Science.gov

Sample records for alga botryococcus braunii

  1. A novel alphaproteobacterial ectosymbiont promotes the growth of the hydrocarbon-rich green alga Botryococcus braunii

    PubMed Central

    Tanabe, Yuuhiko; Okazaki, Yusuke; Yoshida, Masaki; Matsuura, Hiroshi; Kai, Atsushi; Shiratori, Takashi; Ishida, Ken-ichiro; Nakano, Shin-ichi; Watanabe, Makoto M.

    2015-01-01

    Botryococcus braunii is a colony-forming green alga that accumulates large amounts of liquid hydrocarbons within the colony. The utilization of B. braunii for biofuel production is however hindered by its low biomass productivity. Here we describe a novel bacterial ectosymbiont (BOTRYCO-2) that confers higher biomass productivity to B. braunii. 16S rDNA analysis indicated that the sequence of BOTRYCO-2 shows low similarity (<90%) to cultured bacterial species and located BOTRYCO-2 within a phylogenetic lineage consisting of uncultured alphaproteobacterial clones. Fluorescence in situ hybridization (FISH) studies and transmission electric microscopy indicated that BOTRYCO-2 is closely associated with B. braunii colonies. Interestingly, FISH analysis of a water bloom sample also found BOTRYCO-2 bacteria in close association with cyanobacterium Microcystis aeruginosa colonies, suggesting that BOTRYCO-2 relatives have high affinity to phytoplankton colonies. A PCR survey of algal bloom samples revealed that the BOTRYCO-2 lineage is commonly found in Microcystis associated blooms. Growth experiments indicated that B. braunii Ba10 can grow faster and has a higher biomass (1.8-fold) and hydrocarbon (1.5-fold) yield in the presence of BOTRYCO-2. Additionally, BOTRYCO-2 conferred a higher biomass yield to BOT-22, one of the fastest growing strains of B. braunii. We propose the species name ‘Candidatus Phycosocius bacilliformis’ for BOTRYCO-2. PMID:26130609

  2. Molecular and Biochemical Characterization of Hydrocarbon Production in the Green Microalga Botryococcus braunii 

    E-print Network

    Weiss, Taylor Leigh

    2012-10-19

    .................................................................................................... xiv CHAPTER I INTRODUCTION ................................................................................ 1 Algae biofuels ................................................................................ 1 Algae... .............................................................................................. 2 Botryococcus braunii ..................................................................... 4 General biology ........................................................................ 4 Biofuel potential...

  3. Nitrogen deprivation-induced de novo transcriptomic profiling of the oleaginous green alga Botryococcus braunii 779

    PubMed Central

    Xu, Zhenyu; He, Jing; Qi, Shuyuan; Liu, Jianhua

    2015-01-01

    To assess the effect of nitrogen deprivation (ND), a moderately growing A-race Botryococcus braunii subisolate 779 was subjected to nitrogen deprivation for 3 days. De novo transcriptome was assembled and annotated by using Trinity software and Basic Local Alignment Search Tools (BLAST), respectively. Comparative analysis indicates that transcriptomes of A-races differ from those of B-races. Furthermore, majority of the homologous ESTs in A-race but not B-race transcriptomes were unknown sequences. Upon ND, level of photosynthetic transcripts, but not photosynthetic efficiency was downregulated. Unlike hydrocarbon contents, ESTs involved in hydrocarbon biosynthesis were not upregulated. Taken together, our results imply that A- and B-races belong to different B. braunii subspecies. Upon ND, excess photosynthetic transcripts are recycled for nitrogen; and hydrocarbon accumulation is not via de novo biosynthesis. Here we describe in details the data contents and analytic methodologies associated with the data uploaded to Gene Expression Omnibus (accession number GSE71296).

  4. Nitrogen deprivation-induced de novo transcriptomic profiling of the oleaginous green alga Botryococcus braunii 779.

    PubMed

    Xu, Zhenyu; He, Jing; Qi, Shuyuan; Liu, Jianhua

    2015-12-01

    To assess the effect of nitrogen deprivation (ND), a moderately growing A-race Botryococcus braunii subisolate 779 was subjected to nitrogen deprivation for 3 days. De novo transcriptome was assembled and annotated by using Trinity software and Basic Local Alignment Search Tools (BLAST), respectively. Comparative analysis indicates that transcriptomes of A-races differ from those of B-races. Furthermore, majority of the homologous ESTs in A-race but not B-race transcriptomes were unknown sequences. Upon ND, level of photosynthetic transcripts, but not photosynthetic efficiency was downregulated. Unlike hydrocarbon contents, ESTs involved in hydrocarbon biosynthesis were not upregulated. Taken together, our results imply that A- and B-races belong to different B. braunii subspecies. Upon ND, excess photosynthetic transcripts are recycled for nitrogen; and hydrocarbon accumulation is not via de novo biosynthesis. Here we describe in details the data contents and analytic methodologies associated with the data uploaded to Gene Expression Omnibus (accession number GSE71296). PMID:26697382

  5. Micronutrient Requirements for Growth and Hydrocarbon Production in the Oil Producing Green Alga Botryococcus braunii (Chlorophyta)

    PubMed Central

    Song, Liang; Qin, Jian G.; Su, Shengqi; Xu, Jianhe; Clarke, Stephen; Shan, Yichu

    2012-01-01

    The requirements of micronutrients for biomass and hydrocarbon production in Botryococcus braunii UTEX 572 were studied using response surface methodology. The concentrations of four micronutrients (iron, manganese, molybdenum, and nickel) were manipulated to achieve the best performance of B. braunii in laboratory conditions. The responses of algal biomass and hydrocarbon to the concentration variations of the four micronutrients were estimated by a second order quadratic regression model. Genetic algorithm calculations showed that the optimal level of micronutrients for algal biomass were 0.266 µM iron, 0.707 µM manganese, 0.624 µM molybdenum and 3.38 µM nickel. The maximum hydrocarbon content could be achieved when the culture media contained 10.43 µM iron, 6.53 µM manganese, 0.012 µM molybdenum and 1.73 µM nickel. The validation through an independent test in a photobioreactor suggests that the modified media with optimised concentrations of trace elements can increase algal biomass by 34.5% and hydrocarbon by 27.4%. This study indicates that micronutrients play significant roles in regulating algal growth and hydrocarbon production, and the response surface methodology can be used to optimise the composition of culture medium in algal culture. PMID:22848502

  6. Colony organization in the green alga Botryococcus braunii (Race B) is specified by a complex extracellular matrix.

    PubMed

    Weiss, Taylor L; Roth, Robyn; Goodson, Carrie; Vitha, Stanislav; Black, Ian; Azadi, Parastoo; Rusch, Jannette; Holzenburg, Andreas; Devarenne, Timothy P; Goodenough, Ursula

    2012-12-01

    Botryococcus braunii is a colonial green alga whose cells associate via a complex extracellular matrix (ECM) and produce prodigious amounts of liquid hydrocarbons that can be readily converted into conventional combustion engine fuels. We used quick-freeze deep-etch electron microscopy and biochemical/histochemical analysis to elucidate many new features of B. braunii cell/colony organization and composition. Intracellular lipid bodies associate with the chloroplast and endoplasmic reticulum (ER) but show no evidence of being secreted. The ER displays striking fenestrations and forms a continuous subcortical system in direct contact with the cell membrane. The ECM has three distinct components. (i) Each cell is surrounded by a fibrous ?-1, 4- and/or ?-1, 3-glucan-containing cell wall. (ii) The intracolonial ECM space is filled with a cross-linked hydrocarbon network permeated with liquid hydrocarbons. (iii) Colonies are enclosed in a retaining wall festooned with a fibrillar sheath dominated by arabinose-galactose polysaccharides, which sequesters ECM liquid hydrocarbons. Each cell apex associates with the retaining wall and contributes to its synthesis. Retaining-wall domains also form "drapes" between cells, with some folding in on themselves and penetrating the hydrocarbon interior of a mother colony, partitioning it into daughter colonies. We propose that retaining-wall components are synthesized in the apical Golgi apparatus, delivered to apical ER fenestrations, and assembled on the surfaces of apical cell walls, where a proteinaceous granular layer apparently participates in fibril morphogenesis. We further propose that hydrocarbons are produced by the nonapical ER, directly delivered to the contiguous cell membrane, and pass across the nonapical cell wall into the hydrocarbon-based ECM. PMID:22941913

  7. Colony Organization in the Green Alga Botryococcus braunii (Race B) Is Specified by a Complex Extracellular Matrix

    PubMed Central

    Weiss, Taylor L.; Roth, Robyn; Goodson, Carrie; Vitha, Stanislav; Black, Ian; Azadi, Parastoo; Rusch, Jannette; Holzenburg, Andreas

    2012-01-01

    Botryococcus braunii is a colonial green alga whose cells associate via a complex extracellular matrix (ECM) and produce prodigious amounts of liquid hydrocarbons that can be readily converted into conventional combustion engine fuels. We used quick-freeze deep-etch electron microscopy and biochemical/histochemical analysis to elucidate many new features of B. braunii cell/colony organization and composition. Intracellular lipid bodies associate with the chloroplast and endoplasmic reticulum (ER) but show no evidence of being secreted. The ER displays striking fenestrations and forms a continuous subcortical system in direct contact with the cell membrane. The ECM has three distinct components. (i) Each cell is surrounded by a fibrous ?-1, 4- and/or ?-1, 3-glucan-containing cell wall. (ii) The intracolonial ECM space is filled with a cross-linked hydrocarbon network permeated with liquid hydrocarbons. (iii) Colonies are enclosed in a retaining wall festooned with a fibrillar sheath dominated by arabinose-galactose polysaccharides, which sequesters ECM liquid hydrocarbons. Each cell apex associates with the retaining wall and contributes to its synthesis. Retaining-wall domains also form “drapes” between cells, with some folding in on themselves and penetrating the hydrocarbon interior of a mother colony, partitioning it into daughter colonies. We propose that retaining-wall components are synthesized in the apical Golgi apparatus, delivered to apical ER fenestrations, and assembled on the surfaces of apical cell walls, where a proteinaceous granular layer apparently participates in fibril morphogenesis. We further propose that hydrocarbons are produced by the nonapical ER, directly delivered to the contiguous cell membrane, and pass across the nonapical cell wall into the hydrocarbon-based ECM. PMID:22941913

  8. Bio-crude transcriptomics: Gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa)*

    DOE PAGESBeta

    Molnár, István; Lopez, David; Wisecaver, Jennifer H.; Devarenne, Timothy P.; Weiss, Taylor L.; Pellegrini, Matteo; Hackett, Jeremiah D.

    2012-10-30

    Microalgae hold promise for yielding a biofuel feedstock that is sustainable, carbon-neutral, distributed, and only minimally disruptive for the production of food and feed by traditional agriculture. Amongst oleaginous eukaryotic algae, the B race of Botryococcus braunii is unique in that it produces large amounts of liquid hydrocarbons of terpenoid origin. These are comparable to fossil crude oil, and are sequestered outside the cells in a communal extracellular polymeric matrix material. The biosynthetic engineering of terpenoid bio-crude production requires identification of genes and reconstruction of metabolic pathways responsible for production of both hydrocarbons and other metabolites of the alga thatmore »compete for photosynthetic carbon and energy.« less

  9. Bio-crude transcriptomics: Gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa)*

    SciTech Connect

    Molnár, István; Lopez, David; Wisecaver, Jennifer H.; Devarenne, Timothy P.; Weiss, Taylor L.; Pellegrini, Matteo; Hackett, Jeremiah D.

    2012-10-30

    Microalgae hold promise for yielding a biofuel feedstock that is sustainable, carbon-neutral, distributed, and only minimally disruptive for the production of food and feed by traditional agriculture. Amongst oleaginous eukaryotic algae, the B race of Botryococcus braunii is unique in that it produces large amounts of liquid hydrocarbons of terpenoid origin. These are comparable to fossil crude oil, and are sequestered outside the cells in a communal extracellular polymeric matrix material. The biosynthetic engineering of terpenoid bio-crude production requires identification of genes and reconstruction of metabolic pathways responsible for production of both hydrocarbons and other metabolites of the alga that compete for photosynthetic carbon and energy.

  10. Functional Identification of Triterpene Methyltransferases from Botryococcus braunii Race B*

    PubMed Central

    Niehaus, Tom D.; Kinison, Scott; Okada, Shigeru; Yeo, Yun-soo; Bell, Stephen A.; Cui, Ping; Devarenne, Timothy P.; Chappell, Joe

    2012-01-01

    Botryococcus braunii race B is a colony-forming, green algae that accumulates triterpene oils in excess of 30% of its dry weight. The composition of the triterpene oils is dominated by dimethylated to tetramethylated forms of botryococcene and squalene. Although unusual mechanisms for the biosynthesis of botryococcene and squalene were recently described, the enzyme(s) responsible for decorating these triterpene scaffolds with methyl substituents were unknown. A transcriptome of B. braunii was screened computationally assuming that the triterpene methyltransferases (TMTs) might resemble the S-adenosyl methionine-dependent enzymes described for methylating the side chain of sterols. Six sterol methyltransferase-like genes were isolated and functionally characterized. Three of these genes when co-expressed in yeast with complementary squalene synthase or botryococcene synthase expression cassettes resulted in the accumulation of mono- and dimethylated forms of both triterpene scaffolds. Surprisingly, TMT-1 and TMT-2 exhibited preference for squalene as the methyl acceptor substrate, whereas TMT-3 showed a striking preference for botryococcene as its methyl acceptor substrate. These in vivo preferences were confirmed with in vitro assays utilizing microsomal preparations from yeast overexpressing the respective genes, which encode for membrane-associated enzymes. Structural examination of the in vivo yeast generated mono- and dimethylated products by NMR identified terminal carbons, C-3 and C-22/C-20, as the atomic acceptor sites for the methyl additions to squalene and botryococcene, respectively. These sites are identical to those previously reported for the triterpenes extracted from the algae. The availability of closely related triterpene methyltransferases exhibiting distinct substrate selectivity and successive catalytic activities provides important tools for investigating the molecular mechanisms responsible for the specificities exhibited by these unique enzymes. PMID:22241476

  11. Bio-crude transcriptomics: Gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa)*

    PubMed Central

    2012-01-01

    Background Microalgae hold promise for yielding a biofuel feedstock that is sustainable, carbon-neutral, distributed, and only minimally disruptive for the production of food and feed by traditional agriculture. Amongst oleaginous eukaryotic algae, the B race of Botryococcus braunii is unique in that it produces large amounts of liquid hydrocarbons of terpenoid origin. These are comparable to fossil crude oil, and are sequestered outside the cells in a communal extracellular polymeric matrix material. Biosynthetic engineering of terpenoid bio-crude production requires identification of genes and reconstruction of metabolic pathways responsible for production of both hydrocarbons and other metabolites of the alga that compete for photosynthetic carbon and energy. Results A de novo assembly of 1,334,609 next-generation pyrosequencing reads form the Showa strain of the B race of B. braunii yielded a transcriptomic database of 46,422 contigs with an average length of 756 bp. Contigs were annotated with pathway, ontology, and protein domain identifiers. Manual curation allowed the reconstruction of pathways that produce terpenoid liquid hydrocarbons from primary metabolites, and pathways that divert photosynthetic carbon into tetraterpenoid carotenoids, diterpenoids, and the prenyl chains of meroterpenoid quinones and chlorophyll. Inventories of machine-assembled contigs are also presented for reconstructed pathways for the biosynthesis of competing storage compounds including triacylglycerol and starch. Regeneration of S-adenosylmethionine, and the extracellular localization of the hydrocarbon oils by active transport and possibly autophagy are also investigated. Conclusions The construction of an annotated transcriptomic database, publicly available in a web-based data depository and annotation tool, provides a foundation for metabolic pathway and network reconstruction, and facilitates further omics studies in the absence of a genome sequence for the Showa strain of B. braunii, race B. Further, the transcriptome database empowers future biosynthetic engineering approaches for strain improvement and the transfer of desirable traits to heterologous hosts. PMID:23110428

  12. Studies on the nutritional requirements of the oil-producing algar Botryococcus braunii

    SciTech Connect

    Weetall, H.H.

    1985-10-01

    Studies were carried out on the ability of the algae Botryococcus braunii to grow in the presence of possible carbon sources. Sources examined included compounds for C1-C6, as well as the disaccharides sucrose and lactose. Dividing times were decreased from an average of over 1 week to less than 3 days by addition of the appropriate carbon sources. Examination of the oils produced in the presence and absence of exogenous carbon indicated no differences. However, the total biomass produced in the presence of a usable carbon source exceeded that produced in the carbon's absence. 10 references.

  13. Interactions of Botryococcus braunii cultures with bacterial biofilms.

    PubMed

    Rivas, Mariella O; Vargas, Pedro; Riquelme, Carlos E

    2010-10-01

    Unicellular microalgae generally grow in the presence of bacteria, particularly when they are farmed massively. This study analyzes the bacteria associated with mass culture of Botryococcus braunii: both the planktonic bacteria in the water column and those forming biofilms adhered to the surface of the microalgal cells (?10?-10? culturable cells per gram microalgae). Furthermore, we identified the culturable bacteria forming a biofilm in the microalgal cells by 16S rDNA sequencing. At least eight different culturable species of bacteria were detected in the biofilm and were evaluated for the presence of quorum-sensing signals in these bacteria. Few studies have considered the implications of this phenomenon as regards the interaction between bacteria and microalgae. Production of C4-AHL and C6-AHL were detected in two species, Pseudomonas sp. and Rhizobium sp., which are present in the bacterial biofilm associated with B. braunii. This type of signal was not detected in the planktonic bacteria isolated from the water. We also noted that the bacterium, Rhizobium sp., acted as a probiotic bacterium and significantly encouraged the growth of B. braunii. A direct application of these beneficial bacteria associated with B. braunii could be, to use them like inoculants for large-scale microalgal cultures. They could optimize biomass production by enhancing growth, particularly in this microalga that has a low growth rate. PMID:20502890

  14. Identification of unique mechanisms for triterpene biosynthesis in Botryococcus braunii

    PubMed Central

    Niehaus, Tom D.; Okada, Shigeru; Devarenne, Timothy P.; Watt, David S.; Sviripa, Vitaliy; Chappell, Joe

    2011-01-01

    Botryococcene biosynthesis is thought to resemble that of squalene, a metabolite essential for sterol metabolism in all eukaryotes. Squalene arises from an initial condensation of two molecules of farnesyl diphosphate (FPP) to form presqualene diphosphate (PSPP), which then undergoes a reductive rearrangement to form squalene. In principle, botryococcene could arise from an alternative rearrangement of the presqualene intermediate. Because of these proposed similarities, we predicted that a botryococcene synthase would resemble squalene synthase and hence isolated squalene synthase-like genes from Botryococcus braunii race B. While B. braunii does harbor at least one typical squalene synthase, none of the other three squalene synthase-like (SSL) genes encodes for botryococcene biosynthesis directly. SSL-1 catalyzes the biosynthesis of PSPP and SSL-2 the biosynthesis of bisfarnesyl ether, while SSL-3 does not appear able to directly utilize FPP as a substrate. However, when combinations of the synthase-like enzymes were mixed together, in vivo and in vitro, robust botryococcene (SSL-1+SSL-3) or squalene biosynthesis (SSL1+SSL-2) was observed. These findings were unexpected because squalene synthase, an ancient and likely progenitor to the other Botryococcus triterpene synthases, catalyzes a two-step reaction within a single enzyme unit without intermediate release, yet in B. braunii, these activities appear to have separated and evolved interdependently for specialized triterpene oil production greater than 500 MYA. Coexpression of the SSL-1 and SSL-3 genes in different configurations, as independent genes, as gene fusions, or targeted to intracellular membranes, also demonstrate the potential for engineering even greater efficiencies of botryococcene biosynthesis. PMID:21746901

  15. Isolation and Characterization of Two Squalene Epoxidase Genes from Botryococcus braunii, Race B

    PubMed Central

    Uchida, Hidenobu; Sumimoto, Koremitsu; Ferriols, Victor Marco Emmanuel; Imou, Kenji; Saga, Kiyotaka; Furuhashi, Kenichi; Matsunaga, Shigeki; Okada, Shigeru

    2015-01-01

    The B race of the green microalga Botryococcus braunii produces triterpene hydrocarbons, botryococcenes and methylsqualenes that can be processed into jet fuels with high heating values. In this alga, squalene is also converted into membrane sterols after 2,3-epoxidation. In the present study, cDNA clones of two distinct squalene epoxidases (BbSQE-I and -II) were isolated. Predicted amino acid sequences encoded on these genes are 45% identical with each other. Introduction of BbSQE-I or -II into Saccharomyces cerevisie erg1 mutants resulted in the complementation of ergosterol auxotrophy. The relative expression level of SQE-II increased 3.5-fold from the early stage to the middle phase of a culture period of 42 days, while that of SQE-I was almost constant throughout the culture period. Southern blot analyses suggested that these genes are single-copied genes. This is the first report on the isolation of functional SQEs that are encoded in duplicated loci in the algal genome. PMID:25830359

  16. Pilon's Lab UCLA www.seas.ucla.edu/~pilon/ Refraction and absorption index of Botryococcus braunii, Chlorella sp. and

    E-print Network

    Pilon, Laurent

    Pilon's Lab ­ UCLA www.seas.ucla.edu/~pilon/ Refraction and absorption index of Botryococcus.seas.ucla.edu/~pilon/ Refraction and absorption index of Botryococcus braunii 8 9 10 11 12 13 14 15 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 Numberfrequency Equivalent diameter, ds (m) (nm) Refraction index, n

  17. Catalytic gasification of oil-extracted residue biomass of Botryococcus braunii.

    PubMed

    Watanabe, Hideo; Li, Dalin; Nakagawa, Yoshinao; Tomishige, Keiichi; Watanabe, Makoto M

    2015-09-01

    Catalytic gasification of the oil-extracted residue biomass of Botryococcus braunii was demonstrated in a laboratory-scale continuous feeding dual bed reactor. Steam gasification at 1023 K over Ni-Fe/Mg/Al catalyst can completely reform tar derived from pyrolysis of the residue biomass into C1 gases and hydrogen, and has achieved 91%-C conversion to gaseous product (CO+CO2+CH4). Composition of product gas has higher contents of CO and H2 with their ratio (H2/CO) of around 2.4 which is slightly H2-rich syngas. Maximum hydrogen yield of 74.7 mmol g-biomass(-1) obtained in this work is much higher than that from gasification of other algal biomass reported in literature. The residue biomass of B. braunii can be a superior renewable source of syngas or hydrogen. PMID:25817421

  18. Structure and chemistry of a new chemical race of Botryococcus braunii (chlorophyceae) that produces lycopadiene, a tetraterpenoid hydrocarbon

    SciTech Connect

    Metzger, P.; Allard, B.; Casadevall, E. ); Berkaloff, C.; Coute, A. )

    1990-06-01

    New strains of the hydrocarbon rich alga Botryococcus braunii Kuetzing were isolated from water samples collected in three tropical freshwater lakes. These strains synthesize lycopadiene, a tetraterpenoid metabolite, as their sole hydrocarbon. The morphological and ultrastructural characteristics of these algae are similar to those reported for previously described strains which produce either alkadienes or botryococcenes. The pyriform shaped cells are embedded in a colonial matrix formed by layers of closely appressed external walls; this dense matrix is impregnated by the hydrocarbon and some other lipids. We believe the new strains synthesizing lycopadiene form a third chemical race in B. braunii, besides the alkadiene and botryococcene races, rather than a different species. Like the other two types of hydrocarbons, lycopadiene was produced primarily during the exponential and linear growth phases. The major fatty acid in the three races was oleic acid. This fatty acid was predominant in the alkadiene race; palmitic and octacosenoic acid also were present in appreciable amounts in the three races. Cholest-5-en-3{beta}-ol, 24-methylcholest-5-en-3{beta}-ol and 24-ethylcholest-5-en-3{beta}-ol occurred in the three races; three unidentified sterols also were detected in the lycopadiene race. Moreover, the presence of very long chain alkenyl-phenols in the lipids of algae of the alkadiene race was not observed in the botryococcene and lycopadiene races. Of the polysaccharides released in the medium, galactose appeared as a primary component: it predominated in the botryococcene race. The other major constituents were fucose for the alkadiene race and glucose and fucose for the lycopadiene race.

  19. Biodiesel synthesis by direct transesterification of microalga Botryococcus braunii with continuous methanol reflux.

    PubMed

    Hidalgo, Pamela; Ciudad, Gustavo; Schober, Sigurd; Mittelbach, Martin; Navia, Rodrigo

    2015-04-01

    Direct transesterification of Botryococcus braunii with continuous acyl acceptor reflux was evaluated. This method combines in one step lipid extraction and esterification/transesterification. Fatty acid methyl esters (FAME) synthesis by direct conversion of microalgal biomass was carried out using sulfuric acid as catalyst and methanol as acyl acceptor. In this system, once lipids are extracted, they are contacted with the catalyst and methanol reaching 82%wt of FAME yield. To optimize the reaction conditions, a factorial design using surface response methodology was applied. The effects of catalyst concentration and co-solvent concentration were studied. Hexane was used as co-solvent for increasing lipid extraction performance. The incorporation of hexane in the reaction provoked an increase in FAME yield from 82% (pure methanol) to 95% when a 47%v/v of hexane was incorporated in the reaction. However, the selectivity towards non-saponifiable lipids such as sterols was increased, negatively affecting biodiesel quality. PMID:25625464

  20. Hydrogen isotope fractionation in freshwater algae: I. Variations among lipids and species

    E-print Network

    Sachs, Julian P.

    Hydrogen isotope fractionation in freshwater algae: I. Variations among lipids and species Zhaohui Abstract Five species of freshwater green algae, including three strains of Botryococcus braunii (two in the algae, including alkadienes, botryococcenes, heptadecenes, fatty acids, and phytadiene, were measured

  1. Development of a draft-tube airlift bioreactor for Botryococcus braunii with an optimized inner structure using computational fluid dynamics.

    PubMed

    Xu, Ling; Liu, Rui; Wang, Feng; Liu, Chun-Zhao

    2012-09-01

    The key parameters of the inner structure of a cylindrical airlift bioreactor, including the ratio of the cross-section area of the downcomer to the cross-section area of the riser, clearance from the upper edge of the draft tube to the water level, and clearance from the low edge of the draft tube to the bottom of the reactor, significantly affected the biomass production of Botryococcus braunii. In order to achieve high algal cultivation performance, the optimal structural parameters of the bioreactor were determined using computational fluid dynamics (CFD) simulation. The simulated results were validated by experimental data collected from the microalgal cultures in both 2 and 40-L airlift bioreactors. The CFD model developed in this study provides a powerful means for optimizing bioreactor design and scale-up without the need to perform numerous time-consuming bioreactor experiments. PMID:22750496

  2. Characterization of the biofuel potential of a newly isolated strain of the microalga Botryococcus braunii Kützing from Assam, India.

    PubMed

    Talukdar, Jayanta; Kalita, Mohan Chandra; Goswami, Bhabesh Chandra

    2013-12-01

    Botryococcus braunii GUBIOTJTBB1 was isolated from a freshwater reservoir in Assam, India and its taxonomic identity was confirmed by 18S rRNA sequence analysis. Biofuel potential of the microalga strain was assessed from batch culture under laboratory conditions, based on its lipid content and energy value of the dried biomass. Total lipid of 57.14% and hexane extractable crude hydrocarbon of 52.6% were recorded maximum at 56 and 28 days respectively, which vary upon culture durations. The energy value (54.69 kJ/g) of the strain's sundried biomass was found higher than that of petroleum diesel fuel and nearly twice than other microalgae strains compared. The strain GUBIOTJTBB1 was found superior in terms of total lipid and hydrocarbon contents comparing to the previously reported Indian strains of B. braunii. With further improvements in growth, the strain could become an ideal feedstock for potential biofuel production in the prevailing climatic conditions of the region. PMID:24121368

  3. Removal of CO{sub 2} from flue gases by algae. [Quarterly] technical report, March 1, 1993--May 31, 1993

    SciTech Connect

    Akin, C.; Pradhan, S.

    1993-09-01

    The objective of this research program is to determine the feasibility of the alga Botryococcus braunii as a biocatalyst for the photosynthetic conversion of flue gas CO{sub 2} to hydrocarbons. The research program involves the determination of the biocatalytic characteristics of free and immobilized cultures of Botryococcus braunii in bench-scale studies, and the feasibility study and economic analysis of the Botryococcus braunii culture systems for the conversion of flue gas CO{sub 2} to hydrocarbons. The objective of the third quarter of this research program was to determine the growth and hydrogen formation characteristics of free and immobilized cells of Botryococcus braunii in bench-scale photobioreactors. Raceway and inclined surface type bioreactors were used for free cell and immobilized cell studies respectively. The free cell studies with air and CO{sub 2} enriched air [10% (v/v) CO{sub 2} in air] in media with and without NaHCO{sub 3} were conducted.

  4. Monitoring lipid accumulation in the green microalga Botryococcus braunii with frequency-modulated stimulated Raman scattering

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Chin; Chandrappa, Dayananda; Smirnoff, Nicholas; Moger, Julian

    2015-03-01

    The potential of microalgae as a source of renewable energy has received considerable interest because they can produce lipids (fatty acids and isoprenoids) that can be readily converted into biofuels. However, significant research in this area is required to increase yields to make this a viable renewable source of energy. An analytical tool that could provide quantitative in situ spectroscopic analysis of lipids synthesis in individual microalgae would significantly enhance our capability to understand the synthesis process at the cellular level and lead to the development of strategies for increasing yield. Stimulated Raman scattering (SRS) microscopy has great potential in this area however, the pump-probe signal from two-color two-photon absorption of pigments (chlorophyll and carotenoids) overwhelm the SRS signal and prevent its application. Clearly, the development of a background suppression technique is of significant value for this important research area. To overcome the limitation of SRS in pigmented specimens, we establish a frequency-modulated stimulated Raman scattering (FM-SRS) microscopy that eliminates the non-Raman background by rapidly toggling on-and-off the targeted Raman resonance. Moreover, we perform the background-free imaging and analysis of intracellular lipid droplets and extracellular hydrocarbons in a green microalga with FM-SRS microscopy. We believe that FM-SRS microscopy demonstrates the potential for many applications in pigmented cells and provides the opportunity for improved selective visualization of the chemical composition of algae and plants

  5. Effects of different media and nitrogen sources and levels on growth and lipid of green microalga Botryococcus braunii KMITL and its biodiesel properties based on fatty acid composition.

    PubMed

    Ruangsomboon, Suneerat

    2015-09-01

    This work aimed to find an optimum culture medium for green microalga Botryococcus braunii KMITL and investigate its biodiesel properties based on fatty acid composition. Four different media were tested. Chlorella medium was the best medium for lipid yield. Among four nitrogen sources tested, KNO3 produced the highest lipid yield. When varied the nitrogen concentrations, this strain gave the highest lipid yield at the highest nitrogen level. When cultivated in the best medium and nitrogen source and level for 30 days, and then cultivated further for 14 days in the medium with no nitrogen, the highest lipid content and yield were 49.94±0.82% and 2.71±0.02 g L(-1), respectively. C16:0 fatty acid was the major fatty acid found. Fatty acid profiles of B. braunii KMITL cultivated in Chlorella medium with 1.25 g L(-1) KNO3 gave the best biodiesel properties with the lowest iodine value, maximum cetane number, and lowest degree of unsaturation. PMID:25677535

  6. The use of artificial neural network for modelling of phycoremediation of toxic elements As(III) and As(V) from wastewater using Botryococcus braunii.

    PubMed

    Podder, M S; Majumder, C B

    2016-02-15

    In the present study, a thorough investigation has been done on the removal efficiency of both As(III) and As (V) from synthetic wastewater by phycoremediation of Botryococcus braunii algal biomass. Artificial neural networks (ANNs) are practised for predicting % phycoremediation efficiency of both As(III) and As(V) ions. The influence of several parameters for example initial pH, inoculum size, contact time and initial arsenic concentration (either As(III) or As(V)) was examined systematically. The maximum phycoremediation of As(III) and As(V) was found to be 85.22% and 88.15% at pH9.0, equilibrium time of 144h by using algal inoculum size of 10% (v/v) and initial arsenic concentration of 50mg/L. The data acquired from laboratory scale experimental set up was utilized for training a three-layer feed-forward back propagation (BP) with Levenberg-Marquardt (LM) training algorithm having 4:5:1 architecture. A comparison between the experimental data and model outputs provided a high correlation coefficient (R(2)all_ANN equal to 0.9998) and exhibited that the model was capable for predicting the phycoremediation of both As(III) and As(V) from wastewater. The network topology was optimized by changing number of neurons in hidden layers. ANNs are efficient to model and simulate highly non-liner multivariable relationships. Absolute error and Standard deviation (SD) with respect to experimental output were calculated for ANN model outputs. The comparison of phycoremediation efficiencies of both As(III) and As(V) between experimental results and ANN model outputs exhibited that ANN model can determine the behaviour of As(III) and As(V) elimination process under various circumstances. PMID:26615452

  7. Characterization of the heterotrimeric G-protein complex and its regulator from the green alga Chara braunii expands the evolutionary breadth of plant G-protein signaling.

    PubMed

    Hackenberg, Dieter; Sakayama, Hidetoshi; Nishiyama, Tomoaki; Pandey, Sona

    2013-12-01

    The lack of heterotrimeric G-protein homologs in the sequenced genomes of green algae has led to the hypothesis that, in plants, this signaling mechanism coevolved with the embryophytic life cycle and the acquisition of terrestrial habitat. Given the large evolutionary gap that exists between the chlorophyte green algae and most basal land plants, the bryophytes, we evaluated the presence of this signaling complex in a charophyte green alga, Chara braunii, proposed to be the closest living relative of land plants. The C. braunii genome encodes for the entire G-protein complex, the G?, G?, and G? subunits, and the REGULATOR OF G-PROTEIN SIGNALING (RGS) protein. The biochemical properties of these proteins and their cross-species functionality show that they are functional homologs of canonical G-proteins. The subunit-specific interactions between CbG? and CbG?, CbG? and CbG?, and CbG? and CbRGS are also conserved, establishing the existence of functional G-protein complex-based signaling mechanisms in green algae. PMID:24179134

  8. Removal of CO{sub 2} from flue gases by algae. Final technical report, September 1, 1992--August 31, 1993

    SciTech Connect

    Akin, C.; Maka, A.; Patel, S.; Conrad, J.; Benemann, J.

    1993-12-31

    The objective of this research program is to determine the feasibility of the alga Botryococcus braunii as a biocatalyst for the photosynthetic conversion of flue gas CO{sub 2} to hydrocarbons. Free and immobilized cells of Botryococcus braunii were grown in aqueous medium supplemented with nitrogen, phosphorus and mineral nutrients. Air and CO{sub 2} enriched air [10% to 15% (V/V) CO{sub 2}] in the gas phase and 0.2% to 2% NaHCO{sub 3} in the liquid medium served as the carbon source. Growth and hydrocarbon formation characteristics of free and immobilized cultures of Botryococcus braunii were determined in bench-scale photobioreactors. Technical and economic feasibility of the conversion of flue gas CO{sub 2} to hydrocarbons by Botryococcus braunii culture systems was evaluated. In free cell systems, the hexane extractable oil productivity was about 15 to 37 grams of oil per 100 grams of cell dry weight. In immobilized cell systems, the oil production ranged between 5% and 47% at different immobilization systems and immobilized surface locations, with an average of 19% of cell biomass dry weight. The feasibility and economic evaluation estimated the cost of oil produced from flue gas CO{sub 2} by algae to range between $45 and $75 per barrel assuming that a hydrocarbon yield of about 50% of the biomass weight is achievable and a credit of $60 per ton of carbon removed is available. A future research program leading to development of a multistage process, consisting of closed systems for heavy inoculum buildup followed by lower cost open systems for oil production is recommended.

  9. Characterization of the Heterotrimeric G-Protein Complex and Its Regulator from the Green Alga Chara braunii Expands the Evolutionary Breadth of Plant G-Protein Signaling1[C][W][OPEN

    PubMed Central

    Hackenberg, Dieter; Sakayama, Hidetoshi; Nishiyama, Tomoaki; Pandey, Sona

    2013-01-01

    The lack of heterotrimeric G-protein homologs in the sequenced genomes of green algae has led to the hypothesis that, in plants, this signaling mechanism coevolved with the embryophytic life cycle and the acquisition of terrestrial habitat. Given the large evolutionary gap that exists between the chlorophyte green algae and most basal land plants, the bryophytes, we evaluated the presence of this signaling complex in a charophyte green alga, Chara braunii, proposed to be the closest living relative of land plants. The C. braunii genome encodes for the entire G-protein complex, the G?, G?, and G? subunits, and the REGULATOR OF G-PROTEIN SIGNALING (RGS) protein. The biochemical properties of these proteins and their cross-species functionality show that they are functional homologs of canonical G-proteins. The subunit-specific interactions between CbG? and CbG?, CbG? and CbG?, and CbG? and CbRGS are also conserved, establishing the existence of functional G-protein complex-based signaling mechanisms in green algae. PMID:24179134

  10. Overall Energy Considerations for Algae Species Comparison and Selection in Algae-to-Fuels Processes

    SciTech Connect

    Link, D.; Kail, B.; Curtis, W.; Tuerk,A.

    2011-01-01

    The controlled growth of microalgae as a feedstock for alternative transportation fuel continues to receive much attention. Microalgae have the characteristics of rapid growth rate, high oil (lipid) content, and ability to be grown in unconventional scenarios. Algae have also been touted as beneficial for CO{sub 2} reuse, as algae can be grown using CO{sub 2} emissions from fossil-based energy generation. Moreover, algae does not compete in the food chain, lessening the 'food versus fuel' debate. Most often, it is assumed that either rapid production rate or high oii content should be the primary factor in algae selection for algae-to-fuels production systems. However, many important characteristics of algae growth and lipid production must be considered for species selection, growth condition, and scale-up. Under light limited, high density, photoautotrophic conditions, the inherent growth rate of an organism does not affect biomass productivity, carbon fixation rate, and energy fixation rate. However, the oil productivity is organism dependent, due to physiological differences in how the organisms allocate captured photons for growth and oil production and due to the differing conditions under which organisms accumulate oils. Therefore, many different factors must be considered when assessing the overall energy efficiency of fuel production for a given algae species. Two species, Chlorella vulgaris and Botryococcus braunii, are popular choices when discussing algae-to-fuels systems. Chlorella is a very robust species, often outcompeting other species in mixed-culture systems, and produces a lipid that is composed primarily of free fatty acids and glycerides. Botryococcus is regarded as a slower growing species, and the lipid that it produces is characterized by high hydrocarbon content, primarily C28-C34 botryococcenes. The difference in growth rates is often considered to be an advantage oiChlorella. However, the total energy captured by each algal species in the same photobioreactor system should be similar at light limited growth conditions based on photon flux. It is how the algae 'allocate' this energy captured that will vary: Data will be presented that shows that Botryococcus invests greater energy in oil production than Chlorella under these growth conditions. In essence, the Chlorella can grow 'fast and lean' or can be slowed to grow 'slow and fat'. The overall energy potential between the Chlorella and Botryococcus, then, becomes much more equivalent on a per-photon basis. This work will indicate an interesting relationship between two very different algae species, in terms of growth rate, lipid content and composition, and energy efficiency of the overall process. The presentation will indicate that in light-limited growth, it cannot be assumed that either rapid growth rate or lipid production rate can be used as stand-alone indicators of which species-lipid relationships will truly be more effective in algae-to-fuels scenarios.

  11. Author's personal copy Radiation characteristics of Botryococcus braunii,

    E-print Network

    Pilon, Laurent

    but also feed for animal and food supplements for human consumptions. Particular attention was paid. Their extinction and absorption coefficients were obtained from normal­normal and normal­hemi- spherical strains, scattering dominates over absorption. The magnitudes of the extinction and scattering cross

  12. Removal of CO{sub 2} from flue gases by algae. Technical report, December 1, 1992--February 28, 1993

    SciTech Connect

    Akin, C.; Maka, A.; Pradhan, S.; Banerjee, D.

    1993-05-01

    The studies reported here confirmed our preliminary observations that Botryococcus braunii can tolerate and grow well in flue gas CO{sub 2} concentrations of 10 to 15%, and produce oil. The highest extracted oil was observed in 10% CO{sub 2} enriched air. Initial pH of the medium at or near 10 pH is favorable to cell growth probably by stimulating the CO{sub 2} solubilization in the medium. This is also indicated in Botryococcus braunii growth and oil formation in NaHCO{sub 3} added medium. The lack of growth in Na{sub 2}CO{sub 3} containing media was probably due to high pH. The CaCO{sub 3} precipitation from the CA{sup ++} gelled alginate beads indicate the need for alternative immobilization systems. But the attachment of the Botryococcus braunii cells to the bottom inner surfaces of the photobioreactors may eliminate the need for gel entrapment systems as the immobilization matrices. Attachment of the Botryococcus braunii cells to the bottom inner surfaces of the photobioreactors, rather than remaining in the suspension, reduces the significance of self shadowing and related liquid height (thickness) effect. The capability of Botryococcus braunii to grow in NaHCO{sub 3} solutions is very encouraging toward development of an alkaline scrubbing system for the flue gas followed by removal of the CO{sub 2} from the alkaline solution. In such a system the pH 10 is the currently observed upper limit.

  13. Algae.

    PubMed

    Raven, John A; Giordano, Mario

    2014-07-01

    Algae frequently get a bad press. Pond slime is a problem in garden pools, algal blooms can produce toxins that incapacitate or kill animals and humans and even the term seaweed is pejorative - a weed being a plant growing in what humans consider to be the wrong place. Positive aspects of algae are generally less newsworthy - they are the basis of marine food webs, supporting fisheries and charismatic marine megafauna from albatrosses to whales, as well as consuming carbon dioxide and producing oxygen. Here we consider what algae are, their diversity in terms of evolutionary origin, size, shape and life cycles, and their role in the natural environment and in human affairs. PMID:25004359

  14. Evaluation of different solvent mixtures in esterifiable lipids extraction from microalgae Botryococcus braunii for biodiesel production.

    PubMed

    Hidalgo, Pamela; Ciudad, Gustavo; Navia, Rodrigo

    2016-02-01

    Non-polar and polar solvents as well as their mixtures were tested for the extraction of microalgae lipids and thus, to evaluate their effect on total and esterifiable lipids extraction yields with potential to be converted to biodiesel. The obtained results show an increase in lipids and esterifiable lipids extraction yields when non-polar and polar solvent mixtures were used. The higher esterifiable lipids extraction yield was 19.2%wt (based on dry biomass) using a chloroform-methanol mixture (75%v/v of methanol), corresponding to a 98.9%wt esterifiable lipids extraction. In addition, esterifiable lipids extraction yield of 18.9%wt (based on dry biomass) was obtained when a petroleum ether-methanol mixture (75%v/v of methanol) was used, corresponding to a 96.9%wt esterifiable lipids extraction. PMID:26639615

  15. Performance of an enzymatic extract in Botrycoccus braunii cell wall disruption.

    PubMed

    Ciudad, Gustavo; Rubilar, Olga; Azócar, Laura; Toro, Claudio; Cea, Mara; Torres, Álvaro; Ribera, Alejandra; Navia, Rodrigo

    2014-01-01

    Microalgae can produce and contain lipids, proteins and carbohydrates, which can be extracted and marketed as potential novel added-value bio-products. However, microalgae cell wall disruption is one of the most important challenges involved while processing this type of biomass. In this context, white-rot fungi, responsible for the biodegradation of lignin present in wood due to non-specific extracellular enzymes, could be applied for promoting microalgae cell wall degradation. Therefore, the aim of this study was to evaluate the use of an enzymatic extract produced by the white-rot fungi Anthracophyllum discolor as a biotechnological tool for Botryococcus braunii cell wall disruption. The fungus was inoculated in wheat grains and manganese peroxidase (MnP) activity was monitored while obtaining the enzymatic extract. Then, cell wall disruption trials with different MnP activity were evaluated by the biochemical methane potential (BMP). In relation to cell wall disruption, it was observed that the optimal value was obtained with enzymatic concentration of 1000 U/L with a BMP of 521 mL CH4/g VS. Under these conditions almost 90% of biomass biodegradability was observed, increasing in 62% compared to the microalgae without treatment. Therefore, the results indicate that enzymes secreted by A. discolor promoted the attack of the different cell wall components finally weakening it. Therefore, the application of this treatment could be a promissory biotechnological approach to decrease the energetic input required for the cell wall disruption step. PMID:23899898

  16. Botryococcene - A tetramethylated acyclic triterpenoid of algal origin

    NASA Technical Reports Server (NTRS)

    Cox, R. E.; Burlingame, A. L.; Wilson, D. M.; Eglinton, G.; Maxwell, J. R.

    1973-01-01

    The green alga Botryococcus braunii, implicated in the formation of certain geological deposits, produces unusual isomeric C34H58 alkenes, botryococcene and isobotryococcene, during a particular physiological state. A structure for botryococcene is suggested, taking into account NMR techniques, oxidative degradation, and established biosynthetic principles. Botryococcene appears terpenoid in origin.

  17. The Study of Algae

    ERIC Educational Resources Information Center

    Rushforth, Samuel R.

    1977-01-01

    Included in this introduction to the study of algae are drawings of commonly encountered freshwater algae, a summary of the importance of algae, descriptions of the seven major groups of algae, and techniques for collection and study of algae. (CS)

  18. Heterotrimeric G-proteins in green algae

    PubMed Central

    Hackenberg, Dieter; Pandey, Sona

    2014-01-01

    Heterotrimeric G-proteins (G-proteins, hereafter) are important signaling components in all eukaryotes. The absence of these proteins in the sequenced genomes of Chlorophycean green algae has raised questions about their evolutionary origin and prevalence in the plant lineage. The existence of G-proteins has often been correlated with the acquisition of embryophytic life-cycle and/or terrestrial habitats of plants which occurred around 450 million years ago. Our discovery of functional G-proteins in Chara braunii, a representative of the Charophycean green algae, establishes the existence of this conserved signaling pathway in the most basal plants and dates it even further back to 1–1.5 billion years ago. We have now identified the sequence homologs of G-proteins in additional algal families and propose that green algae represent a model system for one of the most basal forms of G-protein signaling known to exist to date. Given the possible differences that exist between plant and metazoan G-protein signaling mechanisms, such basal organisms will serve as important resources to trace the evolutionary origin of proposed mechanistic differences between the systems as well as their plant-specific functions. PMID:24614119

  19. Thermal decomposition process in algaenan of Botryococcus braunii race L. Part 2: Molecular dynamics simulations using the ReaxFF reactive force field

    E-print Network

    Goddard III, William A.

    , François Lorant a , Paul-Marie Marquaire c , William A. Goddard III b,* a Institut Français du Pétrole, BP Physique des Réactions, Nancy Université, CNRS, 1 rue Grandville, B.P.20451 F, 54001 Nancy cedex, France the processes that generate oil and gas in the subsurface, and that this thermal pro- cess can be described

  20. The oleaginous Botryococcus from the Triassic Yanchang Formation in Ordos Basin, Northwestern China: Morphology and its paleoenvironmental significance

    NASA Astrophysics Data System (ADS)

    Ji, Li-ming; Yan, Kui; Meng, Fan-wei; Zhao, Min

    2010-05-01

    High abundance but rather low diversity algal fossils were found in the hydrocarbon source rocks of the Ch 7-2-Ch 7-3 section, Triassic Yanchang Formation in the Xifeng area of southwest Ordos Basin, which are mainly composed of prolific Leiosphaeridia and Botryococcus. Botryococcus colonies are of various forms; the majority is nubbly, with some of cluster and cotton shape. The nubbly colonies appear globular, cordiform, ternate petal, obtuse triangle, chrysanthemum shape and so on. Most Botryococcus are saffron or brown and are frequently covered with clay under transmission microscope, and shows strong yellow and light brown under fluorescence microscope. Botryococcus could live in freshwater and brackish water. The Botryococcus colonies that lived in fresh water are small with small single cells arranged radially, with undulant or indented edges. The Botryococcus colonies that lived in brackish water are bigger, with larger single cells arranged irregularly, with slippery contours. The most of Botryococcus are discovered from the organic-rich argillaceous sediment with abundant pyrites in the semi- and deep-lake facies, and shows they were preserved in low-energy reducing environments. Taphonomic characteristics of various microfossils and the present of Pediastrum in the phytoplankton flora indicate that they are in situ or near burial. The lake area of the Ordos Basin was gradually expanding and reaching its most extensive flood surface in the Ch 7 of Yanchang Formation interval during the Middle and Late Triassic, with warm climate, plentiful rainfall, and luxuriant vegetation, as determined by the environmental analysis with Botryococcus in Xifeng area. The presence of two ecological types of Botryococcus indicates that the salinity of lake water was fluctuating in the Ch 7 interval. The occurrence of symbiotic acritarchs and geochemical salinity indices show that the Ordos Lake was a typical fresh-water lake, which was gradually desalted, and its salinity fluctuation was narrow during the Mid-Later Triassic. The ecological type of the palynological flora discovered from the Ch 7 to Ch 8 in Xifeng area is similar to that from the Fuxian Lake, with abundant Botryococcus in the Yungui Plateau of China. These findings imply that the Ordos Basin was in a lower-latitude area of temperate to subtropical climate during the Middle and Late Triassic.

  1. Brown blob (algae?) (Native) 

    E-print Network

    James R. Manhart

    2011-08-10

    | pg. 20 cientists at three Texas universities investigating golden algae, its explosive growth, and its deadly toxins have dis- covered an apparent competition between golden algae and blue green algae in certain Texas lakes. Understanding... this competition could lead them closer to controlling this harmful algae, the researchers said. ?Our biggest finding so far,? said Dr. Daniel Roelke of Texas AgriLife Research and one of the investigators, ?is that there appears to be a chemical warfare...

