Sample records for alga caulerpa taxifolia

  1. Reciprocal effects of caulerpenyne and intense herbivorism on the antioxidant response of Bittium reticulatum and Caulerpa taxifolia.

    PubMed

    Sureda, Antoni; Box, Antonio; Deudero, Salud; Pons, Antoni

    2009-03-01

    We studied the antioxidant enzyme response of the gastropoda Bittium reticulatum feeding the toxic alga Caulerpa taxifolia, and also the effects of intense herbivorism on caulerpenyne production and on the antioxidant response of C. taxifolia. B. reticulatum were maintained in two separated aquariums containing Posidonia oceanica or C. taxifolia. Glutathione peroxidase, glutathione reductase and glutathione S-transferase activities were significantly higher in B. reticulatum living in presence of C. taxifolia with respect to animals living in P. oceanica aquarium. Malondialdehyde levels in B. reticulatum showed similar values in both environments. Caulerpenyne levels were significantly higher in C. taxifolia fronds after herbivore exposure. C. taxifolia activities of catalase and glutathione reductase significantly increased in presence of B. reticulatum. B. reticulatum exposed to caulerpenyne evidenced antioxidant enzyme adaptations to prevent oxidative damage. The presence of B. reticulatum in the aquarium induces a protective adaptation in C. taxifolia in order to reduce the herbivorism.

  2. Effectiveness of the California State Ban on the Sale of Caulerpa Species in Aquarium Retail Stores in Southern California

    NASA Astrophysics Data System (ADS)

    Diaz, Stephanie; Smith, Jayson R.; Zaleski, Susan F.; Murray, Steven N.

    2012-07-01

    The invasion of the aquarium strain of the green alga Caulerpa taxifolia and subsequent alteration of community structure in the Mediterranean Sea raised awareness of the potential for non-native seaweeds to impact coastal communities. An introduction of C. taxifolia in southern California in 2000, presumably from the release of aquarium specimens, cost ~7 million for eradication efforts. Besides C. taxifolia, other Caulerpa species being sold for aquarium use also may have the potential to invade southern Californian and U.S. waters. Surveys of the availability of Caulerpa species in southern California aquarium retail stores in 2000-2001 revealed that 26 of 50 stores sold at least one Caulerpa species (52 %) with seven stores selling C. taxifolia. In late 2001, California imposed a ban on the importation, sale, or possession of nine Caulerpa species; the City of San Diego expanded these regulations to include the entire genus. To determine the effectiveness of the California ban, we resurveyed Caulerpa availability at 43 of the 50 previously sampled retail stores in southern California in ~2006, ~4 years following the ban. Of the 43 stores, 23 sold Caulerpa (53 %) with four stores selling C. taxifolia. A χ2 test of frequency of availability before and after the California ban suggests that the ban has not been effective and that the aquarium trade continues to represent a potential vector for distributing Caulerpa specimens, including C. taxifolia. This study underscores the need for increased enforcement and outreach programs to increase awareness among the aquarium industry and aquarium hobbyists.

  3. Effectiveness of the California state ban on the sale of Caulerpa species in aquarium retail stores in southern California.

    PubMed

    Diaz, Stephanie; Smith, Jayson R; Zaleski, Susan F; Murray, Steven N

    2012-07-01

    The invasion of the aquarium strain of the green alga Caulerpa taxifolia and subsequent alteration of community structure in the Mediterranean Sea raised awareness of the potential for non-native seaweeds to impact coastal communities. An introduction of C. taxifolia in southern California in 2000, presumably from the release of aquarium specimens, cost ~$7 million for eradication efforts. Besides C. taxifolia, other Caulerpa species being sold for aquarium use also may have the potential to invade southern Californian and U.S. waters. Surveys of the availability of Caulerpa species in southern California aquarium retail stores in 2000-2001 revealed that 26 of 50 stores sold at least one Caulerpa species (52 %) with seven stores selling C. taxifolia. In late 2001, California imposed a ban on the importation, sale, or possession of nine Caulerpa species; the City of San Diego expanded these regulations to include the entire genus. To determine the effectiveness of the California ban, we resurveyed Caulerpa availability at 43 of the 50 previously sampled retail stores in southern California in ~2006, ~4 years following the ban. Of the 43 stores, 23 sold Caulerpa (53 %) with four stores selling C. taxifolia. A χ(2) test of frequency of availability before and after the California ban suggests that the ban has not been effective and that the aquarium trade continues to represent a potential vector for distributing Caulerpa specimens, including C. taxifolia. This study underscores the need for increased enforcement and outreach programs to increase awareness among the aquarium industry and aquarium hobbyists.

  4. Mediterranean species of Caulerpa are polyploid with smaller genomes in the invasive ones.

    PubMed

    Varela-Álvarez, Elena; Gómez Garreta, Amelia; Rull Lluch, Jordi; Salvador Soler, Noemi; Serrao, Ester A; Siguán, María Antonia Ribera

    2012-01-01

    Caulerpa species are marine green algae, which often act as invasive species with rapid clonal proliferation when growing outside their native biogeographical borders. Despite many publications on the genetics and ecology of Caulerpa species, their life history and ploidy levels are still to be resolved and are the subject of large controversy. While some authors claimed that the thallus found in nature has a haplodiplobiontic life cycle with heteromorphic alternation of generations, other authors claimed a diploid or haploid life cycle with only one generation involved. DAPI-staining with image analysis and microspectrophotometry were used to estimate relative nuclear DNA contents in three species of Caulerpa from the Mediterranean, at individual, population and species levels. Results show that ploidy levels and genome size vary in these three Caulerpa species, with a reduction in genome size for the invasive ones. Caulerpa species in the Mediterranean are polyploids in different life history phases; all sampled C. taxifolia and C. racemosa var. cylindracea were in haplophasic phase, but in C. prolifera, the native species, individuals were found in both diplophasic and haplophasic phases. Different levels of endopolyploidy were found in both C. prolifera and C. racemosa var. cylindracea. Life history is elucidated for the Mediterranean C. prolifera and it is hypothesized that haplophasic dominance in C. racemosa var. cylindracea and C. taxifolia is a beneficial trait for their invasive strategies.

  5. Science Education and Controversial Issues: A Case Study.

    ERIC Educational Resources Information Center

    Matricardi, Giorgio; Muratori, Rosanna; Porro, Rita; Pirola, Elisabetta; Capozza, Angela

    A constructivistic learning process was used with primary and secondary students in Genoa, Italy, to approach the problem of the diffusion of the alloctonous algae Caulerpa taxifolia in the northwestern Mediterranean Sea. Because of the lack of a continuous research program in Italy, the media played a heavy role in the transfer of information to…

  6. A screening method for cardiovascular active compounds in marine algae.

    PubMed

    Agatonovic-Kustrin, S; Kustrin, E; Angove, M J; Morton, D W

    2018-05-18

    The interaction of bioactive compounds from ethanolic extracts of selected marine algae samples, separated on chromatographic plates, with nitric/nitrous acid was investigated. The nature of bioactive compounds in the marine algae extracts was characterised using UV absorption spectra before and after reaction with diluted nitric acid, and from the characteristic colour reaction after derivatization with anisaldehyde. It was found that diterpenes from Dictyota dichotoma, an edible brown algae, and sterols from green algae Caulerpa brachypus, bind nitric oxide and may act as a nitric oxide carrier. Although the carotenoid fucoxanthin, found in all brown marine algae also binds nitric oxide, the bonds between nitrogen and the fucoxanthin molecule are much stronger. Further studies are required to evaluate the effects of diterpenes from Dictyota dichotoma and sterols from green algae Caulerpa brachypus to see if they have beneficial cardiovascular effects. The method reported here should prove useful in screening large numbers of algae species for compounds with cardiovascular activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens

    NASA Astrophysics Data System (ADS)

    Kathiraven, T.; Sundaramanickam, A.; Shanmugam, N.; Balasubramanian, T.

    2015-04-01

    We present the synthesis and antibacterial activity of silver nanoparticles using Caulerpa racemosa, a marine algae. Fresh C. racemosa was collected from the Gulf of Mannar, Southeast coast of India. The seaweed extract was used for the synthesis of AgNO3 at room temperature. UV-visible spectrometry study revealed surface plasmon resonance at 413 nm. The characterization of silver nanoparticle was carried out using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and transmission electron microscope (TEM). FT-IR measurements revealed the possible functional groups responsible for reduction and stabilization of the nanoparticles. X-ray diffraction analysis showed that the particles were crystalline in nature with face-centered cubic geometry.TEM micrograph has shown the formation of silver nanoparticles with the size in the range of 5-25 nm. The synthesized AgNPs have shown the best antibacterial activity against human pathogens such as Staphylococcus aureus and Proteus mirabilis. The above eco-friendly synthesis procedure of AgNPs could be easily scaled up in future for the industrial and therapeutic needs.

  8. [Demography of Caulerpa paspaloides var. wudermanni (Bryopsidales: Caulerpaceae) in the coastal zone of Campeche, México].

    PubMed

    Fuentes, Sergio Armando; Gallegos, Margarita E; Mandujano, María C

    2014-06-01

    Demography of Caulerpa paspaloides var. wudermanni (Bryopsidales: Caulerpaceae) in the coastal zone of Campeche, México. The subaquatic vegetation of Los Petenes, Campeche, Mexico, stands out due to its considerable floristic diversity, composed of a great variety of sea grasses and several species of the genus Caulerpa sp. This is a genus of ecological relevance, with the invasive species in the Mediterranean, with negative impact on several native sub-aquatic plants; nevertheless, little is known about the demography and population dynamics of Caulerpa species and their contribution to food webs. Thus the main objective of this study was to describe the demographics of Caulerpa paspaloides var. wudermanni, using the number of stolons, complete and incomplete fronds, the diameter of the stolons and the biomass. The information was used to determine the growth rate (lambda) of this species. The study was conducted in the Biosphere Reserve of Los Petenes, which is located in the Northwest of the state of Campeche. The submerged aquatic vegetation (SAV) in the Petenes Biosphere consists of monospecific and mixed populations of seagrass species (Thalassia testudinum, Halodule wrightii and Syringodium filiforme). Although chlorophytes, brown algae and red algae, are fundamental elements in the specific composition of the SAV in Petenes, several species of Caulerpa are prominent because of their coverage and abundance. In May and June of 2010, significant differences in the quantity of stolons, their diameter, incomplete and complete fronds, and the size of the stolons and rhizomes, were observed. In 2010, the finite population growth rate (lambda) was 2.38 +/- 0.1571 for individuals and 1.20 +/- 0.1356 for the population, and in 2011 the values of lambda were 1.80 +/- 0.3608 and 1.35 +/- 0.1571, respectively. From these results it can be concluded that the population is growing; however, growth is controlled by biotic and abiotic factors. Despite there was no apparent

  9. 1H NMR Spectroscopy and MVA Analysis of Diplodus sargus Eating the Exotic Pest Caulerpa cylindracea.

    PubMed

    De Pascali, Sandra A; Del Coco, Laura; Felline, Serena; Mollo, Ernesto; Terlizzi, Antonio; Fanizzi, Francesco P

    2015-06-05

    The green alga Caulerpa cylindracea is a non-autochthonous and invasive species that is severely affecting the native communities in the Mediterranean Sea. Recent researches show that the native edible fish Diplodus sargus actively feeds on this alga and cellular and physiological alterations have been related to the novel alimentary habits. The complex effects of such a trophic exposure to the invasive pest are still poorly understood. Here we report on the metabolic profiles of plasma from D. sargus individuals exposed to C. cylindracea along the southern Italian coast, using 1H NMR spectroscopy and multivariate analysis (Principal Component Analysis, PCA, Orthogonal Partial Least Square, PLS, and Orthogonal Partial Least Square Discriminant Analysis, OPLS-DA). Fish were sampled in two seasonal periods from three different locations, each characterized by a different degree of algal abundance. The levels of the algal bisindole alkaloid caulerpin, which is accumulated in the fish tissues, was used as an indicator of the trophic exposure to the seaweed and related to the plasma metabolic profiles. The profiles appeared clearly influenced by the sampling period beside the content of caulerpin, while the analyses also supported a moderate alteration of lipid and choline metabolism related to the Caulerpa-based diet.

  10. Native species behaviour mitigates the impact of habitat-forming invasive seaweed.

    PubMed

    Wright, Jeffrey T; Byers, James E; Koukoumaftsis, Loni P; Ralph, Peter J; Gribben, Paul E

    2010-06-01

    Habitat-forming invasive species cause large, novel changes to the abiotic environment. These changes may elicit important behavioural responses in native fauna, yet little is known about mechanisms driving this behaviour and how such trait-mediated responses influence the fitness of native species. Low dissolved oxygen is a key abiotic change created by the habitat-forming invasive seaweed, Caulerpa taxifolia, which influences an important behavioural response (burrowing depth) in the native infaunal bivalve Anadara trapezia. In Caulerpa-colonised areas, Anadara often emerged completely from the sediment, and we experimentally demonstrate that water column hypoxia beneath the Caulerpa canopy is the mechanism instigating this "pop-up" behaviour. Importantly, pop-up in Caulerpa allowed similar survivorship to that in unvegetated sediment; however, when we prevented Anadara from popping-up, they suffered >50% mortality in just 1 month. Our findings not only highlight the substantial environmental alteration by Caulerpa, but also an important role for the behaviour of native species in mitigating the effects of habitat-forming invasive species.

  11. Antibacterial, cytotoxicity and anticoagulant activities from Hypnea esperi and Caulerpa prolifera marine algae.

    PubMed

    Selim, Samy; Amin, Abeer; Hassan, Sherif; Hagazey, Mohamed

    2015-03-01

    Extracts from 2 algal species (Hypnea esperi and Caulerpa prolifera) from Suez Canal region, Egypt were screened for the production of antibacterial compounds against some pathogenic bacteria. The bacteria tested included Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium, Aeromonas hydrophila, Bacillus subtilis and Staphylococcus aureus. Algal species displayed antibacterial activity. The methanolic extracts showed variable response by producing various zones of inhibition against studied bacteria. The tested Gram-negative bacteria were less affected by studied algal extracts than Gram-positive bacteria. We determined some biopotentials properties such as cytotoxicity and anticoagulant activity of most potent algal active extracts. The secondary metabolites of only Hypnea esperi algal extract effectively prevented the blood clotting to the extent of 120 seconds. Minimum inhibitory concentration (MIC) indicated that all potent tested algal extract C inhibits Bacillus subtilis and Staphylococcus aureus. Minimum bactericidal concentration (MBC) was between 1 and 1.4mg/ml. The algal isolates from Egypt have been found showing promising results against infectious bacteria instead of some synthetic antibiotics.

  12. Evaluation of in vitro anti-Leishmanial activity of some brown, green and red algae from the Persian Gulf.

    PubMed

    Fouladvand, M; Barazesh, A; Farokhzad, F; Malekizadeh, H; Sartavi, K

    2011-06-01

    Leishmaniasis is a protozoan parasitic disease which is transmitted by the female Phlebotomus sand fly and is prevalent in four continents.The first-choice treatment for the leishmaniasis is pentavalent antimonials, which are potentially toxic and often ineffective and use of them exhibit therapeutic failure. These pharmaceutical problems point towards the need to develop novel chemotherapeutic agents. Seaweeds are considered as source of bioactive metabolites characterized by a broad spectrum of biological activities. In this experimental study, cold and hot water crude extracts of four species of green, brown and red marine algae "Caulerpa sertularioides, Gracilaria corticata, Gracillaria salicornia and Sargassum oligocystum" collected along the Bushehr coast of the Persian Gulf (southwest of Iran), prepared and their in vitro activities against Leishmania major promastigote were evaluated by using the MTT assay test. The cold and hot water crude extracts of four algae species exhibited different anti-Leishmanial activities. The minimum inhibitory concentration of hot water extracts calculated as IC50 was as follows: Caulerpa sertularioides (IC50 < or =85 microg/ml), Gracilaria corticata (IC50 < or =38 microg/ml), Gracillaria salicornia (IC50 < or =46 microg/ml) and Sargassum oligocystum (IC(50)9 < or =78 microg/ml, while these values for cold water extracts were (IC50 >125 microg/ml) for Caulerpa Sertularioides (IC50 >65 microg/ml) for Gracilaria corticata (IC50 >74 microg/ml) for Gracilaria salicornia and (IC50 >105 microg/ml) for Sargassum oligocystum, IC50 values for reference drug (Amphotericin B) was (0.16-0.2 microg/ml). According to the results, inhibitory effects of the crude extracts from these four species algae specially hot water crude extracts from "Gracilaria corticata, Gracillaria salicornia and Sargassum oligocystum" are significant and in accordance with other studies that has been done on different algae species. So these results are

  13. Genotoxicity and osteogenic potential of sulfated polysaccharides from Caulerpa prolifera seaweed.

    PubMed

    Chaves Filho, Gildácio Pereira; de Sousa, Angélica Fernandes Gurgel; Câmara, Rafael Barros Gomes; Rocha, Hugo Alexandre Oliveira; de Medeiros, Silvia Regina Batistuzzo; Moreira, Susana Margarida Gomes

    2018-07-15

    Marine algae are sources of novel bioactive molecules and present a great potential for biotechnological and biomedical applications. Although green algae are the least studied type of seaweed, several of their biological activities have already been described. Here, we investigated the osteogenic potential of Sulfated Polysaccharide (SP)-enriched samples extracted from the green seaweed Caulerpa prolifera on human mesenchymal stem cells isolated from Wharton jelly (hMSC-WJ). In addition, the potential genotoxicity of these SPs was determined by cytokinesis-block micronucleus (CBMN) assay. SP-enriched samples did not show significant cytotoxicity towards hMSCs-WJ at a concentration of up to 10μg/mL, and after 72h of exposure. SP enrichment also significantly increased alkaline phosphatase (ALP) activity, promoting calcium accumulation in the extracellular matrix. Among the SP-enriched samples, the CP0.5 subfraction (at 5μg/mL) presented the most promising results. In this sample, ALP activity was increased approximately by 60%, and calcium accumulation was approximately 6-fold above the negative control, indicating high osteogenic potential. This subfraction also proved to be non-genotoxic, according to the CBMN assay, as it did not induce micronuclei. The results of this study highlight, for the first time, the potential of these SPs for the development of new therapies for bone regeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Differential response of coral communities to Caulerpa spp. bloom in the reefs of Indian Ocean.

    PubMed

    Manikandan, B; Ravindran, J

    2017-02-01

    Coral reef ecosystems are disturbed in tandem by climatic and anthropogenic stressors. A number of factors act synergistically to reduce the live coral cover and threaten the existence of reefs. Continuous monitoring of the coral communities during 2012-2014 captured an unprecedented growth of macroalgae as a bloom at Gulf of Mannar (GoM) and Palk Bay (PB) which are protected and unprotected reefs, respectively. The two reefs varying in their protection level enabled to conduct an assessment on the response of coral communities and their recovery potential during and after the macroalgal bloom. Surveys in 2012 revealed a live coral cover of 36.8 and 14.6% in GoM and PB, respectively. Live coral cover was lost at an annual rate of 4% in PB due to the Caulerpa racemosa blooms that occurred in 2013 and 2014. In GoM, the loss of live coral cover was estimated to be 16.5% due to C. taxifolia bloom in 2013. Tissue regeneration by the foliose and branching coral morphotypes aided the recovery of live coral cover in GoM, whereas the chances for the recovery of live coral cover in PB reef were low, primarily due to frequent algal blooms, and the existing live coral cover was mainly due to the abundance of slow-growing massive corals. In combination, results of this study suggested that the recovery of a coral reef after a macroalgal bloom largely depends on coral species composition and the frequency of stress events. A further study linking macroalgal bloom to its specific cause is essential for the successful intervention and management.

  15. A novel Fusarium species causes a canker disease of the critically endangered conifer, Torreya taxifolia

    USDA-ARS?s Scientific Manuscript database

    A canker disease of Florida torreya (Torreya taxifolia), here designated CDFT, has been implicated in the decline of this critically endangered species in its native range of northern Florida and southeastern Georgia. In our current surveys of eight Florida torreya sites, cankers were present on all...

  16. Diurnal patterns of chlorophyll fluorescence and CO2 fixation in orchard grown Torreya taxifolia (Arn.).

    Treesearch

    Anita C. Koehn; Robert L. Doudrick

    1999-01-01

    Diurnal patterns of chlorophyll fluorescence and CO2 fixation in orchard measurements were taken on sunny days in October 1996, on three Torreya taxifolia (Arn.) plants grown in an open canopy orchard. Information from chlorophyll fluorescence quenching analysis indicated that during periods of highest light intensity and temperatures there were...

  17. A short note on the paper of Liu et al. (2012). A relative Lempel-Ziv complexity: Application to comparing biological sequences. Chemical Physics Letters, volume 530, 19 March 2012, pages 107-112

    NASA Astrophysics Data System (ADS)

    Arit, Turkan; Keskin, Burak; Firuzan, Esin; Cavas, Cagin Kandemir; Liu, Liwei; Cavas, Levent

    2018-04-01

    The report entitled "L. Liu, D. Li, F. Bai, A relative Lempel-Ziv complexity: Application to comparing biological sequences, Chem. Phys. Lett. 530 (2012) 107-112" mentions on the powerful construction of phylogenetic trees based on Lempel-Ziv algorithm. On the other hand, the method explained in the paper does not give promising result on the data set on invasive Caulerpa taxifolia in the Mediterranean Sea. The phylogenetic trees are obtained by the proposed method of the aforementioned paper in this short note.

  18. Overview on Biological Activities and Molecular Characteristics of Sulfated Polysaccharides from Marine Green Algae in Recent Years

    PubMed Central

    Wang, Lingchong; Wang, Xiangyu; Wu, Hao; Liu, Rui

    2014-01-01

    Among the three main divisions of marine macroalgae (Chlorophyta, Phaeophyta and Rhodophyta), marine green algae are valuable sources of structurally diverse bioactive compounds and remain largely unexploited in nutraceutical and pharmaceutical areas. Recently, a great deal of interest has been developed to isolate novel sulfated polysaccharides (SPs) from marine green algae because of their numerous health beneficial effects. Green seaweeds are known to synthesize large quantities of SPs and are well established sources of these particularly interesting molecules such as ulvans from Ulva and Enteromorpha, sulfated rhamnans from Monostroma, sulfated arabinogalactans from Codium, sulfated galacotans from Caulerpa, and some special sulfated mannans from different species. These SPs exhibit many beneficial biological activities such as anticoagulant, antiviral, antioxidative, antitumor, immunomodulating, antihyperlipidemic and antihepatotoxic activities. Therefore, marine algae derived SPs have great potential for further development as healthy food and medical products. The present review focuses on SPs derived from marine green algae and presents an overview of the recent progress of determinations of their structural types and biological activities, especially their potential health benefits. PMID:25257786

  19. Antihyperglycemic effect of crude extracts of some Egyptian plants and algae.

    PubMed

    AbouZid, Sameh Fekry; Ahmed, Osama Mohamed; Ahmed, Rasha Rashad; Mahmoud, Ayman; Abdella, Ehab; Ashour, Mohamed Badr

    2014-03-01

    Diabetes mellitus is a major global health problem. Various plant extracts have proven antidiabetic activity and are considered as promising substitution for antidiabetic drugs. The antihyperglycemic effect of 16 plants and 4 algae, commonly used in Egypt for the treatment of diabetes mellitus, was investigated. A diabetes model was induced by intraperitoneal injection of nicotinamide (120 mg/kg body weight [b.wt.]), then streptozotocin (200 mg/kg b.wt.) after 15 min. Hydroethanolic extracts (80%) of the plants and algae under investigation were prepared. The extracts were orally administered to nicotinamide-streptozotocin-induced diabetic mice by a gastric tube at doses 10 or 50 mg/kg b.wt. for 1 week. The antidiabetic activity was assessed by detection of serum glucose concentrations at the fasting state and after 2 h of oral glucose loading (4.2 mg/kg b.wt.). Extracts prepared from Cassia acutifolia, Fraxinus ornus, Salix aegyptiaca, Cichorium intybus, and Eucalyptus globulus showed the highest antihyperglycemic activity among the tested plants. Extracts prepared from Sonchus oleraceus, Bougainvillea spectabilis (leaves), Plantago psyllium (seeds), Morus nigra (leaves), and Serena repens (fruits) were found to have antihyperglycemic potentials. Extracts prepared from Caulerpa lentillifera and Spirulina versicolor showed the most potent antihyperglycemic activity among the tested algae. However, some of the tested plants have insulinotropic effects, all assessed algae have not. Identification of lead compounds from these plants and algae for novel antidiabetic drug development is recommended.

  20. The Suez Canal as a habitat and pathway for marine algae and seagrasses

    NASA Astrophysics Data System (ADS)

    Aleem, A. A.

    The Suez Canal supports a diversified benthic algal flora; 133 species of benthic algae are now known from the Canal, as compared with only 24 in 1924. The vertical and horizontal distribution of algae is considered in relation to hydrographic factors. The algae display zonation and 3-4 algal belts are distinguished on the Canal banks on buoys and pier supports. Associated fauna include Balanus amphitrite and Brachidontes variabilis, together with various hydroids, sponges, ascidians, asteroids, ophiuroids and crustaceans. Merceriella enigmatica thrives well in brackish water habitats. The algal flora in the Bitter Lakes resembles that in the Red Sea. The number of Red Sea species decreases from Suez to Port Said in the littoral zone. On the other hand, bottom algae predominantly belong to Red Sea flora. Thirty of the species of algae found belong to the Indo-Pacific flora; half of these are new records to the Canal. Several of these Indo-Pacific algae have recently become established in the Eastern Mediterranean, whereas only two of the Mediterranean macro-algal flora (viz. Caulerpa prolifera and Halopteris scoparia) have been found in the Gulf of Suez. Two seagrasses, Halopia ovalis and Thalassia hemprichii, are recorded for the first time in the Canal. Only Halophila stipulacea has found its way into the Mediterranean via the Suez Canal, but none of the Mediterranean seagrasses is found either in the Canal or in the Red Sea.

  1. Seasonal monitoring of coral-algae interactions in fringing reefs of the Gulf of Aqaba, Northern Red Sea

    NASA Astrophysics Data System (ADS)

    Haas, A.; El-Zibdah, M.; Wild, C.

    2010-03-01

    This paper presents seasonal in situ monitoring data on benthic coverage and coral -algae interactions in high-latitude fringing reefs of the Northern Red Sea over a period of 19 months. More than 30% of all hermatypic corals were involved in interaction with benthic reef algae during winter compared to 17% during summer, but significant correlation between the occurrence of coral -algae interactions and monitored environmental factors such as temperature and inorganic nutrient availability was not detected. Between 5 and 10-m water depth, the macroalgae Caulerpa serrulata, Peyssonnelia capensis and filamentous turf algae represented almost 100% of the benthic algae involved in interaction with corals. Turf algae were most frequently (between 77 and 90% of all interactions) involved in interactions with hermatypic corals and caused most tissue damage to them. Maximum coral tissue loss of 0.75% day-1 was observed for Acropora-turf algae interaction during fall, while an equilibrium between both groups of organisms appeared during summer. Slow-growing massive corals were more resistant against negative algal influence than fast-growing branching corals. Branching corals of the genus Acropora partly exhibited a newly observed phenotypic plasticity mechanism, by development of a bulge towards the competing organism, when in interaction with algae. These findings may contribute to understand the dynamics of phase shifts in coral reefs by providing seasonally resolved in situ monitoring data on the abundance and the competitive dynamic of coral -algae interactions.

  2. The Potential Exploitation of the Mediterranean Invasive Alga Caulerpa cylindracea: Can the Invasion Be Transformed into a Gain?

    PubMed Central

    Stabili, Loredana; Fraschetti, Simonetta; Acquaviva, Maria Immacolata; Cavallo, Rosa Anna; De Pascali, Sandra Angelica; Fanizzi, Francesco Paolo; Gerardi, Carmela; Narracci, Marcella; Rizzo, Lucia

    2016-01-01

    Recently, there is a growing interest towards the development of strategies for invasive seaweed control and exploitation as source of secondary metabolites. Here, we investigated the potential of exploitation in biotechnology and recycling options in eradication programs of the lipidic extract of the Mediterranean invasive seaweed Caulerpa cylindracea (Chlorophyta). The chemical characterization was carried out by means of multinuclear and multidimensional NMR spectroscopy. The fatty acid profile of C. cylindracea assessed the presence of several types of molecules known for antioxidant activity such as carotenoids, chlorophylls, pheophytins, and sterols. The NMR spectroscopy showed also the characteristic signals of saturated, unsaturated, and free fatty acids as well as other metabolites including the biopolymer polyhydroxybutyrate. The lipidic extract exerted an antioxidant activity corresponding to 552.14 ± 69.13 mmol Trolox equivalent/g (ORAC) and to 70.3 ± 2.67 mmol Trolox equivalent/g (TEAC). The extract showed an antibacterial activity against several Vibrio species, suggesting its potential use in the control of diseases in mariculture. Our results show that C. cylindracea, representing a critical hazard in coastal areas, could be transformed into a gain supporting specific management actions to reduce the effects of human pressures. PMID:27854274

  3. Fusarium torreyae sp. nov., a pathogen causing canker disease of Florida torreya (Torreya taxifolia), a critically endangered conifer restricted to northern Florida and southwestern Georgia

    USDA-ARS?s Scientific Manuscript database

    During a survey for pathogens of Florida torreya (Torreya taxifolia) conducted in 2009, a novel Fusarium species was isolated from cankers affecting this critically endangered conifer whose current range is restricted to northern Florida and southwestern Georgia. Published multilocus molecular phylo...

  4. Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia

    PubMed Central

    Al-Saif, Sarah Saleh Abdu-llah; Abdel-Raouf, Nevein; El-Wazanani, Hend A.; Aref, Ibrahim A.

    2013-01-01

    Marine algae are known to produce a wide variety of bioactive secondary metabolites and several compounds have been derived from them for prospective development of novel drugs by the pharmaceutical industries. However algae of the Red sea have not been adequately explored for their potential as a source of bioactive substances. In this context Ulva reticulata, Caulerpa occidentalis, Cladophora socialis, Dictyota ciliolata, and Gracilaria dendroides isolated from Red sea coastal waters of Jeddah, Saudi Arabia, were evaluated for their potential for bioactivity. Extracts of the algae selected for the study were prepared using ethanol, chloroform, petroleum ether and water, and assayed for antibacterial activity against Escherichia coli ATCC 25322, Pseudomonas aeruginosa ATCC 27853, Stapylococcus aureus ATCC 29213, and Enterococcus faecalis ATCC 29212. It was found that chloroform was most effective followed by ethanol, petroleum ether and water for the preparation of algal extract with significant antibacterial activities, respectively. Results also indicated that the extracts of red alga G. dendroides were more efficient against the tested bacterial strains followed by green alga U. reticulata, and brown algae D. ciliolata. Chemical analyses showed that G. dendroides recorded the highest percentages of the total fats and total proteins, followed by U. reticulata, and D. ciliolate. Among the bioflavonoids determined Rutin, Quercetin and Kaempherol were present in high percentages in G. dendroides, U. reticulata, and D. ciliolate. Estimation of saturated and unsaturated fatty acids revealed that palmitic acid was present in highest percentage in all the algal species analyzed. Amino acid analyses indicated the presence of free amino acids in moderate contents in all the species of algae. The results indicated scope for utilizing these algae as a source of antibacterial substances. PMID:24596500

  5. Analysis Total Plate Counte (TPC) On Fresh Steak Tuna Applications Edible Coating Caulerpa sp During Stored at Chilling Temperature

    NASA Astrophysics Data System (ADS)

    Nelce Mailoa, Meigy; Marthina Tapotubun, Alfonsina; Matrutty, Theodora E. A. A.

    2017-10-01

    A study has been conducted to determine the use of Caulerpa sp. Edible coatings on fresh steaks tuna against the presence of microbes during storage at chilling temperatures. In this research, two applied method of edible coating is used, that is dipping and immersion method, with chilling temperature (5°C), storage time (0, 3, 6, 9 days). Each treatment is compared to control (without an edible coating). The results showed that the application of edible coating Caulerpa sp in fresh steaks tuna with soaking and dipping method showed total bacteria increase during storage, but still fulfill the microbiological quality of fresh fish that is maximum total plate 5.0 × 105 cfu/g. Total microbes in fresh steaks tuna were soaked with immersion methods and stored up to 9 days: 2.3 × 105 cfu/g while total microbial on fresh steaks tuna were dipped by dipping method and stored up to 9 days ie 3.4 × 105 cfu/g. So it can be concluded that application method of edible coating Caulerpa sp on fresh steaks tuna soaked better than the method of dipping.

  6. Biosorption of Cr (VI), Cr (III), Pb (II) and Cd (II) from aqueous solutions by Sargassum wightii and Caulerpa racemosa algal biomass

    NASA Astrophysics Data System (ADS)

    Tamilselvan, Narayanaswamy; Saurav, Kumar; Kannabiran, Krishnan

    2012-03-01

    Heavy metal pollution is one of the most important environmental problems today. Biosorption is an innovative technology that employs biological materials to accumulate heavy metals from waste water through metabolic process or physicochemical pathways of uptake. Even though several physical and chemical methods are available for removal of heavy metals, currently many biological materials such as bacteria, algae, yeasts and fungi have been widely used due to their good performance, low cost and large quantity of availability. The aim of the present study is to explore the biosorption of toxic heavy metals, Cr(VI), Cr(III), Pb(II) and Cd(II) by algal biomass obtained from algae Sargassum wightii (brown) and Caulerpa racemosa (green). Biosorption of algal biomass was found to be biomass concentration- and pH-dependent, while the maximal biosorption was found at pH 5.0 and with the metal concentration of 100 mg L-1. S. wightii showed the maximal metal biosorption at the biomass concentration of 25 g L-1, followed by C. racemosa with the maximal biosorption at 30 g L-1. S. wightii showed 78% biosorption of Cr(VI), Cr(III), Pb(II) and Cd(II) ions. C. racemosa exhibited 85% biosorption of Cd(II) and Cr(VI), and 50% biosorption of Cr(III) and Pb(II). The results of our study suggest that seaweed biomass can be used efficiently for biosorption of heavy metals.

  7. Preliminary evaluation of hydrocarbon removal power of Caulerpa racemosa in seawater by means of infrared and visible spectroscopic measurements.

    PubMed

    Pietroletti, Marco; Capobianchi, Alfredo; Ragosta, Emanuela; Mecozzi, Mauro

    2010-10-15

    In this paper we tested the power of Caulerpa racemosa for removal hydrocarbons from seawater. C. racemosa was implanted in two aquariums filled with natural seawater having a hydrocarbon content lower than 0.05mg/L which is the detection limit of the FTIR spectrophotometric method used for the determination. One aquarium was submitted to sequential additions of hydrocarbons (n-esadecane 10, 20 and 40mg/L, n-docosane 15mg/L) and diesel fuels (20mg/L) while the second one remained uncontaminated and used as control. After any addition, hydrocarbon content in seawater was determined at regular time intervals (one or two days) and when comparable hydrocarbon contents (i.e. lower than 0.05mg/L) were again observed, the real removal power of hydrocarbons was verified by several spectroscopic measurements performed on algae from both aquariums. Total hydrocarbon contents in algae determined by infrared (FTIR) spectroscopy, always resulted higher in the polluted aquarium for all the concentrations of added pollutants. Further FTIR studies performed on algae showed the presence of marked quantitative and structural molecular modifications involving carbohydrates, proteins, lipids, nucleic acids and chlorophyll pigments in C. racemosa from the aquarium test. In addition, visible (VIS) spectroscopic examination of C. racemosa showed a reduction of chlorophyll pigments in the polluted aquarium with respect to the control one. At last, FTIR spectra all the algal samples submitted to hydrocarbon pollution were re-examined by means of two-dimensional correlation analysis, a statistical tool helpful for studying the dynamic evolution of any molecular and biological system submitted to an external perturbation producing compositional and structural changes. This approach showed differences among the molecular modifications caused by any type of hydrocarbon used, modifications related reasonably to the molecular dimensions and concentration of the added pollutants. All these

  8. Supply chain and marketing of sea grapes, Caulerpa racemosa (Forsskål) J. Agardh (Chlorophyta: Caulerpaceae) in Fiji, Samoa and Tonga.

    PubMed

    Morris, C; Bala, S; South, G R; Lako, J; Lober, M; Simos, T

    2014-01-01

    This report describes for the first time the supply chain of Caulerpa racemosa in three Pacific Island countries. The harvesting and marketing of C. racemosa are important subsistence activities for villagers in Fiji and Samoa, less so in Tonga. At least 150 harvesters are involved in Fiji, some 100 in Samoa and only a handful in Tonga. The annual combined crop is of some 123 t valued at around US$266,492. In Fiji, it is projected that supply does not meet local demand and there is a potential export market that is currently operating at a pilot project level. In Samoa, the supply is considered adequate for the current market. In Tonga, harvesting is carried out by a few families and supplies a niche market in that country. The possibilities of field cultivation of Caulerpa have been explored but, at present, with only limited success in Samoa. The supply chain is simple in all three countries, and only in Fiji are middlemen involved in the distribution process. The limitations for marketing include the fact that only a few sites supply most of the crop in all the three countries, that all sites need to be conserved through sustainable harvesting methods, the short shelf life of the crop and a lack of information on the carrying capacity of harvest sites. Caulerpa remains a crop that fulfils a niche market but has the potential to be scaled up for additional livelihood development in the future.

  9. Checklist and Bibliography of Benthic Marine Macroalgae Recorded from Northern Australia. III. Chlorophyta,

    DTIC Science & Technology

    1987-05-01

    polynesischen Formen dieser Famille." Beh. bot. Zbl., 18, 165-193, pls 5,6. Chapman, v.J. (1977). "Marine algae of Norfolk Island and Cook Island." Botanica ... botanica altera. Sistens generwn plantarum. Suppl. 3, Vienna, 111 pp. 7E;bank, L. (1946). "Hawaiian representatives of the genus Caulerpa. - Univ...vicinity of Townsville, Queensland." Atoll Res. Bull., 237, 1-29. Nizamuddin, m. (1967). "Caulerpa from Karachi Coast. II." Botanica rnar., 10, 158-166

  10. Proximate composition, total phenolic content, and antioxidant activity of seagrape (Caulerpa lentillifera).

    PubMed

    Nguyen, Van Tang; Ueng, Jinn-Pyng; Tsai, Guo-Jane

    2011-09-01

    The proximate composition of seagrape (Caulerpa lentillifera) from culture ponds in Penghu, Taiwan was analyzed. The phenolic content and the antioxidant activities including the 1,1-diphenyl-2-picryl-hydrazil (DPPH) radical scavenging activity, ferric ion-reducing activity, hydrogen peroxide scavenging activity, and ferrous ion chelating (FIC) activity of the ethanolic extracts of dry seagrape samples using 2 drying methods of freeze drying and thermal drying were compared with the ethanolic extract of Oolong tea as a reference. The contents (dry weight basis) of carbohydrate, crude protein, crude lipid, crude fiber, and ash of seagrape obtained from culture ponds in Taiwan were 64.00%, 9.26%, 1.57%, 2.97%, and 22.20%, respectively. The total phenolic content (1.30 mg gallic acid equivalent [GAE]/g dry weight) of the ethanolic extract of thermally dried seagrape was significantly lower (P < 0.05) than that (2.04 mg GAE/g dry weight) of freeze-dried seagrape, and both were significantly lower than that (13.58 mg GAE/g dry weight) of Oolong tea. At the same phenolic content, the antioxidant activities of freeze-dried seagrape were significantly higher (P < 0.05) than those of thermally dried seagrape. Compared with Oolong tea, seagrape, irrespective of drying method used, generally had strong hydrogen peroxide scavenging activity; but it was weak in DPPH radical scavenging activity, ferric ion-reducing activity, and FIC activity. The antioxidant activity of seagrape and Oolong tea was significantly influenced by their phenolic contents. The proximate composition, total phenolic content, and antioxidant activity of seagrape (Caulerpa lentillifera) in Taiwan were determined in this research to indicate nutritionally of this edible seaweed to human health, and compared these results to previous studies. © 2011 Institute of Food Technologists®

  11. Seasonal functioning and dynamics of Caulerpa prolifera meadows in shallow areas: An integrated approach in Cadiz Bay Natural Park

    NASA Astrophysics Data System (ADS)

    Vergara, Juan J.; García-Sánchez, M. Paz; Olivé, Irene; García-Marín, Patricia; Brun, Fernando G.; Pérez-Lloréns, J. Lucas; Hernández, Ignacio

    2012-10-01

    The rhizophyte alga Caulerpa prolifera thrives in dense monospecific stands in the vicinity of meadows of the seagrass Cymodocea nodosa in Cadiz Bay Natural Park. The seasonal cycle of demographic and biometric properties, photosynthesis, and elemental composition (C:N:P) of this species were monitored bimonthly from March 2004 to March 2005. The number of primary assimilators peaked in spring as consequence of the new recruitment, reaching densities up to 104 assimilators·m-2. A second peak was recorded in late summer, with a further decrease towards autumn and winter. Despite this summer maximum, aboveground biomass followed a unimodal pattern, with a spring peak about 400 g dry weight·m-2. In conjunction to demographic properties of the population, a detailed biometric analysis showed that the percentage of assimilators bearing proliferations and the number of proliferations per assimilator were maximal in spring (100% and c.a. 17, respectively), and decreased towards summer and autumn. The size of the primary assimilators was minimal in spring (May) as a result of the new recruitments. However, the frond area per metre of stolon peaked in early spring and decreased towards the remainder of the year. The thallus area index (TAI) was computed from two different, independent approaches which both produced similar results, with a maximum TAI recorded in spring (transient values up to 18 m2·m-2). The relative contribution of primary assimilators and proliferations to TAI was also assessed. Whereas the number of proliferations accounted for most of the TAI peak in spring, its contribution decreased during the year, to a minimum in winter, where primary assimilators were the main contributors to TAI. The present study represents the first report of the seasonal dynamics of C. prolifera in south Atlantic Spanish coasts, and indicates the important contribution of this primary producer in shallow coastal ecosystems.

  12. Removal of methylene blue by invasive marine seaweed: Caulerpa racemosa var. cylindracea.

    PubMed

    Cengiz, Sevilay; Cavas, Levent

    2008-05-01

    Caulerpa racemosa var. cylindracea is one of the well-known invasive species in the Mediterranean Sea. In the present study, dried biomass of C. racemosa var. cylindracea was shown to have adsorption capacity for methylene blue. The adsorption reached equilibrium at 90 min for all studied concentrations (5-100mg/L). The pseudo-second-order model is well in line with our experimental results. There was a sharp increase in the adsorbed dye amount per adsorbent amount from 3.3 to 16.7 g/L, then a slight increase up to 66.7 g/L was observed. Langmuir and Freundlich's models were applied to the data related to adsorption isotherm. According to Langmuir's model data, the observed maximum adsorption capacity (qm) was 5.23 mg/g at 18 degrees C. The enthalpy of adsorption was found to be 33 kJ/mol, which indicated a chemical adsorption between dye molecules and C. racemosa var. cylindracea functional groups.

  13. Trend in coral-algal phase shift in the Mandapam group of islands, Gulf of Mannar Marine Biosphere Reserve, India

    NASA Astrophysics Data System (ADS)

    Machendiranathan, M.; Senthilnathan, L.; Ranith, R.; Saravanakumar, A.; Thangaradjou, T.; Choudhry, S. B.; Sasamal, S. K.

    2016-12-01

    The present study revealed proliferation of macro-algae modifying coral reef ecosystems in a different manner due to diseases and sedimentations in the Mandapam group of islands in the Gulf of Mannar. Benthic surveys were conducted with major attack of seven coral reefs diseases with high sedimentation rate, nine species of fleshy macro-algae ( Turbinaria ornata, Turbinaria conaides, Caulerpa scalpelliformis, Caulerpa racemosa, Kappaphycus alvarezii, Padina gymnosphora, Sargassum wightii, Ulva reticulata and Calurpa lentillifera) proliferation against major corals life forms (Acropora branching, Acropora digitate, Acropora tabulate, coral massive, coral submassive, coral foliose and coral encrusting). The results confirm that diseased corals most favor to macro-algae growth (15.27%) rather than the sedimentation covered corals (8.24 %). In the degradation of coral life forms, massive corals were more highly damaged (7.05%) than any other forms. Within a short period of time (May to September), coral coverage shrank to 17.4% from 21.9%, macro-algae increased 23.51% and the average sedimentation rate attained 77.52 mg cm-2d-1 with persisting coral reef diseases of 17.59%. The Pearson correlation showed that the coral cover decreased with increasing macro-algae growth, which was statistically significant ( r = -0.774, n = 100, P < 0.0005). The proliferation of the various macro-algae C. scalpellifrmis, T. ornata, C. racemosa, T. conaides, U. reticulata, S. wightii, K. alvarezii, P. gymnosphora and C. lentillifera increased with percentages of 6.0, 5.8, 5.7, 4.9, 4.2, 3.7, 2.7 and 1.9, respectively. If this trend continues, the next generation of new recruit corals will undoubtedly lead to a phase shift in Gulf of Mannar corals.

  14. Epiphytes and nutrient contents influence Sarpa salpa herbivory on Caulerpa spp vs. seagrass species in Mediterranean meadows

    NASA Astrophysics Data System (ADS)

    Marco-Méndez, Candela; Ferrero-Vicente, Luis Miguel; Prado, Patricia; Sánchez-Lizaso, Jose Luis

    2017-01-01

    Mediterranean seagrass ecosystems are endangered by increased colonization of Caulerpa species, which may replace them, affecting key ecosystem processes. The fish Sarpa salpa (L.) is one of the main macroherbivores in the western Mediterranean seagrass meadows which is known to feed on a wide range of macroalgae such as Caulerpa species. In order to elucidate if this consumption could minimize the spread of invasive species, during summer-autumn 2012, we investigate the importance of S. salpa herbivory pressure on C. prolifera and C. cylindracea compared to Posidonia oceanica and Cymodocea nodosa in a mixed meadow. A combination of field experiments and dietary analyses were used to investigate consumption rates, dietary contributions, and feeding preferences for the different macrophytes, including the role of epiphytes and nutrient contents in mediating fish herbivory. In summer, C. nodosa was the most consumed macrophyte (12.75 ± 3.43 mg WW·d-1), probably influenced by higher fish densities, higher nutritional quality of leaves and epiphytes, and by differences in epiphyte composition. Feeding observations suggest that fish may have a variable diet, although with a consistent selection of mixed patches with C. nodosa and C. prolifera. Indeed, food choice experiments suggest that when seagrass leaves are not epiphytized, fish prefer feeding on C. prolifera. Gut content and stable isotopic analyses supported the dietary importance of epiphytes and C. prolifera but also suggested that C. cylindracea could occasionally be an important food item for S. salpa. Our results highlight the role of epiphytes in S. salpa feeding decisions but also suggest that C. nodosa and C. prolifera may have an important contribution to fish diet. The variability in S. salpa diet confirm the need to carry out multiple approach studies for a better understanding of its potential influence over different macrophytes species.

  15. The Study of Algae

    ERIC Educational Resources Information Center

    Rushforth, Samuel R.

    1977-01-01

    Included in this introduction to the study of algae are drawings of commonly encountered freshwater algae, a summary of the importance of algae, descriptions of the seven major groups of algae, and techniques for collection and study of algae. (CS)

  16. Algae Derived Biofuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jahan, Kauser

    One of the most promising fuel alternatives is algae biodiesel. Algae reproduce quickly, produce oils more efficiently than crop plants, and require relatively few nutrients for growth. These nutrients can potentially be derived from inexpensive waste sources such as flue gas and wastewater, providing a mutual benefit of helping to mitigate carbon dioxide waste. Algae can also be grown on land unsuitable for agricultural purposes, eliminating competition with food sources. This project focused on cultivating select algae species under various environmental conditions to optimize oil yield. Membrane studies were also conducted to transfer carbon di-oxide more efficiently. An LCA studymore » was also conducted to investigate the energy intensive steps in algae cultivation.« less

  17. Coastal habitat degradation and green sea turtle diets in Southeastern Brazil

    USGS Publications Warehouse

    Santos, Robson G.; Martins, Agnaldo Silva; Farias, Julyana da Nobrega; Horta, Antunes Paulo; Pinheiro, Hudson Tercio; Baptistotte, Cecilia; Seminoff, Jeffrey A.; Balazs, George H.; Work, Thierry M.

    2011-01-01

    To show the influence of coastal habitat degradation on the availability of food for green turtles (Chelonia mydas), we assessed the dietary preferences and macroalgae community at a feeding area in a highly urbanized region. The area showed low species richness and was classified as degraded. We examined stomach contents of 15 dead stranded turtles (CCL = 44.0 cm (SD 6.7 cm)). The diet was composed primarily of green algae Ulva spp. (83.6%). In contrast, the macroalgae community was dominated by the green alga Caulerpa mexicana. We found a selection for red algae, seagrass and Ulva spp., and avoidance for C. mexicana and brown alga Dictyopteris delicatula. The low diversity of available food items, possibly a result of environmental degradation, likely contributed to the low dietary diversity. The nutritional implications of this restricted diet are unclear.

  18. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats.

    PubMed

    Holzinger, Andreas; Allen, Michael C; Deheyn, Dimitri D

    2016-09-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal objects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charophyte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorption spectra of these microalgae in the waveband of 400-900nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance between 400-550nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this high absorbance was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did hardly change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400-500nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats

    PubMed Central

    Holzinger, Andreas; Allen, Michael C.; Deheyn, Dimitri D.

    2016-01-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal obbjects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charopyhte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorbance spectra of these microalgae in the waveband of 400-900 nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance in the wave band of 400-550 nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did not change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400 – 500 nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation. PMID:27442511

  20. Algae.

    PubMed

    Raven, John A; Giordano, Mario

    2014-07-07

    Algae frequently get a bad press. Pond slime is a problem in garden pools, algal blooms can produce toxins that incapacitate or kill animals and humans and even the term seaweed is pejorative - a weed being a plant growing in what humans consider to be the wrong place. Positive aspects of algae are generally less newsworthy - they are the basis of marine food webs, supporting fisheries and charismatic marine megafauna from albatrosses to whales, as well as consuming carbon dioxide and producing oxygen. Here we consider what algae are, their diversity in terms of evolutionary origin, size, shape and life cycles, and their role in the natural environment and in human affairs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Ecophysiological responses of three Mediterranean invasive seaweeds (Acrothamnion preissii, Lophocladia lallemandii and Caulerpa cylindracea) to experimental warming.

