Arslan, Serkan; Kaplan, Ibrahim; Trk, Gl; Tekin, Recep

    2014-01-01

    Intestinal obstruction (IO) is an important risk factor for the development of bacteria translocation (BT), a serious condition associated with sepsis and potential mortality. Ankaferd is an herbal extract that is reported to exert anti-hemorrhagic, anti-oxidant, anti-microbial, and anti-inflammatory, effects in the intestine. In this study, we employed an animal model of intestinal obstruction to evaluate the effects of Ankaferd in the prevention of bacterial translocation and the suppression of the inflammatory response. Thirty male Wistar Albino rats were allocated randomly to three groups: Group 1 (sham) underwent ileal manipulation alone; Group 2 (intestinal obstruction, IO) underwent complete ileal ligation; Group 3 (intestinal obstruction + Ankaferd blood stopper, ABS) underwent complete ileal ligation and intraperitoneal Ankaferd injection. All rats were euthanized after 24 hours. Blood samples were collected for the measurement of serum oxidative stress parameters and cytokine expression. In addition, liver, mesenteric lymph node (MLN), spleen, and ileal specimens were obtained for microbiological culture to determine the rate of bacterial translocation. Liver and ileal tissues were collected for histopathological examination. A reduction in oxidative damage, inflammatory cytokine expression and bacterial translocation was observed in the ABS treatment group relative to the IO group (p<0.05). Furthermore, histopathological examination demonstrated a reduction in obstruction-induced mucosal injury in Ankaferd-treated rats. Data derived from this study provided the first evidence that Ankaferd treatment limits bacterial translocation and enhances intestinal barrier function in mice undergoing intestinal obstruction. Ankaferd may be useful in the prevention of BT associated with IO. PMID:25356125

  11. Role of Ankaferd on bacterial translocation and inflammatory response in an experimental rat model of intestinal obstruction

    PubMed Central

    ?en, Velat; Uluca, nal; Ece, Ayd?n; Gne?, Ali; Zeytun, Hikmet; Arslan, Serkan; Kaplan, ?brahim; Trk, Gl; Tekin, Recep

    2014-01-01

    Intestinal obstruction (IO) is an important risk factor for the development of bacteria translocation (BT), a serious condition associated with sepsis and potential mortality. Ankaferd is an herbal extract that is reported to exert anti-hemorrhagic, anti-oxidant, anti-microbial, and anti-inflammatory, effects in the intestine. In this study, we employed an animal model of intestinal obstruction to evaluate the effects of Ankaferd in the prevention of bacterial translocation and the suppression of the inflammatory response. Thirty male Wistar Albino rats were allocated randomly to three groups: Group 1 (sham) underwent ileal manipulation alone; Group 2 (intestinal obstruction, IO) underwent complete ileal ligation; Group 3 (intestinal obstruction + Ankaferd blood stopper, ABS) underwent complete ileal ligation and intraperitoneal Ankaferd injection. All rats were euthanized after 24 hours. Blood samples were collected for the measurement of serum oxidative stress parameters and cytokine expression. In addition, liver, mesenteric lymph node (MLN), spleen, and ileal specimens were obtained for microbiological culture to determine the rate of bacterial translocation. Liver and ileal tissues were collected for histopathological examination. A reduction in oxidative damage, inflammatory cytokine expression and bacterial translocation was observed in the ABS treatment group relative to the IO group (p<0.05). Furthermore, histopathological examination demonstrated a reduction in obstruction-induced mucosal injury in Ankaferd-treated rats. Data derived from this study provided the first evidence that Ankaferd treatment limits bacterial translocation and enhances intestinal barrier function in mice undergoing intestinal obstruction. Ankaferd may be useful in the prevention of BT associated with IO. PMID:25356125

  12. Blockage of protease-activated receptor 1 ameliorates heat-stress induced intestinal high permeability and bacterial translocation.

    PubMed

    Xu, Qiu-lin; Guo, Xiao-hua; Liu, Jing-xian; Chen, Bin; Liu, Zhi-feng; Su, Lei

    2015-04-01

    Accumulated evidences indicate intestinal lesions play an important role in the pathogenesis of heatstroke. However, the underlying mechanisms by which heat stress causes intestinal barrier dysfunction and bacterial translocation remain unclear. In this study, we investigated the role of protease-activated receptor 1 (PAR1) in heat stress-induced intestinal hyper-permeability and bacterial translocation. Intestinal permeability in heat stressed mouse was evaluated by determining plasma endotoxin concentration and urinal lactulose/mannitol (L/M) ratio with gastric administration of L/M solution. Venous blood, liver, spleen and mesenteric lymph node tissues were collected for bacterial load test. Real time PCR was used to determine ileum PAR1 mRNA expression. In vitro study, permeability was assessed by determining trans-epithelial electrical resistance (TEER) in human intestinal Caco-2 cell line. RWJ-58259, a selective antagonist of PAR1, was used both in vivo and in vitro studies. The results showed that heat stress could increase ileum PAR1 mRNA level, urinal L/M ratio, plasma endotoxin concentration and bacterial load in the blood, spleen and mesenteric lymph nodes. Blocking PAR1 with RWJ-58259 (10?mg/kg) pretreatment could significantly reduce heat stress-induced above changes, but have no role to PAR1 mRNA level. In Caco-2 cells, heat stress-induced high permeability could also be reduced by RWJ-58259 (5-20?mol/L). In summary, our results demonstrated that PAR1 signaling pathway may play an important role in the heat stress-induced elevation of intestinal permeability, bacterial translocation and the occurrence of endotoxemia. PMID:25492552

  13. Small intestinal bacterial overgrowth mimicking acute flare as a pitfall in patients with Crohn's Disease

    PubMed Central

    2009-01-01

    Background Small intestinal bacterial overgrowth (SIBO) is characterized by excessive proliferation of colonic bacterial species in the small bowel. Potential causes of SIBO include fistulae, strictures or motility disturbances. Hence, patients with Crohn's Disease (CD) are especially predisposed to develop SIBO. As result, CD patients may experience malabsorption and report symptoms such as weight loss, watery diarrhea, meteorism, flatulence and abdominal pain, mimicking acute flare in these patients. Methods One-hundred-fifty patients with CD reporting increased stool frequency, meteorism and/or abdominal pain were prospectively evaluated for SIBO with the Hydrogen Glucose Breath Test (HGBT). Results Thirty-eight patients (25.3%) were diagnosed with SIBO based on positive findings at HGBT. SIBO patients reported a higher rate of abdominal complaints and exhibited increased stool frequency (5.9 vs. 3.7 bowel movements/day, p = 0.003) and lower body weight (63.6 vs 70.4 kg, p = 0.014). There was no correlation with the Crohn's Disease Activity Index. SIBO was significantly more frequent in patients with partial resection of the colon or multiple intestinal surgeries; there was also a clear trend in patients with ileocecal resection that did not reach statistical significance. SIBO rate was also higher in patients with affection of both the colon and small bowel, while inflammation of the (neo)terminal ileum again showed only tendential association with the development of SIBO. Conclusion SIBO represents a frequently ignored yet clinically relevant complication in CD, often mimicking acute flare. Because symptoms of SIBO are often difficult to differentiate from those caused by the underlying disease, targeted work-up is recommended in patients with corresponding clinical signs and predisposing factors. PMID:19643023

  14. The bacterial flora of neonates with congenital abnormalities of the gastro-intestinal tract

    PubMed Central

    Rotimi, V. O.; Duerden, B. I.

    1982-01-01

    The development of the bacterial flora of neonates with congenital abnormalities of the gastro-intestinal tract was studied in 31 infants during the first 10 days of life. Specimens were collected from the umbilicus, mouth and gastro-intestinal tract on the pre-operative day, at operation and on post-operative days 1, 2, 3, 5, 7 and 10. Bacteria were isolated semi-quantitatively on a variety of plain and selective media and identified by conventional methods. Staphylococcus albus was the predominant species isolated from the umbilicus; it was recovered from 24 of the 31 babies. The viridans group of streptococci and Streptococcus salivarius were the commonest species isolated from the mouth; there were no differences between the babies with different abnormalities and treatment with antibiotics had no effect on the bacterial flora. Ten babies were colonized by each species on the pre-operative day, and 25 and 19 respectively by the tenth post-operative day. Anaerobic gram-positive cocci were the predominant oral anaerobes. Bacteria were not isolated from the rectal swabs of babies with tracheo-oesophageal fistula (TOF) or small bowel atresia on the pre-operative days. Post-operatively the predominant faecal isolates from babies with TOF were Str. faecalis, Escherichia coli and Clostridium perfringens. About 80% of the babies with small bowel atresia were colonized by Str. faecalis and Bacteroides vulgatus, 60% each by E. coli, Klebsiella aerogenes and Str. faecium. The five babies with necrotizing enterocolitis were colonized by Str. faecalis, E. coli, Cl. perfringens and Cl. difficile; Bacteroides spp. were not recovered from any of them. The commonest facultative species recovered from babies with large bowel obstruction were Str. faecalis and E. coli. B. vulgatus, Cl. perfringens and Bifidobacterium spp. were the commonest anaerobes and anaerobes outnumbered aerobes. No significant isolates were recovered from the wound swabs and none of the babies developed post-surgical sepsis. PMID:7057028

  15. Intestinal Bacterial Communities That Produce Active Estrogen-Like Compounds Enterodiol and Enterolactone in Humans

    PubMed Central

    Clavel, Thomas; Henderson, Gemma; Alpert, Carl-Alfred; Philippe, Catherine; Rigottier-Gois, Lionel; Doré, Joël; Blaut, Michael

    2005-01-01

    Lignans are dietary diphenolic compounds which require activation by intestinal bacteria to exert possible beneficial health effects. The intestinal ecosystem plays a crucial role in lignan metabolism, but the organisms involved are poorly described. To characterize the bacterial communities responsible for secoisolariciresinol (SECO) activation, i.e., the communities that produce the enterolignans enterodiol (ED) and enterolactone (EL), a study with 24 human subjects was undertaken. SECO activation was detected in all tested fecal samples. The intestinal bacteria involved in ED production were part of the dominant microbiota (6 × 108 CFU g−1), as revealed by most-probable-number enumerations. Conversely, organisms that catalyzed the formation of EL occurred at a mean concentration of approximately 3 × 105 CFU g−1. Women tended to have higher concentrations of both ED- and EL-producing organisms than men. Significantly larger amounts of EL were produced by fecal dilutions from individuals with moderate to high concentrations of EL-producing bacteria. Two organisms able to demethylate and dehydroxylate SECO were isolated from human feces. Based on 16S rRNA gene sequence analyses, they were named Peptostreptococcus productus SECO-Mt75m3 and Eggerthella lenta SECO-Mt75m2. A new 16S rRNA-targeted oligonucleotide probe specific for P. productus and related species was designed and further used in fluorescent in situ hybridization experiments, along with five additional group-specific probes. Significantly higher proportions of P. productus and related species (P = 0.012), as well as bacteria belonging to the Atopobium group (P = 0.035), were typical of individuals with moderate to high concentrations of EL-producing communities. PMID:16204524

  16. Small Intestinal Bacterial Overgrowth Diagnosed by Glucose Hydrogen Breath Test in Post-cholecystectomy Patients

    PubMed Central

    Sung, Hea Jung; Paik, Chang-Nyol; Chung, Woo Chul; Lee, Kang-Moon; Yang, Jin-Mo; Choi, Myung-Gyu

    2015-01-01

    Background/Aims Patients undergoing cholecystectomy may have small intestinal bacterial overgrowth (SIBO). We investigated the prevalence and characteristics of SIBO in patients with intestinal symptoms following cholecystectomy. Methods Sixty-two patients following cholecystectomy, 145 with functional gastrointestinal diseases (FGIDs), and 30 healthy controls undergoing hydrogen (H2)-methane (CH4) glucose breath test (GBT) were included in the study. Before performing GBT, all patients were interrogated using bowel symptom questionnaire. The positivity to GBT indicating the presence of SIBO, gas types and bowel symptoms were surveyed. Results Post-cholecystectomy patients more often had SIBO as evidenced by a positive (+) GBT than those with FGID and controls (29/62, 46.8% vs 38/145, 26.2% vs 4/30, 13.3%, respectively; P = 0.010). In the gas types, the GBT (H2) + post-cholecystectomy patients was significantly higher than those in FGIDs patients (P = 0.017). Especially, positivity to fasting GBT (H2) among the GBT (H2)+ post-cholecystectomy patients was high, as diagnosed by elevated fasting H2 level. The GBT+ group had higher symptom scores of significance or tendency in abdominal discomfort, bloating, chest discomfort, early satiety, nausea, and tenesmus than those of the GBT negative group. The status of cholecystectomy was the only significant independent factor for predicting SIBO. Conclusions The SIBO with high levels of baseline H2 might be the important etiologic factor of upper GI symptoms for post-cholecystectomy patients. PMID:26351251

  17. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip.

    PubMed

    Kim, Hyun Jung; Li, Hu; Collins, James J; Ingber, Donald E

    2016-01-01

    A human gut-on-a-chip microdevice was used to coculture multiple commensal microbes in contact with living human intestinal epithelial cells for more than a week in vitro and to analyze how gut microbiome, inflammatory cells, and peristalsis-associated mechanical deformations independently contribute to intestinal bacterial overgrowth and inflammation. This in vitro model replicated results from past animal and human studies, including demonstration that probiotic and antibiotic therapies can suppress villus injury induced by pathogenic bacteria. By ceasing peristalsis-like motions while maintaining luminal flow, lack of epithelial deformation was shown to trigger bacterial overgrowth similar to that observed in patients with ileus and inflammatory bowel disease. Analysis of intestinal inflammation on-chip revealed that immune cells and lipopolysaccharide endotoxin together stimulate epithelial cells to produce four proinflammatory cytokines (IL-8, IL-6, IL-1?, and TNF-?) that are necessary and sufficient to induce villus injury and compromise intestinal barrier function. Thus, this human gut-on-a-chip can be used to analyze contributions of microbiome to intestinal pathophysiology and dissect disease mechanisms in a controlled manner that is not possible using existing in vitro systems or animal models. PMID:26668389

  18. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip

    PubMed Central

    Kim, Hyun Jung; Li, Hu; Collins, James J.; Ingber, Donald E.

    2016-01-01

    A human gut-on-a-chip microdevice was used to coculture multiple commensal microbes in contact with living human intestinal epithelial cells for more than a week in vitro and to analyze how gut microbiome, inflammatory cells, and peristalsis-associated mechanical deformations independently contribute to intestinal bacterial overgrowth and inflammation. This in vitro model replicated results from past animal and human studies, including demonstration that probiotic and antibiotic therapies can suppress villus injury induced by pathogenic bacteria. By ceasing peristalsis-like motions while maintaining luminal flow, lack of epithelial deformation was shown to trigger bacterial overgrowth similar to that observed in patients with ileus and inflammatory bowel disease. Analysis of intestinal inflammation on-chip revealed that immune cells and lipopolysaccharide endotoxin together stimulate epithelial cells to produce four proinflammatory cytokines (IL-8, IL-6, IL-1β, and TNF-α) that are necessary and sufficient to induce villus injury and compromise intestinal barrier function. Thus, this human gut-on-a-chip can be used to analyze contributions of microbiome to intestinal pathophysiology and dissect disease mechanisms in a controlled manner that is not possible using existing in vitro systems or animal models. PMID:26668389

  19. [Establishment of the intestinal microflora and regulation of bacterial translocation after caffeine citrate treatment during postnatal period in rat].

    PubMed

    Moumen Chentouf, W; Tir Touil Meddah, A; Lk, A; Mulli, C; Krim, G; Canarelli, J-P; Meddah, B

    2012-10-01

    To relieve respiratory problems such as apnea in newborns, caffeine citrate is the drug of choice because of its good tolerance and therapeutic index. However, its impact on the intestinal microbial ecosystem and on bacterial translocation in the neonatal period remains insufficiently investigated. Therefore, the objective of this study was to evaluate the effects of caffeine citrate on the establishment of the intestinal microflora and bacterial translocation in rats from birth to the 30th day of life. Newborn Wistar rats were divided into four groups of 14 animals, each subdivided into a control group receiving a placebo (12mL tap water/kg/day) and another treated with caffeine citrate (12mg/kg/day). The animals were nursed by their mothers and weighed daily. A group of 14 rats was killed at birth and after 10, 20, or 30 days of life. Organs in which translocation was assessed (liver, lungs, spleen, and kidneys) and various fragments of intestine (duodenum, jejunum, ileum, and colon) were surgically removed. The bacteriological analysis performed involved enumeration of the total microflora, staphylococci, enterobacteria, and lactobacilli. From the 10th day, caffeine was shown to significantly decrease the weight of treated animals as compared with controls (P<0.05). However, caffeine treatment did not drastically alter the kinetics of establishment of the intestinal microflora as only enterobacteria were found to be significantly lower in any intestinal segment of the treated group (P<0.05). Moreover, from the 20th day of life, caffeine citrate significantly downregulated bacterial translocation of both Gram-positive and -negative bacteria (P<0.05). This preliminary study on the effects of treatment with caffeine citrate may open opportunities in clinical pediatrics; the treatment will remain partially effective in preventing bacterial translocation in the neonatal period. PMID:22920890

  20. Modulation of intestinal goblet cell function during infection by an attaching and effacing bacterial pathogen.

    PubMed

    Bergstrom, Kirk S B; Guttman, Julian A; Rumi, Mohammad; Ma, Caixia; Bouzari, Saied; Khan, Mohammed A; Gibson, Deanna L; Vogl, A Wayne; Vallance, Bruce A

    2008-02-01

    The attaching and effacing (A/E) bacterial pathogens enteropathogenic Escherichia coli and enterohemorrhagic E. coli and the related mouse pathogen Citrobacter rodentium colonize their hosts' intestines by infecting the apical surfaces of enterocytes, subverting their function, and they ultimately cause diarrhea. Surprisingly, little is known about the interactions of these organisms with goblet cells, which are specialized epithelial cells that secrete the protective molecules Muc2 and trefoil factor 3 (Tff3) into the intestinal lumen. C. rodentium infection leads to dramatic goblet cell depletion within the infected colon, yet it is not clear whether C. rodentium infects goblet cells or if this pathology is pathogen or host mediated. As determined by immunostaining and PCR, both the number of goblet cells and the expression of genes encoding Muc2 and Tff3 were significantly reduced by day 10 postinfection. While electron microscopy and immunostaining revealed that C. rodentium directly infected a fraction of colonic goblet cells, C. rodentium localization did not correlate with goblet cell depletion. To assess the role of the host immune system in these changes, Rag1 knockout (KO) (T- and B-cell-deficient) mice were infected with C. rodentium. Rag1 KO mice did not exhibit the reduction in the number of goblet cells or in mediator (Muc2 and Tff3) expression observed in infected immunocompetent mice. However, reconstitution of Rag1 KO mice with T and B lymphocytes from C57BL/6 mice restored the goblet cell depletion phenotype during C. rodentium infection. In conclusion, these studies demonstrated that while colonic goblet cells can be subject to direct infection and potential subversion by A/E pathogens in vivo, it is the host immune system that primarily modulates the function of these cells during infection. PMID:17984203

  1. Intestinal Dysbiosis and Bacterial Enteroinvasion in a Murine Model of Hirschsprung’s Disease

    PubMed Central

    Pierre, Joseph F.; Barlow-Anacker, Amanda J.; Erickson, Christopher S.; Heneghan, Aaron F.; Leverson, Glen E.; Dowd, Scot E.; Epstein, Miles L.; Kudsk, Kenneth A.; Gosain, Ankush

    2014-01-01

    Background/Purpose Hirschsprung’s disease (HSCR), characterized by the absence of ganglia in the distal colon, results in functional obstruction. Despite surgical resection of the aganglionic segment, around 40% of patients suffer recurrent life threatening Hirschsprung’s-associated enterocolitis (HAEC). The aim of this study was to investigate whether gut microbiota and intestinal immunity changes contribute to the HAEC risk in a HSCR model. Methods Mice with neural crest conditional deletion of Endothelin receptor B (EdnrB) and their littermate controls were used (EdnrB-null and EdnrB-het). Bacterial DNA was prepared from cecal contents of P16–18 and P21–24 animals and pyrosequencing employed for microbiome analysis. Ileal tissue was isolated and secretory phospholipase A2 (sPLA2) expression and activity determined. Enteroinvasion of E. coli into ileal explants was measured using an ex vivo organ culture system. Results EdnrB-het and EdnrB-nulls displayed similar flora, sPLA2 expression and activity at P16–18. However, by P21–24, EdnrB-hets demonstrated increased Lactobacillus and decreased Bacteroides and Clostridium, while EdnrB-nulls exhibited reciprocal changes. EdnrB-nulls also showed reduced sPLA2 expression and luminal activity at this stage. Functionally, EdnrB-nulls were more susceptible to enteroinvasion with E. coli ex vivo and released less sPLA2 than EdnrB-hets. Conclusions Initially, EdnrB-het and EdnrB-nulls contain similar cecal flora but then undergo reciprocal changes. EdnrB-nulls display dysbiosis, demonstrate impaired mucosal defense, decreased luminal sPLA2 and increased enteroinvasion of E. coli just prior to robust colonic inflammation and death. These findings suggest a role for the intestinal microbiome in the development of HAEC. PMID:25092084

  2. Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus.

    PubMed Central

    Ohkuma, M; Kudo, T

    1996-01-01

    The phylogenetic diversity of the intestinal microflora of a lower termite, Reticulitermes speratus, was examined by a strategy which does not rely on cultivation of the resident microorganisms. Small-subunit rRNA genes (16S rDNAs) were directly amplified from the mixed-population DNA of the termite gut by the PCR and were clonally isolated. Analysis of partial 16S rDNA sequences showed the existence of well-characterized genera as well as the presence of bacterial species for which no 16S rDNA sequence data are available. Of 55 clones sequenced, 45 were phylogenetically affiliated with four of the major groups of the domain Bacteria: the Proteobacteria, the spirochete group, the Bacteroides group, and the low-G+C-content gram-positive bacteria. Within the Proteobacteria, the 16S rDNA clones showed a close relationship to those of cultivated species of enteric bacteria and sulfate-reducing bacteria, while the 16S rDNA clones in the remaining three groups showed only distant relationships to those of known organisms in these groups. Of the remaining 10 clones, among which 8 clones formed a cluster, there was only very low sequence similarity to known 16S rRNA sequences. None of these clones were affiliated with any of the major groups within the domain Bacteria. The 16S rDNA gene sequence data show that the majority of the intestinal microflora of R. speratus consists of new, uncultured species previously unknown to microbiologists. PMID:8593049

  3. Identification of Bacterial Isolates Obtained from Intestinal Contents Associated with 12,000-Year-Old Mastodon Remains

    PubMed Central

    Rhodes, A. N.; Urbance, J. W.; Youga, H.; Corlew-Newman, H.; Reddy, C. A.; Klug, M. J.; Tiedje, J. M.; Fisher, D. C.

    1998-01-01

    Mastodon (Mammut americanum) remains unearthed during excavation of ancient sediments usually consist only of skeletal material, due to postmortem decomposition of soft tissues by microorganisms. Two recent excavations of skeletal remains in anoxic sediments in Ohio and Michigan, however, have uncovered organic masses which appear to be remnants of the small and large intestines, respectively. Macrobotanical examinations of the composition of these masses revealed assemblages of plant material radiocarbon dated to approximately 11,500 years before the present and thought to be incompletely digested food remains from this extinct mammal. We attempted to cultivate and identify bacteria from the intestinal contents, bone-associated sediments, and sediments not in proximity to the remains using a variety of general and selective media. In all, 295 isolates were cultivated, and 38 individual taxa were identified by fatty acid-methyl ester (FAME) profiles and biochemical characteristics (API-20E). The taxonomic positions of selected enteric and obligately anaerobic bacteria were confirmed by 16S ribosomal DNA (rDNA) sequencing. Results indicate that the intestinal and bone-associated samples contained the greatest diversity of bacterial taxa and that members of the family Enterobacteriaceae represented 41% of all isolates and were predominant in the intestinal masses and sediments in proximity to the skeleton but were uncommon in the background sediments. Enterobacter cloacae was the most commonly identified isolate, and partial rDNA sequencing revealed that Rahnella aquatilis was the correct identity of strains suggested by FAME profiles to be Yersinia enterocolitica. No Bacteroides spp. or expected intestinal anaerobes were recovered. The only obligate anaerobes recovered were clostridia, and these were not recovered from the small intestinal masses. Microbiological evidence from this study supports other, macrobotanical data indicating the intestinal origin of these masses. Whether these organisms are direct descendants of the original intestinal microbiota, however, cannot be established. PMID:9464403

  4. Loss of Sirt1 Function Improves Intestinal Anti-Bacterial Defense and Protects from Colitis-Induced Colorectal Cancer

    PubMed Central

    Lo Sasso, Giuseppe; Ryu, Dongryeol; Mouchiroud, Laurent; Fernando, Samodha C.; Anderson, Christopher L.; Katsyuba, Elena; Piersigilli, Alessandra; Hottiger, Michael O.; Schoonjans, Kristina; Auwerx, Johan

    2014-01-01

    Dysfunction of Paneth and goblet cells in the intestine contributes to inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC). Here, we report a role for the NAD+-dependent histone deacetylase SIRT1 in the control of anti-bacterial defense. Mice with an intestinal specific Sirt1 deficiency (Sirt1int?/?) have more Paneth and goblet cells with a consequent rearrangement of the gut microbiota. From a mechanistic point of view, the effects on mouse intestinal cell maturation are mediated by SIRT1-dependent changes in the acetylation status of SPDEF, a master regulator of Paneth and goblet cells. Our results suggest that targeting SIRT1 may be of interest in the management of IBD and CAC. PMID:25013930

  5. Small intestinal bacterial overgrowth in inactive Crohn’s disease: Influence of thiopurine and biological treatment

    PubMed Central

    Sánchez-Montes, Cristina; Ortiz, Vicente; Bastida, Guillermo; Rodríguez, Ester; Yago, María; Beltrán, Belén; Aguas, Mariam; Iborra, Marisa; Garrigues, Vicente; Ponce, Julio; Nos, Pilar

    2014-01-01

    AIM: To investigate the influence of thiopurines and biological drugs on the presence of small intestinal bacterial overgrowth (SIBO) in patients with inactive Crohn’s disease (CD). METHODS: This was a prospective study in patients with CD in remission and without corticosteroid treatment, included consecutively from 2004 to 2010. SIBO was investigated using the hydrogen glucose breath test. RESULTS: One hundred and seven patients with CD in remission were included. Almost 58% of patients used maintenance immunosuppressant therapy and 19.6% used biological therapy. The prevalence of SIBO was 16.8%. No association was observed between SIBO and the use of thiopurine Immunosuppressant (12/62 patients), administration of biological drugs (2/21 patients), or with double treatment with an anti-tumor necrosis factor drugs plus thiopurine (1/13 patients). Half of the patients had symptoms that were suggestive of SIBO, though meteorism was the only symptom that was significantly associated with the presence of SIBO on univariate analysis (P < 0.05). Multivariate analysis revealed that the presence of meteorism and a fistulizing pattern were associated with the presence of SIBO (P < 0.05). CONCLUSION: Immunosuppressants and/or biological drugs do not induce SIBO in inactive CD. Fistulizing disease pattern and meteorism are associated with SIBO. PMID:25320539

  6. Small Intestinal Bacterial Overgrowth in Patients with Refractory Functional Gastrointestinal Disorders

    PubMed Central

    Shimura, Shino; Ishimura, Norihisa; Mikami, Hironobu; Okimoto, Eiko; Uno, Goichi; Tamagawa, Yuji; Aimi, Masahito; Oshima, Naoki; Sato, Shuichi; Ishihara, Shunji; Kinoshita, Yoshikazu

    2016-01-01

    Background/Aims Small intestinal bacterial overgrowth (SIBO) is considered to be involved in the pathogenesis of functional gastrointestinal disorders (FGID). However, the prevalence and clinical conditions of SIBO in patients with FGID remain to be fully elucidated. Here, we examined the frequency of SIBO in patients with refractory FGID. Methods We prospectively enrolled patients with refractory FGID based on Rome III criteria. A glucose hydrogen breath test (GHBT) was performed using a gas analyzer after an overnight fast, with breath hydrogen concentration measured at baseline and every 15 minutes after administration of glucose for a total of 3 hours. A peak hydrogen value ≥ 10 ppm above the basal value between 60 and 120 minutes after administration of glucose was diagnosed as SIBO. Results A total of 38 FGID patients, including 11 with functional dyspepsia (FD), 10 with irritable bowel syndrome (IBS), and 17 with overlapping with FD and IBS, were enrolled. Of those, 2 (5.3%) were diagnosed with SIBO (one patient diagnosed with FD; the other with overlapping FD and IBS). Their symptoms were clearly improved and breath hydrogen levels decreased to normal following levofloxacin administration for 7 days. Conclusions Two patients initially diagnosed with FD and IBS were also diagnosed with SIBO as assessed by GHBT. Although the frequency of SIBO is low among patients with FGID, it may be important to be aware of SIBO as differential diagnosis when examining patients with refractory gastrointestinal symptoms, especially bloating, as a part of routine clinical care. PMID:26554916

  7. Irritable bowel syndrome and small intestinal bacterial overgrowth: meaningful association or unnecessary hype.

    PubMed

    Ghoshal, Uday C; Srivastava, Deepakshi

    2014-03-14

    Irritable bowel syndrome (IBS) is a common condition characterized by abdominal pain or discomfort, bloating, and altered stool form and passage. Small intestinal bacterial overgrowth (SIBO) is a condition in which there is overgrowth of bacteria in small bowel in excess of 10⁵ colony forming units per milliliter on culture of the upper gut aspirate. Frequency of SIBO varied from 4%-78% among patients with IBS and from 1%-40% among controls. Higher frequency in some studies might be due to fallacious criteria [post-lactulose breath-hydrogen rise 20 PPM above basal within 90 min (early-peak)]. Glucose hydrogen breath test (GHBT) has a low sensitivity to diagnose SIBO. Hence, studies based on GHBT might have under-estimated frequency of SIBO. Therefore, it is important to analyze these studies carefully to evaluate whether the reported association between IBS and SIBO is over or under-projected. This review evaluates studies on association between SIBO and IBS, discordance between different studies, their strength and weakness including methodological issues and evidence on therapeutic manipulation of gut flora on symptoms of IBS. PMID:24627585

  8. Irritable bowel syndrome and small intestinal bacterial overgrowth: Meaningful association or unnecessary hype

    PubMed Central

    Ghoshal, Uday C; Srivastava, Deepakshi

    2014-01-01

    Irritable bowel syndrome (IBS) is a common condition characterized by abdominal pain or discomfort, bloating, and altered stool form and passage. Small intestinal bacterial overgrowth (SIBO) is a condition in which there is overgrowth of bacteria in small bowel in excess of 105 colony forming units per milliliter on culture of the upper gut aspirate. Frequency of SIBO varied from 4%-78% among patients with IBS and from 1%-40% among controls. Higher frequency in some studies might be due to fallacious criteria [post-lactulose breath-hydrogen rise 20 PPM above basal within 90 min (early-peak)]. Glucose hydrogen breath test (GHBT) has a low sensitivity to diagnose SIBO. Hence, studies based on GHBT might have under-estimated frequency of SIBO. Therefore, it is important to analyze these studies carefully to evaluate whether the reported association between IBS and SIBO is over or under-projected. This review evaluates studies on association between SIBO and IBS, discordance between different studies, their strength and weakness including methodological issues and evidence on therapeutic manipulation of gut flora on symptoms of IBS. PMID:24627585

  9. The involvement of Aeromonas salmonicida virulence factors in bacterial translocation across the rainbow trout, Oncorhynchus mykiss (Walbaum), intestine.

    PubMed

    Jutfelt, F; Sundh, H; Glette, J; Mellander, L; Thrandur Bjrnsson, B; Sundell, K

    2008-02-01

    The pathogenic bacterium Aeromonas salmonicida is the causative agent of furunculosis, a lethal disease in salmonids. The mode of lateral transmission has not been conclusively defined, but A. salmonicida is able to translocate across the intestinal epithelium of salmonids, making the intestinal route a probable candidate. This study investigated some of the virulence mechanisms used by the bacteria to promote translocation. Intestinal segments were placed in modified Ussing chambers to investigate epithelial functions during exposure to bacterial factors. The factors were: extracellular products (ECP), lipopolysaccharide (LPS) or live or heat-inactivated A. salmonicida. Fluorescein isothiocynate (FITC)-labelling enabled detection of translocated bacteria by fluorometry. Live A. salmonicida translocated to a greater degree than heat-inactivated bacteria, suggesting that the bacteria utilize a heat sensitive surface-bound virulence factor which promotes translocation. The epithelium was negatively affected by ECP, manifested as decreased net ion transport, indicating a disturbance in ion channels or cell metabolism. LPS did not affect the epithelium in vitro when administered on the luminal side of the intestinal segment, but significantly increased epithelial translocation of fluorescent bacterial-sized microspheres when administered on the serosal side. This is suggested to be caused by increased transcellular transport, as the paracellular permeability was unaffected indicating maintained epithelial integrity. PMID:18234022

  10. Herbal Therapy Is Equivalent to Rifaximin for the Treatment of Small Intestinal Bacterial Overgrowth

    PubMed Central

    Chedid, Victor; Dhalla, Sameer; Clarke, John O.; Roland, Bani Chander; Dunbar, Kerry B.; Koh, Joyce; Justino, Edmundo; Tomakin, Eric

    2014-01-01

    Objective: Patients with small intestine bacterial overgrowth (SIBO) have chronic intestinal and extraintestinal symptomatology which adversely affects their quality of life. Present treatment of SIBO is limited to oral antibiotics with variable success. A growing number of patients are interested in using complementary and alternative therapies for their gastrointestinal health. The objective was to determine the remission rate of SIBO using either the antibiotic rifaximin or herbals in a tertiary care referral gastroenterology practice. Design: One hundred and four patients who tested positive for newly diagnosed SIBO by lactulose breath testing (LBT) were offered either rifaximin 1200 mg daily vs herbal therapy for 4 weeks with repeat LBT post-treatment. Results: Three hundred ninety-six patients underwent LBT for suspected SIBO, of which 251 (63.4%) were positive 165 underwent treatment and 104 had a follow-up LBT. Of the 37 patients who received herbal therapy, 17 (46%) had a negative follow-up LBT compared to 23/67 (34%) of rifaximin users (P=.24). The odds ratio of having a negative LBT after taking herbal therapy as compared to rifaximin was 1.85 (CI=0.77-4.41, P=.17) once adjusted for age, gender, SIBO risk factors and IBS status. Fourteen of the 44 (31.8%) rifaximin non-responders were offered herbal rescue therapy, with 8 of the 14 (57.1%) having a negative LBT after completing the rescue herbal therapy, while 10 non-responders were offered triple antibiotics with 6 responding (60%, P=.89). Adverse effects were reported among the rifaximin treated arm including 1 case of anaphylaxis, 2 cases of hives, 2 cases of diarrhea and 1 case of Clostridium difficile. Only one case of diarrhea was reported in the herbal therapy arm, which did not reach statistical significance (P=.22). Conclusion: SIBO is widely prevalent in a tertiary referral gastroenterology practice. Herbal therapies are at least as effective as rifaximin for resolution of SIBO by LBT. Herbals also appear to be as effective as triple antibiotic therapy for SIBO rescue therapy for rifaximin non-responders. Further, prospective studies are needed to validate these findings and explore additional alternative therapies in patients with refractory SIBO. PMID:24891990

  11. An unusual cause of spontaneous bacterial peritonitis due to Campylobacter fetus with alcoholic liver cirrhosis.

    PubMed

    Hadano, Yoshiro; Iwata, Hiroyoshi

    2013-01-01

    A 40-year-old man with severe alcoholic liver cirrhosis with a 2-day history of fatigue and abdominal pain was admitted. He reported eating sushi and sliced raw chicken a few days previously. His abdomen was distended, with shifting dullness. Based on the patient's history, physical examination and the results of abdominocentesis, he was diagnosed as having spontaneous bacterial peritonitis; blood and ascitic fluid cultures were positive for Campylobacter fetus. The patient was started on treatment with cefotaxime, which was switched after 1 week to ampicillin for an additional 3 weeks. The patient was successfully treated with the 4-week course of intravenous antibiotic therapy. PMID:23417384

  12. Effects of laxative and N-acetylcysteine on mucus accumulation, bacterial load, transit, and inflammation in the cystic fibrosis mouse small intestine.

    PubMed

    De Lisle, Robert C; Roach, Eileen; Jansson, Kyle

    2007-09-01

    The accumulation of mucus in affected organs is characteristic of cystic fibrosis (CF). The CF mouse small intestine has dramatic mucus accumulation and exhibits slower interdigestive intestinal transit. These factors are proposed to play cooperative roles that foster small intestinal bacterial overgrowth (SIBO) and contribute to the innate immune response of the CF intestine. It was hypothesized that decreasing the mucus accumulation would reduce SIBO and might improve other aspects of the CF intestinal phenotype. To test this, solid chow-fed CF mice were treated with an osmotic laxative to improve gut hydration or liquid-fed mice were treated orally with N-acetylcysteine (NAC) to break mucin disulfide bonds. Treatment with laxative or NAC reduced mucus accumulation by 43% and 50%, respectively, as measured histologically as dilation of the intestinal crypts. Laxative and NAC also reduced bacterial overgrowth in the CF intestine by 92% and 63%, respectively. Treatment with laxative normalized small intestinal transit in CF mice, whereas NAC did not. The expression of innate immune response-related genes was significantly reduced in laxative-treated CF mice, whereas there was no significant effect in NAC-treated CF mice. In summary, laxative and NAC treatments of CF mice reduced mucus accumulation to a similar extent, but laxative was more effective than NAC at reducing bacterial load. Eradication of bacterial overgrowth by laxative treatment was associated with normalized intestinal transit and a reduction in the innate immune response. These results suggest that both mucus accumulation and slowed interdigestive small intestinal transit contribute to SIBO in the CF intestine. PMID:17615175

  13. Utilization of rye as energy source affects bacterial translocation, intestinal viscosity, microbiota composition, and bone mineralization in broiler chickens.

    PubMed

    Tellez, Guillermo; Latorre, Juan D; Kuttappan, Vivek A; Kogut, Michael H; Wolfenden, Amanda; Hernandez-Velasco, Xochitl; Hargis, Billy M; Bottje, Walter G; Bielke, Lisa R; Faulkner, Olivia B

    2014-01-01

    Two independent trials were conducted to evaluate the utilization of rye as energy source on bacterial translocation (BT), intestinal viscosity, gut integrity, gut microbiota composition, and bone mineralization, when compared with a traditional cereal (corn) in broiler chickens. In each experiment, day-of-hatch, broiler chickens were randomly assigned to either a corn or a rye diet (n = 20 chickens/group). At 10 d of age, in both experiments, 12 chickens/group were randomly selected, and given an oral gavage dose of fluorescein isothiocyanate dextran (FITC-d). After 2.5 h of oral gavage, blood samples were collected to determine the passage of FITC-d. The liver was collected from each bird to evaluate BT. Duodenum, ileum, and cecum gut sections were collected to evaluate intestinal viscosity and to enumerate gut microbiota. Tibias were collected for observation of bone parameters. Broilers fed with rye showed increased (p < 0.05) intestinal viscosity, BT, and serum FITC-d. Bacterial enumeration revealed that chickens fed with rye had increased the number of total lactic acid bacteria in all three sections of the gastrointestinal tract evaluated when compared to chickens fed with corn. Chickens fed with rye also had significantly higher coliforms in duodenum and ileum, whereas the total number of anaerobes increased only in duodenum. A significant reduction in bone strength and bone mineralization was observed in chickens fed with rye when compared with corn fed chickens. In conclusion, rye evoked mucosal damage in chickens that alter the intestinal viscosity, increased leakage through the intestinal tract, and altered the microbiota composition as well as bone mineralization. Studies to evaluate dietary inclusion of selected DFM candidates that produce exogenous enzymes in rye fed chickens are currently being evaluated. PMID:25309584

  14. Utilization of rye as energy source affects bacterial translocation, intestinal viscosity, microbiota composition, and bone mineralization in broiler chickens

    PubMed Central

    Tellez, Guillermo; Latorre, Juan D.; Kuttappan, Vivek A.; Kogut, Michael H.; Wolfenden, Amanda; Hernandez-Velasco, Xochitl; Hargis, Billy M.; Bottje, Walter G.; Bielke, Lisa R.; Faulkner, Olivia B.

    2014-01-01

    Two independent trials were conducted to evaluate the utilization of rye as energy source on bacterial translocation (BT), intestinal viscosity, gut integrity, gut microbiota composition, and bone mineralization, when compared with a traditional cereal (corn) in broiler chickens. In each experiment, day-of-hatch, broiler chickens were randomly assigned to either a corn or a rye diet (n = 20 chickens/group). At 10 d of age, in both experiments, 12 chickens/group were randomly selected, and given an oral gavage dose of fluorescein isothiocyanate dextran (FITC-d). After 2.5 h of oral gavage, blood samples were collected to determine the passage of FITC-d. The liver was collected from each bird to evaluate BT. Duodenum, ileum, and cecum gut sections were collected to evaluate intestinal viscosity and to enumerate gut microbiota. Tibias were collected for observation of bone parameters. Broilers fed with rye showed increased (p < 0.05) intestinal viscosity, BT, and serum FITC-d. Bacterial enumeration revealed that chickens fed with rye had increased the number of total lactic acid bacteria in all three sections of the gastrointestinal tract evaluated when compared to chickens fed with corn. Chickens fed with rye also had significantly higher coliforms in duodenum and ileum, whereas the total number of anaerobes increased only in duodenum. A significant reduction in bone strength and bone mineralization was observed in chickens fed with rye when compared with corn fed chickens. In conclusion, rye evoked mucosal damage in chickens that alter the intestinal viscosity, increased leakage through the intestinal tract, and altered the microbiota composition as well as bone mineralization. Studies to evaluate dietary inclusion of selected DFM candidates that produce exogenous enzymes in rye fed chickens are currently being evaluated. PMID:25309584

  15. Carriage of ? Latent Virus Is Costly for Its Bacterial Host due to Frequent Reactivation in Monoxenic Mouse Intestine.

    PubMed

    De Paepe, Marianne; Tournier, Laurent; Moncaut, Elisabeth; Son, Olivier; Langella, Philippe; Petit, Marie-Agns

    2016-02-01

    Temperate phages, the bacterial viruses able to enter in a dormant prophage state in bacterial genomes, are present in the majority of bacterial strains for which the genome sequence is available. Although these prophages are generally considered to increase their hosts' fitness by bringing beneficial genes, studies demonstrating such effects in ecologically relevant environments are relatively limited to few bacterial species. Here, we investigated the impact of prophage carriage in the gastrointestinal tract of monoxenic mice. Combined with mathematical modelling, these experimental results provided a quantitative estimation of key parameters governing phage-bacteria interactions within this model ecosystem. We used wild-type and mutant strains of the best known host/phage pair, Escherichia coli and phage ?. Unexpectedly, ? prophage caused a significant fitness cost for its carrier, due to an induction rate 50-fold higher than in vitro, with 1 to 2% of the prophage being induced. However, when prophage carriers were in competition with isogenic phage susceptible bacteria, the prophage indirectly benefited its carrier by killing competitors: infection of susceptible bacteria led to phage lytic development in about 80% of cases. The remaining infected bacteria were lysogenized, resulting overall in the rapid lysogenization of the susceptible lineage. Moreover, our setup enabled to demonstrate that rare events of phage gene capture by homologous recombination occurred in the intestine of monoxenic mice. To our knowledge, this study constitutes the first quantitative characterization of temperate phage-bacteria interactions in a simplified gut environment. The high prophage induction rate detected reveals DNA damage-mediated SOS response in monoxenic mouse intestine. We propose that the mammalian gut, the most densely populated bacterial ecosystem on earth, might foster bacterial evolution through high temperate phage activity. PMID:26871586

  16. Carriage of λ Latent Virus Is Costly for Its Bacterial Host due to Frequent Reactivation in Monoxenic Mouse Intestine

    PubMed Central

    De Paepe, Marianne; Tournier, Laurent; Moncaut, Elisabeth; Son, Olivier; Langella, Philippe; Petit, Marie-Agnès

    2016-01-01

    Temperate phages, the bacterial viruses able to enter in a dormant prophage state in bacterial genomes, are present in the majority of bacterial strains for which the genome sequence is available. Although these prophages are generally considered to increase their hosts’ fitness by bringing beneficial genes, studies demonstrating such effects in ecologically relevant environments are relatively limited to few bacterial species. Here, we investigated the impact of prophage carriage in the gastrointestinal tract of monoxenic mice. Combined with mathematical modelling, these experimental results provided a quantitative estimation of key parameters governing phage-bacteria interactions within this model ecosystem. We used wild-type and mutant strains of the best known host/phage pair, Escherichia coli and phage λ. Unexpectedly, λ prophage caused a significant fitness cost for its carrier, due to an induction rate 50-fold higher than in vitro, with 1 to 2% of the prophage being induced. However, when prophage carriers were in competition with isogenic phage susceptible bacteria, the prophage indirectly benefited its carrier by killing competitors: infection of susceptible bacteria led to phage lytic development in about 80% of cases. The remaining infected bacteria were lysogenized, resulting overall in the rapid lysogenization of the susceptible lineage. Moreover, our setup enabled to demonstrate that rare events of phage gene capture by homologous recombination occurred in the intestine of monoxenic mice. To our knowledge, this study constitutes the first quantitative characterization of temperate phage-bacteria interactions in a simplified gut environment. The high prophage induction rate detected reveals DNA damage-mediated SOS response in monoxenic mouse intestine. We propose that the mammalian gut, the most densely populated bacterial ecosystem on earth, might foster bacterial evolution through high temperate phage activity. PMID:26871586

  17. Regulatory T cells promote a protective Th17-associated immune response to intestinal bacterial infection with C. rodentium.

    PubMed

    Wang, Z; Friedrich, C; Hagemann, S C; Korte, W H; Goharani, N; Cording, S; Eberl, G; Sparwasser, T; Lochner, M

    2014-11-01

    Intestinal infection with the mouse pathogen Citrobacter rodentium induces a strong local Th17 response in the colon. Although this inflammatory immune response helps to clear the pathogen, it also induces inflammation-associated pathology in the gut and thus, has to be tightly controlled. In this project, we therefore studied the impact of Foxp3(+) regulatory T cells (Treg) on the infectious and inflammatory processes elicited by the bacterial pathogen C. rodentium. Surprisingly, we found that depletion of Treg by diphtheria toxin in the Foxp3(DTR) (DEREG) mouse model resulted in impaired bacterial clearance in the colon, exacerbated body weight loss, and increased systemic dissemination of bacteria. Consistent with the enhanced susceptibility to infection, we found that the colonic Th17-associated T-cell response was impaired in Treg-depleted mice, suggesting that the presence of Treg is crucial for the establishment of a functional Th17 response after the infection in the gut. As a consequence of the impaired Th17 response, we also observed less inflammation-associated pathology in the colons of Treg-depleted mice. Interestingly, anti-interleukin (IL)-2 treatment of infected Treg-depleted mice restored Th17 induction, indicating that Treg support the induction of a protective Th17 response during intestinal bacterial infection by consumption of local IL-2. PMID:24646939

  18. Difficult case of Cronkhite-Canada syndrome with small intestinal bacterial overgrowth, Clostridium difficile infection and polymyalgia rheumatica.

    PubMed

    Traussnigg, Stefan; Dolak, Werner; Trauner, Michael; Kazemi-Shirazi, Lili

    2016-01-01

    A 64-year-old woman presented with heavy diarrhoea, nausea and weight loss accompanied by alopecia and dystrophic fingernails and toenails. The preceding diagnosis of an inflammatory bowel disease, a common pitfall, was excluded by endoscopic work up. Instead, Cronkhite-Canada syndrome (CCS), a rare polyposis condition, was identified as the reason for this almost pathognomonic combination of diagnostic findings including various polyps throughout the entire intestine and ectodermal abnormalities. This case exemplifies common risks and complications in terms of gastrointestinal malabsorption, infections and small intestinal bacterial overgrowth (SIBO), including its treatment as well as a hereto unreported association with polymyalgia rheumatica. In CCS, long-term immunosuppressive therapy and close endoscopic cancer screening of the patient is essential. The treatment of vitamin deficiency and recurring SIBO helps to reduce symptoms. PMID:26818813

  19. Helicobacter pylori infection but not small intestinal bacterial overgrowth may play a pathogenic role in rosacea

    PubMed Central

    Federico, A; Ruocco, E; Lo Schiavo, A; Masarone, M; Tuccillo, C; Peccerillo, F; Miranda, A; Romano, L; de Sio, C; de Sio, I; Persico, M; Ruocco, V; Riegler, G; Loguercio, C; Romano, M

    2015-01-01

    Background and aims Recent studies suggest a potential relationship between rosacea and Helicobacter pylori (H. pylori) infection or small intestinal bacterial overgrowth (SIBO), but there is no firm evidence of an association between rosacea and H. pylori infection or SIBO. We performed a prospective study to assess the prevalence of H. pylori infection and/or SIBO in patients with rosacea and evaluated the effect of H. pylori or SIBO eradication on rosacea. Methods We enrolled 90 patients with rosacea from January 2012 to January 2013 and a control group consisting of 90 patients referred to us because of mapping of nevi during the same period. We used the 13C Urea Breath Test and H. pylori stool antigen (HpSA) test to assess H. pylori infection and the glucose breath test to assess SIBO. Patients infected by H. pylori were treated with clarithromycin-containing sequential therapy. Patients positive for SIBO were treated with rifaximin. Results We found that 44/90 (48.9%) patients with rosacea and 24/90 (26.7%) control subjects were infected with H. pylori (p?=?0.003). Moreover, 9/90 (10%) patients with rosacea and 7/90 (7.8%) subjects in the control group had SIBO (p?=?0.6). Within 10 weeks from the end of antibiotic therapy, the skin lesions of rosacea disappeared or decreased markedly in 35/36 (97.2%) patients after eradication of H. pylori and in 3/8 (37.5%) patients who did not eradicate the infection (p?

  20. Burn Injury Alters the Intestinal Microbiome and Increases Gut Permeability and Bacterial Translocation

    PubMed Central

    Earley, Zachary M.; Akhtar, Suhail; Green, Stefan J.; Naqib, Ankur; Khan, Omair; Cannon, Abigail R.; Hammer, Adam M.; Morris, Niya L.; Li, Xiaoling; Eberhardt, Joshua M.; Gamelli, Richard L; Kennedy, Richard H.; Choudhry, Mashkoor A.

    2015-01-01

    Sepsis remains one of the leading causes of death in burn patients who survive the initial insult of injury. Disruption of the intestinal epithelial barrier has been shown after burn injury; this can lead to the translocation of bacteria or their products (e.g., endotoxin) from the intestinal lumen to the circulation, thereby increasing the risk for sepsis in immunocompromised individuals. Since the maintenance of the epithelial barrier is largely dependent on the intestinal microbiota, we examined the diversity of the intestinal microbiome of severely burned patients and a controlled mouse model of burn injury. We show that burn injury induces a dramatic dysbiosis of the intestinal microbiome of both humans and mice and allows for similar overgrowths of Gram-negative aerobic bacteria. Furthermore, we show that the bacteria increasing in abundance have the potential to translocate to extra-intestinal sites. This study provides an insight into how the diversity of the intestinal microbiome changes after burn injury and some of the consequences these gut bacteria can have in the host. PMID:26154283

  1. Inhibition of miR122a by Lactobacillus rhamnosus GG culture supernatant increases intestinal occludin expression and protects mice from alcoholic liver disease.

    PubMed

    Zhao, Haiyang; Zhao, Cuiqing; Dong, Yuanyuan; Zhang, Min; Wang, Yuhua; Li, Fengyuan; Li, Xiaokun; McClain, Craig; Yang, Shulin; Feng, Wenke

    2015-05-01

    Alcoholic liver disease (ALD) has a high morbidity and mortality. Chronic alcohol consumption causes disruption of intestinal microflora homeostasis, intestinal tight junction barrier dysfunction, increased endotoxemia, and eventually liver steatosis/steatohepatitis. Probiotic Lactobacillus rhamnosus GG (LGG) and the bacteria-free LGG culture supernatant (LGGs) have been shown to promote intestinal epithelial integrity and protect intestinal barrier function in ALD. However, little is known about how LGGs mechanistically works to increase intestinal tight junction proteins. Here we show that chronic ethanol exposure increased intestinal miR122a expression, which decreased occludin expression leading to increased intestinal permeability. Moreover, LGGs supplementation decreased ethanol-elevated miR122a level and attenuated ethanol-induced liver injury in mice. Similar to the effect of ethanol exposure, overexpression of miR122a in Caco-2 monolayers markedly decreased occludin protein levels. In contrast, inhibition of miR122a increased occludin expression. We conclude that LGGs supplementation functions in intestinal integrity by inhibition of miR122a, leading to occludin restoration in mice exposed to chronic ethanol. PMID:25746479

  2. Alcohol

    MedlinePLUS

    ... risky. Heavy drinking can lead to alcoholism and alcohol abuse, as well as injuries, liver disease, heart disease, ... work, and with friends. NIH: National Institute on Alcohol Abuse and Alcoholism

  3. Small bowel bacterial overgrowth

    MedlinePLUS

    Overgrowth - intestinal bacteria; Bacterial overgrowth - intestine ... Unlike the large intestine, the small intestine does not have a high number of bacteria. When there are too many bacteria in the ...

  4. Low dietary iron intake restrains the intestinal inflammatory response and pathology of enteric infection by food-borne bacterial pathogens.

    PubMed

    Kortman, Guus A M; Mulder, Michelle L M; Richters, Thijs J W; Shanmugam, Nanda K N; Trebicka, Estela; Boekhorst, Jos; Timmerman, Harro M; Roelofs, Rian; Wiegerinck, Erwin T; Laarakkers, Coby M; Swinkels, Dorine W; Bolhuis, Albert; Cherayil, Bobby J; Tjalsma, Harold

    2015-09-01

    Orally administrated iron is suspected to increase susceptibility to enteric infections among children in infection endemic regions. Here we investigated the effect of dietary iron on the pathology and local immune responses in intestinal infection models. Mice were held on iron-deficient, normal iron, or high iron diets and after 2 weeks they were orally challenged with the pathogen Citrobacter rodentium. Microbiome analysis by pyrosequencing revealed profound iron- and infection-induced shifts in microbiota composition. Fecal levels of the innate defensive molecules and markers of inflammation lipocalin-2 and calprotectin were not influenced by dietary iron intervention alone, but were markedly lower in mice on the iron-deficient diet after infection. Next, mice on the iron-deficient diet tended to gain more weight and to have a lower grade of colon pathology. Furthermore, survival of the nematode Caenorhabditis elegans infected with Salmonella enterica serovar Typhimurium was prolonged after iron deprivation. Together, these data show that iron limitation restricts disease pathology upon bacterial infection. However, our data also showed decreased intestinal inflammatory responses of mice fed on high iron diets. Thus additionally, our study indicates that the effects of iron on processes at the intestinal host-pathogen interface may highly depend on host iron status, immune status, and gut microbiota composition. PMID:26046550

  5. Ileocecal valve dysfunction in small intestinal bacterial overgrowth: A pilot study

    PubMed Central

    Miller, Larry S; Vegesna, Anil K; Sampath, Aiswerya Madanam; Prabhu, Shital; Kotapati, Sesha Krishna; Makipour, Kian

    2012-01-01

    AIM: To explore whether patients with a defective ileocecal valve (ICV)/cecal distension reflex have small intestinal bacterial overgrowth. METHODS: Using a colonoscope, under conscious sedation, the ICV was intubated and the colonoscope was placed within the terminal ileum (TI). A manometry catheter with 4 pressure channels, spaced 1 cm apart, was passed through the biopsy channel of the colonoscope into the TI. The colonoscope was slowly withdrawn from the TI while the manometry catheter was advanced. The catheter was placed across the ICV so that at least one pressure port was within the TI, ICV and the cecum respectively. Pressures were continuously measured during air insufflation into the cecum, under direct endoscopic visualization, in 19 volunteers. Air was insufflated to a maximum of 40 mmHg to prevent barotrauma. All subjects underwent lactulose breath testing one month after the colonoscopy. The results of the breath tests were compared with the results of the pressures within the ICV during air insufflation. RESULTS: Nineteen subjects underwent colonoscopy with measurements of the ICV pressures after intubation of the ICV with a colonoscope. Initial baseline readings showed no statistical difference in the pressures of the TI and ICV, between subjects with positive lactulose breath tests and normal lactulose breath tests. The average peak ICV pressure during air insufflation into the cecum in subjects with normal lactulose breath tests was significantly higher than cecal pressures during air insufflation (49.33 7.99 mmHg vs 16.40 2.14 mmHg, P = 0.0011). The average percentage difference of the area under the pressure curve of the ICV from the cecum during air insufflations in subjects with normal lactulose breath tests was significantly higher (280.72% 43.29% vs 100% 0%, P = 0.0006). The average peak ICV pressure during air insufflation into the cecum in subjects with positive lactulose breath tests was not significantly different than cecal pressures during air insufflation 21.23 3.52 mmHg vs 16.10 3.39 mmHg. The average percentage difference of the area under the pressure curve of the ICV from the cecum during air insufflation was not significantly different 101.08% 7.96% vs 100% 0%. The total symptom score for subjects with normal lactulose breath tests and subjects with positive lactulose breath tests was not statistically different (13.30 4.09 vs 24.14 6.58). The ICV peak pressures during air insufflations were significantly higher in subjects with normal lactulose breath tests than in subjects with positive lactulose breath tests (P = 0.005). The average percent difference of the area under the pressure curve in the ICV from cecum was significantly higher in subjects with normal lactulose breath tests than in subjects with positive lactulose breath tests (P = 0.0012). Individuals with positive lactulose breath tests demonstrated symptom scores which were significantly higher for the following symptoms: not able to finish normal sized meal, feeling excessively full after meals, loss of appetite and bloating. CONCLUSION: Compared to normal, subjects with a positive lactulose breath test have a defective ICV cecal distension reflex. These subjects also more commonly have higher symptom scores. PMID:23239918

  6. In vitro alterations of intestinal bacterial microbiota in fecal samples during storage.

    PubMed

    Ott, Stephan J; Musfeldt, Meike; Timmis, Kenneth N; Hampe, Jochen; Wenderoth, Dirk F; Schreiber, Stefan

    2004-12-01

    The human gastrointestinal tract harbors an extremely diverse and complex microbial ecosystem. Most of the existent data about the enteric microflora have been generated using stool samples, but the collection and storage of fecal samples are often problematic. The influence of the storage of stool samples on the bacterial diversity and the degradation of bacterial DNA was analysed in this study. Stool samples from 5 healthy volunteers were exposed to different storage temperatures and durations. The bacterial diversity and the amount of intact bacterial DNA were analysed by single-stranded conformation polymorphism analysis (SSCP) and real-time polymerase chain reaction (PCR), both using a 16S rDNA approach. Additionally, biopsy specimens were taken from 3 of the 5 individuals to compare fecal and mucosal flora. The bacterial diversity of the fecal flora and the total number of bacteria were significantly reduced after 8 and 24 hours at both room temperature and 4 degrees C. The mucosa-associated bacterial microflora showed substantial differences compared with the fecal flora. The observed alterations of fecal flora during storage point to the difficulty of the molecular analysis of the bacterial diversity and the enumeration of bacterial cells in fecal samples. PMID:15582296

  7. Expression profiles of cytokines released in intestinal epithelial cells of the rainbow trout, Oncorhynchus mykiss, in response to bacterial infection.