  2. Biogeography of Marine Algae

    E-print Network

    Biogeography of Marine Algae David J Garbary, St Francis Xavier University, Antigonish, Nova Scotia and vicariance in establishing distributions and as factors associated with speciation. Since eukaryotic algae. There are many species that are virtually cosmopolitan (e.g. the green alga Enteromorpha intestinalis, the red

  3. Phytochemical screening and anticonvulsant studies of ethyl acetate fraction of Globimetula braunii on laboratory animals

    PubMed Central

    Aliyu, Musa Mumammad; Musa, Abdullahi Isma'il; Kamal, Muhammad Ja'afar; Mohammed, Magaji Garba

    2014-01-01

    Objective To investigate the phytochemical properties and the anticonvulsant potential of the ethyl acetate soluble fraction of ethanol leaf extract of Globimetula braunii, a plant used in ethnomedicine for the treatment of epilepsy. Methods The phytochemical screening was carried out using standard protocol while the anticonvulsant activity was studied using maximal electroshock test in chicks, pentylenetetrazole and 4-aminopyridine-induced seizures in mice. Results The preliminary phytochemical screening carried out on the crude ethanol extract revealed the presence of saponins, carbohydrates, flavonoids, tannins, anthraquinones and steroids. Similarly, tannins, flavonoids and steroids/terpenes were found to be present in the ethyl acetate fraction. In the pharmacological screening, 150 mg/kg of the fraction protected 83.33% of animals against pentylenetetrazole-induced seizure in mice whereas sodium valproate a standard anti-epileptic drug offered 100% protection. In the 4-aminopyridine-induced seizure model, the fraction produced a significant (P<0.05) increase in the mean onset of seizure in unprotected animals. The fraction did not exhibit a significant activity against maximal electroshock convulsion. The median lethal dose of the fraction was found to be 1?261.91 mg/kg. Conclusions These results suggest that the ethyl acetate fraction of Globimetula braunii leaves extract possesses psychoactive compound that may be useful in the management of petit mal epilepsy and lend credence to the ethnomedical use of the plant in the management of epilepsy. PMID:25182552

  4. Elemental composition and molecular structure of Botryococcus alginite in Westphalian cannel coals from Kentucky

    USGS Publications Warehouse

    Mastalerz, Maria; Hower, J.C.

    1996-01-01

    Botryococcus-derived alginites from the Westphalian Skyline, No. 5 Block, Leatherwood (eastern Kentucky) and Breckinridge (western Kentucky) coal beds have been analyzed for elemental composition and functional group distribution using an electron microprobe and micro-FTIR, respectively. The alginites from Kentucky show a carbon range of 81.6 to 92% and oxygen content of 3.5 to 9.5%. Sulphur content ranges from 0.66 to 0.84% and Fe, Si, Al and Ca occur in minor quantities. FTIR analysis demonstrates dominant CH2, CH3 bands and subordinate aromatic carbon in all alginites. The major differences between alginites are in the ratios of CH2 and CH3 groups and ratios between aromatic bands in the out-of-plane region. These differences suggest that, although the ancient Botryococcus derives from a selective preservation of a resistant polymer, it undergoes molecular and some elemental changes through the rank equivalent to vitrinite reflectance of 0.5-0.85%. Other differences, such as intensities of ether bridges and those of carboxyl/carbonyl groups, are attributed to differences in depositional environments.

  5. Heterotrimeric G proteins in green algae: an early innovation in the evolution of the plant lineage.

    PubMed

    Hackenberg, Dieter; Pandey, Sona

    2014-01-01

    Heterotrimeric G-proteins (G-proteins, hereafter) are important signaling components in all eukaryotes. The absence of these proteins in the sequenced genomes of Chlorophyaceaen green algae has raised questions about their evolutionary origin and prevalence in the plant lineage. The existence of G-proteins has often been correlated with the acquisition of embryophytic life-cycle and/or terrestrial habitats of plants which occurred around 450 million years ago. Our discovery of functional G-proteins in Chara braunii, a representative of the Charophycean green algae, establishes the existence of this conserved signaling pathway in the most basal plants and dates it even further back to 1-1.5 billion years ago. We have now identified the sequence homologs of G-proteins in additional algal families and propose that green algae represent a model system for one of the most basal forms of G-protein signaling known to exist to date. Given the possible differences that exist between plant and metazoan G-protein signaling mechanisms, such basal organisms will serve as important resources to trace the evolutionary origin of proposed mechanistic differences between the systems as well as their plant-specific functions. PMID:24614119

  6. Blue-green algae

    MedlinePLUS

    ... increased high-density lipoprotein (HDL or “good”) cholesterol. Malnutrition. Early research on the use of blue-green algae in combination with other dietary treatments for malnutrition in infants and children has been mixed. Weight ...

  7. Anticoagulant effect of marine algae.

    PubMed

    Kim, Se-Kwon; Wijesekara, Isuru

    2011-01-01

    Recently, a great deal of interest has been developed in the nutraceutical and pharmaceutical industries to isolate natural anticoagulant compounds from marine resources. Among marine resources, marine algae are valuable sources of novel bioactive compounds with anticoagulant effect. Phlorotannins and sulfated polysaccharides such as fucoidans in brown algae, carrageenans in red algae, and ulvans in green algae have been recognized as potential anticoagulant agents. Therefore, marine algae-derived phlorotannins and SPs have great potential for developing as anticoagulant drugs in nutraceutical and pharmaceutical areas. This chapter focuses on the potential anticoagulant agents in marine algae and presents an overview of their anticoagulant effect. PMID:22054951

  8. Heterotrimeric G-proteins in green algae. An early innovation in the evolution of the plant lineage.

    PubMed

    Hackenberg, Dieter; Pandey, Sona

    2014-01-01

    Heterotrimeric G-proteins (G-proteins, hereafter) are important signaling components in all eukaryotes. The absence of these proteins in the sequenced genomes of Chlorophycean green algae has raised questions about their evolutionary origin and prevalence in the plant lineage. The existence of G-proteins has often been correlated with the acquisition of embryophytic life-cycle and/or terrestrial habitats of plants which occurred around 450 million years ago. Our discovery of functional G-proteins in Chara braunii, a representative of the Charophycean green algae, establishes the existence of this conserved signaling pathway in the most basal plants and dates it even further back to 1-1.5 billion years ago. We have now identified the sequence homologs of G-proteins in additional algal families and propose that green algae represent a model system for one of the most basal forms of G-protein signaling known to exist to date. Given the possible differences that exist between plant and metazoan G-protein signaling mechanisms, such basal organisms will serve as important resources to trace the evolutionary origin of proposed mechanistic differences between the systems as well as their plant-specific functions. PMID:25764428

  9. Genetically Modified Bacteria for Fuel Production: Development of Rhodobacteria as a Versatile Platform for Fuels Production

    SciTech Connect

    2010-07-01

    Electrofuels Project: Penn State is genetically engineering bacteria called Rhodobacter to use electricity or electrically generated hydrogen to convert carbon dioxide into liquid fuels. Penn State is taking genes from oil-producing algae called Botryococcus braunii and putting them into Rhodobacter to produce hydrocarbon molecules, which closely resemble gasoline. Penn State is developing engineered tanks to support microbial fuel production and determining the most economical way to feed the electricity or hydrogen to the bacteria, including using renewable sources of power like solar energy.

  10. Genomics of Volvocine Algae

    PubMed Central

    Umen, James G.; Olson, Bradley J.S.C.

    2015-01-01

    Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics. PMID:25883411

  11. TOXIC ALGAE IN SOUTHEASTERN AQUACULTURE SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toxin-producing algae are common in aquaculture facilities. Three divisions of algae have been identified as producing toxins: cyanobacteria, prymnesiophytes, and euglenoid algae. Cyanobacteria produce the most diverse forms including hepatic and neurologic forms. Prymnesin toxin is confined to ...

  12. Turning moss into algae

    PubMed Central

    Antimisiaris, Marika F; Running, Mark P

    2014-01-01

    Prenylation is a series of lipid posttranslational modifications that are involved in several key aspects of plant development. We recently knocked out every prenylation subunit in Physcomitrella patens. Like in Arabidopsis, knockout of protein farnesyltransferase and protein geranylgeranyltransferase in P. patens does not result in lethality; however, effects on development are extensive. In particular, the knockout of protein geranylgeranyltransferase results in small unicellular plants that resemble algae. Here we perform an analysis of predicted geranylgeranyltransferase target proteins in P. patens, and draw attention to those most likely to play a role in the knockout phenotype. PMID:25763501

  13. Miocene Coralline algae

    SciTech Connect

    Bosence, D.W.J.

    1988-01-01

    The coralline algae (Order Corallinales) were sedimentologically and ecologically important during the Miocene, a period when they were particularly abundant. The many poorly described and illustrated species and the lack of quantitative data in coralline thalli make specific determinations particularly difficult, but some species are well known and widespread in the Tethyan area. The sedimentologic importance of the Miocene coralline algae is reflected in the abundance of in-situ coralline buildups, rhodoliths, and coralline debris facies at Malta and Spain; similar sequences are known throughout the Tethyan Miocene. In-situ buildups vary from leafy crustose biostromes to walled reefs with dense coralline crusts and branches. Growth forms are apparently related to hydraulic energy. Rhodoliths vary from leafy, crustose, and open-branched forms in muddy sediments to dense, crustose, and radial-branching forms in coarse grainstones. Rhodolith form and internal structure correlate closely with hydraulic energy. Coralline genera are conservative and, as such, are useful in paleoenvironmental analysis. Of particular interest are the restricted depth ranges of recent coralline genera. More research is needed on the sedimentology, paleoecology, and systematics of the Cenozoic corallines, as they have particular value in paleoenvironmental analysis.

  14. Ecology of Harmful Algae

    NASA Astrophysics Data System (ADS)

    Roelke, Daniel L.

    2007-07-01

    Edna Graneli and Jefferson T. Turner, Editors;Ecological Studies Series, Vol. 189; Springer; ISBN 3540322094; 413 pp.; 2006; $195 Harmful algal blooms (HABs) affect commercially and recreationally important species, human health, and ecosystem functioning. Hallmark events are the visually stunning blooms where waters are discolored and filled with ichthyotoxin-producing algae that lead to large fish kills. Of most concern, however, are HABs that pose a threat to human health. For example, some phycotoxins bioaccumulate in the guts and tissues of commercially and recreationally important species that when consumed by humans, may result in nausea, paralysis, memory loss, and even death. In addition to the deleterious impacts of phycotoxins, HABs can be problematic in other ways. For example, the decay of blooms often leads to low dissolved oxygen in subsurface waters. Blooms also reduce light penetration into the water column. Both processes disrupt ecosystems and in some cases have completely destroyed benthic communities.

  15. Fuel From Algae: Scaling and Commercialization of Algae Harvesting Technologies

    SciTech Connect

    2010-01-15

    Broad Funding Opportunity Announcement Project: Led by CEO Ross Youngs, AVS has patented a cost-effective dewatering technology that separates micro-solids (algae) from water. Separating micro-solids from water traditionally requires a centrifuge, which uses significant energy to spin the water mass and force materials of different densities to separate from one another. In a comparative analysis, dewatering 1 ton of algae in a centrifuge costs around $3,400. AVS’s Solid-Liquid Separation (SLS) system is less energy-intensive and less expensive, costing $1.92 to process 1 ton of algae. The SLS technology uses capillary dewatering with filter media to gently facilitate water separation, leaving behind dewatered algae which can then be used as a source for biofuels and bio-products. The biomimicry of the SLS technology emulates the way plants absorb and spread water to their capillaries.

  16. [From algae to "functional foods"].

    PubMed

    Vadalà, M; Palmieri, B

    2015-01-01

    In the recent years, a growing interest for nutraceutical algae (tablets, capsules, drops) has been developed, due to their effective health benefits, as a potential alternative to the classic drugs. This review explores the use of cyanobacterium Spirulina, the microalgae Chlorella, Dunaliella, Haematococcus, and the macroalgae Klamath, Ascophyllum, Lithothamnion, Chondrus, Hundaria, Glacilaria, Laminaria, Asparagopsis, Eisenia, Sargassum as nutraceuticals and dietary supplements, in terms of production, nutritional components and evidence-based health benefits. Thus, our specific goals are: 1) Overview of the algae species currently used in nutraceuticals; 2) Description of their characteristics, action mechanisms, and possible side effects; 3) Perspective of specific algae clinical investigations development. PMID:26378764

  17. Transgenic algae engineered for higher performance

    SciTech Connect

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J

    2014-10-21

    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  18. Biological importance of marine algae

    PubMed Central

    El Gamal, Ali A.

    2009-01-01

    Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms)… etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. The microalgae phyla have been recognized to provide chemical and pharmacological novelty and diversity. Moreover, microalgae are considered as the actual producers of some highly bioactive compounds found in marine resources. Red algae are considered as the most important source of many biologically active metabolites in comparison to other algal classes. Seaweeds are used for great number of application by man. The principal use of seaweeds as a source of human food and as a source of gums (phycocollides). Phycocolloides like agar agar, alginic acid and carrageenan are primarily constituents of brown and red algal cell walls and are widely used in industry. PMID:23960716

  19. MONOTERPENE BIOSYNTHESIS IN MARINE ALGAE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marine algae produce a variety of secondary metabolites involved in chemical defense. Among these the monoterpenes present several highly unusual characteristics relative to their terrestrial counterparts. The monoterpenes produced by these marine organisms are nearly always halogenated and posses...

  20. Neuroprotective Effects of Marine Algae

    PubMed Central

    Pangestuti, Ratih; Kim, Se-Kwon

    2011-01-01

    The marine environment is known as a rich source of chemical structures with numerous beneficial health effects. Among marine organisms, marine algae have been identified as an under-exploited plant resource, although they have long been recognized as valuable sources of structurally diverse bioactive compounds. Presently, several lines of studies have provided insight into biological activities and neuroprotective effects of marine algae including antioxidant, anti-neuroinflammatory, cholinesterase inhibitory activity and the inhibition of neuronal death. Hence, marine algae have great potential to be used for neuroprotection as part of pharmaceuticals, nutraceuticals and functional foods. This contribution presents an overview of marine algal neuroprotective effects and their potential application in neuroprotection. PMID:21673890

  1. Microscopic Gardens: A Close Look at Algae.

    ERIC Educational Resources Information Center

    Foote, Mary Ann

    1983-01-01

    Describes classroom activities using algae, including demonstration of eutrophication, examination of mating strains, and activities with Euglena. Includes on algal morphology/physiology, types of algae, and field sources for collecting these organisms. (JN)

  2. Seastars on Algae Covered Cobbles and Boulders

    USGS Multimedia Gallery

    Digital still photograph from Massachusetts Bay near Cohasset, MA, showing seastars (Asterias sp.), blood stars (Henricia sanguinolenta), blood drop tunicates (Dendrodoa carnea), mussels, and barnacles on cobbles and boulders covered with bubblegum algae and red filamentous algae.  Water d...

  3. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species Analipus japonicus, Eisenia bicyclis, Hizikia fusiforme, Kjellmaniella gyrata, Laminaria...

  4. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species Gloiopeltis furcata, Porphyra crispata, Porphyra deutata, Porphyra perforata, Porphyra suborbiculata,...

  5. Formation of algae growth constitutive relations for improved algae modeling.

    SciTech Connect

    Gharagozloo, Patricia E.; Drewry, Jessica L.

    2013-01-01

    This SAND report summarizes research conducted as a part of a two year Laboratory Directed Research and Development (LDRD) project to improve our abilities to model algal cultivation. Algae-based biofuels have generated much excitement due to their potentially large oil yield from relatively small land use and without interfering with the food or water supply. Algae mitigate atmospheric CO2 through metabolism. Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Important factors controlling algal productivity include temperature, nutrient concentrations, salinity, pH, and the light-to-biomass conversion rate. Computational models allow for inexpensive predictions of algae growth kinetics in these non-ideal conditions for various bioreactor sizes and geometries without the need for multiple expensive measurement setups. However, these models need to be calibrated for each algal strain. In this work, we conduct a parametric study of key marine algae strains and apply the findings to a computational model.

  6. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 3 2014-04-01 2014-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs...Specific Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species Gloiopeltis...

  7. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 3 2012-04-01 2012-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs...Specific Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species Gloiopeltis...

  8. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 3 2011-04-01 2011-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs...Specific Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species Gloiopeltis...

  9. School of Engineering and Science Algae Biofuels

    E-print Network

    Fisher, Frank

    School of Engineering and Science Algae Biofuels BY: Alessandro Faldi, Ph.D. Section Head is algae- based biofuels, which we believe could be a meaningful part of the energy mix in the future. Algae biofuels have potential to be an economically viable, low-net carbon transportation fuel

  10. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  11. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1120 Brown algae. (a) Brown algae are seaweeds of the species Analipus japonicus, Eisenia...

  12. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  13. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  14. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  15. Green Algae as Model Organisms for Biological

    E-print Network

    Goldstein, Raymond E.

    Green Algae as Model Organisms for Biological Fluid Dynamics Raymond E. Goldstein Department, multicellularity, synchronization Abstract In the past decade, the volvocine green algae, spanning from algae are well suited to the study of such problems because of their range of sizes (from 10 m to sev

  16. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  17. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  18. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  19. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1121 Red algae. (a) Red algae are seaweeds of the species Gloiopeltis furcata, Porphyra...

  20. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  1. Algae. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Niskern, Diana, Comp.

    The plants and plantlike organisms informally grouped together as algae show great diversity of form and size and occur in a wide variety of habitats. These extremely important photosynthesizers are also economically significant. For example, some species contaminate water supplies; others provide food for aquatic animals and for man; still others…

  2. Algae control for hydrogeneration canals

    SciTech Connect

    Grahovac, P.

    1997-02-16

    The purpose of this Cooperative Research and Development Agreement (CRADA) was to assess and develop control practices for nuisance algae growth in power canal that delivers water to hydro-generation facilities. This growth results in expenditures related not only to lost generation but also labor and materials costs associated with implementing remediation procedures. On an industry-wide basis these costs associated with nuisance algal growth are estimated to be several million dollars per year.

  3. Halogenated Compounds from Marine Algae

    PubMed Central

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-01-01

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds. PMID:20948909

  4. Parasites in algae mass culture

    PubMed Central

    Carney, Laura T.; Lane, Todd W.

    2014-01-01

    Parasites are now known to be ubiquitous across biological systems and can play an important role in modulating algal populations. However, there is a lack of extensive information on their role in artificial ecosystems such as algal production ponds and photobioreactors. Parasites have been implicated in the demise of algal blooms. Because individual mass culture systems often tend to be unialgal and a select few algal species are in wide scale application, there is an increased potential for parasites to have a devastating effect on commercial scale monoculture. As commercial algal production continues to expand with a widening variety of applications, including biofuel, food and pharmaceuticals, the parasites associated with algae will become of greater interest and potential economic impact. A number of important algal parasites have been identified in algal mass culture systems in the last few years and this number is sure to grow as the number of commercial algae ventures increases. Here, we review the research that has identified and characterized parasites infecting mass cultivated algae, the techniques being proposed and or developed to control them, and the potential impact of parasites on the future of the algal biomass industry. PMID:24936200

  5. Stochastic Forecasting of Algae Blooms in Lakes

    SciTech Connect

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-01-15

    We consider the development of harmful algae blooms (HABs) in a lake with uncertain nutrients inflow. Two general frameworks, Fokker-Planck equation and the PDF methods, are developed to quantify the resultant concentration uncertainty of various algae groups, via deriving a deterministic equation of their joint probability density function (PDF). A computational example is examined to study the evolution of cyanobacteria (the blue-green algae) and the impacts of initial concentration and inflow-outflow ratio.

  6. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 false Haematococcus algae meal. 73.185 Section 73.185...CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and...

  7. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 false Haematococcus algae meal. 73.185 Section 73.185...CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and...

  8. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 false Haematococcus algae meal. 73.185 Section 73.185...CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and...

  9. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 false Haematococcus algae meal. 73.185 Section 73.185...CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and...

  10. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 false Haematococcus algae meal. 73.185 Section 73.185...CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and...

  11. 7 Systematics of the green algae: conflict of classic

    E-print Network

    123 7 Systematics of the green algae: conflict of classic and modern approaches Thomas Pröschold ....................................................................................................................................124 How are green algae classified ....................................................................................................................................144 Biodiversity of green algae based on taxonomic revision using polyphasic approaches

  12. BOTANICAL BRIEFING Streptophyte algae and the origin of embryophytes

    E-print Network

    BOTANICAL BRIEFING Streptophyte algae and the origin of embryophytes Burkhard Becker* and Birger March 2009 Background Land plants (embryophytes) evolved from streptophyte green algae, a small group of freshwater algae ranging from scaly, unicellular flagellates (Mesostigma) to complex, filamentous thalli

  13. FAS4932: ALGAE BIOLOGY AND ECOLOGY Instructor: Professor Edward Phlips

    E-print Network

    Hill, Jeffrey E.

    FAS4932: ALGAE BIOLOGY AND ECOLOGY Instructor: Professor Edward Phlips Main Office: Program algae, including evolution, classification, structure, photosynthesis, growth, and reproduction. Emphasis on the ecological role of algae in different aquatic ecosystems (e.g. open ocean, estuaries, coral

  14. Introduction slide 2 Biofuels and Algae Markets, Systems,

    E-print Network

    Introduction slide 2 Biofuels and Algae Markets, Systems, Players and Commercialization Outlook: A Global Market Survey (2008) Algae 2020: Biofuels Commercialization Outlook (2009) Columnist, Biofuels, Castor, Yellow Grease, Fats 2nd Generation Projects and Trends Algae, Renewable Diesel, Bio

  15. Novel Library of Native Algae Species with Beneficial Health Effects

    E-print Network

    Chen, Shu-Ching

    Novel Library of Native Algae Species with Beneficial Health Effects Isolation of biologically collection of over 100 different photosynthetic microorganisms (cyanobacteria and algae) that were isolated

  16. ALGAE REMOVAL BY THE OVERLAND FLOW PROCESS

    EPA Science Inventory

    Control of algae production will be necessary when lagoons are utilized as a preapplication treatment process for overland flow. The overland flow process has a surface discharge and must meet secondary treatment limitations to be viable. Brief summaries of other algae removal in...

  17. Take a Dip! Culturing Algae Is Easy.

    ERIC Educational Resources Information Center

    James, Daniel E.

    1983-01-01

    Describes laboratory activities using algae as the organisms of choice. These include examination of typical algal cells, demonstration of alternation of generations, sexual reproduction in Oedogonium, demonstration of phototaxis, effect of nitrate concentration on Ankistrodesmus, and study of competition between two algae in the same environment.…

  18. SSMILes: Measuring the Nutrient Tolerance of Algae.

    ERIC Educational Resources Information Center

    Hedgepeth, David J.

    1995-01-01

    Presents an activity integrating mathematics and science intended to introduce students to the use of metric measurement of mass as a way to increase the meaningfulness of observations about variables in life sciences. Involves measuring the nutrient tolerance of algae. Contains a reproducible algae nutrient graph. (Author/MKR)

  19. Nutritional And Taste Characteristics Of Algae

    NASA Technical Reports Server (NTRS)

    Karel, M.; Nakhost, Z.

    1992-01-01

    Report describes investigation of chemical composition of blue-green algae Synechococcus 6311, as well as preparation of protein isolate from green alga Scenedesmus obliquus and incorporation into variety of food products evaluated for taste. Part of program to investigate growth of microalgae aboard spacecraft for use as food.

  20. Effect of Dead Algae on Soil Permeability

    SciTech Connect

    Harvey, R.S.

    2003-02-21

    Since existing basins support heavy growths of unicellular green algae which may be killed by temperature variation or by inadvertent pH changes in waste and then deposited on the basin floor, information on the effects of dead algae on soil permeability was needed. This study was designed to show the effects of successive algal kills on the permeability of laboratory soil columns.

  1. Flocculation of model algae under shear.

    SciTech Connect

    Pierce, Flint; Lechman, Jeremy B.

    2010-11-01

    We present results of molecular dynamics simulations of the flocculation of model algae particles under shear. We study the evolution of the cluster size distribution as well as the steady-state distribution as a function of shear rates and algae interaction parameters. Algal interactions are modeled through a DLVO-type potential, a combination of a HS colloid potential (Everaers) and a yukawa/colloid electrostatic potential. The effect of hydrodynamic interactions on aggregation is explored. Cluster strucuture is determined from the algae-algae radial distribution function as well as the structure factor. DLVO parameters including size, salt concentration, surface potential, initial volume fraction, etc. are varied to model different species of algae under a variety of environmental conditions.

  2. Algae biodiesel - a feasibility report

    PubMed Central

    2012-01-01

    Background Algae biofuels have been studied numerous times including the Aquatic Species program in 1978 in the U.S., smaller laboratory research projects and private programs. Results Using Molina Grima 2003 and Department of Energy figures, captial costs and operating costs of the closed systems and open systems were estimated. Cost per gallon of conservative estimates yielded $1,292.05 and $114.94 for closed and open ponds respectively. Contingency scenarios were generated in which cost per gallon of closed system biofuels would reach $17.54 under the generous conditions of 60% yield, 50% reduction in the capital costs and 50% hexane recovery. Price per gallon of open system produced fuel could reach $1.94 under generous assumptions of 30% yield and $0.2/kg CO2. Conclusions Current subsidies could allow biodiesel to be produced economically under the generous conditions specified by the model. PMID:22540986

  3. Method and apparatus for processing algae

    DOEpatents

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite; Di Salvo, Roberto

    2012-07-03

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells. The lysate separates into at least two layers including a lipid-containing hydrophobic layer and an ionic liquid-containing hydrophilic layer. A salt or salt solution may be used to remove water from the ionic liquid-containing layer before the ionic liquid is reused. The used salt may also be dried and/or concentrated and reused. The method can operate at relatively low lysis, processing, and recycling temperatures, which minimizes the environmental impact of algae processing while providing reusable biofuels and other useful products.

  4. Errors When Extracting Oil from Algae

    NASA Astrophysics Data System (ADS)

    Murphy, E.; Treat, R.; Ichiuji, T.

    2014-12-01

    Oil is in popular demand, but the worldwide amount of oil is decreasing and prices for it are steadily increasing. Leading scientists have been working to find a solution of attaining oil in an economically and environmentally friendly way. Researchers at the U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) have determined that "a small mixture of algae and water can be turned into crude oil in less than an hour" (Sheehan, Duhahay, Benemann, Poessler). There are various ways of growing the algae, such as closed loop and open loop methods, as well as processes of extracting oil, such as hydrothermal liquefaction and the hexane-solvent method. Our objective was to grow the algae (C. reinhardtii) and extract oil from it using NaOH and HCl, because we had easy access to those specific chemicals. After two trials of attempted algae growth, we discovered that a bacteria was killing off the algae. This led us to further contemplation on how this dead algae and bacteria are affecting our environment, and the organisms within it. Eutrophication occurs when excess nutrients stimulate rapid growth of algae in an aquatic environment. This can clog waterways and create algal blooms in blue-green algae, as well as neurotoxic red tide phytoplankton. These microscopic algae die upon consumption of the nutrients in water and are degraded by bacteria. The bacteria respires and creates an acidic environment with the spontaneous conversion of carbon dioxide to carbonic acid in water. This process of degradation is exactly what occurred in our 250 mL flask. When the phytoplankton attacked our algae, it created a hypoxic environment, which eliminated any remaining amounts of oxygen, carbon dioxide, and nutrients in the water, resulting in a miniature dead zone. These dead zones can occur almost anywhere where there are algae and bacteria, such as the ocean, and make it extremely difficult for any organism to survive. This experiment helped us realize the consequences of our actions, and we saw for ourselves how we are polluting and killing the environment. Releasing excess nutrients into our waterways is creating a destructive chain reaction, but if we monitor our output of pollution, we can minimize the amount of damage we do to algae, organisms, and the environment in general.

  5. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Dried algae meal. 73.275 Section 73.275 Food...CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae...

  6. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Dried algae meal. 73.275 Section 73.275 Food...CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae...

  7. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Dried algae meal. 73.275 Section 73.275 Food...CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae...

  8. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture...

  9. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture...

  10. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture...

  11. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture...

  12. Triassic origin and early radiation of multicellular volvocine algae

    E-print Network

    Triassic origin and early radiation of multicellular volvocine algae Matthew D. Herron1 , Jeremiah-studied ETIs is the origin of multicellularity in the green alga Volvox, a model system for the evolution occurred dozens of times independently, for example in the red algae, brown algae, land plants, animals

  13. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture...

  14. HARMFUL ALGAE POSE ADDITIONAL CHALLENGES FOR OYSTER RESTORATION: IMPACTS OF THE HARMFUL ALGAE KARLODINIUM VENEFICUM AND PROROCENTRUM

    E-print Network

    North, Elizabeth W.

    HARMFUL ALGAE POSE ADDITIONAL CHALLENGES FOR OYSTER RESTORATION: IMPACTS OF THE HARMFUL ALGAE deformed within 48 h in one experimental trial, but not in a second trial in which algae were difficult. KEY WORDS: oysters, larvae, harmful algae, HABs, Chesapeake Bay, oyster restoration, Karlodinium

  15. Toxic and deadly: Working to manage algae in Lake Granbury 

    E-print Network

    Wythe, Kathy

    2011-01-01

    at Arlington have also discovered an apparent competition between golden algae and blue green algae in certain Texas lakes. ?There appears to be a chemical warfare between golden algae and blue green algae. Only when golden algae wins this chemical... warfare is it able to bloom,? Roelke said. The research team is exploring potential management strategeties to mitigate blooms. ?It may be that through the manipulation of water chemistry in the coves of these lakes, systemwide blooms can...

  16. Toxic and deadly: Working to manage algae in Lake Granbury 

    E-print Network

    Wythe, Kathy

    2010-01-01

    at Arlington have also discovered an apparent competition between golden algae and blue green algae in certain Texas lakes. ?There appears to be a chemical warfare between golden algae and blue green algae. Only when golden algae wins this chemical... warfare is it able to bloom,? Roelke said. The research team is exploring potential management strategeties to mitigate blooms. ?It may be that through the manipulation of water chemistry in the coves of these lakes, systemwide blooms can...

  17. 2011 Biomass Program Platform Peer Review: Algae

    SciTech Connect

    Yang, Joyce

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Algae Platform Review meeting.

  18. Collection, Isolation and Culture of Marine Algae.

    ERIC Educational Resources Information Center

    James, Daniel E.

    1984-01-01

    Methods of collecting, isolating, and culturing microscopic and macroscopic marine algae are described. Three different culture media list of chemicals needed and procedures for preparing Erdschreiber's and Provasoli's E. S. media. (BC)

  19. Blue-green algae Flagellates Rotifers

    E-print Network

    Zebra/Quagga mussels MollusksChironomids Amphipods Opossum Shrimp Lake Whitefish Invasive waterflea in the late 1990's. Opossum shrimp (Mysis relicta). An omnivore that feeds on algae and small cladocerans

  20. Blue-green algae Flagellates Rotifers

    E-print Network

    Zebra/Quagga mussels MollusksChironomids Amphipods Opossum Shrimp Lake Whitefish Invasive waterflea that began declining in the late 1990's. Opossum shrimp (Mysis relicta). An omnivore that feeds on algae

  1. Carotenoids in algae: distributions, biosyntheses and functions.

    PubMed

    Takaichi, Shinichi

    2011-01-01

    For photosynthesis, phototrophic organisms necessarily synthesize not only chlorophylls but also carotenoids. Many kinds of carotenoids are found in algae and, recently, taxonomic studies of algae have been developed. In this review, the relationship between the distribution of carotenoids and the phylogeny of oxygenic phototrophs in sea and fresh water, including cyanobacteria, red algae, brown algae and green algae, is summarized. These phototrophs contain division- or class-specific carotenoids, such as fucoxanthin, peridinin and siphonaxanthin. The distribution of ?-carotene and its derivatives, such as lutein, loroxanthin and siphonaxanthin, are limited to divisions of Rhodophyta (macrophytic type), Cryptophyta, Euglenophyta, Chlorarachniophyta and Chlorophyta. In addition, carotenogenesis pathways are discussed based on the chemical structures of carotenoids and known characteristics of carotenogenesis enzymes in other organisms; genes and enzymes for carotenogenesis in algae are not yet known. Most carotenoids bind to membrane-bound pigment-protein complexes, such as reaction center, light-harvesting and cytochrome b(6)f complexes. Water-soluble peridinin-chlorophyll a-protein (PCP) and orange carotenoid protein (OCP) are also established. Some functions of carotenoids in photosynthesis are also briefly summarized. PMID:21747749

  2. SCALE FORMATION IN CHRYSOPHYCEAN ALGAE

    PubMed Central

    Brown, R. Malcolm; Franke, Werner W.; Kleinig, Hans; Falk, Heinz; Sitte, Peter

    1970-01-01

    The cell wall of the marine chrysophycean alga Pleurochrysis scherfellii is composed of distinct wall fragments embedded in a gelatinous mass. The latter is a polysaccharide of pectic character which is rich in galactose and ribose. These wall fragments are identified as scales. They have been isolated and purified from the vegetative mother cell walls after zoospore formation. Their ultrastructure is described in an electron microscope study combining sectioning, freeze-etch, and negative staining techniques. The scales consist of a layer of concentrically arranged microfibrils (ribbons with cross-sections of 12 to 25 x 25 to 40 A) and underlying radial fibrils of similar dimensions. Such a network-plate is densely coated with particles which are assumed to be identical to the pectic component. The microfibrils are resistant to strong alkaline treatment and have been identified as cellulose by different methods, including sugar analysis after total hydrolysis, proton resonance spectroscopical examination (NMR spectroscopy) of the benzoylated product, and diverse histochemical tests. The formation and secretion of the scales can be followed along the maturing Golgi cisternae starting from a pronounced dilated "polymerization center" as a completely intracisternal process which ends in the exocytotic extrusion of the scales. The scales reveal the very same ultrastructure within the Golgi cisternae as they do in the cell wall. The present finding represents the first evidence on cellulose formation by the Golgi apparatus and is discussed in relation to a basic scheme for cellulose synthesis in plant cells in general. PMID:5513606

  3. Estimation of alga growth stage and lipid content growth rate

    NASA Technical Reports Server (NTRS)

    Embaye, Tsegereda N. (Inventor); Trent, Jonathan D. (Inventor)

    2012-01-01

    Method and system for estimating a growth stage of an alga in an ambient fluid. Measured light beam absorption or reflection values through or from the alga and through an ambient fluid, in each of two or more wavelength sub-ranges, are compared with reference light beam absorption values for corresponding wavelength sub-ranges for in each alga growth stage to determine (1) which alga growth stage, if any, is more likely and (2) whether estimated lipid content of the alga is increasing or has peaked. Alga growth is preferably terminated when lipid content has approximately reached a maximum value.

  4. Genome of the red alga Porphyridium purpureum.

    PubMed

    Bhattacharya, Debashish; Price, Dana C; Chan, Cheong Xin; Qiu, Huan; Rose, Nicholas; Ball, Steven; Weber, Andreas P M; Arias, Maria Cecilia; Henrissat, Bernard; Coutinho, Pedro M; Krishnan, Anagha; Zäuner, Simone; Morath, Shannon; Hilliou, Frédérique; Egizi, Andrea; Perrineau, Marie-Mathilde; Yoon, Hwan Su

    2013-01-01

    The limited knowledge we have about red algal genomes comes from the highly specialized extremophiles, Cyanidiophyceae. Here, we describe the first genome sequence from a mesophilic, unicellular red alga, Porphyridium purpureum. The 8,355 predicted genes in P. purpureum, hundreds of which are likely to be implicated in a history of horizontal gene transfer, reside in a genome of 19.7 Mbp with 235 spliceosomal introns. Analysis of light-harvesting complex proteins reveals a nuclear-encoded phycobiliprotein in the alga. We uncover a complex set of carbohydrate-active enzymes, identify the genes required for the methylerythritol phosphate pathway of isoprenoid biosynthesis, and find evidence of sexual reproduction. Analysis of the compact, function-rich genome of P. purpureum suggests that ancestral lineages of red algae acted as mediators of horizontal gene transfer between prokaryotes and photosynthetic eukaryotes, thereby significantly enriching genomes across the tree of photosynthetic life. PMID:23770768

  5. Algae control problems and practices workshop

    SciTech Connect

    Pryfogle, P.A.; Ghio, G.

    1996-09-01

    Western water resources are continuously facing increased demand from industry and the public. Consequently, many of these resources are required to perform multiple tasks as they cycle through the ecosystem. Many plants and animals depend upon these resources for growth. Algae are one group of plants associated with nutrient and energy cycles in many aquatic ecosystems. Although most freshwater algae are microscopic in size, they are capable of dominating and proliferating to the extent that the value of the water resource for both industrial and domestic needs is compromised. There is a great diversity of aquatic environments and systems in which algae may be found, and there are many varieties of treatment and control techniques available to reduce the impacts of excessive growth. This workshop was organized to exchange information about these control problems and practices.

  6. Turning Algae into Energy in New Mexico

    ScienceCinema

    Sayre, Richard; Olivares, Jose; Lammers, Peter

    2014-06-24

    Los Alamos National Laboratory, as part of the New Mexico Consortium - comprised of New Mexico's major research universities, the Lab, and key industry partners - is conducting research into using algae as a feed stock for a renewable source of fuels, and other products. There are hundreds of thousands of different algae species on Earth. They account for approximately half of the net photosynthesis on the planet, yet they have not been used in any kind of a large scale by humanity, with just a few exceptions. And yet, the biomass is easy to transform into useful products, including fuels, and they contain many other natural products that have high value. In this video Los Alamos and New Mexico State University scientists outline the opportunities and challenges of using science to turn algae into energy.

  7. Turning Algae into Energy in New Mexico

    SciTech Connect

    Sayre, Richard; Olivares, Jose; Lammers, Peter

    2013-07-29

    Los Alamos National Laboratory, as part of the New Mexico Consortium - comprised of New Mexico's major research universities, the Lab, and key industry partners - is conducting research into using algae as a feed stock for a renewable source of fuels, and other products. There are hundreds of thousands of different algae species on Earth. They account for approximately half of the net photosynthesis on the planet, yet they have not been used in any kind of a large scale by humanity, with just a few exceptions. And yet, the biomass is easy to transform into useful products, including fuels, and they contain many other natural products that have high value. In this video Los Alamos and New Mexico State University scientists outline the opportunities and challenges of using science to turn algae into energy.

  8. Genome of the red alga Porphyridium purpureum

    PubMed Central

    Bhattacharya, Debashish; Price, Dana C.; Xin Chan, Cheong; Qiu, Huan; Rose, Nicholas; Ball, Steven; Weber, Andreas P. M.; Cecilia Arias, Maria; Henrissat, Bernard; Coutinho, Pedro M.; Krishnan, Anagha; Zäuner, Simone; Morath, Shannon; Hilliou, Frédérique; Egizi, Andrea; Perrineau, Marie-Mathilde; Yoon, Hwan Su

    2013-01-01

    The limited knowledge we have about red algal genomes comes from the highly specialized extremophiles, Cyanidiophyceae. Here, we describe the first genome sequence from a mesophilic, unicellular red alga, Porphyridium purpureum. The 8,355 predicted genes in P. purpureum, hundreds of which are likely to be implicated in a history of horizontal gene transfer, reside in a genome of 19.7?Mbp with 235 spliceosomal introns. Analysis of light-harvesting complex proteins reveals a nuclear-encoded phycobiliprotein in the alga. We uncover a complex set of carbohydrate-active enzymes, identify the genes required for the methylerythritol phosphate pathway of isoprenoid biosynthesis, and find evidence of sexual reproduction. Analysis of the compact, function-rich genome of P. purpureum suggests that ancestral lineages of red algae acted as mediators of horizontal gene transfer between prokaryotes and photosynthetic eukaryotes, thereby significantly enriching genomes across the tree of photosynthetic life. PMID:23770768

  9. WASP7 BENTHIC ALGAE - MODEL THEORY AND USER'S GUIDE

    EPA Science Inventory

    The standard WASP7 eutrophication module includes nitrogen and phosphorus cycling, dissolved oxygen-organic matter interactions, and phytoplankton kinetics. In many shallow streams and rivers, however, the attached algae (benthic algae, or periphyton, attached to submerged substr...

  10. ALGAE BLOOMS AND PHOSPHORUS LOADING IN LAKE LOWELL, IDAHO

    EPA Science Inventory

    Algae blooms limit recreational use of Lake Lowell, ID (17050114) by reducing water clarity and esthetic qualities. Under bloom conditions, algae have a negative impact on the reservoir fishery because of periodic oxygen depletion associated with respiration and decomposition. ...

  11. [Accumulation of polycyclic arenes in Baltic Sea algae].

    PubMed

    Veldre, I A; Itra, A R; Paal'me, L P; Kukk, Kh A

    1985-01-01

    The paper presents data on the level of benzo(a)pyrene (BP) and some other polycyclic arenes in alga and phanerogam specimens from different gulfs of the Baltic Sea. Algae were shown to absorb BP from sea water. The mean concentration of BP in sea water was under 0.004 microgram/1, while in algae it ranged 0.1-21.2 micrograms/kg dry weight. Algae accumulate BP to a higher degree than phanerogams. The highest concentrations of BP were found in algae Enteromorpha while the lowest ones in Furcellaria. In annual green algae, BP level was higher in autumn, i. e. at the end of vegetation period, than in spring. Brown algae Fucus vesiculosus is recommended for monitoring polycyclic arene pollution in the area from Vormsi Island to Käsmu and green algae Cladophora or Enteromorpha in the eastern part of the Finnish Gulf. PMID:4060672

  12. Use of Brown Algae to Demonstrate Natural Products Techniques.

    ERIC Educational Resources Information Center

    Porter, Lee A.

    1985-01-01

    Background information is provided on the natural products found in marine organisms in general and the brown algae in particular. Also provided are the procedures needed to isolate D-mannitol (a primary metabolite) and cholesterol from brown algae. (JN)

  13. MANOMETRIC MEASUREMENTS OF PHOTOSYNTHESIS IN THE MARINE ALGA GIGARTINA

    PubMed Central

    Emerson, Robert; Green, Lowell

    1934-01-01

    A manometric method for measuring photosynthesis in marine algae is described. Photosynthesis in the red alga Gigartina harveyana is shown to be similar in all important respects to photosynthesis in Chlorella and other Chlorophyceae. PMID:19872816

  14. An Overview of Algae Biofuel Production and Potential Environmental Impact

    EPA Science Inventory

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas)...

  15. Cognome e nome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 14 novembre 2011 Compitino (2 ore)

    E-print Network

    Robbiano, Lorenzo

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 14 novembre 2011­ Compitino (2 ore) Giustificare ogni affermazione Salvare il file CoCoA come

  16. Cognome e nome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 2 febbraio 2012 Compitino (2 ore)

    E-print Network

    Robbiano, Lorenzo

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 2 febbraio 2012­ Compitino (2 ore) Giustificare ogni affermazione Salvare il file CoCoA come

  17. ORIGINAL ARTICLE Phagotrophy by the picoeukaryotic green alga

    E-print Network

    ORIGINAL ARTICLE Phagotrophy by the picoeukaryotic green alga Micromonas: implications for Arctic, is well established for most photosynthetic lineages. However, green algae, including prasinophytes, were of Micromonas suggest that these green algae may have significant impact on prokaryote populations in several

  18. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  19. Global Dynamics of Zooplankton and Harmful Algae in Flowing Habitats

    E-print Network

    Hsu, Sze-Bi

    Global Dynamics of Zooplankton and Harmful Algae in Flowing Habitats Sze-Bi Hsu Feng-Bin Wang Xiao from the dynamics of harmful algae and zooplankton in flowing- water habitats where a main channel. For the system modeling the dynamics of algae and their toxin that contains little limiting nutrient, we

  20. Gille-STPA 35 1 Noxious Algae in Carlsbad

    E-print Network

    Gille, Sarah T.

    Gille-STPA 35 1 Noxious Algae in Carlsbad Spanish explorers of this region came across a lagoon Woodfield Dubbed "killer algae," the alien seaweed Caulerpa taxifolia was discovered in June 2000. Caulerpa taxifolia is a green alga native to tropical waters that typically grows to small size

  1. Update on Genomic Studies of Algae Paths toward Algal Genomics

    E-print Network

    Update on Genomic Studies of Algae Paths toward Algal Genomics Arthur R. Grossman* The Carnegie the expression of genes. In this introductory manuscript, I discuss select algae and how genomics is impacting our understanding of these organisms. Four algae for which near-full genome information has become

  2. Sedimentation of algae: relationships with biomass and size distribution1

    E-print Network

    Mazumder, Asit

    Sedimentation of algae: relationships with biomass and size distribution1 Isabelle Larocque, A distribution of epilimnetic algae on patterns of algal sedimentation was determined in lake enclosures under the mean length of algae in fish-free enclosures and reduced the mean length in the enclosures to which

  3. INHIBITION OF PHOTOSYNTHESIS IN CERTAIN ALGAE BY EXTREME RED LIGHT

    E-print Network

    Govindjee

    INHIBITION OF PHOTOSYNTHESIS IN CERTAIN ALGAE BY EXTREME RED LIGHT GOVINDJEE, EUGENE RABINOWITCH. INTRODUCTION It was shown in preceding papers (9, 10) that when the unicellular red alga Por- phyridium), these algae, when exposed to monochromatic light (bands isolated by a grating monochromator, band half

  4. Environmental Life Cycle Comparison of Algae to Other Bioenergy

    E-print Network

    Clarens, Andres

    Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks A N D R E S F . C L A R December 6, 2009. Accepted December 15, 2009. Algae are an attractive source of biomass energy since. In spite of these advantages, algae cultivation has not yet been compared with conventional crops from

  5. How to Identify and Control Water Weeds and Algae.

    ERIC Educational Resources Information Center

    Applied Biochemists, Inc., Mequon, WI.

    Included in this guide to water management are general descriptions of algae, toxic algae, weed problems in lakes, ponds, and canals, and general discussions of mechanical, biological and chemical control methods. In addition, pictures, descriptions, and recommended control methods are given for algae, 6 types of floating weeds, 18 types of…

  6. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  7. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  8. Analysis of Land Suitable for Algae State of Hawaii

    E-print Network

    Analysis of Land Suitable for Algae Production State of Hawaii Prepared for the U.S. Department agency thereof. #12;Analysis of Land Suitable for Algae Production State of Hawaii Prepared by Mele University of Hawaii at Manoa August 2011 #12;i Executive Summary Algae are considered to be a viable crop

  9. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  10. CORALLINE ALGA STANDS THE TEST OF TIME ON SHORELINE

    E-print Network

    Martone, Patrick T.

    Inside JEB i CORALLINE ALGA STANDS THE TEST OF TIME ON SHORELINE No one likes getting bashed about, the coralline algae, which have calcified most of their cells and essentially turned themselves into living, and thus most of force, occurring at the small joints (they make up just 15% of the alga), Denny wondered

  11. Intracellular invasion of green algae in a salamander host

    E-print Network

    Intracellular invasion of green algae in a salamander host Ryan Kerneya,1 , Eunsoo Kimb , Roger P) and green algae ("Oophila amblystomatis" Lamber ex Printz) has been considered an ectosymbiotic mutu- alism tracts, consistent with oviductal transmission of algae from one salamander generation to the next

  12. AQU 04 Portable Algae Flow Cytometer Team Members

    E-print Network

    Soatto, Stefano

    AQU 04 Portable Algae Flow Cytometer Team Members · David Caron, Faculty · Han-Chieh Chang · Yu-Chong Tai, Faculty, PI* * Primary Contact Overview The portable algae flow cytometer is a project that aims to expedite research in algae biology using microfluid-based and state-of-the-art detection

  13. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  14. Optimal production of Furfural and DMF from algae and switchgrass

    E-print Network

    Grossmann, Ignacio E.

    Optimal production of Furfural and DMF from algae and switchgrass Mariano Martína1, Ignacio E and furfural from biomass, switchgrass and algae. The processes consist of four stages, (1) biomass pretreatment into intermediates such as oil and glucose from algae and, glucose and xylose from switchgrass, (2

  15. CHECKLIST AND BIBLIOGRAPHY OF THE MARINE BENTHIC ALGAE

    E-print Network

    Mcilwain, Jenny

    CHECKLIST AND BIBLIOGRAPHY OF THE MARINE BENTHIC ALGAE FROM ISLANDS AND ATOLLS WITHIN YAP STATE October 2002 #12;Checklist and Bibliography of the Marine Benthic Algae from Islands and Atolls within Yap) recorded 85 species of marine benthic algae from Ifalik (Ifaluk) Atoll. Trono (1968, 1969, 1971) published

  16. CHECKLIST AND BIBLIOGRAPHY OF THE MARINE BENTHIC ALGAE

    E-print Network

    Mcilwain, Jenny

    benthic algae from the atolls within the Republic of the Marshall Islands (Figure 1) is based Atoll algae (Tsuda,1987) and subsequent phycological studies conducted within the Marshall Islands references reveal that marine benthic algae have been reported from 17 of the 28 atolls (i.e., low coral

  17. Bromophenols in Marine Algae and Their Bioactivities

    PubMed Central

    Liu, Ming; Hansen, Poul Erik; Lin, Xiukun

    2011-01-01

    Marine algae contain various bromophenols that have been shown to possess a variety of biological activities, including antioxidant, antimicrobial, anticancer, anti-diabetic, and anti-thrombotic effects. Here, we briefly review the recent progress of these marine algal biomaterials, with respect to structure, bioactivities, and their potential application as pharmaceuticals. PMID:21822416

  18. Laser-fluorescence measurement of marine algae

    NASA Technical Reports Server (NTRS)

    Browell, E. V.

    1980-01-01

    Progress in remote sensing of algae by laser-induced fluorescence is subject of comprehensive report. Existing single-wavelength and four-wavelength systems are reviewed, and new expression for power received by airborne sensor is derived. Result differs by as much as factor of 10 from those previously reported. Detailed error analysis evluates factors affecting accuracy of laser-fluorosensor systems.

  19. Battling Golden Algae: Results suggest preventative lake management approaches 

    E-print Network

    Supercinski, Danielle

    2011-01-01

    stream_source_info Battling Golden Algae.pdf.txt stream_content_type text/plain stream_size 10626 Content-Encoding ISO-8859-1 stream_name Battling Golden Algae.pdf.txt Content-Type text/plain; charset=ISO-8859-1 14 tx H2...O Winter 2011 Story by Danielle Supercinski Battling golden algae Results suggest preventative lake management approaches Golden algae blooms, or the explosive growth of algae, are known to be toxic, but recent ?ndings from three university...

  20. Battling golden algae: Results suggest preventative lake managment approaches 

    E-print Network

    Supercinski, Danielle

    2011-01-01

    stream_source_info Battling Golden Algae.pdf.txt stream_content_type text/plain stream_size 10626 Content-Encoding ISO-8859-1 stream_name Battling Golden Algae.pdf.txt Content-Type text/plain; charset=ISO-8859-1 14 tx H2...O Winter 2011 Story by Danielle Supercinski Battling golden algae Results suggest preventative lake management approaches Golden algae blooms, or the explosive growth of algae, are known to be toxic, but recent ?ndings from three university...