    PubMed

    Samperio-Ramos, Guillermo; Olsen, Ylva S; Tomas, Fiona; Marbà, Núria

    2015-07-15

    The Mediterranean Sea is a hotspot for invasive species and projected Mediterranean warming might affect their future spreading. We experimentally examined ecophysiological responses to the temperature range 23-31 °C in three invasive seaweeds commonly found in the Mediterranean: Acrothamnion preissii, Caulerpa cylindracea and Lophocladia lallemandii. The warming range tested encompassed current and projected (for the end of 21st Century) maximum temperatures for the Mediterranean Sea. Optimal ecophysiological temperatures for A. preissii, C. cylindracea and L. lallemandii were 25 °C, 27 °C and 29 °C, respectively. Warming below the optimal temperatures enhanced RGR of all studied invasive seaweeds. Although sensitive, seaweed photosynthetic yield was less temperature-dependent than growth. Our results demonstrate that temperature is a key environmental parameter in regulating the ecophysiological performance of these invasive seaweeds and that Mediterranean warming conditions may affect their invasion trajectory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Alkaloids in Marine Algae

    PubMed Central

    Güven, Kasım Cemal; Percot, Aline; Sezik, Ekrem

    2010-01-01

    This paper presents the alkaloids found in green, brown and red marine algae. Algal chemistry has interested many researchers in order to develop new drugs, as algae include compounds with functional groups which are characteristic from this particular source. Among these compounds, alkaloids present special interest because of their pharmacological activities. Alkaloid chemistry has been widely studied in terrestrial plants, but the number of studies in algae is insignificant. In this review, a detailed account of macro algae alkaloids with their structure and pharmacological activities is presented. The alkaloids found in marine algae may be divided into three groups: 1. Phenylethylamine alkaloids, 2. Indole and halogenated indole alkaloids, 3. Other alkaloids. PMID:20390105

  3. Fuel From Algae: Scaling and Commercialization of Algae Harvesting Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-01-15

    Broad Funding Opportunity Announcement Project: Led by CEO Ross Youngs, AVS has patented a cost-effective dewatering technology that separates micro-solids (algae) from water. Separating micro-solids from water traditionally requires a centrifuge, which uses significant energy to spin the water mass and force materials of different densities to separate from one another. In a comparative analysis, dewatering 1 ton of algae in a centrifuge costs around $3,400. AVS’s Solid-Liquid Separation (SLS) system is less energy-intensive and less expensive, costing $1.92 to process 1 ton of algae. The SLS technology uses capillary dewatering with filter media to gently facilitate water separation, leavingmore » behind dewatered algae which can then be used as a source for biofuels and bio-products. The biomimicry of the SLS technology emulates the way plants absorb and spread water to their capillaries.« less

  4. Formation of algae growth constitutive relations for improved algae modeling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gharagozloo, Patricia E.; Drewry, Jessica Louise.

    This SAND report summarizes research conducted as a part of a two year Laboratory Directed Research and Development (LDRD) project to improve our abilities to model algal cultivation. Algae-based biofuels have generated much excitement due to their potentially large oil yield from relatively small land use and without interfering with the food or water supply. Algae mitigate atmospheric CO2 through metabolism. Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Important factors controlling algal productivity include temperature, nutrient concentrations, salinity, pH, and the light-to-biomass conversion rate. Computational models allow for inexpensivemore » predictions of algae growth kinetics in these non-ideal conditions for various bioreactor sizes and geometries without the need for multiple expensive measurement setups. However, these models need to be calibrated for each algal strain. In this work, we conduct a parametric study of key marine algae strains and apply the findings to a computational model.« less

  5. Modeling Arctic sea-ice algae: Physical drivers of spatial distribution and algae phenology

    NASA Astrophysics Data System (ADS)

    Castellani, Giulia; Losch, Martin; Lange, Benjamin A.; Flores, Hauke

    2017-09-01

    Algae growing in sea ice represent a source of carbon for sympagic and pelagic ecosystems and contribute to the biological carbon pump. The biophysical habitat of sea ice on large scales and the physical drivers of algae phenology are key to understanding Arctic ecosystem dynamics and for predicting its response to ongoing Arctic climate change. In addition, quantifying potential feedback mechanisms between algae and physical processes is particularly important during a time of great change. These mechanisms include a shading effect due to the presence of algae and increased basal ice melt. The present study shows pan-Arctic results obtained from a new Sea Ice Model for Bottom Algae (SIMBA) coupled with a 3-D sea-ice-ocean model. The model is evaluated with data collected during a ship-based campaign to the Eastern Central Arctic in summer 2012. The algal bloom is triggered by light and shows a latitudinal dependency. Snow and ice also play a key role in ice algal growth. Simulations show that after the spring bloom, algae are nutrient limited before the end of summer and finally they leave the ice habitat during ice melt. The spatial distribution of ice algae at the end of summer agrees with available observations, and it emphasizes the importance of thicker sea-ice regions for hosting biomass. Particular attention is given to the distinction between level ice and ridged ice. Ridge-associated algae are strongly light limited, but they can thrive toward the end of summer, and represent an additional carbon source during the transition into polar night.

  6. Transgenic algae engineered for higher performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J

    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  7. Magnetic separation of algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nath, Pulak; Twary, Scott N.

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  8. Invasive species: Ocean ecosystem case studies for earth systems and environmental sciences

    USGS Publications Warehouse

    Schofield, Pam; Brown, Mary E.

    2016-01-01

    Marine species are increasingly transferred from areas where they are native to areas where they are not. Some nonnative species become invasive, causing undesirable impacts to environment, economy and/or human health. Nonnative marine species can be introduced through a variety of vectors, including shipping, trade, inland corridors (such as canals), and others. Effects of invasive marine species can be dramatic and irreversible. Case studies of four nonnative marine species are given (green crab, comb jelly, lionfish and Caulerpa algae).

  9. Algae Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Algae are highly efficient at producing biomass, and they can be found all over the planet. Many use sunlight and nutrients to create biomass, which contain key components—including lipids, proteins, and carbohydrates— that can be converted and upgraded to a variety of biofuels and products. A functional algal biofuels production system requires resources such as suitable land and climate, sustainable management of water resources, a supplemental carbon dioxide (CO2) supply, and other nutrients (e.g., nitrogen and phosphorus). Algae can be an attractive feedstock for many locations in the United States because their diversity allows for highpotential biomass yields in amore » variety of climates and environments. Depending on the strain, algae can grow by using fresh, saline, or brackish water from surface water sources, groundwater, or seawater. Additionally, they can grow in water from second-use sources such as treated industrial wastewater; municipal, agricultural, or aquaculture wastewater; or produced water generated from oil and gas drilling operations.« less

  10. AlgaGEM – a genome-scale metabolic reconstruction of algae based on the Chlamydomonas reinhardtii genome

    PubMed Central

    2011-01-01

    Background Microalgae have the potential to deliver biofuels without the associated competition for land resources. In order to realise the rates and titres necessary for commercial production, however, system-level metabolic engineering will be required. Genome scale metabolic reconstructions have revolutionized microbial metabolic engineering and are used routinely for in silico analysis and design. While genome scale metabolic reconstructions have been developed for many prokaryotes and model eukaryotes, the application to less well characterized eukaryotes such as algae is challenging not at least due to a lack of compartmentalization data. Results We have developed a genome-scale metabolic network model (named AlgaGEM) covering the metabolism for a compartmentalized algae cell based on the Chlamydomonas reinhardtii genome. AlgaGEM is a comprehensive literature-based genome scale metabolic reconstruction that accounts for the functions of 866 unique ORFs, 1862 metabolites, 2249 gene-enzyme-reaction-association entries, and 1725 unique reactions. The reconstruction was compartmentalized into the cytoplasm, mitochondrion, plastid and microbody using available data for algae complemented with compartmentalisation data for Arabidopsis thaliana. AlgaGEM describes a functional primary metabolism of Chlamydomonas and significantly predicts distinct algal behaviours such as the catabolism or secretion rather than recycling of phosphoglycolate in photorespiration. AlgaGEM was validated through the simulation of growth and algae metabolic functions inferred from literature. Using efficient resource utilisation as the optimality criterion, AlgaGEM predicted observed metabolic effects under autotrophic, heterotrophic and mixotrophic conditions. AlgaGEM predicts increased hydrogen production when cyclic electron flow is disrupted as seen in a high producing mutant derived from mutational studies. The model also predicted the physiological pathway for H2 production and

  11. Overall Energy Considerations for Algae Species Comparison and Selection in Algae-to-Fuels Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, D.; Kail, B.; Curtis, W.

    The controlled growth of microalgae as a feedstock for alternative transportation fuel continues to receive much attention. Microalgae have the characteristics of rapid growth rate, high oil (lipid) content, and ability to be grown in unconventional scenarios. Algae have also been touted as beneficial for CO{sub 2} reuse, as algae can be grown using CO{sub 2} emissions from fossil-based energy generation. Moreover, algae does not compete in the food chain, lessening the 'food versus fuel' debate. Most often, it is assumed that either rapid production rate or high oii content should be the primary factor in algae selection for algae-to-fuelsmore » production systems. However, many important characteristics of algae growth and lipid production must be considered for species selection, growth condition, and scale-up. Under light limited, high density, photoautotrophic conditions, the inherent growth rate of an organism does not affect biomass productivity, carbon fixation rate, and energy fixation rate. However, the oil productivity is organism dependent, due to physiological differences in how the organisms allocate captured photons for growth and oil production and due to the differing conditions under which organisms accumulate oils. Therefore, many different factors must be considered when assessing the overall energy efficiency of fuel production for a given algae species. Two species, Chlorella vulgaris and Botryococcus braunii, are popular choices when discussing algae-to-fuels systems. Chlorella is a very robust species, often outcompeting other species in mixed-culture systems, and produces a lipid that is composed primarily of free fatty acids and glycerides. Botryococcus is regarded as a slower growing species, and the lipid that it produces is characterized by high hydrocarbon content, primarily C28-C34 botryococcenes. The difference in growth rates is often considered to be an advantage oiChlorella. However, the total energy captured by each algal

  12. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the alga...

  13. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the alga...

  14. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the alga...

  15. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the alga...

  16. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the alga...

  17. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth...

  18. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth...

  19. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth...

  20. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth...

  1. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth...

  2. Lab Simulates Outdoor Algae Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Algae can be turned into renewable biofuel, which is why scientists want to discover an inexpensive, fast-growing strain of algae. Scientists at Pacific Northwest National Laboratory have developed a system to speed up this search. The unique climate-simulating system uses temperature controls and multi-colored LED lights to mimic the constantly changing conditions of an outdoor algae pond. By simulating outdoor climates inside the lab, the system saves researchers time and expense.

  3. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1121 Red algae. (a) Red algae are seaweeds of the species Gloiopeltis furcata, Porphyra crispata...

  4. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1120 Brown algae. (a) Brown algae are seaweeds of the species Analipus japonicus, Eisenia bicyclis...

  5. Red algae and their use in papermaking.

    PubMed

    Seo, Yung-Bum; Lee, Youn-Woo; Lee, Chun-Han; You, Hack-Chul

    2010-04-01

    Gelidialian red algae, that contain rhizoidal filaments, except the family Gelidiellaceae were processed to make bleached pulps, which can be used as raw materials for papermaking. Red algae consist of rhizoidal filaments, cortical cells usually reddish in color, and medullary cells filled with mucilaginous carbohydrates. Red algae pulp consists of mostly rhizoidal filaments. Red algae pulp of high brightness can be produced by extracting mucilaginous carbohydrates after heating the algae in an aqueous medium and subsequently treating the extracted with bleaching chemicals. In this study, we prepared paper samples from bleached pulps obtained from two red algae species (Gelidium amansii and Gelidium corneum) and compared their properties to those of bleached wood chemical pulps. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Algae-Based Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Haoyang, Cai

    2018-03-01

    Our civilization is facing a series of environmental problems, including global warming and climate change, which are caused by the accumulation of green house gases in the atmosphere. This article will briefly analyze the current global warming problem and propose a method that we apply algae cultivation to absorb carbon and use shellfish to sequestrate it. Despite the importance of decreasing CO2 emissions or developing carbon-free energy sources, carbon sequestration should be a key issue, since the amount of carbon dioxide that already exists in the atmosphere is great enough to cause global warming. Algae cultivation would be a good choice because they have high metabolism rates and provides shellfish with abundant food that contains carbon. Shellfish’s shells, which are difficult to be decomposed, are reliable storage of carbon, compared to dead organisms like trees and algae. The amount of carbon that can be sequestrated by shellfish is considerable. However, the sequestrating rate of algae and shellfish is not high enough to affect the global climate. Research on algae and shellfish cultivation, including gene technology that aims to create “super plants” and “super shellfish”, is decisive to the solution. Perhaps the baton of history will shift to gene technology, from nuclear physics that has lost appropriate international environment after the end of the Cold War. Gene technology is vital to human survival.

  7. Potential biomedical applications of marine algae.

    PubMed

    Wang, Hui-Min David; Li, Xiao-Chun; Lee, Duu-Jong; Chang, Jo-Shu

    2017-11-01

    Functional components extracted from algal biomass are widely used as dietary and health supplements with a variety of applications in food science and technology. In contrast, the applications of algae in dermal-related products have received much less attention, despite that algae also possess high potential for the uses in anti-infection, anti-aging, skin-whitening, and skin tumor treatments. This review, therefore, focuses on integrating studies on algae pertinent to human skin care, health and therapy. The active compounds in algae related to human skin treatments are mentioned and the possible mechanisms involved are described. The main purpose of this review is to identify serviceable algae functions in skin treatments to facilitate practical applications in this high-potential area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effect of Different Coating Materials on The Characteristics Of Chlorophyll Microcapsules from Caulerpa racemosa

    NASA Astrophysics Data System (ADS)

    Kurniasih, R. A.; Dewi, E. N.; Purnamayati, L.

    2018-02-01

    The sea grape (Caulerpa racemosa) has a chlorophyll pigment that can be extracted using a non-polar solvent. Chlorophyll as a natural dye has unstable characteristics of temperature, pH, and light. Microencapsulation by the freeze-drying method can be used to protect chlorophyll from degradation caused by external influences where the type of coating material can affect the characteristics of the chlorophyll microcapsules. The objective of this study was to determine the characteristics of chlorophyll microcapsules with various types of coating material. Chlorophyll was microencapsulated using maltodextrin (CM), maltodextrin-alginate (CMA), and maltodextrin-fish gelatin (CMG). Chlorophyll encapsulated with maltodextrin-alginate resulting in the highest yield. The results of FTIR analysis indicated the presence of following functional groups in chlorophyll microcapsules viz., inter- and intra-molecular bonded alcohol OH, C = N stretching imine/oxime or C = O stretching conjugated ketone or alkenes, OH phenol, and CN stretching amine. CM had a particle size between 9,061 - 469.9 nm, CMA between 9,707 - 363.5 nm, and CMG between 11.49 - 433.2 nm. Based on the observation of morphology by using SEM, it showed that the all of the chlorophyll microcapsules were in the form of flake shape and porous. CM and CMA looked more fragile than CMG it can be seen from the cracks in some parts of CM and CMA. Therefore, CMG release time was longer than CM and CMA.

  9. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species Analipus...

  10. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species Analipus...

  11. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species Analipus...

  12. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species Gloiopeltis...

  13. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species Gloiopeltis...

  14. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species Gloiopeltis...

  15. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species Analipus...

  16. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species Gloiopeltis...

  17. Composting of waste algae: a review.

    PubMed

    Han, Wei; Clarke, William; Pratt, Steven

    2014-07-01

    Although composting has been successfully used at pilot scale to manage waste algae removed from eutrophied water environments and the compost product applied as a fertiliser, clear guidelines are not available for full scale algae composting. The review reports on the application of composting to stabilize waste algae, which to date has mainly been macro-algae, and identifies the peculiarities of algae as a composting feedstock, these being: relatively low carbon to nitrogen (C/N) ratio, which can result in nitrogen loss as NH3 and even N2O; high moisture content and low porosity, which together make aeration challenging; potentially high salinity, which can have adverse consequence for composting; and potentially have high metals and toxin content, which can affect application of the product as a fertiliser. To overcome the challenges that these peculiarities impose co-compost materials can be employed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Cellulose powder from Cladophora sp. algae.

    PubMed

    Ek, R; Gustafsson, C; Nutt, A; Iversen, T; Nyström, C

    1998-01-01

    The surface are and crystallinity was measured on a cellulose powder made from Cladophora sp. algae. The algae cellulose powder was found to have a very high surface area (63.4 m2/g, N2 gas adsorption) and build up of cellulose with a high crystallinity (approximately 100%, solid state NMR). The high surface area was confirmed by calculations from atomic force microscope imaging of microfibrils from Cladophora sp. algae.

  19. Lipid oxidation in base algae oil and water-in-algae oil emulsion: Impact of natural antioxidants and emulsifiers.

    PubMed

    Chen, Bingcan; Rao, Jiajia; Ding, Yangping; McClements, David Julian; Decker, Eric Andrew

    2016-07-01

    The impact of natural hydrophilic antioxidants, metal chelators, and hydrophilic antioxidant/metal chelator mixture on the oxidative stability of base algae oil and water-in-algae oil emulsion was investigated. The results showed that green tea extract and ascorbic acid had greatest protective effect against algae oil oxidation and generated four day lag phase, whereas rosmarinic acid, grape seed extract, grape seed extract polymer, deferoxamine (DFO), and ethylenediaminetetraacetic acid (EDTA) had no significant protective effect. Besides, there was no synergistic effect observed between natural antioxidants and ascorbic acid. The emulsifiers are critical to the physicochemical stability of water-in-algae oil emulsions. Polyglycerol polyricinoleate (PGPR) promoted the oxidation of emulsion. Conversely, the protective effect on algae oil oxidation was appreciated when defatted soybean lecithin (PC 75) or defatted lyso-lecithin (Lyso-PC) was added. The role of hydrophilic antioxidants in emulsion was similar to that in algae oil except EDTA which demonstrated strong antioxidative effect in emulsion. The results could provide information to build up stable food products containing polyunsaturated fatty acids (PUFA). Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Antioxidant Activity of Hawaiian Marine Algae

    PubMed Central

    Kelman, Dovi; Posner, Ellen Kromkowski; McDermid, Karla J.; Tabandera, Nicole K.; Wright, Patrick R.; Wright, Anthony D.

    2012-01-01

    Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that could be a potential natural source of such antioxidants. The total antioxidant activity of organic extracts of 37 algal samples, comprising of 30 species of Hawaiian algae from 27 different genera was determined. The activity was determined by employing the FRAP (Ferric Reducing Antioxidant Power) assays. Of the algae tested, the extract of Turbinaria ornata was found to be the most active. Bioassay-guided fractionation of this extract led to the isolation of a variety of different carotenoids as the active principles. The major bioactive antioxidant compound was identified as the carotenoid fucoxanthin. These results show, for the first time, that numerous Hawaiian algae exhibit significant antioxidant activity, a property that could lead to their application in one of many useful healthcare or related products as well as in chemoprevention of a variety of diseases including cancer. PMID:22412808

  1. Biological importance of marine algae

    PubMed Central

    El Gamal, Ali A.

    2009-01-01

    Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms)… etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. The microalgae phyla have been recognized to provide chemical and pharmacological novelty and diversity. Moreover, microalgae are considered as the actual producers of some highly bioactive compounds found in marine resources. Red algae are considered as the most important source of many biologically active metabolites in comparison to other algal classes. Seaweeds are used for great number of application by man. The principal use of seaweeds as a source of human food and as a source of gums (phycocollides). Phycocolloides like agar agar, alginic acid and carrageenan are primarily constituents of brown and red algal cell walls and are widely used in industry. PMID:23960716

  2. Economic evaluation of algae biodiesel based on meta-analyses

    NASA Astrophysics Data System (ADS)

    Zhang, Yongli; Liu, Xiaowei; White, Mark A.; Colosi, Lisa M.

    2017-08-01

    The objective of this study is to elucidate the economic viability of algae-to-energy systems at a large scale, by developing a meta-analysis of five previously published economic evaluations of systems producing algae biodiesel. Data from original studies were harmonised into a standardised framework using financial and technical assumptions. Results suggest that the selling price of algae biodiesel under the base case would be 5.00-10.31/gal, higher than the selected benchmarks: 3.77/gal for petroleum diesel, and 4.21/gal for commercial biodiesel (B100) from conventional vegetable oil or animal fat. However, the projected selling price of algal biodiesel (2.76-4.92/gal), following anticipated improvements, would be competitive. A scenario-based sensitivity analysis reveals that the price of algae biodiesel is most sensitive to algae biomass productivity, algae oil content, and algae cultivation cost. This indicates that the improvements in the yield, quality, and cost of algae feedstock could be the key factors to make algae-derived biodiesel economically viable.

  3. Antifouling Activity of Lipidic Metabolites Derived from Padina tetrastromatica.

    PubMed

    Suresh, Murugan; Iyapparaj, Palanisamy; Anantharaman, Perumal

    2016-07-01

    An attempt has been made to identify the potential seaweed for antifouling property due to the growing need for environmentally safe antifouling systems. The antibacterial, antimicroalgal, and antimussel foot adherence potentials of methanol, dichloromethane, and hexane extracts of the chosen seaweeds such as Padina tetrastromatica, Caulerpa taxifolia, and Amphiroa fragilissima have been compared against copper sulfate. Among the extracts, the maximum antibacterial activities were exhibited by the methanol extract of P. tetrastromatica. The minimum inhibitory concentration (MIC) of the methanolic extract of P. tetrastromatica was found to be 10 and 1 μg/ml against test biofilm bacteria and diatoms, respectively. The antimussel foot adherence assay indicated that the extract had inhibited the foot adherence of the green mussels Perna viridis with the effective concentration (EC50) of 25.51 ± 0.03 μg/ml, and lethal concentration for 50 % mortality (LC50) was recorded at 280.22 ± 0.12 μg/ml. Based on the prolific results, the crude methanolic extract of P. tetrastromatica was subjected to purification using silica gel column and thin-layer chromatography (TLC). Then, the active compounds of the bioassay-guided fraction (F13) were identified using gas chromatography coupled with mass spectroscopy (GC-MS), and it was observed that fatty acids were the major components, which may be responsible for the antifouling properties.

  4. Bioavailability of mineral-bound iron to a snow algae-bacteria co-culture and implications for albedo-altering snow algae blooms.

    PubMed

    Harrold, Z R; Hausrath, E M; Garcia, A H; Murray, A E; Tschauner, O; Raymond, J; Huang, S

    2018-01-26

    Snow algae can form large-scale blooms across the snowpack surface and near-surface environments. These pigmented blooms can decrease snow albedo, increase local melt rates, and may impact the global heat budget and water cycle. Yet, underlying causes for the geospatial occurrence of these blooms remain unconstrained. One possible factor contributing to snow algae blooms is the presence of mineral dust as a micronutrient source. We investigated the bioavailability of iron (Fe) -bearing minerals, including forsterite (Fo 90 , Mg 1.8 Fe 0.2 SiO 4 ), goethite, smectite and pyrite as Fe sources for a Chloromonas brevispina - bacteria co-culture through laboratory-based experimentation. Fo 90 was capable of stimulating snow algal growth and increased the algal growth rate in otherwise Fe-depleted co-cultures. Fo 90 -bearing systems also exhibited a decrease in bacteria:algae ratios compared to Fe-depleted conditions, suggesting a shift in microbial community structure. The C. brevispina co-culture also increased the rate of Fo 90 dissolution relative to an abiotic control. Analysis of 16S rRNA genes in the co-culture identified Gammaproteobacteria , Betaprotoeobacteria and Sphingobacteria , all of which are commonly found in snow and ice environments. Archaea were not detected. Collimonas and Pseudomonas , which are known to enhance mineral weathering rates, comprised two of the top eight (> 1 %) OTUs. These data provide unequivocal evidence that mineral dust can support elevated snow algae growth under otherwise Fe-depleted growth conditions, and that snow algae can enhance mineral dissolution under these conditions. IMPORTANCE Fe, a key micronutrient for photosynthetic growth, is necessary to support the formation of high-density snow algae blooms. The laboratory experiments described herein allow for a systematic investigation of snow algae-bacteria-mineral interactions and their ability to mobilize and uptake mineral-bound Fe. Results provide unequivocal and

  5. Algae to Economically Viable Low-Carbon-Footprint Oil.

    PubMed

    Bhujade, Ramesh; Chidambaram, Mandan; Kumar, Avnish; Sapre, Ajit

    2017-06-07

    Algal oil as an alternative to fossil fuel has attracted attention since the 1940s, when it was discovered that many microalgae species can produce large amounts of lipids. Economics and energy security were the motivational factors for a spurt in algae research during the 1970s, 1990s, and early 2000s. Whenever crude prices declined, research on algae stopped. The scenario today is different. Even given low and volatile crude prices ($30-$50/barrel), interest in algae continues all over the world. Algae, with their cure-all characteristics, have the potential to provide sustainable solutions to problems in the energy-food-climate nexus. However, after years of effort, there are no signs of algae-to-biofuel technology being commercialized. This article critically reviews past work; summarizes the current status of the technology; and based on the lessons learned, provides a balanced perspective on a potential path toward commercialization of algae-to-oil technology.

  6. Effect of ferrate on green algae removal.

    PubMed

    Kubiňáková, Emília; Híveš, Ján; Gál, Miroslav; Fašková, Andrea

    2017-09-01

    Green algae Cladophora aegagropila, present in cooling water of thermal power plants, causes many problems and complications, especially during summer. However, algae and its metabolites are rarely eliminated by common removal methods. In this work, the elimination efficiency of electrochemically prepared potassium ferrate(VI) on algae from cooling water was investigated. The influence of experimental parameters, such as Fe(VI) dosage, application time, pH of the system, temperature and hydrodynamics of the solution on removal efficiency, was optimized. This study demonstrates that algae C. aegagropila can be effectively removed from cooling water by ferrate. Application of ferrate(VI) at the optimized dosage and under the suitable conditions (temperature, pH) leads to 100% removal of green algae Cladophora from the system. Environmentally friendly reduction products (Fe(III)) and coagulation properties favour the application of ferrate for the treatment of water contaminated with studied microorganisms compared to other methods such as chlorination and use of permanganate, where harmful products are produced.

  7. What remains after 2 months of starvation? Analysis of sequestered algae in a photosynthetic slug, Plakobranchus ocellatus (Sacoglossa, Opisthobranchia), by barcoding.

    PubMed

    Christa, Gregor; Wescott, Lily; Schäberle, Till F; König, Gabriele M; Wägele, Heike

    2013-02-01

    The sacoglossan sea slug, Plakobranchus ocellatus, is a so-called long-term retention form that incorporates chloroplasts for several months and thus is able to starve while maintaining photosynthetic activity. Little is known regarding the taxonomy and food sources of this sacoglossan, but it is suggested that P. ocellatus is a species complex and feeds on a broad variety of Ulvophyceae. In particular, we analysed specimens from the Philippines and starved them under various light conditions (high light, low light and darkness) and identified the species of algal food sources depending on starvation time and light treatment by means of DNA-barcoding using for the first time the combination of two algal chloroplast markers, rbcL and tufA. Comparison of available CO1 and 16S sequences of specimens from various localities indicate a species complex with likely four distinct clades, but food analyses do not indicate an ecological separation of the investigated clades into differing foraging strategies. The combined results from both algal markers suggest that, in general, P. ocellatus has a broad food spectrum, including members of the genera Halimeda, Caulerpa, Udotea, Acetabularia and further unidentified algae, with an emphasis on H. macroloba. Independent of the duration of starvation and light exposure, this algal species and a further unidentified Halimeda species seem to be the main food source of P. ocellatus from the Philippines. It is shown here that at least two (or possibly three) barcode markers are required to cover the entire food spectrum in future analyses of Sacoglossa.

  8. Stochastic Forecasting of Algae Blooms in Lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    We consider the development of harmful algae blooms (HABs) in a lake with uncertain nutrients inflow. Two general frameworks, Fokker-Planck equation and the PDF methods, are developed to quantify the resultant concentration uncertainty of various algae groups, via deriving a deterministic equation of their joint probability density function (PDF). A computational example is examined to study the evolution of cyanobacteria (the blue-green algae) and the impacts of initial concentration and inflow-outflow ratio.

  9. Method and apparatus for lysing and processing algae

    DOEpatents

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite H.; Di Salvo, Roberto

    2013-03-05

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells at lower temperatures than existing algae processing methods. A salt or salt solution is used as a separation agent and to remove water from the ionic liquid, allowing the ionic liquid to be reused. The used salt may be dried or concentrated and reused. The relatively low lysis temperatures and recycling of the ionic liquid and salt reduce the environmental impact of the algae processing while providing biofuels and other useful products.

  10. Algae Biofuel in the Nigerian Energy Context

    NASA Astrophysics Data System (ADS)

    Elegbede, Isa; Guerrero, Cinthya

    2016-05-01

    The issue of energy consumption is one of the issues that have significantly become recognized as an important topic of global discourse. Fossil fuels production reportedly experiencing a gradual depletion in the oil-producing nations of the world. Most studies have relatively focused on biofuel development and adoption, however, the awareness of a prospect in the commercial cultivation of algae having potential to create economic boost in Nigeria, inspired this research. This study aims at exploring the potential of the commercialization of a different but commonly found organism, algae, in Nigeria. Here, parameters such as; water quality, light, carbon, average temperature required for the growth of algae, and additional beneficial nutrients found in algae were analysed. A comparative cum qualitative review of analysis was used as the study made use of empirical findings on the work as well as the author's deductions. The research explored the cultivation of algae with the two major seasonal differences (i.e. rainy and dry) in Nigeria as a backdrop. The results indicated that there was no significant difference in the contribution of algae and other sources of biofuels as a necessity for bioenergy in Nigeria. However, for an effective sustainability of this prospect, adequate measures need to be put in place in form of funding, provision of an economically-enabling environment for the cultivation process as well as proper healthcare service in the face of possible health hazard from technological processes. Further studies can seek to expand on the potential of cultivating algae in the Harmattan season.

  11. Importance of airborne algae and protozoa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlichting, H.E. Jr.

    1969-12-01

    Membrane filters, bubblers, and exposed culture media were used to sample viable algae and protozoa from the atmosphere in Michigan, Texas, and North Carolina from 1956 to 1967. Aerial algae and protozoa were most abundant and diverse in North Central Texas, 0-8 cells/ft/sup 3/, less abundant and diverse in Michigan, 0-1.8 cells/ft/sup 3/, and least abundant in Coastal North Carolina, less than 0.41 cells/ft/sup 3/. Other significant research from 1910 to 1968 is reviewed. A total of 187 taxa of algae and protozoa has been sampled and cultured through this period. The importance of airborne algae and protozoa to manmore » is shown as related to allergies, radioactivity, clogging of air filters, an aid in determining the origin of hurricanes and other storms and adding to the understanding of the dispersal of these microorganisms throughout the world. 15 references, 2 tables.« less

  12. Estimation of alga growth stage and lipid content growth rate

    NASA Technical Reports Server (NTRS)

    Embaye, Tsegereda N. (Inventor); Trent, Jonathan D. (Inventor)

    2012-01-01

    Method and system for estimating a growth stage of an alga in an ambient fluid. Measured light beam absorption or reflection values through or from the alga and through an ambient fluid, in each of two or more wavelength sub-ranges, are compared with reference light beam absorption values for corresponding wavelength sub-ranges for in each alga growth stage to determine (1) which alga growth stage, if any, is more likely and (2) whether estimated lipid content of the alga is increasing or has peaked. Alga growth is preferably terminated when lipid content has approximately reached a maximum value.

  13. Nutritional And Taste Characteristics Of Algae

    NASA Technical Reports Server (NTRS)

    Karel, M.; Nakhost, Z.

    1992-01-01

    Report describes investigation of chemical composition of blue-green algae Synechococcus 6311, as well as preparation of protein isolate from green alga Scenedesmus obliquus and incorporation into variety of food products evaluated for taste. Part of program to investigate growth of microalgae aboard spacecraft for use as food.

  14. Marine Natural Product Bis-indole Alkaloid Caulerpin: Chemistry and Biology.

    PubMed

    Lunagariya, Jignesh; Bhadja, Poonam; Zhong, Shenghui; Vekariya, Rohit; Xu, Shihai

    2017-09-27

    Marine bis-indole alkaloids comprise a large and increasingly growing class of secondary metabolites, and continue to deliver a great variety of structural templates. The alkaloids derived from marine resources play a crucial role in medicinal chemistry and as chemical agents. In particular, bis-indole alkaloid caulerpin isolated from marine green algae Caulerpa and a red algae Chondria armata at various places around the world, and tested against several therapeutic areas such as anti-diabetic, antinociceptive, anti-inflammatory, anti-tumor, anti-larvicidal, anti-herpes, anti-tubercular, anti-microbial and immunostimulating activity as well as means of other chemical agents. Herein, we summarized discovery of caulerpin, and its potential medicinal and chemical applications in chronological order with various aspects. Additionally, synthesis of caulerpin, its functional analogues, and structural isomer have also been reviewed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Microplate technique for determining accumulation of metals by algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassett, J.M.; Jennett, J.C.; Smith, J.E.

    1981-05-01

    A microplate technique was developed to determine the conditions under which pure cultures of algae removed heavy metals from aqueous solutions. Variables investigated included algal species and strain, culture age (11 and 44 days), metal (mercury, lead, cadmium, and zinc), pH, effects of different buffer solutions, and time of exposure. Plastic, U-bottomed microtiter plates were used in conjunction with heavy metal radionuclides to determine concentration factors for metal-alga combinations. The technique developed was rapid, statistically reliable, and economical of materials and cells. All species of algae studied removed mercury from solution. Green algae proved better at accumulating cadmium than didmore » blue-green algae. No alga studied removed zinc, perhaps because cells were maintained in the dark during the labeling period. Chlamydomonas sp. proved superior in ability to remove lead from solution.« less

  16. Microscopic Gardens: A Close Look at Algae.

    ERIC Educational Resources Information Center

    Foote, Mary Ann

    1983-01-01

    Describes classroom activities using algae, including demonstration of eutrophication, examination of mating strains, and activities with Euglena. Includes on algal morphology/physiology, types of algae, and field sources for collecting these organisms. (JN)

  17. Method and apparatus for processing algae

    DOEpatents

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite; Di Salvo, Roberto

    2012-07-03

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells. The lysate separates into at least two layers including a lipid-containing hydrophobic layer and an ionic liquid-containing hydrophilic layer. A salt or salt solution may be used to remove water from the ionic liquid-containing layer before the ionic liquid is reused. The used salt may also be dried and/or concentrated and reused. The method can operate at relatively low lysis, processing, and recycling temperatures, which minimizes the environmental impact of algae processing while providing reusable biofuels and other useful products.

  18. Differentiation between Prototheca and morphologically similar green algae in tissue.

    PubMed

    Chandler, F W; Kaplan, W; Callaway, C S

    1978-07-01

    Evidence that algae are pathogens was provided by the results of electron microscopic studies of tissues from five cattle and sheep suspected of having green algal infections. Chloroplasts were demonstrated in the algae in each case. Prototheca organisms, considered by some to be achloric mutants of green algae, are causative agents of disease in man and animals and may appear morphologically similar to green algae in tissue. However, electron microscopy showed that chloroplasts were absent in these organisms. Light microscopy revealed not only similarities in size, shape, and mode of reproduction, but also a striking difference between the Prototheca organisms and green algae. Unlike Prototheca, the green algae contained abundant cytoplasmic starch granules that were strongly positive by several staining procedures; these granules, which were PAS-negative following diastase digestion, provide a means of differentiating green algae from Prototheca cells in tissue.

  19. Ammonium removal using algae-bacteria consortia: the effect of ammonium concentration, algae biomass, and light.

    PubMed

    Jia, Huijun; Yuan, Qiuyan

    2018-04-01

    In this study, the effects of ammonium nitrogen concentration, algae biomass concentration, and light conditions (wavelength and intensity) on the ammonium removal efficiency of algae-bacteria consortia from wastewater were investigated. The results indicated that ammonium concentration and light intensity had a significant impact on nitrification. It was found that the highest ammonia concentration (430 mg N/L) in the influent resulted in the highest ammonia removal rate of 108 ± 3.6 mg N/L/days, which was two times higher than the influent with low ammonia concentration (40 mg N/L). At the lowest light intensity of 1000 Lux, algae biomass concentration, light wavelength, and light cycle did not show a significant effect on the performance of algal-bacterial consortium. Furthermore, the ammonia removal rate was approximately 83 ± 1.0 mg N/L/days, which was up to 40% faster than at the light intensity of 2500 Lux. It was concluded that the algae-bacteria consortia can effectively remove nitrogen from wastewater and the removal performance can be stabilized and enhanced using the low light intensity of 1000 Lux that is also a cost-effective strategy.

  20. Phospholipids of New Zealand Edible Brown Algae.

    PubMed

    Vyssotski, Mikhail; Lagutin, Kirill; MacKenzie, Andrew; Mitchell, Kevin; Scott, Dawn

    2017-07-01

    Edible brown algae have attracted interest as a source of beneficial allenic carotenoid fucoxanthin, and glyco- and phospholipids enriched in polyunsaturated fatty acids. Unlike green algae, brown algae contain no or little phosphatidylserine, possessing an unusual aminophospholipid, phosphatidyl-O-[N-(2-hydroxyethyl) glycine], PHEG, instead. When our routinely used technique of 31 P-NMR analysis of phospholipids was applied to the samples of edible New Zealand brown algae, a number of signals corresponding to unidentified phosphorus-containing compounds were observed in total lipids. NI (negative ion) ESI QToF MS spectra confirmed the presence of more familiar phospholipids, and also suggested the presence of PHEG or its isomers. The structure of PHEG was confirmed by comparison with a synthetic standard. An unusual MS fragmentation pattern that was also observed prompted us to synthesise a number of possible candidates, and was found to follow that of phosphatidylhydroxyethyl methylcarbamate, likely an extraction artefact. An unexpected outcome was the finding of ceramidephosphoinositol that has not been reported previously as occurring in brown algae. An uncommon arsenic-containing phospholipid has also been observed and quantified, and its TLC behaviour studied, along with that of the newly synthesised lipids.

  1. Biological toxicity of lanthanide elements on algae.

    PubMed

    Tai, Peidong; Zhao, Qing; Su, Dan; Li, Peijun; Stagnitti, Frank

    2010-08-01

    The biological toxicity of lanthanides on marine monocellular algae was investigated. The specific objective of this research was to establish the relationship between the abundance in the seawater of lanthanides and their biological toxicities on marine monocellular algae. The results showed that all single lanthanides had similar toxic effects on Skeletonema costatum. High concentrations of lanthanides (29.04+/-0.61 micromol L(-1)) resulted in 50% reduction in growth of algae compared to the controls (0 micromol L(-1)) after 96 h (96 h-EC50). The biological toxicity of 13 lanthanides on marine monocellular algae was unrelated with the abundance of different lanthanide elements in nature, and the "Harkins rule" was not appropriate for the lanthanides. A mixed solution that contained equivalent concentrations of each lanthanide element had the same inhibition effect on algae cells as each individual lanthanide element at the same total concentration. This phenomenon is unique compared to the groups of other elements in the periodic table. Hence, we speculate that the monocellular organisms might not be able to sufficiently differentiate between the almost chemically identical lanthanide elements. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Exploring the potential of using algae in cosmetics.

    PubMed

    Wang, Hui-Min David; Chen, Ching-Chun; Huynh, Pauline; Chang, Jo-Shu

    2015-05-01

    The applications of microalgae in cosmetic products have recently received more attention in the treatment of skin problems, such as aging, tanning and pigment disorders. There are also potential uses in the areas of anti-aging, skin-whitening, and pigmentation reduction products. While algae species have already been used in some cosmetic formulations, such as moisturizing and thickening agents, algae remain largely untapped as an asset in this industry due to an apparent lack of utility as a primary active ingredient. This review article focuses on integrating studies on algae pertinent to skin health and beauty, with the purpose of identifying serviceable algae functions in practical cosmetic uses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Application of synthetic biology in cyanobacteria and algae

    PubMed Central

    Wang, Bo; Wang, Jiangxin; Zhang, Weiwen; Meldrum, Deirdre R.

    2012-01-01

    Cyanobacteria and algae are becoming increasingly attractive cell factories for producing renewable biofuels and chemicals due to their ability to capture solar energy and CO2 and their relatively simple genetic background for genetic manipulation. Increasing research efforts from the synthetic biology approach have been made in recent years to modify cyanobacteria and algae for various biotechnological applications. In this article, we critically review recent progresses in developing genetic tools for characterizing or manipulating cyanobacteria and algae, the applications of genetically modified strains for synthesizing renewable products such as biofuels and chemicals. In addition, the emergent challenges in the development and application of synthetic biology for cyanobacteria and algae are also discussed. PMID:23049529

  4. Genetic differentiation among populations of marine algae

    NASA Astrophysics Data System (ADS)

    Innes, D. J.

    1984-09-01

    Most of the information for genetic differentiation among populations of marine algae is from studies on ecotypic variation. Physiological ecotypes have been described for individuals showing different responses to temperature and salinity conditions. Morphological ecotypes have also been found associated with areas differing in wave exposure or different intertidal positions. Little is known on how genetic variation is organized within and between populations of marine algae. The occurrence of ecotypic variation in some species is evidence for genetic differentiation among populations resulting from selection by the local environment. The rate of dispersal and subsequent gene flow will also affect the level of differentiation among populations. In species with low dispersal, differentiation can arise through chance founder events or random genetic drift. The few studies available have shown that species of algae exhibit a range of dispersal capabilities. This information can be useful for predicting the potential level of genetic differentiation among populations of these species. Crossing experiments with several species of algae have shown that populations separated by a considerable distance can be interfertile. In some cases individuals from these populations have been found to be morphologically distinct. Crosses have been used to study the genetic basis of this variation and are evidence for genetic differentiation among the populations sampled. Genetic variation of enzyme proteins detected by electrophoresis provides an additional method for measuring genetic variation within and between populations of marine algae. Electrophoretic methods have previously been used to study systematic problems in algae. However, there have been few attempts to use electrophoretic variation to study the genetic structure of populations of marine algae. This approach is outlined and includes some of the potential problems associated with interpreting electrophoretic data

  5. How to Identify and Control Water Weeds and Algae.

    ERIC Educational Resources Information Center

    Applied Biochemists, Inc., Mequon, WI.

    Included in this guide to water management are general descriptions of algae, toxic algae, weed problems in lakes, ponds, and canals, and general discussions of mechanical, biological and chemical control methods. In addition, pictures, descriptions, and recommended control methods are given for algae, 6 types of floating weeds, 18 types of…

  6. Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lohr M.; Schwender J.; Polle, J. E. W.

    Isoprenoids are one of the largest groups of natural compounds and have a variety of important functions in the primary metabolism of land plants and algae. In recent years, our understanding of the numerous facets of isoprenoid metabolism in land plants has been rapidly increasing, while knowledge on the metabolic network of isoprenoids in algae still lags behind. Here, current views on the biochemistry and genetics of the core isoprenoid metabolism in land plants and in the major algal phyla are compared and some of the most pressing open questions are highlighted. Based on the different evolutionary histories of themore » various groups of eukaryotic phototrophs, we discuss the distribution and regulation of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in land plants and algae and the potential consequences of the loss of the MVA pathway in groups such as the green algae. For the prenyltransferases, serving as gatekeepers to the various branches of terpenoid biosynthesis in land plants and algae, we explore the minimal inventory necessary for the formation of primary isoprenoids and present a preliminary analysis of their occurrence and phylogeny in algae with primary and secondary plastids. The review concludes with some perspectives on genetic engineering of the isoprenoid metabolism in algae.« less

  7. Global dynamics of zooplankton and harmful algae in flowing habitats

    NASA Astrophysics Data System (ADS)

    Hsu, Sze-Bi; Wang, Feng-Bin; Zhao, Xiao-Qiang

    This paper is devoted to the study of two advection-dispersion-reaction models arising from the dynamics of harmful algae and zooplankton in flowing-water habitats where a main channel is coupled to a hydraulic storage zone, representing an ensemble of fringing coves on the shoreline. For the system modeling the dynamics of algae and their toxin that contains little limiting nutrient, we establish a threshold type result on the global attractivity in terms of the basic reproduction ratio for algae. For the model with zooplankton that eat the algae and are inhibited by the toxin produced by algae, we show that there exists a coexistence steady state and the zooplankton is uniformly persistent provided that two basic reproduction ratios for algae and zooplankton are greater than unity.

  8. Controlled regular locomotion of algae cell microrobots.

    PubMed

    Xie, Shuangxi; Jiao, Niandong; Tung, Steve; Liu, Lianqing

    2016-06-01

    Algae cells can be considered as microrobots from the perspective of engineering. These organisms not only have a strong reproductive ability but can also sense the environment, harvest energy from the surroundings, and swim very efficiently, accommodating all these functions in a body of size on the order of dozens of micrometers. An interesting topic with respect to random swimming motions of algae cells in a liquid is how to precisely control them as microrobots such that they swim according to manually set routes. This study developed an ingenious method to steer swimming cells based on the phototaxis. The method used a varying light signal to direct the motion of the cells. The swimming trajectory, speed, and force of algae cells were analyzed in detail. Then the algae cell could be controlled to swim back and forth, and traverse a crossroad as a microrobot obeying specific traffic rules. Furthermore, their motions along arbitrarily set trajectories such as zigzag, and triangle were realized successfully under optical control. Robotize algae cells can be used to precisely transport and deliver cargo such as drug particles in microfluidic chip for biomedical treatment and pharmacodynamic analysis. The study findings are expected to bring significant breakthrough in biological drives and new biomedical applications.

  9. Take a Dip! Culturing Algae Is Easy.

    ERIC Educational Resources Information Center

    James, Daniel E.

    1983-01-01

    Describes laboratory activities using algae as the organisms of choice. These include examination of typical algal cells, demonstration of alternation of generations, sexual reproduction in Oedogonium, demonstration of phototaxis, effect of nitrate concentration on Ankistrodesmus, and study of competition between two algae in the same environment.…

  10. Genome Annotation and Transcriptomics of Oil-Producing Algae

    DTIC Science & Technology

    2015-03-16

    AFRL-OSR-VA-TR-2015-0103 GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE Sabeeha Merchant UNIVERSITY OF CALIFORNIA LOS ANGELES Final...2010 To 12-31-2014 4. TITLE AND SUBTITLE GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE 5a. CONTRACT NUMBER FA9550-10-1-0095 5b...NOTES 14. ABSTRACT Most algae accumulate triacylglycerols (TAGs) when they are starved for essential nutrients like N, S, P (or Si in the case of some

  11. Algae Bioreactor Using Submerged Enclosures with Semi-Permeable Membranes

    NASA Technical Reports Server (NTRS)

    Flynn, Michael T (Inventor); Baertsch, Robert (Inventor); Trent, Jonathan D (Inventor); Liggett, Travis A (Inventor); Gormly, Sherwin J (Inventor); Delzeit, Lance D (Inventor); Buckwalter, Patrick W (Inventor); Embaye, Tsegereda N (Inventor)

    2013-01-01

    Methods for producing hydrocarbons, including oil, by processing algae and/or other micro-organisms in an aquatic environment. Flexible bags (e.g., plastic) with CO.sub.2/O.sub.2 exchange membranes, suspended at a controllable depth in a first liquid (e.g., seawater), receive a second liquid (e.g., liquid effluent from a "dead zone") containing seeds for algae growth. The algae are cultivated and harvested in the bags, after most of the second liquid is removed by forward osmosis through liquid exchange membranes. The algae are removed and processed, and the bags are cleaned and reused.

  12. Feasibility study of algae-based Carbon Dioxide capture ...

    EPA Pesticide Factsheets

    SUMMARY: The biomass of microalgae contains approximately 50% carbon, which is commonly obtained from the atmosphere, but can also be taken from commercial sources that produce CO2, such as coal-fired power plants. A study of operational demonstration projects is being undertaken to evaluate the benefits of using algae to reduce CO2 emissions from industrial and small-scale utility power boilers. The operations are being studied for the use of CO2 from flue gas for algae growth along with the production of biofuels and other useful products to prepare a comprehensive characterization of the economic feasibility of using algae to capture CO2. Information is being generated for analyses of the potential for these technologies to advance in the market and assist in meeting environmental goals, as well as to examine their associated environmental implications. Three electric power generation plants (coal and fuel oil fired) equipped to send flue-gas emissions to algae culture at demonstration facilities are being studied. Data and process information are being collected and developed to facilitate feasibility and modeling evaluations of the CO2 to algae technology. An understanding of process requirements to apply this technology to existing industries would go far in advancing carbon capture opportunities. Documenting the successful use of this technology could help bring “low-tech”, low-cost, CO2 to algae, carbon capture to multiple size industries and

  13. SSMILes: Measuring the Nutrient Tolerance of Algae.

    ERIC Educational Resources Information Center

    Hedgepeth, David J.

    1995-01-01

    Presents an activity integrating mathematics and science intended to introduce students to the use of metric measurement of mass as a way to increase the meaningfulness of observations about variables in life sciences. Involves measuring the nutrient tolerance of algae. Contains a reproducible algae nutrient graph. (Author/MKR)

  14. Blue-Green Algae

    MedlinePlus

    ... weeks does not improve fatigue in adults with long-term complaints of fatigue. Malnutrition. Early research on the use of blue-green algae in combination with other dietary treatments for malnutrition in infants and children shows conflicting results. Weight gain was seen in ...

  15. Developing Molecular Genetic Tools to Facilitate Economic Production in Green Algae

    DTIC Science & Technology

    2012-09-10

    Economic Production in Green Algae FA9550-10-1-0052 Georgianna, David, R Gimpel, Javier Hannon, Michael, J Mayfield, Stephen, P Prof. Stephen...Final Performance Report Project Title: Developing Molecular Genetic Tools to Facilitate Economic Production in Green Algae Award Number... ECONOMIC PRODUCTION IN GREEN ALGAE ABSTRACT It is now accepted that algae have enormous potential to generate economically viable and

  16. Thermotropic Properties of Thermophilic, Mesophilic, and Psychrophilic Blue-green Algae

    PubMed Central

    Chen, Chang-Hwei; Berns, Donald S.

    1980-01-01

    Thermotropic properties of blue-green algae grown at high, room, and low temperatures in H2O and D2O media were studied by highly sensitive differential scanning microcalorimetry. The thermograms of these organisms contain an endothermal peak in the temperature range of 50 to 70 C with an endothermal heat ranging from 0.14 to 1.91 joules per gram organism. The temperature at which the endothermal peak occurs is comparable with the thermal denaturation temperature of phycocyanin, the major biliprotein isolated from these algae. A good correlation can be found for the relative thermal stability of various organisms with that of the isolated biliproteins. The ability of these algae to resist thermal disruption is correlated with the thermal environments in which these algal cells grow. The thermal stability of normal algae is in the order of thermophile > mesophile > psychrophile. It was found that the deuterated mesophilic algae were less able to resist thermal disruption than ordinary mesophilic algae. PMID:16661485

  17. Green Algae and the Origins of Multicellularity in the Plant Kingdom

    PubMed Central

    Umen, James G.

    2014-01-01

    The green lineage of chlorophyte algae and streptophytes form a large and diverse clade with multiple independent transitions to produce multicellular and/or macroscopically complex organization. In this review, I focus on two of the best-studied multicellular groups of green algae: charophytes and volvocines. Charophyte algae are the closest relatives of land plants and encompass the transition from unicellularity to simple multicellularity. Many of the innovations present in land plants have their roots in the cell and developmental biology of charophyte algae. Volvocine algae evolved an independent route to multicellularity that is captured by a graded series of increasing cell-type specialization and developmental complexity. The study of volvocine algae has provided unprecedented insights into the innovations required to achieve multicellularity. PMID:25324214

  18. Growing swimming algae for bioenergy

    NASA Astrophysics Data System (ADS)

    Croze, Ottavio

    Biofuel production from photosynthetic microalgae is not commercially viable due to high processing costs. New engineering and biological solutions are being sought to reduce these costs by increasing processing efficiency (productivity per energy input). Important physics, however, is ignored. For example, the fluid dynamics of algal suspensions in photobioreactors (ponds or tube arrays) is non-trivial, particularly if the algae swim. Cell reorientation by passive viscous and gravitational torques (gyrotaxis) or active reorientation by light (phototaxis) cause swimming algae in suspension to structure in flows, even turbulent ones. This impacts the distribution and dispersion of swimmers, with significant consequences for photobioreactor operation and design. In this talk, I will describe a theory that predicts swimmer dispersion in laminar pipe flows. I will then then present experimental tests of the theory, as well as new results on the circadian suspension dynamics of the algaChlamydomonas reinhardtii in lab-scale photobioreactors. Finally, I will briefly consider the implications of our work, and related active matter research, for improving algal bioprocessing efficiency. Winton Programme for the Physics of Sustainability.