    PubMed

    Komatsu, Koichiro; Tsutsui, Shigeyuki; Hino, Kazuyoshi; Araki, Kyosuke; Yoshiura, Yasutoshi; Yamamoto, Atsushi; Nakamura, Osamu; Watanabe, Tasuku

    2009-04-01

    To determine whether fish intestinal epithelial cells (IECs) contribute to mucosal immunity, we established a method for isolating IECs from the rainbow trout Oncorhynchus mykiss and examined cytokine production in these cells. Components of the intestinal epithelium were released by incubation of intestinal pieces with 1mM dithiothreitol (DTT)/ethylenediamine tetraacetic acid (EDTA). The IEC-rich fraction (purity >90%; survival rate approximately 95%) was obtained by centrifugation on a 35%/40% Percoll gradient, followed by magnetic cell sorting using an anti-trout IgM antiserum. The gene expression profiles of 14 cytokines in trout IECs were investigated after culturing the cells for 6h with or without the pathogenic bacterium Aeromonas salmonicida. Trout IECs could produce several cytokines, of which IL-1beta and TNFalpha2 were upregulated when the cells were stimulated with live A. salmonicida. Immunohistochemical analyses with the anti-trout TNF antibody confirmed that the TNF protein was present in the IECs of trout that were intra-anally challenged with live A. salmonicida. These results show that trout IECs are an important trigger of the intestinal immune system. Further, formalin-killed A. salmonicida, conditioned medium of this bacterium, or live nonpathogenic Escherichia coli could not upregulate the expression of these cytokines. These results indicate that the production of inflammatory cytokines by IECs is caused by the adhesion of A. salmonicida, but is not due to only simple ligand-receptor interactions between the surface molecules of IECs and the bacterium or in response to bacterial secretions. PMID:18952122

  8. Melatonin reduces bacterial translocation by preventing damage to the intestinal mucosa in an experimental severe acute pancreatitis rat model.

    PubMed

    Sun, Xuecheng; Shao, Yingying; Jin, Yin; Huai, Jiaping; Zhou, Qiong; Huang, Zhiming; Wu, Jiansheng

    2013-12-01

    Recent studies have demonstrated that melatonin significantly decreased all studied acute pancreatitis-associated inflammatory parameters, in addition to reducing apoptosis and necrosis associated with pancreatic injury. However, the effect of melatonin on gut barrier dysfunction and bacterial translocation has not been fully elucidated. This study aimed to investigate the protective effects of melatonin on intestinal integrity in a rat model of severe acute pancreatitis (SAP) to evaluate whether melatonin prevented intestine barrier dysfunction and reduced bacterial translocation. Forty male Sprague Dawley (SD) rats were randomly divided into three groups, with 8 rats in the sham operation (SO) group, 18 rats in the SAP group and 14 SAP rats in the melatonin treatment (MT) group. SAP was induced by retrograde injection of 4% taurocholate into the biliopancreatic duct. Melatonin was administered 30 min prior to taurocholate injection in the melatonin-treated rats. All rats were sacrificed 24 h subsequent to pancreatitis induction. Real-time fluorescence quantitative polymerase chain reaction was used to detect and quantify Escherichia coli (E. coli) O157 in postcava blood. The microvilli structure was also analyzed with transmission electron microscopy. The level of E. coli DNA in the MT group was significantly lower than in rats in the SAP group. No E. coli DNA was detected in the control group. Villus height and crypt depth in the ileum were significantly higher in the MT and control groups compared to the SAP group, and were significantly higher in the MT group than in the SAP group. These results suggested that melatonin prevented gut barrier dysfunction and reduced bacterial translocation, resulting in reduced pancreatic-associated infections and decreased early mortality rates. PMID:24255660

  9. Protective effect of glutamine on intestinal injury and bacterial community in rats exposed to hypobaric hypoxia environment

    PubMed Central

    Xu, Chun-Lan; Sun, Rui; Qiao, Xiang-Jin; Xu, Cui-Cui; Shang, Xiao-Ya; Niu, Wei-Ning

    2014-01-01

    AIM: To investigate the protective effect of glutamine (Gln) on intestinal injury and the bacterial community in rats exposed to hypobaric hypoxia environment. METHODS: Sprague-Dawley rats were divided into control, hypobaric hypoxia (HH), and hypobaric hypoxia + Gln (5.0 g/kg BW·d) (HG) groups. On the first 3 d, all rats were placed in a normal environment. After the third day, the HH and HG groups were transferred into a hypobaric chamber at a simulated elevation of 7000 m for 5 d. The rats in the HG group were given Gln by gavage daily for 8 d. The rats in the control and HH groups were treated with the same volume of saline. The intestinal morphology, serum levels of malondialdehyde (MDA), superoxide dismutase (SOD), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interferon-gamma (IFN-γ) and diamino oxidase (DAO) were examined. We also evaluated the expression levels of occludin, toll-like receptor 4 (TLR4), nuclear factor-κB p65 (NF-κB p65) and myeloid differentiation factor 88 (MyD88), and examined the bacterial community in caecal contents. RESULTS: Hypobaric hypoxia induced the enlargement of the heart, liver, lung and kidney, and caused spleen atrophy. Intestinal villi damage was also observed in the HH group. Supplementation with Gln significantly alleviated hypobaric-induced damage to main organs including the intestine, increased serum SOD (1.14 ± 0.03 vs 0.88 ± 0.04, P < 0.05) and MDA (8.35 ± 1.60, P < 0.01) levels and decreased serum IL-6 (1172.13±30.49 vs 1407.05 ± 34.36, P < 0.05), TNF-α (77.46 ± 0.78 vs 123.70 ± 3.03, P < 0.001), IFN-γ (1355.42 ± 72.80 vs 1830.16 ± 42.07, P < 0.01) and DAO (629.30 ± 9.15 vs 524.10 ± 13.34, P < 0.001) levels. Moreover, Gln significantly increased occludin (0.72 ± 0.05 vs 0.09 ± 0.01, P < 0.001), TLR4 (0.15 ± 0.05 vs 0.30 ±0.09, P < 0.05), MyD88 (0.32 ± 0.08 vs 0.71 ± 0.06, P < 0.01), and NF-κB p65 (0.16 ± 0.04 vs 0.44 ± 0.03, P < 0.01) expression levels and improved the intestinal bacterial community. CONCLUSION: Gln treatment protects from intestinal injury and regulates the gut flora imbalance in hypoxia environment. These effects may be related to the TLR4/MyD88/NF-κB signaling pathway. PMID:24782618

  10. Red wine alcohol promotes quercetin absorption and directs its metabolism towards isorhamnetin and tamarixetin in rat intestine in vitro

    PubMed Central

    Dragoni, Stefania; Gee, Jennifer; Bennett, Richard; Valoti, Massimo; Sgaragli, Giampietro

    2006-01-01

    Moderate consumption of red wine has been associated with beneficial effects on human health, and this has been attributed to the flavonoid content. Factors that influence the bioavailability of this group of polyphenolic compounds are therefore important. Using the rat cannulated everted jejunal sac technique, we have investigated the effect of alcohol on the intestinal absorption of quercetin and its 3-O-glucoside from red wine. Tissue preparations were incubated in whole or dealcoholised red wine, diluted 1 : 1 with Krebs buffer for 20 min at 37°C, after which the mucosa was removed and processed for HPLC analysis. Tissues exposed to red wine had significantly higher amounts of both quercetin (× 3; P<0.001) and quercetin-3-O-glucoside (× 1.5; P<0.01) associated with them, compared with sacs incubated in the dealcoholised equivalent. In addition, both tamarixetin (T) and isorhamnetin (I), in the mucosal tissue from sacs exposed to the whole wine, were significantly elevated approximately two fold (P<0.05; P<0.01, respectively). Similar results were obtained when sacs were incubated in Krebs buffer containing a mixture of pure quercetin and quercetin-3-O-glucoside with or without alcohol, and, although effects on the apparent absorption of Q and Q-3-G were not so marked, concentrations of the metabolites quercetin-3-O-glucuronide and I were significantly increased by the presence of alcohol (P<0.01 and P<0.001, respectively). It is therefore plausible that the moderate alcohol content of red wine contributes to its beneficial health effects in humans by both increasing the absorption of quercetin and quercetin-3-O-glucoside and by channelling their metabolism towards O-methylation to yield compounds (T and I), which have potential protective effects against cancer and cardiovascular diseases. PMID:16444288

  11. Do dietary betaine and the antibiotic florfenicol influence the intestinal autochthonous bacterial community in hybrid tilapia (Oreochromis niloticus ♀ × O. aureus ♂)?

    PubMed

    He, Suxu; Zhou, Zhigang; Liu, Yuchun; Cao, Yanan; Meng, Kun; Shi, Penjun; Yao, Bin; Ringø, Einar

    2012-03-01

    The attractant betaine and the antibiotic growth promoter florfenicol are commonly used together in Chinese fresh water aquaculture, but there is no information about the effect of these two feed additive on the intestinal autochthonous bacterial community in hybrid tilapia (Oreochromis nilotica ♀ × O. aureas ♂). Hybrid tilapia (240 fish in total; 20 fish per net cage; three cages per group) were divided into four dietary groups: control group, no betaine or florfenical addition (CK); betaine group, 0.1% betaine added (B); florfenicol group, 0.002% florfenicol added (F); and combination group, 0.1% betaine and 0.002% florfenicol added together (BF). After 8 weeks of feeding, six fish from each cage were chosen randomly, the guts were sampled and pooled, and their intestinal autochthonous bacterial communities were analyzed by 16S rDNA-denaturing gradient gel electrophoresis. Enumeration of total gut autochthonous bacteria was analyzed by quantitative PCR with rpoB as the endogenous control. The results showed that the fish intestinal bacteria of group B were more diverse than that of CK, and that of F and BF groups was reduced in the total numbers and limited to certain bacterial species or genera (P < 0.05). This study revealed that betaine can promote some intestinal autochthonous bacteria, and florfenicol play a depressor role. When combined together, florfenicol may overshadow the effect of betaine on the predominant intestinal bacteria of tilapia. PMID:22805797

  12. Comparative analysis of the intestinal bacterial and RNA viral communities from sentinel birds placed on selected broiler chicken farms.

    PubMed

    Day, J Michael; Oakley, Brian B; Seal, Bruce S; Zsak, Laszlo

    2015-01-01

    There is a great deal of interest in characterizing the complex microbial communities in the poultry gut, and in understanding the effects of these dynamic communities on poultry performance, disease status, animal welfare, and microbes with human health significance. Investigations characterizing the poultry enteric virome have identified novel poultry viruses, but the roles these viruses play in disease and performance problems have yet to be fully characterized. The complex bacterial community present in the poultry gut influences gut development, immune status, and animal health, each of which can be an indicator of overall performance. The present metagenomic investigation was undertaken to provide insight into the colonization of specific pathogen free chickens by enteric microorganisms under field conditions and to compare the pre-contact intestinal microbiome with the altered microbiome following contact with poultry raised in the field. Analysis of the intestinal virome from contact birds ("sentinels") placed on farms revealed colonization by members of the Picornaviridae, Picobirnaviridae, Reoviridae, and Astroviridae that were not present in pre-contact birds or present in proportionally lower numbers. Analysis of the sentinel gut bacterial community revealed an altered community in the post-contact birds, notably by members of the Lachnospiracea/Clostridium and Lactobacillus families and genera. Members of the avian enteric Reoviridae and Astroviridae have been well-characterized and have historically been implicated in poultry enteric disease; members of the Picobirnaviridae and Picornaviridae have only relatively recently been described in the poultry and avian gut, and their roles in the recognized disease syndromes and in poultry performance in general have not been determined. This metagenomic analysis has provided insight into the colonization of the poultry gut by enteric microbes circulating in commercial broiler flocks, and has identified enteric viruses and virus communities that warrant further study in order to understand their role(s) in avian gut health and disease. PMID:25635690

  13. Comparative Analysis of the Intestinal Bacterial and RNA Viral Communities from Sentinel Birds Placed on Selected Broiler Chicken Farms

    PubMed Central

    Day, J. Michael; Oakley, Brian B.; Seal, Bruce S.; Zsak, Laszlo

    2015-01-01

    There is a great deal of interest in characterizing the complex microbial communities in the poultry gut, and in understanding the effects of these dynamic communities on poultry performance, disease status, animal welfare, and microbes with human health significance. Investigations characterizing the poultry enteric virome have identified novel poultry viruses, but the roles these viruses play in disease and performance problems have yet to be fully characterized. The complex bacterial community present in the poultry gut influences gut development, immune status, and animal health, each of which can be an indicator of overall performance. The present metagenomic investigation was undertaken to provide insight into the colonization of specific pathogen free chickens by enteric microorganisms under field conditions and to compare the pre-contact intestinal microbiome with the altered microbiome following contact with poultry raised in the field. Analysis of the intestinal virome from contact birds (“sentinels”) placed on farms revealed colonization by members of the Picornaviridae, Picobirnaviridae, Reoviridae, and Astroviridae that were not present in pre-contact birds or present in proportionally lower numbers. Analysis of the sentinel gut bacterial community revealed an altered community in the post-contact birds, notably by members of the Lachnospiracea/Clostridium and Lactobacillus families and genera. Members of the avian enteric Reoviridae and Astroviridae have been well-characterized and have historically been implicated in poultry enteric disease; members of the Picobirnaviridae and Picornaviridae have only relatively recently been described in the poultry and avian gut, and their roles in the recognized disease syndromes and in poultry performance in general have not been determined. This metagenomic analysis has provided insight into the colonization of the poultry gut by enteric microbes circulating in commercial broiler flocks, and has identified enteric viruses and virus communities that warrant further study in order to understand their role(s) in avian gut health and disease. PMID:25635690

  14. Bacterial Endocarditis

    MedlinePLUS

    ... skin, mouth, intestines or urinary tract enter the bloodstream (usually during a dental or medical procedure) and infect the heart. Causes & Risk Factors Who gets bacterial endocarditis? Although ...

  15. Poly(vinyl alcohol)/sodium alginate/layered silicate based nanofibrous mats for bacterial inhibition.

    PubMed

    Li, Wei; Li, Xueyong; Chen, Yang; Li, Xiaoxia; Deng, Hongbing; Wang, Ting; Huang, Rong; Fan, Gang

    2013-02-15

    Poly(vinyl alcohol) (PVA)/sodium alginate (ALG)/organic rectorite (OREC) composite nanofibrous mats are fabricated by electrospinning aqueous solutions with different mixing ratios. Both good fiber shape and three-dimensional structure of nanofibrous mats can be observed by Field Emission Scanning Electron Microscopy. Energy-dispersive X-ray spectroscopy shows the existence of OREC in the as-spun composite mats. In addition, small-angle X-ray diffraction confirms that the interlayer of OREC is intercalated by ALG/PVA chains, and the distance between OREC interlayers is increased from 4.50 to 4.74 nm. Wide angle X-ray diffraction and Fourier transform infrared spectra further verify the intercalation is between polymers and layered silicate. Moreover, the thermal gravimetric analysis shows that the addition of OREC has only a small effect on the thermal stability of composites. Furthermore, the antibacterial experiments illustrate that OREC can enhance the bacterial inhibition ability of nanofibrous mats against Escherichia coli and Staphylococcus aureus. PMID:23399282

  16. Effect of gamma irradiation on biopolymer composite films of poly(vinyl alcohol) and bacterial cellulose

    NASA Astrophysics Data System (ADS)

    Jipa, Iuliana Mihaela; Stroescu, Marta; Stoica-Guzun, Anicuta; Dobre, Tanase; Jinga, Sorin; Zaharescu, Traian

    2012-05-01

    Composite materials containing in different ratios poly(vinyl alcohol) (PVA), bacterial cellulose (BC) and glycerol (G) as plasticizer were obtained and exposed to different γ radiation doses using an irradiator GAMMATOR provided with 137Cs source. These films successively received up to 50 kGy absorbed doses at a dose rate of 0.4 kGy/h at room temperature. In order to study the chemical and structural changes during γ irradiation, Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and UV-Vis spectroscopy were used. Water vapour permeability (WVP), Hunter colour parameters and hardness were also measured for the irradiated samples. Investigation revealed that WVP was not significantly affected by the irradiation. Colour measurements indicated a slight decrease of pure PVA films transparency and it made clear that all samples became more reddish and yellowish after irradiation. The samples hardness was not affected by the irradiation doses used. However, the results showed no drastic structural or chemical changes of the irradiated samples, which prove, in consequence, a good durability. These composite materials could be used as packaging materials for γ irradiated products.

  17. Orchestration of Neutrophil Movement by Intestinal Epithelial Cells in Response to Salmonella typhimurium Can Be Uncoupled from Bacterial Internalization

    PubMed Central

    Gewirtz, Andrew T.; Siber, Andrew M.; Madara, James L.; McCormick, Beth A.

    1999-01-01

    Intestinal epithelial cells respond to Salmonella typhimurium by internalizing this pathogen and secreting, in a polarized manner, an array of chemokines which direct polymorphonuclear leukocyte (PMN) movement. Notably, interleukin-8 (IL-8) is secreted basolaterally and directs PMN through the lamina propria, whereas pathogen-elicited epithelial chemoattractant (PEEC) is secreted apically and directs PMN migration across the epithelial monolayer to the intestinal lumen. While most studies of S. typhimurium pathogenicity have focused on the mechanism by which this bacterium invades its host, the enteritis characteristically associated with salmonellosis appears to be more directly attributable to the PMN movement that occurs in response to this pathogen. Therefore, we sought to better understand the relationship between S. typhimurium invasion and epithelial promotion of PMN movement. First, we investigated whether S. typhimurium becoming intracellular was necessary or sufficient to induce epithelial promotion of PMN movement. Blocking S. typhimurium invasion by preventing, with cytochalasin D, the epithelial cytoskeletal rearrangements which mediate internalization did not reduce the epithelial promotion of PMN movement. Conversely, bacterial attainment of an intracellular position was not sufficient to induce model epithelia to direct PMN transmigration, since neither basolateral invasion by S. typhimurium nor apical internalization of an invasion-deficient mutant (achieved by inducing membrane ruffling with epidermal growth factor) induced this epithelial cell response. These results indicate that specific interactions between the apical surface of epithelial cells and S. typhimurium, rather than simply bacterial invasion, mediate the epithelial direction of PMN transmigration. To further investigate the means by which S. typhimurium induces epithelia to direct PMN movement, we investigated whether the same signaling pathways regulate secretion of IL-8 and PEEC. IL-8 secretion, but not PEEC secretion, was activated by phorbol myristate acetate and blocked by an inhibitor (mg-132) of the proteosome which mediates NF-κβ activation. Further, secretion of IL-8, but not PEEC, was activated by an entry-deficient (HilΔ) S. typhimurium mutant or by basolateral invasion of a wild-type strain. Together, these results indicate that distinct signaling pathways mediate S. typhimurium invasion, induction of IL-8 secretion, and induction of PEEC secretion in model intestinal epithelia. PMID:9916066

  18. Postoperative Changes in Fecal Bacterial Communities and Fermentation Products in Obese Patients Undergoing Bilio-Intestinal Bypass.

    PubMed

    Patrone, Vania; Vajana, Elia; Minuti, Andrea; Callegari, Maria L; Federico, Alessandro; Loguercio, Carmela; Dallio, Marcello; Tolone, Salvatore; Docimo, Ludovico; Morelli, Lorenzo

    2016-01-01

    We assessed the gut microbial ecology of 11 severely obese patients before and after bilio-intestinal bypass (BIB). Fecal samples were evaluated for microbial communities using 16S rDNA Illumina sequencing, real-time PCR targeting functional genes, and gas chromatography of short chain fatty acids (SCFAs). At 6 months after surgery, subjects exhibited significant improvements in metabolic markers (body weight, glucose, and lipid metabolism) compared with baseline. The fecal microbiota of post-surgery individuals was characterized by an overall decrease of bacterial diversity, with a significant reduction in Lachnospiraceae, Clostridiaceae, Ruminococcaceae, Eubacteriaceae, and Coriobacteriaceae. On the contrary, there were significant increases of genera Lactobacillus, Megasphaera, and Acidaminococcus and the family Enterobacteriaceae. The pH was decreased in fecal samples from patients after BIB and SCFA profiles were altered, with lower percentages of acetate and propionate and higher levels of valerate and hexanoate. Some changes in the bacterial populations were associated with variations in the patients' metabolic health parameters, namely Gemmiger and glucose, Lactobacillus and glucose, and Faecalibacterium and triglycerides. The results from this study of BIB patients furthers our understanding of the composition of gut microbiota and the functional changes that may be involved in improving obesity-related conditions following weight-loss surgery. PMID:26941724

  19. Postoperative Changes in Fecal Bacterial Communities and Fermentation Products in Obese Patients Undergoing Bilio-Intestinal Bypass

    PubMed Central

    Patrone, Vania; Vajana, Elia; Minuti, Andrea; Callegari, Maria L.; Federico, Alessandro; Loguercio, Carmela; Dallio, Marcello; Tolone, Salvatore; Docimo, Ludovico; Morelli, Lorenzo

    2016-01-01

    We assessed the gut microbial ecology of 11 severely obese patients before and after bilio-intestinal bypass (BIB). Fecal samples were evaluated for microbial communities using 16S rDNA Illumina sequencing, real-time PCR targeting functional genes, and gas chromatography of short chain fatty acids (SCFAs). At 6 months after surgery, subjects exhibited significant improvements in metabolic markers (body weight, glucose, and lipid metabolism) compared with baseline. The fecal microbiota of post-surgery individuals was characterized by an overall decrease of bacterial diversity, with a significant reduction in Lachnospiraceae, Clostridiaceae, Ruminococcaceae, Eubacteriaceae, and Coriobacteriaceae. On the contrary, there were significant increases of genera Lactobacillus, Megasphaera, and Acidaminococcus and the family Enterobacteriaceae. The pH was decreased in fecal samples from patients after BIB and SCFA profiles were altered, with lower percentages of acetate and propionate and higher levels of valerate and hexanoate. Some changes in the bacterial populations were associated with variations in the patients' metabolic health parameters, namely Gemmiger and glucose, Lactobacillus and glucose, and Faecalibacterium and triglycerides. The results from this study of BIB patients furthers our understanding of the composition of gut microbiota and the functional changes that may be involved in improving obesity-related conditions following weight-loss surgery. PMID:26941724

  20. Maternal 18:3n-3 favors piglet intestinal passage of LPS and promotes intestinal anti-inflammatory response to this bacterial ligand.

    PubMed

    Desaldeleer, Cécile; Ferret-Bernard, Stéphanie; de Quelen, Francine; Le Normand, Laurence; Perrier, Cécile; Savary, Gérard; Romé, Véronique; Michel, Catherine; Mourot, Jacques; Le Huërou-Luron, Isabelle; Boudry, Gaëlle

    2014-10-01

    We recently observed that maternal 18:3n-3 increases piglet jejunal permeability. We hypothesized that this would favor intestinal lipopolysaccharide (LPS) passage and alter gut immune system education toward this bacterial ligand. Sows were fed 18:3n-3 or 18:2n-6 diets throughout gestation and lactation. In each litter, two piglets were given oral Gram-negative spectrum antibiotic from post-natal day (PND) 14 to 28. All piglets were weaned on a regular diet at PND28. 18:3n-3 piglets exhibited greater jejunal permeability to FITC-LPS at PND28. Levels of 18:3n-3 but neither 20:5n-3 nor 20:4n-6 were greater in mesenteric lymph nodes (MLN) of 18:3n-3 piglets. Jejunal explant or MLN cell cytokine responses to LPS were not influenced by the maternal diet. Antibiotic increased jejunal permeability to FITC-LPS and lowered the level of 20:5n-3 in MLN, irrespective of the maternal diet. At PND52, no long-lasting effect of the maternal diet or antibiotic treatment on jejunal permeability was noticed. 18:3n-3 and 20:4n-6 levels were greater and lower, respectively, in MLN of 18:3n-3 compared to 18:2n-6 piglets. IL-10 production by MLN cells in response to LPS was greater in the 18:3n-3 group, irrespective of the neonatal antibiotic treatment. IL-8 secretion by jejunal explants in response to LPS was lower in antibiotic-treated 18:3n-3 compared to 18:2n-6 piglets. Finally, proportion of MHC class II(+) antigen-presenting cells was greater in 18:3n-3 than 18:2n-6 MLN cells. In conclusion, maternal 18:3n-3 directs the intestinal immune response to LPS toward an anti-inflammatory profile beyond the breastfeeding period; microbiota involvement seems dependent of the immune cells considered. PMID:25087993

  1. Effects of galacto-oligosaccharide and bacterial status on mucin distribution in mucosa and on large intestine fermentation in rats.

    PubMed

    Meslin, J C; Andrieux, C; Sakata, T; Beaumatin, P; Bensaada, M; Popot, F; Szylit, O; Durand, M

    1993-05-01

    The purpose of the present paper was to study the effects of a dietary undigestible carbohydrate and intestinal microflora on mucin distribution (neutral, acid, sulphonated), glycolytic activities: beta-D-galactosidase (EC 3.2.1.23), N-acetyl-beta-D-galactosaminidase (EC 3.2.1.43), N-acetyl-beta-D-glucosaminidase (EC 3.2.1.30), alpha-L-fucosidase (EC 3.2.1.51) and bacterial metabolism (gas production, short-chain fatty acids (SCFA) and lactic acid caecal concentration) in germ-free (GF), conventional (CV) and heteroxenic (HE) rats (GF rats associated with a human flora). Rats were fed on either a control diet or a diet containing 40 g trans-galactosylated oligosaccharide (TOS)/kg. In GF rats fed on the control diet caecal pH was almost neutral and glycolytic activities negligible. The number of mucus-containing cells increased from the caecum to the colon for the three types of mucin. TOS had no effect in the caecum but it modified mucin cell repartition in the colon. In CV and HE rats fed on the control diet caecal pH was similar (6.8), but caecal SCFA and lactic acid concentrations (mumol/g) and gas production (ml/24 h) were higher in CV (70, 5.9 and 2.3 respectively) than in HE rats (32, 4.6 and 0.4 respectively). In CV, as in HE rats, acid-mucin-containing cells increased from the caecum to the colon and glycolytic activities were similar. TOS reduced acid-mucin-containing cells in the caecum of CV rats by twofold but had no effect in either the caecum or the colon of HE rats. TOS strongly increased beta-galactosidase activity and slightly modified the other glycolytic activities. Its effect on bacterial metabolites depended on bacterial status. However, comparison between CV and HE rats showed no evident relationship between the number of mucus-containing cells and measured bacterial metabolites. Differences between CV and HE rats might be due to bacterial microflora specificity. TOS had an intrinsic effect on mucus cell distribution in the colon of GF rats. In CV and HE rats the presence of the flora abolished this effect. PMID:8329364

  2. A Comparative Study of Bacterial and Parasitic Intestinal Infections in India

    PubMed Central

    Uppal, Beena; Perween, Naz; Kumar, Shyam Kishor

    2015-01-01

    Background: Infectious diarrhea causes a major health problem in developing countries with significant morbidity and mortality. Very often, rehydration therapy alone does not suffice, mandating the use of antimicrobial agents. However, rapidly decreasing antimicrobial susceptibility is complicating the matters. Materials and Methods: The study aimed to determine the prevalent bacterial and parasitic agents of diarrhea in India. A cross-sectional study was done at Maulana Azad Medical College and associated Lok Nayak Hospital, New Delhi, during 2012-14. Stool samples were received from patients of all age groups and processed for bacteriological and parasitological identification by microscopy, bacterial culture, biochemical identification, serotyping and antimicrobial susceptibility tests. The study also aimed to identify the recent papers (after year 2000) reporting aetiology of infectious diarrhea in India involving the general population as a whole and compare them with present findings. Results: Out of 6527 samples, 581 (8.90%) were positive for bacterial pathogens. A total of 280 samples (of 3823 under-five year children) were positive for diarrheagenic Escherichia coli. Other organisms like Vibrio cholera were found in 159 (2.44%) cases, Shigella spp. in 126 (1.93%), Salmonella Typhi in 7 (0.11%), Salmonella Typhimurium in 6 (0.10%), Aeromonas hydrophila in 3 (0.05%) cases. Levels of resistance to nalidixic acid, amoxicillin and ciprofloxacin were alarmingly high. Third generation cephalosporins were seen to be moderately active except against E. coli. Parasites were identified in 312 (4.78%) cases. Giardia intestinalis, Ascaris lumbricoides and Entamoeba histolytica were identified in 2.27%, 1.15% and 0.64% cases respectively. Conclusion: Analysis of recent nationwide studies revealed V. cholerae was the most common bacterial/parasitic agent of diarrhea across all populations, being followed by diarrheagenic E. coli and Giardia intestinalis. Periodic laboratory monitoring of antimicrobial susceptibility pattern is essential, as is formulation of effective antibiotic use policy. PMID:25954615

  3. Alcoholism

    PubMed Central

    Girard, Donald E.; Carlton, Bruce E.

    1978-01-01

    There are important measurements of alcoholism that are poorly understood by physicians. Professional attitudes toward alcoholic patients are often counterproductive. Americans spend about $30 billion on alcohol a year and most adults drink alcohol. Even though traditional criteria allow for recognition of the disease, diagnosis is often made late in the natural course, when intervention fails. Alcoholism is a major health problem and accounts for 10 percent of total health care costs. Still, this country's 10 million adult alcoholics come from a pool of heavy drinkers with well defined demographic characteristics. These social, cultural and familial traits, along with subtle signs of addiction, allow for earlier diagnosis. Although these factors alone do not establish a diagnosis of alcoholism, they should alert a physician that significant disease may be imminent. Focus must be directed to these aspects of alcoholism if containment of the problem is expected. PMID:685264

  4. Alcohol

    MedlinePLUS

    ... drinking and watching sports together or having a big party. But alcohol is actually a depressant . That ... with your friend before the alcohol causes a big problem. Unfortunately, some kids who drink may also ...

  5. Fecal microbiota transplantation and bacterial consortium transplantation have comparable effects on the re-establishment of mucosal barrier function in mice with intestinal dysbiosis

    PubMed Central

    Li, Ming; Liang, Pin; Li, Zhenzhen; Wang, Ying; Zhang, Guobin; Gao, Hongwei; Wen, Shu; Tang, Li

    2015-01-01

    Fecal microbiota transplantation (FMT) is a promising therapy, despite some reports of adverse side effects. Bacterial consortia transplantation (BCT) for targeted restoration of the intestinal ecosystem is considered a relatively safe and simple procedure. However, no systematic research has assessed the effects of FMT and BCT on immune responses of intestinal mucosal barrier in patients. We conducted complementary studies in animal models on the effects of FMT and BCT, and provide recommendations for improving the clinical outcomes of these treatments. To establish the dysbiosis model, male BALB/c mice were treated with ceftriaxone intra-gastrically for 7 days. After that, FMT and BCT were performed on ceftriaxone-treated mice for 3 consecutive days to rebuild the intestinal ecosystem. Post-FMT and post-BCT changes of the intestinal microbial community and mucosal barrier functions were investigated and compared. Disruption of intestinal microbial homeostasis impacted the integrity of mucosal epithelial layer, resulting in increased intestinal permeability. These outcomes were accompanied by overexpression of Muc2, significant decrease of SIgA secretion, and overproduction of defensins and inflammatory cytokines. After FMT and BCT, the intestinal microbiota recovered quickly, this was associated with better reconstruction of mucosal barriers and re-establishment of immune networks compared with spontaneous recovery (SR). Although based on a short-term study, our results suggest that FMT and BCT promote the re-establishment of intestinal microbial communities in mice with antibiotic-induced dysbiosis, and contribute to the temporal and spatial interactions between microbiota and mucosal barriers. The effects of BCT are comparable to that of FMT, especially in normalizing the intestinal levels of Muc2, SIgA, and defensins. PMID:26217323

  6. Alcoholism.

    ERIC Educational Resources Information Center

    Caliguri, Joseph P., Ed.

    This extensive annotated bibliography provides a compilation of documents retreived from a computerized search of the ERIC, Social Science Citation Index, and Med-Line databases on the topic of alcoholism. The materials address the following areas of concern: (1) attitudes toward alcohol users and abusers; (2) characteristics of alcoholics and

  7. Diversity and Succession of the Intestinal Bacterial Community of the Maturing Broiler Chicken

    PubMed Central

    Lu, Jiangrang; Idris, Umelaalim; Harmon, Barry; Hofacre, Charles; Maurer, John J.; Lee, Margie D.

    2003-01-01

    The diversity of bacterial floras in the ilea and ceca of chickens that were fed a vegetarian corn-soy broiler diet devoid of feed additives was examined by analysis of 1,230 partial 16S rRNA gene sequences. Nearly 70% of sequences from the ileum were related to those of Lactobacillus, with the majority of the rest being related to Clostridiaceae (11%), Streptococcus (6.5%), and Enterococcus (6.5%). In contrast, Clostridiaceae-related sequences (65%) were the most abundant group detected in the cecum, with the other most abundant sequences being related to Fusobacterium (14%), Lactobacillus (8%), and Bacteroides (5%). Statistical analysis comparing the compositions of the different 16S rRNA libraries revealed that population succession occurred during some sampling periods. The significant differences among cecal libraries at 3 and 7 days of age, at 14 to 28 days of age, and at 49 days of age indicated that successions occurred from a transient community to one of increasing complexity as the birds aged. Similarly, the ileum had a stable bacterial community structure for birds at 7 to 21 days of age and between 21 to 28 days of age, but there was a very unique community structure at 3 and 49 days of age. It was also revealed that the composition of the ileal and cecal libraries did not significantly differ when the birds were 3 days old, and in fact during the first 14 days of age, the cecal microflora was a subset of the ileal microflora. After this time, the ileum and cecum had significantly different library compositions, suggesting that each region developed its own unique bacterial community as the bird matured. PMID:14602645

  8. Diversity and succession of the intestinal bacterial community of the maturing broiler chicken.

    PubMed

    Lu, Jiangrang; Idris, Umelaalim; Harmon, Barry; Hofacre, Charles; Maurer, John J; Lee, Margie D

    2003-11-01

    The diversity of bacterial floras in the ilea and ceca of chickens that were fed a vegetarian corn-soy broiler diet devoid of feed additives was examined by analysis of 1,230 partial 16S rRNA gene sequences. Nearly 70% of sequences from the ileum were related to those of Lactobacillus, with the majority of the rest being related to Clostridiaceae (11%), Streptococcus (6.5%), and Enterococcus (6.5%). In contrast, Clostridiaceae-related sequences (65%) were the most abundant group detected in the cecum, with the other most abundant sequences being related to Fusobacterium (14%), Lactobacillus (8%), and Bacteroides (5%). Statistical analysis comparing the compositions of the different 16S rRNA libraries revealed that population succession occurred during some sampling periods. The significant differences among cecal libraries at 3 and 7 days of age, at 14 to 28 days of age, and at 49 days of age indicated that successions occurred from a transient community to one of increasing complexity as the birds aged. Similarly, the ileum had a stable bacterial community structure for birds at 7 to 21 days of age and between 21 to 28 days of age, but there was a very unique community structure at 3 and 49 days of age. It was also revealed that the composition of the ileal and cecal libraries did not significantly differ when the birds were 3 days old, and in fact during the first 14 days of age, the cecal microflora was a subset of the ileal microflora. After this time, the ileum and cecum had significantly different library compositions, suggesting that each region developed its own unique bacterial community as the bird matured. PMID:14602645

  9. Bacterial Community Associated with the Intestinal Tract of Chinese Mitten Crab (Eriocheir sinensis) Farmed in Lake Tai, China

    PubMed Central

    Chen, Xiaobing; Di, Panpan; Wang, Hongming; Li, Bailin; Pan, Yingjie; Yan, Shuling; Wang, Yongjie

    2015-01-01

    Chinese mitten crab (CMC, Eriocheir sinensis) is an economically valuable species in South-East Asia that has been widely farmed in China. Characterization of the intestinal bacterial diversity of CMC will provide insights into the aquaculturing of CMCs. Based on the analysis of cloned 16S rRNA genes from culture-independent CMC gut bacteria, 124 out of 128 different clones reveal >95% nucleotide similarity to the species belonging to the four phyla of Tenericutes, Bacteroidetes, Firmicutes and Proteobacteria; one clone shows 91% sequence similarity to the member of TM7 (a candidate phylum without cultured representatives). Fluorescent in situ hybridization also reveals the abundance of Bacteroidetes in crab intestine. Electron micrographs show that spherical and filamentous bacteria are closely associated with the microvillus brush border of the midgut epithelium and are often inserted into the space between the microvilli using a stalk-like cell appendage. In contrast, the predominant rod-shaped bacteria in the hindgut are tightly attached to the epithelium surface by an unusual pili-like structure. Both 16S rRNA gene denaturing gel gradient electrophoresis and metagenome library indicate that the CMC Mollicutes group 2 appears to be present in both the midgut and hindgut with no significant difference in abundance. The CMC Mollicutes group 1, however, was found mostly in the midgut of CMCs. The CMC gut Mollicutes phylotypes appear to be most closely related to Mollicutes symbionts detected in the gut of isopods (Crustacea: Isopoda). Overall, the results suggest that CMCs harbor diverse, novel and specific gut bacteria, which are likely to live in close relationships with the CMC host. PMID:25875449

  10. Bacterial community associated with the intestinal tract of Chinese mitten crab (Eriocheir sinensis) farmed in Lake Tai, China.

    PubMed

    Chen, Xiaobing; Di, Panpan; Wang, Hongming; Li, Bailin; Pan, Yingjie; Yan, Shuling; Wang, Yongjie

    2015-01-01

    Chinese mitten crab (CMC, Eriocheir sinensis) is an economically valuable species in South-East Asia that has been widely farmed in China. Characterization of the intestinal bacterial diversity of CMC will provide insights into the aquaculturing of CMCs. Based on the analysis of cloned 16S rRNA genes from culture-independent CMC gut bacteria, 124 out of 128 different clones reveal ?95% nucleotide similarity to the species belonging to the four phyla of Tenericutes, Bacteroidetes, Firmicutes and Proteobacteria; one clone shows 91% sequence similarity to the member of TM7 (a candidate phylum without cultured representatives). Fluorescent in situ hybridization also reveals the abundance of Bacteroidetes in crab intestine. Electron micrographs show that spherical and filamentous bacteria are closely associated with the microvillus brush border of the midgut epithelium and are often inserted into the space between the microvilli using a stalk-like cell appendage. In contrast, the predominant rod-shaped bacteria in the hindgut are tightly attached to the epithelium surface by an unusual pili-like structure. Both 16S rRNA gene denaturing gel gradient electrophoresis and metagenome library indicate that the CMC Mollicutes group 2 appears to be present in both the midgut and hindgut with no significant difference in abundance. The CMC Mollicutes group 1, however, was found mostly in the midgut of CMCs. The CMC gut Mollicutes phylotypes appear to be most closely related to Mollicutes symbionts detected in the gut of isopods (Crustacea: Isopoda). Overall, the results suggest that CMCs harbor diverse, novel and specific gut bacteria, which are likely to live in close relationships with the CMC host. PMID:25875449

  11. Alteration in intestine tight junction protein phosphorylation and apoptosis is associated with increase in IL-18 levels following alcohol intoxication and burn injury

    PubMed Central

    Li, Xiaoling; Akhtar, Suhail; Choudhry, Mashkoor A.

    2011-01-01

    Intestinal mucosal barrier is the first line of defense against bacteria and their products originating from the intestinal lumen. We have shown a role for IL-18 in impaired gut barrier function following acute alcohol (EtOH) intoxication combined with burn injury. To further delineate the mechanism, this study examined whether IL-18 alters intestine tight junction proteins or induces mucosal apoptosis under these conditions. To accomplish this, rats were gavaged with EtOH (3.2 g/Kg) prior to ~12.5% total body surface area burn or sham injury. One day after injury, EtOH combined with burn injury resulted in a significant decrease in total occludin protein and its phosphorylation in small intestine compared to either EtOH or burn injury alone. There was no change in claudin-1 protein content but its phosphorylation on tyrosine was decreased following EtOH and burn injury. This was accompanied with an increase in mucosal apoptosis (p<0.05). The treatment of rats with anti-IL-18 antibody at the time of burn injury prevented intestine apoptosis and normalized tight junction proteins following EtOH and burn injury. Altogether, these findings suggest that IL-18 modulates tight junction proteins and cause apoptosis leading to impaired intestinal mucosal integrity following EtOH intoxication combined with burn injury. PMID:22001439

  12. Dietary fat sources differentially modulate intestinal barrier and hepatic inflammation in alcohol-induced liver injury in rats

    PubMed Central

    Zhong, Wei; Li, Qiong; Xie, Guoxiang; Sun, Xiuhua; Tan, Xiaobing; Sun, Xinguo; Jia, Wei

    2013-01-01

    Endotoxemia is a causal factor in the development of alcoholic liver injury. The present study aimed at determining the interactions of ethanol with different fat sources at the gut-liver axis. Male Sprague-Dawley rats were pair fed control or ethanol liquid diet for 8 wk. The liquid diets were based on a modified Lieber-DeCarli formula, with 30% total calories derived from corn oil (rich in polyunsaturated fatty acids). To test the effects of saturated fats, corn oil in the ethanol diet was replaced by either cocoa butter (CB, rich in long-chain saturated fatty acids) or medium-chain triglycerides (MCT, exclusively medium-chain saturated fatty acids). Ethanol feeding increased hepatic lipid accumulation and inflammatory cell infiltration and perturbed hepatic and serum metabolite profiles. Ethanol feeding with CB or MCT alleviated ethanol-induced liver injury and attenuated ethanol-induced metabolic perturbation. Both CB and MCT also normalized ethanol-induced hepatic macrophage activation, cytokine expression, and neutrophil infiltration. Ethanol feeding elevated serum endotoxin level, which was normalized by MCT but not CB. In accordance, ethanol-induced downregulations of intestinal occludin and zonula occludens-1 were normalized by MCT but not CB. However, CB normalized ethanol-increased hepatic endotoxin level in association with upregulation of an endotoxin detoxifying enzyme, argininosuccinate synthase 1 (ASS1). Knockdown ASS1 in H4IIEC3 cells resulted in impaired endotoxin clearance and upregulated cytokine expression. These data demonstrate that the protection of saturated fats against alcohol-induced liver injury occur via different actions at the gut-liver axis and are chain length dependent. PMID:24113767

  13. Reduction of azo dyes and nitroaromatic compounds by bacterial enzymes from the human intestinal tract

    SciTech Connect

    Rafii, F.; Cerniglia, C.E.

    1995-06-01

    Several anaerobic bacteria from the human intestinal tract are capable of reducing azo dyes and nitropolycyclic aromatic hydrocarbons to the corresponding aromatic amines with enzymes that have azoreductase and nitroreductase activities. The majority of bacteria with these activities belong to the genera Clostridium and Eubacterium. The azoreductases and nitroreductases from three Clostridium strains and one Eubacterium strain were studied. Both enzymes were produced constitutively in each of the bacteria; the enzymes from various bacteria had different electrophoretic mobilities. The azoreductases from all of the bacteria had immunological homology, as was evident from the cross-reactivity of an antibody raised against the azoreductase of C perfringens with azoreductases from other bacteria. Comparison of azoreductases and nitroreductases showed that they both had identical electrophoretic mobilities on polyacrylamide gels and reacted with the antibody against the azoreductase from C. perfringens. Furthermore, the nitroaromatic compounds competitively inhibited the azoreductase activity. The data indicate that the reduction of both nitroaromatic compounds and azo dyes may be carried out by the same enzyme, which is possibly a flavin adenine dinucleotide dehydrogenase that is synthesized throughout the cell and not associated with any organized subcellular structure. 15 refs., 1 fig., 2 tabs.

  14. Campylobacter jejuni Outer Membrane Vesicles Play an Important Role in Bacterial Interactions with Human Intestinal Epithelial Cells

    PubMed Central

    Elmi, Abdi; Watson, Eleanor; Sandu, Pamela; Gundogdu, Ozan; Mills, Dominic C.; Inglis, Neil F.; Manson, Erin; Imrie, Lisa; Bajaj-Elliott, Mona; Wren, Brendan W.; Smith, David G. E.

    2012-01-01

    Campylobacter jejuni is the most prevalent cause of food-borne gastroenteritis in the developed world; however, the molecular basis of pathogenesis is unclear. Secretion of virulence factors is a key mechanism by which enteric bacterial pathogens interact with host cells to enhance survival and/or damage the host. However, C. jejuni lacks the virulence-associated secretion systems possessed by other enteric pathogens. Many bacterial pathogens utilize outer membrane vesicles (OMVs) for delivery of virulence factors into host cells. In the absence of prototypical virulence-associated secretion systems, OMVs could be an important alternative for the coordinated delivery of C. jejuni proteins into host cells. Proteomic analysis of C. jejuni 11168H OMVs identified 151 proteins, including periplasmic and outer membrane-associated proteins, but also many determinants known to be important in survival and pathogenesis, including the cytolethal distending toxin (CDT). C. jejuni OMVs contained 16 N-linked glycoproteins, indicating a delivery mechanism by which these periplasm-located yet immunogenic glycoproteins can interact with host cells. C. jejuni OMVs possess cytotoxic activity and induce a host immune response from T84 intestinal epithelial cells (IECs), which was not reduced by OMV pretreatment with proteinase K or polymyxin B prior to coincubation with IECs. Pretreatment of IECs with methyl-beta-cyclodextrin partially blocks OMV-induced host immune responses, indicating a role for lipid rafts in host cell plasma membranes during interactions with C. jejuni OMVs. OMVs isolated from a C. jejuni 11168H cdtA mutant induced interleukin-8 (IL-8) to the same extent as did wild-type OMVs, suggesting OMV induction of IL-8 is independent of CDT. PMID:22966047

  15. Campylobacter jejuni outer membrane vesicles play an important role in bacterial interactions with human intestinal epithelial cells.

    PubMed

    Elmi, Abdi; Watson, Eleanor; Sandu, Pamela; Gundogdu, Ozan; Mills, Dominic C; Inglis, Neil F; Manson, Erin; Imrie, Lisa; Bajaj-Elliott, Mona; Wren, Brendan W; Smith, David G E; Dorrell, Nick

    2012-12-01

    Campylobacter jejuni is the most prevalent cause of food-borne gastroenteritis in the developed world; however, the molecular basis of pathogenesis is unclear. Secretion of virulence factors is a key mechanism by which enteric bacterial pathogens interact with host cells to enhance survival and/or damage the host. However, C. jejuni lacks the virulence-associated secretion systems possessed by other enteric pathogens. Many bacterial pathogens utilize outer membrane vesicles (OMVs) for delivery of virulence factors into host cells. In the absence of prototypical virulence-associated secretion systems, OMVs could be an important alternative for the coordinated delivery of C. jejuni proteins into host cells. Proteomic analysis of C. jejuni 11168H OMVs identified 151 proteins, including periplasmic and outer membrane-associated proteins, but also many determinants known to be important in survival and pathogenesis, including the cytolethal distending toxin (CDT). C. jejuni OMVs contained 16 N-linked glycoproteins, indicating a delivery mechanism by which these periplasm-located yet immunogenic glycoproteins can interact with host cells. C. jejuni OMVs possess cytotoxic activity and induce a host immune response from T84 intestinal epithelial cells (IECs), which was not reduced by OMV pretreatment with proteinase K or polymyxin B prior to coincubation with IECs. Pretreatment of IECs with methyl-beta-cyclodextrin partially blocks OMV-induced host immune responses, indicating a role for lipid rafts in host cell plasma membranes during interactions with C. jejuni OMVs. OMVs isolated from a C. jejuni 11168H cdtA mutant induced interleukin-8 (IL-8) to the same extent as did wild-type OMVs, suggesting OMV induction of IL-8 is independent of CDT. PMID:22966047

  16. Efficacy of Soaking in 70% Isopropyl Alcohol on Aerobic Bacterial Decontamination of Surgical Instruments and Gloves for Serial Mouse Laparotomies

    PubMed Central

    Keen, Jessica N; Austin, MaryKay; Huang, Li-Shan; Messing, Susan; Wyatt, Jeffrey D

    2010-01-01

    Rodent surgeries in biomedical research facilities are often performed in series. This practice presents many challenges to maintaining aseptic technique between animals. Here, we examined using soaking in 70% isopropyl alcohol for aerobic bacterial decontamination of surgical instruments and gloves used in a series of as many as 10 mouse laparotomy surgeries. These surgeries were performed on mice that were euthanized immediately prior to the procedure. Instruments and gloves were cultured before and after each procedure to determine the presence of aerobic bacterial contamination. To assess the efficacy of the decontamination protocol, culture results were grouped by procedure and then paired (before soak and after soak) for analysis using McNemar test at an ? level of 0.05. In addition, by using the Fisher exact test, this modified aseptic method was compared with strict aseptic technique, for which autoclaved instruments and sterile surgical gloves were used for each procedure. In this study, we observed that the modified aseptic technique using 70% isopropyl alcohol soaks prevented aerobic bacterial contamination of instruments and gloves for as many as 5 mice. PMID:21205449

  17. Efficacy of soaking in 70% isopropyl alcohol on aerobic bacterial decontamination of surgical instruments and gloves for serial mouse laparotomies.

    PubMed

    Keen, Jessica N; Austin, MaryKay; Huang, Li-Shan; Messing, Susan; Wyatt, Jeffrey D

    2010-11-01

    Rodent surgeries in biomedical research facilities are often performed in series. This practice presents many challenges to maintaining aseptic technique between animals. Here, we examined using soaking in 70% isopropyl alcohol for aerobic bacterial decontamination of surgical instruments and gloves used in a series of as many as 10 mouse laparotomy surgeries. These surgeries were performed on mice that were euthanized immediately prior to the procedure. Instruments and gloves were cultured before and after each procedure to determine the presence of aerobic bacterial contamination. To assess the efficacy of the decontamination protocol, culture results were grouped by procedure and then paired (before soak and after soak) for analysis using McNemar test at an ? level of 0.05. In addition, by using the Fisher exact test, this modified aseptic method was compared with strict aseptic technique, for which autoclaved instruments and sterile surgical gloves were used for each procedure. In this study, we observed that the modified aseptic technique using 70% isopropyl alcohol soaks pre- vented aerobic bacterial contamination of instruments and gloves for as many as 5 mice. PMID:21205449

  18. The influence of the immunostimulation by bacterial cell components derived from altered large intestinal microbiota on probiotic anti-inflammatory benefits.

    PubMed

    Matsumoto, Mitsuharu; Hara, Kurt; Benno, Yoshimi

    2007-04-01

    Using murine macrophage-like J774.1 cells and fecal precipitates prepared from the feces of elderly volunteers whose acute inflammation had been inhibited by LKM512 yogurt consumption, we investigated the likelihood that immunostimulation by altered intestinal bacterial cell components contribute to the anti-inflammatory benefits of this yogurt. Tumor necrosis factor-alpha production due to stimulation by fecal precipitates obtained during LKM512 yogurt consumption tended to be higher than due to stimulation by precipitates obtained from preconsumption (P=0.0827), although acute phase response was suppressed by LKM512 yogurt consumption. We suggest that the anti-inflammatory benefits of LKM512 yogurt on elderly volunteers are independent of direct immunostimulation by the bacterial cell components derived from altered intestinal microbiota. PMID:17378901

  19. Interactions Between the Intestinal Microbiome and Liver Diseases

    PubMed Central

    Schnabl, Bernd; Brenner, David A.

    2014-01-01

    The human intestine harbors a diverse community of microbes that promote metabolism and digestion in their symbiotic relationship with the host. Disturbance of its homeostasis can result in disease. We review factors that disrupt intestinal homeostasis and contribute to non-alcoholic fatty liver disease (NAFLD), steatohepatitis (NASH), alcoholic liver disease, and cirrhosis. Liver disease has long been associated with qualitative and quantitative (overgrowth) dysbiotic changes in the intestinal microbiota. Extrinsic factors, such as the Western diet and alcohol, contribute to these changes. Dysbiosis results in intestinal inflammation, a breakdown of the intestinal barrier, and translocation of microbial products in animal models. However, the contribution of the intestinal microbiome to liver disease goes beyond simple translocation of bacterial products that promote hepatic injury and inflammation. Microbial metabolites produced in a dysbiotic intestinal environment and host factors are equally important in the pathogenesis of liver disease. We review how the combination of liver insult and disruptions in intestinal homeostasis contribute to liver disease. PMID:24440671

  20. Markers of Intestinal Inflammation, Not Bacterial Burden, Correlate With Clinical Outcomes in Clostridium difficile Infection

    PubMed Central

    El Feghaly, Rana E.; Stauber, Jennifer L.; Deych, Elena; Gonzalez, Carlos; Tarr, Phillip I.; Haslam, David B.

    2013-01-01

    Background.?Clostridium difficile is a leading hospital-acquired infection. Many patients remain symptomatic for several days on appropriate antibiotic therapy. To assess the contribution of ongoing infection vs persistent inflammation, we examined the correlation between fecal cytokine levels, fecal C. difficile burden, and disease outcomes in C. difficile infection (CDI). Methods.?We conducted a prospective cohort study in Barnes Jewish Hospital between June 2011 and May 2012 of hospitalized adults with CDI. We determined fecal interleukin 8 (IL-8) and lactoferrin protein concentrations by enzyme immunoassay. We used real-time polymerase chain reaction (PCR) to measure relative fecal IL-8 and CXCL-5 RNA transcript abundances, and quantitative PCR to enumerate C. difficile burden. Results.?Of 120 study subjects, 101 (84%) were started on metronidazole, and 33 of those (33%) were subsequently given vancomycin. Sixty-two (52%) patients had diarrhea persistent for 5 or more days after starting CDI therapy. Initial fecal CXCL-5 messenger RNA (mRNA), IL-8 mRNA, and IL-8 protein correlated with persistent diarrhea and use of vancomycin. Time to diarrhea resolution was longer in patients with elevated fecal cytokines at diagnosis. Fecal cytokines were more sensitive than clinical severity scores in identifying patients at risk of treatment failure. Clostridium difficile burden did not correlate with any measure of illness or outcome at any point, and decreased equally with metronidazole and vancomycin. Conclusions.?Persistent diarrhea in CDI correlates with intestinal inflammation and not fecal pathogen burden. These findings suggest that modulation of host response, rather than adjustments to antimicrobial regimens, might be a more effective approach to patients with unremitting disease. PMID:23487367

  1. Duodenal Aspirates for Small Intestine Bacterial Overgrowth: Yield, PPIs, and Outcomes after Treatment at a Tertiary Academic Medical Center

    PubMed Central

    Franco, Diana L.; Disbrow, Molly B.; Kahn, Allon; Koepke, Laura M.; Harris, Lucinda A.; Ramirez, Francisco C.

    2015-01-01

    Duodenal aspirates are not commonly collected, but they can be easily used in detection of small intestinal bacterial overgrowth (SIBO). Proton pump inhibitor (PPI) use has been proposed to contribute to the development of SIBO. We aimed to determine the yield of SIBO-positive cultures detected in duodenal aspirates, the relationship between SIBO and PPI use, and the clinical outcomes of patients identified by this method. In a retrospective study, we analyzed electronic medical records from 1263 consecutive patients undergoing upper endoscopy at a tertiary medical center. Aspirates were collected thought out the third and fourth portions of the duodenum, and cultures were considered to be positive for SIBO if they produced more than 100,000?cfu/mL. Culture analysis of duodenal aspirates identified SIBO in one-third of patients. A significantly higher percentage of patients with SIBO use PPIs than patients without SIBO, indicating a possible association. Similar proportions of patients with SIBO improved whether or not they received antibiotic treatment, calling into question the use of this expensive therapy for this disorder. PMID:25694782

  2. Histological changes in intestine of Atlantic salmon (Salmo salar L.) following in vitro exposure to pathogenic and probiotic bacterial strains.

    PubMed

    Ring, E; Salinas, I; Olsen, R E; Nyhaug, A; Myklebust, R; Mayhew, T M

    2007-04-01

    Furunculosis and vibriosis are diseases that cause severe economic losses in the fish-farming industry. The foregut of the Atlantic salmon (Salmo salar L.) was exposed in vitro to two fish pathogens, Aeromonas salmonicida (causative agent of furunculosis) and Vibrio anguillarum (causative agent of vibriosis), and to one probiotic strain, Carnobacterium divergens, at 6 x 10(4) or 6 x 10(6) viable bacteria per milliliter. Histological changes following bacterial exposure were assessed by light and electron microscopy. Control samples (foregut exposed to Ringer's solution only) and samples exposed only to C. divergens had a similar appearance to intact intestinal mucosal epithelium, with no signs of damage. However, exposure of the foregut to the pathogenic bacteria resulted in damaged epithelial cells, cell debris in the lumen, and disorganization of the microvilli. Co-incubation of the foregut with a pathogen and C. divergens did not reverse the damaging effects caused by the pathogen, although these were alleviated when probiotic bacteria were used. Based on these results, we suggest that the probiotic bacterium, C. divergens, is able to prevent, to some extent, pathogen-induced damage in the Atlantic salmon foregut. PMID:17120052

  3. Slipping through the Cracks: Linking Low Immune Function and Intestinal Bacterial Imbalance to the Etiology of Rheumatoid Arthritis

    PubMed Central

    Terato, Kuniaki

    2015-01-01

    Autoimmune diseases (ADs) are considered to be caused by the host immune system which attacks and destroys its own tissue by mistake. A widely accepted hypothesis to explain the pathogenic mechanism of ADs is “molecular mimicry,” which states that antibodies against an infectious agent cross-react with a self-antigen sharing an identical or similar antigenic epitope. However, this hypothesis was most likely established based on misleading antibody assay data largely influenced by intense false positive reactions involved in immunoassay systems. Thus reinvestigation of this hypothesis using an appropriate blocking agent capable of eliminating all types of nonspecific reactions and proper assay design is strongly encouraged. In this review, we discuss the possibility that low immune function may be the fundamental, common defect in ADs, which increases the susceptibility to potential disease causative pathogens located in the gastrointestinal tract (GI), such as bacteria and their components or dietary components. In addition to these exogenous agents, aberrations in the host's physical condition may disrupt the host defense system, which is tightly orchestrated by “immune function,” “mucosal barrier function,” and “intestinal bacterial balance.” These disturbances may initiate a downward spiral, which can lead to chronic health problems that will evolve to an autoimmune disorder. PMID:25861466

  4. [Alcohol].

    PubMed

    Zima, T

    1996-07-14

    Alcohol is one of the most widely used addictive substances. It can be assumed that everybody encounters alcohol--ethanol in various forms and concentrations in the course of their lives. A global and social problem of our civilization is alcohol consumption which has a rising trend. Since 1989 the consumption of alcoholic beverages is rising and the mean annual consumption of concentrated ethanol per head is cea 10 litres. In ethanol abuse the organism is damaged not only by ethanol alone but in particular by substances formed during its metabolism. Its detailed knowledge is essential for the knowledge and investigations of the metabolic and toxic effect of ethanol on the organism. Ingested alcohol is in 90-98% eliminated from the organism by three known metabolic pathways: 1-alcohol dehydrogenase, 2-the microsomal ethanol oxidizing system and 3-catalase. Alcohol is a frequent important risk factor of serious "diseases of civilization" such as IHD, hypertension, osteoporosis, neoplastic diseases. Cirrhosis of the liver and chronic pancreatitis are the well known diseases associated with alcohol ingestion and also their most frequent cause. It is impossible to list all organs and diseases which develop as a result of alcohol consumption. It is important to realize that regular and "relatively" small amounts in the long run damage the organism and may be even fatal. PMID:8925547

  5. Bacterial contamination of the small intestine as an important cause of chronic diarrhea and abdominal pain: diagnosis by breath hydrogen test.

    PubMed

    Davidson, G P; Robb, T A; Kirubakaran, C P

    1984-08-01

    Unsuspected bacterial contamination of the small intestine was indicated by breath hydrogen testing in nine patients aged 2 to 34 months during physical examinations for chronic diarrhea and abdominal pain. Elevated bacterial counts of questionable significance were found in duodenal aspirates before and after antibiotic treatment. There was no evidence of bile salt deconjugation or structural changes in the small intestine by light or electron microscopy. This may indicate that the site of colonization is distal to the biopsy site. Breath testing indicated lactose malabsorption in all patients, and four of five patients tested also malabsorbed sucrose. Duodenal disaccharidase levels in all patients were within the normal ranges, but in eight patients the lactase-sucrase ratio was greatly elevated (0.80 +/- 0.36; normal less than 0.45). Dietary restriction alone did not cause complete cessation of symptoms, whereas all patients responded dramatically to oral antibiotic therapy. When patients were well, the lactase-sucrase ratio had returned to normal in those tested, and all nine had normal lactose and lactulose breath hydrogen tests. Unsuspected bacterial contamination of the small intestine, which is easily detected using the breath hydrogen test, may be more commonly associated with chronic diarrhea in children than has been previously realized. In such cases, therapy should be directed at removing the contamination. PMID:6431389

  6. Spontaneous Bacterial Peritonitis (SBP) caused by Bacillus Cereus in an Alcoholic Patient: Case Report and Review of Literature

    PubMed Central

    Ansari, Mohammad Aftab Alam; Sarfraz, Asim; Jaiswal, Nitesh; Singh, Siddharth

    2015-01-01

    Spontaneous bacterial peritonitis (SBP) is infection of peritoneal covering of the abdomen caused by bacteria, without any known etiology. Common known predisposing factors are cirrhosis of liver and old age among others. Bacillus cereus is an uncommon cause of SBP and often wrongly interpreted as a contaminant. We hereby report a case of peritonitis in chronic alcoholic, elderly male patient presenting in the outpatient department. Bacillus cereus is often regarded as contaminant but must be carefully identified and correlated clinically in case of isolation from peritoneal fluid. PMID:25859458

  7. Alcohol.

    ERIC Educational Resources Information Center

    Schibeci, Renato

    1996-01-01

    Describes the manufacturing of ethanol, the effects of ethanol on the body, the composition of alcoholic drinks, and some properties of ethanol. Presents some classroom experiments using ethanol. (JRH)

  8. Alcohol

    MedlinePLUS

    ... created when grains, fruits, or vegetables are fermented . Fermentation is a process that uses yeast or bacteria ... change the sugars in the food into alcohol. Fermentation is used to produce many necessary items everything ...

