Science.gov

Sample records for aldol condensation reactions

  1. Rapid and Efficient Functionalized Ionic Liquid-Catalyzed Aldol Condensation Reactions Associated with Microwave Irradiation

    PubMed Central

    Wang, Chang; Liu, Jing; Leng, Wenguang; Gao, Yanan

    2014-01-01

    Five quaternary ammonium ionic liquid (IL) and two tetrabutylphosphonium ILs were prepared and characterized. An environmentally benign and convenient functionalized ionic liquid catalytic system was thus explored in the aldol condensation reactions of aromatic aldehydes with acetone. The aldol reactions proceeded more efficiently through microwave-assisted heating than through conventional thermal heating. The yield of products obtained under microwave heating for 30 min was approximately 90%, and the ILs can be recovered and reused at least five times without apparent loss of activity. In addition, this catalytic system can be successfully extended to the Henry reactions. PMID:24445262

  2. Kinetics of acid-catalyzed aldol condensation reactions of aliphatic aldehydes

    NASA Astrophysics Data System (ADS)

    Casale, Mia T.; Richman, Aviva R.; Elrod, Matthew J.; Garland, Rebecca M.; Beaver, Melinda R.; Tolbert, Margaret A.

    Field observations of atmospheric aerosols have established that organic compounds compose a large fraction of the atmospheric aerosol mass. However, the physical/chemical pathway by which organic compounds are incorporated into atmospheric aerosols remains unclear. The potential role of acid-catalyzed reactions of organic compounds on acidic aerosols has been explored as a possible chemical pathway for the incorporation of organic material into aerosols. In the present study, ultraviolet-visible (UV-vis) spectroscopy was used to monitor the kinetics of formation of the products of the acid-catalyzed aldol condensation reaction of a range of aliphatic aldehydes (C 2-C 8). The experiments were carried out at various sulfuric acid concentrations and a range of temperatures in order to estimate the rate constants of such reactions on sulfuric acid aerosols under tropospheric conditions. The rate constants were generally found to decrease as the chain length of the aliphatic aldehyde increased (except for acetaldehyde, which had an unusually small rate constant), increase as a function of sulfuric acid concentration as predicted by excess acidity theory, and showed normal Arrhenius behavior as a function of temperature. While the kinetic data are generally consistent with previous laboratory reports of aldehyde reactivity in various sulfuric acid media, the aldol condensation reactions involving aliphatic aldehydes do not appear fast enough to be responsible for significant transfer of organic material into atmospheric aerosols.

  3. The Complete Mechanism of an Aldol Condensation.

    PubMed

    Perrin, Charles L; Chang, Kuei-Lin

    2016-07-01

    Although aldol condensation is one of the most important organic reactions, capable of forming new C-C bonds, its mechanism has never been fully established. We now conclude that the rate-limiting step in the base-catalyzed aldol condensation of benzaldehydes with acetophenones, to produce chalcones, is the final loss of hydroxide and formation of the C═C bond. This conclusion is based on a study of the partitioning ratios of the intermediate ketols and on the solvent kinetic isotope effects, whereby the condensations are faster in D2O than in H2O, regardless of substitution. PMID:27281298

  4. Kinetics of Acid-Catalyzed Aldol Condensation Reactions of Aliphatic Aldehydes

    NASA Astrophysics Data System (ADS)

    Elrod, M. J.; Casale, M. T.; Richman, A. R.; Beaver, M. R.; Garland, R. M.; Tolbert, M. A.

    2006-12-01

    While it is well established that organic compounds compose a large fraction of the atmospheric aerosol mass, the mechanisms through which organics are incorporated into atmospheric aerosols are not well understood. Acid-catalyzed reactions of compounds with carbonyl groups have recently been suggested as important pathways for transfer of volatile organics into acidic aerosols. In the present study, ultraviolet-visible (UV-Vis) spectroscopy was used to monitor the kinetics of formation of the products of the aldol condensation reaction of a range of aliphatic aldehydes (C2-C8) The experiments were carried out at various sulfuric acid concentrations and a range of temperatures in order to estimate the rate constants of such reactions on sulfuric acid aerosols under tropospheric conditions. The rate constants were generally found to decrease as the chain length of the aliphatic aldehyde increased (except for acetaldehyde, which had an unusually small rate constant), increase as a function of sulfuric acid concentration as predicted by excess acidity theory, and showed normal Arrhenius behavior as a function of temperature.

  5. One-Pot Synthesis of (S)-Baclofen via Aldol Condensation of Acetaldehyde with Diphenylprolinol Silyl Ether Mediated Asymmetric Michael Reaction as a Key Step.

    PubMed

    Hayashi, Yujiro; Sakamoto, Daisuke; Okamura, Daichi

    2016-01-01

    An efficient asymmetric total synthesis of (S)-baclofen was accomplished via a one-pot operation from commercially available materials using sequential reactions, such as aldol condensation of acetaldehyde, diphenylprolinol silyl ether mediated asymmetric Michael reaction of nitromethane, Kraus-Pinnick oxidation, and Raney Ni reduction. Highly enantioenriched baclofen was obtained in one pot with a good yield over four reactions. PMID:26636719

  6. Synthesis of dibenzoxepine lactams via a Cu-catalyzed one-pot etherification/aldol condensation cascade reaction: application toward the total synthesis of aristoyagonine.

    PubMed

    Lim, Hye Sun; Choi, Young Lok; Heo, Jung-Nyoung

    2013-09-20

    A general synthesis of dibenzoxepine lactams has been developed using a one-pot Cu-catalyzed etherification/aldol condensation cascade reaction. The reaction of 4-hydroxyisoindolin-1-one with a wide range of 2-bromobenzaldehydes in the presence of a copper catalyst provided various aristoyagonine derivatives in good yields. PMID:24000941

  7. The Aldol Addition and Condensation: The Effect of Conditions on Reaction Pathway

    ERIC Educational Resources Information Center

    Crouch, R. David; Richardson, Amie; Howard, Jessica L.; Harker, Rebecca L.; Barker, Kathryn H.

    2007-01-01

    The reaction of a ketone and an aldehyde in aqueous Na[subscript 2]CO[subscript 2] is described. This experiment is performed in the absence of strong bases or organic solvents and offers the opportunity for students to observe the critical role that reaction temperature and base strength have in determining the product of the base-mediated…

  8. Catalytic, enantioselective, vinylogous aldol reactions.

    PubMed

    Denmark, Scott E; Heemstra, John R; Beutner, Gregory L

    2005-07-25

    In 1935, R. C. Fuson formulated the principle of vinylogy to explain how the influence of a functional group may be felt at a distant point in the molecule when this position is connected by conjugated double-bond linkages to the group. In polar reactions, this concept allows the extension of the electrophilic or nucleophilic character of a functional group through the pi system of a carbon-carbon double bond. This vinylogous extension has been applied to the aldol reaction by employing "extended" dienol ethers derived from gamma-enolizable alpha,beta-unsaturated carbonyl compounds. Since 1994, several methods for the catalytic, enantioselective, vinylogous aldol reaction have appeared, with which varying degrees of regio- (site), enantio-, and diastereoselectivity can be attained. In this Review, the current scope and limitations of this transformation, as well as its application in natural product synthesis, are discussed. PMID:15940727

  9. Direct synthesis of C-glycosides from unprotected 2-N-acyl-aldohexoses via aldol condensation-oxa-Michael reactions with unactivated ketones.

    PubMed

    Johnson, Sherida; Tanaka, Fujie

    2016-01-01

    C-glycosides are important compounds as they are used as bioactive molecules and building blocks. We have developed methods to concisely synthesize C-glycosides from unprotected 2-N-acyl-aldohexoses and unactivated ketones; we designed aldol-condensation-oxa-Michael addition reactions catalyzed by amine-based catalysts using additives. Depending on the conditions used, C-glycosides were stereoselectively obtained. Our methods allowed the C-C bond formations at the anomeric centers of unprotected carbohydrates under mild conditions to lead the C-glycosides in atom- and step-economical ways. PMID:26565955

  10. Mukaiyama Aldol Reactions in Aqueous Media

    PubMed Central

    Kitanosono, Taku; Kobayashi, Shū

    2013-01-01

    Mukaiyama aldol reactions in aqueous media have been surveyed. While the original Mukaiyama aldol reactions entailed stoichiometric use of Lewis acids in organic solvents under strictly anhydrous conditions, Mukaiyama aldol reactions in aqueous media are not only suitable for green sustainable chemistry but are found to produce singular phenomena. These findings led to the discovery of a series of water-compatible Lewis acids such as lanthanide triflates in 1991. Our understanding on these beneficial effects in the presence of water will be deepened through the brilliant examples collected in this review. 1 Introduction 2 Rate Enhancement by Water in the Mukaiyama Aldol Reaction 3 Lewis Acid Catalysis in Aqueous or Organic Solvents 3.1 Water-Compatible Lewis Acids 4 Lewis-Base Catalysis in Aqueous or Organic Solvents 5 The Mukaiyama Aldol Reactions in 100% Water 6 Asymmetric Catalysts in Aqueous Media and Water 7 Conclusions and Perspective PMID:24971045

  11. Enantioselective aldol reactions with masked fluoroacetates.

    PubMed

    Saadi, Jakub; Wennemers, Helma

    2016-03-01

    Despite the growing importance of organofluorines as pharmaceuticals and agrochemicals, the stereoselective introduction of fluorine into many prominent classes of natural products and chemotherapeutic agents is difficult. One long-standing unsolved challenge is the enantioselective aldol reaction of fluoroacetate to enable access to fluorinated analogues of medicinally relevant acetate-derived compounds, such as polyketides and statins. Herein we present fluoromalonic acid halfthioesters as biomimetic surrogates of fluoroacetate and demonstrate their use in highly stereoselective aldol reactions that proceed under mild organocatalytic conditions. We also show that the methodology can be extended to formal aldol reactions with fluoroacetaldehyde and consecutive aldol reactions. The synthetic utility of the fluorinated aldol products is illustrated by the synthesis of a fluorinated derivative of the top-selling drug atorvastatin. The results show the prospects of the method for the enantioselective introduction of fluoroacetate to access a wide variety of highly functionalized fluorinated compounds. PMID:26892561

  12. Enantioselective aldol reactions with masked fluoroacetates

    NASA Astrophysics Data System (ADS)

    Saadi, Jakub; Wennemers, Helma

    2016-03-01

    Despite the growing importance of organofluorines as pharmaceuticals and agrochemicals, the stereoselective introduction of fluorine into many prominent classes of natural products and chemotherapeutic agents is difficult. One long-standing unsolved challenge is the enantioselective aldol reaction of fluoroacetate to enable access to fluorinated analogues of medicinally relevant acetate-derived compounds, such as polyketides and statins. Herein we present fluoromalonic acid halfthioesters as biomimetic surrogates of fluoroacetate and demonstrate their use in highly stereoselective aldol reactions that proceed under mild organocatalytic conditions. We also show that the methodology can be extended to formal aldol reactions with fluoroacetaldehyde and consecutive aldol reactions. The synthetic utility of the fluorinated aldol products is illustrated by the synthesis of a fluorinated derivative of the top-selling drug atorvastatin. The results show the prospects of the method for the enantioselective introduction of fluoroacetate to access a wide variety of highly functionalized fluorinated compounds.

  13. Steady-state kinetics and inhibition studies of the aldol condensation reaction catalyzed by bovine liver and Escherichia coli 2-keto-4-hydroxyglutarate aldolase.

    PubMed

    Grady, S R; Wang, J K; Dekker, E E

    1981-04-28

    Two sensitive assays, one which fluorometrically measures only the L isomer of 2-keto-4-hydroxyglutarate after decarboxylation to L-malate and the other which spectrophotometrically determines both enantiomers by reductive amination with glutamate dehydrogenase, are described. By use of these assays, the steady-state kinetics of the aldol condensation of pyruvate with glyoxylate, as catalyzed by 2-keto-4-hydroxyglutarate aldolase from either bovine liver or Escherichia coli, were studied as was the inhibition of this reaction by glyoxylate and other anions. For the E. coli aldolase, double-reciprocal plots are linear except at high (above 5 mM) glyoxylate concentrations; apparent Km values increase with increasing concentrations of the fixed substrate. The data are consistent with an ordered reaction sequence. Inhibition by halides follows the lyotropic or Hofmeister series. Esters are not good inhibitors; mono-, di-, and tricarboxylic acids are increasingly inhibitory. Of the substrate analogues tested, hydroxypyruvate is the most potent inhibitor. Inhibition studies with citrate, acetaldehyde, and glyoxylate (all competitive inhibitors) suggest there are two domains at the active site-the Schiff base forming lysyl residue which interacts with carbonyl analogues (like acetaldehyde) and a center of positive charge which binds anions (like citrate). In contrast to the bacterial enzyme, liver 2-keto-4-hydroxyglutarate aldolase is inhibited in a competitive manner by much lower concentrations (0.1 mM or even lower) of glyoxylate. Many salts and some carboxylic acids activate the liver enzyme. Similarly, substrate analogues like 2-ketobutyrate and fluoropyruvate are mild activators; no effect is seen with acetaldehyde. Besides glyoxylate, only glyoxal, 2-ketoglutarate, and hydroxypyruvate inhibit the aldol condensation reaction. A uniform value of 1 is found for the number of inhibitor molecules bound per active site of either liver or E. coli 2-keto-4-hydroxyglutarate

  14. Aldol Condensation of Volatile Carbonyl Compounds in Acidic Aerosols

    NASA Astrophysics Data System (ADS)

    Noziere, B.; Esteve, W.

    2003-12-01

    Reactions of volatile organic compounds in acidic aerosols have been shown recently to be potentially important for organic aerosol formation and growth. Aldol condensation, the acid-catalyzed polymerization of carbonyl compounds, is a likely candidate to enhance the flux of organic matter from the gas phase to the condensed phase in the atmosphere. Until now these reactions have only been characterized for conditions relevant to synthesis (high acidities and liquid phase systems) and remote from atmospheric ones. In this work, the uptake of gas-phase acetone and 2,4\\-pentanedione by sulfuric acid solutions has been measured at room temperature using a Rotated Wetted Wall Reactor coupled to a Mass Spectrometer. The aldol condensation rate constants for 2,4\\-pentanedione measured so far for sulfuric acid solutions between 96 and 70 % wt. display a variation with acidity in agreement with what predicted in the organic chemical literature. The values of these constants, however, are much lower than expected for this compound, and comparable to the ones of acetone. Experiments are underway to complete this study to lower acidities and understand the discrepancies with the predicted reactivity.

  15. Stereoselective Arene-Forming Aldol Condensation: Synthesis of Configurationally Stable Oligo-1,2-naphthylenes.

    PubMed

    Lotter, Dominik; Neuburger, Markus; Rickhaus, Michel; Häussinger, Daniel; Sparr, Christof

    2016-02-18

    Structurally well-defined oligomers are fundamental for the functionality of natural molecular systems and key for the design of synthetic counterparts. Herein, we describe a strategy for the efficient synthesis of individual stereoisomers of 1,2-naphthylene oligomers by iterative building block additions and consecutive stereoselective arene-forming aldol condensation reactions. The catalyst-controlled atropoenantioselective and the substrate-controlled atropodiastereoselective aldol condensation reaction provide structurally distinct ter- and quaternaphthalene stereoisomers, which represent configurationally stable analogues of otherwise stereodynamic, helically shaped ortho-phenylenes. PMID:26799152

  16. A Green Enantioselective Aldol Condensation for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Bennett, George D.

    2006-01-01

    A number of laboratory exercises for the organic chemistry curriculum that emphasize enantioselective synthesis of the aldol condensation which involves the proline-catalyzed condensation between acetone and isobutyraldehyde are explored. The experiment illustrates some of the trade-offs involved in green chemistry like the use of acetone in large…

  17. Asymmetric, Three-Component, One-Pot Synthesis of Spiropyrazolones and 2,5-Chromenediones from Aldol Condensation/NHC-Catalyzed Annulation Reactions.

    PubMed

    Wang, Lei; Li, Sun; Chauhan, Pankaj; Hack, Daniel; Philipps, Arne R; Puttreddy, Rakesh; Rissanen, Kari; Raabe, Gerhard; Enders, Dieter

    2016-04-01

    A novel one-pot, three-component diastereo- and enantioselective synthesis of spiropyrazolones has been developed involving the aldol condensation of an enal to generate α,β-unsaturated pyrazolones, which react with a second equivalent of enal through an N-heterocyclic carbene (NHC)-catalyzed [3+2] annulation. The desired spirocyclopentane pyrazolones are obtained in moderate to good yields and good to excellent stereoselectivities. Alternatively, starting from cyclic 1,3-diketones, 2,5-chromenediones are available through [2+4] annulation. PMID:26864437

  18. Asymmetric Aldol-Tishchenko Reaction of Sulfinimines.

    PubMed

    Foley, Vera M; McSweeney, Christina M; Eccles, Kevin S; Lawrence, Simon E; McGlacken, Gerard P

    2015-11-20

    Methods for the preparation of 1,3-amino alcohols and their derivatives containing two stereogenic centers usually involve a two-step installation of the chiral centers. An aldol-Tishchenko reaction of chiral sulfinimines which involves the first reported reduction of a C═N in this type of reaction is described. Two and even three chiral centers can be installed in one synthetic step, affording anti-1,3-amino alcohols in good diastereo- and enantioselectivity. PMID:26528888

  19. Iron-catalyzed vinylogous aldol condensation of Biginelli products and its application toward pyrido[4,3-d]pyrimidinones.

    PubMed

    Zhang, Lianqiang; Zhang, Zhiguo; Liu, Qingfeng; Liu, Tongxin; Zhang, Guisheng

    2014-03-01

    A novel iron-catalyzed vinylogous aldol condensation of Biginelli products with aryl aldehydes has been developed for the syntheses of potential bioactive (E)-6-arylvinyl-dihydropyrimidin-2(1H)-ones. These materials are valuable synthetic precursors to drug-like pyrido[4,3-d]pyrimidine derivatives. The amide group at the 5-position of the dihydropyrimidin-2(1H)-ones played an important role in the vinylogous aldol condensation reaction. PMID:24517724

  20. Aldol Condensation Products and Polyacetals in Organic Films Formed from Reactions of Propanal in Sulfuric Acid at Upper Troposphere/Lower Stratosphere (UT/LS) Aerosol Acidities

    NASA Astrophysics Data System (ADS)

    Bui, J. V. H.; Perez-Montano, S.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.; Van Wyngarden, A. L.

    2015-12-01

    Aerosols in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt. %) which is highly reflective towards UV and visible radiation. However, airborne measurements have shown that these particles may also contain a significant amount of organic material. Experiments combining organics (propanal, glyoxal and/or methylglyoxal) with sulfuric acid at concentrations typical of UT/LS aerosols produced highly colored surface films (and solutions) that have the potential to impact chemical, optical and/or cloud-forming properties of aerosols. In order to assess the potential for such films to impact aerosol chemistry or climate properties, experiments were performed to identify the chemical processes responsible for film formation. Surface films were analyzed via Attenuated Total Reflectance-FTIR and Nuclear Magnetic Resonance spectroscopies and are shown to consist primarily of aldol condensation products and cyclic and linear polyacetals, the latter of which are likely responsible for separation from the aqueous phase.

  1. Thermodynamically driven, syn-selective vinylogous aldol reaction of tetronamides.

    PubMed

    Karak, Milandip; Barbosa, Luiz C A; Acosta, Jaime A M; Sarotti, Ariel M; Boukouvalas, John

    2016-06-01

    A stereoselective vinylogous aldol reaction of N-monosubstituted tetronamides with aldehydes is described. The procedure is simple and scalable, works well with both aromatic and aliphatic aldehydes, and affords mainly the corresponding syn-aldol adducts. In many cases, the latter are obtained essentially free of their anti-isomers (dr > 99 : 1) in high yields (70-90%). Experimental and computational studies suggest that the observed diastereoselectivity arises through anti-syn isomer interconversion, enabled by an iterative retro-aldol/aldol reaction. PMID:27163151

  2. Asymmetric Aldol Reaction with Formaldehyde: a Challenging Process.

    PubMed

    Meninno, Sara; Lattanzi, Alessandra

    2016-08-01

    The asymmetric aldol reaction with formaldehyde is a fundamental carbon-carbon bond-forming reaction in organic synthesis, as well as in the quest of the origin of life, as it is thought to have been the first "molecular brick" involved in the synthetic path to complex sugars. Products of aldol reactions, i.e., the β-hydroxy carbonyl compounds, are versatile building blocks used to access a great variety of functionalised molecules. The employment of formaldehyde, as a C1 symmetric electrophile, in aldol reactions can be likely considered the most challenging, yet simplest, process to introduce a hydroxymethyl group in an asymmetric fashion. In this account, an overview of the progress achieved in the asymmetric metal- and organocatalysed aldol reaction, using readily available formalin or paraformaldehyde sources, is illustrated. Our recent contribution to this area, with the application of asymmetric hydroxymethylation in cascade processes for the synthesis of γ-butyrolactones, is also shown. PMID:27328802

  3. Mineral catalysis of a potentially prebiotic aldol condensation

    NASA Technical Reports Server (NTRS)

    De Graaf, R. M.; Visscher, J.; Xu, Y.; Arrhenius, G.; Schwartz, A. W.

    1998-01-01

    Minerals may have played a significant role in chemical evolution. In the course of investigating the chemistry of phosphonoacetaldehyde (PAL), an analogue of glycolaldehyde phosphate, we have observed a striking case of catalysis by the layered hydroxide mineral hydrotalcite ([Mg2Al(OH)6][Cl.nH2O]). In neutral or moderately basic aqueous solutions, PAL is unreactive even at a concentration of 0.1 M. In the presence of a large excess of NaOH (2 M), the compound undergoes aldol condensation to produce a dimer containing a C3-C4 double-bond. In dilute neutral solutions and in the presence of the mineral, however, condensation takes place rapidly, to produce a dimer which is almost exclusively the C2-C3 unsaturated product.

  4. Enzyme-Catalyzed Asymmetric Domino Thia-Michael/Aldol Condensation Using Pepsin.

    PubMed

    Xiang, Yang; Song, Jian; Zhang, Yong; Yang, Da-Cheng; Guan, Zhi; He, Yan-Hong

    2016-07-15

    The novel catalytic promiscuity of pepsin from porcine gastric mucosa for the asymmetric catalysis of the domino thia-Michael/aldol condensation reaction in MeCN and buffer was discovered for the first time. Broad substrate specificity was tested, and a series of corresponding products were obtained with enantioselectivities of up to 84% ee. This specific catalysis was demonstrated by using recombinant pepsin and control experiments with denatured and inhibited pepsin. The reaction was also shown to occur in the active site by site-directed mutagenesis (the Asp32Ala mutant of pepsin), and a possible mechanism was proposed. PMID:27348476

  5. Bifunctional Brønsted Base Catalyzes Direct Asymmetric Aldol Reaction of α-Keto Amides.

    PubMed

    Echave, Haizea; López, Rosa; Palomo, Claudio

    2016-03-01

    The first enantioselective direct cross-aldol reaction of α-keto amides with aldehydes, mediated by a bifunctional ureidopeptide-based Brønsted base catalyst, is described. The appropriate combination of a tertiary amine base and an aminal, and urea hydrogen-bond donor groups in the catalyst structure promoted the exclusive generation of the α-keto amide enolate which reacted with either non-enolizable or enolizable aldehydes to produce highly enantioenriched polyoxygenated aldol adducts without side-products resulting from dehydration, α-keto amide self-condensation, aldehyde enolization, and isotetronic acid formation. PMID:26835655

  6. Sequential hydroformylation/aldol reactions: versatile and controllable access to functionalised carbocycles from unsaturated carbonyl compounds.

    PubMed

    Keränen, Mark D; Kot, Kinga; Hollmann, Christoph; Eilbracht, Peter

    2004-11-21

    Three different modes of hydroformylation/aldol reaction sequences involving either acid-catalysed aldol reactions, Mukaiyama aldol addition of pre-formed enolsilanes or aldol addition of in situ generated boron enolates can be applied to unsaturated ketones and ketoesters to afford the corresponding carbocyclic aldol adducts in good yields proceeding through the intermediate activated ketoaldehydes. In selected cases, complimentary, synthetically useful diastereoselectivities were observed in the products. PMID:15534717

  7. Cu/MgAl(2)O(4) as bifunctional catalyst for aldol condensation of 5-hydroxymethylfurfural and selective transfer hydrogenation.

    PubMed

    Pupovac, Kristina; Palkovits, Regina

    2013-11-01

    Copper supported on mesoporous magnesium aluminate has been prepared as noble-metal-free solid catalyst for aldol condensation of 5-hydroxymethylfurfural with acetone, followed by hydrogenation of the aldol condensation products. The investigated mesoporous spinels possess high activity as solid-base catalysts. Magnesium aluminate exhibits superior activity compared to zinc and cobalt-based aluminates, reaching full conversion and up to 81 % yield of the 1:1 aldol product. The high activity can be correlated to a higher concentration of basic surface sites on magnesium aluminate. Applying continuous regeneration, the catalysts can be recycled without loss of activity. Focusing on the subsequent hydrogenation of aldol condensation products, Cu/MgAl2 O4 allows a selective hydrogenation and CO bond cleavage, delivering 3-hydroxybutyl-5-methylfuran as the main product with up to 84 % selectivity avoiding ring saturation. Analysis of the hydrogenation activity reveals that the reaction proceeds in the following order: CC>CO>CO cleavage>ring hydrogenation. Comparable activity and selectivity can be also achieved utilizing 2-propanol as solvent in the transfer hydrogenation, providing the possibility for partial recycling of acetone and optimization of the hydrogen management. PMID:24038987

  8. Acid-Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization.

    PubMed

    Lewis, Jennifer D; Van de Vyver, Stijn; Román-Leshkov, Yuriy

    2015-08-17

    Hf-, Sn-, and Zr-Beta zeolites catalyze the cross-aldol condensation of aromatic aldehydes with acetone under mild reaction conditions with near quantitative yields. NMR studies with isotopically labeled molecules confirm that acid-base pairs in the Si-O-M framework ensemble promote soft enolization through α-proton abstraction. The Lewis acidic zeolites maintain activity in the presence of water and, unlike traditional base catalysts, in acidic solutions. PMID:26138135

  9. Molecular Dynamics Simulations of Aldol Condensation Catalyzed by Alkylamine-Functionalized Crystalline Silica Surfaces.

    PubMed

    Kim, Ki Chul; Moschetta, Eric G; Jones, Christopher W; Jang, Seung Soon

    2016-06-22

    Molecular dynamics simulations are performed to investigate the cooperatively catalyzed aldol condensation between acetone and 4-nitrobenzaldehyde on alkylamine (or alkylenamine)-grafted silica surfaces, focusing on the mechanism of the catalytic activation of the acetone and 4-nitrobenzaldehyde by the acidic surface silanols followed by the nucleophilic attack of the basic amine functional group toward the activated reactant. From the analysis of the correlations between the catalytically active acid-base sites and reactants, it is concluded that the catalytic cooperativity of the acid-base pair can be affected by two factors: (1) the competition between the silanol and the amine (or enamine) to form a hydrogen bond with a reactant and (2) the flexibility of the alkylamine (or alkylenamine) backbone. Increasing the flexibility of the alkylamine facilitates the nucleophilic attack of the amine on the reactants. From the molecular dynamics simulations, it is found that C3 propylamine and C4 butylamine linkers exhibit the highest probability of reaction, which is consistent with the experimental observation that the activity of the aldol reaction on mesoporous silica depends on the length of alkylamine grafted on the silica surface. This simulation work serves as a pioneering study demonstrating how the molecular simulation approach can be successfully employed to investigate the cooperative catalytic activity of such bifunctional acid-base catalysts. PMID:27238580

  10. Stereoselectivity in (Acyloxy)borane-Catalyzed Mukaiyama Aldol Reactions.

    PubMed

    Lee, Joshua M; Zhang, Xin; Norrby, Per-Ola; Helquist, Paul; Wiest, Olaf

    2016-07-01

    The origin of diastereo- and enantioselectivity in a Lewis acid-catalyzed Mukaiyama aldol reaction is investigated using a combination of dispersion corrected DFT calculations and transition state force fields (TSFF) developed using the quantum guided molecular mechanics (Q2MM) method. The reaction proceeds via a closed transition structure involving a nontraditional hydrogen bond that is 3.3 kJ/mol lower in energy than the corresponding open transition structure. The correct prediction of the diastereoselectivity of a Mukaiyama aldol reaction catalyzed by the conformationally flexible Yamamoto chiral (acyloxy) borane (CAB) requires extensive conformational sampling at the transition structure, which is achieved using a Q2MM-derived TSFF, followed by DFT calculations of the low energy conformational clusters. Finally, a conceptual model for the rationalization of the observed diastereo- and enantioselectivity of the reaction using a closed transition state model is proposed. PMID:27247023

  11. Investigating Ionic Effects Applied to Water Based Organocatalysed Aldol Reactions

    PubMed Central

    Delaney, Joshua P.; Henderson, Luke C.

    2011-01-01

    Saturated aqueous solutions of various common salts were examined for their effect on aqueous aldol reactions catalysted by a highly active C2-symmetric diprolinamide organocatalyst developed in our laboratory. With respect to the aldol reaction between cyclohexanone and 4-nitrobenzaldehyde, deionised water was always a superior medium to salt solutions though some correlation to increasing anion size and depression in enantiomeric excess could be observed. Additionally, the complete inhibition of catalyst activity observed when employing tap water could be alleviated by the inclusion of ethylenediaminetetraacetate (EDTA) into the aqueous media prior to reaction initiation. Extension of these reaction conditions demonstrated that these ionic effects vary on a case-to-case basis depending on the ketone/aldehyde combination. PMID:22272120

  12. One-pot aldol condensation and hydrodeoxygenation of biomass-derived carbonyl compounds for biodiesel synthesis.

    PubMed

    Faba, Laura; Díaz, Eva; Ordóñez, Salvador

    2014-10-01

    Integrating reaction steps is of key interest in the development of processes for transforming lignocellulosic materials into drop-in fuels. We propose a procedure for performing the aldol condensation (reaction between furfural and acetone is taken as model reaction) and the total hydrodeoxygenation of the resulting condensation adducts in one step, yielding n-alkanes. Different combinations of catalysts (bifunctional catalysts or mechanical mixtures), reaction conditions, and solvents (aqueous and organic) have been tested for performing these reactions in an isothermal batch reactor. The results suggest that the use of bifunctional catalysts and aqueous phase lead to an effective integration of both reactions. Therefore, selectivities to n-alkanes higher than 50% were obtained using this catalyst at typical hydrogenation conditions (T=493 K, P=4.5 MPa, 24 h reaction time). The use of organic solvent, carbonaceous supports, or mechanical mixtures of monofunctional catalysts leads to poorer results owing to side effects; mainly, hydrogenation of reactants and adsorption processes. PMID:25088473

  13. Light-absorbing aldol condensation products in acidic aerosols: Spectra, kinetics, and contribution to the absorption index

    NASA Astrophysics Data System (ADS)

    Nozière, Barbara; Esteve, William

    The radiative properties of aerosols that are transparent to light in the near-UV and visible, such as sulfate aerosols, can be dramatically modified when mixed with absorbing material such as soot. In a previous work we had shown that the aldol condensation of carbonyl compounds produces light-absorbing compounds in sulfuric acid solutions. In this work we report the spectroscopic and kinetic parameters necessary to estimate the effects of these reactions on the absorption index of sulfuric acid aerosols in the atmosphere. The absorption spectra obtained from the reactions of six different carbonyl compounds (acetaldehyde, acetone, propanal, butanal, 2-butanone, and trifluoroacetone) and their mixtures were compared over 190-1100 nm. The results indicated that most carbonyl compounds should be able to undergo aldol condensation. The products are oligomers absorbing light in the 300-500 nm region where few other compounds absorb, making them important for the radiative properties of aerosols. Kinetic experiments in 96-75 wt% H 2SO 4 solutions and between 273 and 314 K gave an activation energy for the rate constant of formation of the aldol products of acetaldehyde of -(70±15) kJ mol -1 in 96 wt% solution and showed that the effect of acid concentration was exponential. A complete expression for this rate constant is proposed where the absolute value in 96 wt% H 2SO 4 and at 298 K is scaled to the Henry's law coefficient for acetaldehyde and the absorption cross-section for the aldol products assumed in this work. The absorption index of stratospheric sulfuric acid aerosols after a 2-year residence time was estimated to 2×10 -4, optically equivalent to a content of 0.5% of soot and potentially significant for the radiative forcing of these aerosols and for satellite observations in channels where the aldol products absorb.