  19. Extraction of mercury from groundwater using immobilized algae.

    PubMed

    Barkley, N P

    1991-10-01

    Bio-Recovery Systems, Inc. conducted a project under the Emerging Technology portion of the United States Environmental Protection Agency's (EPAs) Superfund Innovative Technology Evaluation (SITE) Program to evaluate the ability of immobilized algae to adsorb mercury from contaminated groundwater in laboratory studies and pilot-scale field tests. Algal biomass was incorporated in a permeable polymeric matrix. The product, AlgaSORB, packed into adsorption columns, exhibited excellent flow characteristics, and functioned as a "biological" ion exchange resin. A sequence of eleven laboratory tests demonstrated the ability of this product to adsorb mercury from groundwater that contained high levels of total dissolved solids and hard water components. However, use of a single AlgaSORB preparation yielded nonrepeatable results with samples collected at different times of the year. The strategy of sequentially extracting the groundwater through two columns containing different preparations of AlgaSORB was developed and proved successful in laboratory and pilot-scale field tests. Field test results indicate that AlgaSORB could be economically competitive with ion exchange resins for removal of mercury, with the advantage that hardness and other dissolved solids do not appear to compete with heavy metals for binding capacity.

  20. Algae Farming in Low Earth Orbit: Past Present and Future

    NASA Astrophysics Data System (ADS)

    Morrison, N.

    Algal strains used as a production engine represent a novel example of living mechanical systems with tremendous potential for applications in space. Algae use photosynthesis to create lipids, glycerin, and biomass, with different strains of algae producing different oils. Algae can be grown to produce many types of oils, with low, medium or long hydrocarbon chain lengths. This article examines the history of algae research, as well as its value to astronauts as both a food supplement and as an oxygen production and carbon sequester engine. Consideration is given to ways algae is currently being used and tested in space, followed by a look forward envisioning dynamic living technological systems that can help to sustain our race as we travel the void between stars.

  1. Sustainability of algae derived biodiesel: a mass balance approach.

    PubMed

    Pfromm, Peter H; Amanor-Boadu, Vincent; Nelson, Richard

    2011-01-01

    A rigorous chemical engineering mass balance/unit operations approach is applied here to bio-diesel from algae mass culture. An equivalent of 50,000,000 gallons per year (0.006002 m3/s) of petroleum-based Number 2 fuel oil (US, diesel for compression-ignition engines, about 0.1% of annual US consumption) from oleaginous algae is the target. Methyl algaeate and ethyl algaeate diesel can according to this analysis conceptually be produced largely in a technologically sustainable way albeit at a lower available diesel yield. About 11 square miles of algae ponds would be needed with optimistic assumptions of 50 g biomass yield per day and m2 pond area. CO2 to foster algae growth should be supplied from a sustainable source such as a biomass-based ethanol production. Reliance on fossil-based CO2 from power plants or fertilizer production renders algae diesel non-sustainable in the long term. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Phycobiliproteins: A Novel Green Tool from Marine Origin Blue-Green Algae and Red Algae.

    PubMed

    Chandra, Rashmi; Parra, Roberto; Iqbal, Hafiz M N

    2017-01-01

    Marine species are comprising about a half of the whole global biodiversity; the sea offers an enormous resource for novel bioactive compounds. Several of the marine origin species show multifunctional bioactivities and characteristics that are useful for a discovery and/or reinvention of biologically active compounds. For millennia, marine species that includes cyanobacteria (blue-green algae) and red algae have been targeted to explore their enormous potential candidature status along with a wider spectrum of novel applications in bio- and non-bio sectors of the modern world. Among them, cyanobacteria are photosynthetic prokaryotes, phylogenetically a primitive group of Gramnegative prokaryotes, ranging from Arctic to Antarctic regions, capable of carrying out photosynthesis and nitrogen fixation. In the recent decade, a great deal of research attention has been paid on the pronouncement of bio-functional proteins along with novel peptides, vitamins, fine chemicals, renewable fuel and bioactive compounds, e.g., phycobiliproteins from marine species, cyanobacteria and red algae. Interestingly, they are extensively commercialized for natural colorants in food and cosmetics, antimicrobial, antioxidant, anti-inflammatory, neuroprotective, hepatoprotective agents and fluorescent neo-glycoproteins as probes for single particle fluorescence imaging fluorescent applications in clinical and immunological analysis. However, a comprehensive knowledge and technological base for augmenting their commercial utilities are lacking. Therefore, this paper will provide an overview of the phycobiliproteins-based research literature from marine cyanobacteria and red algae. This review is also focused towards analyzing global and commercial activities with application oriented-based research. Towards the end, the information is also given on the potential biotechnological and biomedical applications of phycobiliproteins. Copyright© Bentham Science Publishers; For any queries, please

  3. Influence of Algae Age and Population on the Response to TiO₂ Nanoparticles.

    PubMed

    Metzler, David M; Erdem, Ayca; Huang, Chin Pao

    2018-03-25

    This work shows the influence of algae age (at the time of the exposure) and the initial algae population on the response of green algae Raphidocelis subcapitata to titanium dioxide nanoparticles (TiO₂ NPs). The different algae age was obtained by changes in flow rate of continually stirred tank reactors prior to NP exposure. Increased algae age led to a decreased growth, variations in chlorophyll content, and an increased lipid peroxidation. Increased initial algae population (0.3-4.2 × 10⁶ cells/mL) at a constant NP concentration (100 mg/L) caused a decline in the growth of algae. With increased initial algae population, the lipid peroxidation and chlorophyll both initially decreased and then increased. Lipid peroxidation had 4× the amount of the control at high and low initial population but, at mid-ranged initial population, had approximately half the control value. Chlorophyll a results also showed a similar trend. These results indicate that the physiological state of the algae is important for the toxicological effect of TiO₂ NPs. The condition of algae and exposure regime must be considered in detail when assessing the toxicological response of NPs to algae.

  4. Two-step evolution of endosymbiosis between hydra and algae.

    PubMed

    Ishikawa, Masakazu; Shimizu, Hiroshi; Nozawa, Masafumi; Ikeo, Kazuho; Gojobori, Takashi

    2016-10-01

    In the Hydra vulgaris group, only 2 of the 25 strains in the collection of the National Institute of Genetics in Japan currently show endosymbiosis with green algae. However, whether the other non-symbiotic strains also have the potential to harbor algae remains unknown. The endosymbiotic potential of non-symbiotic strains that can harbor algae may have been acquired before or during divergence of the strains. With the aim of understanding the evolutionary process of endosymbiosis in the H. vulgaris group, we examined the endosymbiotic potential of non-symbiotic strains of the H. vulgaris group by artificially introducing endosymbiotic algae. We found that 12 of the 23 non-symbiotic strains were able to harbor the algae until reaching the grand-offspring through the asexual reproduction by budding. Moreover, a phylogenetic analysis of mitochondrial genome sequences showed that all the strains with endosymbiotic potential grouped into a single cluster (cluster γ). This cluster contained two strains (J7 and J10) that currently harbor algae; however, these strains were not the closest relatives. These results suggest that evolution of endosymbiosis occurred in two steps; first, endosymbiotic potential was gained once in the ancestor of the cluster γ lineage; second, strains J7 and J10 obtained algae independently after the divergence of the strains. By demonstrating the evolution of the endosymbiotic potential in non-symbiotic H. vulgaris group strains, we have clearly distinguished two evolutionary steps. The step-by-step evolutionary process provides significant insight into the evolution of endosymbiosis in cnidarians. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Detection of viability of micro-algae cells by optofluidic hologram pattern.

    PubMed

    Wang, Junsheng; Yu, Xiaomei; Wang, Yanjuan; Pan, Xinxiang; Li, Dongqing

    2018-03-01

    A rapid detection of micro-algae activity is critical for analysis of ship ballast water. A new method for detecting micro-algae activity based on lens-free optofluidic holographic imaging is presented in this paper. A compact lens-free optofluidic holographic imaging device was developed. This device is mainly composed of a light source, a small through-hole, a light propagation module, a microfluidic chip, and an image acquisition and processing module. The excited light from the light source passes through a small hole to reach the surface of the micro-algae cells in the microfluidic chip, and a holographic image is formed by the diffraction light of surface of micro-algae cells. The relation between the characteristics in the hologram pattern and the activity of micro-algae cells was investigated by using this device. The characteristics of the hologram pattern were extracted to represent the activity of micro-algae cells. To demonstrate the accuracy of the presented method and device, four species of micro-algae cells were employed as the test samples and the comparison experiments between the alive and dead cells of four species of micro-algae were conducted. The results show that the developed method and device can determine live/dead microalgae cells accurately.

  6. Floating Algae Blooms in the East China Sea

    NASA Astrophysics Data System (ADS)

    Qi, Lin; Hu, Chuanmin; Wang, Mengqiu; Shang, Shaoling; Wilson, Cara

    2017-11-01

    A floating algae bloom in the East China Sea was observed in Moderate Resolution Imaging Spectroradiometer (MODIS) imagery in May 2017. Using satellite imagery from MODIS, Visible Infrared Imaging Radiometer Suite, Geostationary Ocean Color Imager, and Ocean Land Imager, and combined with numerical particle tracing experiments and laboratory experiments, we examined the history of this bloom as well as similar blooms in previous years and attempted to trace the bloom source and identify the algae type. Results suggest that one bloom origin is offshore Zhejiang coast where algae slicks have appeared in satellite imagery almost every February-March since 2012. Following the Kuroshio Current and Taiwan Warm Current, these "initial" algae slicks are first transported to the northeast to reach South Korea (Jeju Island) and Japan coastal waters (up to 135°E) by early April 2017, and then transported to the northwest to enter the Yellow Sea by the end of April. The transport pathway covers an area known to be rich in Sargassum horneri, and spectral analysis suggests that most of the algae slicks may contain large amount of S. horneri. The bloom covers a water area of 160,000 km2 with pure algae coverage of 530 km2, which exceeds the size of most Ulva blooms that occur every May-July in the Yellow Sea. While blooms of smaller size also occurred in previous years and especially in 2015, the 2017 bloom is hypothesized to be a result of record-high water temperature, increased light availability, and continuous expansion of Porphyra aquaculture along the East China Sea coast.

  7. [Description and histology identification of several algae of Sargassum sp].

    PubMed

    Dong, Yan; Li, Yushan; Cui, Zheng; Zhang, Zhicheng; Liu, Dongchun; Wang, Chunyang

    2002-04-01

    This paper reported the description characters and microscopical identification of seven kinds of algae of Sargassum sp., Sargassum pallidum (Tum.) C. Ag., S. fusiforme (Harv.) Setch., S. horneri (Tum.) C. Ag., S. hemiphyllum (Turh.) C. Ag., S. thunbergii (Mert.) O'Kuntze, S. polycystum C. Ag. and S. kjellmanianum Yendo. The results revealed that there were clear differences in the description characters and microscopical identification of the seven kinds of algae of Sargassum sp. These studies provided a scientific basis for distinguishing crude drug of algae, developing and making use of alga natural resources of Sargassum sp.

  8. Cryoalgotox: Use of cryopreserved alga in a semistatic microplate test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benhra, A.; Radetski, C.M.; Ferard, J.F.

    1997-03-01

    Use of cryopreserved alga Selenastrum capricornutum has been evaluated as a simple and cost-efficient procedure in a new semistatic algal ecotoxicity test. Experiments have been conducted to compare performance criteria of this method, named Cryoalgotox, versus the classic microplate test using fresh algae. Cryoalgotox 72-h 50% effective concentrations (EC50s) determined with Cd{sup 2+}, Cu{sup 2+}, Cr{sup 6+}, and atrazine were more sensitive, repeatable (low coefficients of variation), and reproducible (low time effect) than the results obtained with the classical microplate tests. The effect of storage time at {minus}80 C on the sensitivity of the algae was assessed using cadmium asmore » a toxic reference; it was shown that algae stored at {minus}80 C over a 3-month period gave comparable toxicity results to those found with fresh algae.« less

  9. [Study on the degradation and transformation of nonylphenol in water containing algae].

    PubMed

    Peng, Zhang-E; Feng, Jin-Mei; He, Shu-Ying; Wu, Feng

    2012-10-01

    The photodegradation of nonylphenol induced by two common freshwater algae was investigated. The mechanism of nonylphenol photodegradation induced by algae was analyzed. The synergistic induction of nonylphenol degradation by algae and substances in water such as humic acid and ferric ions was also investigated. Results showed that the algae could induce the photodegradation of nonylphenol. The degradation of nonylphenol in water in the presence of algae, humic acid and ferric ions was obvious and the efficiency of degradation could reach 58% after 4 h illumination. Based on the results, it was speculated that the algae, humic acid and ferric ions system could produce more active oxygen after illumination, which could promote the photodegradation of the organic contaminants in water.

  10. Parasites in algae mass culture

    PubMed Central

    Carney, Laura T.; Lane, Todd W.

    2014-01-01

    Parasites are now known to be ubiquitous across biological systems and can play an important role in modulating algal populations. However, there is a lack of extensive information on their role in artificial ecosystems such as algal production ponds and photobioreactors. Parasites have been implicated in the demise of algal blooms. Because individual mass culture systems often tend to be unialgal and a select few algal species are in wide scale application, there is an increased potential for parasites to have a devastating effect on commercial scale monoculture. As commercial algal production continues to expand with a widening variety of applications, including biofuel, food and pharmaceuticals, the parasites associated with algae will become of greater interest and potential economic impact. A number of important algal parasites have been identified in algal mass culture systems in the last few years and this number is sure to grow as the number of commercial algae ventures increases. Here, we review the research that has identified and characterized parasites infecting mass cultivated algae, the techniques being proposed and or developed to control them, and the potential impact of parasites on the future of the algal biomass industry. PMID:24936200

  11. Comparison of cardiovascular protective effects of tropical seaweeds, Kappaphycus alvarezii, Caulerpa lentillifera, and Sargassum polycystum, on high-cholesterol/high-fat diet in rats.

    PubMed

    Matanjun, Patricia; Mohamed, Suhaila; Muhammad, Kharidah; Mustapha, Noordin Mohamed

    2010-08-01

    This study was designed to investigate the comparative in vivo cardiovascular protective effects of red, green, and brown tropical seaweeds, namely, Kappaphycus alvarezii (or Eucheuma cottonii), Caulerpa lentillifera, and Sargassum polycystum, in rats fed on high-cholesterol/high-fat (HCF) diets. Male Sprague-Dawley rats (weighing 260-300 g) on the HCF diet had significantly increased body weight, plasma total cholesterol (TC), plasma low-density lipoprotein cholesterol (LDL-C), plasma triglycerides (TG), lipid peroxidation, and erythrocyte glutathione peroxidase (GSH-Px) and superoxide dismutase levels after 16 weeks. Supplementing 5% seaweeds to HCF diet significantly reduced plasma TC (-11.4% to -18.5%), LDL-C (-22% to -49.3%), and TG (-33.7% to -36.1%) levels and significantly increased HDL-C levels (16.3-55%). Among the seaweeds, S. polycystum showed the best anti-obesity and blood GSH-Px properties, K. alvarezii showed the best antihyperlipemic and in vivo antioxidation effects, and C. lentillifera was most effective at reducing plasma TC. All seaweeds significantly reduced body weight gain, erythrocyte GSH-Px, and plasma lipid peroxidation of HCF diet rats towards the values of normal rats.

  12. [Characteristics of heavy metals enrichment in algae ano its application prospects].

    PubMed

    Lu, Kaixing; Tang, Jian-jun; Jiang, De'an

    2006-01-01

    Using algae to bio-remedy heavy metals-contaminated waters has become an available and practical approach for environmental restoration. Because of its special cell wall structure, high capacity of heavy metal-enrichment, and easy to desorption, algae has been considered as an ideal biological adsorbent. This paper briefly introduced the structural and metabolic characteristics adapted for heavy metals enrichment of algae, including functional groups on cell wall, extracellular products, and intracellular heavy metals-chelating proteins, discussed the enrichment capability of living, dead and immobilized algae as well as the simple and convenient ways for desorption, and analyzed the advantages and disadvantages of using algae for bioremediation of polluted water, and its application prospects.

  13. MONITORING CHLOROPHYLL-A AS A MEASURE OF ALGAE IN LAKE WATER

    EPA Science Inventory

    Algae are an important quality component in water bodies. They are photosynthesizing organisms and are the foundation of most aquatic food webs; however, some algae (e.g. blue-green algae) can produce algal toxins. The presence of algal toxins in water bodies has important ...

  14. Algae to Bio-Crude in Less Than 60 Minutes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Doug

    Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.

  15. Algae to Bio-Crude in Less Than 60 Minutes

    ScienceCinema

    Elliott, Doug

    2018-01-16

    Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.

  16. 360° Algae Lab Tour at NREL - Narrated

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeney, Nick

    Explore the National Renewable Energy Laboratory’s algae lab as researcher Nick Sweeney takes you on a 360-degree tour of the algal biofuels research facility. Discover how NREL is growing algae to learn how it can be used as a renewable source of food, fuels, and other products.

  17. Freshwater algae competition and correlation between their growth and microcystin production.

    PubMed

    Álvarez, Xana; Valero, Enrique; Cancela, Ángeles; Sánchez, Ángel

    2016-11-01

    There are some different freshwater algae in Eutrophic reservoirs which bloom with specific environmental conditions, and some of them are cyanobacteria. In this investigation, we have cultivated microalgae present in natural water samples from a eutrophic reservoir. Variations in temperature and light were evaluated, as well as the competition among different green algae and cyanobacteria. There were three different freshwater algae growing together, Scenedesmus sp., Kirchneriella sp. and Microcystis aeruginosa, this cyanobacterium was the algae that reached the highest development and growth during the culture. While the algae grew, the concentration of toxin (microcystin-LR) increased until it reached the highest levels at 570 μg g -1 . Blooms occurred at temperatures of 28 ± 1.5 °C and light cycles of longer hours of light than dark. This took place during the summer months, from June to September (in the study area). At temperatures below 18 °C, algae did not grow. Blooms were reproduced to a laboratory scale in different conditions in order to understand the development of freshwater algae, as well as to help decision-making about water supply from that reservoir.

  18. Inorganic carbon addition stimulates snow algae primary productivity

    NASA Astrophysics Data System (ADS)

    Hamilton, T. L.; Havig, J. R.

    2017-12-01

    Earth has experienced glacial/interglacial oscillations throughout its history. Today over 15 million square kilometers (5.8 million square miles) of Earth's land surface is covered in ice including glaciers, ice caps, and the ice sheets of Greenland and Antarctica, most of which are retreating as a consequence of increased atmospheric CO2. Glaciers are teeming with life and supraglacial snow and ice surfaces are often red due to blooms of photoautotrophic algae. Recent evidence suggests the red pigmentation, secondary carotenoids produced in part to thrive under high irradiation, lowers albedo and accelerates melt. However, there are relatively few studies that report the productivity of snow algae communities and the parameters that constrain their growth on snow and ice surfaces. Here, we demonstrate that snow algae primary productivity can be stimulated by the addition of inorganic carbon. We found an increase in light-dependent carbon assimilation in snow algae microcosms amended with increasing amounts of inorganic carbon. Our snow algae communities were dominated by typical cosmopolitan snow algae species recovered from Alpine and Arctic environments. The climate feedbacks necessary to enter and exit glacial/interglacial oscillations are poorly understood. Evidence and models agree that global Snowball events are accompanied by changes in atmospheric CO2 with increasing CO2 necessary for entering periods of interglacial time. Our results demonstrate a positive feedback between increased CO2 and snow algal productivity and presumably growth. With the recent call for bio-albedo effects to be considered in climate models, our results underscore the need for robust climate models to include feedbacks between supraglacial primary productivity, albedo, and atmospheric CO2.

  19. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae

    PubMed Central

    2013-01-01

    Background Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression. Results Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength. Conclusions Green algae received a β-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The α-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of

  20. An overview of algae biofuel production and potential environmental impact.

    PubMed

    Menetrez, Marc Y

    2012-07-03

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas) and produce products with a wide variety of compositions and uses. These products include lipids, which can be processed into biodiesel; carbohydrates, which can be processed into ethanol; and proteins, which can be used for human and animal consumption. Algae are commonly genetically engineered to allow for advantageous process modification or optimization. However, issues remain regarding human exposure to algae-derived toxins, allergens, and carcinogens from both existing and genetically modified organisms (GMOs), as well as the overall environmental impact of GMOs. A literature review was performed to highlight issues related to the growth and use of algal products for generating biofuels. Human exposure and environmental impact issues are identified and discussed, as well as current research and development activities of academic, commercial, and governmental groups. It is hoped that the ideas contained in this paper will increase environmental awareness of issues surrounding the production of algae and will help the algae industry develop to its full potential.

  1. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities.

    PubMed

    Xu, Shu-Ying; Huang, Xuesong; Cheong, Kit-Leong

    2017-12-13

    Marine algae have attracted a great deal of interest as excellent sources of nutrients. Polysaccharides are the main components in marine algae, hence a great deal of attention has been directed at isolation and characterization of marine algae polysaccharides because of their numerous health benefits. In this review, extraction and purification approaches and chemico-physical properties of marine algae polysaccharides (MAPs) are summarized. The biological activities, which include immunomodulatory, antitumor, antiviral, antioxidant, and hypolipidemic, are also discussed. Additionally, structure-function relationships are analyzed and summarized. MAPs' biological activities are closely correlated with their monosaccharide composition, molecular weights, linkage types, and chain conformation. In order to promote further exploitation and utilization of polysaccharides from marine algae for functional food and pharmaceutical areas, high efficiency, and low-cost polysaccharide extraction and purification methods, quality control, structure-function activity relationships, and specific mechanisms of MAPs activation need to be extensively investigated.

  2. Turning Algae into Energy in New Mexico

    ScienceCinema

    Sayre, Richard; Olivares, Jose; Lammers, Peter

    2018-05-11

    Los Alamos National Laboratory, as part of the New Mexico Consortium - comprised of New Mexico's major research universities, the Lab, and key industry partners - is conducting research into using algae as a feed stock for a renewable source of fuels, and other products. There are hundreds of thousands of different algae species on Earth. They account for approximately half of the net photosynthesis on the planet, yet they have not been used in any kind of a large scale by humanity, with just a few exceptions. And yet, the biomass is easy to transform into useful products, including fuels, and they contain many other natural products that have high value. In this video Los Alamos and New Mexico State University scientists outline the opportunities and challenges of using science to turn algae into energy.

  3. Method and apparatus for iterative lysis and extraction of algae

    DOEpatents

    Chew, Geoffrey; Boggs, Tabitha; Dykes, Jr., H. Waite H.; Doherty, Stephen J.

    2015-12-01

    A method and system for processing algae involves the use of an ionic liquid-containing clarified cell lysate to lyse algae cells. The resulting crude cell lysate may be clarified and subsequently used to lyse algae cells. The process may be repeated a number of times before a clarified lysate is separated into lipid and aqueous phases for further processing and/or purification of desired products.

  4. Method for producing hydrogen and oxygen by use of algae

    DOEpatents

    Greenbaum, Elias

    1984-01-01

    Efficiency of process for producing H.sub.2 by subjecting algae in an aqueous phase to light irradiation is increased by culturing algae which has been bleached during a first period of irradiation in a culture medium in an aerobic atmosphere until it has regained color and then subjecting this algae to a second period of irradiation wherein hydrogen is produced at an enhanced rate.

  5. Method for producing hydrogen and oxygen by use of algae

    DOEpatents

    Greenbaum, E.

    1982-06-16

    Efficiency of process for producing H/sub 2/ by subjecting algae in an aqueous phase to light irradiation is increased by culturing algae which has been bleached during a first period of irradiation in a culture medium in an aerobic atmosphere until it has regained color and then subjecting this algae to a second period of irradiation wherein hydrogen is produced at an enhanced rate.

  6. Algae-bacteria interactions: Evolution, ecology and emerging applications.

    PubMed

    Ramanan, Rishiram; Kim, Byung-Hyuk; Cho, Dae-Hyun; Oh, Hee-Mock; Kim, Hee-Sik

    2016-01-01

    Algae and bacteria have coexisted ever since the early stages of evolution. This coevolution has revolutionized life on earth in many aspects. Algae and bacteria together influence ecosystems as varied as deep seas to lichens and represent all conceivable modes of interactions - from mutualism to parasitism. Several studies have shown that algae and bacteria synergistically affect each other's physiology and metabolism, a classic case being algae-roseobacter interaction. These interactions are ubiquitous and define the primary productivity in most ecosystems. In recent years, algae have received much attention for industrial exploitation but their interaction with bacteria is often considered a contamination during commercialization. A few recent studies have shown that bacteria not only enhance algal growth but also help in flocculation, both essential processes in algal biotechnology. Hence, there is a need to understand these interactions from an evolutionary and ecological standpoint, and integrate this understanding for industrial use. Here we reflect on the diversity of such relationships and their associated mechanisms, as well as the habitats that they mutually influence. This review also outlines the role of these interactions in key evolutionary events such as endosymbiosis, besides their ecological role in biogeochemical cycles. Finally, we focus on extending such studies on algal-bacterial interactions to various environmental and bio-technological applications. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Selenium accumulation and metabolism in algae.

    PubMed

    Schiavon, Michela; Ertani, Andrea; Parrasia, Sofia; Vecchia, Francesca Dalla

    2017-08-01

    Selenium (Se) is an intriguing element because it is metabolically required by a variety of organisms, but it may induce toxicity at high doses. Algae primarily absorb selenium in the form of selenate or selenite using mechanisms similar to those reported in plants. However, while Se is needed by several species of microalgae, the essentiality of this element for plants has not been established yet. The study of Se uptake and accumulation strategies in micro- and macro-algae is of pivotal importance, as they represent potential vectors for Se movement in aquatic environments and Se at high levels may affect their growth causing a reduction in primary production. Some microalgae exhibit the capacity of efficiently converting Se to less harmful volatile compounds as a strategy to cope with Se toxicity. Therefore, they play a crucial role in Se-cycling through the ecosystem. On the other side, micro- or macro-algae enriched in Se may be used in Se biofortification programs aimed to improve Se content in human diet via supplementation of valuable food. Indeed, some organic forms of selenium (selenomethionine and methylselenocysteine) are known to act as anticarcinogenic compounds and exert a broad spectrum of beneficial effects in humans and other mammals. Here, we want to give an overview of the developments in the current understanding of Se uptake, accumulation and metabolism in algae, discussing potential ecotoxicological implications and nutritional aspects. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Washington State University Algae Biofuels Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    chen, Shulin; McCormick, Margaret; Sutterlin, Rusty

    The goal of this project was to advance algal technologies for the production of biofuels and biochemicals by establishing the Washington State Algae Alliance, a collaboration partnership among two private companies (Targeted Growth, Inc. (TGI), Inventure Chemicals (Inventure) Inc (now Inventure Renewables Inc) and Washington State University (WSU). This project included three major components. The first one was strain development at TGI by genetically engineering cyanobacteria to yield high levels of lipid and other specialty chemicals. The second component was developing an algal culture system at WSU to produce algal biomass as biofuel feedstock year-round in the northern states ofmore » the United States. This system included two cultivation modes, the first one was a phototrophic process and the second a heterotrophic process. The phototrophic process would be used for algae production in open ponds during warm seasons; the heterotrophic process would be used in cold seasons so that year-round production of algal lipid would be possible. In warm seasons the heterotrophic process would also produce algal seeds to be used in the phototrophic culture process. Selected strains of green algae and cyanobacteria developed by TGI were tested in the system. The third component was downstream algal biomass processing by Inventure that included efficiently harvesting the usable fuel fractions from the algae mass and effectively isolating and separating the usable components into specific fractions, and converting isolated fractions into green chemicals.« less

  9. Influence of Algae Age and Population on the Response to TiO2 Nanoparticles

    PubMed Central

    Metzler, David M.; Erdem, Ayca; Huang, Chin Pao

    2018-01-01

    This work shows the influence of algae age (at the time of the exposure) and the initial algae population on the response of green algae Raphidocelis subcapitata to titanium dioxide nanoparticles (TiO2 NPs). The different algae age was obtained by changes in flow rate of continually stirred tank reactors prior to NP exposure. Increased algae age led to a decreased growth, variations in chlorophyll content, and an increased lipid peroxidation. Increased initial algae population (0.3−4.2 × 106 cells/mL) at a constant NP concentration (100 mg/L) caused a decline in the growth of algae. With increased initial algae population, the lipid peroxidation and chlorophyll both initially decreased and then increased. Lipid peroxidation had 4× the amount of the control at high and low initial population but, at mid-ranged initial population, had approximately half the control value. Chlorophyll a results also showed a similar trend. These results indicate that the physiological state of the algae is important for the toxicological effect of TiO2 NPs. The condition of algae and exposure regime must be considered in detail when assessing the toxicological response of NPs to algae. PMID:29587381

  10. WASP7 BENTHIC ALGAE - MODEL THEORY AND USER'S GUIDE

    EPA Science Inventory

    The standard WASP7 eutrophication module includes nitrogen and phosphorus cycling, dissolved oxygen-organic matter interactions, and phytoplankton kinetics. In many shallow streams and rivers, however, the attached algae (benthic algae, or periphyton, attached to submerged substr...

  11. Bacterial community changes in an industrial algae production system.

    PubMed

    Fulbright, Scott P; Robbins-Pianka, Adam; Berg-Lyons, Donna; Knight, Rob; Reardon, Kenneth F; Chisholm, Stephen T

    2018-04-01

    While microalgae are a promising feedstock for production of fuels and other chemicals, a challenge for the algal bioproducts industry is obtaining consistent, robust algae growth. Algal cultures include complex bacterial communities and can be difficult to manage because specific bacteria can promote or reduce algae growth. To overcome bacterial contamination, algae growers may use closed photobioreactors designed to reduce the number of contaminant organisms. Even with closed systems, bacteria are known to enter and cohabitate, but little is known about these communities. Therefore, the richness, structure, and composition of bacterial communities were characterized in closed photobioreactor cultivations of Nannochloropsis salina in F/2 medium at different scales, across nine months spanning late summer-early spring, and during a sequence of serially inoculated cultivations. Using 16S rRNA sequence data from 275 samples, bacterial communities in small, medium, and large cultures were shown to be significantly different. Larger systems contained richer bacterial communities compared to smaller systems. Relationships between bacterial communities and algae growth were complex. On one hand, blooms of a specific bacterial type were observed in three abnormal, poorly performing replicate cultivations, while on the other, notable changes in the bacterial community structures were observed in a series of serial large-scale batch cultivations that had similar growth rates. Bacteria common to the majority of samples were identified, including a single OTU within the class Saprospirae that was found in all samples. This study contributes important information for crop protection in algae systems, and demonstrates the complex ecosystems that need to be understood for consistent, successful industrial algae cultivation. This is the first study to profile bacterial communities during the scale-up process of industrial algae systems.

  12. [Toxicity of Coptis chinensis Rhizome Extracts to Green Algae].

    PubMed

    Chen, Ya-nan; Yuan, Ling

    2015-05-01

    Coptis chinensis contains antiseptic alkaloids and thus its rhizomes and preparations are widely used for the treatment of.fish diseases. In order to realize the risk of water ecosystems produced by this medical herb and preparations used in aquaculture, the present experiment was carried out to study the toxicity of Coptis chinensis rhizome extract (CRE) to Scenedesmus oblique and Chlorella pyrenoidosa grown in culture solution with 0.00 (CK), 0.088 (Tl), 0.44 (T2) and 1.76 mg · L(-1) (T3) of CRE, respectively. The results show that low concentration of CRE (T1) inhibited the growth rate of the alga and high CRE (T2 and T3) ceased growth and reproductions. CRE also decreased the chlorophyll and proteins in alga cells, indicating the inhibition of photosynthesis and protein biosynthesis, which could be direct reasons for the low growth rate and death of green alga. The efflux of protons and substances from alga cells led to pH reduction and conductivity increment in culture solution with CRE. Furthermore, the activity of superoxide dismutase in alga increased at the beginning of CRE in T1 and T2 treatments but decreased as time prolonged which was in contrast to high CRE treatment. And the long exposure to low CRE treatment behaved otherwise. This suggests that the low concentration of CRE could induce the resistant reactions in alga at initial time but high CRE concentration or long exposure even at low CRE concentration could inhibit the enzyme synthesis. Similarly, malondialdehyde in alga increased as CRE concentrations increased in culture solutions, implying the damage and high permeability of cell membrane. In general, Chlorella pyrenoidosa was more sensitive to CRE. The abuse of rhizomes and preparations in aquaculture and intensive cultivation of Coptis chinensis plants in a large scale might produce ecological risks to primary productivity of water ecosystems.

  13. Acute toxicity and associated mechanisms of four strobilurins in algae.

    PubMed

    Liu, Xiaoxu; Wang, Yu; Chen, Hao; Zhang, Junli; Wang, Chengju; Li, Xuefeng; Pang, Sen

    2018-06-01

    Strobilurins have been reported highly toxic to non-target aquatic organisms but few illustrated how they cause toxic effects on algae. This study investigated the acute toxicity of Kresoxim-methy (KRE), Pyraclostrobin (PYR), Trifloxystrobin (TRI) and Picoxystrobin (PIC) on two algae and their toxicity mechanisms. Four strobilurins showed lower toxic effects on Chlorella pyrenoidsa but higher on Chlorella vulgaris. bc1 complex activities in C. vulgaris were significantly inhibited by all strobilurins, suggesting bc 1 complex might be the target of strobilurin toxicity in algae. Moreover, SOD, CAT and POD activities were significantly up-regulated by all doses of KRE, PYR and PIC. In contrast, low concentrations of TRI stimulated SOD and POD activities but highest concentration significantly inhibited those activities. Comet assays showed damaged DNA in C. vulgaris by four strobulirins, suggesting their potential genotoxic threats to algae. The results illustrated acute toxicity by strobulirins on algae and their possible toxicity mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Method to transform algae, materials therefor, and products produced thereby

    DOEpatents

    Dunahay, Terri Goodman; Roessler, Paul G.; Jarvis, Eric E.

    1997-01-01

    Disclosed is a method to transform chlorophyll C-containing algae which includes introducing a recombinant molecule comprising a nucleic acid molecule encoding a dominant selectable marker operatively linked to an algal regulatory control sequence into a chlorophyll C-containing alga in such a manner that the marker is produced by the alga. In a preferred embodiment the algal regulatory control sequence is derived from a diatom and preferably Cyclotella cryptica. Also disclosed is a chimeric molecule having one or more regulatory control sequences derived from one or more chlorophyll C-containing algae operatively linked to a nucleic acid molecule encoding a selectable marker, an RNA molecule and/or a protein, wherein the nucleic acid molecule does not normally occur with one or more of the regulatory control sequences. Further specifically disclosed are molecules pACCNPT10, pACCNPT4.8 and pACCNPT5.1. The methods and materials of the present invention provide the ability to accomplish stable genetic transformation of chlorophyll C-containing algae.

  15. Use of Unicellular Algae for Evaluation of Potential Aquatic Contaminants

    DTIC Science & Technology

    1977-05-01

    entitled "Use of Unicellular Algae for Evaluation of Potential Aquatic Contaminants." Research was conducted by the Water Resources Laboratory, School of...plants and animals. Freshwater algae are critical organisms because of their role as primary producers in all aquatic food chains. Several algal species...AMRL-TR-76-65 USE OF UNICELLULAR ALGAE FOR EVALUATION OF POTENTIAL AQUATIC CONTAMINANTS ANNUAL REPORT J. SCHERFIG P. DIXON C. JUSTICE R. APPLEMAN

  16. Use of Brown Algae to Demonstrate Natural Products Techniques.

    ERIC Educational Resources Information Center

    Porter, Lee A.

    1985-01-01

    Background information is provided on the natural products found in marine organisms in general and the brown algae in particular. Also provided are the procedures needed to isolate D-mannitol (a primary metabolite) and cholesterol from brown algae. (JN)

  17. Turning Algae into Energy in New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayre, Richard; Olivares, Jose; Lammers, Peter

    Los Alamos National Laboratory, as part of the New Mexico Consortium - comprised of New Mexico's major research universities, the Lab, and key industry partners - is conducting research into using algae as a feed stock for a renewable source of fuels, and other products. There are hundreds of thousands of different algae species on Earth. They account for approximately half of the net photosynthesis on the planet, yet they have not been used in any kind of a large scale by humanity, with just a few exceptions. And yet, the biomass is easy to transform into useful products, includingmore » fuels, and they contain many other natural products that have high value. In this video Los Alamos and New Mexico State University scientists outline the opportunities and challenges of using science to turn algae into energy.« less

  18. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching.

    PubMed

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged.

  19. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching

    PubMed Central

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R.; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged. PMID:27119147

  20. Halogenated compounds from marine algae.

    PubMed

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-08-09

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds.

  1. Halogenated Compounds from Marine Algae

    PubMed Central

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-01-01

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds. PMID:20948909

  2. The effects of ProAlgaZyme novel algae infusion on metabolic syndrome and markers of cardiovascular health

    PubMed Central

    Oben, Julius; Enonchong, Ebangha; Kuate, Dieudonne; Mbanya, Dora; Thomas, Tiffany C; Hildreth, DeWall J; Ingolia, Thomas D; Tempesta, Michael S

    2007-01-01

    Background Metabolic Syndrome, or Syndrome X, is characterized by a set of metabolic and lipid imbalances that greatly increases the risk of developing diabetes and cardiovascular disease. The syndrome is highly prevalent in the United States and worldwide, and treatments are in high demand. ProAlgaZyme, a novel and proprietary freshwater algae infusion in purified water, has been the subject of several animal studies and has demonstrated low toxicity even with chronic administration at elevated doses. The infusion has been used historically for the treatment of several inflammatory and immune disorders in humans and is considered well-tolerated. Here, the infusion is evaluated for its effects on the cardiovascular risk factors present in metabolic syndrome in a randomized double-blind placebo-controlled study involving 60 overweight and obese persons, ages 25–60. All participants received four daily oral doses (1 fl oz) of ProAlgaZyme (N = 22) or water placebo (N = 30) for a total of 10 weeks, and were encouraged to maintain their normal levels of physical activity. Blood sampling and anthropometric measurements were taken at the beginning of the study period and after 4, 8 and 10 weeks of treatment. Eight participants did not complete the study. Results ProAlgaZyme brought about statistically significant (p < 0.001) reductions in the following: weight, body fat, total cholesterol, LDL-cholesterol, triglycerides, C-reactive protein and fasting blood glucose levels, accompanied by a significant (p < 0.001) increase in HDL-cholesterol levels over the 10-week study period. The infusion was well-tolerated and no side effects were noted. Conclusion ProAlgaZyme (4 fl oz daily) consumption resulted in significant reductions in weight and blood glucose levels, while significantly improving serum lipid profiles and reducing markers of inflammation, thus improving cardiovascular risk factors in overweight and obese subjects over a course of 10 weeks with an absence of

  3. 360° Algae Lab Tour at NREL- Non-Narrated

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Take a self-guided, 360-degree tour of the National Renewable Energy Laboratory’s algae biofuels research facility. Learn how NREL researchers are growing algae to study how it can be used as a renewable source of food, fuels, and other products.

  4. The role of algae in agriculture: a mathematical study.

    PubMed

    Tiwari, P K; Misra, A K; Venturino, Ezio

    2017-06-01

    Synthetic fertilizers and livestock manure are nowadays widely used in agriculture to improve crop yield but nitrogen and phosphorous runoff resulting from their use compromises water quality and contributes to eutrophication phenomena in waterbeds within the countryside and ultimately in the ocean. Alternatively, algae could play an important role in agriculture where they can be used as biofertilizers and soil stabilizers. To examine the possible reuse of the detritus generated by dead algae as fertilizer for crops, we develop three mathematical models building upon each other. A system is proposed in which algae recover waste nutrients (nitrogen and phosphorus) for reuse in agricultural production. The results of our study show that in so doing, the crop yield may be increased and simultaneously the density of algae in the lake may be reduced. This could be a way to mitigate and possibly solve the environmental and economic issues nowadays facing agriculture.

  5. Computational Visual Stress Level Analysis of Calcareous Algae Exposed to Sedimentation

    PubMed Central

    Nilssen, Ingunn; Eide, Ingvar; de Oliveira Figueiredo, Marcia Abreu; de Souza Tâmega, Frederico Tapajós; Nattkemper, Tim W.

    2016-01-01

    This paper presents a machine learning based approach for analyses of photos collected from laboratory experiments conducted to assess the potential impact of water-based drill cuttings on deep-water rhodolith-forming calcareous algae. This pilot study uses imaging technology to quantify and monitor the stress levels of the calcareous algae Mesophyllum engelhartii (Foslie) Adey caused by various degrees of light exposure, flow intensity and amount of sediment. A machine learning based algorithm was applied to assess the temporal variation of the calcareous algae size (∼ mass) and color automatically. Measured size and color were correlated to the photosynthetic efficiency (maximum quantum yield of charge separation in photosystem II, ΦPSIImax) and degree of sediment coverage using multivariate regression. The multivariate regression showed correlations between time and calcareous algae sizes, as well as correlations between fluorescence and calcareous algae colors. PMID:27285611

  6. Photobiological hydrogen production with switchable photosystem-II designer algae

    DOEpatents

    Lee, James Weifu

    2014-02-18

    A process for enhanced photobiological H.sub.2 production using transgenic alga. The process includes inducing exogenous genes in a transgenic alga by manipulating selected environmental factors. In one embodiment inducing production of an exogenous gene uncouples H.sub.2 production from existing mechanisms that would downregulate H.sub.2 production in the absence of the exogenous gene. In other embodiments inducing an exogenous gene triggers a cascade of metabolic changes that increase H.sub.2 production. In some embodiments the transgenic alga are rendered non-regenerative by inducing exogenous transgenes for proton channel polypeptides that are targeted to specific algal membranes.

  7. Landfill leachate--a water and nutrient resource for algae-based biofuels.

    PubMed

    Edmundson, Scott J; Wilkie, Ann C

    2013-01-01

    There is a pressing need for sustainable renewable fuels that do not negatively impact food and water resources. Algae have great potential for the production of renewable biofuels but require significant water and fertilizer resources for large-scale production. Municipal solid waste (MSW) landfill leachate (LL) was evaluated as a cultivation medium to reduce both water and elemental fertilizer demands of algae cultivation. Daily growth rate and cell yield of two isolated species of algae (Scenedesmus cf. rubescens and Chlorella cf. ellipsoidea) were cultivated in MSW LL and compared with Bold's Basal Medium (BBM). Results suggest that LL can be used as a nutrient resource and medium for the cultivation of algae biomass. S. cf. rubescens grew well in 100% LL, when pH was regulated, with a mean growth rate and cell yield 91.2% and 92.8% of those observed in BBM, respectively. S. cf. rubescens was more adaptable than C. cf. ellipsoidea to the LL tested. The LL used in this study supported a maximum volumetric productivity of 0.55 g/L/day of S. cf. rubescens biomass. The leachate had sufficient nitrogen to supply 17.8 g/L of algae biomass, but was limited by total phosphorus. Cultivation of algae on LL offsets both water and fertilizer consumption, reducing the environmental footprint and increasing the potential sustainability of algae-based biofuels.

  8. Method to transform algae, materials therefor, and products produced thereby

    DOEpatents

    Dunahay, T.G.; Roessler, P.G.; Jarvis, E.E.

    1997-08-26

    Disclosed is a method to transform chlorophyll C-containing algae. The method includes introducing a recombinant molecule comprising a nucleic acid molecule encoding a dominant selectable marker operatively linked to an algal regulatory control sequence into a chlorophyll C-containing alga in such a manner that the marker is produced by the alga. In a preferred embodiment the algal regulatory control sequence is derived from a diatom and preferably Cyclotella cryptica. Also disclosed is a chimeric molecule having one or more regulatory control sequences derived from one or more chlorophyll C-containing algae operatively linked to a nucleic acid molecule encoding a selectable marker, an RNA molecule and/or a protein, wherein the nucleic acid molecule does not normally occur with one or more of the regulatory control sequences. Further, specifically disclosed are molecules pACCNPT10, pACCNPT4.8 and pACCNPT5.1. The methods and materials of the present invention provide the ability to accomplish stable genetic transformation of chlorophyll C-containing algae. 2 figs.

  9. Algae Production from Wastewater Resources: An Engineering and Cost Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenung, Susan; Efroymson, Rebecca Ann

    Co-locating algae cultivation ponds near municipal wastewater (MWW) facilities provides the opportunity to make use of the nitrogen and phosphorus compounds in the wastewater as nutrient sources for the algae. This use benefits MWW facilities, the algae biomass and biofuel or bioproduct industry, and the users of streams where treated or untreated waste would be discharged. Nutrient compounds can lead to eutrophication, hypoxia, and adverse effects to some organisms if released downstream. This analysis presents an estimate of the cost savings made possible to cultivation facilities by using the nutrients from wastewater for algae growth rather than purchase of themore » nutrients. The analysis takes into consideration the cost of pipe transport from the wastewater facility to the algae ponds, a cost factor that has not been publicly documented in the past. The results show that the savings in nutrient costs can support a wastewater transport distance up to 10 miles for a 1000-acre-pond facility, with potential adjustments for different operating assumptions.« less

  10. Turf algae-mediated coral damage in coastal reefs of Belize, Central America.

    PubMed

    Wild, Christian; Jantzen, Carin; Kremb, Stephan Georg

    2014-01-01

    Many coral reefs in the Caribbean experienced substantial changes in their benthic community composition during the last decades. This often resulted in phase shifts from scleractinian coral dominance to that by other benthic invertebrate or algae. However, knowledge about how the related role of coral-algae contacts may negatively affect corals is scarce. Therefore, benthic community composition, abundance of algae grazers, and the abundance and character of coral-algae contacts were assessed in situ at 13 Belizean reef sites distributed along a distance gradient to the Belizean mainland (12-70 km): Mesoamerican Barrier Reef (inshore), Turneffe Atoll (inner and outer midshore), and Lighthouse Reef (offshore). In situ surveys revealed significantly higher benthic cover by scleractinian corals at the remote Lighthouse Reef (26-29%) when compared to the other sites (4-19%). The abundance of herbivorous fish and the sea urchin Diadema antillarum significantly increased towards the offshore reef sites, while the occurrence of direct coral-algae contacts consequently increased significantly with decreasing distance to shore. About 60% of these algae contacts were harmful (exhibiting coral tissue damage, pigmentation change, or overgrowth) for corals (mainly genera Orbicella and Agaricia), particularly when filamentous turf algae were involved. These findings provide support to the hypothesis that (turf) algae-mediated coral damage occurs in Belizean coastal, near-shore coral reefs.

  11. Competitive interactions between corals and turf algae depend on coral colony form.

    PubMed

    Swierts, Thomas; Vermeij, Mark Ja

    2016-01-01

    Turf algae are becoming more abundant on coral reefs worldwide, but their effects on other benthic organisms remain poorly described. To describe the general characteristics of competitive interactions between corals and turf algae, we determined the occurrence and outcomes of coral-turf algal interactions among different coral growth forms (branching, upright, massive, encrusting, plating, and solitary) on a shallow reef in Vietnam. In total, the amount of turf algal interaction, i.e., the proportion of the coral boundary directly bordering turf algae, was quantified for 1,276 coral colonies belonging to 27 genera and the putative outcome of each interaction was noted. The amount of turf algal interaction and the outcome of these interactions differed predictably among the six growth forms. Encrusting corals interacted most often with turf algae, but also competed most successfully against turf algae. The opposite was observed for branching corals, which rarely interacted with turf algae and rarely won these competitive interactions. Including all other growth forms, a positive relationship was found between the amount of competitive interactions with neighboring turf algae and the percentage of such interaction won by the coral. This growth form dependent ability to outcompete turf algae was not only observed among coral species, but also among different growth forms in morphologically plastic coral genera (Acropora, Favia, Favites, Montastrea, Montipora, Porites) illustrating the general nature of this relationship.

  12. Competitive interactions between corals and turf algae depend on coral colony form

    PubMed Central

    Vermeij, Mark JA

    2016-01-01

    Turf algae are becoming more abundant on coral reefs worldwide, but their effects on other benthic organisms remain poorly described. To describe the general characteristics of competitive interactions between corals and turf algae, we determined the occurrence and outcomes of coral–turf algal interactions among different coral growth forms (branching, upright, massive, encrusting, plating, and solitary) on a shallow reef in Vietnam. In total, the amount of turf algal interaction, i.e., the proportion of the coral boundary directly bordering turf algae, was quantified for 1,276 coral colonies belonging to 27 genera and the putative outcome of each interaction was noted. The amount of turf algal interaction and the outcome of these interactions differed predictably among the six growth forms. Encrusting corals interacted most often with turf algae, but also competed most successfully against turf algae. The opposite was observed for branching corals, which rarely interacted with turf algae and rarely won these competitive interactions. Including all other growth forms, a positive relationship was found between the amount of competitive interactions with neighboring turf algae and the percentage of such interaction won by the coral. This growth form dependent ability to outcompete turf algae was not only observed among coral species, but also among different growth forms in morphologically plastic coral genera (Acropora, Favia, Favites, Montastrea, Montipora, Porites) illustrating the general nature of this relationship. PMID:27190707

  13. The remote sensing of algae

    NASA Technical Reports Server (NTRS)

    Thorne, J. F.

    1977-01-01

    State agencies need rapid, synoptic and inexpensive methods for lake assessment to comply with the 1972 Amendments to the Federal Water Pollution Control Act. Low altitude aerial photography may be useful in providing information on algal type and quantity. Photography must be calibrated properly to remove sources of error including airlight, surface reflectance and scene-to-scene illumination differences. A 550-nm narrow wavelength band black and white photographic exposure provided a better correlation to algal biomass than either red or infrared photographic exposure. Of all the biomass parameters tested, depth-integrated chlorophyll a concentration correlated best to remote sensing data. Laboratory-measured reflectance of selected algae indicate that different taxonomic classes of algae may be discriminated on the basis of their reflectance spectra.

  14. Research for Developing Renewable Biofuels from Algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Paul N.

    Task A. Expansion of knowledge related to lipid production and secretion in algae A.1 Lipid biosynthesis in target algal species; Systems biology approaches are being used in combination with recent advances in Chlorella and Chlamydomonas genomics to address lipid accumulation in response to defined nutrient regimes. The UNL Algal Group continues screening additional species of Chlorella and other naturally occurring algae for those with optimal triglyceride production; Of the strains examined by the DOE's Aquatic Species Program, green algae, several species of Chlorella represent the largest group from which oleaginous candidates have been identified; A.1.1. Lipid profiling; Neutral lipid accumulationmore » is routinely monitored by Nile red and BODIPY staining using high throughput strategies to screen for naturally occurring algae that accumulate triglyceride. These strategies complement those using spectrofluorometry to quantify lipid accumulation; Neutral lipid accumulation is routinely monitored by high performance thin-layer chromatography (HPTLC) and high performance liquid chromatography (HPLC) of lipid extracts in conjunction with; Carbon portioning experiments have been completed and the data currently are being analyzed and prepared for publication; Methods in the Black lab were developed to identify and quantify triacylglycerol (TAG), major membrane lipids [diacylglycerol trimethylhomoserine, phosphatidylethanolamine and chloroplast glycolipids], biosynthetic intermediates such as diacylglycerol, phosphatidic acid and lysophospholipids and different species of acyl-coenzyme A (acyl CoA).« less

  15. Switchable photosystem-II designer algae for photobiological hydrogen production

    DOEpatents

    Lee, James Weifu

    2010-01-05

    A switchable photosystem-II designer algae for photobiological hydrogen production. The designer transgenic algae includes at least two transgenes for enhanced photobiological H.sub.2 production wherein a first transgene serves as a genetic switch that can controls photosystem II (PSII) oxygen evolution and a second transgene encodes for creation of free proton channels in the algal photosynthetic membrane. In one embodiment, the algae includes a DNA construct having polymerase chain reaction forward primer (302), a inducible promoter (304), a PSII-iRNA sequence (306), a terminator (308), and a PCR reverse primer (310). In other embodiments, the PSII-iRNA sequence (306) is replaced with a CF.sub.1-iRNA sequence (312), a streptomycin-production gene (314), a targeting sequence (316) followed by a proton-channel producing gene (318), or a PSII-producing gene (320). In one embodiment, a photo-bioreactor and gas-product separation and utilization system produce photobiological H.sub.2 from the switchable PSII designer alga.