  9. Alcohol

    MedlinePLUS

    ... hurt you. It's fun." "It's cool. Everybody drinks, right?" Wrong. Drinking alcohol is dangerous for kids and teens ... consult your doctor. 1995- The Nemours Foundation. All rights ... Veer, Science Photo Library, Science Source Images, Shutterstock, and Clipart. ...

  10. Giardia duodenalis Infection Reduces Granulocyte Infiltration in an In Vivo Model of Bacterial Toxin-Induced Colitis and Attenuates Inflammation in Human Intestinal Tissue

    PubMed Central

    Cotton, James A.; Motta, Jean-Paul; Schenck, L. Patrick; Hirota, Simon A.; Beck, Paul L.; Buret, Andre G.

    2014-01-01

    Giardia duodenalis (syn. G. intestinalis, G. lamblia) is a predominant cause of waterborne diarrheal disease that may lead to post-infectious functional gastrointestinal disorders. Although Giardia-infected individuals could carry as much as 106 trophozoites per centimetre of gut, their intestinal mucosa is devoid of overt signs of inflammation. Recent studies have shown that in endemic countries where bacterial infectious diseases are common, Giardia infections can protect against the development of diarrheal disease and fever. Conversely, separate observations have indicated Giardia infections may enhance the severity of diarrheal disease from a co-infecting pathogen. Polymorphonuclear leukocytes or neutrophils (PMNs) are granulocytic, innate immune cells characteristic of acute intestinal inflammatory responses against bacterial pathogens that contribute to the development of diarrheal disease following recruitment into intestinal tissues. Giardia cathepsin B cysteine proteases have been shown to attenuate PMN chemotaxis towards IL-8/CXCL8, suggesting Giardia targets PMN accumulation. However, the ability of Giardia infections to attenuate PMN accumulation in vivo and how in turn this effect may alter the host inflammatory response in the intestine has yet to be demonstrated. Herein, we report that Giardia infection attenuates granulocyte tissue infiltration induced by intra-rectal instillation of Clostridium difficile toxin A and B in an isolate-dependent manner. This attenuation of granulocyte infiltration into colonic tissues paralled decreased expression of several cytokines associated with the recruitment of PMNs. Giardia trophozoite isolates that attenuated granulocyte infiltration in vivo also decreased protein expression of cytokines released from inflamed mucosal biopsy tissues collected from patients with active Crohns disease, including several cytokines associated with PMN recruitment. These results demonstrate for the first time that certain Giardia infections may attenuate PMN accumulation by decreasing the expression of the mediators responsible for their recruitment. PMID:25289678

  11. Alcohol

    MedlinePLUS

    ... and get decent grades, as well as affect sports performance (the coordination thing). You can look really stupid. The impression is that drinking is cool, but the nervous system changes that come from drinking alcohol can make people do stupid or embarrassing things, ...

  12. Design and simulation of a poly(vinyl alcohol)-bacterial cellulose nanocomposite mechanical aortic heart valve prosthesis.

    PubMed

    Mohammadi, H; Boughner, D; Millon, L E; Wan, W K

    2009-08-01

    In this study, a polymeric aortic heart valve made of poly(vinyl alcohol) (PVA)-bacterial cellulose (BC) nanocomposite is simulated and designed using a hyperelastic non-linear anisotropic material model. A novel nanocomposite biomaterial combination of 15 wt % PVA and 0.5 wt % BC is developed in this study. The mechanical properties of the synthesized PVA-BC are similar to those of the porcine heart valve in both the principal directions. To design the geometry of the leaflets an advance surfacing technique is employed. A Galerkin-based non-linear finite element method is applied to analyse the mechanical behaviour of the leaflet in the closing and opening phases under physiological conditions. The model used in this study can be implemented in mechanical models for any soft tissues such as articular cartilage, tendon, and ligament. PMID:19743636

  13. Loss of TMF/ARA160 Protein Renders Colonic Mucus Refractory to Bacterial Colonization and Diminishes Intestinal Susceptibility to Acute Colitis*

    PubMed Central

    Bel, Shai; Elkis, Yoav; Lerer-Goldstein, Tali; Nyska, Abraham; Shpungin, Sally; Nir, Uri

    2012-01-01

    TMF/ARA160 is a Golgi-associated protein with several cellular functions, among them direction of the NF-?B subunit, p65 RelA, to ubiquitination and proteasomal degradation in stressed cells. We sought to investigate the role of TMF/ARA160 under imposed stress conditions in vivo. TMF?/? and wild-type (WT) mice were treated with the ulcerative agent dextran sulfate sodium (DSS), and the severity of the inflicted acute colitis was determined. TMF?/? mice were found to be significantly less susceptible to DSS-induced colitis, with profoundly less bacterial penetration into the colonic epithelia. Surprisingly, unlike in WT mice, no bacterial colonies were visualized in colons of healthy untreated TMF?/? mice, indicating the constitutive resistance of TMF?/? colonic mucus to bacterial retention and penetration. Gene expression analysis of colon tissues from unchallenged TMF?/? mice revealed 5-fold elevated transcription of the muc2 gene, which encodes the major component of the colonic mucus gel, the MUC2 mucin. Accordingly, the morphology of the colonic mucus in TMF?/? mice was found to differ from the mucus structure in WT colons. The NF-?B subunit, p65, a well known transcription inducer of muc2, was up-regulated significantly in TMF?/? intestinal epithelial cells. However, this did not cause spontaneous inflammation or increased colonic crypt cell proliferation. Collectively, our findings demonstrate that absence of TMF/ARA160 renders the colonic mucus refractory to bacterial colonization and the large intestine less susceptible to the onset of colitis. PMID:22553199

  14. Bacterial protein AvrA stabilizes intestinal epithelial tight junctions via blockage of the C-Jun N-terminal kinase pathway

    PubMed Central

    Zhang, Yongguo; Wu, Shaoping; Ma, Jun; Xia, Yinglin; Ai, Xun; Sun, Jun

    2014-01-01

    The Salmonella type III secretory system secretes virulence proteins, called effectors. Effectors are responsible for the alteration of tight junctions (TJ) and epithelial functions in intestinal infection and inflammation. In a previous study, we have demonstrated that a bacterial effector AvrA plays a role in stabilizing TJs and balancing the opposing action of other bacterial effectors. However, the molecular mechanisms by which AvrA-modulates TJ protein expression remain unknown. AvrA possesses acetyltransferase activity toward specific mitogen-activated protein kinase kinases (MAPKKs) and potently inhibits the c-Jun N-terminal kinase (JNK) pathway in inflammation. Inhibition of the JNK pathway is known to inhibit the TJ protein disassemble. Therefore, we hypothesize that AvrA stabilizes intestinal epithelial TJs via c-Jun and JNK pathway blockage. Using both in vitro and in vivo models, we showed that AvrA targets the c-Jun and JNK pathway that in turn stabilizes TJ protein ZO-1. Inhibition of JNK abolished the effect of AvrA on ZO-1. We further determined that AvrA suppressed the transcription factor activator protein-1, which was regulated by activated JNK. Moreover, we identified the functional domain of AvrA that directly regulated TJs using a series of AvrA mutants. The role of AvrA represents a highly refined bacterial strategy that helps the bacteria survive in the host and dampens the inflammatory response of the host. Our findings have uncovered a novel role of the bacterial protein AvrA in suppressing the inflammatory response of the host through JNK-regulated blockage of epithelial cell barrier function. PMID:25838979

  15. Activation of RegIII?/? and interferon ? expression in the intestinal tract of SCID mice: an innate response to bacterial colonisation of the gut

    PubMed Central

    Keilbaugh, S A; Shin, M E; Banchereau, R F; McVay, L D; Boyko, N; Artis, D; Cebra, J J; Wu, G D

    2005-01-01

    Background and aims: The mechanisms by which commensal bacteria provoke intestinal inflammation in animal models of inflammatory bowel disease (IBD) remain incompletely defined, leading to increasing interest in the innate immune response of the colonic mucosa to bacterial colonisation. Methods: Using gene expression profiling of colonic RNA from C.B17.SCID germ free mice and those colonised with altered Schaedlers flora, we investigated the innate immune response to bacterial colonisation in vivo. The two most consistently induced gene groups were RegIII? and ? as well as interferon ? (IFN-?) response genes. Results: Using quantitative reverse transcription-polymerase chain reaction, we showed that RegIII?, RegIII?, and IFN-? were constitutively expressed in the colon of conventionally housed SCID mice compared with either germ free SCID or conventionally housed BALB/c mice. Induction of these genes was reproduced by chronic monoassociation of germ free SCID mice with either of two separate gut commensal bacterial speciessegmented filamentous bacteria and Schaedlers Escherichia coli. The cellular source for IFN-? on monoassociation of SCID mice with Schaedlers E coli was localised to a subset of intraepithelial natural killer (IENK) cells that express asialo-GM1. In vivo IFN-? immunoneutralisation studies failed to demonstrate any alteration in RegIII? or ? expression. Conclusions: Thus bacterial colonisation of the colon independently activates two distinct innate immune cell types at the mucosal interface with the colonic lumen, intestinal epithelial cells, and IENK cells, a response that may be regulated by the adaptive immune system. These innate immune responses may play a role in the pathogenesis of colitis in SCID adoptive transfer models in mice and possibly in patients with IBD. PMID:15831905

  16. Purification and characterization of a bacterial dehalogenase with activity toward halogenated alkanes, alcohols and ethers.

    PubMed

    Janssen, D B; Gerritse, J; Brackman, J; Kalk, C; Jager, D; Witholt, B

    1988-01-15

    An enzyme that is capable of hydrolytic conversion of halogenated aliphatic hydrocarbons to their corresponding alcohols was purified from a 1,6-dichlorohexane-degrading bacterium. The dehalogenase was found to be a monomeric protein of relative molecular mass 28,000. The affinity for its substrates was relatively low with Km values for short-chain haloalkanes in the range 0.1-0.9 mM. The aliphatic dehalogenase showed a much broader substrate range than has been reported for halidohydrolases so far. Novel classes of substrates include dihalomethanes, C5-C9 1-halo-n-alkanes, secondary alkylhalides, halogenated alcohols and chlorinated ethers. Several of these compounds are important environmental pollutants, e.g. methylbromide, dibromomethane, 1,2-dibromoethane, 1,3-dichloropropene, and bis(2-chloroethyl)ether. The degradation of chiral 2-bromoalkanes appeared to proceed without stereochemical preference. Optically active 2-bromobutane was converted with inversion of configuration at the chiral carbon atom, suggesting that the dehalogenase reaction proceeds by a nucleophilic substitution involving a carboxyl group or base catalysis. PMID:3338472

  17. Dysregulated expression of arginine metabolic enzymes in human intestinal tissues of necrotizing enterocolitis and response of CaCO2 cells to bacterial components.

    PubMed

    Leung, Kam Tong; Chan, Kathy Yuen Yee; Ma, Terence Ping Yuen; Yu, Jasmine Wai Sum; Tong, Joanna Hung Man; Tam, Yuk Him; Cheung, Hon Ming; To, Ka Fai; Lam, Hugh Simon; Lee, Kim Hung; Li, Karen; Ng, Pak Cheung

    2016-03-01

    The small intestine is the exclusive site of arginine synthesis in neonates. Low levels of circulating arginine have been associated with the occurrence of necrotizing enterocolitis (NEC) but the mechanism of arginine dysregulation has not been fully elucidated. We aimed to investigate (i) expressional changes of arginine synthesizing and catabolic enzymes in human intestinal tissues of NEC, spontaneous intestinal perforation (SIP) and noninflammatory surgical conditions (Surg-CTL) and to investigate the (ii) mechanisms of arginine dysregulation and enterocyte proliferation upon stimulation by bacterial components, arginine depletion, ARG1 overexpression and nitric oxide (NO) supplementation. Our results showed that expressions of arginine synthesizing enzymes ALDH18A1, ASL, ASS1, CPS1, GLS, OAT and PRODH were significantly decreased in NEC compared with Surg-CTL or SIP tissues. Catabolic enzyme ARG1 was increased (>100-fold) in NEC tissues and histologically demonstrated to be expressed by infiltrating neutrophils. No change in arginine metabolic enzymes was observed between SIP and Surg-CTL tissues. In CaCO2 cells, arginine metabolic enzymes were differentially dysregulated by lipopolysaccharide or lipoteichoic acid. Depletion of arginine reduced cell proliferation and this phenomenon could be partially rescued by NO. Overexpression of ARG1 also reduced enterocyte proliferation. We provided the first expressional profile of arginine metabolic enzymes at the tissue level of NEC. Our findings suggested that arginine homeostasis was severely disturbed and could be triggered by inflammatory responses of enterocytes and infiltrating neutrophils as well as bacterial components. Such reactions could reduce arginine and NO, resulting in mucosal damage. The benefit of arginine supplementation for NEC prophylaxis merits further clinical evaluation. PMID:26895666

  18. Natural Pig Plasma Immunoglobulins Have Anti-Bacterial Effects: Potential for Use as Feed Supplement for Treatment of Intestinal Infections in Pigs.

    PubMed

    Hedegaard, Chris J; Strube, Mikael L; Hansen, Marie B; Lindved, Bodil K; Lihme, Allan; Boye, Mette; Heegaard, Peter M H

    2016-01-01

    There is an increasing demand for non-antibiotics solutions to control infectious disease in intensive pig production. Here, one such alternative, namely pig antibodies purified from slaughterhouse blood was investigated in order to elucidate its potential usability to control post-weaning diarrhoea (PWD), which is one of the top indications for antibiotics usage in the pig production. A very cost-efficient and rapid one-step expanded bed adsorption (EBA) chromatography procedure was used to purify pig immunoglobulin G from slaughterhouse pig plasma (more than 100 litres), resulting in >85% pure pig IgG (ppIgG). The ppIgG thus comprised natural pig immunoglobulins and was subsequently shown to contain activity towards four pig-relevant bacterial strains (three different types of Escherichia coli and one type of Salmonella enterica) but not towards a fish pathogen (Yersinia ruckeri), and was demonstrated to inhibit the binding of the four pig relevant bacteria to a pig intestinal cell line (IPEC-J2). Finally it was demonstrated in an in vivo weaning piglet model for intestinal colonization with an E. coli F4+ challenge strain that ppIgG given in the feed significantly reduced shedding of the challenge strain, reduced the proportion of the bacterial family Enterobacteriaceae, increased the proportion of families Enterococcoceae and Streptococcaceae and generally increased ileal microbiota diversity. Conclusively, our data support the idea that natural IgG directly purified from pig plasma and given as a feed supplement can be used in modern swine production as an efficient and cost-effective means for reducing both occurrence of PWD and antibiotics usage and with a potential for the prevention and treatment of other intestinal infectious diseases even if the causative agent might not be known. PMID:26824607

  19. Natural Pig Plasma Immunoglobulins Have Anti-Bacterial Effects: Potential for Use as Feed Supplement for Treatment of Intestinal Infections in Pigs

    PubMed Central

    Hedegaard, Chris J.; Strube, Mikael L.; Hansen, Marie B.; Lindved, Bodil K.; Lihme, Allan; Boye, Mette; Heegaard, Peter M. H.

    2016-01-01

    There is an increasing demand for non-antibiotics solutions to control infectious disease in intensive pig production. Here, one such alternative, namely pig antibodies purified from slaughterhouse blood was investigated in order to elucidate its potential usability to control post-weaning diarrhoea (PWD), which is one of the top indications for antibiotics usage in the pig production. A very cost-efficient and rapid one-step expanded bed adsorption (EBA) chromatography procedure was used to purify pig immunoglobulin G from slaughterhouse pig plasma (more than 100 litres), resulting in >85% pure pig IgG (ppIgG). The ppIgG thus comprised natural pig immunoglobulins and was subsequently shown to contain activity towards four pig-relevant bacterial strains (three different types of Escherichia coli and one type of Salmonella enterica) but not towards a fish pathogen (Yersinia ruckeri), and was demonstrated to inhibit the binding of the four pig relevant bacteria to a pig intestinal cell line (IPEC-J2). Finally it was demonstrated in an in vivo weaning piglet model for intestinal colonization with an E. coli F4+ challenge strain that ppIgG given in the feed significantly reduced shedding of the challenge strain, reduced the proportion of the bacterial family Enterobacteriaceae, increased the proportion of families Enterococcoceae and Streptococcaceae and generally increased ileal microbiota diversity. Conclusively, our data support the idea that natural IgG directly purified from pig plasma and given as a feed supplement can be used in modern swine production as an efficient and cost-effective means for reducing both occurrence of PWD and antibiotics usage and with a potential for the prevention and treatment of other intestinal infectious diseases even if the causative agent might not be known. PMID:26824607

  20. Testing of the Small Intestine (Intestinal Dysmotility)

    MedlinePLUS

    ... Bacterial overgrowth is most easily detected by the hydrogen breath test: The patient drinks a sugar solution ... amounts in the small intestine, they give off hydrogen, some of which is absorbed into the blood, ...

  1. Gut microbiota, tight junction protein expression, intestinal resistance, bacterial translocation and mortality following cholestasis depend on the genetic background of the host

    PubMed Central

    Alaish, Samuel M.; Smith, Alexis D.; Timmons, Jennifer; Greenspon, Jose; Eyvazzadeh, Daniel; Murphy, Ebony; Shea-Donahue, Terez; Cirimotich, Shana; Mongodin, Emmanuel; Zhao, Aiping; Fasano, Alessio; Nataro, James P.; Cross, Alan S

    2013-01-01

    Failure of the intestinal barrier is a characteristic feature of cholestasis. We have previously observed higher mortality in C57BL/6J compared with A/J mice following common bile duct ligation (CBDL). We hypothesized the alteration in gut barrier function following cholestasis would vary by genetic background. Following one week of CBDL, jejunal TEER was significantly reduced in each ligated mouse compared with their sham counterparts; moreover, jejunal TEER was significantly lower in both sham and ligated C57BL/6J compared with sham and ligated A/J mice, respectively. Bacterial translocation to mesenteric lymph nodes was significantly increased in C57BL/6J mice vs. A/J mice. Four of 15 C57BL/6J mice were bacteremic; whereas, none of the 17 A/J mice were. Jejunal IFN-γ mRNA expression was significantly elevated in C57BL/6J compared with A/J mice. Western blot analysis demonstrated a significant decrease in occludin protein expression in C57BL/6J compared with A/J mice following both sham operation and CBDL. Only C57BL/6J mice demonstrated a marked decrease in ZO-1 protein expression following CBDL compared with shams. Pyrosequencing of the 16S rRNA gene in fecal samples showed a dysbiosis only in C57BL/6J mice following CBDL when compared with shams. This study provides evidence of strain differences in gut microbiota, tight junction protein expression, intestinal resistance and bacterial translocation which supports the notion of a genetic predisposition to exaggerated injury following cholestasis. PMID:23652772

  2. Breast Milk Lactoferrin Regulates Gene Expression by Binding Bacterial DNA CpG Motifs But Not Genomic DNA Promoters in Model Intestinal Cells

    PubMed Central

    MULLIGAN, PETER; WHITE, NICHOLAS R.J.; MONTELEONE, GIOVANNI; WANG, PING; WILSON, JAMES W.; OHTSUKA, YOSHI; SANDERSON, IAN R.

    2011-01-01

    High-affinity binding of DNA by lactoferrin (LF) is an established phenomenon, but the biologic function of this interaction remains unclear. LF is an abundant breast milk protein (12.5– 87.5 μmol/L) and is resistant to digestion in the infant gut. Regulation of gene expression by LF appears to be a major activity, particularly in modulating immune responses. We hypothesized that LF binding to DNA is a mechanism of gene regulation and aimed to identify the mechanism and physiologic sites of this activity. Our studies focused on two major biologic compartments of DNA: LF binding to proinflammatory bacterial DNA sequences (CpG motifs) in extracellular compartments and LF binding to genomic DNA promoters in the nucleus. LF 0.5 mmol/L inhibited CpG motif–induced nuclear factor-κB (NF-κB) activation and interleukin (IL)-8 and IL-12 cytokine gene transcription in B cells. Intestinal epithelial cells were unresponsive to CpG motifs. However, significant LF transferred across M cell–like monolayers, specialized epithelial cells that transcytose intact macromolecules to underlying B-cell follicles in the intestine. LF did not activate gene expression by binding to putative response elements in epithelial and lymphoid cells. Nor did LF bind to putative response elements specifically in gel-shift assays. No nuclear localization of LF was detected in green fluorescent protein (GFP) tagging experiments. We conclude that breast milk LF regulates gene expression by binding CpG motifs extracellularly, with follicular B cells in the infant intestine a likely target. PMID:16627877

  3. Campylobacter jejuni outer membrane vesicle-associated proteolytic activity promotes bacterial invasion by mediating cleavage of intestinal epithelial cell E-cadherin and occludin.

    PubMed

    Elmi, Abdi; Nasher, Fauzy; Jagatia, Heena; Gundogdu, Ozan; Bajaj-Elliott, Mona; Wren, Brendan; Dorrell, Nick

    2016-04-01

    Outer membrane vesicles (OMVs) play an important role in the pathogenicity of Gram-negative bacteria. Campylobacter jejuni produces OMVs that trigger IL-8, IL-6, hBD-3 and TNF-α responses from T84 intestinal epithelial cells and are cytotoxic to Caco-2 IECs and Galleria mellonella larvae. Proteomic analysis of 11168H OMVs identified the presence of three proteases, HtrA, Cj0511 and Cj1365c. In this study, 11168H OMVs were shown to possess proteolytic activity that was reduced by pretreatment with specific serine protease inhibitors. OMVs isolated from 11168H htrA, Cj0511 or Cj1365c mutants possess significantly reduced proteolytic activity. 11168H OMVs are able to cleave both E-cadherin and occludin, but this cleavage is reduced with OMVs pretreated with serine protease inhibitors and also with OMVs isolated from htrA or Cj1365c mutants. Co-incubation of T84 monolayers with 11168H OMVs results in a visible reduction in both E-cadherin and occludin. The addition of 11168H OMVs to the co-culture of live 11168H bacteria with T84 cells results in enhanced levels of bacterial adhesion and invasion in a time-dependent and dose-dependent manner. Further investigation of the cleavage of host cell structural proteins by C. jejuni OMVs should enhance our understanding of the interactions of this important pathogen with intestinal epithelial cells. PMID:26451973

  4. Effects of Tylosin on Bacterial Mucolysis, Clostridium perfringens Colonization, and Intestinal Barrier Function in a Chick Model of Necrotic Enteritis

    PubMed Central

    Collier, C. T.; van der Klis, J. D.; Deplancke, B.; Anderson, D. B.; Gaskins, H. R.

    2003-01-01

    Necrotic enteritis (NE) is a worldwide poultry disease caused by the alpha toxin-producing bacterium Clostridium perfringens. Disease risk factors include concurrent coccidial infection and the dietary use of cereal grains high in nonstarch polysaccharides (NSP), such as wheat, barley, rye, and oats. Outbreaks of NE can be prevented or treated by the use of in-feed antibiotics. However, the current debate regarding the prophylactic use of antibiotics in animal diets necessitates a better understanding of factors that influence intestinal colonization by C. perfringens as well as the pathophysiological consequences of its growth. We report a study with a chick model of NE, which used molecular (16S rRNA gene [16S rDNA]) and culture-based microbiological techniques to investigate the impact of the macrolide antibiotic tylosin phosphate (100 ppm) and a dietary NSP (pectin) on the community structure of the small intestinal microbiota relative to colonization by C. perfringens. The effects of tylosin and pectin on mucolytic activity of the microbiota and C. perfringens colonization and their relationship to pathological indices of NE were of particular interest. The data demonstrate that tylosin reduced the percentage of mucolytic bacteria in general and the concentration of C. perfringens in particular, and these responses correlated in a temporal fashion with a reduction in the occurrence of NE lesions and an improvement in barrier function. The presence of pectin did not significantly affect the variables measured. Thus, it appears that tylosin can control NE through its modulation of C. perfringens colonization and the mucolytic activity of the intestinal microbiota. PMID:14506046

  5. Short-term effect of dietary yeast nucleotide supplementation on small intestinal enzyme activities, bacterial populations and metabolites and ileal nutrient digestibilities in newly weaned pigs.

    PubMed

    Sauer, N; Eklund, M; Roth, S; Rink, F; Jezierny, D; Bauer, E; Mosenthin, R

    2012-08-01

    In previous studies, dietary nucleotides have been shown to improve performance in single-stomached animals by promoting the renewal of small intestine epithelial cells and by influencing the activity and composition of the microbial community in the digestive tract. The present experiment was carried out with 12 barrows weaned at the age of 18 days and fitted with a simple T-cannula at the distal ileum. To determine short-term effects of dietary yeast nucleotides, the piglets received a grain-soybean meal-based basal diet with or without supplementation of 1 g/kg of a dried yeast product containing free nucleotides. Dietary supplementation with yeast did not affect bacterial numbers in the ileum as well as ileal concentrations of individual short-chain fatty acids (SCFA), total SCFA and total lactic acid (p > 0.05). Moreover, there was no effect of supplemental yeast nucleotides on ileal ?-amylase, leucine amino peptidase, maltase and lactase activities (p > 0.05), as well as on ileal dry matter, crude protein and crude fibre digestibilities (p > 0.05). In conclusion, short-term supplementation with dietary yeast nucleotides did not affect microbial metabolite concentrations, bacterial numbers and enzyme activities in the ileal digesta as well as ileal nutrient digestibilities of newly weaned pigs. PMID:21797935

  6. Metabolism of aloesin and related compounds by human intestinal bacteria: a bacterial cleavage of the C-glucosyl bond and the subsequent reduction of the acetonyl side chain.

    PubMed

    Che, Q M; Akao, T; Hattori, M; Kobashi, K; Namba, T

    1991-03-01

    By anaerobic incubation with a bacterial mixture from human feces, aloesin (aloeresin B; 1) was converted to 2-acetonyl-7-hydroxy-5-methylchromone (aloesone; 3) and dl-7-hydroxy-2-(2'-hydroxypropyl)-5-methylchromone (aloesol; 4a + 4b) through a cleavage of the C-glucosyl bond, followed by reduction of the acetonyl side chain. An analogous compound, aloeresin A (2), was converted to p-coumaric acid and aloesin (1), the latter being subsequently transformed to aloesone (3) and dl-aloesol (4a + 4b). On the other hand, 7-O-methylated derivatives (7, 5a and 5b) of aloesin and of 8-C-glucosylaloesol were not cleaved to the corresponding aglycones, suggesting the importance of a free hydroxy group adjacent to the C-glucosyl group in the molecule for the bacterial cleavage of aloesin derivatives. This is the first report on the cleavage of the C-glycosyl bond of chromone C-glucosides by intestinal bacteria. PMID:2070451

  7. Sampling of intestinal microbiota and targeted amplification of bacterial 16S rRNA genes for microbial ecologic analysis

    PubMed Central

    Tong, Maomeng; Jacobs, Jonathan P.; McHardy, Ian H.; Braun, Jonathan

    2015-01-01

    Dysbiosis of host-associated commensal microbiota is emerging as an important factor in risk and phenotype of immunologic, metabolic, and behavioral diseases. Appropriate collection and pre-processing of biospecimens from humans or mice is necessary for accurate analysis of microbial composition and functional state. Methods to sample intestinal luminal and mucosal microbiota from humans and mice, and to profile microbial phylogenetic composition using 16S rRNA sequencing are presented here. Data generated using this protocol can be used for downstream quantitative analysis of microbial ecology. PMID:25367129

  8. Dual-sugar tests of small intestinal permeability are poor predictors of bacterial infections and mortality in cirrhosis: A prospective study

    PubMed Central

    Vogt, Anika; Reuken, Philipp A; Stengel, Sven; Stallmach, Andreas; Bruns, Tony

    2016-01-01

    AIM: To prospectively analyze the impact of increased intestinal permeability (IP) on mortality and the occurrence of infections in patients with cirrhosis. METHODS: IP was quantified using the lactulose/mannitol (L/M) test in 46 hospitalized patients with cirrhosis (25 Child-Pugh A/B, 21 Child-Pugh C) and in 16 healthy controls. Markers of inflammation [LPS-binding protein, Interleukin-6 (IL-6)] and enterocyte death [intestinal fatty-acid binding protein (I-FABP)] were determined in serum using enzyme-linked immunosorbent assays. Patients were followed for one year and assessed for survival, liver transplantation, the necessity of hospitalization and the occurrence of bacterial infections. The primary endpoint of the study was defined as differences in survival between patients with pathological and without pathological lactulose/mannitol test. RESULTS: Thirty-nine (85%) patients with cirrhosis had a pathologically increased IP index (L/M ratio > 0.07) compared to 4 (25%) healthy controls (P < 0.0001). The IP index correlated with the Child-Pugh score (r = 0.484, P = 0.001) and with serum IL-6 (r = 0.342, P = 0.02). Within one year, nineteen (41%) patients developed a total of 33 episodes of hospitalization with bacterial or fungal infections. Although patients who developed spontaneous bacterial peritonitis (SBP) (n = 7) had a higher IP index than patients who did not (0.27 vs 0.14, P = 0.018), the baseline IP index did not predict time to infection, infection-free survival or overall survival, neither when assessed as linear variable, as tertiles, nor dichotomized using an established cut-off. In contrast, model for end-stage liver disease score, Child-Pugh score, the presence of ascites, serum IL-6 and I-FABP were univariate predictors of infection-free survival. CONCLUSION: Although increased IP is a frequent phenomenon in advanced cirrhosis and may predispose to SBP, it failed to predict infection-free and overall survival in this prospective cohort study. PMID:27004006

  9. Influence of a probiotic Enterococcus faecium strain on selected bacterial groups in the small intestine of growing turkey poults.

    PubMed

    Vahjen, W; Jadamus, Anke; Simon, O

    2002-12-01

    A feeding trial was carried out with turkey poults, which were fed a diet containing 10(10) viable probiotic E. faecium NCIB 10415 cells/kg feed. Samples of the intestinal tract were analyzed for lactate, colony forming units of total anaerobic bacteria, lactic acid bacteria, enterobacteria and enterococci. Furthermore, metabolic activity of total eubacterial, lactobacilli and enterococci was recorded in selected RNA-extracts with specific ribosomal RNA oligonucleotide probes. Animals fed the probiotic diet showed continously increasing lactate concentrations throughout the sampling period up to day 42 of life. No correlation was found for colony forming units (cfu) of lactic acid bacteria, but metabolic activity of lactobacilli showed very close relation to continously increasing lactate concentrations. Throughout the feeding trial, enterococci in the control group continously increased to a maximum of 10(4) cfu/g wet weight, but 10-fold higher enterococci cfu were generally found in the treated group. However, rRNA content as measure for metabolic activity showed a drastic decline in both groups after high metabolic activities on day 7. This study shows that E. faecium NCIB 10415 (E. faecium SF68) stimulates other lactic acid bacteria in the small intestine, especially lactobacilli. PMID:12553692

  10. Identification of intestinal bacterial flora in Rhipicephalus microplus ticks by conventional methods and PCR-DGGE analysis.

    PubMed

    Xu, Xing-Li; Cheng, Tian-Yin; Yang, Hu; Yan, Fen

    2015-06-01

    In this study, we have analyzed the intestinal microbial flora associated with Rhipicephalus microplus ticks using both culture-dependent and independent methods based on PCR and denaturing gradient gel electrophoresis (PCR-DGGE). The R. microplus ticks were collected from cattle and goats in Jiangxi, Hunan and Guizhou Provinces of China. Three distinct strains of bacteria were isolated using culture-dependent methods: Staphylococcus simulans, Bacillus subtilis and Bacillus flexus strain. Nineteen distinct DGGE bands were found using PCR-DGGE analysis, and their search for identity shows that they belonged to Rickettsiaceae, Xanthomonadaceae, Coxiella sp., Ehrlichia sp., Pseudomonas sp., Ehrlichia sp., Orphnebius sp., Rickettsia peacockii, Bacillus flexus. Rickettsia peacockii and Coxiella genus were the dominant strain of the R. microplus ticks from cattle, Pseudomonas sp. and B. flexus strain were the most common species in all tick samples from goats. Ehrlichia canis were detected only in R. microplus ticks from Yongshun area in Hunan Province. The results indicate that the intestinal microbial diversity of R. microplus ticks was influenced by tick hosts and local differences in the sampling location and these two aspects may affect transmission of pathogen to humans and animals. PMID:25784070

  11. [State of intestinal microbiota in patients with type 2 diabetes mellitus and non-alcoholic fatty liver disease].

    PubMed

    Lytvynenko, K O; Bodnar, P M; Lysiana, T O; Ponomar'ova, I H; Koval'chuk, O A

    2014-01-01

    High prevalence of type 2 diabetes mellitus (DM) and nonalcoholic fatty liver disease (NAFLD) contributes to the intensification of scientific research the aim of which is to improve existing treatment. It is given the data about the state of intestinal microbiota in 64 patients with type 2 DM and NAFLD, 26 patients with type 2 DM and 28--with NAFLD. The research revealed significant changes in microbiota composition in patients with type 2 DM combined with NAFLD. Decompensated dysbiosis was registered in 71.9% of patients in this group which manifested in increased quantitative indicators of transient microflora crop with pathogenic characteristics and lack of microflora with protective characteristics. PMID:25906652

  12. Morphine Induces Bacterial Translocation in Mice by Compromising Intestinal Barrier Function in a TLR-Dependent Manner

    PubMed Central

    Meng, Jingjing; Yu, Haidong; Ma, Jing; Wang, Jinghua; Banerjee, Santanu; Charboneau, Rick; Barke, Roderick A.; Roy, Sabita

    2013-01-01

    Opiates are among the most prescribed drugs for pain management. However, morphine use or abuse results in significant gut bacterial translocation and predisposes patients to serious infections with gut origin. The mechanism underlying this defect is still unknown. In this report, we investigated the mechanisms underlying compromised gut immune function and bacterial translocation following morphine treatment. We demonstrate significant bacterial translocation to mesenteric lymph node (MLN) and liver following morphine treatment in wild-type (WT) animals that was dramatically and significantly attenuated in Toll-like receptor (TLR2 and 4) knockout mice. We further observed significant disruption of tight junction protein organization only in the ileum but not in the colon of morphine treated WT animals. Inhibition of myosin light chain kinase (MLCK) blocked the effects of both morphine and TLR ligands, suggesting the role of MLCK in tight junction modulation by TLR. This study conclusively demonstrates that morphine induced gut epithelial barrier dysfunction and subsequent bacteria translocation are mediated by TLR signaling and thus TLRs can be exploited as potential therapeutic targets for alleviating infections and even sepsis in morphine-using or abusing populations. PMID:23349783

  13. Culturable Aerobic and Facultative Anaerobic Intestinal Bacterial Flora of Black Cobra (Naja naja karachiensis) in Southern Pakistan

    PubMed Central

    Iqbal, Junaid; Sagheer, Mehwish; Tabassum, Nazneen; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2014-01-01

    Using morphological analysis and biochemical testing, here for the first time, we determined the culturable gut bacterial flora (aerobes and facultative anaerobes) in the venomous Black Cobra (Naja naja karachiensis) from South Asia. The findings revealed that these snakes inhabit potentially pathogenic bacteria including Serratia marcescens, Pseudomonas aeruginosa, Shewanella putrefaciens, Aeromonas hydrophila, Salmonella sp., Moraxella sp., Bacillus sp., Ochrobactrum anthropi, and Providencia rettgeri. These findings are of concern, as injury from snake bite can result in wound infections and tissue necrosis leading to sepsis/necrotizing fasciitis and/or expose consumers of snake meat/medicine in the community to infections. PMID:25002979

  14. Dose-response effects of an antimicrobial peptide, a cecropin hybrid, on growth performance, nutrient utilisation, bacterial counts in the digesta and intestinal morphology in broilers.

    PubMed

    Wen, Liu-Fa; He, Jian-Guo

    2012-11-28

    The aim of the present study was to evaluate the feasibility of an antimicrobial peptide, cecropin A(1-11)-D(12-37)-Asn (CADN), as an alternative to antibiotic growth promoter (AGP) in poultry diets. A total of 1500 14-d-old indigenous male chickens (222 (sd 13) g) were randomly allocated to five groups with five replicate cages of sixty birds each, and fed ad libitum five grower diets and subsequently five finisher diets for 14 d each. The diets were made up by supplementing their basal diets with a CADN liquid sample (CADNL) at 0, 2, 4, 6 and 8 ml/kg, respectively. During the feeding period, a metabolic experiment was carried out to determine the apparent digestibility of diethyl ether extract, nitrogen retention and apparent metabolisable energy of the diet sample fed to each cage of chicks. At the end of the feeding experiment, one chick from each cage was killed for bacteriological, light microscopic and scanning electron microscopic examination of the intestinal villi. CADN had a negative linear, positive quadratic and negative linear effect on feed intake (F), weight gain (G) and feed:gain ratio (F:G), respectively, for the growers; it had a quadratic effect on F, G or F:G for the finishers; it increased nutrient utilisation for both growers and finishers; it decreased aerobic bacterial counts in both jejunal and caecal digesta in a dose-dependent manner; it enhanced intestinal villus heights in a dose-dependent manner and made the duodenum villi of the CADNL8 group at 42 d appear as a netted leaf-like structure. CADN is therefore a possible alternative to AGP in broiler feeds. PMID:22251659

  15. Effects of dietary antibiotic growth promoter and Saccharomyces cerevisiae fermentation product on production, intestinal bacterial community, and nonspecific immunity of hybrid tilapia (Oreochromis niloticus female x Oreochromis aureus male).

    PubMed

    He, S; Zhou, Z; Meng, K; Zhao, H; Yao, B; Ringø, E; Yoon, I

    2011-01-01

    To investigate the effects of a dietary antibiotic growth promoter (florfenicol) and a Saccharomyces cerevisiae fermentation product (DVAQUA) on growth, G:F, daily feed intake, intestinal bacterial community, and nonspecific immunity of hybrid tilapia (Oreochromis niloticus ♀ × Oreochromis aureus ♂), a 16-wk feeding trial was conducted in a recirculating aquaculture system. Four feeding regimens were evaluated: control, dietary florenicol (0.02 g/kg; 16 wk), dietary DVAQUA (0.5 g/kg; 16 wk), and sequential use of florenicol (0.02 g/kg; 8 wk), and DVAQUA (0.5 g/kg; 8 wk). Each regimen had 4 replicate tanks (0.5 × 0.5 × 0.5 m) and each tank contained 12 fish (initial BW: 46.88 ± 0.38 g). Dietary florfenicol improved growth (P = 0.089), G:F (P = 0.036), and serum complement component concentrations (P < 0.001) of hybrid tilapia. However, the compound decreased the estimated intestinal bacterial count estimated by rpoB quantitative PCR (P < 0.001) and bacterial diversity (visual band numbers, Shannon diversity index, and Shannon equitability index based on 16S rDNA V3 denaturing gradient gel electrophoresis fingerprints) compared with the control. Although sequential use of florfenicol and DVAQUA improved growth and G:F numerically to a similar extent as dietary florfenicol, and increased intestinal bacterial count to normal quantities, the sequential use of florenicol and DVAQUA decreased intestinal bacterial diversity (visual band numbers, Shannon diversity index, and Shannon equitability index) as well as serum complement component concentrations (P < 0.001) compared with their respective use and the control. These findings might be negatively related to disease control and host defense, and the sequential use of florenicol and DVAQUA should be practiced with caution. Feeding DAVQUA to the fish improved nonspecific immunity and increased intestinal bacterial count and bacterial diversity, but further research, including challenge studies, should be conducted before recommendation of DVAQUA supplementation to hybrid tilapia diets. PMID:20852079

  16. Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis.

    PubMed

    Fukata, Masayuki; Michelsen, Kathrin S; Eri, Rajaraman; Thomas, Lisa S; Hu, Bing; Lukasek, Katie; Nast, Cynthia C; Lechago, Juan; Xu, Ruliang; Naiki, Yoshikazu; Soliman, Antoine; Arditi, Moshe; Abreu, Maria T

    2005-05-01

    Inflammatory bowel disease (IBD) arises from a dysregulated mucosal immune response to luminal bacteria. Toll-like receptor (TLR)4 recognizes LPS and transduces a proinflammatory signal through the adapter molecule myeloid differentiation marker 88 (MyD88). We hypothesized that TLR4 participates in the innate immune response to luminal bacteria and the development of colitis. TLR4-/- and MyD88-/- mice and littermate controls were given 2.5% dextran sodium sulfate (DSS) for 5 or 7 days followed by a 7-day recovery. Colitis was assessed by weight loss, rectal bleeding, and histopathology. Immunostaining was performed for macrophage markers, chemokine expression, and cell proliferation markers. DSS treatment of TLR4-/- mice was associated with striking reduction in acute inflammatory cells compared with wild-type mice despite similar degrees of epithelial injury. TLR4-/- mice experienced earlier and more severe bleeding than control mice. Similar results were seen with MyD88-/- mice, suggesting that this is the dominant downstream pathway. Mesenteric lymph nodes from TLR4-/- and MyD88-/- mice more frequently grew gram-negative bacteria. Altered neutrophil recruitment was due to diminished macrophage inflammatory protein-2 expression by lamina propria macrophages in TLR4-/- and MyD88-/- mice. The similarity in crypt epithelial damage between TLR4-/- or MyD88-/- and wild-type mice was seen despite decreased epithelial proliferation in knockout mice. TLR4 through the adapter molecule MyD88 is important in intestinal response to injury and in limiting bacterial translocation. Despite the diversity of luminal bacteria, other TLRs do not substitute for the role of TLR4 in this acute colitis model. A defective innate immune response may result in diminished bacterial clearance and ultimately dysregulated response to normal flora. PMID:15826931

  17. What are the effects of proton pump inhibitors on the small intestine?

    PubMed Central

    Fujimori, Shunji

    2015-01-01

    Generally, proton-pump inhibitors (PPIs) have great benefit for patients with acid related disease with less frequently occurring side effects. According to a recent report, PPIs provoke dysbiosis of the small intestinal bacterial flora, exacerbating nonsteroidal anti-inflammatory drug-induced small intestinal injury. Several meta-analyses and systematic reviews have reported that patients treated with PPIs, as well as post-gastrectomy patients, have a higher frequency of small intestinal bacterial overgrowth (SIBO) compared to patients who lack the aforementioned conditions. Furthermore, there is insufficient evidence that these conditions induce Clostridium difficile infection. At this time, PPI-induced dysbiosis is considered a type of SIBO. It now seems likely that intestinal bacterial flora influence many diseases, such as inflammatory bowel disease, diabetes mellitus, obesity, non-alcoholic fatty liver disease, and autoimmune diseases. When attempting to control intestinal bacterial flora with probiotics, prebiotics, and fecal microbiota transplantation, etc., the influence of acid suppression therapy, especially PPIs, should not be overlooked. PMID:26078557

  18. Comparison of the 1-gram (/sup 14/C)xylose, 10-gram lactulose-H/sub 2/, and 80-gram glucose-H/sub 2/ breath tests in patients with small intestine bacterial overgrowth

    SciTech Connect

    King, C.E.; Toskes, P.P.

    1986-12-01

    The sensitivity of three breath tests (1-g (/sup 14/C)xylose, 10-g lactulose-H/sub 2/, and 80-g glucose-H/sub 2/) was studied in 20 subjects with culture-documented small intestine bacterial overgrowth. Elevated breath /sup 14/CO2 levels were seen within 30 min of (/sup 14/C)xylose administration in 19 of 20 subjects with bacterial overgrowth and 0 of 10 controls. In contrast, H/sub 2/ breath tests demonstrated uninterpretable tests (absence of H/sub 2/-generating bacteria) in 2 of 20 subjects with bacterial overgrowth and 1 of 10 controls and nondiagnostic increases in H/sub 2/ production in 3 of 18 glucose-H/sub 2/ and 7 of 18 lactulose-H/sub 2/ breath tests in subjects with bacterial overgrowth. These findings demonstrate continued excellent reliability of the 1-g (/sup 14/C)xylose breath test as a diagnostic test for bacterial overgrowth, indicate inadequate sensitivity of H/sub 2/ breath tests in detecting bacterial overgrowth, and suggest the need for evaluation of a /sup 13/CO/sub 2/ breath test having the same characteristics as the (/sup 14/C)xylose test (avidly absorbed substrate having minimal contact with the colonic flora) for nonradioactive breath detection of bacterial overgrowth in children and reproductive-age women.

  19. Dendritic cells are early cellular targets of Listeria monocytogenes after intestinal delivery and are involved in bacterial spread in the host.

    PubMed

    Pron, B; Boumaila, C; Jaubert, F; Berche, P; Milon, G; Geissmann, F; Gaillard, J L

    2001-05-01

    We studied the sequence of cellular events leading to the dissemination of Listeria monocytogenes from the gut to draining mesenteric lymph nodes (MLNs) by confocal microscopy of immunostained tissue sections from a rat ligated ileal loop system. OX-62-positive cells beneath the epithelial lining of Peyer's patches (PPs) were the first Listeria targets identified after intestinal inoculation. These cells had other features typical of dendritic cells (DCs): they were large, pleiomorphic and major histocompatibility complex class II(hi). Listeria were detected by microscopy in draining MLNs as early as 6 h after inoculation. Some 80-90% of bacteria were located in the deep paracortical regions, and 100% of the bacteria were present in OX-62-positive cells. Most infected cells contained more than five bacteria each, suggesting that they had arrived already loaded with bacteria. At later stages, the bacteria in these areas were mostly present in ED1-positive mononuclear phagocytes. These cells were also infected by an actA mutant defective in cell-to-cell spreading. This suggests that Listeria are transported by DCs from PPs to the deep paracortical regions of draining MLNs and are then transmitted to other cell populations by mechanisms independent of ActA. Another pathway of dissemination to MLNs was identified, probably involving free Listeria and leading to the infection of ED3-positive mononuclear phagocytes in the subcapsular sinus and adjacent paracortical areas. This study provides evidence that DCs are major cellular targets of L. monocytogenes in PPs and that DCs may be involved in the early dissemination of this pathogen. DCs were not sites of active bacterial replication, making these cells ideal vectors of infection. PMID:11298655

  20. Alcohols Effect on Host Defense

    PubMed Central

    Szabo, Gyongyi; Saha, Banishree

    2015-01-01

    Alcohol affects many organs, including the immune system, with even moderate amounts of alcohol influencing immune responses. Although alcohol can alter the actions of all cell populations involved in the innate and adaptive immune responses, the effect in many cases is a subclinical immunosuppression that becomes clinically relevant only after a secondary insult (e.g., bacterial or viral infection or other tissue damage). Alcohols specific effects on the innate immune system depend on the pattern of alcohol exposure, with acute alcohol inhibiting and chronic alcohol accelerating inflammatory responses. The proinflammatory effects of chronic alcohol play a major role in the pathogenesis of alcoholic liver disease and pancreatitis, but also affect numerous other organs and tissues. In addition to promoting proinflammatory immune responses, alcohol also impairs anti-inflammatory cytokines. Chronic alcohol exposure also interferes with the normal functioning of all aspects of the adaptive immune response, including both cell-mediated and humoral responses. All of these effects enhance the susceptibility of chronic alcoholics to viral and bacterial infections and to sterile inflammation. PMID:26695755

  1. Intestinal Cancer

    MedlinePLUS

    ... connects your stomach to your large intestine. Intestinal cancer is rare, but eating a high-fat diet ... increase your risk. Possible signs of small intestine cancer include Abdominal pain Weight loss for no reason ...

  2. Intestinal absorption, liver uptake, and excretion of /sup 3/H-folic acid in folic acid-deficient, alcohol-consuming nonhuman primates

    SciTech Connect

    Blocker, D.E.; Thenen, S.W.

    1987-09-01

    Nonhuman primates fed folic acid-deficient diets +/- 30% kcal ethanol were used to determine alcohol effects on megaloblastic anemia development and folate bioavailability. Lower hemoglobin (Hb) and red blood cell (RBC) counts and higher mean corpuscular volume (MCV) occurred after 13 wk in alcohol-fed monkeys, later in controls. Plasma, RBC, and liver folate declined and urinary formiminoglutamic acid (FIGLU) was elevated in both groups with FIGLU increasing more among alcohol-fed monkeys at 38 wk. After 40 wk, the bioavailability of oral /sup 3/H-folic acid was investigated and showed increased fecal and reduced urinary tritium excretion in alcohol-fed monkeys compared with controls while plasma uptake and liver and whole body tritium retention were similar in both groups. These observations demonstrate that chronic alcohol consumption impairs folate coenzymes, accelerates appearance of hematologic indices of megaloblastic anemia, and causes possible malabsorption of enterohepatically circulated folates in folate deficiency even when other essential nutrients are provided.

  3. Identification of an intestine-specific promoter and inducible expression of bacterial α-galactosidase in mammalian cells by a lac operon system

    PubMed Central

    2012-01-01

    Background α-galactosidase has been widely used in animal husbandry to reduce anti-nutritional factors (such as α-galactoside) in feed. Intestine-specific and substrate inducible expression of α-galactosidase would be highly beneficial for transgenic animal production. Methods To achieve the intestine-specific and substrate inducible expression of α-galactosidase, we first identified intestine-specific promoters by comparing the transcriptional activity and tissue specificity of four intestine-specific promoters from human intestinal fatty acid binding protein, rat intestinal fatty acid binding protein, human mucin-2 and human lysozyme. We made two chimeric constructs combining the promoter and enhancer of human mucin-2, rat intestinal trefoil factor and human sucrase-isomaltase. Then a modified lac operon system was constructed to investigate the induction of α-galactosidase expression and enzyme activity by isopropyl β-D-1-thiogalactopyranoside (IPTG) and an α-galactosidase substrate, α-lactose. We declared that the research carried out on human (Zhai Yafeng) was in compliance with the Helsinki Declaration, and experimental research on animals also followed internationally recognized guidelines. Results The activity of the human mucin-2 promoter was about 2 to 3 times higher than that of other intestine-specific promoters. In the lac operon system, the repressor significantly decreased (P < 0.05) luciferase activity by approximately 6.5-fold and reduced the percentage of cells expressing green fluorescent protein (GFP) by approximately 2-fold. In addition, the expression level of α-galactosidase mRNA was decreased by 6-fold and α-galactosidase activity was reduced by 8-fold. In line with our expectations, IPTG and α-lactose supplementation reversed (P < 0.05) the inhibition and produced a 5-fold increase of luciferase activity, an 11-fold enhancement in the percentage of cells with GFP expression and an increase in α-galactosidase mRNA abundance (by about 5-fold) and α-galactosidase activity (by about 7-fold). Conclusions We have successfully constructed a high specificity inducible lac operon system in an intestine-derived cell line, which could be of great value for gene therapy applications and transgenic animal production. PMID:23111091

  4. Predisposing factors for positive D-Xylose breath test for evaluation of small intestinal bacterial overgrowth: A retrospective study of 932 patients

    PubMed Central

    Schatz, Richard A; Zhang, Qing; Lodhia, Nilesh; Shuster, Jonathan; Toskes, Phillip P; Moshiree, Baharak

    2015-01-01

    AIM: To investigate, in the largest cohort to date, patient characteristics and associated risk factors for developing small intestinal bacterial overgrowth (SIBO) using the D-Xylose breath test (XBT). METHODS: We performed a retrospective cross-sectional study to analyze patient characteristics who underwent the XBT for evaluation of SIBO. Diagnostic testing with the XBT was performed based on a clinical suspicion for SIBO in patients with symptoms of bloating, abdominal pain, abdominal distension, weight loss, diarrhea, and/or constipation. Consecutive electronic medical records of 932 patients who completed the XBT at the University of Florida between 2005 and 2009 were reviewed. A two-way Analysis of Variance (ANOVA) was used to test for several associations including age, gender, and body mass index (BMI) with a +XBT. A two-way ANOVA was also performed to control for the differences and interaction with age and between genders. A similar analysis was repeated for BMI. Associations between medical conditions and prior surgical histories were conducted using the Mantel-Haenszel method for 2 by 2 contingency tables, stratified for gender. Reported odds ratio estimates reflect the odds of the prevalence of a condition within the +XBT group to that of the -XBT group. P values of less than 0.05 (two-sided) were considered statistically significant. RESULTS: In the 932 consecutive eligible subjects studied, 513 had a positive XBT. A positive association was found between female gender and a positive XBT (P = 0.0025), and females with a positive test were, on average, greater than 5 years older than those with a negative test (P = 0.024). The mean BMI of positive XBT subjects was normal (24.5) and significantly lower than the subjects with a negative XBT (29.5) (P = 0.0050). A positive XBT was associated with gastroesophageal reflux disease (GERD) (OR = 1.35; 95%CI: 1.02-1.80, P = 0.04), peptic ulcer disease (PUD) (OR = 2.61; 95%CI: 1.48-4.59, P < 0.01), gastroparesis (GP) (OR = 2.04; 95%CI: 1.21-3.41, P < 0.01) and steroid use (OR = 1.35; 95%CI: 1.02-1.80, P = 0.01). Irritable bowel syndrome, independent proton-pump inhibitor (PPI) usage, or previous abdominal surgery was not significantly associated with a positive XBT. No single subdivision by gender or PPI use was associated with a significant difference in the odds ratios between any of the subsets. CONCLUSION: Female gender, lower BMI, steroid use, PUD, GERD (independent of PPI use), and GP were more prevalent in patients with SIBO, determined by a positive XBT. Increasing age was associated with SIBO in females, but not in males. PMID:25914466

  5. Leukocyte-subset counts in idiopathic parkinsonism provide clues to a pathogenic pathway involving small intestinal bacterial overgrowth. A surveillance study

    PubMed Central

    2012-01-01

    Background Following Helicobacter pylori eradication in idiopathic parkinsonism (IP), hypokinesia improved but flexor-rigidity increased. Small intestinal bacterial-overgrowth (SIBO) is a candidate driver of the rigidity: hydrogen-breath-test-positivity is common in IP and case histories suggest that Helicobacter keeps SIBO at bay. Methods In a surveillance study, we explore relationships of IP-facets to peripheral immune/inflammatory-activation, in light of presence/absence of Helicobacter infection (urea-breath- and/or stool-antigen-test: positivity confirmed by gastric-biopsy) and hydrogen-breath-test status for SIBO (positivity: >20 ppm increment, 2 consecutive 15-min readings, within 2h of 25G lactulose). We question whether any relationships found between facets and blood leukocyte subset counts stand in patients free from anti-parkinsonian drugs, and are robust enough to defy fluctuations in performance consequent on short t therapy. Results Of 51 IP-probands, 36 had current or past Helicobacter infection on entry, 25 having undergone successful eradication (median 3.4 years before). Thirty-four were hydrogen-breath-test-positive initially, 42 at sometime (343 tests) during surveillance (2.8 years). Hydrogen-breath-test-positivity was associated inversely with Helicobacter-positivity (OR 0.20 (95% CI 0.04, 0.99), p<0.05). In 38 patients (untreated (17) or on stable long-t IP-medication), the higher the natural-killer count, the shorter stride, slower gait and greater flexor-rigidity (by mean 49 (14, 85) mm, 54 (3, 104) mm.s-1, 89 (2, 177) Nm.10-3, per 100 cells.?l-1 increment, p=0.007, 0.04 & 0.04 respectively, adjusted for patient characteristics). T-helper count was inversely associated with flexor-rigidity before (p=0.01) and after adjustment for natural-killer count (-36(-63, -10) Nm.10-3 per 100 cells.?l-1, p=0.007). Neutrophil count was inversely associated with tremor (visual analogue scale, p=0.01). Effect-sizes were independent of IP-medication, and not masked by including 13 patients receiving levodopa (except natural-killer count on flexor-rigidity). Cellular associations held after allowing for potentially confounding effect of hydrogen-breath-test or Helicobacter status. Moreover, additional reduction in stride and speed (68 (24, 112) mm & 103 (38, 168) mm.s-1, each p=0.002) was seen with Helicobacter-positivity. Hydrogen-breath-test-positivity, itself, was associated with higher natural-killer and T-helper counts, lower neutrophils (p=0.005, 0.02 & 0.008). Conclusion We propose a rigidity-associated subordinate pathway, flagged by a higher natural-killer count, tempered by a higher T-helper, against which Helicobacter protects by keeping SIBO at bay. PMID:23083400

  6. Intestinal failure: Pathophysiological elements and clinical diseases

    PubMed Central

    Ding, Lian-An; Li, Jie-Shou

    2004-01-01

    There are two main functions of gastrointestinal tract, digestion and absorption, and barrier function. The latter has an important defensive effect, which keeps the body away from the invading and damaging of bacteria and endotoxin. It maintains the systemic homeostasis. Intestinal dysfunction would happen when body suffers from diseases or harmful stimulations. The lesser dysfunction of GI tract manifests only disorder of digestion and absorption, whereas the more serious intestinal disorders would harm the intestinal protective mechanism, or intestinal barrier function, and bacterial/endotoxin translocation, of intestinal failure (IF) would ensue. This review disscussed the theory of the intestinal failure, aiming at attracting recognition and valuable comments by clinicians. PMID:15052668

  7. Gut microbial status induced by antibiotic growth promoter alters the prebiotic effects of dietary DVAQUA® on Aeromonas hydrophila-infected tilapia: production, intestinal bacterial community and non-specific immunity.

    PubMed

    Zhou, Zhigang; He, Suxu; Liu, Yuchun; Cao, Yanan; Meng, Kun; Yao, Bin; Ringø, Einar; Yoon, Ilkyu

    2011-05-01

    The purpose of the present study was to investigate whether dietary antibiotic-induced changes in the fish intestinal microbiota altered host physiological responses to the infection with Aeromonas hydrophila in hybrid tilapia (Oreochromis niloticus ♀ × O. aureus ♂). After an 8-week induction period with an antibiotic-supplemented or antibiotic-non-supplemented diet, 160 hybrid tilapias in 16 tanks were each injected with phosphate buffered saline (PBS) or A. hydrophila at a dose of one-half of the LD(50). Then, all of the diets were changed to a prebiotic-supplemented one for the sequential 8-week response period. Parameters including production, gut microbial diversity and count, and non-specific immunity were determined at the end of the response period. Our results showed that A. hydrophila infection had no effects on the growth and diet conversion of tilapia, but it caused the decrease of the gut bacterial count, the number of visual bands, and the Shannon diversity and equitability indexes of gut bacteria in antibiotic-non-supplemented fish based on PCR-DGGE fingerprints. Infection with A. hydrophila reduced the gut bacterial evenness (lower Shannon equitability index), and slightly improved the gut bacterial richness (more visual bands) in antibiotic-supplemented tilapia. In addition, A. hydrophila infection affected non-specific immunity such as serum lysozyme activity and serum alternative complement pathway (C3 and C4) activities regardless of hybrid tilapia fed antibiotic-supplemented diets. These changes varied based on the intestinal microbial status of the fish before infection with A. hydrophila. PMID:21146333

  8. IL-22 modulates gut epithelial and immune barrier functions following acute alcohol exposure and burn injury

    PubMed Central

    Rendon, Juan L.; Li, Xiaoling; Akhtar, Suhail; Choudhry, Mashkoor A.

