Science.gov

Sample records for alfa-9802 gm-csf study

  1. Targeting GM-CSF in rheumatoid arthritis.

    PubMed

    Avci, Ali Berkant; Feist, Eugen; Burmester, Gerd-Rüdiger

    2016-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is well-known as a haemopoietic growth factor. However, it is also essential in regulating functions of mature myeloid cells such as macrophages. Preclinical studies and observations of flares of arthritis in patients following GM-CSF treatment supported its important contribution to the pathogenesis of rheumatoid arthritis (RA). As the most advanced compound, mavrilimumab, a monoclonal antibody against GM-CSF receptor, has already completed phase II trials with a long term of follow-up period of 74 weeks. During this exposure period, an acceptable sustained safety and tolerability profile has been observed addressing the concerns of development of cytopenias or pulmonary alveolar proteinosis. Of note, a rapid and sustained efficacy and normalisation of acute phase reactants were consistently shown in studies both targeting GM-CSF and its receptor. Its tumour necrosis factor (TNF) independent mode of action with concurrent blockade of GM-CSF as well as IL-17 signalling reported from preclinical studies supports the assumption that it can be a useful biologic and an alternative agent in TNF inhibitor resistant patients with RA. Therefore, subsequent studies are warranted to investigate the safety and efficacy of GM-CSF blocking agents in different subgroups of RA. PMID:27586802

  2. GM-CSF modulates pulmonary resistance to influenza A infection

    PubMed Central

    Sever-Chroneos, Zvjezdana; Murthy, Aditi; Davis, Jeremy; Florence, Jon Matthew; Kurdowska, Anna; Krupa, Agnieszka; Tichelaar, Jay W.; White, Mitchell R.; Hartshorn, Kevan L.; Kobzik, Lester; Whitsett, Jeffrey A.; Chroneos, Zissis C.

    2016-01-01

    Alveolar type II epithelial or other pulmonary cells secrete GM-CSF that regulates surfactant catabolism and mucosal host defense through its capacity to modulate the maturation and activation of alveolar macrophages. GM-CSF enhances expression of scavenger receptors MARCO and SR-A. The alveolar macrophage SP-R210 receptor binds the surfactant collectin SP-A mediating clearance of respiratory pathogens. The current study determined the effects of epithelial-derived GM-CSF in host resistance to influenza A pneumonia. The results demonstrate that GM-CSF enhanced resistance to infection with 1.9 × 104 ffc of the mouse-adapted influenza A/Puerto Rico/8/34 (PR8) H1N1 strain, as indicated by significant differences in mortality and mean survival of GM-CSF-deficient (GM−/−) mice compared to GM−/− mice in which GM-CSF is expressed at increased levels. Protective effects of GM-CSF were observed both in mice with constitutive and inducible GM-CSF expression under the control of the pulmonary-specific SFTPC or SCGB1A1 promoters, respectively. Mice that continuously secrete high levels of GM-CSF developed desquamative interstitial pneumonia that impaired long-term recovery from influenza. Conditional expression of optimal GM-CSF levels at the time of infection, however, resulted in alveolar macrophage proliferation and focal lymphocytic inflammation of distal airways. GM-CSF enhanced alveolar macrophage activity as indicated by increased expression of SP-R210 and CD11c. Infection of mice lacking the GM-CSF-regulated SR-A and MARCO receptors revealed that MARCO decreases resistance to influenza in association with increased levels of SP-R210 in MARCO−/− alveolar macrophages. In conclusion, GM-CSF enhances early host resistance to influenza. Targeting of MARCO may reinforce GM-CSF-mediated host defense against pathogenic influenza. PMID:21925209

  3. Gene transfer for cytokine functional studies in the lung: the multifunctional role of GM-CSF in pulmonary inflammation.

    PubMed

    Xing, Z; Braciak, T; Ohkawara, Y; Sallenave, J M; Foley, R; Sime, P J; Jordana, M; Graham, F L; Gauldie, J

    1996-04-01

    Using adenoviral-mediated gene transfer techniques, the murine granulocyte-macrophage colony-stimulating factor (GM-CSF) transgene is efficiently targeted to and highly expressed by the respiratory epithelium of rat lung. This lung tissue-directed expression of GM-CSF induces accumulation of both eosinophils and macrophages at early stages and an irreversible fibrotic reaction at later stages. These tissue responses to GM-CSF appear to be distinct from those induced by other proinflammatory cytokines, interleukin (IL)-5, IL-6, macrophage inflammatory protein-2 (MIP-2), or RANTES overexpressed in the lung. These findings clearly demonstrate that GM-CSF is more than a hematopoietic cytokine in the lung and may play a pivotal role in the multiple pathological processes underlying numerous respiratory illnesses, including asthma. In this overview, the differences in tissue responses induced by GM-CSF and other individual cytokines are highlighted. In addition, the mechanisms by which GM-CSF and other individual cytokines are highlighted. In addition, the mechanisms by which GM-CSF contributes to the development of eosinophilia, macrophage granuloma, and fibrosis are discussed in conjunction with the recent findings from us and others. PMID:8613693

  4. IL-3 specifically inhibits GM-CSF binding to the higher affinity receptor

    SciTech Connect

    Taketazu, F.; Chiba, S.; Shibuya, K.; Kuwaki, T.; Tsumura, H.; Miyazono, K.; Miyagawa, K.; Takaku, F. )

    1991-02-01

    The inhibition of binding between human granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor by human interleukin-3 (IL-3) was observed in myelogenous leukemia cell line KG-1 which bore the receptors both for GM-CSF and IL-3. In contrast, this phenomenon was not observed in histiocytic lymphoma cell line U-937 or in gastric carcinoma cell line KATO III, both of which have apparent GM-CSF receptor but an undetectable IL-3 receptor. In KG-1 cells, the cross-inhibition was preferentially observed when the binding of GM-CSF was performed under the high-affinity binding condition; i.e., a low concentration of 125I-GM-CSF was incubated. Scatchard analysis of 125I-GM-CSF binding to KG-1 cells in the absence and in the presence of unlabeled IL-3 demonstrated that IL-3 inhibited GM-CSF binding to the higher-affinity component of GM-CSF receptor on KG-1 cells. Moreover, a chemical cross-linking study has revealed that the cross-inhibition of the GM-CSF binding observed in KG-1 cells is specific for the beta-chain, Mr 135,000 binding protein which has been identified as a component forming the high-affinity GM-CSF receptor existing specifically on hemopoietic cells.

  5. High titer autoantibodies to GM-CSF in patients with AML, CML and MDS are associated with active disease

    PubMed Central

    Sergeeva, A; Ono, Y; Rios, R; Molldrem, JJ

    2012-01-01

    Antibodies to granulocyte-macrophage colony-stimulating factor (GM-CSF) can be induced when GM-CSF is used as an adjuvant to solid tumor vaccination. Neutralizing anti-GM-CSF IgG has been associated with pulmonary alveolar proteinosis (PAP), and secondary PAP has been linked to myeloid leukemia. We studied 69 patients with acute myeloid leukemia, chronic myeloid leukemia and myelodysplastic syndrome, including 19 patients who received GM-CSF with peptide antigen and incomplete Freund's adjuvant in a vaccine trial for the presence or induction of anti-GM-CSF antibodies. Anti-GM-CSF IgG were present in 36 (52%) patients with myeloid leukemia compared to only 1 of 33 (3%) healthy subjects (P=0.008) and in none of 6 patients with lymphoid leukemia (P=0.0001). Antibody titers were unaffected by vaccination. Anti-GM-CSF IgA and IgM were found in 33 and 20% of patients, respectively; IgA from two patients neutralized GM-CSF. Strikingly, while anti-GM-CSF IgG titers were higher in patients with active disease (n=52) versus those in complete remission (n=14, P=0.0009), GM-CSF expression was not increased in either group. These data are first to show that anti-GM-CSF antibodies of multiple isotypes are present in patients with active myeloid leukemia without PAP and may be useful markers of disease activity. PMID:18216869

  6. Neutralization and clearance of GM-CSF by autoantibodies in pulmonary alveolar proteinosis.

    PubMed

    Piccoli, Luca; Campo, Ilaria; Fregni, Chiara Silacci; Rodriguez, Blanca Maria Fernandez; Minola, Andrea; Sallusto, Federica; Luisetti, Maurizio; Corti, Davide; Lanzavecchia, Antonio

    2015-01-01

    Pulmonary alveolar proteinosis (PAP) is a severe autoimmune disease caused by autoantibodies that neutralize GM-CSF resulting in impaired function of alveolar macrophages. In this study, we characterize 21 GM-CSF autoantibodies from PAP patients and find that somatic mutations critically determine their specificity for the self-antigen. Individual antibodies only partially neutralize GM-CSF activity using an in vitro bioassay, depending on the experimental conditions, while, when injected in mice together with human GM-CSF, they lead to the accumulation of a large pool of circulating GM-CSF that remains partially bioavailable. In contrast, a combination of three non-cross-competing antibodies completely neutralizes GM-CSF activity in vitro by sequestering the cytokine in high-molecular-weight complexes, and in vivo promotes the rapid degradation of GM-CSF-containing immune complexes in an Fc-dependent manner. Taken together, these findings provide a plausible explanation for the severe phenotype of PAP patients and for the safety of treatments based on single anti-GM-CSF monoclonal antibodies. PMID:26077231

  7. GM-CSF deficiency delays neointima formation in a normolipidemic mouse model of endoluminal endothelial damage.

    PubMed

    Harris, Angie K; Shen, Jie; Radford, Jane; Bao, Shisan; Hambly, Brett D

    2009-02-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been implicated in atherogenesis and has been shown to have both pro- and antiatherogenic properties. Neointimal thickening is a prominent feature of early atherogenesis. This study aimed to examine the role of GM-CSF in neointimal formation induced by endothelial injury using a GM-CSF(-/-) mouse model. Neointimal thickening was induced by endothelial damage in the common iliac arteries of normolipidemic C57Bl/6 (wild-type) and GM-CSF(-/-) mice. Arteries were collected weekly for 3-7 weeks following surgery. A significant delay in neointimal formation in the GM-CSF(-/-) compared with wild-type mice was detected by morphometric analysis of the intimal area. Neointimal size was approximately 10% smaller in GM-CSF(-/-) mice at 4-6 weeks post-surgery, compared with wild-type mice. The neointima was composed predominantly of smooth muscle cells and there was no difference in the extent of endothelial cell coverage between the wild-type and GM-CSF(-/-) mice. Using immunohistochemistry, reduced macrophages (F4/80(+) cells), proliferating cells (proliferating cell nuclear antigen (PCNA)(+) cells) and platelet-derived growth factor-B were detected within the arteries of GM-CSF(-/-) mice compared with wild types at 4 weeks post-surgery. GM-CSF(-/-) mice had reduced connective tissue within the neointima compared with wild types at 5 weeks post-surgery, determined by trichrome staining. We conclude that GM-CSF deficiency reduces neointimal formation in a normolipidemic model, primarily due to reduced macrophage recruitment. PMID:18839015

  8. MafB antagonizes phenotypic alteration induced by GM-CSF in microglia

    SciTech Connect

    Koshida, Ryusuke Oishi, Hisashi Hamada, Michito; Takahashi, Satoru

    2015-07-17

    Microglia are tissue-resident macrophages which are distributed throughout the central nervous system (CNS). Recent studies suggest that microglia are a unique myeloid population distinct from peripheral macrophages in terms of origin and gene expression signature. Granulocyte-macrophage colony-stimulating factor (GM-CSF), a pleiotropic cytokine regulating myeloid development, has been shown to stimulate proliferation and alter phenotype of microglia in vitro. However, how its signaling is modulated in microglia is poorly characterized. MafB, a bZip transcriptional factor, is highly expressed in monocyte-macrophage lineage cells including microglia, although its role in microglia is largely unknown. We investigated the crosstalk between GM-CSF signaling and MafB by analyzing primary microglia. We found that Mafb-deficient microglia grew more rapidly than wild-type microglia in response to GM-CSF. Moreover, the expression of genes associated with microglial differentiation was more downregulated in Mafb-deficient microglia cultured with GM-CSF. Notably, such differences between the genotypes were not observed in the presence of M-CSF. In addition, we found that Mafb-deficient microglia cultured with GM-CSF barely extended their membrane protrusions, probably due to abnormal activation of RhoA, a key regulator of cytoskeletal remodeling. Altogether, our study reveals that MafB is a negative regulator of GM-CSF signaling in microglia. These findings could provide new insight into the modulation of cytokine signaling by transcription factors in microglia. - Highlights: • GM-CSF alters the phenotype of microglia in vitro more potently than M-CSF. • Transcription factor MafB antagonizes the effect of GM-CSF on microglia in vitro. • MafB deficiency leads to RhoA activation in microglia in response to GM-CSF. • We show for the first time the function of MafB in microglia.

  9. Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types

    PubMed Central

    Hong, In-Sun

    2016-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF, also called CSF-2) is best known for its critical role in immune modulation and hematopoiesis. A large body of experimental evidence indicates that GM-CSF, which is frequently upregulated in multiple types of human cancers, effectively marks cancer cells with a ‘danger flag' for the immune system. In this context, most studies have focused on its function as an immunomodulator, namely its ability to stimulate dendritic cell (DC) maturation and monocyte/macrophage activity. However, recent studies have suggested that GM-CSF also promotes immune-independent tumor progression by supporting tumor microenvironments and stimulating tumor growth and metastasis. Although some studies have suggested that GM-CSF has inhibitory effects on tumor growth and metastasis, an even greater number of studies show that GM-CSF exerts stimulatory effects on tumor progression. In this review, we summarize a number of findings to provide the currently available information regarding the anticancer immune response of GM-CSG. We then discuss the potential roles of GM-CSF in the progression of multiple types of cancer to provide insights into some of the complexities of its clinical applications. PMID:27364892

  10. Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types.

    PubMed

    Hong, In-Sun

    2016-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF, also called CSF-2) is best known for its critical role in immune modulation and hematopoiesis. A large body of experimental evidence indicates that GM-CSF, which is frequently upregulated in multiple types of human cancers, effectively marks cancer cells with a 'danger flag' for the immune system. In this context, most studies have focused on its function as an immunomodulator, namely its ability to stimulate dendritic cell (DC) maturation and monocyte/macrophage activity. However, recent studies have suggested that GM-CSF also promotes immune-independent tumor progression by supporting tumor microenvironments and stimulating tumor growth and metastasis. Although some studies have suggested that GM-CSF has inhibitory effects on tumor growth and metastasis, an even greater number of studies show that GM-CSF exerts stimulatory effects on tumor progression. In this review, we summarize a number of findings to provide the currently available information regarding the anticancer immune response of GM-CSG. We then discuss the potential roles of GM-CSF in the progression of multiple types of cancer to provide insights into some of the complexities of its clinical applications. PMID:27364892

  11. Recombinant rabies virus expressing dog GM-CSF is an efficacious oral rabies vaccine for dogs

    PubMed Central

    Wang, Zhao; Ruan, Juncheng; Tang, Lijun; Jia, Ziming; Cui, Min; Zhao, Ling; Fu, Zhen F.

    2015-01-01

    Developing efficacious oral rabies vaccines is an important step to increase immunization coverage for stray dogs, which are not accessible for parenteral vaccination. Our previous studies have demonstrated that recombinant rabies virus (RABV) expressing cytokines/chemokines induces robust protective immune responses after oral immunization in mice by recruiting and activating dendritic cells (DCs) and B cells. To develop an effective oral rabies vaccine for dogs, a recombinant attenuated RABV expressing dog GM-CSF, designated as LBNSE-dGM-CSF was constructed and used for oral vaccination in a dog model. Significantly more DCs or B cells were activated in the peripheral blood of dogs vaccinated orally with LBNSE-dGM-CSF than those vaccinated with the parent virus LBNSE, particularly at 3 days post immunization (dpi). As a result, significantly higher levels of virus neutralizing antibodies (VNAs) were detected in dogs immunized with LBNSE-dGM-CSF than with the parent virus. All the immunized dogs were protected against a lethal challenge with 4500 MICLD50 of wild-type RABV SXTYD01. LBNSE-dGM-CSF was found to replicate mainly in the tonsils after oral vaccination as detected by nested RT-PCR and immunohistochemistry. Taken together, our results indicate that LBNSE-dGM-CSF could be a promising oral rabies vaccine candidate for dogs. PMID:26436700

  12. IL-33 Promotes DC Development in BM Culture by Triggering GM-CSF Production

    PubMed Central

    Mayuzumi, Nobuyasu; Matsushima, Hironori; Takashima, Akira

    2010-01-01

    Summary Short-term DC cultures generated with GM-CSF and other cytokines have markedly improved our ability to study the immunobiology of DC. Here we tested 65 cytokines individually for their potentials to promote generation of CD11c+ cells in a murine BM culture system. In addition to several cytokines known to promote DC survival and/or growth, IL-33 was found to augment DC development time- and dose-dependently. Although the resulting CD11c+ cells generated in the presence of IL-33 exhibited a typical dendritic morphology, they expressed MHC class II molecules only at modest levels, showed negligible responses to TLR ligands, produced no detectable IL-12 p70, displayed PD-L1 and PD-L2 on the surface, and failed to activate immunologically naïve T cells efficiently. IL-33-induced expansion of CD11c+ cells was completely blocked by anti-GM-CSF mAb, and GM-CSF mRNA and protein expression in BM culture was markedly elevated by added IL-33, indicating that IL-33 promotes in vitro DC generation indirectly by a GM-CSF-dependent manner. With regard to the cellular source, IL-33-dependent GM-CSF production was observed exclusively within the CD45+/FcεRI+ BM population. Not only do our results reinforce the notion that GM-CSF serves as a primary DC growth factor, they also reveal a previously unrecognized mechanism supporting DC development. PMID:19750479

  13. Recombinant rabies virus expressing dog GM-CSF is an efficacious oral rabies vaccine for dogs.

    PubMed

    Zhou, Ming; Wang, Lei; Zhou, Songqin; Wang, Zhao; Ruan, Juncheng; Tang, Lijun; Jia, Ziming; Cui, Min; Zhao, Ling; Fu, Zhen F

    2015-11-17

    Developing efficacious oral rabies vaccines is an important step to increase immunization coverage for stray dogs, which are not accessible for parenteral vaccination. Our previous studies have demonstrated that recombinant rabies virus (RABV) expressing cytokines/chemokines induces robust protective immune responses after oral immunization in mice by recruiting and activating dendritic cells (DCs) and B cells. To develop an effective oral rabies vaccine for dogs, a recombinant attenuated RABV expressing dog GM-CSF, designated as LBNSE-dGM-CSF was constructed and used for oral vaccination in a dog model. Significantly more DCs or B cells were activated in the peripheral blood of dogs vaccinated orally with LBNSE-dGM-CSF than those vaccinated with the parent virus LBNSE, particularly at 3 days post immunization (dpi). As a result, significantly higher levels of virus neutralizing antibodies (VNAs) were detected in dogs immunized with LBNSE-dGM-CSF than with the parent virus. All the immunized dogs were protected against a lethal challenge with 4500 MICLD50 of wild-type RABV SXTYD01. LBNSE-dGM-CSF was found to replicate mainly in the tonsils after oral vaccination as detected by nested RT-PCR and immunohistochemistry. Taken together, our results indicate that LBNSE-dGM-CSF could be a promising oral rabies vaccine candidate for dogs. PMID:26436700

  14. The relative balance of GM-CSF and TGF-β1 regulates lung epithelial barrier function.

    PubMed

    Overgaard, Christian E; Schlingmann, Barbara; Dorsainvil White, StevenClaude; Ward, Christina; Fan, Xian; Swarnakar, Snehasikta; Brown, Lou Ann S; Guidot, David M; Koval, Michael

    2015-06-15

    Lung barrier dysfunction is a cardinal feature of the acute respiratory distress syndrome (ARDS). Alcohol abuse, which increases the risk of ARDS two- to fourfold, induces transforming growth factor (TGF)-β1, which increases epithelial permeability and impairs granulocyte/macrophage colony-stimulating factor (GM-CSF)-dependent barrier integrity in experimental models. We hypothesized that the relative balance of GM-CSF and TGF-β1 signaling regulates lung epithelial barrier function. GM-CSF and TGF-β1 were tested separately and simultaneously for their effects on lung epithelial cell barrier function in vitro. TGF-β1 alone caused an ∼ 25% decrease in transepithelial resistance (TER), increased paracellular flux, and was associated with projections perpendicular to tight junctions ("spikes") containing claudin-18 that colocalized with F-actin. In contrast, GM-CSF treatment induced an ∼ 20% increase in TER, decreased paracellular flux, and showed decreased colocalization of spike-associated claudin-18 with F-actin. When simultaneously administered to lung epithelial cells, GM-CSF antagonized the effects of TGF-β1 on epithelial barrier function in cultured cells. Given this, GM-CSF and TGF-β1 levels were measured in bronchoalveolar lavage (BAL) fluid from patients with ventilator-associated pneumonia and correlated with markers for pulmonary edema and patient outcome. In patient BAL fluid, protein markers of lung barrier dysfunction, serum α2-macroglobulin, and IgM levels were increased at lower ratios of GM-CSF/TGF-β1. Critically, patients who survived had significantly higher GM-CSF/TGF-β1 ratios than nonsurviving patients. This study provides experimental and clinical evidence that the relative balance between GM-CSF and TGF-β1 signaling is a key regulator of lung epithelial barrier function. The GM-CSF/TGF-β1 ratio in BAL fluid may provide a concentration-independent biomarker that can predict patient outcomes in ARDS. PMID:25888574

  15. The relative balance of GM-CSF and TGF-β1 regulates lung epithelial barrier function

    PubMed Central

    Overgaard, Christian E.; Schlingmann, Barbara; Dorsainvil White, StevenClaude; Ward, Christina; Fan, Xian; Swarnakar, Snehasikta; Brown, Lou Ann S.; Guidot, David M.

    2015-01-01

    Lung barrier dysfunction is a cardinal feature of the acute respiratory distress syndrome (ARDS). Alcohol abuse, which increases the risk of ARDS two- to fourfold, induces transforming growth factor (TGF)-β1, which increases epithelial permeability and impairs granulocyte/macrophage colony-stimulating factor (GM-CSF)-dependent barrier integrity in experimental models. We hypothesized that the relative balance of GM-CSF and TGF-β1 signaling regulates lung epithelial barrier function. GM-CSF and TGF-β1 were tested separately and simultaneously for their effects on lung epithelial cell barrier function in vitro. TGF-β1 alone caused an ∼25% decrease in transepithelial resistance (TER), increased paracellular flux, and was associated with projections perpendicular to tight junctions (“spikes”) containing claudin-18 that colocalized with F-actin. In contrast, GM-CSF treatment induced an ∼20% increase in TER, decreased paracellular flux, and showed decreased colocalization of spike-associated claudin-18 with F-actin. When simultaneously administered to lung epithelial cells, GM-CSF antagonized the effects of TGF-β1 on epithelial barrier function in cultured cells. Given this, GM-CSF and TGF-β1 levels were measured in bronchoalveolar lavage (BAL) fluid from patients with ventilator-associated pneumonia and correlated with markers for pulmonary edema and patient outcome. In patient BAL fluid, protein markers of lung barrier dysfunction, serum α2-macroglobulin, and IgM levels were increased at lower ratios of GM-CSF/TGF-β1. Critically, patients who survived had significantly higher GM-CSF/TGF-β1 ratios than nonsurviving patients. This study provides experimental and clinical evidence that the relative balance between GM-CSF and TGF-β1 signaling is a key regulator of lung epithelial barrier function. The GM-CSF/TGF-β1 ratio in BAL fluid may provide a concentration-independent biomarker that can predict patient outcomes in ARDS. PMID:25888574

  16. A Review of GM-CSF Therapy in Sepsis.

    PubMed

    Mathias, Brittany; Szpila, Benjamin E; Moore, Frederick A; Efron, Philip A; Moldawer, Lyle L

    2015-12-01

    Determine what clinical role, if any, GM-CSF may have in the clinical treatment of sepsis in the adult patient. Advancements in the management of sepsis have led to significant decreases in early mortality; however, sepsis remains a significant source of long-term mortality and disability which places strain on healthcare resources with a substantial growing economic impact. Historically, early multiple organ failure (MOF) and death in patients with severe sepsis was thought to result from an exaggerated proinflammatory response called the systemic inflammatory response syndrome (SIRS). Numerous prospective randomized controlled trials (PRCTs) tested therapies aimed at decreasing the organ injury associated with an exaggerated inflammatory response. With few exceptions, the results from these PRCTs have been disappointing, and currently no specific therapeutic agent is approved to counteract the early SIRS response in patients with severe sepsis. It has long been recognized that there is a delayed immunosuppressive state that contributes to long-term morbidity. However, recent findings now support a concurrent proinflammatory and anti-inflammatory response present throughout sepsis. Multiple immunomodulating agents have been studied to combat the immunosuppressive phase of sepsis with the goal of decreasing secondary infection, reducing organ dysfunction, decreasing ICU stays, and improving survival. Granulocyte-macrophage colony stimulating factor (GM-CSF), a myelopoietic growth factor currently used in patients with neutropenia secondary to chemotherapy-induced myelosuppression, has been studied as a potential immune-activating agent. The applicability of GM-CSF as a standard therapy for generalized sepsis is still largely understudied; however, small-scale studies available have demonstrated some improved recovery from infection, decreased hospital length of stay, decreased days requiring mechanical ventilation, and decreased medical costs. PMID:26683913

  17. Pivotal Roles of GM-CSF in Autoimmunity and Inflammation

    PubMed Central

    Shiomi, Aoi; Usui, Takashi

    2015-01-01

    Granulocyte macrophage-colony stimulating factor (GM-CSF) is a hematopoietic growth factor, which stimulates the proliferation of granulocytes and macrophages from bone marrow precursor cells. In autoimmune and inflammatory diseases, Th17 cells have been considered as strong inducers of tissue inflammation. However, recent evidence indicates that GM-CSF has prominent proinflammatory functions and that this growth factor (not IL-17) is critical for the pathogenicity of CD4+ T cells. Therefore, the mechanism of GM-CSF-producing CD4+ T cell differentiation and the role of GM-CSF in the development of autoimmune and inflammatory diseases are gaining increasing attention. This review summarizes the latest knowledge of GM-CSF and its relationship with autoimmune and inflammatory diseases. The potential therapies targeting GM-CSF as well as their possible side effects have also been addressed in this review. PMID:25838639

  18. Signal transduction pathways induced by GM-CSF in microglia: significance in the control of proliferation.

    PubMed

    Liva, S M; Kahn, M A; Dopp, J M; de Vellis, J

    1999-06-01

    Communication between cells of the central nervous system (CNS) and of the immune system is accomplished by a network of cytokines and growth factors. Certain cytokines and growth factors cause activation of microglia, contributing to inflammatory states in the CNS. Granulocyte-macrophage colony-stimulating factor (GM-CSF) has numerous effects on microglia, ranging from induction of proliferation to changes in morphology. GM-CSF is also a growth factor for cells of the myeloid lineage, and the signal tranduction induced by GM-CSF in these cells has been extensively studied. Most notably, the importance of the Jak/STAT and MAP kinase pathways in mitogenesis has been shown in many different systems. We show here that primary microglia and a microglia cell line, BV-2, have a Jak/STAT expression pattern and GM-CSF inducibility similar to that of monocytes and macrophages. Primary microglia and BV-2 cells expressed identical Jak/STATs: Jakl, Jak2, Jak3, Tyk2, STAT1alpha/beta, STAT3, STAT5A, STAT5B, and STAT6. In addition, GM-CSF induced Jak2, STAT5A, and STAT5B in BV-2 cells, as it does in monocytes and macrophages. Immunocytochemical analysis showed that STAT5 translocates to the nucleus following GM-CSF stimulation of microglia. We also found the MAP kinases, ERK1 and ERK2, to be phosphorylated in microglia and BV-2 cells following induction by GM-CSF. Jak2, STAT5A, STAT5B, and ERKs are known to be important in controlling cellular proliferation. Drugs that block these pathways may become tools to control inflammation in the CNS by limiting microglial proliferation. PMID:10383053

  19. Characterization of pathogenic human monoclonal autoantibodies against GM-CSF

    PubMed Central

    Wang, Yanni; Thomson, Christy A.; Allan, Lenka L.; Jackson, Linda M.; Olson, Melanie; Hercus, Timothy R.; Nero, Tracy L.; Turner, Amanda; Parker, Michael W.; Lopez, Angel L.; Waddell, Thomas K.; Anderson, Gary P.; Hamilton, John A.; Schrader, John W.

    2013-01-01

    The origin of pathogenic autoantibodies remains unknown. Idiopathic pulmonary alveolar proteinosis is caused by autoantibodies against granulocyte–macrophage colony-stimulating factor (GM-CSF). We generated 19 monoclonal autoantibodies against GM-CSF from six patients with idiopathic pulmonary alveolar proteinosis. The autoantibodies used multiple V genes, excluding preferred V-gene use as an etiology, and targeted at least four nonoverlapping epitopes on GM-CSF, suggesting that GM-CSF is driving the autoantibodies and not a B-cell epitope on a pathogen cross-reacting with GM-CSF. The number of somatic mutations in the autoantibodies suggests that the memory B cells have been helped by T cells and re-entered germinal centers. All autoantibodies neutralized GM-CSF bioactivity, with general correlations to affinity and off-rate. The binding of certain autoantibodies was changed by point mutations in GM-CSF that reduced binding to the GM-CSF receptor. Those monoclonal autoantibodies that potently neutralize GM-CSF may be useful in treating inflammatory disease, such as rheumatoid arthritis and multiple sclerosis, cancer, and pain. PMID:23620516

  20. Reduced expression of granule proteins during extended survival of eosinophils in splenocyte culture with GM-CSF.

    PubMed

    Ryu, Seul Hye; Na, Hye Young; Sohn, Moah; Han, Sun Murray; Choi, Wanho; In, Hyunju; Hong, Sookyung; Jeon, Hyejin; Seo, Jun-Young; Ahn, Jongcheol; Park, Chae Gyu

    2016-05-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a multifaceted hematopoietic cytokine and the culture of mouse bone marrow with GM-CSF produces a variety of myeloid cells including granulocytes, macrophages, and dendritic cells. In the present study, we cultured mouse splenocytes with GM-CSF and examined the changes in hematopoietic cell populations over a week. Most of the splenic hematopoietic cells disappeared significantly from culture within 6days with or without the presence of GM-CSF. Among the splenic granulocyte populations, only eosinophils fully survived throughout the culture with GM-CSF for more than a week. During 10days of culture with GM-CSF, splenic eosinophils maintained their morphology as well as most of their surface molecules at high levels, including CCR3 and Siglec F. Meanwhile, the expression of mRNAs encoding major basic protein-1 (MBP-1) and eosinophil peroxidase (EPO), two major eosinophil-derived granule proteins, was diminished significantly from the cultured eosinophils. EPO assays also revealed that eosinophils in culture for more than 5days retained 30% or less EPO activity compared to those in uncultured splenocytes. In contrast, culture of splenocytes with GM-CSF did not change the capacity of eosinophils to migrate in response to eotaxin-1. Our results indicate that mouse splenic eosinophils are effectively cultured for lengthy periods while their expression of eosinophil-derived granule proteins is specifically suppressed. The relevance of these findings to eosinophilic inflammatory response is discussed. PMID:26969350

  1. A phase II study of GM-CSF and rIFN-γ1b plus carboplatin for the treatment of recurrent, platinum-sensitive ovarian, fallopian tube and primary peritoneal cancer

    PubMed Central

    Schmeler, Kathleen M.; Vadhan-Raj, Saroj; Ramirez, Pedro T.; Apte, Sachin M.; Cohen, Lorenzo; Bassett, Roland L.; Iyer, Revathy B.; Wolf, Judith K.; Levenback, Charles L.; Gershenson, David M.; Freedman, Ralph S.

    2014-01-01

    Objective To evaluate the efficacy and toxicity of carboplatin, granulocyte-macrophage colony-stimulating factor (GM-CSF) and recombinant interferon gamma 1b (rIFN-γ1b) in women with recurrent, platinum-sensitive ovarian, fallopian tube and primary peritoneal cancer. Methods In this phase II study, patients with recurrent, platinum-sensitive ovarian, fallopian tube or primary peritoneal cancer were treated with subcutaneous GM-CSF and rIFN-γ1b before and after intravenous carboplatin until disease progression or unacceptable toxicity. All patients had measurable disease and a chemotherapy-free interval ≥6 months. Response was determined using RECIST criteria and CA 125 levels. Results Between 2003 and 2007, 59 patients received a median of 6 cycles of therapy (range, 1 to 13 cycles). Median age at enrollment was 61 years (range, 35 to 79 years). Median time to progression prior to enrollment was 11 months (range, 6 to 58 months). Of 54 patients evaluable for response, 9 (17%) had a complete response, 21 (39%) had a partial response, and 24 (44%) had progressive disease. The overall response rate was 56% (95% CI: 41% to 69%). With a median follow-up of 6.4 months, median time to progression was 6 months. Myeloid derived cells and platelets increased on day 9 of each chemotherapy cycle. The most common adverse effects were bone marrow suppression, carboplatin hypersensitivity, and fatigue. Responders reported improved quality of life. Conclusion This pre and post-carboplatin cytokine regimen resulted in a reasonable response and a hematologic profile that could invite further evaluation of its components in the treatment of patients with ovarian cancer. PMID:19264351

  2. Physical properties, lung deposition modeling, and bioactivity of recombinant GM-CSF aerosolised with a highly efficient nebulizer.

    PubMed

    Luisetti, Maurizio; Kroneberg, Philipp; Suzuki, Takuji; Kadija, Zamir; Muellinger, Bernhard; Campo, Ilaria; Gleske, Juliane; Rodi, Giuseppe; Zimlich, William C; Mariani, Francesca; Ferrari, Fabio; Frey, Manuel; Trapnell, Bruce C

    2011-02-01

    Pulmonary alveolar proteinosis (PAP) is a rare condition characterized by the accumulation of lipoproteinaceous material within air spaces. Although whole lung lavage is the current standard of care, recent advances in our understanding of PAP pathophysiology suggest that the disorder may benefit from inhalation of recombinant granulocyte-macrophage colony-stimulating factor (rGM-CSF). The aim of this study was to determine the physical properties and bioactivity of rGM-CSF aerosolised by the highly efficient AKITA² APIXNEB® nebulizer system. The physical properties of aerosolised rGM-CSF were investigated in terms of droplet size, output and output rate by laser diffraction and gravimetrical analysis. Lung deposition was assessed using deposition modeling (ICRP). Molecular mass before and after aerosolisation was determined by SDS-PAGE, while the bioactivity of rGM-CSF was evaluated by measuring the GM-CSF-stimulated increase in pSTAT5 using mAM-hGM-R cells. Ninety-six % of the rGM-CSF filling dose was aerosolised with the Akita² Apixneb® nebulizer system. Particle size was highly reproducible, and the amount deposited within the lung was 80.35% of the delivered dose. The aerosolisation did not alter the molecular structure of rGM-CSF, nor its ability to stimulate the pSTAT5, which increased by 99.5%, similar to values for rGM-CSF prior to aerosolisation. We conclude that the highly efficient AKITA² APIXNEB® nebulizer system is likely to efficaciously deliver rGM-CSF to the airways of patients with autoimmune PAP. PMID:20728558

  3. Effects of Granulocyte-Macrophage Colony-Stimulating (GM-CSF) Factor on Corneal Epithelial Cells in Corneal Wound Healing Model

    PubMed Central

    Rho, Chang Rae; Park, Mi-young; Kang, Seungbum

    2015-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that activates granulocyte and macrophage cell lineages. It is also known to have an important function in wound healing. This study investigated the effect of GM-CSF in wound healing of human corneal epithelial cells (HCECs). We used human GM-CSF derived from rice cells (rice cell-derived recombinant human GM-CSF; rhGM-CSF). An in vitro migration assay was performed to investigate the migration rate of HCECs treated with various concentrations of rhGM-CSF (0.1, 1.0, and 10.0 μg/ml). MTT assay and flow cytometric analysis were used to evaluate the proliferative effect of rhGM-CSF. The protein level of p38MAPK was analyzed by western blotting. For in vivo analysis, 100 golden Syrian hamsters were divided into four groups, and their corneas were de-epithelialized with alcohol and a blade. The experimental groups were treated with 10, 20, or 50 μg/ml rhGM-CSF four times daily, and the control group was treated with phosphate-buffered saline. The corneal wound-healing rate was evaluated by fluorescein staining at the initial wounding and 12, 24, 36, and 48 hours after epithelial debridement. rhGM-CSF accelerated corneal epithelial wound healing both in vitro and in vivo. MTT assay and flow cytometric analysis revealed that rhGM-CSF treatment had no effects on HCEC proliferation. Western blot analysis demonstrated that the expression level of phosphorylated p38MAPK increased with rhGM-CSF treatment. These findings indicate that rhGM-CSF enhances corneal wound healing by accelerating cell migration. PMID:26376304

  4. Effects of Granulocyte-Macrophage Colony-Stimulating (GM-CSF) Factor on Corneal Epithelial Cells in Corneal Wound Healing Model.

    PubMed

    Rho, Chang Rae; Park, Mi-young; Kang, Seungbum

    2015-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that activates granulocyte and macrophage cell lineages. It is also known to have an important function in wound healing. This study investigated the effect of GM-CSF in wound healing of human corneal epithelial cells (HCECs). We used human GM-CSF derived from rice cells (rice cell-derived recombinant human GM-CSF; rhGM-CSF). An in vitro migration assay was performed to investigate the migration rate of HCECs treated with various concentrations of rhGM-CSF (0.1, 1.0, and 10.0 μg/ml). MTT assay and flow cytometric analysis were used to evaluate the proliferative effect of rhGM-CSF. The protein level of p38MAPK was analyzed by western blotting. For in vivo analysis, 100 golden Syrian hamsters were divided into four groups, and their corneas were de-epithelialized with alcohol and a blade. The experimental groups were treated with 10, 20, or 50 μg/ml rhGM-CSF four times daily, and the control group was treated with phosphate-buffered saline. The corneal wound-healing rate was evaluated by fluorescein staining at the initial wounding and 12, 24, 36, and 48 hours after epithelial debridement. rhGM-CSF accelerated corneal epithelial wound healing both in vitro and in vivo. MTT assay and flow cytometric analysis revealed that rhGM-CSF treatment had no effects on HCEC proliferation. Western blot analysis demonstrated that the expression level of phosphorylated p38MAPK increased with rhGM-CSF treatment. These findings indicate that rhGM-CSF enhances corneal wound healing by accelerating cell migration. PMID:26376304

  5. Molecular modeling of the GM-CSF and IL-3 receptor complexes.

    PubMed Central

    Lyne, P. D.; Bamborough, P.; Duncan, D.; Richards, W. G.

    1995-01-01

    A model for the structure of the cytokine interleukin-3 (IL-3) is presented based on the structural homology of the hematopoietic cytokines and utilizing the crystal structures of interleukin-5 and granulocyte macrophage colony stimulating factor (GM-CSF). In addition, models of the receptor complexes of GM-CSF and IL-3 are presented based on the structural homology of the hematopoietic receptors to growth hormone. Several key interactions between the ligands and their receptors are discovered, some in agreement with previous mutagenesis studies and others that have not yet been the subject of mutagenesis studies. The models provide insights into the binding of GM-CSF and IL-3 to their receptors. PMID:8535258

  6. Interleukin-33 stimulates GM-CSF and M-CSF production by human endothelial cells.

    PubMed

    Montanari, Eliana; Stojkovic, Stefan; Kaun, Christoph; Lemberger, Christof E; de Martin, Rainer; Rauscher, Sabine; Gröger, Marion; Maurer, Gerald; Neumayer, Christoph; Huk, Ihor; Huber, Kurt; Demyanets, Svitlana; Wojta, Johann

    2016-08-01

    Interleukin (IL)-33, a member of the IL-1 family of cytokines, is involved in various inflammatory conditions targeting amongst other cells the endothelium. Besides regulating the maturation and functions of myeloid cells, granulocyte macrophage-colony stimulating factor (GM-CSF) and macrophage-CSF (M-CSF) have been shown to play a role in such pathologies too. It was the aim of our study to investigate a possible influence of IL-33 on GM-CSF and M-CSF production by human endothelial cells. IL-33, but not IL-18 or IL-37, stimulated GM-CSF and M-CSF mRNA expression and protein production by human umbilical vein endothelial cells (HUVECs) and human coronary artery ECs (HCAECs) through the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway in an IL-1-independent way. This effect was inhibited by the soluble form of ST2 (sST2), which is known to act as a decoy receptor for IL-33. The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor fluvastatin could also be shown to moderately reduce the IL-33-mediated effect on M-CSF, but not on GM-CSF expression. In addition, IL-33, IL-1β, GM-CSF and M-CSF were detected in endothelial cells of human carotid atherosclerotic plaques using immunofluorescence. Upregulation of GM-CSF and M-CSF production by human endothelial cells, an effect that appears to be mediated by NF-κB and to be independent of IL-1, may be an additional mechanism through which IL-33 contributes to inflammatory activation of the vessel wall. PMID:27173404

  7. Effect of recombinant lactobacillus expressing canine GM-CSF on immune function in dogs.

    PubMed

    Chung, Jin Young; Sung, Eui Jae; Cho, Chun Gyu; Seo, Kyoung Won; Lee, Jong-Soo; Bhang, Dong Ha; Lee, Hee Woo; Hwang, Cheol Yong; Lee, Wan Kyu; Youn, Hwa Young; Kim, Chul Joong

    2009-11-01

    Many Lactobacillus strains have been promoted as good probiotics for the prevention and treatment of diseases. We engineered recombinant Lactobacillus casei, producing biologically active canine granulocyte macrophage colony stimulating factor (cGM-CSF), and investigated its possibility as a good probiotic agent for dogs. Expression of the cGM-CSF protein in the recombinant Lactobacillus was confirmed by SDS-PAGE and Western blotting methods. For the in vivo study, 18 Beagle puppies of 7 weeks of age were divided into three groups; the control group was fed only on a regular diet and the two treatment groups were fed on a diet supplemented with either 1 x 10(9) colony forming units (CFU)/day of L. casei or L. casei expressing cGM-CSF protein for 7 weeks. Body weight was measured, and fecal and blood samples were collected from the dogs during the experiment for the measurement of hematology, fecal immunoglobulin (Ig)A and IgG, circulating IgA and IgG, and canine corona virus (CCV)-specific IgG. There were no differences in body weights among the groups, but monocyte counts in hematology and serum IgA were higher in the group receiving L. casei expressing cGMCSF than in the other two groups. After the administration of CCV vaccine, CCV-specific IgG in serum increased more in the group supplemented with L. casei expressing cGM-CSF than the other two groups. This study shows that a dietary L. casei expressing cGM-CSF enhances specific immune functions at both the mucosal and systemic levels in puppies. PMID:19996694

  8. Tissue localization of GM-CSF receptor in bovine ovarian follicles and its role on glucose uptake by mural granulosa cells.

    PubMed

    Peralta, O A; Bucher, D; Angulo, C; Castro, M A; Ratto, M H; Concha, Il

    2016-07-01

    The granulocyte-macrophage colony stimulating factor (GM-CSF) is a multifunctional cytokine implicated in proliferation, differentiation, and activation of several cell types including those involved in hematopoiesis and reproduction. In the present study, the expression of the α- and β-subunit genes of GM-CSF receptor during follicular development in cattle was assessed. The spatial association of α- and β-subunits of GM-CSF with follicle stimulating hormone receptor (FSHR) and 3β-hydroxysteroid dehydrogenase (3β-HSD), and the temporal associations with gene expression of hexose transporters (GLUTs) in granulosa cells of cattle were also evaluated. The effect of GM-CSF on the functionality of hexose transporters was also determined in an in vitro primary culture of granulosa cells. The spatial association of subunits of the GM-CSF receptor with 3β-HSD and FSHR suggests a potential steroidogenic regulation of GM-CSF in granulosa cells. Immunodetection of GLUTs and uptake kinetic assays confirmed expression and functionality of these genes for hexose transporters in granulosa cells of cattle. Treatment of granulosa cells with GM-CSF, FSH or insulin- like growth factor-I (IGF-I) alone increased 2-deoxyglucose (DOG) or 3-0-methylglucose (OMG) uptake; however, when cells were treated with various combination of these factors there were no additive effect. Unexpectedly, the combination of GM-CSF and FSH decreased DOG uptake compared to FSH treatment alone. Thus, the expression pattern of GM-CSF receptor subunit genes during follicle development in cattle and promotion of DOG and OMG uptake in granulosa cells indicate a role for GM-CSF, FSH and/or IGF-I alone in regulating granulosa cell metabolic activity, specifically by promoting glucose uptake. PMID:27236376

  9. Response of CFU-GM to increasing doses of rhGM-CSF in patients with aplastic anemia.

    PubMed

    Bacigalupo, A; Piaggio, G; Figari, O; Tong, J; Sogno, G; Tedone, E; Sette, A; Ratto, M R; Caciagli, P; Badolati, G

    1991-09-01

    The aim of this study was to test whether large amounts of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) are capable of promoting the growth of hemopoietic progenitors from patients with marrow failure. For this purpose 0.1, 100, 1000, 10,000 and 20,000 ng/ml of rhGM-CSF were added to 10(5) light-density (adherent cell-depleted) bone marrow cells from 9 normal controls and from 52 patients with aplastic anemia, 25 cases of which were transfusion-dependent (Tx-D) aplastic anemia (AA) and 27 of which were transfusion-independent (Tx-I) aplastic anemia (AA). A dose-dependent increase of granulocyte-macrophage colony-forming units (CFU-GM) was observed in healthy donors, from 81 to 247 colonies at 0.1 and 1000 ng/ml of rhGM-CSF, with a plateau thereafter. Tx-I AA patients showed the best increase of CFU-GM in response to colony-stimulating factor, from 0.1 to 32.7 mean colonies at 0.1 and 20,000 ng/ml of rhGM-CSF, and the increment was greater when compared to controls. The ratio of CFU-GM grown from these patients and controls was 1:810 at 0.1 ng/ml of rhGM-CSF and 1:7.9 at 20,000 ng/ml. Eleven patients were studied at diagnosis; there was no in vitro response to rhGM-CSF (0 and 1.8 mean colonies/10(5) cells at 0.1 and 10,000 ng/ml). Overall, Tx-D AA patients showed minimal increments of CFU-GM growth at very high doses of rhGM-CSF. Two suggestions come from this study: 1) maturation of CFU-GM from recovering AA patients appears to require larger doses of GM-CSF than normal controls, and 2) very high doses of rhGM-CSF have little or no effect on CFU-GM growth in AA patients. This may be relevant for clinical studies designed to improve hemopoiesis in patients with marrow failure. PMID:1868897

  10. SP-D counteracts GM-CSF-mediated increase of granuloma formation by alveolar macrophages in lysinuric protein intolerance

    PubMed Central

    2009-01-01

    Background Pulmonary alveolar proteinosis (PAP) is a syndrome with multiple etiologies and is often deadly in lysinuric protein intolerance (LPI). At present, PAP is treated by whole lung lavage or with granulocyte/monocyte colony stimulating factor (GM-CSF); however, the effectiveness of GM-CSF in treating LPI associated PAP is uncertain. We hypothesized that GM-CSF and surfactant protein D (SP-D) would enhance the clearance of proteins and dying cells that are typically present in the airways of PAP lungs. Methods Cells and cell-free supernatant of therapeutic bronchoalveolar lavage fluid (BALF) of a two-year-old patient with LPI were isolated on multiple occasions. Diagnostic BALF samples from an age-matched patient with bronchitis or adult PAP patients were used as controls. SP-D and total protein content of the supernatants were determined by BCA assays and Western blots, respectively. Cholesterol content was determined by a calorimetic assay or Oil Red O staining of cytospin preparations. The cells and surfactant lipids were also analyzed by transmission electron microscopy. Uptake of Alexa-647 conjugated BSA and DiI-labelled apoptotic Jurkat T-cells by BAL cells were studied separately in the presence or absence of SP-D (1 μg/ml) and/or GM-CSF (10 ng/ml), ex vivo. Specimens were analyzed by light and fluorescence microscopy. Results Here we show that large amounts of cholesterol, and large numbers of cholesterol crystals, dying cells, and lipid-laden foamy alveolar macrophages were present in the airways of the LPI patient. Although SP-D is present, its bioavailability is low in the airways. SP-D was partially degraded and entrapped in the unusual surfactant lipid tubules with circular lattice, in vivo. We also show that supplementing SP-D and GM-CSF increases the uptake of protein and dying cells by healthy LPI alveolar macrophages, ex vivo. Serendipitously, we found that these cells spontaneously generated granulomas, ex vivo, and GM-CSF treatment

  11. Developmental potential of isolated blastomeres from early mouse embryos in the presence and absence of LIF and GM-CSF

    PubMed Central

    Sheikholslami, Behnaz; Valojerdi, Mojtaba Rezazadeh; Ramezanzadeh, Mehdi

    2008-01-01

    Purpose The aim of this study was to investigate the developmental potential of isolated blastomeres in the presence and absence of leukemia inhibitory factor (LIF) and granulocyte–macrophage colony stimulating factor (GM-CSF). Methods The blastomeres of two (1/2) and eight cells (1/8) embryos were isolated and cultured in T6 medium in the presence and absence of LIF (1,000 IU/ml) and or GM-CSF (2 ng/ml) up to 120 h. The diameter and cell number of blastocysts were measured. Results The developmental rates of 1/2 isolated blastomeres developed to blastocysts stages in the presence and absence of LIF and GM-CSF were 45.80, 35.10 and 48.66, 41.66, respectively. The diameter of blastocysts was higher in GM-CSF group and total cell number of blastocyst in both treated groups was higher than control (P < 0.05). No 1/8 blastomeres developed to morula and blastocyst stages. Conclusions LIF and GM-CSF could improve the development of 1/2 isolated blastomeres. PMID:18202911

  12. Pleural innate response activator B cells protect against pneumonia via a GM-CSF-IgM axis.

    PubMed

    Weber, Georg F; Chousterman, Benjamin G; Hilgendorf, Ingo; Robbins, Clinton S; Theurl, Igor; Gerhardt, Louisa M S; Iwamoto, Yoshiko; Quach, Tam D; Ali, Muhammad; Chen, John W; Rothstein, Thomas L; Nahrendorf, Matthias; Weissleder, Ralph; Swirski, Filip K

    2014-06-01

    Pneumonia is a major cause of mortality worldwide and a serious problem in critical care medicine, but the immunophysiological processes that confer either protection or morbidity are not completely understood. We show that in response to lung infection, B1a B cells migrate from the pleural space to the lung parenchyma to secrete polyreactive emergency immunoglobulin M (IgM). The process requires innate response activator (IRA) B cells, a transitional B1a-derived inflammatory subset which controls IgM production via autocrine granulocyte/macrophage colony-stimulating factor (GM-CSF) signaling. The strategic location of these cells, coupled with the capacity to produce GM-CSF-dependent IgM, ensures effective early frontline defense against bacteria invading the lungs. The study describes a previously unrecognized GM-CSF-IgM axis and positions IRA B cells as orchestrators of protective IgM immunity. PMID:24821911