  14. Origins of stereoselectivity in intramolecular aldol reactions catalyzed by cinchona amines.

    PubMed

    Lam, Yu-Hong; Houk, K N

    2015-02-11

    The intramolecular aldol condensation of 4-substituted heptane-2,6-diones leads to chiral cyclohexenones. The origins of the enantioselectivities of this reaction, disclosed by List et al. using a cinchona alkaloid-derived primary amine (cinchona amine) organocatalyst, have been determined with dispersion-corrected density functional theory (DFT). The stereocontrol hinges on the chair preference of the substrate-enamine intermediate and the conformational preferences of a hydrogen-bonded nine-membered aldol transition state containing eight heavy atoms. The conformations of the hydrogen-bonded ring in the various stereoisomeric transition structures have been analyzed in detail and shown to closely resemble the conformers of cyclooctane. A model of stereoselectivity is proposed for the cinchona amine catalysis of this reaction. The inclusion of Grimme's dispersion corrections in the DFT calculations (B3LYP-D3(BJ)) substantially improves the agreement of the computed energetics and experiment, attesting to the importance of dispersion effects in stereoselectivity. PMID:25629689

  15. Illustrating the Utility of X-Ray Crystallography for Structure Elucidation through a Tandem Aldol Condensation/Diels-Alder Reaction Sequence

    ERIC Educational Resources Information Center

    Hoang, Giang T.; Kubo, Tomohiro; Young, Victor G., Jr.; Kautzky, Jacob A.; Wissinger, Jane E.

    2015-01-01

    Two introductory organic chemistry laboratory experiments are described based on the Diels-Alder reaction of 2,3,4,5-tetraphenylcyclopentadienone, which is synthesized prior to or in a one-pot reaction, with styrene. Students are presented with three possible products, the "endo" and "exo" diastereomers and the decarbonylated…

  16. Functionalized multi-walled carbon nanotubes in an aldol reaction

    NASA Astrophysics Data System (ADS)

    Chronopoulos, D. D.; Kokotos, C. G.; Karousis, N.; Kokotos, G.; Tagmatarchis, N.

    2015-01-01

    The covalent functionalization of multi-walled carbon nanotubes (MWCNTs) with a proline-based derivative is reported. Initially, MWCNTs were oxidized in order to introduce a large number of carboxylic units on their tips followed by N-tert-butoxycarbonyl-2,2'(ethylenedioxy)bis-(ethylamine) conjugation through an amide bond. Then, a proline derivative bearing a carboxylic terminal moiety at the 4-position was coupled furnishing proline-modified MWCNTs. This new hybrid material was fully characterized by spectroscopic and microscopy means and its catalytic activity in the asymmetric aldol reaction between acetone and 4-nitrobenzaldehyde was evaluated for the first time, showing to proceed almost quantitatively in aqueous media. Furthermore, several amino-modified MWCNTs were prepared and examined in the particular aldol reaction. These new hybrid materials exhibited an enhanced catalytic activity in water, contrasting with the pristine MWCNTs as well as the parent organic molecule, which failed to catalyze the reaction efficiently. Furthermore, the modified MWCNTs proved to catalyze the aldol reaction even after three repetitive cycles. Overall, a green approach for the aldol reaction is presented, where water can be employed as the solvent and modified MWCNTs can be used as catalysts, which can be successfully recovered and reused, while their catalytic activity is retained.The covalent functionalization of multi-walled carbon nanotubes (MWCNTs) with a proline-based derivative is reported. Initially, MWCNTs were oxidized in order to introduce a large number of carboxylic units on their tips followed by N-tert-butoxycarbonyl-2,2'(ethylenedioxy)bis-(ethylamine) conjugation through an amide bond. Then, a proline derivative bearing a carboxylic terminal moiety at the 4-position was coupled furnishing proline-modified MWCNTs. This new hybrid material was fully characterized by spectroscopic and microscopy means and its catalytic activity in the asymmetric aldol reaction

  17. Substrate inhibition in the heterogeneous catalyzed aldol condensation: A mechanistic study of supported organocatalysts

    SciTech Connect

    Kandel, Kapil; Althaus, Stacey M.; Peeraphatdit, Chorthip; Kobayashi, Takeshi; Trewyn, Brian G.; Pruski, Marek; Slowing, Igor I.

    2012-05-23

    In this study, we demonstrate how materials science can be combined with the established methods of organic chemistry to find mechanistic bottlenecks and redesign heterogeneous catalysts for improved performance. By using solid-state NMR, infrared spectroscopy, surface and kinetic analysis, we prove the existence of a substrate inhibition in the aldol condensation catalyzed by heterogeneous amines. We show that modifying the structure of the supported amines according to the proposed mechanism dramatically enhances the activity of the heterogeneous catalyst. We also provide evidence that the reaction benefits significantly from the surface chemistry of the silica support, which plays the role of a co-catalyst, giving activities up to two orders of magnitude larger than those of homogeneous amines. This study confirms that the optimization of a heterogeneous catalyst depends as much on obtaining organic mechanistic information as it does on controlling the structure of the support.

  18. SF5-Enolates in Ti(IV)-Mediated Aldol Reactions.

    PubMed

    Ponomarenko, Maksym V; Grabowsky, Simon; Pal, Rumpa; Röschenthaler, Gerd-Volker; Fokin, Andrey A

    2016-08-01

    The F···Ti bonding in the transition structures determines high trans- and syn-diastereoselectivities for aldol reactions of SF5-acetates with aldehydes in the presence of TiCl4 in the non-nucleophilic solvent CH2Cl2. Such bonding is canceled in nucleophilic solvents where opposite cis-stereochemistry is observed. The potential of thus obtained stereoisomeric SF5-aryl acrylates as dipolarophiles in the preparation of SF5-containing heterocycles is demonstrated. PMID:27384450

  19. Discovery-Oriented Approach To Organic Synthesis: Tandem Aldol Condensation-Michael Addition Reactions. Identifying Diastereotopic Hydrogens in an Achiral Molecule by NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wachter-Jurcsak, Nanette; Reddin, Kendra

    2001-09-01

    We have found a beautiful example of anisochrony of diastereotopic acyclic methylene hydrogens in a symmetric diketone, synthesized by techniques traditionally performed in an introductory organic laboratory course. Synthesis of the diketone is high-yielding and easy to carry out, and the products can be directly isolated with a good degree of purity with no need of further manipulation. The reaction can be accomplished in a single laboratory session.

  20. Convergent fabrication of a nanoporous two-dimensional carbon network from an aldol condensation on metal surfaces

    NASA Astrophysics Data System (ADS)

    Landers, John; Chérioux, Frédéric; De Santis, Maurizio; Bendiab, Nedjma; Lamare, Simon; Magaud, Laurence; Coraux, Johann

    2014-12-01

    We report a convergent surface polymerization reaction scheme on Au(111), based on a triple aldol condensation, yielding a carbon-rich, covalent nanoporous two-dimensional network. The reaction is not self-poisoning and proceeds up to a full surface coverage. The deposited precursor molecules 1, 3, 5-tri(4’-acetylphenyl) first form supramolecular assemblies that are converted to the porous covalent network upon heating. The formation and structure of the network and of the intermediate steps are studied with scanning tunneling microscopy, Raman spectroscopy and density functional theory.

  1. Acetylphosphonate as a Surrogate of Acetate or Acetamide in Organocatalyzed Enantioselective Aldol Reactions

    PubMed Central

    Guang, Jie; Guo, Qunsheng

    2012-01-01

    Highly enantioselective aldol reactions of acetylphosphonates and activated carbonyl compounds was realized with cinchona alkaloid derived catalysts, in which the acetylphosphonate was directly used as an enolate precursor for the first time. The aldol product obtained was converted in situ to its corresponding ester or amide through methanolysis or aminolysis. The overall process may be viewed as formal highly enantioselective acetate or acetamide aldol reactions, which are very difficult to achieve directly with organocatalytic methods. PMID:22650245

  2. From allylic alcohols to aldols by using iron carbonyls as catalysts: computational study on a novel tandem isomerization-aldolization reaction.

    PubMed

    Branchadell, Vicenç; Crévisy, Christophe; Grée, René

    2004-11-01

    The tandem isomerization-aldolization reaction between allyl alcohol and formaldehyde mediated by [Fe(CO)3] was studied with the density functional B3LYP method. Starting from the key [(enol)Fe(CO)3] complex, several reaction paths for the reaction with formaldehyde were explored. The results show that the most favorable reaction path involves first an enol/allyl alcohol ligand-exchange process followed by direct condensation of formaldehyde with the free enol. During this process, formation of the new C-C bond takes place simultaneously with a proton transfer between the enol and the aldehyde. Therefore, the role of [Fe(CO)3] is to catalyze the allyl alcohol to enol isomerization affording the free enol, which adds to the aldehyde in a carbonyl-ene type reaction. Similar results were obtained for the reaction between allyl alcohol and acetaldehyde. PMID:15472940

  3. Method of carbon chain extension using novel aldol reaction

    DOEpatents

    Silks, Louis A; Gordon, John C; Wu, Ruilan; Hangson, Susan Kloek

    2013-08-13

    Method of producing C.sub.8-C.sub.15 hydrocarbons comprising providing a ketone starting material; providing an aldol starting material comprising hydroxymethylfurfural; mixing the ketone starting material and the aldol starting material in a reaction in the presence of a proline-containing catalyst selected from the group consisting of Zn(Pro).sub.2, Yb(Pro).sub.2, and combinations thereof, or a catalyst having one of the structures (I), (II) or (III), and in the presence of a solvent, wherein the solvent comprises water and is substantially free of organic solvents, where (I), (II) and (III) respectively are: ##STR00001## where R.sub.1 is a C.sub.1-C.sub.6 alkyl moiety, X=(OH) and n=2. ##STR00002## In (III), X may be CH.sub.2, sulfur or selenium, M may be Zn, Mg, or a lanthanide, and R.sub.1 and R.sub.2 each independently may be a methyl, ethyl, phenyl moiety.

  4. Method of carbon chain extension using novel aldol reaction

    DOEpatents

    Silks, Louis A; Gordon, John C; Wu, Ruilan; Hanson, Susan Kloek

    2013-07-30

    Method of producing C.sub.8-C.sub.15 hydrocarbons. comprising providing a ketone starting material; providing an aldol starting material comprising chloromethylfurfural; mixing the ketone starting material and the aldol starting material in a reaction in the presence of a proline-containing catalyst selected from the group consisting of Zn(Pro).sub.2, Yb(Pro).sub.3, and combinations thereof, or a catalyst having one of the structures (I), (II) or (III), and in the presence of a solvent, wherein the solvent comprises water and is substantially free of organic solvents, where (I), (II) and (III) respectively are: ##STR00001## where R.sub.1 is a C.sub.1-C.sub.6 alkyl moiety, X=(OH) and n=2. ##STR00002## In (III), X may be CH.sub.2, sulfur or selenium, M may be Zn, Mg, or a lanthanide, and R.sub.1 and R.sub.2 each independently may be a methyl, ethyl, phenyl moiety.

  5. Highly efficient asymmetric aldol reaction in brine using a fluorous sulfonamide organocatalyst.

    PubMed

    Miura, Tsuyoshi; Kasuga, Hikaru; Imai, Kie; Ina, Mariko; Tada, Norihiro; Imai, Nobuyuki; Itoh, Akichika

    2012-03-21

    A fluorous organocatalyst promotes direct asymmetric aldol reactions of aromatic aldehydes with ketones in brine to afford the corresponding anti-aldol products in high yield with up to 96% ee. Fluorous organocatalyst can be readily recovered by solid phase extraction using fluorous silica gel and reused without purification. PMID:22331195

  6. Enantiomerically pure bithiophene diphosphine oxides as catalysts for direct double aldol reactions.

    PubMed

    Genoni, Andrea; Benaglia, Maurizio; Rossi, Sergio; Celentano, Giuseppe

    2013-10-01

    The direct aldol reaction between aryl methyl ketones with aromatic aldehydes in the presence of tetrachlorosilane and a catalytic amount of a chiral bithiophene diphosphine oxide was studied; the product of double aldol addition was isolated as diacetate in good diastereoselectivity (up to 95:5) and enantioselectivities up to 91%. The reaction with heteroaromatic aldehydes was also investigated leading to the corresponding 1,3 diols, in some cases with excellent stereoselectivities. PMID:23744602

  7. Tandem Catalysis of an Aldol-'Click' Reaction System within a Molecular Hydrogel.

    PubMed

    Araújo, Marco; Muñoz Capdevila, Iván; Díaz-Oltra, Santiago; Escuder, Beatriu

    2016-01-01

    A heterogeneous supramolecular catalytic system for multicomponent aldol-'click' reactions is reported. The copper(I) metallohydrogel functionalized with a phenyltriazole fragment was able to catalyze the multicomponent reaction between phenylacetylene, p-nitrobenzaldehyde, and an azide containing a ketone moiety, obtaining the corresponding aldol products in good yields. A possible mechanistic pathway responsible for this unexpected catalytic behavior has been proposed. PMID:27338313

  8. Copper-catalyzed retro-aldol reaction of β-hydroxy ketones or nitriles with aldehydes: chemo- and stereoselective access to (E)-enones and (E)-acrylonitriles.

    PubMed

    Zhang, Song-Lin; Deng, Zhu-Qin

    2016-07-26

    A copper-catalyzed transfer aldol type reaction of β-hydroxy ketones or nitriles with aldehydes is reported, which enables chemo- and stereoselective access to (E)-α,β-unsaturated ketones and (E)-acrylonitriles. A key step of the in situ copper(i)-promoted retro-aldol reaction of β-hydroxy ketones or nitriles is proposed to generate a reactive Cu(i) enolate or cyanomethyl intermediate, which undergoes ensuing aldol condensation with aldehydes to deliver the products. This reaction uses 1.2 mol% Cu(IPr)Cl (IPr denotes 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) as the catalyst in the presence of 6.0 mol% NaOtBu cocatalyst at room temperature or 70 °C. A range of aryl and heteroaryl aldehydes as well as acrylaldehydes are compatible with many useful functional groups being tolerated. Under the mild and weakly basic conditions, competitive Cannizzaro-type reaction of benzaldehydes and side reactions of base-sensitive functional groups can be effectively suppressed, which show synthetic advantages of this reaction compared to classic aldol reactions. The synthetic potential of this reaction is further demonstrated by the one-step synthesis of biologically active quinolines and 1,8-naphthyridine in excellent yields (up to 91%). Finally, a full catalytic cycle for this reaction has been constructed using DFT computational studies in the context of a retro-aldol/aldol two-stage mechanism. A rather flat reaction energy profile is found indicating that both stages are kinetically facile, which is consistent with the mild reaction conditions. PMID:27397647

  9. Stereoselective Arene-Forming Aldol Condensation: Synthesis of Axially Chiral Aromatic Amides.

    PubMed

    Fäseke, Vincent C; Sparr, Christof

    2016-06-13

    The increasing awareness of the importance of amide atropisomers prompts the development of novel strategies for their selective preparation. Described herein is a method for the enantioselective synthesis of atropisomeric aromatic amides by an amine-catalyzed arene-forming aldol condensation. The high reactivity of the glyoxylic amide substrates enables a remarkably efficient construction of a new aromatic ring, which proceeds within minutes at ambient temperature to afford products with excellent stereoselectivity. The high rotational barriers of the reduced products highlight the utility of this stable, spatially organized chiral scaffold. PMID:27166995

  10. Domino Michael-Michael and Aldol-Aldol Reactions: Diastereoselective Synthesis of Functionalized Cyclohexanone Derivatives Containing Quaternary Carbon Center.

    PubMed

    Ghorai, Manas K; Halder, Sandipan; Das, Subhomoy

    2015-10-01

    A simple strategy for the synthesis of highly functionalized cyclohexanone derivatives containing an all-carbon quaternary center from α-(aryl/alkyl)methylidene-β-keto esters or β-diketones via a K-enolate mediated domino Michael-Michael reaction sequence with moderate to good yield and excellent diastereoselectivity (de > 99%) is described. Interestingly, Li-base mediated reaction of α-arylmethylidene-β-diketones affords functionalized 3,5-dihydroxy cyclohexane derivatives as the kinetically controlled products via a domino aldol-aldol reaction sequence with excellent diastereoselectivity. Li-enolates of the β-keto esters or β-diketones undergo facile domino Michael-Michael reaction with nitro-olefins to afford the corresponding nitrocyclohexane derivatives in good yields and excellent diastereoselectivity (de > 99%). The formation of the products and the observed stereoselectivity were explained by plausible mechanisms and supported by extensive computational study. An asymmetric version of the protocol was explored with (L)-menthol derived nonracemic substrates, and the corresponding nonracemic cyclohexanone derivatives containing an all-carbon quaternary center were obtained with excellent stereoselectivity (de, ee > 99%). PMID:26334184

  11. Developing novel organocatalyzed aldol reactions for the enantioselective synthesis of biologically active molecules

    PubMed Central

    Bhanushali, Mayur; Zhao, Cong-Gui

    2011-01-01

    Aldol reaction is one of the most important methods for the formation of carbon-carbon bonds. Because of its significance and usefulness, asymmetric versions of this reaction have been realized with different approaches in the past. Over the last decade, the area of organocatalysis has made significant progresses. As one of most studied reactions in organocatalyses, organocatalyzed aldol reaction has emerged as a powerful tool for the synthesis of a large number of useful products in optically enriched forms. In this review, we summarize our efforts on the development of novel organocatalyzed aldol reactions for the enantioselective synthesis of biological active molecules. Literatures closely related to our studies are also covered. PMID:21918584

  12. A Tandem Michael-Aldol Reaction Sequence: An Undergraduate Research Organic Experiment.

    ERIC Educational Resources Information Center

    Coutlangus, Marilyn L.; And Others

    1989-01-01

    Presents a short reaction sequence that allows the student to determine by spectroscopic methods the constitution and stereochemistry of the reaction products. Reports the interpretations needed to illustrate the usefulness of the spectroscopic method. Notes the products of the Michael-Aldol reaction have not been reported in the literature. (MVL)

  13. Highly active copper-network catalyst for the direct aldol reaction.

    PubMed

    Ohta, Hidetoshi; Uozumi, Yasuhiro; Yamada, Yoichi M A

    2011-09-01

    The development of a highly active solid-phase catechol-copper network catalyst for direct aldol reaction is described. The catalyst was prepared from an alkyl-chain-linked bis(catechol) and a copper(II) complex. The direct aldol reaction between carbonyl compounds (aldehydes and ketones) and methyl isocyanoacetate was carried out using 0.1-1 mol% [Cu] catalyst to give the corresponding oxazolines at yields of up to 99% and a trans/cis ratio of >99:1. The catalyst was reused with no loss of catalytic activity. A plausible reaction pathway is also described. PMID:21751405

  14. α-Hydroxyallylsilanes as propionaldehyde enolate equivalents and their use toward iterative aldol reactions.

    PubMed

    Ruiz, Johal; Murthy, Akondi Srirama; Roisnel, Thierry; Chandrasekhar, Srivari; Grée, René

    2015-02-20

    Smooth and efficient reaction conditions have been found for the transformation of protected β-hydroxyacylsilanes into the corresponding aldehydes. This opens a new route to iterative aldol reactions, and it has been used for the synthesis of fragments of several bioactive natural products. PMID:25636066

  15. ALDOL- AND MANNICH-TYPE REACTIONS VIA IN SITU OLEFIN MIGRATION IN IONIC LIQUID

    EPA Science Inventory


    An aldol-type and a Mannich-type reaction via the cross-coupling of aldehydes and imines with allylic alcohols catalyzed by RuCl2(PPh3)3 was developed with ionic liquid as the solvent. The solvent/catalyst system could be reused for at least five times with no loss of reactiv...

  16. RUTHENIUM-CATALYZED TANDEM OLEFIN MIGRATION-ALDOL AND MANNICH-TYPE REACTIONS IN IONIC LIQUID.

    EPA Science Inventory

    In the presence of a catalytic amount of RuCl2(PPh3)3, a cross-coupling of 3-buten-2-ol with aldehydes and imines was developed via a tandem olefin migration--aldol--Mannich reaction in bmim[PF6]. With In(OAc)3 as a co-catalyst, a-vinylbenzyl alcohol and aldehydes underwent sim...

  17. Enantioselective synthesis of (-)-chloramphenicol via silver-catalysed asymmetric isocyanoacetate aldol reaction.

    PubMed

    Franchino, Allegra; Jakubec, Pavol; Dixon, Darren J

    2016-01-01

    The highly enantio- and diastereoselective aldol reaction of isocyanoacetates catalysed by Ag2O and cinchona-derived amino phosphines applied to the synthesis of (-)- and (+)-chloramphenicol is described. The concise synthesis showcases the utility of this catalytic asymmetric methodology for the preparation of bioactive compounds possessing α-amino-β-hydroxy motifs. PMID:26510469

  18. Aldol reactions of the trans-o-hydroxybenzylidenepyruvate hydratase-aldolase (tHBP-HA) from Pseudomonas fluorescens N3.

    PubMed

    Sello, Guido; Di Gennaro, Patrizia

    2013-08-01

    In this paper, a recombinant trans-o-hydroxybenzylidenepyruvate hydratase-aldolase (tHBP-HA) of Pseudomonas fluorescens N3 was used as a new catalyst for aldol condensation reactions. The reaction of some aldehydes with a different electronic activation catalyzed by tHBP-HA is presented and discussed together with some hints on the product structure. The enzyme is strictly pyruvate-dependent but uses different aldehydes as acceptors. The structure of the products is highly dependent on the electronic characteristics of the aldehyde. The results are interesting for both their synthetic importance and the mechanism of the formation of the products. Not only the products obtained and the recognition power are reported, but also some characteristics of its mechanism are analyzed. The results clearly show that the enzyme is efficiently prepared, purified, and stored, that it recognizes many different substrates, and that the products depend on the substrate electronic nature. PMID:23722948

  19. Stereoselective titanium-mediated aldol reactions of a chiral lactate-derived ethyl ketone with ketones.

    PubMed

    Alcoberro, Sandra; Gómez-Palomino, Alejandro; Solà, Ricard; Romea, Pedro; Urpí, Fèlix; Font-Bardia, Mercè

    2014-01-17

    Aldol reactions of titanium enolates of lactate-derived ethyl ketone 1 with other ketones proceed in a very efficient and stereocontrolled manner provided that a further equivalent of TiCl4 is added to the reacting mixture. The scope of these reactions encompasses simple ketones such as acetone or cyclohexanone as well as other ketones that contain potential chelating groups such as pyruvate esters or α- and β-hydroxy ketones. PMID:24372372

  20. Cooperative Effects Between Arginine and Glutamic Acid in the Amino Acid-Catalyzed Aldol Reaction.

    PubMed

    Valero, Guillem; Moyano, Albert

    2016-08-01

    Catalysis of the aldol reaction between cyclohexanone and 4-nitrobenzaldehyde by mixtures of L-Arg and of L-Glu in wet dimethyl sulfoxide (DMSO) takes place with higher enantioselectivity (up to a 7-fold enhancement in the anti-aldol for the 1:1 mixture) than that observed when either L-Glu or L-Arg alone are used as the catalysts. These results can be explained by the formation of a catalytically active hydrogen-bonded complex between both amino acids, and demonstrate the possibility of positive cooperative effects in catalysis by two different α-amino acids. Chirality 28:599-605, 2016. © 2016 Wiley Periodicals, Inc. PMID:27362554

  1. Solvent-Induced Reversal of Activities between Two Closely Related Heterogeneous Catalysts in the Aldol Reaction

    SciTech Connect

    Kandel, Kapil; Althaus, Stacey M; Peeraphatdit, Chorthip; Kobayashi, Takeshi; Trewyn, Brian G; Pruski, Marek; Slowing, Igor I

    2013-01-11

    The relative rates of the aldol reaction catalyzed by supported primary and secondary amines can be inverted by 2 orders of magnitude, depending on the use of hexane or water as a solvent. Our analyses suggest that this dramatic shift in the catalytic behavior of the supported amines does not involve differences in reaction mechanism, but is caused by activation of imine to enamine equilibria and stabilization of iminium species. The effects of solvent polarity and acidity were found to be important to the performance of the catalytic reaction. This study highlights the critical role of solvent in multicomponent heterogeneous catalytic processes.

  2. From allylic alcohols to aldols through a new nickel-mediated tandem reaction: synthetic and mechanistic studies.

    PubMed

    Cuperly, David; Petrignet, Julien; Crévisy, Christophe; Grée, René

    2006-04-12

    Nickel hydride type complexes have been successfully developed as catalysts for the tandem isomerization-aldolization reaction of allylic alcohols with aldehydes. Optimization of the reaction conditions has shown that a cocatalyst, such as MgBr2, has a very positive effect on the kinetics of the reaction and in the yields of aldols. Under such optimized conditions {[NiHCl(dppe)] + MgBr(2) at 3-5 mol %)}, this reaction affords the aldols in good to excellent yields. It is a full-atom-economy-type reaction that occurs under mild conditions. Furthermore, it has a broad scope for the allylic alcohols and it is compatible with a wide range of aldehydes, including very bulky derivatives. The reaction is completely regioselective, but it exhibits a low stereoselectivity, except for allylic alcohols with a bulky substituent at the carbinol center. The use of chiral nonracemic catalysts was not successful, affording only racemic compounds. However, it was possible to use asymmetric synthesis for the preparation of optically active aldols. Various mechanistic studies have been performed using, for instance, a deuterated alcohol or a deuterated catalyst. They gave strong support to a mechanism involving first a transition-metal-mediated isomerization of the allylic alcohol into the free enol, followed by the addition of the latter intermediate onto the aldehyde in an "hydroxyl-carbonyl-ene" type reaction. These results confirm that allylic alcohols can be considered as new and useful partners in the development of the aldol reaction. PMID:16506253

  3. The effect of the distance between acidic site and basic site immobilized on mesoporous solid on the activity in catalyzing aldol condensation

    NASA Astrophysics Data System (ADS)

    Yu, Xiaofang; Yu, Xiaobo; Wu, Shujie; Liu, Bo; Liu, Heng; Guan, Jingqi; Kan, Qiubin

    2011-02-01

    Acid-base bifunctional heterogeneous catalysts containing carboxylic and amine groups, which were immobilized at defined distance from one another on the mesoporous solid were synthesized by immobilizing lysine onto carboxyl-SBA-15. The obtained materials were characterized by X-ray diffraction (XRD), N 2 adsorption, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron micrographs (SEM), transmission electron micrographs (TEM), elemental analysis, and back titration. Proximal-C-A-SBA-15 with a proximal acid-base distance was more active than maximum-C-A-SBA-15 with a maximum acid-base distance in aldol condensation reaction between acetone and various aldehydes. It appears that the distance between acidic site and basic site immobilized on mesoporous solid should be an essential factor for catalysis optimization.

  4. One-Pot Domino Aldol Reaction of Indium Enolates Affording 6-Deoxy-α-D,L-altropyranose Derivatives: Synthesis, Mechanism, and Computational Results.

    PubMed

    Cinar, M Emin; Schmittel, Michael

    2015-08-21

    The domino-aldol-aldol-hemiacetal-reaction cascade of indium and other group 13 metal enolates furnished 6-deoxy-α-D,L-altropyranose derivatives in up to 99% yield under thermodynamic control. At lower temperature and thus under kinetic control, the reaction proceeded in a much less diastereoselective manner. The changeover from kinetic to thermodynamic control operating in this multistep domino-aldol-aldol-hemiacetal protocol was used for probing the efficiency of DFT computations. Calculations at the B3LYP/6-31G(d)/LANL2DZ level provided a mechanistic picture in full agreement with the experimental outcome. PMID:26258596

  5. An asymmetric assembly of spirooxindole dihydropyranones through a direct enantioselective organocatalytic vinylogous aldol-cyclization cascade reaction of 3-alkylidene oxindoles with isatins.

    PubMed

    Han, Jeng-Liang; Chang, Chia-Hao

    2016-02-01

    A highly enantioselective organocatalytic vinylogous aldol-cyclization cascade reaction of 3-alkylidene oxindoles to isatins has been achieved by using bifunctional organocatalysts. The unexpected intramolecular lactonization which follows the initial aldol reaction, leading to the cleavage of the oxindole ring and generation of enantioenriched spirooxindole dihydropyranones in good to excellent yields with high enantioselectivities. PMID:26728396

  6. Synthesis and Characterization of Aldol Condensation Products from Unknown Aldehydes and Ketones: An Inquiry-Based Experiment in the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Angelo, Nicholas G.; Henchey, Laura K.; Waxman, Adam J.; Canary, James W.; Arora, Paramjit S.; Wink, Donald

    2007-01-01

    An experiment for the undergraduate chemistry laboratory in which students perform the aldol condensation on an unknown aldehyde and an unknown ketone is described. The experiment involves the use of techniques such as TLC, column chromatography, and recrystallization, and compounds are characterized by [to the first power]H NMR, GC-MS, and FTIR.…

  7. Gallium(III)- and calcium(II)-catalyzed Meyer-Schuster rearrangements followed by intramolecular aldol condensation or endo-Michael addition.

    PubMed

    Presset, M; Michelet, B; Guillot, R; Bour, C; Bezzenine-Lafollée, S; Gandon, V

    2015-03-28

    The first gallium- and calcium-catalyzed Meyer-Schuster rearrangements are described. Under substrate control, the incipient conjugated ketones can be trapped intramolecularly by β-keto esters or amides to yield cyclic products after aldol condensation or endo-Michael addition. An interesting additive effect that promotes the latter tandem process with calcium has been found. PMID:25503868

  8. Nanosheet-enhanced asymmetric induction of chiral α-amino acids in catalytic aldol reaction.

    PubMed

    Zhao, Li-Wei; Shi, Hui-Min; Wang, Jiu-Zhao; He, Jing

    2012-11-26

    An efficient ligand design strategy towards boosting asymmetric induction was proposed, which simply employed inorganic nanosheets to modify α-amino acids and has been demonstrated to be effective in vanadium-catalyzed epoxidation of allylic alcohols. Here, the strategy was first extended to zinc-catalyzed asymmetric aldol reaction, a versatile bottom-up route to make complex functional compounds. Zinc, the second-most abundant transition metal in humans, is an environment-friendly catalytic center. The strategy was then further proved valid for organocatalyzed metal-free asymmetric catalysis, that is, α-amino acid catalyzed asymmetric aldol reaction. Visible improvement of enantioselectivity was experimentally achieved irrespective of whether the nanosheet-attached α-amino acids were applied as chiral ligands together with catalytic Zn(II) centers or as chiral catalysts alone. The layered double hydroxide nanosheet was clearly found by theoretical calculations to boost ee through both steric and H-bonding effects; this resembles the role of a huge and rigid substituent. PMID:23074138

  9. Lewis base activation of Lewis acids: catalytic, enantioselective vinylogous aldol addition reactions.

    PubMed

    Denmark, Scott E; Heemstra, John R

    2007-07-20

    The generality of Lewis base catalyzed, Lewis acid mediated, enantioselective vinylogous aldol addition reactions has been investigated. The combination of silicon tetrachloride and chiral phosphoramides is a competent catalyst for highly selective additions of a variety of alpha,beta-unsaturated ketone-, 1,3-diketone-, and alpha,beta-unsaturated amide-derived dienolates to aldehydes. These reactions provided high levels of gamma-site selectivity for a variety of substitution patterns on the dienyl unit. Both ketone- and morpholine amide-derived dienol ethers afforded high enantio- and diastereoselectivity in the addition to conjugated aldehydes. Although alpha,beta-unsaturated ketone-derived dienolate did not react with aliphatic aldehydes, alpha,beta-unsaturated amide-derived dienolates underwent addition at reasonable rates affording high yields of vinylogous aldol product. The enantioselectivities achieved with the morpholine derived-dienolate in the addition to aliphatic aldehydes was the highest afforded to date with the silicon tetrachloride-chiral phosphoramide system. Furthermore, the ability to cleanly convert the morpholine amide to a methyl ketone was demonstrated. PMID:17583959

  10. Enantioselective Construction of Spirocyclic Oxindole Derivatives with Multiple Stereocenters via an Organocatalytic Michael/Aldol/Hemiacetalization Cascade Reaction.