    2012-01-01

    Interleukin (IL)–22 maintains gut epithelial integrity and expression of antimicrobial peptides (AMPs) Reg3β and Reg3γ. Our laboratory has shown that acute alcohol/ethanol (EtOH) exposure prior to burn injury results in increased gut permeability, intestinal T cell suppression and enhanced bacterial translocation. Herein, we determined the effect of combined EtOH intoxication and burn injury on intestinal levels of IL-22 as well as Reg3β and Reg3γ expression. We further examined whether in vivo restitution of IL-22 restores gut permeability, Reg3β and Reg3γ levels, and bacterial load (e.g. gut bacterial growth) within the intestine following EtOH and burn injury. Male mice, ~25g, were gavaged with EtOH (2.9 mg/kg) prior to receiving a ~12.5% total body surface area full thickness burn. Mice were immediately treated with saline control or IL-22 (1 mg/kg) by i.p. injection. One day post injury, there was a significant decrease in intestinal IL-22, Reg3β and Reg3γ expression along with an increase in intestinal permeability and gut bacterial load following EtOH combined with burn injury, as compared to sham injury. Treatment with IL-22 normalized Reg3β and Reg3γ expression, and attenuated the increase in intestinal permeability following EtOH and burn injury. Qualitatively, IL-22 treatment reduced the bacterial load in nearly half of mice receiving EtOH combined with burn injury. Our data indicate that IL-22 maintains gut epithelial and immune barrier integrity following EtOH and burn injury; thus, the IL-22/AMP pathway may provide a therapeutic target for the treatment of patients who sustain burn injury under the influence of EtOH. PMID:23143063

  9. Elemental sulfur: toxicity in vivo and in vitro to bacterial luciferase, in vitro yeast alcohol dehydrogenase, and bovine liver catalase.

    PubMed

    Cetkauskaite, Anolda; Pessala, Piia; Sdergren, Anders

    2004-08-01

    The aim of this research was to analyze the effects and the modes of action of elemental sulfur (S(0)) in bioluminescence and respiration of Vibrio fischeri cells and the enzymes crude luciferase, pure catalase, and alcohol dehydrogenase (ADH). Metallic copper removed sulfur and reduced the toxicity of acetone extracts of sediment samples analyzed in the bioluminescence test. The sulfur inhibition of cell bioluminescence was noncompetitive with decanal, the luciferase substrate; reversible, with maximum toxicity after 15 min (EC(50) = 11.8 microg/L); and almost totally recovered after 2 h. In vitro preincubation of crude luciferase extract with sulfur (0.28 ppm) weakly inhibited bioluminescence at 5 min, but at 30 min the inhibition reached 60%. Increasing the concentration of sulfur in the parts per million concentration range in vitro decreased bioluminescence, which was not constant, but depended on exposure time, and no dead-end/total inhibition was observed. The redox state of enzymes in the in vitro system significantly affected inhibition. Hydrogen peroxide restored fully and the reducing agent dithiothreitol, itself toxic, restored only partially luciferase activity in the presence of sulfur. Sulfur (5.5 ppm) slightly inhibited ADH and catalase, and dithiothreitol enhanced sulfur inhibition. High sulfur concentrations (2.2 ppm) inhibited the bioluminescence and enhanced the respiration rate of V. fischeri cells. Elemental sulfur data were interpreted to show that sulfur acted on at least a few V. fischeri cell sites: reversibly modifying luciferase at sites sensitive to/protected by oxidative and reducing agents and by affecting electron transport processes, resulting in enhanced oxygen consumption. Sulfur together with an enzyme reducing agent inhibited the oxidoreductive enzymes ADH and catalase, which have --SH groups, metal ion cofactors, or heme, respectively, in their active centers. PMID:15269910

  10. Intestinal Obstruction

    MedlinePLUS

    ... Abscesses Abdominal Wall Hernias Inguinal Hernia Acute Mesenteric Ischemia Appendicitis Ileus Intestinal Obstruction Ischemic Colitis Perforation of ... Abscesses Abdominal Wall Hernias Inguinal Hernia Acute Mesenteric Ischemia Appendicitis Ileus Intestinal Obstruction Ischemic Colitis Perforation of ...

  11. Intestinal Malrotation

    MedlinePLUS

    ... the intestines don't position themselves normally during fetal development and aren't attached inside properly as a result. The exact reason this occurs is unknown. When a fetus develops in the womb, the intestines start out ...

  12. Intestinal Obstruction

    MedlinePLUS

    ... Acute Mesenteric Ischemia Appendicitis Ileus Intestinal Obstruction Ischemic Colitis Perforation of the Digestive Tract An obstruction of ... Acute Mesenteric Ischemia Appendicitis Ileus Intestinal Obstruction Ischemic Colitis Perforation of the Digestive Tract NOTE: This is ...

  13. Identification of predominant human and animal anaerobic intestinal bacterial species by terminal restriction fragment patterns (TRFPs): a rapid, PCR-based method.

    PubMed

    Khan, A A; Nawaz, M S; Robertson, L; Khan, S A; Cerniglia, C E

    2001-12-01

    Identification of predominant human and animal intestinal tract anaerobes by conventional methods is cumbersome, time-consuming and less sensitive as compared to molecular methods. We have developed a molecular technique to identify most of the abundant intestinal microflora by polyermase chain reaction (PCR) amplification of a 16S rRNA gene fragment using a pair of universal PCR primers. The forward PCR primer was labelled with 6-carboxyfluorescein amino hexy (6-FAM) fluorescent dye to detect the terminal fragment of the PCR products after digestion with restriction enzymes. The PCR products were purified and digested with restriction enzymes and were analysed by capillary electrophoresis using an automated DNA sequencer. The data was analysed with GeneScan software 2.1. Eleven bacteria (Eubacterium biforme, E. limosum, Peptostreptococcus productus, Lactobacillus acidophilus, Bacteroides thetaiotaomicron, B. vulgatus, B. distasonis, Clostridium clostridiiforme, C. leptum, C. perfringens and Escherichia coli) that are predominant in human and animal intestinal tract were successfully identified by this rapid molecular technique. This protocol is rapid, accurate, sensitive and capable of identifying multiple organisms in a single sample. PMID:11851378

  14. Bovine Immunoglobulin/Protein Isolate Binds Pro-Inflammatory Bacterial Compounds and Prevents Immune Activation in an Intestinal Co-Culture Model

    PubMed Central

    Detzel, Christopher J.; Horgan, Alan; Henderson, Abigail L.; Petschow, Bryon W.; Warner, Christopher D.; Maas, Kenneth J.; Weaver, Eric M.

    2015-01-01

    Intestinal barrier dysfunction is associated with chronic gastrointestinal tract inflammation and diseases such as IBD and IBS. Serum-derived bovine immunoglobulin/protein isolate (SBI) is a specially formulated protein preparation (>90%) for oral administration. The composition of SBI is greater than 60% immunoglobulin including contributions from IgG, IgA, and IgM. Immunoglobulin within the lumen of the gut has been recognized to have anti-inflammatory properties and is involved in maintaining gut homeostasis. The binding of common intestinal antigens (LPS and Lipid A) and the ligand Pam3CSK4, by IgG, IgA, and IgM in SBI was shown using a modified ELISA technique. Each of these antigens stimulated IL-8 and TNF-? cytokine production by THP-1 monocytes. Immune exclusion occurred as SBI (?50 mg/mL) bound free antigen in a dose dependent manner that inhibited cytokine production by THP-1 monocytes in response to 10 ng/mL LPS or 200 ng/mL Lipid A. Conversely, Pam3CSK4 stimulation of THP-1 monocytes was unaffected by SBI/antigen binding. A co-culture model of the intestinal epithelium consisted of a C2BBe1 monolayer separating an apical compartment from a basal compartment containing THP-1 monocytes. The C2BBe1 monolayer was permeabilized with dimethyl palmitoyl ammonio propanesulfonate (PPS) to simulate a damaged epithelial barrier. Results indicate that Pam3CSK4 was able to translocate across the PPS-damaged C2BBe1 monolayer. However, binding of Pam3CSK4 by immunoglobulins in SBI prevented Pam3CSK4 translocation across the damaged C2BBe1 barrier. These results demonstrated steric exclusion of antigen by SBI which prevented apical to basal translocation of antigen due to changes in the physical properties of Pam3CSK4, most likely as a result of immunoglobulin binding. This study demonstrates that immunoglobulins in SBI can reduce antigen-associated inflammation through immune and steric exclusion mechanisms and furthers the mechanistic understanding of how SBI might improve immune status and reduce inflammation in various intestinal disease states. PMID:25830826

  15. Hepatic and fecal metabolomic analysis of the effects of Lactobacillus rhamnosus GG on alcoholic fatty liver disease in mice.

    PubMed

    Shi, Xue; Wei, Xiaoli; Yin, Xinmin; Wang, Yuhua; Zhang, Min; Zhao, Cuiqing; Zhao, Haiyang; McClain, Craig J; Feng, Wenke; Zhang, Xiang

    2015-02-01

    The interactions among the gut, liver, and immune system play an important role in liver disease. Probiotics have been used for the treatment and prevention of many pathological conditions, including liver diseases. Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOF MS) was used herein, in conjunction with chemometric data analysis, to identify metabolites significantly affected by probiotics in mice fed with or without alcohol. The metabolomics analysis indicates that the levels of fatty acids increased in mouse liver and decreased in mouse feces when mice were chronically exposed to alcohol. Supplementing the alcohol-fed mice with culture supernatant from Lactobacillus rhamnosus GG (LGGs) normalized these alcohol-induced abnormalities and prevented alcoholic liver disease (ALD). These results agree well with previous studies. In addition to diet-derived long chain fatty acids (LCFAs), LGGs may positively modify the gut's bacterial population to stimulate LCFA synthesis, which has been shown to enhance intestinal barrier function, reduce endotoxemia, and prevent ALD. We also found that several amino acids, including l-isoleucine, a branched chain amino acid, were downregulated in the liver and fecal samples from animals exposed to alcohol and that the levels of these amino acids were corrected by LGGs. These results demonstrate that LGGs alleviates alcohol-induced fatty liver by mechanisms involving increasing intestinal and decreasing hepatic fatty acids and increasing amino acid concentration. PMID:25592873

  16. Ascorbic acid suppresses endotoxemia and NF-κB signaling cascade in alcoholic liver fibrosis in guinea pigs: A mechanistic approach

    SciTech Connect

    Abhilash, P.A.; Harikrishnan, R.; Indira, M.

    2014-01-15

    Alcohol consumption increases the small intestinal bacterial overgrowth (SIBO) and intestinal permeability of endotoxin. The endotoxin mediated inflammatory signaling plays a major role in alcoholic liver fibrosis. We evaluated the effect of ascorbic acid (AA), silymarin and alcohol abstention on the alcohol induced endotoxemia and NF-κB activation cascade pathway in guinea pigs (Cavia porcellus). Guinea pigs were administered ethanol at a daily dose of 4 g/kg b.wt for 90 days. After 90 days, ethanol administration was stopped. The ethanol treated animals were divided into abstention, silymarin (250 mg/kg b.wt) and AA (250 mg/kg b.wt) supplemented groups and maintained for 30 days. The SIBO, intestinal permeability and endotoxin were significantly increased in the ethanol group. The mRNA expressions of intestinal proteins claudin, occludin and zona occludens-1 were significantly decreased in ethanol group. The mRNA levels of inflammatory receptors, activity of IKKβ and the protein expressions of phospho-IκBα, NF-κB, TNF-α, TGF-β{sub 1} and IL-6 were also altered in ethanol group. The expressions of fibrosis markers α-SMA, α{sub 1} (I) collagen and sirius red staining in the liver revealed the induction of fibrosis. But the supplementation of AA could induce greater reduction of ethanol induced SIBO, intestinal barrier defects, NF-κB activation and liver fibrosis than silymarin. The possible mechanism may be the inhibitory effect of AA on SIBO, intestinal barrier defect and IKKβ, which decreased the activation of NF-κB and synthesis of cytokines. This might have led to suppression of HSCs activation and liver fibrosis. - Highlights: • Alcohol increases intestinal bacterial overgrowth and permeability of endotoxin. • Endotoxin mediated inflammation plays a major role in alcoholic liver fibrosis. • Ascorbic acid reduces endotoxemia, NF-κB activation and proinflammatory cytokines. • AA's action is by inhibition of SIBO, IKKβ and alteration of intestinal permeability. • This might have led to suppression of HSCs activation and liver fibrosis.

  17. Intestinal Parasitoses.

    ERIC Educational Resources Information Center

    Lagardere, Bernard; Dumburgier, Elisabeth

    1994-01-01

    Intestinal parasites have become a serious public health problem in tropical countries because of the climate and the difficulty of achieving efficient hygiene. The objectives of this journal issue are to increase awareness of the individual and collective repercussions of intestinal parasites, describe the current conditions of contamination and…

  18. Docosahexaenoic acid and non-alcoholic fatty liver disease in obese children: a novel approach?

    PubMed

    Verduci, Elvira; Lassandro, Carlotta; Radaelli, Giovanni; Soldati, Laura

    2015-01-01

    Non-alcoholic fatty liver disease represents the most common chronic liver disease in obese children of industrialized countries. Nowadays the first line of treatment of pediatric non-alcoholic fatty liver disease is based on dietary and lifestyle intervention; however compliance to these interventions is very difficult to maintain in long term period. This editorial discusses about docosahexaenoic acid treatment as possible novel approach for non-alcoholic fatty liver disease in obese children. Docosahexaenoic acid may modulate the inflammatory response, improve insulin sensitivity and could be effective in enhancing intestinal barrier integrity, essential to protect a healthy gut-liver axis. Indeed alteration of gut microbiota composition and increased intestinal permeability may rise the exposure of liver to gut-derived bacterial products, causing activation of signalling pathways implicated in liver inflammation and fibrogenesis. This mechanism has been observed in vitro and animal models of non-alcoholic fatty liver disease but also in a clinical study in adults. While evidence suggests that n-3 long-chain polyunsaturated fatty acids supplementation may decrease liver fat in adults, in pediatric population only a study examined this topic. In obese children with non-alcoholic fatty liver disease well designed randomized controlled trials are needed to better clarify the possible efficacy of docosahexaenoic acid treatment, and underlying mechanisms, to identify the optimal required dose and to evaluate if the docosahexaenoic acid effect is limited to the duration of the treatment or it may continue after the end of treatment. PMID:25889212

  19. Environmental contaminants and intestinal function

    PubMed Central

    Banwell, John G.

    1979-01-01

    The environmental contaminants which have their major effects on the small intestine may be classified into five major categories: (1) bacterial, viral, and parasitic agents, (2) food and plant substances, (3) environmental and industrial products, (4) pharmaceutical agents, and (5) toxic agents whose metabolic effects are dependent on interreaction with intestinal bacterial flora, other physical agents (detergents), human intestinal enzyme deficiency states, and the nutritional state of the host. Bacterial, viral, and parasitic agents are the most important of all such agents, being responsible for significant mortality and morbidity in association with diarrheal diseases of adults and children. Several plant substances ingested as foods have unique effects on the small bowel as well as from contaminants such as fungi on poorly preserved grains and cereals. Environmental and industrial products, in spite of their widespread prevalence in industrial societies as contaminants, are less important unless unexpectedly intense exposure occurs to the intestinal tract. Pharmaceutical agents of several types interreact with the small bowel mucosa causing impairment of transport processes for fluid and electrolytes, amino acid, lipid and sugars as well as vitamins. These interreactions may be dependent on bacterial metabolic activity, association with detergents, mucosal enzyme deficiency state (disaccharidases), and the state of nutrition of the subject. PMID:540611

  20. Role of bacterial adherence and the mucus barrier on bacterial translocation: effects of protein malnutrition and endotoxin in rats.

    PubMed Central

    Katayama, M; Xu, D; Specian, R D; Deitch, E A

    1997-01-01

    OBJECTIVE: The purpose of the study was to investigate the potential relations between mucosal bacterial adherence, intestinal mucus and mucin content, and bacterial translocation. SUMMARY BACKGROUND DATA: The attachment of bacteria to mucosal surfaces is the initial event in the pathogenesis of most bacterial infections that originate at mucosal surfaces, such as the gut. The intestinal mucus layer appears to function as a defensive barrier limiting micro-organisms present in the intestinal lumen from colonizing enterocytes. Consequently, studies focusing on the biology of bacterial adherence to the intestinal mucosa likely are to be important in clarifying the pathogenesis of gut origin sepsis. METHODS: To explore the relations between intestinal bacterial adherence, mucus bacterial binding, and bacterial translocation, two models were used. One (protein malnutrition) in which profound alterations in intestinal morphology occurs in the absence of significant translocation and one (endotoxin challenge) in which bacterial translocation occurs and intestinal morphology is relatively normal. RESULTS: Protein malnutrition was not associated with bacterial translocation and measurement of enteroadherent, mucosally associated bacterial population levels documented that the total number of gram-negative enteric bacilli adherent to the ileum and cecum was less in the protein-malnourished rats than in the normally nourished animals (p < 0.01). Furthermore, there was an inverse relation between the duration of protein malnutrition and bacterial adherence to the intestinal mucosa (r = 0.62, p < 0.002). In contrast, after endotoxin challenge, the level of enteroadherent bacteria was increased and bacterial translocation was observed. The binding of Escherichia coli to immobilized ileal mucus in vitro was decreased significantly in protein-malnourished rats, whereas E. coli binding to insoluble ileal mucus was increased in the rats receiving endotoxin. CONCLUSIONS: This study indicates that the adherence of bacteria to the intestinal mucosal surface is an important factor in bacterial translocation, that intestinal mucus modulates bacterial adherence, and that increased levels of mucosally associated bacteria are associated with a loss intestinal barrier function to bacteria. PMID:9060589

  1. Alterations of the gut microbiome and metabolome in alcoholic liver disease

    PubMed Central

    Zhong, Wei; Zhou, Zhanxiang

    2014-01-01

    Alcohol consumption is one of the leading causes of liver diseases and liver-related death worldwide. The gut is a habitat for billions of microorganisms which promotes metabolism and digestion in their symbiotic relationship with the host. Alterations of gut microbiome by alcohol consumption are referred to bacterial overgrowth, release of bacteria-derived products, and/or changed microbiota equilibrium. Alcohol consumption also perturbs the function of gastrointestinal mucosa and elicits a pathophysiological condition. These adverse effects caused by alcohol may ultimately result in a broad change of gastrointestinal luminal metabolites such as bile acids, short chain fatty acids, and branched chain amino acids. Gut microbiota alterations, metabolic changes produced in a dysbiotic intestinal environment, and the host factors are all critical contributors to the development and progression of alcoholic liver disease. This review summarizes recent findings of how alcohol-induced alterations of gut microbiota and metabolome, and discusses the mechanistic link between gastrointestinal dyshomeostasis and alcoholic liver injury. PMID:25400995

  2. Alcoholism, Alcohol, and Drugs

    ERIC Educational Resources Information Center

    Rubin, Emanuel; Lieber, Charles S.

    1971-01-01

    Describes research on synergistic effects of alcohol and other drugs, particularly barbiturates. Proposes biochemical mechanisms to explain alcoholics' tolerance of other drugs when sober, and increased sensitivity when drunk. (AL)

  3. Intestinal Malrotation

    MedlinePLUS

    ... scar tissue growth after an abdominal operation, and inflammatory bowel disease (IBD). Malrotation is twisting of the intestines (or ... Spleen and Lymphatic System Vomiting Congenital Heart Defects Inflammatory Bowel Disease Contact Us Print Resources Send to a friend ...

  4. Intestine Transplant

    MedlinePLUS

    ... intestine transplants are performed in conjunction with a liver transplant. During Recovery Postoperative care begins with a team ... Pediatric Living Donation Legal Site Map Contact Espanol © 2016 Transplant Living. A service of the United Network ...

  5. Intestinal obstruction

    MedlinePLUS

    ... and rectum. In: Townsend CM, Beauchamp RD, Evers BM, Mattox KL, eds. Sabiston Textbook of Surgery . 19th ... MO: WB Saunders; 2012:chap 52. McKenzie S, Evers BM. Small intestine. In: Townsend CM, Beauchamp RD, Evers ...

  6. Gut-liver axis and probiotics: Their role in non-alcoholic fatty liver disease

    PubMed Central

    Paolella, Giulia; Mandato, Claudia; Pierri, Luca; Poeta, Marco; Di Stasi, Martina; Vajro, Pietro

    2014-01-01

    The incidence of obesity and its related conditions, including non-alcoholic fatty liver disease (NAFLD), has dramatically increased in all age groups worldwide. Given the health consequences of these conditions, and the subsequent economic burden on healthcare systems, their prevention and treatment have become major priorities. Because standard dietary and lifestyle changes and pathogenically-oriented therapies (e.g., antioxidants, oral hypoglycemic agents, and lipid-lowering agents) often fail due to poor compliance and/or lack of efficacy, novel approaches directed toward other pathomechanisms are needed. Here we present several lines of evidence indicating that, by increasing energy extraction in some dysbiosis conditions or small intestinal bacterial overgrowth, specific gut microbiota and/or a “low bacterial richness” may play a role in obesity, metabolic syndrome, and fatty liver. Under conditions involving a damaged intestinal barrier (“leaky gut”), the gut-liver axis may enhance the natural interactions between intestinal bacteria/bacterial products and hepatic receptors (e.g., toll-like receptors), thus promoting the following cascade of events: oxidative stress, insulin-resistance, hepatic inflammation, and fibrosis. We also discuss the possible modulation of gut microbiota by probiotics, as attempted in NAFLD animal model studies and in several pilot pediatric and adult human studies. Globally, this approach appears to be a promising and innovative add-on therapeutic tool for NAFLD in the context of multi-target therapy. PMID:25400436

  7. Gut-liver axis and probiotics: their role in non-alcoholic fatty liver disease.

    PubMed

    Paolella, Giulia; Mandato, Claudia; Pierri, Luca; Poeta, Marco; Di Stasi, Martina; Vajro, Pietro

    2014-11-14

    The incidence of obesity and its related conditions, including non-alcoholic fatty liver disease (NAFLD), has dramatically increased in all age groups worldwide. Given the health consequences of these conditions, and the subsequent economic burden on healthcare systems, their prevention and treatment have become major priorities. Because standard dietary and lifestyle changes and pathogenically-oriented therapies (e.g., antioxidants, oral hypoglycemic agents, and lipid-lowering agents) often fail due to poor compliance and/or lack of efficacy, novel approaches directed toward other pathomechanisms are needed. Here we present several lines of evidence indicating that, by increasing energy extraction in some dysbiosis conditions or small intestinal bacterial overgrowth, specific gut microbiota and/or a "low bacterial richness" may play a role in obesity, metabolic syndrome, and fatty liver. Under conditions involving a damaged intestinal barrier ("leaky gut"), the gut-liver axis may enhance the natural interactions between intestinal bacteria/bacterial products and hepatic receptors (e.g., toll-like receptors), thus promoting the following cascade of events: oxidative stress, insulin-resistance, hepatic inflammation, and fibrosis. We also discuss the possible modulation of gut microbiota by probiotics, as attempted in NAFLD animal model studies and in several pilot pediatric and adult human studies. Globally, this approach appears to be a promising and innovative add-on therapeutic tool for NAFLD in the context of multi-target therapy. PMID:25400436

  8. Small Intestine Disorders

    MedlinePLUS

    ... disease Crohn's disease Infections Intestinal cancer Intestinal obstruction Irritable bowel syndrome Ulcers, such as peptic ulcer Treatment of disorders of the small intestine depends on the cause.

  9. Alcohol Induced Alterations to the Human Fecal VOC Metabolome

    PubMed Central

    Couch, Robin D.; Dailey, Allyson; Zaidi, Fatima; Navarro, Karl; Forsyth, Christopher B.; Mutlu, Ece; Engen, Phillip A.; Keshavarzian, Ali

    2015-01-01

    Studies have shown that excessive alcohol consumption impacts the intestinal microbiota composition, causing disruption of homeostasis (dysbiosis). However, this observed change is not indicative of the dysbiotic intestinal microbiota function that could result in the production of injurious and toxic products. Thus, knowledge of the effects of alcohol on the intestinal microbiota function and their metabolites is warranted, in order to better understand the role of the intestinal microbiota in alcohol associated organ failure. Here, we report the results of a differential metabolomic analysis comparing volatile organic compounds (VOC) detected in the stool of alcoholics and non-alcoholic healthy controls. We performed the analysis with fecal samples collected after passage as well as with samples collected directly from the sigmoid lumen. Regardless of the approach to fecal collection, we found a stool VOC metabolomic signature in alcoholics that is different from healthy controls. The most notable metabolite alterations in the alcoholic samples include: (1) an elevation in the oxidative stress biomarker tetradecane; (2) a decrease in five fatty alcohols with anti-oxidant property; (3) a decrease in the short chain fatty acids propionate and isobutyrate, important in maintaining intestinal epithelial cell health and barrier integrity; (4) a decrease in alcohol consumption natural suppressant caryophyllene; (5) a decrease in natural product and hepatic steatosis attenuator camphene; and (6) decreased dimethyl disulfide and dimethyl trisulfide, microbial products of decomposition. Our results showed that intestinal microbiota function is altered in alcoholics which might promote alcohol associated pathologies. PMID:25751150

  10. Alcohol induced alterations to the human fecal VOC metabolome.

    PubMed

    Couch, Robin D; Dailey, Allyson; Zaidi, Fatima; Navarro, Karl; Forsyth, Christopher B; Mutlu, Ece; Engen, Phillip A; Keshavarzian, Ali

    2015-01-01

    Studies have shown that excessive alcohol consumption impacts the intestinal microbiota composition, causing disruption of homeostasis (dysbiosis). However, this observed change is not indicative of the dysbiotic intestinal microbiota function that could result in the production of injurious and toxic products. Thus, knowledge of the effects of alcohol on the intestinal microbiota function and their metabolites is warranted, in order to better understand the role of the intestinal microbiota in alcohol associated organ failure. Here, we report the results of a differential metabolomic analysis comparing volatile organic compounds (VOC) detected in the stool of alcoholics and non-alcoholic healthy controls. We performed the analysis with fecal samples collected after passage as well as with samples collected directly from the sigmoid lumen. Regardless of the approach to fecal collection, we found a stool VOC metabolomic signature in alcoholics that is different from healthy controls. The most notable metabolite alterations in the alcoholic samples include: (1) an elevation in the oxidative stress biomarker tetradecane; (2) a decrease in five fatty alcohols with anti-oxidant property; (3) a decrease in the short chain fatty acids propionate and isobutyrate, important in maintaining intestinal epithelial cell health and barrier integrity; (4) a decrease in alcohol consumption natural suppressant caryophyllene; (5) a decrease in natural product and hepatic steatosis attenuator camphene; and (6) decreased dimethyl disulfide and dimethyl trisulfide, microbial products of decomposition. Our results showed that intestinal microbiota function is altered in alcoholics which might promote alcohol associated pathologies. PMID:25751150

  11. Bacterial Degradation of tert-Amyl Alcohol Proceeds via Hemiterpene 2-Methyl-3-Buten-2-ol by Employing the Tertiary Alcohol Desaturase Function of the Rieske Nonheme Mononuclear Iron Oxygenase MdpJ

    PubMed Central

    Schuster, Judith; Schäfer, Franziska; Hübler, Nora; Brandt, Anne; Rosell, Mònica; Härtig, Claus; Harms, Hauke; Müller, Roland H.

    2012-01-01

    Tertiary alcohols, such as tert-butyl alcohol (TBA) and tert-amyl alcohol (TAA) and higher homologues, are only slowly degraded microbially. The conversion of TBA seems to proceed via hydroxylation to 2-methylpropan-1,2-diol, which is further oxidized to 2-hydroxyisobutyric acid. By analogy, a branched pathway is expected for the degradation of TAA, as this molecule possesses several potential hydroxylation sites. In Aquincola tertiaricarbonis L108 and Methylibium petroleiphilum PM1, a likely candidate catalyst for hydroxylations is the putative tertiary alcohol monooxygenase MdpJ. However, by comparing metabolite accumulations in wild-type strains of L108 and PM1 and in two mdpJ knockout mutants of strain L108, we could clearly show that MdpJ is not hydroxylating TAA to diols but functions as a desaturase, resulting in the formation of the hemiterpene 2-methyl-3-buten-2-ol. The latter is further processed via the hemiterpenes prenol, prenal, and 3-methylcrotonic acid. Likewise, 3-methyl-3-pentanol is degraded via 3-methyl-1-penten-3-ol. Wild-type strain L108 and mdpJ knockout mutants formed isoamylene and isoprene from TAA and 2-methyl-3-buten-2-ol, respectively. It is likely that this dehydratase activity is catalyzed by a not-yet-characterized enzyme postulated for the isomerization of 2-methyl-3-buten-2-ol and prenol. The vitamin requirements of strain L108 growing on TAA and the occurrence of 3-methylcrotonic acid as a metabolite indicate that TAA and hemiterpene degradation are linked with the catabolic route of the amino acid leucine, including an involvement of the biotin-dependent 3-methylcrotonyl coenzyme A (3-methylcrotonyl-CoA) carboxylase LiuBD. Evolutionary aspects of favored desaturase versus hydroxylation pathways for TAA conversion and the possible role of MdpJ in the degradation of higher tertiary alcohols are discussed. PMID:22194447

  12. Gut microbiota in alcoholic liver disease: Pathogenetic role and therapeutic perspectives

    PubMed Central

    Malaguarnera, Giulia; Giordano, Maria; Nunnari, Giuseppe; Bertino, Gaetano; Malaguarnera, Michele

    2014-01-01

    Alcoholic liver disease (ALD) is the commonest cause of cirrhosis in many Western countries and it has a high rate of morbidity and mortality. The pathogenesis is characterized by complex interactions between metabolic intermediates of alcohol. Bacterial intestinal flora is itself responsible for production of endogenous ethanol through the fermentation of carbohydrates. The intestinal metabolism of alcohol produces a high concentration of toxic acetaldehyde that modifies gut permeability and microbiota equilibrium. Furthermore it causes direct hepatocyte damage. In patients who consume alcohol over a long period, there is a modification of gut microbiota and, in particular, an increment of Gram negative bacteria. This causes endotoxemia and hyperactivation of the immune system. Endotoxin is a constituent of Gram negative bacteria cell walls. Two types of receptors, cluster of differentiation 14 and Toll-like receptors-4, present on Kupffer cells, recognize endotoxins. Several studies have demonstrated the importance of gut-liver axis and new treatments have been studied in recent years to reduce progression of ALD modifying gut microbiota. It has focused attention on antibiotics, prebiotics, probiotics and synbiotics. PMID:25469033

  13. Alcoholism - resources

    MedlinePLUS

    Resources - alcoholism ... The following organizations are good resources for information on alcoholism : Alcoholics Anonymous -- www.aa.org Al-Anon/Alateen -- www.al-anon.org/home National Institute on Alcohol ...

  14. Alcohol Facts

    MedlinePLUS

    ... raquo Alcohol Facts Alcohol Facts Listen Drinks like beer, malt liquor, wine, and hard liquor contain alcohol. ... or gin—has more alcohol in it than beer, malt liquor, or wine. These drink sizes have ...

  15. Alcoholic neuropathy

    MedlinePLUS

    Neuropathy - alcoholic; Alcoholic polyneuropathy ... The exact cause of alcoholic neuropathy is unknown. It likely includes both a direct poisoning of the nerve by the alcohol and the effect of poor nutrition ...

  16. Alcohol Alert: Genetics of Alcoholism

    MedlinePLUS

    ... alcoholism. References 1 Foroud, T., and Phillips, T.J. Assessing the genetic risk for alcohol use disorders. ... 115, 1999. 4 Agrawal, A., and Bierut, L.J. Identifying genetic variation for alcohol dependence. Alcohol Research & ...

  17. Circadian rhythms, alcohol and gut interactions.

    PubMed

    Forsyth, Christopher B; Voigt, Robin M; Burgess, Helen J; Swanson, Garth R; Keshavarzian, Ali

    2015-06-01

    The circadian clock establishes rhythms throughout the body with an approximately 24 hour period that affect expression of hundreds of genes. Epidemiological data reveal chronic circadian misalignment, common in our society, significantly increases the risk for a myriad of diseases, including cardiovascular disease, diabetes, cancer, infertility and gastrointestinal disease. Disruption of intestinal barrier function, also known as gut leakiness, is especially important in alcoholic liver disease (ALD). Several studies have shown that alcohol causes ALD in only a 20-30% subset of alcoholics. Thus, a better understanding is needed of why only a subset of alcoholics develops ALD. Compelling evidence shows that increased gut leakiness to microbial products and especially LPS play a critical role in the pathogenesis of ALD. Clock and other circadian clock genes have been shown to regulate lipid transport, motility and other gut functions. We hypothesized that one possible mechanism for alcohol-induced intestinal hyperpermeability is through disruption of central or peripheral (intestinal) circadian regulation. In support of this hypothesis, our recent data shows that disruption of circadian rhythms makes the gut more susceptible to injury. Our in vitro data show that alcohol stimulates increased Clock and Per2 circadian clock proteins and that siRNA knockdown of these proteins prevents alcohol-induced permeability. We also show that intestinal Cyp2e1-mediated oxidative stress is required for alcohol-induced upregulation of Clock and Per2 and intestinal hyperpermeability. Our mouse model of chronic alcohol feeding shows that circadian disruption through genetics (in Clock(?19) mice) or environmental disruption by weekly 12h phase shifting results in gut leakiness alone and exacerbates alcohol-induced gut leakiness and liver pathology. Our data in human alcoholics show they exhibit abnormal melatonin profiles characteristic of circadian disruption. Taken together our data support circadian mechanisms for alcohol-induced gut leakiness that could provide new therapeutic targets for ALD. PMID:25499101

  18. Existence of a novel enzyme, pyrroloquinoline quinone-dependent polyvinyl alcohol dehydrogenase, in a bacterial symbiont, Pseudomonas sp. strain VM15C.

    PubMed Central

    Shimao, M; Ninomiya, K; Kuno, O; Kato, N; Sakazawa, C

    1986-01-01

    A novel enzyme, pyrroloquinoline quinone (PQQ)-dependent polyvinyl alcohol (PVA) dehydrogenase, was found in and partially purified from the membrane fraction of a PVA-degrading symbiont, Pseudomonas sp. strain VM15C. The enzyme required PQQ for PVA dehydrogenation with phenazine methosulfate, phenazine ethosulfate, and 2,6-dichlorophenolindophenol as electron acceptors and did not show PVA oxidase activity leading to H2O2 formation. The enzyme was active toward low-molecular-weight secondary alcohols rather than primary alcohols. A membrane-bound PVA oxidase was also present in cells of VM15C. Although the purified oxidase showed a substrate specificity similar to that of PQQ-dependent PVA dehydrogenase and about threefold-higher PVA-dehydrogenating activity with phenazine methosulfate or phenazine ethosulfate than PVA oxidase activity with H2O2 formation, it was shown that the enzyme does not contain PQQ as the coenzyme, and PQQ did not affect its activity. Incubation of the membrane fraction of cells with PVA caused a reduction in the cytochrome(s) of the fraction. Images PMID:3513704

  19. Human milk oligosaccharide consumption by intestinal microbiota.

    PubMed

    Marcobal, A; Sonnenburg, J L

    2012-07-01

    Human milk oligosaccharides (HMO) constitute the third most abundant class of molecules in breast milk. Since infants lack the enzymes required for milk glycan digestion, this group of carbohydrates passes undigested to the lower part of the intestinal tract, where they can be consumed by specific members of the infant gut microbiota. We review proposed mechanisms for the depletion and metabolism of HMO by two major bacterial genera within the infant intestinal microbiota, Bifidobacterium and Bacteroides. PMID:22647041

  20. Impact of Intestinal Microbiota on Intestinal Luminal Metabolome

    PubMed Central

    Matsumoto, Mitsuharu; Kibe, Ryoko; Ooga, Takushi; Aiba, Yuji; Kurihara, Shin; Sawaki, Emiko; Koga, Yasuhiro; Benno, Yoshimi

    2012-01-01

    Low–molecular-weight metabolites produced by intestinal microbiota play a direct role in health and disease. In this study, we analyzed the colonic luminal metabolome using capillary electrophoresis mass spectrometry with time-of-flight (CE-TOFMS) —a novel technique for analyzing and differentially displaying metabolic profiles— in order to clarify the metabolite profiles in the intestinal lumen. CE-TOFMS identified 179 metabolites from the colonic luminal metabolome and 48 metabolites were present in significantly higher concentrations and/or incidence in the germ-free (GF) mice than in the Ex-GF mice (p < 0.05), 77 metabolites were present in significantly lower concentrations and/or incidence in the GF mice than in the Ex-GF mice (p < 0.05), and 56 metabolites showed no differences in the concentration or incidence between GF and Ex-GF mice. These indicate that intestinal microbiota highly influenced the colonic luminal metabolome and a comprehensive understanding of intestinal luminal metabolome is critical for clarifying host-intestinal bacterial interactions. PMID:22724057

  1. Mercury methylation by fish intestinal contents.

    PubMed Central

    Rudd, J W; Furutani, A; Turner, M A

    1980-01-01

    A new radiochemical method has been applied to the examination of mercury methylation in fish intestinal contents. Intestinal contents of six freshwater fish species were found capable of converting 203Hg2+ to CH3203Hg+. This activity was observed in fish from five of six lakes tested whether or not there was mercury pollution. Bacterial activity in the intestinal contents is most likely responsible for this methylation. Methylating activity of piscivors increased with decreasing quantity of intestinal contents. Generally, pike and walleye intestinal contents methylated a larger fraction of 203Hg2+ than those of whitefish and suckers. These data contradict the previous general conclusion that there is no mercury methylation in fish. PMID:7425625

  2. Intestinal spirochaetosis

    PubMed Central

    Lee, F. D.; Kraszewski, A.; Gordon, J.; Howie, J. G. R.; McSeveney, D.; Harland, W. A.

    1971-01-01

    An abnormal condition of the large intestine is described in which the surface epithelium is infested by short spirochaetes. Diagnosis can be made by light microscopy. A review of 14 cases diagnosed by rectal biopsy and 62 cases involving the appendix shows no consistent symptom complex. The possible significance is discussed. ImagesFig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 1 PMID:5548558

  3. Alcoholism and Alcohol Abuse

    MedlinePLUS

    ... or more drinks in two hours. Too much alcohol is dangerous. Heavy drinking can increase the risk of certain cancers. It can cause damage to the liver, brain, and other organs. Drinking during pregnancy can harm ...

  4. Role of Alcohol Metabolism in Non-Alcoholic Steatohepatitis

    PubMed Central

    Baker, Susan S.; Baker, Robert D.; Liu, Wensheng; Nowak, Norma J.; Zhu, Lixin

    2010-01-01

    Background Non-alcoholic steatohepatitis (NASH) is a serious form of non-alcoholic fatty liver disease (NAFLD), associated with obesity and insulin resistance. Previous studies suggested that intestinal bacteria produced more alcohol in obese mice than lean animals. Methodology/Principal Findings To investigate whether alcohol is involved in the pathogenesis of NASH, the expression of inflammation, fibrosis and alcohol metabolism related genes in the liver tissues of NASH patients and normal controls (NCs) were examined by microarray (NASH, n?=?7; NC, n?=?4) and quantitative real-time PCR (NASH, n?=?6; NC, n?=?6). Genes related to liver inflammation and fibrosis were found to be elevated in NASH livers compared to normal livers. The most striking finding is the increased gene transcription of alcohol dehydrogenase (ADH) genes, genes for catalase and cytochrome P450 2E1, and aldehyde dehydrogenase genes. Immunoblot analysis confirmed the increased expression of ADH1 and ADH4 in NASH livers (NASH, n?=?9; NC, n?=?4). Conclusions/Significance The augmented activity of all the available genes of the pathways for alcohol catabolism suggest that 1) alcohol concentration was elevated in the circulation of NASH patients; 2) there was a high priority for the NASH livers to scavenge alcohol from the circulation. Our data is the first human evidence that suggests alcohol may contribute to the development of NAFLD. PMID:20221393

  5. Alcoholic disease: Liver and beyond

    PubMed Central

    Rocco, Alba; Compare, Debora; Angrisani, Debora; Sanduzzi Zamparelli, Marco; Nardone, Gerardo

    2014-01-01

    The harmful use of alcohol is a worldwide problem. It has been estimated that alcohol abuse represents the worlds third largest risk factor for disease and disability; it is a causal factor of 60 types of diseases and injuries and a concurrent cause of at least 200 others. Liver is the main organ responsible for metabolizing ethanol, thus it has been considered for long time the major victim of the harmful use of alcohol. Ethanol and its bioactive products, acetaldehyde-acetate, fatty acid ethanol esters, ethanol-protein adducts, have been regarded as hepatotoxins that directly and indirectly exert their toxic effect on the liver. A similar mechanism has been postulated for the alcohol-related pancreatic damage. Alcohol and its metabolites directly injure acinar cells and elicit stellate cells to produce and deposit extracellular matrix thus triggering the necrosis-fibrosis sequence that finally leads to atrophy and fibrosis, morphological hallmarks of alcoholic chronic pancreatitis. Even if less attention has been paid to the upper and lower gastrointestinal tract, ethanol produces harmful effects by inducing: (1) direct damaging of the mucosa of the esophagus and stomach; (2) modification of the sphincterial pressure and impairment of motility; and (3) alteration of gastric acid output. In the intestine, ethanol can damage the intestinal mucosa directly or indirectly by altering the resident microflora and impairing the mucosal immune system. Notably, disruption of the intestinal mucosal barrier of the small and large intestine contribute to liver damage. This review summarizes the most clinically relevant alcohol-related diseases of the digestive tract focusing on the pathogenic mechanisms by which ethanol damages liver, pancreas and gastrointestinal tract. PMID:25356028

  6. Natural compound methyl protodioscin protects against intestinal inflammation through modulation of intestinal immune responses

    PubMed Central

    Zhang, Rongli; Gilbert, Shila; Yao, Xinsheng; Vallance, Jefferson; Steinbrecher, Kris; Moriggl, Richard; Zhang, Dongsheng; Eluri, Madhu; Chen, Haifeng; Cao, Huiqing; Shroyer, Noah; Denson, Lee; Han, Xiaonan

    2015-01-01

    Dioscoreaceae, a kind of yam plant, has been recommended for treatment of chronic inflammatory conditions. However, the mechanisms are poorly defined. Methyl protodioscin (MPD) is one of the main bioactive components in Dioscoreaceae. Here, we aim to determine the mechanisms by which MPD ameliorates intestinal inflammation. Surgical intestinal specimens were collected from inflammatory bowel diseases (IBD) patients to perform organ culture. Experimental colitis was induced in mice by dextran sulfate sodium (DSS) or Citrobacter rodentium, and was then treated with MPD. NF-κB activation, expression of mucosal pro-inflammatory cytokines, disease severity, and epithelial proliferation/apoptosis were determined. Mouse crypts and Caco-2 monolayers were cultured to observe the effect of MPD upon intestinal epithelial differentiation and barrier function. We found that MPD increased the percentage of survival from high-dose DSS-(4%) treated mice, and accelerated mucosal healing and epithelial proliferation in low-dose DSS-(2.5%) treated mice characterized by marked reduction in NF-κB activation, pro-inflammatory cytokines expression and bacterial translocation. Consistently, MPD protected colonic mucosa from C. rodentium-induced colonic inflammation and bacterial colonization. In vitro studies showed that MPD significantly increased crypt formation and restored intestinal barrier dysfunction induced by pro-inflammatory cytokines. In conclusion, MPD ameliorates the intestinal mucosal inflammation by modulating the intestinal immunity to enhance intestinal barrier differentiation. MPD could be an alternative for treating chronic intestinal inflammatory diseases. PMID:26038694

  7. EXAMINATION OF THE INTESTINAL MICROBIOME FOR IDENTIFICATION OF FUNCTIONALLY IMPORTANT SPECIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives of these studies were to describe the constituents and dynamics of intestinal bacterial communities in turkeys, and identify microbes associated with exclusion of the food borne pathogen Campylobacter jejuni. It has been estimated that >7000 bacterial subspecies reside in the intestine, ...

  8. Bacterial gastroenteritis

    MedlinePLUS

    Infectious diarrhea - bacterial gastroenteritis; Acute gastroenteritis; Gastroenteritis - bacterial ... the sickness. All types of food poisoning cause diarrhea . Other symptoms include: Abdominal cramps Abdominal pain Bloody ...

  9. Putative intestinal stem cells

    PubMed Central

    Pirvulet, V

    2015-01-01

    A heterogeneous set of intestinal stem cells markers has been described in intestinal glands but the ultrastructural identity of intestinal stem cells remains unknown. By using electron microscopy, this study demonstrated the presence of cells with stem morphology in the intestinal glands of mice of different ages. These putative intestinal stem cells have large, euchromatic, irregular shaped nucleus, large, visible nucleolus, few ER cisternae and mitochondria. Their morphology is distinct from the morphology of any other intestinal gland cell. Stem cells located at the base of intestinal glands undergo mitosis. This study enhances the hypothesis of a gland (crypt) base columnar cell that gives rise to all the intestinal lineages. PMID:26366225

  10. Breast milk, microbiota, and intestinal immune homeostasis.

    PubMed

    Walker, W Allan; Iyengar, Rajashri Shuba

    2015-01-01

    Newborns adjust to the extrauterine environment by developing intestinal immune homeostasis. Appropriate initial bacterial colonization is necessary for adequate intestinal immune development. An environmental determinant of adequate colonization is breast milk. Although the full-term infant is developmentally capable of mounting an immune response, the effector immune component requires bacterial stimulation. Breast milk stimulates the proliferation of a well-balanced and diverse microbiota, which initially influences a switch from an intrauterine TH2 predominant to a TH1/TH2 balanced response and with activation of T-regulatory cells by breast milk-stimulated specific organisms (Bifidobacteria, Lactobacillus, and Bacteroides). As an example of its effect, oligosaccharides in breast milk are fermented by colonic bacteria producing an acid milieu for bacterial proliferation. In addition, short-chain fatty acids in breast milk activate receptors on T-reg cells and bacterial genes, which preferentially mediate intestinal tight junction expression and anti-inflammation. Other components of breast milk (defensins, lactoferrin, etc.) inhibit pathogens and further contribute to microbiota composition. The breast milk influence on initial intestinal microbiota also prevents expression of immune-mediated diseases (asthma, inflammatory bowel disease, type 1 diabetes) later in life through a balanced initial immune response, underscoring the necessity of breastfeeding as the first source of nutrition. PMID:25310762

  11. Intestinal protozoa.

    PubMed

    Juckett, G

    1996-06-01

    Giardia is the best known cause of protozoal gastrointestinal disease in North America, producing significant but not life-threatening gastrointestinal distress and diarrhea. Although diagnosis of giardiasis may be challenging, treatment is usually successful. Entamoeba histolytica poses a rarer but far more difficult clinical challenge. Dysentery caused by E. histolytica may be the most feared intestinal protozoal infection, although Cryptosporidium parvum, Balantidium coli, Isospora belli, Sarcocystis species and other newly described protozoa also may cause diarrhea in healthy individuals and may result in intractable, life-threatening illness in patients with acquired immunodeficiency syndrome or other immunosuppressive diseases. Certain protozoa once considered relatively unimportant, such as Cryptosporidium, are now recognized as significant causes of morbidity even in the United States, since transmission readily occurs through contaminated water. PMID:8644565

  12. Intestinal Colonization Dynamics of Vibrio cholerae

    PubMed Central

    Almagro-Moreno, Salvador; Pruss, Kali; Taylor, Ronald K.

    2015-01-01

    To cause the diarrheal disease cholera, Vibrio cholerae must effectively colonize the small intestine. In order to do so, the bacterium needs to successfully travel through the stomach and withstand the presence of agents such as bile and antimicrobial peptides in the intestinal lumen and mucus. The bacterial cells penetrate the viscous mucus layer covering the epithelium and attach and proliferate on its surface. In this review, we discuss recent developments and known aspects of the early stages of V. cholerae intestinal colonization and highlight areas that remain to be fully understood. We propose mechanisms and postulate a model that covers some of the steps that are required in order for the bacterium to efficiently colonize the human host. A deeper understanding of the colonization dynamics of V. cholerae and other intestinal pathogens will provide us with a variety of novel targets and strategies to avoid the diseases caused by these organisms. PMID:25996593

  13. Therapy for alcoholic liver disease

    PubMed Central

    Jaurigue, Maryconi M; Cappell, Mitchell S

    2014-01-01

    Alcoholism results in about 2.5 million deaths annually worldwide, representing 4% of all mortality. Although alcoholism is associated with more than 60 diseases, most mortality from alcoholism results from alcoholic liver disease (ALD). ALD includes alcoholic steatosis, alcoholic hepatitis, and alcoholic cirrhosis, in order of increasing severity. Important scoring systems of ALD severity include: Child-Pugh, a semi-quantitative scoring system useful to roughly characterize clinical severity; model for end-stage liver disease, a quantitative, objective scoring system used for prognostication and prioritization for liver transplantation; and discriminant function, used to determine whether to administer corticosteroids for alcoholic hepatitis. Abstinence is the cornerstone of ALD therapy. Psychotherapies, including twelve-step facilitation therapy, cognitive-behavioral therapy, and motivational enhancement therapy, help support abstinence. Disulfiram decreases alcohol consumption by causing unpleasant sensations after drinking alcohol from accumulation of acetaldehyde in serum, but disulfiram can be hepatotoxic. Adjunctive pharmacotherapies to reduce alcohol consumption include naltrexone, acamprosate, and baclofen. Nutritional therapy helps reverse muscle wasting, weight loss, vitamin deficiencies, and trace element deficiencies associated with ALD. Although reduced protein intake was previously recommended for advanced ALD to prevent hepatic encephalopathy, a diet containing 1.2-1.5 g of protein/kg per day is currently recommended to prevent muscle wasting. Corticosteroids are first-line therapy for severe alcoholic hepatitis (discriminant function ≥ 32), but proof of their efficacy in decreasing mortality remains elusive. Pentoxifylline is an alternative therapy. Complications of advanced ALD include ascites, spontaneous bacterial peritonitis, esophageal variceal bleeding, hepatic encephalopathy, hepatorenal syndrome, hepatopulmonary syndrome, and portopulmonary hypertension. Alcoholic cirrhotics have increased risk of developing hepatomas. Liver transplantation is the ultimate therapy for severe ALD, but generally requires 6 mo of proven abstinence for eligibility. Alcoholic cirrhotics who maintain abstinence generally have a relatively favorable prognosis after liver transplantation. PMID:24605013

  14. Intestinal translocation of clinical isolates of vancomycin-resistant Enterococcus faecalis and ESBL-producing Escherichia coli in a rat model of bacterial colonization and liver ischemia/reperfusion injury.

    PubMed

    van der Heijden, Karin M; van der Heijden, Inneke M; Galvao, Flavio H; Lopes, Camila G; Costa, Silvia F; Abdala, Edson; D'Albuquerque, Luiz A; Levin, Anna S

    2014-01-01

    The objectives of this study were to develop a rat model of gastrointestinal colonization with vancomycin-resistant Enterococcus faecalis (VRE) and extended-spectrum beta-lactamase (ESBL)-producing E. coli and to evaluate intestinal translocation to blood and tissues after total and partial hepatic ischemia. Methods - We developed a model of rat colonization with VRE and ESBL-E coli. Then we studied four groups of colonized rats: Group I (with hepatic pedicle occlusion causing complete liver ischemia and intestinal stasis); Group II (with partial liver ischemia without intestinal stasis); Group III (surgical manipulation without hepatic ischemia or intestinal stasis); Group IV (anesthetized without surgical manipulation). After sacrifice, portal and systemic blood, large intestine, small intestine, spleen, liver, lungs, and cervical and mesenteric lymph nodes were cultured. Endotoxin concentrations in portal and systemic blood were determined. Results - The best inocula were: VRE: 2.410(10) cfu and ESBL-E. coli: 1.1210(10) cfu. The best results occurred 24 hours after inoculation and antibiotic doses of 750 g/mL of water for vancomycin and 2.1 mg/mL for ceftriaxone. There was a significantly higher proportion of positive cultures for ESBL-E. coli in the lungs in Groups I, II and III when compared with Group IV (67%; 60%; 75% and 13%, respectively; p:0.04). VRE growth was more frequent in mesenteric lymph nodes for Groups I (67%) and III (38%) than for Groups II (13%) and IV (none) (p:0.002). LPS was significantly higher in systemic blood of Group I (9.761 13.804 EU/mL-p:0.01). No differences for endotoxin occurred in portal blood. Conclusion -We developed a model of rats colonized with resistant bacteria useful to study intestinal translocation. Translocation occurred in surgical procedures with and without hepatic ischemia-reperfusion and probably occurred via the bloodstream. Translocation was probably lymphatic in the ischemia-reperfusion groups. Systemic blood endotoxin levels were higher in the group with complete hepatic ischemia. PMID:25255079

  15. Intestinal Translocation of Clinical Isolates of Vancomycin-Resistant Enterococcus faecalis and ESBL-Producing Escherichia coli in a Rat Model of Bacterial Colonization and Liver Ischemia/Reperfusion Injury

    PubMed Central

    van der Heijden, Karin M.; van der Heijden, Inneke M.; Galvao, Flavio H.; Lopes, Camila G.; Costa, Silvia F.; Abdala, Edson; DAlbuquerque, Luiz A.; Levin, Anna S.

    2014-01-01

    The objectives of this study were to develop a rat model of gastrointestinal colonization with vancomycin-resistant Enterococcus faecalis (VRE) and extended-spectrum beta-lactamase (ESBL)-producing E. coli and to evaluate intestinal translocation to blood and tissues after total and partial hepatic ischemia. Methods - We developed a model of rat colonization with VRE and ESBL-E coli. Then we studied four groups of colonized rats: Group I (with hepatic pedicle occlusion causing complete liver ischemia and intestinal stasis); Group II (with partial liver ischemia without intestinal stasis); Group III (surgical manipulation without hepatic ischemia or intestinal stasis); Group IV (anesthetized without surgical manipulation). After sacrifice, portal and systemic blood, large intestine, small intestine, spleen, liver, lungs, and cervical and mesenteric lymph nodes were cultured. Endotoxin concentrations in portal and systemic blood were determined. Results The best inocula were: VRE: 2.41010 cfu and ESBL-E. coli: 1.121010 cfu. The best results occurred 24 hours after inoculation and antibiotic doses of 750 g/mL of water for vancomycin and 2.1 mg/mL for ceftriaxone. There was a significantly higher proportion of positive cultures for ESBL-E. coli in the lungs in Groups I, II and III when compared with Group IV (67%; 60%; 75% and 13%, respectively; p:0.04). VRE growth was more frequent in mesenteric lymph nodes for Groups I (67%) and III (38%) than for Groups II (13%) and IV (none) (p:0.002). LPS was significantly higher in systemic blood of Group I (9.76113.804 EU/mL?p:0.01). No differences for endotoxin occurred in portal blood. Conclusion We developed a model of rats colonized with resistant bacteria useful to study intestinal translocation. Translocation occurred in surgical procedures with and without hepatic ischemia-reperfusion and probably occurred via the bloodstream. Translocation was probably lymphatic in the ischemia-reperfusion groups. Systemic blood endotoxin levels were higher in the group with complete hepatic ischemia. PMID:25255079

  16. Agent-based model of Fecal Microbial Transplant effect on Bile Acid Metabolism on suppressing Clostridium difficile infection: an example of agent-based modeling of intestinal bacterial infection

    PubMed Central

    Peer, Xavier; An, Gary

    2014-01-01

    Agent-based modeling is a computational modeling method that represents system-level behavior as arising from multiple interactions between the multiple components that make up a system. Biological systems are thus readily described using agent-based models (ABMs), as multi-cellular organisms can be viewed as populations of interacting cells, and microbial systems manifest as colonies of individual microbes. Intersections between these two domains underlie an increasing number of pathophysiological processes, and the intestinal tract represents one of the most significant locations for these inter-domain interactions, so much so that it can be considered an internal ecology of varying robustness and function. Intestinal infections represent significant disturbances of this internal ecology, and one of the most clinically relevant intestinal infections is Clostridium difficile infection (CDI). CDI is precipitated by the use of broad-spectrum antibiotics, involves the depletion of commensal microbiota, and alterations in bile acid composition in the intestinal lumen. We present an example ABM of CDI (the Clostridium difficile Infection ABM, or CDIABM) to examine fundamental dynamics of the pathogenesis of CDI and its response to treatment with anti-CDI antibiotics and a newer treatment therapy, Fecal Microbial Transplant (FMT). The CDIABM focuses on one specific mechanism of potential CDI suppression: commensal modulation of bile acid composition. Even given its abstraction, the CDIABM reproduces essential dynamics of CDI and its response to therapy, and identifies a paradoxical zone of behavior that provides insight into the role of intestinal nutritional status and the efficacy of anti-CDI therapies. It is hoped that this use case example of the CDIABM can demonstrate the usefulness of both agent-based modeling and the application of abstract functional representation as the biomedical community seeks to address the challenges of increasingly complex diseases with the goal of personalized medicine. PMID:25168489

  17. Agent-based model of fecal microbial transplant effect on bile acid metabolism on suppressing Clostridium difficile infection: an example of agent-based modeling of intestinal bacterial infection.

    PubMed

    Peer, Xavier; An, Gary

    2014-10-01

    Agent-based modeling is a computational modeling method that represents system-level behavior as arising from multiple interactions between the multiple components that make up a system. Biological systems are thus readily described using agent-based models (ABMs), as multi-cellular organisms can be viewed as populations of interacting cells, and microbial systems manifest as colonies of individual microbes. Intersections between these two domains underlie an increasing number of pathophysiological processes, and the intestinal tract represents one of the most significant locations for these inter-domain interactions, so much so that it can be considered an internal ecology of varying robustness and function. Intestinal infections represent significant disturbances of this internal ecology, and one of the most clinically relevant intestinal infections is Clostridium difficile infection (CDI). CDI is precipitated by the use of broad-spectrum antibiotics, involves the depletion of commensal microbiota, and alterations in bile acid composition in the intestinal lumen. We present an example ABM of CDI (the C. difficile Infection ABM, or CDIABM) to examine fundamental dynamics of the pathogenesis of CDI and its response to treatment with anti-CDI antibiotics and a newer treatment therapy, fecal microbial transplant. The CDIABM focuses on one specific mechanism of potential CDI suppression: commensal modulation of bile acid composition. Even given its abstraction, the CDIABM reproduces essential dynamics of CDI and its response to therapy, and identifies a paradoxical zone of behavior that provides insight into the role of intestinal nutritional status and the efficacy of anti-CDI therapies. It is hoped that this use case example of the CDIABM can demonstrate the usefulness of both agent-based modeling and the application of abstract functional representation as the biomedical community seeks to address the challenges of increasingly complex diseases with the goal of personalized medicine. PMID:25168489

  18. Porcine small intestine submucosa does not show antimicrobial properties.

    PubMed

    Holtom, Paul D; Shinar, Zachary; Benna, Jennifer; Patzakis, Michael J

    2004-10-01

    The goal of this study is to examine whether porcine small intestine submucosa (SIS) exhibits antimicrobial properties in a standard in vitro system, without pretreatment with acetic acid or extraction of soluble proteins. Previous animal studies suggest that porcine SIS may have inherent antibiotic properties. Using the guidelines for disk diffusion susceptibility testing by Bauer, 17/64-inch diameter disks made of porcine small intestine submucosa and of gortex were compared with standard antibiotic-impregnated disks against six organisms. The zone of inhibition was measured after 24 hours and minimum bacterial concentrations were determined by serial dilutions of a solution in which porcine small intestine submucosa was allowed to elute for 24 hours. Neither porcine SIS or gortex discs caused inhibition of the growth of any organism. The porcine small intestine submucosa discs showed bacterial growth on top of the discs whereas the gortex did not. Neither the dilutional concentrations of the porcine small intestine submucosa eluent nor the gortex eluent inhibited the growth of any organism. These findings suggest that the porcine small intestine submucosa does not have intrinsic antimicrobial properties. The growth of bacteria on top of the porcine small intestine submucosa suggests that porcine small intestine submucosa itself may provide a favorable environment for the growth of bacteria. More research is necessary to decide what role porcine small intestine submucosa plays in the treatment of infected surgical sites. PMID:15552130

  19. Alcohol Alert

    MedlinePLUS

    ... Alcohol Use [ PDF - 1.52 MB] No. 77: Neuroscience: Pathways to Alcohol Dependence (2009) [ PDF -1.31 ... Issue (2004) [ PDF --0.4 MB] No. 61: Neuroscience Research and Therapeutic Targets (2004) [ PDF --0.5 ...