  13. Preclinical characterisation of the GM-CSF receptor as a therapeutic target in rheumatoid arthritis

    PubMed Central

    Greven, D E A; Cohen, E S; Gerlag, D M; Campbell, J; Woods, J; Davis, N; van Nieuwenhuijze, A; Lewis, A; Heasmen, S; McCourt, M; Corkill, D; Dodd, A; Elvin, J; Statache, G; Wicks, I P; Anderson, I K; Nash, A; Sleeman, M A; Tak, P P

    2015-01-01

    Objective Previous work has suggested that the granulocyte macrophage colony stimulating factor (GM-CSF)–GM-CSF receptor α axis (GM-CSFRα) may provide a new therapeutic target for the treatment of rheumatoid arthritis (RA). Therefore, we investigated the cellular expression of GM-CSFRα in RA synovial tissue and investigated the effects of anti-GM-CSFRα antibody treatment in vitro and in vivo in a preclinical model of RA. Methods We compared GM-CSFRα expression on macrophages positive for CD68 or CD163 on synovial biopsy samples from patients with RA or psoriatic arthritis (PsA) to disease controls. In addition, we studied the effects of CAM-3003, an anti-GM-CSFR antibody in a collagen induced arthritis model of RA in DBA/1 mice. The pharmacokinetic profile of CAM-3003 was studied in naïve CD1(ICR) mice (see online supplement) and used to interpret the results of the pharmacodynamic studies in BALB/c mice. Results GM-CSFRα was expressed by CD68 positive and CD163 positive macrophages in the synovium, and there was a significant increase in GM-CSFRα positive cells in patients in patients with RA as well as patients with PsA compared with patients with osteoarthritis and healthy controls. In the collagen induced arthritis model there was a dose dependent reduction of clinical arthritis scores and the number of F4/80 positive macrophages in the inflamed synovium after CAM-3003 treatment. In BALB/c mice CAM-3003 inhibited recombinant GM-CSF mediated margination of peripheral blood monocytes and neutrophils. Conclusions The findings support the ongoing development of therapies aimed at interfering with GM-CSF or its receptor in various forms of arthritis, such as RA and PsA. PMID:24936585

  14. Quick method of multimeric protein production for biologically active substances such as human GM-CSF (hGM-CSF).

    PubMed

    Shinya, Eiji; Owaki, Atsuko; Norose, Yoshihiko; Sato, Shigeru; Takahashi, Hidemi

    2009-08-14

    The C-terminal fragment of C4b-binding protein (C4BP)-based multimerizing system was applied to hGM-CSF to induce dendritic cells (DCs) from peripheral blood monocytes (PBMCs), to see whether the C4BP could stimulate immature DCs, since DCs, equipped with pattern recognition receptors such as toll-like receptors (TLRs), are hypersensitive to various immunologically active molecules like LPS. hGM-CSF gene was merged to the 3'-terminal region of the C4BPalpha-chain gene, and the transfected human 293FT cells produced sufficient amount of octameric hGM-CSF, which resulted in iDCs with the same phenotype and the same response to a TRL4 ligand, LPS and a TLR3 ligand, poly I:C, as those induced with authentic monomeric hGM-CSF. These results suggest that the C4BP-based multimerizing system could facilitate the design of self-associating multimeric recombinant proteins without stimulating iDCs, which might be seen with the other multimerizing systems such as that using Fc fragment of IgM. PMID:19497303

  15. Inhibitory effect of Korean Red Ginseng on melanocyte proliferation and its possible implication in GM-CSF mediated signaling

    PubMed Central

    Oh, Chang Taek; Park, Jong Il; Jung, Yi Ra; Joo, Yeon Ah; Shin, Dong Ha; Cho, Hyoung Joo; Ahn, Soo Mi; Lim, Young-Ho; Park, Chae Kyu; Hwang, Jae Sung

    2013-01-01

    Korean Red Ginseng (KRG) has been reported to exert anticancer, anti-oxidant, and anti-inflammatory effects. However, there has been no report on the effect of KRG on skin pigmentation. In this study, we investigated the inhibitory effect of KRG on melanocyte proliferation. KRG extract (KRGE) at different concentrations had no effect on melanin synthesis in melan-A melanocytes. Saponin of KRG (SKRG) inhibited melanin content to 80% of the control at 100 ppm. Keratinocyte-derived factors induced by UV-irradiation were reported to stimulate melanogenesis, differentiation, proliferation, and dendrite formation. In this study, treatment of melan-A melanocytes with conditioned media from UV-irradiated SP-1 keratinocytes increased melanocyte proliferation. When UV-irradiated SP-1 keratinocytes were treated with KRGE or SKRG, the increase of melanocyte proliferation by the conditioned media was blocked. Granulocyte-macrophage colony-stimulating factor (GM-CSF) was produced and released from UV-irradiated keratinocytes. This factor has been reported to be involved in regulating the proliferation and differentiation of epidermal melanocytes. In this study, GM-CSF was significantly increased in SP-1 keratinocytes by UVB irradiation (30 mJ/cm2), and the proliferation of melan-A melanocytes increased significantly by GM-CSF treatment. In addition, the proliferative effect of keratinocyte-conditioned media on melan-A melanocytes was blocked by anti-GM-CSF treatment. KRGE or SKRG treatment decreased the expression of GM-CSF in SP-1 keratinocytes induced by UVB irradiation. These results demonstrate that UV irradiation induced GM-CSF expression in keratinocytes and KRGE or SKRG inhibited its expression. Therefore, KRG could be a good candidate for regulating UV-induced melanocyte proliferation. PMID:24235857

  16. Synergism between cryoablation and GM-CSF: enhanced immune function of splenic dendritic cells in mice with glioma.

    PubMed

    Xu, Hongchao; Wang, Qifu; Lin, Chunnan; Yin, Zhilin; He, Xiaozheng; Pan, Jun; Lu, Guohui; Zhang, Shizhong

    2015-04-15

    Glioma is the most common malignant primary brain tumor, and it has a poor prognosis. Studies have shown that cryoablation can activate antitumor immunoeffects by promoting the augmentation of dendritic cells (DCs). Granulocyte macrophage colony-stimulating factor (GM-CSF) has been shown to be useful for immunotherapy against glioma because it can stimulate DCs to present tumor antigen. Previous studies have shown that cryoablation and GM-CSF can exert antitumor effects. To test the hypothesis that combined therapy with cryoablation and GM-CSF for glioma could synergistically improve specific antiglioma immunity in mice, we tested the validity of this assumption in a murine subcutaneous GL261 glioma model. C57BL/6 mice with subcutaneous GL261 glioma were created and divided into four groups: no treatment, GM-CSF injection, cryoablation treatment, and GM-CSF and cryoablation combined treatment (n=20 in each group). Serial immune indicators were detected at sequential time points during treatment. Compared with the other groups, in the combined treatment group, DCs were more activated and their numbers were markedly upregulated, the secretion of interferon-γ from Th1 cells of mice spleen was increased, and the cytolytic activity of CD8 CTLs exerted a more significant cytotoxic effect on GL261 glioma cells (P<0.05 for all). Furthermore, these changes peaked on the 7th day after treatment, and then gradually reduced, until the 21st day; these changes were higher than those at pretreatment (P<0.05). It is concluded that combined therapy with argon-helium cryoablation and GM-CSF could synergistically enhance the activation of DCs and induce a robust tumor-specific immunologic response in glioma-bearing mice. PMID:25735009

  17. Comparative antitumor effect among GM-CSF, IL-12 and GM-CSF+IL-12 genetically modified tumor cell vaccines.

    PubMed

    Miguel, A; Herrero, M J; Sendra, L; Botella, R; Algás, R; Sánchez, M; Aliño, S F

    2013-10-01

    Genetically modified cells have been shown to be one of the most effective cancer vaccine strategies. An evaluation is made of the efficacy of both preventive and therapeutic antitumor vaccines against murine melanoma, using C57BL/6 mice and irradiated B16 tumor cells expressing granulocyte and macrophage colony-stimulating factor (GM-CSF), interleukin-12 (IL-12) or both. Tumor was transplanted by the injection of wild-type B16 cells. Tumor growth and survival were measured to evaluate the efficacy of vaccination. Specific humoral response and immunoglobulin G (IgG) switch were evaluated measuring total IgG and IgG1 and IgG2a subtypes against tumor membrane proteins of B16 cells. In preventive vaccination, all treated groups showed delayed tumor growth. In addition, the group vaccinated to express only GM-CSF achieved 100% animal survival (P<0.005). Vaccination with GM-CSF+IL-12-producing B16 cells yielded lesser results (60% survival, P<0.005). Furthermore, all surviving animals remained disease-free after second tumor implantation 1 year later. The therapeutic vaccination strategies resulted in significantly delayed tumor growth, mainly using B16 cells producing GM-CSF+IL-12 cytokines, with 70% tumor growth inhibition (P<0.001)-although none of the animals reached overall survival. The results obtained suggest that the GM-CSF+IL-12 combination only increases the efficacy of therapeutic vaccines. No differences in classical regulatory T cells were found among the different groups. PMID:23969885

  18. Granulocyte-macrophage colony stimulating factor (GM-CSF) enhances the clinical responses to Interferon-α (IFN) in newly diagnosed chronic myeloid leukemia (CML)

    PubMed Central

    Zeidner, Joshua F; Gladstone, Douglas E; Zahurak, Marianna; Matsui, William H; Gocke, Christopher; Jones, Richard J; Smith, B Douglas

    2014-01-01

    The majority of chronic myeloid leukemia (CML) patients treated with tyrosine kinase inhibitors (TKIs) remain with residual disease. In contrast to TKIs, interferon (IFN) is directly toxic to CML progenitor cells, and myeloid growth factors such as GM-CSF may enhance IFN’s cytotoxicity. We performed a phase 2 study of IFN+GM-CSF in 58 newly diagnosed CML patients before imatinib approval. Short-term clinical responses included: 60% major cytogenetic response, 28% complete cytogenetic response and 19% complete molecular response. Six patients remain off all therapy for CML (range: 15 months–12 years) after IFN+GM-CSF treatment. IFN+GM-CSF shows promise as an adjunctive therapy for CML. PMID:25012565

  19. Protective effects of GM-CSF in experimental neonatal hypothyroidism.

    PubMed

    Ahmed, R G; Abdel-Latif, M; Ahmed, F

    2015-12-01

    Hypothyroidism induced by methimazole (MMI), has a negative impact on the postnatal development. Neonatal Granulocyte Macrophage-Colony Stimulating Factor [GM-CSF; 50μg/kg, intramuscular injection at postnatal day (PND) 17] had been tested to ameliorate the effects of MMI [0.05%, (weight per volume; w/v), intraperitoneal injection at PND 15]-induced hypothyroidism in Wistar rats. The hypothyroid conditions due to the administration of MMI produced inhibitory effects on neonatal serum thyroxine (T4), 3,5,3'-triiodothyronine (T3), neutrophil count in bone marrow and blood, cerebellar glutathione (GSH) and acetylcholinesterase (AchE), although it induced stimulatory actions on serum thyrotropin (TSH), growth hormone (GH), insulin growth factor-II (IGF-II), tumor necrosis factor alpha (TNF-α), and cerebellar malondialdehyde (MDA) at PND 19. The treatment with GM-CSF could reverse the depressing and stimulating effects of MMI on these markers except for cerebellar AchE where its enhancement was non-significant (P>0.05) at tested PND. Thus, neonatal GM-CSF may be responsible for suppressing autoimmune responses and preventing hypothyroidism. PMID:26453507

  20. The Structure of the GM-CSF Receptor Complex Reveals a Distinct Mode of Cytokine Receptor Activation

    SciTech Connect

    Hansen, Guido; Hercus, Timothy R.; McClure, Barbara J.; Stomski, Frank C.; Dottore, Mara; Powell, Jason; Ramshaw, Hayley; Woodcock, Joanna M.; Xu, Yibin; Guthridge, Mark; McKinstry, William J.; Lopez, Angel F.; Parker, Michael W.

    2008-08-11

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that controls the production and function of blood cells, is deregulated in clinical conditions such as rheumatoid arthritis and leukemia, yet offers therapeutic value for other diseases. Its receptors are heterodimers consisting of a ligand-specific {alpha} subunit and a {beta}c subunit that is shared with the interleukin (IL)-3 and IL-5 receptors. How signaling is initiated remains an enigma. We report here the crystal structure of the human GM-CSF/GM-CSF receptor ternary complex and its assembly into an unexpected dodecamer or higher-order complex. Importantly, mutagenesis of the GM-CSF receptor at the dodecamer interface and functional studies reveal that dodecamer formation is required for receptor activation and signaling. This unusual form of receptor assembly likely applies also to IL-3 and IL-5 receptors, providing a structural basis for understanding their mechanism of activation and for the development of therapeutics.

  1. Enhanced Th1-biased immune efficacy of porcine circovirus type 2 Cap-protein-based subunit vaccine when coadministered with recombinant porcine IL-2 or GM-CSF in mice.

    PubMed

    Wang, Yiping; Lu, Yuehua; Liu, Dan; Wei, Yanwu; Guo, Longjun; Wu, Hongli; Huang, Liping; Liu, Jianbo; Liu, Changming

    2015-02-01

    Porcine circovirus type 2 (PCV2) capsid (Cap) protein is the primary protective antigen responsible for inducing PCV2-specific protective immunity, so it is a desirable target for the development of recombinant subunit vaccines to prevent PCV2-associated diseases. Interleukin 2 (IL-2) and granulocyte-macrophage colony-stimulating factor (GM-CSF), used as immune adjuvants, have been shown to enhance the immunogenicity of certain antigens or vaccines in various experimental models. In this study, five different subunit vaccines (the PCV2-Cap, Cap-PoIL-2, PCV2-Cap + PoIL-2, Cap-PoGM-CSF, and PCV2-Cap + PoGM-CSF vaccines) were prepared based on baculovirus-expressed recombinant proteins. The immunogenicity of these vaccines was evaluated to identify the immunoenhancement by PoIL-2 and PoGM-CSF of the Cap-protein-based PCV2 subunit vaccine in mice. The PCV2-Cap + PoIL-2, Cap-PoGM-CSF, PCV2-Cap + PoGM-CSF, and PCV2-Cap vaccines induced significantly higher levels of PCV2-specific antibodies than the Cap-PoIL-2 vaccine, whereas there was no apparent difference between these four vaccines. Our results indicate that neither PoIL-2 nor PoGM-CSF had effect on the enhancement of the humoral immunity induced by the PCV2-Cap vaccine. Furthermore, the PCV2-Cap + PoIL-2, Cap-PoGM-CSF, and PCV2-Cap + PoGM-CSF vaccines elicited stronger lymphocyte proliferative responses and greater IL-2 and interferon gamma (IFN-γ) secretion. This suggests that PoIL-2 and PoGM-CSF substantially augmented the Th1-biased immune response to the PCV2-Cap vaccine. Following challenge, the viral loads in the lungs of the PCV2-Cap + PoIL-2-, Cap-PoGM-CSF-, and PCV2-Cap + PoGM-CSF-treated groups were dramatically lower than those in the Cap-PoIL-2- and PCV2-Cap-treated groups, indicating that the three vaccines induced stronger protective effects against challenge. These findings show that PoIL-2 and PoGM-CSF essentially enhanced the Th1-biased protective efficacy of the

  2. Immune responses of pigs immunized with a recombinant porcine reproductive and respiratory syndrome virus expressing porcine GM-CSF.

    PubMed

    Li, Zhijun; Wang, Gang; Wang, Yan; Zhang, Chong; Huang, Baicheng; Li, Qiongyi; Li, Liangliang; Xue, Biyun; Ding, Peiyang; Cai, Xuehui; Wang, Chengbao; Zhou, En-Min

    2015-11-15

    Porcine reproductive and respiratory syndrome virus (PRRSV) has spread worldwide, causing huge economic losses to the swine industry. The current PRRSV vaccines have failed to provide broad protection against various strains. Granulocyte macrophage colony-stimulating factor (GM-CSF), an efficacious adjuvant, has been shown to enhance the immunogenicity of various vaccines. The purpose of this study was to construct a recombinant live attenuated PRRSV that expresses porcine GM-CSF (pGM-CSF) and evaluate the immune responses of pigs immunized with the recombinant virus. The results showed that the recombinant PRRSV was successfully rescued and had similar growth properties to parental virus grown in Marc-145 cells. The recombinant virus was stable for 10 passages in cell culture. Pigs intramuscularly immunized with the recombinant virus produced a similar humoral response to that elicited using parental virus. With regard to cell-mediated immunity assessed in peripheral blood, the recombinant virus induced higher proportion of CD4(+)CD8(+) double-positive T cells (DPT), higher IFN-γ level at 0 and 7 days post-challenge (DPC), and lower viremia at 21 DPC than pigs immunized with parental virus. These results indicate that recombinant PRRSV expressing pGM-CSF can induce a significant higher cellular immune response and reduce the persistent infection compared pigs vaccinated with the parental virus. This is first report of evaluation of immune response in pigs elicited by a recombinant live attenuated PRRSV expressing porcine GM-CSF. It may represent a novel strategy for future development of genetic engineered vaccines against PRRSV infection. PMID:26300317

  3. GM-CSF Promotes Macrophage Alternative Activation after Renal Ischemia/Reperfusion Injury

    PubMed Central

    Huynh, Larry; Marlier, Arnaud; Lee, Yashang; Moeckel, Gilbert W.; Cantley, Lloyd G.

    2015-01-01

    After kidney ischemia/reperfusion (I/R) injury, monocytes home to the kidney and differentiate into activated macrophages. Whereas proinflammatory macrophages contribute to the initial kidney damage, an alternatively activated phenotype can promote normal renal repair. The microenvironment of the kidney during the repair phase mediates the transition of macrophage activation from a proinflammatory to a reparative phenotype. In this study, we show that macrophages isolated from murine kidneys during the tubular repair phase after I/R exhibit an alternative activation gene profile that differs from the canonical alternative activation induced by IL-4–stimulated STAT6 signaling. This unique activation profile can be reproduced in vitro by stimulation of bone marrow-derived macrophages with conditioned media from serum-starved mouse proximal tubule cells. Secreted tubular factors were found to activate macrophage STAT3 and STAT5 but not STAT6, leading to induction of the unique alternative activation pattern. Using STAT3-deficient bone marrow-derived macrophages and pharmacologic inhibition of STAT5, we found that tubular cell-mediated macrophage alternative activation is regulated by STAT5 activation. Both in vitro and after renal I/R, tubular cells expressed GM-CSF, a known STAT5 activator, and this pathway was required for in vitro alternative activation of macrophages by tubular cells. Furthermore, administration of a neutralizing antibody against GM-CSF after renal I/R attenuated kidney macrophage alternative activation and suppressed tubular proliferation. Taken together, these data show that tubular cells can instruct macrophage activation by secreting GM-CSF, leading to a unique macrophage reparative phenotype that supports tubular proliferation after sterile ischemic injury. PMID:25388222

  4. GM-CSF increases the ability of cultured macrophages to support autologous CD4+ T-cell proliferation in response to Dermatophagoides pteronyssinus and PPD antigen.

    PubMed Central

    Caulfield, J J; Hawrylowicz, C M; Kemeny, D M; Lee, T H

    1997-01-01

    Previous studies have demonstrated an infiltration of monocytes and increased levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) in the asthmatic lung. To study the possible effects of this cytokine upon the differentiation and function of these newly recruited monocytes, we have developed a model in which monocytes isolated from human peripheral blood were differentiated into macrophages in serum in the presence or absence of GM-CSF. After 7 days, the macrophages increased in size and granularity, had increased phagocytic activity, and expressed various adhesion molecules, CD14 and major histocompatibility complex (MHC) class II. The effects of GM-CSF on antigen presentation by cultured macrophages on the antigen-specific proliferative response of CD4+ T cells to Dermatophagoides pteronyssinus or purified protein derivative of tuberculin and the mitogen phytohaemagglutinin was determined. CD4+ T-cell proliferation was reduced when either antigen was presented by macrophages cultured in serum alone, compared with the values obtained with freshly isolated monocytes. However, CD4+ cell proliferation was comparable to that observed with monocytes when antigen was presented by macrophages which had been pre-cultured with 50 U/ml GM-CSF. CD4+ T-cell proliferation to phytohaemagglutinin was similar when all three populations were used as accessory cells. High numbers of macrophages partially suppressed CD4+ T-cell proliferation in response to antigen presented by monocytes, but there was no significant difference between macrophages cultured in the presence or absence of GM-CSF. This data suggests that GM-CSF directs monocyte differentiation into macrophages with an antigen-presenting, rather than a suppressive, phenotype. Elevated levels of GM-CSF in the asthmatic lung may therefore maintain recently recruited monocytes in an inflammatory and T-cell activating state. Images Figure 2 Figure 3 PMID:9370934

  5. Aging affects the responsiveness of rat peritoneal macrophages to GM-CSF and IL-4.

    PubMed

    Dimitrijević, Mirjana; Stanojević, Stanislava; Blagojević, Veljko; Ćuruvija, Ivana; Vujnović, Ivana; Petrović, Raisa; Arsenović-Ranin, Nevena; Vujić, Vesna; Leposavić, Gordana

    2016-04-01

    Macrophages undergo significant functional alterations during aging. The aim of the present study was to investigate changes of rat macrophage functions and response to M1/M2 polarization signals with age. Therefore, resident and thioglycollate-elicited peritoneal macrophages from young (3-month-old) and aged (18-19-month-old) rats were tested for phagocytic capacity and ability to secrete inflammatory mediators following in vitro stimulation with LPS and GM-CSF, and IL-4, prototypic stimulators for classically (M1) and alternatively activated (M2) macrophages, respectively. Aging increased the frequency of monocyte-derived (CCR7+ CD68+) and the most mature (CD163+ CD68+) macrophages within resident and thioglycollate-elicited peritoneal macrophages, respectively. The ability to phagocyte zymosan of none of these two cell subsets was affected by either LPS and GM-CSF or IL-4. The upregulated production of IL-1β, IL-6 and IL-10 and downregulated that of TGF-β was observed in response to LPS in resident and thioglycollate-elicited macrophages from rats of both ages. GM-CSF elevated production of IL-1β and IL-6 in resident macrophages from aged rats and in thioglycollate-elicited macrophages from young rats. Unexpectedly, IL-4 augmented production of proinflammatory mediators, IL-1β and IL-6, in resident macrophages from aged rats. In both resident and thioglycollate-elicited macrophages aging decreased NO/urea ratio, whereas LPS but not GM-SCF, shifted this ratio toward NO in the macrophages from animals of both ages. Conversely, IL-4 reduced NO/urea ratio in resident and thioglycollate-elicited macrophages from young rats only. In conclusion, our study showed that aging diminished GM-CSF-triggered polarization of elicited macrophages and caused paradoxical IL-4-driven polarization of resident macrophages toward proinflammatory M1 phenotype. This age-related deregulation of macrophage inflammatory mediator secretion and phagocytosis in response to M1/M2

  6. A novel subunit vaccine co-expressing GM-CSF and PCV2b Cap protein enhances protective immunity against porcine circovirus type 2 in piglets.

    PubMed

    Zhang, Huawei; Qian, Ping; Peng, Bo; Shi, Lin; Chen, Huanchun; Li, Xiangmin

    2015-05-15

    Porcine circovirus type 2 (PCV2) causes porcine circovirus-associated disease. Capsid (Cap) protein of PCV2 is the principal immunogenic protein that induces neutralizing antibodies and protective immunity. GM-CSF is an immune adjuvant that enhances responses to vaccines. In this study, recombinant baculoviruses Ac-Cap and Ac-Cap-GM-CSF expressing the Cap protein alone and co-expressing the Cap protein and porcine GM-CSF, respectively, were constructed successfully. The target proteins were analyzed by western blotting and IFA. Further, these proteins were confirmed by electron microscopy, which showed that Cap proteins could self-assemble into virus-like particles having diameters of 17-25nm. Animal experiments showed that pigs immunized with Cap-GM-CSF subunit vaccine showed significantly higher levels of PCV2-specific antibodies and neutralizing antibodies than pigs immunized with the Cap subunit vaccine and a commercial vaccine (Ingelvac CircoFLEX; P<0.05). After PCV2 wild strain challenged, Pigs receiving the Cap-GM-CSF subunit vaccine showed significantly higher average daily weight gain after wild-type PCV2 challenge than pigs receiving the other three vaccines (P<0.05). None of PCV2 DNA was detected in all immunized animals, except control animals immunized with phosphate-buffered saline. These results indicated that GM-CSF was a powerful immunoadjuvant for PCV2 subunit vaccines because it enhanced humoral immune response and improved immune protection against PCV2 infection in pigs. Thus, the novel Cap-GM-CSF subunit vaccine has the potential to be used as an effective and safe vaccine candidate against PCV2 infection. PMID:25863115

  7. EFFECT OF GM-CSF ON CIRCULATING CD8+ AND CD4+ T CELL RESPONSES TO A MULTIPEPTIDE MELANOMA VACCINE: OUTCOME OF A MULTICENTER RANDOMIZED TRIAL

    PubMed Central

    Slingluff, Craig L.; Petroni, Gina R.; Olson, Walter C.; Smolkin, Mark E.; Ross, Merrick I.; Haas, Naomi B.; Grosh, William W.; Boisvert, Marc E; Kirkwood, John M.; Chianese-Bullock, Kimberly A.

    2009-01-01

    Purpose GM-CSF administered locally together with vaccines can augment T cell responses in animal models. Human experience has been limited to small and uncontrolled trials. Thus, a multicenter randomized phase II trial was performed to determine whether local administration of GM-CSF augments immunogenicity of a multipeptide vaccine. It also assessed immunogenicity of administration in one vs. two vaccine sites. Experimental Design 121 eligible patients with resected stage IIB-IV melanoma were vaccinated with 12 MHC Class I-restricted melanoma peptides (12MP) to stimulate CD8+ T cells, plus an HLA-DR restricted tetanus helper peptide to stimulate CD4+ T cells, emulsified in incomplete Freund’s adjuvant, with or without 110 mcg GM-CSF. Among 119 evaluable patients, T cell responses were assessed by IFN-gamma ELIspot assay and tetramer analysis. Clinical outcomes were recorded. Results CD8+ T cell response rates to the 12MP (by day 50), with or without GM-CSF were 34% and 73%, respectively (p<0.001) by direct ELIspot assay. Tetramer analyses corroborated the functional data. CD4+ T cell responses to tetanus helper peptide were higher without GM-CSF (95% vs. 77%, p=0.005). There was no significant difference by number of vaccine sites. Three-year overall and disease-free survival estimates [95% CI] were 76% [67, 83%] and 52% [43, 61%] respectively, with too few events to assess differences by study group. Conclusions High immune response rates for this multipeptide vaccine were achieved, but CD8+ and CD4+ T cell responses were lower when administered with GM-CSF. These data challenge the value of local GM-CSF as a vaccine adjuvant in humans. PMID:19903780

  8. Regulation of GM-CSF and IL-3 production from the murine keratinocyte cell line PAM 212 following exposure to ultraviolet radiation

    SciTech Connect

    Gallo, R.L.; Staszewski, R.; Sauder, D.N.; Knisely, T.L.; Granstein, R.D. )

    1991-08-01

    Ultraviolet radiation (UVR) exposure induces profound changes in the synthesis and secretion of various cytokines both in vivo and in vitro. Little is known regarding the mechanism of these responses. This investigation evaluated the effects of UVR on the ability of a murine keratinocyte line (PAM 212) to produce interleukin 3 (IL-3) and granulocyte-macrophage colony stimulating factor (GM-CSF). Subconfluent rapidly dividing PAM 212 cells were shown by RNA slot-blot hybridization studies to have increased levels of mRNA for both IL-3 and GM-CSF within 1 h of UVR exposure. However, only GM-CSF-specific bioactivity, as determined by antibody neutralization studies, was shown to increase above baseline in cell supernatants. Cells grown to confluence responded differently to UVR. Under these culture conditions an apparent decrease in bioactivity was detected after UVR exposure for both growth factors, and no change in mRNA levels was detected. In addition to culture density, removal of extracellular calcium or sodium during irradiation, treatment with amiloride, or inhibition of new mRNA synthesis with cordycepin was shown to influence the UVR-induced alteration in release of IL-3 or GM-CSF bioactivity from both confluent and subconfluent PAM 212 cells. These results demonstrate that UVR influences the release of the colony stimulating factors GM-CSF and IL-3 from keratinocyte, and suggests that the state of cell growth and conditions of membrane ion transport influence the mechanisms regulating secretion of those factors.

  9. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia

    PubMed Central

    Pylayeva-Gupta, Yuliya; Lee, Kyoung Eun; Hajdu, Cristina H.; Miller, George; Bar-Sagi, Dafna

    2013-01-01

    Summary Stromal responses elicited by early stage neoplastic lesions can promote tumor growth. However, the molecular mechanisms that underlie the early recruitment of stromal cells to sites of neoplasia remain poorly understood. Here we demonstrate an oncogenic KrasG12D-dependent upregulation of GM-CSF in mouse pancreatic ductal epithelial cells (PDEC). An enhanced GM-CSF production is also observed in human PanIN lesions. KrasG12D-dependent production of GM-CSF in vivo is required for the recruitment of Gr1+CD11b+ myeloid cells. The suppression of GM-CSF production inhibits the in vivo growth of KrasG12D-PDECs and, consistent with the role of GM-CSF in Gr1+CD11b+ mobilization, this effect is mediated by CD8+ T cells. These results identify a pathway that links oncogenic activation to the evasion of anti-tumor immunity. PMID:22698407

  10. GM-CSF augments the immunosuppressive capacity of neonatal spleen cells in vitro

    SciTech Connect

    Morrissey, P.J.; Ireland, R. )

    1991-09-01

    Addition of exogenous granulocyte-macrophage colony stimulating factor (GM-CSF) to cultures of adult murine spleen cells with sheep red blood cells (SRBC) results in an augmented plaque forming cell (PFC) response. The influence of GM-CSF on the ability of neonatal spleen cells to suppress the anti-SRBC plaque forming response of adult spleen cells was tested by adding GM-CSF to cultures of neonatal and adult spleen cells. The suppressive capacity of the neonatal spleen cells was augmented by exogenous GM-CSF. The augmented suppression of the neonatal spleen cells was dependent on a G-10 adherent population since the addition of GM-CSF to cultures containing G-10 passed neonatal spleen cells resulted in an augmented PFC response and not suppression. Neonatal splenic glass adherent cells were also capable of suppressing the response. Neonatal spleen cells or purified neonatal glass adherent spleen cells cultured in the presence of GM-CSF had markedly increased levels of PGE2 in the culture supernatant. Neonatal spleen cells cultured with GM-CSF had increased numbers of morphologically identifiable macrophages after 48 hr of culture. Both irradiation and G-10 passage of the neonatal spleen diminished the numbers of macrophages formed in response to GM-CSF, and both of these manipulations resulted in reversal of suppression in response to GM-CSF. Thus, the augmented suppressive capacity of neonatal spleen cells in response to GM-CSF is probably mediated by its ability to drive monocyte to macrophage differentiation as well as increase the suppressive capacity of the existing neonatal splenic macrophages by increasing their production of PGE2.

  11. Breast Cancer Cell-Derived GM-CSF Licenses Regulatory Th2 Induction by Plasmacytoid Predendritic Cells in Aggressive Disease Subtypes.

    PubMed

    Ghirelli, Cristina; Reyal, Fabien; Jeanmougin, Marine; Zollinger, Raphaël; Sirven, Philémon; Michea, Paula; Caux, Christophe; Bendriss-Vermare, Nathalie; Donnadieu, Marie-Hélène; Caly, Martial; Fourchotte, Virginie; Vincent-Salomon, Anne; Sigal-Zafrani, Brigitte; Sastre-Garau, Xavier; Soumelis, Vassili

    2015-07-15

    Reciprocal interactions between tumor cells and their microenvironment vitally impact tumor progression. In this study, we show that GM-CSF produced by primary breast tumor cells induced the activation of plasmacytoid predendritic cells (pDC), a cell type critical to anti-viral immunity. pDC that expressed the GM-CSF receptor were increased in breast tumors compared with noninvolved adjacent breast tissue. Tumor-activated pDC acquired naïve CD4(+) T-cell stimulatory capacity and promoted a regulatory Th2 response. Finally, the concomitant increase of GM-CSF and pDC was significantly associated with relatively more aggressive breast cancer subtypes. Our results characterize the first tumor-derived factor that can activate pDC to promote a regulatory Th2 response, with implications for therapeutic targeting of a tumor-immune axis of growing recognition in its significance to cancer. PMID:25977333

  12. TK gene combined with mIL-2 and mGM-CSF genes in treatment of gastric cancer

    PubMed Central

    Guo, Shan-Yu; Gu, Qin-Long; Zhu, Zheng-Gang; Hong, He-Qun; Lin, Yan-Zhen

    2003-01-01

    AIM: Cancer gene therapy has received more and more attentions in the recent decade. Various systems of gene therapy for cancer have been developed. One of the most promising choices is the suicide gene. The product of thymidine kinase (TK) gene can convert ganciclovir (GCV) to phosphorylated GCV, which inhibits the synthesis of cell DNA, and then induces the cells to death. Cytokines play an important role in anti-tumor immunity. This experiment was designed to combine the TK gene and mIL-2/mGM-CSF genes to treat gastric cancer, and was expected to produce a marked anti-tumor effect. METHODS: TK gene was constructed into the retroviral vector pLxSN, and the mIL-2 and mGM-CSF genes were inserted into the eukaryotic expressing vector pIRES. The gastric cancer cells were transfected by retroviral serum that was harvested from the package cells. In vitro study, the transfected gastric cancer cells were maintained in the GCV- contained medium, to assay the cell killing effect and bystander effect. In vivo experiment, retroviral serum and cytokines plasmid were transfected into tumor-bearing mice, to observe the changes of tumor volumes and survival of the mice. RESULTS: In vitro experiment, 20% TK gene transduced cells could cause 70%-80% of total cells to death. In vivo results showed that there was no treatment effect in control group and TK/GCV could inhibit the tumor growth. The strongest anti-tumor effect was shown in TK+mIL-2+mGM-CSF group. The pathologic examination showed necrosis of the cancer in the treated groups. CONCLUSION: TK/GCV can kill tumor cells and inhibit the tumor growth in vivo. IL-2 and GM-CSF strongly enhance the anti-tumor effect. Through the retrovirus and liposome methods, the suicide gene and cytokine genes are all expressed in the tissues. PMID:12532437

  13. GM-CSF-licensed CD11b+ lung dendritic cells orchestrate Th2 immunity to Blomia tropicalis.

    PubMed

    Zhou, Qian; Ho, Adrian W S; Schlitzer, Andreas; Tang, Yafang; Wong, Kenneth H S; Wong, Fiona H S; Chua, Yen Leong; Angeli, Veronique; Mortellaro, Alessandra; Ginhoux, Florent; Kemeny, David M

    2014-07-15

    The Blomia tropicalis dust mite is prevalent in tropical and subtropical regions of the world. Although it is a leading cause of asthma, little is known how it induces allergy. Using a novel murine asthma model induced by intranasal exposure to B. tropicalis, we observed that a single intranasal sensitization to B. tropicalis extract induces strong Th2 priming in the lung draining lymph node. Resident CD11b(+) dendritic cells (DCs) preferentially transport Ag from the lung to the draining lymph node and are crucial for the initiation of Th2 CD4(+) T cell responses. As a consequence, mice selectively deficient in CD11b(+) DCs exhibited attenuated Th2 responses and more importantly did not develop any allergic inflammation. Conversely, mice deficient in CD103(+) DCs and CCR2-dependent monocyte-derived DCs exhibited similar allergic inflammation compared with their wild-type counterparts. We also show that CD11b(+) DCs constitutively express higher levels of GM-CSF receptor compared with CD103(+) DCs and are thus selectively licensed by lung epithelial-derived GM-CSF to induce Th2 immunity. Taken together, our study identifies GM-CSF-licensed CD11b(+) lung DCs as a key component for induction of Th2 responses and represents a potential target for therapeutic intervention in allergy. PMID:24943219

  14. Conformational Changes in the GM-CSF Receptor Suggest a Molecular Mechanism for Affinity Conversion and Receptor Signaling.

    PubMed

    Broughton, Sophie E; Hercus, Timothy R; Nero, Tracy L; Dottore, Mara; McClure, Barbara J; Dhagat, Urmi; Taing, Houng; Gorman, Michael A; King-Scott, Jack; Lopez, Angel F; Parker, Michael W

    2016-08-01

    The GM-CSF, IL-3, and IL-5 receptors constitute the βc family, playing important roles in inflammation, autoimmunity, and cancer. Typical of heterodimeric type I cytokine receptors, signaling requires recruitment of the shared subunit to the initial cytokine:α subunit binary complex through an affinity conversion mechanism. This critical process is poorly understood due to the paucity of crystal structures of both binary and ternary receptor complexes for the same cytokine. We have now solved the structure of the binary GM-CSF:GMRα complex at 2.8-Å resolution and compared it with the structure of the ternary complex, revealing distinct conformational changes. Guided by these differences we performed mutational and functional studies that, importantly, show GMRα interactions playing a major role in receptor signaling while βc interactions control high-affinity binding. These results support the notion that conformational changes underlie the mechanism of GM-CSF receptor activation and also suggest how related type I cytokine receptors signal. PMID:27396825

  15. Oncolytic and immunologic cancer therapy with GM-CSF-armed vaccinia virus of Tian Tan strain Guang9.

    PubMed

    Deng, Lili; Fan, Jun; Guo, Mingming; Huang, Biao

    2016-03-28

    Targeted oncolytic vaccinia viruses are being developed as a novel strategy in cancer therapy. Arming vaccinia viruses with immunostimulatory cytokines can enhance antitumor efficacy. Such engineered oncolytic viruses, like JX-594, a Wyeth strain vaccinia virus modified with human granulocyte-macrophage colony-stimulating factor (GM-CSF), have shown promising results and have proceeded rapidly in clinical trials. However, the oncolytic potential of the Chinese vaccine strain Tian Tan (VTT) has not been explored. In this study, we constructed a targeted oncolytic vaccinia virus of Tian Tan strain Guang9 (VG9) expressing murine GM-CSF (VG9-GMCSF) and evaluated the antitumor effect of this recombinant vaccinia virus in a murine melanoma model. In vitro, viral replication and cytotoxicity of VG9-GMCSF was as potent as VG9; in vivo, VG9-GMCSF significantly inhibited the growth of subcutaneously implanted melanoma tumors, prolonged the survival of tumor-bearing mice, and produced an antitumor cytotoxic response. Such antitumor effect may be due to the lytic nature of virus as well as the stimulation of immune activity by GM-CSF production. Our results indicate that VG9-GMCSF induces strong tumoricidal activity, providing a potential therapeutic strategy for combating cancer. PMID:26803055

  16. GM-CSF: modulation of biochemical and cytotoxic effects of tiazofurin in HL-60 cells.

    PubMed

    Fritzer, M; Gharehbaghi, K; Pillwein, K; Chiba, P; Goldenberg, H; Szekeres, T

    1993-07-01

    Cytokines, such as granulocyte macrophage colony stimulating factor (GM-CSF) or interleukin-3 (IL-3) recruit quiescent cells into the cell cycle and sensitize these cells towards cell cycle specific chemotherapeutic agents. We examined the in vitro effects of GM-CSF on HL-60 cells and tested its modulatory influence on biochemical and cytotoxic effects seen with tiazofurin, a potent and specific inhibitor of IMP dehydrogenase. Incubation of HL-60 cells with 500 U/ml GM-CSF for 4 d enhanced cell proliferation, which was accompanied by a significant increase in IMP dehydrogenase activity (from 2.22 in control cells to 3.70 nmol/mg/h in cells pretreated with GM-CSF). When HL-60 cells were incubated with 100 microM tiazofurin for 2 h, intracellular GTP decreased to 46% of untreated control cells. In HL-60 cells pretreated with GM-CSF, GTP pools decreased to 38% of control after incubation with tiazofurin which is 69% of the predicted value for additive effect. The MTT chemosensitivity assay yielded significantly decreased IC50 values for tiazofurin in HL-60 cells, preincubated with GM-CSF (IC50 decreased from 13 microM to 10 microM). Therefore our results suggest that combination therapy with GM-CSF and tiazofurin may be beneficial for the treatment of refractory leukaemia patients. PMID:8105873

  17. In Lysinuric Protein Intolerance system y+L activity is defective in monocytes and in GM-CSF-differentiated macrophages

    PubMed Central

    2010-01-01

    Background In the recessive aminoaciduria Lysinuric Protein Intolerance (LPI), mutations of SLC7A7/y+LAT1 impair system y+L transport activity for cationic amino acids. A severe complication of LPI is a form of Pulmonary Alveolar Proteinosis (PAP), in which alveolar spaces are filled with lipoproteinaceous material because of the impaired surfactant clearance by resident macrophages. The pathogenesis of LPI-associated PAP remains still obscure. The present study investigates for the first time the expression and function of y+LAT1 in monocytes and macrophages isolated from a patient affected by LPI-associated PAP. A comparison with mesenchymal cells from the same subject has been also performed. Methods Monocytes from peripheral blood were isolated from a 21-year-old patient with LPI. Alveolar macrophages and fibroblastic-like mesenchymal cells were obtained from a whole lung lavage (WLL) performed on the same patient. System y+L activity was determined measuring the 1-min uptake of [3H]-arginine under discriminating conditions. Gene expression was evaluated through qRT-PCR. Results We have found that: 1) system y+L activity is markedly lowered in monocytes and alveolar macrophages from the LPI patient, because of the prevailing expression of SLC7A7/y+LAT1 in these cells; 2) on the contrary, fibroblasts isolated from the same patient do not display the transport defect due to compensation by the SLC7A6/y+LAT2 isoform; 3) in both normal and LPI monocytes, GM-CSF induces the expression of SLC7A7, suggesting that the gene is a target of the cytokine; 4) GM-CSF-induced differentiation of LPI monocytes is comparable to that of normal cells, demonstrating that GM-CSF signalling is unaltered; 5) general and respiratory conditions of the patient, along with PAP-associated parameters, markedly improved after GM-CSF therapy through aerosolization. Conclusions Monocytes and macrophages, but not fibroblasts, derived from a LPI patient clearly display the defect in system y

  18. Characterization of GM-CSF-inhibitory factor and Uracil DNA glycosylase encoding genes from camel pseudocowpoxvirus.

    PubMed

    Nagarajan, G; Swami, Shelesh Kumar; Dahiya, Shyam Singh; Narnaware, S D; Mehta, S C; Singh, P K; Singh, Raghvendar; Tuteja, F C; Patil, N V

    2015-06-01

    The present study describes the PCR amplification of GM-CSF-inhibitory factor (GIF) and Uracil DNA glycosylase (UDG) encoding genes of pseudocowpoxvirus (PCPV) from the Indian Dromedaries (Camelus dromedarius) infected with contagious ecthyma using the primers based on the corresponding gene sequences of human PCPV and reindeer PCPV, respectively. The length of GIF gene of PCPV obtained from camel is 795 bp and due to the addition of one cytosine residue at position 374 and one adenine residue at position 516, the open reading frame (ORF) got altered, resulting in the production of truncated polypeptide. The ORF of UDG encoding gene of camel PCPV is 696 bp encoding a polypeptide of 26.0 kDa. Comparison of amino acid sequence homologies of GIF and UDG of camel PCPV revealed that the camel PCPV is closer to ORFV and PCPV (reference stains of both human and reindeer), respectively. PMID:25816930

  19. [Emergency therapy with granulocyte-macrophage colony-stimulating factor (GM-CSF)].

    PubMed

    Gratwohl, A; Dazzi, H; Tichelli, A; Stebler, C; Wernli, M; Thomssen, C; Kim, I; Dieterle, A; Obrist, R; Stern, A

    1991-03-23

    Granulocyte-macrophage colony stimulating factor (GM-CSF) has been tested for tolerability and efficacy on a compassionate need case basis in 17 patients (5 females, 12 males aged 4-72 years, median 35 years). GM-CSF was given at the rate of 3.5-32 micrograms/kg for 2-64 days as a continuous infusion for the following indications: impending rejection following bone marrow transplantation (5 patients), severe neutropenia secondary to chemotherapy in tumor patients (5), severe aplastic anemia (3), immune granulocytopenia (2) and accidental overdose with cytostatic agents (2 patients). Tolerance of GM-CSF was good in regard to doses of up to 16 micrograms/kg. Fever, myalgia and eosinophilia were the most frequent side effects. The patient treated with 32 micrograms/kg developed thrombosis of the vena cava. Efficacy is more difficult to assess in this heterogenous population, but 11 of 17 patients showed increased granulocyte counts and 3 patients clearly recovered from severe neutropenia. The role of GM-CSF in this recovery, however, cannot be proven. The results further indicate that GM-CSF cannot reverse ongoing rejection following allogenic BMT and cannot correct immune neutropenia. The value of GM-CSF therapy in patients with severe aplastic anemia and in the context of chemotherapy still needs to be defined. It is certainly indicated in patients with an accidental overdose of chemotherapeutic agents. PMID:2028244

  20. The effects of surgery, with or without rhGM-CSF, on the angiogenic profile of patients treated for colorectal carcinoma.

    PubMed

    Wu, Francis P K; Westphal, Johan R; Hoekman, Klaas; Mels, Anneke K; Statius Muller, Markwin G; de Waal, Robert W; Beelen, Rob H J; van Leeuwen, Paul A M; Meijer, Sybren; Cuesta, Miguel A

    2004-01-21

    Wound healing is a process with immunological and angiogenic aspects. rhGM-CSF is known to stimulate the immune system and angiogenesis via multiple pathways. In this study we investigated the combined effects of surgery, with or without rhGM-CSF, on angiogenic parameters in patients with a colorectal carcinoma. In this phase II randomized, placebo-controlled trial, 16 patients were assigned to perioperative rhGM-CSF (2.8 microg/kg body weight) treatment or saline. Patients received subcutaneous injections from three days before surgery until four days after. IL-6, VEGF, endostatin and angiostatin levels were measured perioperatively. rhGM-CSF enhanced the production of IL-6 and VEGF, but had no effect on the antiangiogenic agents endostatin and angiostatin. Surgery induced a transient decrease of endostatin. Two types of angiostatin (kringle 1-3 and kringle 1-4) became visible postoperatively. We conclude that this study demonstrated the immediate initiation of angiogenesis postoperatively, reflected by the increase of VEGF and a transient decrease of endostatin, followed by the appearance of two angiostatin bands, which confirms physiological wound healing in these cancer patients. PMID:14693162

  1. A Chimeric HIV-1 Envelope Glycoprotein Trimer with an Embedded Granulocyte-Macrophage Colony-stimulating Factor (GM-CSF) Domain Induces Enhanced Antibody and T Cell Responses*

    PubMed Central

    van Montfort, Thijs; Melchers, Mark; Isik, Gözde; Menis, Sergey; Huang, Po-Ssu; Matthews, Katie; Michael, Elizabeth; Berkhout, Ben; Schief, William R.; Moore, John P.; Sanders, Rogier W.

    2011-01-01

    An effective HIV-1 vaccine should ideally induce strong humoral and cellular immune responses that provide sterilizing immunity over a prolonged period. Current HIV-1 vaccines have failed in inducing such immunity. The viral envelope glycoprotein complex (Env) can be targeted by neutralizing antibodies to block infection, but several Env properties limit the ability to induce an antibody response of sufficient quantity and quality. We hypothesized that Env immunogenicity could be improved by embedding an immunostimulatory protein domain within its sequence. A stabilized Env trimer was therefore engineered with the granulocyte-macrophage colony-stimulating factor (GM-CSF) inserted into the V1V2 domain of gp120. Probing with neutralizing antibodies showed that both the Env and GM-CSF components of the chimeric protein were folded correctly. Furthermore, the embedded GM-CSF domain was functional as a cytokine in vitro. Mouse immunization studies demonstrated that chimeric EnvGM-CSF enhanced Env-specific antibody and T cell responses compared with wild-type Env. Collectively, these results show that targeting and activation of immune cells using engineered cytokine domains within the protein can improve the immunogenicity of Env subunit vaccines. PMID:21515681

  2. Enhancing immune responses of EV71 VP1 DNA vaccine by co-inoculating plasmid IL-12 or GM-CSF expressing vector in mice.

    PubMed

    Peng, X; Fang, X; Li, J; Kong, L; Li, B; Ding, X

    2016-01-01

    Enterovirus 71 (EV71) is a major causative viral agent for large outbreaks of hand, foot, and mouth disease in children and infants, yet there is no vaccine or effective antiviral treatment for severe EV71 infection. The immunogenicity of EV71 VP1 DNA vaccine and the immunoregulatory activity of interleukin-12 (IL-12) or granulocyte-monocyte colony stimulating factor (GM-CSF) were investigated. DNA vaccine plasmids, pcDNA-VP1, pcDNA-IL-12 and pcDNA-GM-CSF were constructed and inoculated into BALB/c mice with or without pcDNA-IL-12 or pcDNA-GM-CSF by intramuscular injection. Cellular and humoral immune responses were assessed by indirect ELISA, lymphocyte proliferation assays, cytokine release assay and FACS. The VP1 DNA vaccine had good immunogenicity and can induce specific humoral and cellular immunity in BALB/c mice, while IL-2 or GM-CSF plays an immunoadjuvant role and enhances specific immune responses. This study provides a frame of reference for the design of DNA vaccines against EV71. PMID:27188732

  3. Modulation of TNF and GM-CSF release from dispersed human nasal polyp cells and human whole blood by inhibitors of different PDE isoenzymes and glucocorticoids.