    PubMed

    Zhu, Luyi; Chen, Qiliang; Shen, Dan; Zhang, Weihao; Shen, Cong; Zeng, Xiaofei; Zhong, Guofu

    2016-05-20

    An efficient organocatalytic Michael/aldol/hemiacetalization cascade reaction for construction of enantioenriched spirocyclic oxindoles fused with tetrahydropyrane has been developed. The desired highly functionalized 5',6'-dihydro-2'H,4'H-spiro[indoline-3,3'-pyran]-2-one derivatives containing multiple stereogenic centers were obtained in moderate to high chemical yields and with high stereoselectivities. PMID:27145022

  11. Asymmetric Synthesis of CF3- and Indole-Containing Thiochromanes via a Squaramide-Catalyzed Michael-Aldol Reaction.

    PubMed

    Zhu, Yuanyuan; Dong, Zhenghao; Cheng, Xin; Zhong, Xiaoling; Liu, Xiaolin; Lin, Li; Shen, Zhiqiang; Yang, Peiju; Li, Yuan; Wang, Hailin; Yan, Wenjin; Wang, Kairong; Wang, Rui

    2016-08-01

    A Michael-aldol reaction of 2-mercaptobenzaldehyde with β-indole-β-CF3 enones catalyzed by a squaramide has been realized. The method affords a series of 2-CF3-2-indole-substituted thiochromanes featuring a CF3-containing quaternary stereocenter in excellent yields, diastereoselectivities, and enantioselectivities. PMID:27390924

  12. Improvement on the catalytic performance of Mg-Zr mixed oxides for furfural-acetone aldol condensation by supporting on mesoporous carbons.

    PubMed

    Faba, Laura; Díaz, Eva; Ordóñez, Salvador

    2013-03-01

    A new procedure for improving the performance of the most common catalysts used in aqueous-phase aldol condensation (Mg-Zr mixed oxides) reactions is presented. This reaction is of interest for upgrading carbohydrate feedstocks. The procedure involves supporting Mg-Zr oxides on non-microporous carbonaceous materials, such as carbon nanofibers (CNFs) or high-surface-area graphites (HSAGs), using either incipient wetness or coprecipitation procedures. The use of HSAGs together with the coprecipitation method provides the best performance. Results obtained for the cross-condensation of acetone and furfural at 323 K reveal that the catalyst performance is greatly improved compared to the bulk oxides (96.5 % conversion vs. 81.4 % with the bulk oxide; 87.8 % selectivity for C13 and C8 adducts vs. 76.2 % with the bulk oxide). This difference is even more prominent in terms of rates per catalytically active basic site (four and seven times greater for C8 and C13 adducts, respectively). The improved performance is explained in terms of a more appropriate basic site distribution and by greater interaction of the reactants with the carbon surface. In addition, deactivation behavior of the catalyst is improved by tuning the morphology of the carbonaceous support. An important enhancement of the catalytic stability can be obtained selecting a HSAG with an appropriate pore diameter. With HSAG100 the activity decreased by less than 20 % between successive reaction cycles and the selectivity for the condensation products remained almost unaltered. The decrease is greater than 80 % for the bulk oxides tested at these conditions, with important increases in the selectivity for by-product formation. PMID:23362138

  13. Lanthanide triflates as water-tolerant Lewis acids. Activation of commercial formaldehyde solution and use in the aldol reaction of silyl enol ethers with aldehydes in aqueous media

    SciTech Connect

    Kobayashi, Shue; Hachiya, Iwao

    1994-07-01

    The catalytic effects of lanthanide triflates in the hydroxymethylation and the aldol reaction of silyl enol ethers (w/aldehydes). The rare earth triflates served as Lewis acid catalysts in the aqueous reaction medium.

  14. Evidence for the formation of an enamine species during aldol and Michael-type addition reactions promiscuously catalyzed by 4-oxalocrotonate tautomerase.

    PubMed

    Poddar, Harshwardhan; Rahimi, Mehran; Geertsema, Edzard M; Thunnissen, Andy-Mark W H; Poelarends, Gerrit J

    2015-03-23

    The enzyme 4-oxalocrotonate tautomerase (4-OT), which has a catalytic N-terminal proline residue (Pro1), can promiscuously catalyze various carbon-carbon bond-forming reactions, including aldol condensation of acetaldehyde with benzaldehyde to yield cinnamaldehyde, and Michael-type addition of acetaldehyde to a wide variety of nitroalkenes to yield valuable γ-nitroaldehydes. To gain insight into how 4-OT catalyzes these unnatural reactions, we carried out exchange studies in D2 O, and X-ray crystallography studies. The former established that H-D exchange within acetaldehyde is catalyzed by 4-OT and that the Pro1 residue is crucial for this activity. The latter showed that Pro1 of 4-OT had reacted with acetaldehyde to give an enamine species. These results provide evidence of the mechanism of the 4-OT-catalyzed aldol and Michael-type addition reactions in which acetaldehyde is activated for nucleophilic addition by Pro1-dependent formation of an enamine intermediate. PMID:25728471

  15. Organocatalytic Asymmetric Synthesis of Functionalized 1,3,5-Triarylpyrrolidin-2-ones via an Aza-Michael/Aldol Domino Reaction

    PubMed Central

    Joie, Céline; Deckers, Kristina; Enders, Dieter

    2014-01-01

    The organocatalytic asymmetric synthesis of functionalized 1,3,5-triarylpyrrolidin-2-ones bearing three contiguous stereocenters through an aza-Michael/aldol domino reaction of α-ketoamides with α,β-unsaturated aldehydes is described. The domino products were further derivatized by aldehyde olefination under one-pot conditions. The reaction proceeds with excellent diastereoselectivities (>20:1) and good to excellent enantioselectivities (60–96% ee). PMID:25278634

  16. Aldol Reactions of Axially Chiral 5-Methyl-2-(o-aryl)imino-3-(o-aryl)-thiazolidine-4-ones.

    PubMed

    Erol Gunal, Sule; Dogan, Ilknur

    2016-01-01

    Axially chiral 5-methyl-2-(o-aryl)imino-3-(o-aryl)-thiazolidine-4-ones have been subjected to aldol reactions with benzaldehyde to produce secondary carbinols which have been found to be separable by HPLC on a chiral stationary phase. Based on the reaction done on a single enantiomer resolved via a chromatographic separation from a racemic mixture of 5-methyl-2-(α-naphthyl)imino-3-(α-naphthyl)-thiazolidine-4-one by HPLC on a chiral stationary phase, the aldol reaction was shown to proceed via an enolate intermediate. The axially chiral enolate of the thiazolidine-4-one was found to shield one face of the heterocyclic ring rendering face selectivity with respect to the enolate. The selectivities observed at C-5 of the ring varied from none to 11.5:1 depending on the size of the ortho substituent. Although the aldol reaction proceeded with a lack of face selectivity with respect to benzaldehyde, recrystallization returned highly diastereomerically enriched products. PMID:27322237

  17. Tandem Rh(i)-catalyzed [(5+2)+1] cycloaddition/aldol reaction for the construction of linear triquinane skeleton: total syntheses of (+/-)-hirsutene and (+/-)-1-desoxyhypnophilin.

    PubMed

    Jiao, Lei; Yuan, Changxia; Yu, Zhi-Xiang

    2008-04-01

    A tandem reaction involving a Rh(I)-catalyzed two-component [(5+2)+1] cycloaddition and an aldol condensation has been developed to construct the tricyclo[6.3.0.02,6]undecane skeleton and its heteroatom-imbedded analogues. Meanwhile, this method has been successfully applied to natural product synthesis for the first time. The present strategy enables a straightforward approach to the natural linear triquinane skeleton, as demonstrated by concise and step economical syntheses of hirsutene and 1-desoxy-hypnophilin, whereby the linear triquinane core is diastereoselectively established in one manipulation with correct placement of all stereocenters, including two quarternary centers. This first application of the Rh(I)-catalyzed [(5+2)+1] cycloaddition in natural product synthesis highlights the efficiency of this methodology for constructing complex fused ring systems. PMID:18335933

  18. Expedient synthesis of C-aryl carbohydrates by consecutive biocatalytic benzoin and aldol reactions.

    PubMed

    Hernández, Karel; Parella, Teodor; Joglar, Jesús; Bujons, Jordi; Pohl, Martina; Clapés, Pere

    2015-02-16

    The introduction of aromatic residues connected by a C-C bond into the non-reducing end of carbohydrates is highly significant for the development of innovative structures with improved binding affinity and selectivity (e.g., C-aril-sLex). In this work, an expedient asymmetric "de novo" synthetic route to new aryl carbohydrate derivatives based on two sequential stereoselectively biocatalytic carboligation reactions is presented. First, the benzoin reaction of aromatic aldehydes to dimethoxyacetaldehyde is conducted, catalyzed by benzaldehyde lyase from Pseudomonas fluorescens biovar I. Then, the α-hydroxyketones formed are reduced by using NaBH4 yielding the anti diol. After acetal hydrolysis, the aldol addition of dihydroxyacetone, hydroxyacetone, or glycolaldehyde catalyzed by the stereocomplementary D-fructose-6-phosphate aldolase and L-rhamnulose-1-phosphate aldolase is performed. Both aldolases accept unphosphorylated donor substrates, avoiding the need of handling the phosphate group that the dihydroxyacetone phosphate-dependent aldolases require. In this way, 6-C-aryl-L-sorbose, 6-C-aryl-L-fructose, 6-C-aryl-L-tagatose, and 5-C-aryl-L-xylose derivatives are prepared by using this methodology. PMID:25640727

  19. Prebiotic condensation reactions using cyanamide

    NASA Technical Reports Server (NTRS)

    Sherwood, E.; Nooner, D. W.; Eichberg, J.; Epps, D. E.; Oro, J.

    1978-01-01

    Condensation reactions in cyanamide, 4-amino-5-imidazole-carboxamide and cyanamide, imidazole systems under dehydrating conditions at moderate temperatures (60 to 100 deg C) were investigated. The cyanamide, imidazole system was used for synthesis of palmitoylglycerols from ammonium palmitate and glycerol. With the addition of deoxythymidine to the former system, P1, P2-dideoxythymidine 5 prime-phosphate was obtained; the same cyanamide, 4-amino-5-imidazole-carboxamide system was used to synthesize deoxythymidine oligonucleotides using deoxythymidine 5 prime-phosphate and deoxythymidine 5 prime-triphosphate, and peptides using glycine, phenylalanine or isoleucine with adenosine 5 prime-triphosphate. The pH requirements for these reactions make their prebiotic significance questionable; however, it is conceivable that they could occur in stable pockets of low interlayer acidity in a clay such as montmorillonite.

  20. Lewis base activation of Lewis acids. Vinylogous aldol addition reactions of conjugated N,O-silyl ketene acetals to aldehydes.

    PubMed

    Denmark, Scott E; Heemstra, John R

    2006-02-01

    N,O-Silyl dienyl ketene acetals derived from unsaturated morpholine amides have been developed as highly useful reagents for vinylogous aldol addition reactions. In the presence of SiCl4 and the catalytic action of chiral phosphoramide (R,R)-3, N,O-silyl dienyl ketene acetal 8 undergoes high-yielding and highly site-selective addition to a wide variety of aldehydes with excellent enantioselectivity. Of particular note is the high yields and selectivities obtained from aliphatic aldehydes. Low catalyst loadings (2-5 mol %) can be employed. The morpholine amide serves as a useful precursor for further synthetic manipulation. PMID:16433495

  1. Studies on self-assembly phenomena of hydrophilization of microporous polypropylene membrane by acetone aldol condensation products: New separator for high-power alkaline batteries

    NASA Astrophysics Data System (ADS)

    Ciszewski, Aleksander; Rydzyńska, Bożena

    Commercial hydrophobic polypropylene (PP) membranes were modified by a novel chemical method. This procedure consists of two steps. In the first step, the virgin hydrophobic PP membrane is saturated with acetone; in the second step, the filled membrane is dipped in aqueous KOH solution (d = 1.28 g cm -3), i.e. in the electrolyte typical for the nickel-cadmium cell. This two-step procedure starts the aldol condensation process of acetone and its products accumulated and adsorbed onto walls of micropores make the membrane hydrophilic. The presented method provided the hydrophilic PP membrane, persistent and soaked with KOH solution with electrolytic resistance of 23-29 mΩ cm 2. This result was compared with the data obtained with commercial hydrophilic membranes: Celgard 3501 and Cellophane. The aldol condensation process of acetone was monitored using the HPLC-ES-MS technique, and modified PP membranes were evaluated by FT-IR and SEM measurements. With the above-mentioned membrane as a separator, nickel-cadmium cells showed good high-rate performance.

  2. A highly efficient solvent-free asymmetric direct aldol reaction organocatalyzed by recoverable (S)-binam-L-prolinamides. ESI-MS evidence of the enamine-iminium formation.

    PubMed

    Guillena, Gabriela; Hita, Maria del Carmen; Nájera, Carmen; Viózquez, Santiago F

    2008-08-01

    Recoverable (S(a))-binam-L-prolinamide in combination with benzoic acid is used as catalysts in the direct aldol reaction between cycloalkyl, alkyl, and alpha-functionalized ketones and aldehydes under solvent-free reaction conditions. Three different methods are assayed: simple conventional magnetic stirring, magnetic stirring after previous dissolution in THF and evaporation, and ball mill technique. These procedures allow one to reduce not only the amount of required ketone to 2 equiv but also the reaction time to give the aldol products with regio-, diastereo-, and enantioselectivities comparable to those in organic or aqueous solvents. Generally anti-isomers are mainly obtained with enantioselectivities up to 97%. The reaction can be carried out under these conditions also using aldehydes as nucleophiles, yielding after in situ reduction of the aldol products the corresponding chiral 1,3-diols with moderate to high enantioselectivities mainly as anti-isomers. The aldol reaction has been studied by the use of positive ESI-MS technique, providing the evidence of the formation of the corresponding enamine-iminium intermediates. PMID:18598088

  3. Role of pseudoephedrine as chiral auxiliary in the "acetate-type" aldol reaction with chiral aldehydes; asymmetric synthesis of highly functionalized chiral building blocks.

    PubMed

    Ocejo, Marta; Carrillo, Luisa; Vicario, Jose L; Badía, Dolores; Reyes, Efraim

    2011-01-21

    We have studied in depth the aldol reaction between acetamide enolates and chiral α-heterosubstituted aldehydes using pseudoephedrine as chiral auxiliary under double stereodifferentiation conditions, showing that high diastereoselectivities can only be achieved under the matched combination of reagents and provided that the α-heteroatom-containing substituent of the chiral aldehyde is conveniently protected. Moreover, the obtained highly functionalized aldols have been employed as very useful starting materials for the stereocontrolled preparation of other interesting compounds and chiral building blocks such as pyrrolidines, indolizidines, and densely functionalized β-hydroxy and β-amino ketones using simple and high-yielding methodologies. PMID:21188970

  4. A syn-Selective Aza-Aldol Reaction of Boron Aza-Enolates Generated from N-Sulfonyl-1,2,3-Triazoles and 9-BBN-H.

    PubMed

    Miura, Tomoya; Nakamuro, Takayuki; Miyakawa, Sho; Murakami, Masahiro

    2016-07-18

    A syn-selective aza-aldol reaction of boron aza-enolates, generated from N-sulfonyl-1,2,3-triazoles and 9-BBN-H, is reported. It provides a sequential one-pot procedure for the stereoselective construction of 1,3-amino alcohols, having contiguous stereocenters, starting from terminal alkynes. PMID:27258810

  5. TANDEM BIS-ALDOL REACTION OF KETONES: A FACILE ONE-POT SYNTHESIS OF 1,3-DIOXANES IN AQUEOUS MEDIUM

    EPA Science Inventory

    A novel tandem bis-aldol reaction of ketone with paraformaldehyde catalyzed by polystyrenesulfonic acid in aqueous medium delivers 1,3-dioxanes in high yield. This one pot, operationally simple microwave-assisted synthetic protocol proceeds efficiently in water in the absence of ...

  6. THE EFFECTS OF AROMATIC AND ALIPHATIC ANIONIC SURFACTANTS ON SC(OTF)3-CATALYZED MUKAIYAMA ALDOL REACTION IN WATER. (R822668)

    EPA Science Inventory

    Abstract

    Aromatic (2c and 2d) and aliphatic (2a and 2b) anionic surfactants were employed in Sc(OTf)3-catalyzed aldol reactions of some labile silyl enol ethers (3a and

  7. CALIX[6]ARENE DERIVATIVES BEARING SULFONATE AND ALKYL GROUPS AS SURFACTANTS IN SC(OTF)3-CATALYZED MUKAIYAMA ALDOL REACTIONS IN WATER. (R822668)

    EPA Science Inventory

    Abstract

    Amphiphilic calix[6]arene derivatives 1a¯b were found to be efficient surfactants for Sc(OTf)3-catalyzed Mukaiyama aldol reaction of silyl enol ethers with aldehydes in water. The results indicated t...

  8. Hydroxyapatite catalyzed aldol condensation: Synthesis, spectral linearity, antimicrobial and insect antifeedant activities of some 2,5-dimethyl-3-furyl chalcones

    NASA Astrophysics Data System (ADS)

    Subramanian, M.; Vanangamudi, G.; Thirunarayanan, G.

    2013-06-01

    A series of 2,5-dimethyl-3-furyl chalcones [2E-1-(2,5-dimethyl-3-furyl)-3-(substituted phenyl)-2-propen-1-ones] have been synthesized by Hydrotalcite catalyzed aldol condensation between 3-acetyl-2,5-dimethylfuron and substituted benzaldehydes. Yields of chalcones are more than 80%. These chalcones were characterized by their physical constants and spectral data. The group frequencies of infrared ν(cm-1) of CO s-cis and s-trans, CH in-plane and out of plane, CHdbnd CH out of plane, lbond2 Cdbnd Crbond2 out of plane modes, NMR chemical shifts δ(ppm) of Hα, Hβ, CO, Cα and Cβ of these chalcones were correlated with Hammett substituent constants, F and R parameters using single and multi-regression analyses. From the results of statistical analyses, the effects of substituents on the group frequencies are explained. Antibacterial, antifungal and insect antifeedant activities of these chalcones have been studied.

  9. (16) O/(18) O Exchange of Aldehydes and Ketones caused by H2 (18) O in the Mechanistic Investigation of Organocatalyzed Michael, Mannich, and Aldol Reactions.

    PubMed

    Hayashi, Yujiro; Mukaiyama, Takasuke; Benohoud, Meryem; Gupta, Nishant R; Ono, Tsuyoshi; Toda, Shunsuke

    2016-04-18

    Organocatalyzed Michael, Mannich, and aldol reactions of aldehydes or ketones, as nucleophiles, have triggered several discussions regarding their reaction mechanism. H2 (18) O has been utilized to determine if the reaction proceeds through an enamine or enol mechanism by monitoring the ratio of (18) O incorporated into the final product. In this communication, we describe the risk of H2 (18) O as an evaluation tool for this mechanistic investigation. We have demonstrated that exchange of (16) O/(18) O occurs in the aldehyde or ketone starting material, caused by the presence of H2 (18) O and amine catalysts, before the Michael, Mannich, and aldol reactions proceed. Because the newly generated (18) O starting aldehydes or ketones and (16) O water affect the incorporation ratio of (18) O in the final product, the use of H2 (18) O would not be appropriate to distinguish the mechanism of these organocatalyzed reactions. PMID:26841358

  10. Asymmetric assembly of aldose carbohydrates from formaldehyde and glycolaldehyde by tandem biocatalytic aldol reactions.

    PubMed

    Szekrenyi, Anna; Garrabou, Xavier; Parella, Teodor; Joglar, Jesús; Bujons, Jordi; Clapés, Pere

    2015-09-01

    The preparation of multifunctional chiral molecules can be greatly simplified by adopting a route via the sequential catalytic assembly of achiral building blocks. The catalytic aldol assembly of prebiotic compounds into stereodefined pentoses and hexoses is an as yet unmet challenge. Such a process would be of remarkable synthetic utility and highly significant with regard to the origin of life. Pursuing an expedient enzymatic approach, here we use engineered D-fructose-6-phosphate aldolase from Escherichia coli to prepare a series of three- to six-carbon aldoses by sequential one-pot additions of glycolaldehyde. Notably, the pertinent selection of the aldolase variant provides control of the sugar size. The stereochemical outcome of the addition was also altered to allow the synthesis of L-glucose and related derivatives. Such engineered biocatalysts may offer new routes for the straightforward synthesis of natural molecules and their analogues that circumvent the intricate enzymatic pathways forged by evolution. PMID:26291944

  11. Asymmetric assembly of aldose carbohydrates from formaldehyde and glycolaldehyde by tandem biocatalytic aldol reactions

    NASA Astrophysics Data System (ADS)

    Szekrenyi, Anna; Garrabou, Xavier; Parella, Teodor; Joglar, Jesús; Bujons, Jordi; Clapés, Pere

    2015-09-01

    The preparation of multifunctional chiral molecules can be greatly simplified by adopting a route via the sequential catalytic assembly of achiral building blocks. The catalytic aldol assembly of prebiotic compounds into stereodefined pentoses and hexoses is an as yet unmet challenge. Such a process would be of remarkable synthetic utility and highly significant with regard to the origin of life. Pursuing an expedient enzymatic approach, here we use engineered D-fructose-6-phosphate aldolase from Escherichia coli to prepare a series of three- to six-carbon aldoses by sequential one-pot additions of glycolaldehyde. Notably, the pertinent selection of the aldolase variant provides control of the sugar size. The stereochemical outcome of the addition was also altered to allow the synthesis of L-glucose and related derivatives. Such engineered biocatalysts may offer new routes for the straightforward synthesis of natural molecules and their analogues that circumvent the intricate enzymatic pathways forged by evolution.

  12. Double stereodifferentiation in the "acetate-type" aldol reaction with garner's aldehyde. Stereocontrolled synthesis of polyhydroxylated gamma-amino carbonyl compounds.

    PubMed

    Vicario, Jose L; Rodriguez, Mónica; Badía, Dolores; Carrillo, Luisa; Reyes, Efraim

    2004-09-01

    [reaction: see text] The aldol reaction of acetamide enolates with protected chiral alpha-amino-beta-hydroxy aldehyde 1 (Garner's aldehyde) has been performed in a stereocontrolled way under double stereodifferentiation conditions using pseudoephedrine as the additional chiral information source attached to the enolate reagent. In addition, the obtained adduct has been transformed into other valuable chiral building blocks such as gamma-amino-beta,delta-dihydroxy acids, esters, and ketones. PMID:15330615

  13. A cinchona alkaloid catalyzed enantioselective sulfa-Michael/aldol cascade reaction of isoindigos: construction of chiral bispirooxindole tetrahydrothiophenes with vicinal quaternary spirocenters.

    PubMed

    Gui, Yong-Yuan; Yang, Jian; Qi, Liang-Wen; Wang, Xiao; Tian, Fang; Li, Xiao-Nian; Peng, Lin; Wang, Li-Xin

    2015-06-14

    A cinchona alkaloid catalyzed diastereoselective and enantioselective sulfa-Michael/aldol cascade reaction between 1,4-dithiane-2,5-diol and isoindigos has been successfully developed to afford the highly congested bispirooxindole tetrahydrothiophenes with vicinal quaternary spirocenters in high yields (up to 91%), excellent diastereoselectivities (up to >20 : 1 dr), and good enantioselectivities (up to 98% ee). Some synthetic transformations of the reaction products were also studied. PMID:25974840

  14. Concise Enantioselective Synthesis of Oxygenated Steroids via Sequential Copper(II)-Catalyzed Michael Addition/Intramolecular Aldol Cyclization Reactions

    PubMed Central

    Cichowicz, Nathan R.; Kaplan, Will; Khomutnyk, Yaroslav; Bhattarai, Bijay; Sun, Zhankui; Nagorny, Pavel

    2015-01-01

    A new scalable enantioselective approach to functionalized oxygenated steroids is described. This strategy is based on chiral bis(oxazoline) copper(II) complex-catalyzed enantioselective and diastereoselective Michael reactions of cyclic ketoesters and enones to install vicinal quaternary and tertiary stereocenters. In addition, the utility of copper(II) salts as highly active catalysts for the Michael reactions of traditionally unreactive ββ′-enones and substituted ββ′-ketoesters that results in unprecedented Michael adducts containing vicinal all-carbon quaternary centers is also demonstrated. The Michael adducts subsequently undergo base-promoted diastereoselective aldol cascade reactions resulting in the natural or unnatural steroid skeletons. The experimental and computational studies suggest that the torsional strain effects arising from the presence of the Δ5-unsaturation are key controling elements for the formation of the natural cardenolide scaffold. The described method enables expedient generation of polycyclic molecules including modified steroidal scaffolds as well as challenging-to-synthesize Hajos-Parrish and Wieland-Miescher ketones. PMID:26491886

  15. Stereoselective Synthesis of Highly Functionalized α-Diazo-β-ketoalkanoates via Catalytic Onepot Mukaiyama-Aldol Reactions

    PubMed Central

    Zhou, Lei; Doyle, Michael P.

    2010-01-01

    Methyl diazoacetoacetate undergoes zinc triflate catalyzed condensation with a broad selection of aldehydes to produce δ-siloxy-α-diazo-β-ketoalkanoates in good yield, and δ-hydroxy-α-diazo-β-ketoalkanoates are formed with high diastereoselectivity in reactions with α-diazo-β-ketopentanoate promoted by dibutylboron triflate. PMID:20102172

  16. Brønsted acid mediated N-O bond cleavage for α-amination of ketones through the aromatic nitroso aldol reaction.

    PubMed

    Ramakrishna, Isai; Sahoo, Harekrishna; Baidya, Mahiuddin

    2016-02-11

    A Brønsted acid mediated N-O bond cleavage for α-amination of ketones has been developed through the nitroso aldol reaction of less-reactive aromatic nitroso compounds and silyl enol ethers having a disilane (-SiMe2TMS) backbone. This transformation is operationally simple and scalable, offering structurally diverse α-amino ketones in high yields (up to 98%) with complete regioselectivity. It represents a mechanistically unique and rare example of a metal-free N-O bond cleavage process. PMID:26810365

  17. Hydrolysis/dehydration/aldol-condensation/hydrogenation of lignocellulosic biomass and biomass-derived carbohydrates in the presence of Pd/WO3-ZrO2 in a single reactor.

    PubMed

    Dedsuksophon, W; Faungnawakij, K; Champreda, V; Laosiripojana, N

    2011-01-01

    Hydrolysis/dehydration/aldol-condensation/hydrogenation of lignocellulosic-biomass (corncobs) and biomass-derived carbohydrates (tapioca flour) to produce water-soluble C5-C15 compounds was developed in a single reactor system. WO3-ZrO2 efficiently catalyzed the hydrolysis/dehydration of these feedstocks to 5-hydroxymethylfurfural and furfural, while the impregnation of WO3-ZrO2 with Pd allowed sequential aldolcondensation/hydrogenation of these furans to C5-C15 compounds. The highest C5-C15 yields of 14.8-20.3% were observed at a hydrolysis/dehydration temperature of 573 K for 5 min, an aldol-condensation temperature of 353 K for 30 h, and a hydrogenation temperature of 393 K for 6 h. The C5-C15 yield from tapioca flour was higher than that from corncobs (20.3% compared to 14.8%). Tapioca flour produced more C6/C9/C15, whereas corncobs generated more C5/C8/C13 compounds due to the presence of hemicellulose in the corncobs. These water-soluble organic compounds can be further converted to liquid alkanes with high cetane numbers for replacing diesel fuel in transportation applications. PMID:20934873

  18. Application of a new tandem isomerization-aldolization reaction of allylic alcohols to the synthesis of three diastereoisomers of (2R)-1,2-O-isopropylidene-4-methylpentane-1,2,3,5-tetraol.

    PubMed

    Cuperly, David; Crévisy, Christophe; Grée, René

    2003-08-01

    The tandem isomerization-aldolization reaction of (2R)-1,2-O-isopropylidene-4-penten-1,2,3-triol 3 and formaldehyde gives a mixture of two aldol products 2a and 2b. The stereoselective reduction of each compound by l-Selectride affords two diastereoisomers of (2R)-1,2-O-Isopropylidene-4-methylpentane-1,2,3,5-tetraol while a third diastereoisomer is obtained by stereoselective reduction with Me(4)NHB(OAc)(3). PMID:12895076

  19. POLLUTION PREVENTION IN INDUSTRIAL CONDENSATION REACTIONS

    EPA Science Inventory

    The objective of this project is to develop heterogeneous acid-base catalysts to increase the economic and environmental performance of the current homogeneous catalysts used to make industrially important condensation products. Such products include methyl isobutyl ketone ...

  20. A Brønsted Acid-Amino Acid as a Synergistic Catalyst for Asymmetric List-Lerner-Barbas Aldol Reactions.

    PubMed

    Ramachary, Dhevalapally B; Shruthi, Kodambahalli S

    2016-03-18

    Herein, for the first time, a combination of L-amino acid, (R)-5,5-dimethyl thiazolidinium-4-carboxylate (L-DMTC) with simple Brønsted acid TFA is reported as the suitable synergistic catalyst for the List-Lerner-Barbas aldol (LLB-A) reaction of less reactive 2-azidobenzaldehydes with various ketones at ambient temperature to furnish the optically active functionalized (2-azidophenyl)alcohols with very good yields, dr's, and ee's. This method gives first time access to the novel azido-containing multifunctional compounds, which are applicable in material to medicinal chemistry. Chiral functionalized (2-azidophenyl)alcohols were transformed into different molecular scaffolds in good yields with high selectivity through Lewis acid mediated NaBH4 reduction, aza-Wittig and Staudinger reaction (azide reduction), followed by oxidative cyclizations, allenone synthesis, and click reaction, respectively. Chiral LLB-A products might become suitable starting materials for the total synthesis of natural products, ingredients, and inhibitors in medicinal chemistry. The mechanistic synergy of L-DMTC with TFA to increase the rate and selectivity of LLB-A reaction in DMSO-D6 is explained with the controlled and online NMR experiments. PMID:26907463

  1. Detonation Reaction Zones in Condensed Explosives

    SciTech Connect

    Tarver, C M

    2005-07-14

    Experimental measurements using nanosecond time resolved embedded gauges and laser interferometric techniques, combined with Non-Equilibrium Zeldovich--von Neumann--Doring (NEZND) theory and Ignition and Growth reactive flow hydrodynamic modeling, have revealed the average pressure/particle velocity states attained in reaction zones of self-sustaining detonation waves in several solid and liquid explosives. The time durations of these reaction zone processes is discussed for explosives based on pentaerythritol tetranitrate (PETN), nitromethane, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), triaminitrinitrobenzene(TATB) and trinitrotoluene (TNT).

  2. Synthesis of two subunits of the macrolide domain of the immunosuppressive agent sanglifehrin a and assembly of a macrolactone precursor. application of masamune anti-aldol condensation.