  16. Studies on allergenic algae of Delhi area: botanical aspects.

    PubMed

    Mittal, A; Agarwal, M K; Shivpuri, D N

    1979-04-01

    To study distribution of algae in and around Delhi aerobiological surveys were undertaken for two consecutive years (September, 1972, to August, 1974). The surveys were accomplished by (a) slide exposure method and (b) culture plate exposure method. A total of 850 slides were exposed using Durham's gravity sampling device. Of these, 560 slides were exposed during 1973 (272 slides at two meter and 288 at ten meter height) and the rest (290 slides) were exposed during 1974 at ten meter height. A total of 858 culture plates were exposed (276 for one hour and 282 for two hours) during 1973 and the rest (300 culture plates) were exposed during 1974 at ten meter height for two hours duration only. Air was found to be rich in algae flora during the months of September to November. The dominant forms of algae present were all blue greens. This might be due to the relative greater resistance of blue green algae to unfavorable conditions.

  17. Effect of sonication frequency on the disruption of algae.

    PubMed

    Kurokawa, Masaki; King, Patrick M; Wu, Xiaoge; Joyce, Eadaoin M; Mason, Timothy J; Yamamoto, Ken

    2016-07-01

    In this study, the efficiency of ultrasonic disruption of Chaetoceros gracilis, Chaetoceros calcitrans, and Nannochloropsis sp. was investigated by applying ultrasonic waves of 0.02, 0.4, 1.0, 2.2, 3.3, and 4.3 MHz to algal suspensions. The results showed that reduction in the number of algae was frequency dependent and that the highest efficiency was achieved at 2.2, 3.3, and 4.3MHz for C. gracilis, C. calcitrans, and Nannochloropsis sp., respectively. A review of the literature suggested that cavitation, rather than direct effects of ultrasonication, are required for ultrasonic algae disruption, and that chemical effects are likely not the main mechanism for algal cell disruption. The mechanical resonance frequencies estimated by a shell model, taking into account elastic properties, demonstrated that suitable disruption frequencies for each alga were associated with the cell's mechanical properties. Taken together, we consider here that physical effects of ultrasonication were responsible for algae disruption. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Sexual reproduction and sex determination in green algae.

    PubMed

    Sekimoto, Hiroyuki

    2017-05-01

    The sexual reproductive processes of some representative freshwater green algae are reviewed. Chlamydomonas reinhardtii is a unicellular volvocine alga having two mating types: mating type plus (mt + ) and mating type minus (mt - ), which are controlled by a single, complex mating-type locus. Sexual adhesion between the gametes is mediated by sex-specific agglutinin molecules on their flagellar membranes. Cell fusion is initiated by an adhesive interaction between the mt + and mt - mating structures, followed by localized membrane fusion. The loci of sex-limited genes and the conformation of sex-determining regions have been rearranged during the evolution of volvocine algae; however, the essential function of the sex-determining genes of the isogamous unicellular Chlamydomonas reinhardtii is conserved in the multicellular oogamous Volvox carteri. The sexual reproduction of the unicellular charophycean alga, Closterium peracerosum-strigosum-littorale complex, is also focused on here. The sexual reproductive processes of heterothallic strains are controlled by two multifunctional sex pheromones, PR-IP and PR-IP Inducer, which independently promote multiple steps in conjugation at the appropriate times through different induction mechanisms. The molecules involved in sexual reproduction and sex determination have also been characterized.

  19. Fe(II)-regulated moderate pre-oxidation of Microcystis aeruginosa and formation of size-controlled algae flocs for efficient flotation of algae cell and organic matter.

    PubMed

    Qi, Jing; Lan, Huachun; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui

    2018-06-15

    The coagulation/flocculation/flotation (C/F/F) process is becoming a popular method for algae-laden water treatment. However, the efficiency of flotation is highly dependent on the ability of the preceding coagulation/flocculation process to form flocculated algae flocs. This study aims to improve the Microcystis aeruginosa flotation efficiency from algae cell and organic matter aspects by applying Fe(II)-regulated pretreatment enhanced Al coagulation process. The ability of the C/F/F process to remove cyanobacterial cells can be enhanced from 8% to 99% at a Fe(II) dose of 30 μM. The Al dose needed can be reduced by more than half while achieving successful flotation. The introduced Fe(II) after KMnO 4 can not only realize moderate pre-oxidation of cyanobacterial cells, but also form in-situ Fe(III). The DOC value can also be decreased significantly due to the formation of in-situ Fe(III), which is more efficient in dissolved organic matter (DOM) removal compared with pre-formed Fe(III). In addition, the gradually hydrolyzed in-situ Fe(III) can facilitate the hydrolysis of Al as a dual-coagulant and promote the clustering and cross-linking of Al hydrolyzates, which can enhance the formation of size-controlled algae flocs. Finally, the size-controlled algae flocs can be effectively floated by the bubbles released in the flotation process due to the efficient collision and attachment between flocs and bubbles. Therefore, the efficient flotation of algae cell and organic matter can be realized by the Fe(II) regulated moderate pre-oxidation of M. aeruginosa and formation of size-controlled algae flocs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Energy Productivity of the High Velocity Algae Raceway Integrated Design (ARID-HV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attalah, Said; Waller, Peter M.; Khawam, George

    The original Algae Raceway Integrated Design (ARID) raceway was an effective method to increase algae culture temperature in open raceways. However, the energy input was high and flow mixing was poor. Thus, the High Velocity Algae Raceway Integrated Design (ARID-HV) raceway was developed to reduce energy input requirements and improve flow mixing in a serpentine flow path. A prototype ARID-HV system was installed in Tucson, Arizona. Based on algae growth simulation and hydraulic analysis, an optimal ARID-HV raceway was designed, and the electrical energy input requirement (kWh ha-1 d-1) was calculated. An algae growth model was used to compare themore » productivity of ARIDHV and conventional raceways. The model uses a pond surface energy balance to calculate water temperature as a function of environmental parameters. Algae growth and biomass loss are calculated based on rate constants during day and night, respectively. A 10 year simulation of DOE strain 1412 (Chlorella sorokiniana) showed that the ARID-HV raceway had significantly higher production than a conventional raceway for all months of the year in Tucson, Arizona. It should be noted that this difference is species and climate specific and is not observed in other climates and with other algae species. The algae growth model results and electrical energy input evaluation were used to compare the energy productivity (algae production rate/energy input) of the ARID-HV and conventional raceways for Chlorella sorokiniana in Tucson, Arizona. The energy productivity of the ARID-HV raceway was significantly greater than the energy productivity of a conventional raceway for all months of the year.« less

  1. Antibody Production in Plants and Green Algae.

    PubMed

    Yusibov, Vidadi; Kushnir, Natasha; Streatfield, Stephen J

    2016-04-29

    Monoclonal antibodies (mAbs) have a wide range of modern applications, including research, diagnostic, therapeutic, and industrial uses. Market demand for mAbs is high and continues to grow. Although mammalian systems, which currently dominate the biomanufacturing industry, produce effective and safe recombinant mAbs, they have a limited manufacturing capacity and high costs. Bacteria, yeast, and insect cell systems are highly scalable and cost effective but vary in their ability to produce appropriate posttranslationally modified mAbs. Plants and green algae are emerging as promising production platforms because of their time and cost efficiencies, scalability, lack of mammalian pathogens, and eukaryotic posttranslational protein modification machinery. So far, plant- and algae-derived mAbs have been produced predominantly as candidate therapeutics for infectious diseases and cancer. These candidates have been extensively evaluated in animal models, and some have shown efficacy in clinical trials. Here, we review ongoing efforts to advance the production of mAbs in plants and algae.

  2. Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.

    The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energymore » efficient manner.« less

  3. Cycloartane triterpenes from marine green alga Cladophora fascicularis

    NASA Astrophysics Data System (ADS)

    Huang, Xinping; Zhu, Xiaobin; Deng, Liping; Deng, Zhiwei; Lin, Wenhan

    2006-12-01

    Six cycloartanes were isolated from ethanol extract of marine green alga Cladophora fascicularis by column chromatography. Procedure of isolation and description of these compounds are given in this paper. The structures were elucidated as (1). 24-hydroperoxycycloart-25- en-3β-ol; (2). cycloart-25-en-3β 24-diol; (3). 25-hydroperoxycycloart-23-en-3β-ol; (4). cycloart-23-en-3β, 25-diol; (5). cycloart-23, 25-dien-3β-ol; and (6). cycloart-24-en-3β-ol by spectroscopic (MS, ID and 2D NMR) data analysis. Cycloartane derivatives are widely distributed in terrestrial plants, but only few were obtained in the alga. All these compounds that have been isolated from terrestrial plants, were found in the marine alga for the first time.

  4. Boron uptake, localization, and speciation in marine brown algae.

    PubMed

    Miller, Eric P; Wu, Youxian; Carrano, Carl J

    2016-02-01

    In contrast to the generally boron-poor terrestrial environment, the concentration of boron in the marine environment is relatively high (0.4 mM) and while there has been extensive interest in its use as a surrogate of pH in paleoclimate studies in the context of climate change-related questions, the relatively depth independent, and the generally non-nutrient-like concentration profile of this element have led to boron being neglected as a potentially biologically relevant element in the ocean. Among the marine plant-like organisms the brown algae (Phaeophyta) are one of only five lineages of photosynthetic eukaryotes to have evolved complex multicellularity. Many of unusual and often unique features of brown algae are attributable to this singular evolutionary history. These adaptations are a reflection of the marine coastal environment which brown algae dominate in terms of biomass. Consequently, brown algae are of fundamental importance to oceanic ecology, geochemistry, and coastal industry. Our results indicate that boron is taken up by a facilitated diffusion mechanism against a considerable concentration gradient. Furthermore, in both Ectocarpus and Macrocystis some boron is most likely bound to cell wall constituent alginate and the photoassimilate mannitol located in sieve cells. Herein, we describe boron uptake, speciation, localization and possible biological function in two species of brown algae, Macrocystis pyrifera and Ectocarpus siliculosus.

  5. The growth and harvesting of algae in a micro-gravity environment

    NASA Technical Reports Server (NTRS)

    Wiltberger, Nancy L.

    1987-01-01

    Algae growth in a micro-gravity environment is an important factor in supporting man's permanent presence in space. Algae can be used to produce food, oxygen, and pure water in a manned space station. A space station is one example of a situation where a Controlled Ecological Life Support System (CELSS) is imperative. In setting up a CELSS with an engineering approach at the Aerospace department of the University of Colorado, questions concerning algae growth in micro-g have arisen. The Get Away Special (GAS) Fluids Management project is a means through which many questions about the effects of a micro-g environment on the adequacy of growth rates, the viability of micro-organisms, and separation of gases and solids for harvesting purposes can be answered. In order to be compatible with the GAS tests, the algae must satisfy the following criteria: (1) rapid growth rates, (2) sustain viability over long periods of non-growth storage, and (3) very brief latency from storage to rapid growth. Testing indicates that the overall growth characteristics of Anacystis Nidulans satisfy the specifications of GAS's design constraints. In addition, data acquisition and the method of growth instigation are two specific problems being examined, as they will be encountered in interfacing with the GAS project. Flight testing will be two-fold, measurement of algae growth in micro-g and separation of algae from growth medium in an artificial gravitation field. Post flight results will provide information on algae viability in a micro-g environment as reflected by algal growth rates in space. Other post flight results will provide a basis for evaluating techniques for harvesting algae. The results from the GAS project will greatly assist the continuing effort of developing the CELSS and its applications for space.

  6. Where Have All the Algae Gone, or, How Many Kingdoms Are There?

    ERIC Educational Resources Information Center

    Blackwell, Will H.; Powell, Martha J.

    1995-01-01

    Examined 10 introductory college-level, general biology survey textbooks for the coverage of algae to assess the efficacy of coverage. Describes a proposal of seven kingdoms and discusses the disposition of algae among five of these kingdoms. Contends that textbooks should highlight the concept of algae across the five kingdoms. Contains 59…

  7. Development of Green Fuels From Algae - The University of Tulsa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crunkleton, Daniel; Price, Geoffrey; Johannes, Tyler

    The general public has become increasingly aware of the pitfalls encountered with the continued reliance on fossil fuels in the industrialized world. In response, the scientific community is in the process of developing non-fossil fuel technologies that can supply adequate energy while also being environmentally friendly. In this project, we concentrate on green fuels which we define as those capable of being produced from renewable and sustainable resources in a way that is compatible with the current transportation fuel infrastructure. One route to green fuels that has received relatively little attention begins with algae as a feedstock. Algae are amore » diverse group of aquatic, photosynthetic organisms, generally categorized as either macroalgae (i.e. seaweed) or microalgae. Microalgae constitute a spectacularly diverse group of prokaryotic and eukaryotic unicellular organisms and account for approximately 50% of global organic carbon fixation. The PI's have subdivided the proposed research program into three main research areas, all of which are essential to the development of commercially viable algae fuels compatible with current energy infrastructure. In the fuel development focus, catalytic cracking reactions of algae oils is optimized. In the species development project, genetic engineering is used to create microalgae strains that are capable of high-level hydrocarbon production. For the modeling effort, the construction of multi-scaled models of algae production was prioritized, including integrating small-scale hydrodynamic models of algae production and reactor design and large-scale design optimization models.« less

  8. Feeding preferences of mesograzers on aquacultured Gracilaria and sympatric algae

    PubMed Central

    Cruz-Rivera, Edwin; Friedlander, Michael

    2011-01-01

    While large grazers can often be excluded effectively from algal aquaculture operations, smaller herbivores such as small crustaceans and gastropods may be more difficult to control. The susceptibility of three Gracilaria species to herbivores was evaluated in multiple-choice experiments with the amphipod Ampithoe ramondi and the crab Acanthonyx lunulatus. Both mesograzers are common along the Mediterranean coast of Israel. When given a choice, the amphipod preferred to consume Gracilaria lemaneiformis significantly more than either G. conferta or G. cornea. The crab, however, consumed equivalent amounts of G. lemaneiformis and G. conferta, but did not consume G. cornea. Organic content of these algae, an important feeding cue for some mesograzers, could not account for these differences. We further assessed the susceptibility of a candidate species for aquaculture, G. lemaneiformis, against local algae, including common epiphytes. When given a choice of four algae, amphipods preferred the green alga Ulva lactuca over Jania rubens. However, consumption of U. lactuca was equivalent to those of G. lemaneiformis and Padina pavonica. In contrast, the crab showed a marked and significant preference for G. lemaneiformis above any of the other three algae offered. Our results suggest that G. cornea is more resistant to herbivory from common mesograzers and that, contrary to expectations, mixed cultures or epiphyte growth on G. lemaneiformis cannot reduce damage to this commercially appealing alga if small herbivores are capable of recruiting into culture ponds. Mixed cultures may be beneficial when culturing other Gracilaria species. PMID:22711945

  9. Ion and metabolite transport in the chloroplast of algae: lessons from land plants.

    PubMed

    Marchand, Justine; Heydarizadeh, Parisa; Schoefs, Benoît; Spetea, Cornelia

    2018-06-01

    Chloroplasts are endosymbiotic organelles and play crucial roles in energy supply and metabolism of eukaryotic photosynthetic organisms (algae and land plants). They harbor channels and transporters in the envelope and thylakoid membranes, mediating the exchange of ions and metabolites with the cytosol and the chloroplast stroma and between the different chloroplast subcompartments. In secondarily evolved algae, three or four envelope membranes surround the chloroplast, making more complex the exchange of ions and metabolites. Despite the importance of transport proteins for the optimal functioning of the chloroplast in algae, and that many land plant homologues have been predicted, experimental evidence and molecular characterization are missing in most cases. Here, we provide an overview of the current knowledge about ion and metabolite transport in the chloroplast from algae. The main aspects reviewed are localization and activity of the transport proteins from algae and/or of homologues from other organisms including land plants. Most chloroplast transporters were identified in the green alga Chlamydomonas reinhardtii, reside in the envelope and participate in carbon acquisition and metabolism. Only a few identified algal transporters are located in the thylakoid membrane and play role in ion transport. The presence of genes for putative transporters in green algae, red algae, diatoms, glaucophytes and cryptophytes is discussed, and roles in the chloroplast are suggested. A deep knowledge in this field is required because algae represent a potential source of biomass and valuable metabolites for industry, medicine and agriculture.

  10. Combining micro-structures and micro-algae to increase lipid production for bio-fuel

    NASA Astrophysics Data System (ADS)

    Vyawahare, Saurabh; Zhu, Emilly; Mestler, Troy; Estévez-Torres, André.; Austin, Robert

    2011-03-01

    3rd generation bio-fuels like lipid producing micro-algae are a promising source of energy that could replace our dependence on petroleum. However, until there are improvements in algae oil yields, and a reduction in the energy needed for processing, algae bio-fuels are not economically competitive with petroleum. Here, we describe our work combining micro-fabricated devices with micro-algae Neochloris oleoabundans, a species first isolated on the sand dunes of Saudi Arabia. Inserting micro-algae of varying fitness into a landscape of micro-habitats allows us to evolve and select them based on a variety of conditions like specific gravity, starvation response and Nile Red fluorescence (which is a marker for lipid production). Hence, we can both estimate the production of lipids and generate conditions that allow the creation and isolation of algae which produce higher amounts of lipids, while discarding the rest. Finally, we can use micro-fabricated structures and flocculation to de-water these high lipid producing algae, reducing the need for expensive centrifugation and filtration.

  11. An Overview of Algae Biofuel Production and Potential Environmental Impact

    EPA Science Inventory

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas)...

  12. The study of LED light source illumination conditions for ideal algae cultivation

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Chin; Huang, Chien-Fu; Chen, Cin-Fu; Yue, Cheng-Feng

    2017-02-01

    Utilizing LED light source modules with 3 different RGB colors, the illumination effect of different wavelengths had been investigated on the growth curve of the same kind of micro algae. It was found that the best micro algae culturing status came out with long wavelength light such as red light (650 670 nm). Based on the same condition for a period of 3 weeks , the grown micro algae population density ratio represented by Optical Density (O.D.) ratio is 1?0.4?0.7 corresponding to growth with Red, Green, Blue light sources, respectively. Mixing 3 types and 2 types of LEDs with different parameters, the grown micro algae population densities were compared in terms of O.D. Interestingly enough, different light sources resulted in significant discoloration on micro algae growth, appearing yellow, brown, green, etc. Our experiments results showed such discoloration effect is reversible. Based on the same lighting condition, micro algae growth can be also affected by incubator size, nutrition supply, and temperature variation. In recent years, micro algae related technologies have been international wise a hot topic of energy and environmental protection for research and development institutes, and big energy companies among those developed countries. There will be an economically prosperous future. From this study of LED lighting to ideal algae cultivation, it was found that such built system would be capable of optimizing artificial cultivation system, leading to economic benefits for its continuous development. Since global warming causing weather change, accompanying with reducing energy sources and agriculture growth shortage are all threatening human being survival.

  13. Meteorological effects on variation of airborne algae in Mexico

    NASA Astrophysics Data System (ADS)

    Rosas, Irma; Roy-Ocotla, Guadalupe; Mosiño, Pedro

    1989-09-01

    Sixteen species of algae were collected from 73.8 m3 of air. Eleven were obtained in Minatitlán and eleven in México City. The data show that similar diversity occurred between the two localities, in spite of the difference in altitude. This suggests that cosmopolitan airborne microorganisms might have been released from different sources. Three major algal divisions (Chlorophyta, Cyanophyta and Chrysophyta) formed the airborne algal group. Also, a large concentration of 2220 algae m-3 was found near sea-level, while lower amounts were recorded at the high altitude of México City. The genera Scenedesmus, Chlorella and Chlorococcum dominated. Striking relationships were noted between the concentration of airborne green and blue-green algae, and meteorological conditions such as rain, vapour pressure, temperature and winds for different altitudes. In Minatitlán a linear relationship was established between concentration of algae and both vapour pressure (mbar) and temperature (° C), while in México City the wind (m s-1) was associated with variations in the algal count.

  14. Impact of green algae on the measurement of Microcystis aeruginosa populations in lagoon-treated wastewater with an algae online analyser.

    PubMed

    Nguyen, Thang; Roddick, Felicity A; Fan, Linhua

    2015-01-01

    Tests on the algae online analyser (AOA) showed that there was a strong direct linear correlation between cell density and in vivo Chl-a concentration for M. aeruginosa over the range of interest for a biologically treated effluent at a wastewater treatment plant (25,000-65,000 cells mL(-1), equivalent to a biovolume of 2-6 mm3 L(-1)). However, the AOA can provide an overestimate or underestimate of M. aeruginosa populations when green algae are present in the effluent, depending on their species and relative numbers. The results from this study demonstrated that the green algae (e.g., Euglena gracilis, Chlorella sp.) in the field phytoplankton population should be considered during calibration. In summary, the AOA has potential for use as an alert system for the presence of M. aeruginosa, and thus potentially of cyanobacterial blooms, in wastewater stabilization ponds.

  15. Energy-water nexus for mass cultivation of algae.

    PubMed

    Murphy, Cynthia Folsom; Allen, David T

    2011-07-01

    Microalgae are currently considered a potential feedstock for the production of biofuels. This work addresses the energy needed to manage the water used in the mass cultivation of saline, eukaryotic algae grown in open pond systems. Estimates of both direct and upstream energy requirements for obtaining, containing, and circulating water within algae cultivation systems are developed. Potential productivities are calculated for each of the 48 states within the continental U.S. based on theoretical photosynthetic efficiencies, growing season, and total available land area. Energy output in the form of algal biodiesel and the total energy content of algal biomass are compared to energy inputs required for water management. The analysis indicates that, for current technologies, energy required for water management alone is approximately seven times greater than energy output in the form of biodiesel and more than double that contained within the entire algal biomass. While this analysis addresses only currently identified species grown in an open-pond system, the water management requirements of any algae system will be substantial; therefore, it is critical that an energy assessment of water management requirements be performed for any cultivation technology and algal type in order to fully understand the energy balance of algae-derived biofuels.

  16. [Nutritive value of the spirulina algae (Spirulina maxima)].

    PubMed

    Tejada de Hernández, I; Shimada, A S

    1978-06-01

    Nine experiments were conducted, five of them in vivo to determine the limiting amino acids and digestibility of spiruline algae for the rat, and four in vitro to determine the digestibility of the product in pepsin and ruminal liquid. None of the amino acids studied (lysine, methionine, histidine) added alone or in combination to 10% protein (either crude or true) diets provided exclusively by spiruline, seems to be limiting although the results could be masked by the low palatability and acceptability of the product by the rats. The apparent digestibility of the algae was 67.4%. For the in vitro tests, the algae were subjected to several physical or chemical treatments, and the digestibility of the resulting product determined by four different techniques. In no case did the tested treatments have any effect on its digestibility.

  17. Gain and loss of polyadenylation signals during evolution of green algae.

    PubMed

    Wodniok, Sabina; Simon, Andreas; Glöckner, Gernot; Becker, Burkhard

    2007-04-18

    The Viridiplantae (green algae and land plants) consist of two monophyletic lineages: the Chlorophyta and the Streptophyta. Most green algae belong to the Chlorophyta, while the Streptophyta include all land plants and a small group of freshwater algae known as Charophyceae. Eukaryotes attach a poly-A tail to the 3' ends of most nuclear-encoded mRNAs. In embryophytes, animals and fungi, the signal for polyadenylation contains an A-rich sequence (often AAUAAA or related sequence) 13 to 30 nucleotides upstream from the cleavage site, which is commonly referred to as the near upstream element (NUE). However, it has been reported that the pentanucleotide UGUAA is used as polyadenylation signal for some genes in volvocalean algae. We set out to investigate polyadenylation signal differences between streptophytes and chlorophytes that may have emerged shortly after the evolutionary split between Streptophyta and Chlorophyta. We therefore analyzed expressed genes (ESTs) from three streptophyte algae, Mesostigma viride, Klebsormidium subtile and Coleochaete scutata, and from two early-branching chlorophytes, Pyramimonas parkeae and Scherffelia dubia. In addition, to extend the database, our analyses included ESTs from six other chlorophytes (Acetabularia acetabulum, Chlamydomonas reinhardtii, Helicosporidium sp. ex Simulium jonesii, Prototheca wickerhamii, Scenedesmus obliquus and Ulva linza) and one streptophyte (Closterium peracerosum). Our results indicate that polyadenylation signals in green algae vary widely. The UGUAA motif is confined to late-branching Chlorophyta. Most streptophyte algae do not have an A-rich sequence motif like that in embryophytes, animals and fungi. We observed polyadenylation signals similar to those of Arabidopsis and other land plants only in Mesostigma. Polyadenylation signals in green algae show considerable variation. A new NUE (UGUAA) was invented in derived chlorophytes and replaced not only the A-rich NUE but the complete poly

  18. Can algae-based technologies be an affordable green process for biofuel production and wastewater remediation?

    PubMed

    Vo Hoang Nhat, P; Ngo, H H; Guo, W S; Chang, S W; Nguyen, D D; Nguyen, P D; Bui, X T; Zhang, X B; Guo, J B

    2018-05-01

    Algae is a well-known organism that its characteristic is prominent for biofuel production and wastewater remediation. This critical review aims to present the applicability of algae with in-depth discussion regarding three key aspects: (i) characterization of algae for its applications; (ii) the technical approaches and their strengths and drawbacks; and (iii) future perspectives of algae-based technologies. The process optimization and combinations with other chemical and biological processes have generated efficiency, in which bio-oil yield is up to 41.1%. Through life cycle assessment, algae bio-energy achieves high energy return than fossil fuel. Thus, the algae-based technologies can reasonably be considered as green approaches. Although selling price of algae bio-oil is still high (about $2 L -1 ) compared to fossil fuel's price of $1 L -1 , it is expected that the algae bio-oil's price will become acceptable in the next coming decades and potentially dominate 75% of the market. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. CLOSING THE CARBON LOOP: GROWING ALGAE USING SUSTAINABLE CO2 FROM BIO-WASTE

    EPA Science Inventory

    Record oil prices, poor air quality, and the threat of global warming have resulted in renewed interest in micro algae for its great potential as a biofuels feedstock. However, research is predominantly focused on growing algae with coal flue gas, and extracting the algae oils...

  20. The Selective Use of Hypochlorite to Prevent Pond Crashes for Algae-Biofuel Production.

    PubMed

    2015-09-21

    Although algae-biofuels have many advantages including high areal productivity, algae can be preyed upon by amoebas, protozoans, ciliates, and rotifers, particularly in open pond systems. Thus, these higher organisms need to be controlled. In this study, Chlorella kessleri was used as the algal culture and Brachionus calyciflorus as the source of predation. The effect of sodium hypochlorite (bleach) was tested with the goal of totally inhibiting the rotifer while causing minor inhibition to the alga. The 24-hr LC50 for B. calyciflorus in spring water was 0.198 mg Cl/L while the 24-hr LC50 for C. kessleri was 0.321 mg Cl/L. However, chlorine dissipates rapidly as the algae serves as reductant. Results showed a chlorine dosage between 0.45 to 0.6 mg Cl/L and a dosing interval of two hours created the necessary chlorine concentrations to inhibit predation while letting the algae grow; thus giving algae farmers a tool to prevent pond crashes. Water Environ. Res., 87 (2015).

  1. The Selective Use of Hypochlorite to Prevent Pond Crashes for Algae-Biofuel Production.

    PubMed

    Park, Sichoon; Van Ginkel, Steven W; Pradeep, Priya; Igou, Thomas; Yi, Christine; Snell, Terry; Chen, Yongsheng

    2016-01-01

    Although algae-biofuels have many advantages including high areal productivity, algae can be preyed upon by amoebas, protozoans, ciliates, and rotifers, particularly in open pond systems. Thus, these higher organisms need to be controlled. In this study, Chlorella kessleri was used as the algal culture and Brachionus calyciflorus as the source of predation. The effect of sodium hypochlorite (bleach) was tested with the goal of totally inhibiting the rotifer while causing minor inhibition to the alga. The 24-hr LC(50) for B. calyciflorus in spring water was 0.198 mg Cl/L while the 24-hr LC(50) for C. kessleri was 0.321 mg Cl/L. However, chlorine dissipates rapidly as the algae serves as reductant. Results showed a chlorine dosage between 0.45 to 0.6 mg Cl/L and a dosing interval of two hours created the necessary chlorine concentrations to inhibit predation while letting the algae grow; thus giving algae farmers a tool to prevent pond crashes.

  2. Biofilm formation by pathogenic Prototheca algae.

    PubMed

    Kwiecinski, J

    2015-12-01

    Prototheca microalgae are the only plants known to cause infections in humans and animals. The mechanisms of Prototheca infections are poorly understood, and no good treatments are available. Biofilms-surface-attached, three-dimensional microbial communities contributing to chronic infections-are formed by many pathogenic bacteria and fungi, but it is not known if Prototheca algae also have this ability. This study shows that various Prototheca species form biofilms composed of surface-attached cells in all growth phases, linked together by matrix containing DNA and polysaccharides. Biofilm formation was modulated by the presence of host plasma or milk. Compared to planktonic cells, Prototheca biofilms caused decreased release of IL-6 by mononuclear immune cells and responded differently to treatment with antimicrobials. Prototheca biofilms possibly contribute to chronic and hard-to-treat character of those algal infections. Prototheca algae are the only existing pathogenic plants. Almost nothing is known about mechanisms of Prototheca infections. This study identifies that, similar to pathogenic bacteria and fungi, Prototheca algae can form biofilms. These biofilms induce reduced immune cell activation relative to planktonic cells, and are also less susceptible to antimicrobials. Biofilm formation by Prototheca could be the first in vitro correlate of pathogenicity, opening a new research field for this pathogen. © 2015 The Society for Applied Microbiology.

  3. Determining surface areas of marine alga cells by acid-base titration method.

    PubMed

    Wang, X; Ma, Y; Su, Y

    1997-09-01

    A new method for determining the surface area of living marine alga cells was described. The method uses acid-base titration to measure the surface acid/base amount on the surface of alga cells and uses the BET (Brunauer, Emmett, and Teller) equation to estimate the maximum surface acid/base amount, assuming that hydrous cell walls have carbohydrates or other structural compounds which can behave like surface Brönsted acid-base sites due to coordination of environmental H2O molecules. The method was applied to 18 diverse alga species (including 7 diatoms, 2 flagellates, 8 green algae and 1 red alga) maintained in seawater cultures. For the species examined, the surface areas of individual cells ranged from 2.8 x 10(-8) m2 for Nannochloropsis oculata to 690 x 10(-8) m2 for Dunaliella viridis, specific surface areas from 1,030 m2.g-1 for Dunaliella salina to 28,900 m2.g-1 for Pyramidomonas sp. Measurement accuracy was 15.2%. Preliminary studies show that the method may be more promising and accurate than light/electron microscopic measurements for coarse estimation of the surface area of living algae.

  4. Evolution and diversity of plant cell walls: from algae to flowering plants.

    PubMed

    Popper, Zoë A; Michel, Gurvan; Hervé, Cécile; Domozych, David S; Willats, William G T; Tuohy, Maria G; Kloareg, Bernard; Stengel, Dagmar B

    2011-01-01

    All photosynthetic multicellular Eukaryotes, including land plants and algae, have cells that are surrounded by a dynamic, complex, carbohydrate-rich cell wall. The cell wall exerts considerable biological and biomechanical control over individual cells and organisms, thus playing a key role in their environmental interactions. This has resulted in compositional variation that is dependent on developmental stage, cell type, and season. Further variation is evident that has a phylogenetic basis. Plants and algae have a complex phylogenetic history, including acquisition of genes responsible for carbohydrate synthesis and modification through a series of primary (leading to red algae, green algae, and land plants) and secondary (generating brown algae, diatoms, and dinoflagellates) endosymbiotic events. Therefore, organisms that have the shared features of photosynthesis and possession of a cell wall do not form a monophyletic group. Yet they contain some common wall components that can be explained increasingly by genetic and biochemical evidence.

  5. Evaluation of filamentous green algae as feedstocks for biofuel production.

    PubMed

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The relationship between an endangered North American tree and an endophytic fungus.

    PubMed

    Lee, J C; Yang, X; Schwartz, M; Strobel, G; Clardy, J

    1995-11-01

    The Florida torreya (Torreya taxifolia) began a catastrophic decline in the late 1950s and is now the rarest tree in North America for which a full species designation has been established. The trees have common plant disease symptoms, but the reason for the decline has never been identified. T. taxifolia's imminent extinction gains special poignancy through its close relationship to the Pacific yew (Taxus brevifolia), which produces the potent anticancer agent, taxol. An examination of the endophytic fungal communities of wild torreyas consistently found a filamentous fungus, Pestalotiopsis microspora, associated with diseased trees and also with most symptomless trees. P. microspora can be cultured in the laboratory, and when it is introduced into greenhouse-grown torreyas, it causes disease symptoms similar to those seen in the field. The fungus can then be reisolated from these deliberately infected trees. The phytotoxins pestalopyrone, hydroxypestalopyrone and pestaloside have been isolated and characterized from axenic fungal cultures, and both pestalopyrone and hydroxypestalopyrone can be isolated from artificially infected torreyas. In addition, pestaloside has antifungal activity against other fungal endophytes of T. taxifolia. The filamentous fungus, P. microspora, has an endophytic-pathologic relationship with T. taxifolia. The fungus resides in the inner bark of symptomless trees, and physiological or environmental factors could trigger its pathological activity. P. microspora produces the phytotoxins pestalopyrone, hydroxypestalopyrone, and pestaloside which give rise to the disease. Pestaloside, which also has antifungal activity, could reduce competition from other fungal endophytes within the host.

  7. How Embryophytic is the Biosynthesis of Phenylpropanoids and their Derivatives in Streptophyte Algae?

    PubMed

    de Vries, Jan; de Vries, Sophie; Slamovits, Claudio H; Rose, Laura E; Archibald, John M

    2017-05-01

    The origin of land plants from algae is a long-standing question in evolutionary biology. It is becoming increasingly clear that many characters that were once assumed to be 'embryophyte specific' can in fact be found in their closest algal relatives, the streptophyte algae. One such case is the phenylpropanoid pathway. While biochemical data indicate that streptophyte algae harbor lignin-like components, the phenylpropanoid core pathway, which serves as the backbone of lignin biosynthesis, has been proposed to have arisen at the base of the land plants. Here we revisit this hypothesis using a wealth of new sequence data from streptophyte algae. Tracing the biochemical pathway towards lignin biogenesis, we show that most of the genes required for phenylpropanoid synthesis and the precursors for lignin production were already present in streptophyte algae. Nevertheless, phylogenetic analyses and protein structure predictions of one of the key enzyme classes in lignin production, cinnamyl alcohol dehydrogenase (CAD), suggest that CADs of streptophyte algae are more similar to sinapyl alcohol dehydrogenases (SADs). This suggests that the end-products of the pathway leading to lignin biosynthesis in streptophyte algae may facilitate the production of lignin-like compounds and defense molecules. We hypothesize that streptophyte algae already possessed the genetic toolkit from which the capacity to produce lignin later evolved in vascular plants. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Functional significance of genetically different symbiotic algae Symbiodinium in a coral reef symbiosis.

    PubMed

    Loram, J E; Trapido-Rosenthal, H G; Douglas, A E

    2007-11-01

    The giant sea anemone Condylactis gigantea associates with members of two clades of the dinoflagellate alga Symbiodinium, either singly or in mixed infection, as revealed by clade-specific quantitative polymerase chain reaction of large subunit ribosomal DNA. To explore the functional significance of this molecular variation, the fate of photosynthetically fixed carbon was investigated by (14)C radiotracer experiments. Symbioses with algae of clades A and B released ca. 30-40% of fixed carbon to the animal tissues. Incorporation into the lipid fraction and the low molecular weight fraction dominated by amino acids was significantly higher in symbioses with algae of clade A than of clade B, suggesting that the genetically different algae in C. gigantea are not functionally equivalent. Symbioses with mixed infections yielded intermediate values, such that this functional trait of the symbiosis can be predicted from the traits of the contributing algae. Coral and sea anemone symbioses with Symbiodinium break down at elevated temperature, a process known as 'coral bleaching'. The functional response of the C. gigantea symbiosis to heat stress varied between the algae of clades A and B, with particularly depressed incorporation of photosynthetic carbon into lipid of the clade B algae, which are more susceptible to high temperature than the algae of clade A. This study provides a first exploration of how the core symbiotic function of photosynthate transfer to the host varies with the genotype of Symbiodinium, an algal symbiont which underpins corals and, hence, coral reef ecosystems.

  9. Effectiveness and mechanism of potassium ferrate(VI) preoxidation for algae removal by coagulation.

    PubMed

    Ma, Jun; Liu, Wei

    2002-02-01

    Jar tests were conducted to evaluate the effectiveness of potassium ferrate preoxidation on algae removal by coagulation. Laboratory studies demonstrated that pretreatment with potassium ferrate obviously enhanced the algae removal by coagulation with alum [Al2(SO4)3 . 18H2O]. Algae removal efficiency increased remarkably when the water was pretreated with ferrate. A very short time of preoxidation was enough to achieve substantial algae removal efficiency, and the effectiveness was further increased at a prolonged pretreatment time. Pretreatment with ferrate resulted in a reduction of alum dosage required to cause an efficient coagulation for algae removal. The obvious impact of cell architecture by potassium ferrate was found through scanning electron microscopy. Upon oxidation with ferrate. the cells were inactivated and some intracellular and extracelluar components were released into the water, which may be helpful to the coagulation by their bridging effect. Efficient removal of algae by potassium ferrate preoxidation is believed to be a consequence of several process mechanisms. Ferrate preoxidation inactivated algae, induced the formation of coagulant aid, which are the cellular components secreted by algal cells. The coagulation was also improved by increasing particle concentration in water, because of the formation of the intermediate forms of precipitant iron species during preoxidation. In addition, it was also observed that ferrate preoxidation caused algae agglomerate formation before the addition of coagulant, the subsequent application of alum resulted in further coagulation.

  10. Biological synthesis of metallic nanoparticles using algae.

    PubMed

    Castro, Laura; Blázquez, María Luisa; Muñoz, Jesus Angel; González, Felisa; Ballester, Antonio

    2013-09-01

    The increasing demand and limited natural resources of noble metals make its recovery from dilute industrial wastes attractive, especially when using environmentally friendly methods. Nowadays, the high impact that nanotechnology is having in both science and society offers new research possibilities. Gold and silver nanoparticles were biosynthesised by a simple method using different algae as reducing agent. The authors explored the application of dead algae in an eco-friendly procedure. The nanoparticle formation was followed by UV-vis absorption spectroscopy and transmission electron microscopy. The functional groups involved in the bioreduction were studied by Fourier transform infrared spectroscopy.

  11. Mass cultures of marine algae for energy farming in coastal deserts

    NASA Astrophysics Data System (ADS)

    Wagener, K.

    1983-09-01

    This paper provides a description of construction and subsequent operation of a seawater based system for biomass farming of micro-algae. Seawater was pumped through shallow artificial ponds located in coastal areas of Calabria, Italy. We describe pond construction, mixing procedure for micro algae mass cultures, optimization of the carbon and mineral nutrient budget, potential algal yields, methods for harvesting micro-algae, a source of energy to run the seawater pumps, and environmental variables of the pond system under subtropical conditions of Calabria, Italy.

  12. Influence of Relative Humidity on AC Corona Discharge from Algae Attached on the Silicone Rubber

    NASA Astrophysics Data System (ADS)

    Sato, Daisuke; Hara, Yoshiaki; Kokufu, Morihide; Higashiyama, Yoshio

    To make clear the influence of algae growth at the surface of a polymer insulator in a practical transmission line, the characteristics of ac corona discharge from an aggregate algae particle were investigated. The aggregate algae particle was made of Protococcus viridis. Corona onset voltage from an aggregate algae particle was decreased as relative humidity increased. Under the condition of relatively higher relative humidity, luminous channel of corona discharge became more strongly and the number of corona pulses in the current waveform was increased. For an aggregate algae particle contaminated with sea salt including MgCl2, corona onset voltage decreased drastically at relative humidity above 40%. This property would result from deliquescence of MgCl2. Corona discharge was strongly affected by existence of MgCl2 in an aggregate algae particle. Surface resistance of algae attached to the surface of the silicone rubber sheet decreased in fourth figures for relative humidity from 20 to 90%. Therefore, the existence of algae on the polymer insulator inevitably affects the electric property and the surface property of the polymer insulator.

  13. The future viability of algae-derived biodiesel under economic and technical uncertainties.

    PubMed

    Brownbridge, George; Azadi, Pooya; Smallbone, Andrew; Bhave, Amit; Taylor, Benjamin; Kraft, Markus

    2014-01-01

    This study presents a techno-economic assessment of algae-derived biodiesel under economic and technical uncertainties associated with the development of algal biorefineries. A global sensitivity analysis was performed using a High Dimensional Model Representation (HDMR) method. It was found that, considering reasonable ranges over which each parameter can vary, the sensitivity of the biodiesel production cost to the key input parameters decreases in the following order: algae oil content>algae annual productivity per unit area>plant production capacity>carbon price increase rate. It was also found that the Return on Investment (ROI) is highly sensitive to the algae oil content, and to a lesser extent to the algae annual productivity, crude oil price and price increase rate, plant production capacity, and carbon price increase rate. For a large scale plant (100,000 tonnes of biodiesel per year) the production cost of biodiesel is likely to be £0.8-1.6 per kg. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Algae Reefs in Shark Bay, Western Australia, Australia

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Numerous algae reefs are seen in Shark Bay, Western Australia, Australia (26.0S, 113.5E) especially in the southern portions of the bay. The south end is more saline because tidal flow in and out of the bay is restricted by sediment deposited at the north and central end of the bay opposite the mouth of the Wooramel River. This extremely arid region produces little sediment runoff so that the waters are very clear, saline and rich in algae.

  15. Biofuels from algae: challenges and potential

    PubMed Central

    Hannon, Michael; Gimpel, Javier; Tran, Miller; Rasala, Beth; Mayfield, Stephen

    2011-01-01

    Algae biofuels may provide a viable alternative to fossil fuels; however, this technology must overcome a number of hurdles before it can compete in the fuel market and be broadly deployed. These challenges include strain identification and improvement, both in terms of oil productivity and crop protection, nutrient and resource allocation and use, and the production of co-products to improve the economics of the entire system. Although there is much excitement about the potential of algae biofuels, much work is still required in the field. In this article, we attempt to elucidate the major challenges to economic algal biofuels at scale, and improve the focus of the scientific community to address these challenges and move algal biofuels from promise to reality. PMID:21833344

  16. Drifting algae and zoobenthos — Effects on settling and community structure

    NASA Astrophysics Data System (ADS)

    Bonsdorff, Erik

    Shallow (5 to 10 m) sandy bottoms in the Baltic Sea are important areas for zoobenthic production. The infaunal communities are generally governed by the hydrographical conditions are transport of the sediment through wind effects. With increasing eutrophication in the Baltic Sea, drifting mats of annual algae ( Cladophora, Stictyosiphon, Polysiphonia, Rhodemela, Sphacelaria, Pilayella, Furcellaria, Ceramium, etc) have become increasingly common, adding to the structuring and regulating factors for the infauna. In 1990 and 91, a field-study (SCUBA diving; zoobenthos and algae sampling) was carried out in the Åland archipelogo, in thennorthern and their structuring effect on the zoobenthos. Algal biomass increased from 150 ± 19 g DW·m -2 in 1990 to 832±60 g DW·m -2 in 1991, having no effect on oxygen saturation in 1990, but showing signs of reduced oxygen saturation in 1991. Organic content of the sediment remained stable (0.60 to 0.74%) during the entire study period. The zoobenthic community showed significant responses to the drifting algae at population level and in terms of community structure (by 1991: significantly reduced species number; low similarity values (40 to 65%) between bare sand and under the algae). The main species affected were the dominating bivalve Macoma balthica, the polychaetes Pygospio elegans and Manayunkia aestuarina, and the amphipod Corophium volutator. The settlement of M. balthica spat was significantly reduced by the algae (>70% in 1990/91), and no individuals of the dominating polychaetes were recorded under the mat. C. volutator, however, benefited from the algae, and greatly increased in numbers. The results clearly demonstrate the types of physical effects drift-algae will have no sandy-bottom benthos, and show that significant changes in the communities over large areas can be expected with increasing eutrophication.

  17. Controlling harmful algae blooms using aluminum-modified clay.

    PubMed

    Liu, Yang; Cao, Xihua; Yu, Zhiming; Song, Xiuxian; Qiu, Lixia

    2016-02-15

    The performances of aluminum chloride modified clay (AC-MC), aluminum sulfate modified clay (AS-MC) and polyaluminum chloride modified clay (PAC-MC) in the removal of Aureococcus anophagefferens were compared, and the potential mechanisms were analyzed according to the dispersion medium, suspension pH and clay surface charges. The results showed that AC-MC and AS-MC had better efficiencies in removing A.anophagefferens than PAC-MC. The removal mechanisms of the three modified clays varied. At optimal coagulation conditions, the hydrolysates of AC and AS were mainly monomers, and they transformed into Al(OH)3(am) upon their addition to algae culture, with the primary mechanism being sweep flocculation. The PAC mainly hydrolyzed to the polyaluminum compounds, which remained stable when added to the algae culture, and the flocculation mainly occurred through polyaluminum compounds. The suspension pH significantly influenced the aluminum hydrolysate and affected the flocculation between the modified clay and algae cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Evidence for a photoprotective function for secondary carotenoids of snow algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bidigare, R.R.; Ondrusek, M.E.; Kennicutt, M.C. II

    Snow algae occupy a unique habitat in high altitude and polar environments. These algae are often subject to extremes in nutrient availability, acidity, solar irradiance, desiccation, and ambient temperature. This report documents the accumulation of secondary carotenoids by snow algae in response to the availability of nitrogenous nutrients. Unusually large accumulations of astaxanthin esters in extra-chloroplastic lipid globules produce the characteristic red pigmentation typical of some snow algae (e.g., Chlamydomonas nivalis (Bauer) Wille). Consequently, these compounds greatly reduce the amount of light available for absorption by the light-harvesting pigment-protein complexes, thus potentially limiting photoinhibition and photodamage caused by intense solarmore » radiation. The esterification of astaxanthin with fatty acids represents a possible mechanism by which this chromophore can be concentrated within cytoplasmic globules to maximize its photoprotective efficiency. 53 refs., 2 figs., 4 tabs.« less

  19. Designer proton-channel transgenic algae for photobiological hydrogen production

    DOEpatents

    Lee, James Weifu [Knoxville, TN

    2011-04-26

    A designer proton-channel transgenic alga for photobiological hydrogen production that is specifically designed for production of molecular hydrogen (H.sub.2) through photosynthetic water splitting. The designer transgenic alga includes proton-conductive channels that are expressed to produce such uncoupler proteins in an amount sufficient to increase the algal H.sub.2 productivity. In one embodiment the designer proton-channel transgene is a nucleic acid construct (300) including a PCR forward primer (302), an externally inducible promoter (304), a transit targeting sequence (306), a designer proton-channel encoding sequence (308), a transcription and translation terminator (310), and a PCR reverse primer (312). In various embodiments, the designer proton-channel transgenic algae are used with a gas-separation system (500) and a gas-products-separation and utilization system (600) for photobiological H.sub.2 production.

  20. Modelling the effects of pulse exposure of several PSII inhibitors on two algae.

    PubMed

    Copin, Pierre-Jean; Chèvre, Nathalie

    2015-10-01

    Subsequent to crop application and during precipitation events, herbicides can reach surface waters in pulses of high concentrations. These pulses can exceed the Annual Average Environmental Quality Standards (AA-EQS), defined in the EU Water Framework Directive, which aims to protect the aquatic environment. A model was developed in a previous study to evaluate the effects of pulse exposure for the herbicide isoproturon on the alga Scenedesmus vacuolatus. In this study, the model was extended to other substances acting as photosystem II inhibitors and to other algae. The measured and predicted effects were equivalent when pulse exposure of atrazine and diuron were tested on S. vacuolatus. The results were consistent for isoproturon on the alga Pseudokirchneriella subcapitata. The model is thus suitable for the effect prediction of phenylureas and triazines and for the algae used: S. vacuolatus and P. subcapitata. The toxicity classification obtained from the dose-response curves (diuron>atrazine>isoproturon) was conserved for the pulse exposure scenarios modelled for S. vacuolatus. Toxicity was identical for isoproturon on the two algae when the dose-response curves were compared and also for the pulse exposure scenarios. Modelling the effects of any pulse scenario of photosystem II inhibitors on algae is therefore feasible and only requires the determination of the dose-response curves of the substance and growth rate of unexposed algae. It is crucial to detect the longest pulses when measurements of herbicide concentrations are performed in streams because the model showed that they principally affect the cell density inhibition of algae. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Evolution of the Phosphatidylcholine Biosynthesis Pathways in Green Algae: Combinatorial Diversity of Methyltransferases.

    PubMed

    Hirashima, Takashi; Toyoshima, Masakazu; Moriyama, Takashi; Sato, Naoki

    2018-01-01

    Phosphatidylcholine (PC) is one of the most common phospholipids in eukaryotes, although some green algae such as Chlamydomonas reinhardtii are known to lack PC. Recently, we detected PC in four species in the genus Chlamydomonas: C. applanata NIES-2202, C. asymmetrica NIES-2207, C. debaryana NIES-2212, and C. sphaeroides NIES-2242. To reveal the PC biosynthesis pathways in green algae and the evolutionary scenario involved in their diversity, we analyzed the PC biosynthesis genes in these four algae using draft genome sequences. Homology searches suggested that PC in these species is synthesized by phosphoethanolamine-N-methyltransferase (PEAMT) and/or phosphatidylethanolamine-N-methyltransferase (PEMT), both of which are absent in C. reinhardtii. Recombinant PEAMTs from these algae showed methyltransferase activity for phosphoethanolamine but not for monomethyl phosphoethanolamine in vitro, in contrast to land plant PEAMT, which catalyzes the three methylations from phosphoethanolamine to phosphocholine. This suggested an involvement of other methyltransferases in PC biosynthesis. Here, we characterized the putative phospholipid-N-methyltransferase (PLMT) genes of these species by genetic and phylogenetic analysis. Complementation assays using a PC biosynthesis-deficient yeast suggested that the PLMTs of these algae can synthesize PC from phosphatidylethanolamine. These results indicated that the PC biosynthesis pathways in green algae differ from those of land plants, although the enzymes involved are homologous. Phylogenetic analysis suggested that the PEAMTs and PLMTs in these algae were inherited from the common ancestor of green algae. The absence of PC biosynthesis in many Chlamydomonas species is likely a result of parallel losses of PEAMT and PLMT in this genus.