  1. Sulfated polysaccharides as bioactive agents from marine algae.

    PubMed

    Ngo, Dai-Hung; Kim, Se-Kwon

    2013-11-01

    Recently, much attention has been paid by consumers toward natural bioactive compounds as functional ingredients in nutraceuticals. Marine algae are considered as valuable sources of structurally diverse bioactive compounds. Marine algae are rich in sulfated polysaccharides (SPs) such as carrageenans in red algae, fucoidans in brown algae and ulvans in green algae. These SPs exhibit many health beneficial nutraceutical effects such as antioxidant, anti-allergic, anti-human immunodeficiency virus, anticancer and anticoagulant activities. Therefore, marine algae derived SPs have great potential to be further developed as medicinal food products or nutraceuticals in the food industry. This contribution presents an overview of nutraceutical effects and potential health benefits of SPs derived from marine algae. PMID:23994790

  2. Engineering of the growth environment of microalgae with high biomass and lipid productivity.

    PubMed

    Huang, Yu-Tzu; Lee, Huei-Teng; Lai, Chung-Wei

    2013-03-01

    Pure cultures of Botryococcus sp. microalgae have great potential for generating huge amounts of algae lipid that can be further converted into biodiesel. Lipids with nanometer in size can be applied to medicine and pharmacy recently. In this study, the effects of light intensity and CO2 concentration on the biomass productivity, lipid content, and lipid productivity of Botryococcus braunii were examined in 21-day intervals. The optimum cultivating conditions for biomass accumulation were 6,000 lux with 0.04% CO2 and 21 days of culturing; this provided the highest biomass productivity of 140.46 mg L(-1) d(-1). The highest lipid productivity of 44.46 mg L(-1) d(-1) occurred at 6,000 lux with 5% CO2 and 21 days of culturing. The maximum specific growth rate (micro(max)) was similar among different concentrations of CO2 (0.682 d(-1) under 12,000 lux at 10% CO2; 0.585 d(-1) under 6,000 lux at 5% CO2). Culturing at 5% or 10% CO2 has been shown to enhance the accumulation of lipids, introducing the possibility of using flue gas as a carbon source. The nanotechnology in this study will be helpful towards research in green science and engineering such as bio-fixation of CO2 and drug delivery systems. PMID:23755654

  3. Biofuels from algae: challenges and potential

    PubMed Central

    Hannon, Michael; Gimpel, Javier; Tran, Miller; Rasala, Beth; Mayfield, Stephen

    2011-01-01

    Algae biofuels may provide a viable alternative to fossil fuels; however, this technology must overcome a number of hurdles before it can compete in the fuel market and be broadly deployed. These challenges include strain identification and improvement, both in terms of oil productivity and crop protection, nutrient and resource allocation and use, and the production of co-products to improve the economics of the entire system. Although there is much excitement about the potential of algae biofuels, much work is still required in the field. In this article, we attempt to elucidate the major challenges to economic algal biofuels at scale, and improve the focus of the scientific community to address these challenges and move algal biofuels from promise to reality. PMID:21833344

  4. Uric acid deposits in symbiotic marine algae.

    PubMed

    Clode, Peta L; Saunders, Martin; Maker, Garth; Ludwig, Martha; Atkins, Craig A

    2009-02-01

    The symbiosis between cnidarians and dinoflagellate algae is not understood at the cell or molecular level, yet this relationship is responsible for the formation of thousands of square kilometres of coral reefs. We have investigated the nature of crystalline material prominent within marine algal symbionts of Aiptasia sp. anemones. This material, which has historically been considered to be calcium oxalate, is shown to be uric acid. We demonstrate that these abundant uric acid stores can be mobilized rapidly, thereby allowing the algal symbionts to flourish in an otherwise N-poor environment. This is the first report of uric acid accumulation by symbiotic marine algae. These data provide new insight and considerations for understanding the physiological basis of algal symbioses, and represent a new and previously unconsidered aspect of N metabolism in cnidarian, and a variety of other, marine symbioses. PMID:19021889

  5. Environmental life cycle comparison of algae to other bioenergy feedstocks.

    PubMed

    Clarens, Andres F; Resurreccion, Eleazer P; White, Mark A; Colosi, Lisa M

    2010-03-01

    Algae are an attractive source of biomass energy since they do not compete with food crops and have higher energy yields per area than terrestrial crops. In spite of these advantages, algae cultivation has not yet been compared with conventional crops from a life cycle perspective. In this work, the impacts associated with algae production were determined using a stochastic life cycle model and compared with switchgrass, canola, and corn farming. The results indicate that these conventional crops have lower environmental impacts than algae in energy use, greenhouse gas emissions, and water regardless of cultivation location. Only in total land use and eutrophication potential do algae perform favorably. The large environmental footprint of algae cultivation is driven predominantly by upstream impacts, such as the demand for CO(2) and fertilizer. To reduce these impacts, flue gas and, to a greater extent, wastewater could be used to offset most of the environmental burdens associated with algae. To demonstrate the benefits of algae production coupled with wastewater treatment, the model was expanded to include three different municipal wastewater effluents as sources of nitrogen and phosphorus. Each provided a significant reduction in the burdens of algae cultivation, and the use of source-separated urine was found to make algae more environmentally beneficial than the terrestrial crops. PMID:20085253

  6. Selenium Uptake and Volatilization by Marine Algae

    NASA Astrophysics Data System (ADS)

    Luxem, Katja E.; Vriens, Bas; Wagner, Bettina; Behra, Renata; Winkel, Lenny H. E.

    2015-04-01

    Selenium (Se) is an essential trace nutrient for humans. An estimated one half to one billion people worldwide suffer from Se deficiency, which is due to low concentrations and bioavailability of Se in soils where crops are grown. It has been hypothesized that more than half of the atmospheric Se deposition to soils is derived from the marine system, where microorganisms methylate and volatilize Se. Based on model results from the late 1980s, the atmospheric flux of these biogenic volatile Se compounds is around 9 Gt/year, with two thirds coming from the marine biosphere. Algae, fungi, and bacteria are known to methylate Se. Although algal Se uptake, metabolism, and methylation influence the speciation and bioavailability of Se in the oceans, these processes have not been quantified under environmentally relevant conditions and are likely to differ among organisms. Therefore, we are investigating the uptake and methylation of the two main inorganic Se species (selenate and selenite) by three globally relevant microalgae: Phaeocystis globosa, the coccolithophorid Emiliania huxleyi, and the diatom Thalassiosira oceanica. Selenium uptake and methylation were quantified in a batch experiment, where parallel gas-tight microcosms in a climate chamber were coupled to a gas-trapping system. For E. huxleyi, selenite uptake was strongly dependent on aqueous phosphate concentrations, which agrees with prior evidence that selenite uptake by phosphate transporters is a significant Se source for marine algae. Selenate uptake was much lower than selenite uptake. The most important volatile Se compounds produced were dimethyl selenide, dimethyl diselenide, and dimethyl selenyl sulfide. Production rates of volatile Se species were larger with increasing intracellular Se concentration and in the decline phase of the alga. Similar experiments are being carried out with P. globosa and T. oceanica. Our results indicate that marine algae are important for the global cycling of Se, especially in low phosphate regimes such as oligotrophic waters and late stage phytoplankton blooms.

  7. Algae-Derived Dietary Ingredients Nourish Animals

    NASA Technical Reports Server (NTRS)

    2015-01-01

    In the 1980s, Columbia, Maryland-based Martek Biosciences Corporation worked with Ames Research Center to pioneer the use of microalgae as a source of essential omega-3 fatty acids, work that led the company to develop its highly successful Formulaid product. Now the Nutritional Products Division of Royal DSM, the company also manufactures DHAgold, a nutritional supplement for pets, livestock and farm-raised fish that uses algae to deliver docosahexaenoic acid (DHA).

  8. Dermatitis from purified sea algae toxin (debromoaplysiatoxin).

    PubMed

    Solomon, A E; Stoughton, R B

    1978-09-01

    Cutaneous inflammation was induced by debromoaplysiatoxin, a purified toxin extracted from Lyngbya majuscula Gomont. This alga causes a seaweed dermatitis that occurs in persons who have swum off the coast of Oahu in Hawaii. By topical application, the toxin was found to produce an irritant pustular folliculitis in humans and to cause a severe cutaneous inflammatory reaction in the rabbit and in hairless mice. PMID:686747

  9. New records of marine algae in Vietnam

    NASA Astrophysics Data System (ADS)

    Le Hau, Nhu; Ly, Bui Minh; Van Huynh, Tran; Trung, Vo Thanh

    2015-06-01

    In May, 2013, a scientific expedition was organized by the Vietnam Academy of Science and Technology (VAST) and the Far Eastern Branch of the Russian Academy of Sciences (FEBRAS) through the frame of the VAST-FEBRAS International Collaboration Program. The expedition went along the coast of Vietnam from Quang Ninh to Kien Giang. The objective was to collect natural resources to investigate the biological and biochemical diversity of the territorial waters of Vietnam. Among the collected algae, six taxa are new records for the Vietnam algal flora. They are the red algae Titanophora pikeana (Dickie) Feldmann from Cu Lao Xanh Island, Laurencia natalensis Kylin from Tho Chu Island, Coelothrix irregularis (Harvey) Børgesen from Con Dao Island, the green algae Caulerpa oligophylla Montagne, Caulerpa andamanensis (W.R. Taylor) Draisma, Prudhomme et Sauvage from Phu Quy Island, and Caulerpa falcifolia Harvey & Bailey from Ly Son Island. The seaweed flora of Vietnam now counts 833 marine algal taxa, including 415 Rhodophyta, 147 Phaeophyceae, 183 Chlorophyta, and 88 Cyanobacteria.

  10. RESEARCH ARTICLE Open Access Origin of land plants: Do conjugating green algae

    E-print Network

    RESEARCH ARTICLE Open Access Origin of land plants: Do conjugating green algae hold the key? Sabina (embryophytes) evolved from streptophyte algae, also referred to as charophycean algae. The streptophyte algae are a paraphyletic group of green algae, ranging from unicellular flagellates to morphologically complex forms

  11. Microplate Technique for Determining Accumulation of Metals by Algae

    PubMed Central

    Hassett, James M.; Jennett, J. Charles; Smith, James E.

    1981-01-01

    A microplate technique was developed to determine the conditions under which pure cultures of algae removed heavy metals from aqueous solutions. Variables investigated included algal species and strain, culture age (11 and 44 days), metal (mercury, lead, cadmium, and zinc), pH, effects of different buffer solutions, and time of exposure. Plastic, U-bottomed microtiter plates were used in conjunction with heavy metal radionuclides to determine concentration factors for metal-alga combinations. The technique developed was rapid, statistically reliable, and economical of materials and cells. Results (expressed as concentration factors) were in reasonably good agreement with literature values. All species of algae studied removed mercury from solution. Green algae proved better at accumulating cadmium than did blue-green algae. No alga studied removed zinc, perhaps because cells were maintained in the dark during the labeling period. Chlamydomonas sp. proved superior in ability to remove lead from solution. PMID:16345764

  12. Global dynamics of zooplankton and harmful algae in flowing habitats

    NASA Astrophysics Data System (ADS)

    Hsu, Sze-Bi; Wang, Feng-Bin; Zhao, Xiao-Qiang

    This paper is devoted to the study of two advection-dispersion-reaction models arising from the dynamics of harmful algae and zooplankton in flowing-water habitats where a main channel is coupled to a hydraulic storage zone, representing an ensemble of fringing coves on the shoreline. For the system modeling the dynamics of algae and their toxin that contains little limiting nutrient, we establish a threshold type result on the global attractivity in terms of the basic reproduction ratio for algae. For the model with zooplankton that eat the algae and are inhibited by the toxin produced by algae, we show that there exists a coexistence steady state and the zooplankton is uniformly persistent provided that two basic reproduction ratios for algae and zooplankton are greater than unity.

  13. Method and apparatus for iterative lysis and extraction of algae

    DOEpatents

    Chew, Geoffrey; Boggs, Tabitha; Dykes, Jr., H. Waite H.; Doherty, Stephen J.

    2015-12-01

    A method and system for processing algae involves the use of an ionic liquid-containing clarified cell lysate to lyse algae cells. The resulting crude cell lysate may be clarified and subsequently used to lyse algae cells. The process may be repeated a number of times before a clarified lysate is separated into lipid and aqueous phases for further processing and/or purification of desired products.

  14. Method for producing hydrogen and oxygen by use of algae

    DOEpatents

    Greenbaum, Elias (Oak Ridge, TN)

    1984-01-01

    Efficiency of process for producing H.sub.2 by subjecting algae in an aqueous phase to light irradiation is increased by culturing algae which has been bleached during a first period of irradiation in a culture medium in an aerobic atmosphere until it has regained color and then subjecting this algae to a second period of irradiation wherein hydrogen is produced at an enhanced rate.

  15. Using CO2 & Algae to Treat Wastewater and

    E-print Network

    Keller, Arturo A.

    Using CO2 & Algae to Treat Wastewater and Produce Biofuel Feedstock Tryg Lundquist Cal Poly State of the Industry and Growth · Algae's Role in WW Treatment · CO2's New Role · Research at Cal Poly · Future Work/MG 0.3 MGD average flow per facility #12;Reclaimed Algae Bacteria O2 CO2 N Organics N P CO2 P CO2 Waste

  16. Algae to Bio-Crude in Less Than 60 Minutes

    ScienceCinema

    Elliott, Doug

    2014-06-02

    Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.

  17. Method for producing hydrogen and oxygen by use of algae

    DOEpatents

    Greenbaum, E.

    1982-06-16

    Efficiency of process for producing H/sub 2/ by subjecting algae in an aqueous phase to light irradiation is increased by culturing algae which has been bleached during a first period of irradiation in a culture medium in an aerobic atmosphere until it has regained color and then subjecting this algae to a second period of irradiation wherein hydrogen is produced at an enhanced rate.

  18. Algae to Bio-Crude in Less Than 60 Minutes

    SciTech Connect

    Elliott, Doug

    2013-12-17

    Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.

  19. Exploring the potential of using algae in cosmetics.

    PubMed

    Wang, Hui-Min David; Chen, Ching-Chun; Huynh, Pauline; Chang, Jo-Shu

    2015-05-01

    The applications of microalgae in cosmetic products have recently received more attention in the treatment of skin problems, such as aging, tanning and pigment disorders. There are also potential uses in the areas of anti-aging, skin-whitening, and pigmentation reduction products. While algae species have already been used in some cosmetic formulations, such as moisturizing and thickening agents, algae remain largely untapped as an asset in this industry due to an apparent lack of utility as a primary active ingredient. This review article focuses on integrating studies on algae pertinent to skin health and beauty, with the purpose of identifying serviceable algae functions in practical cosmetic uses. PMID:25537136

  20. Method and apparatus for lysing and processing algae

    DOEpatents

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite H.; Di Salvo, Roberto

    2013-03-05

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells at lower temperatures than existing algae processing methods. A salt or salt solution is used as a separation agent and to remove water from the ionic liquid, allowing the ionic liquid to be reused. The used salt may be dried or concentrated and reused. The relatively low lysis temperatures and recycling of the ionic liquid and salt reduce the environmental impact of the algae processing while providing biofuels and other useful products.

  1. A golden opportunity: Researchers making progress in understanding toxic algae 

    E-print Network

    Wythe, Kathy

    2008-01-01

    this competition could lead them closer to controlling this harmful algae, the researchers said. ?Our biggest finding so far,? said Dr. Daniel Roelke of Texas AgriLife Research and one of the investigators, ?is that there appears to be a chemical warfare... between golden algae and blue green algae. Only when golden algae wins this chemical warfare is it able to bloom.? Roelke, along with Dr. Bryan Brooks of Baylor University and Dr. James Grover of the University of Texas at Arlington, have studied...

  2. Algae Bioreactor Using Submerged Enclosures with Semi-Permeable Membranes

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan D (Inventor); Gormly, Sherwin J (Inventor); Embaye, Tsegereda N (Inventor); Delzeit, Lance D (Inventor); Flynn, Michael T (Inventor); Liggett, Travis A (Inventor); Buckwalter, Patrick W (Inventor); Baertsch, Robert (Inventor)

    2013-01-01

    Methods for producing hydrocarbons, including oil, by processing algae and/or other micro-organisms in an aquatic environment. Flexible bags (e.g., plastic) with CO.sub.2/O.sub.2 exchange membranes, suspended at a controllable depth in a first liquid (e.g., seawater), receive a second liquid (e.g., liquid effluent from a "dead zone") containing seeds for algae growth. The algae are cultivated and harvested in the bags, after most of the second liquid is removed by forward osmosis through liquid exchange membranes. The algae are removed and processed, and the bags are cleaned and reused.

  3. Indirect effects of algae on coral: algae-mediated, microbe-induced coral mortality

    E-print Network

    Smith, Jennifer E.

    algal growth. Keywords Algae, bacteria, coral disease, coral reef, dissolved organic carbon, macroalgae several decades there has been an alarming decline in coral reefs around the world (McCook 1999; Aronson compilation Ó 2006 Blackwell Publishing Ltd #12;coral reef decline (Bruckner & Bruckner 1997; Goreau et al

  4. A technical evaluation of biodiesel from vegetable oils vs. algae. Will algae-derived biodiesel perform?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel, one of the most prominent renewable alternative fuels, can be derived from a variety of sources including vegetable oils, animal fats and used cooking oils as well as alternative sources such as algae. While issues such as land-use change, food vs. fuel, feedstock availability, and produc...

  5. Parachloroidium gen. nov. (Trebouxiophyceae, Chlorophyta), a novel genus of coccoid green algae from subaerial corticolous biofilms

    E-print Network

    Parachloroidium gen. nov. (Trebouxiophyceae, Chlorophyta), a novel genus of coccoid green algae. Parachloroidium gen. nov. (Trebouxiophyceae, Chlorophyta), a novel genus of coccoid green algae from subaerial the Parachloroidium strains from other similar green algae. However, ultrastructural characteristics and molecular

  6. CONTRIBUTION TO THE KNOWLEDGE OF SOIL ALGAE OF TWO ABANDONED INDUSTRIAL

    E-print Network

    CONTRIBUTION TO THE KNOWLEDGE OF SOIL ALGAE OF TWO ABANDONED INDUSTRIAL SEDIMENTATION BASINS Sixty three species of soil algae and Cyanoprocaryota were recovered from eight investigated sites sites in Chvaletice suggests soil toxicity of these biotopes. Keywords Soil algae, Chlorophyta

  7. Field Study of Growth and Calcification Rates of Three Species of Articulated Coralline Algae in

    E-print Network

    Martone, Patrick T.

    Field Study of Growth and Calcification Rates of Three Species of Articulated Coralline Algae of coralline algae. Decreases in coralline abundance may have cascading effects on marine ecosys- tems- mon species of articulated coralline algae (Bossiella plu- mosa, Calliarthron tuberculosum

  8. Streptophyte Algae and the Origin of Land Plants Revisited Using Heterogeneous Models with Three New Algal

    E-print Network

    Davis, Charles

    Letter Streptophyte Algae and the Origin of Land Plants Revisited Using Heterogeneous Models algae, but different lineages of streptophytes have been suggested to be the sister group of land plants chloroplast genomes from streptophyte algae: Coleochaetae orbicularis (Coleochaetales), Nitella hookeri

  9. Lateral Transfer and Recompartmentalization of Calvin Cycle Enzymes of Plants and Algae

    E-print Network

    Keeling, Patrick

    Lateral Transfer and Recompartmentalization of Calvin Cycle Enzymes of Plants and Algae Matthew compartments. Key words:1 Lateral transfer -- Calvin cycle enzymes -- Recompartmentalization -- Plants -- Algae Introduction Plastids, the photosynthetic organelles of plants and algae, arose through the endosymbiotic

  10. Cell to substratum and cell to cell interactions of microalgae.

    PubMed

    Ozkan, Altan; Berberoglu, Halil

    2013-12-01

    This paper reports the cell to substratum and cell to cell interactions of a diverse group of microalgae based on the Extended Derjaguin, Landau, Verwey, Overbeek (XDLVO) approach using the previously reported physico-chemical surface properties. The microalgae included 10 different species of green algae and diatoms from both freshwater and saltwater environments while the substrata included glass, indium-tin oxide (ITO), stainless steel, polycarbonate, polyethylene, and polystryrene. The results indicated that acid-base interactions were the dominating mechanism of interaction for microalgae. For green algae, if at least one of the interacting surfaces was hydrophobic, adhesion at primary minimum was predicted without any energy barrier. However, most diatom systems featured energy barriers for adhesion due to repulsive van der Waals interactions. The results reported in this study are expected to provide useful data and insight into the interaction mechanisms of microalgae cells with each other and with substrata for a number of practical applications including prevention of biofouling of photobioreactors and other man-made surfaces, promotion of biofilm formation in algal biofilm photobioreactors, and developing bioflocculation strategies for energy efficient harvesting of algal biomass. Particularly, Botryococcus braunii and Cerithiopsis fusiformis were identified as promising species for biofloccuation and biofilm formation in freshwater and saltwater aquatic systems, respectively. Finally, based on the observed trends in this study, use of hydrophilic algae and hydrophilic coatings over surfaces are recommended for minimizing biofouling in aquatic systems. PMID:24004676

  11. Biosorption of Lead and Nickel by Biomass of Marine Algae

    E-print Network

    Volesky, Bohumil

    Biosorption of Lead and Nickel by Biomass of Marine Algae Z.R. Holan and B. Volesky" Department uptake of lead up to 270 mg Pb/g of biomass in some brown marine algae. Members of the order Fucales affect the biosorp- tion performance. Lead uptakes up to 370 mg Pb/g were observed in crosslinked fucus

  12. Comments on the Manuscript, "Biodiesel Production from Freshwater Algae"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A recent publication (Vijayaragahavan, K.; Hemanathan, K., Biodiesel from freshwater algae, Energy Fuels, 2009, 23(11):5448-5453) on fuel production from algae is evaluated. It is discussed herein that the fuel discussed in that paper is not biodiesel, rather it probably consists of hydrocarbons. ...

  13. Salt-regulated mannitol metabolism in algae.

    PubMed

    Iwamoto, Koji; Shiraiwa, Yoshihiro

    2005-01-01

    Mannitol, one of the most widely occurring sugar alcohol compounds, is found in bacteria, fungi, algae, and plants. In these organisms the compound acts as a compatible solute and has multiple functions, including osmoregulation, storage, and regeneration of reducing power, and scavenging of active oxygen species. Because of the diverse functions of mannitol, introducing the ability to accumulate it has been a hallmark of attempts to generate highly salt-tolerant transgenic plants. However, transgenic plants have not yet improved significantly in their salt tolerance. Recently, we purified and characterized 2 enzymes that biosynthesize mannitol, mannitol-1-phosphate dehydrogenase (M1PDH) and mannitol-1-phosphate-specific phosphatase, from the marine red alga Caloglossa continua, which grows in estuarine areas where tide levels fluctuate frequently. The activation of Caloglossa M1PDH is unique in that it is regulated by salt concentration at enzyme level. In this review we focus on the metabolism of mannitol, mainly in marine photosynthetic organisms, and suggest how this might be applied to producing salt-tolerant transgenic plants. PMID:16088352

  14. Algae Biofuels Co-Location Assessment Tool

    Energy Science and Technology Software Center (ESTSC)

    2013-09-18

    ABCLAT was built to help any model user with spatially explicit Nitrogen, Phosphorous, and Carbon Dioxide nutrient flux information, and solar resource information evaluate algal cultivation potential. Initial applications of this modeling framework include Algae Biofuels Co-Location Assessment Tool Canada and Australia. The Canadian application was copyrighted November 29th 2011 as the Algae Biofuels Co-Location Assessment Tool for Canada. This copyright assertion is for the general framework from which any country or region with themore »requisite data could create a regionally specific application. The ABCLAT model framework developed by SNL looks at the growth potential in a given region as a function of available nutrients from wastewater and other sources, carbon dioxide from power plants, available solar potential, and if available, land cover and use information. The model framework evaluates the biomass potential, fixed carbon dioxide, potential algal biocrude and required land area for nutrient sources. ABCLAT is built with an object-oriented software program that can provide an easy to use interface for exploring questions related to aigal biomass production.« less

  15. Algae Biofuels Co-Location Assessment Tool

    SciTech Connect

    2013-09-18

    ABCLAT was built to help any model user with spatially explicit Nitrogen, Phosphorous, and Carbon Dioxide nutrient flux information, and solar resource information evaluate algal cultivation potential. Initial applications of this modeling framework include Algae Biofuels Co-Location Assessment Tool Canada and Australia. The Canadian application was copyrighted November 29th 2011 as the Algae Biofuels Co-Location Assessment Tool for Canada. This copyright assertion is for the general framework from which any country or region with the requisite data could create a regionally specific application. The ABCLAT model framework developed by SNL looks at the growth potential in a given region as a function of available nutrients from wastewater and other sources, carbon dioxide from power plants, available solar potential, and if available, land cover and use information. The model framework evaluates the biomass potential, fixed carbon dioxide, potential algal biocrude and required land area for nutrient sources. ABCLAT is built with an object-oriented software program that can provide an easy to use interface for exploring questions related to aigal biomass production.

  16. Algae-based oral recombinant vaccines.

    PubMed

    Specht, Elizabeth A; Mayfield, Stephen P

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for "molecular pharming" in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered - from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity. PMID:24596570

  17. Algae-based oral recombinant vaccines

    PubMed Central

    Specht, Elizabeth A.; Mayfield, Stephen P.

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for “molecular pharming” in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity. PMID:24596570

  18. Respiratory Chain of Colorless Algae II. Cyanophyta

    PubMed Central

    Webster, D. A.; Hackett, D. P.

    1966-01-01

    Whole cell difference spectra of the blue-green algae, Saprospira grandis, Leucothrix mucor, and Vitreoscilla sp. have one, or at the most 2, broad ?-bands near 560 m?. At ?190° these bands split to give 4 peaks in the ?-region for b and c-type cytochromes, but no ?-band for a-type cytochromes is visible. The NADH oxidase activity of these organisms was shown to be associated with particulate fractions of cell homogenates. The response of this activity to inhibitors differed from the responses of the NADH oxidase activities of particulate preparations from the green algae and higher plants to the same inhibitors, but is more typical of certain bacteria. No cytochrome oxidase activity was present in these preparations. The respiration of Saprospira and Vitreoscilla can be light-reversibly inhibited by CO, and all 3 organisms have a CO-binding pigment whose CO complex absorbs near 570, 535, and 417 m?. The action spectrum for the light reversal of CO-inhibited Vitreoscilla respiration shows maxima at 568, 534, and 416 m?. The results suggest that the terminal oxidase in these blue-greens is an o-type cytochrome. Images PMID:5932404

  19. Algae Farming in Low Earth Orbit: Past Present and Future

    NASA Astrophysics Data System (ADS)

    Morrison, N.

    Algal strains used as a production engine represent a novel example of living mechanical systems with tremendous potential for applications in space. Algae use photosynthesis to create lipids, glycerin, and biomass, with different strains of algae producing different oils. Algae can be grown to produce many types of oils, with low, medium or long hydrocarbon chain lengths. This article examines the history of algae research, as well as its value to astronauts as both a food supplement and as an oxygen production and carbon sequester engine. Consideration is given to ways algae is currently being used and tested in space, followed by a look forward envisioning dynamic living technological systems that can help to sustain our race as we travel the void between stars.

  20. Mitigating ammonia nitrogen deficiency in dairy wastewaters for algae cultivation.

    PubMed

    Lu, Qian; Zhou, Wenguang; Min, Min; Ma, Xiaochen; Ma, Yiwei; Chen, Paul; Zheng, Hongli; Doan, Yen T T; Liu, Hui; Chen, Chi; Urriola, Pedro E; Shurson, Gerald C; Ruan, Roger

    2016-02-01

    This study demonstrated that the limiting factor to algae growth on dairy wastewater was the ammonia nitrogen deficiency. Dairy wastewaters were mixed with a slaughterhouse wastewater that has much higher ammonia nitrogen content. The results showed the mixing wastewaters improved the nutrient profiles and biomass yield at low cost. Algae grown on mixed wastewaters contained high protein (55.98-66.91%) and oil content (19.10-20.81%) and can be exploited to produce animal feed and biofuel. Furthermore, algae grown on mixed wastewater significantly reduced nutrient contents remained in the wastewater after treatment. By mitigating limiting factor to algae growth on dairy wastewaters, the key issue of low biomass yield of algae grown on dairy wastewaters was resolved and the wastewater nutrient removal efficiency was significantly improved by this study. PMID:26623940

  1. Algae intoxication in livestock and waterfowl.

    PubMed

    Beasley, V R; Cook, W O; Dahlem, A M; Hooser, S B; Lovell, R A; Valentine, W M

    1989-07-01

    Blue-green algae toxins include (1) hepatotoxic peptides that are known to be toxic to cattle, dogs, swine, waterfowl, and sometimes other species; (2) a nicotinic agonist neurotoxin that appears to be toxic to a wide range of animal species; (3) a peripheral-acting cholinesterase inhibitor that is very toxic to swine, birds, and dogs; (4) toxins that impair nervous transmission by blocking sodium channels in nerve cells; and (5) lipopolysaccharide endotoxins. This article provides current information on the mechanisms of action of the primary toxins recognized to date as well as on procedures important in the diagnosis and management of some of the more common cyanobacterial toxicoses in livestock and waterfowl. PMID:2503241

  2. Swimming like algae: biomimetic soft artificial cilia

    PubMed Central

    Sareh, Sina; Rossiter, Jonathan; Conn, Andrew; Drescher, Knut; Goldstein, Raymond E.

    2013-01-01

    Cilia are used effectively in a wide variety of biological systems from fluid transport to thrust generation. Here, we present the design and implementation of artificial cilia, based on a biomimetic planar actuator using soft-smart materials. This actuator is modelled on the cilia movement of the alga Volvox, and represents the cilium as a piecewise constant-curvature robotic actuator that enables the subsequent direct translation of natural articulation into a multi-segment ionic polymer metal composite actuator. It is demonstrated how the combination of optimal segmentation pattern and biologically derived per-segment driving signals reproduce natural ciliary motion. The amenability of the artificial cilia to scaling is also demonstrated through the comparison of the Reynolds number achieved with that of natural cilia. PMID:23097503

  3. An algae-covered alligator rests warily

    NASA Technical Reports Server (NTRS)

    2000-01-01

    An algae-covered alligator keeps a wary eye open as it rests in one of the ponds at Kennedy Space Center. American alligators feed and rest in the water, and lay their eggs in dens they dig into the banks. The young alligators spend their first several weeks in these dens. The Center shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  4. Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae

    SciTech Connect

    Lohr M.; Schwender J.; Polle, J. E. W.

    2012-04-01

    Isoprenoids are one of the largest groups of natural compounds and have a variety of important functions in the primary metabolism of land plants and algae. In recent years, our understanding of the numerous facets of isoprenoid metabolism in land plants has been rapidly increasing, while knowledge on the metabolic network of isoprenoids in algae still lags behind. Here, current views on the biochemistry and genetics of the core isoprenoid metabolism in land plants and in the major algal phyla are compared and some of the most pressing open questions are highlighted. Based on the different evolutionary histories of the various groups of eukaryotic phototrophs, we discuss the distribution and regulation of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in land plants and algae and the potential consequences of the loss of the MVA pathway in groups such as the green algae. For the prenyltransferases, serving as gatekeepers to the various branches of terpenoid biosynthesis in land plants and algae, we explore the minimal inventory necessary for the formation of primary isoprenoids and present a preliminary analysis of their occurrence and phylogeny in algae with primary and secondary plastids. The review concludes with some perspectives on genetic engineering of the isoprenoid metabolism in algae.

  5. Biomass of algae growth on natural water medium.

    PubMed

    Ramaraj, Rameshprabu; Tsai, David Dah-Wei; Chen, Paris Honglay

    2015-01-01

    Algae are the dominant primary producers in aquatic ecosystems. Since algae are highly varied group organisms, which have important functions in ecosystem, and their biomass is an essential biological resource. Currently, algae have been applied increasingly to diverse range of biomass applications. Therefore, this study was aimed to investigate the ecological algae features of microalgal production by natural medium, ecological function by lab scale of the symbiotic reactor which is imitated nature ecosystem, and atmospheric CO2 absorption that was related the algal growth of biomass to understand algae in natural water body better. Consequently, this study took advantages of using the unsupplemented freshwater natural medium to produce microalgae. Algal biomass by direct measurement of total suspended solids (TSS) and volatile suspended solids (VSS) resulted as 0.14g/L and 0.08g/L respectively. The biomass measurements of TSS and VSS are the sensible biomass index for algae production. The laboratory results obtained in the present study proved the production of algae by the natural water medium is potentially feasible. PMID:25531025

  6. Photobiological hydrogen production with switchable photosystem-II designer algae

    DOEpatents

    Lee, James Weifu

    2014-02-18

    A process for enhanced photobiological H.sub.2 production using transgenic alga. The process includes inducing exogenous genes in a transgenic alga by manipulating selected environmental factors. In one embodiment inducing production of an exogenous gene uncouples H.sub.2 production from existing mechanisms that would downregulate H.sub.2 production in the absence of the exogenous gene. In other embodiments inducing an exogenous gene triggers a cascade of metabolic changes that increase H.sub.2 production. In some embodiments the transgenic alga are rendered non-regenerative by inducing exogenous transgenes for proton channel polypeptides that are targeted to specific algal membranes.

  7. LIFETIME OF THE EXCITED STATE IN VIVO I. CHLOROPHYLL a IN ALGAE, AT ROOM

    E-print Network

    Govindjee

    LIFETIME OF THE EXCITED STATE IN VIVO I. CHLOROPHYLL a IN ALGAE, AT ROOM AND AT LIQUID NITROGEN decay of chloro- phyll (Chl) a in the green alga Chlorella pyrenoidosa, the red alga Porphyridium cruentum, and the blue-green alga Anacystis nidulans was measured by the phase- shift method under

  8. Plant & CellPhysiol. 14: 1081-1097 (1973) Photophosphorylation in intact algae: Effects of

    E-print Network

    Govindjee

    1973-01-01

    Plant & CellPhysiol. 14: 1081-1097 (1973) Photophosphorylation in intact algae: Effects alga Chlorella pyrenoidosa and of the blue-green alga Anacystis nidulans. A few measurements in extracts from intact cells of the green alga Chlorella in the early 1950's (3, 4), few workers measured

  9. SEN 02 Portable Algae Flow Cytometer SEN 02.1 Overview

    E-print Network

    Soatto, Stefano

    SEN 02 Portable Algae Flow Cytometer SEN 02.1 Overview The portable algae flow cytometer is a project that aims to expedite research in algae biology using microfluid-based and state is to develop a portable flow cytometer that is suitable for on-field monitoring of algae population and reduce

  10. MID-LATE DEVONIAN CALCIFIED MARINE ALGAE AND CYANOBACTERIA, SOUTH CHINA

    E-print Network

    Riding, Robert

    MID-LATE DEVONIAN CALCIFIED MARINE ALGAE AND CYANOBACTERIA, SOUTH CHINA QI FENG,1 YI-MING GONG,1 contain microfossils generally regarded as calcified algae and cyanobacteria. These are present in 61 out with differing degrees of confidence, and placed in algae, cyanobacteria or microproblematica. Algae: Halysis

  11. Phylogeny of ulotrichalean algae from extreme high-altitude and high-latitude ecosystems

    E-print Network

    Colorado at Boulder, University of

    Phylogeny of ulotrichalean algae from extreme high-altitude and high-latitude ecosystems S. K the terrestrial algae that are found in these systems. Here, we show that terrestrial algae in the Ulotrichales and the high Himalayas. We further show that these ulotrichalean algae are closely related (using 18S, ITS/5.8S

  12. Potential pharmacological applications of polyphenolic derivatives from marine brown algae.

    PubMed

    Thomas, Noel Vinay; Kim, Se-Kwon

    2011-11-01

    Recently, the isolation and characterization of the biologically active components from seaweeds have gained much attention from various research groups across the world. The marine algae have been studied for biologically active components and phlorotannins are one among them. Among marine algae, brown algal species such as Ecklonia cava, Eisenia arborea, Ecklonia stolinifera and Eisenia bicyclis have been studied for their potential biological activities. Majority of the investigations on phlorotannins derived from brown algae have exhibited their potentiality as antioxidant, anti-inflammatory, antidiabetic, antitumor, antihypertensive, anti-allergic, hyaluronidase enzyme inhibition and in matrix metalloproteinases (MMPs) inhibition activity. In this review, we have made an attempt to discuss the potential biological activities of phlorotannins from marine brown algae and their possible candidature in the pharmaceutical applications. PMID:22004951

  13. Colourful Cultures: Classroom Experiments with the Unicellular Alga Haematococcus pluvialis.

    ERIC Educational Resources Information Center

    Delpech, Roger

    2001-01-01

    Describes an investigation into the photosynthetic potential of the different developmental stages of the green unicellular alga Haematococcus pluvialis. Reviews the biotechnological applications of astaxanthin, the red pigment which can be extracted from Haematococcus pluvialis. (Author/MM)

  14. ENDOTOXINS, ALGAE AND 'LIMULUS' AMOEBOCYTE LYSATE TEST IN DRINKING WATER

    EPA Science Inventory

    Field and laboratory studies were conducted to determine the distribution of algae and bacteria, and investigate sources of endotoxins (lipopolysaccharides) in drinking water. The field survey was performed on five drinking water systems located in Allegheny County, Pennsylvania ...

  15. CONTROL TECHNOLOGY EXTRACTION OF MERCURY FROM GROUNDWATER IMMOBILIZED ALGAE

    EPA Science Inventory

    Bio-Recovery Systems, Inc. conducted a project under the Emerging Technology portion of the United States Environmental Protection Agency (EPAs) Superfund Innovative Technology Evaluation (SITE) Program to evaluate the ability of immobilized algae to adsorb mercury from contamina...

  16. EXTRACTION OF SUGARS FROM ALGAE FOR DIRECT CONVERSION TO BUTANOL

    EPA Science Inventory

    We will have a complete full scale design at the end of this project including algae growth and butanol production. Further, the group will have a working prototype for display at the National Mall.

  17. Application of synthetic biology in cyanobacteria and algae

    PubMed Central

    Wang, Bo; Wang, Jiangxin; Zhang, Weiwen; Meldrum, Deirdre R.

    2012-01-01

    Cyanobacteria and algae are becoming increasingly attractive cell factories for producing renewable biofuels and chemicals due to their ability to capture solar energy and CO2 and their relatively simple genetic background for genetic manipulation. Increasing research efforts from the synthetic biology approach have been made in recent years to modify cyanobacteria and algae for various biotechnological applications. In this article, we critically review recent progresses in developing genetic tools for characterizing or manipulating cyanobacteria and algae, the applications of genetically modified strains for synthesizing renewable products such as biofuels and chemicals. In addition, the emergent challenges in the development and application of synthetic biology for cyanobacteria and algae are also discussed. PMID:23049529

  18. Devonian Fungi: Interactions with the Green Alga Palaeonitella

    E-print Network

    Taylor, Thomas N.; Hass, Hagen; Remy, Winfried

    1992-11-01

    This paper describes three new taxa of fossil aquatic fungi preserved in 400-million-year-old Lower Devonian Rhynie Chert. All of the fungal morphotypes are attached to cells of the green alga Palaeonitella cranii. Milleromyces rhyniensis...

  19. ALGAE AND CRUSTACEANS AS INDICATORS OF BIOACTIVITY OF INDUSTRIAL WASTES

    EPA Science Inventory

    Freshwater (Selenastrum capricornutum) and estuarine (Skeketonema costatum) algae were exposed to liquid wastes from 10 industrial sites in laboratory bioassays. All wastes affected algal growth either by stimulation or by stimulation at low concentrations and inhibition at high ...

  20. Soil and Plant Responses to Lipid-Extracted Algae 

    E-print Network

    Lewis, Katie

    2014-08-25

    multidisciplinary approach given the various technological and system options and their interdependency. Process steps include algal biology and cultivation, harvesting and Soybean 449 Camelina 580 Sunflower 954 Jatropha 1890 Oil palm 5940 Algae 9354... chemicals or polymers involved with harvesting of algae and extraction of oil as well as the overall chemical composition of LEA. Land application of agricultural coproducts, such as manure, wood chips, compost, poultry litter, and municipal biosolids...

  1. Algae Reefs in Shark Bay, Western Australia, Australia

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Numerous algae reefs are seen in Shark Bay, Western Australia, Australia (26.0S, 113.5E) especially in the southern portions of the bay. The south end is more saline because tidal flow in and out of the bay is restricted by sediment deposited at the north and central end of the bay opposite the mouth of the Wooramel River. This extremely arid region produces little sediment runoff so that the waters are very clear, saline and rich in algae.

  2. An overview of algae biofuel production and potential environmental impact.

    PubMed

    Menetrez, Marc Y

    2012-07-01

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas) and produce products with a wide variety of compositions and uses. These products include lipids, which can be processed into biodiesel; carbohydrates, which can be processed into ethanol; and proteins, which can be used for human and animal consumption. Algae are commonly genetically engineered to allow for advantageous process modification or optimization. However, issues remain regarding human exposure to algae-derived toxins, allergens, and carcinogens from both existing and genetically modified organisms (GMOs), as well as the overall environmental impact of GMOs. A literature review was performed to highlight issues related to the growth and use of algal products for generating biofuels. Human exposure and environmental impact issues are identified and discussed, as well as current research and development activities of academic, commercial, and governmental groups. It is hoped that the ideas contained in this paper will increase environmental awareness of issues surrounding the production of algae and will help the algae industry develop to its full potential. PMID:22681590

  3. Radionuclides and trace metals in eastern Mediterranean Sea algae.

    PubMed

    Al-Masri, M S; Mamish, S; Budier, Y

    2003-01-01

    Three types of sea alga distributed along the Syrian coast have been collected and analyzed for radioactivity and trace elements. Results have shown that (137)Cs concentrations in all the analyzed sample were relatively low (less than 1.2 Bq kg(-1) dry weight) while the levels of naturally occurring radionuclides, such as (210)Po and (210)Pb, were found to be high in most samples; the highest observed value (27.43 Bq kg(-1) dry weight) for (210)Po being in the red Jania longifurca alga. In addition, most brown alga species were also found to accumulate (210)Po, which indicates their selectivity to this isotope. On the other hand, brown alga (Cystoseira and Sargassum Vulgare) have shown a clear selectivity for some trace metals such as Cr, As, Cu and Co, this selectivity may encourage their use as biomonitor for pollution by trace metals. Moreover, the red alga species were found to contain the highest levels of Mg while the brown alga species were found to concentrate Fe, Mn, Na and K and nonmetals such as Cl, I and Br. PMID:12660047

  4. Development of Green Fuels From Algae - The University of Tulsa

    SciTech Connect

    Crunkleton, Daniel; Price, Geoffrey; Johannes, Tyler; Cremaschi, Selen

    2012-12-03

    The general public has become increasingly aware of the pitfalls encountered with the continued reliance on fossil fuels in the industrialized world. In response, the scientific community is in the process of developing non-fossil fuel technologies that can supply adequate energy while also being environmentally friendly. In this project, we concentrate on â??green fuelsâ? which we define as those capable of being produced from renewable and sustainable resources in a way that is compatible with the current transportation fuel infrastructure. One route to green fuels that has received relatively little attention begins with algae as a feedstock. Algae are a diverse group of aquatic, photosynthetic organisms, generally categorized as either macroalgae (i.e. seaweed) or microalgae. Microalgae constitute a spectacularly diverse group of prokaryotic and eukaryotic unicellular organisms and account for approximately 50% of global organic carbon fixation. The PIâ??s have subdivided the proposed research program into three main research areas, all of which are essential to the development of commercially viable algae fuels compatible with current energy infrastructure. In the fuel development focus, catalytic cracking reactions of algae oils is optimized. In the species development project, genetic engineering is used to create microalgae strains that are capable of high-level hydrocarbon production. For the modeling effort, the construction of multi-scaled models of algae production was prioritized, including integrating small-scale hydrodynamic models of algae production and reactor design and large-scale design optimization models.

  5. Comparative Transcriptome Analysis of Four Prymnesiophyte Algae

    PubMed Central

    Koid, Amy E.; Liu, Zhenfeng; Terrado, Ramon; Jones, Adriane C.; Caron, David A.; Heidelberg, Karla B.

    2014-01-01

    Genomic studies of bacteria, archaea and viruses have provided insights into the microbial world by unveiling potential functional capabilities and molecular pathways. However, the rate of discovery has been slower among microbial eukaryotes, whose genomes are larger and more complex. Transcriptomic approaches provide a cost-effective alternative for examining genetic potential and physiological responses of microbial eukaryotes to environmental stimuli. In this study, we generated and compared the transcriptomes of four globally-distributed, bloom-forming prymnesiophyte algae: Prymnesium parvum, Chrysochromulina brevifilum, Chrysochromulina ericina and Phaeocystis antarctica. Our results revealed that the four transcriptomes possess a set of core genes that are similar in number and shared across all four organisms. The functional classifications of these core genes using the euKaryotic Orthologous Genes (KOG) database were also similar among the four study organisms. More broadly, when the frequencies of different cellular and physiological functions were compared with other protists, the species clustered by both phylogeny and nutritional modes. Thus, these clustering patterns provide insight into genomic factors relating to both evolutionary relationships as well as trophic ecology. This paper provides a novel comparative analysis of the transcriptomes of ecologically important and closely related prymnesiophyte protists and advances an emerging field of study that uses transcriptomics to reveal ecology and function in protists. PMID:24926657

  6. Is the Future Really in Algae?

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan

    2011-01-01

    Having just emerged from the warmest decade on record and watching as the oceans acidify, global resources peak, the world's population continues to climb, and nearly half of all known species face extinction by the end of the century. We stand on the threshold of one of the most important transition in human history-the transition from hunting-and-gathering our energy to cultivating sustainable, carbon-neutral, environmentally-friendly energy supplies. Can we "cultivate" enerm without competing with agriculture for land, freshwater, or fertilizer? Can we develop an "ecology of technology" that optimizes our use of limited resources? Is human activity compatible with improved conditions in the world's oceans? Will our ingenuity prevail in time to make a difference for our children and the children of all species? With support from NASA ARMD and the California Energy Commission, a group of dedicated scientists and engineers are working on a project called OMEGA (Offshore Membrane Enclosures for Growing Algae), to provide practical answers to these critical questions and to leave a legacy of hope for the oceans and for the future.

  7. [The effects of blue algae on health].

    PubMed

    van Riel, A J H P; Schets, F M; Meulenbelt, J

    2007-08-01

    Cyanobacteria (blue algae) regularly cause recreational waters to become murky and smelly. Skin irritation and mild gastrointestinal disorders have regularly been reported following recreational activities in water suspected of being contaminated with cyanobacteria. The exact cause of these effects on health is not clear. Severe effects are not to be expected from recreational exposure to water contaminated with cyanobacteria. Cyanobacteria can produce hepatotoxins, neurotoxins, cytotoxins and irritants. In Brazil lethal intoxications have occurred due to the occurrence of toxins in drinking water and in dialysis fluid. The Dutch policy is based on the Commissie Integraal Waterbeheer (Commission Integral Water Management) guidelines for recreational waters. It is not clear to what extent the other cyanotoxins occur in the Netherlands. However, several genera ofcyanobacteria capable of producing these other cyanotoxins have been found in the Netherlands. For a good risk assessment in the Netherlands, more information is needed on the effects on health of cyanobacteria. There is also a need for more data on the prevalence of different cyanobacteria and toxins in Dutch recreational waters. PMID:17784694

  8. [Toxicity of Coptis chinensis Rhizome Extracts to Green Algae].

    PubMed

    Chen, Ya-nan; Yuan, Ling

    2015-05-01

    Coptis chinensis contains antiseptic alkaloids and thus its rhizomes and preparations are widely used for the treatment of.fish diseases. In order to realize the risk of water ecosystems produced by this medical herb and preparations used in aquaculture, the present experiment was carried out to study the toxicity of Coptis chinensis rhizome extract (CRE) to Scenedesmus oblique and Chlorella pyrenoidosa grown in culture solution with 0.00 (CK), 0.088 (Tl), 0.44 (T2) and 1.76 mg · L(-1) (T3) of CRE, respectively. The results show that low concentration of CRE (T1) inhibited the growth rate of the alga and high CRE (T2 and T3) ceased growth and reproductions. CRE also decreased the chlorophyll and proteins in alga cells, indicating the inhibition of photosynthesis and protein biosynthesis, which could be direct reasons for the low growth rate and death of green alga. The efflux of protons and substances from alga cells led to pH reduction and conductivity increment in culture solution with CRE. Furthermore, the activity of superoxide dismutase in alga increased at the beginning of CRE in T1 and T2 treatments but decreased as time prolonged which was in contrast to high CRE treatment. And the long exposure to low CRE treatment behaved otherwise. This suggests that the low concentration of CRE could induce the resistant reactions in alga at initial time but high CRE concentration or long exposure even at low CRE concentration could inhibit the enzyme synthesis. Similarly, malondialdehyde in alga increased as CRE concentrations increased in culture solutions, implying the damage and high permeability of cell membrane. In general, Chlorella pyrenoidosa was more sensitive to CRE. The abuse of rhizomes and preparations in aquaculture and intensive cultivation of Coptis chinensis plants in a large scale might produce ecological risks to primary productivity of water ecosystems. PMID:26314112

  9. Drifting algae and zoobenthos — Effects on settling and community structure

    NASA Astrophysics Data System (ADS)

    Bonsdorff, Erik

    Shallow (5 to 10 m) sandy bottoms in the Baltic Sea are important areas for zoobenthic production. The infaunal communities are generally governed by the hydrographical conditions are transport of the sediment through wind effects. With increasing eutrophication in the Baltic Sea, drifting mats of annual algae ( Cladophora, Stictyosiphon, Polysiphonia, Rhodemela, Sphacelaria, Pilayella, Furcellaria, Ceramium, etc) have become increasingly common, adding to the structuring and regulating factors for the infauna. In 1990 and 91, a field-study (SCUBA diving; zoobenthos and algae sampling) was carried out in the Åland archipelogo, in thennorthern and their structuring effect on the zoobenthos. Algal biomass increased from 150 ± 19 g DW·m -2 in 1990 to 832±60 g DW·m -2 in 1991, having no effect on oxygen saturation in 1990, but showing signs of reduced oxygen saturation in 1991. Organic content of the sediment remained stable (0.60 to 0.74%) during the entire study period. The zoobenthic community showed significant responses to the drifting algae at population level and in terms of community structure (by 1991: significantly reduced species number; low similarity values (40 to 65%) between bare sand and under the algae). The main species affected were the dominating bivalve Macoma balthica, the polychaetes Pygospio elegans and Manayunkia aestuarina, and the amphipod Corophium volutator. The settlement of M. balthica spat was significantly reduced by the algae (>70% in 1990/91), and no individuals of the dominating polychaetes were recorded under the mat. C. volutator, however, benefited from the algae, and greatly increased in numbers. The results clearly demonstrate the types of physical effects drift-algae will have no sandy-bottom benthos, and show that significant changes in the communities over large areas can be expected with increasing eutrophication.