    PubMed

    Marx, Degenhard; Tassabehji, Mahmoud; Heer, Sabine; Hüttenbrink, K-B; Szelenyi, Istvan

    2002-01-01

    The aim of this study was to investigate the role of the inhibitors of different PDE isoenzymes (PDE 1-5) on the production of two pro-inflammatory cytokines - tumor necrosis factor alpha (TNF) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Two in vitro models were used to compare the antiinflammatory properties of PDE inhibitors with that of glucocorticoids. The effect on TNF release from diluted human blood following lipopolysaccharide (LPS from Salmonella abortus equi) stimulation as well as the GM-CSF and TNF release from human nasal polyp cells following allergic stimulation were investigated. Both models proofed to be well suited for the characterisation of the antiinflammatory properties of new chemical entities. In diluted human blood and dispersed human nasal polyp cells the induced TNF release was most potently suppressed by selective PDE4 inhibitors. Amrinone and milrinone, selective PDE3 inhibitors, suppressed TNF secretion to a lesser extent. The effects of theophylline (unspecific PDE inhibitor), vinpocetine (PDE1 inhibitor), EHNA (PDE2 inhibitor) and the PDE5 inhibitors zaprinast and E 4021 were weak. In human blood, the tested glucocorticoids beclomethasone, dexamethasone and fluticasone inhibited the LPS induced TNF release potently in a concentration dependent manner, whereas in dispersed human nasal polyp cells, the effect of the glucocorticoids on allergically induced TNF release, with the exception of dexamethasone, was much less pronounced. Glucocorticoids were the most potent inhibitors of GM-CSF release and the effect correlates well with the affinity to the glucocorticoid receptor. The selective PDE 4 inhibitors, and to a certain extent the PDE3 inhibitors amrinone and milrinone, reduced the GM-CSF release in a concentration dependent manner. In all investigations selective PDE4 inhibitors reduced TNF release to a much higher degree (4-10 fold) than GM-CSF release. PMID:11969359

  4. Effect of alveolar epithelial cell plasticity on the regulation of GM-CSF expression.

    PubMed

    Mir-Kasimov, Mustafa; Sturrock, Anne; McManus, Michael; Paine, Robert

    2012-03-15

    Local pulmonary expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) is critically important for defense of the pulmonary alveolar space. It is required for surfactant homeostasis and pulmonary innate immune responses and is protective against lung injury and aberrant repair. Alveolar epithelial cells (AEC) are a major source of GM-CSF; however, the control of homeostatic expression of GM-CSF is incompletely characterized. Increasing evidence suggests considerable plasticity of expression of AEC phenotypic characteristics. We tested the hypothesis that this plasticity extends to regulation of expression of GM-CSF using 1) MLE-12 cells (a commonly used murine cell line expressing some features of normal type II AEC, 2) primary murine AEC incubated under standard conditions [resulting in rapid spreading and loss of surfactant protein C (SP-C) expression with induction of the putative type I cell marker (T1α)], or 3) primary murine AEC on a hyaluronic acid/collagen matrix in defined medium, resulting in preservation of SP-C expression. AEC in standard cultures constitutively express abundant GM-CSF, with further induction in response to IL-1β but little response to TNF-α. In contrast, primary cells cultured to preserve SP-C expression and MLE-12 cells both express little GM-CSF constitutively, with significant induction in response to TNF-α and limited response to IL-1β. We conclude that constitutive and cytokine-induced expression of GM-CSF by AEC varies in concert with other cellular phenotypic characteristics. These changes may have important implications both for the maintenance of normal pulmonary homeostasis and for the process of repair following lung injury. PMID:22227205

  5. The protective effect of GM-CSF on serum-induced neutrophil apoptosis in juvenile systemic lupus erythematosus patients.

    PubMed

    Chiewchengchol, Direkrit; Midgley, Angela; Sodsai, Pimpayao; Deekajorndech, Tawatchai; Hirankarn, Nattiya; Beresford, Michael W; Edwards, Steven W

    2015-01-01

    Juvenile systemic lupus erythematosus (JSLE) is one of the most common autoimmune diseases in children and can affect multiple organs and systems. The etiology remains unclear, and current management only suppresses rather than eliminates the disease. The pathogenesis is triggered by autoantigens that induce autoantibody production. Apoptotic neutrophils may be one source of autoantigens in JSLE, and increased numbers of apoptotic neutrophils in JSLE have been reported. This study aimed to determine if factor(s) in JSLE serum induce neutrophil apoptosis, to identify the most potent cytokine in delaying neutrophil apoptosis, and to investigate whether this cytokine can reverse the pro-apoptotic effects of JSLE serum. Blood neutrophils and sera were collected from JSLE patients, healthy children and adult controls. Neutrophils from healthy adult controls were incubated with 10 % serum from either JSLE patients or pediatric controls. Neutrophils from healthy adult controls were also incubated with 10 % JSLE serum with or without granulocyte-macrophage colony-stimulating factor (GM-CSF) supplementation. Neutrophil apoptosis was measured by flow cytometry (annexin-V/propidium iodide staining). Caspase-3, caspase-7 and caspase-8 protein expression was detected using Western blotting. Neutrophils incubated with JSLE sera had significantly increased apoptosis at 6 h compared to those incubated with control sera. Cleaved (active) forms of caspase-3, caspase-7 and caspase-8 were identified in neutrophils incubated with JSLE sera (that showed high rates of apoptosis) compared to control sera. GM-CSF had the most protective effect on neutrophil apoptosis, significantly preventing neutrophil apoptosis and caspase activation induced by JSLE serum. JSLE serum significantly induced neutrophil apoptosis in healthy adult neutrophils, activating the extrinsic pathway of apoptosis. The observation that GM-CSF prevents activation of apoptosis in response to JSLE serum should prompt

  6. 15 kDa Granulysin versus GM-CSF for monocytes differentiation: analogies and differences at the transcriptome level

    PubMed Central

    2011-01-01

    Background Granulysin is an antimicrobial and proinflammatory protein with several isoforms. While the 9 kDa isoform is a well described cytolytic molecule with pro-inflammatory activity, the functions of the 15 kDa isoform is less well understood. Recently it was shown that 15 kDa Granulysin can act as an alarmin that is able to activate monocytes and immature dendritic cells. Granulocyte Macrophage Colony Stimulating Factor (GM-CSF) is a growth factor widely used in immunotherapy both for in vivo and ex vivo applications, especially for its proliferative effects. Methods We analyzed gene expression profiles of monocytes cultured with 15 kDa Granulysin or GM-CSF for 4, 12, 24 and 48 hours to unravel both similarities and differences between the effects of these stimulators. Results The analysis revealed a common signature induced by both factors at each time point, but over time, a more specific signature for each factor became evident. At all time points, 15 kDa Granulysin induced immune response, chemotaxis and cell adhesion genes. In addition, only 15 kDa Granulsyin induced the activation of pathways related to fundamental dendritic cell functions, such as co-stimulation of T-cell activation and Th1 development. GM-CSF specifically down-regulated genes related to cell cycle arrest and the immune response. More specifically, cytokine production, lymphocyte mediated immunity and humoral immune response were down-regulated at late time points. Conclusion This study provides important insights on the effects of a novel agent, 15 kDa granulysin, that holds promise for therapeutic applications aimed at the activation of the immune response. PMID:21501511

  7. Intranasal exposure of mice to house dust mite elicits allergic airway inflammation via a GM-CSF-mediated mechanism.

    PubMed

    Cates, Elizabeth C; Fattouh, Ramzi; Wattie, Jennifer; Inman, Mark D; Goncharova, Susanna; Coyle, Anthony J; Gutierrez-Ramos, José-Carlos; Jordana, Manel

    2004-11-15

    It is now well established that passive exposure to inhaled OVA leads to a state of immunological tolerance. Therefore, to elicit allergic sensitization, researchers have been compelled to devise alternative strategies, such as the systemic delivery of OVA in the context of powerful adjuvants, which are alien to the way humans are exposed and sensitized to allergens. The objectives of these studies were to investigate immune-inflammatory responses to intranasal delivery of a purified house dust mite (HDM) extract and to evaluate the role of GM-CSF in this process. HDM was delivered to BALB/c mice daily for 10 days. After the last exposure, mice were killed, bronchoalveolar lavage was performed, and samples were obtained. Expression/production of Th2-associated molecules in the lymph nodes, lung, and spleen were evaluated by real-time quantitative PCR and ELISA, respectively. Using this exposure protocol, exposure to HDM alone generated Th2 sensitization based on the expression/production of Th2 effector molecules and airway eosinophilic inflammation. Flow cytometric analysis demonstrated expansion and activation of APCs in the lung and an influx of activated Th2 effector cells. Moreover, this inflammation was accompanied by airways hyper-responsiveness and a robust memory-driven immune response. Finally, administration of anti-GM-CSF-neutralizing Abs markedly reduced immune-inflammatory responses in both lung and spleen. Thus, intranasal delivery of HDM results in Th2 sensitization and airway eosinophilic inflammation that appear to be mediated, at least in part, by endogenous GM-CSF production. PMID:15528378

  8. Cold shock domain proteins repress transcription from the GM-CSF promoter.

    PubMed Central

    Coles, L S; Diamond, P; Occhiodoro, F; Vadas, M A; Shannon, M F

    1996-01-01

    The human granulocyte-macrophage colony stimulating factor (GM-CSF) gene promoter binds a sequence-specific single-strand DNA binding protein termed NF-GMb. We previously demonstrated that the NF-GMb binding sites were required for repression of tumor necrosis factor-alpha (TNF-alpha) induction of the proximal GM-CSF promoter sequences in fibroblasts. We now describe the isolation of two different cDNA clones that encode cold shock domain (CSD) proteins with NF-GMb binding characteristics. One is identical to the previously reported CSD protein dbpB and the other is a previously unreported variant of the dbpA CSD factor. This is the first report of CSD factors binding to a cytokine gene. Nuclear NF-GMb and expressed CSD proteins have the same binding specificity for the GM-CSF promoter and other CSD binding sites. We present evidence that CSD factors are components of the nuclear NF-GMb complex. We also demonstrate that overexpression of the CSD proteins leads to complete repression of the proximal GM-CSF promoter containing the NF-GMb/CSD binding sites. Surprisingly, we show that CSD overexpression can also directly repress a region of the promoter which apparently lacks NF-GMb/CSD binding sites. NF-GMb/CSD factors may hence be acting by two different mechanisms. We discuss the potential importance of CSD factors in maintaining strict regulation of the GM-CSF gene. PMID:8710501

  9. The transcription factors STAT5A/B regulate GM-CSF-mediated granulopoiesis.

    PubMed

    Kimura, Akiko; Rieger, Michael A; Simone, James M; Chen, Weiping; Wickre, Mark C; Zhu, Bing-Mei; Hoppe, Philipp S; O'Shea, John J; Schroeder, Timm; Hennighausen, Lothar

    2009-11-19

    Neutrophils play a vital role in the immune defense, which is evident by the severity of neutropenia causing life-threatening infections. Granulocyte macrophage-colony stimulating factor (GM-CSF) controls homeostatic and emergency development of granulocytes. However, little is known about the contribution of the downstream mediating transcription factors signal transducer and activator of transcription 5A and 5B (STAT5A/B). To elucidate the function of this pathway, we generated mice with complete deletion of both Stat5a/b genes in hematopoietic cells. In homeostasis, peripheral neutrophils were markedly decreased in these animals. Moreover, during emergency situations, such as myelosuppression, Stat5a/b-mutant mice failed to produce enhanced levels of neutrophils and were unable to respond to GM-CSF. Both the GM-CSF-permitted survival of mature neutrophils and the generation of granulocytes from granulocyte-macrophage progenitors (GMPs) were markedly reduced in Stat5a/b mutants. GMPs showed impaired colony-formation ability with reduced number and size of colonies on GM-CSF stimulation. Moreover, continuous cell fate analyses by time-lapse microscopy and single cell tracking revealed that Stat5a/b-null GMPs showed both delayed cell-cycle progression and increased cell death. Finally, transcriptome analysis indicated that STAT5A/B directs GM-CSF signaling through the regulation of proliferation and survival genes. PMID:19779039

  10. Big tumor regression induced by GM-CSF gene-modified 3LL tumor cells via facilitating DC maturation and deviation toward CD11c+CD8alpha+ subset.

    PubMed

    Lin, Yi; Xiong, Sidong; Zhang, Lei; Zhang, Yi; Cai, Yuchan; Xu, Lin; Chu, Yiwei

    2007-12-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a powerful immune-stimulating factor that helps to generate a systemic, strong, and long-lasting immune response. However, whether the transduction of GM-CSF to tumor cell results in tumor regression and optimizes local immune microenvironment remains to be investigated. In this study, using an experimental murine tumor model, we demonstrated that the in vivo growth of 3LL tumor cells modified with the GM-CSF gene (3LL-GM) was inhibited even when the tumor diameter was over 7 mm (big tumor), and mice inoculated with GM-CSF gene-modified 3LL cells survived over 90 days, whereas mice inoculated with control parental 3LL cells and 3LL cells transduced with control vector all succumbed to the tumor by day 17 after tumor inoculation. Further analysis showed that targeted expression of GM-CSF in 3LL tumor cells markedly enhanced the systemic antitumor effect, including specific lymphocytes proliferation, cytotoxicity against 3LL tumor, and increased production of IFN-gamma. GM-CSF gene-modified 3LL cells significantly protected the mice from the parental 3LL tumor challenge. More importantly, the percentage of dendritic cells (DCs) in tumor site was greatly increased and the DCs differentiated into CD11c(+)CD8alpha(+) cells, which were reported to be able to benefit the induction of CD8(+) cytotoxic T lymphocytes (CTLs) that contribute to tumor regression. Our research indicated that GM-CSF could optimize the immune microenvironment in the tumor site, which provides a potent approach for immunotherapy of tumors. PMID:17760559

  11. CARD9 deficiency and spontaneous central nervous system candidiasis: complete clinical remission with GM-CSF therapy.

    PubMed

    Gavino, Christina; Cotter, Anthony; Lichtenstein, Daniel; Lejtenyi, Duncan; Fortin, Claude; Legault, Catherine; Alirezaie, Najmeh; Majewski, Jacek; Sheppard, Donald C; Behr, Marcel A; Foulkes, William D; Vinh, Donald C

    2014-07-01

    We demonstrate autosomal-recessive Caspase Recruitment Domain-containing protein 9 (CARD9) deficiency in a patient with relapsing C. albicans meningoencephalitis. We identified a novel, hypomorphic mutation with intact Th17 responses, but impaired GM-CSF responses. We report complete clinical remission with adjunctive GM-CSF therapy, suggesting that a CARD9/GM-CSF axis contributes to susceptibility to candidiasis. PMID:24704721

  12. Mechanisms of suppression of alveolar epithelial cell GM-CSF expression in the setting of hyperoxic stress.

    PubMed

    Sturrock, Anne; Vollbrecht, Timothy; Mir-Kasimov, Mustafa; McManus, Michael; Wilcoxen, Steven E; Paine, Robert

    2010-03-01

    Pulmonary expression of granulocyte/macrophage colony-stimulating factor (GM-CSF) is critically important for normal functional maturation of alveolar macrophages. We found previously that lung GM-CSF is dramatically suppressed in mice exposed to hyperoxia. Alveolar epithelial cells (AEC) are a major source of GM-CSF in the peripheral lung, and in vivo hyperoxia resulted in greatly reduced expression of GM-CSF protein by AEC ex vivo. We now explore the mechanisms responsible for this effect, using primary cultures of murine AEC exposed to hyperoxia in vitro. Exposure of AEC to 80% oxygen/5% CO(2) for 48 h did not induce overt toxicity, but resulted in significantly decreased GM-CSF protein and mRNA expression compared with cells in normoxia. Similar effects were seen when AEC were stressed with serum deprivation, an alternative inducer of oxidative stress. The effects in AEC were opposite those in a murine lung epithelial cell line (MLE-12 cells), in which hyperoxia induced GM-CSF expression. Both hyperoxia and serum deprivation resulted in increased intracellular reactive oxygen species (ROS) in AEC. Hyperoxia and serum deprivation induced significantly accelerated turnover of GM-CSF mRNA. Treatment of AEC with catalase during oxidative stress preserved GM-CSF protein and mRNA and was associated with stabilization of GM-CSF mRNA. We conclude that hyperoxia-induced suppression of AEC GM-CSF expression is a function of ROS-induced destabilization of GM-CSF mRNA. We speculate that AEC oxidative stress results in significantly impaired pulmonary innate immune defense due to effects on local GM-CSF expression in the lung. PMID:20034963

  13. GM-CSF provides autocrine protection for murine alveolar epithelial cells from oxidant-induced mitochondrial injury.

    PubMed

    Sturrock, Anne; Seedahmed, Elfateh; Mir-Kasimov, Mustafa; Boltax, Jonathan; McManus, Michael L; Paine, Robert

    2012-02-01

    Exposure of mice to hyperoxia induces alveolar epithelial cell (AEC) injury, acute lung injury and death. Overexpression of granulocyte-macrophage colony-stimulating factor (GM-CSF) in the lung protects against these effects, although the mechanisms are not yet clear. Hyperoxia induces cellular injury via effects on mitochondrial integrity, associated with induction of proapoptotic members of the Bcl-2 family. We hypothesized that GM-CSF protects AEC through effects on mitochondrial integrity. MLE-12 cells (a murine type II cell line) and primary murine type II AEC were subjected to oxidative stress by exposure to 80% oxygen and by exposure to H(2)O(2). Exposure to H(2)O(2) induced cytochrome c release and decreased mitochondrial reductase activity in MLE-12 cells. Incubation with GM-CSF significantly attenuated these effects. Protection induced by GM-CSF was associated with Akt activation. GM-CSF treatment also resulted in increased expression of the antiapoptotic Bcl-2 family member, Mcl-1. Primary murine AEC were significantly more tolerant of oxidative stress than MLE-12 cells. In contrast to MLE-12 cells, primary AEC expressed significant GM-CSF at baseline and demonstrated constitutive activation of Akt and increased baseline expression of Mcl-1. Treatment with exogenous GM-CSF further increased Akt activation and Mcl-1 expression in primary AEC. Conversely, suppression of AEC GM-CSF expression by use of GM-CSF-specific small interfering RNA resulted in decreased tolerance of oxidative stress, Furthermore, silencing of Mcl-1 prevented GM-CSF-induced protection. We conclude that GM-CSF protects alveolar epithelial cells against oxidative stress-induced mitochondrial injury via the Akt pathway and its downstream components, including Mcl-1. Epithelial cell-derived GM-CSF may contribute to intrinsic defense mechanisms limiting lung injury. PMID:22140071

  14. Low dose daily rhGM-CSF application activates monocytes and dendritic cells in vivo.

    PubMed

    Demir, Gokhan; Klein, Hans Otto; Tuzuner, Nukhet

    2003-12-01

    Granulocyte macrophage colony stimulating factor (GM-CSF) is a powerful cytokine with multiple actions. We investigated the effects of low dose daily rhGM-CSF application on monocytes and peripheral circulating dendritic cells (DC) in malignant melanoma patients in vivo. Twenty patients were included; rhGM-CSF was given as daily subcutaneous injections for 14 days. A significant increase was noted in monocytes and granulocytes, starting on the 5th day. Expression of CD95 (Apo-1/Fas) and CD45RO on monocytes increased significantly on the 5th day, and CD4 expression on monocytes increased significantly on the 14th day. Peripheral circulating dendritic cells which were 0.94% in the beginning, increased to 1.35% (P<0.04) and to 1.96% (P<0.001) on days 5 and 14, respectively. PMID:12921948

  15. Comparable TNF-alpha, IFN-gamma and GM-CSF production by purified normal marrow CD3 cells in response to horse anti-lymphocyte and rabbit antithymocyte globulin.

    PubMed

    Piaggio, G; Podestá, M; Pitto, A; Pittaluga, G B; Isaza, A; Benvenuto, F; Bruno, B; Bacigalupo, A

    1998-04-01

    In vitro priming of T cell with horse antilymphocyte globulin (HALG) results in cytokine release, and this has been associated with its clinical efficacy in patients with severe aplastic anaemia (SAA). Rabbit antithymocyte globulin (RATG) has been studied less extensively. In this study we compare the in vitro priming effect of HALG and RATG on purified normal marrow T cells: end-points of the study were 1) levels of TNF-alpha (TNF-alpha), IFN-gamma (IFN-gamma) GM-CSF in T cell supernatants, and 2) effect of T cell supernatants on colony formation with or without exogenous GM-CSF TNF-alpha, IFN-gamma and GM-CSF levels were comparable for HALG, RATG and phytohaemagglutinin (PHA). T cell supernatants showed comparable enhancement of colony formation in the presence of recombinant human GM-CSF (rhGM-CSF) and supported colony forming unit granulomacrophage (CFU-GM) growth in the absence of growth factor. This study shows that horse and rabbit derived ALG/ATG and PHA have a comparable in vitro priming effect on T cells: both agents should probably be tested for their clinical efficacy in SAA patients. PMID:9579877

  16. Recombinant rabies viruses expressing GM-CSF or flagellin are effective vaccines for both intramuscular and oral immunizations.

    PubMed

    Zhou, Ming; Zhang, Guoqing; Ren, Guiping; Gnanadurai, Clement W; Li, Zhenguang; Chai, Qingqing; Yang, Yang; Leyson, Christina M; Wu, Wenxue; Cui, Min; Fu, Zhen F

    2013-01-01

    Our previous studies indicated that recombinant rabies viruses (rRABV) expressing chemokines or cytokines (including GM-CSF) could enhance the immunogenicity by recruiting and/or activating dendritic cells (DC). In this study, bacterial flagellin was cloned into the RABV genome and recombinant virus LBNSE-Flagellin was rescued. To compare the immunogenicity of LBNSE-Flagellin with recombinant virus expressing GMCSF (LBNSE-GMCSF), mice were immunized with each of these rRABVs by intramuscular (i.m.) or oral route. The parent virus (LBNSE) without expression of any foreign molecules was included for comparison. The i.m.-immunized mice were bled at three weeks after the immunization for the measurement of virus neutralizing antibody (VNA) and then challenged with 50 LD50 challenge virus standard (CVS-24). Orally immunized mice were boosted after three weeks and then bled and challenged one week after the booster immunization. It was found that both LBNSE-GMCSF and LBNSE-Flagellin recruited/activated more DCs and B cells in the periphery, stimulated higher levels of adaptive immune responses (VNA), and protected more mice against challenge infection than the parent virus LBNSE in both the i.m. and the orally immunized groups. Together, these studies suggest that recombinant RABV expressing GM-CSF or flagellin are more immunogenic than the parent virus in both i.m. and oral immunizations. PMID:23700422

  17. Recombinant Rabies Viruses Expressing GM-CSF or Flagellin Are Effective Vaccines for Both Intramuscular and Oral Immunizations

    PubMed Central

    Gnanadurai, Clement W.; Li, Zhenguang; Chai, Qingqing; Yang, Yang; Leyson, Christina M.; Wu, Wenxue; Cui, Min; Fu, Zhen F.

    2013-01-01

    Our previous studies indicated that recombinant rabies viruses (rRABV) expressing chemokines or cytokines (including GM-CSF) could enhance the immunogenicity by recruiting and/or activating dendritic cells (DC). In this study, bacterial flagellin was cloned into the RABV genome and recombinant virus LBNSE-Flagellin was rescued. To compare the immunogenicity of LBNSE-Flagellin with recombinant virus expressing GMCSF (LBNSE-GMCSF), mice were immunized with each of these rRABVs by intramuscular (i.m.) or oral route. The parent virus (LBNSE) without expression of any foreign molecules was included for comparison. The i.m.-immunized mice were bled at three weeks after the immunization for the measurement of virus neutralizing antibody (VNA) and then challenged with 50 LD50 challenge virus standard (CVS-24). Orally immunized mice were boosted after three weeks and then bled and challenged one week after the booster immunization. It was found that both LBNSE-GMCSF and LBNSE-Flagellin recruited/activated more DCs and B cells in the periphery, stimulated higher levels of adaptive immune responses (VNA), and protected more mice against challenge infection than the parent virus LBNSE in both the i.m. and the orally immunized groups. Together, these studies suggest that recombinant RABV expressing GM-CSF or flagellin are more immunogenic than the parent virus in both i.m. and oral immunizations. PMID:23700422

  18. Generation and Identification of GM-CSF Derived Alveolar-like Macrophages and Dendritic Cells From Mouse Bone Marrow.

    PubMed

    Dong, Yifei; Arif, Arif A; Poon, Grace F T; Hardman, Blair; Dosanjh, Manisha; Johnson, Pauline

    2016-01-01

    Macrophages and dendritic cells (DCs) are innate immune cells found in tissues and lymphoid organs that play a key role in the defense against pathogens. However, they are difficult to isolate in sufficient numbers to study them in detail, therefore, in vitro models have been developed. In vitro cultures of bone marrow-derived macrophages and dendritic cells are well-established and valuable methods for immunological studies. Here, a method for culturing and identifying both DCs and macrophages from a single culture of primary mouse bone marrow cells using the cytokine granulocyte macrophage colony-stimulating factor (GM-CSF) is described. This protocol is based on the established procedure first developed by Lutz et al. in 1999 for bone marrow-derived DCs. The culture is heterogeneous, and MHCII and fluoresceinated hyaluronan (FL-HA) are used to distinguish macrophages from immature and mature DCs. These GM-CSF derived macrophages provide a convenient source of in vitro derived macrophages that closely resemble alveolar macrophages in both phenotype and function. PMID:27404290

  19. CBL Linker Region and RING Finger Mutations Lead to Enhanced Granulocyte-Macrophage Colony-stimulating Factor (GM-CSF) Signaling via Elevated Levels of JAK2 and LYN*

    PubMed Central

    Javadi, Mojib; Richmond, Terri D.; Huang, Kai; Barber, Dwayne L.

    2013-01-01

    Juvenile myelomonocytic leukemia (JMML) is characterized by hypersensitivity to granulocyte-macrophage colony-stimulating factor (GM-CSF). SHP2, NF-1, KRAS, and NRAS are mutated in JMML patients, leading to aberrant regulation of RAS signaling. A subset of JMML patients harbor CBL mutations associated with 11q acquired uniparental disomy. Many of these mutations are in the linker region and the RING finger of CBL, leading to a loss of E3 ligase activity. We investigated the mechanism by which CBL-Y371H, a linker region mutant, and CBL-C384R, a RING finger mutant, lead to enhanced GM-CSF signaling. Expression of CBL mutants in the TF-1 cell line resulted in enhanced survival in the absence of GM-CSF. Cells expressing CBL mutations displayed increased phosphorylation of GM-CSF receptor βc subunit in response to stimulation, although expression of total GM-CSFR βc was lower. This suggested enhanced kinase activity downstream of GM-CSFR. JAK2 and LYN kinase expression is elevated in CBL-Y371H and CBL-C384R mutant cells, resulting in enhanced phosphorylation of CBL and S6 in response to GM-CSF stimulation. Incubation with the JAK2 inhibitor, TG101348, abolished the increased phosphorylation of GM-CSFR βc in cells expressing CBL mutants, whereas treatment with the SRC kinase inhibitor dasatinib resulted in equalization of GM-CSFR βc phosphorylation signal between wild type CBL and CBL mutant samples. Dasatinib treatment inhibited the elevated phosphorylation of CBL-Y371H and CBL-C384R mutants. Our study indicates that CBL linker and RING finger mutants lead to enhanced GM-CSF signaling due to elevated kinase expression, which can be blocked using small molecule inhibitors targeting specific downstream pathways. PMID:23696637

  20. A novel recombinant protein of ephrinA1-PE38/GM-CSF activate dendritic cells vaccine in rats with glioma.

    PubMed

    Li, Ming; Wang, Bin; Wu, Zhonghua; Zhang, Jiadong; Shi, Xiwen; Cheng, Wenlan; Han, Shuangyin

    2015-07-01

    Dendritic cells loaded with tumor-associated antigens can effectively stimulate the antitumor immune response of cytotoxic T lymphocytes in the body, which facilitates the development of novel and effective treatments for cancer. In this study, the adenovirus-mediated ephrinA1-PE38/GM-CSF was successfully constructed using the overlap extension method, and verified with sequencing analysis. HEK293 cells were infected with the adenovirus and the cellular expression of ephrinA1-PE38/GM-CSF was measured with an enzyme-linked immunosorbent assay. The recombinant adenovirus was then delivered into the tumor-bearing rats and the results showed that such treatment significantly reduced the volumes of gliomas and improved the survival of the transplanted rats. The results from immunohistochemistry and flow cytometry suggested that this immunomodulatory agent cause activation of dendritic cells. The findings that ephrinA1-PE38/GM-CSF had a high efficacy in the activation of the dendritic cells would facilitate the development of in vivo dendritic-cell vaccines for the treatment of gliomas in rats. Our new method of DC vaccine production induces not only a specific local antitumor immune response but also a systemic immunotherapeutic effect. In addition, this method completely circumvents the risk of contamination related to the in vitro culture of DCs, thus greatly improving the safety and feasibility of clinical application of the DC vaccines in glioma. PMID:25677907

  1. Addition of GM-CSF to a peptide/KLH vaccine results in increased frequencies of CXCR3-expressing KLH-specific T cells.

    PubMed

    Na, Il-Kang; Keilholz, Ulrich; Letsch, Anne; Bauer, Sandra; Asemissen, Anne Marie; Nagorsen, Dirk; Thiel, Eckhard; Scheibenbogen, Carmen

    2007-03-01

    T-cell trafficking is determined by expression patterns of chemokine receptors. The chemokine receptor CXCR3 is expressed on a subpopulation of type 1 T cells and plays an important role for migration of T cells into inflamed and tumor tissues. Here, we studied the chemokine receptor expression on specific T cells generated against the neoantigen keyhole limpet hemocyanin (KLH) in patients who had been immunized in the context of a tumor peptide vaccination trial with or without the adjuvant granulocyte-macrophage colony-stimulating factor (GM-CSF). In patients immunized in the presence of GM-CSF the fraction of CXCR3(+) KLH-specific T cells was significantly higher than in patients immunized in the absence of GM-CSF (median 45 vs. 20%, P = 0.001). In contrast, the chemokine receptor CCR4, associated with migration to the skin was found in both cohorts on less than 10% of KLH-specific T cells. These results show that CXCR3 expression on vaccine-induced T cells can be modulated by modifying the local vaccine milieu. PMID:16850346

  2. Molecular cloning of a second subunit of the receptor for human granulocyte - macrophage colony-stimulating factor (GM-CSF): Reconstitution of a high-affinity GM-CSF receptor

    SciTech Connect

    Hayashida, Kazuhiro; Kitamura, Toshio; Gorman, D.M.; Miyajima, Atsushi ); Arai, Kenichi; Yokota, Takashi )

    1990-12-01

    Using the mouse interleukin 3 (IL-3) receptor cDNA as a probe, the authors obtained a monologous cDNA (KH97) from a cDNA library of a human hemopoietic cell line, TF-1. The protein encoded by the KH97 cDNA has 56% amino acid sequence identity with the mouse IL-3 receptor and retains features common to the family of cytokine receptors. Fibroblasts transfected with the KH97 cDNA expressed a protein of 120 kDa but did not bind any human cytokines, including IL-3 and granulocyte - macrophage colony-stimulating factor (GM-CSF). Interestingly, cotransfection of cDNAs for KH97 and the low-affinity human GM-CSF receptor in fibroblasts resulted in formation of a high-affinity receptor for GM-CSF. The dissociation rate of GM-CSF from the reconstituted high-affinity receptor was slower than that from the low-affinity site, whereas the association rate was unchanged. Cross-linking of {sup 125}I-labeled GM-CSF to fibroblasts cotransfected with both cDNAs revealed the same cross-linking patterns as in TF-1 cells - i.e., two major proteins of 80 and 120 kDa which correspond to the low-affinity GM-CSF receptor and the KH97 protein, respectively. These results indicate that the high-affinity GM-CSF receptor is composed of at least two components in a manner analogous to the IL-2 receptor. They therefore propose to designate the low-affinity GM-CSF receptor and the KH97 protein as the {alpha} and {beta} subunits of the GM-CSF receptor, respectively.

  3. Cyclic AMP-elevating agents prolong or inhibit eosinophil survival depending on prior exposure to GM-CSF.

    PubMed Central

    Hallsworth, M. P.; Giembycz, M. A.; Barnes, P. J.; Lee, T. H.

    1996-01-01

    1. Purified human eosinophils survived for up to 7 days when cultured in vitro in the presence of 1 ng ml-1 granulocyte-macrophage colony stimulating factor (GM-CSF) with a viability of 73%. In the absence of GM-CSF, eosinophil viability decreased after one day in culture, and only 4% of cells were viable by day 4. 2. Culture of eosinophils with cholera toxin produced a concentration-dependent decrease in GM-CSF-induced survival at 7 days (IC50 = 7 ng ml-1) which was associated with a 6 fold increase in the intracellular cyclic AMP concentration. This inhibition of cell survival could be prevented by the addition of the protein kinase A inhibitor, H89 (10(-6)M). 3. When eosinophils were cultured with dibutyryl cyclic AMP, there was a concentration-dependent inhibition of GM-CSF-induced survival at 7 days with an IC50 of 200 microM. The related cyclic nucleotide analogue, dibutyryl cyclic GMP did not inhibit GM-CSF-induced eosinophil survival over the same concentration range. 4. Culture of eosinophils with forskolin, or with the phosphodiesterase inhibitors, rolipram and SK&F94120, had no effect on GM-CSF-induced eosinophil survival at any concentration examined. 5. After 7 days' culture in the absence of GM-CSF, fractionation of eosinophil DNA on agarose gels demonstrated a 'ladder' pattern characteristic of apoptosis. GM-CSF prevented DNA fragmentation and this protection could be overcome by both cholera toxin and dibutyryl cyclic AMP. 6. GM-CSF did not affect intracellular cyclic AMP concentrations in unstimulated eosinophils or in cells stimulated by cholera toxin. Thus, GM-CSF does not apparently increase eosinophil survival by affecting cyclic AMP levels. 7. In the absence of GM-CSF both cholera toxin and dibutyryl cyclic AMP decreased the rate of eosinophil death, when compared to cells cultured with medium alone. The t1/2 values for cell death were 1.63 +/- 0.3, 2.46 +/- 0.3 and 4.62 +/- 1.0 days for cells cultured in the presence of medium, cholera toxin

  4. Biology of common beta receptor-signaling cytokines: IL-3, IL-5, and GM-CSF.

    PubMed

    Martinez-Moczygemba, Margarita; Huston, David P

    2003-10-01

    IL-3, IL-5, and GM-CSF are related hematopoietic cytoines that are important for allergic inflammation. The receptors for human IL-5, IL-3, and GM-CSF are members of the hematopoietin receptor superfamily and are comprised of a cytokine-specific alpha chain and the common beta chain that is shared among these cytokines for signaling. Each of these cytokines contributes to the differentiation and function of leukocyte subpopulations and have clinical importance in protective immunity and in the pathophysiology of a spectrum of immunologic diseases that are as diverse as allergy and asthma, pulmonary alveolar proteinosis, neurodegenerative diseases, and malignancies. Delineating the biology of these cytokines is enabling the development of new strategies for diagnosing and treating these diseases and modulating immune responses. PMID:14564341

  5. Persistent STAT5 phosphorylation and epigenetic dysregulation of GM-CSF and PGS2/COX2 expression in Type 1 diabetic human monocytes.

    PubMed

    Garrigan, Erin; Belkin, Nicole S; Alexander, John J; Han, Zhao; Seydel, Federica; Carter, Jamal; Atkinson, Mark; Wasserfall, Clive; Clare-Salzler, Michael J; Amick, Matthew A; Litherland, Sally A

    2013-01-01

    STAT5 proteins are adaptor proteins for histone acetylation enzymes. Histone acetylation at promoter and enhancer chromosomal regions opens the chromatin and allows access of transcription enzymes to specific genes in rapid response cell signals, such as in inflammation. Histone acetylation-mediated gene regulation is involved in expression of 2 key inflammatory response genes: CSF2, encoding granulocyte-macrophage colony stimulating factor (GM-CSF), and PTGS2, encoding prostaglandin synthase 2/cyclooxygenase 2 (PGS2/COX2). Prolonged CSF2 expression, high GM-CSF production, and GM-CSF activation of PTGS2 gene expression all are seen in type 1 diabetes (T1D) monocytes. Persistent phosphorylation activation of monocyte STAT5 (STAT5Ptyr) is also found in individuals with or at-risk for T1D. To examine whether elevated T1D monocyte STAT5Ptyr may be associated with aberrant inflammatory gene expression in T1D, blood monocytes from non-autoimmune controls and T1D patients were analyzed by flow cytometry for STAT5Ptyr activation, and by chromatin immuno-precipitation (ChIP) analyses for STAT5Ptyr's ability to bind at CSF2 and PTGS2 regulatory sites in association with histone acetylation. In unstimulated monocytes, STAT5Ptyr was elevated in 59.65% of T1D, but only 2.44% of control subjects (p<0.0001). Increased STAT5Ptyr correlated with T1D disease duration (p = 0.0030, r(2) = 0.0784). Unstimulated (p = 0.140) and GM-CSF-stimulated (p = 0.0485) T1D monocytes, had greater STAT5Ptyr binding to epigenetic regulatory sites upstream of CSF2 than control monocytes. Increased STAT5Ptyr binding in T1D monocytes was concurrent with binding at these sites of STAT6Ptyr (p = 0.0283), CBP/P300 histone acetylase, acetylated histones H3, SMRT/NCoR histone deacetylase (p = 0.0040), and RNA Polymerase II (p = 0.0040). Our study indicates that in T1D monocytes, STAT5Ptyr activation is significantly higher and that STAT5Ptyr is found bound to CSF2 promoter and PTGS2 enhancer regions

  6. ILC3 GM-CSF production and mobilisation orchestrate acute intestinal inflammation

    PubMed Central

    Pearson, Claire; Thornton, Emily E; McKenzie, Brent; Schaupp, Anna-Lena; Huskens, Nicky; Griseri, Thibault; West, Nathaniel; Tung, Sim; Seddon, Benedict P; Uhlig, Holm H; Powrie, Fiona

    2016-01-01

    Innate lymphoid cells (ILCs) contribute to host defence and tissue repair but can induce immunopathology. Recent work has revealed tissue-specific roles for ILCs; however, the question of how a small population has large effects on immune homeostasis remains unclear. We identify two mechanisms that ILC3s utilise to exert their effects within intestinal tissue. ILC-driven colitis depends on production of granulocyte macrophage-colony stimulating factor (GM-CSF), which recruits and maintains intestinal inflammatory monocytes. ILCs present in the intestine also enter and exit cryptopatches in a highly dynamic process. During colitis, ILC3s mobilize from cryptopatches, a process that can be inhibited by blocking GM-CSF, and mobilization precedes inflammatory foci elsewhere in the tissue. Together these data identify the IL-23R/GM-CSF axis within ILC3 as a key control point in the accumulation of innate effector cells in the intestine and in the spatio-temporal dynamics of ILCs in the intestinal inflammatory response. DOI: http://dx.doi.org/10.7554/eLife.10066.001 PMID:26780670

  7. Research Upregulation of CD23 (FcεRII) Expression in Human Airway Smooth Muscle Cells (huASMC) in Response to IL-4, GM-CSF, and IL-4/GM-CSF

    PubMed Central

    Belleau, Joseph T; Gandhi, Radha K; McPherson, Holly M; Lew, D Betty

    2005-01-01

    Background Airway smooth muscle cells play a key role in remodeling that contributes to airway hyperreactivity. Airway smooth muscle remodeling includes hypertrophy and hyperplasia. It has been previously shown that the expression of CD23 on ASMC in rabbits can be induced by the IgE component of the atopic serum. We examined if other components of atopic serum are capable of inducing CD23 expression independent of IgE. Methods Serum starved huASMC were stimulated with either IL-4, GM-CSF, IL-13, IL-5, PGD2, LTD4, tryptase or a combination of IL-4, IL-5, IL-13 each with GM-CSF for a period of 24 h. CD23 expression was analyzed by flow cytometry, western blot, and indirect immunofluorescence. Results The CD23 protein expression was upregulated in huASMC in response to IL-4, GM-CSF, and IL-4/GM-CSF. The percentage of cells with increased fluorescence intensity above the control was 25.1 ± 4.2% (IL-4), 15.6 ± 2.7% (GM-CSF) and 32.9 ± 13.9% (IL-4/GMCSF combination)(n = 3). The protein content of IL-4/GMCSF stimulated cells was significantly elevated. Expression of CD23 in response to IL-4, GM-CSF, IL-4/GM-CSF was accompanied by changes in cell morphology including depolymerization of isoactin fibers, cell spreading, and membrane ruffling. Western blot revealed abundant expression of the IL-4Rα and a low level expression of IL-2Rγc in huASMC. Stimulation with IL-4 resulted in the phosphorylation of STAT-6 and an increase in the expression of the IL-2Rγc. Conclusion CD23 on huASMC is upregulated by IL-4, GM-CSF, and IL-4/GM-CSF. The expression of CD23 is accompanied by an increase in cell volume and an increase in protein content per cell, suggesting hypertrophy. Upregulation of CD23 by IL-4/GM-CSF results in phenotypic changes in huASMC that could play a role in cell migration or a change in the synthetic function of the cells. Upregulation of CD23 in huASMC by IL-4 and GM-CSF can contribute to changes in huASMC and may provide an avenue for new therapeutic options

  8. CD1dhiCD5+ B cells Expanded by GM-CSF in Vivo Suppress Experimental Autoimmune Myasthenia Gravis

    PubMed Central

    Sheng, Jian Rong; Quan, Songhua; Soliven, Betty

    2014-01-01

    IL-10-competent subset within CD1dhiCD5+ B cells, also known as B10 cells, has been shown to regulate autoimmune diseases. Whether B10 cells can prevent or suppress the development of experimental autoimmune myasthenia gravis (EAMG) has not been studied. In this study, we investigated whether low dose granulocyte macrophage-colony stimulating factor (GM-CSF), which suppresses EAMG, can expand B10 cells in vivo, and whether adoptive transfer of CD1dhiCD5+ B cells would prevent or suppress EAMG. We found that treatment of EAMG mice with low-dose GM-CSF increased the proportion of CD1dhiCD5+ B cells and B10 cells. In vitro co-culture studies revealed that CD1dhiCD5+ B cells altered T cell cytokine profile but did not directly inhibit T cell proliferation. On the other hand, CD1dhiCD5+ B cells inhibited B cell proliferation and its autoantibody production in an IL-10-dependent manner. Adoptive transfer of CD1dhiCD5+ B cells to mice could prevent disease as well as suppress EAMG after disease onset. This was associated with downregulation of mature dendritic cell markers and expansion of regulatory T cells resulting in the suppression of acetylcholine receptor (AChR)-specific T cell and B cell responses. Thus, our data have provided significant insights into the mechanisms underlying the tolerogenic effects of B10 cells in EAMG. These observations suggest that in vivo or in vitro expansion of CD1dhiCD5+ B cells or B10 cells may represent an effective strategy in the treatment of human myasthenia gravis. PMID:25135828

  9. CFH Y402H polymorphism is associated with elevated vitreal GM-CSF and choroidal macrophages in the postmortem human eye

    PubMed Central

    Wang, Jay Ching Chieh; Cao, Sijia; Wang, Aikun; To, Eleanor; Law, Geoffrey; Gao, Jiangyuan; Zhang, Dean; Cui, Jing Z.

    2015-01-01

    Purpose Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in people 50 years of age or older in developed countries. The homozygous CC genotype in the complement factor H (CFH) Y402H single nucleotide polymorphism (SNP; rs1061170) is widely recognized as a risk factor for the development of AMD. In this study, we examined vitreal levels of granulocyte macrophage colony-stimulating factor (GM-CSF), a hematopoietic cytokine, and macrophages in the choroid of postmortem human eyes genotyped for the CFH Y402H SNP. Methods Twenty-two pairs of postmortem, non-diseased, human donor eyes were obtained. The vitreous and retinal tissues of the left eyes were collected for GM-CSF level measurement and CFH Y402H genotyping, respectively. The right eyes were paraffin-embedded and sectioned for immunohistochemistry using a macrophage and microglia marker, CD68. Cell cultures of RPE cells were stimulated with complement C3a, C5a, 4-hydroxynonenal (HNE), or tumor necrosis factor alpha (TNF-α), and GM-CSF expression was measured with a suspension assay or quantitative PCR. Results Eyes genotyped with the CC or the CT risk variant of the CFH Y402H SNP showed significantly increased levels of GM-CSF in the vitreous compared to eyes with the protective TT variant (mean ± standard error of mean, 607.54±85.83 pg/ml or 656.32±15.20 pg/ml versus 286.69±81.96 pg/ml, p<0.05). The choroid of eye tissues genotyped with the CC variant showed higher levels of CD68 immunoreactivity than the tissues genotyped with the TT variant (p<0.05). The GM-CSF levels detected in the supernatant of RPE cells in culture treated with HNE or TNF-α were significantly higher compared to the non-treated control (145.88±5.06 pg/ml and 149.32±3.76 pg/ml versus 123.27±4.05 pg/ml, p<0.05). Furthermore, the gene expression of GM-CSF detected in the lysate of RPE cells stimulated with complement C3a or C5a showed significantly increased fold changes compared to the non

  10. Cytokine regulation of granulocyte-macrophage colony-stimulating factor (GM-CSF) production by human retinal pigment epithelial cells

    PubMed Central

    Crane, I J; Kuppner, M C; Mckillop-Smith, S; Wallace, C A; Forrester, J V

    1999-01-01

    GM-CSF is an important regulator of macrophage, granulocyte and dendritic cell behaviour and function. These cell types have been implicated in the retinal damage characteristic of endogenous posterior uveitis. Dendritic cells in the choroid have access to retinal antigens processed by the retinal pigment epithelial (RPE) cells of the blood–retinal barrier and are thought to be candidates for the presentation of antigen in uveoretinitis. We therefore investigated the production of GM-CSF and its regulation in human RPE cells. IL-1β, tumour necrosis factor-alpha (TNF-α) and transforming growth factor-beta (TGF-β) all stimulated GM-CSF production by RPE cells and a combination of these cytokines increased GM-CSF production over five-fold compared with that with the individual cytokines alone. Interferon-gamma (IFN-γ) rapidly down-regulated these responses. IFN-γ did not appear to be acting directly on IL-1β or via the synthesis of another protein. GM-CSF mRNA expression showed the same pattern of response to these cytokines, indicating transcriptional or pre-transcriptional regulation, and there was no evidence that IFN-γ was acting by destabilizing GM-CSF mRNA. These results are generally important in understanding the ways in which cytokine regulation differs between different cell types and also more specifically for determining ways in which a cytokine with a significant role in the development of autoimmune uveoretinitis may be manipulated. PMID:9933455

  11. A GM-CSF/IL-33 pathway facilitates allergic airway responses to sub-threshold house dust mite exposure.

    PubMed

    Llop-Guevara, Alba; Chu, Derek K; Walker, Tina D; Goncharova, Susanna; Fattouh, Ramzi; Silver, Jonathan S; Moore, Cheryl Lynn; Xie, Juliana L; O'Byrne, Paul M; Coyle, Anthony J; Kolbeck, Roland; Humbles, Alison A; Stämpfli, Martin R; Jordana, Manel

    2014-01-01

    Allergic asthma is a chronic immune-inflammatory disease of the airways. Despite aeroallergen exposure being universal, allergic asthma affects only a fraction of individuals. This is likely related, at least in part, to the extent of allergen exposure. Regarding house dust mite (HDM), we previously identified the threshold required to elicit allergic responses in BALB/c mice. Here, we investigated the impact of an initial immune perturbation on the response to sub-threshold HDM exposure. We show that transient GM-CSF expression in the lung facilitated robust eosinophilic inflammation, long-lasting antigen-specific Th2 responses, mucus production and airway hyperresponsiveness. This was associated with increased IL-33 levels and activated CD11b(+) DCs expressing OX40L. GM-CSF-driven allergic responses were significantly blunted in IL-33-deficient mice. IL-33 was localized on alveolar type II cells and in vitro stimulation of human epithelial cells with GM-CSF enhanced intracellular IL-33 independently of IL-1α. Likewise, GM-CSF administration in vivo resulted in increased levels of IL-33 but not IL-1α. These findings suggest that exposures to environmental agents associated with GM-CSF production, including airway infections and pollutants, may decrease the threshold of allergen responsiveness and, hence, increase the susceptibility to develop allergic asthma through a GM-CSF/IL-33/OX40L pathway. PMID:24551140

  12. A GM-CSF/IL-33 Pathway Facilitates Allergic Airway Responses to Sub-Threshold House Dust Mite Exposure

    PubMed Central

    Llop-Guevara, Alba; Chu, Derek K.; Walker, Tina D.; Goncharova, Susanna; Fattouh, Ramzi; Silver, Jonathan S.; Moore, Cheryl Lynn; Xie, Juliana L.; O’Byrne, Paul M.; Coyle, Anthony J.; Kolbeck, Roland; Humbles, Alison A.; Stämpfli, Martin R.; Jordana, Manel

    2014-01-01

    Allergic asthma is a chronic immune-inflammatory disease of the airways. Despite aeroallergen exposure being universal, allergic asthma affects only a fraction of individuals. This is likely related, at least in part, to the extent of allergen exposure. Regarding house dust mite (HDM), we previously identified the threshold required to elicit allergic responses in BALB/c mice. Here, we investigated the impact of an initial immune perturbation on the response to sub-threshold HDM exposure. We show that transient GM-CSF expression in the lung facilitated robust eosinophilic inflammation, long-lasting antigen-specific Th2 responses, mucus production and airway hyperresponsiveness. This was associated with increased IL-33 levels and activated CD11b+ DCs expressing OX40L. GM-CSF-driven allergic responses were significantly blunted in IL-33-deficient mice. IL-33 was localized on alveolar type II cells and in vitro stimulation of human epithelial cells with GM-CSF enhanced intracellular IL-33 independently of IL-1α. Likewise, GM-CSF administration in vivo resulted in increased levels of IL-33 but not IL-1α. These findings suggest that exposures to environmental agents associated with GM-CSF production, including airway infections and pollutants, may decrease the threshold of allergen responsiveness and, hence, increase the susceptibility to develop allergic asthma through a GM-CSF/IL-33/OX40L pathway. PMID:24551140

  13. Granulocyte-macrophage colony-stimulating factor (GM-CSF) secreted by cDNA-transfected tumor cells induces a more potent antitumor response than exogenous GM-CSF.

    PubMed

    Shi, F S; Weber, S; Gan, J; Rakhmilevich, A L; Mahvi, D M

    1999-01-01

    Clinical cancer gene therapy trials have generally focused on the transfer of cytokine cDNA to tumor cells ex vivo and with the subsequent vaccination of the patient with these genetically altered tumor cells. This approach results in high local cytokine concentrations that may account for the efficacy of this technique in animal models. We hypothesized that the expression of certain cytokines by tumor cells would be a superior immune stimulant when compared with local delivery of exogenous cytokines. Granulocyte-macrophage colony-stimulating factor (GM-CSF) cDNA in a nonviral expression vector was inserted into MDA-MB-231 (human breast cancer), M21 (human melanoma), B16 (murine melanoma), and P815 (mastocytoma) cells by particle-mediated gene transfer. The ability of transfected tumor cells to generate a tumor-specific immune response was evaluated in an in vitro mixed lymphocyte-tumor cell assay and in an in vivo murine tumor protection model. Peripheral blood lymphocytes cocultured with human GM-CSF-transfected tumor cells were 3- to 5-fold more effective at lysis of the parental tumor cells than were peripheral blood lymphocytes incubated with irradiated tumor cells and exogenous human GM-CSF. Mice immunized with murine GM-CSF-transfected irradiated B16 murine melanoma cells or P815 mastocytoma cells were protected from subsequent tumor challenge, whereas mice immunized with the nontransfected tumors and cutaneous transfection of murine GM-CSF cDNA at the vaccination site developed tumors more frequently. The results indicate that GM-CSF protein expressed in human and murine tumor cells is a superior antitumor immune stimulant compared with exogenous GM-CSF in the tumor microenvironment. PMID:10078967

  14. Soluble β-glucan from Grifola frondosa induces proliferation and Dectin-1/Syk signaling in resident macrophages via the GM-CSF autocrine pathway.