  2. Optimal control of algae growth by controlling CO 2 and nutrition flow using Pontryagin Maximum Principle

    NASA Astrophysics Data System (ADS)

    Mardlijah; Jamil, Ahmad; Hanafi, Lukman; Sanjaya, Suharmadi

    2017-09-01

    There are so many benefit of algae. One of them is using for renewable energy and sustainable in the future. The greater growth of algae will increasing biodiesel production and the increase of algae growth is influenced by glucose, nutrients and photosynthesis process. In this paper, the optimal control problem of the growth of algae is discussed. The objective function is to maximize the concentration of dry algae while the control is the flow of carbon dioxide and the nutrition. The solution is obtained by applying the Pontryagin Maximum Principle. and the result show that the concentration of algae increased more than 15 %.

  3. Algae as promising organisms for environment and health

    PubMed Central

    2011-01-01

    Algae, like other plants, produce a variety of remarkable compounds collectively referred to as secondary metabolites. They are synthesized by these organisms at the end of the growth phase and/or due to metabolic alterations induced by environmental stress conditions. Carotenoids, phenolic compounds, phycobiliprotein pigments, polysaccharides and unsaturated fatty acids are same of the algal natural products, which were reported to have variable biological activities, including antioxidant activity, anticancer activity, antimicroabial activity against bacteria-virus-algae-fungi, organic fertilizer and bioremediation potentials. PMID:21862867

  4. Regulating cellular trace metal economy in algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaby-Haas, Crysten E.; Merchant, Sabeeha S.

    As indispensable protein cofactors, Fe, Mn, Cu and Zn are at the center of multifaceted acclimation mechanisms that have evolved to ensure extracellular supply meets intracellular demand. In starting with selective transport at the plasma membrane and ending in protein metalation, metal homeostasis in algae involves regulated trafficking of metal ions across membranes, intracellular compartmentalization by proteins and organelles, and metal-sparing/recycling mechanisms to optimize metal-use efficiency. Overlaid on these processes are additional circuits that respond to the metabolic state as well as to the prior metal status of the cell. Here, we focus on recent progress made toward understanding themore » pathways by which the single-celled, green alga Chlamydomonas reinhardtii controls its cellular trace metal economy. We also compare these mechanisms to characterized and putative processes in other algal lineages. Photosynthetic microbes continue to provide insight into cellular regulation and handling of Cu, Fe, Zn and Mn as a function of the nutritional supply and cellular demand for metal cofactors. We found that new experimental tools such as RNA-Seq and subcellular metal imaging are bringing us closer to a molecular understanding of acclimation to supply dynamics in algae and beyond.« less

  5. Regulating cellular trace metal economy in algae

    DOE PAGES

    Blaby-Haas, Crysten E.; Merchant, Sabeeha S.

    2017-06-30

    As indispensable protein cofactors, Fe, Mn, Cu and Zn are at the center of multifaceted acclimation mechanisms that have evolved to ensure extracellular supply meets intracellular demand. In starting with selective transport at the plasma membrane and ending in protein metalation, metal homeostasis in algae involves regulated trafficking of metal ions across membranes, intracellular compartmentalization by proteins and organelles, and metal-sparing/recycling mechanisms to optimize metal-use efficiency. Overlaid on these processes are additional circuits that respond to the metabolic state as well as to the prior metal status of the cell. Here, we focus on recent progress made toward understanding themore » pathways by which the single-celled, green alga Chlamydomonas reinhardtii controls its cellular trace metal economy. We also compare these mechanisms to characterized and putative processes in other algal lineages. Photosynthetic microbes continue to provide insight into cellular regulation and handling of Cu, Fe, Zn and Mn as a function of the nutritional supply and cellular demand for metal cofactors. We found that new experimental tools such as RNA-Seq and subcellular metal imaging are bringing us closer to a molecular understanding of acclimation to supply dynamics in algae and beyond.« less

  6. Diterpenes from the Marine Algae of the Genus Dictyota.

    PubMed

    Chen, Jiayun; Li, Hong; Zhao, Zishuo; Xia, Xue; Li, Bo; Zhang, Jinrong; Yan, Xiaojun

    2018-05-11

    Species of the brown algae of the genus Dictyota are rich sources of bioactive secondary metabolites with diverse structural features. Excellent progress has been made in the discovery of diterpenes possessing broad chemical defensive activities from this genus. Most of these diterpenes exhibit significant biological activities, such as antiviral, cytotoxic and chemical defensive activities. In the present review, we summarized diterpenes isolated from the brown algae of the genus.

  7. Algae in fish feed: performances and fatty acid metabolism in juvenile Atlantic Salmon.

    PubMed

    Norambuena, Fernando; Hermon, Karen; Skrzypczyk, Vanessa; Emery, James A; Sharon, Yoni; Beard, Alastair; Turchini, Giovanni M

    2015-01-01

    Algae are at the base of the aquatic food chain, producing the food resources that fish are adapted to consume. Previous studies have proven that the inclusion of small amounts (<10% of the diet) of algae in fish feed (aquafeed) resulted in positive effects in growth performance and feed utilisation efficiency. Marine algae have also been shown to possess functional activities, helping in the mediation of lipid metabolism, and therefore are increasingly studied in human and animal nutrition. The aim of this study was to assess the potentials of two commercially available algae derived products (dry algae meal), Verdemin (derived from Ulva ohnoi) and Rosamin (derived from diatom Entomoneis spp.) for their possible inclusion into diet of Atlantic Salmon (Salmo salar). Fish performances, feed efficiency, lipid metabolism and final product quality were assessed to investigated the potential of the two algae products (in isolation at two inclusion levels, 2.5% and 5%, or in combination), in experimental diets specifically formulated with low fish meal and fish oil content. The results indicate that inclusion of algae product Verdemin and Rosamin at level of 2.5 and 5.0% did not cause any major positive, nor negative, effect in Atlantic Salmon growth and feed efficiency. An increase in the omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) content in whole body of fish fed 5% Rosamin was observed.

  8. Algae in Fish Feed: Performances and Fatty Acid Metabolism in Juvenile Atlantic Salmon

    PubMed Central

    Norambuena, Fernando; Hermon, Karen; Skrzypczyk, Vanessa; Emery, James A.; Sharon, Yoni; Beard, Alastair; Turchini, Giovanni M.

    2015-01-01

    Algae are at the base of the aquatic food chain, producing the food resources that fish are adapted to consume. Previous studies have proven that the inclusion of small amounts (<10% of the diet) of algae in fish feed (aquafeed) resulted in positive effects in growth performance and feed utilisation efficiency. Marine algae have also been shown to possess functional activities, helping in the mediation of lipid metabolism, and therefore are increasingly studied in human and animal nutrition. The aim of this study was to assess the potentials of two commercially available algae derived products (dry algae meal), Verdemin (derived from Ulva ohnoi) and Rosamin (derived from diatom Entomoneis spp.) for their possible inclusion into diet of Atlantic Salmon (Salmo salar). Fish performances, feed efficiency, lipid metabolism and final product quality were assessed to investigated the potential of the two algae products (in isolation at two inclusion levels, 2.5% and 5%, or in combination), in experimental diets specifically formulated with low fish meal and fish oil content. The results indicate that inclusion of algae product Verdemin and Rosamin at level of 2.5 and 5.0% did not cause any major positive, nor negative, effect in Atlantic Salmon growth and feed efficiency. An increase in the omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) content in whole body of fish fed 5% Rosamin was observed. PMID:25875839

  9. Prokaryotic community profiling of local algae wastewaters using advanced 16S rRNA gene sequencing.

    PubMed

    Limayem, Alya; Micciche, Andrew; Nayak, Bina; Mohapatra, Shyam

    2018-01-01

    Algae biomass-fed wastewaters are a promising source of lipid and bioenergy manufacture, revealing substantial end-product investment returns. However, wastewaters would contain lytic pathogens carrying drug resistance detrimental to algae yield and environmental safety. This study was conducted to simultaneously decipher through high-throughput advanced Illumina 16S ribosomal RNA (rRNA) gene sequencing, the cultivable and uncultivable bacterial community profile found in a single sample that was directly recovered from the local wastewater systems. Samples were collected from two previously documented sources including anaerobically digested (AD) municipal wastewater and swine wastewater with algae namely Chlorella spp. in addition to control samples, swine wastewater, and municipal wastewater without algae. Results indicated the presence of a significant level of Bacteria in all samples with an average of approximately 95.49% followed by Archaea 2.34%, in local wastewaters designed for algae cultivation. Taxonomic genus identification indicated the presence of Calothrix, Pseudomonas, and Clostridium as the most prevalent strains in both local municipal and swine wastewater samples containing algae with an average of 17.37, 12.19, and 7.84%, respectively. Interestingly, swine wastewater without algae displayed the lowest level of Pseudomonas strains < 0.1%. The abundance of some Pseudomonas species in wastewaters containing algae indicates potential coexistence between these strains and algae microenvironment, suggesting further investigations. This finding was particularly relevant for the earlier documented adverse effects of some nosocomial Pseudomonas strains on algae growth and their multidrug resistance potential, requiring the development of targeted bioremediation with regard to the beneficial flora.

  10. Iron encrustations on filamentous algae colonized by Gallionella-related bacteria in a metal-polluted freshwater stream

    NASA Astrophysics Data System (ADS)

    Mori, J. F.; Neu, T. R.; Lu, S.; Händel, M.; Totsche, K. U.; Küsel, K.

    2015-09-01

    Filamentous macroscopic algae were observed in slightly acidic to circumneutral (pH 5.9-6.5), metal-rich stream water that leaked out from a former uranium mining district (Ronneburg, Germany). These algae differed in color and morphology and were encrusted with Fe-deposits. To elucidate their potential interaction with Fe(II)-oxidizing bacteria (FeOB), we collected algal samples at three time points during summer 2013 and studied the algae-bacteria-mineral compositions via confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectra, and a 16S and 18S rRNA gene-based bacterial and algae community analysis. Surprisingly, sequencing analysis of 18S rRNA gene regions of green and brown algae revealed high homologies with the freshwater algae Tribonema (99.9-100 %). CLSM imaging indicated a loss of active chloroplasts in the algae cells, which may be responsible for the change in color in algae were fully encrusted with Fe-precipitates, the brown algae often exhibited discontinuous series of precipitates. This pattern was likely due to the intercalary growth of algal filaments which allowed them to avoid detrimental encrustation. 16S rRNA gene-targeted studies revealed that Gallionella-related FeOB dominated the bacterial RNA and DNA communities (70-97 and 63-96 %, respectively), suggesting their capacity to compete with the abiotic Fe-oxidation under the putative oxygen-saturated conditions that occur in association with photosynthetic algae. Quantitative PCR (polymerase chain reaction) revealed even higher Gallionella-related 16S rRNA gene copy numbers on the surface of green algae compared to the brown algae. The latter harbored a higher microbial diversity, including

  11. Algae viability over time in a ballast water sample

    NASA Astrophysics Data System (ADS)

    Gollasch, Stephan; David, Matej

    2018-03-01

    The biology of vessels' ballast water needs to be analysed for several reasons, one of these being performance tests of ballast water management systems. This analysis includes a viability assessment of phytoplankton. To overcome logistical problems to get algae sample processing gear on board of a vessel to document algae viability, samples may be transported to land-based laboratories. Concerns were raised how the storage conditions of the sample may impact algae viability over time and what the most appropriate storage conditions were. Here we answer these questions with a long-term algae viability study with daily sample analysis using Pulse-Amplitude Modulated (PAM) fluorometry. The sample was analysed over 79 days. We tested different storage conditions: fridge and room temperature with and without light. It seems that during the first two weeks of the experiment the viability remains almost unchanged with a slight downwards trend. In the continuing period, before the sample was split, a slightly stronger downwards viability trend was observed, which occurred at a similar rate towards the end of the experiment. After the sample was split, the strongest viability reduction was measured for the sample stored without light at room temperature. We concluded that the storage conditions, especially regarding temperature and light exposure, have a stronger impact on algae viability compared to the storage duration and that inappropriate storage conditions reduce algal viability. A sample storage time of up to two weeks in a dark and cool environment has little influence on the organism viability. This indicates that a two week time duration between sample taking on board a vessel and the viability measurement in a land-based laboratory may not be very critical.

  12. Algae Cultivation for Carbon Capture and Utilization Workshop Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Algae Cultivation for Carbon Capture and Utilization Workshop Summary Report summarizes a workshop hosted by the U.S. Department of Energy's Bioenergy Technologies Office on May 23–24, 2017, in Orlando, Florida. The event gathered stakeholder input through facilitated discussions focused on innovative technologies and business strategies for growing algae on waste carbon dioxide resources.

  13. Algae Cultivation for Carbon Capture and Utilization Workshop Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2017-05-01

    The Algae Cultivation for Carbon Capture and Utilization Workshop Summary Report summarizes a workshop hosted by the U.S. Department of Energy's Bioenergy Technologies Office on May 23–24, 2017, in Orlando, Florida. The event gathered stakeholder input through facilitated discussions focused on innovative technologies and business strategies for growing algae on waste carbon dioxide resources.

  14. Contrasting effects of ocean acidification on tropical fleshy and calcareous algae.

    PubMed

    Johnson, Maggie Dorothy; Price, Nichole N; Smith, Jennifer E

    2014-01-01

    Despite the heightened awareness of ocean acidification (OA) effects on marine organisms, few studies empirically juxtapose biological responses to CO2 manipulations across functionally distinct primary producers, particularly benthic algae. Algal responses to OA may vary because increasing CO2 has the potential to fertilize photosynthesis but impair biomineralization. Using a series of repeated experiments on Palmyra Atoll, simulated OA effects were tested across a suite of ecologically important coral reef algae, including five fleshy and six calcareous species. Growth, calcification and photophysiology were measured for each species independently and metrics were combined from each experiment using a meta-analysis to examine overall trends across functional groups categorized as fleshy, upright calcareous, and crustose coralline algae (CCA). The magnitude of the effect of OA on algal growth response varied by species, but the direction was consistent within functional groups. Exposure to OA conditions generally enhanced growth in fleshy macroalgae, reduced net calcification in upright calcareous algae, and caused net dissolution in CCA. Additionally, three of the five fleshy seaweeds tested became reproductive upon exposure to OA conditions. There was no consistent effect of OA on algal photophysiology. Our study provides experimental evidence to support the hypothesis that OA will reduce the ability of calcareous algae to biomineralize. Further, we show that CO2 enrichment either will stimulate population or somatic growth in some species of fleshy macroalgae. Thus, our results suggest that projected OA conditions may favor non-calcifying algae and influence the relative dominance of fleshy macroalgae on reefs, perpetuating or exacerbating existing shifts in reef community structure.

  15. Algae façade as green building method: application of algae as a method to meet the green building regulation

    NASA Astrophysics Data System (ADS)

    Poerbo, Heru W.; Martokusumo, Widjaja; Donny Koerniawan, M.; Aulia Ardiani, Nissa; Krisanti, Susan

    2017-12-01

    The Local Government of Bandung city has stipulated a Green Building regulation through the Peraturan Walikota Number 1023/2016. Signed by the mayor in October 2016, Bandung became the first city in Indonesia that put green building as mandatory requirement in the building permit (IMB) process. Green Building regulation is intended to have more efficient consumption of energy and water, improved indoor air quality, management of liquid and solid waste etc. This objective is attained through various design method in building envelope, ventilation and air conditioning system, lighting, indoor transportation system, and electrical system. To minimize energy consumption of buildings that have large openings, sun shading device is often utilized together with low-E glass panes. For buildings in hot humid tropical climate, this method reduces indoor air temperature and thus requires less energy for air conditioning. Indoor air quality is often done by monitoring the carbon dioxide levels. Application of algae as part of building system façade has recently been introduced as replacement of large glass surface in the building façade. Algae are not yet included in the green building regulation because it is relatively new. The research will investigate, with the help of the modelling process and extensive literature, how effective is the implementation of algae in building façade to reduce energy consumption and improve its indoor air quality. This paper is written based on the design of ITB Innovation Park as an ongoing architectural design-based research how the algae-integrated building façade affects the energy consumption.

  16. Algae Reefs in Shark Bay, Western Australia, Australia

    NASA Image and Video Library

    1990-12-10

    STS035-81-040 (2-10 Dec 1990) --- Numerous algae reefs are seen in Shark Bay, Western Australia, Australia (26.0S, 113.5E) especially in the southern portions of the bay. The south end is more saline because tidal flow in and out of the bay is restricted by sediment deposited at the north and central end of the bay opposite the mouth of the Wooramel River. This extremely arid region produces little sediment runoff so that the waters are very clear, saline and rich in algae.

  17. Systematics of Juniperus section Juniperus based on leaf essential oils and random amplified polymorphic DNAs (RAPDs).

    PubMed

    Adams

    2000-07-01

    The composition of the leaf essential oils of all the species of Juniperus in sect. Juniperus (=sect. Oxycedrus) are reported and compared (J. brevifolia, J. cedrus, J. communis, J. c. var. saxatilis, J. c. var. oblonga, J. formosana, J. oxycedrus, J. o. subsp. badia, J. o. subsp. macrocarpa, J. o. subsp. transtagana, J. rigida, J. r. subsp. conferta, J. sibirica, J. taxifolia and J. t. var. lutchuensis). In addition, DNA fingerprinting by RAPDs was utilized. Based on these data, several taxa remained at the same taxonomic level: J. brevifolia, J. cedrus, J. communis, J. c. var. saxatilis, J. formosana, J. oxycedrus, J. rigida, J. r. var. conferta, and J. taxifolia. However, several taxa exhibited considerable differentiation that warranted their recognition at the specific level: J. oblonga M.-Bieb. (=J. communis var. oblonga), J. badia H. Gay (=J. oxycedrus subsp. badia), J. macrocarpa Sibth. and Sm. (=J. oxycedrus subsp. macrocarpa), J. navicularis Gand. (=J. oxycedrus subsp. transtagana), J. sibirica Brugsd. (=J. communis var. saxatilis in part), and J. lutchuensis Koidz. (= J. taxifolia var. lutchuensis).

  18. The current potential of algae biofuels in the United Arab Emirates

    USDA-ARS?s Scientific Manuscript database

    In spite of future uncertainties about industrial algae biofuel production, the UAE is planning to become "a world leader in biofuels from the algae industry by 2020;" thus joining major countries which have already started producing renewable energy and biofuels (biodiesel and bioethanol) from rene...

  19. Marine Algae As A Prospective Source For Antidiabetic Compounds - A Brief Review.

    PubMed

    Unnikrishnan, Pulikkaparambil Sasidharan; Jayasri, Mangalam Achuthananda

    2018-01-01

    Diabetes Mellitus (DM) is a metabolic disorder characterized by chronic hyperglycaemia, which is attributed to several life threatening complications including atherosclerosis, nephropathy, and retinopathy. The current therapies available for the management of DM mainly include oral antidiabetic drugs and insulin injections. However, continuous use of synthetic drugs provides lower healing with many side effects. Therefore, there is an urge for safe and efficient antidiabetic drugs for the management of DM. In the continuing search for effective antidiabetic drugs, marine algae (seaweeds) remains as a promising source with potent bioactivity. It is anticipated that the isolation, characterization, and pharmacological study of unexplored marine algae can be useful in the discovery of novel antidiabetic compounds with high biomedical value. Among marine algae, brown and red algae are reported to exhibit antidiabetic activity. Majority of the investigations on algal derived compounds controls the blood glucose levels through the inhbition of carbohydrate hydroloyzing enzymes and protein tyrosine phosphatase 1B enzymes, insulin sensitization, glucose uptake effect and other protective effects against diabetic complications. Based on the above perspective this review provides; profiles for various marine algae posessing antidiabetic activity. This study also highlights the therapeutic potential of compounds isolated from marine algae for the effective management of diabetes and its associated complications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila.

    PubMed

    Ji, Shi-Qi; Wang, Bing; Lu, Ming; Li, Fu-Li

    2016-01-01

    Brown algae are promising feedstocks for biofuel production with inherent advantages of no structural lignin, high growth rate, and no competition for land and fresh water. However, it is difficult for one microorganism to convert all components of brown algae with different oxidoreduction potentials to ethanol. Defluviitalea phaphyphila Alg1 is the first characterized thermophilic bacterium capable of direct utilization of brown algae. Defluviitalea phaphyphila Alg1 can simultaneously utilize mannitol, glucose, and alginate to produce ethanol, and high ethanol yields of 0.47 g/g-mannitol, 0.44 g/g-glucose, and 0.3 g/g-alginate were obtained. A rational redox balance system under obligate anaerobic condition in fermenting brown algae was revealed in D. phaphyphila Alg1 through genome and redox analysis. The excess reducing equivalents produced from mannitol metabolism were equilibrated by oxidizing forces from alginate assimilation. Furthermore, D. phaphyphila Alg1 can directly utilize unpretreated kelp powder, and 10 g/L of ethanol was accumulated within 72 h with an ethanol yield of 0.25 g/g-kelp. Microscopic observation further demonstrated the deconstruction process of brown algae cell by D. phaphyphila Alg1. The integrated biomass deconstruction system of D. phaphyphila Alg1, as well as its high ethanol yield, provided us an excellent alternative for brown algae bioconversion at elevated temperature.

  1. Production of the blood pressure lowing peptides from brown alga ( Undaria pinnatifida)

    NASA Astrophysics Data System (ADS)

    Minoru, Sato; Takashi, Oba; Takao, Hosokawa; Toshiyasu, Yamaguchi; Toshiki, Nakano; Tadao, Saito; Koji, Muramoto; Takashi, Kahara; Katsura, Funayama; Akio, Kobayashi; Takahisa, Nakano

    2005-07-01

    Brown alga ( Undaria pinnatifida) was treated with alginate lyase and hydrolyzed using 17 kinds of proteases and the inhibitory activity of the hydrolysates for the angiotensin-I-converting enzyme (ACE) was measured. Four hydrolysates with potent ACE-inhibitory activity were administered singly and orally to spontaneously hypertensive rats (SHRs). The systolic blood pressure of SHRs decreases significantly after single oral administration of the brown alga hydrolysates by protease S ‘Amano’ (from Bacillus stearothermophilus) at the concentration of 10 (mg protein) (kg body weight)-1. In the 17 weeks of feeding experiment, 7-week-old SHRs were fed standard diet supplemented with the brown alga hydrolysates for 10 weeks. In SHRs fed 1.0 and 0.1% brown alga hydrolysates, elevating of systolic bloodpressure was significantly suppressed for 7 weeks. To elucidate the active components, the brown alga hydrolysates were fractionated by 1-butanol extraction and HPLC on a reverse-phase column. Seven kinds of ACE-inhibitory peptides were isolated and identified by amino acid composition analysis, sequence analysis, and LC-MS with the results Val-Tyr, Ile-Tyr, Ala-Trp, Phe-Tyr, Val-Trp, Ile-Trp, and Leu-Trp. Each peptide was determined to have an antihypertensive effect after a single oral administration in SHRs. The brown alga hydrolysates were also confirmed to decrease the blood pressure in humans.

  2. Mosquito control by plankton management: the potential of indigestible green algae.

    PubMed

    Marten, G G

    1986-10-01

    Most kinds of phytoplankton are good food for mosquito larvae. However, Culex, Aedes and Anopheles larvae fail to develop successfully in water where certain species of closely related green algae in the order Chlorococcales are the main source of food; apparently because the larvae are unable to digest them. Many species of Scenedesmus, Kirchneriella, Dactylococcus, Elakotothrix, Tetrallantos, Coelastrum, Selenastrum and Tetradesmus have this effect. These algae may offer a practical possibility for mosquito control when introduced into mosquito breeding habitats. Introduction of these algae could be assisted by simultaneous introduction of select filter-feeding zooplankton such as Daphnia.

  3. The place of algae in agriculture: policies for algal biomass production.

    PubMed

    Trentacoste, Emily M; Martinez, Alice M; Zenk, Tim

    2015-03-01

    Algae have been used for food and nutraceuticals for thousands of years, and the large-scale cultivation of algae, or algaculture, has existed for over half a century. More recently algae have been identified and developed as renewable fuel sources, and the cultivation of algal biomass for various products is transitioning to commercial-scale systems. It is crucial during this period that institutional frameworks (i.e., policies) support and promote development and commercialization and anticipate and stimulate the evolution of the algal biomass industry as a source of renewable fuels, high value protein and carbohydrates and low-cost drugs. Large-scale cultivation of algae merges the fundamental aspects of traditional agricultural farming and aquaculture. Despite this overlap, algaculture has not yet been afforded a position within agriculture or the benefits associated with it. Various federal and state agricultural support and assistance programs are currently appropriated for crops, but their extension to algal biomass is uncertain. These programs are essential for nascent industries to encourage investment, build infrastructure, disseminate technical experience and information, and create markets. This review describes the potential agricultural policies and programs that could support algal biomass cultivation, and the barriers to the expansion of these programs to algae.

  4. Herbivorous snails can increase water clarity by stimulating growth of benthic algae.

    PubMed

    Zhang, Xiufeng; Taylor, William D; Rudstam, Lars G

    2017-11-01

    Eutrophication in shallow lakes is characterized by a switch from benthic to pelagic dominance of primary productivity that leads to turbid water, while benthification is characterized by a shift in primary production from the pelagic zone to the benthos associated with clear water. A 12-week mesocosm experiment tested the hypothesis that the herbivorous snail Bellamya aeruginosa stimulates the growth of pelagic algae through grazing on benthic algae and through accelerating nutrient release from sediment. A tube-microcosm experiment using 32 P-PO 4 as a tracer tested the effects of the snails on the release of sediment phosphorus (P). The mesocosm experiment recorded greater total nitrogen (TN) concentrations and a higher ratio of TN:TP in the overlying water, and a higher light intensity and biomass of benthic algae as measured by chlorophyll a (Chl a) in the snail treatment than in the control. Concentrations of total phosphorus (TP), total suspended solids (TSSs), and inorganic suspended solids (ISSs) in the overlying water were lower in the snail treatment than in the control, though no significant difference in Chl a of pelagic algae between the snail treatment and control was observed. In the microcosm experiment, 32 P activity in the overlying water was higher in the snail treatment than in the control, indicating that snails accelerated P release from the sediment. Our interpretation of these results is that snails enhanced growth of benthic algae and thereby improved water clarity despite grazing on the benthic algae and enhancing P release from the sediment. The rehabilitation of native snail populations may therefore enhance the recovery of eutrophic shallow lakes to a clear water state by stimulating growth of benthic algae.

  5. Thicker three-dimensional tissue from a "symbiotic recycling system" combining mammalian cells and algae.

    PubMed

    Haraguchi, Yuji; Kagawa, Yuki; Sakaguchi, Katsuhisa; Matsuura, Katsuhisa; Shimizu, Tatsuya; Okano, Teruo

    2017-01-31

    In this paper, we report an in vitro co-culture system that combines mammalian cells and algae, Chlorococcum littorale, to create a three-dimensional (3-D) tissue. While the C2C12 mouse myoblasts and rat cardiac cells consumed oxygen actively, intense oxygen production was accounted for by the algae even in the co-culture system. Although cell metabolism within thicker cardiac cell-layered tissues showed anaerobic respiration, the introduction of innovative co-cultivation partially changed the metabolism to aerobic respiration. Moreover, the amount of glucose consumption and lactate production in the cardiac tissues and the amount of ammonia in the culture media decreased significantly when co-cultivated with algae. In the cardiac tissues devoid of algae, delamination was observed histologically, and the release of creatine kinase (CK) from the tissues showed severe cardiac cell damage. On the other hand, the layered cell tissues with algae were observed to be in a good histological condition, with less than one-fifth decline in CK release. The co-cultivation with algae improved the culture condition of the thicker tissues, resulting in the formation of 160 μm-thick cardiac tissues. Thus, the present study proposes the possibility of creating an in vitro "symbiotic recycling system" composed of mammalian cells and algae.

  6. Algae. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Niskern, Diana, Comp.

    The plants and plantlike organisms informally grouped together as algae show great diversity of form and size and occur in a wide variety of habitats. These extremely important photosynthesizers are also economically significant. For example, some species contaminate water supplies; others provide food for aquatic animals and for man; still others…

  7. Algae from the arid southwestern United States: an annotated bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, W.H.; Gaines, S.R.

    Desert algae are attractive biomass producers for capturing solar energy through photosynthesis of organic matter. They are probably capable of higher yields and efficiencies of light utilization than higher plants, and are already adapted to extremes of sunlight intensity, salinity and temperature such as are found in the desert. This report consists of an annotated bibliography of the literature on algae from the arid southwestern United States. It was prepared in anticipation of efforts to isolate desert algae and study their yields in the laboratory. These steps are necessary prior to setting up outdoor algal culture ponds. Desert areas aremore » attractive for such applications because land, sunlight, and, to some extent, water resources are abundant there. References are sorted by state.« less

  8. Hydrogen production by a thermophilic blue-green alga Mastigocladus laminosus

    NASA Astrophysics Data System (ADS)

    Miura, Y.; Yokoyama, H.; Miyamoto, K.; Okazaki, M.; Komemushi, S.

    Light-driven hydrogen evolution by a thermophilic blue-green alga, Mastigocladus laminosus, was demonstrated and characterized under nitrogen-starved conditions. Air-grown cultures of this alga evolved hydrogen under Ar/CO2 at rates up to 2.2 ml/mg chl/hr. The optimum temperature and pH for the hydrogen evolution were 44-49 C and pH 7.0-7.5, respectively. Evolution in light was depressed by N2 gas and inhibited by salicylaldoxime or 2,4-dinitrophenol, indicating that nitrogenase was mainly responsible for the hydrogen evolution. The evolution rate was improved by adding carbon monoxide and acetylene to the gas phase of Ar/CO2. In addition, photobiological production of hydrogen (biophotolysis) by various blue-green algae is briefly reviewed and discussed.

  9. Antimicrobial activity of Marcetia DC species (Melastomataceae) and analysis of its flavonoids by reverse phase-high performance liquid chromatography coupled-diode array detector.

    PubMed

    Leite, Tonny Cley Campos; de Sena, Amanda Reges; Dos Santos Silva, Tânia Regina; Dos Santos, Andrea Karla Almeida; Uetanabaro, Ana Paula Trovatti; Branco, Alexsandro

    2012-07-01

    Marcetia genera currently comprises 29 species, with approximately 90% inhabiting Bahia (Brazil), and most are endemic to the highlands of the Chapada Diamantina (Bahia). Among the species, only M. taxifolia (A.St.-Hil.) DC. populates Brazil (state of Roraima to Paraná) and also Venezuela, Colombia, and Guyana. This work evaluated the antimicrobial activity of hexane, ethyl acetate, and methanol extracts of three species of Marcetia (Marcetia canescens Naud., M. macrophylla Wurdack, and M. taxifolia A.StHil) against several microorganism. In addition, the flavonoids were analyzed in extracts by HPLC-DAD. The tests were made using Gram-positive (three strains of Staphylococcus aureus) and Gram-negative (two strains of Escherichia coli, a strain of Pseudomonas aeruginosa and another of Salmonella choleraesius) bacteria resistant and nonresistant to antibiotics and yeasts (two strains of Candida albicans and one of C. parapsilosis) by the disk diffusion method. Solid-phase extraction (SPE) was performed on the above extracts to isolate flavonoids, which were subsequently analyzed by high performance liquid chromatography coupled diode array detector (HPLC-DAD). Results showed that extracts inhibited the Gram-positive bacteria and yeast. The hexane extracts possessed the lowest activity, while the ethyl acetate and methanolic extracts were more active. Marcetia taxifolia was more effective (active against 10 microorganisms studied), and only its methanol extract inhibited Gram-negative bacteria (P. aeruginosa and S. choleraesius). SPE and HPLC-DAD analysis showed that M. canescens and M. macrophylla contain glycosylated flavonoids, while the majority of extracts from M. taxifolia were aglycone flavonoids.

  10. Antimicrobial activity of Marcetia DC species (Melastomataceae) and analysis of its flavonoids by reverse phase-high performance liquid chromatography coupled-diode array detector

    PubMed Central

    Leite, Tonny Cley Campos; de Sena, Amanda Reges; dos Santos Silva, Tânia Regina; dos Santos, Andrea Karla Almeida; Uetanabaro, Ana Paula Trovatti; Branco, Alexsandro

    2012-01-01

    Background: Marcetia genera currently comprises 29 species, with approximately 90% inhabiting Bahia (Brazil), and most are endemic to the highlands of the Chapada Diamantina (Bahia). Among the species, only M. taxifolia (A.St.-Hil.) DC. populates Brazil (state of Roraima to Paraná) and also Venezuela, Colombia, and Guyana. Objective: This work evaluated the antimicrobial activity of hexane, ethyl acetate, and methanol extracts of three species of Marcetia (Marcetia canescens Naud., M. macrophylla Wurdack, and M. taxifolia A.StHil) against several microorganism. In addition, the flavonoids were analyzed in extracts by HPLC-DAD. Materials and methods: The tests were made using Gram-positive (three strains of Staphylococcus aureus) and Gram-negative (two strains of Escherichia coli, a strain of Pseudomonas aeruginosa and another of Salmonella choleraesius) bacteria resistant and nonresistant to antibiotics and yeasts (two strains of Candida albicans and one of C. parapsilosis) by the disk diffusion method. Solid-phase extraction (SPE) was performed on the above extracts to isolate flavonoids, which were subsequently analyzed by high performance liquid chromatography coupled diode array detector (HPLC-DAD). Results: Results showed that extracts inhibited the Gram-positive bacteria and yeast. The hexane extracts possessed the lowest activity, while the ethyl acetate and methanolic extracts were more active. Conclusion: Marcetia taxifolia was more effective (active against 10 microorganisms studied), and only its methanol extract inhibited Gram-negative bacteria (P. aeruginosa and S. choleraesius). SPE and HPLC-DAD analysis showed that M. canescens and M. macrophylla contain glycosylated flavonoids, while the majority of extracts from M. taxifolia were aglycone flavonoids. PMID:23060695

  11. Arsenic uptake, transformation, and release by three freshwater algae under conditions with and without growth stress.

    PubMed

    Xie, Shaowen; Liu, Jinxin; Yang, Fen; Feng, Hanxiao; Wei, Chaoyang; Wu, Fengchang

    2018-05-04

    This study was carried out using indoor controlled experiments to study the arsenic (As) uptake, biotransformation, and release behaviors of freshwater algae under growth stress. Three freshwater algae, Microcystis aeruginosa, Anabaena flosaquae, and Chlorella sp., were chosen. Two types of inhibitors, e.g., Cu 2+ and isothiazolinone, were employed to inhibit the growth of the algae. The algae were cultivated to a logarithmic stage in growth media containing 0.1 mg/L P; then, 0.8 mg/L As in the form of arsenate (iAs V ) was added, while both inhibitors were simultaneously added at dosages of 0.1 and 0.3 mg/L, with no addition of inhibitors in the control. After 2 days of exposure, the average growth rate (μ 2d ) was measured to represent the growth rates of the algae cells; the extra- and intracellular As concentrations in various forms, i.e., arsenate, arsenite (iAs III ), monomethyl arsenic (MMA), and dimethyl arsenic (DMA), were also measured. Without inhibitors, the average growth rate followed the order of M. aeruginosa, Chlorella sp., and A. flosaquae, with the growth rate of M. aeruginosa significantly higher than that of the other two algae. However, when Cu 2+ was added as an external inhibitor, the order of the average growth rate for the three algae became partially reversed, suggesting differentiation of the algae in response to the inhibitor. This differentiation can be seen by the reduction in the average growth rate of M. aeruginosa, which was as high as 1730% at the 0.3-mg/L Cu 2+ dosage when compared with the control, while for the other two algae, much fewer changes were seen. The great reduction in M. aeruginosa growth rate was accompanied by increases in extracellular iAs V and iAs III and intracellular iAs V concentrations in the algae, indicating that As transformation is related to the growth of this algae. Much fewer or neglectable changes in growth were observed that were consistent with the few changes in the extra- and intracellular

  12. Controlled artificial upwelling in a fjord to combat toxic algae

    NASA Astrophysics Data System (ADS)

    McClimans, T. A.; Hansen, A. H.; Fredheim, A.; Lien, E.; Reitan, K. I.

    2003-04-01

    During the summer, primary production in the surface layers of some fjords depletes the nutrients to the degree that some arts of toxic algae dominate the flora. We describe an experiment employing a bubble curtain to lift significant amounts of nutrient-rich seawater to the light zone and provide an environment in which useful algae can survive. The motivation for the experiment is to provide a local region in which mussels can be cleansed from the effects of toxic algae. Three 100-m long, perforated pipes were suspended at 40 m depth in the Arnafjord, a side arm of the Sognefjord. Large amounts of compressed air were supplied during a period of three weeks. The deeper water mixed with the surface water and flowed from the mixing region at 5 to 15 m depth. Within a few days, the mixture of nutrient-rich water covered most of the inner portion of Arnafjord. Within 10 days, the plankton samples showed that the artificial upwelling produced the desired type of algae and excluded the toxic blooms that were occurring outside the manipulated fjord arm. The project (DETOX) is supported by the Norwegian ministries of Fisheries, Agriculture and Public Administration.

  13. Expression and assembly of a fully active antibody in algae

    NASA Astrophysics Data System (ADS)

    Mayfield, Stephen P.; Franklin, Scott E.; Lerner, Richard A.

    2003-01-01

    Although combinatorial antibody libraries have solved the problem of access to large immunological repertoires, efficient production of these complex molecules remains a problem. Here we demonstrate the efficient expression of a unique large single-chain (lsc) antibody in the chloroplast of the unicellular, green alga, Chlamydomonas reinhardtii. We achieved high levels of protein accumulation by synthesizing the lsc gene in chloroplast codon bias and by driving expression of the chimeric gene using either of two C. reinhardtii chloroplast promoters and 5' and 3' RNA elements. This lsc antibody, directed against glycoprotein D of the herpes simplex virus, is produced in a soluble form by the alga and assembles into higher order complexes in vivo. Aside from dimerization by disulfide bond formation, the antibody undergoes no detectable posttranslational modification. We further demonstrate that accumulation of the antibody can be modulated by the specific growth regime used to culture the alga, and by the choice of 5' and 3' elements used to drive expression of the antibody gene. These results demonstrate the utility of alga as an expression platform for recombinant proteins, and describe a new type of single chain antibody containing the entire heavy chain protein, including the Fc domain.

  14. Phytosterol structured algae oil nanoemulsions and powders: improving antioxidant and flavor properties.

    PubMed

    Chen, Xiao-Wei; Chen, Ya-Jun; Wang, Jin-Mei; Guo, Jian; Yin, Shou-Wei; Yang, Xiao-Quan

    2016-09-14

    Algae oil, enriched with omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFA), is known for its health benefits. However, protection against lipid oxidation as well as masking of unpleasant fishy malodors in algae oil enriched foods is a big challenge to achieve. In this study, we firstly achieved a one-pot ultrasound emulsification strategy (alternative heating-homogenization) to prepare phytosterol structured thermosensitive algae oil-in-water nanoemulsion stabilized by quillaja saponin. After spray drying, the resulting algae oil powders from the structured nanoemulsion templates exhibit an excellent reconstructed behavior, even after 30 d of storage. Furthermore, an enhanced oxidative stability was obtained by reducing both the primary and secondary oxidation products through formulation with β-sitosterol and γ-oryzanol, which are natural antioxidants. Following the results of headspace volatiles using dynamic headspace-gas chromatography-mass spectrometry (DHS-GC-MS), it was clear that the structured algae oil-loaded nanoemulsion and powder had lower levels of fishy off-flavour (e.g., (Z)-heptenal, decanal, ethanone, and hexadecenoic acid), whereas the control emulsion and oil powder without structure performed worse. This study demonstrated that the structure from phytosterols is an effective strategy to minimize the fishy off-flavour and maximize oxidative stability of both algae oil nanoemulsions and spray-dried powders, and opens up the possibility of formulation design in polyunsaturated oil encapsulates as novel delivery systems to apply in functional foods and beverages.

  15. Biotransformation of mercury in pH-stat cultures of eukaryotic freshwater algae.

    PubMed

    Kelly, David J A; Budd, Kenneth; Lefebvre, Daniel D

    2007-01-01

    Eukaryotic algae were studied to determine their ability to biotransform Hg(II) under aerated and pH controlled conditions. All algae converted Hg(II) into beta-HgS and Hg(0) to varying degrees. When Hg(II) was administered as HgCl(2) to the algae, biotransformation by species of Chlorophyceae (Selenastrum minutum and Chlorella fusca var. fusca) was initiated with beta-HgS synthesis (K (1/2) of hours) and concomitant Hg degrees evolution occurred in the first hour. Hg degrees synthesis was impeded by the formation of beta-HgS and this inhibition was released in C. fusca var. fusca when cellular thiols were oxidized by the addition of dimethylfumarate (DMF). The diatom, Navicula pelliculosa (Bacillariophyceae), converted a substantially greater proportion of the applied Hg(II) into Hg(0), whereas the thermophilic alga, Galdieria sulphuraria (Cyanidiophyceae), rapidly biotransformed as much as 90% of applied Hg(II) into beta-HgS (K (1/2) approximately 20 min). This thermophile was also able to generate Hg(0) even after all exogenously applied HgCl(2) had been biotransformed. The results suggest that beta-HgS may be the major dietary mercurial for grazers of contaminated eukaryotic algae.

  16. Algae Biofuels Co-Location Assessment Tool for Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2011-11-29

    The Algae Biofuels Co-Location Assessment Tool for Canada uses chemical stoichiometry to estimate Nitrogen, Phosphorous, and Carbon atom availability from waste water and carbon dioxide emissions streams, and requirements for those same elements to produce a unit of algae. This information is then combined to find limiting nutrient information and estimate potential productivity associated with waste water and carbon dioxide sources. Output is visualized in terms of distributions or spatial locations. Distances are calculated between points of interest in the model using the great circle distance equation, and the smallest distances found by an exhaustive search and sort algorithm.

  17. Microbial to reef scale interactions between the reef-building coral Montastraea annularis and benthic algae

    PubMed Central

    Barott, Katie L.; Rodriguez-Mueller, Beltran; Youle, Merry; Marhaver, Kristen L.; Vermeij, Mark J. A.; Smith, Jennifer E.; Rohwer, Forest L.

    2012-01-01

    Competition between reef-building corals and benthic algae is of key importance for reef dynamics. These interactions occur on many spatial scales, ranging from chemical to regional. Using microprobes, 16S rDNA pyrosequencing and underwater surveys, we examined the interactions between the reef-building coral Montastraea annularis and four types of benthic algae. The macroalgae Dictyota bartayresiana and Halimeda opuntia, as well as a mixed consortium of turf algae, caused hypoxia on the adjacent coral tissue. Turf algae were also associated with major shifts in the bacterial communities at the interaction zones, including more pathogens and virulence genes. In contrast to turf algae, interactions with crustose coralline algae (CCA) and M. annularis did not appear to be antagonistic at any scale. These zones were not hypoxic, the microbes were not pathogen-like and the abundance of coral–CCA interactions was positively correlated with per cent coral cover. We propose a model in which fleshy algae (i.e. some species of turf and fleshy macroalgae) alter benthic competition dynamics by stimulating bacterial respiration and promoting invasion of virulent bacteria on corals. This gives fleshy algae a competitive advantage over corals when human activities, such as overfishing and eutrophication, remove controls on algal abundance. Together, these results demonstrate the intricate connections and mechanisms that structure coral reefs. PMID:22090385

  18. Microbial to reef scale interactions between the reef-building coral Montastraea annularis and benthic algae.

    PubMed

    Barott, Katie L; Rodriguez-Mueller, Beltran; Youle, Merry; Marhaver, Kristen L; Vermeij, Mark J A; Smith, Jennifer E; Rohwer, Forest L

    2012-04-22

    Competition between reef-building corals and benthic algae is of key importance for reef dynamics. These interactions occur on many spatial scales, ranging from chemical to regional. Using microprobes, 16S rDNA pyrosequencing and underwater surveys, we examined the interactions between the reef-building coral Montastraea annularis and four types of benthic algae. The macroalgae Dictyota bartayresiana and Halimeda opuntia, as well as a mixed consortium of turf algae, caused hypoxia on the adjacent coral tissue. Turf algae were also associated with major shifts in the bacterial communities at the interaction zones, including more pathogens and virulence genes. In contrast to turf algae, interactions with crustose coralline algae (CCA) and M. annularis did not appear to be antagonistic at any scale. These zones were not hypoxic, the microbes were not pathogen-like and the abundance of coral-CCA interactions was positively correlated with per cent coral cover. We propose a model in which fleshy algae (i.e. some species of turf and fleshy macroalgae) alter benthic competition dynamics by stimulating bacterial respiration and promoting invasion of virulent bacteria on corals. This gives fleshy algae a competitive advantage over corals when human activities, such as overfishing and eutrophication, remove controls on algal abundance. Together, these results demonstrate the intricate connections and mechanisms that structure coral reefs.

  19. Synthetic algae and cyanobacteria: Great potential but what is the exposure risk?

    EPA Science Inventory

    Green algae and cyanobacteria (hereafter, algae) have the attractive properties of relatively simple genomes, rapid growth rates, and an ability to synthesize useful compounds using solar energy and carbon dioxide. They are attractive targets for applications of synthetic biology...

  20. Rapid in situ assessment for predicting soil quality using an algae-soaked disc seeding assay.

    PubMed

    Nam, Sun-Hwa; Moon, Jongmin; Kim, Shin Woong; Kim, Hakyeong; Jeong, Seung-Woo; An, Youn-Joo

    2017-11-16

    The soil quality of remediated land is altered and this land consequently exerts unexpected biological effects on terrestrial organisms. Therefore, field evaluation of such land should be conducted using biological indicators. Algae are a promising new biological indicator since they are a food source for organisms in higher soil trophic levels and easily sampled from the soil. Field evaluation of soil characteristics is preferred to be testing in laboratory conditions because many biological effects cannot be duplicated during laboratory evaluations. Herein, we describe a convenient and rapid algae-soaked disc seeding assay for assessing soil quality in the field based on soil algae. The collection of algae is easy and rapid and the method predicts the short-term quality of contaminated, remediated, and amended farm and paddy soils. The algae-soaked disc seeding assay is yet to be extensively evaluated, and the method cannot be applied to loamy sand soil in in situ evaluations. The algae-soaked disc seeding assay is recommended for prediction of soil quality in in situ evaluations because it reflects all variations in the environment. The algae-soaked disc seeding assay will help to develop management strategies for in situ evaluation.

  1. Effect of CaCO3(S) nucleation modes on algae removal from alkaline water.

    PubMed

    Choi, Jin Yong; Kinney, Kerry A; Katz, Lynn E

    2016-02-29

    The role of calcite heterogeneous nucleation was studied in a particle coagulation treatment process for removing microalgae from water. Batch experiments were conducted with Scenedesmus sp. and Chlorella sp. in the presence and absence of carbonate and in the presence and absence of Mg to delineate the role of CaCO 3(S) nucleation on microalgae removal. The results indicate that effective algae coagulation (e.g., up to 81 % algae removal efficiency) can be achieved via heterogeneous nucleation with CaCO 3(S) ; however, supersaturation ratios between 120 and 200 are required to achieve at least 50% algae removal, depending on ion concentrations. Algae removal was attributed to adsorption of Ca 2+ onto the cell surface which provides nucleation sites for CaCO 3(S) precipitation. Bridging of calcite particles between the algal cells led to rapid aggregation and formation of larger flocs. However, at higher supersaturation conditions, algae removal was diminished due to the dominance of homogeneous nucleation of CaCO 3(S) . Removal of algae in the presence of Ca 2+ and Mg 2+ required higher supersaturation values; however, the shift from heteronucleation to homonucleation with increasing supersaturation was still evident. The results suggest that water chemistry, pH, ionic strength, alkalinity and Ca 2+ concentration can be optimized for algae removal via coagulation-sedimentation.

  2. An Overview of Algae Biofuel Production and Potential Environmental Impact (Journal Article)

    EPA Science Inventory

    Algae are one of the most potentially significant sources of biofuels in the future of renewable energy. A feedstock with almost unlimited applicability, algae can metabolize various waste streams (such as municipal wastewater, and carbon dioxide from power generation) and produc...

  3. Re-utilization of Industrial CO 2 for Algae Production Using a Phase Change Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, Brian

    This is the final report of a 36-month Phase II cooperative agreement. Under this project, Touchstone Research Laboratory (Touchstone) investigated the merits of incorporating a Phase Change Material (PCM) into an open-pond algae production system that can capture and re-use the CO 2 from a coal-fired flue gas source located in Wooster, OH. The primary objective of the project was to design, construct, and operate a series of open algae ponds that accept a slipstream of flue gas from a coal-fired source and convert a significant portion of the CO 2 to liquid biofuels, electricity, and specialty products, while demonstratingmore » the merits of the PCM technology. Construction of the pilot facility and shakedown of the facility in Wooster, OH, was completed during the first two years, and the focus of the last year was on operations and the cultivation of algae. During this Phase II effort a large-scale algae concentration unit from OpenAlgae was installed and utilized to continuously harvest algae from indoor raceways. An Algae Lysing Unit and Oil Recovery Unit were also received and installed. Initial parameters for lysing nanochloropsis were tested. Conditions were established that showed the lysing operation was effective at killing the algae cells. Continuous harvesting activities yielded over 200 kg algae dry weight for Ponds 1, 2 and 4. Studies were conducted to determine the effect of anaerobic digestion effluent as a nutrient source and the resulting lipid productivity of the algae. Lipid content and total fatty acids were unaffected by culture system and nutrient source, indicating that open raceway ponds fed diluted anaerobic digestion effluent can obtain similar lipid productivities to open raceway ponds using commercial nutrients. Data were also collected with respect to the performance of the PCM material on the pilot-scale raceway ponds. Parameters such as evaporative water loss, temperature differences, and growth/productivity were tracked. The

  4. Extremophilic micro-algae and their potential contribution in biotechnology.

    PubMed

    Varshney, Prachi; Mikulic, Paulina; Vonshak, Avigad; Beardall, John; Wangikar, Pramod P

    2015-05-01

    Micro-algae have potential as sustainable sources of energy and products and alternative mode of agriculture. However, their mass cultivation is challenging due to low survival under harsh outdoor conditions and competition from other, undesired, species. Extremophilic micro-algae have a role to play by virtue of their ability to grow under acidic or alkaline pH, high temperature, light, CO2 level and metal concentration. In this review, we provide several examples of potential biotechnological applications of extremophilic micro-algae and the ranges of tolerated extremes. We also discuss the adaptive mechanisms of tolerance to these extremes. Analysis of phylogenetic relationship of the reported extremophiles suggests certain groups of the Kingdom Protista to be more tolerant to extremophilic conditions than other taxa. While extremophilic microalgae are beginning to be explored, much needs to be done in terms of the physiology, molecular biology, metabolic engineering and outdoor cultivation trials before their true potential is realized. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. An updated comprehensive techno-economic analysis of algae biodiesel.