  20. Alcohol Abuse

    ERIC Educational Resources Information Center

    O'Farrell, Timothy J.; Fals-Stewart, William

    2003-01-01

    We received 38 controlled studies of marital and family therapy (MFT) in alcoholism treatment. We conclude that, when the alcoholic is unwilling to seek help, MFT is effective in helping the family cope better and motivating alcoholics to enter treatment. Specifically, (a) Al-Anon facilitation and referral help family members cope better; (b)

  1. The outer mucus layer hosts a distinct intestinal microbial niche

    PubMed Central

    Li, Hai; Limenitakis, Julien P.; Fuhrer, Tobias; Geuking, Markus B.; Lawson, Melissa A.; Wyss, Madeleine; Brugiroux, Sandrine; Keller, Irene; Macpherson, Jamie A.; Rupp, Sandra; Stolp, Bettina; Stein, Jens V.; Stecher, Bärbel; Sauer, Uwe; McCoy, Kathy D.; Macpherson, Andrew J.

    2015-01-01

    The overall composition of the mammalian intestinal microbiota varies between individuals: within each individual there are differences along the length of the intestinal tract related to host nutrition, intestinal motility and secretions. Mucus is a highly regenerative protective lubricant glycoprotein sheet secreted by host intestinal goblet cells; the inner mucus layer is nearly sterile. Here we show that the outer mucus of the large intestine forms a unique microbial niche with distinct communities, including bacteria without specialized mucolytic capability. Bacterial species present in the mucus show differential proliferation and resource utilization compared with the same species in the intestinal lumen, with high recovery of bioavailable iron and consumption of epithelial-derived carbon sources according to their genome-encoded metabolic repertoire. Functional competition for existence in this intimate layer is likely to be a major determinant of microbiota composition and microbial molecular exchange with the host. PMID:26392213

  2. Bacterial Vaginosis

    MedlinePLUS

    ... vaginosis can increase your chance of getting an STD. What is bacterial vaginosis? Bacterial vaginosis (BV) is ... contributes to BV. BV is not considered an STD, but having BV can increase your chances of ...

  3. Intestinal lymphangiectasia secondary to radiotherapy and chemotherapy

    SciTech Connect

    Rao, S.S.; Dundas, S.; Holdsworth, C.D.

    1987-08-01

    We report a case of intestinal lymphangiectasia secondary to radiotherapy and chemotherapy. The patient also had small bowel bacterial overgrowth and pancreatic insufficiency. Lymphatic ectasia as a histological feature has been described previously in association with postradiotherapy malabsorption, but radiation-induced lymphangiectasia producing clinical manifestations has hitherto not been reported. Replacement of dietary long-chain fats with medium-chain triglycerides, pancreatic enzyme supplements, and a short course of oxytetracycline, resulted in dramatic clinical improvement. The possibility of intestinal lymphangiectasia should be borne in mind in patients with postradiotherapy malabsorption. A low serum albumin and lymphocyte count should draw attention to this possibility.

  4. Alcohols toxicology

    SciTech Connect

    Wimer, W.W.; Russell, J.A.; Kaplan, H.L.

    1984-01-01

    A comprehensive reference volume which summarizes literature reports of the known consequences of human and animal contact with alcohols and alcohol-derived substances is presented. Following a discussion of alcohol nomenclature and a brief history of alcohols, the authors have provided detailed chapters on the toxicology of methanol, ethanol, normal and isopropanol, and the butanols. Properties of these alcohols are compared; industrial hygiene and exposure limits are discussed. Additional sections are included covering processing and production technology and exhaust emissions studies. Of particular interest are the section containing abstracts and synopses of principal works and the extensive bibliography of studies dating from the 1800s. 331 references, 26 figures, 56 tables

  5. The pathogenesis of gastrointestinal bacterial overgrowth.

    PubMed

    Husebye, Einar

    2005-01-01

    The normal indigenous intestinal microflora consists of about 10(15) bacteria that under physiological conditions reside mainly in the lower gastrointestinal tract. Bacterial overgrowth implies abnormal bacterial colonization of the upper gut, resulting from failure of specific defense mechanisms restricting colonization under physiological conditions. At present two types of bacterial overgrowth with defined pathogenesis can be distinguished: (1) gastric overgrowth with upper respiratory tract microflora resulting from selective failure of the gastric acid barrier, and (2) gastrointestinal overgrowth with Gram-negative bacilli (enteric bacteria) resulting from failure of intestinal clearance. Helicobacter pylori-induced gastritis of the oxyntic mucosa is the main cause of acquired failure of the gastric acid barrier, which is common among the healthy elderly. Intestinal clearance may fail as the result of impaired intestinal peristalsis or anatomical abnormalities that alter luminal flow. Impaired peristalsis is associated with conditions interfering with intestinal neuromuscular function including myopathic, neuropathic, autoimmune, infectious, inflammatory, metabolic, endocrine, and neoplastic diseases. Anatomical abnormalities are mainly the result of gastrointestinal surgery, intestinal diverticula or fistula. Combined failure of intestinal clearance and the gastric acid barrier results in more severe colonization with Gram-negative bacilli. Gram-negative bacilli are uncommon in the upper gut of otherwise healthy individuals with gastric hypochlorhydria, being acquired (H. pylori) or drug-induced. Significant bacterial overgrowth with Gram-negative bacilli is a rational in the search for an explanation to optimize clinical management. The clinical significance of colonization with upper respiratory tract microflora remains unclear. Translocation of live bacteria, their metabolic products, or antigens from a small bowel colonized by Gram-negative bacilli play a role in the pathogenesis of spontaneous bacterial peritonitis in hepatic disease and in certain types of sepsis, indicating that further studies can point to new patient populations with potential benefit from medical treatment. PMID:15855746

  6. Resident bacterial flora and immune system.

    PubMed

    Biancone, L; Monteleone, I; Del Vecchio Blanco, G; Vavassori, P; Pallone, F

    2002-09-01

    The "controlled inflammation" of the normal human gut is a closely controlled phenomenon and any change in the cell type number and/or functions, including the release of soluble mediators can lead to an "uncontrolled" inflammation. The physiological inflammation in the human gut plays a crucial role in maintaining a local immune response that is appropriate, efficiently protective and which respects the gut structure and function. The intestinal mucosa represents a considerable proportion of the human immune system. Disregulation of the mucosal immune response can switch a "controlled" toward an "uncontrolled" intestinal inflammation. A key role in the maintenance of an adequate balance between antigenic stimulation and host immune response is played by the immunoregulatory molecules released by activated immunocytes in the human gut. The role of the host immune system in the maintenance of an adequate balance between luminal antigens, including the resident bacterial flora and host immune response, is strongly supported by animal models of uncontrolled intestinal inflammation. Besides the aetiology of inflammatory bowel disease, luminal antigens (including food, viral and bacterial antigens) contribute to the maintenance of the inflammatory process in inflammatory bowel disease, by stimulating the immunocompetent cells in the intestinal mucosa. Of the luminal antigens, the resident bacterial flora seems to play a major role in the development of animal models of "uncontrolled" intestinal inflammation. Recent evidence also suggest that bacterial flora can modulate the function of the intestinal mucosal cells. These observations support the role of the intestinal bacterial flora in the induction of an uncontrolled inflammation in the human gut, leading to tissue damage. Probiotics, defined as living micro-organisms which, when taken in appropriate amounts, improve the health status, have been proposed in the treatment of inflammatory bowel disease, but their mechanisms of action still remain to be fully elucidated. PMID:12408438

  7. Facts about Alcohol and Alcoholism.

    ERIC Educational Resources Information Center

    Hall, Leonard C.

    Recognition of alcoholism as a treatable illness is a result of public education based on scientific facts. This publication, a digest of a more detailed survey of research about drinking and alcoholism, presents information about alcohol and its effects on individuals and society. It provides facts about the short-term and long-term effects of

  8. Alcoholic cardiomyopathy

    PubMed Central

    Guzzo-Merello, Gonzalo; Cobo-Marcos, Marta; Gallego-Delgado, Maria; Garcia-Pavia, Pablo

    2014-01-01

    Alcohol is the most frequently consumed toxic substance in the world. Low to moderate daily intake of alcohol has been shown to have beneficial effects on the cardiovascular system. In contrast, exposure to high levels of alcohol for a long period could lead to progressive cardiac dysfunction and heart failure. Cardiac dysfunction associated with chronic and excessive alcohol intake is a specific cardiac disease known as alcoholic cardiomyopathy (ACM). In spite of its clinical importance, data on ACM and how alcohol damages the heart are limited. In this review, we evaluate available evidence linking excessive alcohol consumption with heart failure and dilated cardiomyopathy. Additionally, we discuss the clinical presentation, prognosis and treatment of ACM. PMID:25228956

  9. Bacterial Sialidase

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Data shows that elevated sialidase in bacterial vaginosis patients correlates to premature births in women. Bacterial sialidase also plays a significant role in the unusual colonization of Pseudomonas aeruginosa in cystic fibrosis patients. Crystals of Salmonella sialidase have been reproduced and are used for studying the inhibitor-enzyme complexes. These inhibitors may also be used to inhibit a trans-sialidase of Trypanosome cruzi, a very similar enzyme to bacterial sialidase, therefore preventing T. cruzi infection, the causitive agent of Chagas' disease. The Center for Macromolecular Crystallography suggests that inhibitors of bacterial sialidases can be used as prophylactic drugs to prevent bacterial infections in these critical cases.

  10. Insulin?like growth factor I improves intestinal barrier function in cirrhotic rats

    PubMed Central

    Lorenzo?Ziga, V; Rodrguez?Ortigosa, C M; Bartol, R; Martnez?Chantar, M?L; Martnez?Peralta, L; Pardo, A; Ojanguren, I; Quiroga, J; Planas, R; Prieto, J

    2006-01-01

    Background and aims In liver cirrhosis, disruption of the intestinal barrier facilitates bacterial translocation and spontaneous bacterial peritonitis. Insulin?like growth factor I (IGF?I) is an anabolic hormone synthesised by hepatocytes that displays hepatoprotective activities and trophic effects on the intestine. The aim of this study was to investigate the effect of IGF?I on intestinal barrier function in cirrhotic rats. Methods In rats with carbon tetrachloride induced cirrhosis, we investigated the effect of IGF?I therapy on: (a) portal pressure; (b) intestinal histology and permeability to endotoxin and bacteria; (c) intestinal expression of cyclooxygenase 2 (COX?2) and tumour necrosis factor ? (TNF??), two factors that influence in a positive and negative manner, respectively, the integrity of the intestinal barrier; (d) intestinal permeability to 3H?mannitol in rats with bile duct ligation (BDL); and (e) transepithelial electrical resistance (TER) of polarised monolayers of rat small intestine epithelial cells. Results IGF?I therapy reduced liver collagen expression and portal pressure in cirrhotic rats, induced improvement in intestinal histology, and caused a reduction in bacterial translocation and endotoxaemia. These changes were associated with diminished TNF?? expression and elevated COX?2 levels in the intestine. IGF?I reduced intestinal permeability in BDL rats and enhanced barrier function of the monolayers of epithelial intestinal cells where lipopolysaccharide (LPS) caused a decrease in TER that was reversed by IGF?I. This effect of IGF?I was associated with upregulation of COX?2 in LPS treated enterocytes. Conclusions IGF?I enhances intestinal barrier function and reduces endotoxaemia and bacterial translocation in cirrhotic rats. IGF?I therapy might be useful in the prevention of spontaneous bacterial peritonitis in liver cirrhosis. PMID:16434425

  11. Alcohol during Pregnancy

    MedlinePLUS

    ... stop drinking alcohol. Alcohol includes wine, wine coolers, beer and liquor. There is no amount of alcohol ... stop drinking alcohol. Alcohol includes wine, wine coolers, beer and liquor. There is no amount of alcohol ...

  12. Intestinal Complications of IBD

    MedlinePLUS

    ... dietary intake, intestinal loss of protein, and poor absorption of nutrients. Medical treatment is usually effective in ... disease. This is the principal area for intestinal absorption of bile acids, compounds that help transport and ...

  13. Fish Oil Enhances Recovery of Intestinal Microbiota and Epithelial Integrity in Chronic Rejection of Intestinal Transplant

    PubMed Central

    Li, Qiurong; Zhang, Qiang; Wang, Chenyang; Tang, Chun; Zhang, Yanmei; Li, Ning; Li, Jieshou

    2011-01-01

    Background The intestinal chronic rejection (CR) is the major limitation to long-term survival of transplanted organs. This study aimed to investigate the interaction between intestinal microbiota and epithelial integrity in chronic rejection of intestinal transplantation, and to find out whether fish oil enhances recovery of intestinal microbiota and epithelial integrity. Methods/Principal Findings The luminal and mucosal microbiota composition of CR rats were characterized by DGGE analysis at 190 days after intestinal transplant. The specific bacterial species were determined by sequence analysis. Furthermore, changes in the localization of intestinal TJ proteins were examined by immunofluorescent staining. PCR-DGGE analysis revealed that gut microbiota in CR rats had a shift towards Escherichia coli, Bacteroides spp and Clostridium spp and a decrease in the abundance of Lactobacillales bacteria in the intestines. Fish oil supplementation could enhance the recovery of gut microbiota, showing a significant decrease of gut bacterial proportions of E. coli and Bacteroides spp and an increase of Lactobacillales spp. In addition, CR rats showed pronounced alteration of tight junction, depicted by marked changes in epithelial cell ultrastructure and redistribution of occuldin and claudins as well as disruption in TJ barrier function. Fish oil administration ameliorated disruption of epithelial integrity in CR, which was associated with an improvement of the mucosal structure leading to improved tight junctions. Conclusions/Significance Our study have presented novel evidence that fish oil is involved in the maintenance of epithelial TJ integrity and recovery of gut microbiota, which may have therapeutic potential against CR in intestinal transplantation. PMID:21698145

  14. Microbial imbalance and intestinal pathologies: connections and contributions

    PubMed Central

    Yang, Ye; Jobin, Christian

    2014-01-01

    Microbiome analysis has identified a state of microbial imbalance (dysbiosis) in patients with chronic intestinal inflammation and colorectal cancer. The bacterial phylum Proteobacteria is often overrepresented in these individuals, with Escherichia coli being the most prevalent species. It is clear that a complex interplay between the host, bacteria and bacterial genes is implicated in the development of these intestinal diseases. Understanding the basic elements of these interactions could have important implications for disease detection and management. Recent studies have revealed that E. coli utilizes a complex arsenal of virulence factors to colonize and persist in the intestine. Some of these virulence factors, such as the genotoxin colibactin, were found to promote colorectal cancer in experimental models. In this Review, we summarize key features of the dysbiotic states associated with chronic intestinal inflammation and colorectal cancer, and discuss how the dysregulated interplay between host and bacteria could favor the emergence of E. coli with pathological traits implicated in these pathologies. PMID:25256712

  15. [Alcoholic hepatitis].

    PubMed

    Radchenko, V G; Prikhod'ko, E M

    2012-01-01

    The aim of the study was to evaluate Kholit efficiency in complex treatment of alcoholic hepatitis. 72 patients with proved chronic alcoholic hepatitis were examined. 37 of them underwent complex treatment including Kholit. Kholit in complex treatment of patients with chronic alcoholic hepatitis was shown to promote improvement of the general patient's state, disappearance of objective signs of the disease, normalization of laboratory and instrumental data. PMID:23402199

  16. T-cell selection and intestinal homeostasis

    PubMed Central

    Ai, Teresa L.; Solomon, Benjamin D.; Hsieh, Chyi-Song

    2014-01-01

    Summary Although intestinal bacteria live deep within the body, they are topographically on the exterior surface and thus outside the host. According to the classic notion that the immune system targets non-self rather than self, these intestinal bacteria should be considered foreign and therefore attacked and eliminated. While this appears to be true for some commensal bacterial species, recent data suggests that the immune system actively becomes tolerant to many bacterial organisms. The induction or activation of regulatory T (Treg) cells that inhibit, rather than promote, inflammatory responses to commensal bacteria appears to be a central component of mucosal tolerance. Loss of this mechanism can lead to inappropriate immune reactivity toward commensal organisms, perhaps contributing to mucosal inflammation characteristic of disorders such as inflammatory bowel disease. PMID:24712459

  17. The intestinal microbiota and obesity.

    PubMed

    Kallus, Samuel J; Brandt, Lawrence J

    2012-01-01

    Obesity has been and continues to be an epidemic in the United States. Obesity has been addressed in multiple health initiatives, including Healthy People 2010, with no state meeting the proposed goal of a prevalence of obesity < 15% of the adult population. In contrast, obesity rates have continued to increase, with the self-reported prevalence of obesity among adults increasing by 1.1% from 2007 to the present. Indeed, since 2009, 33 states reported obesity prevalences of 25% or more with only 1 state reporting prevalence < 20%. There have been multiple approaches for the treatment of obesity, including fad diets, incentive-based exercise programs, and gastric bypass surgery; none of which have been optimal. In a murine model, it was shown that the majority of the intestinal microbiome consists of two bacterial phyla, the Bacteroidetes and the Firmicutes, and that the relative abundance of these two phyla differs among lean and obese mice; the obese mouse had a higher proportion of Firmicutes to Bacteroidetes (50% greater) than the lean mouse. The same results were appreciated in obese humans compared to lean subjects. The postulated explanation for this finding is that Firmicutes produce more complete metabolism of a given energy source than do Bacteroidetes, thus promoting more efficient absorption of calories and subsequent weight gain. Researchers were able to demonstrate that colonizing germ-free mice with the intestinal microbiome from obese mice led to an increased total body fat in the recipient mice despite a lack of change in diet. The converse, that, colonizing germ-free obese mice with the intestinal microbiome of thin mice causing a decreased total body fat in the recipient mice, has not yet been done. Other possible mechanisms by which the intestinal microbiome affects host obesity include induction of low-grade inflammation with lipopolysaccharide, regulation of host genes responsible for energy expenditure and storage, and hormonal communication between the intestinal microbiome and the host. The following review discusses the microbiome-obesity relationship and proposed mechanisms by which the intestinal microbiota is hypothesized to influence weight gain. PMID:22064556

  18. Mucosal immunity to pathogenic intestinal bacteria.

    PubMed

    Perez-Lopez, Araceli; Behnsen, Judith; Nuccio, Sean-Paul; Raffatellu, Manuela

    2016-03-01

    The intestinal mucosa is a particularly dynamic environment in which the host constantly interacts with trillions of commensal microorganisms, known as the microbiota, and periodically interacts with pathogens of diverse nature. In this Review, we discuss how mucosal immunity is controlled in response to enteric bacterial pathogens, with a focus on the species that cause morbidity and mortality in humans. We explain how the microbiota can shape the immune response to pathogenic bacteria, and we detail innate and adaptive immune mechanisms that drive protective immunity against these pathogens. The vast diversity of the microbiota, pathogens and immune responses encountered in the intestines precludes discussion of all of the relevant players in this Review. Instead, we aim to provide a representative overview of how the intestinal immune system responds to pathogenic bacteria. PMID:26898110

  19. Innate defenses of the intestinal epithelial barrier.

    PubMed

    Müller, C A; Autenrieth, I B; Peschel, A

    2005-06-01

    The innate immune system plays a crucial role in maintaining the integrity of the intestine and protecting the host against a vast number of potential microbial pathogens from resident and transient gut microflora. Mucosal epithelial cells and Paneth cells produce a variety of antimicrobial peptides (defensins, cathelicidins, crytdinrelated sequence peptides, bactericidal/permeabilityincreasing protein, chemokine CCL20) and bacteriolytic enzymes (lysozyme, group IIA phospholipase A2) that protect mucosal surfaces and crypts containing intestinal stem cells against invading microbes. Many of the intestinal antimicrobial molecules have additional roles of attracting leukocytes, alarming the adaptive immune system or neutralizing proinflammatory bacterial molecules. Dysfunction of components of the innate immune system has recently been implicated in chronic inflammatory bowel diseases such as Crohn's disease and ulcerative colitis, illustrating the pivotal role of innate immunity in maintaining the delicate balance between immune tolerance and immune response in the gut. PMID:15971105

  20. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD)

    PubMed

    Duchmann, R; Kaiser, I; Hermann, E; Mayet, W; Ewe, K; Meyer zum Büschenfelde, K H

    1995-12-01

    Hyporesponsiveness to a universe of bacterial and dietary antigens from the gut lumen is a hallmark of the intestinal immune system. Since hyperresponsiveness against these antigens might be associated with inflammation, we studied the immune response to the indigenous intestinal microflora in peripheral blood, inflamed and non-inflamed human intestine. Lamina propria monocuclear cells (LPMC) isolated from inflamed intestine but not peripheral blood mononuclear cells (PBMC) of IBD patients with active inflammatory disease strongly proliferated after co-culture with sonicates of bacteria from autologous intestine (BsA). Proliferation was inhibitable by anti-MHC class II MoAb, suggesting that it was driven by antigen. LPMC from adjacent non-inflamed intestinal areas of the same IBD patients and PBMC or LPMC isolated from non-inflamed intestine of controls and patients with IBD in remission, in contrast, did not proliferate. PBMC or LPMC which had been tolerant to bacteria from autologous intestine, however, strongly proliferated after co-culture with bacterial sonicates from heterologous intestine (BsH). This proliferation was associated with an expansion of CD8+ T cells, increased expression of activation markers on both CD4+ and CD8+ lymphocyte subsets, and production of IL-12, interferon-gamma (IFN-gamma), and IL-10 protein. These results show that tolerance selectively exists to intestinal flora from autologous but not heterologous intestine, and that tolerance is broken in intestinal inflammation. This may be an important mechanism for the perpetuation of chronic IBD. PMID:8536356

  1. Vertebrate Intestinal Endoderm Development

    PubMed Central

    Spence, Jason R.; Lauf, Ryan; Shroyer, Noah F.

    2010-01-01

    The endoderm gives rise to the lining of the esophagus, stomach and intestines, as well as associated organs. To generate a functional intestine, a series of highly orchestrated developmental processes must occur. In this review, we attempt to cover major events during intestinal development from gastrulation to birth, including endoderm formation, gut tube growth and patterning, intestinal morphogenesis, epithelial reorganization, villus emergence as well as proliferation and cytodifferentiation. Our discussion includes morphological and anatomical changes during intestinal development as well as molecular mechanisms regulating these processes. PMID:21246663

  2. Bacterial Proteasomes

    PubMed Central

    Jastrab, Jordan B.; Darwin, K. Heran

    2015-01-01

    Interest in bacterial proteasomes was sparked by the discovery that proteasomal degradation is required for the pathogenesis of Mycobacterium tuberculosis, one of the world's deadliest pathogens. Although bacterial proteasomes are structurally similar to their eukaryotic and archaeal homologs, there are key differences in their mechanisms of assembly, activation, and substrate targeting for degradation. In this article, we compare and contrast bacterial proteasomes with their archaeal and eukaryotic counterparts, and we discuss recent advances in our understanding of how bacterial proteasomes function to influence microbial physiology. PMID:26488274

  3. Intestinal alkaline phosphatase: multiple biological roles in maintenance of intestinal homeostasis and modulation by diet.

    PubMed

    Lallès, Jean-Paul

    2010-06-01

    The diverse nature of intestinal alkaline phosphatase (IAP) functions has remained elusive, and it is only recently that four additional major functions of IAP have been revealed. The present review analyzes the earlier literature on the dietary factors modulating IAP activity in light of these new findings. IAP regulates lipid absorption across the apical membrane of enterocytes, participates in the regulation of bicarbonate secretion and of duodenal surface pH, limits bacterial transepithelial passage, and finally controls bacterial endotoxin-induced inflammation by dephosphorylation, thus detoxifying intestinal lipopolysaccharide. Many dietary components, including fat, protein, and carbohydrate, modulate IAP expression or activity and may be combined to sustain a high level of IAP activity. In conclusion, IAP has a pivotal role in intestinal homeostasis and its activity could be increased through the diet. This is especially true in pathological situations (e.g., inflammatory bowel diseases) in which the involvement of commensal bacteria is suspected and when intestinal AP is too low to detoxify a sufficient amount of bacterial lipopolysaccharide. PMID:20536777

  4. Immunology and probiotic impact of the newborn and young children intestinal microflora.

    PubMed

    Bezirtzoglou, Eugenia; Stavropoulou, Elisabeth

    2011-12-01

    Human body has developed a holistic defence system, which mission is either to recognize and destroy the aggressive invaders or to evolve mechanisms permitting to minimize or restore the consequences of harmful actions. The host immune system keeps the capital role to preserve the microbial intestinal balance via the barrier effect. Specifically, pathogenic invaders such as, bacteria, parasites, viruses and other xenobiotic invaders are rejected out of the body via barriers formed by the skin, mucosa and intestinal flora. In case physical barriers are breached, the immune system with its many components comes into action in order to fence infection. The intestine itself is considered as an "active organ" due to its abundant bacterial flora and to its large metabolic activity. The variation among different species or even among different strains within a species reflects the complexity of the genetic polymorphism which regulates the immune system functions. Additionally factors such as, gender, particular habits, smoking, alcohol consumption, diet, religion, age, gender, precedent infections and vaccinations must be involved. Hormonal profile and stress seems to be associated to the integrity microbiota and inducing immune system alterations. Which bacterial species are needed for inducing a proper barrier effect is not known, but it is generally accepted that this barrier function can be strongly supported by providing benefic alimentary supplements called functional foods. In this vein it is stressed the fact that early intestinal colonization with organisms such as Lactobacilli and Bifidobacteria and possibly subsequent protection from many different types of diseases. Moreover, this benefic microflora dominated but Bifidobacteria and Lactobacilli support the concept of their ability to modify the gut microbiota by reducing the risk of cancer following their capacity to decrease ?-glucoronidase and carcinogen levels. Because of their beneficial roles in the human gastrointestinal tract, LAB are referred to as "probiotics", and efforts are underway to employ them in modern nutrition habits with so-called functional foods. Members of Lactobacillus and Bifidobacterium genera are normal residents of the microbiota in the human gastrointestinal tract, in which they developed soon after birth. But, whether such probiotic strains derived from the human gut should be commercially employed in the so-called functional foods is a matter of debate between scientists and the industrial world. Within a few hours from birth the newborn develops its normal bacterial flora. Indeed human milk frequently contains low amounts of non-pathogenic bacteria like Streptococcus, Micrococcus, Lactobacillus, Staphylococcus, Corynebacterium and Bifidobacterium. In general, bacteria start to appear in feces within a few hours after birth. Colonization by Bifidobacterium occurs generally within 4 days of life. Claims have been made for positive effects of Bifidobacterium on infant growth and health. The effect of certain bacteria having a benefic action on the intestinal ecosystem is largely discussed during the last years by many authors. Bifidobacterium is reported to be a probiotic bacterium, exercising a beneficial effect on the intestinal flora. An antagonism has been reported between B. bifidum and C. perfringens in the intestine of newborns delivered by cesarean section. The aim of the probiotic approach is to repair the deficiencies in the gut flora and restore the protective effect. However, the possible ways in which the gut microbiota is being influenced by probiotics is yet unknown. PMID:21515397

  5. Folate, Alcohol, and Liver Disease

    PubMed Central

    Medici, Valentina; Halsted, Charles H.

    2013-01-01

    Alcoholic liver disease (ALD) is typically associated with folate deficiency, which is the result of reduced dietary folate intake, intestinal malabsorption, reduced liver uptake and storage, and increased urinary folate excretion. Folate deficiency favors the progression of liver disease through mechanisms that include its effects on methionine metabolism with consequences for DNA synthesis and stability and the epigenetic regulation of gene expression involved in pathways of liver injury. This paper reviews the pathogenesis of alcoholic liver disease with particular focus on ethanol-induced alterations in methionine metabolism which may act in synergy with folate deficiency to decrease antioxidant defense as well as DNA stability while regulating epigenetic mechanisms of relevant gene expressions. We also review the current evidence available on potential treatments of alcoholic liver disease based on correcting abnormalities in methionine metabolism and the methylation regulation of relevant gene expressions. PMID:23136133

  6. Establishment of Intestinal Bacteriology

    PubMed Central

    MITSUOKA, Tomotari

    2014-01-01

    Research on intestinal bacteria began around the end of the 19th century. During the last 5 decades of the 20th century, research on the intestinal microbiota made rapid progress. At first, in my work, I first developed a method of comprehensive analysis of the intestinal microbiota, and then I established classification and identification methods for intestinal anaerobes. Using these methods I discovered a number of ecological rules governing the intestinal microbiota and the role of the intestinl microbiota in health and disease. Moreover, using germfree animals, it was proven that the intestinal microbiota has a role in carcinogenesis and aging in the host. Thus, a new interdisciplinary field, “intestinal bacteriology” was established. PMID:25032084

  7. Innate immune signaling and gut-liver interactions in non-alcoholic fatty liver disease

    PubMed Central

    Trautwein, Christian

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome and covers a disease spectrum ranging from steatosis to inflammation, fibrosis, cirrhosis and hepatocellular carcinoma (HCC). The innate immune response in the liver plays an important role during NAFLD progression. In addition, changes in the intestinal microbial balance and bacterial translocation can further affect disease progression. Immune cells in the liver recognize cell damage or pathogen invasion with intracellular or surface-expressed pattern recognition receptors (PRRs), subsequently initiating signaling cascades that trigger the release of factors promoting the inflammatory response during NAFLD progression. Therefore, mechanisms by which cells of the immune system are activated and recruited into the liver and how these cells cause injury and stress are important for understanding the inflammatory response during NAFLD. PMID:25568861

  8. Alcohol project

    SciTech Connect

    Not Available

    1980-12-01

    It is reported that Savannah Foods and Industries, in a joint venture with United States Sugar Corporation have applied for a loan guarantee for the production of alcohol from agricultural commodities. The two phase program calls for research and development, before a prototype plant will be built for the conversion of cellulosic compounds found in bagasse into alcohol for use as a fuel.

  9. [Role of intestinal flora in health and disease].

    PubMed

    Guamer, F

    2007-05-01

    The terms intestinal "microflora" or "microbiota refer to the microbial ecosystem colonizing the gastrointestinal tract. Recently developed molecular biology instruments suggest that a substantial part of bacterial communities within the human gut still have to be described. The relevance and impact of resident bacteria on the host physiology and pathology are, however, well documented. The main functions of intestinal microflora include (1) metabolic activities translating into energy and nutrients uptake, and (2) host protection against invasion by foreign microorganisms. Intestinal bacteria play an essential role in the development and homeostasis of the immune system. Lymphoid follicles within the intestinal mucosa are the main areas for immune system induction and regulation. On the other hand, there is evidence implicating intestinal microbiota in certain pathological processes including multi-organ failure, colon cancer, and inflammatory bowel disease. PMID:17679289

  10. Intestinal microbiota promote enteric virus replication and systemic pathogenesis.

    PubMed

    Kuss, Sharon K; Best, Gavin T; Etheredge, Chris A; Pruijssers, Andrea J; Frierson, Johnna M; Hooper, Lora V; Dermody, Terence S; Pfeiffer, Julie K

    2011-10-14

    Intestinal bacteria aid host health and limit bacterial pathogen colonization. However, the influence of bacteria on enteric viruses is largely unknown. We depleted the intestinal microbiota of mice with antibiotics before inoculation with poliovirus, an enteric virus. Antibiotic-treated mice were less susceptible to poliovirus disease and supported minimal viral replication in the intestine. Exposure to bacteria or their N-acetylglucosamine-containing surface polysaccharides, including lipopolysaccharide and peptidoglycan, enhanced poliovirus infectivity. We found that poliovirus binds lipopolysaccharide, and exposure of poliovirus to bacteria enhanced host cell association and infection. The pathogenesis of reovirus, an unrelated enteric virus, also was more severe in the presence of intestinal microbes. These results suggest that antibiotic-mediated microbiota depletion diminishes enteric virus infection and that enteric viruses exploit intestinal microbes for replication and transmission. PMID:21998395

  11. Chemically induced intestinal damage models in zebrafish larvae.

    TOXLINE Toxicology Bibliographic Information

    Oehlers SH; Flores MV; Hall CJ; Okuda KS; Sison JO; Crosier KE; Crosier PS

    2013-06-01

    Several intestinal damage models have been developed using zebrafish, with the aim of recapitulating aspects of human inflammatory bowel disease (IBD). These experimentally induced inflammation models have utilized immersion exposure to an array of colitogenic agents (including live bacteria, bacterial products, and chemicals) to induce varying severity of inflammation. This technical report describes methods used to generate two chemically induced intestinal damage models using either dextran sodium sulfate (DSS) or trinitrobenzene sulfonic acid (TNBS). Methods to monitor intestinal damage and inflammatory processes, and chemical-genetic methods to manipulate the host response to injury are also described.

  12. Chemically induced intestinal damage models in zebrafish larvae.

    PubMed

    Oehlers, Stefan H; Flores, Maria Vega; Hall, Christopher J; Okuda, Kazuhide S; Sison, John Oliver; Crosier, Kathryn E; Crosier, Philip S

    2013-06-01

    Several intestinal damage models have been developed using zebrafish, with the aim of recapitulating aspects of human inflammatory bowel disease (IBD). These experimentally induced inflammation models have utilized immersion exposure to an array of colitogenic agents (including live bacteria, bacterial products, and chemicals) to induce varying severity of inflammation. This technical report describes methods used to generate two chemically induced intestinal damage models using either dextran sodium sulfate (DSS) or trinitrobenzene sulfonic acid (TNBS). Methods to monitor intestinal damage and inflammatory processes, and chemical-genetic methods to manipulate the host response to injury are also described. PMID:23448252

  13. Intestinal-renal syndrome: mirage or reality?

    PubMed

    Ritz, Eberhard

    2011-01-01

    The recent interest in the role of the intestine in the cardiovascular stability of uremic patients, specifically on dialysis, but potentially also in chronic kidney disease, must be seen against the background of the recent great interest in the role of the gut in chronic heart failure [Curr Opin Clin Nutr Metab Care 2008;11:632-639]. There has been a long-standing interest in the role of the intestine in renal failure, mainly concerning the role of metabolites of bacterial metabolism in the gut as potential uremic toxins. This area has recently been given a new twist by the finding that increased endotoxin concentrations in the blood of dialyzed patients are associated with hypotensive episodes and myocardial 'stunning'. Recent studies suggest that intradialytic underperfusion of myocardial areas, the so-called stunning, may be related to the entry of bacterial endotoxin and/or cytokines across the mucosal barrier into the circulation, where they have a negative impact on myocardial function (and presumably beyond the negative cardiac side effect also contribute to catabolism and malnutrition). Entry of bacterial endotoxin during dialysis sessions is presumably the result of intermittent underperfusion of the intestine if the effective blood volume is rapidly reduced causing breakdown of the mucosal barrier. Apart from the impact on myocardial perfusion, the entry of bacterial endotoxin and/or cytokines across the mucosal barrier may also contribute to malnutrition, wasting and reduced life expectancy in hemodialyzed patients. Such a causal relationship is absolutely plausible in view of an extensive literature on congestive heart failure where clinical and experimental evidence indicates that bacterial endotoxin and/or cytokines may escape from a hypoperfused edematous gut, entering the circulation, triggering an inflammatory response, upregulating circulating cytokines and interfering with the function of the heart through several pathogenic mechanisms. PMID:21228570

  14. Metabolism of 6-nitrochrysene by intestinal microflora

    SciTech Connect

    Manning, B.W.; Campbell, W.L.; Franklin, W.; Delclos, B.; Cerniglia, C.E.

    1988-01-01

    Since bacterial nitroreduction may play a critical role in the activation of nitropolycyclic aromatic hydrocarbons, we have used batch and semicontinuous culture systems to determine the ability of intestinal microflora to metabolize the carcinogen 6-nitrochrysene (6-NC). 6-NC was metabolized by the intestinal microflora present in the semicontinuous culture system to 6-aminochrysene (6-AC), N-formyl-6-aminochrysene (6-FAC), and 6-nitrosochrysene (6-NOC). These metabolites were isolated and identified by high-performance liquid chromatography, mass spectrometry, and UV-visible spectrophotometry and compared with authentic compounds. Almost all of the 6-NC was metabolized after 10 days. Nitroreduction of 6-NC to 6-AC was rapid; the 6-AC concentration reached a maximum at 48 h. The ratio of the formation of 6-AC to 6-FAC to 6-NOC at 48 h was 93.4:6.3:0.3. Interestingly, compared with results in the semicontinuous culture system, the only metabolite detected in the batch studies was 6-AC. The rate of nitroreduction differed among human, rat, and mouse intestinal microflora, with human intestinal microflora metabolizing 6-NC to the greatest extent. Since 6-AC has been shown to be carcinogenic in mice and since nitroso derivatives of other nitropolycyclic aromatic hydrocarbons are biologically active, our results suggest that the intestinal microflora has the enzymatic capacity to generate genotoxic compounds and may play an important role in the carcinogenicity of 6-NC.

  15. Physical stress and bacterial colonization

    PubMed Central

    Otto, Michael

    2014-01-01

    Bacterial surface colonizers are subject to a variety of physical stresses. During the colonization of human epithelia such as on the skin or the intestinal mucosa, bacteria mainly have to withstand the mechanical stress of being removed by fluid flow, scraping, or epithelial turnover. To that end, they express a series of molecules to establish firm attachment to the epithelial surface, such as fibrillar protrusions (pili) and surface-anchored proteins that bind to human matrix proteins. In addition, some bacteria – in particular gut and urinary tract pathogens – use internalization by epithelial cells and other methods such as directed inhibition of epithelial turnover to ascertain continued association with the epithelial layer. Furthermore, many bacteria produce multi-layered agglomerations called biofilms with a sticky extracellular matrix, providing additional protection from removal. This review will give an overview over the mechanisms human bacterial colonizers have to withstand physical stresses with a focus on bacterial adhesion. PMID:25212723

  16. Abdominal radiation causes bacterial translocation

    SciTech Connect

    Guzman-Stein, G.; Bonsack, M.; Liberty, J.; Delaney, J.P.

    1989-02-01

    The purpose of this study was to determine if a single dose of radiation to the rat abdomen leads to bacterial translocation into the mesenteric lymph nodes (MLN). A second issue addressed was whether translocation correlates with anatomic damage to the mucosa. The radiated group (1100 cGy) which received anesthesia also was compared with a control group and a third group which received anesthesia alone but no abdominal radiation. Abdominal radiation lead to 100% positive cultures of MLN between 12 hr and 4 days postradiation. Bacterial translocation was almost nonexistent in the control and anesthesia group. Signs of inflammation and ulceration of the intestinal mucosa were not seen until Day 3 postradiation. Mucosal damage was maximal by Day 4. Bacterial translocation onto the MLN after a single dose of abdominal radiation was not apparently dependent on anatomical, histologic damage of the mucosa.

  17. Alcohol Energy Drinks

    MedlinePLUS

    ... Home / About Addiction / Alcohol / Alcohol Energy Drinks Alcohol Energy Drinks Read 11849 times font size decrease font size increase font size Print Email Alcohol energy drinks (AEDs) or Caffeinated alcoholic beverages (CABs) are ...

  18. Lactobacillus rhamnosus GG protects against non-alcoholic fatty liver disease in mice.

    TOXLINE Toxicology Bibliographic Information

    Ritze Y; Bárdos G; Claus A; Ehrmann V; Bergheim I; Schwiertz A; Bischoff SC

    2014-01-01

    OBJECTIVE: Experimental evidence revealed that obesity-associated non-alcoholic fatty liver disease (NAFLD) is linked to changes in intestinal permeability and translocation of bacterial products to the liver. Hitherto, no reliable therapy is available except for weight reduction. Within this study, we examined the possible effect of the probiotic bacterial strain Lactobacillus rhamnosus GG (LGG) as protective agent against experimental NAFLD in a mouse model.METHODS: Experimental NAFLD was induced by a high-fructose diet over eight weeks in C57BL/J6 mice. Fructose was administered via the drinking water containing 30% fructose with or without LGG at a concentration resulting in approximately 5×10(7) colony forming units/g body weight. Mice were examined for changes in small intestinal microbiota, gut barrier function, lipopolysaccharide (LPS) concentrations in the portal vein, liver inflammation and fat accumulation in the liver.RESULTS: LGG increased beneficial bacteria in the distal small intestine. Moreover, LGG reduced duodenal IκB protein levels and restored the duodenal tight junction protein concentration. Portal LPS (P≤0.05) was reduced and tended to attenuate TNF-α, IL-8R and IL-1β mRNA expression in the liver feeding a high-fructose diet supplemented with LGG. Furthermore liver fat accumulation and portal alanine-aminotransferase concentrations (P≤0.05) were attenuated in mice fed the high-fructose diet and LGG.CONCLUSIONS: We show for the first time that LGG protects mice from NAFLD induced by a high-fructose diet. The underlying mechanisms of protection likely involve an increase of beneficial bacteria, restoration of gut barrier function and subsequent attenuation of liver inflammation and steatosis.

  19. Lactobacillus rhamnosus GG Protects against Non-Alcoholic Fatty Liver Disease in Mice

    PubMed Central

    Ritze, Yvonne; Bárdos, Gyöngyi; Claus, Anke; Ehrmann, Veronika; Bergheim, Ina; Schwiertz, Andreas; Bischoff, Stephan C.

    2014-01-01

    Objective Experimental evidence revealed that obesity-associated non-alcoholic fatty liver disease (NAFLD) is linked to changes in intestinal permeability and translocation of bacterial products to the liver. Hitherto, no reliable therapy is available except for weight reduction. Within this study, we examined the possible effect of the probiotic bacterial strain Lactobacillus rhamnosus GG (LGG) as protective agent against experimental NAFLD in a mouse model. Methods Experimental NAFLD was induced by a high-fructose diet over eight weeks in C57BL/J6 mice. Fructose was administered via the drinking water containing 30% fructose with or without LGG at a concentration resulting in approximately 5×107 colony forming units/g body weight. Mice were examined for changes in small intestinal microbiota, gut barrier function, lipopolysaccharide (LPS) concentrations in the portal vein, liver inflammation and fat accumulation in the liver. Results LGG increased beneficial bacteria in the distal small intestine. Moreover, LGG reduced duodenal IκB protein levels and restored the duodenal tight junction protein concentration. Portal LPS (P≤0.05) was reduced and tended to attenuate TNF-α, IL-8R and IL-1β mRNA expression in the liver feeding a high-fructose diet supplemented with LGG. Furthermore liver fat accumulation and portal alanine-aminotransferase concentrations (P≤0.05) were attenuated in mice fed the high-fructose diet and LGG. Conclusions We show for the first time that LGG protects mice from NAFLD induced by a high-fructose diet. The underlying mechanisms of protection likely involve an increase of beneficial bacteria, restoration of gut barrier function and subsequent attenuation of liver inflammation and steatosis. PMID:24475018

  20. Intestinal M cells.

    PubMed

    Ohno, Hiroshi

    2016-02-01

    We have an enormous number of commensal bacteria in our intestine, moreover, the foods that we ingest and the water we drink is sometimes contaminated with pathogenic microorganisms. The intestinal epithelium is always exposed to such microbes, friend or foe, so to contain them our gut is equipped with specialized gut-associated lymphoid tissue (GALT), literally the largest peripheral lymphoid tissue in the body. GALT is the intestinal immune inductive site composed of lymphoid follicles such as Peyer's patches. M cells are a subset of intestinal epithelial cells (IECs) residing in the region of the epithelium covering GALT lymphoid follicles. Although the vast majority of IEC function to absorb nutrients from the intestine, M cells are highly specialized to take up intestinal microbial antigens and deliver them to GALT for efficient mucosal as well as systemic immune responses. I will discuss recent advances in our understanding of the molecular mechanisms of M-cell differentiation and functions. PMID:26634447

  1. Alcohol conversion

    DOEpatents

    Wachs, Israel E. (Bridgewater, NJ); Cai, Yeping (Louisville, KY)

    2002-01-01

    Preparing an aldehyde from an alcohol by contacting the alcohol in the presence of oxygen with a catalyst prepared by contacting an intimate mixture containing metal oxide support particles and particles of a catalytically active metal oxide from Groups VA, VIA, or VIIA, with a gaseous stream containing an alcohol to cause metal oxide from the discrete catalytically active metal oxide particles to migrate to the metal oxide support particles and to form a monolayer of catalytically active metal oxide on said metal oxide support particles.

  2. Alcoholic liver disease: Clinical and translational research.

    PubMed

    Neuman, Manuela G; Malnick, Stephen; Maor, Yaakov; Nanau, Radu M; Melzer, Ehud; Ferenci, Peter; Seitz, Helmut K; Mueller, Sebastian; Mell, Haim; Samuel, Didier; Cohen, Lawrence B; Kharbanda, Kusum K; Osna, Natalia A; Ganesan, Murali; Thompson, Kyle J; McKillop, Iain H; Bautista, Abraham; Bataller, Ramon; French, Samuel W

    2015-12-01

    The present review spans a broad spectrum of topics dealing with alcoholic liver disease (ALD), including clinical research, translational research, pathogenesis and therapies. A special accent is placed on alcohol misuse, as alcohol is a legally commercialized and taxable product. Drinking alcohol, particularly from a young age, is a major health problem. Alcoholism is known to contribute to morbidity and mortality. A systematic literature search was performed in order to obtain updated data (2008-2015). The review is focused on genetic polymorphisms of alcohol metabolizing enzymes and the role of cytochrome p450 2E1 and iron in ALD. Alcohol-mediated hepatocarcinogenesis is also discussed in the presence or absence of co-morbidities such as viral hepatitis C as well as therapeutic the role of innate immunity in ALD-HCV. Moreover, emphasis was placed on alcohol and drug interactions, as well as liver transplantation for end-stage ALD. Finally, the time came to eradicate alcohol-induced liver and intestinal damage by using betaine. PMID:26342547

  3. Alcohol withdrawal

    MedlinePLUS

    ... Seeing or feeling things that aren't there (hallucinations) Seizures Severe confusion ... alcohol withdrawal. You will be watched closely for hallucinations and other signs of delirium tremens. Treatment may ...

  4. Host-microbiota interactions in the intestine.

    PubMed

    Elson, Charles O; Alexander, Katie L

    2015-01-01

    The comprehensive collection of bacterial species, termed microbiota, within human and other mammalian hosts has profound effects on both innate and adaptive immunity. Multiple host innate mechanisms contribute to intestinal homeostasis, including epithelial production of protective mucin layers maintaining spatial segregation in the intestine as well as epithelial cell secretion of a broad range of antimicrobial peptides. Additionally, epithelial cells employ autophagy to contain and eliminate invading bacteria; interestingly, genetic variants in specific autophagy genes are linked to susceptibility to Crohn's disease. Innate lymphoid cells, which rapidly respond to cytokine and microbial signals, have emerged as important regulators of the intestinal immune response to the microbiota. With regard to adaptive immunity, specific microbial species stimulate induction of regulatory T cells while others induce effector T cells within the gut. Such stimulation is subject to dysregulation during inflammation and disease, contributing to 'dysbiosis' or an abnormal microbiota composition that has been associated with a variety of immune-mediated inflammatory disorders, including celiac disease. The microbiota communicates with the immune system and vice versa; thus, an abnormal microbiota composition likely translates into an altered host immune response, though the exact mechanisms of such are not yet clear. Immunoglobulin A plays a critical role in limiting bacterial access to the host and in maintaining mutualism with the microbiota. Perturbation of the mucosal barrier via infection or other means can induce effector T cells reactive to the intestinal microbiota, and these cells can persist as memory cells for extended periods of time and potentially serve as pathogenic effector cells upon re-encounter with antigen. Health is associated with a diverse microbiota that functions to maintain the balance between T effector and T regulatory cells in the intestine. Whether dysbiosis can be reversed in immune-mediated disease, thus restoring health, is a question of intense interest for this active area of research. PMID:25925913

  5. Bacterial Keratitis

    MedlinePLUS

    ... Kierstan Boyd Reviewed by: Devin A Harrison MD Mar. 01, 2015 Bacterial keratitis is an infection of ... Medications Aug 18, 2014 Pink Eye and School Mar 11, 2014 Sun Exposure Mar 10, 2014 Leer ...

  6. Bacterial Vaginosis

    MedlinePLUS

    ... incubation period for bacterial vaginosis. How Is the Diagnosis Made? Your childs pediatrician can make the diagnosis ... Editorial Policy This site complies with the HONcode standard for trustworthy health information: verify here. Copyright 2016 ...

  7. Abnormal intestinal permeability and microbiota in patients with autoimmune hepatitis

    PubMed Central

    Lin, Rui; Zhou, Lu; Zhang, Jie; Wang, Bangmao

    2015-01-01

    Background: Autoimmune hepatitis (AIH) is a chronic, progressive, and immunologically mediated inflammatory liver disorder. The etiology of AIH still remains unknown. The aim of this study was to investigate the changes in intestinal permeability, bacterial translocation, and intestinal microbiome in patients with AIH and to evaluate the correlations of those changes with the stages of the disease. Methods: 24 patients with autoimmune hepatitis and 8 healthy volunteers were recruited for this study. We assessed (1) the integrity of tight junctions within the gut by immunohistochemical analysis of zona occludens-1 and occludin expression in duodenal biopsy specimens; (2) changes in the enteric microbiome by 16S rDNA quantitative PCR; and (3) the presence of bacterial translocation by the level of lipopolysaccharide (LPS) using ELISA. Results: Increased intestinal permeability, derangement of the microbiome and bacterial translocation occurred in AIH, which correlated with the severity of the disease. Conclusions: Autoimmune hepatitis is associated with leaky gut and intestinal microbiome dysbiosis. The impaired intestinal barrier may play an important role in the pathogenesis of AIH. PMID:26191211

  8. Alcohol Abuse: Alcohol Withdrawal Syndrome

    MedlinePLUS

    ... have DTs may experience confusion, anxiety and even hallucinations (seeing, hearing or feeling things that aren't ... control the shakiness, anxiety and confusion that can come with alcohol withdrawal. If you take these medicines ...

  9. Intestinal Polyps (in Children)

    MedlinePLUS

    ... the large intestine). (continued on next page) NASPGHAN • PO Box 6 • Flourtown, PA 19031 • 215-233-0808 • Fax: 215-233-3918 REV 7/10 Intestinal Polyps continued How is the diagnosis made? If a child presents with a prolapse of a polyp, the ...

  10. MICROBIAL SUCCESSION AND INTESTINAL ENZYME ACTIVITIES IN THE DEVELOPING RAT

    EPA Science Inventory

    The succession of gastrointestinal flora in the developing rat was studied, concomitant with studies of intestinal enzyme activity. Aerobes and anaerobes were identified as members of 4 major bacterial groups, i.e., Lactobacilli spp., Gram positive enterococci, Gram negative rods...

  11. Antibiotic Resistant Microbiota in the Swine Intestinal Tract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The healthy swine intestine is populated by upwards of 500 bacterial species, mainly obligate anaerobes. Our research focuses on the roles of these commensal bacteria in antimicrobial resistance and on interventions to reduce the prevalence of antibiotic resistant bacteria. In comparisons of intes...

  12. A composite bacteriophage alters colonization by an intestinal commensal bacterium

    PubMed Central

    Duerkop, Breck A.; Clements, Charmaine V.; Rollins, Darcy; Rodrigues, Jorge L. M.; Hooper, Lora V.

    2012-01-01

    The mammalian intestine is home to a dense community of bacteria and its associated bacteriophage (phage). Virtually nothing is known about how phages impact the establishment and maintenance of resident bacterial communities in the intestine. Here, we examine the phages harbored by Enterococcus faecalis, a commensal of the human intestine. We show that E. faecalis strain V583 produces a composite phage (?V1/7) derived from two distinct chromosomally encoded prophage elements. One prophage, prophage 1 (?V1), encodes the structural genes necessary for phage particle production. Another prophage, prophage 7 (?V7), is required for phage infection of susceptible host bacteria. Production of ?V1/7 is controlled, in part, by nutrient availability, because ?V1/7 particle numbers are elevated by free amino acids in culture and during growth in the mouse intestine. ?V1/7 confers an advantage to E. faecalis V583 during competition with other E. faecalis strains in vitro and in vivo. Thus, we propose that E. faecalis V583 uses phage particles to establish and maintain dominance of its intestinal niche in the presence of closely related competing strains. Our findings indicate that bacteriophages can impact the dynamics of bacterial colonization in the mammalian intestinal ecosystem. PMID:23045666

  13. Establishing Caenorhabditis elegans as a model for Mycobacterium avium subspecies hominissuis infection and intestinal colonization

    PubMed Central

    Everman, Jamie L.; Ziaie, Navid R.; Bechler, Jessica; Bermudez, Luiz E.

    2015-01-01

    ABSTRACT The nematode Caenorhabditis elegans has become a model system for studying the disease interaction between pathogens and the host. To determine whether the transparent nematode could serve as a useful model for Mycobacterium avium subspecies hominissuis (MAH) infection of the intestinal tract, worms were fed MAH and assayed for the effects of the bacterial infection on the worm. It was observed during feeding that viable MAH increases in the intestinal lumen in a time dependent manner. Ingestion of MAH was deemed non-toxic to worms as MAH-fed populations have similar survival curves to those fed E. coli strain OP50. Pulse-chase analysis using E. coli strain OP50 revealed that MAH colonize the intestinal tract, as viable MAH remain within the intestine after the assay. Visualization of intestinal MAH using histology and transmission electron microscopy demonstrates that MAH localizes to the intestinal lumen, as well as establishes direct contact with intestinal epithelium. Bacterial colonization appears to have a detrimental effect on the microvilli of the intestinal epithelial cells. The MAH ?GPL/4B2 strain with a mutation in glycopeptidolipid production is deficient in binding to human epithelial cells (HEp-2), as well as deficient in its ability to bind to and colonize the intestinal tract of C. elegans as efficiently as wild-type MAH. These data indicate the C. elegans may serve as a useful model system for MAH pathogenesis and in determining the mechanisms used by MAH during infection and colonization of the intestinal epithelium. PMID:26405050

  14. Immune Responses to Intestinal Microbes in Inflammatory Bowel Diseases.

    PubMed

    Hansen, Jonathan J

    2015-10-01

    Inflammatory bowel diseases (IBDs), including Crohn's disease and ulcerative colitis, are characterized by chronic, T-cell-mediated inflammation of the gastrointestinal tract that can cause significant, lifelong morbidity. Data from both human and animal studies indicate that IBDs are likely caused by dysregulated immune responses to resident intestinal microbes. Certain products from mycobacteria, fungi, and Clostridia stimulate increased effector T cell responses during intestinal inflammation, whereas other bacterial products from Clostridia and Bacteroides promote anti-inflammatory regulatory T cell responses. Antibody responses to bacterial and fungal components may help predict the severity of IBDs. While most currently approved treatments for IBDs generally suppress the patient's immune system, our growing understanding of microbial influences in IBDs will likely lead to the development of new diagnostic tools and therapies that target the intestinal microbiota. PMID:26306907

  15. Bacterial rheotaxis.

    PubMed

    Marcos; Fu, Henry C; Powers, Thomas R; Stocker, Roman

    2012-03-27

    The motility of organisms is often directed in response to environmental stimuli. Rheotaxis is the directed movement resulting from fluid velocity gradients, long studied in fish, aquatic invertebrates, and spermatozoa. Using carefully controlled microfluidic flows, we show that rheotaxis also occurs in bacteria. Excellent quantitative agreement between experiments with Bacillus subtilis and a mathematical model reveals that bacterial rheotaxis is a purely physical phenomenon, in contrast to fish rheotaxis but in the same way as sperm rheotaxis. This previously unrecognized bacterial taxis results from a subtle interplay between velocity gradients and the helical shape of flagella, which together generate a torque that alters a bacterium's swimming direction. Because this torque is independent of the presence of a nearby surface, bacterial rheotaxis is not limited to the immediate neighborhood of liquid-solid interfaces, but also takes place in the bulk fluid. We predict that rheotaxis occurs in a wide range of bacterial habitats, from the natural environment to the human body, and can interfere with chemotaxis, suggesting that the fitness benefit conferred by bacterial motility may be sharply reduced in some hydrodynamic conditions. PMID:22411815

  16. Obesity, fatty liver disease and intestinal microbiota

    PubMed Central

    Arslan, Nur

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disorder that is increasing in prevalence with the worldwide epidemic of obesity. NAFLD is the hepatic manifestation of the metabolic syndrome. The term NAFLD describes a spectrum of liver pathology ranges from simple steatosis to steatosis with inflammation nonalcoholic steatohepatitis and even cirrhosis. Metabolic syndrome and NAFLD also predict hepatocellular carcinoma. Many genetic and environmental factors have been suggested to contribute to the development of obesity and NAFLD, but the exact mechanisms are not known. Intestinal ecosystem contains trillions of microorganisms including bacteria, Archaea, yeasts and viruses. Several studies support the relationship between the intestinal microbial changes and obesity and also its complications, including insulin resistance and NAFLD. Given that the gut and liver are connected by the portal venous system, it makes the liver more vulnerable to translocation of bacteria, bacterial products, endotoxins or secreted cytokines. Altered intestinal microbiota (dysbiosis) may stimulate hepatic fat deposition through several mechanisms: regulation of gut permeability, increasing low-grade inflammation, modulation of dietary choline metabolism, regulation of bile acid metabolism and producing endogenous ethanol. Regulation of intestinal microbial ecosystem by diet modifications or by using probiotics and prebiotics as a treatment for obesity and its complications might be the issue of further investigations. PMID:25469013

  17. Obesity, fatty liver disease and intestinal microbiota.

    PubMed

    Arslan, Nur

    2014-11-28

    Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disorder that is increasing in prevalence with the worldwide epidemic of obesity. NAFLD is the hepatic manifestation of the metabolic syndrome. The term NAFLD describes a spectrum of liver pathology ranges from simple steatosis to steatosis with inflammation nonalcoholic steatohepatitis and even cirrhosis. Metabolic syndrome and NAFLD also predict hepatocellular carcinoma. Many genetic and environmental factors have been suggested to contribute to the development of obesity and NAFLD, but the exact mechanisms are not known. Intestinal ecosystem contains trillions of microorganisms including bacteria, Archaea, yeasts and viruses. Several studies support the relationship between the intestinal microbial changes and obesity and also its complications, including insulin resistance and NAFLD. Given that the gut and liver are connected by the portal venous system, it makes the liver more vulnerable to translocation of bacteria, bacterial products, endotoxins or secreted cytokines. Altered intestinal microbiota (dysbiosis) may stimulate hepatic fat deposition through several mechanisms: regulation of gut permeability, increasing low-grade inflammation, modulation of dietary choline metabolism, regulation of bile acid metabolism and producing endogenous ethanol. Regulation of intestinal microbial ecosystem by diet modifications or by using probiotics and prebiotics as a treatment for obesity and its complications might be the issue of further investigations. PMID:25469013

  18. Intestinal colonization resistance

    PubMed Central

    Lawley, Trevor D; Walker, Alan W

    2013-01-01

    Dense, complex microbial communities, collectively termed the microbiota, occupy a diverse array of niches along the length of the mammalian intestinal tract. During health and in the absence of antibiotic exposure the microbiota can effectively inhibit colonization and overgrowth by invading microbes such as pathogens. This phenomenon is called ‘colonization resistance’ and is associated with a stable and diverse microbiota in tandem with a controlled lack of inflammation, and involves specific interactions between the mucosal immune system and the microbiota. Here we overview the microbial ecology of the healthy mammalian intestinal tract and highlight the microbe–microbe and microbe–host interactions that promote colonization resistance. Emerging themes highlight immunological (T helper type 17/regulatory T-cell balance), microbiota (diverse and abundant) and metabolic (short-chain fatty acid) signatures of intestinal health and colonization resistance. Intestinal pathogens use specific virulence factors or exploit antibiotic use to subvert colonization resistance for their own benefit by triggering inflammation to disrupt the harmony of the intestinal ecosystem. A holistic view that incorporates immunological and microbiological facets of the intestinal ecosystem should facilitate the development of immunomodulatory and microbe-modulatory therapies that promote intestinal homeostasis and colonization resistance. PMID:23240815

  19. Intestinal glucose metabolism revisited.

    PubMed

    Mithieux, Gilles; Gautier-Stein, Amandine

    2014-09-01

    It is long known that the gut can contribute to the control of glucose homeostasis via its high glucose utilization capacity. Recently, a novel function in intestinal glucose metabolism (gluconeogenesis) was described. The intestine notably contributes to about 20-25% of total endogenous glucose production during fasting. More importantly, intestinal gluconeogenesis is capable of regulating energy homeostasis through a communication with the brain. The periportal neural system senses glucose (produced by intestinal gluconeogenesis) in the portal vein walls, which sends a signal to the brain to modulate hunger sensations and whole body glucose homeostasis. Relating to the mechanism of glucose sensing, the role of the glucose receptor SGLT3 has been strongly suggested. Moreover, dietary proteins mobilize intestinal gluconeogenesis as a mandatory link between their detection in the portal vein and their effect of satiety. In the same manner, dietary soluble fibers exert their anti-obesity and anti-diabetic effects via the induction of intestinal gluconeogenesis. FFAR3 is a key neural receptor involved in the specific sensing of propionate to activate a gut-brain reflex arc triggering the induction of the gut gluconeogenic function. Lastly, intestinal gluconeogenesis might also be involved in the rapid metabolic improvements induced by gastric bypass surgeries of obesity. PMID:24969963

  20. Role of microRNAs in Alcohol-Induced Multi-Organ Injury

    PubMed Central

    Natarajan, Sathish Kumar; Pachunka, Joseph M.; Mott, Justin L.