  10. Plasticity predicts evolution in a marine alga.

    PubMed

    Schaum, C Elisa; Collins, Sinéad

    2014-10-22

    Under global change, populations have four possible responses: 'migrate, acclimate, adapt or die' (Gienapp et al. 2008 Climate change and evolution: disentangling environmental and genetic response. Mol. Ecol. 17, 167-178. (doi:10.1111/j.1365-294X.2007.03413.x)). The challenge is to predict how much migration, acclimatization or adaptation populations are capable of. We have previously shown that populations from more variable environments are more plastic (Schaum et al. 2013 Variation in plastic responses of a globally distributed picoplankton species to ocean acidification. Nature 3, 298-230. (doi:10.1038/nclimate1774)), and here we use experimental evolution with a marine microbe to learn that plastic responses predict the extent of adaptation in the face of elevated partial pressure of CO2 (pCO2). Specifically, plastic populations evolve more, and plastic responses in traits other than growth can predict changes in growth in a marine microbe. The relationship between plasticity and evolution is strongest when populations evolve in fluctuating environments, which favour the evolution and maintenance of plasticity. Strikingly, plasticity predicts the extent, but not direction of phenotypic evolution. The plastic response to elevated pCO2 in green algae is to increase cell division rates, but the evolutionary response here is to decrease cell division rates over 400 generations until cells are dividing at the same rate their ancestors did in ambient CO2. Slow-growing cells have higher mitochondrial potential and withstand further environmental change better than faster growing cells. Based on this, we hypothesize that slow growth is adaptive under CO2 enrichment when associated with the production of higher quality daughter cells. PMID:25209938

  11. Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction

    DOEpatents

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2012-11-06

    The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energy efficient manner.

  12. Anti-phytopathogenic activities of macro-algae extracts.

    PubMed

    Jiménez, Edra; Dorta, Fernando; Medina, Cristian; Ramírez, Alberto; Ramírez, Ingrid; Peña-Cortés, Hugo

    2011-01-01

    Aqueous and ethanolic extracts obtained from nine Chilean marine macro-algae collected at different seasons were examined in vitro and in vivo for properties that reduce the growth of plant pathogens or decrease the injury severity of plant foliar tissues following pathogen infection. Particular crude aqueous or organic extracts showed effects on the growth of pathogenic bacteria whereas others displayed important effects against pathogenic fungi or viruses, either by inhibiting fungal mycelia growth or by reducing the disease symptoms in leaves caused by pathogen challenge. Organic extracts obtained from the brown-alga Lessonia trabeculata inhibited bacterial growth and reduced both the number and size of the necrotic lesion in tomato leaves following infection with Botrytis cinerea. Aqueous and ethanolic extracts from the red-alga Gracillaria chilensis prevent the growth of Phytophthora cinnamomi, showing a response which depends on doses and collecting-time. Similarly, aqueous and ethanolic extracts from the brown-alga Durvillaea antarctica were able to diminish the damage caused by tobacco mosaic virus (TMV) in tobacco leaves, and the aqueous procedure is, in addition, more effective and seasonally independent. These results suggest that macro-algae contain compounds with different chemical properties which could be considered for controlling specific plant pathogens. PMID:21673886

  13. Screening for toxic activity of some marine benthic algae.

    PubMed

    de Lara-Isassi, G

    1995-01-01

    This research was carried out in order to show that certain substances of algal origin are toxic to animals, particularly to fish, and to determine if a relationship exists between toxicity and the latitude where the algae were collected. Twenty-nine species of algae were collected in different localities off the Pacific coast of Mexico. The samples were frozen shortly after collection and kept frozen until used. Crude ethanolic extracts of the algae were prepared and tested for ichthyotoxicity. The extracts were classified as nontoxic (NT), weakly toxic (WT) and highly toxic (with lethal effects) (T). The reactions exhibited by the fish to the presence of the algal extracts in their environment ranged from initial adaptative behaviour to death. Only four species (14%) out of the 29 algal species tested were highly toxic, 13 (45%) weakly toxic and 12 (41%) non-toxic. The high percentage of algal extracts that showed some degree of toxicity suggests that algae might have some kind of defence mechanism that could be noxious, thus being inedible by fish. The highest toxicity values were found among tropical algae. These results suggest that a relationship could exist between toxicity and the latitude of the collecting locality. PMID:7664947

  14. The unique features of starch metabolism in red algae.

    PubMed

    Viola, R; Nyvall, P; Pedersén, M

    2001-07-01

    Red algae (Rhodophyceae) are photosynthetic eukaryotes that accumulate starch granules outside of their plastids. The starch granules from red algae (floridean starch) show structural similarities with higher plant starch granules but lack amylose. Recent studies have indicated that the extra-plastidic starch synthesis in red algae proceeds via a UDP glucose-selective alpha-glucan synthase, in analogy with the cytosolic pathway of glycogen synthesis in other eukaryotes. On the other hand, plastidic starch synthesis in green cells occurs selectively via ADP glucose in analogy with the pathway of glycogen synthesis in prokaryotes from which plastids have evolved. Given the emerging consensus of a monophyletic origin of plastids, it would appear that the capacity for starch synthesis selectively evolved from the alpha-glucan synthesizing machinery of the host ancestor and its endosymbiont in red algae and green algae, respectively. This implies the evolution of fundamentally different functional relationships between the different subcellular compartments with regard to photosynthetic carbon metabolism in these organisms. It is suggested that the biochemical and molecular elucidation of floridean starch synthesis may offer new insights into the metabolic strategies of photosynthetic eukaryotes. PMID:11429143

  15. The unique features of starch metabolism in red algae.

    PubMed Central

    Viola, R.; Nyvall, P.; Pedersén, M.

    2001-01-01

    Red algae (Rhodophyceae) are photosynthetic eukaryotes that accumulate starch granules outside of their plastids. The starch granules from red algae (floridean starch) show structural similarities with higher plant starch granules but lack amylose. Recent studies have indicated that the extra-plastidic starch synthesis in red algae proceeds via a UDP glucose-selective alpha-glucan synthase, in analogy with the cytosolic pathway of glycogen synthesis in other eukaryotes. On the other hand, plastidic starch synthesis in green cells occurs selectively via ADP glucose in analogy with the pathway of glycogen synthesis in prokaryotes from which plastids have evolved. Given the emerging consensus of a monophyletic origin of plastids, it would appear that the capacity for starch synthesis selectively evolved from the alpha-glucan synthesizing machinery of the host ancestor and its endosymbiont in red algae and green algae, respectively. This implies the evolution of fundamentally different functional relationships between the different subcellular compartments with regard to photosynthetic carbon metabolism in these organisms. It is suggested that the biochemical and molecular elucidation of floridean starch synthesis may offer new insights into the metabolic strategies of photosynthetic eukaryotes. PMID:11429143

  16. Picoeucaryot alga infecting blue mussel Mytilus edulis in southern Norway.

    PubMed

    Mortensen, Stein; Harkestad, Lisbeth S; Stene, Rolf-Olav; Renault, Tristan

    2005-01-25

    During summer 2001, blue mussels Mytilus edulis with abnormal shell growth were collected near Kragerø, southern Norway. The mussels had green spots in their mantle tissues, mainly posteriorly and ventrally, and in the adductor muscle. Mussels from 4 sites had a prevalence of green spots varying from 2 to 71% that correlated well with shell deformities. Histological examination revealed the presence of round or ovoid algae, 0.9 to 1.5 x 1.2 to 2.4 microm, free within haemocytes and in the lesions, characterised by an inflammatory response and the presence of cellular debris. The alga contain a relatively large nucleus, 1 chloroplast and 1 mitochondrion. Size and morphology suggest that the alga might be a picoeucaryot green alga. Infection of mussel tissues appears to start in the posterior mantle edge, near the siphons, and spread anterior-ventrally in the mantle connective and storage tissues-occasionally spots were also found in the gonad follicles. Large infected areas were also observed in sinuses within the adductor muscle. Only mussels that were 3 yr old or more were infected. Deformations apparently resulted from years of continuous shell formation by a contracted, partly deformed mantle. Most deformed mussels had eroded shells, allowing some light penetration through the exposed, thin nacre. Young, thin-shelled mussels were not infected. The present work suggests that the alga has, at least partially, a parasitic relationship with the mussels, and is associated with pathological alterations in mussel tissues. PMID:15759797

  17. Method to transform algae, materials therefor, and products produced thereby

    DOEpatents

    Dunahay, Terri Goodman (2710 Arbor Glen Pl., Boulder, CO 80304); Roessler, Paul G. (15905 Ellsworth Pl., Golden, CO 80401); Jarvis, Eric E. (3720 Smuggler Pl., Boulder, CO 80303)

    1997-01-01

    Disclosed is a method to transform chlorophyll C-containing algae which includes introducing a recombinant molecule comprising a nucleic acid molecule encoding a dominant selectable marker operatively linked to an algal regulatory control sequence into a chlorophyll C-containing alga in such a manner that the marker is produced by the alga. In a preferred embodiment the algal regulatory control sequence is derived from a diatom and preferably Cyclotella cryptica. Also disclosed is a chimeric molecule having one or more regulatory control sequences derived from one or more chlorophyll C-containing algae operatively linked to a nucleic acid molecule encoding a selectable marker, an RNA molecule and/or a protein, wherein the nucleic acid molecule does not normally occur with one or more of the regulatory control sequences. Further specifically disclosed are molecules pACCNPT10, pACCNPT4.8 and pACCNPT5.1. The methods and materials of the present invention provide the ability to accomplish stable genetic transformation of chlorophyll C-containing algae.

  18. Method to transform algae, materials therefor, and products produced thereby

    SciTech Connect

    Dunahay, T.G.; Roessler, P.G.; Jarvis, E.E.

    1997-08-26

    Disclosed is a method to transform chlorophyll C-containing algae. The method includes introducing a recombinant molecule comprising a nucleic acid molecule encoding a dominant selectable marker operatively linked to an algal regulatory control sequence into a chlorophyll C-containing alga in such a manner that the marker is produced by the alga. In a preferred embodiment the algal regulatory control sequence is derived from a diatom and preferably Cyclotella cryptica. Also disclosed is a chimeric molecule having one or more regulatory control sequences derived from one or more chlorophyll C-containing algae operatively linked to a nucleic acid molecule encoding a selectable marker, an RNA molecule and/or a protein, wherein the nucleic acid molecule does not normally occur with one or more of the regulatory control sequences. Further, specifically disclosed are molecules pACCNPT10, pACCNPT4.8 and pACCNPT5.1. The methods and materials of the present invention provide the ability to accomplish stable genetic transformation of chlorophyll C-containing algae. 2 figs.

  19. Sustainability of algae derived biodiesel: a mass balance approach.

    PubMed

    Pfromm, Peter H; Amanor-Boadu, Vincent; Nelson, Richard

    2011-01-01

    A rigorous chemical engineering mass balance/unit operations approach is applied here to bio-diesel from algae mass culture. An equivalent of 50,000,000 gallons per year (0.006002 m3/s) of petroleum-based Number 2 fuel oil (US, diesel for compression-ignition engines, about 0.1% of annual US consumption) from oleaginous algae is the target. Methyl algaeate and ethyl algaeate diesel can according to this analysis conceptually be produced largely in a technologically sustainable way albeit at a lower available diesel yield. About 11 square miles of algae ponds would be needed with optimistic assumptions of 50 g biomass yield per day and m2 pond area. CO2 to foster algae growth should be supplied from a sustainable source such as a biomass-based ethanol production. Reliance on fossil-based CO2 from power plants or fertilizer production renders algae diesel non-sustainable in the long term. PMID:20933402

  20. Dasycladalean green algae and some problematic algae from the Upper Triassic of the Nayband Formation (northeast Iran)

    NASA Astrophysics Data System (ADS)

    Senowbari-Daryan, Baba; Rashidi, Koorosh; Saberzadeh, Behnam

    2011-12-01

    This paper describes the dasycladales green algae from two sections of the Rhaetian Howz-e Khan Member of the Nayband Formation, northwest of the Dig-e Rostam motorway service area (south of the type locality of the Formation near the town Naybandan). Both sections are composed of bedded fine-grained limestones containing partly abundant dasycladales algae associated with foraminifers, which are mainly aulotortid types. Additionally scattered samples were collected from several beds of the Howz-e Khan Member in this area. The following dasycladalean taxa are described: Chinianella carpatica (Bystrický), Griphoporella curvata (Gümbel), Griphoporella lutensis nov. sp., some undetermined dasycladacean taxa, problematic algae like Lithocodium aggregatum Elliott, Bacinella irregularis Radoicic, and Thaumatoporella parvovesiculifera (Raineri). While Chinianella carpatica is not numerous and the other described algae are rare, Griphoporella curvata is extremely abundant in the investigated material. This paper describes Ch. carpatica for the first time from the Triassic of Iran and also includes a discussion of the strong variability of G. curvata. Additionally we include an informal description of a problematic fossil (animal: shell fragment?; plant: alga?).

  1. Stable chloroplast transformation of the unicellular red alga Porphyridium species.

    PubMed

    Lapidot, Miri; Raveh, Dina; Sivan, Alex; Arad, Shoshana Malis; Shapira, Michal

    2002-05-01

    Red algae are extremely attractive for biotechnology because they synthesize accessory photosynthetic pigments (phycobilins and carotenoids), unsaturated fatty acids, and unique cell wall sulfated polysaccharides. We report a high-efficiency chloroplast transformation system for the unicellular red microalga Porphyridium sp. This is the first genetic transformation system for Rhodophytes and is based on use of a mutant form of the gene encoding acetohydroxyacid synthase [AHAS(W492S)] as a dominant selectable marker. AHAS is the target enzyme of the herbicide sulfometuron methyl, which effectively inhibits growth of bacteria, fungi, plants, and algae. Biolistic transformation of synchronized Porphyridium sp. cells with the mutant AHAS(W492S) gene that confers herbicide resistance gave a high frequency of sulfomethuron methyl-resistant colonies. The mutant AHAS gene integrated into the chloroplast genome by homologous recombination. This system paves the way for expression of foreign genes in red algae and has important biotechnological implications. PMID:12011332

  2. Benefits of using algae as natural sources of functional ingredients.

    PubMed

    Ibañez, Elena; Cifuentes, Alejandro

    2013-03-15

    Algae have been suggested as a potential source of bioactive compounds to be used in the food and pharmaceutical industries. With the strong development of functional foods as a method to improve or maintain health, the exploration of new compounds with real health effects is now an intense field of research. The potential use of algae as source of functional food ingredients, such as lipids, proteins, polysaccharides, phenolics, carotenoids, etc., is presented, together with the different possibilities of improving valuable metabolites production either using the tools and the knowledge provided by marine biotechnology or improving the different factors involved in the production on a large scale of such metabolites. The bio-refinery concept is also presented as a way to improve the efficient use of algae biomass while favouring process sustainability. PMID:23339029

  3. Importance of algae as a potential source of biofuel.

    PubMed

    Singh, A K; Singh, M P

    2014-01-01

    Algae have a great potential source of biofuels and also have unique importance to reduce gaseous emissions, greenhouse gases, climatic changes, global warming receding of glaciers, rising sea levels and loss of biodiversity. The microalgae, like Scenedesmus obliquus, Neochloris oleabundans, Nannochloropsis sp., Chlorella emersonii, and Dunaliella tertiolecta have high oil content. Among the known algae, Scenedesmus obliquus is one of the most potential sources for biodiesel as it has adequate fatty acid (linolenic acid) and other polyunsaturated fatty acids. Bio—ethanol is already in the market of United States of America and Europe as an additive in gasoline. Bio—hydrogen is the cleanest biofuel and extensive efforts are going on to bring it to market at economical price. This review highlights recent development and progress in the field of algae as a potential source of biofuel. PMID:25535720

  4. The evolution of photosynthesis in chromist algae through serial endosymbioses

    PubMed Central

    Stiller, John W.; Schreiber, John; Yue, Jipei; Guo, Hui; Ding, Qin; Huang, Jinling

    2014-01-01

    Chromist algae include diverse photosynthetic organisms of great ecological and social importance. Despite vigorous research efforts, a clear understanding of how various chromists acquired photosynthetic organelles has been complicated by conflicting phylogenetic results, along with an undetermined number and pattern of endosymbioses, and the horizontal movement of genes that accompany them. We apply novel statistical approaches to assess impacts of endosymbiotic gene transfer on three principal chromist groups at the heart of long-standing controversies. Our results provide robust support for acquisitions of photosynthesis through serial endosymbioses, beginning with the adoption of a red alga by cryptophytes, then a cryptophyte by the ancestor of ochrophytes, and finally an ochrophyte by the ancestor of haptophytes. Resolution of how chromist algae are related through endosymbioses provides a framework for unravelling the further reticulate history of red algal-derived plastids, and for clarifying evolutionary processes that gave rise to eukaryotic photosynthetic diversity. PMID:25493338

  5. The evolution of photosynthesis in chromist algae through serial endosymbioses.

    PubMed

    Stiller, John W; Schreiber, John; Yue, Jipei; Guo, Hui; Ding, Qin; Huang, Jinling

    2014-01-01

    Chromist algae include diverse photosynthetic organisms of great ecological and social importance. Despite vigorous research efforts, a clear understanding of how various chromists acquired photosynthetic organelles has been complicated by conflicting phylogenetic results, along with an undetermined number and pattern of endosymbioses, and the horizontal movement of genes that accompany them. We apply novel statistical approaches to assess impacts of endosymbiotic gene transfer on three principal chromist groups at the heart of long-standing controversies. Our results provide robust support for acquisitions of photosynthesis through serial endosymbioses, beginning with the adoption of a red alga by cryptophytes, then a cryptophyte by the ancestor of ochrophytes, and finally an ochrophyte by the ancestor of haptophytes. Resolution of how chromist algae are related through endosymbioses provides a framework for unravelling the further reticulate history of red algal-derived plastids, and for clarifying evolutionary processes that gave rise to eukaryotic photosynthetic diversity. PMID:25493338

  6. Designer proton-channel transgenic algae for photobiological hydrogen production

    DOEpatents

    Lee, James Weifu (Knoxville, TN)

    2011-04-26

    A designer proton-channel transgenic alga for photobiological hydrogen production that is specifically designed for production of molecular hydrogen (H.sub.2) through photosynthetic water splitting. The designer transgenic alga includes proton-conductive channels that are expressed to produce such uncoupler proteins in an amount sufficient to increase the algal H.sub.2 productivity. In one embodiment the designer proton-channel transgene is a nucleic acid construct (300) including a PCR forward primer (302), an externally inducible promoter (304), a transit targeting sequence (306), a designer proton-channel encoding sequence (308), a transcription and translation terminator (310), and a PCR reverse primer (312). In various embodiments, the designer proton-channel transgenic algae are used with a gas-separation system (500) and a gas-products-separation and utilization system (600) for photobiological H.sub.2 production.

  7. First case of human spondylodiscitis due to Shewanella algae.

    PubMed

    Gressier, Mélanie; Mbayo, Didier; Deramond, Hervé; Grados, Franck; Eb, François; Canarelli, Brigitte

    2010-09-01

    We present the first case of human spondylodiscitis due to Shewanella algae. Our patient did not have any predisposing factors. The portal of entry was probably a cutaneous lesion on the leg, exposed to seawater. Bacteria were isolated in pure culture from a needle biopsy specimen of the vertebral disk. Automated identification systems identified the organism as Shewanella putrefaciens. However, molecular biology identified it as S. algae. Treatment with ceftriaxone and amikacin, then ciprofloxacin successfully addressed the infection. We also review four published cases of human osteoarticular infections caused by Shewanella spp: two cases of arthritis and two cases of osteomyelitis. Two patients had predisposing factors, and contact with water was found in two cases. The clinical, radiological and biological characteristics of S. algae spondylodiscitis are indistinguishable from those of spondylodiscitis of other causes. A cutaneous lesion with exposure to water is a potential portal of entry. Molecular typing is necessary to obtain a precise bacteriological identification. PMID:20171131

  8. Oleosin of subcellular lipid droplets evolved in green algae.

    PubMed

    Huang, Nan-Lan; Huang, Ming-Der; Chen, Tung-Ling L; Huang, Anthony H C

    2013-04-01

    In primitive and higher plants, intracellular storage lipid droplets (LDs) of triacylglycerols are stabilized with a surface layer of phospholipids and oleosin. In chlorophytes (green algae), a protein termed major lipid-droplet protein (MLDP) rather than oleosin on LDs was recently reported. We explored whether MLDP was present directly on algal LDs and whether algae had oleosin genes and oleosins. Immunofluorescence microscopy revealed that MLDP in the chlorophyte Chlamydomonas reinhardtii was associated with endoplasmic reticulum subdomains adjacent to but not directly on LDs. In C. reinhardtii, low levels of a transcript encoding an oleosin-like protein (oleolike) in zygotes-tetrads and a transcript encoding oleosin in vegetative cells transferred to an acetate-enriched medium were found in transcriptomes and by reverse transcription-polymerase chain reaction. The C. reinhardtii LD fraction contained minimal proteins with no detectable oleolike or oleosin. Several charophytes (advanced green algae) possessed low levels of transcripts encoding oleosin but not oleolike. In the charophyte Spirogyra grevilleana, levels of oleosin transcripts increased greatly in cells undergoing conjugation for zygote formation, and the LD fraction from these cells contained minimal proteins, two of which were oleosins identified via proteomics. Because the minimal oleolike and oleosins in algae were difficult to detect, we tested their subcellular locations in Physcomitrella patens transformed with the respective algal genes tagged with a Green Fluorescent Protein gene and localized the algal proteins on P. patens LDs. Overall, oleosin genes having weak and cell/development-specific expression were present in green algae. We present a hypothesis for the evolution of oleosins from algae to plants. PMID:23391579

  9. Simulation and Life Cycle Assessment of Algae Gasification Process in Dual Fluidized Bed Gasifiers

    E-print Network

    Azadi, Pooya; Brownbridge, George; Mosbach, Sebastian; Inderwildi, Oliver; Kraft, Markus

    2015-01-01

    We present simulation results for the production of algae-derived syngas using dual fluidized bed (DFB) gasifiers. A global sensitivity analysis was performed to determine the impact of key input parameters (i.e. algae composition, gasification...

  10. Value of crops: Quantity, quality and cost price. [algae as a nutritional supplement

    NASA Technical Reports Server (NTRS)

    Meyer, C.

    1979-01-01

    Possibilities of using algae as a nutritional supplement are examined. The nutritional value and protein content of spirulines of blue algae are discussed. A cost analysis of growing them artificially is presented.

  11. Chemical composition of the green alga Codium Divaricatum Holmes.

    PubMed

    He, Zhizhou; Zhang, Anjiang; Ding, Lisheng; Lei, Xinxiang; Sun, Jianzhang; Zhang, Lixue

    2010-12-01

    A new sterol, 24-R-stigmasta-4,25-diene-3?,6?-diol (1), along with three known compounds (2-3), was isolated from the green alga Codium divaricatum Holmes, a traditional Chinese medicine, which is efficacious against cancer. All structures were determined by spectroscopic methods and comparison with related known compounds. Single-crystal X-ray crystallography allowed us to confirm the structure of 1. To our knowledge, the compound 1 is reported as the first from natural source, and compounds 2, 4 have not been isolated from green algae before. PMID:20655992

  12. Antimicrobial effect of phlorotannins from marine brown algae.

    PubMed

    Eom, Sung-Hwan; Kim, Young-Mog; Kim, Se-Kwon

    2012-09-01

    Marine organisms exhibit a rich chemical content that possess unique structural features as compared to terrestrial metabolites. Among marine resources, marine algae are a rich source of chemically diverse compounds with the possibility of their potential use as a novel class of artificial food ingredients and antimicrobial agents. The objective of this brief review is to identify new candidate drugs for antimicrobial activity against food-borne pathogenic bacteria. Bioactive compounds derived from brown algae are discussed, namely phlorotannins, that have anti-microbial effects and therefore may be useful to explore as potential antimicrobial agents for the food and pharmaceutical industries. PMID:22735502

  13. Algae as promising organisms for environment and health

    PubMed Central

    2011-01-01

    Algae, like other plants, produce a variety of remarkable compounds collectively referred to as secondary metabolites. They are synthesized by these organisms at the end of the growth phase and/or due to metabolic alterations induced by environmental stress conditions. Carotenoids, phenolic compounds, phycobiliprotein pigments, polysaccharides and unsaturated fatty acids are same of the algal natural products, which were reported to have variable biological activities, including antioxidant activity, anticancer activity, antimicroabial activity against bacteria-virus-algae-fungi, organic fertilizer and bioremediation potentials. PMID:21862867

  14. Algae Biofuels Co-Location Assessment Tool for Canada

    Energy Science and Technology Software Center (ESTSC)

    2011-11-29

    The Algae Biofuels Co-Location Assessment Tool for Canada uses chemical stoichiometry to estimate Nitrogen, Phosphorous, and Carbon atom availability from waste water and carbon dioxide emissions streams, and requirements for those same elements to produce a unit of algae. This information is then combined to find limiting nutrient information and estimate potential productivity associated with waste water and carbon dioxide sources. Output is visualized in terms of distributions or spatial locations. Distances are calculated betweenmore »points of interest in the model using the great circle distance equation, and the smallest distances found by an exhaustive search and sort algorithm.« less

  15. Algae Biofuels Co-Location Assessment Tool for Canada

    SciTech Connect

    2011-11-29

    The Algae Biofuels Co-Location Assessment Tool for Canada uses chemical stoichiometry to estimate Nitrogen, Phosphorous, and Carbon atom availability from waste water and carbon dioxide emissions streams, and requirements for those same elements to produce a unit of algae. This information is then combined to find limiting nutrient information and estimate potential productivity associated with waste water and carbon dioxide sources. Output is visualized in terms of distributions or spatial locations. Distances are calculated between points of interest in the model using the great circle distance equation, and the smallest distances found by an exhaustive search and sort algorithm.

  16. Cognome e nome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 11 luglio 2012 Compito di esame (2.5 ore)

    E-print Network

    Robbiano, Lorenzo

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 11 luglio 2012­ Compito di esame (2.5 ore) Giustificare ogni affermazione Salvare il file Co

  17. MONITORING CHLOROPHYLL-A AS A MEASURE OF ALGAE IN LAKE WATER

    EPA Science Inventory

    Algae are an important quality component in water bodies. They are photosynthesizing organisms and are the foundation of most aquatic food webs; however, some algae (e.g. blue-green algae) can produce algal toxins. The presence of algal toxins in water bodies has important ...

  18. Photocatalytic Inhibition of Algae Growth Using TiO2, WO3, and

    E-print Network

    Ouellette, Anthony J. A.

    drag and additional fuel consumption. Excessive algae build-up can occlude drainage pipes and foulPhotocatalytic Inhibition of Algae Growth Using TiO2, WO3, and Cocatalyst Modifications C L O V I as photocatalytic surfacing agents to inhibit the attachment and growth of Oedogonium, a sessile, filamentous algae

  19. J. Phycol. 39, 259267 (2003) THE MESOZOIC RADIATION OF EUKARYOTIC ALGAE

    E-print Network

    Falkowski, Paul G.

    2003-01-01

    in the evolution of eukaryotic algae that gave rise to red and green photoautotrophic lin- eages. In Paleozoic and chlorarachniophytes), but both contain relatively few species. In the red lineage, the red algae per se (Rhodophyta, and heterokonts (including diatoms, brown algae, and raphidophytes). In Paleozoic and earlier eras, the fossil

  20. Mass Spawning by Green Algae on Coral Reefs Kenneth E. Clifton*

    E-print Network

    Clifton, Ken

    - persal. In contrast to the better studied red and brown algae of temperate waters (11), field studiesMass Spawning by Green Algae on Coral Reefs Kenneth E. Clifton* Predawn episodes of mass spawning by green algae (up to nine species in five genera on a single morning) intermittently cloud Caribbean

  1. FAS6932: BIOLOGY AND ECOLOGY OF ALGAE Instructor: Professor Edward Phlips

    E-print Network

    Hill, Jeffrey E.

    FAS6932: BIOLOGY AND ECOLOGY OF ALGAE Instructor: Professor Edward Phlips Main Office: Program-mail: phlips@ufl.edu Office Hours: 2-4 PM Thursdays Course Description: Biology and ecology of algae in aquatic in different aquatic ecosystems, and impacts (e.g. toxic algae). Prerequisites: Undergraduate course in biology

  2. CLOSING THE CARBON LOOP: GROWING ALGAE USING SUSTAINABLE CO2 FROM BIO-WASTE

    EPA Science Inventory

    Record oil prices, poor air quality, and the threat of global warming have resulted in renewed interest in micro algae for its great potential as a biofuels feedstock. However, research is predominantly focused on growing algae with coal flue gas, and extracting the algae oils...

  3. The central role of the green alga Chlamydomonas reinhardtii in revealing the mechanism of state transitions

    E-print Network

    The central role of the green alga Chlamydomonas reinhardtii in revealing the mechanism of state Abstract This review focuses on the essential role played by the green alga Chlamydomonas reinhardtii of the two photo- systems with changes in the spectral composition of light. In plants and green algae, state

  4. Hierarchical Silica Nanostructures Inspired by Diatom Algae Yield Superior Deformability, Toughness, and Strength

    E-print Network

    Buehler, Markus J.

    Hierarchical Silica Nanostructures Inspired by Diatom Algae Yield Superior Deformability, Toughness algae that is mainly composed of amorphous silica, which features a hierarchical structure that ranges in diatom algae as a basis to study a bioinspired nanoporous material implemented in crystalline silica. We

  5. Phylogeny and Nucleomorph Karyotype Diversity of Chlorarachniophyte Algae TIA D. SILVER,a,1

    E-print Network

    Archibald, John

    Phylogeny and Nucleomorph Karyotype Diversity of Chlorarachniophyte Algae TIA D. SILVER,a,1 SAYAKA/or reticulopod-forming marine algae with chlorophyll a- and b-containing plastids of secondary endosymbiotic. THE chlorarachniophytes are an enigmatic group of unicellular marine algae with diverse morphologies and a widespread

  6. Energy From Algae Using Microbial Fuel Cells Sharon B. Velasquez-Orta,1

    E-print Network

    ARTICLE Energy From Algae Using Microbial Fuel Cells Sharon B. Velasquez-Orta,1 Tom P. Curtis,1 with the two algae (as powders), obtaining differences in energy recovery, degradation efficiency, and power to the type of bioprocess used. These results demonstrate that algae can in principle, be used as a renewable

  7. Red Algae Respond to Waves: Morphological and Mechanical Variation in Mastocarpus papillatus Along

    E-print Network

    Denny, Mark

    Red Algae Respond to Waves: Morphological and Mechanical Variation in Mastocarpus papillatus Along Grove, California, 93950 Abstract. Intertidal algae are exposed to the potentially severe drag forces generated by crashing waves, and several species of brown algae respond, in part, by varying the strength

  8. PHYSIOLOGICAL PERFORMANCE OF INTERTIDAL CORALLINE ALGAE DURING A SIMULATED TIDAL CYCLE1

    E-print Network

    Martone, Patrick T.

    PHYSIOLOGICAL PERFORMANCE OF INTERTIDAL CORALLINE ALGAE DURING A SIMULATED TIDAL CYCLE1 Rebecca J, Lobban and Harrison 1997, Helmuth and Hofmann 2001). During high tide, intertidal algae are underwater algae may be emerged and exposed to increased light stress, elevated air tem- peratures, and increased

  9. Where Have All the Algae Gone, or, How Many Kingdoms Are There?

    ERIC Educational Resources Information Center

    Blackwell, Will H.; Powell, Martha J.

    1995-01-01

    Examined 10 introductory college-level, general biology survey textbooks for the coverage of algae to assess the efficacy of coverage. Describes a proposal of seven kingdoms and discusses the disposition of algae among five of these kingdoms. Contends that textbooks should highlight the concept of algae across the five kingdoms. Contains 59…

  10. HOLARCTIC ECOLOGY 4: 201-207. Copenhagen 1981 Microcommunities of algae on a Sphagnum mat

    E-print Network

    Notre Dame, University of

    HOLARCTIC ECOLOGY 4: 201-207. Copenhagen 1981 Microcommunities of algae on a Sphagnum mat Celia A. Hooper Hooper, C, A, 1981, Microcommunities of algae on a Sphagnum mat, - Holarct, Ecol, 4: 201 and nutrient parameters, with lower, moister plots having more algae, higher algal diver- sity, and lower

  11. A Framework to Report the Production of Renewable Diesel from Algae

    E-print Network

    A Framework to Report the Production of Renewable Diesel from Algae Colin M. Beal & Colin H. Smith(s) 2010. This article is published with open access at Springerlink.com Abstract Recently, algae have algae are a viable source for renewable diesel, three questions that must be answered are (1) how much

  12. Complex Patterns of Plastid 16S rRNA Gene Evolution in Nonphotosynthetic Green Algae

    E-print Network

    Nedelcu, Aurora M.

    Complex Patterns of Plastid 16S rRNA Gene Evolution in Nonphotosynthetic Green Algae Aurora M AT values are increased in nonphotosynthetic green algae compared to their closest photosynthetic relatives "green plants," both land plants and green algae, are known. Among such lineages are the parasitic

  13. Micro-Raman Spectroscopy of Algae: Composition Analysis and Fluorescence Background Behavior

    E-print Network

    ARTICLE Micro-Raman Spectroscopy of Algae: Composition Analysis and Fluorescence Background performed using Stokes Raman scattering for compositional analysis of algae. Two algal species, Chlorella while acquiring Raman signals from the algae. The time dependence of fluorescence background is char

  14. Optical microplates for high-throughput screening of photosynthesis in lipid-producing algae{,

    E-print Network

    Basu, Amar S.

    Optical microplates for high-throughput screening of photosynthesis in lipid- producing algae-producing algae of interest in 2nd generation biofuels. By conducting 96 experiments in parallel, photoirradiance the study of photosynthesis in algae. Societal challenges in energy sustainability have renewed interest

  15. Red Algae Lose Key Mitochondrial Genes in Response to Becoming Parasitic

    E-print Network

    Lane, Chris

    Red Algae Lose Key Mitochondrial Genes in Response to Becoming Parasitic Lillian Hancock1 , Lynda independently evolved hundreds of times among the floridiophyte red algae. Much is known about the life history class of red algae, Plocamiocolax puvinata, has lost the atp8 gene entirely, indicating that this gene

  16. Xylochloris irregularis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a novel subaerial coccoid green alga

    E-print Network

    green alga JIR I´ NEUSTUPA 1 *, MAREK ELIA´ S1 , PAVEL SKALOUD 1 , YVONNE NE MCOVA´ 1 AND LENKA irregularis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a novel subaerial coccoid green alga. Phycologia 50: 57­66. DOI: 10.2216/08-64.1 The phylogenetic diversity of subaerial coccoid green algae remains

  17. Hylodesmus singaporensis gen. et sp. nov., a new autosporic subaerial green alga (Scenedesmaceae,

    E-print Network

    Hylodesmus singaporensis gen. et sp. nov., a new autosporic subaerial green alga (Scenedesmaceae characterization of an autosporic coccoid green alga isolated from decaying wood in a natural forest in Singapore. Depending on culture conditions, this alga formed globular to irregularly oval solitary cells

  18. Early Cretaceous benthic associations (foraminifera and calcareous algae) of a shallow tropical-water platform

    E-print Network

    Husinec, Antun

    Early Cretaceous benthic associations (foraminifera and calcareous algae) of a shallow tropical of benthic foraminifera and calcareous algae in order to establish a precise, combined benthic biozonation species of calcareous algae, distributed among 11 genera, were recovered from the Lower Cretaceous shallow

  19. Kalinella bambusicola gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a novel coccoid Chlorella-like subaerial alga

    E-print Network

    -like subaerial alga from Southeast Asiapre_534 159..169 Jirí Neustupa,* Yvonne Nemcová, Marek Eliás and Pavel, Czech Republic SUMMARY The traditional green algal genus Chlorella, which com- prised coccoid algae lineage of the trebouxiophycean Watanabea clade, dissimilar from other members of this group. The alga has

  20. BIOCHIMICA ET BIOPHYSICA ACTA 213 ACTION OF HYDROXYLAMINE IN THE RED ALGA PORPHYRIDIUM

    E-print Network

    Govindjee

    BIOCHIMICA ET BIOPHYSICA ACTA 213 BBA 46182 ACTION OF HYDROXYLAMINE IN THE RED ALGA PORPHYRIDIUM CR and fluorescence transient studies, made with the intact cells of red alga Porphyridium cruentum, suggest earlier with spinach chloroplasts and green alga Chlorella by other workers. Fluorescence transient data

  1. Ghana: Western Ghana's Fisherfolk Starve Amid Algae Infestation BY JESSICA MCDIARMID, 18 APRIL 2012

    E-print Network

    Fernandez, Eduardo

    Ghana: Western Ghana's Fisherfolk Starve Amid Algae Infestation BY JESSICA MCDIARMID, 18 APRIL 2012 not to continue fishing." Sargassum is the algae after which the Sargasso Sea - an elongated region in the middle down while tonnes of the algae were removed. In some areas people were warned not to swim due

  2. Photoprotection in the brown alga Macrocystis pyrifera: Evolutionary implications Ernesto Garcia-Mendoza a,

    E-print Network

    Govindjee

    Photoprotection in the brown alga Macrocystis pyrifera: Evolutionary implications Ernesto Garcia xxxx Keywords: Brown algae Evolution Macrocystis pyrifera Non-photochemical quenching Photoprotection-photochemical quenching, NPQ) in the brown alga Macrocystis pyrifera with that of Ficus sp., a higher plant to examine

  3. Investigation of Flow Characteristics in an Airlift-Driven Raceway Reactor for Algae Cultivation

    E-print Network

    Investigation of Flow Characteristics in an Airlift-Driven Raceway Reactor for Algae Cultivation are the most common choice for outdoor algae cultivation due to their low cost relative to enclosed. Algae require adequate mixing in order to maximize exposure to essential nutrients for growth

  4. Dancing Volvox: Hydrodynamic Bound States of Swimming Algae Knut Drescher,1

    E-print Network

    Goldstein, Raymond E.

    Dancing Volvox: Hydrodynamic Bound States of Swimming Algae Knut Drescher,1 Kyriacos C. Leptos,1 April 2009) The spherical alga Volvox swims by means of flagella on thousands of surface somatic cells marvels [1]. This was the freshwater alga which, years later, in the very last entry of his great work

  5. INTRODUCTION Cryptomonad algae are postulated to be a chimaera of two

    E-print Network

    McFadden, Geoff

    INTRODUCTION Cryptomonad algae are postulated to be a chimaera of two different eukaryotic cells incorporating cryptomonad endosymbiont gene sequences ally them loosely with red algae (Douglas et al., 1991a that the endosymbiont was an early evolutionary intermediate that pre-dates the red algae (Cavalier-Smith, 1992

  6. DESICCATION PROTECTION AND DISRUPTION: A TRADE-OFF FOR AN INTERTIDAL MARINE ALGA1

    E-print Network

    Denny, Mark

    DESICCATION PROTECTION AND DISRUPTION: A TRADE-OFF FOR AN INTERTIDAL MARINE ALGA1 Luke J. H. Hunt2, California 93950, USA For marine algae, the benefits of drying out are often overshadowed by the stresses of desiccation in the intertidal turf alga Endocladia muricata (Endlichter) J. Agardh. Laboratory experiments

  7. Hydrogen isotope fractionation in freshwater and marine algae: II. Temperature and nitrogen limited growth rate effects

    E-print Network

    Sachs, Julian P.

    Hydrogen isotope fractionation in freshwater and marine algae: II. Temperature and nitrogen limited isotope fractionation in freshwater algae: I. Variations among lipids and spe- cies. Organic Geochemistry. Two species of freshwater green algae, Eudorina unicocca and Volvox aureus, were grown in batch

  8. GENOMIC DNA ISOLATION FROM GREEN AND BROWN ALGAE (CAULERPALES AND FUCALES) FOR MICROSATELLITE LIBRARY CONSTRUCTION1

    E-print Network

    Borges, Rita

    NOTE GENOMIC DNA ISOLATION FROM GREEN AND BROWN ALGAE (CAULERPALES AND FUCALES) FOR MICROSATELLITE A method for isolating high-quality DNA is pre- sented for the green algae Caulerpa sp. (C. racemosa, C. prolifera, and C. taxifolia) and the brown alga Sargassum muticum. These are introduced, and in- vasive

  9. PHYLOGENETIC DIVERSITY OF TRENTEPOHLIALEAN ALGAE ASSOCIATED WITH LICHEN-FORMING FUNGI1

    E-print Network

    PHYLOGENETIC DIVERSITY OF TRENTEPOHLIALEAN ALGAE ASSOCIATED WITH LICHEN-FORMING FUNGI1 Matthew P 60605-2496, USA Nearly one-fourth of the lichen-forming fungi asso- ciate with trentepohlialean algae algae has provided a phy- logenetic context within which questions regarding the lichenization

  10. BACTERIA, FUNGI, AND UNICELLULAR ALGAE Blank page retained for pagination

    E-print Network

    CHAPTER VI BACTERIA, FUNGI, AND UNICELLULAR ALGAE #12;Blank page retained for pagination #12;MARINE BACTERIA AND FUNGI IN THE GULF OF MEXICO I By CLAUDE E. ZOBELL, Scripps lrutitution of Oceano; Bavendamm 1932), there are very few published reports on bacteria and fungi in the nearby Gulf of Mexico

  11. A green Paramecium strain with abnormal growth of symbiotic algae.

    PubMed

    Irie, Kanami; Furukawa, Shunsuke; Kadono, Takashi; Kawano, Tomonori

    2010-01-01

    Some hundred cells of Chlorella-like green algae are naturally enclosed within the cytoplasm of a single cell of green paramecia (Paramecium bursaria). Therefore, P. bursaria serves as an experimental model for studying the nature of endo-symbiosis made up through chemical communication between the symbiotic partners. For studying the mechanism of symbiotic regulations, the materials showing successful symbiosis are widely used. Apart from such successful model materials, some models for symbiotic distortion would be of great interest in order to understand the nature of successful symbiosis. Here, we describe a case of unsuccessful symbiosis causing unregulated growth of algae inside the hosting ciliates. Recently, we have screened some cell lines, from the mass of P. bursaria cells survived after paraquat treatment. The resultant cell lines (designated as KMZ series) show novel and unusual morphological features with heavily darker green colour distinguishable from the original pale green-coloured paramecia. In this type of isolates, endo-symbiotic algae are restricted within one or two dense spherical structures located at the center of the host cells' cytoplasm. Interestingly, this isolate maintains the host cells' circadian mating response which is known as an alga-dependent behaviour in the host cells. In contrast, we discuss that KMZ lacks the host-dependent regulation of algal growth, thus the algal complex often over-grows obviously exceeding the original size of the normal hosting ciliates. Additionally, possible use of this isolate as a novel model for symbiotic cell-to-cell communication is discussed. PMID:21319710

  12. ROCK FILTERS FOR REMOVAL OF ALGAE FROM LAGOON EFFLUENTS

    EPA Science Inventory

    The objective of this project was to show that rock filtration was an effective, low cost unit process for removing algae from lagoon effluents and correspondingly upgrading lagoon treatment. Sedimentation is the primary mechanism of algal removal within rock filter. The settling...

  13. Fatty acid amides from freshwater green alga Rhizoclonium hieroglyphicum.

    PubMed

    Dembitsky, V M; Shkrob, I; Rozentsvet, O A

    2000-08-01

    Freshwater green algae Rhizoclonium hieroglyphicum growing in the Ural Mountains were examined for their fatty acid amides using capillary gas chromatography-mass spectrometry (GC-MS). Eight fatty acid amides were identified by GC-MS. (Z)-9-octadecenamide was found to be the major component (2.26%). PMID:11014298

  14. THE OCCURRENCE OF HORMESIS IN PLANTS AND ALGAE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper evaluated the frequency, magnitude and dose/concentration range of hormesis in four species: The aquatic plant Lemna minor, the micro-algae Pseudokirchneriella subcapitata and the two terrestrial plants Tripleurospermum inodorum and Stellaria media exposed to nine herbicides and one fung...

  15. Decreased abundance of crustose coralline algae due to ocean acidification

    USGS Publications Warehouse

    Kuffner, Ilsa B.; Andersson, Andreas J; Jokiel, Paul L.; Rodgers, Ku'ulei S.; Mackenzie, Fred T.

    2008-01-01

    Owing to anthropogenic emissions, atmospheric concentrations of carbon dioxide could almost double between 2006 and 2100 according to business-as-usual carbon dioxide emission scenarios1. Because the ocean absorbs carbon dioxide from the atmosphere2, 3, 4, increasing atmospheric carbon dioxide concentrations will lead to increasing dissolved inorganic carbon and carbon dioxide in surface ocean waters, and hence acidification and lower carbonate saturation states2, 5. As a consequence, it has been suggested that marine calcifying organisms, for example corals, coralline algae, molluscs and foraminifera, will have difficulties producing their skeletons and shells at current rates6, 7, with potentially severe implications for marine ecosystems, including coral reefs6, 8, 9, 10, 11. Here we report a seven-week experiment exploring the effects of ocean acidification on crustose coralline algae, a cosmopolitan group of calcifying algae that is ecologically important in most shallow-water habitats12, 13, 14. Six outdoor mesocosms were continuously supplied with sea water from the adjacent reef and manipulated to simulate conditions of either ambient or elevated seawater carbon dioxide concentrations. The recruitment rate and growth of crustose coralline algae were severely inhibited in the elevated carbon dioxide mesocosms. Our findings suggest that ocean acidification due to human activities could cause significant change to benthic community structure in shallow-warm-water carbonate ecosystems.

  16. Switchable photosystem-II designer algae for photobiological hydrogen production

    DOEpatents

    Lee, James Weifu (Knoxville, TN)

    2010-01-05

    A switchable photosystem-II designer algae for photobiological hydrogen production. The designer transgenic algae includes at least two transgenes for enhanced photobiological H.sub.2 production wherein a first transgene serves as a genetic switch that can controls photosystem II (PSII) oxygen evolution and a second transgene encodes for creation of free proton channels in the algal photosynthetic membrane. In one embodiment, the algae includes a DNA construct having polymerase chain reaction forward primer (302), a inducible promoter (304), a PSII-iRNA sequence (306), a terminator (308), and a PCR reverse primer (310). In other embodiments, the PSII-iRNA sequence (306) is replaced with a CF.sub.1-iRNA sequence (312), a streptomycin-production gene (314), a targeting sequence (316) followed by a proton-channel producing gene (318), or a PSII-producing gene (320). In one embodiment, a photo-bioreactor and gas-product separation and utilization system produce photobiological H.sub.2 from the switchable PSII designer alga.

  17. A Realistic Technology and Engineering Assessment of Algae Biofuel Production

    E-print Network

    Quinn, Nigel

    Division Lawrence Berkeley National Laboratory Berkeley, California 3 Benemann Associates Walnut biofuels production. Chapter 2 reviews the biology and biotechnology of microalgae, including major taxa in the Imperial Valley in southern California, a #12; ii promising region for algae production. In all five

  18. Optimization of light use efficiency for biofuel production in algae.

    PubMed

    Simionato, Diana; Basso, Stefania; Giacometti, Giorgio M; Morosinotto, Tomas

    2013-12-01

    A major challenge for next decades is development of competitive renewable energy sources, highly needed to compensate fossil fuels reserves and reduce greenhouse gas emissions. Among different possibilities, which are currently under investigation, there is the exploitation of unicellular algae for production of biofuels and biodiesel in particular. Some algae species have the ability of accumulating large amount of lipids within their cells which can be exploited as feedstock for the production of biodiesel. Strong research efforts are however still needed to fulfill this potential and optimize cultivation systems and biomass harvesting. Light provides the energy supporting algae growth and available radiation must be exploited with the highest possible efficiency to optimize productivity and make microalgae large scale cultivation energetically and economically sustainable. Investigation of the molecular bases influencing light use efficiency is thus seminal for the success of this biotechnology. In this work factors influencing light use efficiency in algal biomass production are reviewed, focusing on how algae genetic engineering and control of light environment within photobioreactors can improve the productivity of large scale cultivation systems. PMID:23876487

  19. Phytotoxicity, bioaccumulation and degradation of isoproturon in green algae.

    PubMed

    Bi, Yan Fang; Miao, Shan Shan; Lu, Yi Chen; Qiu, Chong Bin; Zhou, You; Yang, Hong

    2012-12-01

    Isoproturon (IPU) is a pesticide used for protection of land crops from weed or pathogen attack. Recent survey shows that IPU has been detected as a contaminant in aquatic systems and may have negative impact on aquatic organisms. To understand the phytotoxicity and potential accumulation and degradation of IPU in algae, a comprehensive study was performed with the green alga Chlamydomonas reinhardtii. Algae exposed to 5-50 ?g L(-1) IPU for 3d displayed progressive inhibition of cell growth and reduced chlorophyll fluorescence. Time-course experiments with 25 ?g L(-1) IPU for 6d showed similar growth responses. The 72 h EC50 value for IPU was 43.25 ?g L(-1), NOEC was 5 ?g L(-1) and LOEC was 15 ?g L(-1). Treatment with IPU induced oxidative stress. This was validated by a group of antioxidant enzymes, whose activities were promoted by IPU exposure. The up-regulation of several genes coding for the enzymes confirmed the observation. IPU was shown to be readily accumulated by C. reinhardtii. However, the alga showed a weak ability to degrade IPU accumulated in its cells, which was best presented at the lower concentration (5 ?g L(-1)) of IPU in the medium. The imbalance of accumulation and degradation of IPU may be the cause that resulted in the detrimental growth and cellular damage. PMID:23131497

  20. Smallest Algae Thrive As the Arctic Ocean Freshens

    E-print Network

    Shull, David H.

    Smallest Algae Thrive As the Arctic Ocean Freshens William K. W. Li,1 * Fiona A. McLaughlin,2 presumably differs. Here, we show that, in the changing Arctic Ocean, the smallest phytoplankton cells thrive than others; there will be ecological winners and losers. In the Arctic, rising air temperature

  1. FAS6176 ALGAE BIOLOGY AND ECOLOGY Instructor: Professor Edward Phlips

    E-print Network

    Hill, Jeffrey E.

    the biology and ecology of aquatic algae, including evolution, classification, structure, photosynthesis. Annual Reviews Ecology Evolution and Systematics 39:615-639. Nisbet, E.G. and N. H. Sleep. 2001 quizzes will be administered during the term. The quizzes will involve five multiple choice or true/false

  2. Intracellular invasion of green algae in a salamander host

    PubMed Central

    Kerney, Ryan; Kim, Eunsoo; Hangarter, Roger P.; Heiss, Aaron A.; Bishop, Cory D.; Hall, Brian K.