    PubMed

    Suttisintong, Khomson; White, James D

    2015-02-20

    Asymmetric anti-aldol coupling of a norephedrine-derived ester with an α-chiral aldehyde was used to synthesize a carboxylic acid representing the C13-C19 segment of the macrocyclic domain present in the immunosuppressive agent sanglifehrin A. Felkin addition set configuration at the C14-C17 stereotetrad in this unit in which hydroxyl functions at C15 and C17 were masked as an internal ketal. The carboxyl group of this segment was coupled to the N-terminus of the tripeptide portion (C1-N12) of sanglifehrin A macrolactone to assemble the C1-C19 domain. Synthesis of the C20-C25 subunit of sanglifehrin A containing a (23S) alcohol was completed via asymmetric allylation of (E)-3-iodo-2-methylprop-2-enal followed by oxidative cleavage of the terminal vinyl appendage and a Takai olefination with pinacol dichloromethylboronate. Esterification of this alcohol with a C1-C19 carboxylic acid furnished an open C1-C25 macrolactone precursor, but this substance failed to undergo macrocyclization via intramolecular Suzuki-Miyaura coupling. PMID:25584782

  3. Scope and mechanism of the highly stereoselective metal-mediated domino aldol reactions of enolates with aldehydes.

    PubMed

    Cinar, M Emin; Engelen, Bernward; Panthöfer, Martin; Deiseroth, Hans-Jörg; Schlirf, Jens; Schmittel, Michael

    2016-01-01

    A one-pot transformation, which involves the reaction of ketones with aldehydes in the presence of metal halides to furnish tetrahydro-2H-pyran-2,4-diols in a highly diastereoselective manner, is investigated thoroughly by experiments and computations. The reaction was also successfully implemented on a flow micro reactor system. PMID:27340472

  4. Scope and mechanism of the highly stereoselective metal-mediated domino aldol reactions of enolates with aldehydes

    PubMed Central

    Engelen, Bernward; Panthöfer, Martin; Deiseroth, Hans-Jörg; Schlirf, Jens

    2016-01-01

    Summary A one-pot transformation, which involves the reaction of ketones with aldehydes in the presence of metal halides to furnish tetrahydro-2H-pyran-2,4-diols in a highly diastereoselective manner, is investigated thoroughly by experiments and computations. The reaction was also successfully implemented on a flow micro reactor system. PMID:27340472

  5. The Mukaiyama aldol reaction of in situ generated nitrosocarbonyl compounds: selective C-N bond formation and N-O bond cleavage in one-pot for α-amination of ketones.

    PubMed

    Ramakrishna, Isai; Grandhi, Gowri Sankar; Sahoo, Harekrishna; Baidya, Mahiuddin

    2015-09-21

    A practical protocol for the α-amination of ketones (up to 99% yield) has been developed via the Mukaiyama aldol reaction of in situ generated nitrosocarbonyl compounds. The reaction with silyl enol ethers having a disilane (-SiMe2TMS) backbone proceeded not only with perfect N-selectivity but concomitant N-O bond cleavage was also accomplished. Such a cascade of C-N bond formation and N-O bond cleavage in a single step was heretofore unknown in the field of nitrosocarbonyl chemistry. A very high diastereoselectivity (dr = 19 : 1) was accomplished using (-)-menthol derived chiral nitrosocarbonyl compounds. PMID:26245149

  6. A Multistep Organocatalysis Experiment for the Undergraduate Organic Laboratory: An Enantioselective Aldol Reaction Catalyzed by Methyl Prolinamide

    ERIC Educational Resources Information Center

    Wade, Edmir O.; Walsh, Kenneth E.

    2011-01-01

    In recent years, there has been an explosion of research concerning the area of organocatalysis. A multistep capstone laboratory project that combines traditional reactions frequently found in organic laboratory curriculums with this new field of research is described. In this experiment, the students synthesize a prolinamide-based organocatalyst…

  7. Investigation of condensed and early stage gas phase hypergolic reactions

    NASA Astrophysics Data System (ADS)

    Dennis, Jacob Daniel

    Traditional hypergolic propellant combinations, such as those used on the space shuttle orbital maneuvering system first flown in 1981, feature hydrazine based fuels and nitrogen tetroxide (NTO) based oxidizers. Despite the long history of hypergolic propellant implementation, the processes that govern hypergolic ignition are not well understood. In order to achieve ignition, condensed phase fuel and oxidizer must undergo simultaneous physical mixing and chemical reaction. This process generates heat, intermediate condensed phase species, and gas phase species, which then may continue to react and generate more heat until ignition is achieved. The process is not well understood because condensed and gas phase reactions occur rapidly, typically in less than 200 μs, on much faster timescales than traditional diagnostic methods can observe. A detailed understanding of even the gas phase chemistry is lacking, but is critical for model development. Initial research has provided confidence that a study of condensed phase hypergolic reactions is useful and possible. Results obtained using an impinging jet apparatus have shown a critical residence time of 0.3 ms is required for the reaction between monomethylhydrazine (MMH) and red fuming nitric acid (RFNA, ~85% HNO3 + 15% N2O4) to achieve conditions favorable for ignition. This critical residence time spans the time required for liquid phase reactions to occur at the fuel/oxidizer interface and can give some insight into the reaction rates for this propellant combination. Experiments performed in a forced mixing constant volume reactor have demonstrated that the chamber pressurization rate for MMH/RFNA can be significantly reduced by diluting the MMH with deionized water. This result indicates that propellant dilution can slow the chemical reaction rates to occur over observable time scales. The research described in this document consists of two efforts that contribute knowledge to the propulsion community regarding the

  8. Stereodefined Acyclic Polysubstituted Silyl Ketene Aminals: Asymmetric Formation of Aldol Products with Quaternary Carbon Stereocenters.

    PubMed

    Nairoukh, Zackaria; Marek, Ilan

    2015-11-23

    The regio- and stereoselective formation of stereodefined polysubstituted silyl ketene aminals is easily achieved through selective combined carbometalation-oxidation-silylation reactions. These substrates are ideal candidates for Mukaiyama aldol reactions with aliphatic aldehydes as they give the aldol products with a quaternary carbon stereocenter α to the carbonyl groups in outstanding diastereoselectivities. PMID:26448575

  9. Low-energy electron-induced reactions in condensed matter

    NASA Astrophysics Data System (ADS)

    Arumainayagam, Christopher R.; Lee, Hsiao-Lu; Nelson, Rachel B.; Haines, David R.; Gunawardane, Richard P.

    2010-01-01

    The goal of this review is to discuss post-irradiation analysis of low-energy (≤50 eV) electron-induced processes in nanoscale thin films. Because electron-induced surface reactions in monolayer adsorbates have been extensively reviewed, we will instead focus on low-energy electron-induced reactions in multilayer adsorbates. The latter studies, involving nanoscale thin films, serve to elucidate the pivotal role that the low-energy electron-induced reactions play in high-energy radiation-induced chemical reactions in condensed matter. Although electron-stimulated desorption (ESD) experiments conducted during irradiation have yielded vital information relevant to primary or initial electron-induced processes, we wish to demonstrate in this review that analyzing the products following low-energy electron irradiation can provide new insights into radiation chemistry. This review presents studies of electron-induced reactions in nanoscale films of molecular species such as oxygen, nitrogen trifluoride, water, alkanes, alcohols, aldehydes, ketones, carboxylic acids, nitriles, halocarbons, alkane and phenyl thiols, thiophenes, ferrocene, amino acids, nucleotides, and DNA using post-irradiation techniques such as temperature-programmed desorption (TPD), reflection-absorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS), high-resolution electron energy loss spectroscopy (HREELS), gel electrophoresis, and microarray fluorescence. Post-irradiation temperature-programmed desorption, in particular, has been shown to be useful in identifying labile radiolysis products as demonstrated by the first identification of methoxymethanol as a reaction product of methanol radiolysis. Results of post-irradiation studies have been used not only to identify radiolysis products, but also to determine the dynamics of electron-induced reactions. For example, studies of the radiolysis yield as a function of incident electron energy have shown that dissociative

  10. Dicarboxylic acid anhydride condensation with compounds containing active methylene groups. 4: Some 4-nitrophthalic anhydride condensation reactions

    NASA Technical Reports Server (NTRS)

    Oskaja, V.; Rotberg, J.

    1985-01-01

    By 4-nitrophthalic anhydride condensation with acetoacetate in acetic anhydride and triethylamine solution with subsequent breakdown of the intermediate condensation product, 5-nitroindanedione-1,3 was obtained. A 4-nitrophthalic anhydride with acetic anhydride, according to reaction conditions, may yield two products: in the presence of potassium acetate and at high temperatures 4-(or 5-)-nitro-2-acetylbenzoic acid is formed: in the presence of triethylamine and at room temperature 5-( or 6-)-nitrophthalic acetic acid is isolated. A 4-nitrophthalic anhydride and malonic acid in pyridine solution according to temperature yield either 5-( or 6-)-nitrophthalic acetic acid or 4-(or 5-)-nitro-2-acetylbenzoic acid.

  11. Highly-efficient synthesis of covalent porphyrinic cages via DABCO-templated imine condensation reactions.

    PubMed

    Ding, Huimin; Meng, Xiangshi; Cui, Xu; Yang, Yihui; Zhou, Tailin; Wang, Caixing; Zeller, Matthias; Wang, Cheng

    2014-10-01

    We report a new approach to construct covalent porphyrinic cages with different spacer lengths, in which the cage compounds have been conveniently synthesized in quantitative yields, via DABCO-templated imine condensation reactions. PMID:25111246

  12. Enantioselective Multicomponent Condensation Reactions of Phenols, Aldehydes, and Boronates Catalyzed by Chiral Biphenols.

    PubMed

    Barbato, Keith S; Luan, Yi; Ramella, Daniele; Panek, James S; Schaus, Scott E

    2015-12-01

    Chiral diols and biphenols catalyze the multicomponent condensation reaction of phenols, aldehydes, and alkenyl or aryl boronates. The condensation products are formed in good yields and enantioselectivities. The reaction proceeds via an initial Friedel-Crafts alkylation of the aldehyde and phenol to yield an ortho-quinone methide that undergoes an enantioselective boronate addition. A cyclization pathway was discovered while exploring the scope of the reaction that provides access to chiral 2,4-diaryl chroman products, the core of which is a structural motif found in natural products. PMID:26576776

  13. The possible role of solid surface area in condensation reactions during chemical evolution - Reevaluation

    NASA Technical Reports Server (NTRS)

    Lahav, N.; Chang, S.

    1976-01-01

    Using surface concentration and reaction rate as the main criteria for the feasibility of condensation reactions, four types of prebiotic environments were analyzed: (1) an ocean-sediment system, (2) a dehydrated lagoon bed produced by evaporation, (3) the surface of a frozen sediment, and (4) a fluctuating system where hydration (rainstorms, tidal variations, flooding) and dehydration (evaporation) take place in a cyclic manner. With the possible exception of nucleotides, low adsorption of organomonomers on sediment surfaces of a prebiotic ocean (pH 8) is expected, and significant condensation is considered unlikely. In dehydrated and frozen systems, high surface concentrations are probable and condensation is more likely. In fluctuating environments, condensation rates will be enhanced and the size distribution of the oligomers formed during dehydration may be influenced by a 'redistribution mechanism' in which adsorbed oligomers and monomers are desorbed and redistributed on the solid surface during the next hydration-dehydration cycle.

  14. Analytical solution for transient partitioning and reaction of a condensing vapor species in a droplet

    NASA Astrophysics Data System (ADS)

    Liu, Albert Tianxiang; Zaveri, Rahul A.; Seinfeld, John H.

    2014-06-01

    We present the exact analytical solution of the transient equation of gas-phase diffusion of a condensing vapor to, and diffusion and reaction in, an aqueous droplet. Droplet-phase reaction is represented by first-order chemistry. The solution facilitates study of the dynamic nature of the vapor uptake process as a function of droplet size, Henry's law coefficient, and first-order reaction rate constant for conversion in the droplet phase.

  15. Initial Reaction Steps in the Condensed-Phase Decomposition of Propellants

    SciTech Connect

    Melius, C F; Piqueras, M C

    2001-12-11

    Understanding the reaction mechanisms for the decomposition of energetic materials in the condensed phase is critical to our development of detailed kinetic models of propellant combustion. To date, the reaction mechanisms in the condensed phase have been represented by global, reactions. The detailed elementary reactions subsequent to the initial NO{sub 2} bond scissioning are not known. Using quantum chemical calculations, we have investigated the possible early steps in the decomposition of energetic materials that can occur in the condensed phase. We have used methylnitrate, methylnitramine, and nitroethane as prototypes for O-NO{sub 2}, N-NO{sub 2} and C-NO{sub 2} nitro compounds. We find the energetic radicals formed from the initial NO{sub 2} bond scissioning can be converted to unsaturated non-radical intermediates as an alternative to the unzipping of the energetic radical. We propose a new, prompt oxidation mechanism in which the trapped HONO can add back onto the energetic molecule. This produces oxidation products in the condensed phase that normally would not be produced until much later in the flame. We have shown that this prompt oxidation mechanism is a general feature of both nitramines and nitrate esters. The resulting HONO formed by the H-atom abstraction will be strongly influenced by the cage effect of the condensed phase. The applicability of this mechanism is demonstrated for decomposition of ethylnitrate, illustrating the importance of the cage effect in enabling this mechanism to occur at low temperatures.

  16. First observation of a mass independent isotopic fractionation in a condensation reaction

    NASA Technical Reports Server (NTRS)

    Thiemens, M. H.; Nelson, R.; Dong, Q. W.; Nuth, Joseph A., III

    1994-01-01

    Thiemens and Heidenreich (1983) first demonstrated that a chemically produced mass independent isotopic fractionation process could produce an isotopic composition which is identical to that observed in Allende inclusions. This raised the possibility that the meteoritic components could be produced by chemical, rather than nuclear processes. In order to develop a mechanistic model of the early solar system, it is important that relevant reactions be studied, particularly, those which may occur in the earliest condensation reactions. The isotopic results for isotopic fractionations associated with condensation processes are reported. A large mass independent isotopic fractionation is observed in one of the experiments.

  17. Condensed Matter Deuterium Cluster Target for Study of Pycnonuclear Reactions

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoling; George, Miley

    2009-11-01

    Fusion reactions have two main classes: thermonuclear and the pycnonuclear. Thermonuclear fusion occurs in low density high temperature plasmas, and is very sensitive to the ion temperature due to Columbic repulsion effects. As the density increases, the Columbic potential barrier is depressed by increased electron screening, allowing fusion at lower temperatures. This type of nuclear reaction is termed a pycnonuclear fusion and is the basis for astrophysical fusion. Ichimarua [1] proposed a laboratory study of this process using explosive mechanical compression of H/D to metallic densities, which would be extremely difficult to implement. Instead, our recent research suggests that metallic-like H/D ``clusters'' can be formed in dislocation loops of thin Palladium foils through electrochemical processes. [2] If this technique is used as a laser compression target, the compressed cluster density would allow study of pycnonuclear reactions. This provides a means of studying astrophysical fusion process, and could also lead to an important non-cryogenic ICF target. [2] [4pt] [1] S. Ichimaru, H. Kitamura. Phys. Plasmas, 6, 2649 (1999) [0pt] [2] G. Miley and X. Yang, Deuterium Cluster Target for Ultra-High Density, 18TH TOFE, San Francisco, CA Sep. 28 -- Oct. 2, 2008

  18. Probing the Rate-Determining Step of the Claisen-Schmidt Condensation by Competition Reactions

    ERIC Educational Resources Information Center

    Mak, Kendrew K. W.; Chan, Wing-Fat; Lung, Ka-Ying; Lam, Wai-Yee; Ng, Weng-Cheong; Lee, Siu-Fung

    2007-01-01

    Competition experiments are a useful tool for preliminary study of the linear free energy relationship of organic reactions. This article describes a physical organic experiment for upper-level undergraduates to identify the rate-determining step of the Claisen-Schmidt condensation of benzaldehyde and acetophenone by studying the linear free…

  19. Mixtures of Charged Bosons Confined in Harmonic Traps and Bose-Einstein Condensation Mechanism for Low-Energy Nuclear Reactions and Transmutation Processes in Condensed Matters

    NASA Astrophysics Data System (ADS)

    Kim, Yeong E.; Zubarev, Alexander L.

    2006-02-01

    A mixture of two different species of positively charged bosons in harmonic traps is considered in the mean-field approximation. It is shown that depending on the ratio of parameters, the two components may coexist in same regions of space, in spite of the Coulomb repulsion between the two species. Application of this result is discussed for the generalization of the Bose-Einstein condensation mechanism for low-energy nuclear reaction (LENR) and transmutation processes in condensed matters. For the case of deutron-lithium (d + Li) LENR, the result indicates that (d + 6Li) reactions may dominate over (d + d) reactions in LENR experiments.

  20. Gas-Phase Condensation Reactions of SixOyHz- Oxyanions with H2O

    SciTech Connect

    Groenewold, Gary Steven; Scott, Jill Rennee; Gianotto, Anita Kay; Hodges, Brittany DM; Kessinger, Glen Frank; Benson, Michael Timothy; Wright, J. B.

    2001-09-01

    Water was reacted with gas-phase oxyanions having the general composition SixOyHz- that were formed and isolated in an ion trap-secondary ion mass spectrometer (IT-SIMS). The radical SiO2- reacted slowly with H2O to abstract HO, forming SiO3H-, at a rate of 8 × 10-13 cm3 molecule-1 s-1, corresponding to an efficiency of about 0.03% compared with the theoretical collision rate constant (average dipole orientation). The product ion SiO3H- underwent a consecutive condensation reaction with H2O to form SiO4H3- at a rate that was approximately 0.4-0.7% efficient. SiO4H3- did not undergo further reaction with water. The multiple reaction pathways by which radical SiO3- reacted with H2O were kinetically modeled using a stochastic approach. SiO3- reacted with water by three parallel reaction pathways: (1) abstraction of a radical H to form SiO3H-, which then reacted with a second H2O to form SiO4H3-; (2) abstraction of a radical OH to form SiO4H-, which further reacted by consecutive H abstractions to form SiO4H2- and then SiO4H3-; and (3) condensation with H2O to form SiO4H2-, which subsequently abstracted a radical H from a second H2O to form SiO4H3-. In all of these reactions, the rate constants were determined to be very slow, as determined by both direct measurement and stochastic modeling. For comparison, the even electron ion Si2O5H- was also investigated: it underwent condensation with H2O to form Si2O6H3-, with a rate constant corresponding to 50% efficiency. The reactions were also modeled using ab initio calculations at the UB3LYP/6-311+G(2d,p) level. Addition of H2O to SiO3-, SiO3H-, and Si2O5H- was calculated to be approximately 42, 45, and 55 kcal mol-1 exothermic, respectively, and encountered low activation barriers. Modeling of SiO2- and SiO3- reactions with H2O failed to produce radical abstraction reaction pathways observed in the IT-SIMS, possibly indicating that alternative reaction mechanisms are operative.

  1. Contribution from 3 alpha-Condensed States to the Triple-Alpha Reaction

    SciTech Connect

    Kato, Kiyoshi; Kurokawa, Chie; Arai, Koji

    2010-06-01

    The alpha-condensed state in nuclear systems has been proposed by Tohsaki et al. and has given rise to interesting discussions. The Hoyle state of {sup 12}C has been studied as the most typical example of such an alpha-condensed state. A new resonant 0{sub 3}{sup +} state (E{sub r} = 1.66 MeV, GAMMA = 1.48 MeV) is predicted as an excited alpha-condensed state in addition to the second 0{sup +} state of the Hoyle state by calculations of the 3 alpha orthogonality condition model (3 alpha OCM) using the complex scaling method. Based on this result, the breakup strengths of the inversion reaction for sequential ({sup 8}Be+alpha->{sup 12}C+gamma) and direct (alpha+alpha+alpha->{sup 12}C+gamma) processes are calculated. It is discussed that a large reaction strength calculated recently by Ogata et al. in non-resonant energies is considered as a contribution from the excited 0{sub 3}{sup +} state.

  2. A Study on the Base–Catalyzed Reverse Vinylogous Aldol Reaction of (4aβ,5β)-4,4a,5,6,7,8-Hexahydro-5-hydroxy-1,4a-dimethylnaphthalen-2(3H)-one under Robinson Annulation Conditions

    PubMed Central

    Payette, Joshua N.; Honda, Tadashi; Yoshizawa, Hidenori; Favaloro, Frank G.; Gribble, Gordon W.

    2008-01-01

    We have proposed a pathway of the base–catalyzed reverse vinylogous aldol reaction of (−)-(4aβ,5β)-4,4a,5,6,7,8-hexahydro-5-hydroxy-1,4a-dimethylnaphthalen-2(3H)-one ((−)-8) under Robinson annulation conditions. For confirmation, 4-(2,6-dimethyl-3-oxocyclohex-1-enyl)butanal (11) and 4-(2,6-dimethyl-5-oxocyclohex-1-enyl)butanal (12), both of which potentially produce enolate I, were synthesized regioselectively. Unexpectedly, 11 gave a complex mixture including only a trace amount of (±)-8 (less than 5% yield) under these basic conditions. To the contrary, 12 cleanly afforded (±)-8 in 66% yield. This result provides evidence for our proposed mechanism of the above reaction. PMID:16388674

  3. Asymmetric total synthesis of smyrindiol employing an organocatalytic aldol key step

    PubMed Central

    Fronert, Jeanne; Bisschops, Tom; Boeck, Florian

    2012-01-01

    Summary The first organocatalytic asymmetric synthesis of smyrindiol, by using an (S)-proline catalyzed enantioselective intramolecular aldol reaction as the key step, is described. Smyrindiol was synthesized from commercially available 2,4-dihydroxybenzaldehyde in 15 steps, with excellent stereoselectivity (de = 99%, ee = 99%). In the course of this total synthesis a new and mild coumarin assembly was developed. PMID:23019438

  4. Toward a reaction rate model of condensed-phase RDX decomposition under high temperatures

    NASA Astrophysics Data System (ADS)

    Schweigert, Igor

    2015-06-01

    Shock ignition of energetic molecular solids is driven by microstructural heterogeneities, at which even moderate stresses can result in sufficiently high temperatures to initiate material decomposition and chemical energy release. Mesoscale modeling of these ``hot spots'' requires a reaction rate model that describes the energy release with a sub-microsecond resolution and under a wide range of temperatures. No such model is available even for well-studied energetic materials such as RDX. In this presentation, I will describe an ongoing effort to develop a reaction rate model of condensed-phase RDX decomposition under high temperatures using first-principles molecular dynamics, transition-state theory, and reaction network analysis. This work was supported by the Naval Research Laboratory, by the Office of Naval Research, and by the DoD High Performance Computing Modernization Program Software Application Institute for Multiscale Reactive Modeling of Insensitive Munitions.

  5. Monte Carlo simulation of hyaluronidase reaction involving hydrolysis, transglycosylation and condensation.

    PubMed Central

    Nakatani, Hiroshi

    2002-01-01

    The action of hyaluronidase on oligosaccharides from hyaluronan is complicated due to branched reaction paths containing hydrolysis, transglycosylation and condensation. The unit component of hyaluronan is a disaccharide, namely GlcA-(beta 1-->3)-GlcNAc where GlcA and GlcNAc are d-glucuronic acid and d-N-acetylglucosamine respectively. Hyaluronan is the linear polymer formed by these disaccharide units, linked together with beta 1-->4 glycosidic bonds. Bovine testicular hyaluronidase acts only at beta 1-->4 glycosidic bonds of hyaluronan. The progress of product distribution from short oligosaccharides was simulated with the Monte Carlo method using the probabilistic model. The model consists only of a single enzyme molecule and a finite number of substrate and water molecules. The simulation is based on a simple reaction scheme and proceeds via an algorithm with minimum adjustable parameters generating random numbers and probabilities. The experimental data for bovine testicular hyaluronidase using [GlcA-(beta 1-->3)-GlcNAc](4) as the starting substrate were quantitatively simulated with only three adjustable parameters. The simulated data for [GlcA-(beta 1-->3)-GlcNAc](3) and [GlcA-(beta 1-->3)-GlcNAc](5) as the starting substrates agreed semi-quantitatively with experimental data using the same parameters. The mechanism of the hyaluronidase reaction is a combination of branched probabilistic cycles. The condensation reaction is much weaker than the transglycosylation reaction but contributes to product distribution at the final stage of the reaction, preventing complete hydrolysis of the substrates. PMID:11965243

  6. Classical Keggin Intercalated into Layered Double Hydroxides: Facile Preparation and Catalytic Efficiency in Knoevenagel Condensation Reactions.

    PubMed

    Jia, Yueqing; Fang, Yanjun; Zhang, Yingkui; Miras, Haralampos N; Song, Yu-Fei

    2015-10-12

    The family of polyoxometalate (POM) intercalated layered double hydroxide (LDH) composite materials has shown great promise for the design of functional materials with numerous applications. It is known that intercalation of the classical Keggin polyoxometalate (POM) of [PW12 O40 ](3-) (PW12 ) into layered double hydroxides (LDHs) is very unlikely to take place by conventional ion exchange methods due to spatial and geometrical restrictions. In this paper, such an intercalated compound of Mg0.73 Al0.22 (OH)2 [PW12 O40 ]0.04 ⋅0.98 H2 O (Mg3 Al-PW12 ) has been successfully obtained by applying a spontaneous flocculation method. The Mg3 Al-PW12 has been fully characterized by using a wide range of methods (XRD, SEM, TEM, XPS, EDX, XPS, FT-IR, NMR, BET). XRD patterns of Mg3 Al-PW12 exhibit no impurity phase usually observed next to the (003) diffraction peak. Subsequent application of the Mg3 Al-PW12 as catalyst in Knoevenagel condensation reactions of various aldehydes and ketones with Z-CH2 -Z' type substrates (ethyl cyanoacetate and malononitrile) at 60 °C in mixed solvents (V2-propanol :Vwater =2:1) demonstrated highly efficient catalytic activity. The synergistic effect between the acidic and basic sites of the Mg3 Al-PW12 composite proved to be crucial for the efficiency of the condensation reactions. Additionally, the Mg3 Al-PW12 -catalyzed Knoevenagel condensation of benzaldehyde with ethyl cyanoacetate demonstrated the highest turnover number (TON) of 47 980 reported so far for this reaction. PMID:26337902

  7. Recent developments in enzyme promiscuity for carbon-carbon bond-forming reactions.

    PubMed

    Miao, Yufeng; Rahimi, Mehran; Geertsema, Edzard M; Poelarends, Gerrit J

    2015-04-01

    Numerous enzymes have been found to catalyze additional and completely different types of reactions relative to the natural activity they evolved for. This phenomenon, called catalytic promiscuity, has proven to be a fruitful guide for the development of novel biocatalysts for organic synthesis purposes. As such, enzymes have been identified with promiscuous catalytic activity for, one or more, eminent types of carbon-carbon bond-forming reactions like aldol couplings, Michael(-type) additions, Mannich reactions, Henry reactions, and Knoevenagel condensations. This review focuses on enzymes that promiscuously catalyze these reaction types and exhibit high enantioselectivities (in case chiral products are obtained). PMID:25598537

  8. Condensation Reactions and Formation of Amides, Esters, and Nitriles Under Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Rushdi, Ahmed I.; Simoneit, Bernd R. T.

    2004-06-01

    Hydrothermal pyrolysis experiments were performed to assess condensation (dehydration) reactions to amide, ester, and nitrile functionalities from lipid precursors. Beside product formation, organic compound alteration and stability were also evaluated. Mixtures of nonadecanoic acid, hexadecanedioic acid, or hexadecanamide with water, ammonium bicarbonate, and oxalic acid were heated at 300°C for 72 h. In addition, mixtures of ammonium bicarbonate and oxalic acid solutions were used to test the abiotic formation of organic nitrogen compounds at the same temperature. The resulting products were condensation compounds such as amides, nitriles, and minor quantities of N-methylalkyl amides, alkanols, and esters. Mixtures of alkyl amide in water or oxalic acid yielded mainly hydrolysis and dehydration products, and with ammonium bicarbonate and oxalic acid the yield of condensation products was enhanced. The synthesis experiments with oxalic acid and ammonium bicarbonate solutions yielded homologous series of alkyl amides, alkyl amines, alkanes, and alkanoic acids, all with no carbon number predominances. These organic nitrogen compounds are stable and survive under the elevated temperatures of hydrothermal fluids.

  9. Quantum and Molecular Mechanical (QM/MM) Monte Carlo Techniques for Modeling Condensed-Phase Reactions

    PubMed Central

    Jorgensen, Wiliiam L.

    2014-01-01

    A recent review (Acc. Chem. Res. 2010, 43:142–151) examined our use and development of a combined quantum and molecular mechanical (QM/MM) technique for modelling organic and enzymatic reactions. Advances included the PDDG/PM3 semiempirical QM (SQM) method, computation of multi-dimensional potentials of mean force (PMF), incorporation of on-the-fly QM in Monte Carlo simulations, and a polynomial quadrature method for rapidly treating proton-transfer reactions. The current article serves as a follow up on our progress. Highlights include new reactions, alternative SQM methods, a polarizable OPLS force field, and novel solvent environments, e.g., “on water” and room temperature ionic liquids. The methodology is strikingly accurate across a wide range of condensed-phase and antibody-catalyzed reactions including substitution, decarboxylation, elimination, isomerization, and pericyclic classes. Comparisons are made to systems treated with continuum-based solvents and ab initio or density functional theory (DFT) methods. Overall, the QM/MM methodology provides detailed characterization of reaction paths, proper configurational sampling, several advantages over implicit solvent models, and a reasonable computational cost. PMID:25431625

  10. Acid-catalyzed reactions of hexanal on sulfuric acid particles: Identification of reaction products

    NASA Astrophysics Data System (ADS)

    Garland, Rebecca M.; Elrod, Matthew J.; Kincaid, Kristi; Beaver, Melinda R.; Jimenez, Jose L.; Tolbert, Margaret A.

    While it is well established that organics compose a large fraction of the atmospheric aerosol mass, the mechanisms through which organics are incorporated into atmospheric aerosols are not well understood. Acid-catalyzed reactions of compounds with carbonyl groups have recently been suggested as important pathways for transfer of volatile organics into acidic aerosols. In the present study, we use the aerodyne aerosol mass spectrometer (AMS) to probe the uptake of gas-phase hexanal into ammonium sulfate and sulfuric acid aerosols. While both deliquesced and dry non-acidic ammonium sulfate aerosols showed no organic uptake, the acidic aerosols took up substantial amounts of organic material when exposed to hexanal vapor. Further, we used 1H-NMR, Fourier transform infrared (FTIR) spectroscopy and GC-MS to identify the products of the acid-catalyzed reaction of hexanal in acidic aerosols. Both aldol condensation and hemiacetal products were identified, with the dominant reaction products dependent upon the initial acid concentration of the aerosol. The aldol condensation product was formed only at initial concentrations of 75-96 wt% sulfuric acid in water. The hemiacetal was produced at all sulfuric acid concentrations studied, 30-96 wt% sulfuric acid in water. Aerosols up to 88.4 wt% organic/11.1 wt% H 2SO 4/0.5 wt% water were produced via these two dimerization reaction pathways. The UV-VIS spectrum of the isolated aldol condensation product, 2-butyl 2-octenal, extends into the visible region, suggesting these reactions may impact aerosol optical properties as well as aerosol composition. In contrast to previous suggestions, no polymerization of hexanal or its products was observed at any sulfuric acid concentration studied, from 30 to 96 wt% in water.

  11. Closure of the condensed-phase organic-nitrate reaction USQ at hanford

    SciTech Connect

    COWLEY, W.L.

    1999-06-24

    A discovery Unreviewed Safety Question (USQ) was declared on the underground waste storage tanks at the Hanford Site in May 1996. The USQ was for condensed-phase organic-nitrate reactions (sometimes called organic complexant reactions) in the tanks. This paper outlines the steps taken to close the USQ, and resolve the related safety issue. Several processes were used at the Hanford Site to extract and/or process plutonium. These processes resulted in organic complexants (for chelating multivalent cations) and organic extraction solvents being sent to the underground waste storage tanks. This paper addresses the organic complexant hazard. The organic complexants are in waste matrices that include inert material, diluents, and potential oxidizers. In the presence of oxidizing material, the complexant salts can be made to react exothermically by heating to high temperatures or by applying an external ignition source of sufficient energy. The first organic complexant hazard assessments focused on determining whether a hulk runaway reaction could occur, similar to the 1957 accident at Kyshtm (a reprocessing plant in the former U.S.S.R.). Early analyses (1977 through 1994) examined organic-nitrate reaction onset temperatures and concluded that a bulk runaway reaction could not occur at the Hanford Site because tank temperatures were well below that necessary for bulk runaway. Therefore, it was believed that organic-nitrate reactions were adequately described in the then current Authorization Basis (AB). Subsequent studies examined a different accident scenario, propagation resulting from an external ignition source (e.g., lightning or welding slag) that initiates a combustion front that propagates through the organic waste. A USQ evaluation determined that localized high energy ignition sources were credible, and that point source ignition of organic complexant waste was not adequately addressed i n the then existing AB. Consequently, the USQ was declared on the

  12. Alternative Interpretation of Low-Energy Nuclear Reaction Processes with Deuterated Metals Based on the Bose-Einstein Condensation Mechanism

    NASA Astrophysics Data System (ADS)

    Kim, Yeong E.; Passell, Thomas O.