    2015-01-01

    Alcohol consumption and its abuse is a major health problem resulting in significant healthcare cost in the United States. Chronic alcoholism results in damage to most of the vital organs in the human body. Among the alcohol-induced injuries, alcoholic liver disease is one of the most prevalent in the United States. Remarkably, ethanol alters expression of a wide variety of microRNAs that can regulate alcohol-induced complications or dysfunctions. In this review, we will discuss the role of microRNAs in alcoholic pancreatitis, alcohol-induced liver damage, intestinal epithelial barrier dysfunction, and brain damage including altered hippocampus structure and function, and neuronal loss, alcoholic cardiomyopathy, and muscle damage. Further, we have reviewed the role of altered microRNAs in the circulation, teratogenic effects of alcohol, and during maternal or paternal alcohol consumption. PMID:26610589

  1. Pediatric intestinal motility disorders

    PubMed Central

    Gfroerer, Stefan; Rolle, Udo

    2015-01-01

    Pediatric intestinal motility disorders affect many children and thus not only impose a significant impact on pediatric health care in general but also on the quality of life of the affected patient. Furthermore, some of these conditions might also have implications for adulthood. Pediatric intestinal motility disorders frequently present as chronic constipation in toddler age children. Most of these conditions are functional, meaning that constipation does not have an organic etiology, but in 5% of the cases, an underlying, clearly organic disorder can be identified. Patients with organic causes for intestinal motility disorders usually present in early infancy or even right after birth. The most striking clinical feature of children with severe intestinal motility disorders is the delayed passage of meconium in the newborn period. This sign is highly indicative of the presence of Hirschsprung disease (HD), which is the most frequent congenital disorder of intestinal motility. HD is a rare but important congenital disease and the most significant entity of pediatric intestinal motility disorders. The etiology and pathogenesis of HD have been extensively studied over the last several decades. A defect in neural crest derived cell migration has been proven as an underlying cause of HD, leading to an aganglionic distal end of the gut. Numerous basic science and clinical research related studies have been conducted to better diagnose and treat HD. Resection of the aganglionic bowel remains the gold standard for treatment of HD. Most recent studies show, at least experimentally, the possibility of a stem cell based therapy for HD. This editorial also includes rare causes of pediatric intestinal motility disorders such as hypoganglionosis, dysganglionosis, chronic intestinal pseudo-obstruction and ganglioneuromatosis in multiple endocrine metaplasia. Underlying organic pathologies are rare in pediatric intestinal motility disorders but must be recognized as early as possible. PMID:26361414

  2. Rifaximin Alters Intestinal Bacteria and Prevents Stress-Induced Gut Inflammation and Visceral Hyperalgesia in Rats

    PubMed Central

    Xu, Dabo; Gao, Jun; Gillilland, Merritt; Wu, Xiaoyin; Song, Il; Kao, John Y.; Owyang, Chung

    2014-01-01

    Background & Aims Rifaximin is used to treat patients with functional gastrointestinal disorders, but little is known about its therapeutic mechanism. We propose that rifaximin modulates the ileal bacterial community, reduces subclinical inflammation of the intestinal mucosa, and improves gut barrier function to reduce visceral hypersensitivity. Methods We induced visceral hyperalgesia in rats, via chronic water avoidance or repeat restraint stressors, and investigated whether rifaximin altered the gut microbiota, prevented intestinal inflammation, and improved gut barrier function. Quantitative polymerase chain reaction and 454 pyrosequencing were used to analyze bacterial 16S rRNA in ileal contents from the rats. Reverse transcription, immunoblot, and histologic analyses were used to evaluate levels of cytokines, the tight junction protein occludin, and mucosal inflammation, respectively. Intestinal permeability and rectal sensitivity were measured. Results Water avoidance and repeat restraint stress each led to visceral hyperalgesia, accompanied by mucosal inflammation and impaired mucosal barrier function. Oral rifaximin altered the composition of bacterial communities in the ileum (Lactobacillus species became the most abundant) and prevented mucosal inflammation, impairment to intestinal barrier function, and visceral hyperalgesia in response to chronic stress. Neomycin also changed the composition of the ileal bacterial community (Proteobacteria became the most abundant species). Neomycin did not prevent intestinal inflammation or induction of visceral hyperalgesia induced by water avoidance stress. Conclusions Rifaximin alters the bacterial population in the ileum of rats, leading to a relative abundance of Lactobacillus. These changes prevent intestinal abnormalities and visceral hyperalgesia in response to chronic psychological stress. PMID:24161699

  3. Breath alcohol test (image)

    MedlinePLUS

    The breath alcohol test measures the amount of alcohol in the blood by testing exhaled air. The test is performed by blowing into a breath machine 15 minutes after alcohol consumption. The test determines how much alcohol it ...

  4. Fetal alcohol syndrome

    MedlinePLUS

    Alcohol in pregnancy; Alcohol-related birth defects; Fetal alcohol effects; FAS ... varies. Almost none of these babies have normal brain development. Infants and children with fetal alcohol syndrome have many different problems, which can be ...

  5. [Explosion of intestinal gas during surgery].

    PubMed

    Bonnet, Y Y; Haberer, J P; Schutz, R; Simon, R; Vanwynsberghe, B; Mercier, R

    1983-01-01

    Two cases of colonic gas explosion during surgery are reported. The treatment of the lesions required a partial colectomy in one case and a total colectomy in the other case. The different factors involved in such accidents are discussed. Three factors are necessary to trigger off an explosion of intestinal gases: the presence of combustible gases (hydrogen, methane), the presence of combustive gases (oxygen, nitrous oxide) and an initiating heat source (endoscopic or surgical electrocautery). The mannitol used for bowel cleansing undergoes partial colonic bacterial fermentation increasing the intraluminal concentration of hydrogen. During anaesthesia the oxygen-nitrous oxide mixture increases the intestinal concentration of these two major combustive gases. Electrocautery provides the spark triggering the explosion. The use of mannitol for colonic preparation should be questioned; the use of electrocautery to open the colon is advised against. PMID:6419649

  6. The Intestinal Microbiota and Viral Susceptibility

    PubMed Central

    Pfeiffer, Julie K.; Sonnenburg, Justin L.

    2011-01-01

    Many infections start with microbial invasion of mucosal surfaces, which are typically colonized by a community of resident microbes. A growing body of literature demonstrates that the resident microbiota plays a significant role in host susceptibility to pathogens. Recent work has largely focused on the considerable effect that the intestinal microbiota can have upon bacterial pathogenesis. These studies reveal many significant gaps in our knowledge about the mechanisms by which the resident community impacts pathogen invasion and the nature of the ensuing host immune response. It is likely that as viral pathogens become the focus of studies that examine microbiota–host interaction, substantial effects of resident communities exerted via diverse mechanisms will be elucidated. Here we provide a perspective of the exciting emerging field that examines how the intestinal microbiota influences host susceptibility to viruses. PMID:21833331

  7. Allyl alcohol

    Integrated Risk Information System (IRIS)

    Allyl alcohol ; CASRN 107 - 18 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  8. Propargyl alcohol

    Integrated Risk Information System (IRIS)

    Propargyl alcohol ; CASRN 107 - 19 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  9. Isobutyl alcohol

    Integrated Risk Information System (IRIS)

    Isobutyl alcohol ; CASRN 78 - 83 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  10. Alcohol project

    SciTech Connect

    Not Available

    1980-12-01

    The Great Western Sugar Company has announced plans for the construction of a $300 million plant for the production of fuel grade alcohol from corn. The plant at Reserve, Lousiana, will also produce high fructose corn syrup and animal feed by-products and will employ an additional 200 people.

  11. [Alcohol--woman, pregnancy and a newborn child].

    PubMed

    Jagielska, Iwona; Kazdepka-Ziemi?ska, Anita; Stankiewicz, Martyna; Ka?mierczak, Jolanta

    2012-01-01

    According to the World Health Organization, alcohol is the third most dangerous factor following smoking of tobacco and hypertension of risks impacting health of the population. 50 % of men and 10 % of women suffer from diseases caused by alcohol drinking. Chronic consumption of alcohol damages the nervous system, causes adverse changes in the circulatory system and intestine, increases the risk of cancers. Comparing the impact of alcohol on the health of women and men, in case of women, even similar levels of consumption cause stronger action. Alcohol is the cause of endocrine diseases and among others- reduces fertility. It is the risk factor of premature deliveries, abortions, and placenta- associated pathologies. Disorders of children with prenatal exposure to alcohol are described as fetal alcohol syndrome, alcohol related neurodevelopmental disorders and alcohol related birth defects. It is recommended to impose a total ban on alcohol consumption by pregnant women. Moreover one should emphasize that the minimum safe dose of alcohol for the foetus cannot be specified. In order to resolve alcohol drinking problems a cooperation of representatives of many professions such as: doctors, psychologists, educators and employees of care facilities is necessary. It is also obligatory to obtain support and assistance from the nearest surroundings of the patient. PMID:23421101

  12. Alcoholism: A systemic proinflammatory condition

    PubMed Central

    González-Reimers, Emilio; Santolaria-Fernández, Francisco; Martín-González, María Candelaria; Fernández-Rodríguez, Camino María; Quintero-Platt, Geraldine

    2014-01-01

    Excessive ethanol consumption affects virtually any organ, both by indirect and direct mechanisms. Considerable research in the last two decades has widened the knowledge about the paramount importance of proinflammatory cytokines and oxidative damage in the pathogenesis of many of the systemic manifestations of alcoholism. These cytokines derive primarily from activated Kupffer cells exposed to Gram-negative intestinal bacteria, which reach the liver in supra-physiological amounts due to ethanol-mediated increased gut permeability. Reactive oxygen species (ROS) that enhance the inflammatory response are generated both by activation of Kupffer cells and by the direct metabolic effects of ethanol. The effects of this increased cytokine secretion and ROS generation lie far beyond liver damage. In addition to the classic consequences of endotoxemia associated with liver cirrhosis that were described several decades ago, important research in the last ten years has shown that cytokines may also induce damage in remote organs such as brain, bone, muscle, heart, lung, gonads, peripheral nerve, and pancreas. These effects are even seen in alcoholics without significant liver disease. Therefore, alcoholism can be viewed as an inflammatory condition, a concept which opens the possibility of using new therapeutic weapons to treat some of the complications of this devastating and frequent disease. In this review we examine some of the most outstanding consequences of the altered cytokine regulation that occurs in alcoholics in organs other than the liver. PMID:25356029

  13. Interactions between the intestinal microbiome and helminth parasites.

    PubMed

    Zaiss, M M; Harris, N L

    2016-01-01

    Throughout evolution, both helminths and bacteria have inhabited our intestines. As intestinal helminths and bacteria inhabit the same environmental niche, it is likely that these organisms interact with, and impact on, each other. In addition, intestinal helminths are well known to alter intestinal physiology, permeability, mucous secretion and the production of antimicrobial peptides - all of which may impact on bacterial survival and spatial organization. Yet despite rapid advances in our understanding of host-intestinal bacteria interactions, the impact of helminths on this relationship has remained largely unexplored. Moreover, although intestinal helminths are generally accepted to possess potent immuno-modulatory activity, it is unknown whether this capacity requires interactions with intestinal bacteria. We propose that this 'mnage trois' situation is likely to have exerted a strong selective pressure on the development of our metabolic and immune systems. Whilst such pressures remain in developing countries, the eradication of helminths in industrialized countries has shifted this evolutionary balance, possibly underlying the increased development of chronic inflammatory diseases. Thus, helminth-bacteria interactions may represent a key determinant of healthy homoeostasis. PMID:26345715

  14. Vasoactive intestinal peptide test

    MedlinePLUS

    Vasoactive intestinal polypeptide test ... or drink anything for 4 hours before the test. ... This test is used to confirm the presence of a VIPoma , a tumor that releases VIP. VIPoma's are extremely ...

  15. [Intestinal obstruction, an overview].

    PubMed

    Trilling, Bertrand; Girard, Edouard; Waroquet, Pierre Alexandre; Arvieux, Catherine

    2016-01-01

    Intestinal obstruction is a pathology commonly encountered in emergency and surgical departments. Its origin is usually mechanical, caused by obstruction of the digestive tract. It is a therapeutic emergency. Surgical treatment is required for the most severe cases. PMID:26743364

  16. The large intestine (image)

    MedlinePLUS

    ... or large bowel) is the last structure to process food, taking the undigestible matter from the small intestine, absorbing water from it and leaving the waste product called feces. Feces are expelled from the ...

  17. Diversity of the human intestinal microbial flora.

    PubMed

    Eckburg, Paul B; Bik, Elisabeth M; Bernstein, Charles N; Purdom, Elizabeth; Dethlefsen, Les; Sargent, Michael; Gill, Steven R; Nelson, Karen E; Relman, David A

    2005-06-10

    The human endogenous intestinal microflora is an essential "organ" in providing nourishment, regulating epithelial development, and instructing innate immunity; yet, surprisingly, basic features remain poorly described. We examined 13,355 prokaryotic ribosomal RNA gene sequences from multiple colonic mucosal sites and feces of healthy subjects to improve our understanding of gut microbial diversity. A majority of the bacterial sequences corresponded to uncultivated species and novel microorganisms. We discovered significant intersubject variability and differences between stool and mucosa community composition. Characterization of this immensely diverse ecosystem is the first step in elucidating its role in health and disease. PMID:15831718

  18. Dietary squid ink polysaccharides ameliorated the intestinal microflora dysfunction in mice undergoing chemotherapy.

    PubMed

    Tang, Qingjuan; Zuo, Tao; Lu, Shangyun; Wu, Juan; Wang, Jianghua; Zheng, Rong; Chen, Shiguo; Xue, Changhu

    2014-10-01

    Gastrointestinal mucositis and infection by chemotherapy treatment are associated with alteration of intestinal microflora and bacterial translocation due to the potential damage induced by anti-cancer drugs on the intestinal barrier and microbiota homeostasis. This study aimed to investigate the protective effect of dietary polysaccharides on chemotherapy induced intestinal microflora dysfunction. In the current contribution, with a mouse model intraperitoneally injected with 50 mg kg(-1) of cyclophosphamide (Cy) for 2 days, we revealed that polysaccharides from the ink of Ommastrephes bartrami (OBP) altered the intestinal microflora composition. OBP retarded the excessive growth of intestinal bacteria induced by cyclophosphamide, based on 16S rRNA gene (16S rDNA) quantification. The clone libraries of intestinal bacteria 16S rDNA were used to decipher the difference in bacterial community structures in different groups of mice. Followed by RFLP evaluation and OTU abundance analysis, they imply that OBP changed the intestinal microflora composition, in which the quantity of probiotic Bifidobacterium got up-regulated but Bacteroidetes decreased in mice undergoing chemotherapy. Our results may have important implications for OBP as a functional food component or nutrient against chemotherapy induced intestinal injury and potential pathogenic intestinal disorders involving inflammation and infection. PMID:25131333

  19. Claudins in intestines

    PubMed Central

    Lu, Zhe; Ding, Lei; Lu, Qun; Chen, Yan-Hua

    2013-01-01

    Intestines are organs that not only digest food and absorb nutrients, but also provide a defense barrier against pathogens and noxious agents ingested. Tight junctions (TJs) are the most apical component of the junctional complex, providing one form of cell-cell adhesion in enterocytes and playing a critical role in regulating paracellular barrier permeability. Alteration of TJs leads to a number of pathophysiological diseases causing malabsorption of nutrition and intestinal structure disruption, which may even contribute to systemic organ failure. Claudins are the major structural and functional components of TJs with at least 24 members in mammals. Claudins have distinct charge-selectivity, either by tightening the paracellular pathway or functioning as paracellular channels, regulating ions and small molecules passing through the paracellular pathway. In this review, we have discussed the functions of claudin family members, their distribution and localization in the intestinal tract of mammals, their alterations in intestine-related diseases and chemicals/agents that regulate the expression and localization of claudins as well as the intestinal permeability, which provide a therapeutic view for treating intestinal diseases. PMID:24478939

  20. Biochemical investigation and gene expression analysis of the immunostimulatory functions of an edible Salacia extract in rat small intestine.

    PubMed

    Oda, Yuriko; Ueda, Fumitaka; Kamei, Asuka; Kakinuma, Chihaya; Abe, Keiko

    2011-01-01

    Roots and bark from plants belonging to genus Salacia of the family Hippocrateaceae (Salacia reticulata, Salacia oblonga, etc.) have been used for traditional Ayurvedic medicine, particularly for the treatment of diabetes. In our study, we evaluated the gene expression profiles in the small intestinal epithelium of rats that were given a Salacia plant extract to gain insight into its effects on the small intestine. In detail, DNA microarray analysis was performed to evaluate the gene expression profiles in the rat ileal epithelium. The intestinal bacterial flora was also studied using T-RFLP (Nagashima method) in these rats. Expressions of many immune-related genes, especially Th1-related genes associated with cell-mediated immunity, were found to increase in the small intestinal epithelium and the intestinal bacterial flora became similar to those in the case with Salacia plant extract administration. Our study thus revealed that Salacia plant extract exerts bioregulatory functions by boosting intestinal immunity. PMID:21328625

  1. Bacterial infection as a cause of cancer.

    PubMed Central

    Parsonnet, J

    1995-01-01

    Bacterial infections traditionally have not been considered major causes of cancer. Recently, however, bacteria have been linked to cancer by two mechanisms: induction of chronic inflammation and production of carcinogenic bacterial metabolites. The most specific example of the inflammatory mechanism of carcinogenesis is Helicobacter pylori infection. H. pylori has been epidemiologically linked to adenocarcinoma of the distal stomach by its propensity to cause lifelong inflammation. This inflammation is in turn thought to cause cancer by inducing cell proliferation and production of mutagenic free radicals and N-nitroso compounds. H. pylori is the first bacterium to be termed a definite cause of cancer in humans by the International Agency for Research on Cancer. Mutagenic bacterial metabolites are also suspected to increase risk for cancer. This model is best exemplified in colon cancer. Bile salt metabolites increase colonic cell proliferation. Exogenous compounds such as rutin may be metabolized into mutagens by resident colonic flora. Moreover, Bacteroides species can produce fecapentaenes, potent in vitro mutagens, in relatively high concentrations. In vivo data on human carcinogenesis by bacterial metabolites, however, are inconsistent. Local bacterial infections may also predispose to nonnodal lymphomas, although the mechanisms for this are unknown. Gastric lymphomas and immunoproliferative small intestinal disease have been most strongly linked to underlying bacterial infection. Because bacterial infections can be cured with antibiotics, identification of bacterial causes of malignancy could have important implications for cancer prevention. PMID:8741796

  2. Interstellar Alcohols

    NASA Technical Reports Server (NTRS)

    Charnley, S. B.; Kress, M. E.; Tielens, A. G. G. M.; Millar, T. J.

    1995-01-01

    We have investigated the gas-phase chemistry in dense cores where ice mantles containing ethanol and other alcohols have been evaporated. Model calculations show that methanol, ethanol, propanol, and butanol drive a chemistry leading to the formation of several large ethers and esters. Of these molecules, methyl ethyl ether (CH3OC2H5) and diethyl ether (C2H5)2O attain the highest abundances and should be present in detectable quantities within cores rich in ethanol and methanol. Gas-phase reactions act to destroy evaporated ethanol and a low observed abundance of gas-phase C,H,OH does not rule out a high solid-phase abundance. Grain surface formation mechanisms and other possible gas-phase reactions driven by alcohols are discussed, as are observing strategies for the detection of these large interstellar molecules.

  3. Wine consumption and intestinal redox homeostasis

    PubMed Central

    Biasi, Fiorella; Deiana, Monica; Guina, Tina; Gamba, Paola; Leonarduzzi, Gabriella; Poli, Giuseppe

    2014-01-01

    Regular consumption of moderate doses of wine is an integral part of the Mediterranean diet, which has long been considered to provide remarkable health benefits. Wine׳s beneficial effect has been attributed principally to its non-alcoholic portion, which has antioxidant properties, and contains a wide variety of phenolics, generally called polyphenols. Wine phenolics may prevent or delay the progression of intestinal diseases characterized by oxidative stress and inflammation, especially because they reach higher concentrations in the gut than in other tissues. They act as both free radical scavengers and modulators of specific inflammation-related genes involved in cellular redox signaling. In addition, the importance of wine polyphenols has recently been stressed for their ability to act as prebiotics and antimicrobial agents. Wine components have been proposed as an alternative natural approach to prevent or treat inflammatory bowel diseases. The difficulty remains to distinguish whether these positive properties are due only to polyphenols in wine or also to the alcohol intake, since many studies have reported ethanol to possess various beneficial effects. Our knowledge of the use of wine components in managing human intestinal inflammatory diseases is still quite limited, and further clinical studies may afford more solid evidence of their beneficial effects. PMID:25009781

  4. Alcohol and Other Psychiatric Disorders

    MedlinePLUS

    Skip to main content National Institute on Alcohol Abuse and Alcoholism (NIAAA) Main Menu Search Search form Search Alcohol & Your Health Overview of Alcohol Consumption Alcohol's Effects on the Body Alcohol Use ...

  5. Alcohol use and safe drinking

    MedlinePLUS

    ... to alcohol use Get into trouble with the law, family members, friends, school, or dates because of alcohol THE EFFECTS OF ALCOHOL Alcoholic drinks have different amounts of alcohol in them: Beer is about 5% alcohol, although some beers can ...

  6. Bacterial adaptation to the gut environment favors successful colonization

    PubMed Central

    Rezzonico, Enea; Mestdagh, Renaud; Delley, Michèle; Combremont, Séverine; Dumas, Marc-Emmanuel; Holmes, Elaine; Nicholson, Jeremy; Bibiloni, Rodrigo

    2011-01-01

    Rodent models harboring a simple yet functional human intestinal microbiota provide a valuable tool to study the relationships between mammals and their bacterial inhabitants. In this study, we aimed to develop a simplified gnotobiotic mouse model containing 10 easy-to-grow bacteria, readily available from culture repositories, and of known genome sequence, that overall reflect the dominant commensal bacterial makeup found in adult human feces. We observed that merely inoculating a mix of fresh bacterial cultures into ex-germ free mice did not guarantee a successful intestinal colonization of the entire bacterial set, as mice inoculated simultaneously with all strains only harbored 3 after 21 d. Therefore, several inoculation procedures were tested and levels of individual strains were quantified using molecular tools. Best results were obtained by inoculating single bacterial strains into individual animals followed by an interval of two weeks before allowing the animals to socialize to exchange their commensal microbes. Through this procedure, animals were colonized with almost the complete bacterial set (9/10). Differences in the intestinal composition were also reflected in the urine and plasma metabolic profiles, where changes in lipids, SCFA, and amino acids were observed. We conclude that adaptation of bacterial strains to the host’s gut environment (mono-colonization) may predict a successful establishment of a more complex microbiota in rodents. PMID:22157236

  7. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish.

    PubMed

    Semova, Ivana; Carten, Juliana D; Stombaugh, Jesse; Mackey, Lantz C; Knight, Rob; Farber, Steven A; Rawls, John F

    2012-09-13

    Regulation of intestinal dietary fat absorption is critical to maintaining energy balance. While intestinal microbiota clearly impact the host's energy balance, their role in intestinal absorption and extraintestinal metabolism of dietary fat is less clear. Using in vivo imaging of fluorescent fatty acid (FA) analogs delivered to gnotobiotic zebrafish hosts, we reveal that microbiota stimulate FA uptake and lipid droplet (LD) formation in the intestinal epithelium and liver. Microbiota increase epithelial LD number in a diet-dependent manner. The presence of food led to the intestinal enrichment of bacteria from the phylum Firmicutes. Diet-enriched Firmicutes and their products were sufficient to increase epithelial LD number, whereas LD size was increased by other bacterial types. Thus, different members of the intestinal microbiota promote FA absorption via distinct mechanisms. Diet-induced alterations in microbiota composition might influence fat absorption, providing mechanistic insight into how microbiota-diet interactions regulate host energy balance. PMID:22980325

  8. [Volvulus of the small intestine].

    PubMed

    Ivanov, A; Viiachki, I; Iar?mov, N; Viiachki, D; Gerzilov, P; Parunev, M

    1997-01-01

    Volvulus of the small intestine is a condition of bowel obstruction due to knotting and twisting of the small intestine. Two types of volvulus are described: 1) primary small intestinal volvulus where no predisposing factors exist, and 2) secondary volvulus where congenital or acquired conditions promote twisting of the small intestine. Over a 5-year period, 18 patients (eleven men and seven women) presenting volvulus of the small intestine are operated in the Emergency Surgery Clinic of the University Hospital "Queen Giovanna", representing 8.7 per cent of the total of 206 cases of small intestinal mechanical ileus (incarcerated herniations involving the small intestine are not included in the series). Primary volvulus is found in one patient. In those presenting secondary volvulus adhesions are the commonest underlying cause of small intestinal rotation--13 cases, next ranking primary tumor of the small intestine--one case, Meckel's diverticulum--one, carcinosis of peritoneum--one, and one patient with small intestine volvulation around colostomy. The most frequently encountered symptoms and laboratory examinations performed are analyzed. Intestinal necrosis is established in four instances (22 per cent). One patient dies of peritonitis and polyorganic insufficiency. Volvulus of the small intestine should be mandatorily considered in patients presenting mechanical ileus of the small intestine. Early operative intervention is a therapeutic approach contributing to preclude intestinal necrosis. PMID:9739871

  9. Claudin-3 expression in radiation-exposed rat models: A potential marker for radiation-induced intestinal barrier failure

    SciTech Connect

    Shim, Sehwan; Lee, Jong-geol; Bae, Chang-hwan; Lee, Seung Bum; Jang, Won-Suk; Lee, Sun-Joo; Lee, Seung-Sook; Park, Sunhoo

    2015-01-02

    Highlights: • Irradiation increased intestinal bacterial translocation, accompanied by claudin protein expression in rats. • Neurotensin decreased the bacterial translocation and restored claudin-3 expression. • Claudin-3 can be used as a marker in evaluating radiation induced intestinal injury. - Abstract: The molecular events leading to radiation-induced intestinal barrier failure are not well known. The influence of the expression of claudin proteins in the presence and absence of neurotensin was investigated in radiation-exposed rat intestinal epithelium. Wistar rats were randomly divided into control, irradiation, and irradiation + neurotensin groups, and bacterial translocation to the mesenteric lymph node and expression of claudins were determined. Irradiation led to intestinal barrier failure as demonstrated by significant bacterial translocation. In irradiated terminal ilea, expression of claudin-3 and claudin-4 was significantly decreased, and claudin-2 expression was increased. Administration of neurotensin significantly reduced bacterial translocation and restored the structure of the villi as seen by histologic examination. Among the three subtype of claudins, only claudin-3 expression was restored. These results suggest that the therapeutic effect of neurotensin on the disruption of the intestinal barrier is associated with claudin-3 alteration and that claudin-3 could be used as a marker in evaluating radiation-induced intestinal injury.

  10. Metabolism of nitropolycyclic aromatic hydrocarbons by human intestinal microflora

    SciTech Connect

    Cerniglia, C.E.; Howard, P.C.; Fu, P.P.; Franklin, W.

    1984-08-30

    Anaerobic bacterial suspensions from human and rat feces and intestinal contents, and pure cultures of anaerobic bacteria metabolized 1-nitropyrene and 6-nitrobenzo(a)pyrene to 1-aminopyrene and 6-aminobenzo(a)pyrene, respectively. The metabolites were isolated by reversed-phase high performance liquid chromatography and identified by comparison of their chromatographic and mass spectral properties with those of authentic compounds. The results suggest that anaerobic intestinal bacteria could play a significant role in the metabolism of potentially carcinogenic nitropolycyclic aromatic hydrocarbons. 28 references, 4 figures, 1 table.

  11. Diet, Microbiome, and the Intestinal Epithelium: An Essential Triumvirate?

    PubMed Central

    Guzman, Javier Rivera; Conlin, Victoria Susan; Jobin, Christian

    2013-01-01

    The intestinal epithelium represents a critical barrier protecting the host against diverse luminal noxious agents, as well as preventing the uncontrolled uptake of bacteria that could activate an immune response in a susceptible host. The epithelial monolayer that constitutes this barrier is regulated by a meshwork of proteins that orchestrate complex biological function such as permeability, transepithelial electrical resistance, and movement of various macromolecules. Because of its key role in maintaining host homeostasis, factors regulating barrier function have attracted sustained attention from the research community. This paper will address the role of bacteria, bacterial-derived metabolism, and the interplay of dietary factors in controlling intestinal barrier function. PMID:23586037

  12. Effect of antimicrobial growth promoter administration on the intestinal microbiota of beef cattle

    PubMed Central

    2013-01-01

    Background Antimicrobial growth promoters (AGPs) are antimicrobial agents administered to livestock in feed for prolonged periods to enhance feed efficiency. Beef cattle are primarily finished in confined feeding operations in Canada and the USA, and the administration of AGPs such as chlortetracycline and sulfamethazine (Aureo S-700G) is the standard. The impacts of AGPs on the intestinal microbiota of beef cattle are currently uncertain; it is documented that AGPs administered to beef cattle pass through the rumen and enter the intestine. To ascertain the impacts of Aureo S-700G on the small and large intestinal microbiota of beef cattle (mucosa-associated and within digesta), terminal restriction fragment length polymorphism (T-RFLP) analysis and quantitative PCR (qPCR) for total bacteria were applied. Beef cattle were maintained in an experimental feedlot (five replicate pens per treatment), and AGP treatment cattle were administered Aureo S-700G in feed, whereas control cattle were administered no antimicrobials. As the intestinal microbiota of beef cattle has not been extensively examined, clone library analysis was applied to ascertain the primary bacterial constituents of the intestinal microbiota. Results Comparative T-RFLP and qPCR analysis (n?=?122 samples) revealed that bacterial community fingerprints and bacterial load within digesta differed from those associated with mucosa. However, the administration of Aureo S-700G did not affect bacterial community fingerprints or bacterial load within the small and large intestine relative to control cattle. Analysis of >1500 near full length 16S rDNA clones revealed considerably greater bacterial diversity in the large relative to the small intestine of beef cattle. Mucosa-associated bacterial communities in the jejunum were dominated by Proteobacteria, and differed conspicuously from those in the ileum and large intestine. Although the ileum contained bacterial clones that were common to the jejunum as well as the cecum, Firmicutes clones associated with mucosa dominated in the ileum, cecum, and descending colon. In the descending colon, clone library analysis did not reveal a difference in the richness or diversity of bacterial communities within digesta relative to those associated with mucosa. However, T-RFLP analysis indicated a significant difference in T-RF relative abundance (i.e. difference in relative taxon abundance) between mucosa-associated and digesta communities attributed in part to the differential abundance of Bacteriodes, Alistipes, Oscillibacter, and unclassified Clostridiales. Conclusions These data demonstrate that there was no significant difference in the composition of the predominant intestinal bacteria constituents within animals administered Aureo S-700G and those not administered AGPs after a 28day withdrawal period. PMID:23578222

  13. Effect of various antibiotics on modulation of intestinal microbiota and bile acid profile in mice

    SciTech Connect

    Zhang, Youcai; Limaye, Pallavi B.; Renaud, Helen J.; Klaassen, Curtis D.

    2014-06-01

    Antibiotic treatments have been used to modulate intestinal bacteria and investigate the role of intestinal bacteria on bile acid (BA) homeostasis. However, knowledge on which intestinal bacteria and bile acids are modified by antibiotics is limited. In the present study, mice were administered various antibiotics, 47 of the most abundant bacterial species in intestine, as well as individual BAs in plasma, liver, and intestine were quantified. Compared to the two antibiotic combinations (vancomycin + imipenem and cephalothin + neomycin), the three single antibiotics (metronidazole, ciprofloxacin and aztreonam) have less effect on intestinal bacterial profiles, and thus on host BA profiles and mRNA expression of genes that are important for BA homeostasis. The two antibiotic combinations decreased the ratio of Firmicutes to Bacteroidetes in intestine, as well as most secondary BAs in serum, liver and intestine. Additionally, the two antibiotic combinations significantly increased mRNA of the hepatic BA uptake transporters (Ntcp and Oatp1b2) and canalicular BA efflux transporters (Bsep and Mrp2), but decreased mRNA of the hepatic BA synthetic enzyme Cyp8b1, suggesting an elevated enterohepatic circulation of BAs. Interestingly, the two antibiotic combinations tended to have opposite effect on the mRNAs of most intestinal genes, which tended to be inhibited by vancomycin + imipenem but stimulated by cephalothin + neomycin. To conclude, the present study clearly shows that various antibiotics have distinct effects on modulating intestinal bacteria and host BA metabolism. - Highlights: • Various antibiotics have different effects on intestinal bacteria. • Antibiotics alter bile acid composition in mouse liver and intestine. • Antibiotics influence genes involved in bile acid homeostasis. • Clostridia appear to be important for secondary bile acid formation.

  14. Myoelectric activity of the small intestine during morphine dependence and withdrawal in rats

    SciTech Connect

    Kuperman, D.A.; Sninsky, C.A.; Lynch, D.F.

    1987-04-01

    The authors investigated (1) the effect of morphine dependence on the migrating myoelectric complex (MMC) of the small intestine, (2) whether bacterial overgrowth developed in morphine-dependent rats, and (3) the effect of naloxone and methylbromide naltrexone, a peripheral opioid antagonist, on the MMC in morphine-naive and morphine-dependent rats. They also evaluated intestinal motility during naloxone-induced withdrawal in animals pretreated with clonidine. Intestinal myoelectric activity was monitored by four indwelling electrodes in unanesthetized, fasted rats. D-(/sup 14/C)xylose breath tests were performed before and after morphine-pellet implantation to evaluate the presence of bacterial overgrowth of the small intestine. Naloxone had no effect on myoelectric activity of the small intestine in morphine-naive rats. Cycling activity fronts were present in morphine-dependent animals, but there was a significant prolongation of activity front periodicity and slowing of the propagation velocity. No significant increase in /sup 14/CO/sub 2/ excretion was noted in the morphine-dependent rats. They conclude from their studies that (1) myoelectric activity of the small intestine develops incomplete tolerance to morphine; (2) bacterial overgrowth is not a feature of morphine dependence in the rat; (3) alterations of intestinal myoelectric activity are a component of the opiate withdrawal syndrome, and they appear at least partially mediated by a peripheral mechanism that can be suppressed by an ..cap alpha../sub 2/-adrenergic agonist.

  15. Kidney injury, fluid, electrolyte and acid-base abnormalities in alcoholics

    PubMed Central

    Adewale, Adebayo; Ifudu, Onyekachi

    2014-01-01

    In the 21st century, alcoholism and the consequences of ethyl alcohol abuse are major public health concerns in the United States, affecting approximately 14 million people. Pertinent to the global impact of alcoholism is the World Health Organisation estimate that 140 million people worldwide suffer from alcohol dependence. Alcoholism and alcohol abuse are the third leading causes of preventable death in the United States. Alcohol dependence and alcohol abuse cost the United State an estimated US$220 billion in 2005, eclipsing the expense associated with cancer (US$196 billion) or obesity (US$133 billion). Orally ingested ethyl alcohol is absorbed rapidly without chemical change from the stomach and intestine, reaching maximum blood concentration in about an hour. Alcohol crosses capillary membranes by simple diffusion, affecting almost every organ system in the body by impacting a wide range of cellular functions. Alcohol causes metabolic derangements either directly, via its chemical by-product or secondarily through alcohol-induced disorders. Many of these alcohol-related metabolic disturbances are increased in severity by the malnutrition that is common in those with chronic alcoholism. This review focuses on the acute and chronic injurious consequences of alcohol ingestion on the kidney, as well as the fluid, electrolyte and acid-base abnormalities associated with acute and chronic ingestion of alcohol. PMID:24791039

  16. Intestinal Malrotation: A Rare Cause of Small Intestinal Obstruction

    PubMed Central

    Sipahi, Mesut; Caglayan, Kasim; Arslan, Ergin; Erkoc, Mustafa Fatih; Aytekin, Faruk Onder

    2014-01-01

    Background. The diagnosis of intestinal malrotation is established by the age of 1 year in most cases, and the condition is seldom seen in adults. In this paper, a patient with small intestinal malrotation-type intraperitoneal hernia who underwent surgery at an older age because of intestinal obstruction is presented. Case. A 73-year-old patient who presented with acute intestinal obstruction underwent surgery as treatment. Distended jejunum and ileum loops surrounded by a peritoneal sac and located between the stomach and transverse colon were determined. The terminal ileum had entered into the transverse mesocolon from the right lower part, resulting in kinking and subsequent segmentary obstruction. The obstruction was relieved, and the small intestines were placed into their normal position in the abdominal cavity. Conclusion. Small intestinal malrotations are rare causes of intestinal obstructions in adults. The appropriate treatment in these patients is placement of the intestines in their normal positions. PMID:25371842

  17. Infant intestinal Enterococcus faecalis down-regulates inflammatory responses in human intestinal cell lines

    PubMed Central

    Wang, Shugui; Ng, Lydia Hui Mei; Chow, Wai Ling; Lee, Yuan Kun

    2008-01-01

    AIM: To investigate the ability of Lactic acid bacteria (LAB) to modulate inflammatory reaction in human intestinal cell lines (Caco-2, HT-29 and HCT116). Different strains of LAB isolated from new born infants and fermented milk, together with the strains obtained from culture collections were tested. METHODS: LABs were treated with human intestinal cell lines. ELISA was used to detect IL-8 and TGF-? protein secretion. Cytokines and Toll like receptors (TLRs) gene expression were assessed using RT-PCR. Conditional medium, sonicated bacteria and UV killed bacteria were used to find the effecter molecules on the bacteria. Carbohydrate oxidation and protein digestion were applied to figure out the molecules residues. Adhesion assays were further carried out. RESULTS: It was found that Enterococcus faecalis is the main immune modulator among the LABs by downregulation of IL-8 secretion and upregulation of TGF-?. Strikingly, the effect was only observed in four strains of E. faecalis out of the 27 isolated and tested. This implies strain dependent immunomodulation in the host. In addition, E. faecalis may regulate inflammatory responses through TLR3, TLR4, TLR9 and TRAF6. Carbohydrates on the bacterial cell surface are involved in both its adhesion to intestinal cells and regulation of inflammatory responses in the host. CONCLUSION: These data provide a case for the modulation of intestinal mucosal immunity in which specific strains of E. faecalis have uniquely evolved to maintain colonic homeostasis and regulate inflammatory responses. PMID:18286689

  18. Alcoholism and Suicide.

    ERIC Educational Resources Information Center

    Roy, Alec; Linnoila, Markku

    1986-01-01

    Reviews knowledge about suicide in alcoholism: how commonly suicide among alcoholics occurs; which alcoholics commit suicide and why; suicide among alcoholic women and alcoholic physicians; possible predisposing biological factors; possible linkages with depression, adverse life events, and personality disorder; and future research and directions.

  19. Neonatal intestinal lactase activity.

    PubMed

    Weaver, L T; Laker, M F; Nelson, R

    1986-09-01

    The sequential changes in intestinal lactase activity of 40 neonates were measured indirectly from the differential uptake and excretion of lactose and the non-metabolisable disaccharide lactulose contained in formula feeds. A daily decline in urinary lactose:lactulose excretion ratios, reflecting a rise in intestinal lactase activity, followed formula feeding. Percentage decline was related directly to gestation: full term infants displayed a fivefold greater decline in lactosuria than infants with a gestation of 28 weeks during the first 10 days of milk feeding. The difference between lactose:lactulose ingestion and excretion ratios suggests that within five days of starting feeds intestinal hydrolysis of lactose exceeds 98% efficiency, even in very preterm infants. PMID:3094461

  20. Classification of intestine polyps

    NASA Astrophysics Data System (ADS)

    Chou, Shih-Chen; Fuh, Chiou-Shann; Shieh, Ming J.

    1998-06-01

    In this paper, we present a method to classify hyperplastic and adenomatous polyps of large intestine semiautomatically. First, doctors locate the contour of the original polyp images by using other software package. We determine if there are gores on the polyp by using modified Sobel operator on eliminating specular reflection pixels of original color images. We then get the polyp's texture by summing the gradient magnitude of pixels within the polyps. After detecting the actual contour of the polyps, we can determined if the polyp's contour is obvious or not (i.e. if the polyp bulges smoothly or not). We then observe whether the polyp's color is redder than or whiter than its neighbors. Finally, we classify the polyp of the intestine by applying the above steps. The flow chart of classification is as shown. We apply our method on 77 color images with polyps of the intestine and compare the results with a doctor's diagnosis.

  1. Bacterial diversity in different regions of gastrointestinal tract of Giant African Snail (Achatina fulica)

    PubMed Central

    Pawar, Kiran D; Banskar, Sunil; Rane, Shailendra D; Charan, Shakti S; Kulkarni, Girish J; Sawant, Shailesh S; Ghate, Hemant V; Patole, Milind S; Shouche, Yogesh S

    2012-01-01

    The gastrointestinal (GI) tract of invasive land snail Achatina fulica is known to harbor metabolically active bacterial communities. In this study, we assessed the bacterial diversity in the different regions of GI tract of Giant African snail, A. fulica by culture-independent and culture-dependent methods. Five 16S rRNA gene libraries from different regions of GI tract of active snails indicated that sequences affiliated to phylum ?-Proteobacteria dominated the esophagus, crop, intestine, and rectum libraries, whereas sequences affiliated to Tenericutes dominated the stomach library. On phylogenetic analysis, 30, 27, 9, 27, and 25 operational taxonomic units (OTUs) from esophagus, crop, stomach, intestine, and rectum libraries were identified, respectively. Estimations of the total bacterial diversity covered along with environmental cluster analysis showed highest bacterial diversity in the esophagus and lowest in the stomach. Thirty-three distinct bacterial isolates were obtained, which belonged to 12 genera of two major bacterial phyla namely ?-Proteobacteria and Firmicutes. Among these, Lactococcus lactis and Kurthia gibsonii were the dominant bacteria present in all GI tract regions. Quantitative real-time polymerase chain reaction (qPCR) analysis indicated significant differences in bacterial load in different GI tract regions of active and estivating snails. The difference in the bacterial load between the intestines of active and estivating snail was maximum. Principal component analysis (PCA) of terminal restriction fragment length polymorphism suggested that bacterial community structure changes only in intestine when snail enters estivation state. PMID:23233413

  2. Loss of NHE8 expression impairs intestinal mucosal integrity.

    PubMed

    Wang, Aiping; Li, Jing; Zhao, Yang; Johansson, Malin E V; Xu, Hua; Ghishan, Fayez K

    2015-12-01

    The newest member of the Na(+)/H(+) exchanger (NHE) family, NHE8, is abundantly expressed at the apical membrane of the intestinal epithelia. We previously reported that mucin 2 expression was significantly decreased in the colon in NHE8(-/-) mice, suggesting that NHE8 is involved in intestinal mucosal protection. In this study, we further evaluated the role of NHE8 in intestinal epithelial protection after dextran sodium sulfate (DSS) challenge. Compared with wild-type mice, NHE8(-/-) mice have increased bacterial adhesion and inflammation, especially in the distal colon. NHE8(-/-) mice are also susceptible to DSS treatment. Real-time PCR detected a remarkable increase in the expression of IL-1?, IL-6, TNF-?, and IL-4 in DSS-treated NHE8(-/-) mice compared with DSS-treated wild-type littermates. Immunohistochemistry showed a disorganized epithelial layer in the colon of NHE8(-/-) mice. Periodic acid-Schiff staining showed a reduction in the number of mature goblet cells and the area of the goblet cell theca in NHE8(-/-) mice. Phyloxine/tartrazine staining revealed a decrease in functional Paneth cell population in the NHE8(-/-) small intestinal crypt. The expression of enteric defensins was also decreased in NHE8(-/-) mice. The reduced mucin production in goblet cells and antimicrobial peptides production in Paneth cells lead to disruption of the intestinal mucosa protection. Therefore, NHE8 may be involved in the establishment of intestinal mucosal integrity by regulating the functions of goblet and Paneth cells. PMID:26505975

  3. Intestinal microbiota in pathophysiology and management of irritable bowel syndrome

    PubMed Central

    Lee, Kang Nyeong; Lee, Oh Young

    2014-01-01

    Irritable bowel syndrome (IBS) is a functional bowel disorder without any structural or metabolic abnormalities that sufficiently explain the symptoms, which include abdominal pain and discomfort, and bowel habit changes such as diarrhea and constipation. Its pathogenesis is multifactorial: visceral hypersensitivity, dysmotility, psychosocial factors, genetic or environmental factors, dysregulation of the brain-gut axis, and altered intestinal microbiota have all been proposed as possible causes. The human intestinal microbiota are composed of more than 1000 different bacterial species and 1014 cells, and are essential for the development, function, and homeostasis of the intestine, and for individual health. The putative mechanisms that explain the role of microbiota in the development of IBS include altered composition or metabolic activity of the microbiota, mucosal immune activation and inflammation, increased intestinal permeability and impaired mucosal barrier function, sensory-motor disturbances provoked by the microbiota, and a disturbed gut-microbiota-brain axis. Therefore, modulation of the intestinal microbiota through dietary changes, and use of antibiotics, probiotics, and anti-inflammatory agents has been suggested as strategies for managing IBS symptoms. This review summarizes and discusses the accumulating evidence that intestinal microbiota play a role in the pathophysiology and management of IBS. PMID:25083061

  4. How Is Small Intestine Adenocarcinoma Staged?

    MedlinePLUS

    ... small intestine adenocarcinoma, by stage How is small intestine adenocarcinoma staged? Staging is a process that tells ... distant m etastasis (M). T categories for small intestine adenocarcinoma T categories of small intestine cancer describe ...

  5. Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxgenase with a bacterial type-I fatty acid synthase in E. coli

    SciTech Connect

    Coursolle, Dan; Shanklin, John; Lian, Jiazhang; Zhao, Huimin

    2015-06-23

    Microbial long chain alcohols and alkanes are renewable biofuels that could one day replace petroleum-derived fuels. Here we report a novel pathway for high efficiency production of these products in Escherichia coli strain BL21(DE3). We first identified the acyl-ACP reductase/aldehyde deformylase combinations with the highest activity in this strain. Next, we used catalase coexpression to remove toxic byproducts and increase the overall titer. Finally, by introducing the type-I fatty acid synthase from Corynebacterium ammoniagenes, we were able to bypass host regulatory mechanisms of fatty acid synthesis that have thus far hampered efforts to optimize the yield of acyl-ACP-derived products in BL21(DE3). When all these engineering strategies were combined with subsequent optimization of fermentation conditions, we were able to achieve a final titer around 100 mg/L long chain alcohol/alkane products including a 57 mg/L titer of pentadecane, the highest titer reported in E. coli BL21(DE3) to date. The expression of prokaryotic type-I fatty acid synthases offer a unique strategy to produce fatty acid-derived products in E. coli that does not rely exclusively on the endogenous type-II fatty acid synthase system.

  6. Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxgenase with a bacterial type-I fatty acid synthase in E. coli

    DOE PAGESBeta

    Coursolle, Dan; Shanklin, John; Lian, Jiazhang; Zhao, Huimin

    2015-06-23

    Microbial long chain alcohols and alkanes are renewable biofuels that could one day replace petroleum-derived fuels. Here we report a novel pathway for high efficiency production of these products in Escherichia coli strain BL21(DE3). We first identified the acyl-ACP reductase/aldehyde deformylase combinations with the highest activity in this strain. Next, we used catalase coexpression to remove toxic byproducts and increase the overall titer. Finally, by introducing the type-I fatty acid synthase from Corynebacterium ammoniagenes, we were able to bypass host regulatory mechanisms of fatty acid synthesis that have thus far hampered efforts to optimize the yield of acyl-ACP-derived products inmore » BL21(DE3). When all these engineering strategies were combined with subsequent optimization of fermentation conditions, we were able to achieve a final titer around 100 mg/L long chain alcohol/alkane products including a 57 mg/L titer of pentadecane, the highest titer reported in E. coli BL21(DE3) to date. The expression of prokaryotic type-I fatty acid synthases offer a unique strategy to produce fatty acid-derived products in E. coli that does not rely exclusively on the endogenous type-II fatty acid synthase system.« less

  7. Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxygenase with a bacterial type-I fatty acid synthase in E. coli.

    PubMed

    Coursolle, Dan; Lian, Jiazhang; Shanklin, John; Zhao, Huimin

    2015-09-01

    Microbial long chain alcohols and alkanes are renewable biofuels that could one day replace petroleum-derived fuels. Here we report a novel pathway for high efficiency production of these products in Escherichia coli strain BL21(DE3). We first identified the acyl-ACP reductase/aldehyde deformylase combinations with the highest activity in this strain. Next, we used catalase coexpression to remove toxic byproducts and increase the overall titer. Finally, by introducing the type-I fatty acid synthase from Corynebacterium ammoniagenes, we were able to bypass host regulatory mechanisms of fatty acid synthesis that have thus far hampered efforts to optimize the yield of acyl-ACP-derived products in BL21(DE3). When all these engineering strategies were combined with subsequent optimization of fermentation conditions, we were able to achieve a final titer around 100 mg L(-1) long chain alcohol/alkane products including a 57 mg L(-1) titer of pentadecane, the highest titer reported in E. coli BL21(DE3) to date. The expression of prokaryotic type-I fatty acid synthases offer a unique strategy to produce fatty acid-derived products in E. coli that does not rely exclusively on the endogenous type-II fatty acid synthase system. PMID:26135500

  8. Alcohol Use.

    PubMed

    Edelman, E Jennifer; Fiellin, David A

    2016-01-01

    This issue provides a clinical overview of alcohol use, focusing on health benefits, harms, prevention, screening, diagnosis, treatment, and practice improvement. The content of In the Clinic is drawn from the clinical information and education resources of the American College of Physicians (ACP), including MKSAP (Medical Knowledge and Self-Assessment Program). Annals of Internal Medicine editors develop In the Clinic in collaboration with the ACP's Medical Education and Publishing divisions and with the assistance of additional science writers and physician writers. PMID:26747315

  9. Translocation of viable Aeromonas salmonicida across the intestine of rainbow trout, Oncorhynchus mykiss (Walbaum).

    PubMed

    Jutfelt, F; Olsen, R E; Glette, J; Ring, E; Sundell, K

    2006-05-01

    The pathogenic bacterium Aeromonas salmonicida is the causative agent of the destructive disease furunculosis in salmonids. Horizontal transmission in salmonids has been suggested to occur via the skin, gills and/or intestine. Previous reports are contradictory regarding the role of the intestine as a route of infection. The present study therefore investigates the possibility of bacterial translocation across intestinal epithelia using Ussing chamber technology, in vitro. Intestinal segments were exposed for 90 min to fluorescein isothiocyanate-labelled pathogenic A. salmonicida. Sampling from the serosal side of the Ussing chambers showed that bacteria were able to translocate across the intestinal epithelium in both the proximal and distal regions. Plating and subsequent colony counting showed that the bacteria were viable after translocation. During the 90 min exposure to A. salmonicida, the intestinal segments maintained high viability as measured by electrical parameters. The distal region responded to bacterial exposure by increasing the electrical resistance, indicating an increased mucus secretion. This study thus demonstrates translocation of live A. salmonicida through the intestinal epithelium of rainbow trout, suggesting that the intestine is a possible route of infection in salmonids. PMID:16677315

  10. Bacterial Games

    NASA Astrophysics Data System (ADS)

    Frey, Erwin; Reichenbach, Tobias

    Microbial laboratory communities have become model systems for studying the complex interplay between nonlinear dynamics of evolutionary selection forces, stochastic fluctuations arising from the probabilistic nature of interactions, and spatial organization. Major research goals are to identify and understand mechanisms that ensure viability of microbial colonies by allowing for species diversity, cooperative behavior and other kinds of "social" behavior. A synthesis of evolutionary game theory, nonlinear dynamics, and the theory of stochastic processes provides the mathematical tools and conceptual framework for a deeper understanding of these ecological systems. We give an introduction to the modern formulation of these theories and illustrate their effectiveness, focusing on selected examples of microbial systems. Intrinsic fluctuations, stemming from the discreteness of individuals, are ubiquitous, and can have important impact on the stability of ecosystems. In the absence of speciation, extinction of species is unavoidable, may, however, take very long times. We provide a general concept for defining survival and extinction on ecological time scales. Spatial degrees of freedom come with a certain mobility of individuals. When the latter is sufficiently high, bacterial community structures can be understood through mapping individual-based models, in a continuum approach, onto stochastic partial differential equations. These allow progress using methods of nonlinear dynamics such as bifurcation analysis and invariant manifolds. We conclude with a perspective on the current challenges in quantifying bacterial pattern formation, and how this might have an impact on fundamental research in nonequilibrium physics .

  11. Bacterial polyhydroxyalkanoates.

    PubMed

    Lee, S Y

    1996-01-01

    Polyhydroxyalkanoates (PHAs) are polyesters of hydroxyalkanoates (HAs) synthesized by numerous bacteria as intracellular carbon and energy storage compounds and accumulated as granules in the cytoplasm of cells. More than 80 HAs have been detected as constituents of PHAs, which allows these thermoplastic materials to have various mechanical properties resembling hard crystalline polymer or elastic rubber depending on the incorporated monomer units. Even though PHAs have been recognized as good candidates for biodegradable plastics, their high price compared with conventional plastics has limited their use in a wide range of applications. A number of bacteria including Alcaligenes eutrophus, Alcaligenes latus, Azotobacter vinelandii, methylotrophs, pseudomonads, and recombinant Escherichia coli have been employed for the production of PHAs, and the productivity of greater than 2 g PHA/L/h has been achieved. Recent advances in understanding metabolism, molecular biology, and genetics of the PHA-synthesizing bacteria and cloning of more than 20 different PHA biosynthesis genes allowed construction of various recombinant strains that were able to synthesize polyesters having different monomer units and/or to accumulate much more polymers. Also, genetically engineered plants harboring the bacterial PHA biosynthesis genes are being developed for the economical production of PHAs. Improvements in fermentation/separation technology and the development of bacterial strains or plants that more efficiently synthesize PHAs will bring the costs down to make PHAs competitive with the conventional plastics. PMID:18623547

  12. Small intestinal ischemia and infarction

    MedlinePLUS

    ... or blood clotting disorders. Low blood pressure: Very low blood pressure in patients who already have narrowing of the intestinal arteries may also cause intestinal ischemia. This often occurs in people with other serious medical problems.

  13. Intestinal Failure (Short Bowel Syndrome)

    MedlinePLUS

    ... N Vitamin deficiencies as a result of poor absorption in the intestine N Electrolyte and mineral deficiencies ... N Kidney stones or gallstones due to poor absorption of calcium or bile How is intestinal failure ...

  14. Intestinal obstruction repair - series (image)

    MedlinePLUS

    ... colon cancer. Adhesions are scars that form between loops of intestine, usually caused by prior surgery, which ... of weakness in the abdominal wall, through which loops of intestine can slip and become trapped. Colon ...

  15. Intestinal microbiota and ulcerative colitis.

    PubMed

    Ohkusa, Toshifumi; Koido, Shigeo

    2015-11-01

    There is a close relationship between the human host and the intestinal microbiota, which is an assortment of microorganisms, protecting the intestine against colonization by exogenous pathogens. Moreover, the intestinal microbiota play a critical role in providing nutrition and the modulation of host immune homeostasis. Recent reports indicate that some strains of intestinal bacteria are responsible for intestinal ulceration and chronic inflammation in inflammatory bowel diseases (IBD) such as ulcerative colitis (UC) and Crohn's disease (CD). Understanding the interaction of the intestinal microbiota with pathogens and the human host might provide new strategies treating patients with IBD. This review focuses on the important role that the intestinal microbiota plays in maintaining innate immunity in the pathogenesis and etiology of UC and discusses new antibiotic therapies targeting the intestinal microbiota. PMID:26346678

  16. Small intestine contrast injection (image)

    MedlinePLUS

    ... and throat, through the stomach into the small intestine. When in place, contrast dye is introduced and ... means of demonstrating whether or not the small intestine is normal when abnormality is suspected.

  17. Alcohol production from various enzyme-converted starches with or without cooking

    SciTech Connect

    Park, Y.K.; Rivera, B.C.

    1982-02-01

    The effectiveness of alcoholic fermentation was compared by measuring alcoholic yields from various starch mashes, both cooked and uncooked. Alcohol yields from cooked and liquefied starch by bacterial ..cap alpha..-amylase were 93.9% for corn, 92.0% for cassava, 90.6% for potato, and 73.0% for babassu, whereas alcohol yields from raw starch were 90.0% for corn, 89.0% for cassava, 48.9% for babassu, and 11.4% for potato. (JMT)

  18. Streptomycin treatment alters the intestinal microbiome, pulmonary T cell profile and airway hyperresponsiveness in a cystic fibrosis mouse model

    PubMed Central

    Bazett, Mark; Bergeron, Marie-Eve; Haston, Christina K.

    2016-01-01

    Cystic fibrosis transmembrane conductance regulator deficient mouse models develop phenotypes of relevance to clinical cystic fibrosis (CF) including airway hyperresponsiveness, small intestinal bacterial overgrowth and an altered intestinal microbiome. As dysbiosis of the intestinal microbiota has been recognized as an important contributor to many systemic diseases, herein we investigated whether altering the intestinal microbiome of BALB/c Cftrtm1UNC mice and wild-type littermates, through treatment with the antibiotic streptomycin, affects the CF lung, intestinal and bone disease. We demonstrate that streptomycin treatment reduced the intestinal bacterial overgrowth in Cftrtm1UNC mice and altered the intestinal microbiome similarly in Cftrtm1UNC and wild-type mice, principally by affecting Lactobacillus levels. Airway hyperresponsiveness of Cftrtm1UNC mice was ameliorated with streptomycin, and correlated with Lactobacillus abundance in the intestine. Additionally, streptomycin treated Cftrtm1UNC and wild-type mice displayed an increased percentage of pulmonary and mesenteric lymph node Th17, CD8 + IL-17+ and CD8 + IFNγ+ lymphocytes, while the CF-specific increase in respiratory IL-17 producing γδ T cells was decreased in streptomycin treated Cftrtm1UNC mice. Bone disease and intestinal phenotypes were not affected by streptomycin treatment. The airway hyperresponsiveness and lymphocyte profile of BALB/c Cftrtm1UNC mice were affected by streptomycin treatment, revealing a potential intestinal microbiome influence on lung response in BALB/c Cftrtm1UNC mice. PMID:26754178

  19. Streptomycin treatment alters the intestinal microbiome, pulmonary T cell profile and airway hyperresponsiveness in a cystic fibrosis mouse model.