    2011-01-01

    The association between embryos of the spotted salamander (Ambystoma maculatum) and green algae (“Oophila amblystomatis” Lamber ex Printz) has been considered an ectosymbiotic mutualism. We show here, however, that this symbiosis is more intimate than previously reported. A combination of imaging and algal 18S rDNA amplification reveals algal invasion of embryonic salamander tissues and cells during development. Algal cells are detectable from embryonic and larval Stages 26–44 through chlorophyll autofluorescence and algal 18S rDNA amplification. Algal cell ultrastructure indicates both degradation and putative encystment during the process of tissue and cellular invasion. Fewer algal cells were detected in later-stage larvae through FISH, suggesting that the decline in autofluorescent cells is primarily due to algal cell death within the host. However, early embryonic egg capsules also contained encysted algal cells on the inner capsule wall, and algal 18S rDNA was amplified from adult reproductive tracts, consistent with oviductal transmission of algae from one salamander generation to the next. The invasion of algae into salamander host tissues and cells represents a unique association between a vertebrate and a eukaryotic alga, with implications for research into cell–cell recognition, possible exchange of metabolites or DNA, and potential congruence between host and symbiont population structures. PMID:21464324

  3. Survey of Hydrogenase Activity in Algae: Final Report

    SciTech Connect

    Brand, J. J.

    1982-04-01

    The capacity for hydrogen gas production was examined in nearly 100 strains of Eukaryotic algae. Each strain was assessed for rate of H2 production in darkness, at compensating light intensity and at saturating Tight intensity. Maximum H2 yield on illumination and sensitivity to molecular oxygen were also measured.

  4. FINE STRUCTURE AND ORGANELLE ASSOCIATIONS IN BROWN ALGAE

    PubMed Central

    Bouck, G. Benjamin

    1965-01-01

    The structural interrelationships among several membrane systems in the cells of brown algae have been examined by electron microscopy. In the brown algae the chloroplasts are surrounded by two envelopes, the outer of which in some cases is continuous with the nuclear envelope. The pyrenoid, when present, protrudes from the chloroplast, is also surrounded by the two chloroplast envelopes, and, in addition, is capped by a third dilated envelope or "pyrenoid sac." The regular apposition of the membranes around the pyrenoid contrasts with their looser appearance over the remainder of the chloroplast. The Golgi apparatus is closely associated with the nuclear envelope in all brown algae examined, but in the Fucales this association may extend to portions of the cytoplasmic endoplasmic reticulum as well. Evidence is presented for the derivation of vesicles, characteristic of those found in the formative region of the Golgi apparatus, from portions of the underlying nuclear envelope. The possibility that a structural channeling system for carbohydrate reserves and secretory precursors may be present in brown algae is considered. Other features of the brown algal cell, such as crystal-containing bodies, the variety of darkly staining vacuoles, centrioles, and mitochondria, are examined briefly, and compared with similar structures in other plant cells. PMID:5865936

  5. Chemical characterization of torbanites by transmission micro-FTIR spectroscopy: Origin and extent of compositional heterogeneities

    SciTech Connect

    Landais, P.; Rochdi, A. ); Largeau, C.; Derenne, S. )

    1993-06-01

    Four Permian to Carboniferous torbanites of various geographical origins were examined by transmission micro-FTIR spectroscopy on doubly polished thin sections (10--25 [mu]m). Several types of heterogeneities (different types of organic matrix; yellow and orange Botryococcus braunii colonies) were identified and chemically characterized. Important differences were noted between the organic constituents of the matrix and the algal bodies, regarding the intensity of OH, C[double bond]O, and aromatic C[double bond]C absorptions. The previous IR studies of torbanites on bulk samples therefore afforded substantially biased information on the composition of B. braunii fossil colonies, on their oil potential, and on the maturity of such kerogens. Micro-FTIR spectra indicate that the organic matrix corresponds neither to an extensive breaking up of colonies nor to humic substances. This matrix is highly heterogeneous; two types were identified in the Autun sample (chiefly corresponding to degraded algal and bacterial constituents, respectively). A precise characterization of the organic matrix was made difficult, however, in Pumpherston torbanite, due to intimate mixing with minerals. The co-occurrence of yellow and orange colonies, with contrasted micro-FTIR features, in Autun torbanite neither reflects radiolysis processes nor differences in maturation and/or source algae. A specific spatial relation was observed between these two types of algal bodies and the organo-mineral matrix, thus revealing differences in colony microenvironment after deposition. The orange colonies are likely derived, in agreement with their micro-FTIR spectra and their spatial correlation with the matrix, from sedimentological and/or matrix-catalyzed diagenetic transformations of some yellow colonies. This first application of micro-FTIR to kerogens confirmed the utility of this nondestructive, in situ pin-point method. 69 refs., 9 figs., 4 tabs.

  6. Recovery of dilute metal ions by biosorption on river algae and its component

    SciTech Connect

    Fujita, Toyohisa; Kogita, Hiroki; Mamiya, Mitsuo; Yen, W.T.

    1995-12-31

    Green algae taken from an acidic mine drainage and blue-green algae take from an alkaline hot spring stream were collected and tested for their ability to recover or remove dilute metal ions. Experimental results demonstrated that unwashed blue-green algae and washed green algae effectively adsorbed base metals ions and eluted the at pH 1. It was also found that washed and dried algae adsorbed precious metal ions more effectively than unwashed algae. For example, the washed and dried blue-green algae was capable of adsorbing 0.31 kg of gold pre kg of algae. The gold from tetrachloroaurate solution which was adsorbed on washed blue-green algae was found to change to a metallic state following initial metal binding. In the case of a dilute gold complex solution leached with thiourea, only a small amount of gold could be captured by algae. Further experiments were conducted on components of the algae, such as alginic acid, agar, cellulose and chitin and mixtures of these components, in order to determine their contribution to metal adsorption characteristics. However, a mixture of these two components demonstrated both good adsorption and desorption characteristics indicating an interaction between the individual components.

  7. Marine polysaccharides from algae with potential biomedical applications.

    PubMed

    de Jesus Raposo, Maria Filomena; de Morais, Alcina Maria Bernardo; de Morais, Rui Manuel Santos Costa

    2015-05-01

    There is a current tendency towards bioactive natural products with applications in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put some emphasis in research on marine organisms, including macroalgae and microalgae, among others. Polysaccharides with marine origin constitute one type of these biochemical compounds that have already proved to have several important properties, such as anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and antioxidant, making them promising bioactive products and biomaterials with a wide range of applications. Their properties are mainly due to their structure and physicochemical characteristics, which depend on the organism they are produced by. In the biomedical field, the polysaccharides from algae can be used in controlled drug delivery, wound management, and regenerative medicine. This review will focus on the biomedical applications of marine polysaccharides from algae. PMID:25988519

  8. Marine Polysaccharides from Algae with Potential Biomedical Applications

    PubMed Central

    de Jesus Raposo, Maria Filomena; de Morais, Alcina Maria Bernardo; de Morais, Rui Manuel Santos Costa

    2015-01-01

    There is a current tendency towards bioactive natural products with applications in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put some emphasis in research on marine organisms, including macroalgae and microalgae, among others. Polysaccharides with marine origin constitute one type of these biochemical compounds that have already proved to have several important properties, such as anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and antioxidant, making them promising bioactive products and biomaterials with a wide range of applications. Their properties are mainly due to their structure and physicochemical characteristics, which depend on the organism they are produced by. In the biomedical field, the polysaccharides from algae can be used in controlled drug delivery, wound management, and regenerative medicine. This review will focus on the biomedical applications of marine polysaccharides from algae. PMID:25988519

  9. Application of novel extraction technologies for bioactives from marine algae.

    PubMed

    Kadam, Shekhar U; Tiwari, Brijesh K; O'Donnell, Colm P

    2013-05-22

    Marine algae are a rich source of bioactive compounds. This paper outlines the main bioactive compounds in marine algae and recent advances in novel technologies for extracting them. Novel extraction technologies reviewed include enzyme-assisted extraction, microwave-assisted extraction, ultrasound-assisted extraction, supercritical fluid extraction, and pressurized liquid extraction. These technologies are reviewed with respect to principles, benefits, and potential applications for marine algal bioactives. Advantages of novel technologies include higher yield, reduced treatment time, and lower cost compared to traditional solvent extraction techniques. Moreover, different combinations of novel techniques used for extraction and technologies suitable for thermolabile compounds are identified. The limitations of and challenges to employing these novel extraction technologies in industry are also highlighted. PMID:23634989

  10. Green Algae as Model Organisms for Biological Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.

    2015-01-01

    In the past decade, the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 ?m to several millimeters), their geometric regularity, the ease with which they can be cultured, and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.

  11. Biosorption of lead and nickel by biomass of marine algae.

    PubMed

    Holan, Z R; Volesky, B

    1994-05-01

    Screening tests of different marine algae biomas types revealed a high passive biosorptive uptake of lead up to 270 mg Pb/g of biomass in some brown marine algae. Members of the order Fucales perfomed particularly well in this descending sequence: Fucus > Ascophyllum > Sargassum. Although decreasing the swelling of wetted biomass particles, their reinforcement by crosslinking may significantly affect the biosorption performance. Lead uptakes up to 370 mg Pb/g were observed in crosslinked Fucus vesiculosus and Ascophyllum nodosum. At low equilibrium residual concentrations of lead in solution, however, ion exchange resin Amberlite IR-120 had a higher lead uptake than the biosorbent materials. An order-of-magnitude lower uptake of nickel was observed in all of the sorbent materials examined. (c) 1994 John Wiley & Sons, Inc. PMID:18615510

  12. Bioremoval of toxic elements with aquatic plants and algae

    SciTech Connect

    Wang, T.C.; Ramesh, G.; Weissman, J.C.; Varadarajan, R.; Benemann, J.R.

    1995-12-31

    Aquatic plants were screened to evaluate their ability to adsorb dissolved metals. The plants screened included those that are naturally immobilized (attached algae and rooted plants) and those that could be easily separated from suspension (filamentous microalgae, macroalgae, and floating plants). Two plants were observed to have high adsorption capabilities for cadmium (Cd) and zinc (Zn) removal: one blue green filamentous alga of the genus Phormidium and one aquatic rooted plant, water milfoil (Myriophyllum spicatum). These plants could also reduce the residual metal concentration to 0.1 mg/L or less. Both plants also exhibited high specific adsorption for other metals (Pb, Ni, and Cu) both individually and in combination. Metal concentrations were analyzed with an atomic absorption spectrophotometer (AAS).

  13. Green Algae as Model Organisms for Biological Fluid Dynamics

    E-print Network

    Goldstein, Raymond E

    2014-01-01

    In the past decade the volvocine green algae, spanning from the unicellular $Chlamydomonas$ to multicellular $Volvox$, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 $\\mu$m to several millimetres), their geometric regularity, the ease with which they can be cultured and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these re...

  14. Green Algae as Model Organisms for Biological Fluid Dynamics

    E-print Network

    Raymond E. Goldstein

    2014-09-08

    In the past decade the volvocine green algae, spanning from the unicellular $Chlamydomonas$ to multicellular $Volvox$, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 $\\mu$m to several millimetres), their geometric regularity, the ease with which they can be cultured and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.

  15. A New Noncalcified Dasycladalean Alga from the Silurian of Wisconsin

    USGS Publications Warehouse

    LoDuca, S.T.; Kluessendorf, Joanne; Mikulic, Donald G.

    2003-01-01

    Noncalcified thalli, consisting of a narrow main axis with numerous branched hairlike laterals in whorls and a subapical array of undivided clavate laterals, from the Silurian (Llandovery) Brandon Bridge Formation of southeastern Wisconsin, constitute the basis for a new genus and species of dasycladalean alga, Heterocladus waukeshaensis. A relationship within the family Triploporellaceae is indicated by the whorled arrangement of the laterals and the absence of gametophores on mature specimens. A compilation of occurrence data suggests that noncalcified dasyclads, as a whole, were more abundant and diverse during the Ordovician and Silurian than at any other time in their history. The heterocladous thallus architecture of this alga adds to a wide range of morphological variation documented among Ordovician and Silurian dasyclads, the sum of which indicates that Dasycladales underwent a significant evolutionary radiation during the early Paleozoic.

  16. Hydrostatic factors affect the gravity responses of algae and roots

    NASA Technical Reports Server (NTRS)

    Staves, Mark P.; Wayne, Randy; Leopold, A. C.

    1991-01-01

    The hypothesis of Wayne et al. (1990) that plant cells perceive gravity by sensing a pressure differential between the top and the bottom of the cell was tested by subjecting rice roots and cells of Caracean algae to external solutions of various densities. It was found that increasing the density of the external medium had a profound effect on the polar ratio (PR, the ratio between velocities of the downwardly and upwardly streaming cytoplasm) of the Caracean algae cells. When these cells were placed in solutions of denser compound, the PR decreased to less than 1, as the density of the external medium became higher than that of the cell; thus, the normal gravity-induced polarity was reversed, indicating that the osmotic pressure of the medium affects the cell's ability to respond to gravity. In rice roots, an increase of the density of the solution inhibited the rate of gravitropism. These results agree with predictions of a hydrostatic model for graviperception.

  17. Green Algae as Model Organisms for Biological Fluid Dynamics*

    PubMed Central

    Goldstein, Raymond E.

    2015-01-01

    In the past decade the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 ?m to several millimetres), their geometric regularity, the ease with which they can be cultured and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms. PMID:26594068

  18. Biodegradable thermoplastic composites based on polyvinyl alcohol and algae.

    PubMed

    Chiellini, Emo; Cinelli, Patrizia; Ilieva, Vassilka I; Martera, Martina

    2008-03-01

    Algae constitute a largely available, low value material from renewable resources of marine origin to be used for the production of eco-compatible composites. Fibers of the green alga Ulva armoricana from the French coast were positively evaluated for the production of composites with a hydrophilic, eco-compatible polymer, such as poly(vinyl alcohol) (PVA) as continuous matrix by casting of aqueous suspensions and compression molding. PVA, Ulva, and starch were also successfully processed by the melt in the presence of glycerol. Positive results were obtained for film-forming properties and mechanical characteristics also with limited amounts of PVA (40%) attesting for Ulva suitability to be introduced in composites (up to 30%). Degradation in soil of Ulva and an Ulva-based composites outlined a rapid mineralization of Ulva in the selected medium (over 80% in 100 days) while the composite samples underwent a mineralization rate affected by the different component propensity to degradation. PMID:18257530

  19. Algae (Microcystis and Scenedesmus) absorption spectra and its application on Chlorophyll a retrieval

    NASA Astrophysics Data System (ADS)

    Wu, Di; Chen, Maosi; Wang, Qiao; Gao, Wei

    2013-12-01

    Blue algae and green algae are the dominant phytoplankton groups that contribute to the eutrophication and the water bloom in inland water of China. The absorption coefficients (spectra) of the algae, which do not change with its intrinsic optical characteristics and the observation geometry, are strictly additive quantities. The characteristics of the absorption spectra of the two algae are presented. The pure blue algae and the pure green algae cultured in the laboratory environment are diluted and mixed at ten volume ratios. The Quantitative Filter Technique was applied to measure their absorption spectra. The "hot-ethanol extraction" method was chosen to calculate their concentration of Chlorophyll a. The retrieval algorithm developed in this study extracts the mapping information between each individual alga and their Chlorophyll a concentration via Continuous Wavelet Transform, and retrieves the Chlorophyll a concentration of each alga in their mixture using a trust region optimizer. The results show that the retrieved and the measured Chlorophyll a concentrations of the blue algae and the green algae components in the ten mixture match well with the average relative error of 5.55%.

  20. Spectral optical properties of selected photosynthetic microalgae producing biofuels

    NASA Astrophysics Data System (ADS)

    Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

    2013-01-01

    This paper presents the spectral complex index of refraction of biofuel producing photosynthetic microalgae between 400 and 750 nm. They were retrieved from their experimentally measured average absorption and scattering cross-sections. The microalgae were treated as homogeneous polydisperse spheres with equivalent diameter such that their surface area was identical to that of their actual spheroidal shape. An inverse method was developed combining Lorentz-Mie theory as the forward method and genetic algorithm. The unicellular green algae Chlamydomonas reinhardtii strain CC125 and its truncated chlorophyll antenna transformants tla1, tlaX, and tla1-CW+ as well as Botryococcus braunii, Chlorella sp., and Chlorococcum littorale were investigated. These species were selected for their ability to produce either hydrogen gas or lipids for liquid fuel production. Their retrieved real and imaginary parts of the complex index of refraction were continuous functions of wavelength with absorption peaks corresponding to those of in vivo Chlorophylls a and b. The T-matrix method was also found to accurately predict the experimental measurements by treating the microalgae as axisymmetric spheroids with the experimentally measured major and minor diameter distributions and the retrieved spectral complex index of refraction. Finally, pigment mass fractions were also estimated from the retrieved absorption index. The method and/or the reported optical properties can be used in various applications from ocean remote sensing, carbon cycle study, as well as photobiological carbon dioxide mitigation and biofuel production.

  1. Stable carbon isotopic analysis of pyrolysis products of kerogens

    SciTech Connect

    Hoeld, I.M.; Schouten, S.; Sinninghe Damste, J.S.

    1996-12-31

    The origin of insoluble organic matter in sediments is still a matter of debate. The application of isotope-ratio-monitoring gas chromatography-mass spectrometry (irm-CYC-MS) in combination with pyrolytic and chemolytic methods allows the determination of the 13C-content of products released from the kerogen and provides a tool to determine the structure and origin of kerogen. Analysis of the pyrolysis products of several marine kerogens revealed that the stable carbon isotopic compositions of the n-alkanes (C10-C25) are quite similar to those of the n-alkenes. This suggests that they have a common origin such as algal biopolymers. The isoprenoid alkanes (C13-C20) also have similar isotopic compositions but differ from the values of the n-alkanes and n-alkenes. These isoprenoids could be derived from an isoprenoid algaenan similar to that biosynthesised by the freshwater algae Botryococcus braunii race L. The analysis of products in the aromatic fraction of the pyrolysates, showed a wide range of isotopic values, which suggest multiple origins.

  2. Antifungal bromophenols from marine red alga Symphyocladia latiuscula.

    PubMed

    Xu, Xiuli; Yin, Liyuan; Gao, Junhai; Gao, Lijie; Song, Fuhang

    2014-05-01

    Three new highly brominated polyphenols, 1-3, together with one known bromophenol, 4, were isolated from the EtOH extract of a marine red alga Symphyocladia latiuscula collected from the coast of Qingdao, P. R. China. Their structures were identified by extensive spectroscopic experiments (NMR and MS) and comparison with literature data. Compounds 3 and 4 showed activities against the Candida albicans with the MIC values of 25 and 12.5 ?g/ml, respectively. PMID:24827691

  3. The problems of Prochloron. [evolution of green algae

    NASA Technical Reports Server (NTRS)

    Lewin, R. A.

    1983-01-01

    Prokaryotic green algae (prochlorophytes), which contain chlorophylls a and b but no bilin pigments, may be phylogenetically related to ancestral chloroplasts if symbiogenesis occurred. They may be otherwise related to eukaryotic chlorophytes. They could have evolved from cyanophytes by loss of phycobilin and gain of chlorophyll b synthesis. These possibilities are briefly discussed. Relevant evidence from biochemical studies in many collaborative laboratories is now becoming available for the resolution of such questions.

  4. Enzyme-Enhanced Extraction of Antioxidant Ingredients from Algae.

    PubMed

    Adalbjörnsson, Björn V; Jónsdóttir, Rósa

    2015-01-01

    Marine algae are not only a rich source of dietary fibre, proteins, vitamins, and minerals, but also contain a great variety of secondary metabolites with diverse biological activities. Marine macroalgae are a rich source of various natural antioxidants such as polyphenols, especially phlorotannins (made of polyphloroglucinol units) derived from brown algae, which play an important role in preventing lipid peroxidation. In recent years, a number of potent antioxidant compounds have been isolated and identified from different types of edible seaweeds. Extraction methods commonly used for the isolation of antioxidants are based on conventional water or organic solvent extractions. However, recent advances have shown that enzymatic hydrolysis can achieve higher yield of bioactive compounds from algae. Here we describe a method based on enzymatic hydrolysis which both increases yield and decreases cost associated with organic solvents. This method achieves cell wall disruption and breakdown of internal storage components for more effective release of intracellular bioactive compounds. In addition, hydrolysis of proteins produces peptides which may have antioxidant properties, thus enhancing the bioactivity of the algal extract. The method described can be used for production of extracts from red and brown macroalgal species. PMID:26108503

  5. Unveiling privacy: advances in microtomography of coralline algae.

    PubMed

    Torrano-Silva, Beatriz N; Ferreira, Simone Gomes; Oliveira, Mariana C

    2015-05-01

    Marine calcareous algae are widespread in oceans of the world and known for their calcified cell walls and the generation of rhodolith beds that turn sandy bottoms into a complex structured ecosystem with high biodiversity. Rhodoliths are unattached, branching, crustose benthic marine red algae; they provide habitat for a rich variety of marine invertebrates. The resultant excavation is relevant to sediment production, while is common that the fragments or the whole specimens result in vast fossil deposits formed by rich material that can be "mined" for biological and geological data. Accordingly, microtomography (?CT) may enable a detailed investigation of biological and geological signatures preserved within the rhodolith structure in a non-destructive approach that is especially relevant when analyzing herbaria collections or rare samples. Therefore, we prepared coralline algae samples and submitted them to a range of capabilities provided by the SkyScan1176 micro-CT scanner, including reconstruction, virtual slicing, and pinpointing biological and geological signatures. To this end, polychaetes and mollusk shells, or their excavations, coral nucleation, sediment deposits and conceptacles were all observed. Although a similar technique has been applied previously to samples of living rhodoliths in Brazil, we show, for the first time, its successful application to fossil rhodoliths. We also provide a detailed working protocol and discuss the advantages and limitations of the microtomography within the rhodoliths. PMID:25777060

  6. An updated comprehensive techno-economic analysis of algae biodiesel.

    PubMed

    Nagarajan, Sanjay; Chou, Siaw Kiang; Cao, Shenyan; Wu, Chen; Zhou, Zhi

    2013-10-01

    Algae biodiesel is a promising but expensive alternative fuel to petro-diesel. To overcome cost barriers, detailed cost analyses are needed. A decade-old cost analysis by the U.S. National Renewable Energy Laboratory indicated that the costs of algae biodiesel were in the range of $0.53-0.85/L (2012 USD values). However, the cost of land and transesterification were just roughly estimated. In this study, an updated comprehensive techno-economic analysis was conducted with optimized processes and improved cost estimations. Latest process improvement, quotes from vendors, government databases, and other relevant data sources were used to calculate the updated algal biodiesel costs, and the final costs of biodiesel are in the range of $0.42-0.97/L. Additional improvements on cost-effective biodiesel production around the globe to cultivate algae was also recommended. Overall, the calculated costs seem promising, suggesting that a single step biodiesel production process is close to commercial reality. PMID:23260269

  7. Complete Plastid Genome Sequence of the Brown Alga Undaria pinnatifida.

    PubMed

    Zhang, Lei; Wang, Xumin; Liu, Tao; Wang, Guoliang; Chi, Shan; Liu, Cui; Wang, Haiyang

    2015-01-01

    In this study, we fully sequenced the circular plastid genome of a brown alga, Undaria pinnatifida. The genome is 130,383 base pairs (bp) in size; it contains a large single-copy (LSC, 76,598 bp) and a small single-copy region (SSC, 42,977 bp), separated by two inverted repeats (IRa and IRb: 5,404 bp). The genome contains 139 protein-coding, 28 tRNA, and 6 rRNA genes; none of these genes contains introns. Organization and gene contents of the U. pinnatifida plastid genome were similar to those of Saccharina japonica. There is a co-linear relationship between the plastid genome of U. pinnatifida and that of three previously sequenced large brown algal species. Phylogenetic analyses of 43 taxa based on 23 plastid protein-coding genes grouped all plastids into a red or green lineage. In the large brown algae branch, U. pinnatifida and S. japonica formed a sister clade with much closer relationship to Ectocarpus siliculosus than to Fucus vesiculosus. For the first time, the start codon ATT was identified in the plastid genome of large brown algae, in the atpA gene of U. pinnatifida. In addition, we found a gene-length change induced by a 3-bp repetitive DNA in ycf35 and ilvB genes of the U. pinnatifida plastid genome. PMID:26426800

  8. Toxic effects of decomposing red algae on littoral organisms

    NASA Astrophysics Data System (ADS)

    Eklund, Britta; Svensson, Andreas P.; Jonsson, Conny; Malm, Torleif

    2005-03-01

    Large masses of filamentous red algae of the genera Polysiphonia, Rhodomela, and Ceramium are regularly washed up on beaches of the central Baltic Sea. As the algal masses start to decay, red coloured effluents leak into the water, and this tinge may be traced several hundred meters off shore. In this study, possible toxic effects of these effluents were tested on littoral organisms from different trophic levels. Effects on fertilisation, germination and juvenile survival of the brown seaweed Fucus vesiculosus were investigated, and mortality tests were performed on the crustaceans Artemia salina and Idotea baltica, as well as on larvae and adults of the fish Pomatoschistus microps. Fucus vesiculosus was the most sensitive species of the tested organisms to the red algal extract. The survival of F. vesiculosus recruits was reduced with 50% (LC50) when exposed to a concentration corresponding to 1.7 g l -1 dw red algae. The lethal concentration for I. baltica, A. salina and P. microps were approximately ten times higher. The toxicity to A. salina was reduced if the algal extract was left to decompose during two weeks but the decline in toxicity was not affected by different light or temperature conditions. This study indicates that the filamentous red algae in the central Baltic Sea may produce and release compounds with negative effects on the littoral ecosystem. The effects may be particularly serious for the key species F. vesiculosus, which reproduce in autumn when filamentous red algal blooms are most severe.

  9. Uptake and distribution of technetium in several marine algae

    SciTech Connect

    Bonotto, S.; Gerber, G.B.; Garten, C.T. Jr.; Vandecasteele, C.M.; Myttenaere, C.; Van Baelen, J.; Cogneau, M.; van der Ben, D.

    1983-01-01

    The uptake or chemical form of technetium in different marine algae (Acetabularia, Cystoseira, Fucus) has been examined and a simple model to explain the uptake of technetium in the unicellular alga, Acetabularia, has been conceptualized. At low concentrations in the external medium, Acetabularia can rapidly concentrate technetium. Concentration factors in excess of 400 can be attained after a time of about 3 weeks. At higher mass concentrations in the medium, uptake of technetium by Acetabularia becomes saturated resulting in a decreased concentration factor (approximately 10 after 4 weeks). Approximately 69% of the total radioactivity present in /sup 95m/Tc labelled Acetabularia is found in the cell cytosol. In Fucus vesiculosus, labelled with /sup 95m/Tc, a high percentage of technetium is present in soluble ionic forms while approximately 40% is bound, in this brown alga, in proteins and polysaccharides associated with cell walls. In the algal cytosol of Fucus vesiculosus, about 45% of the /sup 95m/Tc appears to be present as anionic TcO/sup -//sub 4/ and the remainder is bound to small molecules. 8 references, 5 figures, 1 table.

  10. Complete Plastid Genome Sequence of the Brown Alga Undaria pinnatifida

    PubMed Central

    Liu, Tao; Wang, Guoliang; Chi, Shan; Liu, Cui; Wang, Haiyang

    2015-01-01

    In this study, we fully sequenced the circular plastid genome of a brown alga, Undaria pinnatifida. The genome is 130,383 base pairs (bp) in size; it contains a large single-copy (LSC, 76,598 bp) and a small single-copy region (SSC, 42,977 bp), separated by two inverted repeats (IRa and IRb: 5,404 bp). The genome contains 139 protein-coding, 28 tRNA, and 6 rRNA genes; none of these genes contains introns. Organization and gene contents of the U. pinnatifida plastid genome were similar to those of Saccharina japonica. There is a co-linear relationship between the plastid genome of U. pinnatifida and that of three previously sequenced large brown algal species. Phylogenetic analyses of 43 taxa based on 23 plastid protein-coding genes grouped all plastids into a red or green lineage. In the large brown algae branch, U. pinnatifida and S. japonica formed a sister clade with much closer relationship to Ectocarpus siliculosus than to Fucus vesiculosus. For the first time, the start codon ATT was identified in the plastid genome of large brown algae, in the atpA gene of U. pinnatifida. In addition, we found a gene-length change induced by a 3-bp repetitive DNA in ycf35 and ilvB genes of the U. pinnatifida plastid genome. PMID:26426800

  11. Photosynthetic responses and accumulation of mesotrione in two freshwater algae.

    PubMed

    Ni, Yan; Lai, Jinhu; Wan, Jinbao; Chen, Lianshui

    2014-01-01

    Mesotrione is a herbicide used for killing annual grasses and broad-leaved weeds in maize. A recent investigation has shown that mesotrione has been detected as an organic contaminant in aquatic environments and may have a negative impact on aquatic organisms. To evaluate the eco-toxicity of mesotrione to algae, experiments focusing on photosynthetic responses and mesotrione accumulation in Microcystis sp. and Scenedesmus quadricauda were carried out. Both algae treated with mesotrione at 0.05-10 mg L(-1) for 7 days reduced the photosynthetic capacity. The fluorescence of chlorophyll a, the maximal PSII activity (Fv/Fm), and the parameters (Ik, ? and ETRmax) of rapid light curves (RLCs) in both algae were decreased under mesotrione exposure. The 96 h EC50 values for mesotrione on S. quadricauda and Microcystis sp. were 4.41 and 6.19 mg L(-1), respectively. The latter shows more tolerance to mesotrione. Mesotrione was shown to be readily accumulated by both species. Such uptake of mesotrione led to the rapid removal of mesotrione from the medium. Overall, this study represents the initial comprehensive analyses of Microcystis sp. and S. quadricauda in adaptation to the mesotrione contaminated aquatic ecosystems. PMID:25059419

  12. Presence of state transitions in the cryptophyte alga Guillardia theta

    PubMed Central

    Cheregi, Otilia; Kotabová, Eva; Prášil, Ond?ej; Schröder, Wolfgang P.; Ka?a, Radek; Funk, Christiane

    2015-01-01

    Plants and algae have developed various regulatory mechanisms for optimal delivery of excitation energy to the photosystems even during fluctuating light conditions; these include state transitions as well as non-photochemical quenching. The former process maintains the balance by redistributing antennae excitation between the photosystems, meanwhile the latter by dissipating excessive excitation inside the antennae. In the present study, these mechanisms have been analysed in the cryptophyte alga Guillardia theta. Photoprotective non-photochemical quenching was observed in cultures only after they had entered the stationary growth phase. These cells displayed a diminished overall photosynthetic efficiency, measured as CO2 assimilation rate and electron transport rate. However, in the logarithmic growth phase G. theta cells redistributed excitation energy via a mechanism similar to state transitions. These state transitions were triggered by blue light absorbed by the membrane integrated chlorophyll a/c antennae, and green light absorbed by the lumenal biliproteins was ineffective. It is proposed that state transitions in G. theta are induced by small re-arrangements of the intrinsic antennae proteins, resulting in their coupling/uncoupling to the photosystems in state 1 or state 2, respectively. G. theta therefore represents a chromalveolate algae able to perform state transitions. PMID:26254328

  13. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms.

    PubMed

    Lee, Seung-Hong; Jeon, You-Jin

    2013-04-01

    Marine algae are popular and abundant food ingredients mainly in Asian countries, and also well known for their health beneficial effects due to the presence of biologically active components. The marine algae have been studied for biologically active components and phlorotannins, marine polyphenols are among them. Among marine algae, brown algae have extensively studied for their potential anti-diabetic activities. Majority of the investigations on phlorotannins derived from brown algae have exhibited their various anti-diabetic mechanisms such as ?-glucosidase and ?-amylase inhibitory effect, glucose uptake effect in skeletal muscle, protein tyrosine phosphatase 1B (PTP 1B) enzyme inhibition, improvement of insulin sensitivity in type 2 diabetic db/db mice, and protective effect against diabetes complication. In this review, we have made an attempt to discuss the various anti-diabetic mechanisms associated with phlorotannins from brown algae that are confined to in vitro and in vivo. PMID:23466874

  14. Green algae and the origins of multicellularity in the plant kingdom.

    PubMed

    Umen, James G

    2014-11-01

    The green lineage of chlorophyte algae and streptophytes form a large and diverse clade with multiple independent transitions to produce multicellular and/or macroscopically complex organization. In this review, I focus on two of the best-studied multicellular groups of green algae: charophytes and volvocines. Charophyte algae are the closest relatives of land plants and encompass the transition from unicellularity to simple multicellularity. Many of the innovations present in land plants have their roots in the cell and developmental biology of charophyte algae. Volvocine algae evolved an independent route to multicellularity that is captured by a graded series of increasing cell-type specialization and developmental complexity. The study of volvocine algae has provided unprecedented insights into the innovations required to achieve multicellularity. PMID:25324214

  15. Natural Abundance 14C Content of Dibutyl Phthalate (DBP) from Three Marine Algae

    PubMed Central

    Namikoshi, Michio; Fujiwara, Takeshi; Nishikawa, Teruaki; Ukai, Kazuyo

    2006-01-01

    Analysis of the natural abundance 14C content of dibutyl phthalate (DBP) from two edible brown algae, Undaria pinnatifida and Laminaria japonica, and a green alga, Ulva sp., revealed that the DBP was naturally produced. The natural abundance 14C content of di-(2-ethylhexyl) phthalate (DEHP) obtained from the same algae was about 50–80% of the standard sample and the 14C content of the petrochemical (industrial) products of DBP and DEHP were below the detection limit.

  16. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae

    PubMed Central

    2013-01-01

    Background Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression. Results Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength. Conclusions Green algae received a ?-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The ?-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of green algae and higher plants. Protein domain structures and expression analyses in green alga H. pluvialis indicate that various chy genes are in different manners response to light. The knowledge of evolution of chy genes in photosynthetic eukaryotes provided information of gene cloning and functional investigation of chy genes in algae in the future. PMID:23834441

  17. How-to-Do-It: Diatoms: The Ignored Alga in High School Biology.

    ERIC Educational Resources Information Center

    Hungerford, James J.

    1988-01-01

    Provides historical background, descriptions, uses and basis for identification of diatoms. Explains collection, dry-mount cleaning, and preparation procedures of the algae. Cites additional resources. (RT)

  18. RESPONSES OF MARINE UNICELLULAR ALGAE TO BROMINATED ORGANIC COMPOUNDS IN SIX GROWTH MEDIA

    EPA Science Inventory

    Marine unicellular algae, Skeletonema costatum, Thalassiosira pseudonana, and Chlorella sp., were exposed to the industrial brominated compounds, tetrabromobisphenol A (TBBP), decabromobiphenyloxide (DBBO), hexabromocyclododecane (HBCD), pentabromomethylbenzene (PBMB), pentabromo...

  19. Cognome e nome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 18 giugno 2012 Esame (2.5 ore)

    E-print Network

    Robbiano, Lorenzo

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 18 giugno 2012­ Esame (2.5 ore) Giustificare ogni affermazione Salvare il file CoCoA come cognome

  20. Cognome e nome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 16 giugno 2011 Compito di esame (2 ore)

    E-print Network

    Robbiano, Lorenzo

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 16 giugno 2011­ Compito di esame (2 ore) Giustificare ogni affermazione Salvare il file CoCoA come

  1. Cognome e nome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 7 luglio 2011 Compito di esame (2 ore)

    E-print Network

    Robbiano, Lorenzo

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 7 luglio 2011­ Compito di esame (2 ore) Giustificare ogni affermazione Salvare il file CoCoA come

  2. Hierarchical and size dependent mechanical properties of silica and silicon nanostructures inspired by diatom algae

    E-print Network

    García, Andre Phillipé

    2010-01-01

    Biology implements fundamental principles that allow for attractive mechanical properties, as observed in biomineralized structures. For example, diatom algae contain nanoporous hierarchical silicified shells that provide ...

  3. Cognome e nome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 19 aprile 2011 Compito di esame (2 ore)

    E-print Network

    Robbiano, Lorenzo

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 19 aprile 2011­ Compito di esame (2 ore) Giustificare ogni affermazione Salvare il file CoCoA come

  4. Survival and reproduction in some algae under stress conditions.

    PubMed

    Gupta, S; Agrawal, S C

    2007-01-01

    Pithophora oedogonia and Cladophora glomerata survived lowest 60 and 58%, respectively, in June when the pond diurnal water temperature (PDWT) increased to a maximum of 28 degrees C. The lowering of PDWT only by 1 degrees C in July improved survivability of both algae to their almost maximum level of 100 and 96%, respectively. Further lowering of PDWT to 17-22 degrees C in November initiated akinete formation in P. oedogonia. The process of akinete initiation, maturation and germination continued till April when PDWT increased to 20-24 degrees C, but not beyond that in May when PDWT was 21-26 degrees C. By this time, probably all akinetes have germinated in situ, and the alga was entirely vegetative. P. oedogonia population is not synchronous in nature, since during the 5-6-month reproductive season, some filaments were in active vegetative stage, some had akinete initiation, some had completed akinete formation, and some had akinetes germinating. C. glomerata grew dense vegetative in November and initiated (zoo)sporangial primordia formation (to some extent) in February (when PDWT was lowest, viz. 10-14 degrees C) till April. Meanwhile, no (zoo)-sporangial primordia either produced any zoospore or germinated into a germ tube; and all released their cytoplasmic content and died (along with some vegetative cells) with an increase in PDWT to 21-26 degrees C in May. Vaucheria geminata vegetative patches appeared on the soil surface, 2nd week of January by lowering of atmospheric diurnal temperature (ADT) to 9-16 degrees C in the 1st week. The alga started sexual reproduction by the 2nd week of March (when ADT increased to 20-23 degrees C) and completed the process of reproduction by the 1st week of April (when ADT increased to 24-26 degrees C) and died thereafter. P. oedogonia, C. glomerata and V. geminata survived better and longer in submerged conditions than air-exposed (which was true for P. oedogonia and C. glomerata aquatic habitat and also indicated that the soil alga V. geminata could survive to some extent if submerged in rain water). P. oedogonia formed akinetes and C. glomerata (zoo)sporangial primordia only in submerged condition and not when air-exposed on moist soil surface. V. geminata did not complete the life cycle both under submerged and air-exposed conditions. Vegetative survival in P. oedogonia, C. glomerata, V. geminata, Aphanothece pallida, Gloeocapsa atrata, Scytonema millei, Myxosarcina burmensis, Phormidium bohneri, Oscillatoria animalis, O. subbrevis, Lyngbya birgei, L. major, Microcoleus chthonoplastes and Rhizoclonium crassipellitum, reproduction in P. oedogonia, C. glomerata and V. geminata, cell division in A. pallida and G. atrata, heterocyst and false branch formation in S. millei, all, were adversely affected at approximately 28.5 degrees C for t12 h at light intensity of approximately 160 micromol m(-2) s(-1); high intensity does not ameliorate high temperature damage to any algae. The presence of liquid water, than its absence, outside the different algae moderated the severity of heat to some extent but not when the heat was severe. PMID:18450223

  5. Riding, R. 2005. Secular variations in abundance of calcified algae and cyanobacteria: how biomineralization can reflect global changes in temperature and water chemistry.

    E-print Network

    Riding, Robert

    Riding, R. 2005. Secular variations in abundance of calcified algae and cyanobacteria: how: 312. Secular variations in abundance of calcified algae and bacteria: how biomineralization can algae and cyanobacteria, cellular site and mineralogy of calcification, together with biogeographic

  6. Multispectral sorter for rapid, nondestructive optical bioprospecting for algae biofuels

    NASA Astrophysics Data System (ADS)

    Davis, Ryan W.; Wu, Hauwen; Singh, Seema

    2014-03-01

    Microalgal biotechnology is a nascent yet burgeoning field for developing the next generation of sustainable feeds, fuels, and specialty chemicals. Among the issues facing the algae bioproducts industry, the lack of efficient means of cultivar screening and phenotype selection represents a critical hurdle for rapid development and diversification. To address this challenge, we have developed a multi-modal and label-free optical tool which simultaneously assesses the photosynthetic productivity and biochemical composition of single microalgal cells, and provides a means for actively sorting attractive specimen (bioprospecting) based on the spectral readout. The device integrates laser-trapping micro-Raman spectroscopy and pulse amplitude modulated (PAM) fluorometry of microalgal cells in a flow cell. Specifically, the instrument employs a dual-purpose epi-configured IR laser for single-cell trapping and Raman spectroscopy, and a high-intensity VISNIR trans-illumination LED bank for detection of variable photosystem II (PSII) fluorescence. Micro-Raman scatter of single algae cells revealed vibrational modes corresponding to the speciation and total lipid content, as well as other major biochemical pools, including total protein, carbohydrates, and carotenoids. PSII fluorescence dynamics provide a quantitative estimate of maximum photosynthetic efficiency and regulated and non-regulated non-photochemical quenching processes. The combined spectroscopic readouts provide a set of metrics for subsequent optical sorting of the cells by the laser trap for desirable biomass properties, e.g. the combination of high lipid productivity and high photosynthetic yield. Thus the device provides means for rapid evaluation and sorting of algae cultures and environmental samples for biofuels development.

  7. Medicinal effects of phlorotannins from marine brown algae.

    PubMed

    Kim, Se-Kwon; Himaya, S W A

    2011-01-01

    Brown seaweeds are popular and abundant food in East Asia and also well known for their medicinal effects due to presence of active phenolic constituents. Phlorotannins, the major phenolic group of brown algae, have extensively investigated for their vast array of bioactivities such as antioxidant, anti-inflammatory, anticancer, and antidiabetic. They possess promising activity in both in vitro and in vivo systems showing promising potential to further develop as therapeutic agents. In this chapter, attempts have taken to examine and categorize the reports available on active phlorotannins which have shown strong bioactivities. PMID:22054941

  8. Bioactivities from Marine Algae of the Genus Gracilaria

    PubMed Central

    de Almeida, Cynthia Layse F.; Falcão, Heloina de S.; Lima, Gedson R. de M.; Montenegro, Camila de A.; Lira, Narlize S.; de Athayde-Filho, Petrônio F.; Rodrigues, Luis C.; de Souza, Maria de Fátima V.; Barbosa-Filho, José M.; Batista, Leônia M.

    2011-01-01

    Seaweeds are an important source of bioactive metabolites for the pharmaceutical industry in drug development. Many of these compounds are used to treat diseases like cancer, acquired immune-deficiency syndrome (AIDS), inflammation, pain, arthritis, as well as viral, bacterial, and fungal infections. This paper offers a survey of the literature for Gracilaria algae extracts with biological activity, and identifies avenues for future research. Nineteen species of this genus that were tested for antibacterial, antiviral, antifungal, antihypertensive, cytotoxic, spermicidal, embriotoxic, and anti-inflammatory activities are cited from the 121 references consulted. PMID:21845096

  9. Multi-scale Characterization of Improved Algae Strains

    SciTech Connect

    Dale, Taraka T.

    2015-04-01

    This report relays the important role biofuels such as algae could have in the energy market. The report cites that problem of crude oil becoming less abundant while the demand for energy continues to rise. There are many benefits of producing energy with biofuels such as fewer carbon emissions as well as less land area to produce the same amount of energy compared to other sources of renewable fuels. One challenge that faces biofuels right now is the cost to produce it is high.

  10. Green algae as a platform to express therapeutic proteins.

    PubMed

    Lu, Yang; Oyler, George A

    2009-06-01

    Proteins produced by DNA recombinant technology have been playing important roles in modern medicine ever since the first such protein drug was approved by the U.S. Food and Drug Administration about three decades ago. However the inherent high cost of producing recombinant proteins, particularly those produced from mammalian cells, has hampered their broad application. Other protein expression systems that can reduce the cost yet still maintain the high-level therapeutic activities of the recombinant proteins are a top R&D priority. Eukaryotic unicellular green algae cells may provide a good solution to this long-standing challenge. PMID:19772839

  11. Measuring oscillatory velocity fields due to swimming algae

    NASA Astrophysics Data System (ADS)

    Guasto, Jeffrey S.; Johnson, Karl A.; Gollub, J. P.

    2011-09-01

    In this fluid dynamics video, we present the first time-resolved measurements of the oscillatory velocity field induced by swimming unicellular microorganisms. Confinement of the green alga C. reinhardtii in stabilized thin liquid films allows simultaneous tracking of cells and tracer particles. The measured velocity field reveals complex time-dependent flow structures, and scales inversely with distance. The instantaneous mechanical power generated by the cells is measured from the velocity fields and peaks at 15 fW. The dissipation per cycle is more than four times what steady swimming would require.

  12. A new phlorotannin from the brown alga Ecklonia stolonifera.

    PubMed

    Kang, Hye Sook; Chung, Hae Young; Jung, Jee Hyung; Son, Byeng Wha; Choi, Jae Sue

    2003-08-01

    A new phlorotannin, named eckstolonol (1), was isolated from the EtOAc soluble fraction of the methanolic extract of the brown alga, Ecklonia stolonifera OKAMURA, along with three known phlorotannins, eckol (2), phlorofucofuroeckol A (3), and dieckol (4). The structure of eckstolonol was identified as 5,8,13,14-tetraoxa-pentaphene-1,3,6,9,11-pentaol on the basis of spectroscopic evidence. The new compound was found to be a radical scavenger on the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. PMID:12913249

  13. The role of algae in mine drainage bioremediation

    SciTech Connect

    Davison, J. )

    1990-06-01

    The effect of mine drainage effluent on aquatic ecosystems has been abundantly documented and remediation efforts to data have always been costly and temporary at best. Bioremediation, using natural environmental microbes, to treat acid mine drainage has shown great promise as an affordable, permanent treatment. At Lambda, we used mixatrophic cultures of bacteria, algae, protozoans and fungal groups on four different jobs and it has proven effective. The role of two particular algal groups, the Euglena mutabilis and the Ochramonas sp. are particularly of phycological interest.

  14. Substratum location and zoospore behaviour in the fouling alga Enteromorpha.

    PubMed

    Callow, M E; Callow, J A

    2000-01-01

    The green alga Enteromorpha is the most important macroalga that fouls ships, submarines and underwater structures. Major factors in its success in colonising new substrata are the production of enormous numbers of swimming spores and their ability to locate surfaces on which to settle. Factors facilitating the settlement and adhesion of asexual zoospores are examined in this article. Settlement and adhesion may be regulated by topographical, biological, chemical and physico-chemical cues, all of which are modified by the presence of microbial biofilm. The level of gregarious zoospore settlement is related to spore density and may be mediated by a number of external cues including fatty acids and 'detritus'. PMID:22115291

  15. The auxin concentration in sixteen Chinese marine algae

    NASA Astrophysics Data System (ADS)

    Han, Lijun

    2006-09-01

    The author determined the occurrence of indole-3-acetic acid in sixteen Chinese marine algae collected from the east coast of China with fluorescence spectrophotometry (FS) and wheat coleoptile bioanalysis methods (WCB). The concentration of indole-3-acetic acid (IAA) presented was from 1.1 46.9 ng/g Fw (fresh weight) with FS and 5.3 110.2 ng/g Fw with WCB. The results by the two methods were in the orders of 10-3 103 ng/g Fw reported previously from multiple references.

  16. Measuring Oscillatory Velocity Fields Due to Swimming Algae

    E-print Network

    Guasto, Jeffrey S; Gollub, J P

    2010-01-01

    In this fluid dynamics video, we present the first time-resolved measurements of the oscillatory velocity field induced by swimming unicellular microorganisms. Confinement of the green alga C. reinhardtii in stabilized thin liquid films allows simultaneous tracking of cells and tracer particles. The measured velocity field reveals complex time-dependent flow structures, and scales inversely with distance. The instantaneous mechanical power generated by the cells is measured from the velocity fields and peaks at 15 fW. The dissipation per cycle is more than four times what steady swimming would require.

  17. Dancing Volvox: Hydrodynamic Bound States of Swimming Algae

    E-print Network

    Knut Drescher; Kyriacos C. Leptos; Idan Tuval; Takuji Ishikawa; Timothy J. Pedley; Raymond E. Goldstein

    2009-01-14

    The spherical alga Volvox swims by means of flagella on thousands of surface somatic cells. This geometry and its large size make it a model organism for studying the fluid dynamics of multicellularity. Remarkably, when two nearby Volvox swim close to a solid surface, they attract one another and can form stable bound states in which they "waltz" or "minuet" around each other. A surface-mediated hydrodynamic attraction combined with lubrication forces between spinning, bottom-heavy Volvox explains the formation, stability and dynamics of the bound states. These phenomena are suggested to underlie observed clustering of Volvox at surfaces.

  18. Photometrical analysis with photosensory domains of photoreceptors in green algae.

    PubMed

    Kagawa, Takatoshi; Suetsugu, Noriyuki

    2007-02-01

    Chloroplast photoorientation in the green alga Mougeotia scalaris is controlled by blue and red light. The properties of the LOV domains of phototropin A and B were consistent with previous data of action spectra and photoreceptor lifetime for blue light-mediated photoorientation. The LOV domains of the neochromes did not bind flavin, while the domains of neochrome 2 contributed to multimer formation. The absorption spectra of the neochrome phytochrome photosensory domain with phytochromobilin were very similar to the action spectra for red light-induced photoorientation. These results indicate that phototropin and neochrome work as the blue and red photoreceptors involved in photoorientation. PMID:17222409

  19. The chemical constituents from red alga Gymnogongrus flabelliformis Harv.

    NASA Astrophysics Data System (ADS)

    Yuan, Zhaohui; Han, Lijun; Su, Hua; Shi, Dayong; Sun, Jie; Li, Shuai; Shi, Jiangong

    2008-05-01

    Eight compounds were isolated from red alga Gymnogongrus flabelliformis Harv. In normal phase silica gel, Sephadex LH-20 gel column chromatography, reverse phase HPLC, and recrystallization. Based on MS and 1D NMR spectroscopic data, their structures were determined as: stigmast-4-en-3-one (I), cholest-4-en-3-one (II), cholesterol (III), uracil (IV), uridine (V), adenosine (VI), succinic acid (VII), and 5-hydroxy-4-methyl-5-pentyl-2,5-dihydro-furan-2-on (VIII ). All of them were obtained from this species for the first time. Cytotoxicity of these compounds was screened using standard MTT method, but all the compounds were inactive (IC50 > 10 ?g/ml).

  20. Microwave-Assisted Extraction of Fucoidan from Marine Algae.

    PubMed

    Mussatto, Solange I

    2015-01-01

    Microwave-assisted extraction (MAE) is a technique that can be applied to extract compounds from different natural resources. In this chapter, the use of this technique to extract fucoidan from marine algae is described. The method involves a closed MAE system, ultrapure water as extraction solvent, and suitable conditions of time, pressure, and algal biomass/water ratio. By using this procedure under the specified conditions, the penetration of the electromagnetic waves into the material structure occurs in an efficient manner, generating a distributed heat source that promotes the fucoidan extraction from the algal biomass. PMID:26108504

  1. Variation in natural selection for growth and phlorotannins in the brown alga Fucus vesiculosus

    E-print Network

    Jormalainen, Veijo

    Variation in natural selection for growth and phlorotannins in the brown alga Fucus vesiculosus V with costs that offset its benefits. For example, a high Correspondence: Veijo Jormalainen, Section secondary compounds, phlorotannins, in the brown alga Fucus vesiculosus. We measured variation in selection

  2. ALGAE-BACTERIA INTERACTION IN A LIGHT-DARK CYCLE (JOURNAL VERSION)

    EPA Science Inventory

    Nutrient and population dynamics accompanying algae-bacteria interaction were observed in unialgal, 18-liter batch cultures during a light-dark cycle. The green alga Chlorella vulgaris, and the nitrogen fixing blue-green Anabaena flos-aquae were inoculated with an aquatic communi...