    PubMed

    Nagarajan, Sanjay; Chou, Siaw Kiang; Cao, Shenyan; Wu, Chen; Zhou, Zhi

    2013-10-01

    Algae biodiesel is a promising but expensive alternative fuel to petro-diesel. To overcome cost barriers, detailed cost analyses are needed. A decade-old cost analysis by the U.S. National Renewable Energy Laboratory indicated that the costs of algae biodiesel were in the range of $0.53-0.85/L (2012 USD values). However, the cost of land and transesterification were just roughly estimated. In this study, an updated comprehensive techno-economic analysis was conducted with optimized processes and improved cost estimations. Latest process improvement, quotes from vendors, government databases, and other relevant data sources were used to calculate the updated algal biodiesel costs, and the final costs of biodiesel are in the range of $0.42-0.97/L. Additional improvements on cost-effective biodiesel production around the globe to cultivate algae was also recommended. Overall, the calculated costs seem promising, suggesting that a single step biodiesel production process is close to commercial reality. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Alga-Produced Cholera Toxin-Pfs25 Fusion Proteins as Oral Vaccines

    PubMed Central

    Gregory, James A.; Topol, Aaron B.; Doerner, David Z.

    2013-01-01

    Infectious diseases disproportionately affect indigent regions and are the greatest cause of childhood mortality in developing countries. Practical, low-cost vaccines for use in these countries are paramount to reducing disease burdens and concomitant poverty. Algae are a promising low-cost system for producing vaccines that can be orally delivered, thereby avoiding expensive purification and injectable delivery. We engineered the chloroplast of the eukaryotic alga Chlamydomonas reinhardtii to produce a chimeric protein consisting of the 25-kDa Plasmodium falciparum surface protein (Pfs25) fused to the β subunit of the cholera toxin (CtxB) to investigate an alga-based whole-cell oral vaccine. Pfs25 is a promising malaria transmission-blocking vaccine candidate that has been difficult to produce in traditional recombinant systems due to its structurally complex tandem repeats of epidermal growth factor-like domains. The noncatalytic CtxB domain of the cholera holotoxin assembles into a pentameric structure and acts as a mucosal adjuvant by binding GM1 ganglioside receptors on gut epithelial cells. We demonstrate that CtxB-Pfs25 accumulates as a soluble, properly folded and functional protein within algal chloroplasts, and it is stable in freeze-dried alga cells at ambient temperatures. In mice, oral vaccination using freeze-dried algae that produce CtxB-Pfs25 elicited CtxB-specific serum IgG antibodies and both CtxB- and Pfs25-specific secretory IgA antibodies. These data suggest that algae are a promising system for production and oral delivery of vaccine antigens, but as an orally delivered adjuvant, CtxB is best suited for eliciting secretory IgA antibodies for vaccine antigens against pathogens that invade mucosal surfaces using this strategy. PMID:23603678

  7. Biosorption of heavy metal ions to brown algae, Macrocystis pyrifera, Kjellmaniella crassiforia, and Undaria pinnatifida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seki, Hideshi; Suzuki, Akira

    1998-10-01

    A fundamental study of the application of brown algae to the aqueous-phase separation of toxic heavy metals was carried out. The biosorption characteristics of cadmium and lead ions were determined with brown algae, Macrocystis pyrifera, Kjellmaniella crassiforia, and Undaria pinnatifida. A metal binding model proposed by the authors was used for the description of metal binding data. The results showed that the biosorption of bivalent metal ions to brown algae was due to bivalent binding to carboxylic groups on alginic acid in brown algae.

  8. Meta-analysis and Harmonization of Life Cycle Assessment Studies for Algae Biofuels.

    PubMed

    Tu, Qingshi; Eckelman, Matthew; Zimmerman, Julie

    2017-09-05

    Algae biodiesel (BioD) and renewable diesel (RD) have been recognized as potential solutions to mitigating fossil-fuel consumption and the associated environmental issues. Life cycle assessment (LCA) has been used by many researchers to evaluate the potential environmental impacts of these algae-derived fuels, yielding a wide range of results and, in some cases, even differing on indicating whether these fuels are preferred to petroleum-derived fuels or not. This meta-analysis reviews the methodological preferences and results for energy consumption, greenhouse gas emissions, and water consumption for 54 LCA studies that considered algae BioD and RD. The significant variation in reported results can be primarily attributed to the difference in scope, assumptions, and data sources. To minimize the variation in life cycle inventory calculations, a harmonized inventory data set including both nominal and uncertainty data is calculated for each stage of the algae-derived fuel life cycle.

  9. Value of crops: Quantity, quality and cost price. [algae as a nutritional supplement

    NASA Technical Reports Server (NTRS)

    Meyer, C.

    1979-01-01

    Possibilities of using algae as a nutritional supplement are examined. The nutritional value and protein content of spirulines of blue algae are discussed. A cost analysis of growing them artificially is presented.

  10. Modelling the effects of PSII inhibitor pulse exposure on two algae in co-culture.

    PubMed

    Copin, Pierre-Jean; Chèvre, Nathalie

    2018-03-01

    A weakness of standard testing procedures is that they do not consider interactions between organisms, and they focus only on single species. Furthermore, these procedures do not take into account pulse exposure. However, pulse exposure is of particular importance because in streams, after crop application and during and after precipitation, herbicide concentrations fluctuate widely and can exceed the Annual Average Environmental Quality Standards (AA-EQS), which aim to protect the aquatic environment. The sensitivity of the algae Scenedesmus vacuolatus and Pseudokirchneriella subcapitata in a co-culture exposed to pulses is thus analysed in this study. As a first step, the growths of the algae in co-culture are investigated. For initial cell densities fixed, respectively, to 100,000 and 50,000 cells/mL, the growth of each alga is exponential over at least 48 h. S. vacuolatus seems to influence the growth of P. subcapitata negatively. Allelopathy is a possible explanation for this growth inhibition. The toxicity of the herbicide isoproturon is later tested on the algae S. vacuolatus and P. subcapitata cultured alone and in the co-culture. Despite the supplementary stress on the algae in the co-culture competing for nutrients, the toxicity of the herbicide is lower for the two algae when they are in the co-culture than when they are in separated culture. A model is adapted and used to predict the cell-density inhibition on the alga S. vacuolatus in the co-culture with the alga P. subcapitata exposed to a pulse concentration of isoproturon. Four laboratory experiments are performed to validate the model. The comparison between the laboratory and the modelled effects shows good agreement. The differences can be considered minor most of time. For future studies, it is important to ensure that the cell count is precise, as it is used to determine the parameters of the model. The differences can be also induced by the fact that the cell number of the alga P

  11. Collection, Isolation and Culture of Marine Algae.

    ERIC Educational Resources Information Center

    James, Daniel E.

    1984-01-01

    Methods of collecting, isolating, and culturing microscopic and macroscopic marine algae are described. Three different culture media list of chemicals needed and procedures for preparing Erdschreiber's and Provasoli's E. S. media. (BC)

  12. Thicker three-dimensional tissue from a “symbiotic recycling system” combining mammalian cells and algae

    PubMed Central

    Haraguchi, Yuji; Kagawa, Yuki; Sakaguchi, Katsuhisa; Matsuura, Katsuhisa; Shimizu, Tatsuya; Okano, Teruo

    2017-01-01

    In this paper, we report an in vitro co-culture system that combines mammalian cells and algae, Chlorococcum littorale, to create a three-dimensional (3-D) tissue. While the C2C12 mouse myoblasts and rat cardiac cells consumed oxygen actively, intense oxygen production was accounted for by the algae even in the co-culture system. Although cell metabolism within thicker cardiac cell-layered tissues showed anaerobic respiration, the introduction of innovative co-cultivation partially changed the metabolism to aerobic respiration. Moreover, the amount of glucose consumption and lactate production in the cardiac tissues and the amount of ammonia in the culture media decreased significantly when co-cultivated with algae. In the cardiac tissues devoid of algae, delamination was observed histologically, and the release of creatine kinase (CK) from the tissues showed severe cardiac cell damage. On the other hand, the layered cell tissues with algae were observed to be in a good histological condition, with less than one-fifth decline in CK release. The co-cultivation with algae improved the culture condition of the thicker tissues, resulting in the formation of 160 μm-thick cardiac tissues. Thus, the present study proposes the possibility of creating an in vitro “symbiotic recycling system” composed of mammalian cells and algae. PMID:28139713

  13. Possible future effects of large-scale algae cultivation for biofuels on coastal eutrophication in Europe.

    PubMed

    Blaas, Harry; Kroeze, Carolien

    2014-10-15

    Biodiesel is increasingly considered as an alternative for fossil diesel. Biodiesel can be produced from rapeseed, palm, sunflower, soybean and algae. In this study, the consequences of large-scale production of biodiesel from micro-algae for eutrophication in four large European seas are analysed. To this end, scenarios for the year 2050 are analysed, assuming that in the 27 countries of the European Union fossil diesel will be replaced by biodiesel from algae. Estimates are made for the required fertiliser inputs to algae parks, and how this may increase concentrations of nitrogen and phosphorus in coastal waters, potentially leading to eutrophication. The Global NEWS (Nutrient Export from WaterSheds) model has been used to estimate the transport of nitrogen and phosphorus to the European coastal waters. The results indicate that the amount of nitrogen and phosphorus in the coastal waters may increase considerably in the future as a result of large-scale production of algae for the production of biodiesel, even in scenarios assuming effective waste water treatment and recycling of waste water in algae production. To ensure sustainable production of biodiesel from micro-algae, it is important to develop cultivation systems with low nutrient losses to the environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Feeding Preferences and the Nutritional Value of Tropical Algae for the Abalone Haliotis asinina

    PubMed Central

    Angell, Alex R.; Pirozzi, Igor; de Nys, Rocky; Paul, Nicholas A.

    2012-01-01

    Understanding the feeding preferences of abalone (high-value marine herbivores) is integral to new species development in aquaculture because of the expected link between preference and performance. Performance relates directly to the nutritional value of algae – or any feedstock – which in turn is driven by the amino acid content and profile, and specifically the content of the limiting essential amino acids. However, the relationship between feeding preferences, consumption and amino acid content of algae have rarely been simultaneously investigated for abalone, and never for the emerging target species Haliotis asinina. Here we found that the tropical H. asinina had strong and consistent preferences for the red alga Hypnea pannosa and the green alga Ulva flexuosa, but no overarching relationship between protein content (sum of amino acids) and preference existed. For example, preferred Hypnea and Ulva had distinctly different protein contents (12.64 vs. 2.99 g 100 g−1) and the protein-rich Asparagopsis taxiformis (>15 g 100 g−1 of dry weight) was one of the least preferred algae. The limiting amino acid in all algae was methionine, followed by histidine or lysine. Furthermore we demonstrated that preferences can largely be removed using carrageenan as a binder for dried alga, most likely acting as a feeding attractant or stimulant. The apparent decoupling between feeding preference and algal nutritive values may be due to a trade off between nutritive values and grazing deterrence associated with physical and chemical properties. PMID:22719967

  15. Phytotoxicity, bioaccumulation and degradation of isoproturon in green algae.

    PubMed

    Bi, Yan Fang; Miao, Shan Shan; Lu, Yi Chen; Qiu, Chong Bin; Zhou, You; Yang, Hong

    2012-12-01

    Isoproturon (IPU) is a pesticide used for protection of land crops from weed or pathogen attack. Recent survey shows that IPU has been detected as a contaminant in aquatic systems and may have negative impact on aquatic organisms. To understand the phytotoxicity and potential accumulation and degradation of IPU in algae, a comprehensive study was performed with the green alga Chlamydomonas reinhardtii. Algae exposed to 5-50 μg L(-1) IPU for 3d displayed progressive inhibition of cell growth and reduced chlorophyll fluorescence. Time-course experiments with 25 μg L(-1) IPU for 6d showed similar growth responses. The 72 h EC50 value for IPU was 43.25 μg L(-1), NOEC was 5 μg L(-1) and LOEC was 15 μg L(-1). Treatment with IPU induced oxidative stress. This was validated by a group of antioxidant enzymes, whose activities were promoted by IPU exposure. The up-regulation of several genes coding for the enzymes confirmed the observation. IPU was shown to be readily accumulated by C. reinhardtii. However, the alga showed a weak ability to degrade IPU accumulated in its cells, which was best presented at the lower concentration (5 μg L(-1)) of IPU in the medium. The imbalance of accumulation and degradation of IPU may be the cause that resulted in the detrimental growth and cellular damage. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Physical structure and algae community of summer upwelling off eastern Hainan

    NASA Astrophysics Data System (ADS)

    Xu, H.; Liu, S.; Xie, Q.; Hong, B.; Long, T.

    2017-12-01

    The upwelling system is the most productive ecosystem along the continental shelf of the northern South China Sea Shelf. It brings nutrient from bottom to surface and blooms biotic community driven by summer monsoon. In this study, we present observed results of physical and biotic community structures during August, 2015 in the upwelling system along Hainan eastern coast, which is one the strongest upwelling systems in the northern South China Sea. By using hydrological data collected by CTD, we found a significant cold water tongue with high salinity which extended from offshore to 100 m isobaths. However, dissolved oxygen (DO) showed a sandwich structure in which high core of DO concentration appeared at the layer from 5 m to 30 m. It possibly was caused by the advection transport of high DO from adjacent area. Basically, this upwelling system was constrained at northern area of 18.8ºN in horizontal due to the weakening summer monsoon in August. In addition, we collected water sample at the upwelling area and measured algae categories and concentration by high performance liquid chromatography (HPLC). Results show the biotic community was dominated by five types of algae mainly, they were diatoms, dinoflagellates, green algae, prokaryotes and prochlorococcus. And different patterns of different algae were demonstrated. In the upwelling area, diatoms and prokaryotes show opposite structures, and more complex pattern for the rest three algae indicating an active biotic community in the upwelling system.

  17. Photoproduction of hydroxyl radicals in aqueous solution with algae under high-pressure mercury lamp.

    PubMed

    Liu, Xianli; Wu, Feng; Deng, Nansheng

    2004-01-01

    Photoproduction of hydroxyl radicals (*OH) could be induced in aqueous solution with algae (Nitzschia hantzschiana, etc.) and (or not) Fe3+ under high-pressure mercury lamp with an exposure time of 4 h. *OH was determined by HPLC using benzene as a probe. The photoproduction of *OH increased with increasing algae concentration. Fe3+ could enhance the photoproduction of *OH in aqueous solution with algae. The results showed that the photoproduction of *OH in algal solution with Fe3+ was greater than that in algal solution without Fe3+. The light intensity and pH affected the photoproduction of *OH in aqueous solution with algae with/without Fe3+. The photoproduction of *OH in aqueous solution with algae and Fe3+ under 250 W was greater than that under 125 W HPML. The photoproduction of *OH in algal solution (pH ranged from 4.0 to 7.0) with (or not) Fe3+ at pH 4 was the greatest.

  18. Chimpanzees routinely fish for algae with tools during the dry season in Bakoun, Guinea.

    PubMed

    Boesch, Christophe; Kalan, Ammie K; Agbor, Anthony; Arandjelovic, Mimi; Dieguez, Paula; Lapeyre, Vincent; Kühl, Hjalmar S

    2017-03-01

    Wild chimpanzees regularly use tools, made from sticks, leaves, or stone, to find flexible solutions to the ecological challenges of their environment. Nevertheless, some studies suggest strong limitations in the tool-using capabilities of chimpanzees. In this context, we present the discovery of a newly observed tool-use behavior in a population of chimpanzees (Pan troglodytes verus) living in the Bakoun Classified Forest, Guinea, where a temporary research site was established for 15 months. Bakoun chimpanzees of every age-sex class were observed to fish for freshwater green algae, Spirogrya sp., from rivers, streams, and ponds using long sticks and twigs, ranging from 9 cm up to 4.31 m in length. Using remote camera trap footage from 11 different algae fishing sites within an 85-km 2 study area, we found that algae fishing occurred frequently during the dry season and was non-existent during the rainy season. Chimpanzees were observed algae fishing for as little as 1 min to just over an hour, with an average duration of 9.09 min. We estimate that 364 g of Spirogyra algae could be retrieved in this time, based on human trials in the field. Only one other chimpanzee population living in Bossou, Guinea, has been described to customarily scoop algae from the surface of the water using primarily herbaceous tools. Here, we describe the new behavior found at Bakoun and compare it to the algae scooping observed in Bossou chimpanzees and the occasional variant reported in Odzala, Republic of the Congo. As these algae are reported to be high in protein, carbohydrates, and minerals, we hypothesize that chimpanzees are obtaining a nutritional benefit from this seasonally available resource. © 2016 Wiley Periodicals, Inc.

  19. Reviews and syntheses: Calculating the global contribution of coralline algae to total carbon burial

    NASA Astrophysics Data System (ADS)

    van der Heijden, L. H.; Kamenos, N. A.

    2015-11-01

    The ongoing increase in anthropogenic carbon dioxide (CO2) emissions is changing the global marine environment and is causing warming and acidification of the oceans. Reduction of CO2 to a sustainable level is required to avoid further marine change. Many studies investigate the potential of marine carbon sinks (e.g. seagrass) to mitigate anthropogenic emissions, however, information on storage by coralline algae and the beds they create is scant. Calcifying photosynthetic organisms, including coralline algae, can act as a CO2 sink via photosynthesis and CaCO3 dissolution and act as a CO2 source during respiration and CaCO3 production on short-term timescales. Long-term carbon storage potential might come from the accumulation of coralline algae deposits over geological timescales. Here, the carbon storage potential of coralline algae is assessed using meta-analysis of their global organic and inorganic carbon production and the processes involved in this metabolism. Net organic and inorganic production were estimated at 330 g C m-2 yr-1 and 900 g CaCO3 m-2 yr-1 respectively giving global organic/inorganic C production of 0.7/1.8 × 109 t C yr-1. Calcium carbonate production by free-living/crustose coralline algae (CCA) corresponded to a sediment accretion of 70/450 mm kyr-1. Using this potential carbon storage for coralline algae, the global production of free-living algae/CCA was 0.4/1.2 × 109 t C yr-1 suggesting a total potential carbon sink of 1.6 × 109 tonnes per year. Coralline algae therefore have production rates similar to mangroves, salt marshes and seagrasses representing an as yet unquantified but significant carbon store, however, further empirical investigations are needed to determine the dynamics and stability of that store.

  20. Selenium Uptake and Volatilization by Marine Algae

    NASA Astrophysics Data System (ADS)

    Luxem, Katja E.; Vriens, Bas; Wagner, Bettina; Behra, Renata; Winkel, Lenny H. E.

    2015-04-01

    Selenium (Se) is an essential trace nutrient for humans. An estimated one half to one billion people worldwide suffer from Se deficiency, which is due to low concentrations and bioavailability of Se in soils where crops are grown. It has been hypothesized that more than half of the atmospheric Se deposition to soils is derived from the marine system, where microorganisms methylate and volatilize Se. Based on model results from the late 1980s, the atmospheric flux of these biogenic volatile Se compounds is around 9 Gt/year, with two thirds coming from the marine biosphere. Algae, fungi, and bacteria are known to methylate Se. Although algal Se uptake, metabolism, and methylation influence the speciation and bioavailability of Se in the oceans, these processes have not been quantified under environmentally relevant conditions and are likely to differ among organisms. Therefore, we are investigating the uptake and methylation of the two main inorganic Se species (selenate and selenite) by three globally relevant microalgae: Phaeocystis globosa, the coccolithophorid Emiliania huxleyi, and the diatom Thalassiosira oceanica. Selenium uptake and methylation were quantified in a batch experiment, where parallel gas-tight microcosms in a climate chamber were coupled to a gas-trapping system. For E. huxleyi, selenite uptake was strongly dependent on aqueous phosphate concentrations, which agrees with prior evidence that selenite uptake by phosphate transporters is a significant Se source for marine algae. Selenate uptake was much lower than selenite uptake. The most important volatile Se compounds produced were dimethyl selenide, dimethyl diselenide, and dimethyl selenyl sulfide. Production rates of volatile Se species were larger with increasing intracellular Se concentration and in the decline phase of the alga. Similar experiments are being carried out with P. globosa and T. oceanica. Our results indicate that marine algae are important for the global cycling of Se

  1. Comparing the Effects of Symbiotic Algae (Symbiodinium) Clades C1 and D on Early Growth Stages of Acropora tenuis

    PubMed Central

    Yuyama, Ikuko; Higuchi, Tomihiko

    2014-01-01

    Reef-building corals switch endosymbiotic algae of the genus Symbiodinium during their early growth stages and during bleaching events. Clade C Symbiodinium algae are dominant in corals, although other clades — including A and D — have also been commonly detected in juvenile Acroporid corals. Previous studies have been reported that only molecular data of Symbiodinium clade were identified within field corals. In this study, we inoculated aposymbiotic juvenile polyps with cultures of clades C1 and D Symbiodinium algae, and investigated the different effect of these two clades of Symbiodinium on juvenile polyps. Our results showed that clade C1 algae did not grow, while clade D algae grew rapidly during the first 2 months after inoculation. Polyps associated with clade C1 algae exhibited bright green fluorescence across the body and tentacles after inoculation. The growth rate of polyp skeletons was lower in polyps associated with clade C1 algae than those associated with clade D algae. On the other hand, antioxidant activity (catalase) of corals was not significantly different between corals with clade C1 and clade D algae. Our results suggested that clade D Symbiodinium algae easily form symbiotic relationships with corals and that these algae could contribute to coral growth in early symbiosis stages. PMID:24914677

  2. [Value of specific 16S rDNA fragment of algae in diagnosis of drowning: an experiment with rabbits].

    PubMed

    Li, Peng; Xu, Qu-Yi; Chen, Ling; Liu, Chao; Zhao, Jian; Wang, Yu-Zhong; Yu, Zheng-Liang; Hu, Sun-Lin; Wang, Hui-Jun

    2015-08-01

    To establish a method for amplifying specific 16S rDNA fragment of algae related with drowning and test its value in drowning diagnosis. Thirty-five rabbits were randomly divided into 3 the drowning group (n=15), postmortem water immersion group (n=15, subjected to air embolism before seawater immersion), and control group(n=5, with air embolism only). Twenty samples of the liver tissues from human corpses found in water were also used, including 14 diatom-positive and 6 diatom-negative samples identified by microwave digestion-vacuum filtration-automated scanning electron microscopy (MD-VF-Auto SEM). Seven known species of algae served as the control algae (Melosira sp, Nitzschia sp, Synedra sp, Navicula sp, Microcystis sp, Cyclotella meneghiniana, and Chlorella sp). The total DNA was extracted from the tissues and algae to amplify the specific fragment of algae followed by 8% polyacrylamide gelelectrophoresis and sliver-staining. In the drowning group, algae was detected in the lungs (100%), liver (86%), and kidney (86%); algae was detected in the lungs in 2 rabbits in the postmortem group (13%) and none in the control group. The positivity rates of algae were significantly higher in the drowning group than in the postmortem group (P<0.05). Of the 20 tissue samples from human corps found in water, 15 were found positive for algae, including sample that had been identified as diatom-negative by MD-VF-Auto SEM. All the 7 control algae samples yielded positive results in PCR. The PCR-based method has a high sensitivity in algae detection for drowning diagnosis and allows simultaneous detection of multiple algae species related with drowning.

  3. Algae for biofuel: will the evolution of weeds limit the enterprise?

    PubMed Central

    Bull, J. J.; Collins, Sinéad

    2012-01-01

    Algae hold promise as a source of biofuel. Yet the manner in which algae are most efficiently propagated and harvested is different from that used in traditional agriculture. In theory, algae can be grown in continuous culture and harvested frequently to maintain high yields with a short turnaround time. However, the maintenance of the population in a state of continuous growth will likely impose selection for fast growth, possibly opposing the maintenance of lipid stores desiriable for fuel. Any harvesting that removes a subset of the population and leaves the survivors to establish the next generation may quickly select traits that escape harvesting. An understanding of these problems should help identify methods for retarding the evolution and enhancing biofuel production. PMID:22946819

  4. Managing phosphorus fertilizer to reduce algae, maintain water quality, and sustain yields in water-seeded rice

    USDA-ARS?s Scientific Manuscript database

    In water-seeded rice systems blue-green algae (cyanobacteria) hinder early-season crop growth by dislodging rice seedlings and reducing light. Since algae are often phosphorus (P) limited, we investigated whether changing the timing of P fertilizer application could reduce algae without reducing cro...

  5. Spatiotemporal associations of reservoir nutrient characteristics and the invasive, harmful alga Prymnesium parvum in West Texas

    USGS Publications Warehouse

    VanLandeghem, Matthew M.; Farooqi, Mukhtar; Southard, Greg M.; Patino, Reynaldo

    2015-01-01

    Golden alga (Prymnesium parvum) is a harmful alga that has caused ecological and economic harm in freshwater and marine systems worldwide. In inland systems of North America, toxic blooms have nearly eliminated fish populations in some systems. Modifying nutrient profiles through alterations to land or water use may be a viable alternative for golden alga control in reservoirs. The main objective of this study was to improve our understanding of the nutrient dynamics that influence golden alga bloom formation and toxicity in west Texas reservoirs. We examined eight sites in the Upper Colorado River basin, Texas: three impacted reservoirs that have experienced repeated golden alga blooms; two reference reservoirs where golden alga is present but nontoxic; and three confluence sites downstream of the impacted and reference sites. Total, inorganic, and organic nitrogen and phosphorus and their ratios were quantified monthly along with golden alga abundance and ichthyotoxicity between December 2010 and July 2011. Blooms persisted for several months at the impacted sites, which were characterized by high organic nitrogen and low inorganic nitrogen. At impacted sites, abundance was positively associated with inorganic phosphorus and bloom termination coincided with increases in inorganic nitrogen and decreases in inorganic phosphorus in late spring. Management of both inorganic and organic forms of nutrients may create conditions in reservoirs unfavorable to golden alga.

  6. In Silico Analysis of Correlations between Protein Disorder and Post-Translational Modifications in Algae

    PubMed Central

    Kurotani, Atsushi; Sakurai, Tetsuya

    2015-01-01

    Recent proteome analyses have reported that intrinsically disordered regions (IDRs) of proteins play important roles in biological processes. In higher plants whose genomes have been sequenced, the correlation between IDRs and post-translational modifications (PTMs) has been reported. The genomes of various eukaryotic algae as common ancestors of plants have also been sequenced. However, no analysis of the relationship to protein properties such as structure and PTMs in algae has been reported. Here, we describe correlations between IDR content and the number of PTM sites for phosphorylation, glycosylation, and ubiquitination, and between IDR content and regions rich in proline, glutamic acid, serine, and threonine (PEST) and transmembrane helices in the sequences of 20 algae proteomes. Phosphorylation, O-glycosylation, ubiquitination, and PEST preferentially occurred in disordered regions. In contrast, transmembrane helices were favored in ordered regions. N-glycosylation tended to occur in ordered regions in most of the studied algae; however, it correlated positively with disordered protein content in diatoms. Additionally, we observed that disordered protein content and the number of PTM sites were significantly increased in the species-specific protein clusters compared to common protein clusters among the algae. Moreover, there were specific relationships between IDRs and PTMs among the algae from different groups. PMID:26307970

  7. In Silico Analysis of Correlations between Protein Disorder and Post-Translational Modifications in Algae.

    PubMed

    Kurotani, Atsushi; Sakurai, Tetsuya

    2015-08-20

    Recent proteome analyses have reported that intrinsically disordered regions (IDRs) of proteins play important roles in biological processes. In higher plants whose genomes have been sequenced, the correlation between IDRs and post-translational modifications (PTMs) has been reported. The genomes of various eukaryotic algae as common ancestors of plants have also been sequenced. However, no analysis of the relationship to protein properties such as structure and PTMs in algae has been reported. Here, we describe correlations between IDR content and the number of PTM sites for phosphorylation, glycosylation, and ubiquitination, and between IDR content and regions rich in proline, glutamic acid, serine, and threonine (PEST) and transmembrane helices in the sequences of 20 algae proteomes. Phosphorylation, O-glycosylation, ubiquitination, and PEST preferentially occurred in disordered regions. In contrast, transmembrane helices were favored in ordered regions. N-glycosylation tended to occur in ordered regions in most of the studied algae; however, it correlated positively with disordered protein content in diatoms. Additionally, we observed that disordered protein content and the number of PTM sites were significantly increased in the species-specific protein clusters compared to common protein clusters among the algae. Moreover, there were specific relationships between IDRs and PTMs among the algae from different groups.

  8. [Response of Algae to Nitrogen and Phosphorus Concentration and Quantity of Pumping Water in Pumped Storage Reservoir].

    PubMed

    Wan, You-peng; Yin, Kui-hao; Peng, Sheng-hua

    2015-06-01

    Taking a pumped storage reservoir located in southern China as the research object, the paper established a three-dimensional hydrodynamic and eutrophication model of the reservoir employing EFDC (environmental fluid dynamics code) model, calibrated and verified the model using long-term hydraulic and water quality data. Based on the model results, the effects of nitrogen and phosphorus concentrations on the algae growth were analyzed, and the response of algae to nitrogen and phosphorus concentration and quantity of pumping water was also calculated. The results showed that the nitrogen and phosphorus concentrations had little limit on algae growth rate in the reservoir. In the nutrients reduction scenarios, reducing phosphorus would gain greater algae biomass reduction than reducing nitrogen. When reducing 60 percent of nitrogen, the algae biomass did not decrease, while 12.4 percent of algae biomass reduction could be gained with the same reduction ratio of phosphorus. When the reduction ratio went to 90 percent, the algae biomass decreased by 17.9 percent and 35.1 percent for nitrogen and phosphorus reduction, respectively. In the pumping water quantity regulation scenarios, the algae biomass decreased with the increasing pumping water quantity when the pumping water quantity was greater than 20 percent of the current value; when it was less than 20 percent, the algae biomass increased with the increasing pumping water quantity. The algae biomass decreased by 25.7 percent when the pumping water quantity was doubled, and increased by 38.8 percent when it decreased to 20 percent. The study could play an important role in supporting eutrophication controlling in water source area.

  9. Mycoalgae biofilm: development of a novel platform technology using algae and fungal cultures.

    PubMed

    Rajendran, Aravindan; Hu, Bo

    2016-01-01

    Microalgae is considered a promising source for biofuel and bioenergy production, bio-remediation and production of high-value bioactive compounds, but harvesting microalgae is a major bottleneck in the algae based processes. The objective of this research is to mimic the growth of natural lichen and develop a novel biofilm platform technology using filamentous fungi and microalgae to form a lichen type of biofilm "mycoalgae" in a supporting polymer matrix. The possibility of co-existence of Chlorella vulgaris with various fungal cultures was tested to identify the best strain combination for high algae harvest efficiency. The effect of different matrices for cell attachment and biofilm formation, cell surface characterization of mycoalgae biofilm, kinetics of the process with respect to the algae-fungi cell distribution and total biomass production was studied. Mycoalgae biofilm with algae attachment efficiency of 99.0 % and above was achieved in a polymer-cotton composite matrix with glucose concentration of 2 g/L in the growth medium and agitation intensity of 150 rpm at 27 °C. The total biomass in the co-culture with the selected strain combination (Mucor sp. and Chlorella sp.) was higher than the axenic cultures of fungi and algae at the conditions tested. The results show that algae can be grown with complete attachment to a bio-augmenting fungal surface and can be harvested readily as a biofilm for product extraction from biomass. Even though, interaction between heterotrophic fungi and phototrophic algae was investigated in solid media after prolonged contact in a report, this research is the first of its kind in developing an artificial lichen type biofilm called "mycoalgae" biofilm completely attached on a matrix in liquid cultures. The mycoalgae biofilm based processes, propounds the scope for exploring new avenues in the bio-production industry and bioremediation.

  10. Development of Singlet Oxygen Luminescence Kinetics during the Photodynamic Inactivation of Green Algae.

    PubMed

    Bornhütter, Tobias; Pohl, Judith; Fischer, Christian; Saltsman, Irena; Mahammed, Atif; Gross, Zeev; Röder, Beate

    2016-04-13

    Recent studies show the feasibility of photodynamic inactivation of green algae as a vital step towards an effective photodynamic suppression of biofilms by using functionalized surfaces. The investigation of the intrinsic mechanisms of photodynamic inactivation in green algae represents the next step in order to determine optimization parameters. The observation of singlet oxygen luminescence kinetics proved to be a very effective approach towards understanding mechanisms on a cellular level. In this study, the first two-dimensional measurement of singlet oxygen kinetics in phototrophic microorganisms on surfaces during photodynamic inactivation is presented. We established a system of reproducible algae samples on surfaces, incubated with two different cationic, antimicrobial potent photosensitizers. Fluorescence microscopy images indicate that one photosensitizer localizes inside the green algae while the other accumulates along the outer algae cell wall. A newly developed setup allows for the measurement of singlet oxygen luminescence on the green algae sample surfaces over several days. The kinetics of the singlet oxygen luminescence of both photosensitizers show different developments and a distinct change over time, corresponding with the differences in their localization as well as their photosensitization potential. While the complexity of the signal reveals a challenge for the future, this study incontrovertibly marks a crucial, inevitable step in the investigation of photodynamic inactivation of biofilms: it shows the feasibility of using the singlet oxygen luminescence kinetics to investigate photodynamic effects on surfaces and thus opens a field for numerous investigations.

  11. Attraction of gravid anopheles Pseudopunctipennis females to oviposition substrates by Spirogyra majuscula (Zygnematales: Zygnmataceae) algae under laboratory conditions.

    PubMed

    Torres-Estrada, José L; Meza-Alvarez, Rosa A; Cruz-López, Leopoldo; Rodríguez, Mario H; Arredondo-Jiménez, Juan I

    2007-03-01

    The attraction of Anopheles pseudopunctipennis gravid females to oviposition substrates containing Spirogyra majuscula algae was investigated under laboratory conditions. Gravid females deposited significantly more eggs in cups containing natural algae in water from breeding sites than in cups containing artificial (nylon rope) life-like algae in water from the corresponding natural breeding site, or in cups containing natural algae in distilled water. Bioassays with Spirogyra majuscula organic extracts indicated that these extracts at concentrations of 0.1%, 0.01%, and 0.001% attracted more oviposition, but concentrations of 1%, 10%, and 100% were repellent. Gas chromatography and mass spectrometry analysis of algae organic extracts revealed a mixture of ethyl acetate and hydrocarbons compounds. These results suggest that the attraction of gravid An. pseudopunctipennis to natural breeding sites containing filamentous algae is probably mediated by organic compounds released by the algae.

  12. Microwave-enhanced pyrolysis of natural algae from water blooms.

    PubMed

    Zhang, Rui; Li, Linling; Tong, Dongmei; Hu, Changwei

    2016-07-01

    Microwave-enhanced pyrolysis (MEP) of natural algae under different reaction conditions was carried out. The optimal conditions for bio-oil production were the following: algae particle size of 20-5 mesh, microwave power of 600W, and 10% of activated carbon as microwave absorber and catalyst. The maximum liquid yield obtained under N2, 10% H2/Ar, and CO2 atmosphere was 49.1%, 51.7%, and 54.3% respectively. The energy yield of bio-products was 216.7%, 236.9% and 208.7% respectively. More long chain fatty acids were converted into hydrocarbons by hydrodeoxygenation under 10% H2/Ar atmosphere assisted by microwave over activated carbon containing small amounts of metals. Under CO2 atmosphere, carboxylic acids (66.6%) were the main products in bio-oil because the existence of CO2 vastly inhibited the decarboxylation. The MEP of algae was quick and efficient for bio-oil production, which provided a way to not only ameliorate the environment but also obtain fuel or chemicals at the same time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Algae-based oral recombinant vaccines

    PubMed Central

    Specht, Elizabeth A.; Mayfield, Stephen P.

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for “molecular pharming” in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity. PMID:24596570

  14. Rainfall changes affect the algae dominance in tank bromeliad ecosystems.

    PubMed

    Pires, Aliny Patricia Flauzino; Leal, Juliana da Silva; Peeters, Edwin T H M

    2017-01-01

    Climate change and biodiversity loss have been reported as major disturbances in the biosphere which can trigger changes in the structure and functioning of natural ecosystems. Nonetheless, empirical studies demonstrating how both factors interact to affect shifts in aquatic ecosystems are still unexplored. Here, we experimentally test how changes in rainfall distribution and litter diversity affect the occurrence of the algae-dominated condition in tank bromeliad ecosystems. Tank bromeliads are miniature aquatic ecosystems shaped by the rainwater and allochthonous detritus accumulated in the bases of their leaves. Here, we demonstrated that changes in the rainfall distribution were able to reduce the chlorophyll-a concentration in the water of bromeliad tanks affecting significantly the occurrence of algae-dominated conditions. On the other hand, litter diversity did not affect the algae dominance irrespective to the rainfall scenario. We suggest that rainfall changes may compromise important self-reinforcing mechanisms responsible for maintaining high levels of algae on tank bromeliads ecosystems. We summarized these results into a theoretical model which suggests that tank bromeliads may show two different regimes, determined by the bromeliad ability in taking up nutrients from the water and by the total amount of light entering the tank. We concluded that predicted climate changes might promote regime shifts in tropical aquatic ecosystems by shaping their structure and the relative importance of other regulating factors.

  15. Decreased abundance of crustose coralline algae due to ocean acidification

    USGS Publications Warehouse

    Kuffner, Ilsa B.; Andersson, Andreas J; Jokiel, Paul L.; Rodgers, Ku'ulei S.; Mackenzie, Fred T.

    2008-01-01

    Owing to anthropogenic emissions, atmospheric concentrations of carbon dioxide could almost double between 2006 and 2100 according to business-as-usual carbon dioxide emission scenarios1. Because the ocean absorbs carbon dioxide from the atmosphere2, 3, 4, increasing atmospheric carbon dioxide concentrations will lead to increasing dissolved inorganic carbon and carbon dioxide in surface ocean waters, and hence acidification and lower carbonate saturation states2, 5. As a consequence, it has been suggested that marine calcifying organisms, for example corals, coralline algae, molluscs and foraminifera, will have difficulties producing their skeletons and shells at current rates6, 7, with potentially severe implications for marine ecosystems, including coral reefs6, 8, 9, 10, 11. Here we report a seven-week experiment exploring the effects of ocean acidification on crustose coralline algae, a cosmopolitan group of calcifying algae that is ecologically important in most shallow-water habitats12, 13, 14. Six outdoor mesocosms were continuously supplied with sea water from the adjacent reef and manipulated to simulate conditions of either ambient or elevated seawater carbon dioxide concentrations. The recruitment rate and growth of crustose coralline algae were severely inhibited in the elevated carbon dioxide mesocosms. Our findings suggest that ocean acidification due to human activities could cause significant change to benthic community structure in shallow-warm-water carbonate ecosystems.

  16. Rainfall changes affect the algae dominance in tank bromeliad ecosystems

    PubMed Central

    Pires, Aliny Patricia Flauzino; Leal, Juliana da Silva; Peeters, Edwin T. H. M.

    2017-01-01

    Climate change and biodiversity loss have been reported as major disturbances in the biosphere which can trigger changes in the structure and functioning of natural ecosystems. Nonetheless, empirical studies demonstrating how both factors interact to affect shifts in aquatic ecosystems are still unexplored. Here, we experimentally test how changes in rainfall distribution and litter diversity affect the occurrence of the algae-dominated condition in tank bromeliad ecosystems. Tank bromeliads are miniature aquatic ecosystems shaped by the rainwater and allochthonous detritus accumulated in the bases of their leaves. Here, we demonstrated that changes in the rainfall distribution were able to reduce the chlorophyll-a concentration in the water of bromeliad tanks affecting significantly the occurrence of algae-dominated conditions. On the other hand, litter diversity did not affect the algae dominance irrespective to the rainfall scenario. We suggest that rainfall changes may compromise important self-reinforcing mechanisms responsible for maintaining high levels of algae on tank bromeliads ecosystems. We summarized these results into a theoretical model which suggests that tank bromeliads may show two different regimes, determined by the bromeliad ability in taking up nutrients from the water and by the total amount of light entering the tank. We concluded that predicted climate changes might promote regime shifts in tropical aquatic ecosystems by shaping their structure and the relative importance of other regulating factors. PMID:28422988

  17. Partitioning of monomethylmercury between freshwater algae and water.

    PubMed

    Miles, C J; Moye, H A; Phlips, E J; Sargent, B

    2001-11-01

    Phytoplankton-water monomethylmercury (MeHg) partition constants (KpI) have been determined in the laboratory for two green algae Selenastrum capricornutum and Cosmarium botrytis, the blue-green algae Schizothrix calcicola, and the diatom Thallasiosira spp., algal species that are commonly found in natural surface waters. Two methods were used to determine KpI, the Freundlich isotherm method and the flow-through/dialysis bag method. Both methods yielded KpI values of about 10(6.6) for S. capricornutum and were not significantly different. The KpI for the four algae studied were similar except for Schizothrix, which was significantly lower than S. capricornutum. The KpI for MeHg and S. capricornutum (exponential growth) was not significantly different in systems with predominantly MeHgOH or MeHgCl species. This is consistent with other studies that show metal speciation controls uptake kinetics, but the reactivity with intracellular components controls steady-state concentrations. Partitioning constants determined with exponential and stationary phase S. capricornutum cells at the same conditions were not significantly different, while the partitioning constant for exponential phase, phosphorus-limited cells was significantly lower, suggesting that P-limitation alters the ecophysiology of S. capricornutum sufficiently to impact partitioning, which may then ultimately affect mercury levels in higher trophic species.

  18. Rapid Aggregation of Biofuel-Producing Algae by the Bacterium Bacillus sp. Strain RP1137

    PubMed Central

    Powell, Ryan J.

    2013-01-01

    Algal biofuels represent one of the most promising means of sustainably replacing liquid fuels. However, significant challenges remain before alga-based fuels become competitive with fossil fuels. One of the largest challenges is the ability to harvest the algae in an economical and low-energy manner. In this article, we describe the isolation of a bacterial strain, Bacillus sp. strain RP1137, which can rapidly aggregate several algae that are candidates for biofuel production, including a Nannochloropsis sp. This bacterium aggregates algae in a pH-dependent and reversible manner and retains its aggregation ability after paraformaldehyde fixation, opening the possibility for reuse of the cells. The optimal ratio of bacteria to algae is described, as is the robustness of aggregation at different salinities and temperatures. Aggregation is dependent on the presence of calcium or magnesium ions. The efficiency of aggregation of Nannochloropsis oceanica IMET1 is between 70 and 95% and is comparable to that obtained by other means of harvest; however, the rate of harvest is fast, with aggregates forming in 30 s. PMID:23892750

  19. The Effects of Nutrient Enrichment and Herbivore Abundance on the Ability of Turf Algae to Overgrow Coral in the Caribbean

    PubMed Central

    Vermeij, Mark J. A.; van Moorselaar, Imke; Engelhard, Sarah; Hörnlein, Christine; Vonk, Sophie M.; Visser, Petra M.

    2010-01-01

    Turf algae are multispecies communities of small marine macrophytes that are becoming a dominant component of coral reef communities around the world. To assess the impact of turf algae on corals, we investigated the effects of increased nutrients (eutrophication) on the interaction between the Caribbean coral Montastraea annularis and turf algae at their growth boundary. We also assessed whether herbivores are capable of reducing the abundance of turf algae at coral-algae boundaries. We found that turf algae cause visible (overgrowth) and invisible negative effects (reduced fitness) on neighbouring corals. Corals can overgrow neighbouring turf algae very slowly (at a rate of 0.12 mm 3 wk−1) at ambient nutrient concentrations, but turf algae overgrew corals (at a rate of 0.34 mm 3 wk−1) when nutrients were experimentally increased. Exclusion of herbivores had no measurable effect on the rate turf algae overgrew corals. We also used PAM fluorometry (a common approach for measuring of a colony's “fitness”) to detect the effects of turf algae on the photophysiology of neighboring corals. Turf algae always reduced the effective photochemical efficiency of neighbouring corals, regardless of nutrient and/or herbivore conditions. The findings that herbivores are not capable of controlling the abundance of turf algae and that nutrient enrichment gives turf algae an overall competitive advantage over corals together have serious implications for the health of Caribbean coral reef systems. At ambient nutrient levels, traditional conservation measures aimed at reversing coral-to-algae phase shifts by reducing algal abundance (i.e., increasing herbivore populations by establishing Marine Protected Areas or tightening fishing regulations) will not necessarily reduce the negative impact of turf algae on local coral communities. Because turf algae have become the most abundant benthic group on Curaçao (and likely elsewhere in the Caribbean), new conservation strategies

  20. Identification of cypermethrin induced protein changes in green algae by iTRAQ quantitative proteomics.

    PubMed

    Gao, Yan; Lim, Teck Kwang; Lin, Qingsong; Li, Sam Fong Yau

    2016-04-29

    Cypermethrin (CYP) is one of the most widely used pesticides in large scale for agricultural and domestic purpose and the residue often seriously affects aquatic system. Environmental pollutant-induced protein changes in organisms could be detected by proteomics, leading to discovery of potential biomarkers and understanding of mode of action. While proteomics investigations of CYP stress in some animal models have been well studied, few reports about the effects of exposure to CYP on algae proteome were published. To determine CYP effect in algae, the impact of various dosages (0.001μg/L, 0.01μg/L and 1μg/L) of CYP on green algae Chlorella vulgaris for 24h and 96h was investigated by using iTRAQ quantitative proteomics technique. A total of 162 and 198 proteins were significantly altered after CYP exposure for 24h and 96h, respectively. Overview of iTRAQ results indicated that the influence of CYP on algae protein might be dosage-dependent. Functional analysis of differentially expressed proteins showed that CYP could induce protein alterations related to photosynthesis, stress responses and carbohydrate metabolism. This study provides a comprehensive view of complex mode of action of algae under CYP stress and highlights several potential biomarkers for further investigation of pesticide-exposed plant and algae. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A perspective on renewable bioenergy from photosynthetic algae as feedstock for biofuels and bioproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurens, Lieve M. L.; Chen-Glasser, Melodie; McMillan, James D.

    There has been substantial technical progress in developing algae-based bioenergy in recent years and a large part of industry and academic research and deployment projects have pivoted away from a pure biofuels strategy. This letter summarizes the findings of a recently completed, comprehensive report, that represents a collaborative effort of at least 20 co-authors, where we analyzed the prospects for using microalgae and macroalgae as feedstocks for biofuels and bioenergy production. The scope of this report includes a discussion of international activities advancing bioenergy and non-energy bioproducts from algae, progress on the use of macroalgae (both cast and cultivated seaweeds)more » for biogas applications, distinct biochemical and thermochemical conversion pathways, multi-product biorefining opportunities, as well as a thorough review of process economics and sustainability considerations. It is envisioned that a higher value algal biomass-based bioproducts industry will provide the additional revenue needed to reduce the net cost of producing algae-based biofuels. As such, a biorefinery approach that generates multiple high-value products from algae will be essential to fully valorize algal biomass and enable economically viable coproduction of bioenergy. Furthermore, to accelerate the implementation of algae-based production, minimizing energy, water, nutrients and land use footprints of integrated algae-based operations needs to be a primary objective of larger scale demonstrations and future research and development.« less

  2. A perspective on renewable bioenergy from photosynthetic algae as feedstock for biofuels and bioproducts

    DOE PAGES

    Laurens, Lieve M. L.; Chen-Glasser, Melodie; McMillan, James D.

    2017-04-15

    There has been substantial technical progress in developing algae-based bioenergy in recent years and a large part of industry and academic research and deployment projects have pivoted away from a pure biofuels strategy. This letter summarizes the findings of a recently completed, comprehensive report, that represents a collaborative effort of at least 20 co-authors, where we analyzed the prospects for using microalgae and macroalgae as feedstocks for biofuels and bioenergy production. The scope of this report includes a discussion of international activities advancing bioenergy and non-energy bioproducts from algae, progress on the use of macroalgae (both cast and cultivated seaweeds)more » for biogas applications, distinct biochemical and thermochemical conversion pathways, multi-product biorefining opportunities, as well as a thorough review of process economics and sustainability considerations. It is envisioned that a higher value algal biomass-based bioproducts industry will provide the additional revenue needed to reduce the net cost of producing algae-based biofuels. As such, a biorefinery approach that generates multiple high-value products from algae will be essential to fully valorize algal biomass and enable economically viable coproduction of bioenergy. Furthermore, to accelerate the implementation of algae-based production, minimizing energy, water, nutrients and land use footprints of integrated algae-based operations needs to be a primary objective of larger scale demonstrations and future research and development.« less

  3. Toxicity of 13 different antibiotics towards freshwater green algae Pseudokirchneriella subcapitata and their modes of action.

    PubMed

    Fu, Ling; Huang, Tao; Wang, Shuo; Wang, Xiaohong; Su, Limin; Li, Chao; Zhao, Yuanhui

    2017-02-01

    Although modes of action (MOAs) play a key role in the understanding of the toxic mechanism of chemicals, the MOAs have not been investigated for antibiotics to green algae. This paper is to discriminate excess toxicity from baseline level and investigate the MOAs of 13 different antibiotics to algae by using the determined toxicity values. Comparison of the toxicities shows that the inhibitors of protein synthesis to bacteria, such as azithromycin, doxycycline, florfenicol and oxytetracycline, exhibit significantly toxic effects to algae. On the other hand, the cell wall synthesis inhibitors, such as cefotaxime and amoxicillin, show relatively low toxic effects to the algae. The concentrations determined by HPLC indicate that quinocetone and amoxicillin can be easily photodegraded or hydrolyzed during the toxic tests. The toxic effects of quinocetone and amoxicillin to the algae are attributed to not only their parent compounds, but also their metabolites. Investigation on the mode of action shows that, except rifampicin, all the tested antibiotics exhibit excess toxicity to Pseudokirchneriella subcapitata (P. subcapitata). These antibiotics can be identified as reactive modes of action to the algae. They act as electrophilic mechanism of action to P. subcapitata. These results are valuable for the understanding of the toxic mechanism to algae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Hydrothermal liquefaction pathways for low-nitrogen biocrude from wet algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanzella, Francis; Lim, Jin-Ping

    Our SRI International (SRI) team has developed a new two-step hydrothermal liquefaction (HTL) process to convert wet algal biomass into biocrude oil. The first step in the process (low-temperature HTL or HTL1) yields crude oil but, most importantly, it selectively dissolves nitrogen-containing compounds in the aqueous phase. Once the oil and the aqueous phase are separated, the low-nitrogen soft solids left behind can be taken to the second step (high-temperature HTL or HTL2) for full conversion to biocrude. HTL2 will hence yield low-nitrogen biocrude, which can be hydro-processed to yield transportation fuels. The expected high carbon yield and low nitrogenmore » content can lead to a transportation fuel from algae that avoids two problems common to existing algae-to-fuel processes: (1) poisoning of the hydro-processing catalyst; and (2) inefficient conversion of algae-to-liquid fuels. The process we studied would yield a new route to strategic energy production from domestic sources.« less

  5. Biosynthesis of 3-Dimethylsulfoniopropionate in Marine Algae

    DTIC Science & Technology

    1999-03-05

    Tetraselmis sp., Emiliania huxleyi and Melosira nummuloides. Evidence was obtained for the following pathway in all cases: methionine -* 4...diverse microalgae (Tetraselmis sp., Emiliania huxleyi and Melosira nummuloides. [35S]Methionine (Met) was supplied to the algae and labeled

  6. Contribution of arsenic species in unicellular algae to the cycling of arsenic in marine ecosystems.

    PubMed

    Duncan, Elliott G; Maher, William A; Foster, Simon D

    2015-01-06

    This review investigates the arsenic species produced by and found in marine unicellular algae to determine if unicellular algae contribute to the formation of arsenobetaine (AB) in higher marine organisms. A wide variety of arsenic species have been found in marine unicellular algae including inorganic species (mainly arsenate--As(V)), methylated species (mainly dimethylarsenate (DMA)), arsenoribosides (glycerol, phosphate, and sulfate) and metabolites (dimethylarsenoethanol (DMAE)). Subtle differences in arsenic species distributions exist between chlorophyte and heterokontophyte species with As(V) commonly found in water-soluble cell fractions of chlorophyte species, while DMA is more common in heterokontophyte species. Additionally, different arsenoriboside species are found in each phyla with glycerol and phosphate arsenoribosides produced by chlorophytes, whereas glycerol, phosphate, and sulfate arsenoribosides are produced by heterokontophytes, which is similar to existing data for marine macro-algae. Although arsenoribosides are the major arsenic species in many marine unicellular algal species, AB has not been detected in unicellular algae which supports the hypothesis that AB is formed in marine animals via the ingestion and further metabolism of arsenoribosides. The observation of significant DMAE concentrations in some unicellular algal cultures suggests that unicellular algae-based detritus contains arsenic species that can be further metabolized to form AB in higher marine organisms. Future research establishing how environmental variability influences the production of arsenic species by marine unicellular algae and what effect this has on arsenic cycling within marine food webs is essential to clarify the role of these organisms in marine arsenic cycling.