    PubMed

    Masuda, Yuki; Togo, Takuya; Mizuno, Shigeto; Konishi, Morichika; Nanba, Hiroaki

    2012-04-01

    MD-Fraction, a highly purified, soluble β-(1,3) (1,6)-glucan obtained from Grifola frondosa (an oriental edible mushroom), has been reported to inhibit tumor growth by modulating host immunity. β-Glucan, a major component of the fungal cell wall, is generally recognized by PRRs expressed on macrophages and DCs, such as Dectin-1, and the ability of β-glucans to modulate host immunity is influenced by their structure and purity. Most cellular studies have used particulate β-glucans, such as yeast zymosan (crude β-glucan) and curdlan (purified β-glucan). However, little is known about the cellular mechanism of soluble β-glucans, including MD-Fraction, despite significant therapeutic implications. In this study, we investigated the cellular mechanism of MD-Fraction in murine resident macrophages and compared it with two well-known β-glucan particles. MD-Fraction induced GM-CSF production rapidly through Dectin-1-independent ERK and p38 MAPK activation. Subsequently, MD-Fraction-induced GM-CSF enhanced proliferation and Dectin-1 expression, which permitted Dectin-1-mediated TNF-α induction through the Syk pathway. Curdlan induced not only the proliferation and activation of Dectin-1/Syk signaling in a manner similar to MD-Fraction but also the uncontrolled, proinflammatory cytokine response. Contrastingly, zymosan reduced proliferation and Dectin-1 expression significantly, indicating that the mechanism of macrophage activation by MD-Fraction differs from that of zymosan. This is the first study to demonstrate that purified β-glucans, such as MD-Fraction and curdlan, induce GM-CSF production directly, resulting in Dectin-1/Syk activation in resident macrophages. In conclusion, we demonstrated that MD-Fraction induces cell proliferation and cytokine production without excessive inflammation in resident macrophages, supporting its immunotherapeutic potential. PMID:22028332

  15. Chimaeric Lym-1 monoclonal antibody-mediated cytolysis by neutrophils from G-CSF-treated patients: stimulation by GM-CSF and role of Fc gamma -receptors.

    PubMed

    Ottonello, L; Epstein, A L; Mancini, M; Tortolina, G; Dapino, P; Dallegri, F

    2001-08-01

    Chimaeric Lym-1 (chLym-1) is a monoclonal antibody generated by fusing the variable region genes of murine Lym-1 to human gamma1 and kappa constant regions. Owing to its selectivity and avidity for human malignant B cells, it is an attractive candidate for developing immune-interventions in B-lymphomas. In the attempt to identify rational bases for optimizing potential chLym-1 related therapeutic approaches, we studied the ability of this ch-mAb to trigger neutrophil-mediated Raji cell cytolysis in cooperation with two neutrophil-related cytokines, G-CSF and GM-CSF. ChLym-1 triggered low levels of cytolysis by normal neutrophils but induced consistent cytolysis in neutrophils from individuals treated with G-CSF. When exposed to GM-CSF, neutrophils from subjects treated with G-CSF became potent effectors, also leading to 75% lysis. By using mAbs specific for distinct FcgammaRs, normal neutrophils were inhibited by mAb IV.3, suggesting the intervention of FcgammaRII, constitutively expressed on the cells. On the other hand, neutrophils from patients treated with G-CSF were inhibited by mAb IV.3 plus mAb 197, a finding consistent with a cooperative intervention of FCgammaRII and G-CSF-induced FcgammaRI. The anti-FcgammaRIII mAb 3G8 promoted significant enhancement of the neutrophil cytolytic efficiency. Therefore, neutrophil FcgammaRIII behaves as a down-regulator of the cytolytic potential. The present findings suggest new attempts to develop mAb-based and G-CSF/GM-CSF combined immune-interventions in B lymphomas. PMID:11487281

  16. Chimaeric Lym-1 monoclonal antibody-mediated cytolysis by neutrophils from G-CSF-treated patients: stimulation by GM-CSF and role of Fcγ-receptors

    PubMed Central

    Ottonello, L; Epstein, A L; Mancini, M; Tortolina, G; Dapino, P; Dallegri, F

    2001-01-01

    Chimaeric Lym-1 (chLym-1) is a monoclonal antibody generated by fusing the variable region genes of murine Lym-1 to human γ1 and κ constant regions. Owing to its selectivity and avidity for human malignant B cells, it is an attractive candidate for developing immune-interventions in B-lymphomas. In the attempt to identify rational bases for optimizing potential chLym-1 related therapeutic approaches, we studied the ability of this ch-mAb to trigger neutrophil-mediated Raji cell cytolysis in cooperation with two neutrophil-related cytokines, G-CSF and GM-CSF. ChLym-1 triggered low levels of cytolysis by normal neutrophils but induced consistent cytolysis in neutrophils from individuals treated with G-CSF. When exposed to GM-CSF, neutrophils from subjects treated with G-CSF became potent effectors, also leading to 75% lysis. By using mAbs specific for distinct FcγRs, normal neutrophils were inhibited by mAb IV.3, suggesting the intervention of FcγRII, constitutively expressed on the cells. On the other hand, neutrophils from patients treated with G-CSF were inhibited by mAb IV.3 plus mAb 197, a finding consistent with a cooperative intervention of FCγRII and G-CSF-induced FcγRI. The anti-FcγRIII mAb 3G8 promoted significant enhancement of the neutrophil cytolytic efficiency. Therefore, neutrophil FcγRIII behaves as a down-regulator of the cytolytic potential. The present findings suggest new attempts to develop mAb-based and G-CSF/GM-CSF combined immune-interventions in B lymphomas. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11487281

  17. IL-3/GM-CSF receptor promotes stem cell expansion, monocytosis, and atheroma macrophage burden in mice with hematopoietic Apoe deficiency

    PubMed Central

    Wang, Mi; Subramanian, Manikandan; Abramowicz, Sandra; Murphy, Andrew J.; Gonen, Ayelet; Witztum, Joseph; Welch, Carrie; Tabas, Ira; Westerterp, Marit; Tall, Alan R.

    2014-01-01

    Objective Coronary heart disease is associated with monocytosis. Studies using animal models of monocytosis and atherosclerosis such as Apoe-/- mice have shown bone marrow (BM) hematopoietic stem and multi-potential progenitor cell (HSPC) expansion, associated with increased cell surface expression of the common β subunit of the GM-CSF/IL-3 receptor (CBS) on HSPCs. Apoe-/- mice also display increased GM-CSF-dependent monocyte production in the spleen. We investigated the role of the CBS in cholesterol-driven HSPC expansion, monocytosis and atherosclerosis. Approach and Results Ldlr-/- mice were transplanted with Apoe-/-Cbs-/- or Apoe-/- BM followed by Western-type diet (WTD) feeding. Compared to Apoe-/- BM transplanted controls, Apoe-/-Cbs-/- BM transplanted mice had reduced BM and splenic HSPC proliferation, fewer blood monocytes and neutrophils, and reduced macrophage content and area of early atherosclerotic lesions. More advanced lesions showed diminished macrophage and collagen content; however, lesion size was unchanged reflecting an increase in necrotic core area, associated with a marked decrease in Abcg1 expression and increased macrophage apoptosis. Compared with wild-type mice, WTD-fed Apoe-/- mice showed increased CBS expression on GM-CSF-producing innate response activator (IRA) B cells and expansion of this population. Apoe-/-Cbs-/- BM transplanted Ldlr-/- mice showed a marked decrease in IRA B cells compared to Apoe-/- BM transplanted Ldlr-/- controls. Conclusions Increased levels of CBS on HSPCs and splenic IRA B cells leads to expansion of these populations in Apoe-/- BM transplanted Ldlr-/- mice, contributing to monocytosis and increased lesional macrophage content. However, in more advanced lesions, the CBS also has a role in atherosclerotic plaque stabilization. PMID:24651678

  18. Coadministration of cruzipain and GM-CSF DNAs, a new immunotherapeutic vaccine against Trypanosoma cruzi infection.

    PubMed

    Cerny, Natacha; Sánchez Alberti, Andrés; Bivona, Augusto E; De Marzi, Mauricio C; Frank, Fernanda M; Cazorla, Silvia I; Malchiodi, Emilio L

    2016-02-01

    Therapeutic vaccine research and development are especially important in Chagas disease considering the characteristics of the chronic infection and the number of people in the Americas living with a parasite infection for decades. We have previously reported the efficacy of attenuated Salmonella enterica (S) carrying plasmid encoding cruzipain (SCz) to protect against Trypanosoma cruzi infection. In the present work we investigated whether Cz DNA vaccine immunotherapy could be effective in controlling an ongoing T. cruzi infection in mice. We here report the intramuscular administration of naked Cz DNA or the oral administration of Salmonella as Cz DNA delivery system as therapeutic vaccines in mice during acute or chronic infection. The coadministration of a plasmid encoding GM-CSF improved vaccine performance, indicating that the stimulation of innate immune cells is needed in the event of an ongoing infection. These therapeutic vaccines were able to address the response to a protective and sustained Th1 biased profile not only against Cz but also against a variety of parasite antigens. The combined therapeutic vaccine during the chronic phase of infection prevents tissue pathology as shown by a reduced level of enzyme activity characteristic of tissue damage and a tissue status compatible with normal tissue. The obtained results suggest that immunotherapy with Cz and GM-CSF DNAs, either alone or in combination with other drug treatments, may represent a promising alternative for Chagas disease therapy. PMID:26312947

  19. ETS1 transactivates the human GM-CSF promoter in Jurkat T cells stimulated with PMA and ionomycin.

    PubMed

    Thomas, R S; Tymms, M J; Seth, A; Shannon, M F; Kola, I

    1995-11-16

    Activation of T helper cells results in coordinate expression of a number of cytokines involved in differentiation, proliferation and activation of the haematopoietic system. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is one such cytokine whose increased expression results partly from increases in transcription. Cis-acting elements with NF kappa B, AP-1 and ETS-like motifs have been identified in the promoter region of the GM-CSF gene, which are important for transcriptional activity following PMA and ionomycin stimulation. A number of the ETS family of transcription factors are expressed in T cells, including ETS1 and ELF1. Here we describe the ability of these factors to interact with a site (GM5), located within the CLE0 element, -47 to -40 upstream of the GM-CSF transcription initiation site. Exogenous ETS1, but not ELF1, can transactivate GM-CSF, through the GM5 site, in a PMA/ionomycin dependent manner. Other unidentified ETS-like factors present in Jurkat cells are also capable of binding GM5. Mutation of the core ETS binding site from -GGAA- to -GGAT- prevents the binding of ETS-like factors with the exception of ETS1. The GM-CSF promoter, modified in this way to be ETS1 specific, is fully responsive to PMA/ionomycin induction, in addition to ETS1 transactivation in the presence of PMA and ionomycin. Together these data suggest that ETS1 may be involved in mediating the increased GM-CSF production associated with T cell activation. PMID:7478534

  20. Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice

    SciTech Connect

    Malur, Anagha; Huizar, Isham; Wells, Greg; Barna, Barbara P.; Malur, Achut G.; Thomassen, Mary Jane

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Lentivirus-ABCG1 reduces lipid accumulation in lungs of GM-CSF knock-out mice. Black-Right-Pointing-Pointer Up-regulation of ABCG1 improves lung function. Black-Right-Pointing-Pointer Upregulation of ABCG1 improves surfactant metabolism. -- Abstract: We have shown decreased expression of the nuclear transcription factor, peroxisome proliferator-activated receptor-gamma (PPAR{gamma}) and the PPAR{gamma}-regulated ATP-binding cassette transporter G1 (ABCG1) in alveolar macrophages from patients with pulmonary alveolar proteinosis (PAP). PAP patients also exhibit neutralizing antibodies to granulocyte-macrophage colony stimulating factor (GM-CSF), an upregulator of PPAR{gamma}. In association with functional GM-CSF deficiency, PAP lung is characterized by surfactant-filled alveolar spaces and lipid-filled alveolar macrophages. Similar pathology characterizes GM-CSF knock-out (KO) mice. We reported previously that intratracheal instillation of a lentivirus (lenti)-PPAR{gamma} plasmid into GM-CSF KO animals elevated ABCG1 and reduced alveolar macrophage lipid accumulation. Here, we hypothesized that instillation of lenti-ABCG1 might be sufficient to decrease lipid accumulation and improve pulmonary function in GM-CSF KO mice. Animals received intratracheal instillation of lenti-ABCG1 or control lenti-enhanced Green Fluorescent Protein (eGFP) plasmids and alveolar macrophages were harvested 10 days later. Alveolar macrophage transduction efficiency was 79% as shown by lenti-eGFP fluorescence. Quantitative PCR analyses indicated a threefold (p = 0.0005) increase in ABCG1 expression with no change of PPAR{gamma} or ABCA1 in alveolar macrophages of lenti-ABCG1 treated mice. ABCG1 was unchanged in control lenti-eGFP and PBS-instilled groups. Oil Red O staining detected reduced intracellular neutral lipid in alveolar macrophages from lenti-ABCG1 treated mice. Extracellular cholesterol and phospholipids were also decreased as shown by

  1. Polymorphism at codon 117 of the granulocyte-macrophage colony-stimulating factor gene (GM-CSF)

    SciTech Connect

    Tagiev, A.F.; Surin, V.L.; Osokina, A.V.

    1995-10-01

    A T-to-C substitution, replacing a hydrophobic isoleucine residue with a hydrophilic threonine residue in position 100 of a mature protein molecule, was found at codon 117 of the GM-CSF gene. The mutation frequencies were estimated in 51 DNA samples from healthy adult donors and also in 20 samples from patients with different neoplastic myeloid disorders. Almost equal substitution frequencies in patients and normal individuals were observed, suggesting that the defect was not associated with leukemia. Additionally, the GM-CSF gene intron 1 sequence was refined. 44 refs., 2 tabs.

  2. Overview of use of G-CSF and GM-CSF in the treatment of acute radiation injury.

    PubMed

    Reeves, Glen

    2014-06-01

    Depression of hematopoietic elements due to significant levels of whole-body or partial-body irradiation due to radiation-induced suppression of mitosis in the stem and progenitor cells can result in life-threatening injury. Successful administration of intensive care of patients experiencing acute radiation sickness (ARS; also called acute radiation syndrome) is dependent upon the ability to stimulate the recovery of surviving hematopoietic stem cells (HSC), assuming the non-hematopoietic injuries are also survivable with treatment. To date, there have been a number of studies involving radiation accidents where patients were treated with cytokines. Although the data overall seem to indicate that the period of neutropenia is shortened and survival prolonged, so far there is no statistically significant proof that cytokine administration actually decreases mortality in radiation-injured humans. Some studies have shown no improved survival when used in a mouse model; however, studies in canines and primates have shown improved survival. CSF therapy is considered a valuable adjunct to treatment with antibiotics and strict hygiene controls in certain irradiated patients. It appears that these drugs do shorten the periods of neutropenia in irradiated patients and must be considered part of the therapeutic armamentarium in the treatment of ARS in a mass casualty situation. Based on review of the human experience with G-CSF and GM-CSF, as well as some animal studies, current consensus opinions support the prompt administration of these materials to patients suffering significant bone marrow depression from exposure to ionizing radiation. PMID:24776902

  3. Effects of granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-2, interferon-gamma (IFN-gamma), tumour necrosis factor-alpha (TNF-alpha) and IL-6 on the production of immunoreactive IL-1 and TNF-alpha by human monocytes.

    PubMed Central

    Danis, V A; Franic, G M; Rathjen, D A; Brooks, P M

    1991-01-01

    The effects of GM-CSF, IL-2, IFN-gamma, TNF-alpha and IL-6 on the production of IL-1 (both secreted and cell associated) and TNF-alpha by peripheral blood monocytes were studied. Monocytes were cultured for 20 h in suspension and in serum-free conditions which minimized background stimulation of monokine production. GM-CSF, IL-2 and TNF-alpha directly induced the production of cell-associated IL-1 but little or no IL-1 or TNF-alpha secretion. Combination of GM-CSF with IFN-gamma, IL-2 or TNF-alpha synergistically enhanced IL-1 secretion and had an additive effect on cell-associated IL-1 production. Combination of IL-2 with IFN-gamma or TNF-alpha also synergistically enhanced IL-1 secretion but the effect on cell-associated IL-1 production was less than additive. GM-CSF synergistically enhanced TNF-alpha secretion induced by IFN-gamma but not by lipopolysaccharide. GM-CSF did not enhance TNF-alpha secretion induced by IL-2 or TNF-alpha. In contrast, IL-2 synergistically enhanced TNF-alpha secretion induced by IFN-gamma. These results are discussed in relation to cytokine involvement in rheumatoid arthritis. PMID:1906383

  4. IL-2 and GM-CSF are regulated by DNA demethylation during activation of T cells, B cells and macrophages

    SciTech Connect

    Li, Yan; Ohms, Stephen J.; Shannon, Frances M.; Sun, Chao; Fan, Jun Y.

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer DNA methylation is dynamic and flexible and changes rapidly upon cell activation. Black-Right-Pointing-Pointer DNA methylation controls the inducible gene expression in a given cell type. Black-Right-Pointing-Pointer Some enzymes are involved in maintaining the methylation profile of immune cells. -- Abstract: DNA demethylation has been found to occur at the promoters of a number of actively expressed cytokines and is believed to play a critical role in transcriptional regulation. While many DNA demethylation studies have focused on T cell activation, proliferation and differentiation, changes in DNA methylation in other types of immune cells are less well studied. We found that the expression of two cytokines (IL-2 and GM-CSF) responded differently to activation in three types of immune cells: EL4, A20 and RAW264.7 cells. Using the McrBC and MeDIP approaches, we observed decreases in DNA methylation at a genome-wide level and at the promoters of the genes of these cytokines. The expression of several potential enzymes/co-enzymes involved in the DNA demethylation pathways seemed to be associated with immune cell activation.

  5. Interleukin-4 enhances trafficking and functional activities of GM-CSF-stimulated mouse myeloid-derived dendritic cells at late differentiation stage

    SciTech Connect

    Yin, Shu-Yi; Wang, Chien-Yu; Yang, Ning-Sun

    2011-09-10

    Mouse bone marrow-derived dendritic cells (BMDCs) are being employed as an important model for translational research into the development of DC-based therapeutics. For such use, the localization and specialized mobility of injected BMDCs within specific immune tissues are known to define their immunity and usefulness in vivo. In this study, we demonstrate that IL-4, a key driving factor for in vitro propagation and differentiation of BMDCs, when added during a late culture stage can enhance the in vivo trafficking activity of granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced BMDCs. It suggests that the temporal control of IL-4 stimulation during the in vitro generation of DCs drastically affects the DC trafficking efficiency in vivo. With this modification of IL-4 stimulation, we also show that much less cytokine was needed to generate BMDCs with high purity and yield that secrete a high level of cytokines and possess a good capacity to induce proliferation of allogeneic CD4{sup +}T cells, as compared to the conventional method that uses a continuous supplement of GM-CSF and IL-4 throughout cultivation. These results provide us with an important know-how for differentiation of BMDCs from myeloid stem cells, and for use of other immune cells in related medical or stem cell applications.

  6. CCR2 defines in vivo development and homing of IL-23-driven GM-CSF-producing Th17 cells

    PubMed Central

    Kara, Ervin E.; McKenzie, Duncan R.; Bastow, Cameron R.; Gregor, Carly E.; Fenix, Kevin A.; Ogunniyi, Abiodun D.; Paton, James C.; Mack, Matthias; Pombal, Diana R.; Seillet, Cyrill; Dubois, Bénédicte; Liston, Adrian; MacDonald, Kelli P. A.; Belz, Gabrielle T.; Smyth, Mark J.; Hill, Geoffrey R.; Comerford, Iain; McColl, Shaun R.

    2015-01-01

    IL-17-producing helper T (Th17) cells are critical for host defense against extracellular pathogens but also drive numerous autoimmune diseases. Th17 cells that differ in their inflammatory potential have been described including IL-10-producing Th17 cells that are weak inducers of inflammation and highly inflammatory, IL-23-driven, GM-CSF/IFNγ-producing Th17 cells. However, their distinct developmental requirements, functions and trafficking mechanisms in vivo remain poorly understood. Here we identify a temporally regulated IL-23-dependent switch from CCR6 to CCR2 usage by developing Th17 cells that is critical for pathogenic Th17 cell-driven inflammation in experimental autoimmune encephalomyelitis (EAE). This switch defines a unique in vivo cell surface signature (CCR6−CCR2+) of GM-CSF/IFNγ-producing Th17 cells in EAE and experimental persistent extracellular bacterial infection, and in humans. Using this signature, we identify an IL-23/IL-1/IFNγ/TNFα/T-bet/Eomesodermin-driven circuit driving GM-CSF/IFNγ-producing Th17 cell formation in vivo. Thus, our data identify a unique cell surface signature, trafficking mechanism and T-cell intrinsic regulators of GM-CSF/IFNγ-producing Th17 cells. PMID:26511769

  7. Crystallization and preliminary X-ray diffraction analysis of the ternary human GM-CSF receptor complex

    SciTech Connect

    Hansen, Guido; Hercus, Timothy R.; Xu, Yibin; Lopez, Angel F.; Parker, Michael W.; McKinstry, William J.

    2008-08-01

    Crystals of the soluble ternary GM-CSF receptor complex were obtained which diffracted to a resolution of 3.3 Å. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a haemopoietic growth factor that acts though a ternary receptor signalling complex containing specific α (GMRα) and common β (βc) receptor subunits. Human GM-CSF is encoded by the gene csf2, while the genes for GMRα and βc are csf2ra and csf2rb, respectively. Crystals of the ternary ectodomain complex comprising GM-CSF and the soluble extracellular regions of both the GMRα subunit and either βc or its glutamine-substitution mutant N346Q were obtained using the hanging-drop vapour-diffusion method. The best diffracting crystals of the ternary complex were obtained using the N346Q mutation of the βc subunit. These crystals grew using polyethylene glycol 3350 with a high concentration of proline, belonged to space group P6{sub 3}22 and diffracted to 3.3 Å resolution.

  8. NF-κB and BRG1 bind a distal regulatory element in the IL-3/GM-CSF locus

    PubMed Central

    Wurster, Andrea L.; Precht, Patricia; Pazin, Michael J.

    2011-01-01

    We investigated gene regulation at the IL-3/GM-CSF gene cluster. We found BRG1, a SWI/SNF remodeling ATPase, bound a distal element, CNSa. BRG1 binding was strongest in differentiated, stimulated T helper cells, paralleling IL-3 and GM-CSF expression. Depletion of BRG1 reduced IL-3 and GM-CSF transcription. BAF-specific SWI/SNF subunits bound to this locus and regulated IL-3 expression. CNSa was in closed chromatin in fibroblasts, open chromatin in differentiated T helper cells, and moderately open chromatin in naïve (undifferentiated) T helper cells; BRG1 was required for the most open state. CNSa increased transcription of a reporter in an episomal expression system, in a BRG1-dependent manner. The NF-κB subunit RelA/p65 bound CNSa in activated T helper cells. Inhibition of NF-κB blocked BRG1 binding to CNSa, chromatin opening at CNSa, and activation of IL-3 and GM-CSF. Together, these findings suggest CNSa is a distal enhancer that binds BRG1 and NF-κB. PMID:21831442

  9. CCR2 defines in vivo development and homing of IL-23-driven GM-CSF-producing Th17 cells.

    PubMed

    Kara, Ervin E; McKenzie, Duncan R; Bastow, Cameron R; Gregor, Carly E; Fenix, Kevin A; Ogunniyi, Abiodun D; Paton, James C; Mack, Matthias; Pombal, Diana R; Seillet, Cyrill; Dubois, Bénédicte; Liston, Adrian; MacDonald, Kelli P A; Belz, Gabrielle T; Smyth, Mark J; Hill, Geoffrey R; Comerford, Iain; McColl, Shaun R

    2015-01-01

    IL-17-producing helper T (Th17) cells are critical for host defense against extracellular pathogens but also drive numerous autoimmune diseases. Th17 cells that differ in their inflammatory potential have been described including IL-10-producing Th17 cells that are weak inducers of inflammation and highly inflammatory, IL-23-driven, GM-CSF/IFNγ-producing Th17 cells. However, their distinct developmental requirements, functions and trafficking mechanisms in vivo remain poorly understood. Here we identify a temporally regulated IL-23-dependent switch from CCR6 to CCR2 usage by developing Th17 cells that is critical for pathogenic Th17 cell-driven inflammation in experimental autoimmune encephalomyelitis (EAE). This switch defines a unique in vivo cell surface signature (CCR6(-)CCR2(+)) of GM-CSF/IFNγ-producing Th17 cells in EAE and experimental persistent extracellular bacterial infection, and in humans. Using this signature, we identify an IL-23/IL-1/IFNγ/TNFα/T-bet/Eomesodermin-driven circuit driving GM-CSF/IFNγ-producing Th17 cell formation in vivo. Thus, our data identify a unique cell surface signature, trafficking mechanism and T-cell intrinsic regulators of GM-CSF/IFNγ-producing Th17 cells. PMID:26511769

  10. So-Cheong-Ryong-Tang, a herbal medicine, modulates inflammatory cell infiltration and prevents airway remodeling via regulation of interleukin-17 and GM-CSF in allergic asthma in mice

    PubMed Central

    Kim, Hyung-Woo; Lim, Chi-Yeon; Kim, Bu-Yeo; Cho, Su-In

    2014-01-01

    Background: So-Cheong-Ryong-Tang (SCRT), herbal medicine, has been used for the control of respiratory disease in East Asian countries. However, its therapeutic mechanisms, especially an inhibitory effect on inflammatory cell infiltration and airway remodeling in allergic asthma are unclear. Objective: The present study investigated the mechanism of antiasthmatic effects of SCRT in allergic asthma in mice. Materials and Methods: We investigated the influence of SCRT on levels of interleukin-17 (IL-17), granulocyte/macrophage colony-stimulating factor (GM-CSF), IL-4, and interferon gamma (IFN-γ) in bronchoalveolar lavage fluid (BALF), ovalbumin (OVA)-specific IgE in serum, and histopathological changes in allergen-induced asthma. Results: So-Cheong-Ryong-Tang decreased levels of IL-17 and GM-CSF in BALF. IL-4, a Th2-driven cytokine, was also decreased by SCRT, but IFN-γ, a Th1-driven cytokine, was not changed. Levels of OVA-specific IgE in serum were also decreased by SCRT. With SCRT treatment, histopathological findings showed reduced tendency of inflammatory cell infiltration, and prevention from airway remodeling such as epithelial hyperplasia. Conclusion: In this study, we firstly demonstrated that regulation of IL-17 and GM-CSF production may be one of the mechanism contributed to a reduction of inflammatory cell infiltration and prevention from airway remodeling. PMID:25298667

  11. Comparative Antitumor Effect of Preventive versus Therapeutic Vaccines Employing B16 Melanoma Cells Genetically Modified to Express GM-CSF and B7.2 in a Murine Model

    PubMed Central

    Miguel, Antonio; Herrero, María José; Sendra, Luis; Botella, Rafael; Algás, Rosa; Sánchez, Maria; Aliño, Salvador F.

    2012-01-01

    Cancer vaccines have always been a subject of gene therapy research. One of the most successful approaches has been working with genetically modified tumor cells. In this study, we describe our approach to achieving an immune response against a murine melanoma model, employing B16 tumor cells expressing GM-CSF and B7.2. Wild B16 cells were injected in C57BL6 mice to cause the tumor. Irradiated B16 cells transfected with GM-CSF, B7.2, or both, were processed as a preventive and therapeutic vaccination. Tumor volumes were measured and survival curves were obtained. Blood samples were taken from mice, and IgGs of each treatment group were also measured. The regulatory T cells (Treg) of selected groups were quantified using counts of images taken by confocal microscopy. Results: one hundred percent survival was achieved by preventive vaccination with the group of cells transfected with p2F_GM-CSF. Therapeutic vaccination achieved initial inhibition of tumor growth but did not secure overall survival of the animals. Classical Treg cells did not vary among the different groups in this therapeutic vaccination model. PMID:23202306

  12. Randomized phase 1b trial of MOR103, a human antibody to GM-CSF, in multiple sclerosis

    PubMed Central

    Asher, Aliya; Fryze, Waldemar; Kozubski, Wojciech; Wagner, Frank; Aram, Jehan; Tanasescu, Radu; Korolkiewicz, Roman P.; Dirnberger-Hertweck, Maren; Steidl, Stefan; Libretto, Susan E.; Sprenger, Till; Radue, Ernst W.

    2015-01-01

    Objectives: To determine the safety, pharmacokinetics (PK), and immunogenicity of the recombinant human monoclonal antibody MOR103 to granulocyte-macrophage colony-stimulating factor (GM-CSF) in patients with multiple sclerosis (MS) with clinical or MRI activity. Methods: In this 20-week, randomized, double-blind, placebo-controlled phase 1b dose-escalation trial (registration number NCT01517282), adults with relapsing-remitting MS (RRMS) or secondary progressive MS (SPMS) received an IV infusion of placebo (n = 6) or MOR103 0.5 (n = 8), 1.0 (n = 8), or 2.0 (n = 9) mg/kg every 2 weeks for 10 weeks. Patients had to have ≤10 gadolinium (Gd)-enhancing brain lesions on T1-weighted MRI at baseline. The primary objective was safety. Results: Most treatment-emergent adverse events (TEAEs) were mild to moderate in severity. The most frequent was nasopharyngitis. Between-group differences in TEAE numbers were small. There were no TEAE-related trial discontinuations, infusion-related reactions, or deaths. Nine patients experienced MS exacerbations: 3, 5, 1, and 0 patient(s) in the placebo, 0.5, 1.0, and 2.0 mg/kg groups, respectively. A few T1 Gd-enhancing lesions and/or new or enlarging T2 lesions indicative of inflammation were observed in all treatment groups. No clinically significant changes were observed in other clinical assessments or laboratory safety assessments. No anti-MOR103 antibodies were detected. PK evaluations indicated dose linearity with low/no drug accumulation over time. Conclusions: MOR103 was generally well-tolerated in patients with RRMS or SPMS. No evidence of immunogenicity was found. Classification of evidence: This phase 1b study provides Class I evidence that MOR103 has acceptable tolerability in patients with MS. PMID:26185773

  13. Aspergillus vertebral osteomyelitis in a child with a primary monocyte killing defect: response to GM-CSF therapy.

    PubMed

    Abu Jawdeh, L; Haidar, R; Bitar, F; Mroueh, S; Akel, S; Nuwayri-Salti, N; Dbaibo, G S

    2000-07-01

    We report the first case of vertebral aspergillosis in a child with a primary defect in monocyte killing, an extremely rare immunodeficiency The diagnosis of defective monocyte killing was made by an in vitro assay that showed normal killing of Staphylococcus aureus by the patient's neutrophils but impaired killing by his monocytes. Importantly, the extensive granulomatous infection that involved the vertebral column, posterior mediastinum, pleura, and lung was not responsive to aggressive treatment with a combination of liposomal amphotericin B. intralesional amphotericin B. itraconazole, and granulocyte transfusions. Dramatic clinical and radiological improvement was only seen after the addition of granulocyte macrophage-colony stimulating factor (GM-CSF) to his treatment regimen. The use of GM-CSF in the treatment of invasive aspergillosis in immunocompromised patients requires further evaluation. PMID:11041713

  14. Macrophage dectin-1 expression is controlled by leukotriene B4 via a GM-CSF/PU.1 axis

    PubMed Central

    Serezani, C. Henrique; Kane, Steve; Collins, Latima; Morato-Marques, Mariana; Osterholzer, John J.; Peters-Golden, Marc

    2012-01-01

    Pathogen recognition receptors (PRRs) for fungi include dectin-1 and mannose receptor, and these mediate phagocytosis as well as production of cytokines, reactive oxygen species, and the lipid mediator leukotriene B4 (LTB4). The influence of G protein-coupled receptor (GPCR) ligands such as LTB4 on fungal PRR expression is unknown. Here we investigated the role of LTB4 signaling in dectin-1 expression and responsiveness in macrophages. Genetic and pharmacologic approaches showed that LTB4 production and signaling through its high-affinity GPCR BLT1 direct dectin-1-dependent binding, ingestion, and cytokine production both in vitro and in vivo. Impaired responses to fungal glucans correlated with lower dectin-1 expression in macrophages from LT- and BLT1-deficent mice than their WT counterparts. LTB4 increased the expression of the transcription factor responsible for dectin-1 expression, PU.1, and PU.1 siRNA abolished LTB4-enhanced dectin-1 expression. GM-CSF controls PU.1 expression, and this cytokine was decreased in LT-deficient macrophages. Addition of GM-CSF to LT-deficient cells restored expression of dectin-1 and PU.1 as well as dectin-1 responsiveness. In addition, LTB4 effects on dectin-1, PU.1 and cytokine production were blunted in GM-CSF−/− macrophages. Our results identify LTB4-BLT1 signaling as an unrecognized controller of dectin-1 transcription via GM-CSF and PU.1 that is required for fungi protective host responses. PMID:22696442

  15. Crystallization and preliminary X-ray diffraction analysis of the ternary human GM-CSF receptor complex

    SciTech Connect

    Hansen, Guido; Hercus, Timothy R.; Xu, Yibin; Lopez, Angel F.; Parker, Michael W.; McKinstry, William J.

    2008-07-28

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a haemopoietic growth factor that acts through a ternary receptor signalling complex containing specific {alpha} (GMR{alpha}) and common {beta} ({beta}c) receptor subunits. Human GM-CSF is encoded by the gene csf2, while the genes for GMR{alpha} and {beta}c are csf2ra and csf2rb, respectively. Crystals of the ternary ectodomain complex comprising GM-CSF and the soluble extracellular regions of both the GMR{alpha} subunit and either {beta}c or its glutamine-substitution mutant N346Q were obtained using the hanging-drop vapour-diffusion method. The best diffracting crystals of the ternary complex were obtained using the N346Q mutation of the {beta}c subunit. These crystals grew using polyethylene glycol 3350 with a high concentration of proline, belonged to space group P6{sub 3}22 and diffracted to 3.3 {angstrom} resolution.

  16. GM-CSF and IL-2 induce specific cellular immunity and provide protection against Epstein-Barr virus lymphoproliferative disorder.

    PubMed

    Baiocchi, R A; Ward, J S; Carrodeguas, L; Eisenbeis, C F; Peng, R; Roychowdhury, S; Vourganti, S; Sekula, T; O'Brien, M; Moeschberger, M; Caligiuri, M A

    2001-09-01

    Epstein-Barr virus-associated lymphoproliferative disease (EBV-LPD) is a potentially life-threatening complication in immune-deficient patients. We have used the severe combined immune deficient (SCID) mouse engrafted with human leukocytes (hu-PBL-SCID) to evaluate the use of human cytokines in the prevention of EBV-LPD in vivo. Daily low-dose IL-2 therapy can prevent EBV-LPD in the hu-PBL-SCID mouse, but protection is lost if murine natural killer (NK) cells are depleted. Here we demonstrate that combined therapy with human GM-CSF and low-dose IL-2 is capable of preventing EBV-LPD in the hu-PBL-SCID mouse in the absence of murine NK cells. Lymphocyte depletion experiments showed that human NK cells, CD8(+) T cells, and monocytes were each required for the protective effects of GM-CSF and IL-2 combination therapy. This treatment resulted in a marked expansion of human CD3(+)CD8(+) lymphocytes in vivo. Using HLA tetramers complexed with EBV immunodominant peptides, a subset of these lymphocytes was found to be EBV-specific. These data establish that combined GM-CSF and low-dose IL-2 therapy can prevent the immune deficiencies that lead to fatal EBV-LPD in the hu-PBL-SCID mouse depleted of murine NK cells, and they point to a critical role for several human cellular subsets in mediating this protective effect. PMID:11560958

  17. GM-CSF and IL-2 induce specific cellular immunity and provide protection against Epstein-Barr virus lymphoproliferative disorder

    PubMed Central

    Baiocchi, Robert A.; Ward, Jacqueline S.; Carrodeguas, Lester; Eisenbeis, Charles F.; Peng, Ruoqi; Roychowdhury, Sameek; Vourganti, Srinivas; Sekula, Taryn; O’Brien, Maggie; Moeschberger, Melvin; Caligiuri, Michael A.

    2001-01-01

    Epstein-Barr virus–associated lymphoproliferative disease (EBV-LPD) is a potentially life-threatening complication in immune-deficient patients. We have used the severe combined immune deficient (SCID) mouse engrafted with human leukocytes (hu-PBL-SCID) to evaluate the use of human cytokines in the prevention of EBV-LPD in vivo. Daily low-dose IL-2 therapy can prevent EBV-LPD in the hu-PBL-SCID mouse, but protection is lost if murine natural killer (NK) cells are depleted. Here we demonstrate that combined therapy with human GM-CSF and low-dose IL-2 is capable of preventing EBV-LPD in the hu-PBL-SCID mouse in the absence of murine NK cells. Lymphocyte depletion experiments showed that human NK cells, CD8+ T cells, and monocytes were each required for the protective effects of GM-CSF and IL-2 combination therapy. This treatment resulted in a marked expansion of human CD3+CD8+ lymphocytes in vivo. Using HLA tetramers complexed with EBV immunodominant peptides, a subset of these lymphocytes was found to be EBV-specific. These data establish that combined GM-CSF and low-dose IL-2 therapy can prevent the immune deficiencies that lead to fatal EBV-LPD in the hu-PBL-SCID mouse depleted of murine NK cells, and they point to a critical role for several human cellular subsets in mediating this protective effect. PMID:11560958

  18. Tumor-associated GM-CSF overexpression induces immunoinhibitory molecules via STAT3 in myeloid-suppressor cells infiltrating liver metastases.

    PubMed

    Thorn, M; Guha, P; Cunetta, M; Espat, N J; Miller, G; Junghans, R P; Katz, S C

    2016-06-01

    Assumptions that liver immune cells and immunosuppressive pathways are similar to their counterparts in other spaces have led to gaps in our understanding of intrahepatic neoplasm aggressiveness. Myeloid-derived suppressor cells (MDSCs) are potent inhibitors of antitumor immunity and pose a major obstacle to solid tumor treatment. Liver MDSCs (L-MDSCs) associated with liver metastases (LM) are particularly problematic by contributing to intrahepatic immunosuppression that promotes tumor progression. L-MDSCs have been reported to expand in response to granulocyte-macrophages colony-stimulating factor (GM-CSF) and suppress antitumor immunity in LM. To extend these findings, we examined mechanisms of intrahepatic immunosuppression exploited by L-MDSCs. We found that the majority of L-MDSCs co-expressed GM-CSF receptor (GM-CSF-R), indoleamine 2,3-dioxygenase (IDO) and programmed death ligand 1 (PD-L1), while demonstrating high levels of signal transducer and activator of transcription factor 3 (STAT3) activation. GM-CSF-secreting tumor cells induced STAT3 phosphorylation in L-MDSCs in addition to expression of IDO and PD-L1. GM-CSF or GM-CSF-R blockade markedly reduced L-MDSC IDO and PD-L1 expression, implicating tumor-derived GM-CSF in supporting L-MDSC-immunoinhibitory molecule expression. Small-molecule inhibitors of Janus-activated kinase 2 (JAK2) and STAT3 also dramatically diminished IDO and PD-L1 expression in L-MDSCs. We determined that STAT3 exerts transcriptional control over L-MDSC IDO and PD-L1 expression by binding to the IDO1 and PD-L1 promoters. Our data suggest that the GM-CSF/JAK2/STAT3 axis in L-MDSCs drives immunosuppression in a model of LM and blockade of this pathway may enable rescue of intrahepatic antitumor immunity. PMID:27199222

  19. Lung epithelial GM-CSF improves host defense function and epithelial repair in influenza virus pneumonia-a new therapeutic strategy?

    PubMed

    Rösler, Barbara; Herold, Susanne

    2016-12-01

    Influenza viruses (IVs) circulate seasonally and are a common cause of respiratory infections in pediatric and adult patients. Additionally, recurrent pandemics cause massive morbidity and mortality worldwide. Infection may result in rapid progressive viral pneumonia with fatal outcome. Since accurate treatment strategies are still missing, research refocuses attention to lung pathology and cellular crosstalk to develop new therapeutic options.Alveolar epithelial cells (AECs) play an important role in orchestrating the pulmonary antiviral host response. After IV infection they release a cascade of immune mediators, one of which is granulocyte and macrophage colony-stimulating factor (GM-CSF). GM-CSF is known to promote differentiation, activation and mobilization of myeloid cells. In the lung, GM-CSF drives immune functions of alveolar macrophages and dendritic cells (DCs) and also improves epithelial repair processes through direct interaction with AECs. During IV infection, AEC-derived GM-CSF shows a lung-protective effect that is also present after local GM-CSF application. This mini-review provides an overview on GM-CSF-modulated immune responses to IV pneumonia and its therapeutic potential in severe IV pneumonia. PMID:27480877

  20. Chimeric Rabies Virus-Like Particles Containing Membrane-Anchored GM-CSF Enhances the Immune Response against Rabies Virus

    PubMed Central

    Kang, Hongtao; Qi, Yinglin; Wang, Hualei; Zheng, Xuexing; Gao, Yuwei; Li, Nan; Yang, Songtao; Xia, Xianzhu

    2015-01-01

    Rabies remains an important public health threat in most developing countries. To develop a more effective and safe vaccine against rabies, we have constructed a chimeric rabies virus-like particle (VLP), which containing glycoprotein (G) and matrix protein (M) of rabies virus (RABV) Evelyn-Rokitnicki-Abelseth (ERA) strain, and membrane-anchored granulocyte-macrophage colony-stimulating factor (GM-CSF), and it was named of EVLP-G. The immunogenicity and protective efficacy of EVLP-G against RABV were evaluated by intramuscular administration in a mouse model. The EVLP-G was successfully produced in insect cells by coinfection with three recombinant baculoviruses expressing G, M, and GM-CSF, respectively. The membrane-anchored GM-CSF possesses a strong adjuvant activity. More B cells and dendritic cells (DCs) were recruited and/or activated in inguinal lymph nodes in mice immunized with EVLP-G. EVLP-G was found to induce a significantly increased RABV-specific virus-neutralizing antibody and elicit a larger and broader antibody subclass responses compared with the standard rabies VLP (sRVLP, consisting of G and M). The EVLP-G also elicited significantly more IFN-γ- or IL-4-secreting CD4+ and CD8+ T cells than the sRVLP. Moreover, the immune responses induced by EVLP-G protect all vaccinated mice from lethal challenge with RABV. These results suggest that EVLP-G has the potential to be developed as a novel vaccine candidate for the prevention and control of animal rabies. PMID:25768031

  1. Chimeric rabies virus-like particles containing membrane-anchored GM-CSF enhances the immune response against rabies virus.

    PubMed

    Kang, Hongtao; Qi, Yinglin; Wang, Hualei; Zheng, Xuexing; Gao, Yuwei; Li, Nan; Yang, Songtao; Xia, Xianzhu

    2015-03-01

    Rabies remains an important public health threat in most developing countries. To develop a more effective and safe vaccine against rabies, we have constructed a chimeric rabies virus-like particle (VLP), which containing glycoprotein (G) and matrix protein (M) of rabies virus (RABV) Evelyn-Rokitnicki-Abelseth (ERA) strain, and membrane-anchored granulocyte-macrophage colony-stimulating factor (GM-CSF), and it was named of EVLP-G. The immunogenicity and protective efficacy of EVLP-G against RABV were evaluated by intramuscular administration in a mouse model. The EVLP-G was successfully produced in insect cells by coinfection with three recombinant baculoviruses expressing G, M, and GM-CSF, respectively. The membrane-anchored GM-CSF possesses a strong adjuvant activity. More B cells and dendritic cells (DCs) were recruited and/or activated in inguinal lymph nodes in mice immunized with EVLP-G. EVLP-G was found to induce a significantly increased RABV-specific virus-neutralizing antibody and elicit a larger and broader antibody subclass responses compared with the standard rabies VLP (sRVLP, consisting of G and M). The EVLP-G also elicited significantly more IFN-γ- or IL-4-secreting CD4+ and CD8+ T cells than the sRVLP. Moreover, the immune responses induced by EVLP-G protect all vaccinated mice from lethal challenge with RABV. These results suggest that EVLP-G has the potential to be developed as a novel vaccine candidate for the prevention and control of animal rabies. PMID:25768031

  2. PEGylated G-CSF (BBT-015), GM-CSF (BBT-007), and IL-11 (BBT-059) analogs enhance survival and hematopoietic cell recovery in a mouse model of the hematopoietic syndrome of the acute radiation syndrome.

    PubMed

    Plett, Paul Artur; Chua, Hui Lin; Sampson, Carol H; Katz, Barry P; Fam, Christine M; Anderson, Lana J; Cox, George N; Orschell, Christie M

    2014-01-01

    Hematopoietic growth factors (HGF) are recommended therapy for high dose radiation exposure, but unfavorable administration schedules requiring early and repeat dosing limit the logistical ease with which they can be used. In this report, using a previously described murine model of H-ARS, survival efficacy and effect on hematopoietic recovery of unique PEGylated HGF were investigated. The PEGylated-HGFs possess longer half-lives and more potent hematopoietic properties than corresponding non-PEGylated-HGFs. C57BL/6 mice underwent single dose lethal irradiation (7.76-8.72 Gy, Cs, 0.62-1.02 Gy min) and were treated with various dosing regimens of 0.1, 0.3, and 1.0 mg kg of analogs of human PEG-G-CSF, murine PEG-GM-CSF, or human PEG-IL-11. Mice were administered one of the HGF analogs at 24-28 h post irradiation, and in some studies, additional doses given every other day (beginning with the 24-28 h dose) for a total of three or nine doses. Thirty-day (30 d) survival was significantly increased with only one dose of 0.3 mg kg of PEG-G-CSF and PEG-IL-11 or three doses of 0.3 mg kg of PEG-GM-CSF (p ≤ 0.006). Enhanced survival correlated with consistently and significantly enhanced WBC, NE, RBC, and PLT recovery for PEG-G- and PEG-GM-CSF, and enhanced RBC and PLT recovery for PEG-IL-11 (p ≤ 0.05). Longer administration schedules or higher doses did not provide a significant additional survival benefit over the shorter, lower dose, schedules. These data demonstrate the efficacy of BBT's PEG-HGF to provide significantly increased survival with fewer injections and lower drug doses, which may have significant economic and logistical value in the aftermath of a radiation event. PMID:24276546

  3. Cyclic AMP-elevating agents down-regulate the oxidative burst induced by granulocyte-macrophage colony-stimulating factor (GM-CSF) in adherent neutrophils.

    PubMed

    Ottonello, L; Morone, M P; Dapino, P; Dallegri, F

    1995-09-01

    Human neutrophils, plated on fibronectin-precoated wells, were found to release large quantities of superoxide anion (O2-) in response to GM-CSF. O2- production was reduced by prostaglandin E2 (PGE2) and the phosphodiesterase type IV (PDE IV) inhibitor RO 20-1724. Both agents are known to increase intracellular cyclic AMP (cAMP) levels by inducing its production (PGE2) or blocking its catabolism (RO 20-1724). When added in combination, PGE2 and RO 20-1724 had a marked synergistic inhibitory effect, which was reproduced by replacing PGE2 with a direct activator of adenylate cyclase, i.e. forskolin (FK). Moreover, the neutrophil response to GM-CSF was inhibited by a membrane-permeable analogue of cAMP in a dose-dependent manner. As GM-CSF and PGE2 are known to be generated at tissue sites of inflammation, the results suggest the existence of a PGE2-dependent regulatory pathway potentially capable of controlling the neutrophil response to GM-CSF, in turn limiting the risk of local oxidative tissue injury. Moreover, owing to its susceptibility to amplification by RO 20-1724, the PGE2-dependent pathway and in particular PDE-IV may represent a pharmacological target to reduce the generation of histotoxic oxidants by GM-CSF-responding neutrophils. PMID:7664497

  4. Melanoma exosome induction of endothelial cell GM-CSF in pre-metastatic lymph nodes may result in different M1 and M2 macrophage mediated angiogenic processes.

    PubMed

    Hood, Joshua L

    2016-09-01

    Angiogenesis is a key process in the preparation of lymph nodes for melanoma metastasis. Granulocyte macrophage colony stimulating factor (GM-CSF) induces hypoxia inducible factor 1 alpha (HIF-1α) in M1 or HIF-2α in M2 polarized macrophages. HIF-1α promotes neoangiogenesis while HIF-2α facilitates morphogenic normalization of neovasculature. Melanoma exosomes induce GM-CSF expression by endothelial cells in vitro and HIF-1α expression in pre-metastatic lymph nodes in vivo. This suggest a relationship between melanoma exosome induced endothelial GM-CSF and macrophage mediated angiogenesis in lymph nodes. Theoretically, induction of endothelial cell derived GM-CSF by melanoma exosomes mediates different angiogenic functions in pre-metastatic lymph nodes depending on subcapsular sinus (SCS) macrophage polarity. To explore this hypothesis, experiments utilizing melanoma exosomes in a lymph node model are outlined. Despite their opposing immune functions, indirect melanoma exosome stimulation of M1 or M2 SCS macrophages via endothelial derived GM-CSF in lymph nodes may induce different although complementary pro-tumor angiogenic processes. PMID:27515216

  5. Cyclic AMP-elevating agents down-regulate the oxidative burst induced by granulocyte-macrophage colony-stimulating factor (GM-CSF) in adherent neutrophils.

    PubMed Central

    Ottonello, L; Morone, M P; Dapino, P; Dallegri, F

    1995-01-01

    Human neutrophils, plated on fibronectin-precoated wells, were found to release large quantities of superoxide anion (O2-) in response to GM-CSF. O2- production was reduced by prostaglandin E2 (PGE2) and the phosphodiesterase type IV (PDE IV) inhibitor RO 20-1724. Both agents are known to increase intracellular cyclic AMP (cAMP) levels by inducing its production (PGE2) or blocking its catabolism (RO 20-1724). When added in combination, PGE2 and RO 20-1724 had a marked synergistic inhibitory effect, which was reproduced by replacing PGE2 with a direct activator of adenylate cyclase, i.e. forskolin (FK). Moreover, the neutrophil response to GM-CSF was inhibited by a membrane-permeable analogue of cAMP in a dose-dependent manner. As GM-CSF and PGE2 are known to be generated at tissue sites of inflammation, the results suggest the existence of a PGE2-dependent regulatory pathway potentially capable of controlling the neutrophil response to GM-CSF, in turn limiting the risk of local oxidative tissue injury. Moreover, owing to its susceptibility to amplification by RO 20-1724, the PGE2-dependent pathway and in particular PDE-IV may represent a pharmacological target to reduce the generation of histotoxic oxidants by GM-CSF-responding neutrophils. PMID:7664497

  6. Activation of adenosine A(3) receptors potentiates stimulatory effects of IL-3, SCF, and GM-CSF on mouse granulocyte-macrophage hematopoietic progenitor cells.