  3. MONITORING CHLOROPHYLL-A AS A MEASURE OF ALGAE IN LAKE TEXOMA MARINAS

    EPA Science Inventory

    Lake water quality in five marinas on Lake Texoma was determined over a two year period. Quality parameters were methyl tert-butyl ether, nitrate, some metals, fecal coliform and algae. Common blue-green algae can produce a toxin harmful to other aquatic organisms and humans. ...

  4. The current potential of algae biofuels in the United Arab Emirates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In spite of future uncertainties about industrial algae biofuel production, the UAE is planning to become "a world leader in biofuels from the algae industry by 2020;" thus joining major countries which have already started producing renewable energy and biofuels (biodiesel and bioethanol) from rene...

  5. Spatiotemporal associations of reservoir nutrient characteristics and the invasive, harmful alga Prymnesium parvum in West Texas

    USGS Publications Warehouse

    VanLandeghem, Matthew M.; Farooqi, Mukhtar; Southard, Greg M.; Patino, Reynaldo

    2015-01-01

    Golden alga (Prymnesium parvum) is a harmful alga that has caused ecological and economic harm in freshwater and marine systems worldwide. In inland systems of North America, toxic blooms have nearly eliminated fish populations in some systems. Modifying nutrient profiles through alterations to land or water use may be a viable alternative for golden alga control in reservoirs. The main objective of this study was to improve our understanding of the nutrient dynamics that influence golden alga bloom formation and toxicity in west Texas reservoirs. We examined eight sites in the Upper Colorado River basin, Texas: three impacted reservoirs that have experienced repeated golden alga blooms; two reference reservoirs where golden alga is present but nontoxic; and three confluence sites downstream of the impacted and reference sites. Total, inorganic, and organic nitrogen and phosphorus and their ratios were quantified monthly along with golden alga abundance and ichthyotoxicity between December 2010 and July 2011. Blooms persisted for several months at the impacted sites, which were characterized by high organic nitrogen and low inorganic nitrogen. At impacted sites, abundance was positively associated with inorganic phosphorus and bloom termination coincided with increases in inorganic nitrogen and decreases in inorganic phosphorus in late spring. Management of both inorganic and organic forms of nutrients may create conditions in reservoirs unfavorable to golden alga.

  6. Organelle Genome Complexity Scales Positively with Organism Size in Volvocine Green Algae

    E-print Network

    Keeling, Patrick

    Letter Organelle Genome Complexity Scales Positively with Organism Size in Volvocine Green Algae sequenced mitochondrial and plastid genomes, we explore the relationship between organelle DNA noncoding, and differentiated multicellular algae, we show that organelle DNA complexity scales positively with species size

  7. 428 BIOCHIMICAET BIOPHYSICAACTA pH CONTROL OF THE CHLOROPHYLL a FLUORESCENCE IN ALGAE

    E-print Network

    Govindjee

    428 BIOCHIMICAET BIOPHYSICAACTA BBA 46126 pH CONTROL OF THE CHLOROPHYLL a FLUORESCENCE IN ALGAE on the "slow" (min) time course of Chlorophyll a fluorescence yield in the green alga Chlorella pyrenoidosa conformational changes) of the chloroplast to the yield of chlorophyll a fluorescence in vivo. Light

  8. [Ecological effect of No.0 diesel water accommodated fraction on marine algae].

    PubMed

    Li, Ke-Qiang; Wang, Xiu-Lin; Zhu, Chen-Jian; Shi, Xiao-Yong; Hu, Hai-Yan; Li, Rui-Xiang; Sun, Sheng-Yu

    2007-02-01

    With batch culture experiments in field and laboratory, the ecological effect of No. 0 diesel water accommodated fraction on marine algae was studied. A growth model of marine algae under grazing pressure and a model of growth effect on marine algae with different doses No.0 diesel water accommodated fraction were proposed. Based on the model and experiments, the growth effect of No.0 diesel water accommodated fraction on marine algae was studied. The results show that, the growth model of marine algae under grazing pressure is more suited for the marine ecological system than Logistic model. And the final biomass (B(f)) of marine algae with different doses No.0 diesel water accommodated fraction was calculated by the model with none-linear fitting software. The results also show that, under the field and laboratory conditions, lower doses No.0 diesel water accommodated fraction promotes the growth of marine algae, and the most promoting ratio are 180% and 120% respectively, however, higher doses hardly promotes but bates the growth of marine algae. PMID:17489188

  9. CHANGES IN QUANTUM YIELD OF PHOTOSYNTHESIS IN THE RED ALGA Porphyridium cruentum

    E-print Network

    Govindjee

    CHANGES IN QUANTUM YIELD OF PHOTOSYNTHESIS IN THE RED ALGA Porphyridium cruentum CAUSED BY STEPWISE From the Photosynthesis Research Laboratory, Botany Department, University of Illinois, Urbana. Dr of photosynthesis in the red alga Porphyridium cruentum, and the spectral compo- sition of light, changed

  10. Chemical mediation of coral larval settlement by crustose coralline algae.

    PubMed

    Tebben, J; Motti, C A; Siboni, Nahshon; Tapiolas, D M; Negri, A P; Schupp, P J; Kitamura, Makoto; Hatta, Masayuki; Steinberg, P D; Harder, T

    2015-01-01

    The majority of marine invertebrates produce dispersive larvae which, in order to complete their life cycles, must attach and metamorphose into benthic forms. This process, collectively referred to as settlement, is often guided by habitat-specific cues. While the sources of such cues are well known, the links between their biological activity, chemical identity, presence and quantification in situ are largely missing. Previous work on coral larval settlement in vitro has shown widespread induction by crustose coralline algae (CCA) and in particular their associated bacteria. However, we found that bacterial biofilms on CCA did not initiate ecologically realistic settlement responses in larvae of 11 hard coral species from Australia, Guam, Singapore and Japan. We instead found that algal chemical cues induce identical behavioral responses of larvae as per live CCA. We identified two classes of CCA cell wall-associated compounds--glycoglycerolipids and polysaccharides--as the main constituents of settlement inducing fractions. These algae-derived fractions induce settlement and metamorphosis at equivalent concentrations as present in CCA, both in small scale laboratory assays and under flow-through conditions, suggesting their ability to act in an ecologically relevant fashion to steer larval settlement of corals. Both compound classes were readily detected in natural samples. PMID:26042834

  11. Unlocking nature's treasure-chest: screening for oleaginous algae.

    PubMed

    Slocombe, Stephen P; Zhang, QianYi; Ross, Michael; Anderson, Avril; Thomas, Naomi J; Lapresa, Ángela; Rad-Menéndez, Cecilia; Campbell, Christine N; Black, Kenneth D; Stanley, Michele S; Day, John G

    2015-01-01

    Micro-algae synthesize high levels of lipids, carbohydrates and proteins photoautotrophically, thus attracting considerable interest for the biotechnological production of fuels, environmental remediation, functional foods and nutraceuticals. Currently, only a few micro-algae species are grown commercially at large-scale, primarily for "health-foods" and pigments. For a range of potential products (fuel to pharma), high lipid productivity strains are required to mitigate the economic costs of mass culture. Here we present a screen concentrating on marine micro-algal strains, which if suitable for scale-up would minimise competition with agriculture for water. Mass-Spectrophotometric analysis (MS) of nitrogen (N) and carbon (C) was subsequently validated by measurement of total fatty acids (TFA) by Gas-Chromatography (GC). This identified a rapid and accurate screening strategy based on elemental analysis. The screen identified Nannochloropsis oceanica CCAP 849/10 and a marine isolate of Chlorella vulgaris CCAP 211/21A as the best lipid producers. Analysis of C, N, protein, carbohydrate and Fatty Acid (FA) composition identified a suite of strains for further biotechnological applications e.g. Dunaliella polymorpha CCAP 19/14, significantly the most productive for carbohydrates, and Cyclotella cryptica CCAP 1070/2, with utility for EPA production and N-assimilation. PMID:26202369

  12. Marine algae and land plants share conserved phytochrome signaling systems

    PubMed Central

    Duanmu, Deqiang; Bachy, Charles; Sudek, Sebastian; Wong, Chee-Hong; Jiménez, Valeria; Rockwell, Nathan C.; Martin, Shelley S.; Ngan, Chew Yee; Reistetter, Emily N.; van Baren, Marijke J.; Price, Dana C.; Wei, Chia-Lin; Reyes-Prieto, Adrian; Lagarias, J. Clark; Worden, Alexandra Z.

    2014-01-01

    Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence of phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. Expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae. PMID:25267653

  13. Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome.

    PubMed

    Nagayama, Koki; Iwamura, Yoshitoshi; Shibata, Toshiyuki; Hirayama, Izumi; Nakamura, Takashi

    2002-12-01

    The bactericidal activity of phlorotannins from brown algae against food-borne pathogenic bacteria (25 strains), methicillin-resistant Staphylococcus aureus (MRSA) (nine strains) and Streptococcus pyogenes (one strain) was examined and compared with that of catechins. In addition, the effect of the oral administration of phlorotannins on mice was investigated. Phlorotannins, which are oligomers of phloroglucinol, were extracted from thalli of the brown alga Ecklonia kurome and prepared by silicic acid chromatography. The bactericidal activity of polyphenols was determined using a broth microdilution method. Of the bacteria tested, Campylobacter spp. were the most susceptible to the phlorotannins. The MBCs of the crude phlorotannins, dieckol and 8,8'-bieckol (hexamers), and that of epigallocatechin gallate (EGCG) against Campylobacter jejuni were 50 mg/L, 0.03 micromol/mL and 0.03 micromol/mL, respectively. On the whole, the bactericidal effects of the phlorotannins were more pronounced than those of the catechins. The phlorotannins were as effective against MRSA as against the other bacteria tested. At twice the MBCs, all Vibrio parahaemolyticus were killed within 0.5-2 h. However, at the same concentration, catechins showed little bactericidal activity within 4 h. No effect on mice was observed with oral administration of the phlorotannins under the conditions tested. PMID:12461009

  14. Drift algae reduce foraging efficiency of juvenile flatfish

    NASA Astrophysics Data System (ADS)

    Nordström, Marie; Booth, Dale M.

    2007-11-01

    Although flatfish species utilise a wide range of habitats as adults, several species are confined to a very limited habitat as juveniles. Recruitment levels are dependent on the quality and quantity of these nursery areas and changes therein. In the Baltic Sea, these shallow environments are often subject to influxes of drifting macroalgae, which add structure to otherwise bare sandy substrate. Structure, such as vegetation, alters predator-prey interactions of a wide range of fauna and in an array of marine, freshwater, and terrestrial systems. The aim of our study was to assess the inhibition potential of drifting macroalgae on the foraging efficiency of juvenile flatfish (young of the year Scophthalmus maximus L., young of the year- and group 1 + Platichthys flesus L.) through a series of microcosm experiments. Our results show that foraging success is restricted by drift algae as predation efficiency of all predator species and size classes was negatively affected by the presence of macroalgae. Overall, there was a reduction in predation success by 80 ± 12% due to structural effects and/or the induced changes in water chemistry associated with the algae. Flatfish depend on shallow sandy areas as feeding and nursery grounds during their juvenile stage and frequently occurring macroalgal assemblages drastically change the features of the otherwise bare substrate, setting the stage for small-scale, localised processes potentially affecting population dynamics.

  15. Monoclonal Antibodies Directed to Fucoidan Preparations from Brown Algae

    PubMed Central

    Torode, Thomas A.; Marcus, Susan E.; Jam, Murielle; Tonon, Thierry; Blackburn, Richard S.; Hervé, Cécile; Knox, J. Paul

    2015-01-01

    Cell walls of the brown algae contain a diverse range of polysaccharides with useful bioactivities. The precise structures of the sulfated fucan/fucoidan group of polysaccharides and their roles in generating cell wall architectures and cell properties are not known in detail. Four rat monoclonal antibodies, BAM1 to BAM4, directed to sulfated fucan preparations, have been generated and used to dissect the heterogeneity of brown algal cell wall polysaccharides. BAM1 and BAM4, respectively, bind to a non-sulfated epitope and a sulfated epitope present in the sulfated fucan preparations. BAM2 and BAM3 identified additional distinct epitopes present in the fucoidan preparations. All four epitopes, not yet fully characterised, occur widely within the major brown algal taxonomic groups and show divergent distribution patterns in tissues. The analysis of cell wall extractions and fluorescence imaging reveal differences in the occurrence of the BAM1 to BAM4 epitopes in various tissues of Fucus vesiculosus. In Ectocarpus subulatus, a species closely related to the brown algal model Ectocarpus siliculosus, the BAM4 sulfated epitope was modulated in relation to salinity levels. This new set of monoclonal antibodies will be useful for the dissection of the highly complex and yet poorly resolved sulfated polysaccharides in the brown algae in relation to their ecological and economic significance. PMID:25692870

  16. Halophytes, Algae, and Bacteria Food and Fuel Feedstocks

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Bushnell, D. M.

    2009-01-01

    The constant, increasing demand for energy, freshwater, and food stresses our ability to meet these demands within reasonable cost and impact on climate while sustaining quality of life. This environmental Triangle of Conflicts between energy, food, and water--while provoked by anthropogenic monetary and power struggles--can be resolved through an anthropogenic paradigm shift in how we produce and use energy, water, and food. With world population (6.6 billion) projected to increase 40 percent in 40 to 60 yr, proper development of saline agriculture and aquaculture is required, as 43 percent of the Earth's landmass is arid or semi-arid and 97 percent of the Earth's water is seawater. In light of this, we seek fuel alternatives in plants that thrive in brackish and saltwater with the ability to survive in arid lands. The development and application of these plants (halophytes) become the primary focus. Herein we introduce some not-so-familiar halophytes and present a few of their benefits, cite a few research projects (including some on the alternatives algae and bacteria), and then set theoretical limits on biomass production followed by projections in terms of world energy demands. Based on diverse arid lands with a total size equivalent to the Sahara Desert (8.6(exp 8) ha, or 2.1(exp 9) acres), these projections show that halophyte agriculture and algae systems can provide for the projected world energy demand.

  17. Marine algae and land plants share conserved phytochrome signaling systems

    DOE PAGESBeta

    Duanmu, Deqiang; Bachy, Charles; Sudek, Sebastian; Wong, Chee -Hong; Jimenez, Valeria; Rockwell, Nathan C.; Martin, Shelley S.; Ngan, Chew Yee; Reistetter, Emily N.; van Baren, Marijke J.; et al

    2014-09-29

    Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (more »phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. The expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.« less

  18. Balamuthia mandrillaris: in vitro interactions with selected protozoa and algae.

    PubMed

    Tapia, José L; Torres, Benjamin Nogueda; Visvesvara, Govinda S

    2013-01-01

    Although Balamuthia mandrillaris was identified more than two decades ago as an agent of fatal granulomatous encephalitis in humans and other animals, little is known about its ecological niche, biological behavior in the environment, food preferences and predators, if any. When infecting humans or other animals, Balamuthia feeds on tissues; and in vitro culture, it feeds on mammalian cells (monkey kidney cells, human lung fibroblasts, and human microvascular endothelial cells). According to recent reports, it is believed that Balamuthia feeds on small amebae, for example, Acanthamoeba that are present in its ecological niche. To test this hypothesis, we associated Balamuthia on a one-on-one basis with selected protozoa and algae. We videotaped the behavior of Balamuthia in the presence of a potential prey, its ability to hunt and attack its food, and the time required to eat and cause damage to the target cell by direct contact. We found that B. mandrillaris ingested trophozoites of Naegleria fowleri, Naegleria gruberi, Acanthamoeba spp., Trypanosoma cruzi epimastigotes, Toxoplasma gondii tachyzoites, and Giardia. However, it did not feed on Acanthamoeba cysts or algae. Balamuthia caused cytolysis of T. cruzi epimastigotes and T. gondii tachyzoites by direct contact. Balamuthia trophozoites and cysts were, however, eaten by Paramecium sp. PMID:23790262

  19. Photosynthetic Hydrogen and Oxygen Production by Green Algae

    SciTech Connect

    Greenbaum, E.; Lee, J.W.

    1999-08-22

    Photosynthesis research at Oak Ridge National Laboratory is focused on hydrogen and oxygen production by green algae in the context of its potential as a renewable fuel and chemical feed stock. Beginning with its discovery by Gaffron and Rubin in 1942, motivated by curiosity-driven laboratory research, studies were initiated in the early 1970s that focused on photosynthetic hydrogen production from an applied perspective. From a scientific and technical point of view, current research is focused on optimizing net thermodynamic conversion efficiencies represented by the Gibbs Free Energy of molecular hydrogen. The key research questions of maximizing hydrogen and oxygen production by light-activated water splitting in green algae are: (1) removing the oxygen sensitivity of algal hydrogenases; (2) linearizing the light saturation curves of hotosynthesis throughout the entire range of terrestrial solar irradiance-including the role of bicarbonate and carbon dioxide in optimization of photosynthetic electron transpor;t and (3) constructing real-world bioreactors, including the generation of hydrogen and oxygen against workable back pressures of the photoproduced gases.

  20. Toxicity of arsenic and PCB to a green alga (Chlamydomonas)

    SciTech Connect

    Christensen, E.R.; Zielski, P.A.

    1980-07-01

    High arsenic and PCB concentrations have recently been reported for Green Bay, Lake Michigan. The source of arsenic has been localized to a chemical company producing arsenic herbicides in Marinette, Wisconsin. While the production ceased several years ago, the arsenic pollution persists because of ground water infiltration of leachates from storage piles of arsenic-containing wastes. The sources of PCBs are less well known. The sources are probably non-point in nature, and originate in part from local dumpings of PCBs previously used as dielectrics and hydraulic fluids. The levels of these contaminants, e.g., up to 10 ..mu..g As/L and 0.45 ..mu..g PCB/L could present a hazard to the biota. The effect of arsenic and PCB on algae have been studied for each of these toxicants acting separately, but not in combination. PCB at 10 to 100 ..mu..g/L inhibit chlorophyll production and RNA synthesis. On the other hand, arsenate at 1 ..mu..M behaves as an antimetabolite occupying sites for phosphate. Based on the different toxic mechanisms for the two compounds, it is hypothesized that they will show independent joint action, i.e., that they will not form a particular toxic combination. The purpose of this study was to establish toxic thresholds and possible interactive effects of arsenic and a PCB (Aroclor 1248) for the green alga Chlamydomonas isolated from Lake Michigan.

  1. Marine algae and land plants share conserved phytochrome signaling systems

    SciTech Connect

    Duanmu, Deqiang; Bachy, Charles; Sudek, Sebastian; Wong, Chee -Hong; Jimenez, Valeria; Rockwell, Nathan C.; Martin, Shelley S.; Ngan, Chew Yee; Reistetter, Emily N.; van Baren, Marijke J.; Price, Dana C.; Wei, Chia -Lin; Reyes-Prieto, Adrian; Lagarias, J. Clark; Worden, Alexandra Z.

    2014-09-29

    Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence of phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. The expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.

  2. Chemical mediation of coral larval settlement by crustose coralline algae

    PubMed Central

    Tebben, J.; Motti, C. A; Siboni, Nahshon; Tapiolas, D. M.; Negri, A. P.; Schupp, P. J.; Kitamura, Makoto; Hatta, Masayuki; Steinberg, P. D.; Harder, T.

    2015-01-01

    The majority of marine invertebrates produce dispersive larvae which, in order to complete their life cycles, must attach and metamorphose into benthic forms. This process, collectively referred to as settlement, is often guided by habitat-specific cues. While the sources of such cues are well known, the links between their biological activity, chemical identity, presence and quantification in situ are largely missing. Previous work on coral larval settlement in vitro has shown widespread induction by crustose coralline algae (CCA) and in particular their associated bacteria. However, we found that bacterial biofilms on CCA did not initiate ecologically realistic settlement responses in larvae of 11 hard coral species from Australia, Guam, Singapore and Japan. We instead found that algal chemical cues induce identical behavioral responses of larvae as per live CCA. We identified two classes of CCA cell wall-associated compounds – glycoglycerolipids and polysaccharides – as the main constituents of settlement inducing fractions. These algae-derived fractions induce settlement and metamorphosis at equivalent concentrations as present in CCA, both in small scale laboratory assays and under flow-through conditions, suggesting their ability to act in an ecologically relevant fashion to steer larval settlement of corals. Both compound classes were readily detected in natural samples. PMID:26042834

  3. Solar-driven hydrogen production in green algae.

    PubMed

    Burgess, Steven J; Tamburic, Bojan; Zemichael, Fessehaye; Hellgardt, Klaus; Nixon, Peter J

    2011-01-01

    The twin problems of energy security and global warming make hydrogen an attractive alternative to traditional fossil fuels with its combustion resulting only in the release of water vapor. Biological hydrogen production represents a renewable source of the gas and can be performed by a diverse range of microorganisms from strict anaerobic bacteria to eukaryotic green algae. Compared to conventional methods for generating H(2), biological systems can operate at ambient temperatures and pressures without the need for rare metals and could potentially be coupled to a variety of biotechnological processes ranging from desalination and waste water treatment to pharmaceutical production. Photobiological hydrogen production by microalgae is particularly attractive as the main inputs for the process (water and solar energy) are plentiful. This chapter focuses on recent developments in solar-driven H(2) production in green algae with emphasis on the model organism Chlamydomonas reinhardtii. We review the current methods used to achieve sustained H(2) evolution and discuss possible approaches to improve H(2) yields, including the optimization of culturing conditions, reducing light-harvesting antennae and targeting auxiliary electron transport and fermentative pathways that compete with the hydrogenase for reductant. Finally, industrial scale-up is discussed in the context of photobioreactor design and the future prospects of the field are considered within the broader context of a biorefinery concept. PMID:21807246

  4. Red coralline algae assessed as marine pH proxies using 11B MAS NMR

    PubMed Central

    Cusack, M.; Kamenos, N. A.; Rollion-Bard, C.; Tricot, G.

    2015-01-01

    Reconstructing pH from biogenic carbonates using boron isotopic compositions relies on the assumption that only borate, and no boric acid, is present. Red coralline algae are frequently used in palaeoenvironmental reconstruction due to their widespread distribution and regular banding frequency. Prior to undertaking pH reconstructions using red coralline algae we tested the boron composition of the red coralline alga Lithothamnion glaciale using high field NMR. In bulk analysed samples, thirty percent of boron was present as boric acid. We suggest that prior to reconstructing pH using coralline algae 1) species-specific boron compositions and 2) within-skeleton special distributions of boron are determined for multiple species. This will enable site selective boron analyses to be conducted validating coralline algae as palaeo-pH proxies based on boron isotopic compositions. PMID:25640229

  5. Evolution and diversity of plant cell walls: from algae to flowering plants.

    PubMed

    Popper, Zoë A; Michel, Gurvan; Hervé, Cécile; Domozych, David S; Willats, William G T; Tuohy, Maria G; Kloareg, Bernard; Stengel, Dagmar B

    2011-01-01

    All photosynthetic multicellular Eukaryotes, including land plants and algae, have cells that are surrounded by a dynamic, complex, carbohydrate-rich cell wall. The cell wall exerts considerable biological and biomechanical control over individual cells and organisms, thus playing a key role in their environmental interactions. This has resulted in compositional variation that is dependent on developmental stage, cell type, and season. Further variation is evident that has a phylogenetic basis. Plants and algae have a complex phylogenetic history, including acquisition of genes responsible for carbohydrate synthesis and modification through a series of primary (leading to red algae, green algae, and land plants) and secondary (generating brown algae, diatoms, and dinoflagellates) endosymbiotic events. Therefore, organisms that have the shared features of photosynthesis and possession of a cell wall do not form a monophyletic group. Yet they contain some common wall components that can be explained increasingly by genetic and biochemical evidence. PMID:21351878

  6. Red coralline algae assessed as marine pH proxies using 11B MAS NMR.

    PubMed

    Cusack, M; Kamenos, N A; Rollion-Bard, C; Tricot, G

    2015-01-01

    Reconstructing pH from biogenic carbonates using boron isotopic compositions relies on the assumption that only borate, and no boric acid, is present. Red coralline algae are frequently used in palaeoenvironmental reconstruction due to their widespread distribution and regular banding frequency. Prior to undertaking pH reconstructions using red coralline algae we tested the boron composition of the red coralline alga Lithothamnion glaciale using high field NMR. In bulk analysed samples, thirty percent of boron was present as boric acid. We suggest that prior to reconstructing pH using coralline algae 1) species-specific boron compositions and 2) within-skeleton special distributions of boron are determined for multiple species. This will enable site selective boron analyses to be conducted validating coralline algae as palaeo-pH proxies based on boron isotopic compositions. PMID:25640229

  7. Red coralline algae assessed as marine pH proxies using 11B MAS NMR

    NASA Astrophysics Data System (ADS)

    Cusack, M.; Kamenos, N. A.; Rollion-Bard, C.; Tricot, G.

    2015-02-01

    Reconstructing pH from biogenic carbonates using boron isotopic compositions relies on the assumption that only borate, and no boric acid, is present. Red coralline algae are frequently used in palaeoenvironmental reconstruction due to their widespread distribution and regular banding frequency. Prior to undertaking pH reconstructions using red coralline algae we tested the boron composition of the red coralline alga Lithothamnion glaciale using high field NMR. In bulk analysed samples, thirty percent of boron was present as boric acid. We suggest that prior to reconstructing pH using coralline algae 1) species-specific boron compositions and 2) within-skeleton special distributions of boron are determined for multiple species. This will enable site selective boron analyses to be conducted validating coralline algae as palaeo-pH proxies based on boron isotopic compositions.

  8. Hyperbolic chemotaxis Hyperbolic chemotaxis on networks Models for biofilms Models for algae Some issues in the modeling of movement

    E-print Network

    Ribot, Magali

    Hyperbolic chemotaxis Hyperbolic chemotaxis on networks Models for biofilms Models for algae Some issues in the modeling of movement of cells : chemotaxis, biofilms, algae, etc... Magali Ribot;Hyperbolic chemotaxis Hyperbolic chemotaxis on networks Models for biofilms Models for algae Hyperbolic

  9. Managing phosphorus fertilizer to reduce algae, maintain water quality, and sustain yields in water-seeded rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In water-seeded rice systems blue-green algae (cyanobacteria) hinder early-season crop growth by dislodging rice seedlings and reducing light. Since algae are often phosphorus (P) limited, we investigated whether changing the timing of P fertilizer application could reduce algae without reducing cro...

  10. DISTINCT PATTERNS OF NITRATE REDUCTASE ACTIVITY IN BROWN ALGAE: LIGHT AND AMMONIUM SENSITIVITY IN LAMINARIA DIGITATA IS ABSENT IN

    E-print Network

    Berges, John A.

    DISTINCT PATTERNS OF NITRATE REDUCTASE ACTIVITY IN BROWN ALGAE: LIGHT AND AMMONIUM SENSITIVITY and lowest in summer. This is the first report of NR activity in any alga that is not strongly regulated the regulation of NR by light that has been observed in other algae and higher plants. Key index words: ammonium

  11. Modulation of Light-Enhancement to Symbiotic Algae by Light-Scattering in Corals and Evolutionary Trends in

    E-print Network

    Hartline, Jason D.

    Modulation of Light-Enhancement to Symbiotic Algae by Light-Scattering in Corals and Evolutionary that the cost of enhancing light-amplification to the algae is revealed in decreased resilience) Modulation of Light-Enhancement to Symbiotic Algae by Light-Scattering in Corals and Evolutionary Trends

  12. Fottea 8(2): 133146, 2008 133 Epipelic cyanobacteria and algae: a case study from Czech ponds

    E-print Network

    Fottea 8(2): 133­146, 2008 133 Epipelic cyanobacteria and algae: a case study from Czech ponds Petr and algae (particularly desmids). Altogether 45 sediment samples were taken at ponds covering a p and various protozoa, feeding on epipelic algae (Amoeba, Urceolus cyclostomus). Key words: epipelon

  13. SYMBIOSIS (2008) 46, 153160 2008 Balaban, Philadelphia/Rehovot ISSN 0334-5114 Changes in chloroplast structure in lichenized algae

    E-print Network

    2008-01-01

    in chloroplast structure in lichenized algae Ond ej Peksa1,2* and Pavel kaloud2 1 The West Bohemian Museum in the systematic classification of trebouxioid algae. However, in different ontogenetic, physiological the lichen thallus. Keywords: Confocal laser scanning microscopy, green algae, isolation, Lecanorales

  14. International Journal of Systematic and Evolutionary Microbiology (2001), 51, 737749 Printed in Great Britain Phylogenetic relationships among algae based

    E-print Network

    Gent, Universiteit

    2001-01-01

    in Great Britain Phylogenetic relationships among algae based on complete large-subunit rRNA sequences 1 of the different groups of algae, and in particular to study the relationships among the different classes of heterokont algae. In LSU rRNA phylogenies, the chlorarachniophytes, cryptomonads and haptophytes seem to form

  15. MOLECULAR CHARACTERIZATION OF THE ASSIMILATORY NITRATE REDUCTASE GENE AND ITS EXPRESSION IN THE MARINE GREEN ALGA DUNALIELLA

    E-print Network

    Ward, Bess

    IN THE MARINE GREEN ALGA DUNALIELLA TERTIOLECTA (CHLOROPHYCEAE)1 Bongkeun Song2 and Bess B. Ward Department from a marine phytoplankton, the green alga Dunaliella tertiolecta Butcher. Its sequence is very similar to that of the other green algae, but its intron structure and transcriptional regulation differ

  16. Inhibition of Photosynthesis in Some Algae by Extreme-Red Light Author(s): Eugene Rabinowitch, Govindjee, Jan B. Thomas

    E-print Network

    Govindjee

    Inhibition of Photosynthesis in Some Algae by Extreme-Red Light Author(s): Eugene Rabinowitch://www.jstor.org #12;Inhibition of Photosynthesis in Some Algae by Extreme"Red Light Abstract. Photosynthesis produced by far-red light (about 700 m,b) is reversibly inhibited in some algae by extreme-red light ( 750 m

  17. JENUFA GEN. NOV.: A NEW GENUS OF COCCOID GREEN ALGAE (CHLOROPHYCEAE, INCERTAE SEDIS) PREVIOUSLY RECORDED BY ENVIRONMENTAL SEQUENCING1

    E-print Network

    JENUFA GEN. NOV.: A NEW GENUS OF COCCOID GREEN ALGAE (CHLOROPHYCEAE, INCERTAE SEDIS) PREVIOUSLY of unicellular green algae from algal biofilms growing on tree bark in a Southeast Asian tropical rainforest: AU, approximately unbiased; BBM, Bold basal medium; CAUP, Culture Collection of algae at Charles

  18. Effects of accumulations of sediments and drift algae on recruitment of sessile organisms associated with oyster reefs

    E-print Network

    McGlathery, Karen

    associated with oyster reefs M.S. Thomsen *, K. McGlathery Department of Environmental Science, P.O. Box algae (stress) affected recruitment of sessile oyster reef organisms, we constructed cages in Hog Island of the oyster Crassostrea virginica, the alien algae Gracilaria vermiculophylla and Codium fragile, the alga

  19. Relative roles of endolithic algae and carbonate chemistry variability in the skeletal dissolution of crustose coralline algae

    NASA Astrophysics Data System (ADS)

    Reyes-Nivia, C.; Diaz-Pulido, G.; Dove, S.

    2014-09-01

    The susceptibility of crustose coralline algae (CCA) skeletons to dissolution is predicted to increase as oceans warm and acidify. Skeletal dissolution is caused by bioerosion from endolithic microorganisms and by chemical processes associated with undersaturation of carbonate minerals in seawater. Yet, the relative contribution of algal microborers and seawater carbonate chemistry to the dissolution of organisms that cement reefs under projected pCO2 and temperature (pCO2-T) scenarios have not been quantified. We exposed CCA skeletons (Porolithon onkodes) to four pCO2-T treatments (pre-industrial, present-day, SRES-B1 "reduced" pCO2, and SRES-A1FI "business-as-usual" pCO2 emission scenarios) under natural light cycles vs. constant dark conditions for 8 weeks. Dissolution rates of skeletons without photo-endoliths were dramatically higher (200%) than those colonized by endolithic algae across all pCO2-T scenarios. This suggests that daytime photosynthesis by microborers counteract dissolution by reduced saturation states resulting in lower net erosion rates over day-night cycles. Regardless of the presence or absence of phototrophic microborers, skeletal dissolution increased significantly under the spring A1FI "business-as-usual" scenario, confirming the CCA sensitivity to future oceans. Projected ocean acidity and temperature may significantly disturb the stability of reef frameworks cemented by CCA, but surficial substrates harbouring photosynthetic microborers will be less impacted than those without algal endoliths.

  20. Bioactive Chemical Constituents from the Brown Alga Homoeostrichus formosana

    PubMed Central

    Fang, Hui-Yu; Chokkalingam, Uvarani; Chiou, Shu-Fen; Hwang, Tsong-Long; Chen, Shu-Li; Wang, Wei-Lung; Sheu, Jyh-Horng

    2014-01-01

    A new chromene derivative, 2-(4',8'-dimethylnona-3'E,7'-dienyl)-8-hydroxy-2,6-dimethyl-2H-chromene (1) together with four known natural products, methylfarnesylquinone (2), isololiolide (3), pheophytin a (4), and ?-carotene (5) were isolated from the brown alga Homoeostrichus formosana. The structure of 1 was determined by extensive 1D and 2D spectroscopic analyses. Acetylation of 1 yielded the monoacetylated derivative 2-(4',8'-dimethylnona-3'E,7'-dienyl)-8-acetyl-2,6-dimethyl-2H-chromene (6). Compounds 1–6 exhibited various levels of cytotoxic, antibacterial, and anti-inflammatory activities. Compound 2 was found to display potent in vitro anti-inflammatory activity by inhibiting the generation of superoxide anion (IC50 0.22 ± 0.03 ?g/mL) and elastase release (IC50 0.48 ± 0.11 ?g/mL) in FMLP/CB-induced human neutrophils. PMID:25561228

  1. Genomic insights from the oleaginous model alga Nannochloropsis gaditana.

    PubMed

    Jinkerson, Robert E; Radakovits, Randor; Posewitz, Matthew C

    2013-01-01

    Nannochloropsis species have emerged as leading phototrophic microorganisms for the production of biofuels. Several isolates produce large quantities of triacylglycerols, grow rapidly, and can be cultivated at industrial scales. Recently, the mitochondrial, plastid and nuclear genomes of Nannochloropsis gaditana were sequenced. Genomic interrogation revealed several key features that likely facilitate the oleaginous phenotype observed in Nannochloropsis, including an over-representation of genes involved in lipid biosynthesis. Here we present additional analyses on gene orientation, vitamin B12 requiring enzymes, the acetyl-CoA metabolic node, and codon usage in N. gaditana. Nuclear genome transformation methods are established with exogenous DNA integration occurring via either random incorporation or by homologous recombination, making Nannochloropsis amenable to both forward and reverse genetic engineering. Completion of a draft genomic sequence, establishment of transformation techniques, and robust outdoor growth properties have positioned Nannochloropsis as a new model alga with significant potential for further development into an integrated photons-to-fuel production platform. PMID:22922732

  2. Antibiotics from Algae. XXXV. Phlorotannins from Ecklonia maxima1.

    PubMed

    Glombitza, K W; Vogels, H P

    1985-08-01

    New phloroglucinol derivatives were isolated from the ethanolic extract of ECKLONIA MAXIMA, a brown alga found off the west coast of South Africa. Most of these compounds contain dibenzo[1,4]dioxin elements. The common basic unit of all the compounds found is eckol, a hexahydroxyphenoxydibenzo[1,4]dioxin composed of 3 phloroglucinol units. Phloroeckol A and B represent four-ringed phloroglucinol derivatives, whereas the only five-ringed substance (furodehydroeckol) displays a furan structure in addition. Six-ringed phloroglucinol derivatives composed of two eckol units joined either symmetrically (such as 7,7'-bieckol, 9,9'-bieckol) or asymmetrically (7,9'-bieckol, dieckol) are found frequently. Apart from these, tetraphlorethol C, a four-ringed tetraphloroglucinol triether which lacks both dioxin and furan structures, also occurs. PMID:17340520

  3. Use of freshwater algae and duckweeds for phytotoxicity testing.

    PubMed

    Blinova, Irina

    2004-08-01

    The toxicity of contaminated water of different origins and chemicals [Cr(III), Pb(II), Cu(II), Cd(II), pyrene] were tested using four test species: the alga Selenastrum capricornutum (new name Raphidocelis subcapitata), the duckweed Lemna minor, and the crustaceans Thamnocephalus platyurus and Daphnia magna. On the basis of the results obtained, the sensitivity of plant species and problems concerning the interpretation of the phytotoxicity data are discussed. The data indicated that the sensitivities of crustaceans and plant species both to individual contaminants and to mixtures are unpredictable and that there is no reason to consider plant species less sensitive than animal species. Lemna minor is more sensitive than Selenastrum capricornutum. With colored samples, duckweed is preferable for toxicity testing. To raise the predictive utility of the phytotoxicity data, it is recommended that natural water be used in the test procedure. PMID:15269918

  4. Satellite-Observed Algae Blooms in China's Lake Taihu

    NASA Astrophysics Data System (ADS)

    Wang, Menghua; Shi, Wei

    2008-05-01

    During the spring of 2007, a massive blue-green algae (Microcystis) bloom broke out in Lake Taihu, one of the largest inland lakes in China. This freshwater lake is located in the Yangtze River delta (Figure 1), one of the world's most urbanized and heavily populated areas. The massive bloom event became an environmental crisis that prompted officials to cut tap water supply to several million residents in nearby Wuxi city in China's Jiangsu province. The outbreak, which the Chinese government identified as a major natural disaster, forced unprepared residents to rush to buy bottled water for their normal usage. This article presents results from an analysis of that event that demonstrate an application of satellite-derived imagery for inland lake water quality monitoring, assessment, and management.

  5. Alternate-Fueled Flight: Halophytes, Algae, Bio-, and Synthetic Fuels

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.

    2007-01-01

    Synthetic and biomass fueling are now considered to be near-term aviation alternate fueling. The major impediment is a secure sustainable supply of these fuels at reasonable cost. However, biomass fueling raises major concerns related to uses of common food crops and grasses (some also called "weeds") for processing into aviation fuels. These issues are addressed, and then halophytes and algae are shown to be better suited as sources of aerospace fuels and transportation fueling in general. Some of the history related to alternate fuels use is provided as a guideline for current and planned alternate fuels testing (ground and flight) with emphasis on biofuel blends. It is also noted that lessons learned from terrestrial fueling are applicable to space missions. These materials represent an update and additions to the Workshop on Alternate Fueling Sustainable Supply and Halophyte Summit at Twinsburg, OH, Oct. 17 to 18, 2007 (ref. 1).

  6. Alternate-Fueled Flight: Halophytes, Algae, Bio-, and Synthetic Fuels

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.

    2012-01-01

    Synthetic and biomass fueling are now considered to be near-term aviation alternate fueling. The major impediment is a secure sustainable supply of these fuels at reasonable cost. However, biomass fueling raises major concerns related to uses of common food crops and grasses (some also called "weeds") for processing into aviation fuels. These issues are addressed, and then halophytes and algae are shown to be better suited as sources of aerospace fuels and transportation fueling in general. Some of the history related to alternate fuels use is provided as a guideline for current and planned alternate fuels testing (ground and flight) with emphasis on biofuel blends. It is also noted that lessons learned from terrestrial fueling are applicable to space missions. These materials represent an update (to 2009) and additions to the Workshop on Alternate Fueling Sustainable Supply and Halophyte Summit at Twinsburg, Ohio, October 17 to 18, 2007.

  7. Testing an Algae-Based Air-Regeneration System

    NASA Technical Reports Server (NTRS)

    Nienow, James

    1998-01-01

    The potential of an air-regeneration system based on the growth of unicellular algae on the surface of porous ceramic tubes was evaluated. The system is fairly robust with respect to environmental conditions and is capable of maintaining algal cultures for up to 365 days. Under standard conditions (50-66 micro mol/sq mm s (PPF), 450 micro mol mol of CO2), mature tubes can remove CO2 at a rate of up to 90 micro mol/sq m min. Under these conditions, approximately 200 square meters of area would be required for each member of the crew. However, the rate of uptake increases with both photon flux and CO2 concentration in accordance with Michaelis-Menton dynamics. An extrapolation to conditions of saturating light and carbon dioxide indicates that the area required can be reduced by a factor of at least 2.5.

  8. A new ketosteroid from red alga Acanthophora spicifera

    NASA Astrophysics Data System (ADS)

    Shi, Dayong; Guo, Shuju; Fan, Xiao

    2011-05-01

    A new ketosteroid, along with six known steroids, was isolated from the ethanolic extracts of red alga Acanthophora spicifera (Vahl.) Boergesen. The structures, identified using chemical and spectroscopic methods including 2D NMR, were: (1) 22-hydroxy-5?-cholest-3,6-dione, (2) 6-hydroxycholest-4-ene-3-one, (3) cholest-4-ene-3,6-dione, (4) cholest-5-ene-3?-ol, (5) 5?-cholestane-3,6-dione, (6) ?-Sitosterol and (7) Saringosterol. The MTT method was used to test the cytotoxicity of the compounds against the human cancer cell lines, HCT-8, Bel-7402, BGC-823, A549 and HELA. Compounds 1, 2, 3 and 5 showed moderate cytotoxic activity against human cancer cell lines.

  9. Enhanced Genetic Tools for Engineering Multigene Traits into Green Algae

    PubMed Central

    Rasala, Beth A.; Chao, Syh-Shiuan; Pier, Matthew; Barrera, Daniel J.; Mayfield, Stephen P.

    2014-01-01

    Transgenic microalgae have the potential to impact many diverse biotechnological industries including energy, human and animal nutrition, pharmaceuticals, health and beauty, and specialty chemicals. However, major obstacles to sophisticated genetic and metabolic engineering in algae have been the lack of well-characterized transformation vectors to direct engineered gene products to specific subcellular locations, and the inability to robustly express multiple nuclear-encoded transgenes within a single cell. Here we validate a set of genetic tools that enable protein targeting to distinct subcellular locations, and present two complementary methods for multigene engineering in the eukaryotic green microalga Chlamydomonas reinhardtii. The tools described here will enable advanced metabolic and genetic engineering to promote microalgae biotechnology and product commercialization. PMID:24710110

  10. Toxicity testing with the marine algae, Symbiodinium kawagutii (Dinophyceae)

    SciTech Connect

    Gorrie, J.R.; Bidwell, J.R.; Rippingale, R.J.

    1994-12-31

    The dinoflagellate, Symbiodinium kawagutii, is among the algal taxa which exist in symbiosis with a range of marine invertebrates. S. kawagutii is commonly found in association with the Hawaiian stony coral, Montipora verrucosa. The algae has been successfully cultured in the laboratory using a common marine algal growth media (Guillard f/2), and sufficient cell densities were achieved in a 96-hr bioassay to allow statistical evaluation of toxicity data. A 96-hr EC{sub 50} of 6.47 mg/L (95% C.I.: 3.54--9.88 mg/L) was calculated after exposure to potassium dichromate. Wide distribution of the coral host and ecological importance of the symbiosis make S. kawagutii an excellent candidate species for hazard evaluation in tropical marine ecosystems. Continuing research will seek to further refine the bioassay, including the use of a microplate technique for more rapid testing.

  11. The effect of low temperature on Antarctic endolithic green algae

    NASA Technical Reports Server (NTRS)

    Meyer, M. A.; Morris, G. J.; Friedmann, E. I.

    1988-01-01

    Laboratory experiments show that undercooling to about -5 degrees C occurs in colonized Beacon sandstones of the Ross Desert, Antarctica. High-frequency temperature oscillations between 5 degrees C and -5 degrees C or -10 degrees C (which occur in nature on the rock surface) did not damage Hemichloris antarctica. In a cryomicroscope, H. antarctica appeared to be undamaged after slow or rapid cooling to -50 degrees C. 14CO2 incorporation after freezing to -20 degrees C was unaffected in H. antarctica or in Trebouxia sp. but slightly depressed in Stichococcus sp. (isolated from a less extreme Antarctic habitat). These results suggest that the freezing regime in the Antarctic desert is not injurious to endolithic algae. It is likely that the freezing-point depression inside the rock makes available liquid water for metabolic activity at subzero temperatures. Freezing may occur more frequently on the rock surface and contribute to the abiotic nature of the surface.

  12. Simultaneous coupling of phototaxis and electrotaxis in Volvox algae

    NASA Astrophysics Data System (ADS)

    Hayashi, Yoshikatsu; Sugawara, Ken

    2014-04-01

    In nature, living creatures are affected by several stimuli simultaneously. The response of living creatures to stimuli is called taxis. In order to reveal the principles of taxis behavior in response to complex stimuli, we simultaneously applied photostimulation and electric stimulation perpendicularly to a Volvox algae solution. The probability distribution of the swimming direction showed that a large population of swimming cells moved in a direction that was the result of the composition of phototaxis and electrotaxis. More surprisingly, we uncovered the coupling of signs of taxis, i.e., coupling of phototaxis and electrotaxis induced positive electrotaxis, which did not emerge in the single stimulation experiments. We qualitatively explained the coupling of taxis based on the polarization of the swimming cells induced by the simultaneous photo- and electric stimulation.

  13. Phycobilisome Mobility and Its Role in the Regulation of Light Harvesting in Red Algae.

    PubMed

    Ka?a, Radek; Kotabová, Eva; Lukeš, Martin; Papá?ek, St?pán; Matonoha, Ctirad; Liu, Lu-Ning; Prášil, Ond?ej; Mullineaux, Conrad W

    2014-06-19

    Red algae represent an evolutionarily important group that gave rise to the whole red clade of photosynthetic organisms. They contain a unique combination of light-harvesting systems represented by a membrane-bound antenna and by phycobilisomes situated on thylakoid membrane surfaces. So far, very little has been revealed about the mobility of their phycobilisomes and the regulation of their light-harvesting system in general. Therefore, we carried out a detailed analysis of phycobilisome dynamics in several red alga strains and compared these results with the presence (or absence) of photoprotective mechanisms. Our data conclusively prove phycobilisome mobility in two model mesophilic red alga strains, Porphyridium cruentum and Rhodella violacea. In contrast, there was almost no phycobilisome mobility in the thermophilic red alga Cyanidium caldarium that was not caused by a decrease in lipid desaturation in this extremophile. Experimental data attributed this immobility to the strong phycobilisome-photosystem interaction that highly restricted phycobilisome movement. Variations in phycobilisome mobility reflect the different ways in which light-harvesting antennae can be regulated in mesophilic and thermophilic red algae. Fluorescence changes attributed in cyanobacteria to state transitions were observed only in mesophilic P. cruentum with mobile phycobilisomes, and they were absent in the extremophilic C. caldarium with immobile phycobilisomes. We suggest that state transitions have an important regulatory function in mesophilic red algae; however, in thermophilic red algae, this process is replaced by nonphotochemical quenching. PMID:24948833

  14. Landfill leachate--a water and nutrient resource for algae-based biofuels.

    PubMed

    Edmundson, Scott J; Wilkie, Ann C

    2013-01-01

    There is a pressing need for sustainable renewable fuels that do not negatively impact food and water resources. Algae have great potential for the production of renewable biofuels but require significant water and fertilizer resources for large-scale production. Municipal solid waste (MSW) landfill leachate (LL) was evaluated as a cultivation medium to reduce both water and elemental fertilizer demands of algae cultivation. Daily growth rate and cell yield of two isolated species of algae (Scenedesmus cf. rubescens and Chlorella cf. ellipsoidea) were cultivated in MSW LL and compared with Bold's Basal Medium (BBM). Results suggest that LL can be used as a nutrient resource and medium for the cultivation of algae biomass. S. cf. rubescens grew well in 100% LL, when pH was regulated, with a mean growth rate and cell yield 91.2% and 92.8% of those observed in BBM, respectively. S. cf. rubescens was more adaptable than C. cf. ellipsoidea to the LL tested. The LL used in this study supported a maximum volumetric productivity of 0.55 g/L/day of S. cf. rubescens biomass. The leachate had sufficient nitrogen to supply 17.8 g/L of algae biomass, but was limited by total phosphorus. Cultivation of algae on LL offsets both water and fertilizer consumption, reducing the environmental footprint and increasing the potential sustainability of algae-based biofuels. PMID:24350438

  15. Possible future effects of large-scale algae cultivation for biofuels on coastal eutrophication in Europe.

    PubMed

    Blaas, Harry; Kroeze, Carolien

    2014-10-15

    Biodiesel is increasingly considered as an alternative for fossil diesel. Biodiesel can be produced from rapeseed, palm, sunflower, soybean and algae. In this study, the consequences of large-scale production of biodiesel from micro-algae for eutrophication in four large European seas are analysed. To this end, scenarios for the year 2050 are analysed, assuming that in the 27 countries of the European Union fossil diesel will be replaced by biodiesel from algae. Estimates are made for the required fertiliser inputs to algae parks, and how this may increase concentrations of nitrogen and phosphorus in coastal waters, potentially leading to eutrophication. The Global NEWS (Nutrient Export from WaterSheds) model has been used to estimate the transport of nitrogen and phosphorus to the European coastal waters. The results indicate that the amount of nitrogen and phosphorus in the coastal waters may increase considerably in the future as a result of large-scale production of algae for the production of biodiesel, even in scenarios assuming effective waste water treatment and recycling of waste water in algae production. To ensure sustainable production of biodiesel from micro-algae, it is important to develop cultivation systems with low nutrient losses to the environment. PMID:25058933

  16. Environmental impacts of algae-derived biodiesel and bioelectricity for transportation.

    PubMed

    Clarens, Andres F; Nassau, Hagai; Resurreccion, Eleazer P; White, Mark A; Colosi, Lisa M

    2011-09-01

    Algae are a widely touted source of bioenergy with high yields, appreciable lipid contents, and an ability to be cultivated on marginal land without directly competing with food crops. Nevertheless, recent work has suggested that large-scale deployment of algae bioenergy systems could have unexpectedly high environmental burdens. In this study, a "well-to-wheel" life cycle assessment was undertaken to evaluate algae's potential use as a transportation energy source for passenger vehicles. Four algae conversion pathways resulting in combinations of bioelectricity and biodiesel were assessed for several relevant nutrient procurement scenarios. Results suggest that algae-to-energy systems can be either net energy positive or negative depending on the specific combination of cultivation and conversion processes used. Conversion pathways involving direct combustion for bioelectricity production generally outperformed systems involving anaerobic digestion and biodiesel production, and they were found to generate four and fifteen times as many vehicle kilometers traveled (VKT) per hectare as switchgrass or canola, respectively. Despite this, algae systems exhibited mixed performance for environmental impacts (energy use, water use, and greenhouse gas emissions) on a "per km" basis relative to the benchmark crops. This suggests that both cultivation and conversion processes must be carefully considered to ensure the environmental viability of algae-to-energy processes. PMID:21774477

  17. Distribution and paleoecology of algae from Missourian (Upper Pennsylvanian) cyclic sequences, Mid-Continent, USA

    SciTech Connect

    Holterhoff, P.F. )

    1991-03-01

    The objectives of this study are fourfold: (1) document the basinal to inner shelf and vertical distribution of marine algae from Missourian transgressive-regressive depositional sequences of the U.S. Mid-Continent: (2) integrate observed taphonomic and petrographic properties with the distribution patterns to produce empirically derived paleoecologic interpretations of these algae; (3) propose an algal-carbonate facies model for Upper Pennsylvanian depositional sequences; (4) indicate which facies could be potential reservoirs. Preliminary results indicate that cyanobacteria, often intergrown with encrusting forams, are as abundant as oncoids and encrustations; this consortia is often associated with the encrusting rhodophyte Archaeolithophyllum lamellosum, creating boundstone hardgrounds. These algae are especially characteristic of transgressive/highstand shelf and basin facies, are not commonly associated with other calcareous algal groups, and are low-light tolerant. The rhodophyte phylloid alga A. missouriense occurs as large prostrate blades in mudstones, as in situ broken blades with abundant isopachous and botryoidal fibrous cements and mudstone breccia, or as abraded fragments in grainstones associated with various chlorophytes. These occurrences range across shelf facies; thus A. missouriense is probably the most eurytopic of the skeletal algae. Codiacean chlorophyte phylloid algae are characteristically associated with shelf buildups and inner shelf/late highstand shoal grainstones. Fragments of dasycladacean chlorophytes are often associated with the shoal facies codiaceans. These algae appear rather stenotopic, requiring well-lit conditions. Potential porosity development involves dissolution of metastable algal blades and marine cements in buildup and grainstone facies.