  7. What color should glacier algae be? An ecological role for red carbon in the cryosphere.

    PubMed

    Dial, Roman J; Ganey, Gerard Q; Skiles, S McKenzie

    2018-03-01

    Red-colored secondary pigments in glacier algae play an adaptive role in melting snow and ice. We advance this hypothesis using a model of color-based absorption of irradiance, an experiment with colored particles in snow, and the natural history of glacier algae. Carotenoids and phenols-astaxanthin in snow-algae and purpurogallin in ice-algae-shield photosynthetic apparatus by absorbing overabundant visible wavelengths, then dissipating the excess radiant energy as heat. This heat melts proximal ice crystals, providing liquid-water in a 0°C environment and freeing up nutrients bound in frozen water. We show that purple-colored particles transfer 87%-89% of solar energy absorbed by black particles. However, red-colored particles transfer nearly as much (85%-87%) by absorbing peak solar wavelengths and reflecting the visible wavelengths most absorbed by nearby ice and snow crystals; this latter process may reduce potential cellular overheating when snow insulates cells. Blue and green particles transfer only 80%-82% of black particle absorption. In the experiment, red-colored particles melted 87% as much snow as black particles, while blue particles melted 77%. Green-colored snow-algae naturally occupy saturated snow where water is non-limiting; red-colored snow-algae occupy drier, water-limited snow. In addition to increasing melt, we suggest that esterified astaxanthin in snow-alga cells increases hydrophobicity to remain surficial. © FEMS 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Behavioural and physical effects of arsenic exposure in fish are aggravated by aquatic algae.

    PubMed

    Magellan, Kit; Barral-Fraga, Laura; Rovira, Marona; Srean, Pao; Urrea, Gemma; García-Berthou, Emili; Guasch, Helena

    2014-11-01

    Arsenic contamination has global impacts and freshwaters are major arsenic repositories. Arsenic toxicity depends on numerous interacting factors which makes effects difficult to estimate. The use of aquatic algae is often advocated for bioremediation of arsenic contaminated waters as they absorb arsenate and transform it into arsenite and methylated chemical species. Fish are another key constituent of aquatic ecosystems. Contamination in natural systems is often too low to cause mortality but sufficient to interfere with normal functioning. Alteration of complex, naturally occurring fish behaviours such as foraging and aggression are ecologically relevant indicators of toxicity and ideal for assessing sublethal impacts. We examined the effects of arsenic exposure in the invasive mosquitofish, Gambusia holbrooki, in a laboratory experiment incorporating some of the complexity of natural systems by including the interacting effects of aquatic algae. Our aims were to quantify the effects of arsenic on some complex behaviours and physical parameters in mosquitofish, and to assess whether the detoxifying mechanisms of algae would ameliorate any effects of arsenic exposure. Aggression increased significantly with arsenic whereas operculum movement decreased non-significantly and neither food capture efficiency nor consumption were notably affected. Bioaccumulation increased with arsenic and unexpectedly so did fish biomass. Possibly increased aggression facilitated food resource defence allowing fish to gain weight. The presence of algae aggravated the effects of arsenic exposure. For increase in fish biomass, algae acted antagonistically with arsenic, resulting in a disadvantageous reduction in weight gained. For bioaccumulation the effects were even more severe, as algae operated additively with arsenic to increase arsenic uptake and/or assimilation. Aggression was also highest in the presence of both algae and arsenic. Bioremediation of arsenic contaminated waters

  9. [Ecological characteristic of benthic epipelic algae and the characteristic of water environment quality in heavily polluted river in city].

    PubMed

    Zhao, Zhen-hua; Ruan, Xiao-hong; Xing, Ya-nan; Ni, Li-xiao; Gao, Li-cun

    2009-12-01

    The water quality and algae community of Nanyuan Water System in the old city area of Suzhou were monitored for a year. Results showed that the water pollution in the studied area was mainly related to nitrogen (NH4+ -N and TN). Sometimes, they even exceeded the Environmental Quality Standards for Surface Water (GB 3838-2002, PRC) more than 5 times. 34 species of benthic epipelic algae were observed by microscope, and the species amount of diatom algae, green algae and blue algae are more than others. Their abundance and biomass are far higher than that of the pelagic algae in the same sites,and reach 2 145.5 x 10(4) cells/mL and 3.524 mg/mL,respectively. The dominant species of benthic epipelic algae in Nanyuan's water system are diatom algae and blue algae, most of which belong to the heterotrophic type or bi-trophic type algae, the typical genera include: Oscillaria amphibian (affiliated to Cyanophyta), Cyclotella sp., Melosira sp., Stephanodiscus hantzschii, Navicula sp., Nitzschia sp., Gomphonema (affiliated to Bacillariophyta) and so on. And their distribution of species and abundance are very nonuniform in different reach of heavily polluted city river, which relates to the pollutant characteristics of the river. The seasonal variety trend of the abundance for benthic algae showed that:summer > autumn > spring > winter, and that of biomass for benthic algae showed that: the biomass in winter is the most of four seasons and change extent of the biomass is not obvious in spring, summer and autumn. The research results can provide reference for the ecology restoration of city heavily polluted river.

  10. On-line analysis of algae in water by discrete three-dimensional fluorescence spectroscopy.

    PubMed

    Zhao, Nanjing; Zhang, Xiaoling; Yin, Gaofang; Yang, Ruifang; Hu, Li; Chen, Shuang; Liu, Jianguo; Liu, Wenqing

    2018-03-19

    In view of the problem of the on-line measurement of algae classification, a method of algae classification and concentration determination based on the discrete three-dimensional fluorescence spectra was studied in this work. The discrete three-dimensional fluorescence spectra of twelve common species of algae belonging to five categories were analyzed, the discrete three-dimensional standard spectra of five categories were built, and the recognition, classification and concentration prediction of algae categories were realized by the discrete three-dimensional fluorescence spectra coupled with non-negative weighted least squares linear regression analysis. The results show that similarities between discrete three-dimensional standard spectra of different categories were reduced and the accuracies of recognition, classification and concentration prediction of the algae categories were significantly improved. By comparing with that of the chlorophyll a fluorescence excitation spectra method, the recognition accuracy rate in pure samples by discrete three-dimensional fluorescence spectra is improved 1.38%, and the recovery rate and classification accuracy in pure diatom samples 34.1% and 46.8%, respectively; the recognition accuracy rate of mixed samples by discrete-three dimensional fluorescence spectra is enhanced by 26.1%, the recovery rate of mixed samples with Chlorophyta 37.8%, and the classification accuracy of mixed samples with diatoms 54.6%.

  11. Preliminary observations on the benthic marine algae of the Gorringe seabank (northeast Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Tittley, Ian; da Silva Vaz Álvaro, Nuno Miguel; de Melo Azevedo Neto, Ana Isabel

    2014-06-01

    Examination of marine samples collected in 2006 from the Gettysburg and Ormonde seamounts on the Gorringe seabank southwest of Portugal has revealed 29 benthic Chlorophyta, Phaeophyceae (Ochrophyta), and Rhodophyta that were identified provisionally to genus and to species. Combining lists for the present and a previous expedition brings the total of algae thus far recorded to 48. The brown alga Zonaria tournefourtii and the red alga Cryptopleura ramosa were the most abundant species in the present collections. The kelp Laminaria ochroleuca was present only in the Gettysburg samples while Saccorhiza polyschides was observed only on the Ormonde seamount. Comparisons with the benthic marine algae recorded on seamounts in the mid-Atlantic Azores archipelago show features in common, notably kelp forests of L. ochroleuca at depths below 30 m and Z. tournefortii dominance in shallower waters.

  12. [Applications of three-dimensional fluorescence spectrum of dissolved organic matter to identification of red tide algae].

    PubMed

    Lü, Gui-Cai; Zhao, Wei-Hong; Wang, Jiang-Tao

    2011-01-01

    The identification techniques for 10 species of red tide algae often found in the coastal areas of China were developed by combining the three-dimensional fluorescence spectra of fluorescence dissolved organic matter (FDOM) from the cultured red tide algae with principal component analysis. Based on the results of principal component analysis, the first principal component loading spectrum of three-dimensional fluorescence spectrum was chosen as the identification characteristic spectrum for red tide algae, and the phytoplankton fluorescence characteristic spectrum band was established. Then the 10 algae species were tested using Bayesian discriminant analysis with a correct identification rate of more than 92% for Pyrrophyta on the level of species, and that of more than 75% for Bacillariophyta on the level of genus in which the correct identification rates were more than 90% for the phaeodactylum and chaetoceros. The results showed that the identification techniques for 10 species of red tide algae based on the three-dimensional fluorescence spectra of FDOM from the cultured red tide algae and principal component analysis could work well.

  13. Determination of the distribution of shallow-water seagrass and drift algae communities with acoustic seafloor discrimination.

    PubMed

    Riegl, B; Moyer, R P; Morris, L; Virnstein, R; Dodge, R E

    2005-05-01

    The spatial distribution of seagrass and algae communities can be difficult to determine in large, shallow lagoon systems where high turbidity prevents the use of optical methods like aerial photography or satellite imagery. Further complications can arise when algae are not permanently attached to the substratum and drift with tides and currents. A study using acoustic seafloor discrimination was conducted in the Indian River Lagoon (Florida, USA) to determine the extent of drift algae and seagrass. Acoustic surveys using the QTC View V system based on 50 and 200 kHz transducers were conducted near Sebastian Inlet. Results indicate that areas of seagrass can be identified, and are mixed with a high abundance of drift algae. Nearest-neighbor extrapolation was used to fill in spaces between survey lines and thus obtain spatially cohesive maps. These maps were then ground-truthed using data from towed video and compared using confusion matrices, The maps showed a high level of agreement (60%) with the actual distribution of algae, however some confusion existed between bare sand and algae as well as seagrass.

  14. Drifting algae and fish: Implications of tropical Sargassum invasion due to ocean warming in western Japan

    NASA Astrophysics Data System (ADS)

    Yamasaki, Mami; Aono, Mikina; Ogawa, Naoto; Tanaka, Koichiro; Imoto, Zenji; Nakamura, Yohei

    2014-06-01

    Evidence is accumulating that the invasion and extinction of habitat-forming seaweed species alters coastal community structure and ecological services, but their effects on the pelagic environment have been largely ignored. Thus, we examined the seasonal occurrence patterns of indigenous temperate and invasive tropical drifting algae and associated fish species every month for 2 years (2009-2011) in western Japan (Tosa Bay), where a rapid shift from temperate to tropical Sargassum species has been occurring in the coastal area since the late 1980s due to rising seawater temperatures. Of the 19 Sargassum species (31.6%) in drifting algae, we found that six were tropical species, whereas a study in the early 1980s found only one tropical species among 12 species (8.3%), thereby suggesting an increase in the proportion of tropical Sargassum species in drifting algae during the last 30 years. Drifting temperate algae were abundantly present from late winter to summer, whereas tropical algal clumps occurred primarily during summer. In the warm season, fish assemblages did not differ significantly between drifting temperate and tropical algae, suggesting the low host-algal specificity of most fishes. We also found that yellowtail juveniles frequently aggregated with drifting temperate algae from late winter to spring when drifting tropical algae were unavailable. Local fishermen collect these juveniles for use as aquaculture seed stock; therefore, the occurrence of drifting temperate algae in early spring is important for local fisheries. These results suggest that the further extinction of temperate Sargassum spp. may have negative impacts on the pelagic ecosystem and associated regional fisheries.

  15. Microbiota Influences Morphology and Reproduction of the Brown Alga Ectocarpus sp.

    PubMed Central

    Tapia, Javier E.; González, Bernardo; Goulitquer, Sophie; Potin, Philippe; Correa, Juan A.

    2016-01-01

    Associated microbiota play crucial roles in health and disease of higher organisms. For macroalgae, some associated bacteria exert beneficial effects on nutrition, morphogenesis and growth. However, current knowledge on macroalgae–microbiota interactions is mostly based on studies on green and red seaweeds. In this study, we report that when cultured under axenic conditions, the filamentous brown algal model Ectocarpus sp. loses its branched morphology and grows with a small ball-like appearance. Nine strains of periphytic bacteria isolated from Ectocarpus sp. unialgal cultures were identified by 16S rRNA sequencing, and assessed for their effect on morphology, reproduction and the metabolites secreted by axenic Ectocarpus sp. Six of these isolates restored morphology and reproduction features of axenic Ectocarpus sp. Bacteria-algae co-culture supernatants, but not the supernatant of the corresponding bacterium growing alone, also recovered morphology and reproduction of the alga. Furthermore, colonization of axenic Ectocarpus sp. with a single bacterial isolate impacted significantly the metabolites released by the alga. These results show that the branched typical morphology and the individuals produced by Ectocarpus sp. are strongly dependent on the presence of bacteria, while the bacterial effect on the algal exometabolome profile reflects the impact of bacteria on the whole physiology of this alga. PMID:26941722

  16. Microbiota Influences Morphology and Reproduction of the Brown Alga Ectocarpus sp.

    PubMed

    Tapia, Javier E; González, Bernardo; Goulitquer, Sophie; Potin, Philippe; Correa, Juan A

    2016-01-01

    Associated microbiota play crucial roles in health and disease of higher organisms. For macroalgae, some associated bacteria exert beneficial effects on nutrition, morphogenesis and growth. However, current knowledge on macroalgae-microbiota interactions is mostly based on studies on green and red seaweeds. In this study, we report that when cultured under axenic conditions, the filamentous brown algal model Ectocarpus sp. loses its branched morphology and grows with a small ball-like appearance. Nine strains of periphytic bacteria isolated from Ectocarpus sp. unialgal cultures were identified by 16S rRNA sequencing, and assessed for their effect on morphology, reproduction and the metabolites secreted by axenic Ectocarpus sp. Six of these isolates restored morphology and reproduction features of axenic Ectocarpus sp. Bacteria-algae co-culture supernatants, but not the supernatant of the corresponding bacterium growing alone, also recovered morphology and reproduction of the alga. Furthermore, colonization of axenic Ectocarpus sp. with a single bacterial isolate impacted significantly the metabolites released by the alga. These results show that the branched typical morphology and the individuals produced by Ectocarpus sp. are strongly dependent on the presence of bacteria, while the bacterial effect on the algal exometabolome profile reflects the impact of bacteria on the whole physiology of this alga.

  17. Dynamics in benthic community composition and influencing factors in an upwelling-exposed coral reef on the Pacific coast of Costa Rica

    PubMed Central

    Sánchez-Noguera, Celeste; Roth, Florian; Jiménez, Carlos; Rixen, Tim; Cortés, Jorge; Wild, Christian

    2015-01-01

    Seasonal upwelling at the northern Pacific coast of Costa Rica offers the opportunity to investigate the effects of pronounced changes in key water parameters on fine-scale dynamics of local coral reef communities. This study monitored benthic community composition at Matapalo reef (10.539°N, 85.766°W) by weekly observations of permanent benthic quadrats from April 2013 to April 2014. Monitoring was accompanied by surveys of herbivore abundance and biomass and measurements of water temperature and inorganic nutrient concentrations. Findings revealed that the reef-building corals Pocillopora spp. exhibited an exceptional rapid increase from 22 to 51% relative benthic cover. By contrast, turf algae cover decreased from 63 to 24%, resulting in a corresponding increase in crustose coralline algae cover. The macroalga Caulerpa sertularioides covered up to 15% of the reef in April 2013, disappeared after synchronized gamete release in May, and subsequently exhibited slow regrowth. Parallel monitoring of influencing factors suggest that C. sertularioides cover was mainly regulated by their reproductive cycle, while that of turf algae was likely controlled by high abundances of herbivores. Upwelling events in February and March 2014 decreased mean daily seawater temperatures by up to 7 °C and increased nutrient concentrations up to 5- (phosphate) and 16-fold (nitrate) compared to mean values during the rest of the year. Changes in benthic community composition did not appear to correspond to the strong environmental changes, but rather shifted from turf algae to hard coral dominance over the entire year of observation. The exceptional high dynamic over the annual observation period encourages further research on the adaptation potential of coral reefs to environmental variability. PMID:26623190

  18. Metabolites from invasive pests inhibit mitochondrial complex II: A potential strategy for the treatment of human ovarian carcinoma?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferramosca, Alessandra, E-mail: alessandra.ferramosca@unisalento.it; Conte, Annalea; Guerra, Flora

    The red pigment caulerpin, a secondary metabolite from the marine invasive green algae Caulerpa cylindracea can be accumulated and transferred along the trophic chain, with detrimental consequences on biodiversity and ecosystem functioning. Despite increasing research efforts to understand how caulerpin modifies fish physiology, little is known on the effects of algal metabolites on mammalian cells. Here we report for the first time the mitochondrial targeting activity of both caulerpin, and its closely related derivative caulerpinic acid, by using as experimental model rat liver mitochondria, a system in which bioenergetics mechanisms are not altered. Mitochondrial function was tested by polarographic andmore » spectrophotometric methods. Both compounds were found to selectively inhibit respiratory complex II activity, while complexes I, III, and IV remained functional. These results led us to hypothesize that both algal metabolites could be used as antitumor agents in cell lines with defects in mitochondrial complex I. Ovarian cancer cisplatin-resistant cells are a good example of cell lines with a defective complex I function on which these molecules seem to have a toxic effect on proliferation. This provided novel insight toward the potential use of metabolites from invasive Caulerpa species for the treatment of human ovarian carcinoma cisplatin-resistant cells. -- Highlights: •Novel insight toward the potential use of the algal metabolites for the treatment of human diseases. •Caulerpin and caulerpinic acid inhibit respiratory complex II activity. •Both algal metabolites could be used as antitumor agents in ovarian cancer cisplatin-resistant cells.« less

  19. Simultaneous production of bio-ethanol and bleached pulp from red algae.

    PubMed

    Yoon, Min Ho; Lee, Yoon Woo; Lee, Chun Han; Seo, Yung Bum

    2012-12-01

    The red algae, Gelidium corneum, was used to produce bleached pulp for papermaking and ethanol. Aqueous extracts obtained at 100-140 °C were subjected to saccharification, purification, fermentation, and distillation to produce ethanol. The solid remnants were bleached with chlorine dioxide and peroxide to make pulp. In the extraction process, sulfuric acid and sodium thiosulfate were added to increase the extract yield and to improve de-polymerization of the extracts, as well as to generate high-quality pulp. An extraction process incorporating 5% sodium thiosulfate by dry weight of the algae provided optimal production conditions for the production of both strong pulp and a high ethanol yield. These results suggest that it might be possible to utilize algae instead of trees and starch for pulp and ethanol production, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Algae in relation to mine water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, H.D.

    1969-01-01

    An annual cycle of bimonthly collections was made from 17 stations located on creeks, rivers, and ponds receiving acid mine drainage in order to obtain information on the species of algae that are tolerant to these waters. Also data were obtained to determine the relative importance of some of the major chemical factors of the water to ecology of the algae. Nitrate, phosphate, and calcium did not appear to be limiting or modifying. There was a lack of correlation between chemical factors except for total acidity, iron and pH. A range for the latter three characterized each of the habitatsmore » studied. Total acidity and the associated factors (iron and pH) appeared to have the controlling influence on the algal population in the more highly acid streams. The total number of genera and species as observed in a living condition in mine polluted water, compared favorably with numbers reported from unpolluted waters. Nearly half of the total species observed were found in the more highly acid creeks, as well as in the other habitats (less acid creeks, rivers and ponds). Algae characteristic of mine polluted water were found to be those common to a range of habitats, with the reduction in numbers of species at higher acidities and at lower pH values, being primariy in those that are less common to a range of habitats. The range of total acidity and pH values at a particular site or stream reach can be characterized by a range in the number of species and their abundance - an increase or decrease in abundance being dependent on the algal species. Some species such as Euglena mutabilis Sch., Eunotia tenella (grun) Gleve, and Pinnularia braunii (grun) Cleve, are most abundant in mine polluted water.« less

  1. Algae separation from urban landscape water using a high density microbubble layer enhanced by micro-flocculation.

    PubMed

    Chen, Shuwen; Xu, Jingcheng; Liu, Jia; Wei, Qiaoling; Li, Guangming; Huang, Xiangfeng

    2014-01-01

    Eutrophication of raw water results in outbreaks of algae, which hinders conventional water treatment. In this study, high density microbubble layers combined with micro-flocculation was adopted to remove algae from urban landscape water, and the effects of pressure, hydraulic loading, microbubble layer height and flocculation dosage on the removal efficiency for algae were studied. The greatest removal efficiency for algae, chemical oxygen demand, nitrogen and phosphorus was obtained at 0.42 MPa with hydraulic loading at 5 m/h and a flocculation dosage of 4 mg/L using a microbubble layer with a height of 130 cm. Moreover, the size, clearance distance and concentration of microbubbles were found to be affected by pressure and the height of the microbubble layer. Based on the study, this method was an alternative for algae separation from urban landscape water and water purification.

  2. Boron-containing organic pigments from a Jurassic red alga

    PubMed Central

    Wolkenstein, Klaus; Gross, Jürgen H.; Falk, Heinz

    2010-01-01

    Organic biomolecules that have retained their basic chemical structures over geological periods (molecular fossils) occur in a wide range of geological samples and provide valuable paleobiological, paleoenvironmental, and geochemical information not attainable from other sources. In rare cases, such compounds are even preserved with their specific functional groups and still occur within the organisms that produced them, providing direct information on the biochemical inventory of extinct organisms and their possible evolutionary relationships. Here we report the discovery of an exceptional group of boron-containing compounds, the borolithochromes, causing the distinct pink coloration of well-preserved specimens of the Jurassic red alga Solenopora jurassica. The borolithochromes are characterized as complicated spiroborates (boric acid esters) with two phenolic moieties as boron ligands, representing a unique class of fossil organic pigments. The chiroptical properties of the pigments unequivocally demonstrate a biogenic origin, at least of their ligands. However, although the borolithochromes originated from a fossil red alga, no analogy with hitherto known present-day red algal pigments was found. The occurrence of the borolithochromes or their possible diagenetic products in the fossil record may provide additional information on the classification and phylogeny of fossil calcareous algae. PMID:20974956

  3. Boron-containing organic pigments from a Jurassic red alga.

    PubMed

    Wolkenstein, Klaus; Gross, Jürgen H; Falk, Heinz

    2010-11-09

    Organic biomolecules that have retained their basic chemical structures over geological periods (molecular fossils) occur in a wide range of geological samples and provide valuable paleobiological, paleoenvironmental, and geochemical information not attainable from other sources. In rare cases, such compounds are even preserved with their specific functional groups and still occur within the organisms that produced them, providing direct information on the biochemical inventory of extinct organisms and their possible evolutionary relationships. Here we report the discovery of an exceptional group of boron-containing compounds, the borolithochromes, causing the distinct pink coloration of well-preserved specimens of the Jurassic red alga Solenopora jurassica. The borolithochromes are characterized as complicated spiroborates (boric acid esters) with two phenolic moieties as boron ligands, representing a unique class of fossil organic pigments. The chiroptical properties of the pigments unequivocally demonstrate a biogenic origin, at least of their ligands. However, although the borolithochromes originated from a fossil red alga, no analogy with hitherto known present-day red algal pigments was found. The occurrence of the borolithochromes or their possible diagenetic products in the fossil record may provide additional information on the classification and phylogeny of fossil calcareous algae.

  4. Composition, mineral profiles and characterization of the ash component in 12 algae samples

    USDA-ARS?s Scientific Manuscript database

    Algae have been used as food, feed, fertilizer, and lately as an attractive biomass for renewable energy. Key advantages of algae include prolific growth rates, the ability to grow on lands that are marginal for other agricultural purposes, and the ability to clean up water resources with excess nu...

  5. Response of freshwater algae to water quality in Qinshan Lake within Taihu Watershed, China

    NASA Astrophysics Data System (ADS)

    Zhang, Jianying; Ni, Wanmin; Luo, Yang; Jan Stevenson, R.; Qi, Jiaguo

    Although frequent algal blooms in Taihu Lake in China have become major environmental problems and have drawn national and international attention, little is understood about the relationship between algal blooms and water quality. The goal of this study was to assess the growth and species responses of freshwater algae to variation in water quality in Qinshan Lake, located in headwaters of the Taihu watershed. Water samples were collected monthly from ten study sites in the Qinshan Lake and were analyzed for species distribution of freshwater algae and physiochemical parameters such as total nitrogen (TN), NH4+-N, NO3--N, total phosphorus (TP), chemical oxygen demand (COD Mn) and Chl-a. The results showed that average TN was 4.47 mg/L, with 92.2% of values greater than the TN standard set by the Chinese Environmental Protection Agency; average TP was 0.051 mg/L, with 37.9% of values above the TP national standard; and average trophic level index (TLI) was 53, the lower end of eutrophic condition. Average Chl-a concentration was 12.83 mg/m 3. Green algae and diatom far outweighed other freshwater algae and were dominant most time of the year, with the highest relative abundances of 96% and 99%, respectively. Blue-green algae, composed mainly toxic strains like Microcystis sp ., Nostoc sp. and Oscillatoria sp., became most dominant in the summer with the maximum relative abundance of 69%. The blue-green algae sank to the lake bottom to overwinter, and then dinoflagellates became the dominant species in the winter, with highest relative abundance of 89%. Analysis indicated that nutrients, especially control of ammonia and co-varying nutrients were the major restrictive factor of population growth of blue-green algae, suggesting that control in nutrient enrichments is the major preventive measure of algal blooms in Qinshan Lake.

  6. Geographic variation in the damselfish-red alga cultivation mutualism in the Indo-West Pacific

    PubMed Central

    2010-01-01

    Background On coral reefs, damselfish defend their territories from invading herbivores and maintain algal turfs, from which they harvest filamentous algae. In southern Japan, intensive weeding of indigestible algae by Stegastes nigricans results in overgrowth by one filamentous alga, Polysiphonia sp. 1. Because this alga is highly susceptible to grazing and is competitively inferior to other algae, it survives only within the protective territories of this fish species, suggesting an obligate mutualism between damselfish and their cultivated alga. The wide distribution of damselfish species through the Indo-Central Pacific raises the question of whether this species-specific mutualism is maintained throughout the geographic range of the fish. To address this question, from all 18 damselfish species we conducted comprehensive surveys of algal flora within their territories throughout the Indo-West Pacific, and identified species of Polysiphonia using morphological examination and gene sequencing data. Results Several species of the genus Polysiphonia were observed as a major crop in territories throughout the geographic range of S. nigricans. Polysiphonia sp. 1 occurred only in territories of S. nigricans in central areas of the Indo-Pacific. However, its occurrence was low from the Great Barrier Reef and Mauritius. In contrast, other indigenous Polysiphonia species, which formed a clade with Polysiphonia sp. 1, occurred in the territories of fishes from Egypt, Kenya, and the Maldives. The other Polysiphonia species in the clade only inhabited damselfish territories and were never found elsewhere. Conclusions Cultivation mutualism between the damselfish S. nigricans and algae of Polysiphonia was maintained throughout the Indo-West Pacific, although algal crop species and the mode of cultivation (e.g., presence/absence of selective weeding, the species composition of algal turfs) varied among localities. This finding implies that damselfish utilize indigenous

  7. Remember the Algae that Went to Space? Here's What Happened Next | News |

    Science.gov Websites

    students and housing two different species of algae. If all went well-and he knew first-hand that wasn't guaranteed-the two algae species would prove capable of making the precursors for fuel. He could have had his laboratory, Bertelsen knows just what the two species can accomplish. The genesis of the experiment came from

  8. Characterization of phosphorus forms in lake macrophytes and algae by solution 31P nuclear magnetic resonance spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Aquatic macrophytes and algae are important sources of phosphorus (P) in the lake environment that cause blooms of algae under certain biogeochemical conditions. However, the knowledge of forms of P in these plants and algae and their contribution to internal loads of lake P is very limited. Witho...

  9. A mathematical model of algae growth in a pelagic-benthic coupled shallow aquatic ecosystem.

    PubMed

    Zhang, Jimin; Shi, Junping; Chang, Xiaoyuan

    2018-04-01

    A coupled system of ordinary differential equations and partial differential equations is proposed to describe the interaction of pelagic algae, benthic algae and one essential nutrient in an oligotrophic shallow aquatic ecosystem with ample supply of light. The existence and uniqueness of non-negative steady states are completely determined for all possible parameter range, and these results characterize sharp threshold conditions for the regime shift from extinction to coexistence of pelagic and benthic algae. The influence of environmental parameters on algal biomass density is also considered, which is an important indicator of algal blooms. Our studies suggest that the nutrient recycling from loss of algal biomass may be an important factor in the algal blooms process; and the presence of benthic algae may limit the pelagic algal biomass density as they consume common resources even if the sediment nutrient level is high.

  10. Laser-fluorescence measurement of marine algae

    NASA Technical Reports Server (NTRS)

    Browell, E. V.

    1980-01-01

    Progress in remote sensing of algae by laser-induced fluorescence is subject of comprehensive report. Existing single-wavelength and four-wavelength systems are reviewed, and new expression for power received by airborne sensor is derived. Result differs by as much as factor of 10 from those previously reported. Detailed error analysis evluates factors affecting accuracy of laser-fluorosensor systems.

  11. Unveiling privacy: advances in microtomography of coralline algae.

    PubMed

    Torrano-Silva, Beatriz N; Ferreira, Simone Gomes; Oliveira, Mariana C

    2015-05-01

    Marine calcareous algae are widespread in oceans of the world and known for their calcified cell walls and the generation of rhodolith beds that turn sandy bottoms into a complex structured ecosystem with high biodiversity. Rhodoliths are unattached, branching, crustose benthic marine red algae; they provide habitat for a rich variety of marine invertebrates. The resultant excavation is relevant to sediment production, while is common that the fragments or the whole specimens result in vast fossil deposits formed by rich material that can be "mined" for biological and geological data. Accordingly, microtomography (μCT) may enable a detailed investigation of biological and geological signatures preserved within the rhodolith structure in a non-destructive approach that is especially relevant when analyzing herbaria collections or rare samples. Therefore, we prepared coralline algae samples and submitted them to a range of capabilities provided by the SkyScan1176 micro-CT scanner, including reconstruction, virtual slicing, and pinpointing biological and geological signatures. To this end, polychaetes and mollusk shells, or their excavations, coral nucleation, sediment deposits and conceptacles were all observed. Although a similar technique has been applied previously to samples of living rhodoliths in Brazil, we show, for the first time, its successful application to fossil rhodoliths. We also provide a detailed working protocol and discuss the advantages and limitations of the microtomography within the rhodoliths. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Anaerobic co-digestion of pig manure and algae: impact of intracellular algal products recovery on co-digestion performance.

    PubMed

    Astals, S; Musenze, R S; Bai, X; Tannock, S; Tait, S; Pratt, S; Jensen, P D

    2015-04-01

    This paper investigates anaerobic co-digestion of pig manure and algae (Scenedesmus sp.) with and without extraction of intracellular algal co-products, with views towards the development of a biorefinery concept for lipid, protein and/or biogas production. Protein and/or lipids were extracted from Scenedesmus sp. using free nitrous acid pre-treatments and solvent-based Soxhlet extraction, respectively. Processing increased algae methane yield between 29% and 37% compared to raw algae (VS basis), but reduced the amount of algae available for digestion. Co-digestion experiments showed a synergy between pig manure and raw algae that increased raw algae methane yield from 0.163 to 0.245 m(3) CH4 kg(-1)VS. No such synergy was observed when algal residues were co-digested with pig manure. Finally, experimental results were used to develop a high-level concept for an integrated biorefinery processing pig manure and onsite cultivated algae, evaluating methane production and co-product recovery per mass of pig manure entering the refinery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Algae inhibition experiment and load characteristics of the algae solution

    NASA Astrophysics Data System (ADS)

    Xiong, L.; Gao, J. X.; Zhang, Y. X.; Yang, Z. K.; Zhang, D. Q.; He, W.

    2016-08-01

    It is necessary to inhibit microbial growth in an industrial cooling water system. This paper has developed a Monopolar/Bipolar polarity high voltage pulser with load adaptability for an algal experimental study. The load characteristics of the Chlorella pyrenoidosa solution were examined, and it was found that the solution load is resistive. The resistance is related to the plate area, concentration, and temperature of the solution. Furthermore, the pulser's treatment actually inhibits the algae cell growth. This article also explores the influence of various parameters of electric pulses on the algal effect. After the experiment, the optimum pulse parameters were determined to be an electric field intensity of 750 V/cm, a pulse width per second of 120μs, and monopolar polarity.

  14. Characteristics of the digestive vacuole membrane of the alga-bearing ciliate Paramecium bursaria.

    PubMed

    Kodama, Yuuki; Fujishima, Masahiro

    2012-07-01

    Cells of the ciliate Paramecium bursaria harbor symbiotic Chlorella spp. in their cytoplasm. To establish endosymbiosis with alga-free P. bursaria, symbiotic algae must leave the digestive vacuole (DV) to appear in the cytoplasm by budding of the DV membrane. This budding was induced not only by intact algae but also by boiled or fixed algae. However, this budding was not induced when food bacteria or India ink were ingested into the DVs. These results raise the possibility that P. bursaria can recognize sizes of the contents in the DVs. To elucidate this possibility, microbeads with various diameters were mixed with alga-free P. bursaria and traced their fate. Microbeads with 0.20μm diameter did not induce budding of the DVs. Microbeads with 0.80μm diameter produced DVs of 5-10μm diameter at 3min after mixing; then the DVs fragmented and became vacuoles of 2-5μm diameter until 3h after mixing. Each microbead with a diameter larger than 3.00μm induced budding similarly to symbiotic Chlorella. These observations reveal that induction of DV budding depends on the size of the contents in the DVs. Dynasore, a dynamin inhibitor, greatly inhibited DV budding, suggesting that dynamin might be involved in DV budding. Copyright © 2011 Elsevier GmbH. All rights reserved.

  15. Analysis of laser fluorosensor systems for remote algae detection and quantification

    NASA Technical Reports Server (NTRS)

    Browell, E. V.

    1977-01-01

    The development and performance of single- and multiple-wavelength laser fluorosensor systems for use in the remote detection and quantification of algae are discussed. The appropriate equation for the fluorescence power received by a laser fluorosensor system is derived in detail. Experimental development of a single wavelength system and a four wavelength system, which selectively excites the algae contained in the four primary algal color groups, is reviewed, and test results are presented. A comprehensive error analysis is reported which evaluates the uncertainty in the remote determination of the chlorophyll a concentration contained in algae by single- and multiple-wavelength laser fluorosensor systems. Results of the error analysis indicate that the remote quantification of chlorophyll a by a laser fluorosensor system requires optimum excitation wavelength(s), remote measurement of marine attenuation coefficients, and supplemental instrumentation to reduce uncertainties in the algal fluorescence cross sections.

  16. Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review.

    PubMed

    Ahmadi, Azin; Zorofchian Moghadamtousi, Soheil; Abubakar, Sazaly; Zandi, Keivan

    2015-01-01

    From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations.

  17. The dark side of algae cultivation: Characterizing night biomass loss in three photosynthetic algae, Chlorella sorokiniana, Nannochloropsis salina and Picochlorum sp.

    DOE PAGES

    Edmundson, Scott J.; Huesemann, Michael H.

    2015-10-28

    Night biomass loss in photosynthetic algae is an essential parameter that is often overlooked when modeling or optimizing biomass productivities. Night respiration acts as a tax on daily biomass gains and has not been well characterized in the context of biofuel production. We examined the night biomass loss in three algae strains that may have potential for commercial biomass production ( Nannochloropsis salina-CCMP1776, Chlorella sorokiniana-DOE1412, and Picochlorum sp. LANL-WT). Biomass losses were monitored by ash free dry weight (AFDW mg/L -1) and optical density (OD 750) on a thermal-gradient incubator. Night biomass loss rates were highly variable (ranging from -0.006more » to -0.59 day -1), species-specific, and dependent on both culture growth phase prior to the dark period and night pond temperature. In general, the fraction of biomass lost over a 10 hour dark period, which ranged from ca. 1 to 22% in our experiments, was positively correlated with temperature and declined as the culture transitioned from exponential to linear to stationary phase. Furthermore, the dynamics of biomass loss should be taken into consideration in algae strain selection, are critical in predictive modeling of biomass production based on geographic location and can influence the net productivity of photosynthetic cultures used for bio-based fuels or products.« less

  18. The dark side of algae cultivation: Characterizing night biomass loss in three photosynthetic algae, Chlorella sorokiniana, Nannochloropsis salina and Picochlorum sp.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmundson, Scott J.; Huesemann, Michael H.

    Night biomass loss in photosynthetic algae is an essential parameter that is often overlooked when modeling or optimizing biomass productivities. Night respiration acts as a tax on daily biomass gains and has not been well characterized in the context of biofuel production. We examined the night biomass loss in three algae strains that may have potential for commercial biomass production ( Nannochloropsis salina-CCMP1776, Chlorella sorokiniana-DOE1412, and Picochlorum sp. LANL-WT). Biomass losses were monitored by ash free dry weight (AFDW mg/L -1) and optical density (OD 750) on a thermal-gradient incubator. Night biomass loss rates were highly variable (ranging from -0.006more » to -0.59 day -1), species-specific, and dependent on both culture growth phase prior to the dark period and night pond temperature. In general, the fraction of biomass lost over a 10 hour dark period, which ranged from ca. 1 to 22% in our experiments, was positively correlated with temperature and declined as the culture transitioned from exponential to linear to stationary phase. Furthermore, the dynamics of biomass loss should be taken into consideration in algae strain selection, are critical in predictive modeling of biomass production based on geographic location and can influence the net productivity of photosynthetic cultures used for bio-based fuels or products.« less

  19. Thermal ecotypes of amphi-Atlantic algae. I. Algae of Arctic to cold-temperate distribution ( Chaetomorpha melagonium, Devaleraea ramentacea and Phycodrys rubens)

    NASA Astrophysics Data System (ADS)

    Novaczek, I.; Lubbers, G. W.; Breeman, A. M.

    1990-09-01

    Three species of Arctic to cold-temperate amphi-Atlantic algae, all occurring also in the North Pacific, were tested for growth and/or survival at temperatures of -20 to 30°C. When isolates from both western and eastern Atlantic shores were tested side-by-side, it was found that thermal ecotypes may occur in such Arctic algae. Chaetomorpha melagonium was the most eurythermal of the 3 species. Isolates of this alga were alike in temperature tolerance and growth rate but Icelandic plants were more sensitive to the lethal temperature of 25°C than were more southerly isolates from both east and west. With regard to Devaleraea ramentacea, one Canadian isolate grew extraordinarily well at -2 and 0°C, and all tolerated temperatures 2 3°C higher than the lethal limit (18 20°C) of isolates from Europe. Concerning Phycodrys rubens, both eastern and western isolates died at 20°C but European plants tolerated the lethal high temperature longer, were more sensitive to freezing, and attained more rapid growth at optimal temperatures. The intertidal species, C. melagonium and D. ramentacea, both survived freezing at -5 and -20°C, at least for short time periods. C. melagonium was more susceptible than D. ramentacea to desiccation. Patterns of thermal tolerance may provide insight into the evolutionary history of seaweed species.

  20. Developing New Alternative Energy in Virginia: Bio-Diesel from Algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatcher, Patrick

    The overall objective of this study was to select chemical processing equipment, install and operate that equipment to directly convert algae to biodiesel via a reaction patented by Old Dominion University (Pat. No. US 8,080,679B2). This reaction is a high temperature (250- 330{degrees}C) methylation reaction utilizing tetramethylammonium hydroxide (TMAH) to produce biodiesel. As originally envisioned, algal biomass could be treated with TMAH in methanol without the need to separately extract triacylglycerides (TAG). The reactor temperature allows volatilization and condensation of the methyl esters whereas the spent algae solids can be utilized as a high-value fertilizer because they are minimally charred.more » During the course of this work and immediately prior to commencing, we discovered that glycerol, a major by-product of the conventional transesterification reaction for biofuels, is not formed but rather three methoxylated glycerol derivatives are produced. These derivatives are high-value specialty green chemicals that strongly upgrade the economics of the process, rendering this approach as one that now values the biofuel only as a by-product, the main value products being the methoxylated glycerols. A horizontal agitated thin-film evaporator (one square foot heat transfer area) proved effective as the primary reactor facilitating the reaction and vaporization of the products, and subsequent discharge of the spent algae solids that are suitable for supplementing petrochemicalbased fertilizers for agriculture. Because of the size chosen for the reactor, we encountered problems with delivery of the algal feed to the reaction zone, but envision that this problem could easily disappear upon scale-up or can be replaced economically by incorporating an extraction process. The objective for production of biodiesel from algae in quantities that could be tested could not be met, but we implemented use of soybean oil as a surrogate TAG feed to overcome this

  1. Lipid metabolism and potentials of biofuel and high added-value oil production in red algae.

    PubMed

    Sato, Naoki; Moriyama, Takashi; Mori, Natsumi; Toyoshima, Masakazu

    2017-04-01

    Biomass production is currently explored in microalgae, macroalgae and land plants. Microalgal biofuel development has been performed mostly in green algae. In the Japanese tradition, macrophytic red algae such as Pyropia yezoensis and Gelidium crinale have been utilized as food and industrial materials. Researches on the utilization of unicellular red microalgae such as Cyanidioschyzon merolae and Porphyridium purpureum started only quite recently. Red algae have relatively large plastid genomes harboring more than 200 protein-coding genes that support the biosynthetic capacity of the plastid. Engineering the plastid genome is a unique potential of red microalgae. In addition, large-scale growth facilities of P. purpureum have been developed for industrial production of biofuels. C. merolae has been studied as a model alga for cell and molecular biological analyses with its completely determined genomes and transformation techniques. Its acidic and warm habitat makes it easy to grow this alga axenically in large scales. Its potential as a biofuel producer is recently documented under nitrogen-limited conditions. Metabolic pathways of the accumulation of starch and triacylglycerol and the enzymes involved therein are being elucidated. Engineering these regulatory mechanisms will open a possibility of exploiting the full capability of production of biofuel and high added-value oil. In the present review, we will describe the characteristics and potential of these algae as biotechnological seeds.

  2. Numerical prediction of algae cell mixing feature in raceway ponds using particle tracing methods.

    PubMed

    Ali, Haider; Cheema, Taqi A; Yoon, Ho-Sung; Do, Younghae; Park, Cheol W

    2015-02-01

    In the present study, a novel technique, which involves numerical computation of the mixing length of algae particles in raceway ponds, was used to evaluate the mixing process. A value of mixing length that is higher than the maximum streamwise distance (MSD) of algae cells indicates that the cells experienced an adequate turbulent mixing in the pond. A coupling methodology was adapted to map the pulsating effects of a 2D paddle wheel on a 3D raceway pond in this study. The turbulent mixing was examined based on the computations of mixing length, residence time, and algae cell distribution in the pond. The results revealed that the use of particle tracing methodology is an improved approach to define the mixing phenomenon more effectively. Moreover, the algae cell distribution aided in identifying the degree of mixing in terms of mixing length and residence time. © 2014 Wiley Periodicals, Inc.

  3. Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta)

    PubMed Central

    Brawley, Susan H.; Blouin, Nicolas A.; Ficko-Blean, Elizabeth; Wheeler, Glen L.; Lohr, Martin; Goodson, Holly V.; Jenkins, Jerry W.; Blaby-Haas, Crysten E.; Helliwell, Katherine E.; Chan, Cheong Xin; Marriage, Tara N.; Klein, Anita S.; Badis, Yacine; Brodie, Juliet; Cao, Yuanyu; Collén, Jonas; Dittami, Simon M.; Gachon, Claire M. M.; Green, Beverley R.; Karpowicz, Steven J.; Kim, Jay W.; Kudahl, Ulrich Johan; Lin, Senjie; Michel, Gurvan; Mittag, Maria; Olson, Bradley J. S. C.; Pangilinan, Jasmyn L.; Peng, Yi; Qiu, Huan; Shu, Shengqiang; Singer, John T.; Sprecher, Brittany N.; Wagner, Volker; Wang, Wenfei; Wang, Zhi-Yong; Yan, Juying; Yarish, Charles; Zäuner-Riek, Simone; Zhuang, Yunyun; Zou, Yong; Lindquist, Erika A.; Grimwood, Jane; Barry, Kerrie W.; Rokhsar, Daniel S.; Schmutz, Jeremy; Stiller, John W.; Grossman, Arthur R.; Prochnik, Simon E.

    2017-01-01

    Porphyra umbilicalis (laver) belongs to an ancient group of red algae (Bangiophyceae), is harvested for human food, and thrives in the harsh conditions of the upper intertidal zone. Here we present the 87.7-Mbp haploid Porphyra genome (65.8% G + C content, 13,125 gene loci) and elucidate traits that inform our understanding of the biology of red algae as one of the few multicellular eukaryotic lineages. Novel features of the Porphyra genome shared by other red algae relate to the cytoskeleton, calcium signaling, the cell cycle, and stress-tolerance mechanisms including photoprotection. Cytoskeletal motor proteins in Porphyra are restricted to a small set of kinesins that appear to be the only universal cytoskeletal motors within the red algae. Dynein motors are absent, and most red algae, including Porphyra, lack myosin. This surprisingly minimal cytoskeleton offers a potential explanation for why red algal cells and multicellular structures are more limited in size than in most multicellular lineages. Additional discoveries further relating to the stress tolerance of bangiophytes include ancestral enzymes for sulfation of the hydrophilic galactan-rich cell wall, evidence for mannan synthesis that originated before the divergence of green and red algae, and a high capacity for nutrient uptake. Our analyses provide a comprehensive understanding of the red algae, which are both commercially important and have played a major role in the evolution of other algal groups through secondary endosymbioses. PMID:28716924

  4. Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta).

    PubMed

    Brawley, Susan H; Blouin, Nicolas A; Ficko-Blean, Elizabeth; Wheeler, Glen L; Lohr, Martin; Goodson, Holly V; Jenkins, Jerry W; Blaby-Haas, Crysten E; Helliwell, Katherine E; Chan, Cheong Xin; Marriage, Tara N; Bhattacharya, Debashish; Klein, Anita S; Badis, Yacine; Brodie, Juliet; Cao, Yuanyu; Collén, Jonas; Dittami, Simon M; Gachon, Claire M M; Green, Beverley R; Karpowicz, Steven J; Kim, Jay W; Kudahl, Ulrich Johan; Lin, Senjie; Michel, Gurvan; Mittag, Maria; Olson, Bradley J S C; Pangilinan, Jasmyn L; Peng, Yi; Qiu, Huan; Shu, Shengqiang; Singer, John T; Smith, Alison G; Sprecher, Brittany N; Wagner, Volker; Wang, Wenfei; Wang, Zhi-Yong; Yan, Juying; Yarish, Charles; Zäuner-Riek, Simone; Zhuang, Yunyun; Zou, Yong; Lindquist, Erika A; Grimwood, Jane; Barry, Kerrie W; Rokhsar, Daniel S; Schmutz, Jeremy; Stiller, John W; Grossman, Arthur R; Prochnik, Simon E

    2017-08-01

    Porphyra umbilicalis (laver) belongs to an ancient group of red algae (Bangiophyceae), is harvested for human food, and thrives in the harsh conditions of the upper intertidal zone. Here we present the 87.7-Mbp haploid Porphyra genome (65.8% G + C content, 13,125 gene loci) and elucidate traits that inform our understanding of the biology of red algae as one of the few multicellular eukaryotic lineages. Novel features of the Porphyra genome shared by other red algae relate to the cytoskeleton, calcium signaling, the cell cycle, and stress-tolerance mechanisms including photoprotection. Cytoskeletal motor proteins in Porphyra are restricted to a small set of kinesins that appear to be the only universal cytoskeletal motors within the red algae. Dynein motors are absent, and most red algae, including Porphyra , lack myosin. This surprisingly minimal cytoskeleton offers a potential explanation for why red algal cells and multicellular structures are more limited in size than in most multicellular lineages. Additional discoveries further relating to the stress tolerance of bangiophytes include ancestral enzymes for sulfation of the hydrophilic galactan-rich cell wall, evidence for mannan synthesis that originated before the divergence of green and red algae, and a high capacity for nutrient uptake. Our analyses provide a comprehensive understanding of the red algae, which are both commercially important and have played a major role in the evolution of other algal groups through secondary endosymbioses.

  5. Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta)

    DOE PAGES

    Brawley, Susan H.; Blouin, Nicolas A.; Ficko-Blean, Elizabeth; ...