    PubMed

    Hofer, M; Vacek, A; Pospísil, M; Holá, J; Streitová, D; Znojil, V

    2009-01-01

    Adenosine A(3) receptor agonist N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA) has been tested from the point of view of potentiating the effects of hematopoietic growth factors interleukin-3 (IL-3), stem cell factor (SCF), granulocyte-macrophage colony-stimulating factor (GM-CSF), and granulocyte colony-stimulating factor (G-CSF) on the growth of hematopoietic progenitor cells for granulocytes and macrophages (GM-CFC) in suspension of normal mouse bone marrow cells in vitro. IB-MECA alone induced no GM-CFC growth. Significant elevation of numbers of GM-CFC evoked by the combinations of IB-MECA with IL-3, SCF, or GM-CSF as compared with these growth factors alone has been noted. Combination of IB-MECA with G-CSF did not induce significantly higher numbers of GM-CFC in comparison with G-CSF alone. Joint action of three drugs, namely of IB-MECA + IL-3 + GM-CSF, produced significantly higher numbers of GM-CFC in comparison with the combinations of IB-MECA + IL-3, IB-MECA + GM-CSF, or IL-3 + GM-CSF. These results give evidence of a significant role of selective activation of adenosine A(3) receptors in stimulation of the growth of granulocyte/ macrophage hematopoietic progenitor cells. PMID:18380545

  7. Increase in cytokine production (IL-1 beta, IL-6, TNF-alpha but not IFN-gamma, GM-CSF or LIF) by stimulated whole blood cells in postmenopausal osteoporosis.

    PubMed

    Zheng, S X; Vrindts, Y; Lopez, M; De Groote, D; Zangerle, P F; Collette, J; Franchimont, N; Geenen, V; Albert, A; Reginster, J Y

    1997-01-01

    Postmenopausal osteoporosis is a progressive disorder characterized by a decreased bone mass and increased susceptibility to fractures. Several investigations have suggested that one of the mechanisms through which estrogen prevents bone loss was a modulation on secretion or release of various cytokines that are known to influence bone remodeling, even if some recent data have challenged this hypothesis. However, in established osteoporosis, the possibility that enhanced cytokines activity may account for the progression of this disease remains unclear and controversial. We sought here to determine whether production of IL-1 beta, IL-6, TNF-alpha, IFN-gamma, GM-CSF and LIF, after direct stimulation in whole blood, was different in healthy (n = 30) or osteoporotic postmenopausal women (n = 24) and whether lumbar bone density (1-BMD) correlated with the values of cytokine production observed in these conditions. A significant difference was observed between the osteoporotic and control subjects for IL-1 beta (p < 0.0001), IL-6 (p < 0.001) and TNF-alpha (p = 0.027) productions, the values being higher in the osteoporotic women. No significant differences between the groups were observed for IFN-gamma (p = 0.51), GM-CSF (p = 0.70) or LIF (p = 0.97). In the whole population, statistically significant negative correlations were observed between lumbar BMD and IL-1 beta (r = -0.46) (p < 0.0005), IL-6 (r = -0.50) (p < 0.0001) and TNF-alpha (r = -0.39) (p < 0.005) production while no such correlations were observed for IFN-gamma, GM-CSF or LIF. In conclusion, the study of cytokine production by immune cells cultured in autologous whole blood suggests that in women more than 10 years past the menopause and presenting a decrease in lumbar bone density corresponding to the new WHO definition of "osteoporosis', production of IL-1 beta, IL-6 and TNF-alpha is still increased compared to controls matched for age and ovarian function, while no differences are reported for IFN

  8. GM-CSF Controls Nonlymphoid Tissue Dendritic Cell Homeostasis but Is Dispensable for the Differentiation of Inflammatory Dendritic Cells

    PubMed Central

    Greter, Melanie; Helft, Julie; Chow, Andrew; Hashimoto, Daigo; Mortha, Arthur; Agudo-Cantero, Judith; Bogunovic, Milena; Gautier, Emmanuel L.; Miller, Jennifer; Leboeuf, Marylene; Lu, Geming; Aloman, Costica; Brown, Brian D.; Pollard, Jeffrey W.; Xiong, Huabao; Randolph, Gwendalyn J.; Chipuk, Jerry E.; Frenette, Paul S.; Merad, Miriam

    2012-01-01

    SUMMARY GM-CSF (Csf-2) is a critical cytokine for the in vitro generation of dendritic cells (DCs) and is thought to control the development of inflammatory DCs and resident CD103+ DCs in some tissues. Here we showed that in contrast to the current understanding, Csf-2 receptor acts in the steady state to promote the survival and homeostasis of nonlymphoid tissue-resident CD103+ and CD11b+ DCs. Absence of Csf-2 receptor on lung DCs abrogated the induction of CD8+ T cell immunity after immunization with particulate antigens. In contrast, Csf-2 receptor was dispensable for the differentiation and innate function of inflammatory DCs during acute injuries. Instead, inflammatory DCs required Csf-1 receptor for their development. Thus, Csf-2 is important in vaccine-induced CD8+ T cell immunity through the regulation of nonlymphoid tissue DC homeostasis rather than control of inflammatory DCs in vivo. PMID:22749353

  9. Severe adverse immunologic reaction in a patient with glioblastoma receiving autologous dendritic cell vaccines combined with GM-CSF and dose-intensified temozolomide

    PubMed Central

    Mitchell, Duane A.; Sayour, Elias J.; Reap, Elizabeth; Schmittling, Robert; De Leon, Gabriel; Norberg, Pamela; Desjardins, Annick; Friedman, Allan H.; Friedman, Henry S.; Archer, Gary; Sampson, John H.

    2015-01-01

    Therapeutic vaccination of patients with cancer-targeting tumor-associated antigens is a promising strategy for the specific eradication of invasive malignancies with minimal toxicity to normal tissues. However, as increasingly potent modalities for stimulating immunologic responses are developed for clinical evaluation, the risk of inflammatory and autoimmune toxicities also may be exacerbated. In this report, we describe the induction of a severe (Grade 3) immunologic reaction in a patient with newly-diagnosed glioblastoma (GBM) receiving autologous RNA-pulsed dendritic cell (DC) vaccines admixed with GM-CSF and administered coordinately with cycles of dose-intensified temozolomide (diTMZ). Shortly after the eighth administration of the admixed intradermal vaccine, the patient experienced dizziness, flushing, conjunctivitis, headache, and the outbreak of a disseminated macular/papular rash and bilateral indurated injection sites. Immunologic work-up of patient reactivity revealed sensitization to the GM-CSF component of the vaccine and the production of high levels of anti-GM-CSF autoantibodies during vaccination. Removal of GM-CSF from the DC vaccine allowed continued vaccination without incident. Despite the known lymphodepletive and immunosuppressive effects of TMZ, these observations demonstrate the capacity for the generation of severe immunologic reactivity in patients with GBM receiving DC-based therapy during adjuvant diTMZ. PMID:25387895

  10. PEGylated G-CSF (BBT-015), GM-CSF (BBT-007), and IL-11 (BBT-059) analogs enhance survival and hematopoietic cell recovery in a mouse model of the Hematopoietic Syndrome of the Acute Radiation Syndrome

    PubMed Central

    Plett, P. Artur; Chua, Hui Lin; Sampson, Carol H.; Katz, Barry P.; Fam, Christine M.; Anderson, Lana J.; Cox, George; Orschell, Christie M.

    2013-01-01

    Hematopoietic growth factors (HGF) are recommended therapy for high dose radiation exposure, but unfavorable administration schedules requiring early and repeat dosing limit the logistical ease with which they can be used. In this report, utilizing our previously described murine model of H-ARS, survival efficacy and effect on hematopoietic recovery of unique PEGylated (PEG) HGF developed by Bolder Biotechnology (BBT) were investigated. The PEGylated-HGF possess longer half-lives and more potent hematopoietic properties than corresponding non-PEGylated-HGFs. C57BL/6 mice underwent single dose lethal irradiation (7.76–8.72 Gy, 137Cs, 0.62–1.02 Gy min−1) and were treated with various dosing regimens of 0.1, 0.3 and 1.0 mg kg−1 of analogs of humanPEG-G-CSF, murinePEG-GM-CSF, or humanPEG-IL-11. Mice were administered one of the HGF analogs at 24–28hr post irradiation, and, in some studies, additional doses given every other day (beginning with the 24–28hr dose) for a total of 3 or 9 doses. 30d survival was significantly increased with only one dose of 0.3mg kg−1 of PEG-G-CSF and PEG-IL-11, or three doses of 0.3mg kg−1 of PEG-GM-CSF (p≤0.006). Enhanced survival correlated with consistently and significantly enhanced WBC, NE, RBC, and PLT recovery for PEG-G- and PEG-GM-CSF, and enhanced RBC and PLT recovery for PEG-IL-11 (p≤0.05). Longer administration schedules or higher doses did not provide a significant additional survival benefit over the shorter, lower dose, schedules. These data demonstrate the efficacy of BBT’s PEG-HGF to provide significantly increased survival with fewer injections and lower drug doses, which may have significant economic and logistical value in the aftermath of a radiation event. PMID:24276546

  11. A DNA vaccine encoding mutated HPV58 mE6E7-Fc-GPI fusion antigen and GM-CSF and B7.1

    PubMed Central

    Wang, He; Yu, Jiyun; Li, Li

    2015-01-01

    Background Persistent infection with high-risk human papillomavirus (HPV) is a predominant cause of cervical cancer, and HPV58 is the third most common virus detected in the patients with cervical cancer in Asia. E6 and E7 are the viral oncogenes which are constitutively expressed in HPV-associated tumor cells and can be used as target antigens for related immunotherapy. In this study, we modified the HPV58 E6 and E7 oncogenes to eliminate their oncogenic potential and constructed a recombinant DNA vaccine that coexpresses the sig-HPV58 mE6E7-Fc-GPI fusion antigen in addition to granulocyte-macrophage colony-stimulating factor (GM-CSF) and B7.1 as molecular adjuvants (PVAX1-HPV58 mE6E7FcGB) for the treatment of HPV58 (+) cancer. Methods PVAX1-HPV58 mE6E7FcGB recombinant DNA vaccine was constructed to express a fusion protein containing a signal peptide, a modified HPV58 mE6E7 gene, and human IgG Fc and glycosylphosphatidylinositol (GPI)-anchoring sequences using the modified DNA vaccine vector PVAX1-IRES-GM/B7.1 that coexpresses GM-CSF, and B7.1. C57BL/6 mice were challenged by HPV58 E6E7-expressing B16-HPV58 E6E7 cells, followed by immunization by PVAX1-HPV58 mE6E7FcGB vaccine on days 7, 14, 21 after tumor challenge. The cellular immune responses in immunized mice were assessed by measuring IFN-γ production in splenocytes upon stimulation by HPV58 E6E7-GST protein and the lysis of B16-HPV58 E6E7 target cells by splenocytes after restimulation with HPV58 E6E7-GST protein. The antitumor efficacy was evaluated by monitoring the growth of the tumor. Results PVAX1-HPV58 mE6E7FcGB elicited varying levels of IFN-lsgdB58onn T-cell immune responses and lysis of target cell in mice in response to the recombinant antigen HPV58 E6E7-GST. Furthermore, the vaccine also induced antitumor responses in the HPV58 (+) B16-HPV58 E6E7 tumor challenge model as evidenced by delayed tumor development. Conclusion The recombinant DNA vaccine PVAX1-HPV58 mE6E7FcGB efficiently generates

  12. Synergistic anti-tumor efficacy of immunogenic adenovirus ONCOS-102 (Ad5/3-D24-GM-CSF) and standard of care chemotherapy in preclinical mesothelioma model.

    PubMed

    Kuryk, Lukasz; Haavisto, Elina; Garofalo, Mariangela; Capasso, Cristian; Hirvinen, Mari; Pesonen, Sari; Ranki, Tuuli; Vassilev, Lotta; Cerullo, Vincenzo

    2016-10-15

    Malignant mesothelioma (MM) is a rare cancer type caused mainly by asbestos exposure. The median overall survival time of a mesothelioma cancer patient is less than 1-year from diagnosis. Currently there are no curative treatment modalities for malignant mesothelioma, however treatments such as surgery, chemotherapy and radiotherapy can help to improve patient prognosis and increase life expectancy. Pemetrexed-Cisplatin is the only standard of care (SoC) chemotherapy for malignant mesothelioma, but the median PFS/OS (progression-free survival/overall survival) from the initiation of treatment is only up to 12 months. Therefore, new treatment strategies against malignant mesothelioma are in high demand. ONCOS-102 is a dual targeting, chimeric oncolytic adenovirus, coding for human GM-CSF. The safety and immune activating properties of ONCOS-102 have already been assessed in phase 1 study (NCT01598129). In this preclinical study, we evaluated the antineoplastic activity of combination treatment with SoC chemotherapy (Pemetrexed, Cisplatin, Carboplatin) and ONCOS-102 in xenograft BALB/c model of human malignant mesothelioma. We demonstrated that ONCOS-102 is able to induce immunogenic cell death of human mesothelioma cell lines in vitro and showed anti-tumor activity in the treatment of refractory H226 malignant pleural mesothelioma (MPM) xenograft model. While chemotherapy alone showed no anti-tumor activity in the mesothelioma mouse model, ONCOS-102 was able to slow down tumor growth. Interestingly, a synergistic anti-tumor effect was seen when ONCOS-102 was combined with chemotherapy regimens. These findings give a rationale for the clinical testing of ONCOS-102 in combination with first-line chemotherapy in patients suffering from malignant mesothelioma. PMID:27287512

  13. Treatment of melanoma with a serotype 5/3 chimeric oncolytic adenovirus coding for GM-CSF: Results in vitro, in rodents and in humans.

    PubMed

    Bramante, Simona; Kaufmann, Johanna K; Veckman, Ville; Liikanen, Ilkka; Nettelbeck, Dirk M; Hemminki, Otto; Vassilev, Lotta; Cerullo, Vincenzo; Oksanen, Minna; Heiskanen, Raita; Joensuu, Timo; Kanerva, Anna; Pesonen, Sari; Matikainen, Sampsa; Vähä-Koskela, Markus; Koski, Anniina; Hemminki, Akseli

    2015-10-01

    Metastatic melanoma is refractory to irradiation and chemotherapy, but amenable to immunological approaches such as immune-checkpoint-inhibiting antibodies or adoptive cell therapies. Oncolytic virus replication is an immunogenic phenomenon, and viruses can be armed with immunostimulatory molecules. Therefore, oncolytic immuno-virotherapy of malignant melanoma is an appealing approach, which was recently validated by a positive phase 3 trial. We investigated the potency of oncolytic adenovirus Ad5/3-D24-GMCSF on a panel of melanoma cell lines and animal models, and summarized the melanoma-specific human data from the Advanced Therapy Access Program (ATAP). The virus effectively eradicated human melanoma cells in vitro and subcutaneous SK-MEL-28 melanoma xenografts in nude mice when combined with low-dose cyclophosphamide. Furthermore, virally-expressed granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulated the differentiation of human monocytes into macrophages. In contrast to human cells, RPMI 1846 hamster melanoma cells exhibited no response to oncolytic viruses and the chimeric 5/3 fiber failed to increase the efficacy of transduction, suggesting limited utility of the hamster model in the context of viruses with this capsid. In ATAP, treatments appeared safe and well-tolerated. Four out of nine melanoma patients treated were evaluable for possible therapy benefit with modified RECIST criteria: one patient had minor response, two had stable disease, and one had progressive disease. Two patients were alive at 559 and 2,149 days after treatment. Ad5/3-D24-GMCSF showed promising efficacy in preclinical studies and possible antitumor activity in melanoma patients refractory to other forms of therapy. This data supports continuing the clinical development of oncolytic adenoviruses for treatment of malignant melanoma. PMID:25821063

  14. Local gene therapy of solid tumors with GM-CSF and B7-1 eradicates both treated and distal tumors.

    PubMed

    Collins, C G; Tangney, M; Larkin, J O; Casey, G; Whelan, M C; Cashman, J; Murphy, J; Soden, D; Vejda, S; McKenna, S; Kiely, B; Collins, J K; Barrett, J; Aarons, S; O'Sullivan, G C

    2006-12-01

    Gene therapy-induced expression of immunostimulatory molecules at tumor cell level may evoke antitumor immune mechanisms by recruiting and enhancing viability of antigen-processing cells and specific tumoricidal lymphocytes. The antitumor efficacy of a plasmid, coding for granulocyte-macrophage colony-stimulating factor (GM-CSF) and the B7-1 costimulatory immune molecule, delivered into growing solid tumors by electroporation was investigated. Murine fibrosarcomas (JBS) growing in Balb/C mice (GM-CSF/B7-1-expressing plasmid. Complete tumor regression occurred in greater than 60% of treated animals. This response was systemic, durable and tumor specific, with all responding animals resistant to repeat tumor challenge. Using a liver metastatic model, effective cure of distal metastases was achieved following treatment of the primary subcutaneous tumor. This treatment strategy could be applicable in the clinical setting for effective elimination of both primary tumors and associated metastatic disease. PMID:16874363

  15. Scedosporium apiospermum infections and the role of combination antifungal therapy and GM-CSF: A case report and review of the literature

    PubMed Central

    Goldman, Chloe; Akiyama, Mathew J.; Torres, Julian; Louie, Eddie; Meehan, Shane A.

    2016-01-01

    Scedosporium apiospermum, a ubiquitous environmental mold, is increasingly reported as causing invasive fungal disease in immunocompromised hosts. It poses a therapeutic challenge due to its intrinsic resistance to traditional antifungals and ability to recur despite demonstrating susceptibility. We present an immunocompromised patient with a cutaneous S. apiospermum infection that disseminated despite treatment with voriconazole, the drug of choice. Adding echinocandins and GM-CSF provided partial recovery, indicating a potential synergistic role of dual-antifungal and immunotherapeutic agents. PMID:27182483

  16. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage.

    PubMed

    Ushach, Irina; Zlotnik, Albert

    2016-09-01

    M-CSF and GM-CSF are 2 important cytokines that regulate macrophage numbers and function. Here, we review their known effects on cells of the macrophage-monocyte lineage. Important clues to their function come from their expression patterns. M-CSF exhibits a mostly homeostatic expression pattern, whereas GM-CSF is a product of cells activated during inflammatory or pathologic conditions. Accordingly, M-CSF regulates the numbers of various tissue macrophage and monocyte populations without altering their "activation" status. Conversely, GM-CSF induces activation of monocytes/macrophages and also mediates differentiation to other states that participate in immune responses [i.e., dendritic cells (DCs)]. Further insights into their function have come from analyses of mice deficient in either cytokine. M-CSF signals through its receptor (CSF-1R). Interestingly, mice deficient in CSF-1R expression exhibit a more significant phenotype than mice deficient in M-CSF. This observation was explained by the discovery of a novel cytokine (IL-34) that represents a second ligand of CSF-1R. Information about the function of these ligands/receptor system is still developing, but its complexity is intriguing and strongly suggests that more interesting biology remains to be elucidated. Based on our current knowledge, several therapeutic molecules targeting either the M-CSF or the GM-CSF pathways have been developed and are currently being tested in clinical trials targeting either autoimmune diseases or cancer. It is intriguing to consider how evolution has directed these pathways to develop; their complexity likely mirrors the multiple functions in which cells of the monocyte/macrophage system are involved. PMID:27354413

  17. Scedosporium apiospermum infections and the role of combination antifungal therapy and GM-CSF: A case report and review of the literature.

    PubMed

    Goldman, Chloe; Akiyama, Mathew J; Torres, Julian; Louie, Eddie; Meehan, Shane A

    2016-03-01

    Scedosporium apiospermum, a ubiquitous environmental mold, is increasingly reported as causing invasive fungal disease in immunocompromised hosts. It poses a therapeutic challenge due to its intrinsic resistance to traditional antifungals and ability to recur despite demonstrating susceptibility. We present an immunocompromised patient with a cutaneous S. apiospermum infection that disseminated despite treatment with voriconazole, the drug of choice. Adding echinocandins and GM-CSF provided partial recovery, indicating a potential synergistic role of dual-antifungal and immunotherapeutic agents. PMID:27182483

  18. A human cytokine/single-chain antibody fusion protein for simultaneous delivery of GM-CSF and IL-2 to Ep-CAM overexpressing tumor cells.

    PubMed

    Schanzer, Juergen M; Baeuerle, Patrick A; Dreier, Torsten; Kufer, Peter

    2006-01-01

    Pro-inflammatory cytokines regulate the growth, differentiation, and activation of immune cells and can play a role in antitumor responses. GM-CSF and IL-2 induce tumor rejection in animal models when expressed by tumor cells, and IL-2 is used for the treatment of melanoma and renal cell cancer. However, high doses of GM-CSF and IL-2 are associated with severe side effects in cancer patients. We generated a dual cytokine fusion protein for simultaneous targeted delivery of human GM-CSF and IL-2 to human tumors. The fusion protein is based on a heterodimeric core structure formed by human CH1 and C kappa domains (heterominibody) with C-terminally fused human cytokines and N-terminally fused human single-chain Ab fragments (scFv) specific for the tumor-associated surface antigen epithelial cell adhesion molecule (Ep-CAM). The dual cytokine heterominibody (DCH) was well expressed and secreted by CHO cells, preserved the specific proliferative activities of the two cytokines, and showed Ep-CAM-specific binding to tumor cells. DCH induced potent tumor cell lysis in vitro by two distinct mechanisms. One was activating PBMCs to lyse tumor cells, which was superior to cytotoxicity induced by equimolar ratios of free recombinant human IL-2 and GM-CSF. The other mechanism was redirected lysis, as seen with isolated human T cells, which was solely dependent on the IL-2 fusion part. The therapeutic principle of dual cytokine targeting may warrant in vivo testing of murine-specific analogues in appropriate mouse models and further preclinical development of the less immunogenic, human cytokine- and human Ep-CAM-specific DCH molecule described here. PMID:16483188

  19. Serotype chimeric oncolytic adenovirus coding for GM-CSF for treatment of sarcoma in rodents and humans.

    PubMed

    Bramante, Simona; Koski, Anniina; Kipar, Anja; Diaconu, Iulia; Liikanen, Ilkka; Hemminki, Otto; Vassilev, Lotta; Parviainen, Suvi; Cerullo, Vincenzo; Pesonen, Saila K; Oksanen, Minna; Heiskanen, Raita; Rouvinen-Lagerström, Noora; Merisalo-Soikkeli, Maiju; Hakonen, Tiina; Joensuu, Timo; Kanerva, Anna; Pesonen, Sari; Hemminki, Akseli

    2014-08-01

    Sarcomas are a relatively rare cancer, but often incurable at the late metastatic stage. Oncolytic immunotherapy has gained attention over the past years, and a wide range of oncolytic viruses have been delivered via intratumoral injection with positive safety and promising efficacy data. Here, we report preclinical and clinical results from treatment of sarcoma with oncolytic adenovirus Ad5/3-D24-GMCSF (CGTG-102). Ad5/3-D24-GMCSF is a serotype chimeric oncolytic adenovirus coding for human granulocyte-macrophage colony-stimulating factor (GM-CSF). The efficacy of Ad5/3-D24-GMCSF was evaluated on a panel of soft-tissue sarcoma (STS) cell lines and in two animal models. Sarcoma specific human data were also collected from the Advanced Therapy Access Program (ATAP), in preparation for further clinical development. Efficacy was seen in both in vitro and in vivo STS models. Fifteen patients with treatment-refractory STS (13/15) or primary bone sarcoma (2/15) were treated in ATAP, and treatments appeared safe and well-tolerated. A total of 12 radiological RECIST response evaluations were performed, and two cases of minor response, six cases of stable disease and four cases of progressive disease were detected in patients progressing prior to virus treatment. Overall, the median survival time post treatment was 170 days. One patient is still alive at 1,459 days post virus treatment. In summary, Ad5/3-D24-GMCSF appears promising for the treatment of advanced STS; a clinical trial for treatment of refractory injectable solid tumors including STS is ongoing. PMID:24374597

  20. TNF¿ and GM-CSF-induced activation of the CAEV promoter is independent of AP-1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Caprine arthritis encephalitis virus transcription is under the control of the viral promoter within the long terminal repeat. Previous studies with the closely related maedi visna lentivirus have indicated that viral transcription is dependent upon the AP-1 transcription factor. Other studies hav...

  1. Effects of recombinant granulocyte colony-stimulating factor (rG-CSF) and recombinant granulocyte-macrophage colony-stimulating factor (rGM-CSF) on acute radiation hematopoietic injury in mice

    SciTech Connect

    Tanikawa, S.; Nakao, I.; Tsuneoka, K.; Nara, N. )

    1989-09-01

    We have attempted to evaluate in vivo effects of granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) on acute radiation hematopoietic injury in mice. BDF1 mice, irradiated with 7.5-Gy x-rays, were injected i.p. twice daily for 10 days with 10(5) U recombinant human G-CSF, 3.75 x 10(5) U recombinant murine GM-CSF, or a combination of both. G-CSF significantly enhanced the recovery of not only peripheral leukocytes but also platelets and hematocrit on days 14 and 21 after irradiation. GM-CSF significantly enhanced the recovery of platelets on day 14 and peripheral leukocytes on day 21. G-CSF markedly enhanced the recovery of spleen colony-forming units (CFU-S), colony-forming units in culture (CFU-C), erythroid burst-forming units (BFU-E), and megakaryocyte colony-forming units (CFU-Meg) both in bone marrow and in the spleen. GM-CSF significantly enhanced the recovery of CFU-Meg in bone marrow on day 14. We found synergistic effects between G-CSF and GM-CSF on CFU-S, CFU-C, and CFU-Meg in the spleen on day 14, although we found antagonistic effects between G-CSF and GM-CSF on CFU-S and CFU-C in bone marrow on day 7, and on platelet counts on day 7. These results indicate that the administration of recombinant G-CSF and GM-CSF may be useful in accelerating hematopoietic recovery in patients with acute radiation hematopoietic injuries.

  2. The immunological and clinical effects of mutated ras peptide vaccine in combination with IL-2, GM-CSF, or both in patients with solid tumors

    PubMed Central

    2014-01-01

    Background Mutant Ras oncogenes produce proteins that are unique to cancer cells and represent attractive targets for vaccine therapy. We have shown previously that vaccinating cancer patients with mutant ras peptides is feasible and capable of inducing a specific immune response against the relevant mutant proteins. Here, we tested the mutant ras peptide vaccine administered in combination with low dose interleukin-2 (IL-2) or/and granulocyte-macrophage colony-stimulating factor (GM-CSF) in order to enhance the vaccine immune response. Methods 5000μg of the corresponding mutant ras peptide was given subcutaneously (SQ) along with IL-2 (Arm A), GM-CSF (Arm B) or both (Arm C). IL-2 was given SQ at 6.0 million IU/m2/day starting at day 5, 5 days/week for 2 weeks. GM-CSF was given SQ in a dose of 100μg/day one day prior to each ras peptide vaccination for 4 days. Vaccines were repeated every 5 weeks on arm A and C, and every 4 weeks on arm B, for a maximum of 15 cycles or until disease progression. Results We treated 53 advanced cancer patients (38 with colorectal, 11 with pancreatic, 1 with common bile duct and 3 with lung) on 3 different arms (16 on arm A, 18 on arm B, and 19 on arm C). The median progression free survival (PFS) and overall survival (OS) was 3.6 and 16.9 months, respectively, for all patients evaluable for clinical response (n = 48). There was no difference in PFS or OS between the three arms (P = 0.73 and 0.99, respectively). Most adverse events were grade 1-2 toxicities and resolved spontaneously. The vaccine induced an immune response to the relevant ras peptide in a total of 20 out of 37 evaluable patients (54%) by ELISPOT, proliferative assay, or both. While 92.3% of patients on arm B had a positive immune response, only 31% of patients on arm A and 36% of patients on arm C had positive immune responses (P = 0.003, Fisher’s exact test). Conclusions The reported data showed that IL-2 might have a negative effect on the specific

  3. In vivo electroporation of plasmids encoding GM-CSF or interleukin-2 into existing B16 melanomas combined with electrochemotherapy induces long-term antitumour immunity.

    PubMed

    Heller, L; Pottinger, C; Jaroszeski, M J; Gilbert, R; Heller, R

    2000-12-01

    When cancer cells, including melanoma cells, are genetically altered to secrete cytokines, irradiated and injected into subjects, long-term antitumour immunity is induced. Optimally, existing melanomas induced to produce cytokines in vivo could stimulate this same immune response. Although in vivo electroporation enhances plasmid expression, electroporation of plasmids encoding granulocyte-monocyte colony stimulating factor (GM-CSF) and interleukin-2 (IL2) into B16 mouse melanomas did not significantly alter tumour growth at the concentration tested. Electrochemotherapy, which causes short-term, complete regressions of treated tumour but no resistance to challenge, was combined with plasmid delivery. The combination treatment resulted in the induction of long-term immunity to recurrence and resistance to challenge in up to 25% of mice. PMID:11198480

  4. Influenza induces IL-8 and GM-CSF secretion by human alveolar epithelial cells through HGF/c-Met and TGF-α/EGFR signaling

    PubMed Central

    Correll, Kelly; Zemans, Rachel L.; Leslie, Christina C.; Murphy, Robert C.; Mason, Robert J.

    2015-01-01

    The most severe complication of influenza is viral pneumonia, which can lead to the acute respiratory distress syndrome. Alveolar epithelial cells (AECs) are the first cells that influenza virus encounters upon entering the alveolus. Infected epithelial cells produce cytokines that attract and activate neutrophils and macrophages, which in turn induce damage to the epithelial-endothelial barrier. Hepatocyte growth factor (HGF)/c-Met and transforming growth factor-α (TGF-α)/epidermal growth factor receptor (EGFR) are well known to regulate repair of damaged alveolar epithelium by stimulating cell migration and proliferation. Recently, TGF-α/EGFR signaling has also been shown to regulate innate immune responses in bronchial epithelial cells. However, little is known about whether HGF/c-Met signaling alters the innate immune responses and whether the innate immune responses in AECs are regulated by HGF/c-Met and TGF-α/EGFR. We hypothesized that HGF/c-Met and TGF-α/EGFR would regulate innate immune responses to influenza A virus infection in human AECs. We found that recombinant human HGF (rhHGF) and rhTGF-α stimulated primary human AECs to secrete IL-8 and granulocyte macrophage colony-stimulating factor (GM-CSF) strongly and IL-6 and monocyte chemotactic protein 1 moderately. Influenza infection stimulated the secretion of IL-8 and GM-CSF by AECs plated on rat-tail collagen through EGFR activation likely by TGF-α released from AECs and through c-Met activated by HGF secreted from lung fibroblasts. HGF secretion by fibroblasts was stimulated by AEC production of prostaglandin E2 during influenza infection. We conclude that HGF/c-Met and TGF-α/EGFR signaling enhances the innate immune responses by human AECs during influenza infections. PMID:26033355

  5. Influenza induces IL-8 and GM-CSF secretion by human alveolar epithelial cells through HGF/c-Met and TGF-α/EGFR signaling.

    PubMed

    Ito, Yoko; Correll, Kelly; Zemans, Rachel L; Leslie, Christina C; Murphy, Robert C; Mason, Robert J

    2015-06-01

    The most severe complication of influenza is viral pneumonia, which can lead to the acute respiratory distress syndrome. Alveolar epithelial cells (AECs) are the first cells that influenza virus encounters upon entering the alveolus. Infected epithelial cells produce cytokines that attract and activate neutrophils and macrophages, which in turn induce damage to the epithelial-endothelial barrier. Hepatocyte growth factor (HGF)/c-Met and transforming growth factor-α (TGF-α)/epidermal growth factor receptor (EGFR) are well known to regulate repair of damaged alveolar epithelium by stimulating cell migration and proliferation. Recently, TGF-α/EGFR signaling has also been shown to regulate innate immune responses in bronchial epithelial cells. However, little is known about whether HGF/c-Met signaling alters the innate immune responses and whether the innate immune responses in AECs are regulated by HGF/c-Met and TGF-α/EGFR. We hypothesized that HGF/c-Met and TGF-α/EGFR would regulate innate immune responses to influenza A virus infection in human AECs. We found that recombinant human HGF (rhHGF) and rhTGF-α stimulated primary human AECs to secrete IL-8 and granulocyte macrophage colony-stimulating factor (GM-CSF) strongly and IL-6 and monocyte chemotactic protein 1 moderately. Influenza infection stimulated the secretion of IL-8 and GM-CSF by AECs plated on rat-tail collagen through EGFR activation likely by TGF-α released from AECs and through c-Met activated by HGF secreted from lung fibroblasts. HGF secretion by fibroblasts was stimulated by AEC production of prostaglandin E2 during influenza infection. We conclude that HGF/c-Met and TGF-α/EGFR signaling enhances the innate immune responses by human AECs during influenza infections. PMID:26033355

  6. 3,3'-Diindolylmethane Inhibits Flt3L/GM-CSF-induced-bone Marrow-derived CD103+ Dendritic Cell Differentiation Regulating Phosphorylation of STAT3 and STAT5

    PubMed Central

    Choi, Ah-Jeong; Kim, Soo-Ji; Jeong, So-Yeon

    2015-01-01

    The intestinal immune system maintains oral tolerance to harmless antigens or nutrients. One mechanism of oral tolerance is mediated by regulatory T cell (Treg)s, of which differentiation is regulated by a subset of dendritic cell (DC)s, primarily CD103+ DCs. The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, plays an important role in regulating immunity. The intestines are exposed to various AhR ligands, including endogenous metabolites and phytochemicals. It was previously reported that AhR activation induced tolerogenic DCs in mice or in cultures of bone marrow-derived DCs. However, given the variety of tolerogenic DCs, which type of tolerogenic DCs is regulated by AhR remains unknown. In this study, we found that AhR ligand 3,3'-diindolylmethane (DIM) inhibited the development of CD103+ DCs from mouse bone marrow cells stimulated with Flt3L and GM-CSF. DIM interfered with phosphorylation of STAT3 and STAT5 inhibiting the expression of genes, including Id2, E2-2, IDO-1, and Aldh1a2, which are associated with DC differentiation and functions. Finally, DIM suppressed the ability of CD103+ DCs to induce Foxp3+ Tregs. PMID:26770182

  7. The inverse agonist DG172 triggers a PPARβ/δ-independent myeloid lineage shift and promotes GM-CSF/IL-4-induced dendritic cell differentiation.

    PubMed

    Lieber, Sonja; Scheer, Frithjof; Finkernagel, Florian; Meissner, Wolfgang; Giehl, Gavin; Brendel, Cornelia; Diederich, Wibke E; Müller-Brüsselbach, Sabine; Müller, Rolf

    2015-02-01

    The stilbene derivative (Z)-2-(2-bromophenyl)-3-{[4-(1-methylpiperazine)amino]phenyl}acrylonitrile (DG172) was developed as a highly selective inhibitory peroxisome proliferator-activated receptor (PPAR)β/δ ligand. Here, we describe a novel PPARβ/δ-independent, yet highly specific, effect of DG172 on the differentiation of bone marrow cells (BMCs). DG172 strongly augmented granulocyte-macrophage-colony-stimulating factor (GM-CSF)-induced differentiation of primary BMCs from Ppard null mice into two specific populations, characterized as mature (CD11c(hi)MHCII(hi)) and immature (CD11c(hi)MHCII(lo)) dendritic cells (DCs). IL-4 synergized with DG172 to shift the differentiation from MHCII(lo) cells to mature DCs in vitro. The promotion of DC differentiation occurred at the expense of differentiation to granulocytic Gr1(+)Ly6B(+) cells. In agreement with these findings, transcriptome analyses showed a strong DG172-mediated repression of genes encoding neutrophilic markers in both differentiating wild-type and Ppard null cells, while macrophage/DC marker genes were up-regulated. DG172 also inhibited the expression of transcription factors driving granulocytic differentiation (Cebpe, Gfi1, and Klf5), and increased the levels of transcription factors promoting macrophage/DC differentiation (Irf4, Irf8, Spib, and Spic). DG172 exerted these effects only at an early stage of BMC differentiation induced by GM-CSF, did not affect macrophage-colony-stimulating factor-triggered differentiation to macrophages and had no detectable PPARβ/δ-independent effect on other cell types tested. Structure-function analyses demonstrated that the 4-methylpiperazine moiety in DG172 is required for its effect on DC differentiation, but is dispensable for PPARβ/δ binding. Based on these data we developed a new compound, (Z)-2-(4-chlorophenyl)-3-[4-(4-methylpiperazine-1-yl)phenyl]acrylonitrile (DG228), which enhances DC differentiation in the absence of significant PPARβ/δ binding. PMID

  8. Key regulators of sensitization and tolerance: GM-CSF, IL-10, TGF-β and the Notch signaling pathway in adjuvant-free experimental models of respiratory allergy.

    PubMed

    Guibas, George V; Makris, Michael; Papadopoulos, Nikolaos G

    2013-06-01

    Conventional experimental models of respiratory allergy have contributed greatly to our current knowledge of the pathophysiology of allergic airway diseases; nevertheless, they are contingent upon unnatural sensitization techniques, entailing adjuvant-aided intraperitoneal (i.p) administration of antigen. Currently, there is a growing appreciation of the impact of tolerance mechanics in the pathophysiology of respiratory allergy. Thus, inasmuch as adjuvants exert a robust tolerance-modifying action, a transition from the conventional method of experimental sensitization to one that is more naturally and clinically relevant becomes important. We therefore opted to survey the literature and identify agents that could interfere with sensitization mechanics following non-adjuvant-aided airway exposure of laboratory rodents to aeroallergen. GM-CSF was found to exert robust Th2-polarizing action in this setting. Conversely, IL-10 fulfilled an important, albeit not so clear-cut, tolerance-favoring role; TGF-β was also identified as a likely instigator of tolerogenesis. The role of Notch signaling in the sensitization versus tolerance dilemma appeared to be important but diverse. Collectively, these factors appeared to profoundly and diversely modulate the balance between tolerance and sensitization in naturally relevant experimental models of allergic airway disease. PMID:23768176

  9. Acacia ferruginea inhibits tumor progression by regulating inflammatory mediators-(TNF-a, iNOS, COX-2, IL-1β, IL-6, IFN-γ, IL-2, GM-CSF) and pro-angiogenic growth factor- VEGF.

    PubMed

    Sakthivel, Kunnathur Murugesan; Guruvayoorappan, Chandrasekaran

    2013-01-01

    The aim of the present investigation was to evaluate the effect of A ferruginea extract on Dalton's lymphoma ascites (DLA) induced tumours in BALB/c mice. Experimental animals received A ferruginea extract (10 mg/ kg.b.wt) intraperitoneally for 14 consecutive days after DLA tumor challenge. Treatment with extract significantly increased the life span, total white blood cell (WBC) count and haemoglobin (Hb) content and decreased the level of serum aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), gamma glutamyl transferase (γ-GT) and nitric oxide (NO) in DLA bearing ascites tumor models. In addition, administration of extract significantly decreased the tumour volume and body weight in a DLA bearing solid tumor model. The levels of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and granulocyte monocyte-colony stimulating factor (GM-CSF), as well as pro-angiogenic growth factors such as vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS) were elevated in solid tumour controls, but significantly reduced by A ferruginea administration. On the other hand, the extract stimulated the production of interleukin-2 (IL-2) and interferon-gamma (IFN-γ) in animals with DLA induced solid tumours. Increase in CD4+ T-cell population suggested strong immunostimulant activity for this extract. GC/MS and LC/MS analysis showed quinone, quinoline, imidazolidine, pyrrolidine, cyclopentenone, thiazole, pyrazole, catechin and coumarin derivatives as major compounds present in the A ferruginea methanolic extract. Thus, the outcome of the present study suggests that A ferruginea extract has immunomodulatory and tumor inhibitory activities and has the potential to be developed as a natural anticancer agent. PMID:23886206

  10. PyNTTTTGT and CpG immunostimulatory oligonucleotides: effect on granulocyte/monocyte colony-stimulating factor (GM-CSF) secretion by human CD56+ (NK and NKT) cells.

    PubMed

    Rodriguez, Juan M; Marchicio, José; López, Mariela; Ziblat, Andrea; Elias, Fernanda; Fló, Juan; López, Ricardo A; Horn, David; Zorzopulos, Jorge; Montaner, Alejandro D

    2015-01-01

    CD56+ cells have been recognized as being involved in bridging the innate and acquired immune systems. Herein, we assessed the effect of two major classes of immunostimulatory oligonucleotides (ODNs), PyNTTTTGT and CpG, on CD56+ cells. Incubation of human peripheral blood mononuclear cells (hPBMC) with some of these ODNs led to secretion of significant amounts of interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α) and granulocyte/monocyte colony-stimulating factor (GM-CSF), but only if interleukin 2 (IL2) was present. IMT504, the prototype of the PyNTTTTGT ODN class, was the most active. GM-CSF secretion was very efficient when non-CpG ODNs with high T content and PyNTTTTGT motifs lacking CpGs were used. On the other hand, CpG ODNs and IFNα inhibited this GM-CSF secretion. Selective cell type removal from hPBMC indicated that CD56+ cells were responsible for GM-CSF secretion and that plasmacytoid dendritic cells (PDCs) regulate this process. In addition, PyNTTTTGT ODNs inhibited the IFNα secretion induced by CpG ODNs in PDCs by interference with the TLR9 signaling pathway. Since IFNα is essential for CD56+ stimulation by CpG ODNs, there is a reciprocal interference of CpG and PyNTTTTGT ODNs when acting on this cell population. This suggests that these synthetic ODNs mimic different natural alarm signals for activation of the immune system. PMID:25706946

  11. PyNTTTTGT and CpG Immunostimulatory Oligonucleotides: Effect on Granulocyte/Monocyte Colony-Stimulating Factor (GM-CSF) Secretion by Human CD56+ (NK and NKT) Cells

    PubMed Central

    Rodriguez, Juan M.; Marchicio, José; López, Mariela; Ziblat, Andrea; Elias, Fernanda; Fló, Juan; López, Ricardo A.; Horn, David; Zorzopulos, Jorge; Montaner, Alejandro D.

    2015-01-01

    CD56+ cells have been recognized as being involved in bridging the innate and acquired immune systems. Herein, we assessed the effect of two major classes of immunostimulatory oligonucleotides (ODNs), PyNTTTTGT and CpG, on CD56+ cells. Incubation of human peripheral blood mononuclear cells (hPBMC) with some of these ODNs led to secretion of significant amounts of interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α) and granulocyte/monocyte colony-stimulating factor (GM-CSF), but only if interleukin 2 (IL2) was present. IMT504, the prototype of the PyNTTTTGT ODN class, was the most active. GM-CSF secretion was very efficient when non-CpG ODNs with high T content and PyNTTTTGT motifs lacking CpGs were used. On the other hand, CpG ODNs and IFNα inhibited this GM-CSF secretion. Selective cell type removal from hPBMC indicated that CD56+ cells were responsible for GM-CSF secretion and that plasmacytoid dendritic cells (PDCs) regulate this process. In addition, PyNTTTTGT ODNs inhibited the IFNα secretion induced by CpG ODNs in PDCs by interference with the TLR9 signaling pathway. Since IFNα is essential for CD56+ stimulation by CpG ODNs, there is a reciprocal interference of CpG and PyNTTTTGT ODNs when acting on this cell population. This suggests that these synthetic ODNs mimic different natural alarm signals for activation of the immune system. PMID:25706946

  12. Effect of intramammary injection of rboGM-CSF on milk levels of chemiluminescence activity, somatic cell count, and Staphylococcus aureus count in Holstein cows with S. aureus subclinical mastitis

    PubMed Central

    2004-01-01

    Abstract The effect of intramammary injection of recombinant bovine granulocyte-macrophage colony-stimulating factor (rboGM-CSF, 400 μg/10 mL) on quarter milk levels of chemiluminescence (CL) activity, and somatic cell count (SCC) and shedding pattern of Staphylococcus aureus was investigated. Ten Holstein cows, naturally infected with S. aureus were used, with either early-stage or late-stage subclinical mastitis. Injection of rboGM-CSF caused a remarkable increase in milk CL activity with a peak at 6 h after the cytokine injection in the early- and late-stage groups. In the early-stage group, milk SCC stayed around preinjection level at 6 h, rose significantly on days 1 and 2, and was followed by a smooth and significant decline to an under preinjection level (below 200 000 cells/mL) on day 7 postinjection. Alternatively, in the late-stage group, milk SCC rose significantly at 6 h after the cytokine injection and maintained high levels thereafter. The milk S. aureus count decreased drastically by the cytokine injection in the early-stage group. The bacterial count was moderately decreased in the late-stage group, but increased back to preinoculation levels on day 7 after the cytokine injection. The results suggest that the rboGM-CSF has a potential as a therapeutic agent for S. aureus infection causing subclinical mastitis of dairy cows, if the cytokine is applied at the initial stage of infection. PMID:15352542

  13. The effects of gemcitabine and capecitabine combination chemotherapy and of low-dose adjuvant GM-CSF on the levels of myeloid-derived suppressor cells in patients with advanced pancreatic cancer.

    PubMed

    Annels, Nicola E; Shaw, Victoria E; Gabitass, Rachel F; Billingham, Lucinda; Corrie, Pippa; Eatock, Martin; Valle, Juan; Smith, David; Wadsley, Jonathan; Cunningham, David; Pandha, Hardev; Neoptolemos, John P; Middleton, Gary

    2014-02-01

    In pre-clinical models, the only two chemotherapy drugs which have been demonstrated to directly reduce the number of myeloid-derived suppressor cells (MDSCs) are gemcitabine and 5-fluorouracil. Here we analyze the dynamics of MDSCs, phenotyped as Lin-DR-CD11b+, in patients with advanced pancreatic cancer receiving the combination of gemcitabine and capecitabine, a 5-FU pro-drug. We found no evidence that gemcitabine and capecitabine directly reduce MDSC% in patients. Gemcitabine and capecitabine reduced MDSCs in 42% of patients (n = 19) and MDSC% fell in only 3/9 patients with above-median baseline MDSCs. In 5/8 patients with minimal tumour volume change on treatment, the MDSC% went up: increases in MDSC% in these patients appeared to correlate with sustained cancer-related inflammatory cytokine upregulation. In a separate cohort of 21 patients treated with gemcitabine and capecitabine together with concurrently administered GV1001 vaccine with adjuvant GM-CSF, the MDSC% fell in 18/21 patients and there was a significant difference in the trajectory of MDSCs between those receiving GV1001 and GM-CSF in combination with chemotherapy and those receiving chemotherapy alone. Thus, there was no evidence that the addition of low-dose adjuvant GM-CSF increased Lin-DR-CD11b+ MDSC in patients receiving combination chemoimmunotherapy. 9/21 patients developed an immune response to GV1001 and the MDSCs fell in 8 of these 9 patients, 6 of whom had above-median pre-vaccination MDSC levels. A high pre-vaccination MDSC% does not preclude the development of immunity to a tumour-associated antigen. PMID:24292263

  14. The necrotic venom of the brown recluse spider induces dysregulated endothelial cell-dependent neutrophil activation. Differential induction of GM-CSF, IL-8, and E-selectin expression.

    PubMed Central

    Patel, K D; Modur, V; Zimmerman, G A; Prescott, S M; McIntyre, T M

    1994-01-01

    Brown recluse spider (Loxosceles reclusa) venom induces severe dermonecrotic lesions. The mechanism for this is unknown but presents an interesting paradox: necrosis is completely dependent on the victim's neutrophils, yet neutrophils are not activated by the venom. We show Loxosceles venom is a potent, but disjointed, endothelial cell agonist. It weakly induced E-selectin expression, but not intercellular adhesion molecule-1 or IL-6 expression, yet significantly stimulated release of IL-8 and large amounts of GM-CSF by 4 h. In contrast, TNF strongly induced all of these, except for GM-CSF. PMN bound to E-selectin on venom-activated endothelial cells, apparently via counterreceptors different from those that bind E-selectin on TNF alpha-activated monolayers. Notably, PMN bound venom-activated monolayers only at intercellular junctions, did not polarize, and completely failed to migrate beneath the monolayer. Despite this, bound PMN demonstrated increased intracellular Ca2+ levels and secreted primary and secondary granule markers. The latter event was suppressed by sulfones used to treat envenomation. We have defined a new endothelial cell agonist, Loxosceles venom, that differentially stimulates the inflammatory response of endothelial cells. This, in turn, leads to a dysregulated PMN response where adhesion and degranulation are completely dissociated from shape change and transmigration. Images PMID:7518841

  15. Intraperitoneal Administration of a Tumor-Associated Antigen SART3, CD40L, and GM-CSF Gene-Loaded Polyplex Micelle Elicits a Vaccine Effect in Mouse Tumor Models

    PubMed Central

    Furugaki, Kouichi; Cui, Lin; Kunisawa, Yumi; Osada, Kensuke; Shinkai, Kentaro; Tanaka, Masao; Kataoka, Kazunori; Nakano, Kenji

    2014-01-01

    Polyplex micelles have demonstrated biocompatibility and achieve efficient gene transfection in vivo. Here, we investigated a polyplex micelle encapsulating genes encoding the tumor-associated antigen squamous cell carcinoma antigen recognized by T cells-3 (SART3), adjuvant CD40L, and granulocyte macrophage colony-stimulating factor (GM-CSF) as a DNA vaccine platform in mouse tumor models with different types of major histocompatibility antigen complex (MHC). Intraperitoneally administrated polyplex micelles were predominantly found in the lymph nodes, spleen, and liver. Compared with mock controls, the triple gene vaccine significantly prolonged the survival of mice harboring peritoneal dissemination of CT26 colorectal cancer cells, of which long-term surviving mice showed complete rejection when re-challenged with CT26 tumors. Moreover, the DNA vaccine inhibited the growth and metastasis of subcutaneous CT26 and Lewis lung tumors in BALB/c and C57BL/6 mice, respectively, which represent different MHC haplotypes. The DNA vaccine highly stimulated both cytotoxic T lymphocyte and natural killer cell activities, and increased the infiltration of CD11c+ DCs and CD4+/CD8a+ T cells into tumors. Depletion of CD4+ or CD8a+ T cells by neutralizing antibodies deteriorated the anti-tumor efficacy of the DNA vaccine. In conclusion, a SART3/CD40L+GM-CSF gene-loaded polyplex micelle can be applied as a novel vaccine platform to elicit tumor rejection immunity regardless of the recipient MHC haplotype. PMID:25013909

  16. Arabinogalactan protein from Jatropha curcas L. seeds as TGFβ1-mediated inductor of keratinocyte in vitro differentiation and stimulation of GM-CSF, HGF, KGF and in organotypic skin equivalents.