    PubMed

    Bazett, Mark; Bergeron, Marie-Eve; Haston, Christina K

    2016-01-01

    Cystic fibrosis transmembrane conductance regulator deficient mouse models develop phenotypes of relevance to clinical cystic fibrosis (CF) including airway hyperresponsiveness, small intestinal bacterial overgrowth and an altered intestinal microbiome. As dysbiosis of the intestinal microbiota has been recognized as an important contributor to many systemic diseases, herein we investigated whether altering the intestinal microbiome of BALB/c Cftr(tm1UNC) mice and wild-type littermates, through treatment with the antibiotic streptomycin, affects the CF lung, intestinal and bone disease. We demonstrate that streptomycin treatment reduced the intestinal bacterial overgrowth in Cftr(tm1UNC) mice and altered the intestinal microbiome similarly in Cftr(tm1UNC) and wild-type mice, principally by affecting Lactobacillus levels. Airway hyperresponsiveness of Cftr(tm1UNC) mice was ameliorated with streptomycin, and correlated with Lactobacillus abundance in the intestine. Additionally, streptomycin treated Cftr(tm1UNC) and wild-type mice displayed an increased percentage of pulmonary and mesenteric lymph node Th17, CD8?+?IL-17+ and CD8?+?IFN?+ lymphocytes, while the CF-specific increase in respiratory IL-17 producing ?? T cells was decreased in streptomycin treated Cftr(tm1UNC) mice. Bone disease and intestinal phenotypes were not affected by streptomycin treatment. The airway hyperresponsiveness and lymphocyte profile of BALB/c Cftr(tm1UNC) mice were affected by streptomycin treatment, revealing a potential intestinal microbiome influence on lung response in BALB/c Cftr(tm1UNC) mice. PMID:26754178

  20. Older Adults and Alcohol

    MedlinePLUS

    ... Alcohol Exposure Support & Treatment Alcohol Policy Special Populations & Co-occurring Disorders Publications & Multimedia Brochures & Fact Sheets NIAAA ... are here Home » Alcohol & Your Health » Special Populations & Co-occurring Disorders » Older Adults In this Section Underage ...

  1. Breath alcohol test

    MedlinePLUS

    Alcohol test - breath ... There are various brands of breath alcohol tests. Each one uses a different method to test the level of alcohol in the breath. The machine may be electronic or manual. One ...

  2. Small intestine aspirate and culture

    MedlinePLUS

    Small intestine aspirate and culture is a lab test to check for infection in the small intestine. ... A sample of fluid from the small intestine is needed. A procedure ... done to get the sample. The fluid is placed in a special dish in ...

  3. Increased Intestinal Permeability Correlates with Sigmoid Mucosa alpha-Synuclein Staining and Endotoxin Exposure Markers in Early Parkinson's Disease

    PubMed Central

    Forsyth, Christopher B.; Shannon, Kathleen M.; Kordower, Jeffrey H.; Voigt, Robin M.; Shaikh, Maliha; Jaglin, Jean A.; Estes, Jacob D.; Dodiya, Hemraj B.; Keshavarzian, Ali

    2011-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder of aging. The pathological hallmark of PD is neuronal inclusions termed Lewy bodies whose main component is alpha-synuclein protein. The finding of these Lewy bodies in the intestinal enteric nerves led to the hypothesis that the intestine might be an early site of PD disease in response to an environmental toxin or pathogen. One potential mechanism for environmental toxin(s) and proinflammatory luminal products to gain access to mucosal neuronal tissue and promote oxidative stress is compromised intestinal barrier integrity. However, the role of intestinal permeability in PD has never been tested. We hypothesized that PD subjects might exhibit increased intestinal permeability to proinflammatory bacterial products in the intestine. To test our hypothesis we evaluated intestinal permeability in subjects newly diagnosed with PD and compared their values to healthy subjects. In addition, we obtained intestinal biopsies from both groups and used immunohistochemistry to assess bacterial translocation, nitrotyrosine (oxidative stress), and alpha-synuclein. We also evaluated serum markers of endotoxin exposure including LPS binding protein (LBP). Our data show that our PD subjects exhibit significantly greater intestinal permeability (gut leakiness) than controls. In addition, this intestinal hyperpermeability significantly correlated with increased intestinal mucosa staining for E. coli bacteria, nitrotyrosine, and alpha-synuclein as well as serum LBP levels in PD subjects. These data represent not only the first demonstration of abnormal intestinal permeability in PD subjects but also the first correlation of increased intestinal permeability in PD with intestinal alphasynuclein (the hallmark of PD), as well as staining for gram negative bacteria and tissue oxidative stress. Our study may thus shed new light on PD pathogenesis as well as provide a new method for earlier diagnosis of PD and suggests potential therapeutic targets in PD subjects. Trial Registration Clinicaltrials.gov NCT01155492 PMID:22145021

  4. [Pancreatitis in intestinal diseases].

    PubMed

    Gubergrits, N B; Lukashevich, G M; Golubova, O A; Fomenko, P G

    2010-01-01

    In article review of the literature and own data about pathogenesis of pancreatitis and secondary pancreatic insufficiency in various diseases of small and large intestines is presented. The special attention is given to pancreatic insufficiency in celiac disease and in inflammatory bowel disease. The main directions of pancreatitis and exocrine pancreatic insufficiency therapy are grounded. PMID:21268323

  5. Aging and the intestine

    PubMed Central

    Drozdowski, Laurie; Thomson, Alan BR

    2006-01-01

    Over the lifetime of the animal, there are many changes in the function of the body’s organ systems. In the gastrointestinal tract there is a general modest decline in the function of the esophagus, stomach, colon, pancreas and liver. In the small intestine, there may be subtle alterations in the intestinal morphology, as well as a decline in the uptake of fatty acids and sugars. The malabsorption may be partially reversed by aging glucagon-like peptide 2 (GLP2) or dexamethasone. Modifications in the type of lipids in the diet will influence the intestinal absorption of nutrients: for example, in mature rats a diet enriched with saturated as compared with polysaturated fatty acids will enhance lipid and sugar uptake, whereas in older animals the opposite effect is observed. Thus, the results of studies of the intestinal adaptation performed in mature rats does not necessarily apply in older animals. The age-associated malabsorption of nutrients that occurs with aging may be one of the several factors which contribute to the malnutrition that occurs with aging. PMID:17171784

  6. Multiple Intestinal Lymphoma.

    PubMed

    Mastalier, B; Deaconescu, Violeta; Elaiah, W; Drăghici, C; Popp, Cristiana; Zurac, Sabina; Balea, M; Tevet, Mihaela; Botezatu, C

    2015-01-01

    Gastrointestinal tract is the most common location for extralymphonodular lymphomas. The small intestine is affected only in 9% of the cases. Intestinal lymphoma may have single or multiple location. This paper describes a case of multiple location in the small intestine of a non-Hodgkin B-cell in a 53 years old patient, who was initially diagnosed with bilateral pneumonia with pleurisy with E. coli, steeper on the right side, but the persistence of symptoms as fever, malaise, despite appropriate treatment, required further investigation. The CT exam observed fluid collection in the hypogastrium around a digestive loop. The patient underwent surgery, the intraoperative foundings being: a large mesenteric tumor - 5 cm in diameter, a terminal ileal mesenteric tumor, a mesenteric tumor - 6 cm in diameter, omentum with nodular formations, a tumor - 3.3/2.5.1 cm in the abdominal wall, pseudotumoral appendix. Segmental. enterectomy with entero-enterostomy, excision of mesenteric tumors, appendectomy and omentectomy were performed. Pathological diagnosis was non-Hodgkin marginal zone B-cell MALT type lymphoma of the small intestine with extension to the appendix, meso, omentum and abdominal wall. Postoperatively, the patient received chemotherapy for remission. PMID:26076564

  7. Bacterial Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Lauga, Eric

    2016-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells, yet they represent the bulk of the world's biomass and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low–Reynolds number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micrometer scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically complex environments. Using hydrodynamics as an organizing framework, I review the biomechanics of bacterial motility and look ahead to future challenges.

  8. Biphasic assembly of the murine intestinal microbiota during early development.

    PubMed

    Pantoja-Feliciano, Ida Gisela; Clemente, Jose C; Costello, Elizabeth K; Perez, Maria E; Blaser, Martin J; Knight, Rob; Dominguez-Bello, Maria Gloria

    2013-06-01

    The birth canal provides mammals with a primary maternal inoculum, which develops into distinctive body site-specific microbial communities post-natally. We characterized the distal gut microbiota from birth to weaning in mice. One-day-old mice had colonic microbiota that resembled maternal vaginal communities, but at days 3 and 9 of age there was a substantial loss of intestinal bacterial diversity and dominance of Lactobacillus. By weaning (21 days), diverse intestinal bacteria had established, including strict anaerobes. Our results are consistent with vertical transmission of maternal microbiota and demonstrate a nonlinear ecological succession involving an early drop in bacterial diversity and shift in dominance from Streptococcus to Lactobacillus, followed by an increase in diversity of anaerobes, after the introduction of solid food. Mammalian newborns are born highly susceptible to colonization, and lactation may control microbiome assembly during early development. PMID:23535917

  9. [Intestinal microbiota and cardiometabolic risk: mechanisms and diet modulation].

    PubMed

    Moraes, Ana Carolina Franco de; Silva, Isis Tande da; Almeida-Pititto, Bianca de; Ferreira, Sandra Roberta G

    2014-06-01

    The gut microbiota obtained after birth is composed of a large range of bacteria that play different roles in the human host, such as nutrient uptake, protection against pathogens and immune modulation. The intestinal bacterial content is not completely known, but it is influenced by internal, and mainly by external factors, which modulate its composition and function. Studies indicate that the gut microbiota differs in lean and obese individuals, and in individuals with different food habits. There is evidence that the relationship between diet, inflammation, insulin resistance, and cardiometabolic risk are, in part, mediated by the composition of intestinal bacteria. Knowledge about the gut microbiota may result in different strategies to manipulate bacterial populations and promote health. This review discusses the relevance of understanding the role of dietary factors or patterns in the composition of the microbiota, as well as pathophysiological mechanisms of chronic metabolic diseases, and the potential of prebiotics and probiotics on the cardiometabolic risk profile. PMID:24936725

  10. Manipulation of the Intestinal Microbiome in Newborn Infants12

    PubMed Central

    Cacho, Nicole; Neu, Josef

    2014-01-01

    The mammalian gastrointestinal tract harbors a highly diverse microbial population termed the microbiome, which plays a major role in nutrition, metabolism, protection against pathogens, and development of the immune system. It is estimated that at least 1000 different bacterial species cohabit the human intestinal tract. Herein we provide a brief review of the developing intestinal microbiome, with the understanding that its development often begins before birth and that disturbance in the microbiome during fetal life, birth, and shortly thereafter may result in adverse consequences. Postnatally, numerous environmental factors including premature delivery, mode of delivery, antibiotic usage, and diet can play an important role in how the intestinal microbiome of infants is shaped. The fact that human milk contains microbes is likely to have important ramifications. We discuss where these microbes come from and their potential role. PMID:24425730

  11. Enteric defensins are essential regulators of intestinal microbial ecology

    PubMed Central

    Salzman, Nita H.; Hung, Kuiechun; Haribhai, Dipica; Chu, Hiutung; Karlsson-Sjöberg, Jenny; Amir, Elad; Teggatz, Paul; Barman, Melissa; Hayward, Michael; Eastwood, Daniel; Stoel, Maaike; Zhou, Yanjiao; Sodergren, Erica; Weinstock, George M.; Bevins, Charles L.; Williams, Calvin B.; Bos, Nicolaas A.

    2009-01-01

    Antimicrobial peptides are important effectors of innate immunity throughout the plant and animal kingdoms. In the mammalian small intestine, Paneth cell α-defensins are antimicrobial peptides that contribute to host defense against enteric pathogens. To determine if α-defensins also govern intestinal microbial ecology, we analyzed the intestinal microbiota in mice expressing a human α-defensin (DEFA5) and in mice lacking an enzyme required for processing of murine α-defensins. We detected significant α-defensin-dependent changes in microbiota composition, but not in total bacterial numbers, in these complementary models. Furthermore, DEFA5-expressing mice had striking losses of Segmented Filamentous Bacteria and fewer interleukin 17-producing lamina propria T cells. These data ascribe a new homeostatic role for α-defensins in regulating the makeup of the commensal microbiota. PMID:19855381

  12. Effect of intestinal microbial ecology on the developing brain.

    PubMed

    Douglas-Escobar, Martha; Elliott, Elizabeth; Neu, Josef

    2013-04-01

    The mammalian gastrointestinal tract harbors a highly diverse microbial population that plays a major role in nutrition, metabolism, protection against pathogens, and development of the immune system. It is estimated that at least 1000 different bacterial species cohabit the human intestinal tract. Most recently, the Human Microbiome Project, using new genomic technologies, has started a catalog of specific microbiome composition and its correlation with health and specific diseases. Herein we provide a brief review of the intestinal microbiome, with a focus on new studies showing that there is an important link between the microbes that inhabit the intestinal tract and the developing brain. With future research, an understanding of this link may help us to treat various neurobehavioral problems such as autism, schizophrenia, and anxiety. PMID:23400224

  13. Detection of alkanes, alcohols, and aldehydes using bioluminescence.

    PubMed

    Minak-Bernero, Vera; Bare, Richard E; Haith, Copper E; Grossman, Matthew J

    2004-07-20

    We report a novel method for the rapid, sensitive, and quantitative detection of alkanes, alcohols, and aldehydes that relies on the reaction of bacterial luciferase with an aldehyde, resulting in the emission of light. Primary alcohols with corresponding aldehydes that are within the substrate range of the particular luciferase are detected after conversion to the aldehyde by an alcohol dehydrogenase. In addition, alkanes themselves may be detected by conversion to primary alcohols by an alkane hydroxylase, followed by conversion to the aldehyde by alcohol dehydrogenase. We developed a rapid bioluminescent method by genetically engineering the genes encoding bacterial luciferase, alcohol dehydrogenase, and alkane hydroxylase into a plasmid for simultaneous expression in an E. coli host cell line. Alkanes, alcohols, or aldehydes were detected within seconds, with sensitivity in the micromolar range, by measuring the resulting light emission with a microplate reader. We demonstrate the application of this method for the detection of alkanes, alcohols, and aldehydes and for the detection of alkane hydroxylase and alcohol dehydrogenase activity in vivo. This method is amenable to the high-throughput screening needs required for the identification of novel catalysts. PMID:15236245

  14. Bacterial interplay at intestinal mucosal surfaces: implications for vaccine development.

    PubMed

    Autenrieth, I B; Schmidt, M A

    2000-10-01

    The discovery of 'molecular syringes' in several important gastrointestinal pathogens including Escherichia coli, Salmonella, Shigella and Yersinia, together with a better understanding of M cells and the mucosal immune system, has advanced our appreciation of multistage microorganism-host cell interactions. Recent studies suggest that these molecular strategies could be adapted for the development of modular mucosal vaccines. PMID:11044680

  15. The Mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract.

    PubMed

    Derrien, Muriel; Collado, M Carmen; Ben-Amor, Kaouther; Salminen, Seppo; de Vos, Willem M

    2008-03-01

    A 16S rRNA-targeted probe, MUC-1437, was designed and validated in order to determine the presence and numbers of cells of Akkermansia muciniphila, a mucin degrader, in the human intestinal tract. As determined by fluorescent in situ hybridization, A. muciniphila accounted more than 1% of the total fecal cells and was shown to be a common bacterial component of the human intestinal tract. PMID:18083887

  16. Cystic fibrosis mouse model-dependent intestinal structure and gut microbiome

    PubMed Central

    Bazett, Mark; Honeyman, Lisa; Stefanov, Anguel N.; Pope, Christopher E.; Hoffman, Lucas R.; Haston, Christina K.

    2015-01-01

    Mice with a null mutation in the cystic fibrosis transmembrane conductance regulator (Cftr) gene show intestinal structure alterations and bacterial overgrowth. To determine whether these changes are model-dependent and whether the intestinal microbiome is altered in cystic fibrosis (CF) mouse models, we characterized the ileal tissue and intestinal microbiome of mice with the clinically common ΔF508 Cftr mutation (FVB/N Cftrtm1Eur) and with Cftr null mutations (BALB/c Cftrtm1UNC and C57BL/6 Cftrtm1UNC). Intestinal disease in 12-week-old CF mice, relative to wild-type strain controls, was measured histologically. The microbiome was characterized by pyrosequencing of the V4–V6 region of the 16S rRNA gene and intestinal load was measured by RT-PCR of the 16S rRNA gene. The CF-associated increases in ileal crypt to villus axis distention, goblet cell hyperplasia, and muscularis externa thickness were more severe in the BALB/c and C57BL/6 Cftrtm1UNC mice than in the FVB/N Cftrtm1Eur mice. Intestinal bacterial load was significantly increased in all CF models, compared to levels in controls, and positively correlated with circular muscle thickness in CF, but not wild-type, mice. Microbiome profiling identified Bifidobacterium and groups of Lactobacillus to be of altered abundance in the CF mice but overall bacterial frequencies were not common to the three CF strains and were not correlative of major histological changes. In conclusion, intestinal structure alterations, bacterial overgrowth, and dysbiosis were each more severe in BALB/c and C57BL/6 Cftrtm1UNC mice than in the FVB/N Cftrtm1Eur mice. The intestinal microbiome differed among the three CF mouse models. PMID:25721416

  17. Intestinal Innate Immunity and the Pathogenesis of Salmonella Enteritis

    PubMed Central

    Srikanth, Chittur V.; Cherayil, Bobby J.

    2011-01-01

    Acute gastroenteritis caused by Salmonella typhimurium infection is a clinical problem with significant public health impact. The availability of several experimental models of this condition has allowed detailed investigation of the cellular and molecular interactions involved in its pathogenesis. Such studies have shed light on the roles played by bacterial virulence factors and host innate immune mechanisms in the development of intestinal inflammation. PMID:17496347

  18. Manipulation of the Gut Bacterial Community in a Ground Beetle, Harpalus pensylvanicus, Influences its Feeding Behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Functional roles of non-obligatory bacterial symbionts found in the gut of insects are not well-described. We have found that the intestinal tract of an omnivorous ground beetle, Harpalus pensylvanicus, is colonized by relatively few bacterial species (six to nine species) that are common among fie...

  19. Adaptation of Mesenteric Collecting Lymphatic Pump Function Following Acute Alcohol Intoxication

    PubMed Central

    Souza-Smith, Flavia M.; Kurtz, Kristine M.; Molina, Patricia E.; Breslin, Jerome W.

    2010-01-01

    Objective Acute alcohol intoxication increases intestinal lymph flow by unknown mechanisms, potentially impacting mucosal immunity. We tested the hypothesis that enhanced intrinsic pump function of mesenteric lymphatics contributes to increased intestinal lymph flow during alcohol intoxication. Methods Acute alcohol intoxication was produced by intragastric administration of 30% alcohol to concious, unrestrained rats through surgically-implanted catheters. Time-matched controls received either no bolus, vehicle, or isocaloric dextrose. Thirty minutes after alcohol administration, rats were anesthetized and mesenteric collecting lymphatics were isolated and cannulated to study intrinsic pumping parameters. In separate experiments, mesenteric lymphatics were isolated to examine direct effects of alcohol on intrinsic pump activity. Results Lymphatics isolated from alcohol-intoxicated animals displayed slgnificantly decreased contraction frequency (CF) than the dextrose group, elevated stroke volume index (SVI) versus all other groups, and decreased myogenic responsiveness compared to sham. Elevating pressure from 2 to 4 cm H2O increased the volume flow index 2.4-fold in the alcohol group versus 1.4-fold for shams. Isolated lymphatics exposed to 20 mM alcohol had reduced myogenic tone, without changes in CF or SVI. Conclusions Alcohol intoxication enhances intrinsic pumping by mesenteric collecting lymphatics. Alcohol directly decreases lymphatic myogenic tone, but effects on phasic contractions occur by an unidentified mechanism. PMID:21040117

  20. Emerging therapies for intestinal failure.

    PubMed

    Tappenden, Kelly A

    2010-06-01

    Given the immeasurable human distress and health care burden associated with intestinal failure, medical therapies aimed at intestinal rehabilitation are needed. Following massive small-bowel resection, the residual intestine is known to adapt structurally and functionally in an attempt to compensate for the resected portion. However, parenteral nutrition may be associated with many short- and long-term complications, including prevention of intestinal adaptation and promotion of mucosal atrophy due to lack of stimulus provided by oral or enteral nutrition. However, data herein demonstrate that the addition of butyrate, a short-chain fatty acid produced in the colon by dietary fiber fermentation, stimulates intestinal adaptation when added to parenteral nutrition, indicating that current solutions could be formulated to optimize intestinal adaptation and to reduce dependence of individuals with intestinal failure receiving long-term parenteral nutrition regimens. PMID:20566971

  1. Characterization of Intestinal Bacteria in Wild and Domesticated Adult Black Tiger Shrimp (Penaeus monodon)

    PubMed Central

    Rungrassamee, Wanilada; Klanchui, Amornpan; Maibunkaew, Sawarot; Chaiyapechara, Sage; Jiravanichpaisal, Pikul; Karoonuthaisiri, Nitsara

    2014-01-01

    The black tiger shrimp (Penaeus monodon) is a marine crustacean of economic importance in the world market. To ensure sustainability of the shrimp industry, production capacity and disease outbreak prevention must be improved. Understanding healthy microbial balance inside the shrimp intestine can provide an initial step toward better farming practice and probiotic applications. In this study, we employed a barcode pyrosequencing analysis of V3-4 regions of 16S rRNA genes to examine intestinal bacteria communities in wild-caught and domesticated P. monodon broodstock. Shrimp faeces were removed from intestines prior to further analysis in attempt to identify mucosal bacterial population. Five phyla, Actinobacteria, Fusobacteria, Proteobacteria, Firmicutes and Bacteroidetes, were found in all shrimp from both wild and domesticated environments. The operational taxonomic unit (OTU) was assigned at 97% sequence identity, and our pyrosequencing results identified 18 OTUs commonly found in both groups. Sequences of the shared OTUs were similar to bacteria in three phyla, namely i) Proteobacteria (Vibrio, Photobacterium, Novosphingobium, Pseudomonas, Sphingomonas and Undibacterium), ii) Firmicutes (Fusibacter), and iii) Bacteroidetes (Cloacibacterium). The shared bacterial members in P. monodon from two different habitats provide evidence that the internal environments within the host shrimp also exerts selective pressure on bacterial members. Intestinal bacterial profiles were compared using denaturing gradient gel electrophoresis (DGGE). The sequences from DGGE bands were similar to those of Vibrio and Photobacterium in all shrimp, consistent with pyrosequencing results. This work provides the first comprehensive report on bacterial populations in the intestine of adult black tiger shrimp and reveals some similar bacterial members between the intestine of wild-caught and domesticated shrimp. PMID:24618668

  2. Coinfection with an Intestinal Helminth Impairs Host Innate Immunity against Salmonella enterica Serovar Typhimurium and Exacerbates Intestinal Inflammation in Mice

    PubMed Central

    Su, Libo; Su, Chien-wen; Qi, Yujuan; Yang, Guilian; Zhang, Mei; Cherayil, Bobby J.; Zhang, Xichen

    2014-01-01

    Salmonella enterica serovar Typhimurium is a Gram-negative food-borne pathogen that is a major cause of acute gastroenteritis in humans. The ability of the host to control such bacterial pathogens may be influenced by host immune status and by concurrent infections. Helminth parasites are of particular interest in this context because of their ability to modulate host immune responses and because their geographic distribution coincides with those parts of the world where infectious gastroenteritis is most problematic. To test the hypothesis that helminth infection may negatively regulate host mucosal innate immunity against bacterial enteropathogens, a murine coinfection model was established by using the intestinal nematode Heligmosomoides polygyrus and S. Typhimurium. We found that mice coinfected with S. Typhimurium and H. polygyrus developed more severe intestinal inflammation than animals infected with S. Typhimurium alone. The enhanced susceptibility to Salmonella-induced intestinal injury in coinfected mice was found to be associated with diminished neutrophil recruitment to the site of bacterial infection that correlated with decreased expression of the chemoattractants CXCL2/macrophage inflammatory protein 2 (MIP-2) and CXCL1/keratinocyte-derived chemokine (KC), poor control of bacterial replication, and exacerbated intestinal inflammation. The mechanism of helminth-induced inhibition of MIP-2 and KC expression involved interleukin-10 (IL-10) and, to a lesser extent, IL-4 and IL-13. Ly6G antibody-mediated depletion of neutrophils reproduced the adverse effects of H. polygyrus on Salmonella infection. Our results suggest that impaired neutrophil recruitment is an important contributor to the enhanced severity of Salmonella enterocolitis associated with helminth coinfection. PMID:24980971

  3. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review.

    PubMed

    Duda-Chodak, Aleksandra; Tarko, Tomasz; Satora, Pawe?; Sroka, Pawe?

    2015-04-01

    The intestinal microbiome plays an important role in the metabolism of chemical compounds found within food. Bacterial metabolites are different from those that can be generated by human enzymes because bacterial processes occur under anaerobic conditions and are based mainly on reactions of reduction and/or hydrolysis. In most cases, bacterial metabolism reduces the activity of dietary compounds; however, sometimes a specific product of bacterial transformation exhibits enhanced properties. Studies on the metabolism of polyphenols by the intestinal microbiota are crucial for understanding the role of these compounds and their impact on our health. This review article presents possible pathways of polyphenol metabolism by intestinal bacteria and describes the diet-derived bioactive metabolites produced by gut microbiota, with a particular emphasis on polyphenols and their potential impact on human health. Because the etiology of many diseases is largely correlated with the intestinal microbiome, a balance between the host immune system and the commensal gut microbiota is crucial for maintaining health. Diet-related and age-related changes in the human intestinal microbiome and their consequences are summarized in the paper. PMID:25672526

  4. [Metagenomics of the intestinal microbiota: potential applications].

    PubMed

    Dusko Ehrlich, S

    2010-09-01

    A major challenge in the human metagenomics field is to identify associations of the bacterial genes and human phenotypes and act to modulate microbial populations in order to improve human health and wellbeing. MetaHIT project addresses this ambitious challenge by developing and integrating a number of necessary approaches within the context of the gut microbiome. Among the first results is the establishment of a broad catalog of the human gut microbial genes, which was achieved by an original application of the new generation sequencing technology. The catalog contains 3.3 million non-redundant genes, 150-fold more than the human genome equivalent and includes a large majority of the gut metagenomic sequences determined across three continents, Europe, America and Asia. Its content corresponds to some 1000 bacterial species, which likely represent a large fraction of species associated with humankind intestinal tract. The catalog enables development of the gene profiling approaches aiming to detect associations of bacterial genes and phenotypes. These should lead to the speedy development of diagnostic and prognostic tools and open avenues to reasoned approaches to the modulation of the individual's microbiota in order to optimize health and well-being. PMID:20889001

  5. Bacterial Speciation: Genetic Sweeps in Bacterial Species.

    PubMed

    Cohan, Frederick M

    2016-02-01

    One theory of bacterial speciation states that bacterial and animal species share the property of cohesion, meaning that diversity within a species is constrained. A new study provides direct evidence that genome-wide sweeps can limit diversity within bacterial species. PMID:26859266

  6. Hypothesis: inappropriate colonization of the premature intestine can cause neonatal necrotizing enterocolitis.

    PubMed

    Claud, E C; Walker, W A

    2001-06-01

    Neonatal necrotizing enterocolitis (NEC) is a major cause of morbidity in preterm infants. We hypothesize that the intestinal injury in this disease is a consequence of synergy among three of the major risk factors for NEC: prematurity, enteral feeding, and bacterial colonization. Together these factors result in an exaggerated inflammatory response, leading to ischemic bowel necrosis. Human milk may decrease the incidence of NEC by decreasing pathogenic bacterial colonization, promoting growth of nonpathogenic flora, promoting maturation of the intestinal barrier, and ameliorating the proinflammatory response. PMID:11387237

  7. The role of immunomodulators on intestinal barrier homeostasis in experimental models.

    PubMed

    Andrade, Maria Emlia Rabelo; Arajo, Raquel Silva; de Barros, Patrcia Aparecida Vieira; Soares, Anne Danieli Nascimento; Abrantes, Fernanda Alves; Generoso, Simone de Vasconcelos; Fernandes, Simone Odlia Antunes; Cardoso, Valbert Nascimento

    2015-12-01

    The intestinal epithelium is composed of specialized epithelial cells that form a physical and biochemical barrier to commensal and pathogenic microorganisms. However, dysregulation of the epithelial barrier function can lead to increased intestinal permeability and bacterial translocation across the intestinal mucosa, which contributes to local and systemic immune activation. The increase in these parameters is associated with inflammatory bowel disease, physical exercise under heat stress, intestinal obstruction, ischemia, and mucositis, among other conditions. Lately, there has been growing interest in immunomodulatory nutrients and probiotics that can regulate host immune and inflammatory responses and possibly restore the intestinal barrier. Immunomodulators such as amino acids (glutamine, arginine, tryptophan, and citrulline), fatty acids (short-chain and omega-3 fatty acids and conjugated linoleic acids), and probiotics (Bifidobacterium, Saccharomyces, and Lactobacillus) have been reported in the literature. Here, we review the critical roles of immunomodulatory nutrients in supporting gut barrier integrity and function. PMID:25660317

  8. [Interactions between the monogastric animal gut microbiota and the intestinal immune function--a review].

    PubMed

    Yang, Lina; Bian, Gaorui; Zhu, Weiyun

    2014-05-01

    The large numbers of microorganisms that inhabit mammalian gastro-intestine have a highly coevolved relationship with the host's health in nutrition, immunity and other aspects. There is a complex relationship between microbiota and immune system. Although they can inhibit the pathogens invade epithelial tissue, many of these microbes have functions that are critical for stimulating host intestinal immune cells such as Tregs cells, Th17 cells differentiation. However, the disorder of the intestinal flora can cause bacterial translocation, intestinal barrier dysfunction. The mammalian immune system plays an essential role in maintaining homeostasis with resident microbial communities, though secreting a variety of immune effector cytokines such as MUC, sIgA, ITF, RegIIIgamma, and alpha-defensins. Here, we review the composition of intestinal flora on simple stomach animal and the interactions between resident microbes and the immune function. PMID:25199246

  9. Intestinal permeation enhancers.

    PubMed

    Aungst, B J

    2000-04-01

    This review addresses the field of improving oral bioavailability through the use of excipients that increase intestinal membrane permeability. The critical issues to consider in evaluating these approaches are 1) the extent of bioavailability enhancement achieved, 2) the influence of formulation and physiological variables, 3) toxicity associated with permeation enhancement, and 4) the mechanism of permeation enhancement. The categories of permeation enhancers discussed are surfactants, fatty acids, medium chain glycerides, steroidal detergents, acyl carnitine and alkanoylcholines, N-acetylated alpha-amino acids and N-acetylated non-alpha-amino acids, and chitosans and other mucoadhesive polymers. Some of these approaches have been developed to the stage of initial clinical trials. Several seem to have potential to improve oral bioavailabilities of poorly absorbed compounds without causing significant intestinal damage. In addition, the possible use of excipients that inhibit secretory transport is reviewed. PMID:10737905

  10. The Cystic Fibrosis Intestine

    PubMed Central

    De Lisle, Robert C.; Borowitz, Drucy

    2013-01-01

    The clinical manifestations of cystic fibrosis (CF) result from dysfunction of the cystic fibrosis transmembrane regulator protein (CFTR). The majority of people with CF have a limited life span as a consequence of CFTR dysfunction in the respiratory tract. However, CFTR dysfunction in the gastrointestinal (GI) tract occurs earlier in ontogeny and is present in all patients, regardless of genotype. The same pathophysiologic triad of obstruction, infection, and inflammation that causes disease in the airways also causes disease in the intestines. This article describes the effects of CFTR dysfunction on the intestinal tissues and the intraluminal environment. Mouse models of CF have greatly advanced our understanding of the GI manifestations of CF, which can be directly applied to understanding CF disease in humans. PMID:23788646

  11. Unusual intestinal talcosis.

    PubMed

    Anani, P A; Ribaux, C; Gardiol, D

    1987-11-01

    A case of intestinal talcosis in a 46-year-old man is reported. At the age of 27, the patient was treated for pulmonary tuberculosis with tablets containing talc (183 g talc per 2,670 g total drug intake) over a period of 28 months. Eighteen years later, the patient was hospitalized for abdominal pain that remained refractory to antacids; he subsequently underwent a right hemicolectomy. Light-microscopic examination revealed a prominent fibrosis of the intestinal wall in which birefringent particles were demonstrated by polarized light. Using energy-dispersive spectroscopy, an analysis of these particles showed that they were predominantly composed of silicon and magnesium as well as small amounts of phosphorus, sulphur, calcium, and iron--the spectrum typically associated with talc. We believe that the source of this talc is the tablets ingested by the patient during prior antituberculosis therapy. PMID:3674285

  12. Intestinal sugar transport.

    PubMed

    Drozdowski, Laurie A; Thomson, Alan B R

    2006-03-21

    Carbohydrates are an important component of the diet. The carbohydrates that we ingest range from simple monosaccharides (glucose, fructose and galactose) to disaccharides (lactose, sucrose) to complex polysaccharides. Most carbohydrates are digested by salivary and pancreatic amylases, and are further broken down into monosaccharides by enzymes in the brush border membrane (BBM) of enterocytes. For example, lactase-phloridzin hydrolase and sucrase-isomaltase are two disaccharidases involved in the hydrolysis of nutritionally important disaccharides. Once monosaccharides are presented to the BBM, mature enterocytes expressing nutrient transporters transport the sugars into the enterocytes. This paper reviews the early studies that contributed to the development of a working model of intestinal sugar transport, and details the recent advances made in understanding the process by which sugars are absorbed in the intestine. PMID:16586532

  13. The migrating myoelectric complex of the small intestine

    NASA Astrophysics Data System (ADS)

    Telford, Gordon L.; Sarna, Sushil K.

    1991-10-01

    Gastric and small intestinal myoelectric and motor activity is divided into two main patterns, fed and fasted. During fasting, the predominant pattern of activity is the migrating myoelectric complex (MMC), a cyclically occurring pattern of electric and mechanical activity that is initiated in the stomach and duodenum almost simultaneously and, from there, propagates the length of the small intestine. Cyclic motor activity also occurs in the lower esophageal sphincter, the gallbladder, and the sphincter of Oddi with a duration that is related to the MMC in the small intestine. Of the possible mechanisms for initiation of the MMC in the small intestine (extrinsic neural control, intrinsic neural control, and hormonal control), intrinsic neural control via a series of coupled is the most likely. The keep this sentence in! hormone motilin also plays a role in the initiation of MMCs. After a meal, in man the MMC is disrupted and replaced by irregular contractions. The physiologic role of the MMC is to clear the stomach and small intestine of residual food, secretions, and desquamated cells and propel them to the colon. Disruption of the MMC cycle is associated with bacterial overgrowth in some patients, an observation that supports the proposed cleansing function of the MMC cycle.

  14. Establishing Caenorhabditis elegans as a model for Mycobacterium avium subspecies hominissuis infection and intestinal colonization.

    PubMed

    Everman, Jamie L; Ziaie, Navid R; Bechler, Jessica; Bermudez, Luiz E

    2015-01-01

    The nematode Caenorhabditis elegans has become a model system for studying the disease interaction between pathogens and the host. To determine whether the transparent nematode could serve as a useful model for Mycobacterium avium subspecies hominissuis (MAH) infection of the intestinal tract, worms were fed MAH and assayed for the effects of the bacterial infection on the worm. It was observed during feeding that viable MAH increases in the intestinal lumen in a time dependent manner. Ingestion of MAH was deemed non-toxic to worms as MAH-fed populations have similar survival curves to those fed E. coli strain OP50. Pulse-chase analysis using E. coli strain OP50 revealed that MAH colonize the intestinal tract, as viable MAH remain within the intestine after the assay. Visualization of intestinal MAH using histology and transmission electron microscopy demonstrates that MAH localizes to the intestinal lumen, as well as establishes direct contact with intestinal epithelium. Bacterial colonization appears to have a detrimental effect on the microvilli of the intestinal epithelial cells. The MAH ΔGPL/4B2 strain with a mutation in glycopeptidolipid production is deficient in binding to human epithelial cells (HEp-2), as well as deficient in its ability to bind to and colonize the intestinal tract of C. elegans as efficiently as wild-type MAH. These data indicate the C. elegans may serve as a useful model system for MAH pathogenesis and in determining the mechanisms used by MAH during infection and colonization of the intestinal epithelium. PMID:26405050

  15. Alcohol fuels

    SciTech Connect

    Not Available

    1990-07-01

    Ethanol is an alcohol made from grain that can be blended with gasoline to extend petroleum supplies and to increase gasoline octane levels. Congressional proposals to encourage greater use of alternative fuels could increase the demand for ethanol. This report evaluates the growth potential of the ethanol industry to meet future demand increases and the impacts increased production would have on American agriculture and the federal budget. It is found that ethanol production could double or triple in the next eight years, and that American farmers could provide the corn for this production increase. While corn growers would benefit, other agricultural segments would not; soybean producers, for example could suffer for increased corn oil production (an ethanol byproduct) and cattle ranchers would be faced with higher feed costs because of higher corn prices. Poultry farmers might benefit from lower priced feed. Overall, net farm cash income should increase, and consumers would see slightly higher food prices. Federal budget impacts would include a reduction in federal farm program outlays by an annual average of between $930 million (for double current production of ethanol) to $1.421 billion (for triple production) during the eight-year growth period. However, due to an partial tax exemption for ethanol blended fuels, federal fuel tax revenues could decrease by between $442 million and $813 million.

  16. Bacterial concrete

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Venkataswamy; Ramesh, K. P.; Bang, S. S.

    2001-04-01

    Cracks in concrete are inevitable and are one of the inherent weaknesses of concrete. Water and other salts seep through these cracks, corrosion initiates, and thus reduces the life of concrete. So there was a need to develop an inherent biomaterial, a self-repairing material which can remediate the cracks and fissures in concrete. Bacterial concrete is a material, which can successfully remediate cracks in concrete. This technique is highly desirable because the mineral precipitation induced as a result of microbial activities is pollution free and natural. As the cell wall of bacteria is anionic, metal accumulation (calcite) on the surface of the wall is substantial, thus the entire cell becomes crystalline and they eventually plug the pores and cracks in concrete. This paper discusses the plugging of artificially cracked cement mortar using Bacillus Pasteurii and Sporosarcina bacteria combined with sand as a filling material in artificially made cuts in cement mortar which was cured in urea and CaCl2 medium. The effect on the compressive strength and stiffness of the cement mortar cubes due to the mixing of bacteria is also discussed in this paper. It was found that use of bacteria improves the stiffness and compressive strength of concrete. Scanning electron microscope (SEM) is used to document the role of bacteria in microbiologically induced mineral precipitation. Rod like impressions were found on the face of calcite crystals indicating the presence of bacteria in those places. Energy- dispersive X-ray (EDX) spectra of the microbial precipitation on the surface of the crack indicated the abundance of calcium and the precipitation was inferred to be calcite (CaCO3).

  17. [Homeopathy in [corrected] spontaneous bacterial peritonitis].

    PubMed

    Teut, Michael

    2006-12-01

    The case of a 44-year-old patient with spontaneous bacterial peritonitis caused by E. coli is described and discussed. The patient with hypalbuminemia, ascites, a medical history of chronic pancreatitis, chronic alcohol abuse and a duodenopancreatectomy 6 months before showed a very slow response to conventional treatment but a good response to homeopathic therapy with Arsenicum album C200 and Pulsatilla C200. The discussion focuses on the methodology of single case evaluations according to cognition based medicine. PMID:17200613

  18. Gastrointestinal bacterial overgrowth: pathogenesis and clinical significance

    PubMed Central

    Sachdev, Amit H.

    2013-01-01

    Small intestinal bacterial overgrowth (SIBO) is defined as the presence of an abnormally high number of coliform bacteria in the small bowel. It is associated with a broad range of predisposing small intestinal motility disorders and with surgical procedures that result in bowel stasis. The most common symptoms associated with SIBO include diarrhea, flatulence, abdominal pain and bloating. Quantitative culture of small bowel contents and a variety of indirect tests have been used over the years in an attempt to facilitate the diagnosis of SIBO. The indirect tests include breath tests and biochemical tests based on bacterial metabolism of a variety of substrates. Unfortunately, there is no single valid test for SIBO, and the accuracy of all current tests remains limited due to the failure of culture to be a gold standard and the lack of standardization of the normal bowel flora in the small intestine. Currently, the ideal approach to treat SIBO is to treat the underlying disease, eradicate overgrowth, and address nutritional deficiencies that may be associated with the development of SIBO. PMID:23997926

  19. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor

    NASA Astrophysics Data System (ADS)

    Inagaki, Takeshi; Moschetta, Antonio; Lee, Youn-Kyoung; Peng, Li; Zhao, Guixiang; Downes, Michael; Yu, Ruth T.; Shelton, John M.; Richardson, James A.; Repa, Joyce J.; Mangelsdorf, David J.; Kliewer, Steven A.

    2006-03-01

    Obstruction of bile flow results in bacterial proliferation and mucosal injury in the small intestine that can lead to the translocation of bacteria across the epithelial barrier and systemic infection. These adverse effects of biliary obstruction can be inhibited by administration of bile acids. Here we show that the farnesoid X receptor (FXR), a nuclear receptor for bile acids, induces genes involved in enteroprotection and inhibits bacterial overgrowth and mucosal injury in ileum caused by bile duct ligation. Mice lacking FXR have increased ileal levels of bacteria and a compromised epithelial barrier. These findings reveal a central role for FXR in protecting the distal small intestine from bacterial invasion and suggest that FXR agonists may prevent epithelial deterioration and bacterial translocation in patients with impaired bile flow. bacteria | biliary obstruction | epithelial barrier | ileum

  20. Metabolism of isoflavones, lignans and prenylflavonoids by intestinal bacteria: producer phenotyping and relation with intestinal community.

    PubMed

    Possemiers, Sam; Bolca, Selin; Eeckhaut, Ellen; Depypere, Herman; Verstraete, Willy

    2007-08-01

    Many studies have investigated the importance of the intestinal bacterial activation of individual phytoestrogens. However, human nutrition contains different phytoestrogens and the final exposure depends on the microbial potential to activate all different groups within each individual. In this work, interindividual variations in the bacterial activation of the different phytoestrogens were assessed. Incubation of feces from 100 individuals using SoyLife EXTRA, LinumLife EXTRA and isoxanthohumol suggested that individuals could be separated into high, moderate and low O-desmethylangolensin (O-DMA), equol, enterodiol (END), enterolactone (ENL) or 8-prenylnaringenin producers, but that the metabolism of isoflavones, lignans and prenylflavonoids follows separate, independent pathways. However, O-DMA and equol production correlated negatively, whereas a positive correlation was found between END and ENL production. In addition, END production correlated negatively with Clostridium coccoides-Eubacterium rectale counts. Furthermore, O-DMA production was correlated with the abundance of methanogens, whereas equol production correlated with sulfate-reducing bacteria, indicating that the metabolic fate of daidzein may be related to intestinal H(2) metabolism. PMID:17506823

  1. Treatment of Spontaneous Bacterial Peritonitis.

    PubMed

    Salerno, Francesco; La Mura, Vincenzo

    2015-01-01

    Spontaneous bacterial peritonitis (SBP) is an infection of patients with cirrhosis and ascites. This peculiarity is due to the frequent intestinal translocation that allows bacteria to cross the intestinal barrier, colonizing the ascitic fluid. In cirrhosis, SBP is inferior only to urinary tract infections. It is prevalently sustained by Gram-negative bacteria such as Escherichia coli and Klebsiella. Risk factors for developing SBP are advanced age, refractory ascites, variceal bleeding, renal failure, low albumin levels (below 2.5 g/ml), bilirubin over 4 mg/dl, Child-Pugh class C and a previous diagnosis of SBP. Thus, this is an indication for a long-term antibiotic prophylaxis with norfloxacin. Renal failure - especially the hepatorenal syndrome - complicates SBP in about 20% of cases independently of the efficacy of the antibiotic therapy. The mortality of these patients is about 90%. Infusion of albumin significantly reduces the incidence of hepatorenal syndrome and consequently the risk of death. Long-term quinolonic prophylaxis as well as increased antibiotic therapies are causing the emergence of multidrug-resistant agents as frequent causes of SBP. In such cases, the antibiotic sensitivity to quinolones is low, and European recommendations suggest a second-line antibiotic therapy, including meropenem or piperacillin plus tazobactam. Collection of blood, urine and ascitic fluid for cultures is important for bacterial recognition, possibly before starting an empirical antibiotic therapy. Indeed, the probability of positive cultures rapidly vanishes when they are performed during already implemented antibiotic administration. It is important to know that a failure of the first-line therapy is associated with an increased probability of death. PMID:26159277

  2. Current concepts of the intestinal microbiota and the pathogenesis of infection.

    PubMed

    Wardwell, Leslie H; Huttenhower, Curtis; Garrett, Wendy S

    2011-02-01

    The human gastrointestinal tract is populated by a vast and diverse community of microbes. This gut microbiota participates in host metabolism, protects from invading microbes, and facilitates immune system development and function. In this review, we consider the contributions of intestinal microbes to the pathogenesis of infectious diseases. Key concepts of colonization resistance, host-commensal microbe interaction in immunity, antibiotics and gut bacterial communities, viral-gut bacterial interactions, and evolving methods for studying commensal microbes are explored. PMID:21308452

  3. Ultrasound of selected pathologies of the small intestine

    PubMed Central

    Starzy?ska, Teresa; Ko?aczyk, Katarzyna

    2013-01-01

    Intestines, especially the small bowel, are rarely subject to US assessment due to the presence of gases and chyme. The aim of this paper was to analyze ultrasound images in selected pathologies of the small intestine in adults, including the aspects of differential diagnosis. Material and methods In 20012012, abdominal ultrasound examinations were conducted in 176 patients with the following small bowel diseases: Crohn's disease (n=35), small bowel obstruction (n=35), yersiniosis (n=28), infectious diarrhea (n=26), bacterial overgrowth syndrome (n=25), coeliac disease (n=15) and small bowel ischemia (n=12). During examinations patients were fasting and no other particular preparations were needed. Convex transducers of 3.56 MHz and linear ones of 712 MHz were used. The assessment of the small intestine in four abdominal quadrants constituted an integral element of the examination. The following features of the small bowel ultrasound presentation were subject to analysis: thickness and perfusion of the walls, presence of thickened folds in the jejunum, reduction of their number, presence of fluid and gas contents in the intestine, its peristaltic activity, jejunization of the ileum and enteroenteric intussusception. Furthermore, the size of the mesenteric lymph nodes and the width of the superior mesenteric artery were determined and the peritoneal cavity was evaluated in terms of the presence of free fluid. Results Statistically significant differences were obtained between the thickness of the small intestine in Crohn's disease or in ischemic conditions and the thickness in the remaining analyzed pathological entities. Small bowel obstruction was manifested by the presence of distended loops due to gas and fluid as well as by severe peristaltic contractions occurring periodically. In the course of ischemic disease, the intestinal walls were thickened without the signs of increased perfusion and in the majority of cases intestinal stenosis was observed. Fluid in the intestine was detected in all patients with coeliac disease, gas in 86.7% of patients, thickening of the folds in the jejunum in 86.7%, their reduction in 80%, increased (enhanced) peristalsis in 93.3% and jejunization in 40%. In 80% of coeliac disease cases, the intestine showed the features of hyperemia on color Doppler examination and in 53.3% of patients the dilated lumen of the superior mesenteric artery was detected. Enlarged mesenteric lymph nodes were visualized in 73.3% of the subjects, enteroenteric intussusception in 33.3% and free fluid in the peritoneal cavity in 60%. Conclusions Small bowel obstruction is manifested by the presence of evidently dilated intestinal loops filled with gas and fluid and periodical severe deepened peristalsis.Ischemic changes and Crohn's disease are characterized by the presence of fragmentarily thickened intestinal walls and intestinal stenosis. Moreover, in Crohn's disease, increased wall perfusion and mesenteric adenomegaly is encountered.Coeliac disease is manifested by: increased amount of fluid mainly in the jejunum, thickened and hyperemic jejunal walls, increased peristalsis;hypertrophied mucosal folds often their number is reduced, jejunization and transient enteroenteric intussusception;ultrasound changes that require the differentiation with small intestinal bacterial overgrowth syndrome and, to a lesser degree, with infectious diarrhea. PMID:26672622

  4. Brachyspira pilosicoli-induced avian intestinal spirochaetosis

    PubMed Central

    Le Roy, Caroline I.; Mappley, Luke J.; La Ragione, Roberto M.; Woodward, Martin J.; Claus, Sandrine P.

    2015-01-01

    Avian intestinal spirochaetosis (AIS) is a common disease occurring in poultry that can be caused by Brachyspira pilosicoli, a Gram-negative bacterium of the order Spirochaetes. During AIS, this opportunistic pathogen colonises the lower gastrointestinal (GI) tract of poultry (principally, the ileum, caeca, and colon), which can cause symptoms such as diarrhoea, reduced growth rate, and reduced egg production and quality. Due to the large increase of bacterial resistance to antibiotic treatment, the European Union banned in 2006 the prophylactic use of antibiotics as growth promoters in livestock. Consequently, the number of outbreaks of AIS has dramatically increased in the UK resulting in significant economic losses. This review summarises the current knowledge about AIS infection caused by B. pilosicoli and discusses various treatments and prevention strategies to control AIS. PMID:26679774

  5. Intestinal Microbiota and Probiotics in Celiac Disease

    PubMed Central

    Grzeskowiak, Lukasz Marcin; de Sales Teixeira, Tatiana Fiche; Gouveia Peluzio, Maria do Carmo

    2014-01-01

    SUMMARY Celiac disease (CD) is a common chronic autoimmune enteropathy caused by gluten intake. To date, the only therapy for CD is the complete exclusion of dietary sources of grains and any food containing gluten. It has been hypothesized that the intestinal microbiota is somehow involved in CD. For this reason, probiotics are appearing as an interesting adjuvant in the dietetic management of CD. This review aims to discuss the characteristics of the microbiota in CD subjects and the use of probiotics as a novel therapy for CD. Comparisons between children with CD and controls show that their microbiota profiles differ; the former have fewer lactobacilli and bifidobacteria. Specific probiotics have been found to digest or alter gluten polypeptides. It has also been demonstrated that some bacterial species belonging to the genera Lactobacillus and Bifidobacterium exert protective properties on epithelial cells from damage caused by gliadin. PMID:24982318

  6. Intestinal stem cells and inflammation.

    PubMed

    Asfaha, Samuel

    2015-12-01

    The intestinal epithelium is renewed every 3-5 days from at least two principal stem cell pools. Actively cycling crypt based columnar (CBC) Lgr5(+) cells and slower cycling Bmi1-expressing or Krt19-expressing cells maintain the small intestinal and colonic epithelium in homeostasis and injury. Following acute epithelial damage, Lgr5+ stem cells are susceptible to injury and a reserve stem cell or progenitor pool is responsible for regeneration of the epithelium. Current data suggests that intestinal stem cells respond to inflammatory signals to modulate their expansion during epithelial regeneration. Here, we review how inflammation and injury affect intestinal and colonic stem cells. PMID:26654865

  7. How to make an intestine

    PubMed Central

    Wells, James M.; Spence, Jason R.

    2014-01-01

    With the high prevalence of gastrointestinal disorders, there is great interest in establishing in vitro models of human intestinal disease and in developing drug-screening platforms that more accurately represent the complex physiology of the intestine. We will review how recent advances in developmental and stem cell biology have made it possible to generate complex, three-dimensional, human intestinal tissues in vitro through directed differentiation of human pluripotent stem cells. These are currently being used to study human development, genetic forms of disease, intestinal pathogens, metabolic disease and cancer. PMID:24496613

  8. Microbiota-Mediated Inflammation and Antimicrobial Defense in the Intestine

    PubMed Central

    Caballero, Silvia; Pamer, Eric G.

    2015-01-01

    The diverse microbial populations constituting the intestinal microbiota promote immune development and differentiation, but because of their complex metabolic requirements and the consequent difficulty culturing them, they remained, until recently, largely uncharacterized and mysterious. In the last decade, deep nucleic acid sequencing platforms, new computational and bioinformatics tools, and full-genome characterization of several hundred commensal bacterial species facilitated studies of the microbiota and revealed that differences in microbiota composition can be associated with inflammatory, metabolic, and infectious diseases, that each human is colonized by a distinct bacterial flora, and that the microbiota can be manipulated to reduce and even cure some diseases. Different bacterial species induce distinct immune cell populations that can play pro- and anti-inflammatory roles, and thus the composition of the microbiota determines, in part, the level of resistance to infection and susceptibility to inflammatory diseases. This review summarizes recent work characterizing commensal microbes that contribute to the antimicrobial defense/inflammation axis. PMID:25581310

  9. A molecular revolution in the study of intestinal microflora

    PubMed Central

    Furrie, E

    2006-01-01

    Bacterial colonisers of the colon comprise several hundred bacterial species that live in a complex ecosystem. Study of this complex ecosystem has been carried out, until recently, by traditional culture techniques with biochemical methods to identify organisms. The development of molecular techniques to investigate ecological microbial communities has provided the microbiologist with a vast array of new techniques to investigate human intestinal microflora. Metagenomics, the science of biological diversity, combines the use of molecular biology and genetics to identify and characterise genetic material from complex microbial environments. The combination of metagenomics and subsequent quantitation of each identified species using molecular techniques allows the relatively rapid analysis of whole bacterial populations in human health and disease PMID:16407377

  10. Teleost intestinal immunology.

    PubMed

    Rombout, Jan H W M; Abelli, Luigi; Picchietti, Simona; Scapigliati, Giuseppe; Kiron, Viswanath

    2011-11-01

    Teleosts clearly have a more diffuse gut associated lymphoid system, which is morphological and functional clearly different from the mammalian GALT. All immune cells necessary for a local immune response are abundantly present in the gut mucosa of the species studied and local immune responses can be monitored after intestinal immunization. Fish do not produce IgA, but a special mucosal IgM isotype seems to be secreted and may (partly) be the recently described IgZ/IgT. Fish produce a pIgR in their mucosal tissues but it is smaller (2 ILD) than the 4-5 ILD pIgR of higher vertebrates. Whether teleost pIgR is transcytosed and cleaved off in the same way needs further investigation, especially because a secretory component (SC) is only reported in one species. Teleosts also have high numbers of IEL, most of them are CD3-?+/CD8-?+ and have cytotoxic and/or regulatory function. Possibly many of these cells are TCR?? cells and they may be involved in the oral tolerance induction observed in fish. Innate immune cells can be observed in the teleost gut from first feeding onwards, but B cells appear much later in mucosal compartments compared to systemic sites. Conspicuous is the very early presence of putative T cells or their precursors in the fish gut, which together with the rag-1 expression of intestinal lymphoid cells may be an indication for an extra-thymic development of certain T cells. Teleosts can develop enteritis in their antigen transporting second gut segment and epithelial cells, IEL and eosinophils/basophils seem to play a crucial role in this intestinal inflammation model. Teleost intestine can be exploited for oral vaccination strategies and probiotic immune stimulation. A variety of encapsulation methods, to protect vaccines against degradation in the foregut, are reported with promising results but in most cases they appear not to be cost effective yet. Microbiota in fish are clearly different from terrestrial animals. In the past decade a fast increasing number of papers is dedicated to the oral administration of a variety of probiotics that can have a strong health beneficial effect, but much more attention has to be paid to the immune mechanisms behind these effects. The recent development of gnotobiotic fish models may be very helpful to study the immune effects of microbiota and probiotics in teleosts. PMID:20832474

  11. Synthetic Small Intestinal Scaffolds for Improved Studies of Intestinal Differentiation

    PubMed Central

    Costello, Cait M.; Hongpeng, Jia; Shaffiey, Shahab; Yu, Jiajie; Jain, Nina K.; Hackam, David

    2014-01-01

    In vitro intestinal models can provide new insights into small intestinal function, including cellular growth and proliferation mechanisms, drug absorption capabilities, and host-microbial interactions. These models are typically formed with cells cultured on 2D scaffolds or transwell inserts, but it is widely understood that epithelial cells cultured in 3D environments exhibit different phenotypes that are more reflective of native tissue. Our focus was to develop a porous, synthetic 3D tissue scaffold with villous features that could support the culture of epithelial cell types to mimic the natural microenvironment of the small intestine. We demonstrated that our scaffold could support the co-culture of Caco-2 cells with a mucus-producing cell line, HT29-MTX, as well as small intestinal crypts from mice for extended periods. By recreating the surface topography with accurately sized intestinal villi, we enable cellular differentiation along the villous axis in a similar manner to native intestines. In addition, we show that the biochemical microenvironments of the intestine can be further simulated via a combination of apical and basolateral feeding of intestinal cell types cultured on the 3D models. PMID:24390638

  12. Neurologic effects of alcoholism.

    PubMed Central

    Diamond, I; Messing, R O

    1994-01-01

    Alcoholism, a worldwide disorder, is the cause of a variety of neurologic disorders. In this article we discuss the cellular pathophysiology of ethanol addition and abuse as well as evidence supporting and refuting the role of inheritance in alcoholism. A genetic marker for alcoholism has not been identified, but neurophysiologic studies may be promising. Some neurologic disorders related to longterm alcoholism are due predominantly to inadequate nutrition (the thiamine deficiency that causes Wernicke's encephalopathy), but others appear to involve the neurotoxicity of ethanol on brain (alcohol withdrawal syndrome and dementia) and peripheral nerves (alcoholic neuropathy and myopathy). Images PMID:7975567

  13. Alcohol-related seizures.

    PubMed

    McMicken, David; Liss, Jonathan L

    2011-02-01

    The term alcohol-related seizures (ARS) is used to refer to all seizures in the aggregate associated with alcohol use, including the subset of alcohol withdrawal seizures (AWS). From 20% to 40% of patients with seizure who present to an emergency department have seizures related to alcohol abuse. However, it is critical to avoid prematurely labeling a seizure as being caused by alcohol withdrawal before performing a careful diagnostic evaluation. Benzodiazepines alone are sufficient to prevent AWS. The alcoholic patient with a documented history of ARS, who experiences a single seizure or a short burst of seizures should be treated with lorazepam, 2mg intravenously. PMID:21109108

  14. Should Alcohol-Based Handrub Use Be Customized to Healthcare Workers' Hand Size?

    PubMed

    Bellissimo-Rodrigues, Fernando; Soule, Hervé; Gayet-Ageron, Angèle; Martin, Yves; Pittet, Didier

    2016-02-01

    We evaluated whether the volume of alcohol-based handrub used by healthcare workers affects the residual bacterial concentration on their hands according to hand size. Bacterial reduction was significantly lower for large hands compared with small hands, which suggests a need for customizing the volume of alcohol-based handrub for hand hygiene. Infect. Control Hosp. Epidemiol. 2016;37(2):219-221. PMID:26598073

  15. [Disturbances of folic acid and homocysteine metabolism in alcohol abuse].