    2006-02-01

    Recently, a generalization of the Bose-Einstein condensation (BEC) mechanism has been made to a ground-state mixture of two different species of positively charged bosons in harmonic traps. The theory has been used to describe (D + Li) reactions in the low energy nuclear reaction (LENR) processes in condensed matter and predicts that the (D + Li) reaction rates can be larger than (D + D) reaction rates by as much as a factor of ~50, implying that (D + Li) reactions may be occuring in addition to the (D + D) reactions. A survey of the existing data from LENR experiments is carried out to check the validity of the theoretical prediction. We conclude that there is compelling experimental evidence which support the theoretical prediction. New experimental tests of the theoretical prediction are suggested.

  13. Technical Note: Analytical Solution for Transient Partitioning and Reaction of a Condensing Vapor Species in a Droplet

    SciTech Connect

    Liu, Albert T.; Zaveri, Rahul A.; Seinfeld, John H.

    2014-03-28

    We present the exact analytical solution of the transient equation of gas-phase diffusion of a condensing vapor to, and diffusion and reaction in, an aqueous droplet. Droplet-phase reaction is represented by first-order chemistry. The solution facilitates study of the dynamic nature of the vapor uptake process as a function of droplet size, Henry’s law coefficient, and first-order reaction rate constant for conversion in the droplet phase.

  14. Progress toward chemcial accuracy in the computer simulation of condensed phase reactions

    SciTech Connect

    Bash, P.A.; Levine, D.; Hallstrom, P.; Ho, L.L.; Mackerell, A.D. Jr.

    1996-03-01

    A procedure is described for the generation of chemically accurate computer-simulation models to study chemical reactions in the condensed phase. The process involves (1) the use of a coupled semiempirical quantum and classical molecular mechanics method to represent solutes and solvent, respectively; (2) the optimization of semiempirical quantum mechanics (QM) parameters to produce a computationally efficient and chemically accurate QM model; (3) the calibration of a quantum/classical microsolvation model using ab initio quantum theory; and (4) the use of statistical mechanical principles and methods to simulate, on massively parallel computers, the thermodynamic properties of chemical reactions in aqueous solution. The utility of this process is demonstrated by the calculation of the enthalpy of reaction in vacuum and free energy change in aqueous solution for a proton transfer involving methanol, methoxide, imidazole, and imidazolium, which are functional groups involved with proton transfers in many biochemical systems. An optimized semiempirical QM model is produced, which results in the calculation of heats of formation of the above chemical species to within 1.0 kcal/mol of experimental values. The use of the calibrated QM and microsolvation QM/MM models for the simulation of a proton transfer in aqueous solution gives a calculated free energy that is within 1.0 kcal/mol (12.2 calculated vs. 12.8 experimental) of a value estimated from experimental pKa`s of the reacting species.

  15. Molecular Mechanism by which One Enzyme Catalyzes Two Reactions

    NASA Astrophysics Data System (ADS)

    Nishimasu, Hiroshi; Fushinobu, Shinya; Wakagi, Takayoshi

    Unlike ordinary enzymes, fructose-1,6-bisphosphate (FBP) aldolase/phosphatase (FBPA/P) catalyzes two distinct reactions : (1) the aldol condensation of dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate to FBP, and (2) the dephosphorylation of FBP to fructose-6-phosphate. We solved the crystal structures of FBPA/P in complex with DHAP (its aldolase form) and FBP (its phosphatase form). The crystal structures revealed that FBPA/P exhibits the dual activities through a dramatic conformational change in the active-site architecture. Our findings expand the conventional concept that one enzyme catalyzes one reaction.

  16. The overall reaction process of ozone with methacrolein and isoprene in the condensed phase.

    PubMed

    Deng, Jian-guo; Chen, Jian-hua; Geng, Chun-mei; Liu, Hong-jie; Wang, Wei; Bai, Zhi-peng; Xu, Yi-Sheng

    2012-02-23

    The reaction of isoprene and methacrolein with ozone was investigated at different stages in the condensed phase at temperatures from 15 to 265 K by IR spectroscopy. The results revealed the following overall reaction process: the generation of primary ozonide (POZ), then its decomposition, and finally conversion into secondary ozonide (SOZ), which supported the Criegee mechanism. In the POZ and SOZ of isoprene, ozone cyclo-added preferentially to the double-bond that is not substituted by the methyl group. For methacrolein, the mainly detected SOZ is claimed to be MACSII formed by recombination of the intermediate CH(2)OO radical with aldehyde carbonyl of methylglyoxal in stead of the ketone carbonyl group. Theoretical calculations were performed at the B3LYP//MP2/6-311++G (2d, 2p) level to analyze the resulting spectrum. The good agreement between the calculated infrared spectra of POZ and SOZ and the experimental spectra supports the above-described findings. PMID:22243138

  17. Equation of state and reaction rate for condensed-phase explosives

    NASA Astrophysics Data System (ADS)

    Wescott, B. L.; Stewart, D. Scott; Davis, W. C.

    2005-09-01

    The wide-ranging equation of state is a nonideal equation of state based on empirical fitting forms argued from thermodynamic considerations that yield the proper physical features of detonation. The complete equation of state forms are presented and the equation of state and a reaction rate are calibrated for the condensed-phase explosive PBX-9502. Experimental overdriven Hugoniot data are used to calibrate the products equation of state off the principal isentrope passing through the Chapman-Jouguet state. Shock Hugoniot data are used to calibrate the reactants equation of state. The normal detonation shock speed-shock curvature data (Dn-κ) from rate-stick measurements and shock initiation data from wedge tests are used to calibrate the reaction rate. Simulations are carried out that predict detailed particle velocity transients that are measured experimentally with embedded electromagnetic gauge measurements from gas-gun experiments. Multidimensional simulations of steady detonation in a right circular cylinder rate stick are carried out and compared with experiment.

  18. Synthesis of the Cores of Hypocrellin and Shiraiachrome: Diastereoselective 1,8-Diketone Aldol Cyclization

    PubMed Central

    O’Brien, Erin M.; Li, Jingxian; Carroll, Patrick J.

    2009-01-01

    Intramolecular 1,8-diketone aldol reactions were studied as a tool for the construction of the 7-membered rings of hypocrellin and shiraiachrome. Conditions were identified to obtain the relative stereochemistries present in the two natural products with excellent diastereoselectivity. In addition, a nine-membered ring congener, which has yet to be observed in nature, formed with high selectivity when a hindered amine was used in conjunction with silazide bases. PMID:19894740

  19. A diastereoselective, nucleophile-promoted aldol-lactonization of ketoacids leading to bicyclic-β-lactones.

    PubMed

    Liu, Gang; Shirley, Morgan E; Romo, Daniel

    2012-03-01

    An improved, tandem acid activation/aldol-lactonization process is described. This more practical protocol shortens reaction times for the construction of bicyclic β-lactones from ketoacids and implements the use of commercially available reagents p-toluenesulfonyl chloride (p-TsCl) as activator and 4-dimethylaminopyridine (4-DMAP) as nucleophilic promoter (Lewis base). Substrates with β-substituents, with respect to the carboxylic acid, consistently showed excellent levels of diastereoselectivity during the bis-cyclization event. PMID:22260519

  20. Fe₃O₄@MOF core-shell magnetic microspheres as excellent catalysts for the Claisen-Schmidt condensation reaction.

    PubMed

    Ke, Fei; Qiu, Ling-Guang; Zhu, Junfa

    2014-01-01

    Separation and recycling of catalysts after catalytic reactions are critically required to reduce the cost of catalysts as well as to avoid the generation of waste in industrial applications. In this work, we present a facile fabrication and characterization of a novel type of MOF-based porous catalyst, namely, Fe₃O₄@MIL-100(Fe) core-shell magnetic microspheres. It has been shown that these catalysts not only exhibit high catalytic activities for the Claisen-Schmidt condensation reactions under environmentally friendly conditions, but remarkably, they can be easily separated and recycled without significant loss of catalytic efficiency after being used for many times. Therefore, compared to other reported catalysts used in the Claisen-Schmidt condensation reactions, these catalysts are green, cheap and more suitable for large scale industrial applications. PMID:24336813

  1. Modeling reaction histories to study chemical pathways in condensed phase detonation

    NASA Astrophysics Data System (ADS)

    Scott Stewart, D.; Hernández, Alberto; Lee, Kibaek

    2016-03-01

    The estimation of pressure and temperature histories, which are required to understand chemical pathways in condensed phase explosives during detonation, is discussed. We argue that estimates made from continuum models, calibrated by macroscopic experiments, are essential to inform modern, atomistic-based reactive chemistry simulations at detonation pressures and temperatures. We present easy to implement methods for general equation of state and arbitrarily complex chemical reaction schemes that can be used to compute reactive flow histories for the constant volume, the energy process, and the expansion process on the Rayleigh line of a steady Chapman-Jouguet detonation. A brief review of state-of-the-art of two-component reactive flow models is given that highlights the Ignition and Growth model of Lee and Tarver [Phys. Fluids 23, 2362 (1980)] and the Wide-Ranging Equation of State model of Wescott, Stewart, and Davis [J. Appl. Phys. 98, 053514 (2005)]. We discuss evidence from experiments and reactive molecular dynamic simulations that motivate models that have several components, instead of the two that have traditionally been used to describe the results of macroscopic detonation experiments. We present simplified examples of a formulation for a hypothetical explosive that uses simple (ideal) equation of state forms and detailed comparisons. Then, we estimate pathways computed from two-component models of real explosive materials that have been calibrated with macroscopic experiments.

  2. Gold catalyzed double condensation reaction: Synthesis, antimicrobial and cytotoxicity of spirooxindole derivatives.

    PubMed

    Parthasarathy, K; Praveen, Chandrasekar; Jeyaveeran, J C; Prince, A A M

    2016-09-01

    Microwave assisted synthesis of spirooxindoles via tandem double condensation between isatins and 4-hydroxycoumarin under gold catalysis is reported. The reaction is practical to perform, since the products can be isolated by simple filtration without requiring tedious column chromatography. The scope of this chemistry is exemplified by preparing structurally diverse spirooxindoles (22 examples) in excellent yields. Antimicrobial evaluation of the synthesized compounds revealed that three compounds (3a, 3f and 3s) exhibited significant MIC values in comparison to the standard drugs. Molecular docking studies of these compounds with AmpC-β-lactamase receptor revealed that 3a exhibited minimum binding energy (-117.819kcal/mol) indicating its strong affinity towards amino acid residues via strong hydrogen bond interaction. All compounds were also evaluated for their in vitro cytotoxicity against COLO320 cancer cells. Biological assay and molecular docking studies demonstrated that 3g is the most active compound in terms of its low IC50 value (50.0μM) and least free energy of binding (-8.99kcal/mol) towards CHK1 receptor, respectively. PMID:27476145

  3. Intramolecular condensation reactions of {alpha}, {omega}- bis(triethoxy-silyl)alkanes. Formation of cyclic disilsesquioxanes

    SciTech Connect

    Loy, D.A.; Carpenter, J.P.; Myers, S.A.; Assink, R.A.; Small, J.H.; Greaves, J.; Shea, K.J.

    1996-08-01

    Under acidic sol-gel polymerization conditions, 1,3-bis(triethoxysilyl)-propane (1) and 1,4-bis(triethoxysilyl)butane (2) were shown to preferentially form cyclic disilsesquioxanes 3 and 4 rather than the expected 1,3-propylene- and 1,4-butylene-bridged polysilsesquioxane gels. Formation of 3 and 4 is driven by a combination of an intramolecular cyclization to six and seven membered rings, and a pronounced reduction in reactivity under acidic conditions as a function of increasing degree of condensation. The ease with which these relatively unreactive cyclic monomers and dimers are formed (under acidic conditions) helps to explain the difficulties in forming gels from 1 and 2. The stability of cyclic disilsesquioxanes was confirmed withe the synthesis of 3 and 4 in gram quantities; the cyclic disilsesquioxanes react slowly to give tricyclic dimers containing a thermodynamically stable eight membered siloxane ring. Continued reactions were shown to perserve the cyclic structure, opening up the possibility of utilizing cyclic disilsesquioxanes as sol-gel monomers. Preliminary polymerization studies with these new, carbohydrate-like monomers revealed the formation of network poly(cyclic disilsesquioxanes) under acidic conditions and polymerization with ring-opening under basic conditions.

  4. An investigation of the role of water on retrograde/condensation reactions and enhanced liquefaction yields

    SciTech Connect

    Miknis, F.P.

    1993-01-01

    The overall objectives of this work are to conduct research that will provide the basis for an improved liquefaction process, and to facilitate our understanding of those processes that occur when coals are initially dissolved. Changes in coal structure that occur during coal drying and steam pretreatments will be measured in order to determine what effect water has on retrograde/condensation reactions, and to determine the mechanism by which water enhances coal reactivity toward liquefaction. Different methods for coal drying wig be investigated to determine if drying can be accomplished without destroying coal reactivity toward liquefaction, thereby making coal drying a relatively economical and efficient method for coal pretreatment. Coal drying methods will include conventional thermal drying, microwave drying, and chemical drying at low temperature. State-of-the-art solid-state nuclear magnetic resonance (NMR) techniques using combined rotation and multiple pulse spectroscopy (CRAMPS) and cross polarization with magic-angle spinning (CP/MAS) will be employed: (1) to measures changes in coal structure brought about by the different methods of drying and by low temperature oxidation, and (2) to obtain direct measurements of changes in the aromatic hydrogen-to-carbon ratio of the solid/semisolid material formed or remaining during pretreatment and the initial stages of liquefaction.

  5. A Base-Catalyzed, Domino Aldol/hetero-Diels-Alder Synthesis of Tricyclic Pyrano[3,4-c]chromenes in Glycerol.

    PubMed

    Parmar, Bhagyashri D; Sutariya, Tushar R; Brahmbhatt, Gaurangkumar C; Parmar, Narsidas J; Kant, Rajni; Gupta, Vivek K

    2016-06-17

    The domino aldol/hetero-Diels-Alder synthesis of some new tricyclic pyrano[3,4-c]chromene derivatives has been achieved successfully after assembling a variety of acyclic or cyclic monoketones with prenyl ether-tethered aldehydes in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene in glycerol at 120 °C. The hitherto unreported stereochemical outcome of this synthetic sequence was studied and established on the basis of single-crystal X-ray diffraction data and 2D NMR NOESY spectroscopy along with the isolation and characterization of the intermediate Aldol condensation product. PMID:27171909

  6. Golden rule kinetics of transfer reactions in condensed phase: The microscopic model of electron transfer reactions in disordered solid matrices

    SciTech Connect

    Basilevsky, M. V.; Mitina, E. A.; Odinokov, A. V.; National Research Nuclear University “MEPhI,” 31, Kashirskoye shosse, Moscow ; Titov, S. V.

    2013-12-21

    kinetic regimes, which are usually postulated in the existing theories of the ET. Our alternative dynamic ET model for local modes immersed in the continuum harmonic medium is formulated for both classical and quantum regimes, and accounts explicitly for the mode/medium interaction. The kinetics of the energy exchange between the local ET subsystem and the surrounding environment essentially determine the total ET rate. The efficient computer code for rate computations is elaborated on. The computations are available for a wide range of system parameters, such as the temperature, external field, local mode frequency, and characteristics of mode/medium interaction. The relation of the present approach to the Marcus ET theory and to the quantum-statistical reaction rate theory [V. G. Levich and R. R. Dogonadze, Dokl. Akad. Nauk SSSR, Ser. Fiz. Khim. 124, 213 (1959); J. Ulstrup, Charge Transfer in Condensed Media (Springer, Berlin, 1979); M. Bixon and J. Jortner, Adv. Chem. Phys. 106, 35 (1999)] underlying it is discussed and illustrated by the results of computations for practically important target systems.

  7. First-principles molecular dynamics simulations of condensed-phase V-type nerve agent reaction pathways and energy barriers.

    PubMed

    Gee, Richard H; Kuo, I-Feng W; Chinn, Sarah C; Raber, Ellen

    2012-03-14

    Computational studies of condensed-phase chemical reactions are challenging in part because of complexities in understanding the effects of the solvent environment on the reacting chemical species. Such studies are further complicated due to the demanding computational resources required to implement high-level ab initio quantum chemical methods when considering the solvent explicitly. Here, we use first-principles molecular dynamics simulations to examine condensed-phase decontamination reactions of V-type nerve agents in an explicit aqueous solvent. Our results include a detailed study of hydrolysis, base-hydrolysis, and nucleophilic oxidation of both VX and R-VX, as well as their protonated counterparts (i.e., VXH(+) and R-VXH(+)). The decontamination mechanisms and chemical reaction energy barriers, as determined from our simulations, are found to be in good agreement with experiment. The results demonstrate the applicability of using such simulations to assist in understanding new decontamination technologies or other applications that require computational screening of condensed-phase chemical reaction mechanisms. PMID:22298156

  8. Catalytic performance of Metal-Organic-Frameworks vs. extra-large pore zeolite UTL in condensation reactions

    PubMed Central

    Shamzhy, Mariya; Opanasenko, Maksym; Shvets, Oleksiy; Čejka, Jiří

    2013-01-01

    Catalytic behavior of isomorphously substituted B-, Al-, Ga-, and Fe-containing extra-large pore UTL zeolites was investigated in Knoevenagel condensation involving aldehydes, Pechmann condensation of 1-naphthol with ethylacetoacetate, and Prins reaction of β-pinene with formaldehyde and compared with large-pore aluminosilicate zeolite beta and representative Metal-Organic-Frameworks Cu3(BTC)2 and Fe(BTC). The yield of the target product over the investigated catalysts in Knoevenagel condensation increases in the following sequence: (Al)beta < (Al)UTL < (Ga)UTL < (Fe)UTL < Fe(BTC) < (B)UTL < Cu3(BTC)2 being mainly related to the improving selectivity with decreasing strength of active sites of the individual catalysts. The catalytic performance of Fe(BTC), containing the highest concentration of Lewis acid sites of the appropriate strength is superior over large-pore zeolite (Al)beta and B-, Al-, Ga-, Fe-substituted extra-large pore zeolites UTL in Prins reaction of β-pinene with formaldehyde and Pechmann condensation of 1-naphthol with ethylacetoacetate. PMID:24790940

  9. Probing the chemical structure of monolayer covalent-organic frameworks grown via Schiff-base condensation reactions.

    PubMed

    Hu, Ya; Goodeal, Niall; Chen, Ying; Ganose, Alex M; Palgrave, Robert G; Bronstein, Hugo; Blunt, Matthew O

    2016-08-01

    Two-dimensional covalent-organic frameworks (2D-COFs) on surfaces offer a facile route to new 2D materials. Schiff-base condensation reactions have proven to be an effective fabrication route for such materials. We present scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) studies of porphyrin 2D-COFs grown at a solid-vapour interface. XPS shows that covalent links between porphyrins consist of a mixture of imines and hemiaminals, a non-conjugated intermediate in the Schiff-base condensation reaction. These results demonstrate that environmental conditions during growth can have an important impact on the chemical composition of Schiff-base 2D-COFs. PMID:27436064

  10. Anomalous nuclear reactions in condensed matter: Recent results and open questions

    NASA Astrophysics Data System (ADS)

    Jones, S. E.; Palmer, E. P.; Czirr, J. B.; Decker, D. L.; Jensen, G. L.; Thorne, J. M.; Taylor, S. F.; Rafelski, J.

    1990-06-01

    We have observed clear signatures for neutron emission during deuteron infusion into metals, implying the occurrence of nuclear fusion in condensed matter near room temperature. The low-level nuclear phenomenon has been demonstrated in collaborative experiments at Brigham Young University, at the Gran Sasso laboratory in Italy, and at the Los Alamos National Laboratory. We have shown that neutron emission can be induced in metals using both electrochemical and variational temperature/pressure means to generate non-equilibrium conditions. Observed average neutron emission rates are approximately 0.04-0.4 no/ s. Current efforts focus on trying to understand and control the phenomenon. In particular, we wish to understand the correlation of neutron yields with parameters such as hydrogen/metal ion ratio, pressure (induced, for example, by electrical field or gas pressure or mechanical pressure), temperature variation, hydride phase changes, and surface conditions, e.g., a palladium coating on titanium. We want to know if fusion arises due to the close proximity of the deuterons in the lattice (piezonuclear fusion), or possibly from “microscopic hot fusion”, accompanying strong electric fields at propagating cracks in the hydride. The latter interpretation would imply neutron emission in bursts. Our experiments show clear evidence for emission of ˜102 neutrons in bursts lasting <128 μs, although random neutron-singles emissions were also observed. Experiments now underway to compare the d-d, and p-d, and d-t reaction rates will be important to a consistent description of the new phenomenon. Careful scrutiny of this effect could increase our understanding of heat, helium-3, and tritium production in the earth, other planets, and even the stars.

  11. Synthesis of 1,5-Benzodiazepine and Its Derivatives by Condensation Reaction Using H-MCM-22 as Catalyst

    PubMed Central

    Majid, Sheikh Abdul; Khanday, Waheed Ahmad; Tomar, Radha

    2012-01-01

    A simple and versatile method for the synthesis of 1,5-benzodiazepines is via condensation of o-phenylenediamines (OPDA) and ketones in the presence of catalytic amount of H-MCM-22 using acetonitrile as solvent at room temperature. In all the cases, the reactions are highly selective and are completed within 1–3 h. The method is applicable to both cyclic and acyclic ketones without significant differences. The reaction proceeds efficiently under ambient conditions with good-to-excellent yields. PMID:22570531

  12. Origin of saline, neutral-pH, reduced epithermal waters by reaction of acidic magmatic gas condensates with wall rock

    SciTech Connect

    Reed, M.H. . Dept. of Geological Sciences)

    1993-04-01

    Fluid inclusions in quartz and sphalerite of epithermal veins containing galena, sphalerite and chalcopyrite with silver sulfides and electrum commonly have salinities of 2 to 10 weight percent NaCl equivalent. Examples include Bohemia, OR, Comstock, NV, and Creede, CO. Salinities in such base metal-rich systems are apparently greater than those in gold-adularia, base metal-poor systems such as Sleeper, NV, Republic, WA, and Hishikare, Kyushu. Saline epithermal fluids are commonly assumed to have been derived from saline magmatic brines, from local host formations, as has been suggested for Creede, or from evaporative concentration (boiling) of more dilute meteoric ground water. Another possibility, which may be the most common origin, is reaction of wall rocks with magmatic gas condensates rich in HCl and sulfuric acid. A mixture of one part Augustine Volcanic gas condensate in 10 parts cold ground water has a pH of 0.7 and the dominant cation is H[sup +] by a factor of 10[sup 4]. Calculated reaction of this condensate mixture with andesite at 300 C to a water/rock ratio (w/r) of 4.6 yields an NaCl-dominated fluid with a total salinity of 2.1 wt %. and pH 3.7. Further reaction, to w/r 0.14 yields a fluid salinity of 2.6 wt % and pH of 5.7; this fluid is in equilibrium with a propylitic alteration assemblage. Aqueous sulfide accumulates during the rock reaction as sulfate is reduced to sulfide when ferrous iron is oxidized to ferric iron. Sulfide concentration in the latter fluid is 32 ppm, far exceeding sulfate concentration. In the overall reaction, hydrogen ion is exchanged for base cations (including base metals) and sulfate is reduced to sulfide.

  13. Oxidative condensation reactions of (diethylenetriamine)cobalt(III) complexes with substituted bis(pyridin-2-yl)methane ligands

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangting; Hockless, David C. R.; Willis, Anthony C.; Jackson, W. Gregory

    2005-04-01

    The synthesis and characterisation of Co(III) complexes derived from a condensation reaction with a central or terminal nitrogen of a dien ligand and the α-carbon of a range of substituted bis(pyridin-2-yl)methane ligands are described. Aerial oxidation of bpm {bis(pyridin-2-yl)methane with Co(II)/dien or direct reaction with Co(dien)Cl 3 provided in low yield a single C-N condensation product 1 (at the primary terminal NH 2) after the pyridyl -CH 2- is formally oxidised to -CH +-. The methyl substituted ligand bpe {1,1-bis(pyridin-2-yl)ethane} behaves likewise, except both terminal (prim) and central (sec) amines condense to yield isomeric products 2 and 3. Two of these three materials have been characterised by single crystal X-ray crystallography. The corresponding reactions for the bis(pyridyl) ligand bpk {bis(pyridin-2-yl)ketone} provided C-N condensation products without the requirement for oxidation at the α-C center; two carbinolamine complexes in different geometrical configurations resulted, mer-anti-[Co(dienbpc)Cl]ZnCl 4, 5, and unsym- fac-[Co(dienbpc)Cl]ZnCl 4, 6, {dienbpc=[2-(2-aminoethylamino)-ethylamino]-di-pyridin-2-yl-methanol}. In addition, a novel complex, [Co(bpk)(bpd-OH)Cl]ZnCl 4, 4, in which one bidentate N, N-bonded bpk ligand and one tridentate N, O, N-bonded bpd (the diol from bpk+OH -) were coordinated, was obtained via the Co(II)/O 2 synthetic route. When the bpc ligand (bpc=bis(pyridin-2-yl)methanol) was employed directly as a reagent along with dien, no condensation reactions were observed, but rather a single isomeric complex [Co(dien)(bpc)]Cl.ZnCl 4, 7, in which the ligand bpc acted as a N,N,O-bonded tridentate ligand rather than as a N,N-bidentate ligand was isolated. 13C, 1D and 2D 1H NMR studies are reported for all the complexes; they establish the structures unambiguously.

  14. Purification and Characterization of OleA from Xanthomonas campestris and Demonstration of a Non-decarboxylative Claisen Condensation Reaction

    SciTech Connect

    Frias, JA; Richman, JE; Erickson, JS; Wackett, LP

    2011-03-25

    OleA catalyzes the condensation of fatty acyl groups in the first step of bacterial long-chain olefin biosynthesis, but the mechanism of the condensation reaction is controversial. In this study, OleA from Xanthomonas campestris was expressed in Escherichia coli and purified to homogeneity. The purified protein was shown to be active with fatty acyl-CoA substrates that ranged from C(8) to C(16) in length. With limiting myristoyl-CoA (C(14)), 1 mol of the free coenzyme A was released/mol of myristoyl-CoA consumed. Using [(14)C] myristoyl-CoA, the other products were identified as myristic acid, 2-myristoylmyristic acid, and 14-heptacosanone. 2-Myristoylmyristic acid was indicated to be the physiologically relevant product of OleA in several ways. First, 2-myristoylmyristic acid was the major condensed product in short incubations, but over time, it decreased with the concomitant increase of 14-heptacosanone. Second, synthetic 2-myristoylmyristic acid showed similar decarboxylation kinetics in the absence of OleA. Third, 2-myristoylmyristic acid was shown to be reactive with purified OleC and OleD to generate the olefin 14-heptacosene, a product seen in previous in vivo studies. The decarboxylation product, 14-heptacosanone, did not react with OleC and OleD to produce any demonstrable product. Substantial hydrolysis of fatty acyl-CoA substrates to the corresponding fatty acids was observed, but it is currently unclear if this occurs in vivo. In total, these data are consistent with OleA catalyzing a non-decarboxylative Claisen condensation reaction in the first step of the olefin biosynthetic pathway previously found to be present in at least 70 different bacterial strains.

  15. Rate-promoting vibrations and coupled hydrogen-electron transfer reactions in the condensed phase: A model for enzymatic catalysis

    NASA Astrophysics Data System (ADS)

    Mincer, Joshua S.; Schwartz, Steven D.

    2004-04-01

    A model is presented for coupled hydrogen-electron transfer reactions in condensed phase in the presence of a rate promoting vibration. Large kinetic isotope effects (KIEs) are found when the hydrogen is substituted with deuterium. While these KIEs are essentially temperature independent, reaction rates do exhibit temperature dependence. These findings agree with recent experimental data for various enzyme-catalyzed reactions, such as the amine dehydrogenases and soybean lipoxygenase. Consistent with earlier results, turning off the promoting vibration results in an increased KIE. Increasing the barrier height increases the KIE, while increasing the rate of electron transfer decreases it. These results are discussed in light of other views of vibrationally enhanced tunneling in enzymes.

  16. The Formation Of Glycerol Monodecanoate By A Dehydration Condensation Reaction: Increasing The Chemical Complexity Of Amphiphiles On The Early Earth

    NASA Astrophysics Data System (ADS)

    Apel, Charles L.; Deamer, David W.

    2005-08-01

    Dehydration/condensation reactions between organic molecules in the prebiotic environment increased the inventory and complexity of organic compounds available for self-assembly into primitive cellular organisms. As a model of such reactions and to demonstrate this principle, we have investigated the esterification reaction between glycerol and decanoic acid that forms glycerol monodecanoate (GMD). This amphiphile enhances robustness of self-assembled membranous structures of carboxylic acids to the potentially disruptive effects of pH, divalent cation binding and osmotic stress. Experimental variables included temperature, water activity and hydrolysis of the resulting ester product, providing insights into the environmental conditions that would favor the formation and stability of this more evolved amphiphile. At temperatures exceeding 50 ∘C, the ester product formed even in the presence of bulk water, suggesting that the reaction occurs at the liquid interface of the two reactants and that the products segregate in the two immiscible layers, thereby reducing hydrolytic back reactions. This implies that esterification reactions were likely to be common in the prebiotic environment as reactants underwent cycles of wetting and drying on rare early landmasses at elevated temperatures

  17. The synthesis of a bifunctional copper metal organic framework and its application in the aerobic oxidation/Knoevenagel condensation sequential reaction.

    PubMed

    Miao, Zongcheng; Luan, Yi; Qi, Chao; Ramella, Daniele

    2016-09-21

    A novel one-pot aerobic oxidation/Knoevenagel condensation reaction system was developed employing a Cu(ii)/amine bifunctional, basic metal-organic framework (MOF) as the catalyst. The sequential aerobic alcohol oxidation/Knoevenagel condensation reaction was efficiently promoted by the Cu3TATAT MOF catalyst in the absence of basic additives. The benzylidenemalononitrile product was produced in high yield and selectivity from an inexpensive benzyl alcohol starting material under an oxygen atmosphere. The role of the basic functionality was studied to demonstrate its role in the aerobic oxidation and Knoevenagel condensation reactions. The reaction progress was monitored in order to identify the reaction intermediate and follow the accumulation of the desired product. Lastly, results showed that the yield was not significantly compromised by the reuse of a batch of catalyst, even after more than five cycles. PMID:27523776

  18. Energy- and carbon-efficient synthesis of functionalized small molecules in bacteria using non-decarboxylative Claisen condensation reactions.

    PubMed

    Cheong, Seokjung; Clomburg, James M; Gonzalez, Ramon

    2016-05-01

    Anabolic metabolism can produce an array of small molecules, but yields and productivities are low owing to carbon and energy inefficiencies and slow kinetics. Catabolic and fermentative pathways, on the other hand, are carbon and energy efficient but support only a limited product range. We used carbon- and energy-efficient non-decarboxylative Claisen condensation reactions and subsequent β-reduction reactions, which can accept a variety of functionalized primers and functionalized extender units and operate in an iterative manner, to synthesize functionalized small molecules. Using different ω- and ω-1-functionalized primers and α-functionalized extender units in combination with various termination pathways, we demonstrate the synthesis of 18 products from 10 classes, including ω-phenylalkanoic, α,ω-dicarboxylic, ω-hydroxy, ω-1-oxo, ω-1-methyl, 2-methyl, 2-methyl-2-enolic and 2,3-dihydroxy acids, β-hydroxy-ω-lactones, and ω-1-methyl alcohols. PMID:27088721

  19. The stereoselective synthesis of α-amino aldols starting from terminal alkynes.

    PubMed

    Miura, Tomoya; Nakamuro, Takayuki; Hiraga, Kentaro; Murakami, Masahiro

    2014-09-18

    A new procedure for the stereoselective synthesis of syn α-amino β-oxy ketones is reported. It consists of two steps; in the first step, α-amino silyl enol ethers having a (Z) geometry are prepared from 1-alkynes via 1-sulfonyl-1,2,3-triazoles. In the second step, the silyl enol ethers undergo the TiCl4-mediated Mukaiyama aldol reaction with aldehydes to produce α-amino β-oxy ketones with excellent syn-selectivity. PMID:25068433

  20. Effects of water on reactions for waste treatment, organic synthesis, and bio-refinery in sub- and supercritical water.