  18. Can benthic algae mediate larval behavior and settlement of the coral Acropora muricata?

    NASA Astrophysics Data System (ADS)

    Denis, V.; Loubeyres, M.; Doo, S. S.; de Palmas, S.; Keshavmurthy, S.; Hsieh, H. J.; Chen, C. A.

    2014-06-01

    The resilience of coral reefs relies significantly on the ability of corals to recover successfully in algal-dominated environments. Larval settlement is a critical but highly vulnerable stage in the early life history of corals. In this study, we analyzed how the presence of two upright fleshy algae, Sargassum mcclurei (SM) and Padina australis (PA), and one crustose coralline algae, Mesophyllum simulans (MS), affects the settlement of Acropora muricata larvae. Coral larvae were exposed to seawater flowing over these algae at two concentrations. Larval settlement and mortality were assessed daily through four variables related to their behavior: swimming, substratum testing, metamorphosis, and stresses. Temperature, dissolved oxygen, pH, algal growth, and photosynthetic efficiency were monitored throughout the experiment. Results showed that A. muricata larvae can settle successfully in the absence of external stimuli (63 ± 6 % of the larvae settled in control treatments). While algae such as MS may stimulate substrate testing and settlement of larvae in the first day after competency, they ultimately had a lower settlement rate than controls. Fleshy algae such as PA, and in a lesser measure SM, induced more metamorphosis than controls and seemed to eventually stimulate settlement. A diverse combination of signals and/or modifications of microenvironments by algae and their associated microbial communities may explain the pattern observed in coral settlement. Overall, this study contributes significantly to the knowledge of the interaction between coral and algae, which is critical for the resilience of the reefs.

  19. Isolation and properties of fungi that lyse blue-green algae.

    PubMed Central

    Redhead, K; Wright, S J

    1978-01-01

    Of 70 pure microbial cultures isolated from aquatic habitats, soil, and air according to the ability to lyse live blue-green algae, 62 were fungi representing the genera Acremonium, Emericellopsis, and Verticillium. Algal-lysing fungi were isolated from all habitat types sampled. The remaining isolates comprised four bacteria and four streptomycetes. All isolates lysed Anabaena flos-aquae and, in most cases, several other filamentous and unicellular blue-green algae. The fungi generally showed greater activity than most other isolates towards a wider range of susceptible algae, including green algae in some cases. Acremonium and Emericellopsis isolates, but not Verticillium, also inhibited the growth of blue-green algae and gram-positive bacteria, but did not lyse the latter. Lysis of blue green algae by Acremonium and Emericellopsis spp. was associated with the formation of diffusible heat-stable extracellular factors which, evidence suggests, could be cephalosporin antibiotic(s). Blue-green algae were also lysed by pure cephalosporin C. The frequent isolation of lytic fungi from algal habitats suggests a possible natural algal-destroying role for such fungi, which might be exploitable for algal bloom control. Images PMID:418740

  20. Phycobilisome Mobility and Its Role in the Regulation of Light Harvesting in Red Algae1[W

    PubMed Central

    Ka?a, Radek; Kotabová, Eva; Lukeš, Martin; Papá?ek, Št?pán; Matonoha, Ctirad; Liu, Lu-Ning; Prášil, Ond?ej; Mullineaux, Conrad W.

    2014-01-01

    Red algae represent an evolutionarily important group that gave rise to the whole red clade of photosynthetic organisms. They contain a unique combination of light-harvesting systems represented by a membrane-bound antenna and by phycobilisomes situated on thylakoid membrane surfaces. So far, very little has been revealed about the mobility of their phycobilisomes and the regulation of their light-harvesting system in general. Therefore, we carried out a detailed analysis of phycobilisome dynamics in several red alga strains and compared these results with the presence (or absence) of photoprotective mechanisms. Our data conclusively prove phycobilisome mobility in two model mesophilic red alga strains, Porphyridium cruentum and Rhodella violacea. In contrast, there was almost no phycobilisome mobility in the thermophilic red alga Cyanidium caldarium that was not caused by a decrease in lipid desaturation in this extremophile. Experimental data attributed this immobility to the strong phycobilisome-photosystem interaction that highly restricted phycobilisome movement. Variations in phycobilisome mobility reflect the different ways in which light-harvesting antennae can be regulated in mesophilic and thermophilic red algae. Fluorescence changes attributed in cyanobacteria to state transitions were observed only in mesophilic P. cruentum with mobile phycobilisomes, and they were absent in the extremophilic C. caldarium with immobile phycobilisomes. We suggest that state transitions have an important regulatory function in mesophilic red algae; however, in thermophilic red algae, this process is replaced by nonphotochemical quenching. PMID:24948833

  1. Combining micro-structures and micro-algae to increase lipid production for bio-fuel

    NASA Astrophysics Data System (ADS)

    Vyawahare, Saurabh; Zhu, Emilly; Mestler, Troy; Estévez-Torres, André.; Austin, Robert

    2011-03-01

    3rd generation bio-fuels like lipid producing micro-algae are a promising source of energy that could replace our dependence on petroleum. However, until there are improvements in algae oil yields, and a reduction in the energy needed for processing, algae bio-fuels are not economically competitive with petroleum. Here, we describe our work combining micro-fabricated devices with micro-algae Neochloris oleoabundans, a species first isolated on the sand dunes of Saudi Arabia. Inserting micro-algae of varying fitness into a landscape of micro-habitats allows us to evolve and select them based on a variety of conditions like specific gravity, starvation response and Nile Red fluorescence (which is a marker for lipid production). Hence, we can both estimate the production of lipids and generate conditions that allow the creation and isolation of algae which produce higher amounts of lipids, while discarding the rest. Finally, we can use micro-fabricated structures and flocculation to de-water these high lipid producing algae, reducing the need for expensive centrifugation and filtration.

  2. Algae in Fish Feed: Performances and Fatty Acid Metabolism in Juvenile Atlantic Salmon

    PubMed Central

    Norambuena, Fernando; Hermon, Karen; Skrzypczyk, Vanessa; Emery, James A.; Sharon, Yoni; Beard, Alastair; Turchini, Giovanni M.

    2015-01-01

    Algae are at the base of the aquatic food chain, producing the food resources that fish are adapted to consume. Previous studies have proven that the inclusion of small amounts (<10% of the diet) of algae in fish feed (aquafeed) resulted in positive effects in growth performance and feed utilisation efficiency. Marine algae have also been shown to possess functional activities, helping in the mediation of lipid metabolism, and therefore are increasingly studied in human and animal nutrition. The aim of this study was to assess the potentials of two commercially available algae derived products (dry algae meal), Verdemin (derived from Ulva ohnoi) and Rosamin (derived from diatom Entomoneis spp.) for their possible inclusion into diet of Atlantic Salmon (Salmo salar). Fish performances, feed efficiency, lipid metabolism and final product quality were assessed to investigated the potential of the two algae products (in isolation at two inclusion levels, 2.5% and 5%, or in combination), in experimental diets specifically formulated with low fish meal and fish oil content. The results indicate that inclusion of algae product Verdemin and Rosamin at level of 2.5 and 5.0% did not cause any major positive, nor negative, effect in Atlantic Salmon growth and feed efficiency. An increase in the omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) content in whole body of fish fed 5% Rosamin was observed. PMID:25875839

  3. Tyrosinase inhibitors isolated from the edible brown alga Ecklonia stolonifera.

    PubMed

    Kang, Hye Sook; Kim, Hyung Rak; Byun, Dae Seok; Son, Byeng Wha; Nam, Taek Jeong; Choi, Jae Sue

    2004-12-01

    Extracts from seventeen seaweeds were determined for tyrosinase inhibitory activity using mushroom tyrosinase with L-tyrosine as a substrate. Only one of them, Ecklonia stolonifera OKAMURA (Laminariaceae) belonging to brown algae, showed high tyrosinase inhibitory activity. Bioassay-guided fractionation of the active ethyl acetate (EtOAc) soluble fraction from the methanolic extract of E. stolonifera, led us to the isolation of phloroglucinol derivatives [phloroglucinol (1), eckstolonol (2), eckol (3), phlorofucofuroeckol A (4), and dieckol (5)]. Compounds 1 approximately 5 were found to inhibit the oxidation of L-tyrosine catalyzed by mushroom tyrosinase with IC50 values of 92.8, 126, 33.2, 177, and 2.16 microg/mL, respectively. It was compared with those of kojic acid and arbutin, well-known tyrosinase inhibitors, with IC50 values of 6.32 and 112 microg/ mL, respectively. The inhibitory kinetics analyzed from Lineweaver-Burk plots, showed compounds 1 and 2 to be competitive inhibitors with Ki of 2.3x10(-4) and 3.1x10(-4) M, and compounds 3 approximately 5 to be noncompetitive inhibitors with Ki of 1.9x10(-5), 1.4x10(-3) and 1.5x10(-5) M, respectively. This work showed that phloroglucinol derivatives, natural compounds found in brown algae, could be involved in the control of pigmentation in plants and other organisms through inhibition of tyrosinase activity using L-tyrosine as a substrate. PMID:15646796

  4. Ecotoxicological effects of Mikado and Viper on algae and daphnids.

    PubMed

    Marques, C R; Gonçalves, A M M; Pereira, R; Gonçalves, F

    2012-12-01

    The toxicity of single and combined formulated herbicides (Mikado and Viper) was assessed on several endpoints in species from two trophic levels: algae growth-Pseudokirchneriella subcapitata and Chlorella vulgaris-immobilization and life-history traits (only for single compound toxicity) of daphnids-Daphnia longispina and Daphnia magna. Viper was the most toxic formulated herbicide. It was hypothesized that the toxicity of both formulated herbicides could have been enhanced by adjuvants, especially for Viper. In most cases, the sublethal endpoints were the most sensitive and affected by both formulations, comparatively to their acute effects. Concentration addition (CA) and independent action (IA) models provided an accurate description of Mikado and Viper joint action on algae growth and immobilization of daphnids, although significant deviations were always detected. A low-dose antagonism and high-dose synergism were identified for P. subcapitata, whereas C. vulgaris response deviated antagonistically from CA and synergistically from IA. For both daphnids, however, synergistic effects were observed for higher mixture concentrations. Under a regulatory standpoint, CA provided the most conservative estimation either because the mixture effects were overestimated or less subestimated than IA. Overall, the great sensitivity differences observed within species did not allow the conclusion that one trophic level was more tolerant than the other. Instead, P. subcapitata was always the most sensitive species to both herbicide formulations, followed by D. longispina, while D. magna and C. vulgaris were the most tolerant species. On a whole, further studies are needed toward a comprehensive understanding of herbicides mode of action, their effects at lower biological-level endpoints, and under different mixture designs. PMID:21374788

  5. Mannitol metabolism in brown algae involves a new phosphatase family.

    PubMed

    Groisillier, Agnès; Shao, Zhanru; Michel, Gurvan; Goulitquer, Sophie; Bonin, Patricia; Krahulec, Stefan; Nidetzky, Bernd; Duan, Delin; Boyen, Catherine; Tonon, Thierry

    2014-02-01

    Brown algae belong to a phylogenetic lineage distantly related to green plants and animals, and are found predominantly in the intertidal zone, a harsh and frequently changing environment. Because of their unique evolutionary history and of their habitat, brown algae feature several peculiarities in their metabolism. One of these is the mannitol cycle, which plays a central role in their physiology, as mannitol acts as carbon storage, osmoprotectant, and antioxidant. This polyol is derived directly from the photoassimilate fructose-6-phosphate via the action of a mannitol-1-phosphate dehydrogenase and a mannitol-1-phosphatase (M1Pase). Genome analysis of the brown algal model Ectocarpus siliculosus allowed identification of genes potentially involved in the mannitol cycle. Among these, two genes coding for haloacid dehalogenase (HAD)-like enzymes were suggested to correspond to M1Pase activity, and thus were named EsM1Pase1 and EsM1Pase2, respectively. To test this hypothesis, both genes were expressed in Escherichia coli. Recombinant EsM1Pase2 was shown to hydrolyse the phosphate group from mannitol-1-phosphate to produce mannitol but was not active on the hexose monophosphates tested. Gene expression analysis showed that transcription of both E. siliculosus genes was under the influence of the diurnal cycle. Sequence analysis and three-dimensional homology modelling indicated that EsM1Pases, and their orthologues in Prasinophytes, should be seen as founding members of a new family of phosphatase with original substrate specificity within the HAD superfamily of proteins. This is the first report describing the characterization of a gene encoding M1Pase activity in photosynthetic organisms. PMID:24323504

  6. Developing a Forward Model of Encrusting Coralline Algae

    NASA Astrophysics Data System (ADS)

    Ng, J.; Williams, B.; Thompson, D. M.; Halfar, J.

    2014-12-01

    Climate proxy data has traditionally been interpreted through inverse models, which extract physical climate variables from proxy variables. This approach assumes stationarity of the proxy-climate relationship, typically reduces climate signal to a single variable, and requires extensive observational records. In contrast, forward models reverse the relationship, simulating proxy variables from physical climate variables for comparison to observed proxy variables. Since this approach accounts for multiple climate variables and avoids stationarity issues, forward models have been developed for several climate proxies, including tree ring width and oxygen stable isotopes (?18O) of corals. Here we develop a basic forward model for the climate archive coralline alga Clathromorphum sp.This long-lived alga grows in mid-to-high latitude regions and forms a solid calcite skeleton with annual growth bands similar to those of trees and tropical corals. Sub-annually resolved ?18O in annual growth bands (?18Ospec) provide a record of local environmental and climatic factors, notably sea surface temperature (SST) and sea water oxygen stable isotopes (?18Osw). We model Clathromorphum ?18Ospec in the Aleutian islands from gridded SST and ?18Osw of the growing season from 1960 to 2004. The strongest climate signal is observed in July, likely due to suppressed growth in other months. Initial results suggest no influence of growth rate on the fractionation of oxygen isotopes and indicate that ?18Ospec anomalies are significantly correlated with summer SST anomalies. We run this forward model with observed SST and ?18Osw and compare the resulting simulated ?18Ospec with that measured in live-collected specimens. This foundational model may be adapted to other regions and modified to include other variables influencing coralline isotope records, such as light availability and ice coverage.

  7. Platinum Anniversary: Virus and Lichen Alga Together More than 70 Years

    PubMed Central

    Petrzik, Karel; Vondrák, Jan; Kvíderová, Jana; Lukavský, Jaromír

    2015-01-01

    Trebouxia aggregata (Archibald) Gärtner (phylum Chlorophyta, family Trebouxiaceae), a lichen symbiotic alga, has been identified as host of the well-known herbaceous plant virus Cauliflower mosaic virus (CaMV, family Caulimoviridae). The alga had been isolated from Xanthoria parietina more than 70 years ago and has been maintained in a collection since that time. The CaMV detected in this collection entry has now been completely sequenced. The virus from T. aggregata is mechanically transmissible to a herbaceous host and induces disease symptoms there. Its genome differs by 173 nt from the closest European CaMV-D/H isolate from cauliflower. No site under positive selection was found on the CaMV genome from T. aggregata. We therefore assume that the virus’s presence in this alga was not sufficiently long to fix any specific changes in its genome. Apart from this symbiotic alga, CaMV capsid protein sequences were amplified from many other non-symbiotic algae species maintained in a collection (e.g., Oonephris obesa, Elliptochloris sp., Microthamnion kuetzingianum, Chlorella vulgaris, Pseudococcomyxa sp.). CaMV-free Chlorella vulgaris was treated with CaMV to establish virus infection. The virus was still detected there after five passages. The virus infection is morphologically symptomless on Chlorella algae and the photosynthesis activity is slightly decreased in comparison to CaMV-free alga culture. This is the first proof as to the natural presence of CaMV in algae and the first demonstration of algae being artificially infected with this virus. PMID:25789995

  8. The importance of vertical resolution in sea ice algae production models

    NASA Astrophysics Data System (ADS)

    Duarte, Pedro; Assmy, Philipp; Hop, Haakon; Spreen, Gunnar; Gerland, Sebastian; Hudson, Stephen R.

    2015-05-01

    In this study an ice-algal mathematical model is used to resolve the vertical fine structure of sea ice with ice algae, and results are compared to simulations with ice algae located only at the bottom ice layer and to those where ice algae are distributed homogeneously across part of the ice column. Ice algae are reported to contribute 4-26% of overall Arctic Ocean primary production and are an important food source for the ice-associated ecosystem. Thus, it is important to estimate the future impacts of global warming on the contribution of ice algae to Arctic primary production. Primary production models, describing the relationships between ice-algal physiology and population dynamics, with environmental forcing and trophic interactions involving bacteria and grazers, can be applied to quantify such impacts. One important aspect in these models is how to represent the vertical distribution of ice algae in sea ice. In most models, only the bottom ice layer is considered where most of the algal biomass tends to be concentrated. However, since ice algae are also present along the entire ice column, this may lead to underestimation of ice-algal production. Some empirical data and model results suggest that ice algae located in the surface and interior layers may be kept at lower concentrations, in spite of high growth rates, due to grazing by micro- and meiofauna. Results obtained in this study show the importance of resolving vertically the distribution of ice algae to avoid bias in primary production estimates, well in line with empirical studies.

  9. ENERGY PRODUCTIVITY OF THE HIGH VELOCITY ALGAE RACEWAY INTEGRATED DESIGN (ARID-HV)

    SciTech Connect

    Attalah, Said; Waller, Peter; Khawam, G.; Ryan, Randy; Huesemann, Michael H.

    2015-01-31

    The original Algae Raceway Integrated Design (ARID) raceway was an effective method to increase algae culture temperature in open raceways. However, the energy input was high and flow mixing was poor. Thus, the High Velocity Algae Raceway Integrated Design (ARID-HV) raceway was developed to reduce energy input requirements and improve flow mixing in a serpentine flow path. A prototype ARID-HV system was installed in Tucson, Arizona. Based on algae growth simulation and hydraulic analysis, an optimal ARID-HV raceway was designed, and the electrical energy input requirement (kWh ha-1 d-1) was calculated. An algae growth model was used to compare the productivity of ARIDHV and conventional raceways. The model uses a pond surface energy balance to calculate water temperature as a function of environmental parameters. Algae growth and biomass loss are calculated based on rate constants during day and night, respectively. A 10 year simulation of DOE strain 1412 (Chlorella sorokiniana) showed that the ARID-HV raceway had significantly higher production than a conventional raceway for all months of the year in Tucson, Arizona. It should be noted that this difference is species and climate specific and is not observed in other climates and with other algae species. The algae growth model results and electrical energy input evaluation were used to compare the energy productivity (algae production rate/energy input) of the ARID-HV and conventional raceways for Chlorella sorokiniana in Tucson, Arizona. The energy productivity of the ARID-HV raceway was significantly greater than the energy productivity of a conventional raceway for all months of the year.

  10. Raman Microspectroscopy of Individual Algal Cells: Sensing Unsaturation of Storage Lipids in vivo

    PubMed Central

    Samek, Ota; Jonáš, Alexandr; Pilát, Zden?k; Zemánek, Pavel; Nedbal, Ladislav; T?íska, Jan; Kotas, Petr; Trtílek, Martin

    2010-01-01

    Algae are becoming a strategic source of fuels, food, feedstocks, and biologically active compounds. This potential has stimulated the development of innovative analytical methods focused on these microorganisms. Algal lipids are among the most promising potential products for fuels as well as for nutrition. The crucial parameter characterizing the algal lipids is the degree of unsaturation of the constituent fatty acids quantified by the iodine value. Here we demonstrate the capacity of the spatially resolved Raman microspectroscopy to determine the effective iodine value in lipid storage bodies of individual living algal cells. The Raman spectra were collected from three selected algal species immobilized in an agarose gel. Prior to immobilization, the algae were cultivated in the stationary phase inducing an overproduction of lipids. We employed the characteristic peaks in the Raman scattering spectra at 1,656 cm?1 (cis C?C stretching mode) and 1,445 cm?1 (CH2 scissoring mode) as the markers defining the ratio of unsaturated-to-saturated carbon-carbon bonds of the fatty acids in the algal lipids. These spectral features were first quantified for pure fatty acids of known iodine value. The resultant calibration curve was then used to calculate the effective iodine value of storage lipids in the living algal cells from their Raman spectra. We demonstrated that the iodine value differs significantly for the three studied algal species. Our spectroscopic estimations of the iodine value were validated using GC-MS measurements and an excellent agreement was found for the Trachydiscus minutus species. A good agreement was also found with the earlier published data on Botryococcus braunii. Thus, we propose that Raman microspectroscopy can become technique of choice in the rapidly expanding field of algal biotechnology. PMID:22163676

  11. Separating ITCZ- and ENSO-related rainfall changes in the Galápagos over the last 3 kyr using D/H ratios of multiple lipid biomarkers

    NASA Astrophysics Data System (ADS)

    Atwood, Alyssa R.; Sachs, Julian P.

    2014-10-01

    We present a 3000-yr rainfall reconstruction from the Galápagos Islands that is based on paired biomarker records from the sediment of El Junco Lake. Located in the eastern equatorial Pacific, the climate of the Galápagos Islands is governed by movements of the Intertropical Convergence Zone (ITCZ) and the El Niño-Southern Oscillation (ENSO). We use a novel method for reconstructing past ENSO- and ITCZ-related rainfall changes through analysis of molecular and isotopic biomarker records representing several types of plants and algae that grow under differing climatic conditions. We propose that ?D values of dinosterol, a sterol produced by dinoflagellates, record changes in mean rainfall in El Junco Lake, while ?D values of C34 botryococcene, a hydrocarbon unique to the green alga Botryococcus braunii, record changes in rainfall associated with moderate-to-strong El Niño events. We use these proxies to infer changes in mean rainfall and El Niño-related rainfall over the past 3000 yr. During periods in which the inferred change in El Niño-related rainfall opposed the change in mean rainfall, we infer changes in the amount of ITCZ-related rainfall. Simulations with an idealized isotope hydrology model of El Junco Lake help illustrate the interpretation of these proxy reconstructions. Opposing changes in El Niño- and ITCZ-related rainfall appear to account for several of the largest inferred hydrologic changes in El Junco Lake. We propose that these reconstructions can be used to infer changes in frequency and/or intensity of El Niño events and changes in the position of the ITCZ in the eastern equatorial Pacific over the past 3000 yr. Comparison with El Junco Lake sediment grain size records indicates general agreement of inferred rainfall changes over the late Holocene.

  12. Attraction of gravid anopheles Pseudopunctipennis females to oviposition substrates by Spirogyra majuscula (Zygnematales: Zygnmataceae) algae under laboratory conditions.

    PubMed

    Torres-Estrada, José L; Meza-Alvarez, Rosa A; Cruz-López, Leopoldo; Rodríguez, Mario H; Arredondo-Jiménez, Juan I

    2007-03-01

    The attraction of Anopheles pseudopunctipennis gravid females to oviposition substrates containing Spirogyra majuscula algae was investigated under laboratory conditions. Gravid females deposited significantly more eggs in cups containing natural algae in water from breeding sites than in cups containing artificial (nylon rope) life-like algae in water from the corresponding natural breeding site, or in cups containing natural algae in distilled water. Bioassays with Spirogyra majuscula organic extracts indicated that these extracts at concentrations of 0.1%, 0.01%, and 0.001% attracted more oviposition, but concentrations of 1%, 10%, and 100% were repellent. Gas chromatography and mass spectrometry analysis of algae organic extracts revealed a mixture of ethyl acetate and hydrocarbons compounds. These results suggest that the attraction of gravid An. pseudopunctipennis to natural breeding sites containing filamentous algae is probably mediated by organic compounds released by the algae. PMID:17536363

  13. Use of Copper to Selectively Inhibit Brachionus calyciflorus (Predator) Growth in Chlorella kessleri (Prey) Mass Cultures for Algae Biodiesel Production

    PubMed Central

    Pradeep, Vishnupriya; Van Ginkel, Steven W.; Park, Sichoon; Igou, Thomas; Yi, Christine; Fu, Hao; Johnston, Rachel; Snell, Terry; Chen, Yongsheng

    2015-01-01

    A single Brachionus rotifer can consume thousands of algae cells per hour causing an algae pond to crash within days of infection. Thus, there is a great need to reduce rotifers in order for algal biofuel production to become reality. Copper can selectively inhibit rotifers in algae ponds, thereby protecting the algae crop. Differential toxicity tests were conducted to compare the copper sensitivity of a model rotifer—B. calyciflorus and an alga, C. kessleri. The rotifer LC50 was <0.1 ppm while the alga was not affected up to 5 ppm Cu(II). The low pH of the rotifer stomach may make it more sensitive to copper. However, when these cultures were combined, a copper concentration of 1.5 ppm was needed to inhibit the rotifer as the alga bound the copper, decreasing its bioavailability. Copper (X ppm) had no effect on downstream fatty acid methyl ester extraction. PMID:26404247

  14. Use of Copper to Selectively Inhibit Brachionus calyciflorus (Predator) Growth in Chlorella kessleri (Prey) Mass Cultures for Algae Biodiesel Production.

    PubMed

    Pradeep, Vishnupriya; Van Ginkel, Steven W; Park, Sichoon; Igou, Thomas; Yi, Christine; Fu, Hao; Johnston, Rachel; Snell, Terry; Chen, Yongsheng

    2015-01-01

    A single Brachionus rotifer can consume thousands of algae cells per hour causing an algae pond to crash within days of infection. Thus, there is a great need to reduce rotifers in order for algal biofuel production to become reality. Copper can selectively inhibit rotifers in algae ponds, thereby protecting the algae crop. Differential toxicity tests were conducted to compare the copper sensitivity of a model rotifer-B. calyciflorus and an alga, C. kessleri. The rotifer LC50 was <0.1 ppm while the alga was not affected up to 5 ppm Cu(II). The low pH of the rotifer stomach may make it more sensitive to copper. However, when these cultures were combined, a copper concentration of 1.5 ppm was needed to inhibit the rotifer as the alga bound the copper, decreasing its bioavailability. Copper (X ppm) had no effect on downstream fatty acid methyl ester extraction. PMID:26404247

  15. Formation of Carbon Monoxide and Bile Pigment in Red and Blue-Green Algae 1

    PubMed Central

    Troxler, Robert F.; Dokos, Joy M.

    1973-01-01

    Five blue-green and one red algal species produced carbon monoxide during photosynthetic growth. The blue-green algae synthesized CO and phycocyanobilin in equimolar quantities at identical rates. The red alga, Porphyridium cruentum, incorporated ?-aminolevulinic acid-5-14C into phycoerythrobilin and CO. The ratio of the specific radioactivity of phycoerythrobilin to that of CO, and the kinetics and stoichiometry of phycocyanobilin and CO formation suggest that linear tetrapyrroles in plants are derived by the porphyrin pathway via the intermediate formation of heme. The similarity between bile pigment production in algae and in mammalian systems is discussed. PMID:16658300

  16. Compsopogon cf. coeruleus, a benthic red alga (Rhodophyta) new to the Laurentian Great Lakes

    USGS Publications Warehouse

    Manny, Bruce A.; Edsall, Thomas A.; Wujek, Daniel E.

    1991-01-01

    We found Compsopogon cf. coeruleus for the first time in the Laurentian Great Lakes, growing on limestone rocks at a depth of 21 m on Six Fathom Bank in central Lake Huron. It is the first freshwater red alga to be found in the Great Lakes and the only red alga ever found on an offshore reef in the Great Lakes. However, because this alga usually inhabits water 10-28A?C and has not survived freezing winter temperatures elsewhere, it may not be a permanent member of the flora.

  17. Stream ecological processes are modeled through a simple predator-prey model, which reproduces benthic algae and macro-invertebrates dynamics.

    E-print Network

    Lenstra, Arjen K.

    reproduces benthic algae and macro-invertebrates dynamics. Algae biomass = growth - death loss - predation influences on algae and macro-invertebrates dynamics will be introduced in the predator-prey model: - at increasing flow velocity high nutrient availability, algae erosion and macro-invertebrate drag

  18. Impact of green algae on the measurement of Microcystis aeruginosa populations in lagoon-treated wastewater with an algae online analyser.

    PubMed

    Nguyen, Thang; Roddick, Felicity A; Fan, Linhua

    2015-01-01

    Tests on the algae online analyser (AOA) showed that there was a strong direct linear correlation between cell density and in vivo Chl-a concentration for M. aeruginosa over the range of interest for a biologically treated effluent at a wastewater treatment plant (25,000-65,000?cells?mL(-1), equivalent to a biovolume of 2-6?mm3?L(-1)). However, the AOA can provide an overestimate or underestimate of M. aeruginosa populations when green algae are present in the effluent, depending on their species and relative numbers. The results from this study demonstrated that the green algae (e.g., Euglena gracilis, Chlorella sp.) in the field phytoplankton population should be considered during calibration. In summary, the AOA has potential for use as an alert system for the presence of M. aeruginosa, and thus potentially of cyanobacterial blooms, in wastewater stabilization ponds. PMID:25204421

  19. Raman spectroscopy of senescing snow algae: pigmentation changes in an Antarctic cold desert extremophile

    NASA Astrophysics Data System (ADS)

    Edwards, Howell G. M.; de Oliveira, Luiz F. C.; Cockell, Charles S.; Cynan Ellis-Evans, J.; Wynn-Williams, David D.

    2004-04-01

    The FT-Raman spectra are described of green and red snow algae, Chlamydomona, involved in the colonization of exposed surfaces of the McLeod Glacier, Jane Col, Signy Island, situated at the northern edge of the Weddell Sea, Antarctica. The protective biochemicals produced by these extremophilic algae give rise to the so-called watermelon snow of Alpine regions. The red colour of the senescent algae is shown to derive from the accumulation of carotenoids and a deficiency of chlorophyll believed to arise from UV-radiation induced breakdown into phaecophytin. A comparison of the Raman spectra of young (green) and old (red) algae is effected and possible bio-markers for spectral detection on extraterrestrial icy moons and planets are identified.

  20. Preliminary observations on the benthic marine algae of the Gorringe seabank (northeast Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Tittley, Ian; da Silva Vaz Álvaro, Nuno Miguel; de Melo Azevedo Neto, Ana Isabel

    2014-06-01

    Examination of marine samples collected in 2006 from the Gettysburg and Ormonde seamounts on the Gorringe seabank southwest of Portugal has revealed 29 benthic Chlorophyta, Phaeophyceae (Ochrophyta), and Rhodophyta that were identified provisionally to genus and to species. Combining lists for the present and a previous expedition brings the total of algae thus far recorded to 48. The brown alga Zonaria tournefourtii and the red alga Cryptopleura ramosa were the most abundant species in the present collections. The kelp Laminaria ochroleuca was present only in the Gettysburg samples while Saccorhiza polyschides was observed only on the Ormonde seamount. Comparisons with the benthic marine algae recorded on seamounts in the mid-Atlantic Azores archipelago show features in common, notably kelp forests of L. ochroleuca at depths below 30 m and Z. tournefortii dominance in shallower waters.

  1. INFLUENCE OF METHYL TERT-BUTYL ETHER (MTBE) ON LAKE WATER ALGAE: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-ADA-01209 Kampbell*, D.H., An, Y, and Williams, VR. Influence of Methyl tert-Butyl Ether (MTBE) on Lake Water Algae. Bulletin of Environmental Contamination and Toxicology 57 (4):675-681 (2001). ...

  2. 3D-PTV measurement of the phototactic movement of algae in shear flow

    NASA Astrophysics Data System (ADS)

    Maeda, Tatsuyuki; Ishikawa, Takuji; Ueno, Hironori; Numayama-Tsuruta, Keiko; Imai, Yosuke; Yamaguchi, Takami

    2012-11-01

    Recently, swimming motion of algae cells is researched actively, because algae fuel is one of the hottest topic in engineering. It is known that algae swim toward the light for photosynthesis however, the effect of a background flow on the unidirectional swimming is unclear. In this study, we used Volvox as a model alga and placed them in a simple shear flow with or without light stimulus. The shear flow was generated by moving two flat sheets in the opposite direction tangentially. A red LED light (wave length 660 nm) was used as an observation light source, and a white LED light was used to stimulate cells for the phototaxis. The trajectories of individual cells were measured by a 3D-PTV system, consists of a pair of high-speed camera with macro lenses. The results were analyzed to understand the effect of the background shear flow on the phototaxis of cells.

  3. In vitro antioxidant and antitumor activities of different sulfated polysaccharides isolated from three algae.

    PubMed

    Shao, Ping; Chen, Xiaoxiao; Sun, Peilong

    2013-11-01

    Three sulfated polysaccharides(Ulva fasciata (UFP), Gloiopeltis furcata (GFP), Sargassum henslouianum (SHP))were isolated from three algae including green alga Ulva fasciata, red alga Gloiopeltis furcata and brown alga Sargassum henslouianum by ultrasonic extraction and radial flow chromatography. Their in vitro antioxidant and antitumor activities were investigated and compared. Among these three polysaccharides, UFP, with relatively lower sulfate content, exhibited excellent antioxidant activities in superoxide radical assay, ABTS assay and DPPH assay; however, it demonstrated the minimal inhibitory effects on growth of MKN45 gastric cancer cells and DLD intestinal cancer cells. SHP with the lowest sulfate content gained relatively lower radical scavenging rates but showed significantly higher antitumor activities. These results indicated that the in vitro antitumor and antioxidant activities of the three polysaccharides may be related to combined effects of sulfate content and uronic acid content. PMID:23994786

  4. Chemical composition and moisture-absorption/retention ability of polysaccharides extracted from five algae.

    PubMed

    Wang, Jing; Jin, Weihua; Hou, Yun; Niu, Xizhen; Zhang, Hong; Zhang, Quanbin

    2013-06-01

    In this study, we prepared seven polysaccharides extracted from five algae including one brown alga Saccharina japonica, one red alga Porphyra haitanensis and three green algae Codium fragile, Enteromorpha linza and Bryopsis plumose. The chemical composition and capability of moisture-absorption and moisture-retention were investigated in comparison with those of hyaluronic acid (HA). The low molecular weight polysaccharides extracted from brown seaweed exhibited the highest moisture-absorption and moisture-retention abilities of all of the polysaccharides studied and performed better than HA. The relationships between chemical composition (including sulfated groups, monosaccharide, and molecular weight) and the functions of polysaccharides were also studied. We found the sulfated group was a main active site for moisture-absorption and moisture-retention abilities. These abilities were also related to molecular weight; with the exception of the low molecular weight polysaccharide extracted from red seaweed, lower molecular weight improved moisture-absorption and moisture-retention abilities. PMID:23500437

  5. EFFECTS OF SELECTED WASTEWATER CHLORINATION PRODUCTS AND CAPTAN ON MARINE ALGAE

    EPA Science Inventory

    Effects of stable chloro-organic compounds formed during chlorination of sewage effluents on growth of marine unicellular algae were determined. Captan suppressed growth of Dunaliella tertiolecta and Porphyridium cruentum at 5 ppm. Growth of Skeletonema costatum was inhibited by ...

  6. EVALUATION OF FILTER FEEDING FISHES FOR REMOVING EXCESSIVE NUTRIENTS AND ALGAE FROM WASTEWATER

    EPA Science Inventory

    The feasibility of utilizing finfish for the removal and recycling of excessive nutrients and algae from wastewater was investigated. The silver carp (Hypopthalmichthyes molitrix) and the bighead carp (Aristichthyes nobilis) were chosen due to their specifically adapted filter fe...

  7. POTENTIAL USE OF BENTHIC ALGAE AS HYDROLOGIC INDICATORS FOR HEADWATER STREAMS: SOME DATA EXPLORATION

    EPA Science Inventory

    Benthic algae were sampled to determine the utility of algal communities as indicators of hydrologic regime as part of a national survey involving habitat measurements and community assessments. Streams from four forests near Cincinnati were classified according to hydrologic pe...

  8. CONTRIBUTION OF MARINE ALGAE TO TRIHALOMETHANE PRODUCTION IN CHLORINATED ESTUARINE WATER

    EPA Science Inventory

    Three species of marine algae representing major taxonomic groups of phytoplankton, Isochrysis galbana (Chrysophyceae), Carteria sp. (Chlorophyceae), and Thalassiosira pseudonana (Bacillariphyceae), were utilized to investigate the potential of natural occurring chlorophyll a of ...

  9. The Antimicrobial Properties of Red Algae. The Fight of Your Life: Battling Bacteria.

    ERIC Educational Resources Information Center

    Case, Christine L.; Warner, Michael

    2001-01-01

    Describes a research project in which a professor and a student collaborated in the screening of macroscopic algae for antimicrobial properties. Includes background information, materials and methods, results, and a discussion of the experiment. (SAH)

  10. Method and apparatus for detecting phycocyanin-pigmented algae and bacteria from reflected light

    NASA Technical Reports Server (NTRS)

    Vincent, Robert (Inventor)

    2006-01-01

    The present invention relates to a method of detecting phycocyanin algae or bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  11. Application of Hedonic Price Modeling to Estimate the Value of Algae Meal 

    E-print Network

    Gogichaishvili, Ilia

    2012-10-19

    High productivity rates, usage of nonproductive land, renewability and recovery of waste nutrients and potential for CO2 emission reduction represent some of the advantages that selected algae species might have over competing products. Many...

  12. Method and apparatus for detecting phycocyanin-pigmented algae and bacteria from reflected light

    NASA Technical Reports Server (NTRS)

    Vincent, Robert (Inventor)

    2013-01-01

    The present invention relates to a method of detecting phycocyanin algae or bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  13. A reaction-diffusion-advection model of harmful algae growth with toxin degradation

    NASA Astrophysics Data System (ADS)

    Wang, Feng-Bin; Hsu, Sze-Bi; Zhao, Xiao-Qiang

    2015-10-01

    This paper is devoted to the study of a reaction-diffusion-advection system modeling the dynamics of a single nutrient, harmful algae and algal toxin in a flowing water habitat with a hydraulic storage zone. We introduce the basic reproduction ratio R0 for algae and show that R0 serves as a threshold value for persistence and extinction of the algae. More precisely, we prove that the washout steady state is globally attractive if R0 < 1, while there exists a positive steady state and the algae is uniformly persistent if R0 > 1. With an additional assumption, we obtain the uniqueness and global attractivity of the positive steady state in the case where R0 > 1.

  14. Relationship between the Unicellular Red Alga Porphyridium sp. and Its Predator, the Dinoflagellate Gymnodinium sp

    PubMed Central

    Ucko, Michal; Cohen, Ephraim; Gordin, Hillel; Arad, Shoshana (Malis)

    1989-01-01

    Contamination of algae cultivated outdoors by various microorganisms, such as bacteria, fungi, algae, and protozoa, can affect growth and product quality, sometimes causing fast collapse of the cultures. The main contaminant of Porphyridium cultures grown outdoors in Israel is a Gymnodinium sp., a dinoflagellate that feeds on the alga. Comparison of the effects of various environmental conditions, i.e., pH, salinity, and temperature, on Gymnodinium and Porphyridium species revealed that the Gymnodinium sp. has sharp optimum curves, whereas the Porphyridium sp. has a wider range of optimum conditions and is also more resistant to extreme environmental variables. The mode of preying on the alga was observed, and the specificity of the Gymnodinium sp. for the Porphyridium sp. was shown. In addition, Gymnodinium extract was shown to contain enzymatic degrading activity specific to the Porphyridium sp. cell wall polysaccharide. PMID:16348059

  15. Diversity of transcripts and transcript processing forms in plastids of the dinoflagellate alga Karenia mikimotoi

    E-print Network

    Dorrell, Richard G.; Hinksman, George A.; Howe, Christopher J.

    2015-01-01

    plastid transcriptomes have been characterised in many plant species, less is known about the transcripts produced in other plastid lineages. We characterised the transcripts produced in the fucoxanthin-containing plastids of the dinoflagellate alga...

  16. Re-utilization of Industrial CO2 for Algae Production Using a Phase Change Material

    SciTech Connect

    Joseph, Brian

    2013-12-31

    This is the final report of a 36-month Phase II cooperative agreement. Under this project, Touchstone Research Laboratory (Touchstone) investigated the merits of incorporating a Phase Change Material (PCM) into an open-pond algae production system that can capture and re-use the CO2 from a coal-fired flue gas source located in Wooster, OH. The primary objective of the project was to design, construct, and operate a series of open algae ponds that accept a slipstream of flue gas from a coal-fired source and convert a significant portion of the CO2 to liquid biofuels, electricity, and specialty products, while demonstrating the merits of the PCM technology. Construction of the pilot facility and shakedown of the facility in Wooster, OH, was completed during the first two years, and the focus of the last year was on operations and the cultivation of algae. During this Phase II effort a large-scale algae concentration unit from OpenAlgae was installed and utilized to continuously harvest algae from indoor raceways. An Algae Lysing Unit and Oil Recovery Unit were also received and installed. Initial parameters for lysing nanochloropsis were tested. Conditions were established that showed the lysing operation was effective at killing the algae cells. Continuous harvesting activities yielded over 200 kg algae dry weight for Ponds 1, 2 and 4. Studies were conducted to determine the effect of anaerobic digestion effluent as a nutrient source and the resulting lipid productivity of the algae. Lipid content and total fatty acids were unaffected by culture system and nutrient source, indicating that open raceway ponds fed diluted anaerobic digestion effluent can obtain similar lipid productivities to open raceway ponds using commercial nutrients. Data were also collected with respect to the performance of the PCM material on the pilot-scale raceway ponds. Parameters such as evaporative water loss, temperature differences, and growth/productivity were tracked. The pond with the PCM material was consistently 2 to 5°C warmer than the control pond. This difference did not seem to increase significantly over time. During phase transitions for the PCM, the magnitude of the difference between the daily minimum and maximum temperatures decreased, resulting in smaller daily temperature fluctuations. A thin layer of PCM material reduced overall water loss by 74% and consistently provided algae densities that were 80% greater than the control pond.

  17. Response of prostaglandin content in the red alga Gracilaria verrucosa to season and solar irradiance.

    PubMed

    Imbs, A B; Vologodskaya, A V; Nevshupova, N V; Khotimchenko, S V; Titlyanov, E A

    2001-12-01

    The influence of solar irradiance and seasons on prostaglandin (PG) and arachidonic acid (AA) content in the marine red alga Gracilaria verrucosa (Huds.) Papenf. (unattached form) was investigated. PGA(2), PGE(2), PGF(2), and 15-keto-PGE(2) were isolated from the alga, quantitatively analyzed as 4-methyl-7-methoxycoumarin esters by high-performance liquid chromatography, and their chemical structures were confirmed by 1H NMR. In June-September, the PG content in the alga was relatively stable (420 microg/g of dry wt. of PGE(2)+PGF(2); 40 microg/g of PGA(2)) and it increased 1.5 times in October. The highest level of PGs was detected in November (2500 microg/g of PGE(2)+PGF(2); 74 microg/g of PGA(2)) when water temperature was fairly low (5-10 degrees C). Algae grown for five months at 50% of incident photosynthetic active radiation (PAR(0)) contained two times less PGE(2) and PGF(2) than algae grown under natural conditions, but the amount of these PG in algae grown at 5% of PAR(0) was close to the normal level. On the contrary, when algae were grown at 5% of PAR(0) the content of PGA(2) increased up to 4 times compared to algae cultivated at 100% PAR(0). In June-November, the amount of AA in total algal lipids slightly varied from 48.9 to 56.7% and did not virtually depend on the light intensity. The probable reasons of the PG content variation in response to environmental factors are discussed. PMID:11730870

  18. Clinical and pathologic findings of blue-green algae (Microcystis aeruginosa) intoxication in a dog.

    PubMed

    DeVries, S E; Galey, F D; Namikoshi, M; Woo, J C

    1993-07-01

    A healthy dog developed signs of lethargy and vomiting after ingesting water from a tide pool containing blue-green algae. Fulminant hepatic failure occurred, and the dog was euthanized 52 hours later. At necropsy, the liver was large, friable, and discolored a dark red. Histopathology showed hepatocyte dissociation, degeneration, and necrosis. The alga was identified as Microcystis aeruginosa, a known hepatotoxin. The intraperitoneal administration of lyophilized cell material from the bloom caused hepatic necrosis in mice. PMID:8373855

  19. Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia.

    PubMed

    Al-Saif, Sarah Saleh Abdu-Llah; Abdel-Raouf, Nevein; El-Wazanani, Hend A; Aref, Ibrahim A

    2014-01-01

    Marine algae are known to produce a wide variety of bioactive secondary metabolites and several compounds have been derived from them for prospective development of novel drugs by the pharmaceutical industries. However algae of the Red sea have not been adequately explored for their potential as a source of bioactive substances. In this context Ulva reticulata, Caulerpa occidentalis, Cladophora socialis, Dictyota ciliolata, and Gracilaria dendroides isolated from Red sea coastal waters of Jeddah, Saudi Arabia, were evaluated for their potential for bioactivity. Extracts of the algae selected for the study were prepared using ethanol, chloroform, petroleum ether and water, and assayed for antibacterial activity against Escherichia coli ATCC 25322, Pseudomonas aeruginosa ATCC 27853, Stapylococcus aureus ATCC 29213, and Enterococcus faecalis ATCC 29212. It was found that chloroform was most effective followed by ethanol, petroleum ether and water for the preparation of algal extract with significant antibacterial activities, respectively. Results also indicated that the extracts of red alga G. dendroides were more efficient against the tested bacterial strains followed by green alga U. reticulata, and brown algae D. ciliolata. Chemical analyses showed that G. dendroides recorded the highest percentages of the total fats and total proteins, followed by U. reticulata, and D. ciliolate. Among the bioflavonoids determined Rutin, Quercetin and Kaempherol were present in high percentages in G. dendroides, U. reticulata, and D. ciliolate. Estimation of saturated and unsaturated fatty acids revealed that palmitic acid was present in highest percentage in all the algal species analyzed. Amino acid analyses indicated the presence of free amino acids in moderate contents in all the species of algae. The results indicated scope for utilizing these algae as a source of antibacterial substances. PMID:24596500

  20. Effect of selenium on the lipids of two unicellular marine algae

    SciTech Connect

    Gennity, J.M.

    1983-01-01

    The incorporation of selenium into the lipids of two unicellar marine algae has been investigated. Axenic cultures of the green algae Dunaliella primolecta and the red algae Porphyridium cruentum were grown in the presence of sublethal quantities of selenium (10 ppm) as selenite. Both algae were found to contain selenium bound to all purified lipids, except for saturated hydrocarbons. Of the lipids which contain selenium, carotenoid pigments show the greatest selenium concentration (..beta..-carotene: 1.3..mu..gSe/mg lipid; zeaxanthin: 1.1..mu..gSe/mg lipid) in both algae. P. cruentum contains about ten times as much lipid-associated selenium as D. primolecta, even though the lipids of both algae were very similar. This selenium has been shown to be incorporated non-metabolically into the lipid molecule. The lipid-associated selenium is probably non-covalently bound to the lipid molecule and may interact with double bonds. Selenite does not affect the lipid composition of D. primolecta, as compared with algae grown in the absence of added selenium. A selenium-induced 40% decrease in the cell content of eicosapentaenoic acid (20:5omega3) and 20% decrease in arachidonic acid (20:4omega6) in polar lipids (glycolipids plus phospholipids) was observed in P. cruentum. A 25% decrease in the chlorophyll a content of this red algae also occurred. The cell content of other fatty acids, phospholipids and glycolipids was unaltered by selenium. These results are consistent with a selenite-induced oxidation of P. cruentum lipids. Selenium is able to increase the antioxidant potential of algal cells. However, no in vivo selenium-induced protection of algal lipids from oxidation was apparent.

  1. Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia

    PubMed Central

    Al-Saif, Sarah Saleh Abdu-llah; Abdel-Raouf, Nevein; El-Wazanani, Hend A.; Aref, Ibrahim A.