    PubMed

    Zippel, Janina; Wells, Thomas; Hensel, Andreas

    2010-10-01

    Arabinogalactan protein JC from Jatropha curcas seed endosperm (mean molecular weight 140 kDa) was isolated by cold water extraction and characterized concerning sugar and amino acid composition. At 10 and 100 µg/mL JC stimulated mitochondrial activity (MTT test) of human skin cells (HaCaT keratinocytes, fibroblasts) and the ATP status of primary keratinocytes. JC did not influence the cellular proliferation, while primary keratinocytes were triggered into differentiation status. Investigations on a potential mode of action of JC were performed on complex organotypic skin equivalents. JC induced the production of HGF, KGF and TGFβ, with TGFβ being the main inductor for the differentiation-inducing effect of JC. Also the expression of GM-CSF was stimulated strongly by JC. This in vitro activity profile indicated JC to be a potent inductor of cellular differentiation via stimulation of growth hormones and TGF-β-induced cell signaling. PMID:20385211

  17. CSL311, a novel, potent, therapeutic monoclonal antibody for the treatment of diseases mediated by the common β chain of the IL-3, GM-CSF and IL-5 receptors

    PubMed Central

    Panousis, Con; Dhagat, Urmi; Edwards, Kirsten M.; Rayzman, Veronika; Hardy, Matthew P.; Braley, Hal; Gauvreau, Gail M.; Hercus, Timothy R.; Smith, Steven; Sehmi, Roma; McMillan, Laura; Dottore, Mara; McClure, Barbara J.; Fabri, Louis J.; Vairo, Gino; Lopez, Angel F; Parker, Michael W.; Nash, Andrew D.; Wilson, Nicholas J.; Wilson, Michael J.; Owczarek, Catherine M.

    2016-01-01

    ABSTRACT The β common-signaling cytokines interleukin (IL)-3, granulocyte-macrophage colony stimulating factor (GM-CSF) and IL-5 stimulate pro-inflammatory activities of haematopoietic cells via a receptor complex incorporating cytokine-specific α and shared β common (βc, CD131) receptor. Evidence from animal models and recent clinical trials demonstrate that these cytokines are critical mediators of the pathogenesis of inflammatory airway disease such as asthma. However, no therapeutic agents, other than steroids, that specifically and effectively target inflammation mediated by all 3 of these cytokines exist. We employed phage display technology to identify and optimize a novel, human monoclonal antibody (CSL311) that binds to a unique epitope that is specific to the cytokine-binding site of the human βc receptor. The binding epitope of CSL311 on the βc receptor was defined by X-ray crystallography and site-directed mutagenesis. CSL311 has picomolar binding affinity for the human βc receptor, and at therapeutic concentrations is a highly potent antagonist of the combined activities of IL-3, GM-CSF and IL-5 on primary eosinophil survival in vitro. Importantly, CSL311 inhibited the survival of inflammatory cells present in induced sputum from human allergic asthmatic subjects undergoing allergen bronchoprovocation. Due to its high potency and ability to simultaneously suppress the activity of all 3 β common cytokines, CSL311 may provide a new strategy for the treatment of chronic inflammatory diseases where the human βc receptor is central to pathogenesis. The coordinates for the βc/CSL311 Fab complex structure have been deposited with the RCSB Protein Data Bank (PDB 5DWU). PMID:26651396

  18. CSL311, a novel, potent, therapeutic monoclonal antibody for the treatment of diseases mediated by the common β chain of the IL-3, GM-CSF and IL-5 receptors.

    PubMed

    Panousis, Con; Dhagat, Urmi; Edwards, Kirsten M; Rayzman, Veronika; Hardy, Matthew P; Braley, Hal; Gauvreau, Gail M; Hercus, Timothy R; Smith, Steven; Sehmi, Roma; McMillan, Laura; Dottore, Mara; McClure, Barbara J; Fabri, Louis J; Vairo, Gino; Lopez, Angel F; Parker, Michael W; Nash, Andrew D; Wilson, Nicholas J; Wilson, Michael J; Owczarek, Catherine M

    2016-04-01

    The β common-signaling cytokines interleukin (IL)-3, granulocyte-macrophage colony stimulating factor (GM-CSF) and IL-5 stimulate pro-inflammatory activities of haematopoietic cells via a receptor complex incorporating cytokine-specific α and shared β common (βc, CD131) receptor. Evidence from animal models and recent clinical trials demonstrate that these cytokines are critical mediators of the pathogenesis of inflammatory airway disease such as asthma. However, no therapeutic agents, other than steroids, that specifically and effectively target inflammation mediated by all 3 of these cytokines exist. We employed phage display technology to identify and optimize a novel, human monoclonal antibody (CSL311) that binds to a unique epitope that is specific to the cytokine-binding site of the human βc receptor. The binding epitope of CSL311 on the βc receptor was defined by X-ray crystallography and site-directed mutagenesis. CSL311 has picomolar binding affinity for the human βc receptor, and at therapeutic concentrations is a highly potent antagonist of the combined activities of IL-3, GM-CSF and IL-5 on primary eosinophil survival in vitro. Importantly, CSL311 inhibited the survival of inflammatory cells present in induced sputum from human allergic asthmatic subjects undergoing allergen bronchoprovocation. Due to its high potency and ability to simultaneously suppress the activity of all 3 β common cytokines, CSL311 may provide a new strategy for the treatment of chronic inflammatory diseases where the human βc receptor is central to pathogenesis. The coordinates for the βc/CSL311 Fab complex structure have been deposited with the RCSB Protein Data Bank (PDB 5DWU). PMID:26651396

  19. Accessory cells with a veiled morphology and movement pattern generated from monocytes after avoidance of plastic adherence and of NADPH oxidase activation. A comparison with GM-CSF/IL-4-induced monocyte-derived dendritic cells.

    PubMed

    Ruwhof, Cindy; Canning, Martha O; Grotenhuis, Kristel; de Wit, Harm J; Florencia, Zenovia Z; de Haan-Meulman, Meeny; Drexhage, Hemmo A

    2002-07-01

    Veiled cells (VC) present in afferent lymph transport antigen from the periphery to the draining lymph nodes. Although VC in lymph form a heterogeneous population, some of the cells clearly belong on morphological grounds to the Langerhans cell (LC)/ dendritic cell (DC) series. Here we show that culturing monocytes for 24 hrs while avoiding plastic adherence (polypropylene tubes) and avoiding the activation of NADPH oxidase (blocking agents) results in the generation of a population of veiled accessory cells. The generated VC were actively moving cells like lymph-borne VC in vivo. The monocyte (mo)-derived VC population existed of CD14(dim/-) and CD14(brighT) cells. Of these the CD14(dim/-) VC were as good in stimulating allogeneic T cell proliferation as immature DC (iDC) obtained after one week of adherent culture of monocytes in granulocyte-macrophage-colony stimulating factor (GM-CSF)/interleukin (IL)-4. This underscores the accessory cell function of the mo-derived CD14(dim/-) VC. Although the CD14(dim/-)VC had a modest expression of the DC-specific marker CD83 and were positive for S100, expression of the DC-specific markers CD1a, Langerin, DC-SIGN, and DC-LAMP were absent. This indicates that the here generated CD14(dim/-) VC can not be considered as classical LC/DC. It was also impossible to turn the CD14(dim/-) mo-derived VC population into typical DC by culture for one week in GM-CSF/IL-4 or LPS. In fact the cells died tinder such circumstances, gaining some macrophage characteristics before dying. The IL-12 production from mo-derived CD14(dim/-) VC was lower, whereas the production of IL-10 was higher as compared to iDC. Consequently the T cells that were stimulated by these mo-derived VC produced less IFN-gamma as compared with T cells stimulated by iDC. Our data indicate that it is possible to rapidly generate a population of CD14(dim/-) veiled accessory cells from monocytes. The marker pattern and cytokine production of these VC indicate that this

  20. Establishment of a retinoic acid-resistant human acute promyelocytic leukaemia (APL) model in human granulocyte-macrophage colony-stimulating factor (hGM-CSF) transgenic severe combined immunodeficiency (SCID) mice.

    PubMed Central

    Fukuchi, Y.; Kizaki, M.; Kinjo, K.; Awaya, N.; Muto, A.; Ito, M.; Kawai, Y.; Umezawa, A.; Hata, J.; Ueyama, Y.; Ikeda, Y.

    1998-01-01

    To understand the mechanisms and identify novel approaches to overcoming retinoic acid (RA) resistance in acute promyelocytic leukaemia (APL), we established the first human RA-resistant APL model in severe combined immunodeficiency (SCID) mice. UF-1 cells, an RA-resistant APL cell line established in our laboratory, were transplanted into human granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing SCID (hGMTg SCID) mice and inoculated cells formed subcutaneous tumours in all hGMTg SCID mice, but not in the non-transgenic control SCID mice. Single-cell suspensions (UF-1/GMTg SCID cells) were similar in morphological, immunological, cytogenetic and molecular genetic features to parental UF-1 cells. All-trans RA did not change the morphological features of cells or their expression of CD11b. RA did not alter the growth curve of cells as determined by MTT assay, suggesting that UF-1/GMTg SCID cells are resistant to RA. These results demonstrate that this is the first RA-resistant APL animal model that may be useful for investigating the biology of this myeloid leukaemia in vivo, as well as for evaluating novel therapeutic approaches including patients with RA-resistant APL. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9764578

  1. Light chain (κ/λ) ratio of GM-CSF autoantibodies is associated with disease severity in autoimmune pulmonary alveolar proteinosis.

    PubMed

    Nei, Takahito; Urano, Shinya; Itoh, Yuko; Kitamura, Nobutaka; Hashimoto, Atsushi; Tanaka, Takahiro; Motoi, Natsuki; Kaneko, Chinatsu; Tazawa, Ryushi; Nakagaki, Kazuhide; Arai, Toru; Inoue, Yoshikazu; Nakata, Koh

    2013-12-01

    Previous studies demonstrated that antigranulocyte colony-stimulating factor autoantibody (GMAb) was consistently present in patients with autoimmune pulmonary alveolar proteinosis (aPAP), and, thus, represented candidature as a reliable diagnostic marker. However, our large cohort study suggested that the concentration of this antibody was not correlated with disease severity in patients. We found that the κ/λ ratio of GMAb was significantly correlated with the degree of hypoxemia. The proportion of λ-type GMAb per total λ-type IgG was significantly higher in severely affected patients than those in mildly affected patients, but the proportion of κ-type was unchanged. The κ/λ ratio was significantly correlated with both KL-6 and SP-D, which have been previously reported as disease severity markers. Thus, the light chain isotype usage of GMAb may not only be associated with the severity of aPAP, but may also represent a useful disease severity marker. PMID:24211842

  2. Phase 2, randomised placebo-controlled trial to evaluate the efficacy and safety of an anti-GM-CSF antibody (KB003) in patients with inadequately controlled asthma

    PubMed Central

    Molfino, Nestor A; Kuna, Piotr; Leff, Jonathan A; Oh, Chad K; Singh, Dave; Chernow, Marlene; Sutton, Brian; Yarranton, Geoffrey

    2016-01-01

    Objectives We wished to evaluate the effects of an antigranulocyte-macrophage colony-stimulating factor monoclonal antibody (KB003) on forced expiratory volume in 1 s (FEV1), asthma control and asthma exacerbations in adult asthmatics inadequately controlled by long-acting bronchodilators and inhaled/oral corticosteroids. Settings 47 ambulatory asthma care centres globally. Primary outcome measures Change in FEV1 at week 24. Participants 311 were screened, 160 were randomised and 129 completed the study. Interventions 7 intravenous infusions of either 400 mg KB003 or placebo at baseline and weeks 2, 4, 8, 12, 16 and 20. Primary and secondary outcome measures FEV1 at week 24, asthma control, exacerbation rates and safety in all participants as well as prespecified subgroups. Main results In the KB003 treated group, FEV1 at week 24 improved to 118 mL compared with 54 mL in the placebo group (p=0.224). However, FEV1 improved to 253 vs 26 mL at week 24 (p=0.02) in eosinophilic asthmatics (defined as >300 peripheral blood eosinophils/mL at baseline) and comparable improvements were seen at weeks 20 (p=0.034) and 24 (p=0.077) in patients with FEV1 reversibility ≥20% at baseline and at weeks 4 (p=0.029), 16 (p=0.018) and 20 (p=0.006) in patients with prebronchodilator FEV1 ≤50% predicted at baseline. There were no effects on asthma control or exacerbation rates. The most frequent adverse events in the KB003 group were rhinosinusitis and headache. There was no significant difference in antidrug antibody response between placebo and treated groups. There were no excess infections or changes in biomarkers known to be associated with the development of pulmonary alveolar proteinosis. Conclusions Higher doses and/or further asthma phenotyping may be required in future studies with KB003. Trial registration number NCT01603277; Results. PMID:26739717

  3. High EMT Signature Score of Invasive Non-Small Cell Lung Cancer (NSCLC) Cells Correlates with NFκB Driven Colony-Stimulating Factor 2 (CSF2/GM-CSF) Secretion by Neighboring Stromal Fibroblasts

    PubMed Central

    Rudisch, Albin; Dewhurst, Matthew Richard; Horga, Luminita Gabriela; Kramer, Nina; Harrer, Nathalie; Dong, Meng; van der Kuip, Heiko; Wernitznig, Andreas; Bernthaler, Andreas; Dolznig, Helmut; Sommergruber, Wolfgang

    2015-01-01

    We established co-cultures of invasive or non-invasive NSCLC cell lines and various types of fibroblasts (FBs) to more precisely characterize the molecular mechanism of tumor-stroma crosstalk in lung cancer. The HGF-MET-ERK1/2-CREB-axis was shown to contribute to the onset of the invasive phenotype of Calu-1 with HGF being secreted by FBs. Differential expression analysis of the respective mono- and co-cultures revealed an upregulation of NFκB-related genes exclusively in co-cultures with Calu-1. Cytokine Array- and ELISA-based characterization of the “cytokine fingerprints” identified CSF2 (GM-CSF), CXCL1, CXCL6, VEGF, IL6, RANTES and IL8 as being specifically upregulated in various co-cultures. Whilst CXCL6 exhibited a strictly FB-type-specific induction profile regardless of the invasiveness of the tumor cell line, CSF2 was only induced in co-cultures of invasive cell lines regardless of the partnered FB type. These cultures revealed a clear link between the induction of CSF2 and the EMT signature of the cancer cell line. The canonical NFκB signaling in FBs, but not in tumor cells, was shown to be responsible for the induced and constitutive CSF2 expression. In addition to CSF2, cytokine IL6, IL8 and IL1B, and chemokine CXCL1 and CXCL6 transcripts were also shown to be increased in co-cultured FBs. In contrast, their induction was not strictly dependent on the invasiveness of the co-cultured tumor cell. In a multi-reporter assay, additional signaling pathways (AP-1, HIF1-α, KLF4, SP-1 and ELK-1) were found to be induced in FBs co-cultured with Calu-1. Most importantly, no difference was observed in the level of inducibility of these six signaling pathways with regard to the type of FBs used. Finally, upon tumor fibroblast interaction the massive induction of chemokines such as CXCL1 and CXCL6 in FBs might be responsible for increased recruitment of a monocytic cell line (THP-1) in a transwell assay. PMID:25919140

  4. The impact of concurrent granulocyte macrophage-colony stimulating factor on radiation-induced mucositis in head and neck cancer patients: A double-blind placebo-controlled prospective Phase III study by Radiation Therapy Oncology Group 9901

    SciTech Connect

    Ryu, Janice K. . E-mail: janice.ryu@ucdmc.ucdavis.edu; Swann, Suzanne; LeVeque, Francis; Johnson, Darlene J.; Chen, Allan; Fortin, Andre; Kim, Harold; Ang, Kian K.

    2007-03-01

    Purpose: Based on early clinical evidence of potential mucosal protection by granulocyte-macrophage colony stimulating factor (GM-CSF), the Radiation Therapy Oncology Group conducted a double-blind, placebo-controlled, randomized study to test the efficacy and safety of GM-CSF in reducing the severity and duration of mucosal injury and pain (mucositis) associated with curative radiotherapy (RT) in head-and-neck cancer patients. Methods and Materials: Eligible patients included those with head-and-neck cancer with radiation ports encompassing >50% of oral cavity and/or oropharynx. Standard RT ports were used to cover the primary tumor and regional lymphatics at risk in standard fractionation to 60-70 Gy. Concurrent cisplatin chemotherapy was allowed. Patients were randomized to receive subcutaneous injection of GM-CSF 250 {mu}g/m{sup 2} or placebo 3 times a week. Mucosal reaction was assessed during the course of RT using the National Cancer Institute Common Toxicity Criteria and the protocol-specific scoring system. Results: Between October 2000 and September 2002, 130 patients from 36 institutions were accrued. Nine patients (7%) were excluded from the analysis, 3 as a result of drug unavailability. More than 80% of the patients participated in the quality-of-life endpoint of this study. The GM-CSF did not cause any increase in toxicity compared with placebo. There was no statistically significant difference in the average mean mucositis score in the GM-CSF and placebo arms by a t test (p = 0.4006). Conclusion: This placebo-controlled, randomized study demonstrated no significant effect of GM-CSF given concurrently compared with placebo in reducing the severity or duration of RT-induced mucositis in patients undergoing definitive RT for head-and-neck cancer.

  5. Clinical trial in healthy malaria-naïve adults to evaluate the safety, tolerability, immunogenicity and efficacy of MuStDO5, a five-gene, sporozoite/hepatic stage Plasmodium falciparum DNA vaccine combined with escalating dose human GM-CSF DNA

    PubMed Central

    Richie, Thomas L.; Charoenvit, Yupin; Wang, Ruobing; Epstein, Judith E.; Hedstrom, Richard C.; Kumar, Sanjai; Luke, Thomas C.; Freilich, Daniel A.; Aguiar, Joao C.; Sacci, Jr., John B.; Sedegah, Martha; Nosek, Jr., Ronald A.; De La Vega, Patricia; Berzins, Mara P.; Majam, Victoria F.; Abot, Esteban N.; Ganeshan, Harini; Richie, Nancy O.; Banania, Jo Glenna; Baraceros, Maria Fe B.; Geter, Tanya G.; Mere, Robin; Bebris, Lolita; Limbach, Keith; Hickey, Bradley W.; Lanar, David E.; Ng, Jennifer; Shi, Meng; Hobart, Peter M.; Norman, Jon A.; Soisson, Lorraine A.; Hollingdale, Michael R.; Rogers, William O.; Doolan, Denise L.; Hoffman, Stephen L.

    2012-01-01

    When introduced in the 1990s, immunization with DNA plasmids was considered potentially revolutionary for vaccine development, particularly for vaccines intended to induce protective CD8 T cell responses against multiple antigens. We conducted, in 1997−1998, the first clinical trial in healthy humans of a DNA vaccine, a single plasmid encoding Plasmodium falciparum circumsporozoite protein (PfCSP), as an initial step toward developing a multi-antigen malaria vaccine targeting the liver stages of the parasite. As the next step, we conducted in 2000–2001 a clinical trial of a five-plasmid mixture called MuStDO5 encoding pre-erythrocytic antigens PfCSP, PfSSP2/TRAP, PfEXP1, PfLSA1 and PfLSA3. Thirty-two, malaria-naïve, adult volunteers were enrolled sequentially into four cohorts receiving a mixture of 500 μg of each plasmid plus escalating doses (0, 20, 100 or 500 μg) of a sixth plasmid encoding human granulocyte macrophage-colony stimulating factor (hGM-CSF). Three doses of each formulation were administered intramuscularly by needle-less jet injection at 0, 4 and 8 weeks, and each cohort had controlled human malaria infection administered by five mosquito bites 18 d later. The vaccine was safe and well-tolerated, inducing moderate antigen-specific, MHC-restricted T cell interferon-γ responses but no antibodies. Although no volunteers were protected, T cell responses were boosted post malaria challenge. This trial demonstrated the MuStDO5 DNA and hGM-CSF plasmids to be safe and modestly immunogenic for T cell responses. It also laid the foundation for priming with DNA plasmids and boosting with recombinant viruses, an approach known for nearly 15 y to enhance the immunogenicity and protective efficacy of DNA vaccines. PMID:23151451

  6. Gene expression profiles of some cytokines, growth factors, receptors, and enzymes (GM-CSF, IFNγ, MMP-2, IGF-II, EGF, TGF-β, IGF-IIR) during pregnancy in the cat uterus.

    PubMed

    Agaoglu, Ozgecan Korkmaz; Agaoglu, Ali Reha; Guzeloglu, Aydin; Aslan, Selim; Kurar, Ercan; Kayis, Seyit Ali; Schäfer-Somi, Sabine

    2016-03-01

    Early pregnancy is one of the most critical periods of pregnancy, and many factors such as cytokines, enzymes, and members of the immune system have to cooperate in a balanced way. In the present study, the gene expression profiles of factors associated with pregnancy such as EGF, transforming growth factor beta, granulocyte-macrophage colony-stimulating factor, interferon gamma, insulin-like growth factor 2, insulin-like growth factor 2 receptor, and matrix metalloproteinase 2 were analyzed in uterine tissues of female cats. The cats were assigned to five groups: G1 (embryo positive, n = 7; 7th day after mating), G2 (after implantation, n = 7; 20th day after mating), G3 (midgestation, n = 7; 24-25th day after mating), G4 (late gestation, n = 7; 30-45th day after mating), G5 (oocyte group, n = 7; 7th day after estrus). Tissue samples from the uterus and placenta were collected after ovariohysterectomy. Relative messenger RNA levels were determined by real-time polymerase chain reaction. All the factors examined were detected in all tissue samples. In the course of pregnancy, significantly higher expression of EGF and matrix metalloproteinase 2 in G2 than in G1 was observed (P < 0.05). Insulin-like growth factor 2 expression was higher in all groups than in G1 (P < 0.05). Upregulation of EGF during implantation was detected. The expression of interferon gamma was significantly higher in G3 than in G1 (P < 0.05). Transforming growth factor beta and granulocyte-macrophage colony-stimulating factor were constantly expressed in all groups. In conclusion, the expressions of these factors in feline uterine tissue at different stages of pregnancy might indicate that these factors play roles in the development of pregnancy such as trophoblast invasion, vascularization, implantation, and placentation. PMID:26559469

  7. Cosmos 2229 immunology study (Experiment K-8-07)

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1993-01-01

    The purpose of the current study was to further validate use of the rhesus monkey as a model for humans in future space flight testing. The areas of immunological importance examined in the Cosmos 2229 flight were represented by two sets of studies. The first set of studies determined the effect of space flight on the ability of bone marrow cells to respond to granulocyte/monocyte colony stimulating factor (GM-CSF). GM-CSF is an important regulator in the differentiation of bone marrow cells of both monocyte/macrophage and granulocyte lineages and any change in the ability of these cells to respond to GM-CSF can result in altered immune function. A second set of studies determined space flight effects on the expression of cell surface markers on both spleen and bone marrow cells. Immune cell markers included in this study were those for T-cell, B-cell, natural killer cell, and interleukin-2 populations. Variations from a normal cell population percentage, as represented by these markers, can be correlated with alterations in immunological function. Cells were stained with fluorescein-labelled antibodies directed against the appropriate antigens, and then analyzed using a flow cytometer.

  8. Distribution of granulocyte-monocyte colony-stimulating factor and its receptor α-subunit in the adult human brain with specific reference to Alzheimer's disease.

    PubMed

    Ridwan, Sami; Bauer, Henrike; Frauenknecht, Katrin; von Pein, Harald; Sommer, Clemens J

    2012-11-01

    Granulocyte-monocyte colony-stimulating factor (GM-CSF) is a member of the hematopoietic growth factor family, promoting proliferation and differentiation of hematopoietic progenitor cells of the myeloid lineage. In recent years, GM-CSF has also proved to be an important neurotrophic factor in the central nervous system (CNS) via binding to the GM-CSF receptor (GM-CSF R). Furthermore, studies on rodent CNS revealed a wide distribution of both the major binding α-subunit of the GM-CSF R (GM-CSF Rα) and its ligand. Since respective data on the expression pattern of these two molecules are still lacking, the present study has been designed to systematically analyze the protein expression of GM-CSF and GM-CSF Rα in the human brain, with particular emphasis on their regulation in Alzheimer's disease (AD). One major finding is that both GM-CSF and GM-CSF Rα were ubiquitously but not uniformly expressed in neurons throughout the CNS. Protein expression of GM-CSF and GM-CSF Rα was not restricted to neurons but also detectable in astrocytes, ependymal cells and choroid plexus cells. Interestingly, distribution and intensity of immunohistochemical staining for GM-CSF did not differ among AD brains and age-matched controls. Concerning GM-CSF Rα, a marked reduction of protein expression was predominantly detected in the hippocampus although a slight reduction was also found in various cortical regions, thalamic nuclei and some brainstem nuclei. Since the hippocampus is one of the target regions of neurodegenerative changes in AD, reduction of GM-CSF Rα, with consecutive downregulation of GM-CSF signaling, may contribute to in the progressive course of neurodegeneration in AD. PMID:22430742

  9. Immunologic effects of mistletoe lectins: a placebo-controlled study in healthy subjects.

    PubMed

    Huber, Roman; Rostock, Matthias; Goedl, Roland; Lüdtke, Rainer; Urech, Konrad; Klein, Reinhild

    2006-01-01

    The subcutaneous application of lectin-rich mistletoe preparations such as Iscador Quercus (IQ; Weleda Company, Schwäbisch Gmünd, Germany) results in a peripheral eosinophilia. Our goal was to investigate whether this effect is related to mistletoe lectin (ML) and whether it is caused by a response of the specific immune system. In a double-blinded study, 43 volunteers were randomized to one of four treatment groups: (1) IQ, (2) ML that was derived from IQ, (3) IQ that was depleted of ML, and (4) placebo. The respective preparations were applied subcutaneously twice per week for 8 weeks, in increasing doses. Weekly the differential blood count was analyzed. Every 4 weeks interferon-gamma, interleukin-5 (IL-5), and granulocyte-macrophage colony stimulating factor (GM-CSF) were determined in cultures from peripheral mononuclear cells after stimulation with IQ. IQ and ML resulted in significant eosinophilia compared with placebo and ML-depleted IQ. Furthermore, the leukocyte and granulocyte counts were increased in the IQ and ML groups compared with placebo. GM-CSF, interferon-gamma, and IL-5 increased after ex vivo in vitro stimulation with IQ in the IQ and ML groups, and were significantly different from placebo in the IQ group but not in the ML group. Eosinophilia during therapy with mistletoe preparations is due to its content of ML. This effect might be related to a stimulation of IL-5 and/or GM-CSF, which was demonstrated ex vivo in vitro. ML resulted in a temporary increase of the granulocyte count, which is probably related to an acute-phase reaction. PMID:16737665

  10. Augmentation of granulocyte/macrophage colony-stimulating factor expression by ultraviolet irradiation is mediated by interleukin 1 in Pam 212 keratinocytes

    SciTech Connect

    Nozaki, S.; Abrams, J.S.; Pearce, M.K.; Sauder, D.N. )

    1991-07-01

    Keratinocytes are a potent source of a variety of cytokines including granulocyte-macrophage colony-stimulating factor (GM-CSF). In this study, we have shown that ultraviolet B (UVB) irradiation augments GM-CSF mRNA expression by murine keratinocytes. This is reflected in the increased production of GM-CSF protein by these cells. In the same cell population, exposure to UVB irradiation increases interleukin 1 alpha (IL-1 alpha) mRNA and IL-1 protein as detected by bioactivity. This increase in IL-1 alpha precedes the increase of GM-CSF mRNA. Addition of recombinant IL-1 alpha to the medium increases GM-CSF mRNA expression. Anti-IL-1 alpha antibodies can completely inhibit UV-augmented GM-CSF mRNA expression. These results demonstrate that UVB irradiation-induced augmentation of GM-CSF is mediated by UV-induced IL-1 alpha.

  11. Endothelial-derived GM-CSF influences expression of oncostatin M

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During and following transendothelial migration, neutrophils undergo a number of phenotypic changes resulting from encounters with endothelial-derived factors. This report uses an in vitro model with HUVEC and isolated human neutrophils to examine the effects of two locally-derived cytokines, granul...

  12. Potentiation by granulocyte macrophage colony-stimulating factor of lipopolysaccharide toxicity in mice.

    PubMed Central

    Tiegs, G; Barsig, J; Matiba, B; Uhlig, S; Wendel, A

    1994-01-01

    GM-CSF is known to prime leukocytes for inflammatory stimuli in vitro. The objective of this study was to investigate the role of GM-CSF in vivo in a systemic inflammatory reaction syndrome. The results demonstrate a potentiation of LPS toxicity by GM-CSF in a mortality model as well as in a septic liver failure model in mice. Pretreatment of animals with 50 micrograms/kg GM-CSF induced lethality within 24 h in mice challenged with a subtoxic dose of LPS while controls survived > 72 h. A monoclonal anti-GM-CSF antibody significantly protected against a lethal LPS dose. Serum GM-CSF was inducible by LPS and peaked at 2 h. GM-CSF pretreatment dramatically potentiated systemic TNF release and hepatotoxicity induced by a subtoxic dose of LPS in galactosamine-sensitized mice. Potentiation of LPS hepatotoxicity was possible until 30 min after LPS challenge. Polyclonal anti-GM-CSF IgG protected against septic liver failure in this model and attenuated serum TNF concentrations. In vitro an ex vivo experiments revealed that after GM-CSF pretreatment LPS-induced IL-1 release from bone marrow or spleen cells was also enhanced. These findings suggest that GM-CSF represents an endogenous enhancer of LPS-induced organ injury, possibly by potentiating the release of proinflammatory cytokines such as TNF and IL-1. Images PMID:8201000

  13. Familial pulmonary alveolar proteinosis caused by mutations in CSF2RA.

    PubMed

    Suzuki, Takuji; Sakagami, Takuro; Rubin, Bruce K; Nogee, Lawrence M; Wood, Robert E; Zimmerman, Sarah L; Smolarek, Teresa; Dishop, Megan K; Wert, Susan E; Whitsett, Jeffrey A; Grabowski, Gregory; Carey, Brenna C; Stevens, Carrie; van der Loo, Johannes C M; Trapnell, Bruce C

    2008-11-24

    Primary pulmonary alveolar proteinosis (PAP) is a rare syndrome characterized by accumulation of surfactant in the lungs that is presumed to be mediated by disruption of granulocyte/macrophage colony-stimulating factor (GM-CSF) signaling based on studies in genetically modified mice. The effects of GM-CSF are mediated by heterologous receptors composed of GM-CSF binding (GM-CSF-Ralpha) and nonbinding affinity-enhancing (GM-CSF-Rbeta) subunits. We describe PAP, failure to thrive, and increased GM-CSF levels in two sisters aged 6 and 8 yr with abnormalities of both GM-CSF-Ralpha-encoding alleles (CSF2RA). One was a 1.6-Mb deletion in the pseudoautosomal region of one maternal X chromosome encompassing CSF2RA. The other, a point mutation in the paternal X chromosome allele encoding a G174R substitution, altered an N-linked glycosylation site within the cytokine binding domain and glycosylation of GM-CSF-Ralpha, severely reducing GM-CSF binding, receptor signaling, and GM-CSF-dependent functions in primary myeloid cells. Transfection of cloned cDNAs faithfully reproduced the signaling defect at physiological GM-CSF concentrations. Interestingly, at high GM-CSF concentrations similar to those observed in the index patient, signaling was partially rescued, thereby providing a molecular explanation for the slow progression of disease in these children. These results establish that GM-CSF signaling is critical for surfactant homeostasis in humans and demonstrate that mutations in CSF2RA cause familial PAP. PMID:18955570

  14. Studies on canine bone marrow long-term culture: effect of stem cell factor.

    PubMed

    Neuner, E; Schumm, M; Schneider, E M; Guenther, W; Kremmer, E; Vogl, C; Büttner, M; Thierfelder, S; Kolb, H J

    1998-02-16

    Long-term culture of canine marrow cells allows in vitro studies of the hematopoietic system of the dog and characterization of early progenitor cells. Colonies of fresh marrow cells grew equally good in both agar or methylcellulose supplemented with fetal calf serum, while colonies of long-term cultures required agar-based medium containing human serum. Optimum colony growth was obtained when stem cell factor (SCF) and granulocyte-macrophage-colony-stimulating factor (GM-CSF) were used as growth stimuli of colony forming units (CFU). Similar results were achieved with several cell culture media. Addition of hydrocortisone to long-term cultures improved clonogenic growth of cultured cells. Addition of 2-mercaptoethanol had no effect. Strong differences were observed in long-term culture with different horse serum lots and the addition of fetal calf serum to long-term culture suppressed CFU growth of cultured cells. Recharging of cultures with fresh marrow cells on day 7 of culture improved CFU growth only in the following week but had little effect on the outcome. Adding SCF to long-term cultures led to differentiation of more primitive cells and destruction of the stromal layer. Investigation of purified and cultured cell populations was possible when preestablished long-term cultures as stromal layers were used. Loss of long-term culture-initiating ability could be demonstrated in this system with lineage negative marrow cells expanded ex vivo with SCF and GM-CSF. PMID:9613468

  15. Cosmos: 1989 immunology studies

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1991-01-01

    The effects of flight on Cosmos mission 2044 on leukocyte subset distribution and the sensitivity of bone marrow cells to colony stimulating factor-GM were determined. A parallel study with antiorthostatic suspension was also carried out. The study involved repetition and expansion of studies performed on Cosmos 1887. Spleen and bone marrow cells were obtained from flown, vivarium control, synchronous control, and suspended rats. The cells were stained with a series of monoclonal antibodies directed against rat leukocyte cell surface antigens. Control cells were stained with a monoclonal antibody directed against an irrelevant species or were unstained. Cells were then analyzed for fluorescence using a FACSCAN flow cytometer. Bone marrow cells were placed in culture with GM-CSF in McCoy's 5a medium and incubated for 5 days. Cultures were then evaluated for the number of colonies of 50 cells or greater.

  16. Familial pulmonary alveolar proteinosis caused by mutations in CSF2RA

    PubMed Central

    Suzuki, Takuji; Sakagami, Takuro; Rubin, Bruce K.; Nogee, Lawrence M.; Wood, Robert E.; Zimmerman, Sarah L.; Smolarek, Teresa; Dishop, Megan K.; Wert, Susan E.; Whitsett, Jeffrey A.; Grabowski, Gregory; Carey, Brenna C.; Stevens, Carrie; van der Loo, Johannes C.M.; Trapnell, Bruce C.

    2008-01-01

    Primary pulmonary alveolar proteinosis (PAP) is a rare syndrome characterized by accumulation of surfactant in the lungs that is presumed to be mediated by disruption of granulocyte/macrophage colony-stimulating factor (GM-CSF) signaling based on studies in genetically modified mice. The effects of GM-CSF are mediated by heterologous receptors composed of GM-CSF binding (GM-CSF-Rα) and nonbinding affinity-enhancing (GM-CSF-Rβ) subunits. We describe PAP, failure to thrive, and increased GM-CSF levels in two sisters aged 6 and 8 yr with abnormalities of both GM-CSF-Rα–encoding alleles (CSF2RA). One was a 1.6-Mb deletion in the pseudoautosomal region of one maternal X chromosome encompassing CSF2RA. The other, a point mutation in the paternal X chromosome allele encoding a G174R substitution, altered an N-linked glycosylation site within the cytokine binding domain and glycosylation of GM-CSF-Rα, severely reducing GM-CSF binding, receptor signaling, and GM-CSF–dependent functions in primary myeloid cells. Transfection of cloned cDNAs faithfully reproduced the signaling defect at physiological GM-CSF concentrations. Interestingly, at high GM-CSF concentrations similar to those observed in the index patient, signaling was partially rescued, thereby providing a molecular explanation for the slow progression of disease in these children. These results establish that GM-CSF signaling is critical for surfactant homeostasis in humans and demonstrate that mutations in CSF2RA cause familial PAP. PMID:18955570

  17. Systematic review of the use of granulocyte-macrophage colony-stimulating factor in patients with advanced melanoma.

    PubMed

    Hoeller, Christoph; Michielin, Olivier; Ascierto, Paolo A; Szabo, Zsolt; Blank, Christian U

    2016-09-01

    Several immunomodulatory checkpoint inhibitors have been approved for the treatment of patients with advanced melanoma, including ipilimumab, nivolumab and pembrolizumab. Talimogene laherparepvec is the first oncolytic virus to gain regulatory approval in the USA; it is also approved in Europe. Talimogene laherparepvec expresses granulocyte-macrophage colony-stimulating factor (GM-CSF), and with other GM-CSF-expressing oncolytic viruses in development, understanding the clinical relevance of this cytokine in treating advanced melanoma is important. Results of trials of GM-CSF in melanoma have been mixed, and while GM-CSF has the potential to promote anti-tumor responses, some preclinical data suggest that GM-CSF may sometimes promote tumor growth. GM-CSF has not been approved as a melanoma treatment. We undertook a systematic literature review of studies of GM-CSF in patients with advanced melanoma (stage IIIB-IV). Of the 503 articles identified, 26 studies met the eligibility criteria. Most studies investigated the use of GM-CSF in combination with another treatment, such as peptide vaccines or chemotherapy, or as an adjuvant to surgery. Some clinical benefit was reported in patients who received GM-CSF as an adjuvant to surgery, or in combination with other treatments. In general, outcomes for patients receiving peptide vaccines were not improved with the addition of GM-CSF. GM-CSF may be a valuable therapeutic adjuvant; however, further studies are needed, particularly head-to-head comparisons, to confirm the optimal dosing regimen and clinical effectiveness in patients with advanced melanoma. PMID:27372293

  18. Granulocyte-macrophage colony-stimulating factor: pleiotropic cytokine with potential clinical usefulness.

    PubMed

    Ruef, C; Coleman, D L

    1990-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a 23-kDa glycoprotein with remarkably diverse effects on immune and nonimmune cells. GM-CSF induces differentiation of granulocyte, macrophage, and eosinophil precursor cells. Proliferation of monocyte-macrophages, T lymphocytes, keratinocytes, and endothelial cells is also stimulated by GM-CSF. In addition, GM-CSF alters the functional properties of mature granulocytes, macrophages, eosinophils, and basophils. GM-CSF is produced by T lymphocytes, macrophages, and several cell types in extramedullary sites, where it may act in a paracrine manner to regulate the local response to antigenic challenge. Clinical trials of GM-CSF have been conducted in patients with AIDS, aplastic anemia, myelodysplastic syndromes, and sarcoma and following bone marrow transplantation and accidental radiation exposure. GM-CSF significantly increased circulating numbers of several myeloid cells and produced dose-dependent toxicity consisting primarily of myalgias, fever, fluid retention, and serosal effusions. Additional studies are needed to define the role of GM-CSF in treatment of patients with qualitative and quantitative dysfunction of immune cells. PMID:2405468

  19. M-CSF and GM-CSF Receptor Signaling Differentially Regulate Monocyte Maturation and Macrophage Polarization in the Tumor Microenvironment.

    PubMed

    Van Overmeire, Eva; Stijlemans, Benoît; Heymann, Felix; Keirsse, Jiri; Morias, Yannick; Elkrim, Yvon; Brys, Lea; Abels, Chloé; Lahmar, Qods; Ergen, Can; Vereecke, Lars; Tacke, Frank; De Baetselier, Patrick; Van Ginderachter, Jo A; Laoui, Damya

    2016-01-01

    Tumors contain a heterogeneous myeloid fraction comprised of discrete MHC-II(hi) and MHC-II(lo) tumor-associated macrophage (TAM) subpopulations that originate from Ly6C(hi) monocytes. However, the mechanisms regulating the abundance and phenotype of distinct TAM subsets remain unknown. Here, we investigated the role of macrophage colony-stimulating factor (M-CSF) in TAM differentiation and polarization in different mouse tumor models. We demonstrate that treatment of tumor-bearing mice with a blocking anti-M-CSFR monoclonal antibody resulted in a reduction of mature TAMs due to impaired recruitment, extravasation, proliferation, and maturation of their Ly6C(hi) monocytic precursors. M-CSFR signaling blockade shifted the MHC-II(lo)/MHC-II(hi) TAM balance in favor of the latter as observed by the preferential differentiation of Ly6C(hi) monocytes into MHC-II(hi) TAMs. In addition, the genetic and functional signatures of MHC-II(lo) TAMs were downregulated upon M-CSFR blockade, indicating that M-CSFR signaling shapes the MHC-II(lo) TAM phenotype. Conversely, granulocyte macrophage (GM)-CSFR had no effect on the mononuclear tumor infiltrate or relative abundance of TAM subsets. However, GM-CSFR signaling played an important role in fine-tuning the MHC-II(hi) phenotype. Overall, our data uncover the multifaceted and opposing roles of M-CSFR and GM-CSFR signaling in governing the phenotype of macrophage subsets in tumors, and provide new insight into the mechanism of action underlying M-CSFR blockade. PMID:26573801

  20. Immunization With AFP + GM CSF Plasmid Prime and AFP Adenoviral Vector Boost in Patients With Hepatocellular Carcinoma

    ClinicalTrials.gov

    2015-12-01

    Hepatocellular Carcinoma; Hepatoma; Liver Cancer, Adult; Liver Cell Carcinoma; Liver Cell Carcinoma, Adult; Cancer of Liver; Cancer of the Liver; Cancer, Hepatocellular; Hepatic Cancer; Hepatic Neoplasms; Hepatocellular Cancer; Liver Cancer; Neoplasms, Hepatic; Neoplasms, Liver

  1. Differential regulation of spontaneous and immune complex-induced neutrophil apoptosis by proinflammatory cytokines. Role of oxidants, Bax and caspase-3.

    PubMed

    Ottonello, Luciano; Frumento, Guido; Arduino, Nicoletta; Bertolotto, Maria; Dapino, Patrizia; Mancini, Marina; Dallegri, Franco

    2002-07-01

    Neutrophil apoptosis represents a crucial step in the mechanisms governing the resolution of neutrophilic inflammation. Several soluble mediators of inflammation modulate neutrophil survival, retarding their apoptosis, whereas neutrophil activation by immune complexes (IC) results in the acceleration of apoptosis. To investigate neutrophil fate at the site of inflammation, we studied the effects of interleukin (IL)-2, IL-6, IL-8, IL-15, GM-CSF, and fMLP on spontaneous and IC-induced neutrophil apoptosis and the mechanisms regulating the survival of these cells. Spontaneous apoptosis was inhibited by GM-CSF, IL-6, and IL-15, but only GM-CSF overturned IC-induced apoptosis. No role of oxidants on the modulation of IC-dependent apoptosis was found. Indeed, fMLP or GM-CSF augmented the IC-dependent oxidative response, whereas the other compounds were ineffective. CGD neutrophils showed low levels of spontaneous apoptosis, but when exposed to IC, underwent a sharp increment of the apoptotic rate in a GM-CSF-inhibitable manner. Conversely, the expression of the proapoptotic protein Bax in 18-h aged neutrophils was down-regulated by GM-CSF, IL-6, and IL-15. Furthermore, IC induced a nearly threefold Bax up-regulation, which was completely reversed only by GM-CSF. Accordingly, the spontaneous activity of caspase-3 was inhibited by GM-CSF, IL-6, and IL-15. Furthermore, IC induced a sharp increment of enzymatic activity, and only GM-CSF inhibited the IC-dependent acceleration. Our results show that apoptosis of resting and IC-activated neutrophils is regulated differently, GM-CSF being the most potent neutrophil antiapoptotic factor. The results also unveil the existence of an oxidant-independent, Bax- and caspase-3-dependent, intracellular pathway regulating neutrophil apoptosis. PMID:12101271

  2. Differential utilization of Ras signaling pathways by macrophage colony-stimulating factor (CSF) and granulocyte-macrophage CSF receptors during macrophage differentiation.

    PubMed

    Guidez, F; Li, A C; Horvai, A; Welch, J S; Glass, C K

    1998-07-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) independently stimulate the proliferation and differentiation of macrophages from bone marrow progenitor cells. Although the GM-CSF and M-CSF receptors are unrelated, both couple to Ras-dependent signal transduction pathways, suggesting that these pathways might account for common actions of GM-CSF and M-CSF on the expression of macrophage-specific genes. To test this hypothesis, we have investigated the mechanisms by which GM-CSF and M-CSF regulate the expression of the macrophage scavenger receptor A (SR-A) gene. We demonstrate that induction of the SR-A gene by M-CSF is dependent on AP-1 and cooperating Ets domain transcription factors that bind to sites in an M-CSF-dependent enhancer located 4.1 to 4.5 kb upstream of the transcriptional start site. In contrast, regulation by GM-CSF requires a separate enhancer located 4.5 to 4.8 kb upstream of the transcriptional start site that confers both immediate-early and sustained transcriptional responses. Results of a combination of DNA binding experiments and functional assays suggest that immediate transcriptional responses are mediated by DNA binding proteins that are constitutively bound to the GM-CSF enhancer and are activated by Ras. At 12 to 24 h after GM-CSF treatment, the GM-CSF enhancer becomes further occupied by additional DNA binding proteins that may contribute to sustained transcriptional responses. In concert, these studies indicate that GM-CSF and M-CSF differentially utilize Ras-dependent signal transduction pathways to regulate scavenger receptor gene expression, consistent with the distinct functional properties of M-CSF- and GM-CSF-derived macrophages. PMID:9632769

  3. Engineering superactive granulocyte macrophage colony-stimulating factor transferrin fusion proteins as orally-delivered candidate agents for treating neurodegenerative disease.

    PubMed

    Heinzelman, Pete; Priebe, Molly C

    2015-01-01

    Intravenously injected granulocyte macrophage colony-stimulating factor (GM-CSF) has shown efficacy in Alzheimer's Disease (AD) and Parkinson's Disease (PD) animal studies and is undergoing clinical evaluation. The likely need for dosing of GM-CSF to patients over months or years motivates pursuit of avenues for delivering GM-CSF to circulation via oral administration. Flow cytometric screening of 37 yeast-displayed GM-CSF saturation mutant libraries revealed residues P12, H15, R23, R24, and K72 as key determinants of GM-CSF's CD116 and CD131 GM-CSF receptor (GM-CSFR) subunit binding affinity. Screening combinatorial GM-CSF libraries mutated at positions P12, H15, and R23 yielded variants with increased affinities toward both CD116 and CD131. Genetic fusion of GM-CSF to human transferrin (Trf), a strategy that enables oral delivery of other biopharmaceuticals in animals, yielded bioactive wild type and variant cytokines upon secretion from cultured Human Embryonic Kidney cells. Surface plasmon resonance (SPR) measurements showed that all evaluated variants possess decreases in CD116 and CD131 binding KD values of up to 2.5-fold relative to wild type. Improved affinity led to increased in vitro bioactivity; the most bioactive variant, P12D/H15L/R23L, had a leukocyte proliferation assay EC50 value 3.5-fold lower than the wild type GM-CSF/Trf fusion. These outcomes are important first steps toward our goal of developing GM-CSF/Trf fusions as orally available AD and PD therapeutics. PMID:25737095

  4. Hereditary Pulmonary Alveolar Proteinosis

    PubMed Central

    Suzuki, Takuji; Sakagami, Takuro; Young, Lisa R.; Carey, Brenna C.; Wood, Robert E.; Luisetti, Maurizio; Wert, Susan E.; Rubin, Bruce K.; Kevill, Katharine; Chalk, Claudia; Whitsett, Jeffrey A.; Stevens, Carrie; Nogee, Lawrence M.; Campo, Ilaria; Trapnell, Bruce C.

    2010-01-01

    Rationale: We identified a 6-year-old girl with pulmonary alveolar proteinosis (PAP), impaired granulocyte-macrophage colony–stimulating factor (GM-CSF) receptor function, and increased GM-CSF. Objectives: Increased serum GM-CSF may be useful to identify individuals with PAP caused by GM-CSF receptor dysfunction. Methods: We screened 187 patients referred to us for measurement of GM-CSF autoantibodies to diagnose autoimmune PAP. Five were children with PAP and increased serum GM-CSF but without GM-CSF autoantibodies or any disease causing secondary PAP; all were studied with family members, subsequently identified patients, and controls. Measurement and Main Results: Eight children (seven female, one male) were identified with PAP caused by recessive CSF2RA mutations. Six presented with progressive dyspnea of insidious onset at 4.8 ± 1.6 years and two were asymptomatic at ages 5 and 8 years. Radiologic and histopathologic manifestations were similar to those of autoimmune PAP. Molecular analysis demonstrated that GM-CSF signaling was absent in six and severely reduced in two patients. The GM-CSF receptor β chain was detected in all patients, whereas the α chain was absent in six and abnormal in two, paralleling the GM-CSF signaling defects. Genetic analysis revealed multiple distinct CSF2RA abnormalities, including missense, duplication, frameshift, and nonsense mutations; exon and gene deletion; and cryptic alternative splicing. All symptomatic patients responded well to whole-lung lavage therapy. Conclusions: CSF2RA mutations cause a genetic form of PAP presenting as insidious, progressive dyspnea in children that can be diagnosed by a combination of characteristic radiologic findings and blood tests and treated successfully by whole-lung lavage. PMID:20622029

  5. Characterization of cytokine production in infectious mononucleosis studied at a single-cell level in tonsil and peripheral blood.

    PubMed Central

    Andersson, J; Andersson, U

    1993-01-01

    Cytokine profile and production was studied at a single-cell level in cells obtained from 14 patients with acute infectious mononucleosis (IM), with less than 7 days of symptomatic disease, by use of cytokine-specific MoAbs and indirect immunofluorescence technique. In producer cells, all the studied cytokines, except IL-1, accumulated in the Golgi system, which resulted in a characteristic morphology of the staining. Less than one in a thousand mononuclear cells obtained directly from IM blood and stained within 2 h of sampling produced IL-2, interferon-gamma (IFN-gamma), IL-4, IL-5, IL-6, IL-10, GM-CSF, tumour necrosis factor-alpha (TNF-alpha) or TNF-beta, spontaneously. However, these cells were induced to cytokine synthesis by T cell receptor ligation in vitro using immobilized anti-CD3 MoAbs for 2-3 h restimulation under conditions which did not activate normal cells. By this approach 168 +/- 120 cells/10,000 peripheral blood mononuclear cells produced IFN-gamma as compared with 10 +/- 8 cells/10,000 non-stimulated cultured cells obtained from IM patients (P < 0.001) and 1/10,000 cells obtained from healthy controls, respectively. No induced production of IL-2, IL-3, IL-4, IL-5, IL-10, GM-CSF or TNF-beta was detected in IM cells obtained from peripheral blood by this restimulation. In contrast, a spontaneous cytokine production was evident in tonsil material obtained from four IM patients tonsilectomized because of respiratory obstruction. From this site 160 +/- 40 cells/10,000 cells produced IL-2, 40 +/- 30 cells IL-6, 30 +/- 30 cells TNF-beta and 35 +/- 25 cells IFN-gamma, respectively. No such spontaneous IL-2, IL-6, TNF-beta or IFN-gamma production was evident in control cells obtained from patients tonsilectomized because of chronic tonsil hyperplasia. Images Fig. 1 PMID:8467566

  6. Antigens and cytokine genes in antitumor vaccines: the importance of the temporal delivery sequence in antitumor signals.