    PubMed

    Akizuki, Makoto; Fujii, Tatsuya; Hayashi, Rumiko; Oshima, Yoshito

    2014-01-01

    Current research analyzing the effects of water in the field of homogeneous and heterogeneous reactions of organics in sub- and supercritical water are reviewed in this article. Since the physical properties of water (e.g., density, ion product and dielectric constants) can affect the reaction rates and mechanisms of various reactions, understanding the effects that water can have is important in controlling reactions. For homogeneous reactions, the effects of water on oxidation, hydrolysis, aldol condensation, Beckman rearrangement and biomass refining were introduced including recent experimental results up to 100 MPa using special pressure-resistance equipment. For heterogeneous reactions, the effects of ion product on acid/base-catalyzed reactions, such as hydrothermal conversion of biomass-related compounds, organic synthesis in the context of bio-refinery, and hydration of olefins were described and how the reaction paths are controlled by the concentration of water and hydrogen ions was summarized. PMID:23867097

  1. Au@Cu(II)-MOF: Highly Efficient Bifunctional Heterogeneous Catalyst for Successive Oxidation-Condensation Reactions.

    PubMed

    Wang, Jing-Si; Jin, Fa-Zheng; Ma, Hui-Chao; Li, Xiao-Bo; Liu, Ming-Yang; Kan, Jing-Lan; Chen, Gong-Jun; Dong, Yu-Bin

    2016-07-01

    A new composite Au@Cu(II)-MOF catalyst has been synthesized via solution impregnation and full characterized by HRTEM, SEM-EDS, XRD, gas adsorption-desorption, XPS, and ICP analysis. It has been shown here that the Cu(II)-framework can be a useful platform to stabilize and support gold nanoparticles (Au NPs). The obtained Au@Cu(II)-MOF exhibits a bifunctional catalytic behavior and is able to promote selective aerobic benzyl alcohol oxidation-Knoevenagel condensation in a stepwise way. PMID:27322613

  2. Models of glycolysis: Glyceraldehyde as a source of energy and monomers for prebiotic condensation reactions

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1986-01-01

    All organisms require energy in a chemical form for maintenance and growth. In contemporary life this chemical energy is obtained by the synthesis of the phosphoanhydride bonds of ATP. Among the biological processes that yield ATP, fermentation is generally considered primitive, because it operates under anaerobic conditions by substrate-level phosphorylation which does not require compartmentation by membranes. Fermentation by the glycolytic pathway, which is found in almost every living cell, is an especially attractive energy source for primitive life. Glycolysis not only produces useful chemical energy (ATP), but intermediates of this pathway are also involved in amino acid synthesis and photosynthetic carbon-fixation. It is believed that energy and substrates needed for the origin of life were provided by nonenzymatic chemical reactions that resemble the enzyme-mediated reactions of glycolysis. These nonenzymatic reactions would have provided a starting point for the evolutionary development of glycolysis.

  3. Synthesis of esters by immobilized-lipase-catalyzed condensation reaction of sugars and fatty acids in water-miscible organic solvent.

    PubMed

    Adachi, Shuji; Kobayashi, Takashi

    2005-02-01

    A lipase-catalyzed condensation reaction in an organic solvent is a promising means of synthesizing esters. Reaction equilibrium constant, which is usually defined on the basis of reactant concentration, is an important parameter for estimating equilibrium yield. It is shown that the constant is markedly, affected by some factors, such as the hydration of a sugar substrate and the interaction of a reactant with a solvent. To reasonably design the reaction system or determine the reaction conditions, attention should be paid to these factors. From the viewpoint of kinetics, substrate selectivity for carboxylic acids also numerically correlates to the electrical and steric properties of these acids. Reactor systems for continuously producing esters through an immobilized-lipase-catalyzed condensation reaction are developed. PMID:16233762

  4. Linked strategy for the production of fuels via formose reaction.

    PubMed

    Deng, Jin; Pan, Tao; Xu, Qing; Chen, Meng-Yuan; Zhang, Ying; Guo, Qing-Xiang; Fu, Yao

    2013-01-01

    Formose reaction converts formaldehyde to carbohydrates. We found that formose reaction can be used linking the biomass gasification with the aqueous-phase processing (APP) to produce liquid transportation fuel in three steps. First, formaldehyde from syn-gas was converted to triose. This was followed by aldol condensation and dehydration to 4-hydroxymethylfurfural (4-HMF). Finally, 4-HMF was hydrogenated to produce 2,4-dimethylfuran (2,4-DMF) or C(9)-C(15) branched-chain alkanes as liquid transportation fuels. In the linked strategy, high energy-consuming pretreatment as well as expensive and polluting hydrolysis of biomass were omitted, but the high energy recovery of APP was inherited. In addition, the hexoketoses via formose reaction could be converted to HMFs directly without isomerization. A potential platform molecule 4-HMF was formed simultaneously in APP. PMID:23393625

  5. Linked strategy for the production of fuels via formose reaction

    PubMed Central

    Deng, Jin; Pan, Tao; Xu, Qing; Chen, Meng-Yuan; Zhang, Ying; Guo, Qing-Xiang; Fu, Yao

    2013-01-01

    Formose reaction converts formaldehyde to carbohydrates. We found that formose reaction can be used linking the biomass gasification with the aqueous-phase processing (APP) to produce liquid transportation fuel in three steps. First, formaldehyde from syn-gas was converted to triose. This was followed by aldol condensation and dehydration to 4-hydroxymethylfurfural (4-HMF). Finally, 4-HMF was hydrogenated to produce 2,4-dimethylfuran (2,4-DMF) or C9-C15 branched-chain alkanes as liquid transportation fuels. In the linked strategy, high energy-consuming pretreatment as well as expensive and polluting hydrolysis of biomass were omitted, but the high energy recovery of APP was inherited. In addition, the hexoketoses via formose reaction could be converted to HMFs directly without isomerization. A potential platform molecule 4-HMF was formed simultaneously in APP. PMID:23393625

  6. Fragmentation reactions on nuclei: Condensation of vapour or shattering of glass?

    NASA Astrophysics Data System (ADS)

    Aichelin, J.; Huefner, J.

    1984-02-01

    We analyse charge yield curves d σ/d Z from inclusive fragmentation reactions of the type AP+ AT→ Z+ X where a high energy projectile AP(p,C) collides with a target AT(U, Ag, Xe, Kr) and a fragment of charge Z is observed. The principle of minimal information together with charge conservation leads to an expression for the shape of d σ/d Z which describes the experiments without free parameter.

  7. Condensation reactions of guanidines with bis-electrophiles: Formation of highly nitrogenous heterocyclesa

    PubMed Central

    Arnold, David M.; LaPorte, Matthew G.; Anderson, Shelby M.; Wipf, Peter

    2013-01-01

    2-Amino-1,4-dihydropyrimidines were reacted with bis-electrophiles to produce novel fused bi-pyrimidine, pyrimido-aminotriazine, and pyrimido-sulfonamide scaffolds. In addition, a quinazoline library was constructed using a guanidine Atwal-Biginelli reaction with 1-(quinazolin-2-yl)guanidines. The product heterocycles have novel constitutions with high nitrogen atom counts and represent valuable additions to screening libraries for the discovery of new modulators of biological targets. PMID:23976798

  8. Experimental evidence for condensation reactions between sugars and proteins in carbonate skeletons

    NASA Astrophysics Data System (ADS)

    Collins, M. J.; Westbroek, P.; Muyzer, G.; de Leeuw, J. W.

    1992-04-01

    Melanoidins, condensation products formed from protein and polysaccharide precursors, were once thought to be an important geological sink for organic carbon. The active microbial recycling of the precursors, coupled with an inability to demonstrate the formation of covalent linkages between amino acids and sugars in melanoidins, has shaped a powerful argument against this view. Yet, melanoidins may still be an abundant source of macromolecules in fossil biominerals such as shells, in which the proteins and polysaccharides are well protected from microbial degradation. We have modelled diagenetic changes in a biomineral by heating at 90°C mixtures of protein, polysaccharides and finely ground calcite crystals in sealed glass vials. Changes to the protein bovine serum albumin (BSA, fraction V) were monitored by means of gel electrophoresis and immunology. In the presence of water, BSA was rapidly hydrolyzed and remained immunologically reactive for less than 9 h. Under anhydrous conditions the protein was immunologically reactive for the whole period of the experiment (1281 h), unless mono- or disaccharide sugars were also present. In the presence of these reactive sugars, browning, a discrete increase in molecular weight of the protein and a concomitant loss of antigenicity confirmed that the sugars were attaching covalently to the protein, forming melanoidins. The de novo formation of products cross-reactive with antibodies raised against organic matter isolated from the shells of a fossil mollusc ( Mercenaria mercenaria) indicated that at least in part the model simulated natural diagenesis. We roughly estimate that, at the global scale, 2.4 × 10 6 tonnes of calcified tissue matrix glycoproteins is processed annually through the melanoidin pathway. This amount would be equivalent to 7 per mil of the total flux of organic carbon into marine sediments.

  9. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    NASA Astrophysics Data System (ADS)

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2014-11-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, Attenuated Total Reflectance-Fourier Transform Infrared and 1H Nuclear Magnetic Resonance spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene, which was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence for products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and methylglyoxal

  10. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    NASA Astrophysics Data System (ADS)

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2015-04-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt%) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  11. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    PubMed Central

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2016-01-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40–80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance–Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  12. Catalytic condensation of formaldehyde in aqueous solution initiated by UV irradiation as putative "prebiological" route of the monosaccharides formation

    NASA Astrophysics Data System (ADS)

    Pestunova, O. P.; Simonov, A. N.; Matvienko, L. G.; Snytnikov, V. N.; Parmon, V. N.; Snytnikova, O. A.; Tsentalovich, Yu. P.

    The condensation of formaldehyde into higher monosaccharides in aqueous alkaline solutions catalyzed by several metal ions in particular Ca 2 and Mg 2 named as formose reaction is considered as a probable source of carbohydrates in prebiotic conditions Formaldehyde is detected in significant amounts in molecular clouds in space Undoubtedly it was an important gas component of circumsolar protoplanet disk Naturally formaldehyde could be dissolved in water of the Protoearth Calcium and magnesium that are capable of creating an alkaline medium are the abundant elements Thus the basic conditions for the formose reaction and for formation of monosaccharides in nature could be met However the formose reaction is autocatalytic since it can be initiated only in the presence of carbohydrates In spite of the fact that Russian chemist Butlerov discovered the formose reaction almost 150 years ago the reason of autocatalytic character of the process and the mechanism of initiation till now remained not quite clear In our work regular investigation of the mechanism of the formose reaction was carried out Influence of various initiators on reaction kinetics and composition of products was studied The composition of the formose reaction products in presence of different initiators is practically invariable under steady-state conditions and is caused by an aldol condensation of the lowest N 2 - and C 3 -carbohydrates The ability of the C 4 -C 6 sugars to initiate the formose reaction is revealed to correlate with the

  13. Engineering the donor selectivity of D-fructose-6-phosphate aldolase for biocatalytic asymmetric cross-aldol additions of glycolaldehyde.

    PubMed

    Szekrenyi, Anna; Soler, Anna; Garrabou, Xavier; Guérard-Hélaine, Christine; Parella, Teodor; Joglar, Jesús; Lemaire, Marielle; Bujons, Jordi; Clapés, Pere

    2014-09-22

    D-Fructose-6-phosphate aldolase (FSA) is a unique catalyst for asymmetric cross-aldol additions of glycolaldehyde. A combination of a structure-guided approach of saturation mutagenesis, site-directed mutagenesis, and computational modeling was applied to construct a set of FSA variants that improved the catalytic efficiency towards glycolaldehyde dimerization up to 1800-fold. A combination of mutations in positions L107, A129, and A165 provided a toolbox of FSA variants that expand the synthetic possibilities towards the preparation of aldose-like carbohydrate compounds. The new FSA variants were applied as highly efficient catalysts for cross-aldol additions of glycolaldehyde to N-carbobenzyloxyaminoaldehydes to furnish between 80-98 % aldol adduct under optimized reaction conditions. Donor competition experiments showed high selectivity for glycolaldehyde relative to dihydroxyacetone or hydroxyacetone. These results demonstrate the exceptional malleability of the active site in FSA, which can be remodeled to accept a wide spectrum of donor and acceptor substrates with high efficiency and selectivity. PMID:25146467

  14. Catalytic Aldol-Cyclization Cascade of 3-Isothiocyanato Oxindoles with α-Ketophosphonates for the Enantioselective Synthesis of β-Amino-α-hydroxyphosphonates.

    PubMed

    Kayal, Satavisha; Mukherjee, Santanu

    2015-11-01

    A cascade aldol-cyclization reaction between 3-isothiocyanato oxindoles and α-ketophosphonates has been developed for the synthesis of β-amino-α-hydroxyphosphonate derivatives. Catalyzed by a quinine-based tertiary amino-thiourea derivative, this reaction delivers 2-thioxooxazolidinyl phosphonates based on a spirooxindole scaffold bearing two contiguous quaternary stereogenic centers in high yields with excellent diastereo- (up to >20:1 dr) and enantioselectivities (up to >99:1 er). PMID:26512732

  15. Intramolecular condensation reactions of {alpha},{omega}-bis(triethoxysilyl)alkanes. Formation of cyclic disilsesquioxanes

    SciTech Connect

    Loy, D.A.; Carpenter, J.P.; Myers, S.A.; Assink, R.A.; Small, J.H.; Greaves, J.; Shea, K.J.

    1996-09-04

    In this paper, we used mass spectrometry and {sup 29}Si NMR spectroscopy to discover that the length of the alkylene-bridging groups had a pronounced effect on the competition between cyclization and polymerization of {alpha},{omega}-bis(triethoxysilyl)alkanes and on the formation of polymeric gels. While the intramolecular reaction clearly slows gelation, the cyclic disilsesquioxanes are still tetrafunctional monomers theoretically capable of forming polymeric gels. If the ring structures, which bear a striking resemblence to carbohydrates, are preserved through the polymerization, the resulting poly(cyclic disilsesquioxane) gels may have structural similarities to branched or cross-linked carbohydrates, such as cellulose or chitosan. Under base-catalyzed sol-gel polymerization conditions, 3 and 4 (six- and seven-membered cyclic disilsesquioxanes, respectively) quickly reacted to give gels with significant ring opening as determined from the {sup 29}Si chemical shifts in solid-state (CP MAS) NMR spectra. However, gels prepared under acidic conditions reveal some or all of the cyclic disilsesquioxane functionality was preserved in the polymers. 13 refs., 1 fig.

  16. Vapor-phase reaction of acetophenone with methanol or dimethyl carbonate on magnesium oxide and magnesium phosphates

    SciTech Connect

    Aramendia, M.A.; Borau, V.; Jimenez, C.; Marinas, J.M.; Romero, F.J.

    1999-04-01

    The vapor-phase reaction of acetophenone with methanol on magnesium oxide, various magnesium phosphates, and combinations of the two types of catalysts was studied. The process was found to involve the Meerwein-Ponndorf-Verley reaction, aldol condensations, dehydrations, and hydrogenations. The presence of basic sites is indispensable for the reaction to develop; however, acid sites also play an active role. The selectivity for each reaction product depends on the particular catalyst used. The total conversion is maximal with the catalysts containing the largest populations of acid and basic sites. Also, catalysts with large numbers of acid sites exhibit an increased selectivity towards the corresponding alkenes. The use of dimethyl carbonate instead of methanol alters the reaction selectivity to an extent dependent on the particular catalyst and operating conditions. However, this also results in markedly decreased total conversion in some instances.

  17. Catalytic solid substrate room temperature phosphorimetry for the determination of trace rhamnose based on its condensation reaction with calcein

    NASA Astrophysics Data System (ADS)

    Liu, Jia-Ming; Lin, Li-Ping; Wang, Hong-Xin; Lin, Shao-Qin; Zhang, Li-Hong; Cai, Wen-Lian; Lin, Xuan; Pan, You-Zhu; Wang, Xin-Xing; Li, Zhi-Ming; Jiao, Li; Cui, Ma-Lin

    2011-12-01

    Calcein (R) could not only emit strong and stable room temperature phosphorescence (RTP) on filter paper using I - as perturber, but also could be oxidized by H 2O 2 to form a non-phosphorescence compound (R'), resulting in the quenching of RTP signal of R. Moreover, the ortho-hydrogen of phenolic hydroxyl in R took condensation reaction with rhamnose (Rha) to produce non-phosphorescence compound (R-Rha) causing the RTP signal of R to further quench, and R-Rha was oxidized by H 2O 2 to form R' and Rha, bringing about the sharp RTP signal quenching of R. Thus, a new solid substrate room temperature phosphorimetry (SSRTP) for the determination of trace Rha based on its strong catalytic effect on H 2O 2 oxidizing R has been established, with the detection limit (LD) of 7.8 zg spot -1 (corresponding concentration: 2.0 × 10 -17 g ml -1, sample volume: 0.40 μl spot -1). This method has been applied to determine trace Rha in cigarettes and jujubes, with the results coinciding well with those determined by a high performance liquid chromatography (HPLC). The component of R-Rha also was analyzed by means of HPLC, mass spectrometer and nuclear magnetic resonance (NMR) measurements. The mechanism of catalytic SSRTP for the determination of trace Rha was discussed.

  18. Microwave-Assisted Condensation Reactions of Acetophenone Derivatives and Activated Methylene Compounds with Aldehydes Catalyzed by Boric Acid under Solvent-Free Conditions.

    PubMed

    Brun, Elodie; Safer, Abdelmounaim; Carreaux, François; Bourahla, Khadidja; L'helgoua'ch, Jean-Martial; Bazureau, Jean-Pierre; Villalgordo, Jose Manuel

    2015-01-01

    We here disclosed a new protocol for the condensation of acetophenone derivatives and active methylene compounds with aldehydes in the presence of boric acid under microwave conditions. Implementation of the reaction is simple, healthy and environmentally friendly owing to the use of a non-toxic catalyst coupled to a solvent-free procedure. A large variety of known or novel compounds have thus been prepared, including with substrates bearing acid or base-sensitive functional groups. PMID:26111185

  19. Copper-catalyzed one-pot denitrogenative-dehydrogenative-decarboxylative coupling of β-ketoacids with trifluorodiazoethane: facile access to trifluoromethylated aldol products.

    PubMed

    Xiong, Heng-Ying; Yang, Zhen-Yan; Chen, Zhen; Zeng, Jun-Liang; Nie, Jing; Ma, Jun-An

    2014-07-01

    A novel copper-catalyzed one-pot cross-coupling of β-ketoacids with in situ generated trifluorodiazoethane has been developed. This reaction provides a direct and efficient method, in which one C-C bond and one C-O bond were formed in a carbenoid center with concomitant denitrogenation-dehydrogenation-decarboxylation, to afford trifluoromethylated aldol products. In several preliminary experiments, good to high enantioselectivities were also obtained. PMID:24889186

  20. Diastereoselective Synthesis of Biheterocyclic Tetrahydrothiophene Derivatives via Base-Catalyzed Cascade Michael-Aldol [3 + 2] Annulation of 1,4-Dithiane-2,5-diol with Maleimides.

    PubMed

    Zhong, Yuan; Ma, Shixiong; Li, Bai; Jiang, Xianxing; Wang, Rui

    2015-07-01

    A highly diastereoselective intermolecular [3 + 2] annulation of 1,4-dithiane-2,5-diol to maleimides has been developed by using DABCO as a catalyst, which provides a series of highly functionalized biheterocyclic tetrahydrothiophene derivatives containing tetrahydrothiophene and pyrolidine backbones in excellent yields and diastereoselectivities (up to 98% yield and >20:1 d.r.). The cascade Michael-aldol reaction is capable of tolerating organic solvents as well as water. PMID:26035462

  1. Engineering stereocontrol into an aldolase-catalysed reaction.

    PubMed

    Lamble, Henry J; Danson, Michael J; Hough, David W; Bull, Steven D

    2005-01-01

    A novel thermostable aldolase has been developed for synthetic application, and substrate engineering has been used to induce stereocontrol into aldol reactions of this naturally-promiscuous enzyme. PMID:15614394

  2. Theory of Bose-Einstein condensation mechanism for deuteron-induced nuclear reactions in micro/nano-scale metal grains and particles.

    PubMed

    Kim, Yeong E

    2009-07-01

    Recently, there have been many reports of experimental results which indicate occurrences of anomalous deuteron-induced nuclear reactions in metals at low energies. A consistent conventional theoretical description is presented for anomalous low-energy deuteron-induced nuclear reactions in metal. The theory is based on the Bose-Einstein condensate (BEC) state occupied by deuterons trapped in a micro/nano-scale metal grain or particle. The theory is capable of explaining most of the experimentally observed results and also provides theoretical predictions, which can be tested experimentally. Scalabilities of the observed effects are discussed based on theoretical predictions. PMID:19440686

  3. One-Pot Synthesis of N-(α-Peroxy)Indole/Carbazole via Chemoselective Three-Component Condensation Reaction in Open Atmosphere.

    PubMed

    Wang, Xinbo; Pan, Yupeng; Huang, Kuo-Wei; Lai, Zhiping

    2015-11-20

    A facile one-pot synthesis of N-(α-peroxy)indole and N-(α-peroxy)carbazole has been developed using metal-free, organo-acid-catalyzed three-component condensation reactions of indole/carbazole, aldehyde, and peroxide. Based on the reaction discovered, a new synthetic proposal for Fumitremorgin A and Verruculogen is introduced. Such a protocol could be easily handled and scaled up in an open atmosphere with a wide substrate scope, enabling the construction of a new molecule library. PMID:26541059

  4. A comparison of radical and non-radical conversion rates of SVOCs in the tropospheric condensed phase

    NASA Astrophysics Data System (ADS)

    Tilgner, Andreas; Herrmann, Hartmut

    2010-05-01

    Secondary formation pathways of organic compounds are currently intensely discussed including conversions in tropospheric aqueous particles as well as cloud droplets. Particularly, SVOCs (Semivolatile Organic Compounds) and their reaction products are expected to be potential precursors for the formation of higher molecular organic compounds. In the aqueous phase, such compounds can undergo both various oxidative processes (radical and non-radical oxidants reactions) and non oxidative processes (aldol, acetal, dimerisation and ester formation reactions). These chemical aqueous phase processes are expected to be very efficient proceeding on short timescales and produce multifunctional organic compounds of less volatility. However, the importance of non-radical reactions compared to currently known radical oxidations under different conditions has not yet been assessed .Current aqueous phase mechanisms such as CAPRAM (Chemical Aqueous Phase RAdical Mechanism; Herrmann et al., 2005) do consider radical oxidation processes of organic compounds. In the present study, a comparison of radical and non-radical conversion rates of organics in cloud droplet and aqueous particles is performed for both urban and remote environmental conditions. For the comparison, available reaction rate constants have been used together with outcome of recent model simulations (Tilgner and Herrmann, 2010) using the CAPRAM 3.0i mechanism. First order-conversion rate constants in the aqueous phase for cloud and aqueous particle conditions, for (i) OH, (ii) NO3, (iii) H2O2, (iv) the aldol condensation, (v) the dimerisation and (vi) the ammonium-catalysed accretion reactions were calculated with the available, at current quite restricted data set. From the comparison, it is concluded that organic accretion reactions might be of interest in some cases but generally do by far not reach the oxidative conversion rates of radical and non-radical oxidants. Particularly, the adol condensation reactions

  5. Interstellar silicate analogs for grain-surface reaction experiments: Gas-phase condensation and characterization of the silicate dust grains

    SciTech Connect

    Sabri, T.; Jäger, C.; Gavilan, L.; Lemaire, J. L.; Vidali, G.; Henning, T.

    2014-01-10

    Amorphous, astrophysically relevant silicates were prepared by laser ablation of siliceous targets and subsequent quenching of the evaporated atoms and clusters in a helium/oxygen gas atmosphere. The described gas-phase condensation method can be used to synthesize homogeneous and astrophysically relevant silicates with different compositions ranging from nonstoichiometric magnesium iron silicates to pyroxene- and olivine-type stoichiometry. Analytical tools have been used to characterize the morphology, composition, and spectral properties of the condensates. The nanometer-sized silicate condensates represent a new family of cosmic dust analogs that can generally be used for laboratory studies of cosmic processes related to condensation, processing, and destruction of cosmic dust in different astrophysical environments. The well-characterized silicates comprising amorphous Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4}, as well as the corresponding crystalline silicates forsterite and fayalite, produced by thermal annealing of the amorphous condensates, have been used as real grain surfaces for H{sub 2} formation experiments. A specifically developed ultra-high vacuum apparatus has been used for the investigation of molecule formation experiments. The results of these molecular formation experiments on differently structured Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4} described in this paper will be the topic of the next paper of this series.

  6. Transport-induced shifts in condensate dew-point and composition in multicomponent systems with chemical reaction

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Nagarajan, R.

    1985-01-01

    Partial heterogeneous condensation phenomena in multicomponent reacting systems are analyzed taking into consideration the chemical element transport phenomena. It is demonstrated that the dew-point surface temperature in chemically reactive systems is not a purely thermodynamic quantity, but is influenced by the multicomponent diffusion and Soret-mass diffusion phenomena. Several distinct dew-points are shown to exist in such systems and, as a result of transport constraints, the 'sharp' locus between two chemically distinct condensates is systematically moved to a difference mainstream composition.

  7. NUMERICAL TECHNIQUES TO SOLVE CONDENSATIONAL AND DISSOLUTIONAL GROWTH EQUATIONS WHEN GROWTH IS COUPLED TO REVERSIBLE REACTIONS (R823186)

    EPA Science Inventory

    Noniterative, unconditionally stable numerical techniques for solving condensational and
    dissolutional growth equations are given. Growth solutions are compared to Gear-code solutions for
    three cases when growth is coupled to reversible equilibrium chemistry. In all cases, ...

  8. Organic reactions increasing the absorption index of atmospheric sulfuric acid aerosols

    NASA Astrophysics Data System (ADS)

    Nozière, B.; Esteve, W.

    2005-02-01

    Unlike most environments present at Earth's surface atmospheric aerosols can be favorable to organic reactions. Among them, the acid-catalyzed aldol condensation of aldehydes and ketones produces light-absorbing compounds. In this work the increase of the absorption index of sulfuric acid solutions 50-96 wt. % resulting from the uptake of gas-phase acetaldehyde, acetone, and 2-butanone (methyl ethyl ketone), has been measured in the near UV and visible range. Our results indicate that the absorption index between 200 and 500 nm for stratospheric sulfuric aerosols exposed to 100 pptV of acetaldehyde (1 pptV = 10-12 v/v) would increase by four orders of magnitude over a two-year lifetime. Rough estimates based on previous radiative calculations suggest that this reaction could result in an increase of the radiative forcing of sulfate aerosols of the order of 0.01 W m-2, and that these processes are worth further investigation.

  9. Rational nanoconjugation improves biocatalytic performance of enzymes: aldol addition catalyzed by immobilized rhamnulose-1-phosphate aldolase.

    PubMed

    Ardao, Inés; Comenge, Joan; Benaiges, M Dolors; Álvaro, Gregorio; Puntes, Víctor F

    2012-04-17

    Gold nanoparticles (AuNPs) are attractive materials for the immobilization of enzymes due to several advantages such as high enzyme loading, absence of internal diffusion limitations, and Brownian motion in solution, compared to the conventional immobilization onto porous macroscopic supports. The affinity of AuNPs to different groups present at the protein surface enables direct enzyme binding to the nanoparticle without the need of any coupling agent. Enzyme activity and stability appear to be improved when the biocatalyst is immobilized onto AuNPs. Rhamnulose-1-phosphate aldolase (RhuA) was selected as model enzyme for the immobilization onto AuNPs. The enzyme loading was characterized by four different techniques: surface plasmon resonance (SPR) shift and intensity, dynamic light scattering (DLS), and transmission electron microscopy (TEM). AuNPs-RhuA complexes were further applied as biocatalyst of the aldol addition reaction between dihydroxyacetone phosphate (DHAP) and (S)-Cbz-alaninal during two reaction cycles. In these conditions, an improved reaction yield and selectivity, together with a fourfold activity enhancement were observed, as compared to soluble RhuA. PMID:22428999

  10. The formation of glycerol monodecanoate by a dehydration/condensation reaction: increasing the chemical complexity of amphiphiles on the early earth

    NASA Astrophysics Data System (ADS)

    Apel, C. L.; Deamer, D. W.

    Dehydration/condensation reactions between organic molecules in the prebiotic environment increased the inventory and complexity of organic compounds available for self-assembly into protocellular structures. As a model of such reactions, we have investigated the esterification reaction between glycerol and decanoic acid that forms glycerol monodecanoate. This amphiphile enhances robustness of self-assembled membranous structures of carboxylic acids to the potentially disruptive effects of pH, divalent cation binding and osmotic stress. Experimental variables included temperature, water activity and hydrolysis of the resulting ester product, providing insights into the environmental conditions that would favour the formation and stability of this more evolved amphiphile. At temperatures exceeding 500 C, the ester product formed even in the presence of bulk water, suggesting that the reaction occurs at the liquid interface of the two reactants and that the products segregate in the two immiscible layers, thereby reducing the rate of the hydrolytic back reaction. This suggests that esterification reactions were likely to commonly occur in the prebiotic environment as available reactants underwent cycles of wetting and drying on early landmasses at elevated temperatures.

  11. Enantio- and Diastereoselective Formal Hetero-Diels-Alder Reactions of Trifluoromethylated Enones Catalyzed by Chiral Primary Amines.

    PubMed

    Lin, Yong-Jun; Du, Li-Na; Kang, Tai-Ran; Liu, Quan-Zhong; Chen, Ze-Qin; He, Long

    2015-08-10

    Enantioselective formal hetero-Diels-Alder reactions of trifluoromethylated enones and 2-amino-1,3-butadienes generated in situ from aliphatic acyclic enones and chiral primary amines are reported. The corresponding tetrahydropyran-4-ones are formed in up to 94 % yield and with up to 94 % ee. The reaction was carried out through a stepwise mechanism, including initial aminocatalytic aldol condensation of 2-amino-1,3-butadiene to the trifluoromethylated carbonyl group followed by an intramolecular oxa-Michael addition. Both NMR investigation and theoretical calculations on the transition state indicate that the protonated tertiary amine could effectively activate the carbonyl group of the trifluoromethyl ketone to promote the addition process through hydrogen-bonding interaction of N-H⋅⋅⋅F and N-H⋅⋅⋅O simultaneously, and thus provide a chiral environment for the approach of amino-1,3-butadienes to the activated trifluoromethyl ketone, resulting in high enantioselectivity. PMID:26179273

  12. Charge-dependent non-bonded interaction methods for use in quantum mechanical modeling of condensed phase reactions

    NASA Astrophysics Data System (ADS)

    Kuechler, Erich R.