    PubMed

    Cylwik, Bogdan; Chrostek, Lech

    2011-04-01

    Chronic alcohol abuse leads to malnutrition, and thus to the deficiency of many nutrients, including vitamins and trace elements. Most often comes to the deficiency of all vitamins, however because the clinical implications, the most important is folic acid (vitamin B9) deficiency. Biochemical effect of folate deficiency is elevated homocysteine concentration in the blood, named "cholesterol of XXI. century". In the paper, the folate and homocysteine metabolism in alcohol abuse was discussed. Mechanisms of alcohol action on folate homeostasis in the human body have been indicated. Chronic alcohol consumption leads to deficiency of this vitamin due to their dietary inadequacy, intestinal malabsorption, decreased hepatic uptake and increased body excretion, mainly via urine. The decreased concentration of serum folic acid may occur in 80% of alcoholics. The cause of elevated concentrations of homocysteine in the serum of alcohol abusers is also a deficiency of vitamins involved such as vitamin B12 and pyridoxal phosphate. Disturbance of folic acid and homocysteine metabolism in alcohol abusers can lead to serious clinical consequences. Folic acid deficiency leads inter alia to macrocytic and megaloblastic anemia and neurological disorders. Megaloblastic anemia occurs in about half of alcohol abusers with chronic liver diseases. In turn, high level of homocysteine in blood is associated with an inreased risk of cardiovascular diseases. Hyperhomocysteinemia is an independent risk factor that favors the occurrence of acute coronary syndromes in patients with coronary heart disease. PMID:21595178

  16. Keeping bugs in check: The mucus layer as a critical component in maintaining intestinal homeostasis.

    PubMed

    Faderl, Martin; Noti, Mario; Corazza, Nadia; Mueller, Christoph

    2015-04-01

    In the mammalian gastrointestinal tract the close vicinity of abundant immune effector cells and trillions of commensal microbes requires sophisticated barrier and regulatory mechanisms to maintain vital host-microbial interactions and tissue homeostasis. During co-evolution of the host and its intestinal microbiota a protective multilayered barrier system was established to segregate the luminal microbes from the intestinal mucosa with its potent immune effector cells, limit bacterial translocation into host tissues to prevent tissue damage, while ensuring the vital functions of the intestinal mucosa and the luminal gut microbiota. In the present review we will focus on the different layers of protection in the intestinal tract that allow the successful mutualism between the microbiota and the potent effector cells of the intestinal innate and adaptive immune system. In particular, we will review some of the recent findings on the vital functions of the mucus layer and its site-specific adaptations to the changing quantities and complexities of the microbiota along the (gastro-) intestinal tract. Understanding the regulatory pathways that control the establishment of the mucus layer, but also its degradation during intestinal inflammation may be critical for designing novel strategies aimed at maintaining local tissue homeostasis and supporting remission from relapsing intestinal inflammation in patients with inflammatory bowel diseases. PMID:25914114

  17. The impact of farnesoid X receptor activation on intestinal permeability in inflammatory bowel disease

    PubMed Central

    Stojancevic, Maja; Stankov, Karmen; Mikov, Momir

    2012-01-01

    The most important function of the intestinal mucosa is to form a barrier that separates luminal contents from the intestine. Defects in the intestinal epithelial barrier have been observed in several intestinal disorders such as inflammatory bowel disease (IBD). Recent studies have identified a number of factors that contribute to development of IBD including environmental triggers, genetic factors, immunoregulatory defects and microbial exposure. The current review focuses on the influence of the farnesoid X receptor (FXR) on the inhibition of intestinal inflammation in patients with IBD. The development and investigation of FXR agonists provide strong support for the regulatory role of FXR in mucosal innate immunity. Activation of FXR in the intestinal tract decreases the production of proinflammatory cytokines such as interleukin (IL) 1-beta, IL-2, IL-6, tumour necrosis factor-alpha and interferon-gamma, thus contributing to a reduction in inflammation and epithelial permeability. In addition, intestinal FXR activation induces the transcription of multiple genes involved in enteroprotection and the prevention of bacterial translocation in the intestinal tract. These data suggest that FXR agonists are potential candidates for exploration as a novel therapeutic strategy for IBD in humans. PMID:22993736

  18. The impact of farnesoid X receptor activation on intestinal permeability in inflammatory bowel disease.

    PubMed

    Stojancevic, Maja; Stankov, Karmen; Mikov, Momir

    2012-09-01

    The most important function of the intestinal mucosa is to form a barrier that separates luminal contents from the intestine. Defects in the intestinal epithelial barrier have been observed in several intestinal disorders such as inflammatory bowel disease (IBD). Recent studies have identified a number of factors that contribute to development of IBD including environmental triggers, genetic factors, immunoregulatory defects and microbial exposure. The current review focuses on the influence of the farnesoid X receptor (FXR) on the inhibition of intestinal inflammation in patients with IBD. The development and investigation of FXR agonists provide strong support for the regulatory role of FXR in mucosal innate immunity. Activation of FXR in the intestinal tract decreases the production of proinflammatory cytokines such as interleukin (IL) 1-beta, IL-2, IL-6, tumour necrosis factor-alpha and interferon-gamma, thus contributing to a reduction in inflammation and epithelial permeability. In addition, intestinal FXR activation induces the transcription of multiple genes involved in enteroprotection and the prevention of bacterial translocation in the intestinal tract. These data suggest that FXR agonists are potential candidates for exploration as a novel therapeutic strategy for IBD in humans. PMID:22993736

  19. Motility Disorders of the Small Intestine

    MedlinePLUS

    ... Contact Us Donate Motility Disorders of the Small Intestine The general function of the small intestine is the absorption of the food we eat. During and after a meal, the intestine normally shows very irregular or unsynchronized contractions. The ...

  20. Colon-targeted delivery of live bacterial cell biotherapeutics including microencapsulated live bacterial cells

    PubMed Central

    Prakash, Satya; Malgorzata Urbanska, Aleksandra

    2008-01-01

    There has been an ample interest in delivery of therapeutic molecules using live cells. Oral delivery has been stipulated as best way to deliver live cells to humans for therapy. Colon, in particular, is a part of gastrointestinal (GI) tract that has been proposed to be an oral targeted site. The main objective of these oral therapy procedures is to deliver live cells not only to treat diseases like colorectal cancer, inflammatory bowel disease, and other GI tract diseases like intestinal obstruction and gastritis, but also to deliver therapeutic molecules for overall therapy in various diseases such as renal failure, coronary heart disease, hypertension, and others. This review provides a comprehensive summary of recent advancement in colon targeted live bacterial cell biotherapeutics. Current status of bacterial cell therapy, principles of artificial cells and its potentials in oral delivery of live bacterial cell biotherapeutics for clinical applications as well as biotherapeutic future perspectives are also discussed in our review. PMID:19707368

  1. Intestinal Microbiota in Patients with Spinal Cord Injury.

    PubMed

    Gungor, Bilgi; Adiguzel, Emre; Gursel, Ihsan; Yilmaz, Bilge; Gursel, Mayda

    2016-01-01

    Human intestinal flora comprises thousands of bacterial species. Growth and composition of intestinal microbiota is dependent on various parameters, including immune mechanisms, dietary factors and intestinal motility. Patients with spinal cord injury (SCI) frequently display neurogenic bowel dysfunction due to the absence of central nervous system control over the gastrointestinal system. Considering the bowel dysfunction and altered colonic transit time in patients with SCI, we hypothesized the presence of a significant change in the composition of their gut microbiome. The objective of this study was to characterize the gut microbiota in adult SCI patients with different types of bowel dysfunction. We tested our hypothesis on 30 SCI patients (15 upper motor neuron [UMN] bowel syndrome, 15 lower motor neuron [LMN] bowel syndrome) and 10 healthy controls using the 16S rRNA sequencing. Gut microbial patterns were sampled from feces. Independent of study groups, gut microbiota of the participants were dominated by Blautia, Bifidobacterium, Faecalibacterium and Ruminococcus. When we compared all study groups, Roseburia, Pseudobutyrivibrio, Dialister, Marvinbryantia and Megamonas appeared as the genera that were statistically different between groups. In comparison to the healthy group, total bacterial counts of Pseudobutyrivibrio, Dialister and Megamonas genera were significantly lower in UMN bowel dysfunction group. The total bacterial count of Marvinbryantia genus was significantly lower in UMN bowel dysfunction group when compared to the LMN group. Total bacterial counts of Roseburia, Pseudobutyrivibrio and Megamonas genera were significantly lower in LMN bowel dysfunction group when compared to healthy groups. Our results demonstrate for the first time that butyrate-producing members are specifically reduced in SCI patients when compared to healthy subjects. The results of this study would be of interest since to our knowledge, microbiome-associated studies targeting SCI patients are non-existent and the results might help explain possible implications of gut microbiome in SCI. PMID:26752409

  2. Intestinal Microbiota in Patients with Spinal Cord Injury

    PubMed Central

    Gursel, Ihsan; Yilmaz, Bilge; Gursel, Mayda

    2016-01-01

    Human intestinal flora comprises thousands of bacterial species. Growth and composition of intestinal microbiota is dependent on various parameters, including immune mechanisms, dietary factors and intestinal motility. Patients with spinal cord injury (SCI) frequently display neurogenic bowel dysfunction due to the absence of central nervous system control over the gastrointestinal system. Considering the bowel dysfunction and altered colonic transit time in patients with SCI, we hypothesized the presence of a significant change in the composition of their gut microbiome. The objective of this study was to characterize the gut microbiota in adult SCI patients with different types of bowel dysfunction. We tested our hypothesis on 30 SCI patients (15 upper motor neuron [UMN] bowel syndrome, 15 lower motor neuron [LMN] bowel syndrome) and 10 healthy controls using the 16S rRNA sequencing. Gut microbial patterns were sampled from feces. Independent of study groups, gut microbiota of the participants were dominated by Blautia, Bifidobacterium, Faecalibacterium and Ruminococcus. When we compared all study groups, Roseburia, Pseudobutyrivibrio, Dialister, Marvinbryantia and Megamonas appeared as the genera that were statistically different between groups. In comparison to the healthy group, total bacterial counts of Pseudobutyrivibrio, Dialister and Megamonas genera were significantly lower in UMN bowel dysfunction group. The total bacterial count of Marvinbryantia genus was significantly lower in UMN bowel dysfunction group when compared to the LMN group. Total bacterial counts of Roseburia, Pseudobutyrivibrio and Megamonas genera were significantly lower in LMN bowel dysfunction group when compared to healthy groups. Our results demonstrate for the first time that butyrate-producing members are specifically reduced in SCI patients when compared to healthy subjects. The results of this study would be of interest since to our knowledge, microbiome-associated studies targeting SCI patients are non-existent and the results might help explain possible implications of gut microbiome in SCI. PMID:26752409

  3. Fetal Alcohol Spectrum Disorders.

    PubMed

    Williams, Janet F; Smith, Vincent C

    2015-11-01

    Prenatal exposure to alcohol can damage the developing fetus and is the leading preventable cause of birth defects and intellectual and neurodevelopmental disabilities. In 1973, fetal alcohol syndrome was first described as a specific cluster of birth defects resulting from alcohol exposure in utero. Subsequently, research unequivocally revealed that prenatal alcohol exposure causes a broad range of adverse developmental effects. Fetal alcohol spectrum disorder (FASD) is the general term that encompasses the range of adverse effects associated with prenatal alcohol exposure. The diagnostic criteria for fetal alcohol syndrome are specific, and comprehensive efforts are ongoing to establish definitive criteria for diagnosing the other FASDs. A large and growing body of research has led to evidence-based FASD education of professionals and the public, broader prevention initiatives, and recommended treatment approaches based on the following premises:▪ Alcohol-related birth defects and developmental disabilities are completely preventable when pregnant women abstain from alcohol use.▪ Neurocognitive and behavioral problems resulting from prenatal alcohol exposure are lifelong.▪ Early recognition, diagnosis, and therapy for any condition along the FASD continuum can result in improved outcomes.▪ During pregnancy:◦no amount of alcohol intake should be considered safe;◦there is no safe trimester to drink alcohol;◦all forms of alcohol, such as beer, wine, and liquor, pose similar risk; and◦binge drinking poses dose-related risk to the developing fetus. PMID:26482673

  4. Host Responses to Intestinal Microbial Antigens in Gluten-Sensitive Mice

    PubMed Central

    Natividad, Jane M.; Huang, Xianxi; Slack, Emma; Jury, Jennifer; Sanz, Yolanda; David, Chella; Denou, Emmanuel; Yang, Pinchang; Murray, Joseph

    2009-01-01

    Background and Aims Excessive uptake of commensal bacterial antigens through a permeable intestinal barrier may influence host responses to specific antigen in a genetically predisposed host. The aim of this study was to investigate whether intestinal barrier dysfunction induced by indomethacin treatment affects the host response to intestinal microbiota in gluten-sensitized HLA-DQ8/HCD4 mice. Methodology/Principal Findings HLA-DQ8/HCD4 mice were sensitized with gluten, and gavaged with indomethacin plus gluten. Intestinal permeability was assessed by Ussing chamber; epithelial cell (EC) ultra-structure by electron microscopy; RNA expression of genes coding for junctional proteins by Q-real-time PCR; immune response by in-vitro antigen-specific T-cell proliferation and cytokine analysis by cytometric bead array; intestinal microbiota by fluorescence in situ hybridization and analysis of systemic antibodies against intestinal microbiota by surface staining of live bacteria with serum followed by FACS analysis. Indomethacin led to a more pronounced increase in intestinal permeability in gluten-sensitized mice. These changes were accompanied by severe EC damage, decreased E-cadherin RNA level, elevated IFN-? in splenocyte culture supernatant, and production of significant IgM antibody against intestinal microbiota. Conclusion Indomethacin potentiates barrier dysfunction and EC injury induced by gluten, affects systemic IFN-? production and the host response to intestinal microbiota antigens in HLA-DQ8/HCD4 mice. The results suggest that environmental factors that alter the intestinal barrier may predispose individuals to an increased susceptibility to gluten through a bystander immune activation to intestinal microbiota. PMID:19649259

  5. Intestinal absorptive function.

    PubMed Central

    Spiller, R C

    1994-01-01

    The normal gut is adapted to intermittent feeding with complex macromolecular substrates of low sodium content. The high permeability of the upper small intestine to sodium, together with sodium rich saliva and pancreaticobiliary secretions results in large sodium fluxes into the lumen. These substantial sodium influxes are matched by equally large effluxes from the ileum and proximal colon, which are comparatively impermeable to sodium and capable of active sodium absorption. Resection of these distal, sodium absorbing regions of the intestine, lead to problems with sodium depletion. Controlled transit of chyme is essential to permit time for optimum digestion and absorption and a range of feedback control mechanisms exist. Partially digested nutrients, both in the duodenum and ileum, exert inhibitory feedback to delay delivery of further nutrients and here again surgery may compromise these reflexes. Brush border hydrolase values are strongly influenced by luminal nutrient concentrations, being impaired by malnutrition and total parenteral nutrition, but restored by enteral feeding. Viscous fibre slows absorption and may delay transit through mechanisms that are as yet uncertain. Whether and how novel substrates activate normal control mechanisms will be important factors determining their effectiveness and patient acceptability. PMID:8125391

  6. Common intestinal parasites.

    PubMed

    Kucik, Corry Jeb; Martin, Gary L; Sortor, Brett V

    2004-03-01

    Intestinal parasites cause significant morbidity and mortality. Diseases caused by Enterobius vermicularis, Giardia lamblia, Ancylostoma duodenale, Necator americanus, and Entamoeba histolytica occur in the United States. E. vermicularis, or pinworm, causes irritation and sleep disturbances. Diagnosis can be made using the "cellophane tape test." Treatment includes mebendazole and household sanitation. Giardia causes nausea, vomiting, malabsorption, diarrhea, and weight loss. Stool ova and parasite studies are diagnostic. Treatment includes metronidazole. Sewage treatment, proper handwashing, and consumption of bottled water can be preventive. A. duodenale and N. americanus are hookworms that cause blood loss, anemia, pica, and wasting. Finding eggs in the feces is diagnostic. Treatments include albendazole, mebendazole, pyrantel pamoate, iron supplementation, and blood transfusion. Preventive measures include wearing shoes and treating sewage. E. histolytica can cause intestinal ulcerations, bloody diarrhea, weight loss, fever, gastrointestinal obstruction, and peritonitis. Amebas can cause abscesses in the liver that may rupture into the pleural space, peritoneum, or pericardium. Stool and serologic assays, biopsy, barium studies, and liver imaging have diagnostic merit. Therapy includes luminal and tissue amebicides to attack both life-cycle stages. Metronidazole, chloroquine, and aspiration are treatments for liver abscess. Careful sanitation and use of peeled foods and bottled water are preventive. PMID:15023017

  7. Intestinal microbiota and obesity.

    PubMed

    Blaut, Michael; Klaus, Susanne

    2012-01-01

    The human gut harbors a highly diverse microbial ecosystem of approximately 400 different species, which is characterized by a high interindividual variability. The intestinal microbiota has recently been suggested to contribute to the development of obesity and the metabolic syndrome. Transplantation of gut microbiota from obese mice to nonobese, germ-free mice resulted in transfer of metabolic syndrome-associated features from the donor to the recipient. Proposed mechanisms for the role of gut microbiota include the provision of additional energy by the conversion of dietary fiber to short-chain fatty acids, effects on gut-hormone production, and increased intestinal permeability causing elevated systemic levels of lipopolysaccharides (LPS). This metabolic endotoxemia is suggested to contribute to low-grade inflammation, a characteristic trait of obesity and the metabolic syndrome. Finally, activation of the endocannabinoid system by LPS and/or high-fat diets is discussed as another causal factor. In conclusion, there is ample evidence for a role of gut microbiota in the development of obesity in rodents. However, the magnitude of its contribution to human obesity is still unknown. PMID:22249818

  8. A dysbiotic subpopulation of alcohol-dependent subjects.

    PubMed

    de Timary, Philippe; Leclercq, Sophie; Strkel, Peter; Delzenne, Nathalie

    2015-11-01

    The vast majority of studies that assessed the importance of biological factors for the development of psychiatric disorders focused on processes occurring at the brain level. Alcohol-dependence is a very frequent psychiatric disorder where psycho-pharmacological interventions are only of moderate efficacy. Our laboratory has recently described that a subpopulation of alcohol-dependent subjects, that accounted for approximately 40% of individuals tested, presented with an increased intestinal permeability, with a dysbiosis, with alterations in the metabolomic content of faeces - that could play a role in the increased permeability - and finally with a more severe profile of alcohol-dependence than the other non-dysbiotic subpopulation. In this addendum, we discuss the implications of our observations for the pathophysiology of alcohol dependence where we try to discriminate which addiction dimensions are likely related to the gut microbiota alterations and whether these alterations are the cause or the consequence of drinking habits. PMID:26727422

  9. The role of diet on intestinal microbiota metabolism: Downstream impacts on host immune function and health, and therapeutic implications

    PubMed Central

    Goldsmith, Jason R; Sartor, Balfour

    2014-01-01

    Dietary impacts on health may be one of the oldest concepts in medicine; however, only in recent years have technical advances in mass spectroscopy, gnotobiology, and bacterial sequencing enabled our understanding of human physiology to progress to the point where we can begin to understand how individual dietary components can affect specific illnesses. This review explores the current understanding of the complex interplay between dietary factors and the host microbiome, concentrating on the downstream implications on host immune function and the pathogenesis of disease. We discuss the influence of the gut microbiome on body habitus and explore the primary and secondary effects of diet on enteric microbial community structure. We address the impact of consumption of non-digestible polysaccharides (prebiotics and fiber), choline, carnitine, iron, and fats on host health as mediated by the enteric microbiome. Disease processes emphasized include nonalcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH), IBD, and cardiovascular disease (CVD)/atherosclerosis. The concepts presented in this review have important clinical implications, although more work needs to be done to fully develop and validate potential therapeutic approaches. Specific dietary interventions offer exciting potential for nontoxic, physiologic ways to alter enteric microbial structure and metabolism to benefit the natural history of many intestinal and systemic disorders. PMID:24652102

  10. Intestinal Epithelial Cells In Vitro

    PubMed Central

    Dombkowski, Alan A.; Stemmer, Paul M.; Parker, Graham C.

    2010-01-01

    Recent advances in the biology of stem cells has resulted in significant interest in the development of normal epithelial cell lines from the intestinal mucosa, both to exploit the therapeutic potential of stem cells in tissue regeneration and to develop treatment models of degenerative disorders of the digestive tract. However, the difficulty of propagating cell lines of normal intestinal epithelium has impeded research into the molecular mechanisms underlying differentiation of stem/progenitor cells into the various intestinal lineages. Several short-term organ/organoid and epithelial cell culture models have been described. There is a dearth of long-term epithelial and/or stem cell cultures of intestine. With an expanding role of stem cells in the treatment of degenerative disorders, there is a critical need for additional efforts to develop in vitro models of stem/progenitor epithelial cells of intestine. The objective of this review is to recapitulate the current status of technologies and knowledge for in vitro propagation of intestinal epithelial cells, markers of the intestinal stem cells, and gene and protein expression profiles of the intestinal cellular differentiation. PMID:19580443

  11. Salmonella enterica Serovar-Host Specificity Does Not Correlate with the Magnitude of Intestinal Invasion in Sheep

    PubMed Central

    Uzzau, Sergio; Leori, Guido S.; Petruzzi, Valentino; Watson, Patricia R.; Schianchi, Giuseppe; Bacciu, Donatella; Mazzarello, Vittorio; Wallis, Timothy S.; Rubino, Salvatore

    2001-01-01

    The colonization of intestinal and systemic tissues by Salmonella enterica serovars with different host specificities was determined 7 days after inoculation of 1 to 2-month-old lambs. Following oral inoculation, S. enterica serovars Abortusovis, Dublin, and Gallinarum were recovered in comparable numbers from the intestinal mucosa, but serovar Gallinarum was recovered in lower numbers than the other serovars from systemic sites. The pattern of bacterial recovery from systemic sites following intravenous inoculation was similar. The magnitude of intestinal invasion was evaluated in ovine ligated ileal loops in vivo. Serovars Dublin and Gallinarum and the broad-host-range Salmonella serovar Typhimurium were recovered in comparable numbers from ileal mucosa 3 h after loop inoculation, whereas the recovery of serovar Abortusovis was approximately 10-fold lower. Microscopic analysis of intestinal mucosae infected with serovars Typhimurium and Dublin showed dramatic morphological changes and infiltration of inflammatory cells, whereas mucosae infected with serovars Abortusovis and Gallinarum were indistinguishable from uninfected mucosae. Together these data suggest that Salmonella serovar specificity in sheep correlates with bacterial persistence at systemic sites. Intestinal invasion and avoidance of the host's intestinal inflammatory response may contribute to but do not determine the specificity of serovar Abortosovis for sheep. Intestinal invasion by serovar Abortusovis was significantly reduced after mutation of invH but was not reduced following curing of the virulence plasmid, suggesting that the Salmonella pathogenicity island 1 influences but the virulence plasmid genes do not influence the ability of serovar Abortusovis to invade the intestinal mucosa in sheep. PMID:11292728

  12. THE ALCOHOL AND ALCOHOL PROBLEMS SCIENCE DATABASE (ETOH)

    EPA Science Inventory

    The Alcohol and Alcohol Problems Science Database, commonly referred to as ETOH, is the most comprehensive online resource covering all aspects of alcohol abuse and alcoholism. Produced by the National Institute on Alcohol Abuse and Alcoholism (NIAAA), ETOH contains over 110,000 ...

  13. Deciding to quit drinking alcohol

    MedlinePLUS

    Alcohol use disorder - quitting drinking; Alcohol abuse - quitting drinking; Quitting drinking; Quitting alcohol ... or recovery program. These programs: Teach people about alcohol abuse and its effects Offer counseling and support about ...

  14. Alcohol and Cancer Risk

    MedlinePLUS

    ... a particular type of esophageal cancer called esophageal squamous cell carcinoma ( 2 ). In addition, people who inherit a deficiency ... have substantially increased risks of alcohol-related esophageal squamous cell carcinoma. Liver cancer : Alcohol consumption is an independent risk ...

  15. Alcohol Use Disorders

    MedlinePLUS

    ... In this Section Genetics of Alcohol Use Disorder Alcohol Use Disorder Problem drinking that becomes severe is ... being sick or getting over the aftereffects? Experienced craving a strong need, or urge, to drink? Found ...

  16. Alcohol and Cancer

    MedlinePLUS

    ... have also suggested that alcohol may cause some pancreatic cancers, but the evidence is not yet conclusive. However, ... pancreatitis and cirrhosis, which are known to increase pancreatic cancer risk. Alcohol and Cancer Opportunities for risk reduction ...

  17. Alcohol and pregnancy

    MedlinePLUS

    ... Heavy drinkers (those who drink more than 2 alcoholic beverages a day) are at greater risk of giving ... the healthier your baby will be. Choose non-alcoholic versions of beverages you like. If you cannot control your drinking, ...

  18. Alcoholic liver disease

    MedlinePLUS

    ... and cirrhosis can occur. Cirrhosis is the final phase of alcoholic liver disease. Alcoholic liver disease does ... and nervous system symptoms include: Problems with thinking, memory, and mood Fainting and lightheadedness Numbness in legs ...

  19. Alcohol Calorie Calculator

    MedlinePLUS

    ... Alcohol Calorie Calculator Find out the number of beer and hard alcohol calories you are consuming. Simply ... calories) Average Drinks Per Week Monthly Subtotal Calories Beer Regular 12 149 Light 12 110 Distilled (80 ...

  20. Fetal Alcohol Spectrum Disorders

    MedlinePLUS

    ... Daily life skills, such as feeding and bathing Fetal alcohol syndrome is the most serious type of FASD. People with fetal alcohol syndrome have facial abnormalities, including wide-set and narrow ...

  1. Women and Alcohol

    MedlinePLUS

    ... 12 percent alcohol content »» 1.5 ounces of distilled spirits with 40 percent alcohol content The USDA ... each type of beverage (e.g., beer, wine, distilled spirits). NIH . . . Turning Discovery Into Health ® National Institute ...

  2. [Intestinal permeability disorders in children].

    PubMed

    Dupont, C; Barau, E; Molkhou, P

    1991-03-01

    The intestinal mucosa has a certain degree of "porosity", which allows some molecules and macromolecules that are not subject to active transport, to cross the intestinal wall and enter the blood circulation. This permeability of the intestinal mucosa, which depends mostly on the size of the molecule and the state of the mucosa, can be studied with the assistance of protein macromolecules in an allergy-immunological investigation, or with inert markers, so permitting evaluation of the state of integrity of the small intestine. The markers used are polyethylene glycols (PEG) of various molecular weights, Cr EDTA, the monosaccharide sugars mannitol or rhamnose and the disaccharide sugars lactulose or cellobiose. Study of the intestinal permeability to inert markers allows detection of coeliac or Crohn's disease. It can be repeated, especially at the time of food provocation tests needed in the diagnosis of food intolerances in pediatrics in the enteropathology to cows milk proteins, atopic dermatitis and irritable colon in children. PMID:2069683

  3. Campylobacter Colonization of the Turkey Intestine in the Context of Microbial Community Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Relationships between development of the turkey intestinal microbiota and colonization by the food borne pathogen Campylobacter were examined. Every week of the 18 week production cycle, cecal bacterial communities and Campylobacter isolates were examined from five birds for each of two flocks. Mole...

  4. Antibiotics modulate intestinal immunity and prevent necrotizing enterocolitis in preterm neonatal piglets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Preterm birth, bacterial colonization, and formula feeding predispose to necrotizing enterocolitis (NEC). Antibiotics are commonly administered to prevent sepsis in preterm infants, but it is not known whether this affects intestinal immunity and NEC resistance. We hypothesized that broad-spectrum a...

  5. Effect of Lactobacillus GG on intestinal integrity in Malawian children at risk of tropical enteropathy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropical enteropathy is an asymptomatic villous atrophy of the small bowel that is prevalent in the developing world and is associated with altered intestinal function and integrity. The histology of tropical enteropathy resembles that seen in small-bowel bacterial overgrowth. This study tested the...

  6. EFFECT OF LACTOBACILLUS GG ON INTESTINAL INTEGRITY IN MALAWIAN CHILDREN AT RISK OF TROPICAL ENTEROPATHY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Tropical enteropathy is an asymptomatic villous atrophy of the small bowel that is prevalent in the developing world and is associated with altered intestinal function and integrity. The histology of tropical enteropathy resembles that seen in small-bowel bacterial overgrowth. Objective:...

  7. High-throughput analysis of the impact of antibiotics on the human intestinal microbiota composition.

    PubMed

    Ladirat, S E; Schols, H A; Nauta, A; Schoterman, M H C; Keijser, B J F; Montijn, R C; Gruppen, H; Schuren, F H J

    2013-03-01

    Antibiotic treatments can lead to a disruption of the human microbiota. In this in-vitro study, the impact of antibiotics on adult intestinal microbiota was monitored in a new high-throughput approach: a fermentation screening-platform was coupled with a phylogenetic microarray analysis (Intestinal-chip). Fecal inoculum from healthy adults was exposed in a fermentation screening-platform to seven widely-used antibiotics during 24h in-vitro fermentation and the microbiota composition was subsequently determined with the Intestinal-chip. Phylogenetic microarray analysis was first verified to be reliable with respect to variations in the total number of bacteria and presence of dead (or inactive) cells. Intestinal-chip analysis was then used to identify and compare shifts in the intestinal microbial composition after exposure to low and high dose (1?gml(-1) and 10?gml(-1)) antibiotics. Observed shifts on family, genus and species level were both antibiotic and dose dependent. Stronger changes in microbiota composition were observed with higher doses. Shifts mainly concerned the bacterial groups Bacteroides, Bifidobacterium, Clostridium, Enterobacteriaceae, and Lactobacillus. Within bacterial groups, specific antibiotics were shown to differentially impact related species. The combination of the in-vitro fermentation screening platform with the phylogenetic microarray read-outs has shown to be reliable to simultaneously analyze the effects of several antibiotics on intestinal microbiota. PMID:23266580

  8. Host-compound foraging by intestinal microbiota revealed by single-cell stable isotope probing

    PubMed Central

    Berry, David; Stecher, Bärbel; Schintlmeister, Arno; Reichert, Jochen; Brugiroux, Sandrine; Wild, Birgit; Wanek, Wolfgang; Richter, Andreas; Rauch, Isabella; Decker, Thomas; Loy, Alexander; Wagner, Michael

    2013-01-01

    The animal and human intestinal mucosa secretes an assortment of compounds to establish a physical barrier between the host tissue and intestinal contents, a separation that is vital for health. Some pathogenic microorganisms as well as members of the commensal intestinal microbiota have been shown to be able to break down these secreted compounds. Our understanding of host-compound degradation by the commensal microbiota has been limited to knowledge about simplified model systems because of the difficulty in studying the complex intestinal ecosystem in vivo. In this study, we introduce an approach that overcomes previous technical limitations and allows us to observe which microbial cells in the intestine use host-derived compounds. We added stable isotope-labeled threonine i.v. to mice and combined fluorescence in situ hybridization with high-resolution secondary ion mass spectrometry imaging to characterize utilization of host proteins by individual bacterial cells. We show that two bacterial species, Bacteroides acidifaciens and Akkermansia muciniphila, are important host-protein foragers in vivo. Using gnotobiotic mice we show that microbiota composition determines the magnitude and pattern of foraging by these organisms, demonstrating that a complex microbiota is necessary in order for this niche to be fully exploited. These results underscore the importance of in vivo studies of intestinal microbiota, and the approach presented in this study will be a powerful tool to address many other key questions in animal and human microbiome research. PMID:23487774

  9. Host-compound foraging by intestinal microbiota revealed by single-cell stable isotope probing.

    PubMed

    Berry, David; Stecher, Brbel; Schintlmeister, Arno; Reichert, Jochen; Brugiroux, Sandrine; Wild, Birgit; Wanek, Wolfgang; Richter, Andreas; Rauch, Isabella; Decker, Thomas; Loy, Alexander; Wagner, Michael

    2013-03-19

    The animal and human intestinal mucosa secretes an assortment of compounds to establish a physical barrier between the host tissue and intestinal contents, a separation that is vital for health. Some pathogenic microorganisms as well as members of the commensal intestinal microbiota have been shown to be able to break down these secreted compounds. Our understanding of host-compound degradation by the commensal microbiota has been limited to knowledge about simplified model systems because of the difficulty in studying the complex intestinal ecosystem in vivo. In this study, we introduce an approach that overcomes previous technical limitations and allows us to observe which microbial cells in the intestine use host-derived compounds. We added stable isotope-labeled threonine i.v. to mice and combined fluorescence in situ hybridization with high-resolution secondary ion mass spectrometry imaging to characterize utilization of host proteins by individual bacterial cells. We show that two bacterial species, Bacteroides acidifaciens and Akkermansia muciniphila, are important host-protein foragers in vivo. Using gnotobiotic mice we show that microbiota composition determines the magnitude and pattern of foraging by these organisms, demonstrating that a complex microbiota is necessary in order for this niche to be fully exploited. These results underscore the importance of in vivo studies of intestinal microbiota, and the approach presented in this study will be a powerful tool to address many other key questions in animal and human microbiome research. PMID:23487774

  10. Intestinal microbiota and allergic diseases: A systematic review.

    PubMed

    Melli, L C F L; do Carmo-Rodrigues, M S; Araújo-Filho, H B; Solé, D; de Morais, M B

    2016-01-01

    Evidence suggests that possible imbalances in intestinal microbiota composition may be implicated in the occurrence of allergic diseases. Although several studies published until 2006 indicated a correlation between microbiota composition and allergic symptoms, it has not been possible to distinguish protective microorganisms from those associated with increased risk of allergic diseases. Therefore, the objective of this study was to review the studies published since 2007 that address the intestinal microbiota in allergic diseases. Twenty-one studies were identified after excluding those that performed a clinical intervention before stool collection. In the early microbiota of children who later developed allergies, lower bacterial diversity was observed, with a predominance of Firmicutes; a higher count of Bacteroidaceae; a higher prevalence of the anaerobic bacteria Bacteroides fragilis, Escherichia coli, Clostridium difficile, Bifidobacterium catenulatum, Bifidobacterium bifidum, and Bifidobacterium longum; and a lower prevalence of Bifidobacterium adolescentis, B. bifidum, and Lactobacillus. In the microbiota of allergic children whose intestinal microbiota was assessed at the onset of allergic symptoms, there was a higher count of Bacteroides; a lower count of Akkermansia muciniphila, Faecalibacterium prausnitzii, and Clostridium; a higher prevalence of B. adolescentis; a lower prevalence of B. catenulatum and Staphylococcus aureus; and a lower bacterial diversity. PMID:25985709

  11. Alcohol and hepatocyte-Kupffer cell interaction (review).

    PubMed

    Ajakaiye, Michael; Jacob, Asha; Wu, Rongqian; Nicastro, Jeffrey M; Coppa, Gene F; Wang, Ping

    2011-01-01

    Alcoholic liver disease accounts for 12,000 deaths per year in the United States and is the second leading indication for liver transplantation. It covers a spectrum of disease conditions ranging from steatosis and cirrhosis to hepatic malignancies. Epidemiological data clearly show a strong correlation between alcohol consumption and liver diseases. A large body of evidence has accumulated over the years in determining the molecular mediators of alcohol-induced liver injury. In this review, we provide an overview of such mediators, which include alcohol metabolites and reactive oxygen/nitrogen species, endotoxin via bacterial translocation from the gut and TNF-?, and highlight the role of the sympathetic nervous stimuli, norepinephrine and the ?2A-adrenergic receptors in contributing to the deleterious effect observed in alcohol-induced hepatic dysfunction. PMID:21468548

  12. Gut biogeography of the bacterial microbiota.

    PubMed

    Donaldson, Gregory P; Lee, S Melanie; Mazmanian, Sarkis K

    2016-01-01

    Animals assemble and maintain a diverse but host-specific gut microbial community. In addition to characteristic microbial compositions along the longitudinal axis of the intestines, discrete bacterial communities form in microhabitats, such as the gut lumen, colonic mucus layers and colonic crypts. In this Review, we examine how the spatial distribution of symbiotic bacteria among physical niches in the gut affects the development and maintenance of a resilient microbial ecosystem. We consider novel hypotheses for how nutrient selection, immune activation and other mechanisms control the biogeography of bacteria in the gut, and we discuss the relevance of this spatial heterogeneity to health and disease. PMID:26499895

  13. Television: Alcohol's Vast Adland.

    ERIC Educational Resources Information Center

    2002

    Concern about how much television alcohol advertising reaches underage youth and how the advertising influences their attitudes and decisions about alcohol use has been widespread for many years. Lacking in the policy debate has been solid, reliable information about the extent of youth exposure to television alcohol advertising. To address this…

  14. Alcohol use disorder

    MedlinePLUS

    ... who are dealing with alcohol use. ALCOHOLICS ANONYMOUS (AA) Alcoholics Anonymous ( www.aa.org ) is a self-help group of persons ... approach. There are local chapters throughout the U.S. AA offers help 24 hours a day. AL-ANON ...

  15. Alcoholism and Lesbians

    ERIC Educational Resources Information Center

    Gedro, Julie

    2014-01-01

    This chapter explores the issues involved in the relationship between lesbianism and alcoholism. It examines the constellation of health and related problems created by alcoholism, and it critically interrogates the societal factors that contribute to the disproportionately high rates of alcoholism among lesbians by exploring the antecedents and

  16. Youths' Perceptions of Alcoholism.

    ERIC Educational Resources Information Center

    Lorch, Barbara (Day); Hughes, Robert H.

    1986-01-01

    Only a third of students in this study accepted the medical model of alcoholism. Those who had the least knowledge of, and experience with, alcohol were the most likely to consider alcoholism as an illness. The source of information on drugs most conducive to acceptance of the medical model was parents. (Author/ABB)

  17. Alcoholism's Hidden Curriculum.

    ERIC Educational Resources Information Center

    Gress, James R.

    1988-01-01

    Discusses children of alcoholics as victims of fetal alcohol syndrome, family violence, retarded social development, and severe emotional scars. These children bring family roles to school that allow survival in the alcoholic home but are dysfunctional outside it. Educators can take certain steps to address these students' problems. Includes six

  18. Alcoholism and Lesbians

    ERIC Educational Resources Information Center

    Gedro, Julie

    2014-01-01

    This chapter explores the issues involved in the relationship between lesbianism and alcoholism. It examines the constellation of health and related problems created by alcoholism, and it critically interrogates the societal factors that contribute to the disproportionately high rates of alcoholism among lesbians by exploring the antecedents and…

  19. Biological Vulnerability to Alcoholism.

    ERIC Educational Resources Information Center

    Schuckit, Marc A.

    1987-01-01

    Reviews the role of biological factors in the risk for alcoholism. Notes the importance of the definition of primary alcoholism and highlights data indicating that this disorder is genetically influenced. In studies of men at high risk for the future development of alcoholism, vulnerability shows up in reactions to ethanol brain wave amplitude and…

  20. Alcohol and Aggression.

    ERIC Educational Resources Information Center

    Gustafson, Roland

    1994-01-01

    Reviews the acute effects of alcohol on aggressive responding. From experimental studies that use human subjects, it is concluded that a moderate dose of alcohol does not increase aggression if subjects are unprovoked. Under provocative situations, aggression is increased as a function of alcohol intoxication, provided that subjects are restricted

  1. Alcohol and Family Violence.

    ERIC Educational Resources Information Center

    Covington, Stephanie S.

    There is growing acknowledgement of the association between family violence and alcohol use. A study was conducted to examine the role that abuse plays in the lives of women and to investigate the relationship between alcohol and violence. Data were collected from 35 recovering female alcoholics and 35 nonalcoholic women on their sexual experience

  2. Alcoholism's Hidden Curriculum.

    ERIC Educational Resources Information Center

    Gress, James R.

    1988-01-01

    Discusses children of alcoholics as victims of fetal alcohol syndrome, family violence, retarded social development, and severe emotional scars. These children bring family roles to school that allow survival in the alcoholic home but are dysfunctional outside it. Educators can take certain steps to address these students' problems. Includes six…

  3. Commensal 'trail of bread crumbs' provide pathogens with a map to the intestinal landscape.

    PubMed

    Luzader, Deborah H; Kendall, Melissa M

    2016-02-01

    Growth of a microorganism in a host is essential for infection, and bacterial pathogens have evolved to utilize specific metabolites to enhance replication in vivo. Now, emerging data demonstrate that pathogens rely on microbiota-derived metabolites as a form of bacterial-bacterial communication to gain information about location within a host and modify virulence gene expression accordingly. Thus, metabolite-sensing is critical for pathogens to establish infection. Here, we highlight recent examples of how the foodborne pathogen enterohemorrhagic Escherichia coli O157:H7 (EHEC) exploits microbiota-derived metabolites to recognize the host intestinal environment and control gene expression that results in controlled expression of virulence traits. PMID:26707739

  4. Probiotic administration modifies the milk fatty acid profile, intestinal morphology, and intestinal fatty acid profile of goats.

    PubMed

    Aps, A L; Arena, M E; Colombo, S; Gonzlez, S N

    2015-01-01

    The effect of a mixture of potentially probiotic bacteria (MPPB; Lactobacillus reuteri DDL 19, Lactobacillus alimentarius DDL 48, Enterococcus faecium DDE 39, and Bifidobacterium bifidum strains) on the milk fatty acid (FA) profile, with emphasis on cis-9,trans-11 conjugated linoleic acid (CLA) in the middle stage of goat lactation, was determined. In addition, the effects of MPPB feeding on the FA profile in intestinal content and intestinal morphology in weaned goats were analyzed. The probiotic supplement was able to modify FA composition of milk and intestinal content. The unsaturated FA concentrations in milk (g of FA/L of milk) increased from 4.49 to 7.86 for oleic (18:1), from 0.70 to 1.39 for linoleic (18:2), from 0.063 to 0.187 for linolenic (18:3) acid, and from 0.093 to 0.232 for CLA. The atherogenicity index diminished 2-fold after MPPB ingestion. In the intestinal content of the weaned goats, no significant difference in saturated FA concentration compared with the control was observed. However, oleic acid, linolenic acid, CLA, and docosahexaenoic acid concentrations increased by 81, 23, 344, and 74%, respectively, after probiotic consumption. The ruminal production of CLA was increased by the MPPB. However, bacterial strains of MPPB were unable to produce CLA in culture media. By histological techniques, it was observed that the treated group had intestinally more conserved morphological structures than the control group. The results obtained in this study indicate that the MPPB administration in lactating and weaned goats allows for the production of milk with improved concentrations of beneficial compounds, and also produces a protective effect in the goat intestine. The results obtained in this study reinforce the strategy of probiotics application to enhance goat health with the production of milk with higher concentrations of polyunsaturated FA. PMID:25465559

  5. Poly(adp-ribose) synthetase inhibition reduces bacterial translocation in rats after endotoxin challenge.

    PubMed

    Taner, A S; Cinel, I; Ozer, L; Onde, U; Taner, D; Koksoy, C

    2001-08-01

    We investigated whether 3-aminobenzamide (3-AB), a poly(ADP-ribose) synthetase (PARS) inhibitor, reduces bacterial translocation (BT) after intraperitoneal endotoxin administration. Wistar rats were randomized to receive intraperitoneal saline (control, n = 6); endotoxin (n = 8); 3-AB (n = 6); and 3-AB plus endotoxin (n = 8). Six hours later, to evaluate the endotoxin-related intestinal injury and BT, tissue and blood samples were collected. Administration of intraperitoneal endotoxin caused severe intestinal injury and BT to mesenteric lymph nodes. PARS inhibition with 3-AB completely prevented endotoxin-induced BT. No colony-forming bacteria was isolated from the samples obtained from 3-AB-pretreated animals under endotoxin challenge. Treatment with 3-AB significantly reduced the endotoxin-induced intestinal mucosal injury. The inhibition of PARS by its blocker 3-aminobenzamide during endotoxemia prevents bacterial translocation and intestinal injury in rats. PARS activation may provide a novel therapeutic approach in reducing gut barrier failure seen in endotoxemia. PMID:11508870

  6. [Malaria and intestinal protozoa].

    PubMed

    Rojo-Marcos, Gerardo; Cuadros-González, Juan

    2016-03-01

    Malaria is life threatening and requires urgent diagnosis and treatment. Incidence and mortality are being reduced in endemic areas. Clinical features are unspecific so in imported cases it is vital the history of staying in a malarious area. The first line treatments for Plasmodium falciparum are artemisinin combination therapies, chloroquine in most non-falciparum and intravenous artesunate if any severity criteria. Human infections with intestinal protozoa are distributed worldwide with a high global morbid-mortality. They cause diarrhea and sometimes invasive disease, although most are asymptomatic. In our environment populations at higher risk are children, including adopted abroad, immune-suppressed, travelers, immigrants, people in contact with animals or who engage in oral-anal sex. Diagnostic microscopic examination has low sensitivity improving with antigen detection or molecular methods. Antiparasitic resistances are emerging lately. PMID:26832999

  7. Bacterial Nail Infection (Paronychia)

    MedlinePLUS

    ... of nail infection is often caused by a bacterial infection but may also be caused by herpes, a ... to a type of yeast called Candida , or bacterial infection, and this may lead to abnormal nail growth. ...

  8. Asparagine attenuates intestinal injury, improves energy status and inhibits AMP-activated protein kinase signalling pathways in weaned piglets challenged with Escherichia coli lipopolysaccharide.

    PubMed

    Wang, Xiuying; Liu, Yulan; Li, Shuang; Pi, Dingan; Zhu, Huiling; Hou, Yongqing; Shi, Haifeng; Leng, Weibo

    2015-08-28

    The intestine requires a high amount of energy to maintain its health and function; thus, energy deficits in intestinal mucosa may lead to intestinal damage. Asparagine (Asn) is a precursor for many other amino acids such as aspartate, glutamine and glutamate, which can be used to supply energy to enterocytes. In the present study, we hypothesise that dietary supplementation of Asn could alleviate bacterial lipopolysaccharide (LPS)-induced intestinal injury via improvement of intestinal energy status. A total of twenty-four weaned piglets were assigned to one of four treatments: (1) non-challenged control; (2) LPS+0 % Asn; (3) LPS+0·5 % Asn; (4) LPS+1·0 % Asn. On day 19, piglets were injected with LPS or saline. At 24 h post-injection, piglets were slaughtered and intestinal samples were collected. Asn supplementation improved intestinal morphology, indicated by higher villus height and villus height:crypt depth ratio, and lower crypt depth. Asn supplementation also increased the ratios of RNA:DNA and protein:DNA as well as disaccharidase activities in intestinal mucosa. In addition, Asn supplementation attenuated bacterial LPS-induced intestinal energy deficits, indicated by increased ATP and adenylate energy charge levels, and decreased AMP:ATP ratio. Moreover, Asn administration increased the activities of key enzymes involved in the tricarboxylic acid cycle, including citrate synthase, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase complex. Finally, Asn administration decreased the mRNA abundance of intestinal AMP-activated protein kinase-α1 (AMPKα1), AMPKα2, silent information regulator 1 (SIRT1) and PPARγ coactivator-1α (PGC1α), and reduced intestinal AMPKα phosphorylation. Collectively, these results indicate that Asn supplementation alleviates bacterial LPS-induced intestinal injury by modulating the AMPK signalling pathway and improving energy status. PMID:26277838

  9. Gastric acid reduction leads to an alteration in lower intestinal microflora

    SciTech Connect

    Kanno, Takayuki; Matsuki, Takahiro; Oka, Masashi; Utsunomiya, Hirotoshi; Inada, Kenichi; Magari, Hirohito; Inoue, Izumi; Maekita, Takao; Ueda, Kazuki; Enomoto, Shotaro; Iguchi, Mikitaka; Yanaoka, Kimihiko; Tamai, Hideyuki; Akimoto, Shigeru; Nomoto, Koji; Tanaka, Ryuichiro; Ichinose, Masao

    2009-04-17

    To clarify the alterations in lower intestinal microflora induced by gastric acid reduction, the dynamics of 12 major genera or groups of bacteria comprising the microflora in feces and colonic contents were examined by quantitative real-time PCR in proton pump inhibitor-treated rats and in asymptomatic human subjects with hypochlorhydria. In both rat and human experiments, most genera or groups of intestinal microflora (facultative and obligate anaerobes) proliferated by gastric acid reduction, and marked and significant increases in the Lactobacilli group and Veillonella, oropharyngeal bacteria, were observed. In rats, potent gastric acid inhibition led to a marked and significant increase of intestinal bacteria, including the Bacteroidesfragilis group, while Bifidobacterium, a beneficial bacterial species, remained at a constant level. These results strongly indicate that the gastric acid barrier not only controls the colonization and growth of oropharyngeal bacteria, but also regulates the population and composition of lower intestinal microflora.

  10. Normalization of Host Intestinal Mucus Layers Requires Long-Term Microbial Colonization.

    PubMed

    Johansson, Malin E V; Jakobsson, Hedvig E; Holmn-Larsson, Jessica; Schtte, Andr; Ermund, Anna; Rodrguez-Pieiro, Ana M; Arike, Liisa; Wising, Catharina; Svensson, Frida; Bckhed, Fredrik; Hansson, Gunnar C

    2015-11-11

    The intestinal mucus layer provides a barrier limiting bacterial contact with the underlying epithelium. Mucus structure is shaped by intestinal location and the microbiota. To understand how commensals modulate gut mucus, we examined mucus properties under germ-free (GF) conditions and during microbial colonization. Although the colon mucus organization of GF mice was similar to that of conventionally raised (Convr) mice, the GF inner mucus layer was penetrable to bacteria-sized beads. During colonization, in which GF mice were gavaged with Convr microbiota, the small intestine mucus required 5weeks to be normally detached and colonic inner mucus 6weeks to become impenetrable. The composition of the small intestinal microbiota during colonization was similar to Convr donors until 3weeks, when Bacteroides increased, Firmicutes decreased, and segmented filamentous bacteria became undetectable. These findings highlight the dynamics of mucus layer development and indicate that studies of mature microbe-mucus interactions should be conducted weeks after colonization. PMID:26526499

  11. Viral immunity. Transkingdom control of viral infection and immunity in the mammalian intestine.

    PubMed

    Pfeiffer, Julie K; Virgin, Herbert W

    2016-01-15

    Viruses that infect the intestine include major human pathogens (retroviruses, noroviruses, rotaviruses, astroviruses, picornaviruses, adenoviruses, herpesviruses) that constitute a serious public health problem worldwide. These viral pathogens are members of a large, complex viral community inhabiting the intestine termed "the enteric virome." Enteric viruses have intimate functional and genetic relationships with both the host and other microbial constituents that inhabit the intestine, such as the bacterial microbiota, their associated phages, helminthes, and fungi, which together constitute the microbiome. Emerging data indicate that enteric viruses regulate, and are in turn regulated by, these other microbes through a series of processes termed "transkingdom interactions." This represents a changing paradigm in intestinal immunity to viral infection. Here we review recent advances in the field and propose new ways in which to conceptualize this important area. PMID:26816384

  12. Host and Microbial Factors in Regulation of T Cells in the Intestine

    PubMed Central

    Kim, Chang H.

    2013-01-01

    The intestine is divided into specialized tissue areas that provide distinct microenvironments for T cells. Regulation of T-cell responses in the gut has been a major focus of recent research activities in the field. T cells in the intestine are regulated by the interplay between host and microbial factors. In the small intestine, retinoic acid (RA) is a major tissue factor that plays important roles in regulation of immune responses. In the large intestine, the influence of RA diminishes, but that of commensal bacterial products increases. RA, gut microbiota, and inflammatory mediators co-regulate differentiation, distribution, and/or effector functions of T cells. Coordinated regulation of immune responses by these factors promotes well-balanced immunity and immune tolerance. Dysregulation of this process can increase infection and inflammatory diseases. PMID:23772228

  13. The effect of antimicrobial agents on the ecology of the human intestinal microflora.

    PubMed

    Nord, C E

    1993-06-01

    The most common and significant cause of disturbances in the normal intestinal microflora is the administration of antimicrobial agents. The microflora can be influenced by antimicrobial agents because of incomplete absorption of any orally administered antimicrobial agent, secretion of an antimicrobial agent in the bile, or secretion from the intestinal mucosa. Administration of these agents may seriously disturb the balance of the normal intestinal microflora. This disturbance can cause bacterial overgrowth and emergence of resistant microorganisms which may lead to serious infections and also encourage transfer of resistance factors among bacteria. The ecological effects of penicillins, cephalosporins, monobactams, carbapenems, macrolides, clindamycin, tetracyclines, nitroimidazoles and quinolones on the human intestinal microflora are presented in this review article. PMID:8212506

  14. Innate lymphoid cell interactions with the microbiota: implications for intestinal health and disease

    PubMed Central

    Sonnenberg, Gregory F.; Artis, David

    2012-01-01

    The mammalian intestine harbors trillions of beneficial commensal bacteria that are essential for the development of the immune system and for maintenance of physiologic processes in multiple organs. However, numerous chronic infectious, inflammatory and metabolic diseases in humans have been associated with alterations in the composition or localization of commensal bacteria that results in dysregulated host-commensal bacteria relationships. The mammalian immune system plays an essential role in regulating the acquisition, composition and localization of commensal bacterial communities in the intestine. Emerging research has implicated innate lymphoid cells (ILCs) as a critical immune cell population that orchestrates some of these host-commensal relationships that can impact immunity, inflammation and tissue homeostasis in the intestine. This review will discuss reciprocal interactions between intestinal commensal bacteria and ILCs in the context of health and disease. PMID:23084357

  15. Alcohol and Mortality

    PubMed Central

    Rehm, Jrgen; Shield, Kevin D.

    2014-01-01

    Alcohol consumption has long been recognized as a risk factor for mortality. By combining data on alcohol per capita consumption, alcohol-drinking status and alcohol-drinking patterns, risk relationships, and mortality, the Comparative Risk assessment study estimated alcohol-attributable mortality for 1990 and 2010. Alcohol-attributable cancer, liver cirrhosis, and injury were responsible for the majority of the burden of alcohol-attributable mortality in 1990 and 2010. In 2010, alcohol-attributable cancer, liver cirrhosis, and injury caused 1,500,000 deaths (319,500 deaths among women and 1,180,500 deaths among men) and 51,898,400 potential years of life lost (PYLL) (9,214,300 PYLL among women and 42,684,100 PYLL among men). This represents 2.8 percent (1.3 percent for women and 4.1 percent for men) of all deaths and 3.0 percent (1.3 percent for women and 4.3 percent for men) of all PYLL in 2010. The absolute mortality burden of alcohol-attributable cancer, liver cirrhosis, and injury increased from 1990 to 2010 for both genders. In addition, the rates of deaths and PYLL per 100,000 people from alcohol-attributable cancer, liver cirrhosis, and injury increased from 1990 to 2010 (with the exception of liver cirrhosis rates for women). Results of this paper indicate that alcohol is a significant and increasing risk factor for the global burden of mortality. PMID:24881325

  16. Alcoholic and non-alcoholic steatohepatitis.

    PubMed

    Neuman, Manuela G; French, Samuel W; French, Barbara A; Seitz, Helmut K; Cohen, Lawrence B; Mueller, Sebastian; Osna, Natalia A; Kharbanda, Kusum K; Seth, Devanshi; Bautista, Abraham; Thompson, Kyle J; McKillop, Iain H; Kirpich, Irina A; McClain, Craig J; Bataller, Ramon; Nanau, Radu M; Voiculescu, Mihai; Opris, Mihai; Shen, Hong; Tillman, Brittany; Li, Jun; Liu, Hui; Thomes, Paul G; Ganesan, Murali; Malnick, Steve

    2014-12-01

    This paper is based upon the "Charles Lieber Satellite Symposia" organized by Manuela G. Neuman at the Research Society on Alcoholism (RSA) Annual Meetings, 2013 and 2014. The present review includes pre-clinical, translational and clinical research that characterize alcoholic liver disease (ALD) and non-alcoholic steatohepatitis (NASH). In addition, a literature search in the discussed area was performed. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD. The liver biopsy can confirm the etiology of NASH or alcoholic steatohepatitis (ASH) and assess structural alterations of cells, their organelles, as well as inflammatory activity. Three histological stages of ALD are simple steatosis, ASH, and chronic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes such as cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Alcohol mediated hepatocarcinogenesis, immune response to alcohol in ASH, as well as the role of other risk factors such as its co-morbidities with chronic viral hepatitis in the presence or absence of human immunodeficiency virus are discussed. Dysregulation of hepatic methylation, as result of ethanol exposure, in hepatocytes transfected with hepatitis C virus (HCV), illustrates an impaired interferon signaling. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota are suggested. The clinical aspects of NASH, as part of metabolic syndrome in the aging population, are offered. The integrative symposia investigate different aspects of alcohol-induced liver damage and possible repair. We aim to (1) determine the immuno-pathology of alcohol-induced liver damage, (2) examine the role of genetics in the development of ASH, (3) propose diagnostic markers of ASH and NASH, (4) examine age differences, (5) develop common research tools to study alcohol-induced effects in clinical and pre-clinical studies, and (6) focus on factors that aggravate severity of organ-damage. The intention of these symposia is to advance the international profile of the biological research on alcoholism. We also wish to further our mission of leading the forum to progress the science and practice of translational research in alcoholism. PMID:25217800

  17. Alcoholic and non-alcoholic steatohepatitis

    PubMed Central

    Neuman, Manuela G.; French, Samuel W.; French, Barbara A.; Seitz, Helmut K.; Cohen, Lawrence B.; Mueller, Sebastian; Osna, Natalia A.; Kharbanda, Kusum K.; Seth, Devanshi; Bautista, Abraham; Thompson, Kyle J.; McKillop, Iain H.; Kirpich, Irina A.; McClain, Craig J.; Bataller, Ramon; Nanau, Radu M.; Voiculescu, Mihai; Opris, Mihai; Shen, Hong; Tillman, Brittany; Li, Jun; Liu, Hui; Thomas, Paul G.; Ganesan, Murali; Malnick, Steve

    2015-01-01

    This paper is based upon the “Charles Lieber Satellite Symposia” organized by Manuela G. Neuman at the Research Society on Alcoholism (RSA) Annual Meetings, 2013 and 2014. The present review includes pre-clinical, translational and clinical research that characterize alcoholic liver disease (ALD) and non-alcoholic steatohepatitis (NASH). In addition, a literature search in the discussed area was performed. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD. The liver biopsy can confirm the etiology of NASH or alcoholic steatohepatitis (ASH) and assess structural alterations of cells, their organelles, as well as inflammatory activity. Three histological stages of ALD are simple steatosis, ASH, and chronic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes such as cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Alcohol mediated hepatocarcinogenesis, immune response to alcohol in ASH, as well as the role of other risk factors such as its comorbidities with chronic viral hepatitis in the presence or absence of human deficiency virus are discussed. Dysregulation of hepatic methylation, as result of ethanol exposure, in hepatocytes transfected with hepatitis C virus (HCV), illustrates an impaired interferon signaling. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota are suggested. The clinical aspects of NASH, as part of metabolic syndrome in the aging population, are offered. The integrative symposia investigate different aspects of alcohol-induced liver damage and possible repair. We aim to (1) determine the immuno-pathology of alcohol-induced liver damage, (2) examine the role of genetics in the development of ASH, (3) propose diagnostic markers of ASH and NASH, (4) examine age differences, (5) develop common research tools to study alcohol-induced effects in clinical and pre-clinical studies, and (6) focus on factors that aggravate severity of organ-damage. The intention of these symposia is to advance the international profile of the biological research on alcoholism. We also wish to further our mission of leading the forum to progress the science and practice of translational research in alcoholism. PMID:25217800

  18. Genetics of alcoholism.

    PubMed

    Iyer-Eimerbrink, Priya A; Nurnberger, John I

    2014-12-01

    Alcohol use and alcohol use disorders are substantially heritable. Variants in genes coding for alcohol metabolic enzymes have long been known to influence consumption. More recent studies in family-based samples have implicated GABRA2, nicotinic receptor genes such as CHRNB3, and a number of other specific single genes as associated with alcohol use disorders. The growing use of genetic analyses, in particular studies using polygenic risk scores; neurobiologic pathways; and methods for quantifying gene gene and gene environment interactions have also contributed to an evolving understanding of the genetic architecture of alcohol use disorders. Additionally, the study of behavioral traits associated with alcohol dependence such as impulsivity and sensation seeking, and the influences of demographic factors (i.e., sex and ethnicity) have significantly enhanced the genetics of alcoholism literature. This article provides a brief overview of the current topically relevant findings in the field to date and includes areas of research still requiring attention. PMID:25399692

  19. [Physical diseases in alcoholism].

    PubMed

    Takase, Kojiro

    2015-09-01

    Rapid excessive alcohol drinking frequently causes disturbance of consciousness due to head trauma, brain edema, hypoglycemia, hyponatremia, hepatic coma and so on, provoked by acute alcohol intoxication. Rapid differential diagnosis and management are extremely important to save a life. On the other hands, the chronic users of alcohol so called alcoholism has many kinds of physical diseases such as liver diseases (i.e., fatty liver, alcoholic hepatitis, alcoholic liver cirrhosis and miscellaneous liver disease), diabetes mellitus, injury to happen in drunkenness, pancreas disease (i.e., acute and chronic pancreatitis and deterioration of chronic pancreatitis), gastrontestinal diseases (i.e., gastroduodenal ulcer), and so on. Enough attention should be paid to above mentioned diseases, otherwise they would turn worse more with continuation and increase in quantity of the alcohol. It should be born in its mind that the excessive drinking becomes the weapon threatening life. PMID:26394519

  20. Factors Determining Colorectal Cancer: The Role of the Intestinal Microbiota

    PubMed Central

    Nistal, Esther; Fernández-Fernández, Nereida; Vivas, Santiago; Olcoz, José Luis

    2015-01-01

    The gastrointestinal tract, in particular the colon, holds a complex community of microorganisms, which are essential for maintaining homeostasis. However, in recent years, many studies have implicated microbiota in the development of colorectal cancer (CRC), with this disease considered a major cause of death in the western world. The mechanisms underlying bacterial contribution in its development are complex and are not yet fully understood. However, there is increasing evidence showing a connection between intestinal microbiota and CRC. Intestinal microorganisms cause the onset and progression of CRC using different mechanisms, such as the induction of a chronic inflammation state, the biosynthesis of genotoxins that interfere with cell cycle regulation, the production of toxic metabolites, or heterocyclic amine activation of pro-diet carcinogenic compounds. Despite these advances, additional studies in humans and animal models will further decipher the relationship between microbiota and CRC, and aid in developing alternate therapies based on microbiota manipulation. PMID:26528432