    PubMed

    Herrero, María José; Botella, Rafael; Dasí, Francisco; Algás, Rosa; Sánchez, María; Aliño, Salvador F

    2006-12-01

    Studies against cancer, including clinical trials, have shown that a correct activation of the immune system can lead to tumor rejection whereas incorrect signaling results in no positive effects or even anergy. We have worked assuming that two signals, GM-CSF (granulocyte and macrophage colony-stimulating factor) and tumor antigens are necessary to mediate an antitumor effective response. To study which is the ideal temporal sequence for their administration, we have used a murine model of antimelanoma vaccine employing whole B16 tumor cells or their membrane protein antigens (TMPs) in combination with gm-csf transfer before or after the antigen delivery. Our results show that: (i) When gm-csf tisular transfection is performed before TMP delivery, a tumor growth inhibition is observed, but with a limit effect when administering high antigen doses; in contrast, when signals are inverted, the limited effect is lost and greater antitumor efficacy is obtained. (ii) A similar behavior, but with stronger positive results, is observed employing gm-csf transfection and whole tumor cells as antigens. While negative results are obtained with gm-csf before cells, the best results (total survival of treated mice) are obtained when GM-CSF is administered in transfected cells. We conclude that optimal antitumoral response can be obtained when the antigen signal is given before (or simultaneous with) GM-CSF production, while the inversion of the signals could result in the undesired inhibition or anergy of the immune response. PMID:17341632

  7. Granulocyte-macrophage colony-stimulating factor and pulmonary surfactant homeostasis.

    PubMed

    Reed, J A; Whitsett, J A

    1998-01-01

    Pulmonary surfactant lining the alveolus of the lung is critical to postnatal adaptation to air breathing. Precise concentrations of surfactant proteins and lipids are maintained in the alveolar space by a careful balance among synthesis, recycling, and catabolism. Pulmonary alveolar proteinosis is a rare pulmonary disease associated with accumulation of surfactant lipids and proteins in the alveolar spaces. Recent work with transgenic mice demonstrated that disruption of the production of granulocyte-macrophage colony-stimulating factor (GM-CSF) or the common beta-subunit of the GM-CSF receptor caused alveolar proteinosis that was histologically similar to that seen in human patients. The defect in surfactant homeostasis is caused by decreased surfactant clearance, mediated (at least in part) by dysfunction of the alveolar macrophage. Local production of GM-CSF corrects the alveolar proteinosis in the GM-CSF knockout mouse. Likewise, transplantation of wild-type bone marrow cells expressing the common beta-chain of the GM-CSF receptor restores surfactant homeostasis in the GM-CSF receptor knockout mouse. These studies demonstrate the previously unanticipated role of GM-CSF signaling in surfactant homeostasis, mediated (at least in part) by its actions on the clearance of surfactant lipids and proteins by the alveolar macrophage. These findings may have important implications for the diagnosis and treatment of pulmonary alveolar proteinosis syndromes in humans. PMID:9686680

  8. Effects of granulocyte-macrophage colony-stimulating factor and cyclic AMP interaction on human neutrophil apoptosis.

    PubMed Central

    Tortorella, C; Piazzolla, G; Spaccavento, F; Antonaci, S

    1998-01-01

    The current study was undertaken to evaluate the effects of granulocyte-macrophage colony-stimulating factor (GM-CSF) and cyclic AMP (cAMP) signaling interaction on human neutrophil apoptosis, either occurring spontaneously or induced by Fas antigen activation. Results show that GM-CSF, dibutyryl cAMP (a cAMP analog) and forskolin (an adenylate cyclase activator) are all able to suppress spontaneous neutrophil cell death. Of note however, when GM-CSF is used in combination with cAMP-elevating agents, an additive effect on neutrophil survival is observed with dibutyryl cAMP only, whereas supplementation of cell cultures with GM-CSF and forskolin results in a progressive reduction of antiapoptotic effects exerted by the single compounds. Moreover, although dibutyryl cAMP and forskolin do not affect Fas-triggered apoptotic events, they are still able to modulate the GM-CSF capacity to prolong neutrophil survival following anti-Fas IgM cell challenge, with effects similar to those respectively exerted on spontaneous neutrophil apoptosis. The data indicate that GM-CSF may negatively modulate the cAMP-mediated antiapoptotic pathway in human neutrophils, likely via the inhibition of adenylate cyclase activity. This would prevent an abnormal neutrophil survival as a result of cAMP signaling stimulation, which provides a novel insight into the role of GM-CSF as a physiological regulator of myeloid cell turnover. PMID:9927231

  9. Pulmonary alveolar proteinosis: a bench-to-bedside story of granulocyte-macrophage colony-stimulating factor dysfunction.

    PubMed

    Greenhill, Sara R; Kotton, Darrell N

    2009-08-01

    Pulmonary alveolar proteinosis (PAP) is a rare disorder characterized by ineffective clearance of surfactant by alveolar macrophages. Through recent studies with genetically altered mice, the etiology of this idiopathic disease is becoming clearer. Functional deficiency of granulocyte-macrophage colony-stimulating factor (GM-CSF) appears to contribute to disease pathogenesis because mutant mice deficient in GM-CSF or its receptor spontaneously develop PAP. Recent human studies further suggest a connection between PAP and defective GM-CSF activity because inactivating anti-GM-CSF autoantibodies are observed in all patients with idiopathic PAP, and additional rare cases of PAP in children have been accompanied by genetic defects in the alpha chain of the GM-CSF receptor. In patients and mouse models of PAP, deficient GM-CSF activity appears to result in defective alveolar macrophages that are unable to maintain pulmonary surfactant homeostasis and display defective phagocytic and antigen-presenting capabilities. The most recent studies also suggest that neutrophil dysfunction additionally contributes to the increased susceptibility to lung infections seen in PAP. Because the phenotypic and immunologic abnormalities of PAP in mouse models can be corrected by GM-CSF reconstituting therapies, early clinical trials are underway utilizing administration of GM-CSF to potentially treat human PAP. The development of novel treatment approaches for PAP represents a dramatic illustration in pulmonary medicine of the "bench-to-bedside" process, in which basic scientists, translational researchers, and clinicians have joined together to rapidly take advantage of the unexpected observations frequently made in the modern molecular biology research laboratory. PMID:19666756

  10. Biotinylated granulocyte/macrophage colony-stimulating factor analogues: effect of linkage chemistry on activity and binding.

    PubMed

    Angelotti, T P; Clarke, M F; Longino, M A; Emerson, S G

    1991-01-01

    useful nonradioactive probes with which to study GM-CSF receptor cytochemistry and receptor modulation by flow cytometry. PMID:1839606

  11. Impact of benzene metabolites on differentiation of bone marrow progenitor cells

    SciTech Connect

    Irons, R.D.; Stillman, W.S.

    1996-12-01

    Interleukin-3 (IL-3) and granulocyte/macrophage-colony-stimulating factor (GM-CSF) are responsible for maintaining survival and stimulating growth of early dormant hematopoietic progenitor cells (HPC). These cytokines exhibit extensive overlap, with GM-CSF supporting growth and differentiation of myeloid HPC. A characteristic shared by a diverse group of leukemogens is the ability to act synergistically with GM-CSF to increase clonogenic response. Previous studies have revealed that pretreatment of murine HPC with hydroquinone (HQ) but not phenol, catechol, or trans-trans-muconaldehyde results in a selective enhancement of GM-CSF but not IL-3-mediated clonogenic response. Pretreatment of murine bone marrow cells with these agents or their metabolites in vitro results in increased numbers of HPC dividing and forming colonies in response to GM-CSF but not IL-3. The present studies explored the molecular mechanisms associated with altered cytokine response in early HPC in murine bone marrow and extended our initial observations in murine bone marrow to human bone marrow cells. HQ pretreatment of murine HPC did not induce either an up or a down-regulation of GM-CSF receptors or any change in receptor affinity. CD34{sup +} cells, which represent between 1 and 5% of human bone marrow, contain virtually all clonogenic stem and HPC. Pretreatment of CD34{sup +} cells ({approximately}95% purity) with HQ also results in enhanced clonogenic response with GM-CSF but not IL-3. These findings suggest that an early step in chemical leukemogenesis may involve transient alterations in the regulation of cytokine response to GM-CSF. 23 refs., 3 figs., 1 tab.

  12. Autoantibody-Mediated Pulmonary Alveolar Proteinosis in Rasgrp1-Deficient Mice.

    PubMed

    Ferretti, Andrew; Fortwendel, Jarrod R; Gebb, Sarah A; Barrington, Robert A

    2016-07-15

    Pulmonary alveolar proteinosis (PAP) is a rare lung syndrome caused by the accumulation of surfactants in the alveoli. The most prevalent clinical form of PAP is autoimmune PAP (aPAP) whereby IgG autoantibodies neutralize GM-CSF. GM-CSF is a pleiotropic cytokine that promotes the differentiation, survival, and activation of alveolar macrophages, the cells responsible for surfactant degradation. IgG-mediated neutralization of GM-CSF thereby inhibits alveolar macrophage homeostasis and function, leading to surfactant accumulation and innate immunodeficiency. Importantly, there are no rodent models for this disease; therefore, underlying immune mechanisms regulating GM-CSF-specific IgG in aPAP are not well understood. In this article, we identify that autoimmune-prone Rasgrp1-deficient mice develop aPAP: 1) Rasgrp1-deficient mice exhibit reduced pulmonary compliance and lung histopathology characteristic of PAP; 2) alveolar macrophages from Rasgrp1-deficient mice are enlarged and exhibit reduced surfactant degradation; 3) the concentration of GM-CSF-specific IgG is elevated in both serum and bronchoalveolar lavage fluid from Rasgrp1-deficient mice; 4) GM-CSF-specific IgG is capable of neutralizing GM-CSF bioactivity; and 5) Rasgrp1-deficient mice also lacking CD275/ICOSL, a molecule necessary for conventional T cell-dependent Ab production, have reduced GM-CSF-specific autoantibody and do not develop PAP. Collectively, these studies reveal that Rasgrp1-deficient mice, to our knowledge, represent the first rodent model for aPAP. PMID:27279372

  13. The combined effect of erythropoietin and granulocyte macrophage colony stimulating factor on liver regeneration after major hepatectomy in rats

    PubMed Central

    2010-01-01

    Background The liver presents a remarkable capacity for regeneration after hepatectomy but the exact mechanisms and mediators involved are not yet fully clarified. Erythropoietin (EPO) and Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) have been shown to promote liver regeneration after major hepatectomy. Aim of this experimental study is to compare the impact of exogenous administration of EPO, GM-CSF, as well as their combination on the promotion of liver regeneration after major hepatectomy. Methods Wistar rats were submitted to 70% major hepatectomy. The animals were assigned to 4 experimental groups: a control group (n = 21) that received normal saline, an EPO group (n = 21), that received EPO 500 IU/kg, a GM-CSF group (n = 21) that received 20 mcg/kg of GM-CSF and a EPO+GMCSF group (n = 21) which received a combination of the above. Seven animals of each group were killed on the 1st, 3rd and 7th postoperative day and their remnant liver was removed to evaluate liver regeneration by immunochemistry for PCNA and Ki 67. Results Our data suggest that EPO and GM-CSF increases liver regeneration following major hepatectomy when administered perioperatively. EPO has a more significant effect than GM-CSF (p < 0.01). When administering both, the effect of EPO seems to fade as EPO and GM-CSF treated rats have decreased regeneration compared to EPO administration alone (p < 0.01). Conclusion EPO, GM-CSF and their combination enhance liver regeneration after hepatectomy in rats when administered perioperatively. However their combination has a weaker effect on liver regeneration compared to EPO alone. Further investigation is needed to assess the exact mechanisms that mediate this finding. PMID:20604971

  14. Effect of granulocyte-macrophage colony-stimulating factor on hepatic regeneration after 70% hepatectomy in normal and cirrhotic rats

    PubMed Central

    Demirci, S; Akbulut, H; Sever, N; Demirer, S; Ünal, AE

    2002-01-01

    Background Post-hepatectomy liver insufficiency is one of the most serious postoperative problems and its prevention is important after major hepatic resection, especially in the cirrhotic liver. Some growth factors and cytokines appear to play important roles in liver regeneration. In the present study we have investigated the effects of granulocyte-macrophage colony-stimulating factor (GM-CSF) on hepatic regeneration after 70% partial hepatectomy (PH) in cirrhotic and non-cirrhotic rats. Methods A rat model of liver cirrhosis was prepared using thioacetamide (TAA) (a dose of 20 mg/100 g body w, intra-peritoneally) on three days a week for 12 weeks. Adult male rats were divided into four groups:Group 1 (n=10) no cirrhosis and no GM-CSF; Group 2 (n=10) no cirrhosis and GM-CSF; Group 3 (n=10) cirrhosis and no GM-CSF; and Group 4 (n=10) cirrhosis and GM-CSF. All the rats underwent a 70% hepatectomy, and GM-CSF was administrated immediately after operation in Groups 2 and 4. On postoperative days 2 and 7, fresh samples from the remnant liver were obtained to evaluate its regenerative capacity.The liver regenerative process was estimated by DNA synthesis, using flow cytometry. Results Proliferation index (PI) of hepatocytes at 48 h was higher in Group 4 rats than Group 3 rats (p<0.05). On postoperative day 7, PI was elevated in Group 3 rats compared with Group 4 rats, but this difference was not statistically significant. In non-cirrhotic rats given GM-CSF, PI was increased compared with Group 1 rats at day 2 (p<0.05), but not at day 7. Conclusions The findings suggest that the proliferative capacity of liver cells is impaired and delayed after 70% PH in cirrhotic rat liver. GM-CSF administration might enhance the liver PI in both normal and TAA-induced cirrhotic rats. PMID:18332927

  15. Cytokine production by cell cultures from bronchial subepithelial myofibroblasts.

    PubMed

    Zhang, S; Howarth, P H; Roche, W R

    1996-09-01

    Myofibroblasts have been previously described beneath the bronchial epithelium and were found to increase in number proportional to the accumulation of extracellular matrix in the bronchial lamina reticularis in asthma. The aim of this study was to assess further the contribution of these structural cells to allergic inflammation in the bronchial mucosa through their cytokine expression. Cell cultures were established from the lamina reticularis of human bronchial biopsies from asthmatic and non-asthmatic subjects. Cytokine secretion was measured by ELISA in supernatants of cultures with or without tumour necrosis factor-alpha (TNF-alpha). The mRNA levels for granulocyte-macrophage colony-stimulating factor (GM-CSF) in the cultures were examined by ribonuclease protection assays (RPAs). Bronchial myofibroblasts grown from bronchial biopsies were capable of producing GM-CSF, interleukin-6 (IL-6), interleukin-8 (IL-8), and stem cell factor (SCF) constitutively. The GM-CSF production by myofibroblasts was significantly increased in response to TNF-alpha simulation with a corresponding increase in GM-CSF mRNA expression. The enhancement of GM-CSF production by TNF-alpha in myofibroblasts was blocked by the inhibition of RNA synthesis. Prednisolone abolished the GM-CSF production. This study provides evidence for the role of bronchial myofibroblasts in the regulation of inflammatory cell recruitment and activation by interaction in the cytokine network in the bronchial mucosa. PMID:8943823

  16. Granulocyte macrophage colony-stimulating factor treatment results in recovery of motor function after white matter damage in mice.

    PubMed

    Theoret, Jennifer K; Jadavji, Nafisa M; Zhang, Min; Smith, Patrice D

    2016-01-01

    Clinical stroke usually results from a cerebral ischaemic event, and is frequently a debilitating condition with limited treatment options. A significant proportion of clinical strokes result from specific damage to the subcortical white matter (SWM), but currently there are few animal models available to investigate the pathogenesis and potential therapeutic strategies to promote recovery. Granulocyte macrophage colony-stimulating factor (GM-CSF) is a cytokine that has been previously shown to promote neuroprotective effects after brain damage; however, the mechanisms mediating this effect are not known. Here, it is reported that GM-CSF treatment results in dramatic functional improvement in a white matter model of stroke in mice. SWM stroke was induced in mice by unilateral injections of the vasoconstrictor, endothelin-1 (ET-1). The results reveal that ET-1-induced stroke impairs skilled motor function on the single pellet-reaching task and results in forelimb asymmetry, in adult mice. Treatment with GM-CSF, after stroke, restores motor function and abolishes forelimb asymmetry. The results also indicate that GM-CSF promotes its effects by activating mammalian target of rapamycin signalling mechanisms in the brain following stroke injury. Additionally, a significant increase in GM-CSF receptor expression was found in the ipsilateral hemisphere of the ET-1-injected brain. Taken together, the present study highlights the use of an under-utilized mouse model of stroke (using ET-1) and suggests that GM-CSF treatment can attenuate ET-1-induced functional deficits. PMID:26474338

  17. SIZE-FRACTIONATED AMBIENT PARTICULATE MATTER INDUCES GM-CSF IN HUMAN BRONCHIAL EPITHELIAL CELLS BY MAPK PATHWAYS. (R827351C003)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  18. MS-275 and GM-CSF in Treating Patients With Myelodysplastic Syndrome and/or Relapsed or Refractory Acute Myeloid Leukemia or Acute Lymphocytic Leukemia

    ClinicalTrials.gov

    2013-01-08

    Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Ringed Sideroblasts; Refractory Cytopenia With Multilineage Dysplasia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  19. Monoclonal LYM-1 antibody-dependent cytolysis by human neutrophils exposed to GM-CSF: auto-regulation of target cell attack by cathepsin G.

    PubMed

    Ottonello, Luciano; Epstein, Alan L; Mancini, Marina; Dapino, Patrizia; Dallegri, Franco

    2004-01-01

    Murine monoclonal antibody (mAb) Lym-1 is an immunoglobulin G2a specific for certain human leukocyte antigen-DR variants expressed on the surface of malignant B cells. It has been proposed for serotherapy in patients with B lymphomas. We have previously shown that mAb Lym-1 synergizes with granulocyte macrophage-colony stimulating factor to promote Raji B-lymphoid cell lysis by human neutrophils via the intervention of neutrophil Fc receptors type II and D-mannose-inhibitable interactions between CD11b-CD18 integrins and CD66b glycoproteins. Here, we provide evidence that the process is oxygen-independent by inference related to the release of primary granules and is regulated by cathepsin G activity. The lysis was indeed reproduced by replacing normal neutrophils with cells from three patients suffering from chronic granulomatous disease, i.e., neutrophils genetically incapable of generating oxidants. Moreover, the lysis was inhibited by the serine protease inhibitor 3,4-dichloroisocoumarin and by Z-glycyl-leucyl-phenyl-chloromethyl ketone (Z-Gly-Leu-Phe-CMK), which blocks cathepsin G. Conversely, the lysis was unaffected by N-methoxysuccinyl-alanyl-alanyl-prolyl-alanyl-CMK (MeOSuc-Ala-Ala-Pro-Ala-CMK; elastase inhibitor) and MeOSuc-Ala-Ala-Pro-valine (Val)-CMK, which inhibits elastase and proteinase 3. The ability of neutrophils, engaged in cytolysis, to release cathepsin G was proved by detecting this enzymatic activity spectrophotometrically and immunocytochemically. Moreover, inhibition of cathepsin G activity by concentrations of Z-Gly-Leu-Phe-CMK, incapable of affecting elastase activity, was found to reduce the release of elastase and myeloperoxidase from neutrophils under conditions similar to those used for cytolytic assays. These findings suggest that neutrophils auto-regulate their lytic efficiency by controlling the exocytosis of primary granules via their cathepsin G activity. PMID:14525961

  20. Vaccine Therapy With Sargramostim (GM-CSF) in Treating Patients With Her-2 Positive Stage III-IV Breast Cancer or Ovarian Cancer

    ClinicalTrials.gov

    2016-05-02

    HER2-positive Breast Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor

  1. Mouse precision-cut liver slices as an ex vivo model to study idiosyncratic drug-induced liver injury.

    PubMed

    Hadi, Mackenzie; Chen, Yixi; Starokozhko, Viktoriia; Merema, Marjolijn T; Groothuis, Geny M M

    2012-09-17

    Idiosyncratic drug-induced liver injury (IDILI) has been the top reason for withdrawing drugs from the market or for black box warnings. IDILI may arise from the interaction of a drug's reactive metabolite with a mild inflammation that renders the liver more sensitive to injury resulting in increased toxicity (inflammatory stress hypothesis). Aiming to develop a robust ex vivo screening method to study inflammatory stress-related IDILI mechanisms and to find biomarkers that can detect or predict IDILI, mouse precision-cut liver slices (mPCLS) were coincubated for 24 h with IDILI-related drugs and lipopolysaccharide. Lipopolysaccharide exacerbated ketoconazole (15 μM) and clozapine (45 μM) toxicity but not their non-IDILI-related comparators, voriconazole (1500 μM) and olanzapine (45 μM). However, the other IDILI-related drugs tested [diclofenac (200 μM), carbamazepine (400 μM), and troglitazone (30 μM)] did not cause synergistic toxicity with lipopolysaccharide after 24 h of incubation. Lipopolysaccharide further decreased the reduced glutathione levels caused by ketoconazole or clozapine in mPCLS after 24 h of incubation, which was not the case for the other drugs. Lipopolysaccharide significantly increased nitric oxide (NO), cytokine, and chemokine release into the mPCLS media, while the treatment with the drugs alone did not cause any substantial change. All seven drugs drastically reduced lipopolysaccharide-induced NO production. Interestingly, only ketoconazole and clozapine increased the lipopolysaccharide-induced granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) release. Pilot experiments showed that diclofenac and troglitazone, but not carbamazepine, demonstrated synergistic toxicity with lipopolysaccharide after a longer incubation of 48 h in mPCLS. In conclusion, we have developed an ex vivo model to detect inflammatory stress-related liver toxicity and identified ketoconazole, clozapine

  2. Plasma Cytokine Levels in Chronic Asymptomatic HIV-1 Subtype C Infection as an Indicator of Disease Progression in Botswana: A Retrospective Case Control Study.

    PubMed

    Iketleng, Thato; Moyo, Sikhulile; Gaseitsiwe, Simani; Nyombi, Balthazar; Mitchell, Rebecca M; Makhema, Joseph; Baum, Marianna K; Marlink, Richard; Essex, Max; Musonda, Rosemary

    2016-04-01

    HIV infects cells of the immune system causing immune activation and proliferation of immune cells, leading to alteration of production and activity of a number of cytokines. These changes in cytokine levels can affect the immune function, and have the potential to directly impact the course of HIV disease. We characterized plasma cytokine concentration profiles in HIV-1 subtype C chronically infected, antiretroviral therapy (ART)-naive participants to establish their influence on disease progression and viremia. Plasma levels of interleukin (IL)-1α, IL-7, IL-12p40, granulocyte macrophage-colony-stimulating factor (GM-CSF), and interferon (IFN)-γ were quantified in samples from 60 treatment-naive participants in the placebo arm of the completed Micronutrient-HIV disease progressions study, "Dikotlana" (2004-2009) in Gaborone, Botswana. Participants were stratified into progressors (P) and nonprogressors (NP) based on their rates of CD4(+) T cell depletion during the study period. Nonprogressors were those who had <1% CD4(+) T cell depletion at 24 months postenrollment. Progressors were defined as those with CD4(+) T cell depletion of >15% at 24 months postenrollment. Cytokine levels were compared between P and NP using the Mann-Whitney U-test. Logistic regression analysis was used to determine if cytokines predicted disease progression. Correlations of cytokines with CD4(+) T cell counts and viral loads were determined by the Spearman rank test. Median baseline CD4(+) T cell counts were 453 (Q1, Q3; 401, 592) and 479 (Q1, Q3; 401-592) for nonprogressors and progressors, respectively. Nonprogressors had a higher viral set point than progressors. IL-12p40 levels were significantly higher in the P than in NP at enrollment and 24 months (p < 0.05). Levels of IL-1α, IL-7, IFN-γ, and GM-CSF did not differ significantly between the two groups. Except for IL-12p40, which displayed an inverse correlation with CD4(+) T cell counts and a direct correlation with viral load

  3. Purified murine granulocyte/macrophage progenitor cells express a high-affinity receptor for recombinant murine granulocyte/macrophage colony-stimulating factor

    SciTech Connect

    Williams, D.E.; Bicknell, D.C.; Park, L.S.; Straneva, J.E.; Cooper, S.; Broxmeyer, H.E.

    1988-01-01

    Purified recombinant murine granulocyte/macrophage colony-stimulating factor (GM-CSF) was labeled with /sup 125/I and used to examine the GM-CSF receptor on unfractionated normal murine bone marrow cells, casein-induced peritoneal exudate cells, and highly purified murine granulocyte/macrophage progenitor cells (CFU-GM). CFU-GM were isolated from cyclophosphamide-treated mice by Ficoll-Hypaque density centrifugation followed by counterflow centrifugal elutriation. The resulting population had a cloning efficiency of 62-99% in cultures containing conditioned medium from pokeweed mitogen-stimulated spleen cells and 55-86% in the presence of a plateau concentration of purified recombinant murine GM-CSF. Equilibrium binding studies with /sup 125/I-labeled GM-CSF showed that normal bone marrow cells, casein-induced peritoneal exudate cells, and purified CFU-GM had a single class of high-affinity receptor. Affinity crosslinking studies demonstrated that /sup 125/I-labeled GM-CSF bound specifically to two species of M/sub r/ 180,000 and 70,000 on CFU-GM, normal bone marrow cells, and peritoneal exudate cells. The M/sub r/ 70,000 species is thought to be a proteolytic fragment of the intact M/sub r/ 180,000 receptor. The present studies indicate that the GM-CSF receptor expressed on CFU-GM and mature myeloid cells are structurally similar. In addition, the number of GM-CSF receptors on CFU-GM is twice the average number of receptors on casein-induced mature myeloid cells, suggesting that receptor number may decrease as CFU-GM mature.

  4. Cytokine profiles during delivery affect cord blood hematopoietic stem and progenitors cells.

    PubMed

    Szaryńska, Magdalena; Myśliwski, Andrzej; Myśliwska, Jolanta; Kmieć, Zbigniew; Preis, Krzysztof; Zabul, Piotr

    2015-02-01

    The study was aimed to determine the correlations between serum levels of cytokines (GM-CSF, IL-4, IL-10 and TNF) in maternal (MB) and cord blood (CB) and some features of cord blood hematopoietic stem and progenitor cells (CB HSPCs). Study material was MB and concomitant CB samples collected from 98 volunteers at the moment of delivery. The IL-4, IL-10, TNF and GM-CSF concentrations in serum and in supernatants from PMA-stimulated mononuclear cells isolated from both blood types were measured using BD Cytometric Bead Array Flex Set System. CB HSPCs (CD34(+)CD45(low)) proportion was also estimated by flow cytometry. The most relevant results concerned the tendency to down regulation of CB HSPCs number with an increase of IL-4, IL-10 and GM-CSF levels, only the TNF concentration seems to have no influence on HSPCs pole size. The strongest positive correlations were found between CD34(+)CD45(low) HSPCs number and IL-10 and GM-CSF in MB serum and GM-CSF and TNF from CB supernatants. The strongest negative correlations were found between CD34(+)CD45(low) HSPCs number and IL-4 and GM-CSF in CB serum and IL-10 in MB supernatants. Interestingly, we observed 'opposite correlation' between serum and supernatant from CB and MB. We concluded that elevated serum levels of IL-4, IL-10 and GM-CSF in CB are indicative of enhanced differentiation of HSPCs and characterize a normal perinatal development. Elevated levels of cytokines seem to stimulate differentiation of HSPCs what is advantageous for neonates during perinatal period. PMID:25638579

  5. Role of Stem Cell Factor and Granulocyte-Colony Stimulating Factor in Remodeling during Liver Regeneration

    PubMed Central

    Meng, Fanyin; Francis, Heather; Glaser, Shannon; Han, Yuyan; DeMorrow, Sharon; Stokes, Allison; Staloch, Dustin; Venter, Julie; White, Melanie; Ueno, Yoshiyuki; Reid, Lola M.; Alpini, Gianfranco

    2011-01-01

    Functional pluripotent characteristics have been observed in specific subpopulations of hepatic cells that express some of the known cholangiocyte markers. Although evidence indicates that specific cytokines, granulocyte-macrophage colony stimulating factors (GM-CSF) and stem cell factor (SCF) may be candidate treatments for liver injury, the role of these cytokines in intrahepatic biliary epithelium remodeling is unknown. Thus, our aim was to characterize the specific cytokines that regulate the remodeling potentials of cholangiocytes after 70% partial hepatectomy (PH). The expression of the cytokines and their downstream signaling molecules was studied in rats after 70% PH by immunoblots, and in small and large murine cholangiocyte cultures (SMCCs and LMCCs) by immunocytochemistry and real-time PCR. There was a significant and stable increase in SCF and GM-CSF levels until 7 days after PH. Real-time PCR analysis revealed significant increases of key remodeling molecules, such as S100A4 and miR-181b after SCF plus GM-CSF administration in SMCCs. SMCCs produced significant amounts of soluble and bound SCF and GM-CSF in response to TGF-β. When SMCCs were incubated with TGF-β plus anti–SCF and GM-CSF antibodies, there was a significant decrease in S100A4 expression. Furthermore, treatment of SMCCs with SCF + GM-CSF significantly increased matrix metalloproteinases (MMP-2 and MMP-9) mRNA as well as miR-181b expression along with a reduction of metalloproteinase inhibitor 3 (TIMP-3). The levels of MMP-2, MMP-9 and miR-181b were also up-regulated in rat liver and isolated cholangiocytes after PH. CONCLUSION Our data suggest that altered expression of SCF and GM-CSF following PH can contribute to biliary remodeling (for example post-transplantation) by functional deregulation of activity of key signaling intermediates involved in cell expansion and multipotent differentiation. PMID:21932404

  6. Overexpression of granulocyte-macrophage colony-stimulating factor induces pulmonary granulation tissue formation and fibrosis by induction of transforming growth factor-beta 1 and myofibroblast accumulation.

    PubMed Central

    Xing, Z.; Tremblay, G. M.; Sime, P. J.; Gauldie, J.

    1997-01-01

    We have previously reported that transfer to rat lung of the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene leads to high expression of GM-CSF between days 1 and 4 and granulation tissue formation followed by an irreversible fibrotic response starting from day 12 onward. In the current study, we investigated the underlying mechanisms. We found that GM-CSF overexpression did not enhance production of tumor necrosis factor-alpha in a significant manner at any time after GM-CSF gene transfer. However, the content of transforming growth factor-beta 1 in bronchoalveolar lavage fluid was markedly induced at day 4 and appeared to be maximal around day 7 and remained high at day 12. Macrophages purified from bronchoalveolar lavage fluid 7 days after GM-CSF gene transfer spontaneously released significant quantities of transforming growth factor-beta 1 protein in vitro. After peak transforming growth factor-beta 1 production was the emergence of alpha-smooth muscle actin-rich myofibroblasts. Accumulation of these cells was most prominent at day 12 within the granulation tissues and they were still present in fibrotic areas between days 12 and 24 and diminished markedly afterward. Thus, we provide the first in vivo evidence that tumor necrosis factor-alpha may be dissociated from participation in a fibrotic process in the lung and GM-CSF may play a more direct role in pulmonary fibrogenesis at least in part through its capability to induce transforming growth factor-beta 1 in macrophages and the subsequent emergence of myofibroblast phenotypes. This GM-CSF transgene lung model is useful for a stepwise dissection of both cellular and molecular events involved in pulmonary fibrosis. Images Figure 2 Figure 5 Figure 6 PMID:9006322

  7. Cytokine amplification and macrophage effector functions in aortic inflammation and abdominal aortic aneurysm formation.

    PubMed

    Ijaz, Talha; Tilton, Ronald G; Brasier, Allan R

    2016-08-01

    On April 29, 2015, Son and colleagues published an article entitled "Granulocyte macrophage colony-stimulating factor (GM-CSF) is required for aortic dissection/intramural haematoma" in Nature Communications. The authors observed that the heterozygous Kruppel-like transcription factor 6 (KLF6) deficiency or absence of myeloid-specific KLF6 led to upregulation of macrophage GM-CSF expression, promoted the development of aortic hematoma/dissection, and stimulated abdominal aortic aneurysm (AAA) formation when the vessel wall was subjected to an inflammatory stimulus. The additional findings of increased adventitial fibrotic deposition, marked infiltration of macrophages, and increased expression of matrix metalloprotease-9 (MMP-9) and IL-6 were blocked with neutralizing GM-CSF antibodies, or recapitulated in normal mice with excess GM-CSF administration. The authors concluded that GM-CSF is a key regulatory molecule in the development of AAA and further suggested that activation of GM-CSF is independent of the transforming growth factor β (TGFβ)-Smad pathway associated with the Marfan aortic pathology. In this perspective, we expand on this mechanism, drawing from previous studies implicating a similar essential role for IL-6 signaling in macrophage activation, Th17 expansion and aortic dissections. We propose a sequential "two-hit" model of vascular inflammation involving initial vascular injury followed by recruitment of Ly6C(hi) macrophages. Aided by fibroblast interactions inflammatory macrophages produce amplification of IL-6 and GM-CSF expression that converge on a common, pathogenic Janus kinase (JAK)-signal transducers and activations of transcription 3 (STAT3) signaling pathway. This pathway stimulates effector functions of macrophages, promotes differentiation of Th17 lymphocytes and enhances matrix metalloproteinase expression, ultimately resulting in deterioration of vascular wall structural integrity. Further research evaluating the impact of

  8. Induced expression of the new cytokine, activin A, in human monocytes: inhibition by glucocorticoids and retinoic acid.

    PubMed Central

    Yu, J; Shao, L E; Frigon, N L; Lofgren, J; Schwall, R

    1996-01-01

    The capacity of recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF), glucocorticoids or all-trans-retinoic acid to modulate production of activin A by human monocytes was studied. It was shown that GM-CSF stimulated monocytes to accumulate activin A RNA after as few as 4 hr of incubation, reaching a peak of stimulation at approximately 16 hr of incubation. The activin A transcripts accumulated in the monocytes after stimulation with only 5 U/ml of GM-CSF and reached a maximum plateau level of expression between 25 and 50 U/ml of GM-CSF. Biologically active activin A molecules were detected in the conditioned media by a bioassay, performed both in the absence and presence of a neutralizing antiserum for activin A. Accumulation of bioactive activin A in conditioned medium of monocyte cultures was detected after 24 hr of incubation with GM-CSF and high levels of activin A were maintained for 72 hr. The production of the dimeric beta A beta A in these monocytes was further confirmed by sandwich enzyme-linked immunosorbent assay (ELISA) specific for activin A. In contrast to the stimulatory effect of GM-CSF, hydrocortisone, dexamethasone or all-trans-retinoic acid at 1 x 10(-7) to 1 x 10(-5) M inhibited the constitutive expression of activin A and greatly suppressed the GM-CSF-stimulated production. Thus, the expression of activin A is modulated in monocytes by different agents. These observations may imply new roles for activin A at sites of inflammation where monocytes accumulate. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8774352

  9. Cytokine amplification and macrophage effector functions in aortic inflammation and abdominal aortic aneurysm formation

    PubMed Central

    Ijaz, Talha; Tilton, Ronald G.

    2016-01-01

    On April 29, 2015, Son and colleagues published an article entitled “Granulocyte macrophage colony-stimulating factor (GM-CSF) is required for aortic dissection/intramural haematoma” in Nature Communications. The authors observed that the heterozygous Kruppel-like transcription factor 6 (KLF6) deficiency or absence of myeloid-specific KLF6 led to upregulation of macrophage GM-CSF expression, promoted the development of aortic hematoma/dissection, and stimulated abdominal aortic aneurysm (AAA) formation when the vessel wall was subjected to an inflammatory stimulus. The additional findings of increased adventitial fibrotic deposition, marked infiltration of macrophages, and increased expression of matrix metalloprotease-9 (MMP-9) and IL-6 were blocked with neutralizing GM-CSF antibodies, or recapitulated in normal mice with excess GM-CSF administration. The authors concluded that GM-CSF is a key regulatory molecule in the development of AAA and further suggested that activation of GM-CSF is independent of the transforming growth factor β (TGFβ)-Smad pathway associated with the Marfan aortic pathology. In this perspective, we expand on this mechanism, drawing from previous studies implicating a similar essential role for IL-6 signaling in macrophage activation, Th17 expansion and aortic dissections. We propose a sequential “two-hit” model of vascular inflammation involving initial vascular injury followed by recruitment of Ly6Chi macrophages. Aided by fibroblast interactions inflammatory macrophages produce amplification of IL-6 and GM-CSF expression that converge on a common, pathogenic Janus kinase (JAK)-signal transducers and activations of transcription 3 (STAT3) signaling pathway. This pathway stimulates effector functions of macrophages, promotes differentiation of Th17 lymphocytes and enhances matrix metalloproteinase expression, ultimately resulting in deterioration of vascular wall structural integrity. Further research evaluating the impact of

  10. Phase 1 Study of Intratumoral Pexa-Vec (JX-594), an Oncolytic and Immunotherapeutic Vaccinia Virus, in Pediatric Cancer Patients

    PubMed Central

    Cripe, Timothy P; Ngo, Minhtran C; Geller, James I; Louis, Chrystal U; Currier, Mark A; Racadio, John M; Towbin, Alexander J; Rooney, Cliona M; Pelusio, Adina; Moon, Anne; Hwang, Tae-Ho; Burke, James M; Bell, John C; Kirn, David H; Breitbach, Caroline J

    2015-01-01

    Pexa-Vec (pexastimogene devacirepvec, JX-594) is an oncolytic and immunotherapeutic vaccinia virus designed to destroy cancer cells through viral lysis and induction of granulocyte-macrophage colony-stimulating factor (GM-CSF)-driven tumor-specific immunity. Pexa-Vec has undergone phase 1 and 2 testing alone and in combination with other therapies in adult patients, via both intratumoral and intravenous administration routes. We sought to determine the safety of intratumoral administration in pediatric patients. In a dose-escalation study using either 106 or 107 plaque-forming units per kilogram, we performed one-time injections in up to three tumor sites in five pediatric patients and two injections in one patient. Ages at study entry ranged from 4 to 21 years, and their cancer diagnoses included neuroblastoma, hepatocellular carcinoma, and Ewing sarcoma. All toxicities were ≤ grade 3. The most common side effects were sinus fever and sinus tachycardia. All three patients at the higher dose developed asymptomatic grade 1 treatment-related skin pustules that resolved within 3–4 weeks. One patient showed imaging evidence suggestive of antitumor biological activity. The two patients tested for cellular immunoreactivity to vaccinia antigens showed strong responses. Overall, our study suggests Pexa-Vec is safe to administer to pediatric patients by intratumoral administration and could be studied further in this patient population. PMID:25531693

  11. Therapeutic Potential of Dental Pulp Stem Cell Secretome for Alzheimer's Disease Treatment: An In Vitro Study

    PubMed Central

    Ahmed, Nermeen El-Moataz Bellah; Murakami, Masashi; Hirose, Yujiro; Nakashima, Misako

    2016-01-01

    The secretome obtained from stem cell cultures contains an array of neurotrophic factors and cytokines that might have the potential to treat neurodegenerative conditions. Alzheimer's disease (AD) is one of the most common human late onset and sporadic neurodegenerative disorders. Here, we investigated the therapeutic potential of secretome derived from dental pulp stem cells (DPSCs) to reduce cytotoxicity and apoptosis caused by amyloid beta (Aβ) peptide. We determined whether DPSCs can secrete the Aβ-degrading enzyme, neprilysin (NEP), and evaluated the effects of NEP expression in vitro by quantitating Aβ-degrading activity. The results showed that DPSC secretome contains higher concentrations of VEGF, Fractalkine, RANTES, MCP-1, and GM-CSF compared to those of bone marrow and adipose stem cells. Moreover, treatment with DPSC secretome significantly decreased the cytotoxicity of Aβ peptide by increasing cell viability compared to nontreated cells. In addition, DPSC secretome stimulated the endogenous survival factor Bcl-2 and decreased the apoptotic regulator Bax. Furthermore, neprilysin enzyme was detected in DPSC secretome and succeeded in degrading Aβ1–42 in vitro in 12 hours. In conclusion, our study demonstrates that DPSCs may serve as a promising source for secretome-based treatment of Alzheimer's disease. PMID:27403169

  12. Experimental and clinical studies of cytokine gene-modified tumor cells.

    PubMed

    Tepper, R I; Mulé, J J

    1994-02-01

    Cytokines are key modulators of host immune and inflammatory responses. The expression of cytokine genes by tumor cells as a result of gene transfer has emerged as a novel strategy to augment in vivo host reactivity to various cancers. This review summarizes the knowledge obtained from experimental systems using this strategy and provides information on the current clinical trials employing this approach. In murine model systems, immunization with tumors expressing certain cytokines [e.g., tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), interleukin-7 (IL-7), and granulocyte-macrophage colony stimulating (GM-CSF)] has demonstrated their ability to promote the generation of tumor-specific cytotoxic T lymphocytes by various mechanisms; in some cases, significant regressions of established microscopic tumor deposits result. Non T cell mechanisms of tumor killing, such as granulocytic inflammatory responses, may also be elicited by the localized elaboration of certain cytokines [e.g., IL-4, granulocyte colony-stimulating factor (G-CSF)]. The potency of antitumor immune potentiation by cytokines, however, remains to be established by further animal studies and emerging clinical trials. The genetic modification of tumors for the expression of immunostimulatory gene products holds promise as a new approach for active immunotherapy of cancer and for the isolation of effector cell populations for use in adoptive immunotherapy protocols. PMID:8186297

  13. Therapeutic Potential of Dental Pulp Stem Cell Secretome for Alzheimer's Disease Treatment: An In Vitro Study.

    PubMed

    Ahmed, Nermeen El-Moataz Bellah; Murakami, Masashi; Hirose, Yujiro; Nakashima, Misako

    2016-01-01

    The secretome obtained from stem cell cultures contains an array of neurotrophic factors and cytokines that might have the potential to treat neurodegenerative conditions. Alzheimer's disease (AD) is one of the most common human late onset and sporadic neurodegenerative disorders. Here, we investigated the therapeutic potential of secretome derived from dental pulp stem cells (DPSCs) to reduce cytotoxicity and apoptosis caused by amyloid beta (Aβ) peptide. We determined whether DPSCs can secrete the Aβ-degrading enzyme, neprilysin (NEP), and evaluated the effects of NEP expression in vitro by quantitating Aβ-degrading activity. The results showed that DPSC secretome contains higher concentrations of VEGF, Fractalkine, RANTES, MCP-1, and GM-CSF compared to those of bone marrow and adipose stem cells. Moreover, treatment with DPSC secretome significantly decreased the cytotoxicity of Aβ peptide by increasing cell viability compared to nontreated cells. In addition, DPSC secretome stimulated the endogenous survival factor Bcl-2 and decreased the apoptotic regulator Bax. Furthermore, neprilysin enzyme was detected in DPSC secretome and succeeded in degrading Aβ 1-42 in vitro in 12 hours. In conclusion, our study demonstrates that DPSCs may serve as a promising source for secretome-based treatment of Alzheimer's disease. PMID:27403169

  14. Primary in vitro culture of porcine tracheal epithelial cells in an air-liquid interface as a model to study airway epithelium and Aspergillus fumigatus interactions.

    PubMed

    Khoufache, Khaled; Cabaret, Odile; Farrugia, Cécile; Rivollet, Danièle; Alliot, Annie; Allaire, Eric; Cordonnier, Catherine; Bretagne, Stéphane; Botterel, Françoise

    2010-12-01

    Since the airway epithelium is the first tissue encountered by airborne fungal spores, specific models are needed to study this interaction. We developed such a model using primary porcine tracheal epithelial cells (PTEC) as a possible alternative to the use of primary human cells. PTEC were obtained from pigs and were cultivated in an air-liquid interface. Fluorescent brightener was employed to quantify the internalization of Aspergillus fumigatus conidia. Potential differences (Vt) and transepithelial resistances (Rt) after challenge with the mycotoxin, verruculogen, were studied. Primers for porcine inflammatory mediator genes IL-8, TNF-alpha, and GM-CSF were designed for a quantitative real-time PCR procedure to study cellular responses to challenges with A. fumigatus conidia. TEM showed the differentiation of ciliated cells and the PTEC ability to internalize conidia. The internalization rate was 21.9 ± 1.4% after 8 h of incubation. Verruculogen (10(-6) M) significantly increased Vt without having an effect on the Rt. Exposure of PTEC to live A. fumigatus conidia for 24 h induced a 10- to 40-fold increase in the mRNA levels of inflammatory mediator genes. PTEC behave similarly to human cells and are therefore a suitable alternative to human cells for studying interaction between airway epithelium and A. fumigatus. PMID:20608777

  15. Key role for myeloid cells: phase II results of anti-G(D2) antibody 3F8 plus granulocyte-macrophage colony-stimulating factor for chemoresistant osteomedullary neuroblastoma.

    PubMed

    Cheung, Nai-Kong V; Cheung, Irene Y; Kramer, Kim; Modak, Shakeel; Kuk, Deborah; Pandit-Taskar, Neeta; Chamberlain, Elizabeth; Ostrovnaya, Irina; Kushner, Brian H

    2014-11-01

    Anti-G(D2) murine antibody 3F8 plus subcutaneously (sc) administered granulocyte-macrophage colony-stimulating factor (GM-CSF) was used against primary refractory neuroblastoma in metastatic osteomedullary sites. Large study size and long follow-up allowed assessment of prognostic factors in a multivariate analysis not reported with other anti-G(D2) antibodies. In a phase II trial, 79 patients without prior progressive disease were treated for persistent osteomedullary neuroblastoma documented by histology and/or metaiodobenzyl-guanidine (MIBG) scan. In the absence of human antimouse antibody, 3F8 + scGM-CSF cycles were repeated up to 24 months. Minimal residual disease (MRD) in bone marrow was measured by quantitative reverse transcription-polymerase chain reaction pre-enrollment and post-cycle #2, before initiation of 13-cis-retinoic acid. Study endpoints were: (i) progression-free survival (PFS) compared with the predecessor trial of 3F8 plus intravenously administered (iv) GM-CSF (26 patients) and (ii) impact of MRD on PFS. Using all 105 patients from the two consecutive 3F8 + GM-CSF trials, prognostic factors were analyzed by multivariate Cox regression model. Complete response rates to 3F8 + scGM-CSF were 87% by histology and 38% by MIBG. Five-year PFS was 24 ± 6%, which was significantly superior to 11 ± 7% with 3F8 + ivGM-CSF (p = 0.002). In the multivariate analysis, significantly better PFS was associated with R/R or H/R FCGR2A polymorphism, sc route of GM-CSF and early MRD response. MYCN amplification was not prognostic. Complement consumption was similar with either route of GM-CSF. Toxicities were manageable, allowing outpatient treatment. 3F8 + scGM-CSF is highly active against chemoresistant osteomedullary neuroblastoma. MRD response may be an indicator of tumor sensitivity to anti-G(D2) immunotherapy. Correlative studies highlight the antineoplastic potency of myeloid effectors. PMID:24644014

  16. Continuous infusion or subcutaneous injection of granulocyte-macrophage colony-stimulating factor: increased efficacy and reduced toxicity when given subcutaneously.

    PubMed Central

    Honkoop, A. H.; Hoekman, K.; Wagstaff, J.; van Groeningen, C. J.; Vermorken, J. B.; Boven, E.; Pinedo, H. M.

    1996-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a haematopoietic growth factor with a wide variety of applications in the clinic. In early phase I studies the continuous intravenous (c.i.) route of administration was often used. Later it was shown that subcutaneous (s.c.) administration was also effective. The optimal route of administration remains, however, poorly defined, and no studies have made a direct comparison between these two routes of administration. We treated patients with advanced breast cancer with moderately high-dose doxorubicin and cylophosphamide and GM-CSF. The first 14 patients received GM-CSF by c.i, while subsequently 47 patients received it s.c. Comparison between the two groups showed that c.i. GM-CSF was more toxic in several respects. There was a higher need for erythrocyte and platelet transfusions and a significant deterioration in the performance status. This study indicates that subcutaneous GM-CSF is the preferred route of administration. Randomised trials are, however, needed to confirm these conclusions. PMID:8855987

  17. Induction of Specific Cellular and Humoral Responses against Renal Cell Carcinoma after Combination Therapy with Cryoablation and Granulocyte-Macrophage Colony Stimulating Factor: A Pilot Study

    PubMed Central

    Thakur, Archana; Littrup, Peter; Paul, Elyse N.; Adam, Barbara; Heilbrun, Lance K.; Lum, Lawrence G.

    2013-01-01

    Cryotherapy offers a minimally invasive treatment option for the management of both irresectable and localized prostate, liver, pulmonary and renal tumors. The anti-neoplastic effects of cryotherapy are mediated by direct tumor lysis and by indirect effects such as intracellular dehydration, pH changes, and microvascular damage resulting in ischemic necrosis. In this study, we investigated whether percutaneous cryoablation of lung metastasis from renal cell carcinoma (RCC) in combination with aerosolized granulocyte-macrophage colony stimulating factor (GM-CSF) can induce systemic cellular and humoral immune responses in 6 RCC patients. Peripheral blood mononuclear cells (PBMC) were sequentially studied up to 63 days post cryoimmunotherapy (CI). PBMC from pre and post CI were phenotyped for lymphocyte subsets and tested for cytotoxicity and IFNγ Elispots directed at RCC cells. Humoral responses were measured by in vitro antibody synthesis assay directed at RCC cells. The immune monitoring data showed that CI induced tumor specific CTL, specific in vitro anti-tumor antibody responses, and enhanced Th1 cytokine production in 4 out of 6 patients. More importantly, the magnitude of cellular and humoral anti-tumor response appears to be associated with clinical responses. These pilot data show that CI can induce robust and brisk cellular and humoral immune responses in metastatic RCC patients, but requires further evaluation in optimized protocols. PMID:21577139

  18. Granulocyte-Macrophage Colony-Stimulating Factor in Staphylococcus aureus-Induced Arthritis

    PubMed Central

    Verdrengh, Margareta; Tarkowski, Andrej

    1998-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine that is able to increase not only the production of phagocytic cells but also their efficacy with respect to, e.g., bactericidal properties. In this study, we wanted to analyze the impact of GM-CSF on experimental Staphylococcus aureus-induced arthritis. For that purpose, mice were administered GM-CSF before and after bacterial inoculation. Although there was an increase in the total number of leukocytes as well as in the granulocyte fraction, there was no favorable effect on the severity of arthritis or on survival rates. There were no obvious differences between the GM-CSF-pretreated animals and controls with regard to growth of staphylococci in joints and kidneys 4 days after the bacterial inoculation. In contrast, mice that had been pretreated with GM-CSF prior to bacterial inoculation showed approximately four times lower numbers of bacteria in their blood 24 h later. These results, along with those of our previous studies, suggest that on the one hand the granulocyte is the main protective cell during the course of S. aureus infection but that on the other hand, upregulation of granulocyte-macrophage production will not exert any additional protective effects with respect to tissue injury. PMID:9453655

  19. Role of Granulocyte-Macrophage Colony-Stimulating Factor Signaling in Regulating Neutrophil Antifungal Activity and the Oxidative Burst During Respiratory Fungal Challenge.