    Molecular modeling and computer simulation techniques can provide detailed insight into biochemical phenomena. This dissertation describes the development, implementation and parameterization of two methods for the accurate modeling of chemical reactions in aqueous environments, with a concerted scientific effort towards the inclusion of charge-dependent non-bonded non-electrostatic interactions into currently used computational frameworks. The first of these models, QXD, modifies interactions in a hybrid quantum mechanical/molecular (QM/MM) mechanical framework to overcome the current limitations of 'atom typing' QM atoms; an inaccurate and non-intuitive practice for chemically active species as these static atom types are dictated by the local bonding and electrostatic environment of the atoms they represent, which will change over the course of the simulation. The efficacy QXD model is demonstrated using a specific reaction parameterization (SRP) of the Austin Model 1 (AM1) Hamiltonian by simultaneously capturing the reaction barrier for chloride ion attack on methylchloride in solution and the solvation free energies of a series of compounds including the reagents of the reaction. The second, VRSCOSMO, is an implicit solvation model for use with the DFTB3/3OB Hamiltonian for biochemical reactions; allowing for accurate modeling of ionic compound solvation properties while overcoming the discontinuous nature of conventional PCM models when chemical reaction coordinates. The VRSCOSMO model is shown to accurately model the solvation properties of over 200 chemical compounds while also providing smooth, continuous reaction surfaces for a series of biologically motivated phosphoryl transesterification reactions. Both of these methods incorporate charge-dependent behavior into the non-bonded interactions variationally, allowing the 'size' of atoms to change in meaningful ways with respect to changes in local charge state, as to provide an accurate, predictive and

  13. CYCLODEXTRIN-BASED CLASS I ALDOLASE ENZYME MIMICS TO CATALYZE CROSSED ALDOL CONDENSATIONS. (R826653)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  14. Markers of heterogeneous reaction products in α-pinene ozone secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Czoschke, Nadine M.; Jang, Myoseon

    A gas chromatograph iontrap mass spectrometer (GC-ITMS) was used to analyze the gas-and particle-phase products of α-pinene ozone oxidation in the presence of three different inorganic seed aerosols: sodium chloride, ammonium sulfate only, and ammonium sulfate with sulfuric acid. Products of α-pinene ozone oxidation common to the literature showed little difference in gas or particle-phase concentrations between seed types within the precision of the measurements even though significantly different aerosol yields were found between seed types. Small amounts of ring-opening products of four-membered cyclic oxygenates and markers of aldol condensation products were tentatively identified in the particle-phase for all seed types. These tentatively identified products are thought to be the result of acid-catalyzed heterogeneous reactions in the particle-phase or during sampling processes or analysis. The mechanisms for their formation are also proposed in this study.

  15. Synergistic Effects in Bimetallic Palladium-Copper Catalysts Improve Selectivity in Oxygenate Coupling Reactions.

    PubMed

    Goulas, Konstantinos A; Sreekumar, Sanil; Song, Yuying; Kharidehal, Purnima; Gunbas, Gorkem; Dietrich, Paul J; Johnson, Gregory R; Wang, Y C; Grippo, Adam M; Grabow, Lars C; Gokhale, Amit A; Toste, F Dean

    2016-06-01

    Condensation reactions such as Guerbet and aldol are important since they allow for C-C bond formation and give higher molecular weight oxygenates. An initial study identified Pd-supported on hydrotalcite as an active catalyst for the transformation, although this catalyst showed extensive undesirable decarbonylation. A catalyst containing Pd and Cu in a 3:1 ratio dramatically decreased decarbonylation, while preserving the high catalytic rates seen with Pd-based catalysts. A combination of XRD, EXAFS, TEM, and CO chemisorption and TPD revealed the formation of CuPd bimetallic nanoparticles with a Cu-enriched surface. Finally, density functional theory studies suggest that the surface segregation of Cu atoms in the bimetallic alloy catalyst produces Cu sites with increased reactivity, while the Pd sites responsible for unselective decarbonylation pathways are selectively poisoned by CO. PMID:27195582

  16. Reactions of D-glucose with phenolic amino acids: further insights into the competition between Maillard and Pictet-Spengler condensation pathways.

    PubMed

    Manini, Paola; Napolitano, Alessandra; d'Ischia, Marco

    2005-12-30

    The reactions of 5-S-cysteinyldopa, L-alpha-methyldopa and DL-m-tyrosine with D-glucose were investigated at 90 degrees C in phosphate buffer at pH ranging from 5.0 to 9.0. Whereas gave mainly the double Maillard condensation product N,N'-bis(1''-deoxy-D-fructos-1''-yl)-5-S-cysteinyldopa, as an inseparable mixture of beta-D-fructopyranosyl and alpha,beta-D-fructofuranosyl derivatives, 2 and 3 gave both Maillard and Pictet-Spengler products, although to different extents and with different regio- and stereochemistry. A peculiar pattern of reactivity was displayed by which gave, besides the Maillard product and the expected 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline C-1 diastereoisomeric pairs, the unprecedented 7,8-dihydroxy-1,2,3,4-tetrahydroisoquinoline derivative via the ortho cyclization pathway. Pictet-Spengler cyclization of 2 and 3 proceeded with Felkin-Anh-type asymmetric induction, favouring the 1R isomer throughout the pH range 5.0-9.0. These results, which highlight the first example of carbohydrate-derived 7,8-dihydroxytetrahydroisoquinoline, provide new insights into the factors governing competition between Maillard and Pictet-Spengler condensation pathways. PMID:16229826

  17. Preparation of neuroprotective condensed 1,4-benzoxazepines by regio- and diastereoselective domino Knoevenagel-[1,5]-hydride shift cyclization reaction.

    PubMed

    Tóth, László; Fu, Yan; Zhang, Hai Yan; Mándi, Attila; Kövér, Katalin E; Illyés, Tünde-Zita; Kiss-Szikszai, Attila; Balogh, Balázs; Kurtán, Tibor; Antus, Sándor; Mátyus, Péter

    2014-01-01

    Condensed O,N-heterocycles containing tetrahydro-1,4-benzoxazepine and tetrahydroquinoline moieties were prepared by a regio- and diastereoselective domino Knoevenagel-[1,5]-hydride shift cyclization reaction of a 4-aryl-2-phenyl-1,4-benzoxazepine derivative obtained from flavanone. The relative configuration of products were determined by the correlation of (3) J H,H coupling data with the geometry of major conformers accessed by DFT conformational analysis. Separated enantiomers of the products were characterized by HPLC-ECD data, which allowed their configurational assignment on the basis of TDDFT-ECD calculation of the solution conformers. Two compounds showed neuroprotective activities against hydrogen peroxide (H2O2) or β-amyloid25-35 (Aβ25-35)-induced cellular injuries in human neuroblastoma SH-SY5Y cells in the range of those of positive controls. PMID:25550721

  18. Preparation of neuroprotective condensed 1,4-benzoxazepines by regio- and diastereoselective domino Knoevenagel–[1,5]-hydride shift cyclization reaction

    PubMed Central

    Tóth, László; Fu, Yan; Zhang, Hai Yan; Mándi, Attila; Kövér, Katalin E; Illyés, Tünde-Zita; Kiss-Szikszai, Attila; Balogh, Balázs; Kurtán, Tibor

    2014-01-01

    Summary Condensed O,N-heterocycles containing tetrahydro-1,4-benzoxazepine and tetrahydroquinoline moieties were prepared by a regio- and diastereoselective domino Knoevenagel–[1,5]-hydride shift cyclization reaction of a 4-aryl-2-phenyl-1,4-benzoxazepine derivative obtained from flavanone. The relative configuration of products were determined by the correlation of 3 J H,H coupling data with the geometry of major conformers accessed by DFT conformational analysis. Separated enantiomers of the products were characterized by HPLC-ECD data, which allowed their configurational assignment on the basis of TDDFT-ECD calculation of the solution conformers. Two compounds showed neuroprotective activities against hydrogen peroxide (H2O2) or β-amyloid25–35 (Aβ25–35)-induced cellular injuries in human neuroblastoma SH-SY5Y cells in the range of those of positive controls. PMID:25550721

  19. Steam generators, turbines, and condensers. Volume six

    SciTech Connect

    Not Available

    1986-01-01

    Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make.), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries).

  20. The kinetics of the bimolecular A+B --> 0 reaction in condensed matter: Effects of non-equilibrium charge screening

    NASA Astrophysics Data System (ADS)

    Kuzovkov, V. N.; Kotomin, E. A.; von Niessen, W.

    1996-12-01

    The kinetics of the bimolecular A+B→0 reaction between charged reactants is studied in two dimensions, i.e., on a surface. The theory is based on the Kirkwood superposition approximation for three-particle densities and the self-consistent treatment of the electrostatic interactions defined by the non-uniform spatial distribution of similar and dissimilar reactants. Special attention is paid to pattern formation and many-particle effects arising from reaction-induced formation of loose domains containing similar reactants only. It is shown that the critical exponent α characterizing the algebraic concentration decay law, n(t)∝t-α, differs strongly between symmetric (DA=DB) and asymmetric (DA=0) reactant mobilities. This effect is abnormal from the point of view of standard chemical kinetics. It arises directly from the specific spatial distribution in the system as in ``raisins A in a dough B.'' At long reaction times the asymptotics of the interaction potentials is of non-equilibrium type at large relative distances. The accumulation kinetics in the presence of a permanent source is studied. Results of the microscopic formalism are compared with a previous mesoscopic theory.

  1. Heterogeneous ceria catalyst with water-tolerant Lewis acidic sites for one-pot synthesis of 1,3-diols via Prins condensation and hydrolysis reactions.

    PubMed

    Wang, Yehong; Wang, Feng; Song, Qi; Xin, Qin; Xu, Shutao; Xu, Jie

    2013-01-30

    The use of a heterogeneous Lewis acid catalyst, which is insoluble and easily separable during the reaction, is a promising option for hydrolysis reactions from both environmental and practical viewpoints. In this study, ceria showed excellent catalytic activity in the hydrolysis of 4-methyl-1,3-dioxane to 1,3-butanediol in 95% yield and in the one-pot synthesis of 1,3-butanediol from propylene and formaldehyde via Prins condensation and hydrolysis reactions in an overall yield of 60%. In-depth investigations revealed that ceria is a water-tolerant Lewis acid catalyst, which has seldom been reported previously. The ceria catalysts showed rather unusual high activity in hydrolysis, with a turnover number (TON) of 260, which is rather high for bulk oxide catalysts, whose TONs are usually less than 100. Our conclusion that ceria functions as a Lewis acid catalyst in hydrolysis reactions is firmly supported by thorough characterizations with IR and Raman spectroscopy, acidity measurements with IR and (31)P magic-angle-spinning NMR spectroscopy, Na(+)/H(+) exchange tests, analyses using the in situ active-site capping method, and isotope-labeling studies. A relationship between surface vacancy sites and catalytic activity has been established. CeO(2)(111) has been confirmed to be the catalytically active crystalline facet for hydrolysis. Water has been found to be associatively adsorbed on oxygen vacancy sites with medium strength, which does not lead to water dissociation to form stable hydroxides. This explains why the ceria catalyst is water-tolerant. PMID:23228093

  2. Possibility of formation of a disoriented chiral condensate in p p collisions at energies available at the CERN Large Hadron Collider via the reaction-diffusion equation

    NASA Astrophysics Data System (ADS)

    Bagchi, Partha; Das, Arpan; Sengupta, Srikumar; Srivastava, Ajit M.

    2016-02-01

    There are indications of formation of a thermalized medium in high multiplicity p p collisions at energies available at the CERN Large Hadron Collider. It is possible that such a medium may reach high enough energy density and temperature that a transient stage of quark-gluon plasma, where chiral symmetry is restored, may be achieved. Due to rapid three-dimensional expansion, the system will quickly cool, undergoing a spontaneous chiral symmetry breaking transition. We study the dynamics of the chiral field, after the symmetry breaking transition, for such an event using a reaction-diffusion equation approach which we have recently applied for studying QCD transitions in relativistic heavy-ion collisions. We show that the interior of such a rapidly expanding system is likely to lead to the formation of a single large domain of disoriented chiral condensate (DCC), which has been a subject of intensive search in earlier experiments. We argue that large multiplicity p p collisions naturally give rise to required boundary conditions for the existence of slowly propagating front solutions of the reaction-diffusion equation with resulting dynamics of the chiral field leading to the formation of a large DCC domain.

  3. Condensed Matter Cluster Reactions in LENR Power Cells for a Radical New Type of Space Power Source

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoling; Miley, George H.; Hora, Heinz

    2009-03-01

    This paper reviews previous theoretical and experimental study on the possibility of nuclear events in multilayer thin film electrodes (Lipson et al., 2004 and 2005; Miley et al., 2007), including the correlation between excess heat and transmutations (Miley and Shrestha, 2003) and the cluster theory that predicts it. As a result of this added understanding of cluster reactions, a new class of electrodes is under development at the University of Illinois. These electrodes are designed to enhance cluster formation and subsequent reactions. Two approaches are under development. The first employs improved loading-unloading techniques, intending to obtain a higher volumetric density of sites favoring cluster formation. The second is designed to create nanostructures on the electrode where the cluster state is formed by electroless deposition of palladium on nickel micro structures. Power units employing these electrodes should offer unique advantages for space applications. This is a fundamental new nuclear energy source that is environmentally compatible with a minimum of radiation involvement, high specific power, very long lifetime, and scalable from micro power to kilowatts.

  4. Condensed Matter Cluster Reactions in LENR Power Cells for a Radical New Type of Space Power Source

    SciTech Connect

    Yang Xiaoling; Miley, George H.; Hora, Heinz

    2009-03-16

    This paper reviews previous theoretical and experimental study on the possibility of nuclear events in multilayer thin film electrodes (Lipson et al., 2004 and 2005; Miley et al., 2007), including the correlation between excess heat and transmutations (Miley and Shrestha, 2003) and the cluster theory that predicts it. As a result of this added understanding of cluster reactions, a new class of electrodes is under development at the University of Illinois. These electrodes are designed to enhance cluster formation and subsequent reactions. Two approaches are under development. The first employs improved loading-unloading techniques, intending to obtain a higher volumetric density of sites favoring cluster formation. The second is designed to create nanostructures on the electrode where the cluster state is formed by electroless deposition of palladium on nickel micro structures. Power units employing these electrodes should offer unique advantages for space applications. This is a fundamental new nuclear energy source that is environmentally compatible with a minimum of radiation involvement, high specific power, very long lifetime, and scalable from micro power to kilowatts.

  5. Iron Oxide-Supported Copper Oxide Nanoparticles (Nanocat-Fe-CuO): Magnetically Recyclable Catalysts for the Synthesis of Pyrazole Derivatives, 4-Methoxyaniline, and Ullmann-type Condensation Reactions

    EPA Science Inventory

    An efficient and benign protocol is reported for the synthesis of 4-methoxyaniline, medicinally important pyrazole derivatives, and Ullmann-type condensation reaction using magnetically separable and reusable magnetite-supported copper (nanocat-Fe-CuO) nanoparticles under mild co...

  6. CONDENSATION CAN

    DOEpatents

    Booth, E.T. Jr.; Pontius, R.B.; Jacobsohn, B.A.; Slade, C.B.

    1962-03-01

    An apparatus is designed for condensing a vapor to a solid at relatively low back pressures. The apparatus comprises a closed condensing chamber, a vapor inlet tube extending to the central region of the chamber, a co-axial tubular shield surrounding the inlet tube, means for heating the inlet tube at a point outside the condensing chamber, and means for refrigeratirg the said chamber. (AEC)

  7. An investigation of the role of water on retrograde/condensation reactions and enhanced liquefaction yields. Quarterly progress report, October 1, 1992--December 31, 1992

    SciTech Connect

    Miknis, F.P.

    1993-01-01

    The overall objectives of this work are to conduct research that will provide the basis for an improved liquefaction process, and to facilitate our understanding of those processes that occur when coals are initially dissolved. Changes in coal structure that occur during coal drying and steam pretreatments will be measured in order to determine what effect water has on retrograde/condensation reactions, and to determine the mechanism by which water enhances coal reactivity toward liquefaction. Different methods for coal drying wig be investigated to determine if drying can be accomplished without destroying coal reactivity toward liquefaction, thereby making coal drying a relatively economical and efficient method for coal pretreatment. Coal drying methods will include conventional thermal drying, microwave drying, and chemical drying at low temperature. State-of-the-art solid-state nuclear magnetic resonance (NMR) techniques using combined rotation and multiple pulse spectroscopy (CRAMPS) and cross polarization with magic-angle spinning (CP/MAS) will be employed: (1) to measures changes in coal structure brought about by the different methods of drying and by low temperature oxidation, and (2) to obtain direct measurements of changes in the aromatic hydrogen-to-carbon ratio of the solid/semisolid material formed or remaining during pretreatment and the initial stages of liquefaction.

  8. Amine catalyzed condensation of tetraethylorthosilicate

    NASA Technical Reports Server (NTRS)

    Jones, S.

    2001-01-01

    The catalysis of the condensation of hydrolyzed metal alkoxides by amines has been mentioned in the literature, but there has been no systematic study of their influence on the rate of the condensation reaction of the alkoxide and the microstructure of the resultant gel.

  9. Evidence for alpha-cluster condensation in the 0{sub 2}{sup +} state at E{sub x} = 7.654 MeV in {sup 12}C via the (p,p') reaction at 300 MeV

    SciTech Connect

    Okamoto, A.; Yamagata, T.; Akimune, H.; Hara, K. Y.; Kinoshita, M.; Utsunomiya, H.; Warashina, N.; Fujiwara, M.; Fushimi, K.; Hayami, R.; Nakayama, S.; Greenfield, M. B.; Hara, K.; Hashimoto, H.; Kawase, K.; Nakanishi, N.; Yosoi, M.; Hirabayashi, H.; Tanaka, M.

    2010-06-01

    We measured the differential cross sections for the 0{sub 2}{sup +} state at E{sub x} = 7.654 MeV in {sup 12}C via the (p,p') reaction at an incident energy of 300 MeV, and in an angular range from 2.7 deg. to 40 deg. We analyzed the data with the distorted-wave Born-approximation (DWBA) employing transition densities obtained in a macroscopic collective model, a microscopic alpha-cluster model, and a microscopic alpha-cluster condensation model. It is concluded that the present results for the {sup 12}C(p,p') reaction at 300 MeV is quite consistent with the assumption that the 0{sub 2}{sup +} state at E{sub x} = 7.654 MeV has the wave function with the alpha-cluster condensation.

  10. Adsorption and Reaction of Acetaldehyde on Stoichiometric and Defective SrTiO₃(100) Surfaces

    SciTech Connect

    Wang, Li Q.; Ferris, Kim F.; Azad, Samina; Engelhard, Mark H.; Peden, Charles HF.

    2004-02-05

    The adsorption and reaction of acetaldehyde (CH{sub 3}CHO), on stoichiometric (TiO{sub 2}-terminated) and reduced SrTiO{sub 3}(100) surfaces, have been investigated using temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). Acetaldehyde adsorbs molecularly on the stoichiometric SrTiO{sub 3}(100) surface that contains predominantly Ti{sup 4+} cations. The Ti{sup 4+} sites on the stoichiometric SrTiO{sub 3}(100) surface are not sufficiently active for surface reactions such as aldol condensation, as opposed to the Ti{sup 4+} ions on the TiO{sub 2}(001) surface. However, decomposition and redox reactions of acetaldehyde occur in the presence of surface defects created by Ar{sup +} sputtering. The decomposition products following reactions of acetaldehyde on the defective surface include H{sub 2}, C{sub 2}H{sub 4}, CO, C{sub 4}H{sub 6}, and C{sub 4}H{sub 8}. Reductive coupling, to produce C{sub 2}H{sub 4} and C{sub 4}H{sub 8} is the main reaction pathway for decomposition of acetaldehyde on the sputter reduced SrTiO{sub 3}(100) surface.

  11. Mathematical model for aldol addition catalyzed by two D-fructose-6-phosphate aldolases variants overexpressed in E. coli.

    PubMed

    Sudar, Martina; Findrik, Zvjezdana; Vasić-Rački, Durđa; Clapés, Pere; Lozano, Carles

    2013-09-10

    Two D-fructose-6-phosphate aldolase variants namely, single variant FSA A129S and double variant FSA A129S/A165G, were used as catalysts in the aldol addition of dihydroxyacetone (DHA) to N-Cbz-3-aminopropanal. Mathematical model for reaction catalyzed by both enzymes, consisting of kinetic and mass balance equations, was developed. Kinetic parameters were estimated from the experimental data gathered by using the initial reaction rate method. The model was validated in the batch and continuously operated ultrafiltration membrane reactor (UFMR). The same type of kinetic model could be applied for both enzymes. The operational stability of the aldolases was assessed by measuring enzyme activity during the experiments. FSA A129S/A165G had better operational stability in the batch reactor (half-life time 26.7 h) in comparison to FSA A129S (half-life time 5.78 h). Both variants were unstable in the continuously operated UFMR in which half-life times were 1.99 and 3.64 h for FSA A129S and FSA A129S/A165G, respectively. PMID:23876482

  12. Aldol addition of dihydroxyacetone to N-Cbz-3-aminopropanal catalyzed by two aldolases variants in microreactors.

    PubMed

    Sudar, Martina; Findrik, Zvjezdana; Vasić-Rački, Durđa; Clapés, Pere; Lozano, Carles

    2013-06-10

    Aldol addition of dihydroxyacetone to N-Cbz-3-aminopropanal catalyzed by two d-fructose-6-phosphate aldolase variants, FSA A129S and FSA A129S/A165G, overexpressed in Escherichia coli was studied in microreactors. The presence of organic solvent was necessary due to poor solubility of N-Cbz-3-aminopropanal in water. Hence, three co-solvents were evaluated: ethyl acetate, acetonitrile and dimethylformamide (DMF). The influence of these solvents and their concentration on the enzyme activity was independently tested and it was found that all solvents significantly reduce the activity of FSA depending on their concentration. The reaction was carried out in three different microreactors; two without and one with micromixers. By increasing enzyme concentration, it was possible to achieve higher substrate conversion at lower residence time. Enzyme activity measured at the outlet flow of the microreactor at different residence time revealed that enzymes are more stable at lower residence times due to shorter time of exposure to organic solvent. The reaction in the batch reactor was compared with the results in microreactor with micromixers. Volume productivity was more than three fold higher in microreactor with micromixers than in the batch reactor for both aldolases. It was found to be 0.88Md(-1) and 0.80Md(-1) for FSA A129S and FSA A129S/A165G, respectively. PMID:23683703

  13. Formation of C-C and C-O bonds and oxygen removal in reactions of alkanediols, alkanols, and alkanals on copper catalysts.

    PubMed

    Sad, María E; Neurock, Matthew; Iglesia, Enrique

    2011-12-21

    This study reports evidence for catalytic deoxygenation of alkanols, alkanals, and alkanediols on dispersed Cu clusters with minimal use of external H(2) and with the concurrent formation of new C-C and C-O bonds. These catalysts selectively remove O-atoms from these oxygenates as CO or CO(2) through decarbonylation or decarboxylation routes, respectively, that use C-atoms present within reactants or as H(2)O using H(2) added or formed in situ from CO/H(2)O mixtures via water-gas shift. Cu catalysts fully convert 1,3-propanediol to equilibrated propanol-propanal intermediates that subsequently form larger oxygenates via aldol-type condensation and esterification routes without detectable involvement of the oxide supports. Propanal-propanol-H(2) equilibration is mediated by their chemisorption and interconversion at surfaces via C-H and O-H activation and propoxide intermediates. The kinetic effects of H(2), propanal, and propanol pressures on turnover rates, taken together with measured selectivities and the established chemical events for base-catalyzed condensation and esterification reactions, indicate that both reactions involve kinetically relevant bimolecular steps in which propoxide species, acting as the base, abstract the α-hydrogen in adsorbed propanal (condensation) or attack the electrophilic C-atom at its carbonyl group (esterification). These weakly held basic alkoxides render Cu surfaces able to mediate C-C and C-O formation reactions typically catalyzed by basic sites inherent in the catalyst, instead of provided by coadsorbed organic moieties. Turnover rates for condensation and esterification reactions decrease with increasing Cu dispersion, because low-coordination corner and edge atoms prevalent on small clusters stabilize adsorbed intermediates and increase the activation barriers for the bimolecular kinetically relevant steps required for both reactions. PMID:22023723

  14. Yb(OTf)3-Mediated Access to Furans from β-Ketothioamides via Eschenmoser Sulfide Contraction Reaction.

    PubMed

    Li, Ming; Kong, Xiang-Jing; Wen, Li-Rong

    2015-12-18

    A mild and straightforward synthetic protocol for construction of a furan skeleton promoted by Yb(OTf)3 from β-ketothioamides and arylglyoxals has been developed at room temperature. Importantly, this protocol involves a tandem sequence that includes aldol condensation, N-cyclization, ring opening, O-cyclization, S-cyclization, and Eschenmoser sulfide contraction. PMID:26551164

  15. Condensation polyimides

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.

    1989-01-01

    Polyimides belong to a class of polymers known as polyheterocyclics. Unlike most other high temperature polymers, polyimides can be prepared from a variety of inexpensive monomers by several synthetic routes. The glass transition and crystalline melt temperature, thermooxidative stability, toughness, dielectric constant, coefficient of thermal expansion, chemical stability, mechanical performance, etc. of polyimides can be controlled within certain boundaries. This versatility has permitted the development of various forms of polyimides. These include adhesives, composite matrices, coatings, films, moldings, fibers, foams and membranes. Polyimides are synthesized through both condensation (step-polymerization) and addition (chain growth polymerization) routes. The precursor materials used in addition polyimides or imide oligomers are prepared by condensation method. High molecular weight polyimide made via polycondensation or step-growth polymerization is studied. The various synthetic routes to condensation polyimides, structure/property relationships of condensation polyimides and composite properties of condensation polyimides are all studied. The focus is on the synthesis and chemical structure/property relationships of polyimides with particular emphasis on materials for composite application.

  16. Adsorption and Reaction of Acetaldehyde on Stoichiometric and Defective SrTiO{sub 3}(100) Surfaces

    SciTech Connect

    Wang, Li Q.; Ferris, Kim F.; Azad, Samina; Engelhard, Mark H.; Peden, Charles HF.

    2004-02-05

    The adsorption and reaction of acetaldehyde (CH{sub 3}CHO), on stoichiometric (TiO{sub 2}-terminated) and reduced SrTiO{sub 3}(100) surfaces, have been investigated using temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). Acetaldehyde adsorbs molecularly on the stoichiometric SrTiO{sub 3}(100) surface that contains predominantly Ti{sup 4+} cations. The Ti{sup 4+} sites on the stoichiometric SrTiO{sub 3}(100) surface are not sufficiently active for surface reactions such as aldol condensation, as opposed to the Ti{sup 4+} ions on the TiO{sub 2}(001) surface. However, decomposition and redox reactions of acetaldehyde occur in the presence of surface defects created by Ar{sup +} sputtering. The decomposition products following reactions of acetaldehyde on the defective surface include H{sub 2}, C{sub 2}H{sub 4}, CO, C{sub 4}H{sub 6} and C{sub 4}H{sub 8}. Reductive coupling, to produce C{sub 2}H{sub 4} and C{sub 4}H{sub 8}, is the main reaction pathway for decomposition of acetaldehyde on the sputter reduced SrTiO{sub 3}(100) surface.

  17. Glucose and fructose decomposition in subcritical and supercritical water: Detailed reaction pathway, mechanisms, and kinetics

    SciTech Connect

    Kabyemela, B.M.; Adschiri, T.; Malaluan, R.M.; Arai, K.

    1999-08-01

    The authors are developing a new catalyst-free process of cellulose decomposition in supercritical water. In their initial study on the cellulose decomposition in supercritical water, the main products of cellulose decomposition were found to be oligomers of glucose (cellobiose, cellotriose, etc.) and glucose at short residence times (400 C, 25 MPa, 0.05 s). The kinetics of glucose at these conditions can be useful in understanding the reaction pathways of cellulose. Experiments were performed on the products of glucose decomposition at short residence times to elucidate the reaction pathways and evaluate kinetics of glucose and fructose decomposition in sub- and supercritical water. The conditions were a temperature of 300--400 C and pressure of 25--40 MPa for extremely short residence times between 0.02 and 2 s. The products of glucose decomposition were fructose, a product of isomerization, 1,6-anhydroglucose, a product of dehydration, and erythrose and glyceraldehyde, products of C-C bond cleavage. Fructose underwent reactions similar to glucose except that it did not form 1,6-anhydroglucose and isomerization to glucose is negligible. The mechanism for the products formed from C-C bond cleavage could be explained by reverse aldol condensation and the double-bond rule of the respective enediols formed during the Lobry de Bruyn Alberda van Ekenstein transformation. The differential equations resulting from the proposed pathways were fit to experimental results to obtain the kinetic rate constants.

  18. Common inorganic ions are efficient catalysts for organic reactions in atmospheric aerosols and other natural environments

    NASA Astrophysics Data System (ADS)

    Nozière, B.; Dziedzic, P.; Córdova, A.

    2009-01-01

    In this work, inorganic ammonium ions, NH4+, and carbonate ions, CO32-, are reported for the first time as catalysts for organic reactions in atmospheric aerosols and other natural environments at the Earth's surface. These reactions include the formation of C-C and C-O bonds by aldol condensation and acetal formation, and reveal a new aspect of the interactions between organic and inorganic materials in natural environments. The catalytic properties of inorganic ammonium ions, in particular, were not previously known in chemistry. The reactions were found to be as fast in tropospheric ammonium sulfate composition as in concentrated sulfuric acid. The ubiquitous presence and large concentrations of ammonium ions in tropospheric aerosols would make of ammonium catalysis a main consumption pathway for organic compounds in these aerosols, while acid catalysis would have a minor contribution. In particular, ammonium catalysis would account quantitatively for the aging of carbonyl compounds into secondary ''fulvic'' compounds in tropospheric aerosols, a transformation affecting the optical properties of these aerosols. In general, ammonium catalysis is likely to be responsible for many observations previously attributed to acid catalysis in the troposphere.

  19. Development of detonation reaction engine

    NASA Technical Reports Server (NTRS)

    Lange, O. H.; Stein, R. J.; Tubbs, H. E.

    1968-01-01

    Reaction engine operates on the principle of a controlled condensed detonation. In this engine the gas products that are expelled from the engine to produce thrust are generated by the condensed detonation reaction. The engine is constructed of two basic sections consisting of a detonation wave generator section and a condensed detonation reaction section.

  20. Synthesis of acylsilanes via nickel-catalyzed reactions of α-hydroxyallylsilanes.

    PubMed

    Reddy, Gangireddy PavanKumar; Reddy, J Satyanarayana; Das, Saibal; Roisnel, Thierry; Yadav, Jhillu S; Chandrasekhar, Srivari; Grée, René

    2013-04-01

    The redox isomerization processes and tandem isomerization-aldolization reactions, mediated by nickel catalysts, offer new versatile entries to acylsilanes. For the second reaction, high diastereoselectivities, up to 98:2, have been obtained with bulky substituents on silicon. PMID:23517341

  1. ALDOL REACTION VIA IN SITU OLEFIN MIGRATION IN WATER. (R828129)

    EPA Science Inventory

    Mingwen Wang and Chao-Jun LiCorresponding Author Contact Information

    Department of Chemistry, Tulane University, Ne...

  2. ALDOL- AND MANNICH-TYPE REACTIONS VIA IN SITU OLEFIN MIGRATION IN IONIC LIQUID. (R828129)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  3. An Exercise on Structure Elucidation Based on a Tricky Aldol Reaction

    ERIC Educational Resources Information Center

    Sierra, Manuel Gonzalez; Pellegrinet, Silvina C.; Colombo, Maria I.; Ruveda, Edmundo A.