    2013-01-01

    Marine algae are known to produce a wide variety of bioactive secondary metabolites and several compounds have been derived from them for prospective development of novel drugs by the pharmaceutical industries. However algae of the Red sea have not been adequately explored for their potential as a source of bioactive substances. In this context Ulva reticulata, Caulerpa occidentalis, Cladophora socialis, Dictyota ciliolata, and Gracilaria dendroides isolated from Red sea coastal waters of Jeddah, Saudi Arabia, were evaluated for their potential for bioactivity. Extracts of the algae selected for the study were prepared using ethanol, chloroform, petroleum ether and water, and assayed for antibacterial activity against Escherichia coli ATCC 25322, Pseudomonas aeruginosa ATCC 27853, Stapylococcus aureus ATCC 29213, and Enterococcus faecalis ATCC 29212. It was found that chloroform was most effective followed by ethanol, petroleum ether and water for the preparation of algal extract with significant antibacterial activities, respectively. Results also indicated that the extracts of red alga G. dendroides were more efficient against the tested bacterial strains followed by green alga U. reticulata, and brown algae D. ciliolata. Chemical analyses showed that G. dendroides recorded the highest percentages of the total fats and total proteins, followed by U. reticulata, and D. ciliolate. Among the bioflavonoids determined Rutin, Quercetin and Kaempherol were present in high percentages in G. dendroides, U. reticulata, and D. ciliolate. Estimation of saturated and unsaturated fatty acids revealed that palmitic acid was present in highest percentage in all the algal species analyzed. Amino acid analyses indicated the presence of free amino acids in moderate contents in all the species of algae. The results indicated scope for utilizing these algae as a source of antibacterial substances. PMID:24596500

  2. Quantum coherent propagation of complex molecules through the frustule of the alga Amphipleura pellucida

    NASA Astrophysics Data System (ADS)

    Sclafani, Michele; Juffmann, Thomas; Knobloch, Christian; Arndt, Markus

    2013-08-01

    Recent advances in the manipulation of molecules now allow us to also probe nanoporous silified biomaterials. We demonstrate the quantum coherent propagation of phthalocyanine through the skeleton of the alga Amphipleura pellucida. A micro-focused laser source prepares a molecular beam which is sufficiently delocalized to be coherently transmitted through the alga's frustule—in spite of the substantial dispersive interaction between each molecule and the nanomembrane.

  3. Modelling the effects of pulse exposure of several PSII inhibitors on two algae.

    PubMed

    Copin, Pierre-Jean; Chèvre, Nathalie

    2015-10-01

    Subsequent to crop application and during precipitation events, herbicides can reach surface waters in pulses of high concentrations. These pulses can exceed the Annual Average Environmental Quality Standards (AA-EQS), defined in the EU Water Framework Directive, which aims to protect the aquatic environment. A model was developed in a previous study to evaluate the effects of pulse exposure for the herbicide isoproturon on the alga Scenedesmus vacuolatus. In this study, the model was extended to other substances acting as photosystem II inhibitors and to other algae. The measured and predicted effects were equivalent when pulse exposure of atrazine and diuron were tested on S. vacuolatus. The results were consistent for isoproturon on the alga Pseudokirchneriella subcapitata. The model is thus suitable for the effect prediction of phenylureas and triazines and for the algae used: S. vacuolatus and P. subcapitata. The toxicity classification obtained from the dose-response curves (diuron>atrazine>isoproturon) was conserved for the pulse exposure scenarios modelled for S. vacuolatus. Toxicity was identical for isoproturon on the two algae when the dose-response curves were compared and also for the pulse exposure scenarios. Modelling the effects of any pulse scenario of photosystem II inhibitors on algae is therefore feasible and only requires the determination of the dose-response curves of the substance and growth rate of unexposed algae. It is crucial to detect the longest pulses when measurements of herbicide concentrations are performed in streams because the model showed that they principally affect the cell density inhibition of algae. PMID:26011414

  4. Drifting algae and fish: Implications of tropical Sargassum invasion due to ocean warming in western Japan

    NASA Astrophysics Data System (ADS)

    Yamasaki, Mami; Aono, Mikina; Ogawa, Naoto; Tanaka, Koichiro; Imoto, Zenji; Nakamura, Yohei

    2014-06-01

    Evidence is accumulating that the invasion and extinction of habitat-forming seaweed species alters coastal community structure and ecological services, but their effects on the pelagic environment have been largely ignored. Thus, we examined the seasonal occurrence patterns of indigenous temperate and invasive tropical drifting algae and associated fish species every month for 2 years (2009-2011) in western Japan (Tosa Bay), where a rapid shift from temperate to tropical Sargassum species has been occurring in the coastal area since the late 1980s due to rising seawater temperatures. Of the 19 Sargassum species (31.6%) in drifting algae, we found that six were tropical species, whereas a study in the early 1980s found only one tropical species among 12 species (8.3%), thereby suggesting an increase in the proportion of tropical Sargassum species in drifting algae during the last 30 years. Drifting temperate algae were abundantly present from late winter to summer, whereas tropical algal clumps occurred primarily during summer. In the warm season, fish assemblages did not differ significantly between drifting temperate and tropical algae, suggesting the low host-algal specificity of most fishes. We also found that yellowtail juveniles frequently aggregated with drifting temperate algae from late winter to spring when drifting tropical algae were unavailable. Local fishermen collect these juveniles for use as aquaculture seed stock; therefore, the occurrence of drifting temperate algae in early spring is important for local fisheries. These results suggest that the further extinction of temperate Sargassum spp. may have negative impacts on the pelagic ecosystem and associated regional fisheries.

  5. Reviews and syntheses: Calculating the global contribution of coralline algae to total carbon burial

    NASA Astrophysics Data System (ADS)

    van der Heijden, L. H.; Kamenos, N. A.

    2015-11-01

    The ongoing increase in anthropogenic carbon dioxide (CO2) emissions is changing the global marine environment and is causing warming and acidification of the oceans. Reduction of CO2 to a sustainable level is required to avoid further marine change. Many studies investigate the potential of marine carbon sinks (e.g. seagrass) to mitigate anthropogenic emissions, however, information on storage by coralline algae and the beds they create is scant. Calcifying photosynthetic organisms, including coralline algae, can act as a CO2 sink via photosynthesis and CaCO3 dissolution and act as a CO2 source during respiration and CaCO3 production on short-term timescales. Long-term carbon storage potential might come from the accumulation of coralline algae deposits over geological timescales. Here, the carbon storage potential of coralline algae is assessed using meta-analysis of their global organic and inorganic carbon production and the processes involved in this metabolism. Net organic and inorganic production were estimated at 330 g C m-2 yr-1 and 900 g CaCO3 m-2 yr-1 respectively giving global organic/inorganic C production of 0.7/1.8 × 109 t C yr-1. Calcium carbonate production by free-living/crustose coralline algae (CCA) corresponded to a sediment accretion of 70/450 mm kyr-1. Using this potential carbon storage for coralline algae, the global production of free-living algae/CCA was 0.4/1.2 × 109 t C yr-1 suggesting a total potential carbon sink of 1.6 × 109 tonnes per year. Coralline algae therefore have production rates similar to mangroves, salt marshes and seagrasses representing an as yet unquantified but significant carbon store, however, further empirical investigations are needed to determine the dynamics and stability of that store.

  6. The growth and harvesting of algae in a micro-gravity environment

    NASA Technical Reports Server (NTRS)

    Wiltberger, Nancy L.

    1987-01-01

    Algae growth in a micro-gravity environment is an important factor in supporting man's permanent presence in space. Algae can be used to produce food, oxygen, and pure water in a manned space station. A space station is one example of a situation where a Controlled Ecological Life Support System (CELSS) is imperative. In setting up a CELSS with an engineering approach at the Aerospace department of the University of Colorado, questions concerning algae growth in micro-g have arisen. The Get Away Special (GAS) Fluids Management project is a means through which many questions about the effects of a micro-g environment on the adequacy of growth rates, the viability of micro-organisms, and separation of gases and solids for harvesting purposes can be answered. In order to be compatible with the GAS tests, the algae must satisfy the following criteria: (1) rapid growth rates, (2) sustain viability over long periods of non-growth storage, and (3) very brief latency from storage to rapid growth. Testing indicates that the overall growth characteristics of Anacystis Nidulans satisfy the specifications of GAS's design constraints. In addition, data acquisition and the method of growth instigation are two specific problems being examined, as they will be encountered in interfacing with the GAS project. Flight testing will be two-fold, measurement of algae growth in micro-g and separation of algae from growth medium in an artificial gravitation field. Post flight results will provide information on algae viability in a micro-g environment as reflected by algal growth rates in space. Other post flight results will provide a basis for evaluating techniques for harvesting algae. The results from the GAS project will greatly assist the continuing effort of developing the CELSS and its applications for space.

  7. Algae biodiesel life cycle assessment using current commercial data.

    PubMed

    Passell, Howard; Dhaliwal, Harnoor; Reno, Marissa; Wu, Ben; Ben Amotz, Ami; Ivry, Etai; Gay, Marcus; Czartoski, Tom; Laurin, Lise; Ayer, Nathan

    2013-11-15

    Autotrophic microalgae represent a potential feedstock for transportation fuels, but life cycle assessment (LCA) studies based on laboratory-scale or theoretical data have shown mixed results. We attempt to bridge the gap between laboratory-scale and larger scale biodiesel production by using cultivation and harvesting data from a commercial algae producer with ?1000 m(2) production area (the base case), and compare that with a hypothetical scaled up facility of 101,000 m(2) (the future case). Extraction and separation data are from Solution Recovery Services, Inc. Conversion and combustion data are from the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET). The LCA boundaries are defined as "pond-to-wheels". Environmental impacts are quantified as NER (energy in/energy out), global warming potential, photochemical oxidation potential, water depletion, particulate matter, and total NOx and SOx. The functional unit is 1 MJ of energy produced in a passenger car. Results for the base case and the future case show an NER of 33.4 and 1.37, respectively and GWP of 2.9 and 0.18 kg CO2-equivalent, respectively. In comparison, petroleum diesel and soy diesel show an NER of 0.18 and 0.80, respectively and GWP of 0.12 and 0.025, respectively. A critical feature in this work is the low algal productivity (3 g/m(2)/day) reported by the commercial producer, relative to the much higher productivities (20-30 g/m(2)/day) reported by other sources. Notable results include a sensitivity analysis showing that algae with an oil yield of 0.75 kg oil/kg dry biomass in the future case can bring the NER down to 0.64, more comparable with petroleum diesel and soy biodiesel. An important assumption in this work is that all processes are fully co-located and that no transport of intermediate or final products from processing stage to stage is required. PMID:23900083

  8. Evaluation of the contamination of marine algae (seaweed) from the St. Lawrence River and likely to be consumed by humans

    SciTech Connect

    Phaneuf, D.; Cote, I.; Dumas, P.; Ferron, L.A.; LeBlanc, A.

    1999-02-01

    The goal of the study was to assess the contamination of marine algae (seaweeds) growing in the St. Lawrence River estuary and Gulf of St. Lawrence and to evaluate the risks to human health from the consumption of these algae. Algae were collected by hand at low tide. A total of 10 sites on the north and south shores of the St. Lawrence as well as in Baie des Chaleurs were sampled. The most frequently collected species of algae were Fucus vesiculosus, Ascophyllum nodosum, Laminaria Longicruris, Palmaria palmata, Ulva lactuca, and Fucus distichus. Alga samples were analyzed for metals iodine, and organochlorines. A risk assessment was performed using risk factors. In general, concentrations in St. Lawrence algae were not very high. Consequently, health risks associated with these compounds in St. Lawrence algae were very low. Iodine concentration, on the other hand, could be of concern with regard to human health. Regular consumption of algae, especially of Laminaria sp., could result in levels of iodine sufficient to cause thyroid problems. For regular consumers, it would be preferable to choose species with low iodine concentrations, such as U. lactuca and P. palmata, in order to prevent potential problems. Furthermore, it would also be important to assess whether preparation for consumption or cooking affects the iodine content of algae. Algae consumption may also have beneficial health effects. Scientific literature has shown that it is a good source of fiber and vitamins, especially vitamin B{sub 12}.

  9. Endolithic community composition of Orbicella faveolata (Scleractinia) underneath the interface between coral tissue and turf algae

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Isaza, N.; Espinoza-Avalos, J.; León-Tejera, H. P.; González-Solís, D.

    2015-06-01

    We evaluated the species composition, richness, and total abundance of the endolithic community in the skeleton of Orbicella faveolata under coral tissue and under turf algae using cores that were extracted at different distances (0.5, 2.5, and 7.0 cm) from both sides of the external coral tissue-turf algae competitive boundary. We found high endolith richness as never before reported for Orbicella species. Nineteen endolith taxa were found within the O. faveolata skeleton, seven below the coral tissue zone, and twelve exclusively below the turf algae zone. Significant differences existed in the community composition, species richness, and the total abundance of endoliths in the cores that were extracted from the turf algae zone compared with those of the coral tissue zone. The endolithic community composition and species richness changed abruptly across the coral-turf algae interface, forming a clear boundary between different endolithic communities just underneath the interface between the coral tissue and turf algae zones.

  10. Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell.

    PubMed

    Rashid, Naim; Cui, Yu-Feng; Saif Ur Rehman, Muhammad; Han, Jong-In

    2013-07-01

    Recently, interest is growing to explore low-cost and sustainable means of energy production. In this study, we have exploited the potential of sustainable energy production from wastes. Activated sludge and algae biomass are used as substrates in microbial fuel cell (MFC) to produce electricity. Activated sludge is used at anode as inoculum and nutrient source. Various concentrations (1-5 g/L) of dry algae biomass are tested. Among tested concentrations, 5 g/L (5000 mg COD/L) produced the highest voltage of 0.89 V and power density of 1.78 W/m(2) under 1000 ? electric resistance. Pre-treated algae biomass and activated sludge are also used at anode. They give low power output than without pre-treatment. Spent algae biomass is tested to replace whole (before oil extraction) algae biomass as a substrate, but it gives low power output. This work has proved the concept of using algae biomass in MFC for high energy output. PMID:23584037

  11. The blue water footprint and land use of biofuels from algae

    NASA Astrophysics Data System (ADS)

    Gerbens-Leenes, P. W.; Xu, L.; Vries, G. J.; Hoekstra, A. Y.

    2014-11-01

    Biofuels from microalgae are potentially important sources of liquid renewable energy. Algae are not yet produced on a large scale, but research shows promising results. This study assesses the blue water footprint (WF) and land use of algae-based biofuels. It combines the WF concept with an energy balance approach to determine the blue WF of net energy. The study considers open ponds and closed photobioreactors (PBRs). All systems have a positive energy balance, with output-input ratios ranging between 1.13 and 1.98. This study shows that the WF of algae-based biofuels lies between 8 and 193 m3/GJ net energy provided. The land use of microalgal biofuels ranges from 20 to 200 m2/GJ net energy. For a scenario in which algae-based biofuels provide 3.5% of the transportation fuels in the European Union in 2030, the system with the highest land productivity needs 17,000 km2 to produce the 850 PJ/yr. Producing all algae-based biofuels through the system with the highest water productivity would lead to a blue WF of 7 Gm3/yr, which is equivalent to 15% of the present blue WF in the EU28. A transition to algae-based transportation fuels will substantially increase competition over water and land resources.

  12. Microcontact imprinting of algae on poly(ethylene-co-vinyl alcohol) for biofuel cells.

    PubMed

    Chen, Wen-Janq; Lee, Mei-Hwa; Thomas, James L; Lu, Po-Hsun; Li, Ming-Huan; Lin, Hung-Yin

    2013-11-13

    Hydrogen can be produced using microorganisms (e.g., bacteria and algae); algal production has the additional ecological benefit of carbon dioxide fixation. The conversion of hydrogen to electricity via fuel cells may be more efficient compared to other energy sources of electricity. However, the anode of biofuel cells requires the immobilization of microorganisms or enzymes. In this work, poly(ethylene-co-vinyl alcohol) (EVAL), was coated on the electrode, and green algae was microcontact imprinted onto the EVAL film. The readsorption of algae onto algae-imprinted EVAL thin films was compared to determine the ethylene content that gave highest imprinting effectiveness and algal binding. Scanning electron microscopy and fluorescence spectrometry were employed to characterize the surface morphology, recognition capacity, and reusability of the algae-imprinted cavities. The recognition of an individual algal cell by binding to the imprinted cavities was directly observed by video microscopy. Finally, the power and current density of the algal biofuel cell using the algae-imprinted EVAL-coated electrode were measured at about 2-fold higher than electrode sputtered platinum on poly(ethylene terephthalate). PMID:24095224

  13. [Photoreduction of Se (VI) by marine algae-transitional metals-light system].

    PubMed

    Li, Shun-Xing; Zheng, Feng-Ying; Deng, Nan-Sheng; Hong, Hua-Sheng; Zhu, Guo-Hui

    2005-07-01

    Seven marine phytoplankton, including five green algae (Tetraselmis levis, Chlorella autotrophica, Dunaliella salina, Nannochloropsis sp. and Tetraselmis subcordiformis), one diatom (Phaeodactylum tricornutum), one red alga (Porphyridium purpureum), and three usual transitional metals (Fe(III), Cu(II), Mn(II)) were used to make up marine phytoplankton-light or transitional metals-light or marine phytoplankton-transitional metals-light system. In such system, Se(VI) could be transformed into Se(IV) by photoreduction. The species transformation of selenium could be photo-induced by redox reaction of transitional metals. The photochemical activity of marine phytoplankton was confirmed for the first time, because marine phytoplankton could adsorb and concentrated of selenium, transitional metals and organic substances (including the exudation of algae, as reducing agent) which redox potentials were changed. The ratios of Se(VI) to Se(IV) were dominated by the species, the concentration of marine phytoplankton and transitional metals, and it could be enhanced through increasing the concentration of marine algae or the combined effect from marine algae and transitional metals. After photoreduction by ternary system, the ratio of Se(VI) to Se(IV) ranges from 1.17 to 2.85, which is close to the actual value in euphotic layer of seawater. The photochemical process that is induced by marine algae and transitional metals dominative the leading effects on the distribution of oxidation states of selenium. PMID:16212166

  14. Production of the blood pressure lowing peptides from brown alga ( Undaria pinnatifida)

    NASA Astrophysics Data System (ADS)

    Minoru, Sato; Takashi, Oba; Takao, Hosokawa; Toshiyasu, Yamaguchi; Toshiki, Nakano; Tadao, Saito; Koji, Muramoto; Takashi, Kahara; Katsura, Funayama; Akio, Kobayashi; Takahisa, Nakano

    2005-07-01

    Brown alga ( Undaria pinnatifida) was treated with alginate lyase and hydrolyzed using 17 kinds of proteases and the inhibitory activity of the hydrolysates for the angiotensin-I-converting enzyme (ACE) was measured. Four hydrolysates with potent ACE-inhibitory activity were administered singly and orally to spontaneously hypertensive rats (SHRs). The systolic blood pressure of SHRs decreases significantly after single oral administration of the brown alga hydrolysates by protease S ‘Amano’ (from Bacillus stearothermophilus) at the concentration of 10 (mg protein) (kg body weight)-1. In the 17 weeks of feeding experiment, 7-week-old SHRs were fed standard diet supplemented with the brown alga hydrolysates for 10 weeks. In SHRs fed 1.0 and 0.1% brown alga hydrolysates, elevating of systolic bloodpressure was significantly suppressed for 7 weeks. To elucidate the active components, the brown alga hydrolysates were fractionated by 1-butanol extraction and HPLC on a reverse-phase column. Seven kinds of ACE-inhibitory peptides were isolated and identified by amino acid composition analysis, sequence analysis, and LC-MS with the results Val-Tyr, Ile-Tyr, Ala-Trp, Phe-Tyr, Val-Trp, Ile-Trp, and Leu-Trp. Each peptide was determined to have an antihypertensive effect after a single oral administration in SHRs. The brown alga hydrolysates were also confirmed to decrease the blood pressure in humans.

  15. In Silico Analysis of Correlations between Protein Disorder and Post-Translational Modifications in Algae

    PubMed Central

    Kurotani, Atsushi; Sakurai, Tetsuya

    2015-01-01

    Recent proteome analyses have reported that intrinsically disordered regions (IDRs) of proteins play important roles in biological processes. In higher plants whose genomes have been sequenced, the correlation between IDRs and post-translational modifications (PTMs) has been reported. The genomes of various eukaryotic algae as common ancestors of plants have also been sequenced. However, no analysis of the relationship to protein properties such as structure and PTMs in algae has been reported. Here, we describe correlations between IDR content and the number of PTM sites for phosphorylation, glycosylation, and ubiquitination, and between IDR content and regions rich in proline, glutamic acid, serine, and threonine (PEST) and transmembrane helices in the sequences of 20 algae proteomes. Phosphorylation, O-glycosylation, ubiquitination, and PEST preferentially occurred in disordered regions. In contrast, transmembrane helices were favored in ordered regions. N-glycosylation tended to occur in ordered regions in most of the studied algae; however, it correlated positively with disordered protein content in diatoms. Additionally, we observed that disordered protein content and the number of PTM sites were significantly increased in the species-specific protein clusters compared to common protein clusters among the algae. Moreover, there were specific relationships between IDRs and PTMs among the algae from different groups. PMID:26307970

  16. Sorption of copper(II) ions in the biomass of alga Spirogyra sp.

    PubMed

    Rajfur, Ma?gorzata; K?os, Andrzej; Wac?awek, Maria

    2012-10-01

    Sorption of copper ions by the alga Spirogyra sp. was investigated to determine the influence of experimental conditions and the methods of sample preparation on the process. The experiments were carried out both under the static and the dynamic conditions. Kinetics and equilibrium parameters of the sorption were evaluated. In addition, the influence was studied of the algae preparation methods on the conductivity of demineralized water in which the algae samples were immersed. The static experiments showed that the sorption of Cu(2+) ions reached equilibrium in about 30 min, with approximately 90% of the ions adsorbed in the initial 15 min. The sorption capacity determined from the Langmuir isotherms appeared highly uncertain (SD=±0.027 mg/g dry mass or ±11%, for the live algae). Under static conditions, the slopes of the Langmuir isotherms depended on the ratio of the alga mass to the volume of solution. The conductometric measurements were proven to be a simple and fast way to evaluate the quality of algae used for the experiments. PMID:22245248

  17. Time Course Transcriptome Changes in Shewanella algae in Response to Salt Stress

    PubMed Central

    Yin, Xiling; Du, Pengcheng; Kan, Biao

    2014-01-01

    Shewanella algae, which produces tetrodotoxin and exists in various seafoods, can cause human diseases, such as spondylodiscitis and bloody diarrhea. In the present study, we focused on the temporal, dynamic process in salt-stressed S. algae by monitoring the gene transcript levels at different time points after high salt exposure. Transcript changes in amino acid metabolism, carbohydrate metabolism, energy metabolism, membrane transport, regulatory functions, and cellular signaling were found to be important for the high salt response in S. algae. The most common strategies used by bacteria to survive and grow in high salt environments, such as Na+ efflux, K+ uptake, glutamate transport and biosynthesis, and the accumulation of compatible solutes, were also observed in S. algae. In particular, genes involved in peptidoglycan biosynthesis and DNA repair were highly and steadily up-regulated, accompanied by rapid and instantaneous enhancement of the transcription of large- and small-ribosome subunits, which suggested that the structural changes in the cell wall and some stressful responses occurred in S. algae. Furthermore, the transcription of genes involved in the tricarboxylic acid (TCA) cycle and the glycolytic pathway was decreased, whereas the transcription of genes involved in anaerobic respiration was increased. These results, demonstrating the multi-pathway reactions of S. algae in response to salt stress, increase our understanding of the microbial stress response mechanisms. PMID:24789066

  18. The impact of supplementing lambs with algae on growth, meat traits and oxidative status.

    PubMed

    Hopkins, D L; Clayton, E H; Lamb, T A; van de Ven, R J; Refshauge, G; Kerr, M J; Bailes, K; Lewandowski, P; Ponnampalam, E N

    2014-10-01

    The current study examined the effect of supplementing lambs with algae. Forty, three month old lambs were allocated to receive a control ration based on oats and lupins (n=20) or the control ration with DHA-Gold™ algae (~2% of the ration, n=20). These lambs came from dams previously fed a ration based on either silage (high in omega-3) or oats and cottonseed meal (OCSM: high in omega-6) at joining (dam nutrition, DN). Lamb performance, carcase weight and GR fat content were not affected by treatment diet (control vs algae) or DN (silage vs OSCM). Health claimable omega-3 fatty acids (EPA+DHA) were significantly greater in the LL of lambs fed algae (125±6mg/100g meat) compared to those not fed algae (43±6mg/100g meat) and this effect was mediated by DN. Supplementing with algae high in DHA provides a means of improving an aspect of the health status of lamb meat. PMID:24950082

  19. Development of a ground-based space micro-algae photo-bioreactor

    NASA Astrophysics Data System (ADS)

    Ai, W.; Guo, S.; Qin, L.; Tang, Y.

    The purpose of the research is to develop a photo-bioreactor which may produce algae protein and oxygen for future astronauts in comparatively long-term exploration, and remove carbon dioxide in a controlled ecological life support system. Based on technical parameters and performance requirements, the project planning, design drafting, and manufacture were conducted. Finally, a demonstration test for producing algae was done. Its productivity for micro-algae and performance of the photo-bioreactor were evaluated. The facility has nine subsystems, including the reactor, the illuminating unit, the carbon dioxide (CO2) production unit and oxygen (O2) generation unit, etc. The demonstration results showed that the facility worked well, and the parameters, such as energy consumption, volume, and productivity for algae, met with the design requirement. The density of algae in the photo-bioreactor increased from 0.174 g (dry weight) L-1 to 4.064 g (dry weight) L-1 after 7 days growth. The principle of providing CO2 in the photo-bioreactor for algae and removing O2 from the culture medium was suitable for the demand of space conditions. The facility has reasonable technical indices, and smooth and dependable performances.

  20. Assessing the energy and environmental performance of algae-mediated tertiary treatment of estrogenic compounds.

    PubMed

    Colosi, Lisa M; Resurreccion, Eleazer P; Zhang, Yongli

    2015-02-01

    This study uses a systems-level modeling approach to illustrate a novel synergy between municipal wastewater treatment and large-scale algaculture for production of bio-energy, whereby algae-mediated tertiary treatment provides efficient removal of unregulated, strongly estrogenic steroid hormones from the secondary effluent. Laboratory results from previously published studies suggested that algae-mediated treatment could deliver roughly 75-85% removal of a model estrogen (17?-estradiol) within typical algae pond residence times. As such, experimental results are integrated into a comprehensive life cycle assessment (LCA) framework, to assess the environmental performance of an algae-based tertiary treatment system relative to three conventional tertiary treatments: ozonation, UV irradiation, and adsorption onto granular activated carbon. Results indicate that the algae-mediated tertiary treatment is superior to the selected benchmarks on the basis of raw energy return on investment (EROI) and normalized energy use per mass of estrogenic toxicity removed. It is the only tertiary treatment system that creates more energy than it consumes, and it delivers acceptable effluent quality for nutrient and coliform concentrations while rendering a significant reduction in estrogenic toxicity. These results highlight the dual water and energy sustainability benefits that accrue from the integration of municipal wastewater treatment and large-scale algae farming. PMID:25537081

  1. Coralline algae are global palaeothermometers with bi-weekly resolution

    NASA Astrophysics Data System (ADS)

    Kamenos, N. A.; Cusack, M.; Moore, P. G.

    2008-02-01

    High resolution palaeoclimate data are required for the Holocene to resolve differences recorded by current proxies. The pole to pole distribution of rhodoliths (coralline algae) with their annual and sub-annual calcite bands make these attractive candidates for such a role. These bands contain climate information in the form of elemental traces. In situ temperature (IST) was recorded at two rhodolith beds for 1.5 years. The concentrations of MgCO 3 and SrCO 3 (mol %) deposited in Lithothamion glaciale and Phymatolithon calcareum over this 18- month period were determined using electron and ion microprobes. Highly significant linear relationships exist between Mg, Sr and IST as well as sea surface temperature. Calibration between Mg concentration and IST was used to obtain a 2-year temperature profile from a subfossil rhodolith thallus indicating half the seasonal peak-to-peak temperature amplitude earlier during the Holocene than the present day. Both slow-growing species (<200 ?m year -1) allowed sampling resolutions of 23 year -1 which is equivalent to 1 reading every 2 weeks. Sub-monthly Mg and Sr records in rhodoliths make them unique globally distributed palaeothermometers which may help refine regional climate histories during the Holocene.

  2. Toxic Waterblooms of Blue-Green Algae 1

    PubMed Central

    Gorham, Paul R.

    1960-01-01

    Unialgal cultures of several species and strains of blue-green algae, including those most suspected of causing animal deaths, have been grown and found to vary greatly in toxicity. At least four toxic factors have been recognized. One produces fast deaths and is algal in origin. The others produce slow deaths and are bacterial in origin. The fast-death factor (FDF) is an endotoxin that so far has been encountered only with strains of Microcystis aeruginosa Kütz. emend. Elenkin. Its production is genetically and physiologically controlled. An FDF-producing strain of M. aeruginosa has been cultured on a large scale and the cells shown to be toxic when administered orally to sheep, calves, and smaller animals. FDF isolated from these cells has been identified as a quite stable cyclic polypeptide having an intraperitoneal LD50 for white mice of 0.47 mg. per kg. body weight. The slow-death factors may also contribute to the toxicity of waterblooms. It is concluded that a complex of interdepedent variables determines the degree and kind of toxicity that a waterbloom can develop. ImagesFigure 1.Figure 2.p245-a PMID:17421184

  3. The potential of algae blooms to produce renewable gaseous fuel.

    PubMed

    Allen, E; Browne, J; Hynes, S; Murphy, J D

    2013-11-01

    Ulva lactuca (commonly known as sea letuce) is a green sea weed which dominates Green Tides or algae blooms. Green Tides are caused by excess nitrogen from agriculture and sewage outfalls resulting in eutrophication in shallow estuaries. Samples of U. lactuca were taken from the Argideen estuary in West Cork on two consecutive years. In year 1 a combination of three different processes/pretreatments were carried out on the Ulva. These include washing, wilting and drying. Biomethane potential (BMP) assays were carried out on the samples. Fresh Ulva has a biomethane yield of 183LCH4/kgVS. For dried, washed and macerated Ulva a BMP of 250LCH4/kgVS was achieved. The resource from the estuary in West Cork was shown to be sufficient to provide fuel to 264 cars on a year round basis. Mono-digestion of Ulva may be problematic; the C:N ratio is low and the sulphur content is high. In year 2 co-digestion trials with dairy slurry were carried out. These indicate a potential increase in biomethane output by 17% as compared to mono-digestion of Ulva and slurry. PMID:23850117

  4. Fucoidan from marine brown algae inhibits lipid accumulation.

    PubMed

    Park, Min-Kyoung; Jung, Uhee; Roh, Changhyun

    2011-01-01

    In this study, we elucidated the inhibitory effect of fucoidan from marine brown algae on the lipid accumulation in differentiated 3T3-L1 adipocytes and its mechanism. The treatment of fucoidan in a dose-dependent manner was examined on lipid inhibition in 3T3-L1 cells by using Oil Red O staining. Fucoidan showed high lipid inhibition activity at 200 ?g/mL concentration (P < 0.001). Lipolytic activity in adipocytes is highly dependent on hormone sensitive lipase (HSL), which is one of the most important targets of lipolytic regulation. Here, we examined the biological response of fucoidan on the protein level of lipolysis pathway. The expressed protein levels of total hormone sensitive lipase (HSL) and its activated form, phosphorylated-HSL were significantly increased at concentration of 200 ?g/mL fucoidan. Furthermore, insulin-induced 2-deoxy-D-[³H] glucose uptake was decreased up to 51% in fucoidan-treated cells as compared to control. Since increase of HSL and p-HSL expression and decrease of glucose uptake into adipocytes are known to lead to stimulation of lipolysis, our results suggest that fucoidan reduces lipid accumulation by stimulating lipolysis. Therefore, these results suggest that fucoidan can be useful for the prevention or treatment of obesity due to its stimulatory lipolysis. PMID:21892350

  5. COMPLEMENTARY CHROMATIC ADAPTATION IN A FILAMENTOUS BLUE-GREEN ALGA

    PubMed Central

    Bennett, Allen; Bogorad, Lawrence

    1973-01-01

    Fluorescent and red light environments generate greatly different patterns of pigmentation and morphology in Fremyella diplosiphon. Most strikingly, red-illuminated cultures contain no measurable C-phycoerythrin and have a mean filament length about 10 times shorter than fluorescent-illuminated cultures. C-phycoerythrin behaves as a photoinducible constituent of this alga. Spectrophotometric and immunochemical procedures were devised so that C-phycoerythrin metabolism could be studied quantitatively with [14C]-phenylalanine pulse-chased cultures. Transfer of red-illuminated cultures to fluorescent light initiates C-phycoerythrin production by essentially de novo synthesis. C-phycoerythrin is not degraded to any significant extent in cultures continuously illuminated with fluorescent light. Transfer of fluorescent-illuminated cultures to red light causes an abrupt cessation of C-phycoerythrin synthesis. The C-phycoerythrin content of cultures adapting to red light decreases and subsequently becomes constant. Loss of C-phycoerythrin is not brought about by metabolic degradation, but rather by a decrease in mean filament length which is effected by transcellular breakage. In this experimental system, light influences intracellular C-phycoerythrin levels by regulating the rate of synthesis of the chromoprotein. PMID:4199659

  6. Biomimetic Photonic Crystals based on Diatom Algae Frustules

    NASA Astrophysics Data System (ADS)

    Mishler, Jonathan; Alverson, Andrew; Herzog, Joseph

    2015-03-01

    Diatom algae are unicellular, photosynthetic microorganisms with a unique external shell known as a frustule. Frustules, which are composed of amorphous silica, exhibit a unique periodic nano-patterning, distinguishing diatoms from other types of phytoplankton. Diatoms have been studied for their distinctive optical properties due to their resemblance of photonic crystals. In this regard, diatoms are not only considered for their applications as photonic crystals, but also for their use as biomimetic templates for artificially fabricated photonic crystals. Through the examination and measurement of the physical characteristics of many scanning electron microscope (SEM) images of diatom frustules, a biomimetic photonic crystal derived from diatom frustules can be recreated and modeled with the finite element method. In this approach, the average geometries of the diatom frustules are used to recreate a 2-dimensional photonic crystal, after which the electric field distribution and optical transmission through the photonic crystal are both measured. The optical transmission is then compared to the transmission spectra of a regular hexagonal photonic crystal, revealing the effects of diatom geometry on their optical properties. Finally, the dimensions of the photonic crystal are parametrically swept, allowing for further control over the transmission of light through the photonic crystal.

  7. Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle.

    PubMed

    Lohr, M; Wilhelm, C

    1999-07-20

    According to general agreement, all photosynthetic organisms using xanthophyll cycling for photoprotection contain either the violaxanthin (Vx) cycle or the diadinoxanthin (Ddx) cycle instead. Here, we report the temporal accumulation of substantial amounts of pigments of the Vx cycle under prolonged high-light stress in several microalgae thought to possess only the Ddx cycle. In the diatom Phaeodactylum tricornutum, used as a model organism, these pigments also participate in xanthophyll cycling, and their accumulation depends on de novo synthesis of carotenoids and on deepoxidase activity. Furthermore, our data strongly suggest a biosynthetic sequence from Vx via Ddx to fucoxanthin in P. tricornutum. This gives experimental support to the long-stated hypothesis that Vx is a common precursor of all carotenoids with an allenic or acetylenic group, including the main light-harvesting carotenoids in most chlorophyll a/c-containing algae. Thus, another important function for xanthophyll cycling may be to optimize the biosynthesis of light-harvesting xanthophylls under fluctuating light conditions. PMID:10411953

  8. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics

    SciTech Connect

    Gobler, Christopher J.; Berry, Dianna L.; Dyhrman, Sonya T.; Wilhelm, Steven W; Salamov, Asaf; Lobanov, Alexei V.; Zhang, Yan; Collier, Jackie L.; Wurch, Louie L.; Kustka, Adam B.; Dill, Brian; Shah, Manesh B; Verberkmoes, Nathan C

    2011-01-01

    Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking, because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements showed that the harmful alga Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the genome of A. anophagefferens and compared its gene complement with those of six competing phytoplankton species identified through metaproteomics. Using an ecogenomic approach, we specifically focused on gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 Mbp) and has more genes involved in light harvesting, organic carbon and nitrogen use, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species, with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique genetic capacity of A. anophagefferens and thus, has facilitated the proliferation of this and potentially other HABs.

  9. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics

    SciTech Connect

    Grigoriev, Igor; Gobler, Christopher; Salamov, Asaf; Kuo, Alan; Terry, Astrid; Pangillian, Jasmyn; Lindquist, Erika; Lucas, Susan; Berry, Dianna; Dyhrman, Sonya; Wilhelm, Steven; Lobanov, Alexei; Zhang, Yan; Collier, Jackie; Wurch, Louie; Kusta, Adam; Dill, Brian; Shsh, Manesh; VerBerkmoes, Nathan; Paulsen, Ian; Hattenrath-Lehmann, Theresa; Talmage, Stephanie; Walker, Elyse; Koch, Florian; Burson, Amanda; Marcoval, Maria; Tang, Yin-Zhong; LeCleir, Gary; Coyne, Kathyrn; Berg, Gry; Bertrand, Erin; Saito, Mak; Gladyshev, Vadim

    2011-02-18

    Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking, because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements showed that the harmful alga Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the genome of A. anophagefferens and compared its gene complement with those of six competing phytoplankton species identified through metaproteomics. Using an ecogenomic approach, we specifically focused on gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 Mbp) and has more genes involved in light harvesting, organic carbon and nitrogen use, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species, with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique genetic capacity of A. anophagefferens and thus, has facilitated the proliferation of this and potentially other HABs.

  10. In vivo localization studies in the stramenopile alga Nannochloropsis oceanica.

    PubMed

    Moog, Daniel; Stork, Simone; Reislöhner, Sven; Grosche, Christopher; Maier, Uwe-G

    2015-02-01

    The tiny eustigmatophyte Nannochloropsis sp. recently emerged as a promising model organism for biotechnology as it possesses a considerably high cellular oil content interesting for biodiesel production. Furthermore, the alga was shown to be genetically well accessible providing powerful tools for biotechnological engineering as well as basic research. Nannochloropsis sp. can be transformed very efficiently taking advantage of homologous recombination, however, so far it remained unclear whether these organisms are also suitable model systems for in vivo protein localization studies due to their small cell size. Here we present, to our knowledge, the first protein localization studies based on the expression of chimeric fluorescent fusion proteins in the genus Nannochloropsis using N. oceanica CCMP1779 as a model organism. Besides expressing a cytosolic green fluorescent protein (GFP), the reporter could be directed into subcellular structures such as the mitochondria, the endoplasmic reticulum and secretory pathway as well as the complex plastid including the periplastidal compartment and the stroma via fusion of specific N-terminal targeting sequences. These results expand the potential of N. oceanica as a model system in biotechnology as well as cellular biology for which now an almost complete molecular tool set exists. PMID:25687114

  11. Harmonic system analysis of the algae Valonia utricularis

    PubMed Central

    Wang, Jianning; Wehner, Günter; Benz, Roland; Zimmermann, Ulrich

    1993-01-01

    Cell membrane properties of the giant marine alga Valonia utricularis were measured in the frequency domain between 1 Hz and 10 MHz by harmonic system analysis. Harmonic analysis was performed by imposing a sinusoidal electrical voltage on the cell interior via an internal microelectrode. Gain and phase-shift of the resulting sinusoidal membrane voltage were measured over the whole frequency range with an internal voltage microelectrode. Bode plots of gain and phase-shift allowed the determination of the electrical parameters of the equivalent electronic circuits of the cell membrane of V. utricularis, which showed dynamic and passive properties dependent on the pH of the external aqueous solution. The dynamic components of the membrane impedance were caused by an electrogenic transport system for chloride described previously (Wang, J., G. Wehner, R. Benz, and U. Zimmermann. 1991. Biophys. J. 59:235-248). The kinetic and equilibrium parameters of the transport system could be evaluated from the fit of Bode plots of gain and phase-shift. The frequency domain technique revealed complete agreement of transport parameters with previously published results. The data demonstrate that an electrogenic transport system can be driven by an oscillating electric field. PMID:19431898

  12. Aspects of chemoattractant recognition by the alga Dunaliella tertiolecta

    SciTech Connect

    Millard, P.J.

    1984-01-01

    Studies on the molecular nature of algal chemotaxis were performed using the halophilic chlorophyte Dunaliella tertiolecta as a model. Several physical and chemical parameters for generation of maximum chemotactic response in capillary assays are described. Inhibition of chemotaxis to NH/sub 4//sup +/ and several aromatic amino acid by sublethal concentrations of certain heavy metals, including Zn/sup 2 +/, Co/sup 2 +/, Ni/sup 2 +/, Cu/sup 2 +/, and Hg/sup 2 +/ is demonstrated. Inhibition by Zn/sup 2/ of the response of NH/sub 4//sup +/ is partially reversed by increased concentrations of Ca/sup 2 +/. Attraction of L-phenylalanine, L-tyrosine, L-tryptophan, their structural analogs, and other compounds has been quantified using a capillary assay. Radiolabeled L-phenylalanine was used as a ligand to investigate algal binding and uptake. No internalization of the amino acid by D. tertiolectra occurred, even after 3 hr. Specific binding of /sup 3/H-L-phenylalanine was below 100 molecules per alga at 10/sup -8/ M L-phenylalanine. No evidence for the alteration of L-phenylalnine by D. tertiolecta was found following 22 hr incubation with the substrate in light or darkness. To further probe the molecular components of the chemosensory system of D. tertiolecta, a procedure for isolation and purification of trinitrobenzene sulfonic acid (TNBS)-labeled plasma membrane vesicles was developed. Plasma membrane purity was assessed by criteria of chlorophyll content, succinic dehydrogenase activity and protein pattern.

  13. Electron Radiation Damage of (alga) As-gaas Solar Cells

    NASA Technical Reports Server (NTRS)

    Loo, R.; Kamath, G. S.; Knechtli, R.

    1979-01-01

    Solar cells (2 cm by 2 cm (AlGa) As-GaAs cells) were fabricated and then subjected to irradiation at normal incidence by electrons. The influence of junction depth and n-type buffer layer doping level on the cell's resistance to radiation damage was investigated. The study shows that (1) a 0.3 micrometer deep junction results in lower damage to the cells than does a 0.5 micrometer junction, and (2) lowering the n buffer layer doping density does not improve the radiation resistance of the cell. Rather, lowering the doping density decreases the solar cell's open circuit voltage. Some preliminary thermal annealing experiments in vacuum were performed on the (AlGa)As-GaAs solar cells damaged by 1-MeV electron irradiation. The results show that cell performance can be expected to partially recover at 200 C with more rapid and complete recovery occurring at higher temperature. For a 0.5hr anneal at 400 C, 90% of the initial power is recovered. The characteristics of the (AlGa)As-GaAs cells both before and after irradiation are described.

  14. Phylogenetic and molecular analysis of hydrogen-producing green algae

    PubMed Central

    Timmins, Matthew; Thomas-Hall, Skye R.; Darling, Aaron; Zhang, Eugene; Hankamer, Ben; Marx, Ute C.; Schenk, Peer M.

    2009-01-01

    A select set of microalgae are reported to be able to catalyse photobiological H2 production from water. Based on the model organism Chlamydomonas reinhardtii, a method was developed for the screening of naturally occurring H2-producing microalgae. By purging algal cultures with N2 in the dark and subsequent illumination, it is possible to rapidly induce photobiological H2 evolution. Using NMR spectroscopy for metabolic profiling in C. reinhardtii, acetate, formate, and ethanol were found to be key compounds contributing to metabolic variance during the assay. This procedure can be used to test algal species existing as axenic or mixed cultures for their ability to produce H2. Using this system, five algal isolates capable of H2 production were identified in various aquatic systems. A phylogenetic tree was constructed using ribosomal sequence data of green unicellular algae to determine if there were taxonomic patterns of H2 production. H2-producing algal species were seen to be dispersed amongst most clades, indicating an H2-producing capacity preceded evolution of the phylum Chlorophyta. PMID:19342428

  15. Production of carbonate sediments by a unicellular green alga

    USGS Publications Warehouse

    Yates, K.K.; Robbins, L.L.

    1998-01-01

    This study investigates the ability of the unicellular green alga Natmochloris atoimis to precipitate CaCO3, quantifies mineral precipitation rates, estimates sediment production in a N. atomiis bloom, and discusses the implications of microbial calcification for carbonate sediment deposition. A series of N. atomus cultures, isolated from Lake Reeve, Australia, were incubated at various pH and calcium concentrations to determine environmental parameters for calcification. Rates of calcification were calculated from initial and postincubation alkalinity, pH, and calcium measurements. Replicate experiments and controls consisting of non-calcifying cultures, uninoculated media, and dead cell cultures were performed using environmental culture parameters determined in series cultures. Average calcification rates from replicate experiments were used to predict daily sediment production rates in a small bloom of N. atomus. N. atomus precipitates 0.138 g/L of calcite in approximately 4 h when incubated at pH 8.5, 14.24 mM calcium concentration, 33 ??C, 100 ??E/m2/s light intensity, and a cell population density of 107 cells/mL. Assuming continuous precipitation, this corresponds to a maximum estimated sediment production rate of 1.6 ?? 106 kg of CaCO3, per 12 h day in a single bloom of 3.2 ?? 109 L. Our results suggest that microbial calcification contributes significantly to the carbonate sediment budget.

  16. Combined toxicity of pesticide mixtures on green algae and photobacteria.

    PubMed

    Liu, Shu-Shen; Wang, Cheng-Lin; Zhang, Jin; Zhu, Xiang-Wei; Li, Wei-Ying

    2013-09-01

    Different organisms have diverse responses to the same chemicals or mixtures. In this paper, we selected the green algae Chlorella pyrenoidosa (C. pyrenoidosa) and photobacteria Vibrio qinghaiensis sp.-Q67 (V. qinghaiensis) as target organisms and determined the toxicities of six pesticides, including three herbicides (simetryn, bromacil and hexazinone), two fungicides (dodine and metalaxyl) and one insecticide (propoxur), and their mixtures by using the microplate toxicity analysis. The toxicities of three herbicides to C. pyrenoidosa are much higher than those to V. qinghaiensis, and the toxicities of metalaxyl and propoxur to V. qinghaiensis are higher than those to C. pyrenoidosa, while the toxicity of dodine to C. pyrenoidosa is similar to those to V. qinghaiensis. Using the concentration addition as an additive reference model, the binary pesticide mixtures exhibited different toxicity interactions, i.e., displayed antagonism to C. pyrenoidosa but synergism to V. qinghaiensis. However, the toxicities of the multi-component mixtures of more than two components are additive and can be predicted by the concentration addition model. PMID:23816361

  17. Evidence for the occurrence of photorespiration in synurophyte algae.

    PubMed

    Bhatti, Shabana; Colman, Brian

    2011-09-01

    The fluxes of CO(2) and oxygen during photosynthesis by cell suspensions of Tessellaria volvocina and Mallomonas papillosa were monitored mass spectrometrically. There was no rapid uptake of CO(2,) only a slow drawdown to compensation concentrations of 26 ?M for T. volvocina and 18 ?M for M. papillosa, when O(2) evolution ceased, indicating a lack of active bicarbonate uptake by the cells. Darkening of the cells after a period of photosynthesis did not cause rapid release of CO(2), indicating the absence of an intracellular inorganic carbon pool. However, upon darkening a brief burst of CO(2) was observed similar to the post-illumination burst characteristic of C(3) higher plants. Treatment of the cells of both species with the membrane-permeable carbonic anhydrase inhibitor ethoxyzolamide had no adverse effect on photosynthetic rate, but stimulated the dark CO(2) burst indicating the dark oxidation of a compound formed in the light. In the absence of any active accumulation of inorganic carbon photosynthesis in these species should be inhibited by O(2). This was investigated in four synurophyte species T. volvocina, M. papillosa, Synura petersenii, and Synura uvella: photosynthetic O(2) evolution rates in all four algae, measured by O(2) electrode, were significantly higher (40-50%) in media at low O(2) (4%) than in air-equilibrated (21% O(2)) media, indicating an O(2) inhibition of photosynthesis (Warburg effect) and thus the occurrence of photorespiration in these species. PMID:21442299

  18. Bioconvection in Cultures of the Calcifying Unicellular Alga Pleurochrysis Carterae

    NASA Technical Reports Server (NTRS)

    Montufar-Solis, Dina; Duke, P. Jackie; Marsh, Mary E.

    2003-01-01

    The unicellular, marine, calcifying alga P leurochiysis carterae--a model to study cell morphogenesis, cell polarity, calcification, gravitaxis, reproduction and development-- has extremely flexible culture requirements. Support studies for a flight experiment addressing cell motility suggested that cell density (cells/ml) affects cell movement in P. carterae cultures through the gradual establishment of bioconvection as the culture grows. To assess the effect of cell density on direction of the movement, without the effects of aging of the culture, swimming behavior was analyzed in aliquots from a series of dilutions obtained from a stock culture. Results showed that at low concentrations cells swim randomly. As the concentration increases, upswimming patterns overtake random swimming. Gradually, up and down movement patterns prevail, representative of bioconvection. This oriented swimming of P. carterae occurs in a wide range of concentrations, adding to the list of flexible requirements, in this case, cell concentration, to be used for spaceflight studies addressing cell motility and bioconvection in a unicellular model of biologically directed mineralization.

  19. Characterization of the Uptake of Quantum Dots by Algae

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Priyanka; Lin, Sijie; Sun, Xiaoqian; Brune, David; Ke, Pu-Chun

    2009-03-01

    The exposure of living systems to nanoparticles is inevitable due to a dramatic increase in their release into the environment, the most likely pathways being through inhalation, ingestion and skin uptake. The extremely small size of the nanoparticles may facilitate their tissue and cellular uptake by plants and animals, resulting in either positive (drug delivery, antioxidation) or negative (toxicity, cellular dysfunction) effects. Here we report the effects of quantum dots uptake by algae, the single-celled plant species and major food sources for aquatic organisms. In our studies, the presence of quantum dots in algal cells was detected using fluorescence microscopy and electron microscopy. Using spectrophotometry we found a supralinear increase of the uptake with the concentration of quantum dots, with a saturation of the uptake occurring beyond a concentration of 15 mg/mL. Using a bicarbonate indicator we further evaluated the effects of quantum dots uptake on algal photosynthesis and respiration. Such study facilitates our understanding of the environmental impact of nanomaterials.

  20. Modelling the influence of thermal discharge under wind on algae

    NASA Astrophysics Data System (ADS)

    Feng, Le; Chen, Bin; Hayat, Tasawar; Alsaedi, Ahmed; Ahmad, Bashir

    Wind-driven processes exert an important impact on aquatic ecosystems, especially on shallow reservoirs. Flow and heat transport under wind in the Douhe reservoir in China were simulated by a two-dimensional mathematical model. Areas corresponding to different temperature rises were calculated for different wind speed conditions with high frequency. It is shown that high temperature rise areas increase for maximum wind speed conditions while low temperature rise areas keep constant for various wind speed conditions. The concentration of Chl.a decreases with the increase of wind speed, indicating that low wind speed is suitable for algae blooming in the Douhe reservoir. The effects of wind on Bacillariophyta biomass growth become more obvious with the increase of temperature rise areas. The influenced areas of lower temperature rise (0.2-1.49 °C) and higher temperature rise (1.5-2 °C) zone are 8.57 × 106 m2 and 5.18 × 106 m2, respectively, and corresponding total variation amounts of Bacillariophyta biomass are 2.24 × 105/m2 and 0.42 × 105/m2, respectively. Results show that wind has a significant impact on ecological effects due to thermal discharge from thermal power plant into shallow reservoirs.