    PubMed

    Kasahara, Shinji; Jhingran, Anupam; Dhingra, Sourabh; Salem, Anand; Cramer, Robert A; Hohl, Tobias M

    2016-04-15

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that plays a critical role in regulating myeloid cell host defense. In this study, we demonstrated that GM-CSF signaling plays an essential role in antifungal defense against Aspergillus fumigatus. Mice that lack the GM-CSF receptor β chain (GM-CSFRβ) developed invasive hyphal growth and exhibited impaired survival after pulmonary challenge with A. fumigatus conidia. GM-CSFRβ signaling regulated the recruitment of inflammatory monocytes to infected lungs, but not the recruitment of effector neutrophils. Cell-intrinsic GM-CSFRβ signaling mediated neutrophil and inflammatory monocyte antifungal activity, because lung GM-CSFRβ(-/-) leukocytes exhibited impaired conidial killing compared with GM-CSFRβ(+/+) counterparts in mixed bone marrow chimeric mice. GM-CSFRβ(-/-) neutrophils exhibited reduced (hydrogenated) nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity in vivo. Conversely, administration of recombinant GM-CSF enhanced neutrophil NADPH oxidase function, conidiacidal activity, and lung fungal clearance in A. fumigatus-challenged mice. Thus, our study illustrates the functional role of GM-CSFRβ signaling on lung myeloid cell responses against inhaled A. fumigatus conidia and demonstrates a benefit for systemic GM-CSF administration. PMID:26908736

  20. Immune dysregulation in the pathogenesis of pulmonary alveolar proteinosis.

    PubMed

    Martinez-Moczygemba, Margarita; Huston, David P

    2010-09-01

    Pulmonary alveolar proteinosis (PAP) is a rare disease of the lung characterized by the accumulation of surfactant-derived lipoproteins within pulmonary alveolar macrophages and alveoli, resulting in respiratory insufficiency and increased infections. The disease is caused by a disruption in surfactant catabolism by alveolar macrophages due to loss of functional granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling. The underlying molecular mechanisms causing deficiencies in GM-CSF signaling are as follows: 1) high levels of neutralizing GM-CSF autoantibodies observed in autoimmune PAP; 2) mutations in CSF2RA, the gene encoding the alpha chain of the GM-CSF receptor, observed in hereditary PAP; and 3) reduced numbers and function of alveolar macrophages as a result of other clinical diseases seen in secondary PAP. Recent studies investigating the biology of GM-CSF have revealed that not only does this cytokine have an indispensable role in lung physiology, but it is also a critical regulator of innate immunity and lung host defense. PMID:20623372

  1. Meningeal mast cell-T cell crosstalk regulates T cell encephalitogenicity.

    PubMed

    Russi, Abigail E; Walker-Caulfield, Margaret E; Guo, Yong; Lucchinetti, Claudia F; Brown, Melissa A

    2016-09-01

    GM-CSF is a cytokine produced by T helper (Th) cells that plays an essential role in orchestrating neuroinflammation in experimental autoimmune encephalomyelitis, a rodent model of multiple sclerosis. Yet where and how Th cells acquire GM-CSF expression is unknown. In this study we identify mast cells in the meninges, tripartite tissues surrounding the brain and spinal cord, as important contributors to antigen-specific Th cell accumulation and GM-CSF expression. In the absence of mast cells, Th cells do not accumulate in the meninges nor produce GM-CSF. Mast cell-T cell co-culture experiments and selective mast cell reconstitution of the meninges of mast cell-deficient mice reveal that resident meningeal mast cells are an early source of caspase-1-dependent IL-1β that licenses Th cells to produce GM-CSF and become encephalitogenic. We also provide evidence of mast cell-T cell co-localization in the meninges and CNS of recently diagnosed acute MS patients indicating similar interactions may occur in human demyelinating disease. PMID:27396526

  2. Characterization of a cell-type-restricted negative regulatory activity of the human granulocyte-macrophage colony-stimulating factor gene.

    PubMed Central

    Fraser, J K; Guerra, J J; Nguyen, C Y; Indes, J E; Gasson, J C; Nimer, S D

    1994-01-01

    Human granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulates the proliferation and maturation of normal myeloid progenitor cells and can also stimulate the growth of acute myelogenous leukemia (AML) blasts. GM-CSF is not normally produced by resting cells but is expressed by a variety of activated cells including T lymphocytes, macrophages, and certain cytokine-stimulated fibroblasts and endothelial cells. Production of GM-CSF by cultured AML cells has been demonstrated, and GM-CSF expression by normal myeloid progenitors has been postulated to play a role in myelopoiesis. We have investigated the regulation of expression of GM-CSF in AML cell lines, and our results demonstrate the presence of a strong constitutive promoter element contained within 53 bp upstream of the cap site. We have also identified a negative regulatory element located immediately upstream of the positive regulatory element (within 69 bp of the cap site) that is active in AML cell lines but not T cells or K562 CML cells. Competition transfection and mobility shift studies demonstrate that this activity correlates with binding of a 45-kDa protein. Images PMID:8114751

  3. Efficient Secretion of Recombinant Proteins from Rice Suspension-Cultured Cells Modulated by the Choice of Signal Peptide

    PubMed Central

    Huang, Li-Fen; Tan, Chia-Chun; Yeh, Ju-Fang; Liu, Hsin-Yi; Liu, Yu-Kuo; Ho, Shin-Lon; Lu, Chung-An

    2015-01-01

    Plant-based expression systems have emerged as a competitive platform in the large-scale production of recombinant proteins. By adding a signal peptide, αAmy3sp, the desired recombinant proteins can be secreted outside transgenic rice cells, making them easy to harvest. In this work, to improve the secretion efficiency of recombinant proteins in rice expression systems, various signal peptides including αAmy3sp, CIN1sp, and 33KDsp have been fused to the N-terminus of green fluorescent protein (GFP) and introduced into rice cells to explore the efficiency of secretion of foreign proteins. 33KDsp had better efficiency than αAmy3sp and CIN1sp for the secretion of GFP from calli and suspension-cultured cells. 33KDsp was further applied for the secretion of mouse granulocyte-macrophage colony-stimulating factor (mGM-CSF) from transgenic rice suspension-cultured cells; approximately 76%–92% of total rice-derived mGM-CSF (rmGM-CSF) was detected in the culture medium. The rmGM-CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell line, NSF-60. The extracellular yield of rmGM-CSF reached 31.7 mg/L. Our study indicates that 33KDsp is better at promoting the secretion of recombinant proteins in rice suspension-cultured cell systems than the commonly used αAmy3sp. PMID:26473722

  4. Increasing the Inflammatory Competence of Macrophages with IL-6 or with Combination of IL-4 and LPS Restrains the Invasiveness of Pancreatic Cancer Cells

    PubMed Central

    Salmiheimo, Aino N.E.; Mustonen, Harri K.; Vainionpää, Sanna A.A.; Shen, Zhanlong; Kemppainen, Esko A.J.; Seppänen, Hanna E.; Puolakkainen, Pauli A.

    2016-01-01

    Recent studies suggest that pro-inflammatory type M1 macrophages inhibit tumor progression and that anti-inflammatory M2 macrophages enhance it. The aim of this study was to examine the interaction of type M1 and M2 macrophages with pancreatic cancer cells. We studied the migration rate of fluorescein stained pancreatic cancer cells on Matrigel cultured alone or with Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) differentiated macrophages or with Macrophage Colony Stimulating Factor (M-CSF) differentiated macrophages, skewing the phenotype towards pro- and anti-inflammatory direction, respectively. Macrophage differentiation was assessed with flow cytometry and the cytokine secretion in cell cultures with cytokine array. Both GM-CSF and M-CSF differentiated macrophages increased the migration rate of primary pancreatic adenocarcinoma cell line (MiaPaCa-2) and metastatic cell line (HPAF-II). Stimulation with IL6 or IL4+LPS reversed the macrophages' increasing effect on the migration rate of MiaPaCa-2 completely and partly of HPAF-II. Co-culture with MiaPaCa-2 reduced the inflammatory cytokine secretion of GM-CSF differentiated macrophages. Co-culture of macrophages with pancreatic cancer cells seem to change the inflammatory cytokine profile of GM-CSF differentiated macrophages and this might explain why also GM-CSF differentiated macrophages promoted the invasion. Adding IL6 or IL4+LPS to the cell culture with MiaPaCa-2 and GM-CSF or M-CSF differentiated macrophages increased the secretion of inflammatory cytokines and this could contribute to the reversion of the macrophage induced increase of cancer cell migration rate. PMID:26722359

  5. Increasing the Inflammatory Competence of Macrophages with IL-6 or with Combination of IL-4 and LPS Restrains the Invasiveness of Pancreatic Cancer Cells.

    PubMed

    Salmiheimo, Aino N E; Mustonen, Harri K; Vainionpää, Sanna A A; Shen, Zhanlong; Kemppainen, Esko A J; Seppänen, Hanna E; Puolakkainen, Pauli A

    2016-01-01

    Recent studies suggest that pro-inflammatory type M1 macrophages inhibit tumor progression and that anti-inflammatory M2 macrophages enhance it. The aim of this study was to examine the interaction of type M1 and M2 macrophages with pancreatic cancer cells. We studied the migration rate of fluorescein stained pancreatic cancer cells on Matrigel cultured alone or with Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) differentiated macrophages or with Macrophage Colony Stimulating Factor (M-CSF) differentiated macrophages, skewing the phenotype towards pro- and anti-inflammatory direction, respectively. Macrophage differentiation was assessed with flow cytometry and the cytokine secretion in cell cultures with cytokine array. Both GM-CSF and M-CSF differentiated macrophages increased the migration rate of primary pancreatic adenocarcinoma cell line (MiaPaCa-2) and metastatic cell line (HPAF-II). Stimulation with IL6 or IL4+LPS reversed the macrophages' increasing effect on the migration rate of MiaPaCa-2 completely and partly of HPAF-II. Co-culture with MiaPaCa-2 reduced the inflammatory cytokine secretion of GM-CSF differentiated macrophages. Co-culture of macrophages with pancreatic cancer cells seem to change the inflammatory cytokine profile of GM-CSF differentiated macrophages and this might explain why also GM-CSF differentiated macrophages promoted the invasion. Adding IL6 or IL4+LPS to the cell culture with MiaPaCa-2 and GM-CSF or M-CSF differentiated macrophages increased the secretion of inflammatory cytokines and this could contribute to the reversion of the macrophage induced increase of cancer cell migration rate. PMID:26722359

  6. Effects of granulocyte-macrophage colony-stimulating factor and foreign helper protein as immunologic adjuvants on the T-cell response to vaccination with tyrosinase peptides.

    PubMed

    Scheibenbogen, Carmen; Schadendorf, Dirk; Bechrakis, Nikolaos E; Nagorsen, Dirk; Hofmann, Udo; Servetopoulou, Fotini; Letsch, Anne; Philipp, Armin; Foerster, Michael H; Schmittel, Alexander; Thiel, Eckhard; Keilholz, Ulrich

    2003-03-20

    Immunologic adjuvants are used to augment the immunogenicity of MHC class I-restricted peptide vaccines, but this effect has rarely been systematically evaluated in a clinical trial. We have investigated, in a phase I study, whether addition of the 2 adjuvants GM-CSF and KLH can enhance the T-cell response to MHC class I peptide vaccines. Forty-three high-risk melanoma patients who were clinically free of disease received 6 vaccinations with MHC class I-restricted tyrosinase peptides alone, with either GM-CSF or KLH or with a combination of both adjuvants. The primary end point was induction of tyrosinase-specific T cells, and serial T-cell monitoring was performed in unstimulated peripheral blood samples before and after the second, fourth and sixth vaccinations by ELISPOT assay. Tyrosinase-specific IFN-gamma-producing T cells were detected as early as 2 weeks after the second vaccination in 5 of 9 patients vaccinated with tyrosinase peptides in combination with GM-CSF and KLH but not in any patient vaccinated with tyrosinase peptides without adjuvants or in combination with either adjuvant alone. After 6 vaccinations, tyrosinase-specific T cells were found in patients immunized with peptides either without adjuvants (3 of 9 patients) or in combination with the single adjuvant GM-CSF (4 of 9 patients) but not with KLH (0 of 10 patients). Our results suggest that addition of either GM-CSF or KLH as a single adjuvant has little impact on the immunogenicity of tyrosinase peptides. The combined application of GM-CSF and KLH was associated with early induction of T-cell responses. PMID:12569574

  7. Influence of Granulocyte-Macrophage Colony-Stimulating Factor or Influenza Vaccination on HLA-DR, Infection and Delirium Days in Immunosuppressed Surgical Patients: Double Blind, Randomised Controlled Trial

    PubMed Central

    Lachmann, Gunnar; Renius, Markus; von Haefen, Clarissa; Wernecke, Klaus-Dieter; Bahra, Marcus; Schiemann, Alexander; Paupers, Marco; Meisel, Christian

    2015-01-01

    Purpose Surgical patients are at high risk for developing infectious complications and postoperative delirium. Prolonged infections and delirium result in worse outcome. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and influenza vaccination are known to increase HLA-DR on monocytes and improve immune reactivity. This study aimed to investigate whether GM-CSF or vaccination reverses monocyte deactivation. Secondary aims were whether it decreases infection and delirium days after esophageal or pancreatic resection over time. Methods In this prospective, randomized, placebo-controlled, double-blind, double dummy trial setting on an interdisciplinary ICU of a university hospital 61 patients with immunosuppression (monocytic HLA-DR [mHLA-DR] <10,000 monoclonal antibodies [mAb] per cell) on the first day after esophageal or pancreatic resection were treated with either GM-CSF (250 μg/m2/d), influenza vaccination (Mutagrip 0.5 ml/d) or placebo for a maximum of 3 consecutive days if mHLA-DR remained below 10,000 mAb per cell. HLA-DR on monocytes was measured daily until day 5 after surgery. Infections and delirium were followed up for 9 days after surgery. Primary outcome was HLA-DR on monocytes, and secondary outcomes were duration of infection and delirium. Results mHLA-DR was significantly increased compared to placebo (p < 0.001) and influenza vaccination (p < 0.001) on the second postoperative day. Compared with placebo, GM-CSF-treated patients revealed shorter duration of infection (p < 0.001); the duration of delirium was increased after vaccination (p = 0.003). Conclusion Treatment with GM-CSF in patients with postoperative immune suppression was safe and effective in restoring monocytic immune competence. Furthermore, therapy with GM-CSF reduced duration of infection in immune compromised patients. However, influenza vaccination increased duration of delirium after major surgery. Trial Registration www.controlled-trials.com ISRCTN27114642 PMID

  8. Out of breath: GM-CSFRalpha mutations disrupt surfactant homeostasis.

    PubMed

    Notarangelo, Luigi D; Pessach, Itai

    2008-11-24

    Pulmonary alveolar proteinosis (PAP) is a rare disorder in which surfactant homeostasis in the lung is impaired, causing respiratory distress and, in severe cases, respiratory failure. Most cases of PAP are associated with the formation of autoantibodies against the cytokine granulocyte/macrophage colony-stimulating factor (GM-CSF), which is required for normal surfactant homeostasis and lung function. New studies now identify three patients in whom PAP was caused by mutations in the gene encoding the ligand-binding alpha chain of the GM-CSF receptor. PMID:19015311

  9. Granulocyte-macrophage colony-stimulating factor and interleukin-3 signaling pathways converge on the CREB-binding site in the human egr-1 promoter.

    PubMed Central

    Sakamoto, K M; Fraser, J K; Lee, H J; Lehman, E; Gasson, J C

    1994-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulates myeloid progenitor cell proliferation and enhances the function of terminally differentiated effector cells. Interleukin-3 (IL-3) stimulation results in the proliferation and maturation of early bone marrow progenitor cells. These activities are mediated by non-tyrosine kinase-containing receptors which consist of ligand-specific alpha subunits that complex with a common beta subunit required for signal transduction. Both GM-CSF and IL-3 rapidly and transiently induce expression of early growth response gene 1 (egr-1) in the human factor-dependent cell line TF-1. To define the mechanism of early response gene induction by GM-CSF and IL-3, growth factor- and serum-starved TF-1 cells transfected with recombinant constructs containing sequences of the human egr-1 promoter were stimulated with GM-CSF or IL-3. A 116-nucleotide (nt) region of the egr-1 promoter which contains sequences inducible by GM-CSF and IL-3 was defined. DNase I footprint analysis identified a 20-nt region, including nt -57 to -76, which contains a potential cyclic AMP (cAMP) response element (CRE). Electrophoretic mobility shift assays performed with CREB antibody confirmed the presence of CREB in the DNA-binding complex. Mutational analysis of the cytokine-responsive region of the egr-1 promoter revealed that both the cAMP response and serum response elements are required for induction by GM-CSF and IL-3. Nuclear extracts from GM-CSF- or IL-3-stimulated but not unstimulated TF-1 cells contain factors which specifically bind to the Egr-1-binding site in the nt -600 to -480 region of the promoter. Electrophoretic mobility shift assays were performed with antibodies against the Egr-1 protein to demonstrate the presence of the protein product in the shifted complex. Our studies suggest that the Egr-1 protein may further stimulate transcription of the egr-1 gene in response to GM-CSF as a secondary event. Images PMID:8065330

  10. Establishing Porcine Monocyte-Derived Macrophage and Dendritic Cell Systems for Studying the Interaction with PRRSV-1

    PubMed Central

    Singleton, Helen; Graham, Simon P.; Bodman-Smith, Katherine B.; Frossard, Jean-Pierre; Steinbach, Falko

    2016-01-01

    Monocyte-derived macrophages (MoMØ) and monocyte-derived dendritic cells (MoDC) are two model systems well established in human and rodent systems that can be used to study the interaction of pathogens with host cells. Porcine reproductive and respiratory syndrome virus (PRRSV) is known to infect myeloid cells, such as macrophages (MØ) and dendritic cells (DC). Therefore, this study aimed to establish systems for the differentiation and characterization of MoMØ and MoDC for subsequent infection with PRRSV-1. M-CSF differentiated MoMØ were stimulated with activators for classical (M1) or alternative (M2) activation. GM-CSF and IL-4 generated MoDC were activated with the well established maturation cocktail containing PAMPs and cytokines. In addition, MoMØ and MoDC were treated with dexamethasone and IL-10, which are known immuno-suppressive reagents. Cells were characterized by morphology, phenotype, and function and porcine MØ subsets highlighted some divergence from described human counterparts, while MoDC, appeared more similar to mouse and human DCs. The infection with PRRSV-1 strain Lena demonstrated different replication kinetics between MoMØ and MoDC and within subsets of each cell type. While MoMØ susceptibility was significantly increased by dexamethasone and IL-10 with an accompanying increase in CD163/CD169 expression, MoDC supported only a minimal replication of PRRSV These findings underline the high variability in the susceptibility of porcine myeloid cells toward PRRSV-1 infection. PMID:27313573

  11. Human Granulocyte Macrophage Colony-Stimulating Factor Enhances Antibiotic Susceptibility of Pseudomonas aeruginosa Persister Cells.

    PubMed

    Choudhary, Geetika S; Yao, Xiangyu; Wang, Jing; Peng, Bo; Bader, Rebecca A; Ren, Dacheng

    2015-01-01

    Bacterial persister cells are highly tolerant to antibiotics and cause chronic infections. However, little is known about the interaction between host immune systems with this subpopulation of metabolically inactive cells, and direct effects of host immune factors (in the absence of immune cells) on persister cells have not been studied. Here we report that human granulocyte macrophage-colony stimulating factor (GM-CSF) can sensitize the persister cells of Pseudomonas aeruginosa PAO1 and PDO300 to multiple antibiotics including ciprofloxacin, tobramycin, tetracycline, and gentamicin. GM-CSF also sensitized the biofilm cells of P. aeruginosa PAO1 and PDO300 to tobramycin in the presence of biofilm matrix degrading enzymes. The DNA microarray and qPCR results indicated that GM-CSF induced the genes for flagellar motility and pyocin production in the persister cells, but not the normal cells of P. aeruginosa PAO1. Consistently, the supernatants from GM-CSF treated P. aeruginosa PAO1 persister cell suspensions were found cidal to the pyocin sensitive strain P. aeruginosa PAK. Collectively, these findings suggest that host immune factors and bacterial persisters may directly interact, leading to enhanced susceptibility of persister cells to antibiotics. PMID:26616387

  12. Co-administration of plasmid-encoded granulocyte-macrophage colony-stimulating factor increases human immunodeficiency virus-1 DNA vaccine-induced polyfunctional CD4+ T-cell responses

    PubMed Central

    Santana, Vinicius Canato; Almeida, Rafael Ribeiro; Ribeiro, Susan Pereira; Ferreira, Luís Carlos de Souza; Kalil, Jorge; Rosa, Daniela Santoro; Cunha-Neto, Edecio

    2015-01-01

    T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity. PMID:26602876

  13. Human Granulocyte Macrophage Colony-Stimulating Factor Enhances Antibiotic Susceptibility of Pseudomonas aeruginosa Persister Cells

    PubMed Central

    Choudhary, Geetika S.; Yao, Xiangyu; Wang, Jing; Peng, Bo; Bader, Rebecca A.; Ren, Dacheng

    2015-01-01

    Bacterial persister cells are highly tolerant to antibiotics and cause chronic infections. However, little is known about the interaction between host immune systems with this subpopulation of metabolically inactive cells, and direct effects of host immune factors (in the absence of immune cells) on persister cells have not been studied. Here we report that human granulocyte macrophage-colony stimulating factor (GM-CSF) can sensitize the persister cells of Pseudomonas aeruginosa PAO1 and PDO300 to multiple antibiotics including ciprofloxacin, tobramycin, tetracycline, and gentamicin. GM-CSF also sensitized the biofilm cells of P. aeruginosa PAO1 and PDO300 to tobramycin in the presence of biofilm matrix degrading enzymes. The DNA microarray and qPCR results indicated that GM-CSF induced the genes for flagellar motility and pyocin production in the persister cells, but not the normal cells of P. aeruginosa PAO1. Consistently, the supernatants from GM-CSF treated P. aeruginosa PAO1 persister cell suspensions were found cidal to the pyocin sensitive strain P. aeruginosa PAK. Collectively, these findings suggest that host immune factors and bacterial persisters may directly interact, leading to enhanced susceptibility of persister cells to antibiotics. PMID:26616387

  14. Co-administration of plasmid-encoded granulocyte-macrophage colony-stimulating factor increases human immunodeficiency virus-1 DNA vaccine-induced polyfunctional CD4+ T-cell responses.

    PubMed

    Santana, Vinicius Canato; Almeida, Rafael Ribeiro; Ribeiro, Susan Pereira; Ferreira, Luís Carlos de Souza; Kalil, Jorge; Rosa, Daniela Santoro; Cunha-Neto, Edecio

    2015-12-01

    T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity. PMID:26602876

  15. Phase I study utilizing a novel antigen-presenting cell-targeted vaccine with Toll-like receptor stimulation to induce immunity to self antigens in cancer patients

    PubMed Central

    Morse, Michael A.; Chapman, Robert; Powderly, John; Blackwell, Kimberly; Keler, Tibor; Green, Jennifer; Riggs, Renee; He, Li-Zhen; Ramakrishna, Venky; Vitale, Laura; Zhao, Biwei; Butler, Stephen A.; Hobeika, Amy; Osada, Takuya; Davis, Thomas; Clay, Timothy; Lyerly, H. Kim

    2011-01-01

    Purpose The use of tumor-derived proteins as cancer vaccines is complicated by tolerance to these self antigens. Tolerance may be broken by immunization with activated, autologous, ex vivo generated and antigen-loaded, antigen-presenting cells (APC); however, targeting tumor antigen directly to APC in vivo would be a less complicated strategy. We wished to test whether targeted delivery of an otherwise poorly immunogenic, soluble antigen to APC through their mannose receptors (MR) would induce clinically relevant immunity. Experimental Design Two phase I studies were performed with CDX-1307, a vaccine composed of human chorionic gonadotropin beta chain (hCG-β) fused to a MR-specific monoclonal antibody, administered either locally (intradermally) or systemically (intravenously) in patients with advanced epithelial malignancies. An initial dose-escalation of single agent CDX-1307 was followed by additional cohorts of CDX-1307 combined with GM-CSF and the Toll-like receptor (TLR)-3 agonist poly-ICLC and TLR7/8 agonist resiquimod to activate the APC. Results CDX-1307 induced consistent humoral and T cell responses to hCG-β when co-administered with TLR agonists. Greater immune responses and clinical benefit, including the longest duration of stable disease, were observed with immunization combined with local TLR agonists. Immune responses were induced equally efficiently in patients with elevated and non-elevated levels of serum hCG-β. Antibodies within the serum of vaccinated participants had tumor suppressive function in vitro. Toxicity consisted chiefly of mild injection site reactions. Conclusions APC targeting and activation induce adaptive immunity against poorly immunogenic self antigens which has implications for enhancing the efficacy of cancer immunotherapy. PMID:21632857

  16. PU.1 (Spi-1) and C/EBP alpha regulate expression of the granulocyte-macrophage colony-stimulating factor receptor alpha gene.

    PubMed Central

    Hohaus, S; Petrovick, M S; Voso, M T; Sun, Z; Zhang, D E; Tenen, D G

    1995-01-01

    Growth factor receptors play an important role in hematopoiesis. In order to further understand the mechanisms directing the expression of these key regulators of hematopoiesis, we initiated a study investigating the transcription factors activating the expression of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor alpha gene. Here, we demonstrate that the human GM-CSF receptor alpha promoter directs reporter gene activity in a tissue-specific fashion in myelomonocytic cells, which correlates with its expression pattern as analyzed by reverse transcription PCR. The GM-CSF receptor alpha promoter contains an important functional site between positions -53 and -41 as identified by deletion analysis of reporter constructs. We show that the myeloid and B cell transcription factor PU.1 binds specifically to this site. Furthermore, we demonstrate that a CCAAT site located upstream of the PU.1 site between positions -70 and -54 is involved in positive-negative regulation of the GM-CSF receptor alpha promoter activity. C/EBP alpha is the major CCAAT/enhancer-binding protein (C/EBP) form binding to this site in nuclear extracts of U937 cells. Point mutations of either the PU.1 site or the C/EBP site that abolish the binding of the respective factors result in a significant decrease of GM-CSF receptor alpha promoter activity in myelomonocytic cells only. Furthermore, we demonstrate that in myeloid and B cell extracts, PU.1 forms a novel, specific, more slowly migrating complex (PU-SF) when binding the GM-CSF receptor alpha promoter PU.1 site. This is the first demonstration of a specific interaction with PU.1 on a myeloid PU.1 binding site. The novel complex is distinct from that described previously as binding to B cell enhancer sites and can be formed by addition of PU.1 to extracts from certain nonmyeloid cell types which do not express PU.1, including T cells and epithelial cells, but not from erythroid cells. Furthermore, we demonstrate that the PU

  17. A randomised trial of granulocyte-macrophage colony-stimulating factor for neonatal sepsis: childhood outcomes at 5 years

    PubMed Central

    Marlow, Neil; Morris, Timothy; Brocklehurst, Peter; Carr, Robert; Cowan, Frances; Patel, Nishma; Petrou, Stavros; Redshaw, Margaret; Modi, Neena; Doré, Caroline J

    2015-01-01

    Objective We performed a randomised trial in very preterm, small for gestational age (SGA) babies to determine if prophylaxis with granulocyte macrophage colony stimulating factor (GM-CSF) improves outcomes (the PROGRAMS trial). GM-CSF was associated with improved neonatal neutrophil counts, but no change in other neonatal or 2-year outcomes. As subtle benefits in outcome may not be ascertainable until school age we performed an outcome study at 5 years. Patients and methods 280 babies born at 31 weeks of gestation or less and SGA were entered into the trial. Outcomes were assessed at 5 years to determine neurodevelopmental and general health status and educational attainment. Results We found no significant differences in cognitive, general health or educational outcomes between 83 of 106 (78%) surviving children in the GM-CSF arm compared with 81 of 110 (74%) in the control arm. Mean mental processing composite (equivalent to IQ) at 5 years were 94 (SD 16) compared with 95 (SD 15), respectively (difference in means −1 (95%CI −6 to 4), and similar proportions were in receipt of special educational needs support (41% vs 35%; risk ratio 1.2 (95% CI 0.8 to 1.9)). Performance on Kaufmann-ABC subscales and components of NEPSY were similar. The suggestion of worse respiratory outcomes in the GM-CSF group at 2 years was replicated at 5 years. Conclusions The administration of GM-CSF to very preterm SGA babies is not associated with improved or more adverse neurodevelopmental, general health or educational outcomes at 5 years. Trial registration number ISRCTN42553489. PMID:25922190

  18. The Toll-like receptor 4-activated neuroprotective microglia subpopulation survives via granulocyte macrophage colony-stimulating factor and JAK2/STAT5 signaling.

    PubMed

    Kamigaki, Mayumi; Hide, Izumi; Yanase, Yuhki; Shiraki, Hiroko; Harada, Kana; Tanaka, Yoshiki; Seki, Takahiro; Shirafuji, Toshihiko; Tanaka, Shigeru; Hide, Michihiro; Sakai, Norio

    2016-02-01

    Toll-like receptor (TLR) 4 mediates inflammation and is also known to trigger apoptosis in microglia. Our time-lapse observations showed that lipopolysaccharide (LPS) stimulation induced rapid death in primary cultures of rat microglia, while a portion of the microglia escaped from death and survived for much longer than 2 days, in which time, all of the control cells had died. However, it remains unclear how the LPS-stimulated microglia subpopulation could continue to survive in the absence of any supplied growth factors. In the present study, to clarify the mechanism underlying the LPS-stimulated survival, we investigated whether microglia could produce their own survival factors in response to LPS, focusing on macrophage colony-stimulating factor (M-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-34, which are mainly supplied by astrocytes or neurons. The LPS-stimulated microglia drastically induced the expression of the GM-CSF mRNA and protein, while M-CSF and IL-34 levels were unchanged. The surviving microglia also significantly upregulated the expression of GM-CSF receptor (GM-CSFR) mRNA without affecting M-CSFR. As for the GM-CSFR downstream signal, LPS resulted in the phosphorylation of STAT5 and its translocation to the nucleus in the surviving microglia. Moreover, a specific JAK2 inhibitor, NVP-BSK805, suppressed STAT5 phosphorylation and microglia survival in response to LPS, indicating a critical role of the JAK2/STAT5 pathway in this survival mechanism. Together, these results suggest that a subpopulation of TLR4-activated microglia may survive by producing GM-CSF and up-regulating GM-CSFR. This autocrine GM-CSF pathway may activate the JAK2/STAT5 signaling pathway, which controls the transcription of survival-related genes. Finally, these surviving microglia may have neuroprotective functions because the neurons remained viable in co-cultures with these microglia. PMID:26802935

  19. Dermatitis during radiation for vulvar carcinoma: prevention and treatment with granulocyte-macrophage colony-stimulating factor impregnated gauze.

    PubMed

    Kouvaris, J R; Kouloulias, V E; Plataniotis, G A; Balafouta, E J; Vlahos, L J

    2001-01-01

    The aim of this study was to determine the effectiveness of granulocyte-macrophage colony-stimulating factor (GM-CSF) impregnated gauze in preventing or healing radiation-induced dermatitis. Sixty-one patients were irradiated for vulvar carcinoma. Thirty-seven applied steroid cream at irradiated areas throughout radiotherapy (Group A) and 24 patients applied additionally GM-CSF impregnated gauze (40 micrcog/cm2 of skin-irradiated area, twice per day) in addition to the steroid cream, after 20 Gy of irradiation (Group B). The score of skin reactions (P=0.008, chi2 test) and the time interval of radiotherapy interruption (P=0.037, Mann-Whitney U test) were statistically significantly reduced in Group B patients. Multivariate analysis of variance showed for this group not only a significant reduction in the Sum of Gross Dermatitis Scoring (P<0.001, adjusted for Duration of Dermatitis) but also a significant reduction of the healing time (P=0.02, adjusted for Sum of Gross Dermatitis Scoring). The pain grading was less (P=0.014, chi2 test) and pain reduction was noticed sooner after the application of GM-CSF impregnated gauze (P=0.0017, Mann-Whitney U test). Multivariate logistic regression analysis showed that the only significant effect on dermatitis score is due to Body Mass Index (P=0.034) and the application of GM-CSF (P=0.008). GM-CSF impregnated gauze can be effective in preventing and healing radiation-induced dermatitis and in reducing the interruption intervals of radiotherapy for vulvar carcinomas. PMID:11472614

  20. Induction of Monocyte Chemoattractant Proteins in Macrophages via the Production of Granulocyte/Macrophage Colony-Stimulating Factor by Breast Cancer Cells

    PubMed Central

    Yoshimura, Teizo; Imamichi, Tomozumi; Weiss, Jonathan M.; Sato, Miwa; Li, Liangzhu; Matsukawa, Akihiro; Wang, Ji Ming

    2016-01-01

    Monocyte chemoattractant protein-1 (MCP-1)/CCL2 plays an important role in the initiation and progression of cancer. We previously reported that in 4T1 murine breast cancer, non-tumor stromal cells, including macrophages, were the major source of MCP-1. In the present study, we analyzed the potential mechanisms by which MCP-1 is upregulated in macrophages infiltrating 4T1 tumors. We found that cell-free culture supernatants of 4T1 cells (4T1-sup) markedly upregulated MCP-1 production by peritoneal inflammatory macrophages. 4T1-sup also upregulated other MCPs, such as MCP-3/CCL7 and MCP-5/CCL12, but modestly upregulated neutrophil chemotactic chemokines, such as KC/CXCL1 or MIP-2/CXCL2. Physicochemical analysis indicated that an approximately 2–3 kDa 4T1 cell product was responsible for the capacity of 4T1-sup to upregulate MCP-1 expression by macrophages. A neutralizing antibody against granulocyte/macrophage colony-stimulating factor (GM-CSF), but not macrophage CSF, almost completely abrogated MCP-1-inducing activity of 4T1-sup, and recombinant GM-CSF potently upregulated MCP-1 production by macrophages. The expression levels of GM-CSF in 4T1 tumors in vivo were higher than other tumors, such as Lewis lung carcinoma. Treatment of mice with anti-GM-CSF antibody significantly reduced the growth of 4T1 tumors at the injection sites but did not reduce MCP-1 production or lung metastasis in tumor-bearing mice. These results indicate that 4T1 cells have the capacity to directly upregulate MCP-1 production by macrophages by releasing GM-CSF; however, other mechanisms are also involved in increased MCP-1 levels in the 4T1 tumor microenvironment. PMID:26834744

  1. Protective effects of paeoniflorin and albiflorin on chemotherapy-induced myelosuppression in mice.

    PubMed

    Zhu, Ying-Li; Wang, Lin-Yuan; Wang, Jing-Xia; Wang, Chun; Wang, Cheng-Long; Zhao, Dan-Ping; Wang, Zi-Chen; Zhang, Jian-Jun

    2016-08-01

    Paeonia lactiflora root (baishao in Chinese) is a commonly used herb in traditional Chinese medicines (TCM). Two isomers, paeoniflorin (PF) and albiflorin (AF), are isolated from P. lactiflora. The present study aimed to investigate the protective effects of PF and AF on myelosuppression induced by chemotherapy in mice and to explore the underlying mechanisms. The mouse myelosuppression model was established by intraperitoneal (i.p.) injection of cyclophosphamide (CP, 200 mg·kg(-1)). The blood cell counts were performed. The thymus index and spleen index were also determined and bone morrow histological examination was performed. The levels of tumor necrosis factor-α (TNF-α) in serum and colony-stimulating factor (G-CSF) in plasma were measured by Enzyme-Linked Immunosorbent Assays (ELISA) and the serum levels of interleukin-3 (IL-3), granulocyte-macrophagecolony-stimulatingfactor (GM-CSF), and interleukin-6 (IL-6) were measured by radioimmunoassay (RIA). The levels of mRNA expression protein of IL-3, GM-CSF and G-CSF in spleen and bone marrow cells were determined respectively. PF and AF significantly increased the white blood cell (WBC) counts and reversed the atrophy of thymus. They also increased the serum levels of GM-CSF and IL-3 and the plasma level of G-CSF and reduced the level of TNF-α in serum. PF enhanced the mRNA level of IL-3 and AF enhanced the mRNA levels of GM-CSF and G-CSF in the spleen. PF and AF both increased the protein levels of GM-CSF and G-CSF in bone marrow cells. In conclusion, our results demonstrated that PF and AF promoted the recovery of bone marrow hemopoietic function in the mouse myelosuppression model. PMID:27608949

  2. A phase 1 study of a heterologous prime-boost vaccination involving a truncated HER2 sequence in patients with HER2-expressing breast cancer

    PubMed Central

    Kim, Sung-Bae; Ahn, Jin-Hee; Kim, Jeongeun; Jung, Kyung Hae

    2015-01-01

    A phase 1 clinical trial was conducted to assess the safety, tolerability, and preliminary efficacy of a heterologous prime-boost strategy involving plasmid DNA (pHM-GM-CSF, expressing truncated human epidermal growth factor receptor 2 (HER2) and granulocyte macrophage colony-stimulation factor (GM-CSF) as a bicistronic message) and an adenoviral vector (Ad-HM, containing the same modified HER2 sequence only), in patients with stage III–IV metastatic breast cancer expressing HER2. Nine eligible subjects were divided into three cohorts based on the dosages (2, 4, and 8 mg/patient/visit) of pHM-GM-CSF used as the primer, which was intramuscularly injected three times at weeks 0, 2, and 4. It was followed by a single injection of Ad-HM (3 × 109 virus particles), used as a booster, at week 6. During the 6-month follow-up period, adverse events (AEs), pharmacokinetics and pharmacodynamics, and HER2-specific cellular and humoral immune responses were evaluated. Seven cases of minor grade 1 toxicities in four of nine subjects and no serious drug-related AEs were reported. HER2-specific cell-mediated or humoral immunity was produced in all (100%) or three subjects (33%), respectively. One subject showed a partial response, and seven subjects had stable diseases. However, there were no differences in clinical tumor response and HER2-specific immune responses among the cohorts. These results showed that intramuscular injections of pHM-GM-CSF and Ad-HM were well tolerated and safe. PMID:26445724

  3. TNF-α alters the inflammatory secretion profile of human first trimester placenta.

    PubMed

    Siwetz, Monika; Blaschitz, Astrid; El-Heliebi, Amin; Hiden, Ursula; Desoye, Gernot; Huppertz, Berthold; Gauster, Martin

    2016-04-01

    Implantation and subsequent placental development depend on a well-orchestrated interaction between fetal and maternal tissues, involving a fine balanced synergistic cross-talk of inflammatory and immune-modulating factors. Tumor necrosis factor (TNF)-α has been increasingly recognized as pivotal factor for successful pregnancy, although high maternal TNF-α levels are associated with a number of adverse pregnancy conditions including gestational hypertension and gestational diabetes mellitus. This study describes effects of exogenously applied TNF-α, mimicking increased maternal TNF-α levels, on the secretion profile of inflammation associated factors in human first trimester villous placenta. Conditioned culture media from first trimester villous placental explants were analyzed by inflammation antibody arrays and ELISA after 48 h culture in the presence or absence of TNF-α. Inflammation antibody arrays identified interleukin (IL)-6, IL-8, chemokine (C-C motif) ligand 2 (CCL2), CCL4, and granulocyte-macrophage colony-stimulating factor (GM-CSF) as the most abundantly secreted inflammation-associated factors under basal culture conditions. In the presence of TNF-α, secretion of GM-CSF, CCL5, and IL-10 increased, whereas IL-4 and macrophage CSF levels decreased compared with controls. ELISA analysis verified antibody arrays by showing significantly increased synthesis and release of GM-CSF and CCL5 by placental explants in response to TNF-α. Immunohistochemistry localized GM-CSF in the villous trophoblast compartment, whereas CCL5 was detected in maternal platelets adhering to perivillous fibrin deposits on the villous surface. mRNA-based in situ padlock probe approach localized GM-CSF and CCL5 transcripts in the villous trophoblast layer and the villous stroma. Results from this study suggest that the inflammatory secretion profile of human first trimester placenta shifts towards increased levels of GM-CSF, CCL5, and IL10 in response to elevated maternal

  4. Comparison of WTC Dust Size on Macrophage Inflammatory Cytokine Release In vivo and In vitro

    PubMed Central

    Weiden, Michael D.; Naveed, Bushra; Kwon, Sophia; Segal, Leopoldo N.; Cho, Soo Jung; Tsukiji, Jun; Kulkarni, Rohan; Comfort, Ashley L.; Kasturiarachchi, Kusali J.; Prophete, Colette; Cohen, Mitchell D.; Chen, Lung-Chi; Rom, William N.; Prezant, David J.; Nolan, Anna

    2012-01-01

    Background The WTC collapse exposed over 300,000 people to high concentrations of WTC-PM; particulates up to ∼50 mm were recovered from rescue workers’ lungs. Elevated MDC and GM-CSF independently predicted subsequent lung injury in WTC-PM-exposed workers. Our hypotheses are that components of WTC dust strongly induce GM-CSF and MDC in AM; and that these two risk factors are in separate inflammatory pathways. Methodology/Principal Findings Normal adherent AM from 15 subjects without WTC-exposure were incubated in media alone, LPS 40 ng/mL, or suspensions of WTC-PM10–53 or WTC-PM2.5 at concentrations of 10, 50 or 100 µg/mL for 24 hours; supernatants assayed for 39 chemokines/cytokines. In addition, sera from WTC-exposed subjects who developed lung injury were assayed for the same cytokines. In the in vitro studies, cytokines formed two clusters with GM-CSF and MDC as a result of PM10–53 and PM2.5. GM-CSF clustered with IL-6 and IL-12(p70) at baseline, after exposure to WTC-PM10–53 and in sera of WTC dust-exposed subjects (n = 70) with WTC lung injury. Similarly, MDC clustered with GRO and MCP-1. WTC-PM10–53 consistently induced more cytokine release than WTC-PM2.5 at 100 µg/mL. Individual baseline expression correlated with WTC-PM-induced GM-CSF and MDC. Conclusions WTC-PM10–53 induced a stronger inflammatory response by human AM than WTC-PM2.5. This large particle exposure may have contributed to the high incidence of lung injury in those exposed to particles at the WTC site. GM-CSF and MDC consistently cluster separately, suggesting a role for differential cytokine release in WTC-PM injury. Subject-specific response to WTC-PM may underlie individual susceptibility to lung injury after irritant dust exposure. PMID:22815721

  5. Critical analysis of an oncolytic herpesvirus encoding granulocyte-macrophage colony stimulating factor for the treatment of malignant melanoma

    PubMed Central

    Hughes, Tasha; Coffin, Robert S; Lilley, Caroline E; Ponce, Rafael; Kaufman, Howard L

    2014-01-01

    Oncolytic viruses that selectively lyse tumor cells with minimal damage to normal cells are a new area of therapeutic development in oncology. An attenuated herpesvirus encoding the granulocyte-macrophage colony stimulating factor (GM-CSF), known as talimogene laherparepvec (T-VEC), has been identified as an attractive oncolytic virus for cancer therapy based on preclinical tumor studies and results from early-phase clinical trials and a large randomized Phase III study in melanoma. In this review, we discuss the basic biology of T-VEC, describe the role of GM-CSF as an immune adjuvant, summarize the preclinical data, and report the outcomes of published clinical trials using T-VEC. The emerging data suggest that T-VEC is a safe and potentially effective antitumor therapy in malignant melanoma and represents the first oncolytic virus to demonstrate therapeutic activity against human cancer in a randomized, controlled Phase III study. PMID:27512660

  6. In vitro effects of nanosized diamond particles on macrophages.

    PubMed

    Shkurupy, V A; Arkhipov, S A; Neshchadim, D V; Akhramenko, E S; Troitskii, A V

    2015-02-01

    The effects of synthetic diamond nanoparticles (4-6 nm) on mouse macrophage biotropism and biocompatibility and the modulation of the macrophage functions (expression of IL-1α, TNF-α, GM-CSF, bFGF, and TGF-β) by nanoparticles in different concentrations were studied in vitro during exposure of different duration. Macrophage endocytosis of nanodiamonds increased with increasing the concentration of nanoparticles in culture and incubation time. Nanodiamonds exhibited high biotropism and biocompatibility towards macrophages; in doses of 10-20 μg/ml, they induced expression of GM-CSF and TGF-β, inhibited expression of bFGF, and did not stimulate IL-1α and TNF-α. These data indicate that nanodiamond capture by macrophages in the studied experimental model led to modulation of the functional status of macrophages that determine their capacity to stimulate reparative processes without increasing proinflammatory and profibrogenic status. PMID:25705036

  7. A pilot study evaluating non-contact low-frequency ultrasound and underlying molecular mechanism on diabetic foot ulcers.

    PubMed

    Yao, Min; Hasturk, Hatice; Kantarci, Alpdogan; Gu, Guosheng; Garcia-Lavin, Silvia; Fabbi, Matteo; Park, Nanjin; Hayashi, Hisae; Attala, Khaled; French, Michael A; Driver, Vickie R

    2014-12-01

    Non-contact low-frequency ultrasound (NCLF-US) devices have been increasingly used for the treatment of chronic non-healing wounds. The appropriate dose for NCLF-US is still in debate. The aims of this pilot study were to evaluate the relationship between dose and duration of treatment for subjects with non-healing diabetic foot ulcers (DFUs) and to explore the correlation between wound healing and change of cytokine/proteinase/growth factor profile. This was a prospective randomised clinical study designed to evaluate subjects with non-healing DFUs for 5 weeks receiving standard of care and/or NCLF-US treatment. Subjects were randomly assigned to one of the three groups: application of NCLF-US thrice per week (Group 1), NCLF-US once per week (Group 2) and the control (Group 3) that received no NCLF-US. All subjects received standard wound care plus offloading for a total of 4 weeks. Percent area reduction (PAR) of each wound compared with baseline was evaluated weekly. Profiles of cytokines/proteinase/growth factors in wound fluid and biopsied tissue were quantified to explore the correlation between wound healing and cytokines/growth factor expression. Twelve DFU patients, 2 (16·7%) type 1 and 10 (83·3%) type 2 diabetics, with an average age of 58 ± 10 years and a total of 12 foot ulcers were enrolled. Average ulcer duration was 36·44 ± 24·78 weeks and the average ABI was 0·91 ± 0·06. Group 1 showed significant wound area reduction at weeks 3, 4 and 5 compared with baseline, with the greatest PAR, 86% (P < 0·05); Groups 2 and 3 showed 25% PAR and 39% PAR, respectively, but there were no statistically significant differences between Groups 2 and 3 over time. Biochemical and histological analyses indicated a trend towards reduction of pro-inflammatory cytokines (IL-6, IL-8, IL-1β, TNF-α and GM-CSF), matrix metalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEGF) and macrophages in response to NCLF-US consistent with wound reduction, when

  8. The βc receptor family - Structural insights and their functional implications.

    PubMed

    Broughton, Sophie E; Nero, Tracy L; Dhagat, Urmi; Kan, Winnie L; Hercus, Timothy R; Tvorogov, Denis; Lopez, Angel F; Parker, Michael W

    2015-08-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3) and IL-5 are members of a small family of cytokines that share a beta receptor subunit (βc). These cytokines regulate the growth, differentiation, migration and effector function activities of many hematopoietic cells in bone marrow, blood and sites of inflammation. Excessive or aberrant signaling can result in chronic inflammatory conditions and myeloid leukemias. The crystal structures of the GM-CSF ternary complex, the IL-5 binary complex and the very recent IL-3 receptor alpha subunit build upon decades of structure-function studies, giving new insights into cytokine-receptor specificity and signal transduction. Selective modulation of receptor function is now a real possibility and the structures of the βc receptor family are being used to discover novel and disease-specific therapeutics. PMID:25982846

  9. Whose Gene Is It Anyway? The Effect of Preparation Purity on Neutrophil Transcriptome Studies

    PubMed Central

    Thomas, Huw B.; Moots, Robert J.; Edwards, Steven W.; Wright, Helen L.

    2015-01-01

    Protocols for the isolation of neutrophils from whole blood often result in neutrophil preparations containing low numbers (~5%) of contaminating leukocytes, and it is possible that these contaminating cells contribute to highly sensitive assays that measure neutrophil gene expression (e.g. qPCR). We investigated the contribution of contaminating leukocytes on the transcriptome profile of human neutrophils following stimulation with inflammatory cytokines (GM-CSF, TNFα), using RNA-Seq. Neutrophils were isolated using Polymorphprep or the StemCell untouched neutrophil isolation kit (negative selection of “highly pure” neutrophils). The level of contamination was assessed by morphology and flow cytometry. The major source of contamination in Polymorphprep neutrophil preparations was from eosinophils and was highly donor dependent. Contaminating cells were largely, but not completely, absent in neutrophil suspensions prepared using negative selection, but the overall yield of neutrophils was decreased by around 50%. RNA-seq analysis identified only 25 genes that were significantly differentially-expressed between Polymorphprep and negatively-selected neutrophils across all three treatment groups (untreated, GM-CSF, TNFα). The expression levels of 34 cytokines/chemokines both before and after GM-CSF or TNFα treatment were not significantly different between neutrophil isolation methods and therefore not affected by contributions from non-neutrophil cell types. This work demonstrates that low numbers (<5%) of contaminating leukocytes in neutrophil preparations contribute very little to the overall gene expression profile of cytokine-stimulated neutrophils, and that protocols for the isolation of highly pure neutrophils result in significantly lower yields of cells which may hinder investigations where large numbers of cells are required or where volumes of blood are limited. PMID:26401909

  10. Vaccination of prostate cancer patients with modified vaccinia ankara delivering the tumor antigen 5T4 (TroVax): a phase 2 trial.

    PubMed

    Amato, Robert J; Drury, Noel; Naylor, Stuart; Jac, Jaroslaw; Saxena, Somya; Cao, Amy; Hernandez-McClain, Joan; Harrop, Richard

    2008-01-01

    The attenuated vaccinia virus, modified vaccinia Ankara, has been engineered to deliver the tumor antigen 5T4 (TroVax). TroVax has been evaluated in an open-label phase 2 trial in hormone refractory prostate cancer patients in which the vaccine was administered either alone or in combination with granulocyte macrophage-colony stimulating factor (GM-CSF). The comparative safety and immunologic and clinical efficacy of TroVax alone or in combination with GM-CSF was determined. Twenty-seven patients with metastatic hormone refractory prostate cancer were treated with TroVax alone (n=14) or TroVax+GM-CSF (n=13). 5T4-specific cellular and humoral responses were monitored throughout the study. Clinical responses were assessed by quantifying prostate-specific antigen concentrations and measuring changes in tumor burden by computer-assisted tomography scan. TroVax was well tolerated in all patients with no serious adverse events attributed to vaccination. Of 24 immunologically evaluable patients, all mounted 5T4-specific antibody responses. Periods of disease stabilization from 2 to >10 months were observed. Time to progression was significantly greater in patients who mounted 5T4-specific cellular responses compared with those who did not (5.6 vs. 2.3 mo, respectively). There were no objective clinical responses seen in this study. In this study, the combination of GM-CSF with TroVax showed similar clinical and immunologic responses to TroVax alone. The high frequency of 5T4-specific immune responses and relationship with enhanced time to progression is encouraging and warrants further investigation. PMID:18528296