    2008-01-01

    An exercise on structure elucidation for advanced undergraduate students is described. To determine the structure of an unknown product, students are required to use spectra together with an organic chemistry mechanism. This exercise exemplifies the procedure commonly used in research, thus helping students develop problem-solving skills. In…

  4. A DFT analysis of thermal decomposition reactions important to natural products.

    PubMed

    Setzer, William N

    2010-07-01

    The thermal decomposition reactions of several important natural flavor and fragrance chemicals have been investigated using density functional theory (DFT, B3LYP/6-31G*). Retro-aldol reactions of glucose, fructose, hernandulcin, epihernandulcin, [3]-gingerol, and [4]-isogingerol; retro-carbonyl-ene reactions of isopulegol, lavandulol, isolyratol, and indicumenone; and pyrolytic syn elimination reactions of linalyl acetate, alpha-terpinyl acetate, and bornyl acetate, have been carried out. The calculations indicate activation enthalpies of around 30 kcal/mol for the retro-aldol reactions and for retro-carbonyl-ene reactions, comparable to pericyclic reactions such as the Cope rearrangement and electrocyclic reactions, and therefore important reactions at elevated temperatures (e.g., boiling aqueous solutions, gas-chromatograph injection ports). Activation enthalpies for pyrolytic eliminations are around 40 kcal/mol and are unlikely to occur during extraction or GC analysis. PMID:20734926

  5. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Biberian, Jean-Paul

    2006-02-01

    1. General. A tribute to gene Mallove - the "Genie" reactor / K. Wallace and R. Stringham. An update of LENR for ICCF-11 (short course, 10/31/04) / E. Storms. New physical effects in metal deuterides / P. L. Hagelstein ... [et al.]. Reproducibility, controllability, and optimization of LENR experiments / D. J. Nagel -- 2. Experiments. Electrochemistry. Evidence of electromagnetic radiation from Ni-H systems / S. Focardi ... [et al.]. Superwave reality / I. Dardik. Excess heat in electrolysis experiments at energetics technologies / I. Dardik ... [et al.]. "Excess heat" during electrolysis in platinum/K[symbol]CO[symbol]/nickel light water system / J. Tian ... [et al.]. Innovative procedure for the, in situ, measurement of the resistive thermal coefficient of H(D)/Pd during electrolysis; cross-comparison of new elements detected in the Th-Hg-Pd-D(H) electrolytic cells / F. Celani ... [et al.]. Emergence of a high-temperature superconductivity in hydrogen cycled Pd compounds as an evidence for superstoihiometric H/D sites / A. Lipson ... [et al.]. Plasma electrolysis. Calorimetry of energy-efficient glow discharge - apparatus design and calibration / T. B. Benson and T. O. Passell. Generation of heat and products during plasma electrolysis / T. Mizuno ... [et al.]. Glow discharge. Excess heat production in Pd/D during periodic pulse discharge current in various conditions / A. B. Karabut. Beam experiments. Accelerator experiments and theoretical models for the electron screening effect in metallic environments / A. Huke, K. Czerski, and P. Heide. Evidence for a target-material dependence of the neutron-proton branching ratio in d+d reactions for deuteron energies below 20keV / A. Huke ... [et al.]. Experiments on condensed matter nuclear events in Kobe University / T. Minari ... [et al.]. Electron screening constraints for the cold fusion / K. Czerski, P. Heide, and A. Huke. Cavitation. Low mass 1.6 MHz sonofusion reactor / R. Stringham. Particle detection. Research

  6. Rh(III)-catalyzed dehydrogenative alkylation of (hetero)arenes with allylic alcohols, allowing aldol condensation to indenes.

    PubMed

    Shi, Zhuangzhi; Boultadakis-Arapinis, Mélissa; Glorius, Frank

    2013-07-25

    Efficient Rh(III)-catalyzed C-H activation of different classes of (hetero)arenes such as 2-phenylpyridine, indoles, aryl ketones and acetanilide and their dehydrogenative cross-coupling with allylic alcohols are described. Several important skeletons such as β-aryl aldehydes and ketones, 2-acetylindenes, 3,4-dihydro-1H-quinolin-2-one and quinoline could be produced using this protocol. PMID:23765402

  7. Formation of Lactic Acid from Cellulosic Biomass by Alkaline Hydrothermal Reaction

    NASA Astrophysics Data System (ADS)

    Yan, X.; Jini, F.; Kishita, A.; Enomoto, H.; Tohji, K.

    2008-02-01

    Glucose, as a model compound of cellulosic biomass, was used as a test material. Ca(OH)2 and NaOH were selected as alkali. Results showed that both NaOH and Ca(OH)2, can promote the formation of lactic acid in a hydrothermal reaction of glucose. In the case of the addition of NaOH, lactic acid was obtained with a good yield of 27% based on a carbon base at 300 °C for 60 s with a NaOH concentration of 2.5 M. In the case of the addition of Ca(OH)2, the highest yield of lactic acid is 20%, which occurred at 300 °C for 60 s with a Ca(OH)2 concentration of 0.32 M. The formation mechanisms of lactic acid from glucose were also discussed according to intermediate products identified. Lactic acid may be generated via formaldehyde, glycolaldehyde besides via the aldose having three carbon atoms in hydrothermal reaction which all formed by the reverse aldol condensation of hexoses.

  8. Secondary organic aerosol formation by self-reactions of methylglyoxal and glyoxal in evaporating droplets.

    PubMed

    De Haan, David O; Corrigan, Ashley L; Tolbert, Margaret A; Jimenez, Jose L; Wood, Stephanie E; Turley, Jacob J

    2009-11-01

    Glyoxal and methylglyoxal are scavenged by clouds, where a fraction of these compounds are oxidized during the lifetime of the droplet. As a cloud droplet evaporates, the remaining glyoxal and methylglyoxal must either form low-volatility compounds such as oligomers and remain in the aerosol phase, or transfer back to the gas phase. A series of experiments on evaporating aqueous aerosol droplets indicates that over the atmospherically relevant concentration range for clouds and fog (4-1000 microM), 33 +/- 11% of glyoxal and 19 +/- 13% of methylglyoxal remains in the aerosol phase while the remainder evaporates. Measurements of aerosol density and time-dependent AMS signal changes are consistent with the formation of oligomers by each compound during the drying process. Unlike glyoxal, which forms acetal oligomers, exact mass AMS data indicates that the majority of methylglyoxal oligomers are formed by aldol condensation reactions, likely catalyzed by pyruvic acid, formed from methylglyoxal disproportionation. Our measurements of evaporation fractions can be used to estimate the global aerosol formation potential of glyoxal and methylglyoxal via self-reactions at 1 and 1.6 Tg C yr(-1), respectively. This is a factor of 4 less than the SOA formed by these compounds if their uptake is assumed to be irreversible. However, these estimates are likely lower limits for their total aerosol formation potential because oxidants and amines will also react with glyoxal and methylglyoxal to form additional low-volatility products. PMID:19924942

  9. Divergent Outcomes of Carbene Transfer Reactions from Dirhodium- and Copper-Based Catalysts Separately or in Combination

    PubMed Central

    Xu, Xinfang; Hu, Wen-Hao; Zavalij, Peter Y.; Doyle, Michael P.

    2014-01-01

    The use of copper and rhodium catalysts separately and in combination directs reactions between vinyldiazoacetates 3 and cinnamaldehydes 2 to from formal [4+3]-cycloaddition (epoxidation followed by Cope rearrangement), intramolecular cyclopropanation, and Mukaiyama-aldol reactions selectively and in high yield. PMID:25097911

  10. Proposal for New Experimental Tests of the Bose-Einstein Condensation Mechanism for Low-Energy Nuclear Reaction and Transmutation Processes in Deuterium Loaded - and Nano-Scale Cavities

    NASA Astrophysics Data System (ADS)

    Kim, Yeong E.; Koltick, David S.; Reifenberger, Ronald G.; Zubarev, Alexander L.

    2006-02-01

    Most of experimental results of low-energy nuclear reaction (LENR) reported so far cannot be reproduced on demand. There have been persistent experimental results indicating that the LENR and transmutation processes in condensed matters (LENRTPCM) are surface phenomena rather than bulk phenomena. Recently proposed Bose-Einstein condensation (BEC) mechanism may provide a suitable theoretical description of the surface phenomena. New experiments are proposed and described for testing the BEC mechanism for LENR and transmutation processes in micro- and nano-scale traps. (1) We propose the use of micro- or nano-porous conducting materials as a cathode in electrolysis experiments with heavy water with or without Li in order to stabilize the active surface spots and to enhance the effect for the purpose of improving the reproducibility of excess heat generation and nuclear emission. (2) We propose new experimental tests of the BEC mechanism by measuring the pressure and temperature dependence of LENR events using deuterium gas and these deuterated metals with or without Li. If the LENRTPCM are surface phenomena, the proposed use of micro-/nano-scale porous materials is expected to enhance and scale up the LENRTPCM effects by many order of magnitude, and thus may lead to better reproductivity and theoretical understanding of the phenomena.

  11. Continuous detonation reaction engine

    NASA Technical Reports Server (NTRS)

    Lange, O. H.; Stein, R. J.; Tubbs, H. E.

    1968-01-01

    Reaction engine operates on the principles of a controlled condensed detonation rather than on the principles of gas expansion. The detonation results in reaction products that are expelled at a much higher velocity.

  12. Clusters: Elucidating the dynamics of ionization events and ensuing reactions in the condensed phase. Final technical report, March 1, 1991--February 28, 1994

    SciTech Connect

    Castleman, A.W. Jr.

    1994-10-01

    Chemical reactions that proceed following either a photophysical or ionizing event, are directly influenced by the mechanisms of energy transfer and dissipation away from the site of absorption. Neighboring solvent or solute molecules can affect this by collisional deactivation (removal of energy), through effects in which dissociating molecules are kept in relatively close proximity for comparatively long periods of time due to the presence of the solvent, and in other ways where the solvent influences the energetics of the reaction coordinate. Research on clusters offers promise of elucidating the molecular details of these processes. The studies have focused on providing critical information on problems in radiation biology through investigations of reactions of molecules which simulate functional groups in biological systems, as they proceed following the absorption of ionizing radiation. The overall objective of the program has been to undertake basic underpinning research that contributes to a quantification of the behavior of radionuclides and pollutants associated with advanced energy activities after these materials emanate from their source and are transferred through the environment to the biota and human receptor. Some of the studies have dealt with the interaction of electromagnetic radiation with matter yielding new data that finds value in assessing photoinduced transformation of pollutants including reactions which take place on aerosol particles, as well as those of species which become transformed into aerosols as a result of their chemical and physical interactions.

  13. Temperature- and pH-dependent aqueous-phase kinetics of the reactions of glyoxal and methylglyoxal with atmospheric amines and ammonium sulfate

    NASA Astrophysics Data System (ADS)

    Sedehi, Nahzaneen; Takano, Hiromi; Blasic, Vanessa A.; Sullivan, Kristin A.; De Haan, David O.

    2013-10-01

    Reactions of glyoxal (Glx) and methylglyoxal (MG) with primary amines and ammonium salts may produce brown carbon and N-containing oligomers in aqueous aerosol. 1H NMR monitoring of reactant losses and product appearance in bulk aqueous reactions were used to derive rate constants and quantify competing reaction pathways as a function of pH and temperature. Glx + ammonium sulfate (AS) and amine reactions generate products containing C-N bonds, with rates depending directly on pH: rate = (70 ± 60) M-1 s-1fAld [Glx]totfAm [Am]tot, where fAld is the fraction of aldehyde with a dehydrated aldehyde functional group, and fAm is the fraction of amine or ammonia that is deprotonated at a given pH. MG + amine reactions generate mostly aldol condensation products and exhibit less pH dependence: rate = 10[(0.36 ± 0.06) × pH - (3.6 ± 0.3)] M-1 s-1fAld [MG]tot [Am]tot. Aldehyde + AS reactions are less temperature-dependent (Ea = 18 ± 8 kJ mol-1) than corresponding amine reactions (Ea = 50 ± 11 kJ mol-1). Using aerosol concentrations of [OH] = 10-12 M, [amine]tot = [AS] = 0.1 M, fGlx = 0.046 and fMG = 0.09, we estimate that OH radical reactions are normally the major aerosol-phase sink for both dicarbonyl compounds. However, reactions with AS and amines together can account for up to 12 and 45% of daytime aerosol-phase glyoxal and methylglyoxal reactivity, respectively, in marine aerosol at pH 5.5. Reactions with AS and amines become less important in acidic or non-marine aerosol, but may still be significant atmospheric sources of brown carbon, imidazoles, and nitrogen-containing oligomers.

  14. Microwave discharge electrodeless lamps (MDEL). Part IV. Novel self-ignition system incorporating metallic microwave condensing cones to activate MDELs in photochemical reactions.

    PubMed

    Horikoshi, Satoshi; Tsuchida, Akihiro; Sakai, Hideki; Abe, Masahiko; Sato, Susumu; Serpone, Nick

    2009-11-01

    A metallic condensing cone that concentrates microwave radiation (equivalent to an optical lens) has been developed and used as part of a system to activate a microwave discharge electrodeless lamp (MDEL) in the oxidative treatment of wastewaters by aiding the novel self-ignition of the lamp on irradiation at low microwave power levels. This approach to self-ignition can potentially lead to considerable energy savings in such treatments. System performance was examined for the ignition power of microwaves of such MDEL devices in water, whose usefulness was assessed by investigating the photolytic transformation of aqueous solutions of representatives of three classes of contaminants: chlorinated phenols, herbicides and endocrine disruptors, specifically 4-chlorophenol (4-CP), 2,4-dichlorophenoxyacetic acid (2,4-D) and 4,4'-isopropylidenediphenol (bisphenol-A; BPA), respectively, taken as model wastewaters in air-equilibrated, in oxygen-saturated and in TiO2-containing aqueous media. The results are discussed in terms of the dynamics of the photo-induced degradation processes. PMID:19862422

  15. From vinyl pyranoses to carbasugars by an iron-catalyzed reaction complementary to classical Ferrier carbocyclization.

    PubMed

    Mac, Dinh Hung; Samineni, Ramesh; Petrignet, Julien; Srihari, Pabbaraja; Chandrasekhar, Srivari; Yadav, Jhillu Singh; Grée, René

    2009-08-21

    Starting from vinyl pyranoses an iron-catalyzed tandem isomerization-intramolecular aldolization reaction was developed to prepare cyclohexenone derivatives bearing substituents on the double bond, and it has been applied in a short synthesis of 4-epi-gabosines A and B, from d-glucose. PMID:19641820

  16. Condensation model for the ESBWR passive condensers

    SciTech Connect

    Revankar, S. T.; Zhou, W.; Wolf, B.; Oh, S.

    2012-07-01

    In the General Electric's Economic simplified boiling water reactor (GE-ESBWR) the passive containment cooling system (PCCS) plays a major role in containment pressure control in case of an loss of coolant accident. The PCCS condenser must be able to remove sufficient energy from the reactor containment to prevent containment from exceeding its design pressure following a design basis accident. There are three PCCS condensation modes depending on the containment pressurization due to coolant discharge; complete condensation, cyclic venting and flow through mode. The present work reviews the models and presents model predictive capability along with comparison with existing data from separate effects test. The condensation models in thermal hydraulics code RELAP5 are also assessed to examine its application to various flow modes of condensation. The default model in the code predicts complete condensation well, and basically is Nusselt solution. The UCB model predicts through flow well. None of condensation model in RELAP5 predict complete condensation, cyclic venting, and through flow condensation consistently. New condensation correlations are given that accurately predict all three modes of PCCS condensation. (authors)

  17. Analysis of UDP-D-apiose/UDP-D-xylose synthase-catalyzed conversion of UDP-D-apiose phosphonate to UDP-D-xylose phosphonate: implications for a retroaldol-aldol mechanism.

    PubMed

    Choi, Sei-hyun; Mansoorabadi, Steven O; Liu, Yung-nan; Chien, Tun-Cheng; Liu, Hung-wen

    2012-08-29

    UDP-D-apiose/UDP-D-xylose synthase (AXS) catalyzes the conversion of UDP-D-glucuronic acid to UDP-D-apiose and UDP-D-xylose. An acetyl-protected phosphonate analogue of UDP-D-apiose was synthesized and used in an in situ HPLC assay to demonstrate for the first time the ability of AXS to interconvert the two reaction products. Density functional theory calculations provided insight into the energetics of this process and the apparent inability of AXS to catalyze the conversion of UDP-D-xylose to UDP-D-apiose. The data suggest that this observation is unlikely to be due to an unfavorable equilibrium but rather results from substrate inhibition by the most stable chair conformation of UDP-D-xylose. The detection of xylose cyclic phosphonate as the turnover product reveals significant new details about the AXS-catalyzed reaction and supports the proposed retroaldol-aldol mechanism of catalysis. PMID:22830643

  18. Using the constrained DFT approach in generating diabatic surfaces and off diagonal empirical valence bond terms for modeling reactions in condensed phases.

    PubMed

    Hong, Gongyi; Rosta, Edina; Warshel, Arieh

    2006-10-01

    The empirical valence bond (EVB) model provides an extremely powerful way for modeling and analyzing chemical reactions in solutions and proteins. However, this model is based on the unverified assumption that the off diagonal elements of the EVB Hamiltonian do not change significantly upon transfer of the reacting system from one phase to another. This ad hoc assumption has been rationalized by its consistency with empirically observed linear free energy relationships, as well as by other qualitative considerations. Nevertheless, this assumption has not been rigorously established. The present work explores the validity of the above EVB key assumption by a rigorous numerical approach. This is done by exploiting the ability of the frozen density functional theory (FDFT) and the constrained density functional theory (CDFT) models to generate convenient diabatic states for QM/MM treatments, and thus to examine the relationship between the diabatic and adiabatic surfaces, as well as the corresponding effective off diagonal elements. It is found that, at least for the test case of S(N)()2 reactions, the off diagonal element does not change significantly upon moving from the gas phase to solutions and thus the EVB assumption is valid and extremely useful. PMID:17004821

  19. Dynamic Kinetic Resolution Enabled by Intramolecular Benzoin Reaction: Synthetic Applications and Mechanistic Insights.

    PubMed

    Zhang, Guoxiang; Yang, Shuang; Zhang, Xiaoyan; Lin, Qiqiao; Das, Deb K; Liu, Jian; Fang, Xinqiang

    2016-06-29

    The highly enantio-, diastereo-, and regioselective dynamic kinetic resolution of β-ketoesters and 1,3-diketones was achieved via a chiral N-heterocyclic carbene catalyzed intramolecular cross-benzoin reaction. A variety of tetralone derivatives bearing two contiguous stereocenters and multiple functionalities were liberated in moderate to excellent yields and with high levels of stereoselectivity (>95% ee and >20:1 dr in most cases). In addition, the excellent regioselectivity control for aryl/alkyl 1,3-diketones, and the superior electronic differentiation of 1,3-diarylketones were highlighted. Moreover, a set of new mechanistic rationale that differs with the currently widely accepted understanding of intramolecular benzoin reactions was established to demonstrate the superior preference of benzoin over aldol transformation: (1) A coexistence of competitive aldol and benzoin reactions was detected, but a retro-aldol-irreversible benzoin process performs a vital role in the generation of predominant benzoin products. (2) The most essential role of an N-electron-withdrawing substituent in triazolium catalysts was revealed to be accelerating the rate of the benzoin transformation, rather than suppressing the aldol process through reducing the inherent basicity of the catalyst. PMID:27270409

  20. Theory and Modeling of Asymmetric Catalytic Reactions.

    PubMed

    Lam, Yu-Hong; Grayson, Matthew N; Holland, Mareike C; Simon, Adam; Houk, K N

    2016-04-19

    Modern density functional theory and powerful contemporary computers have made it possible to explore complex reactions of value in organic synthesis. We describe recent explorations of mechanisms and origins of stereoselectivities with density functional theory calculations. The specific functionals and basis sets that are routinely used in computational studies of stereoselectivities of organic and organometallic reactions in our group are described, followed by our recent studies that uncovered the origins of stereocontrol in reactions catalyzed by (1) vicinal diamines, including cinchona alkaloid-derived primary amines, (2) vicinal amidophosphines, and (3) organo-transition-metal complexes. Two common cyclic models account for the stereoselectivity of aldol reactions of metal enolates (Zimmerman-Traxler) or those catalyzed by the organocatalyst proline (Houk-List). Three other models were derived from computational studies described in this Account. Cinchona alkaloid-derived primary amines and other vicinal diamines are venerable asymmetric organocatalysts. For α-fluorinations and a variety of aldol reactions, vicinal diamines form enamines at one terminal amine and activate electrophilically with NH(+) or NF(+) at the other. We found that the stereocontrolling transition states are cyclic and that their conformational preferences are responsible for the observed stereoselectivity. In fluorinations, the chair seven-membered cyclic transition states is highly favored, just as the Zimmerman-Traxler chair six-membered aldol transition state controls stereoselectivity. In aldol reactions with vicinal diamine catalysts, the crown transition states are favored, both in the prototype and in an experimental example, shown in the graphic. We found that low-energy conformations of cyclic transition states occur and control stereoselectivities in these reactions. Another class of bifunctional organocatalysts, the vicinal amidophosphines, catalyzes the (3 + 2) annulation

  1. Optimizing process vacuum condensers

    SciTech Connect

    Lines, J.R.; Tice, D.W.

    1997-09-01

    Vacuum condensers play a critical role in supporting vacuum processing operations. Although they may appear similar to atmospheric units, vacuum condensers have their own special designs, considerations and installation needs. By adding vacuum condensers, precondensers and intercondensers, system cost efficiency can be optimized. Vacuum-condensing systems permit reclamation of high-value product by use of a precondenser, or reduce operating costs with intercondensers. A precondenser placed between the vacuum vessel and ejector system will recover valuable process vapors and reduce vapor load to an ejector system--minimizing the system`s capital and operating costs. Similarly, an intercondenser positioned between ejector stages can condense motive steam and process vapors and reduce vapor load to downstream ejectors as well as lower capital and operating costs. The paper describes vacuum condenser systems, types of vacuum condensers, shellside condensing, tubeside condensing, noncondensable gases, precondenser pressure drop, system interdependency, equipment installation, and equipment layout.

  2. Sulfided heterogeneous, bimetallic RuMo catalysts derived from mixtures of Ru{sub 3}(CO){sub 12} (or RuCl{sub 3}) and a molybdenum heteropolyanion. The reactions of ethanol with tetrahydroquinoline

    SciTech Connect

    Koo, Sang-Man; Ryan, D.; Laine, R.M.

    1992-09-01

    Efforts have been made to develop Ru/Mo bimetallic catalyst systems for hydrodenitrogenation (HDN) of tetrahydroquinoline (THQ)- In the course of these studies, it was discovered that in ethanol, under H{sub 2} and in the presence Of CS2, Precatalyst solutions containing Ru [as Ru{sub 3} (CO){sub 12} or RuCl{sub 3}] and Mo [as the H{sub 3}PMO{sub 12}0{sub 40} heteropolyanion (HPA)] decompose to form bimetallic, sulfided particles. Particle diameters run from 0.1 to 5 {mu}m depending on the rate of stirring. Catalyst particles with sizes ranging from 0.1--1 {mu}m can be prepared reproducibly. BET measured surface areas for these size particles ranged from 2 to 20 m2/g. These sulfided particles were found to catalyze, at temperatures of 200--250{degrees}C and hydrogen pressures of 200--1000 psig H{sub 2}, the N-ethylation of THQ to form NEt-THQ; rather than the formation of propylcyclohexane or propylbenzene, reaction products expected for HDN of THQ. Monometallic heterogeneous catalysts prepared from the individual precatalyst complexes, under identical conditions, show minimal activity for N-ethylation by comparison with the bimetallic catalyst. In the absence of H{sub 2}, the reaction proceeds such that THQ is converted to Q, N-EtTHQ, N-C{sub 6}H{sub 9}-THQ, and N-C{sub 6}H{sub 13}-THQ. The latter products appear to arise via acetaldehyde, formed as an intermediate by dehydrogenation of ethanol. Acetaldehyde either condenses with THQ to form N-Et-THQ, or self condenses (aldol condensation) prior to reaction with THQ thereby giving higher homolog alkylation products.

  3. Sulfided heterogeneous, bimetallic RuMo catalysts derived from mixtures of Ru sub 3 (CO) sub 12 (or RuCl sub 3 ) and a molybdenum heteropolyanion. The reactions of ethanol with tetrahydroquinoline

    SciTech Connect

    Koo, Sang-Man; Ryan, D.; Laine, R.M.

    1992-01-01

    Efforts have been made to develop Ru/Mo bimetallic catalyst systems for hydrodenitrogenation (HDN) of tetrahydroquinoline (THQ)- In the course of these studies, it was discovered that in ethanol, under H{sub 2} and in the presence Of CS2, Precatalyst solutions containing Ru (as Ru{sub 3} (CO){sub 12} or RuCl{sub 3}) and Mo (as the H{sub 3}PMO{sub 12}0{sub 40} heteropolyanion (HPA)) decompose to form bimetallic, sulfided particles. Particle diameters run from 0.1 to 5 {mu}m depending on the rate of stirring. Catalyst particles with sizes ranging from 0.1--1 {mu}m can be prepared reproducibly. BET measured surface areas for these size particles ranged from 2 to 20 m2/g. These sulfided particles were found to catalyze, at temperatures of 200--250{degrees}C and hydrogen pressures of 200--1000 psig H{sub 2}, the N-ethylation of THQ to form NEt-THQ; rather than the formation of propylcyclohexane or propylbenzene, reaction products expected for HDN of THQ. Monometallic heterogeneous catalysts prepared from the individual precatalyst complexes, under identical conditions, show minimal activity for N-ethylation by comparison with the bimetallic catalyst. In the absence of H{sub 2}, the reaction proceeds such that THQ is converted to Q, N-EtTHQ, N-C{sub 6}H{sub 9}-THQ, and N-C{sub 6}H{sub 13}-THQ. The latter products appear to arise via acetaldehyde, formed as an intermediate by dehydrogenation of ethanol. Acetaldehyde either condenses with THQ to form N-Et-THQ, or self condenses (aldol condensation) prior to reaction with THQ thereby giving higher homolog alkylation products.

  4. An investigation of the role of water on retrograde/condensation reactions and enhanced liquefaction yields. Quarterly progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    Miknis, F.P.; Netzel, D.A.

    1994-04-01

    The results of coal swelling measurements using 1,4-dioxane as the swelling reagent for premoisturized coals (raw) and coal dried thermally, chemically, and with microwave radiation are presented. An increase in the swelling ratio relative to raw coal indicates a decrease in the amount of cross-linking in the coal. Conversely, a decrease in the ratio indicates an increase in cross-linking. The extent of cross-linking (as measured by 1,4-dioxane) for Texas, Black Thunder, and Eagle Butte Coals are about the same. Illinois {number_sign}6 coal appears to have less cross-linking relative to the other three coals. These results are expected on the basis of coal rank. The increase in cross linking is most pronounced for coals dried thermally and with microwave radiation. A decrease in the swelling ratios for all four coals suggests that cross-linking had occurred possibly due to partial devolatilization process. However, low temperature, chemical dehydration of the coals causes only a small or no change in the internal structure for Texas and Illinois {number_sign}6 coals whereas a significant decrease in the cross-linking structure for the Black Thunder and Eagle Butte coals is observed. It is possible that the solvent (CH{sub 3}OH) and products resulting from the chemical dehydrating (acetone and methanol) occupy the surface sites that water had before the reaction and thus preventing cross-linking to occur. These reagents can also promote swelling of coals and may account for some of the decrease in the cross-linking of the coal structure observed for the chemically dried coals.

  5. Total Synthesis of a Diacetonide Derivative of Thuggacin A.

    PubMed

    Yadav, Jhillu S; Dutta, Palash

    2016-03-01

    A highly stereoselective total synthesis of the diacetonide derivative of the antibiotic thuggacin A has been described. The synthesis features the stereoselective Stille cross-coupling reaction to set up the whole carbon framework, aldol condensation to construct the highly substituted conjugated diene, non-Evans syn aldol, CBS reduction, Hantzsch's thiazole synthesis, Horner-Wadsworth-Emmons reaction, and Shiina's macrolactonization. PMID:26856208

  6. Condensate Mixtures and Tunneling

    SciTech Connect

    Timmermans, E.

    1998-09-14

    The experimental study of condensate mixtures is a particularly exciting application of the recently developed atomic-trap Bose-Einstein condensate (BEC) technology: such multiple condensates represent the first laboratory systems of distinguishable boson superfluid mixtures. In addition, as the authors point out in this paper, the possibility of inter-condensate tunneling greatly enhances the richness of the condensate mixture physics. Not only does tunneling give rise to the oscillating particle currents between condensates of different chemical potentials, such as those studied extensively in the condensed matter Josephson junction experiments, it also affects the near-equilibrium dynamics and stability of the condensate mixtures. In particular, the stabilizing influence of tunneling with respect to spatial separation (phase separation) could be of considerable practical importance to the atomic trap systems. Furthermore, the creation of mixtures of atomic and molecular condensates could introduce a novel type of tunneling process, involving the conversion of a pair of atomic condensate bosons into a single molecular condensate boson. The static description of condensate mixtures with such type of pair tunneling suggests the possibility of observing dilute condensates with the liquid-like property of a self-determined density.

  7. Condensates in Jovian Atmospheres

    NASA Technical Reports Server (NTRS)

    West, R.

    1999-01-01

    Thermochemical equilibrium theory which starts with temperature/pressure profiles, compositional information and thermodynamic data for condensable species in the jovian planet atmospheres predicts layers of condensate clouds in the upper troposphere.

  8. Quantum mechanical investigations on the role of neutral and negatively charged enamine intermediates in organocatalyzed reactions

    NASA Astrophysics Data System (ADS)

    Hubin, Pierre O.; Jacquemin, Denis; Leherte, Laurence; Vercauteren, Daniel P.

    2014-04-01

    The proline-catalyzed aldol reaction is the seminal example of asymmetric organocatalysis. Previous theoretical and experimental studies aimed at identifying its mechanism in order to rationalize the outcome of this reaction. Here, we focus on key steps with modern first principle methods, i.e. the M06-2X hybrid exchange-correlation functional combined to the solvation density model to account for environmental effects. In particular, different pathways leading to the formation of neutral and negatively charged enamine intermediates are investigated, and their reactivity towards two electrophiles, i.e. an aldehyde and a benzhydrylium cation, are compared. Regarding the self-aldol reaction, our calculations confirm that the neutral enamine intermediate is more reactive than the negatively charged one. For the reaction with benzhydrylium cations however, the negatively charged enamine intermediate is more reactive.

  9. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Biberian, Jean-Paul

    2006-02-01

    1. General. A tribute to gene Mallove - the "Genie" reactor / K. Wallace and R. Stringham. An update of LENR for ICCF-11 (short course, 10/31/04) / E. Storms. New physical effects in metal deuterides / P. L. Hagelstein ... [et al.]. Reproducibility, controllability, and optimization of LENR experiments / D. J. Nagel -- 2. Experiments. Electrochemistry. Evidence of electromagnetic radiation from Ni-H systems / S. Focardi ... [et al.]. Superwave reality / I. Dardik. Excess heat in electrolysis experiments at energetics technologies / I. Dardik ... [et al.]. "Excess heat" during electrolysis in platinum/K[symbol]CO[symbol]/nickel light water system / J. Tian ... [et al.]. Innovative procedure for the, in situ, measurement of the resistive thermal coefficient of H(D)/Pd during electrolysis; cross-comparison of new elements detected in the Th-Hg-Pd-D(H) electrolytic cells / F. Celani ... [et al.]. Emergence of a high-temperature superconductivity in hydrogen cycled Pd compounds as an evidence for superstoihiometric H/D sites / A. Lipson ... [et al.]. Plasma electrolysis. Calorimetry of energy-efficient glow discharge - apparatus design and calibration / T. B. Benson and T. O. Passell. Generation of heat and products during plasma electrolysis / T. Mizuno ... [et al.]. Glow discharge. Excess heat production in Pd/D during periodic pulse discharge current in various conditions / A. B. Karabut. Beam experiments. Accelerator experiments and theoretical models for the electron screening effect in metallic environments / A. Huke, K. Czerski, and P. Heide. Evidence for a target-material dependence of the neutron-proton branching ratio in d+d reactions for deuteron energies below 20keV / A. Huke ... [et al.]. Experiments on condensed matter nuclear events in Kobe University / T. Minari ... [et al.]. Electron screening constraints for the cold fusion / K. Czerski, P. Heide, and A. Huke. Cavitation. Low mass 1.6 MHz sonofusion reactor / R. Stringham. Particle detection. Research

  10. Condensed phase preparation of 2,3-pentanedione

    DOEpatents

    Miller, Dennis J.; Perry, Scott M.; Fanson, Paul T.; Jackson, James E.

    1998-01-01

    A condensed phase process for the preparation of purified 2,3-pentanedione from lactic acid and an alkali metal lactate is described. The process uses elevated temperatures between about 200.degree. to 360.degree. C. for heating a reaction mixture of lactic acid and an alkali metal lactate to produce the 2,3-pentanedione in a reaction vessel. The 2,3-pentanedione produced is vaporized from the reaction vessel and condensed with water.