    2017-07-17

    Porphyra umbilicalis (laver) belongs to an ancient group of red algae (Bangiophyceae), is harvested for human food, and thrives in the harsh conditions of the upper intertidal zone. Here we present the 87.7-Mbp haploid Porphyra genome (65.8% G + C content, 13,125 gene loci) and elucidate traits that inform our understanding of the biology of red algae as one of the few multicellular eukaryotic lineages. Novel features of the Porphyra genome shared by other red algae relate to the cytoskeleton, calcium signaling, the cell cycle, and stress-tolerance mechanisms including photoprotection. Cytoskeletal motor proteins in Porphyra are restricted to a smallmore » set of kinesins that appear to be the only universal cytoskeletal motors within the red algae. Dynein motors are absent, and most red algae, including Porphyra, lack myosin. This surprisingly minimal cytoskeleton offers a potential explanation for why red algal cells and multicellular structures are more limited in size than in most multicellular lineages. Additional discoveries further relating to the stress tolerance of bangiophytes include ancestral enzymes for sulfation of the hydrophilic galactan-rich cell wall, evidence for mannan synthesis that originated before the divergence of green and red algae, and a high capacity for nutrient uptake. Our analyses provide a comprehensive understanding of the red algae, which are both commercially important and have played a major role in the evolution of other algal groups through secondary endosymbioses.« less

  6. Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brawley, Susan H.; Blouin, Nicolas A.; Ficko-Blean, Elizabeth

    Porphyra umbilicalis (laver) belongs to an ancient group of red algae (Bangiophyceae), is harvested for human food, and thrives in the harsh conditions of the upper intertidal zone. Here we present the 87.7-Mbp haploid Porphyra genome (65.8% G + C content, 13,125 gene loci) and elucidate traits that inform our understanding of the biology of red algae as one of the few multicellular eukaryotic lineages. Novel features of the Porphyra genome shared by other red algae relate to the cytoskeleton, calcium signaling, the cell cycle, and stress-tolerance mechanisms including photoprotection. Cytoskeletal motor proteins in Porphyra are restricted to a smallmore » set of kinesins that appear to be the only universal cytoskeletal motors within the red algae. Dynein motors are absent, and most red algae, including Porphyra, lack myosin. This surprisingly minimal cytoskeleton offers a potential explanation for why red algal cells and multicellular structures are more limited in size than in most multicellular lineages. Additional discoveries further relating to the stress tolerance of bangiophytes include ancestral enzymes for sulfation of the hydrophilic galactan-rich cell wall, evidence for mannan synthesis that originated before the divergence of green and red algae, and a high capacity for nutrient uptake. Our analyses provide a comprehensive understanding of the red algae, which are both commercially important and have played a major role in the evolution of other algal groups through secondary endosymbioses.« less

  7. The presence of algae mitigates the toxicity of copper-based algaecides to a nontarget organism.

    PubMed

    Bishop, West M; Willis, Ben E; Richardson, Robert J; Cope, W Gregory

    2018-05-07

    Copper-based algaecides are routinely applied to target noxious algal blooms in freshwaters. Standard toxicity testing data with copper suggest that typical concentrations used to control algae can cause deleterious acute impacts to nontarget organisms. These "clean" water experiments lack algae, which are specifically targeted in field applications of algaecides and contain competing ligands. The present research measured the influence of algae on algaecide exposure and subsequent response of the nontarget species Daphnia magna to copper sulfate and an ethanolamine-chelated copper algaecide (Captain®). Significant shifts (p < 0.05) in D. magna 48-h median lethal concentration (LC50) values were found when algae were present in exposures along with a copper salt or a chelated copper formulation. Copper sulfate 48-h LC50 values shifted from 75.3 to 317.8 and 517.8 μg Cu/L, whereas Captain increased from 353.8 to 414.2 and 588.5 μg Cu/L in no algae, 5 × 10 5 , and 5 × 10 6 cells/mL algae treatments, respectively. Larger shifts were measured with copper sulfate exposures, although Captain was less toxic to D. magna in all corresponding treatments. Captain was more effective at controlling Scenedesmus dimorphus at most concentrations, and control was inversely proportional to toxicity to D. magna. Overall, incorporating target competing ligands (i.e., algae) into standard toxicity testing is important for accurate risk assessment, and copper formulation can significantly alter algaecidal efficacy and risks to nontarget organisms. Environ Toxicol Chem 2018;9999:1-11. © 2018 SETAC. © 2018 SETAC.

  8. INTERACTIONS BETWEEN OCEAN ACIDIFICATION AND WARMING ON THE MORTALITY AND DISSOLUTION OF CORALLINE ALGAE(1).

    PubMed

    Diaz-Pulido, Guillermo; Anthony, Kenneth R N; Kline, David I; Dove, Sophie; Hoegh-Guldberg, Ove

    2012-02-01

    Coralline algae are among the most sensitive calcifying organisms to ocean acidification as a result of increased atmospheric carbon dioxide (pCO2 ). Little is known, however, about the combined impacts of increased pCO2 , ocean acidification, and sea surface temperature on tissue mortality and skeletal dissolution of coralline algae. To address this issue, we conducted factorial manipulative experiments of elevated CO2 and temperature and examined the consequences on tissue survival and skeletal dissolution of the crustose coralline alga (CCA) Porolithon (=Hydrolithon) onkodes (Heydr.) Foslie (Corallinaceae, Rhodophyta) on the southern Great Barrier Reef (GBR), Australia. We observed that warming amplified the negative effects of high pCO2 on the health of the algae: rates of advanced partial mortality of CCA increased from <1% to 9% under high CO2 (from 400 to 1,100 ppm) and exacerbated to 15% under warming conditions (from 26°C to 29°C). Furthermore, the effect of pCO2 on skeletal dissolution strongly depended on temperature. Dissolution of P. onkodes only occurred in the high-pCO2 treatment and was greater in the warm treatment. Enhanced skeletal dissolution was also associated with a significant increase in the abundance of endolithic algae. Our results demonstrate that P. onkodes is particularly sensitive to ocean acidification under warm conditions, suggesting that previous experiments focused on ocean acidification alone have underestimated the impact of future conditions on coralline algae. Given the central role that coralline algae play within coral reefs, these conclusions have serious ramifications for the integrity of coral-reef ecosystems. © 2011 Phycological Society of America.

  9. The removal of thermo-tolerant coliform bacteria by immobilized waste stabilization pond algae.

    PubMed

    Pearson, H W; Marcon, A E; Melo, H N

    2011-01-01

    This study investigated the potential of laboratory- scale columns of immobilized micro-algae to disinfect effluents using thermo-tolerant coliforms (TTC) as a model system. Cells of a Chlorella species isolated from a waste stabilization pond complex in Northeast Brazil were immobilized in calcium alginate, packed into glass columns and incubated in contact with TTC suspensions for up to 24 hours. Five to six log removals of TTC were achieved in 6 hours and 11 log removals in 12 hours contact time. The results were similar under artificial light and shaded sunlight. However little or no TTC removal occurred in the light in columns of alginate beads without immobilized algae present or when the immobilized algae were incubated in the dark suggesting that the presence of both algae and light were necessary for TTC decay. There was a positive correlation between K(b) values for TTC and increasing pH in the effluent from the immobilized algal columns within the range pH 7.2 and 8.9. The potential of immobilized algal technology for wastewater disinfection may warrant further investigation.

  10. Optimization of liquid media and biosafety assessment for algae-lysing bacterium NP23.

    PubMed

    Liao, Chunli; Liu, Xiaobo; Shan, Linna

    2014-09-01

    To control algal bloom caused by nutrient pollution, a wild-type algae-lysing bacterium was isolated from the Baiguishan reservoir in Henan province of China and identified as Enterobacter sp. strain NP23. Algal culture medium was optimized by applying a Placket-Burman design to obtain a high cell concentration of NP23. Three minerals (i.e., 0.6% KNO3, 0.001% MnSO4·H2O, and 0.3% K2HPO4) were found to be independent factors critical for obtaining the highest cell concentration of 10(13) CFU/mL, which was 10(4) times that of the control. In the algae-lysing experiment, the strain exhibited a high lysis rate for the 4 algae test species, namely, Chlorella vulgari, Scenedesmus, Microcystis wesenbergii, and Chlorella pyrenoidosa. Acute toxicity and mutagenicity tests showed that the bacterium NP23 had no toxic and mutagenic effects on fish, even in large doses such as 10(7) or 10(9) CFU/mL. Thus, Enterobacter sp. strain NP23 has strong potential application in the microbial algae-lysing project.

  11. Effects of hydrostatic pressure and supercritical carbon dioxide on the viability of Botryococcus braunii algae cells.

    PubMed

    Yildiz-Ozturk, Ece; Ilhan-Ayisigi, Esra; Togtema, Arnoud; Gouveia, Joao; Yesil-Celiktas, Ozlem

    2018-05-01

    In bio-based industries, Botryococcus braunii is identified as a potential resource for production of hydrocarbons having a wide range of applications in chemical and biopolymer industries. For a sustainable production platform, the algae cultivation should be integrated with downstream processes. Ideally the algae are not harvested, but the product is isolated while cultivation and growth is continued especially if the doubling time is slow. Consequently, hydrocarbons can be extracted while keeping the algae viable. In this study, the effects of pressure on the viability of B. braunii cells were tested hydrostatically and under supercritical CO 2 conditions. Viability was determined by light microscopy, methylene blue uptake and by re-cultivation of the algae after treatments to follow the growth. It was concluded that supercritical CO 2 was lethal to the algae, whereas hydrostatic pressure treatments up to 150 bar have not affected cell viability and recultivation was successful. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Biofouling attractants from a brown marine alga Ecklonia cava.

    PubMed

    Sidharthan, M; Viswanadh, G S; Kim, Kyoung Ho; Kim, Hyuk Jun; Shin, H W

    2007-04-01

    In recent years, industrial pollutants and the mountain forest fire ashes released into seawater cause damage to the marine environment, mainly it reduces the algal productivity in the inter tidal region. To get recover from the stress due to pollutants and to increase the growth and development of biofouling algae (benthic organisms), Ecklonia cava extract was investigated for its biofouling attracting efficiency. Bioactive guided fractions of E. cava extract derived from column chromatography were tested against spore attachment of a fouling alga, Ulva pertusa. Fraction B showed increased spore attachment rate with a maximum of 92 +/- 5%. This fraction was further analysed on HPLC, GC-Mass and NMR, deduced as pentadecanoic acid.

  13. Choline and Inositol Distribution in Algae and Fungi1

    PubMed Central

    Ikawa, Miyoshi; Borowski, Paul T.; Chakravarti, Ashima

    1968-01-01

    Inositol and choline were present in varying amounts among the species of Rhodophyta, Phaeophyta, Chlorophyta, and Euglenophyta examined. However, in the two members of the order Fucales (division Phaeophyta) examined, no detectable amounts of choline were found. In contrast, the species of Cyanophyta examined contained no detectable amounts of either choline or inositol. All species of the fungal classes Phycomyceteae, Ascomyceteae, and Basidiomyceteae collected contained both inositol and choline in varying amounts. The red, brown, and blue-green algae usually contained much less inositol and choline than do plant and animals sources, but the fungi and the algae Chlorella and Euglena contained amounts comparable to those present in plant sources. PMID:5647522

  14. Effect of algae and water on water color shift

    NASA Astrophysics Data System (ADS)

    Yang, Shengguang; Xia, Daying; Yang, Xiaolong; Zhao, Jun

    1991-03-01

    This study showed that the combined effect of absorption of planktonic algae and water on water color shift can be simulated approximately by the exponential function: Log( E {100cm/ W }+ E {100cm/ Xch1})=0.002λ-2.5 where E {100/cm W }, E {100cm/ Xchl} are, respectively, extinction coefficients of seawater and chlorophyll—a (concentration is equal to X mg/m3), and λ (nm) is wavelength. This empirical regression equation is very useful for forecasting the relation between water color and biomass in water not affected by terrigenous material. The main factor affecting water color shift in the ocean should be the absorption of blue light by planktonic algae.

  15. Unraveling the Photoprotective Response of Lichenized and Free-Living Green Algae (Trebouxiophyceae, Chlorophyta) to Photochilling Stress

    PubMed Central

    Míguez, Fátima; Schiefelbein, Ulf; Karsten, Ulf; García-Plazaola, José I.; Gustavs, Lydia

    2017-01-01

    Lichens and free-living terrestrial algae are widespread across many habitats and develop successfully in ecosystems where a cold winter limits survival. With the goal of comparing photoprotective responses in free-living and lichenized algae, the physiological responses to chilling and photochilling conditions were studied in three lichens and their isolated algal photobionts together as well as in a fourth free-living algal species. We specifically addressed the following questions: (i) Are there general patterns of acclimation in green algae under chilling and photochilling stresses? (ii) Do free-living algae exhibit a similar pattern of responses as their lichenized counterparts? (iii) Are these responses influenced by the selection pressure of environmental conditions or by the phylogenetic position of each species? To answer these questions, photosynthetic fluorescence measurements as well as pigment and low molecular weight carbohydrate pool analyses were performed under controlled laboratory conditions. In general, photochemical efficiency in all free-living algae decreased with increasing duration of the stress, while the majority of lichens maintained an unchanged photochemical activity. Nevertheless, these patterns cannot be generalized because the alga Trebouxia arboricola and the lichen Ramalina pollinaria (associated with Trebouxia photobionts) both showed a similar decrease in photochemical efficiency. In contrast, in the couple Elliptochloris bilobata-Baeomyces rufus, only the algal partner exhibited a broad physiological performance under stress. This study also highlights the importance of the xanthophyll cycle in response to the studied lichens and algae to photochilling stress, while the accumulation of sugars was not related to cold acclimation, except in the alga E. bilobata. The differences in response patterns detected among species can be mainly explained by their geographic origin, although the phylogenetic position should also be

  16. Unraveling the Photoprotective Response of Lichenized and Free-Living Green Algae (Trebouxiophyceae, Chlorophyta) to Photochilling Stress.

    PubMed

    Míguez, Fátima; Schiefelbein, Ulf; Karsten, Ulf; García-Plazaola, José I; Gustavs, Lydia

    2017-01-01

    Lichens and free-living terrestrial algae are widespread across many habitats and develop successfully in ecosystems where a cold winter limits survival. With the goal of comparing photoprotective responses in free-living and lichenized algae, the physiological responses to chilling and photochilling conditions were studied in three lichens and their isolated algal photobionts together as well as in a fourth free-living algal species. We specifically addressed the following questions: (i) Are there general patterns of acclimation in green algae under chilling and photochilling stresses? (ii) Do free-living algae exhibit a similar pattern of responses as their lichenized counterparts? (iii) Are these responses influenced by the selection pressure of environmental conditions or by the phylogenetic position of each species? To answer these questions, photosynthetic fluorescence measurements as well as pigment and low molecular weight carbohydrate pool analyses were performed under controlled laboratory conditions. In general, photochemical efficiency in all free-living algae decreased with increasing duration of the stress, while the majority of lichens maintained an unchanged photochemical activity. Nevertheless, these patterns cannot be generalized because the alga Trebouxia arboricola and the lichen Ramalina pollinaria (associated with Trebouxia photobionts) both showed a similar decrease in photochemical efficiency. In contrast, in the couple Elliptochloris bilobata - Baeomyces rufus , only the algal partner exhibited a broad physiological performance under stress. This study also highlights the importance of the xanthophyll cycle in response to the studied lichens and algae to photochilling stress, while the accumulation of sugars was not related to cold acclimation, except in the alga E. bilobata . The differences in response patterns detected among species can be mainly explained by their geographic origin, although the phylogenetic position should also be

  17. Reproduction capacity of Potamogeton crispus fragments and its role in water purification and algae inhibition in eutrophic lakes.

    PubMed

    Zhou, Yiwen; Zhou, Xiaohong; Han, Ruiming; Xu, Xiaoguang; Wang, Guoxiang; Liu, Xiansheng; Bi, Fengzhi; Feng, Deyou

    2017-02-15

    The role of fragments in restoring eutrophic lakes remains unclear despite the importance of re-establishing submerged macrophytes via fragments. This study established a manipulative experiment using different biomass fragments of Potamogeton crispus. This approach was adapted to study the reproductive capacity, nutrient removal efficiency, and algae inhibitory effect of fragments. Results showed that fragments could grow throughout a 49-day experiment by maintaining the stable photosynthesis efficiency of leaves and lengthening the stems. These floating fragments could regenerate by producing turions for the maintenance of their species. Moreover, the increasing removal efficiency of TP, TN, NH 4 + -N, and NO 3 - -N in water with the increase of fragment biomass indicates that the fragments could effectively purify water quality. Floating fragments competed with algae for nutrients, occupied a favorable ecological niche, and reduced algae biomass. They altered the structure of algae community and shifted the dominated green algae to cyanobacteria, the green algae of phytoplankton, and benthic algae. Findings imply that the postponable regulation of fragments is necessary for the ecological restoration of eutrophic lakes. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Development of biotic ligand models for chronic manganese toxicity to fish, invertebrates, and algae.

    PubMed

    Peters, Adam; Lofts, Stephen; Merrington, Graham; Brown, Bruce; Stubblefield, William; Harlow, Keven

    2011-11-01

    Ecotoxicity tests were performed with fish, invertebrates, and algae to investigate the effect of water quality parameters on Mn toxicity. Models were developed to describe the effects of Mn as a function of water quality. Calcium (Ca) has a protective effect on Mn toxicity for both fish and invertebrates, and magnesium (Mg) also provides a protective effect for invertebrates. Protons have a protective effect on Mn toxicity to algae. The models derived are consistent with models of the toxicity of other metals to aquatic organisms in that divalent cations can act as competitors to Mn toxicity in fish and invertebrates, and protons act as competitors to Mn toxicity in algae. The selected models are able to predict Mn toxicity to the test organisms to within a factor of 2 in most cases. Under low-pH conditions invertebrates are the most sensitive taxa, and under high-pH conditions algae are most sensitive. The point at which algae become more sensitive than invertebrates depends on the Ca concentration and occurs at higher pH when Ca concentrations are low, because of the sensitivity of invertebrates under these conditions. Dissolved organic carbon concentrations have very little effect on the toxicity of Mn to aquatic organisms. Copyright © 2011 SETAC.

  19. Spirulina: The Alga That Can End Malnutrition.

    ERIC Educational Resources Information Center

    Fox, Ripley D.

    1985-01-01

    One approach to eliminating malnutrition worldwide is to grow spirulina in recycled village wastes. Spirulina is a blue-green alga and a natural concentrated food. Spirulina can give poor villages a nutritional food supplement they can grow themselves and can reduce infectious disease at the same time. (Author/RM)

  20. Trentepohlia algae biofilms as bioindicator of atmospheric metal pollution.

    PubMed

    García-Florentino, Cristina; Maguregui, Maite; Morillas, Héctor; Marcaida, Iker; Salcedo, Isabel; Madariaga, Juan Manuel

    2018-06-01

    In this work, a reddish biocolonization composed mainly by Trentepohlia algae affecting a synthetic building material from a modern building from the 90s located in the Bizkaia Science and Technology Park (Zamudio, North of Spain) was characterized and its ability to accumulate metals coming from the surrounding atmosphere was evaluated. To asses if these biofilms can act as bioindicators of the surrounding metal pollution, a fast non-invasive in situ methodology based on the use of hand-held energy dispersive X-ray fluorescence (HH-ED-XRF) was used. In order to corroborate the in situ obtained conclusions, some fragments from the affected material were taken to analyze the metal distribution by means of micro-energy dispersive X-ray fluorescence spectroscopy (μ-ED-XRF) and to confirm the presence of metal particles deposited on it using Scanning Electron Microscopy coupled to an Energy Dispersive Spectrometer (SEM-EDS). In order to confirm if Trentepohlia algae biofilms growing on the surface of building materials could be a fast way to in situ provide information about the surrounding metal pollution, a second Trentepohlia algae biofilm growing on a different kind of material (sandstone) was analyzed from an older historical building, La Galea Fortress (Getxo, North of Spain). Copyright © 2018. Published by Elsevier B.V.

  1. Consolidated bioprocessing for production of polyhydroxyalkanotes from red algae Gelidium amansii.

    PubMed

    Sawant, Shailesh S; Salunke, Bipinchandra K; Kim, Beom Soo

    2018-04-01

    Noncompetitive carbon sources such as algae are unconventional and promising raw material for sustainable biofuel production. The capability of one marine bacterium, Saccharophagus degradans 2-40 to degrade red seaweed Gelidium amansii for production of polyhydroxyalkanoates (PHA) was evaluated in this study. S. degradans can readily attach to algae, degrade algal carbohydrates, and utilize that material as main carbon source. Minimal media containing 8g/L G. amansii were used for the growth of S. degradans. The PHA content obtained was 17-27% of dry cell weight by pure culture of S. degradans and co-culture of S. degradans and Bacillus cereus, a contaminant found with S. degradans cultures. The PHA type was found to be poly(3-hydroxybutyrate) by gas chromatography and Fourier transform-infrared spectroscopy. This work demonstrates PHA production through consolidated bioprocessing of insoluble, untreated red algae by bacterial pure culture and co-culture. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Investigating the feasibility of growing algae for fuel in Southern nevada

    NASA Astrophysics Data System (ADS)

    Moazeni, Faegheh

    Microalgae capable of growing in waste are adequate to be mass-cultivated for biodiesel, avoiding fertilizers and clean water, two obstacles to sustainability of the feedstock production. This study replaces fertilizers and clean water with waste products. The investigated wastes include (1) the liquid fraction of sewage after solids and particles are removed, known as centrate, and (2) algal biomass residue, i.e. the algae remaining at the end of the lipids extraction process at biofuel plants. These wastes contain sufficient amount of nitrogen and phosphorus required for algal growth. This study proposes a system in which centrate would be used as an initial source of water and nutrients for microalgal growth. The generated biomass waste can be continuously recycled, serving as a fertilizer. If so desired, the centrate can be reverted back into the system from time to time as a nutrition supplement and as a make-up water source, particularly in open ponds that face evaporation. Of the six studied algae, i.e. Chlorella sorokiniana, Encyonema caespitosum, Nitzschia thermalis, Scenedesmus sp., Synechocystis sp., and Limnothrix sp., mostly isolated from the habitats influenced by municipal wastewater in and around the Las Vegas Valley, two green algae were eligible. In the laboratory, the green algae C. sorokiniana and Scenedesmus sp. grew in the media composed of centrate or algal residue faster than in the mineral medium BG11, optimized for algal growth. The enhanced productivity is mainly attributed to the photosynthesis known for mixotrophic process and the presence of organic carbon in the waste which serves as an extra source of energy. Tolerance for hard water and strong light and, in the case of C. sorokiniana , an unusually high optimum temperature between 32 and 35°C are also attributing factors to the enhanced productivity of algae. These studied species are particularly suited for cultivation in their native southwestern United States, particularly

  3. Ecology of planktonic foraminifera and their symbiotic algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gastrich, M.D.

    1986-01-01

    Two types of symbiotic algae occurred abundantly and persistently in the cytoplasm of several species of planktonic Foraminifera over a ten year period in different tropical and subtropical areas of the North Atlantic Ocean. These planktonic Foraminifera host species consistently harbored either dinoflagellates or a newly described minute coccoid algal type. There appeared to be a specific host-symbiont relationship in these species regardless of year, season or geographic locality. The larger ovoid dinoflagellates (Pyrrhophycophyta) occur in the spinose species Globigerinoides ruber, Globigerinoides sacculifer, G. conglobatus and Orbulina universa. The smaller alga, from 1.5 to 3.5 um in diameter, occurs inmore » one spinose species Globigerinella aequilateralis and also in the non-spinose species Globigerinita glutinata, Globoquadrina dutertrei, Globorotalia menardii, Globorotalia cristata, Globorotalia inflata, Candeina nitida, in various juvenile specimens and at all seasons except the winter months in Pulleniatina obliquiloculata and Globorotalial hirsuta. Controlled laboratory studies indicated a significant C incorporation into the host cytoplasm and inorganic calcium carbonate test of Globigerinoides ruber. During incubation for up to two hours, the /sup 14/C uptake into the cytoplasm and test in the light was significantly greater than uptake in the dark by living specimens or by dead foraminifers. There appears to be light-enhanced uptake of /sup 14/C into the test with dinoflagellate photosynthesis contributing to host calcification. In culture, symbiotic algae were observed to survive for the duration of the lifespan of their hosts.« less

  4. Characterization of ash in algae and other materials by determination of wet acid indigestible ash and microscopic examination

    USDA-ARS?s Scientific Manuscript database

    Algae are known for high ash content. It is important to properly characterize their ash for value added utilization of algae as food, feed, and feedstock for biofuels. In this study, 12 algae of different sources were measured for proximate composition and mineral profile. Results showed that the r...

  5. Effects of N and P enrichment on competition between phytoplankton and benthic algae in shallow lakes: a mesocosm study.

    PubMed

    Zhang, Xiufeng; Mei, Xueying; Gulati, Ramesh D; Liu, Zhengwen

    2015-03-01

    Competition for resources between coexisting phytoplankton and benthic algae, but with different habitats and roles in functioning of lake ecosystems, profoundly affects dynamics of shallow lakes in the process of eutrophication. An experiment was conducted to test the hypothesis that combined enrichment with nitrogen (N) and phosphorus (P) would be a greater benefit to phytoplankton than benthic algae. The growth of phytoplankton and benthic algae was measured as chlorophyll a (Chl a) in 12 shallow aquatic mesocosms supplemented with N, P, or both. We found that enrichment with N enhanced growth of benthic algae, but not phytoplankton. P enrichment had a negative effect on benthic algal growth, and no effect on the growth of phytoplankton. N+P enrichment had a negative effect on benthic algae, but enhanced the growth of phytoplankton, thus reducing the proportion of benthic algae contributing to the combined biomass of these two groups of primary producers. Thus, combined N+P enrichment is more favorable to phytoplankton in competition with benthic algae than enrichment with either N or P alone. Our study indicates that combined enrichment with N+P promotes the dominance of phytoplankton over benthic algae, with consequences for the trophic dynamics of shallow lake ecosystems.

  6. Are algae relevant to the detritus-based food web in tank-bromeliads?

    PubMed

    Brouard, Olivier; Le Jeune, Anne-Hélène; Leroy, Céline; Cereghino, Régis; Roux, Olivier; Pelozuelo, Laurent; Dejean, Alain; Corbara, Bruno; Carrias, Jean-François

    2011-01-01

    We assessed the occurrence of algae in five species of tank-bromeliads found in contrasting environmental sites in a Neotropical, primary rainforest around the Nouragues Research Station, French Guiana. The distributions of both algal abundance and biomass were examined based on physical parameters, the morphological characteristics of bromeliad species and with regard to the structure of other aquatic microbial communities held in the tanks. Algae were retrieved in all of the bromeliad species with mean densities ranging from ∼10(2) to 10(4) cells/mL. Their biomass was positively correlated to light exposure and bacterial biomass. Algae represented a tiny component of the detrital food web in shaded bromeliads but accounted for up to 30 percent of the living microbial carbon in the tanks of Catopsis berteroniana, located in a highly exposed area. Thus, while nutrient supplies are believed to originate from wind-borne particles and trapped insects (i.e., allochtonous organic matter), our results indicate that primary producers (i.e., autochtonous organic matter) are present in this insectivorous bromeliad. Using a 24-h incubation of size-fractionated and manipulated samples from this plant, we evaluated the impact of mosquito foraging on algae, other microorganisms and rotifers. The prey assemblages were greatly altered by the predation of mosquito larvae. Grazing losses indicated that the dominant algal taxon, Bumilleriopsis sp., like protozoa and rotifers, is a significant part of the diet of mosquito larvae. We conclude that algae are a relevant functional community of the aquatic food web in C. berteroniana and might form the basis of a complementary non-detrital food web.

  7. Are Algae Relevant to the Detritus-Based Food Web in Tank-Bromeliads?

    PubMed Central

    Brouard, Olivier; Le Jeune, Anne-Hélène; Leroy, Céline; Cereghino, Régis; Roux, Olivier; Pelozuelo, Laurent; Dejean, Alain; Corbara, Bruno; Carrias, Jean-François

    2011-01-01

    We assessed the occurrence of algae in five species of tank-bromeliads found in contrasting environmental sites in a Neotropical, primary rainforest around the Nouragues Research Station, French Guiana. The distributions of both algal abundance and biomass were examined based on physical parameters, the morphological characteristics of bromeliad species and with regard to the structure of other aquatic microbial communities held in the tanks. Algae were retrieved in all of the bromeliad species with mean densities ranging from ∼102 to 104 cells/mL. Their biomass was positively correlated to light exposure and bacterial biomass. Algae represented a tiny component of the detrital food web in shaded bromeliads but accounted for up to 30 percent of the living microbial carbon in the tanks of Catopsis berteroniana, located in a highly exposed area. Thus, while nutrient supplies are believed to originate from wind-borne particles and trapped insects (i.e., allochtonous organic matter), our results indicate that primary producers (i.e., autochtonous organic matter) are present in this insectivorous bromeliad. Using a 24-h incubation of size-fractionated and manipulated samples from this plant, we evaluated the impact of mosquito foraging on algae, other microorganisms and rotifers. The prey assemblages were greatly altered by the predation of mosquito larvae. Grazing losses indicated that the dominant algal taxon, Bumilleriopsis sp., like protozoa and rotifers, is a significant part of the diet of mosquito larvae. We conclude that algae are a relevant functional community of the aquatic food web in C. berteroniana and might form the basis of a complementary non-detrital food web. PMID:21625603

  8. Hypopigmenting Effects of Brown Algae-Derived Phytochemicals: A Review on Molecular Mechanisms

    PubMed Central

    Azam, Mohammed Shariful; Choi, Jinkyung; Lee, Min-Sup; Kim, Hyeung-Rak

    2017-01-01

    There is a rapid increase in the demand for natural hypopigmenting agents from marine sources for cosmeceutical and pharmaceutical applications. Currently, marine macroalgae are considered as a safe and effective source of diverse bioactive compounds. Many research groups are exploring marine macroalgae to discover and characterize novel compounds for cosmeceutical, nutraceutical, and pharmaceutical applications. Many types of bioactive secondary metabolites from marine algae, including phlorotannins, sulfated polysaccharides, carotenoids, and meroterpenoids, have already been documented for their potential applications in the pharmaceutical industry. Among these metabolites, phlorotannins from brown algae have been widely screened for their pharmaceutical and hypopigmenting effects. Unfortunately, the majority of these articles did not have detailed investigations on molecular targets, which is critical to fulfilling the criteria for their cosmeceutical and pharmaceutical use. Very recently, a few meroterpenoids have been discovered from Sargassum sp., with the examination of their anti-melanogenic properties and mechanisms. Despite the scarcity of in vivo and clinical investigations of molecular mechanistic events of marine algae-derived hypopigmenting agents, identifying the therapeutic targets and their validation in humans has been a major challenge for future studies. In this review, we focused on available data representing molecular mechanisms underlying hypopigmenting properties of potential marine brown alga-derived compounds. PMID:28946635

  9. Heat-stable oral alga-based vaccine protects mice from Staphylococcus aureus infection.

    PubMed

    Dreesen, Imke A J; Charpin-El Hamri, Ghislaine; Fussenegger, Martin

    2010-02-01

    While 15 million deaths per year are caused by communicable pathogens worldwide, health care authorities emphasize the considerable impact of poverty on the incidence of infectious diseases. The emergence of antigen-expressing plant tissues (e.g. rice, tomato, potato) has indicated the potential of land plants for low-cost vaccines in oral immunization programs. In this study, we engineered the chloroplasts of the unicellular green alga Chlamydomonas reinhardtii for the stable expression of the D2 fibronectin-binding domain of Staphylococcus aureus fused with the cholera toxin B subunit (CTB), under the control of rbcL UTRs. Analysis of sera and faeces of mice, fed for 5 weeks with transgenic algae grown in confined Wave Bioreactor, revealed the induction of specific mucosal and systemic immune responses. Algae-based vaccination significantly reduced the pathogen load in the spleen and the intestine of treated mice and protected 80% of them against lethal doses of S. aureus. Importantly, the alga vaccine was stable for more than 1.5 years at room temperature. These results indicate that C. reinhardtii may play an important role in molecular pharming, as it combines the beneficial features of land plant vaccines, while offering unmatched ease of growth compared to other members of the plant kingdom. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Predicting the risk of toxic blooms of golden alga from cell abundance and environmental covariates

    USGS Publications Warehouse

    Patino, Reynaldo; VanLandeghem, Matthew M.; Denny, Shawn

    2016-01-01

    Golden alga (Prymnesium parvum) is a toxic haptophyte that has caused considerable ecological damage to marine and inland aquatic ecosystems worldwide. Studies focused primarily on laboratory cultures have indicated that toxicity is poorly correlated with the abundance of golden alga cells. This relationship, however, has not been rigorously evaluated in the field where environmental conditions are much different. The ability to predict toxicity using readily measured environmental variables and golden alga abundance would allow managers rapid assessments of ichthyotoxicity potential without laboratory bioassay confirmation, which requires additional resources to accomplish. To assess the potential utility of these relationships, several a priori models relating lethal levels of golden alga ichthyotoxicity to golden alga abundance and environmental covariates were constructed. Model parameters were estimated using archived data from four river basins in Texas and New Mexico (Colorado, Brazos, Red, Pecos). Model predictive ability was quantified using cross-validation, sensitivity, and specificity, and the relative ranking of environmental covariate models was determined by Akaike Information Criterion values and Akaike weights. Overall, abundance was a generally good predictor of ichthyotoxicity as cross validation of golden alga abundance-only models ranged from ∼ 80% to ∼ 90% (leave-one-out cross-validation). Environmental covariates improved predictions, especially the ability to predict lethally toxic events (i.e., increased sensitivity), and top-ranked environmental covariate models differed among the four basins. These associations may be useful for monitoring as well as understanding the abiotic factors that influence toxicity during blooms.

  11. [Discrimination of Red Tide algae by fluorescence spectra and principle component analysis].

    PubMed

    Su, Rong-guo; Hu, Xu-peng; Zhang, Chuan-song; Wang, Xiu-lin

    2007-07-01

    Fluorescence discrimination technology for 11 species of the Red Tide algae at genus level was constructed by principle component analysis and non-negative least squares. Rayleigh and Raman scattering peaks of 3D fluorescence spectra were eliminated by Delaunay triangulation method. According to the results of Fisher linear discrimination, the first principle component score and the second component score of 3D fluorescence spectra were chosen as discriminant feature and the feature base was established. The 11 algae species were tested, and more than 85% samples were accurately determinated, especially for Prorocentrum donghaiense, Skeletonema costatum, Gymnodinium sp., which have frequently brought Red tide in the East China Sea. More than 95% samples were right discriminated. The results showed that the genus discriminant feature of 3D fluorescence spectra of Red Tide algae given by principle component analysis could work well.

  12. Alga-PrAS (Algal Protein Annotation Suite): A Database of Comprehensive Annotation in Algal Proteomes

    PubMed Central

    Kurotani, Atsushi; Yamada, Yutaka

    2017-01-01

    Algae are smaller organisms than land plants and offer clear advantages in research over terrestrial species in terms of rapid production, short generation time and varied commercial applications. Thus, studies investigating the practical development of effective algal production are important and will improve our understanding of both aquatic and terrestrial plants. In this study we estimated multiple physicochemical and secondary structural properties of protein sequences, the predicted presence of post-translational modification (PTM) sites, and subcellular localization using a total of 510,123 protein sequences from the proteomes of 31 algal and three plant species. Algal species were broadly selected from green and red algae, glaucophytes, oomycetes, diatoms and other microalgal groups. The results were deposited in the Algal Protein Annotation Suite database (Alga-PrAS; http://alga-pras.riken.jp/), which can be freely accessed online. PMID:28069893

  13. Relationship between the Unicellular Red Alga Porphyridium sp. and Its Predator, the Dinoflagellate Gymnodinium sp

    PubMed Central

    Ucko, Michal; Cohen, Ephraim; Gordin, Hillel; Arad, Shoshana (Malis)

    1989-01-01

    Contamination of algae cultivated outdoors by various microorganisms, such as bacteria, fungi, algae, and protozoa, can affect growth and product quality, sometimes causing fast collapse of the cultures. The main contaminant of Porphyridium cultures grown outdoors in Israel is a Gymnodinium sp., a dinoflagellate that feeds on the alga. Comparison of the effects of various environmental conditions, i.e., pH, salinity, and temperature, on Gymnodinium and Porphyridium species revealed that the Gymnodinium sp. has sharp optimum curves, whereas the Porphyridium sp. has a wider range of optimum conditions and is also more resistant to extreme environmental variables. The mode of preying on the alga was observed, and the specificity of the Gymnodinium sp. for the Porphyridium sp. was shown. In addition, Gymnodinium extract was shown to contain enzymatic degrading activity specific to the Porphyridium sp. cell wall polysaccharide. PMID:16348059

  14. Isolation of a bacterial strain, Acinetobacter sp. from centrate wastewater and study of its cooperation with algae in nutrients removal.

    PubMed

    Liu, Hui; Lu, Qian; Wang, Qin; Liu, Wen; Wei, Qian; Ren, Hongyan; Ming, Caibing; Min, Min; Chen, Paul; Ruan, Roger

    2017-07-01

    Algae were able to grow healthy on bacteria-containing centrate wastewater in a pilot-scale bioreactor. The batch experiment indicated that the co-cultivation of algae and wastewater-borne bacteria improved the removal efficiencies of chemical oxygen demand and total phosphorus in centrate wastewater to 93.01% and 98.78%, respectively. A strain of beneficial aerobic bacteria, Acinetobacter sp., was isolated and its biochemical characteristics were explored. Synergistic cooperation was observed in the growth of algae and Acinetobacter sp. Removal efficiencies of some nutrients were improved significantly by the co-cultivation of algae and Acinetobacter sp. After treatment, residual nutrients in centrate wastewater reached the permissible discharge limit. The cooperation between algae and Acinetobacter sp. was in part attributed to the exchange of carbon dioxide and oxygen between the algae and bacteria. This synergetic relationship between algae and Acinetobacter sp. provided a promising way to treat the wastewater by improving the nutrients removal and biomass production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Use of Copper to Selectively Inhibit Brachionus calyciflorus (Predator) Growth in Chlorella kessleri (Prey) Mass Cultures for Algae Biodiesel Production

    PubMed Central

    Pradeep, Vishnupriya; Van Ginkel, Steven W.; Park, Sichoon; Igou, Thomas; Yi, Christine; Fu, Hao; Johnston, Rachel; Snell, Terry; Chen, Yongsheng

    2015-01-01

    A single Brachionus rotifer can consume thousands of algae cells per hour causing an algae pond to crash within days of infection. Thus, there is a great need to reduce rotifers in order for algal biofuel production to become reality. Copper can selectively inhibit rotifers in algae ponds, thereby protecting the algae crop. Differential toxicity tests were conducted to compare the copper sensitivity of a model rotifer—B. calyciflorus and an alga, C. kessleri. The rotifer LC50 was <0.1 ppm while the alga was not affected up to 5 ppm Cu(II). The low pH of the rotifer stomach may make it more sensitive to copper. However, when these cultures were combined, a copper concentration of 1.5 ppm was needed to inhibit the rotifer as the alga bound the copper, decreasing its bioavailability. Copper (X ppm) had no effect on downstream fatty acid methyl ester extraction. PMID:26404247

  16. Capture of algae promotes growth and propagation in aquatic Utricularia

    PubMed Central

    Koller-Peroutka, Marianne; Lendl, Thomas; Watzka, Margarete; Adlassnig, Wolfram

    2015-01-01

    Background and Aims Some carnivorous plants trap not only small animals but also algae and pollen grains. However, it remains unclear if these trapped particles are useless bycatch or whether they provide nutrients for the plant. The present study examines this question in Utricularia, which forms the largest and most widely spread genus of carnivorous plants, and which captures prey by means of sophisticated suction traps. Methods Utricularia plants of three different species (U. australis, U. vulgaris and U. minor) were collected in eight different water bodies including peat bogs, lakes and artificial ponds in three regions of Austria. The prey spectrum of each population was analysed qualitatively and quantitatively, and correlated with data on growth and propagation, C/N ratio and δ15N. Key Results More than 50 % of the prey of the Utricularia populations investigated consisted of algae and pollen, and U. vulgaris in particular was found to capture large amounts of gymnosperm pollen. The capture of algae and pollen grains was strongly correlated with most growth parameters, including weight, length, budding and elongation of internodes. The C/N ratio, however, was less well correlated. Other prey, such as moss leaflets, fungal hyphae and mineral particles, were negatively correlated with most growth parameters. δ15N was positively correlated with prey capture, but in situations where algae were the main prey objects it was found that the standard formula for calculation of prey-derived N was no longer applicable. Conclusions The mass capture of immotile particles confirms the ecological importance of autonomous firing of the traps. Although the C/N ratio was little influenced by algae, they clearly provide other nutrients, possibly including phosphorus and trace elements. By contrast, mosses, fungi and mineral particles appear to be useless bycatch. Correlations with chemical parameters indicate that Utricularia benefits from nutrient-rich waters by uptake

  17. Evaluation of the contamination of marine algae (seaweed) from the St. Lawrence River and likely to be consumed by humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phaneuf, D.; Cote, I.; Dumas, P.

    The goal of the study was to assess the contamination of marine algae (seaweeds) growing in the St. Lawrence River estuary and Gulf of St. Lawrence and to evaluate the risks to human health from the consumption of these algae. Algae were collected by hand at low tide. A total of 10 sites on the north and south shores of the St. Lawrence as well as in Baie des Chaleurs were sampled. The most frequently collected species of algae were Fucus vesiculosus, Ascophyllum nodosum, Laminaria Longicruris, Palmaria palmata, Ulva lactuca, and Fucus distichus. Alga samples were analyzed for metals iodine,more » and organochlorines. A risk assessment was performed using risk factors. In general, concentrations in St. Lawrence algae were not very high. Consequently, health risks associated with these compounds in St. Lawrence algae were very low. Iodine concentration, on the other hand, could be of concern with regard to human health. Regular consumption of algae, especially of Laminaria sp., could result in levels of iodine sufficient to cause thyroid problems. For regular consumers, it would be preferable to choose species with low iodine concentrations, such as U. lactuca and P. palmata, in order to prevent potential problems. Furthermore, it would also be important to assess whether preparation for consumption or cooking affects the iodine content of algae. Algae consumption may also have beneficial health effects. Scientific literature has shown that it is a good source of fiber and vitamins, especially vitamin B{sub 12}.« less

  18. Adaptation of light-harvesting functions of unicellular green algae to different light qualities.

    PubMed

    Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2018-05-28

    Oxygenic photosynthetic organisms perform photosynthesis efficiently by distributing captured light energy to photosystems (PSs) at an appropriate balance. Maintaining photosynthetic efficiency under changing light conditions requires modification of light-harvesting and energy-transfer processes. In the current study, we examined how green algae regulate their light-harvesting functions in response to different light qualities. We measured low-temperature time-resolved fluorescence spectra of unicellular green algae Chlamydomonas reinhardtii and Chlorella variabilis cells grown under different light qualities. By observing the delayed fluorescence spectra, we demonstrated that both types of green algae primarily modified the associations between light-harvesting chlorophyll protein complexes (LHCs) and PSs (PSII and PSI). Under blue light, Chlamydomonas transferred more energy from LHC to chlorophyll (Chl) located far from the PSII reaction center, while energy was transferred from LHC to PSI via different energy-transfer pathways in Chlorella. Under green light, both green algae exhibited enhanced energy transfer from LHCs to both PSs. Red light induced fluorescence quenching within PSs in Chlamydomonas and LHCs in Chlorella. In Chlorella, energy transfer from PSII to PSI appears to play an important role in balancing excitation between PSII and PSI.

  19. Isolation of plasmid from the blue-green alga Spirulina platensis

    NASA Astrophysics Data System (ADS)

    Qin, Song; Tong, Shun; Zhang, Peijun; Tseng, C. K.

    1993-09-01

    CCC plasmid was isolated from an economically important blue-green alga — Spirulina platensis (1.7×106 dalton from the S6 strain and 1.2×106 dalton from the F3 strain) using a rapid method based on ultrasonic disruption of algal cells and alkaline removal of chromosomal DNA. The difference in the molecular weight of the CCC DNAs from the two strains differing in form suggests that plasmid may be related with the differentiation of algal form. This modified method, which does not use any lysozyme, is a quick and effective method of plasmid isolation, especially for filamentous blue-green algae.

  20. HILIS - A HIGH INTENSITY LIGHT SYSTEM FOR ALGAE FOOD PRODUCTION,

    DTIC Science & Technology

    ALGAE, PRODUCTION CONTROL), (*FOOD, FEASIBILITY STUDIES), CHLORELLA , CALORIMETRY, NUTRITION, MODEL TESTS, ILLUMINATION, BRIGHTNESS, TEMPERATURE CONTROL, HEAT TRANSFER, SPECTRUM SIGNATURES, TEST METHODS, TEST EQUIPMENT.

  1. Purification and partial characterization of haloperoxidase from fresh water algae Cladophora glomerata.

    PubMed

    Verdel, E F; Kline, P C; Wani, S; Woods, A E

    2000-02-01

    Many haloperoxidases have been purified from diverse organisms, including lichen, fungi, bacteria, and marine algae. In this study a haloperoxidase was purified from the fresh water algae, Cladophora glomerata, by homogenization and centrifugation, ammonium sulfate fractionation, ion-exchange and gel filtration chromatography. Molecular weight was determined by SDS-PAGE and by size exclusion HPLC and found to be approximately 43 kDa. The isoelectric point was determined to be approximately 8.1 by isoelectric focusing. The UV spectrum of the peroxidase showed a strong absorbance in the Soret band indicating a heme protein, unlike vanadium-dependent haloperoxidases from marine algae. Fresh water algal haloperoxidase catalyzed the iodination of tyrosine at a pH of 3.1. This haloperoxidase also catalyzes the oxidation of guaiacol and oxidation of iodide as well as catalyzing a peroxide-dependent reaction in both the presence and absence of chloride and bromide ions.

  2. Interactions between arsenic species and marine algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, J.G.

    The arsenic concentration and speciation of marine algae varies widely, from 0.4 to 23 ng.mg/sup -1/, with significant differences in both total arsenic content and arsenic speciation occurring between algal classes. The Phaeophyceae contain more arsenic than other algal classes, and a greater proportion of the arsenic is organic. The concentration of inorganic arsenic is fairly constant in macro-algae, and may indicate a maximum level, with the excess being reduced and methylated. Phytoplankton take up As(V) readily, and incorporate a small percentage of it into the cell. The majority of the As(V) is reduced, methylated, and released to the surroundingmore » media. The arsenic speciation in phytoplankton and Valonia also changes when As(V) is added to cultures. Arsenate and phosphate compete for uptake by algal cells. Arsenate inhibits primary production at concentrations as low as 5 ..mu..g.1/sup -1/ when the phosphate concentration is low. The inhibition is competitive. A phosphate enrichment of > 0.3 ..mu..M alleviates this inhibition; however, the As(V) stress causes an increase in the cell's phosphorus requirement. Arsenite is also toxic to phytoplankton at similar concentrations. Methylated arsenic species did not affect cell productivity, even at concentrations of 25 ..mu..g.1/sup -1/. Thus, the methylation of As(V) by the cell produces a stable, non-reactive compound which is nontoxic. The uptake and subsequent reduction and methylation of As(V) is a significant factor in determining the arsenic biogeochemistry of productive systems, and also the effect that the arsenic may have on algal productivity. Therefore, the role of marine algae in determining the arsenic speciation of marine systems cannot be ignored. (ERB)« less

  3. Marine Polysaccharides from Algae with Potential Biomedical Applications

    PubMed Central

    de Jesus Raposo, Maria Filomena; de Morais, Alcina Maria Bernardo; de Morais, Rui Manuel Santos Costa

    2015-01-01

    There is a current tendency towards bioactive natural products with applications in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put some emphasis in research on marine organisms, including macroalgae and microalgae, among others. Polysaccharides with marine origin constitute one type of these biochemical compounds that have already proved to have several important properties, such as anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and antioxidant, making them promising bioactive products and biomaterials with a wide range of applications. Their properties are mainly due to their structure and physicochemical characteristics, which depend on the organism they are produced by. In the biomedical field, the polysaccharides from algae can be used in controlled drug delivery, wound management, and regenerative medicine. This review will focus on the biomedical applications of marine polysaccharides from algae. PMID:25988519

  4. Comparison of toxicity of class-based organic chemicals to algae and fish based on discrimination of excess toxicity from baseline level.

    PubMed

    Li, Jin J; Tai, Hong W; Yu, Yang; Wen, Yang; Wang, Xiao H; Zhao, Yuan H

    2015-07-01

    Toxicity data to fish and algae were used to investigate excess toxicity between species. Results show that chemicals exhibiting excess toxicity to fish also show excess toxicity to algae for most of the compounds. This indicates that they share the same mode of action between species. Similar relationships between logKOW and toxicities to fish and algae for baseline and less inert compounds suggest that they have similar critical body residues in the two species. Differences in excess toxicity for some compounds suggest that there is a difference of physiological structure and metabolism between fish and algae. Some reactive compounds (e.g. polyamines) exhibit greater toxic effects for algae than those for fish because of relatively low bio-uptake potential of these hydrophilic compounds in fish as compared with that in algae. Esters exhibiting greater toxicity in fish than that in algae indicate that metabolism can affect the discrimination of excess toxicity from baseline level. Algae growth inhibition is a very good surrogate for fish lethality. This is not only because overall toxicity sensitivity to algae is greater than that to fish, but also the excess toxicity calculated from algal toxicity can better reflect reactivity of compounds with target molecules than fish toxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Effect of chemically and biologically synthesized Ag nanoparticles on the algae growth inhibition

    NASA Astrophysics Data System (ADS)

    Anna, Mražiková; Oksana, Velgosová; Jana, Kavuličová

    2017-12-01

    Over the past few years green methods for preparation of silver nanoparticles has become necessary due to its friendly influence on ecosystem. In the present work antimicrobial properties of biologically synthesized silver nanoparticles (Bio-AgNPs) using green algae extract and chemically synthesized silver nanoparticles (Chem-AgNPs) using sodium citrate against algae Parachlorella kessleri is investigated. Both used Bio-AgNPs and Chem-AgNPs exhibit long-term stability as demonstrated by UV-vis spectroscopy measurements. The results revealed stronger toxic effects of Bio-AgNPs on agar plates what was confirmed clear inhibition zone around wells impregnated with Bio-AgNPs. On the other hand Bio-AgNPs were confirmed to be less toxic in aquatic environments for the growths of green algae P. kessleri comparing to Chem-AgNPs.

  6. [Determination of various toxic minerals in spiruline algae of different origins, and evaluation of long-term toxicity in the rat of a lot of spiruline algae of Mexican origin].

    PubMed

    Boudène, C; Collas, E; Jenkins, C

    1975-01-01

    A detailed analytical study made on samples of Spirulines algae of various origins showed that these microorganisms may present an important telluric contamination, especially demonstrated by high levels of fluorine and arsenic they contain. A long term animal experimentation has been achieved with Spirula Maxima, obtained from the Sosa Texcoco solar evaporator. A diet contained in total proteins 25 p. 100 of dried atomized algae and was given for 75 weeks to Wistar rats. All along the experiment, the animals submitted to that diet showed no difference with control animals fed with caseine. The increase in weight was comparable for control animals and male experimented animals; a slight decrease in weight has been observed for females fed with algae up to the 30th week. At the end of the experiment, a normal frequency of tumours was noted on experimented animals. The cumulative potentiality of certain mineral toxicants, has been evaluated, when abnormal high levels of them have been detected in the Spirulines samples. The fed animals have been killed at definite times all along the experiment and the metals dosed in the body. Such a cumulative potency has been demonstrated for arsenic. On the contrary, in the case of fluorine, even particular dosages in the femoral bone could not show any significant cumulation of that toxicant, comparing with control animals. In conclusion, the authors have not noted any evident toxicity related to the samples of Spirulines tested in rats, whatever these algae were the only source of proteins in the diet. They hope anyway that the exact origin of contamination of these algaes by these metals will be better known to prevent the variations in the composition of industrial samples of Spirulines according to these metals for instance.

  7. A Green Algae Mixture of Scenedesmus and Schroederiella Attenuates Obesity-Linked Metabolic Syndrome in Rats

    PubMed Central

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C.; Paul, Nicholas A.; Brown, Lindsay

    2015-01-01

    This study investigated the responses to a green algae mixture of Scenedesmus dimorphus and Schroederiella apiculata (SC) containing protein (46.1% of dry algae), insoluble fibre (19.6% of dry algae), minerals (3.7% of dry algae) and omega-3 fatty acids (2.8% of dry algae) as a dietary intervention in a high carbohydrate, high fat diet-induced metabolic syndrome model in four groups of male Wistar rats. Two groups were fed with a corn starch diet containing 68% carbohydrates as polysaccharides, while the other two groups were fed a diet high in simple carbohydrates (fructose and sucrose in food, 25% fructose in drinking water, total 68%) and fats (saturated and trans fats from beef tallow, total 24%). High carbohydrate, high fat-fed rats showed visceral obesity with hypertension, insulin resistance, cardiovascular remodelling, and nonalcoholic fatty liver disease. SC supplementation (5% of food) lowered total body and abdominal fat mass, increased lean mass, and attenuated hypertension, impaired glucose and insulin tolerance, endothelial dysfunction, infiltration of inflammatory cells into heart and liver, fibrosis, increased cardiac stiffness, and nonalcoholic fatty liver disease in the high carbohydrate, high fat diet-fed rats. This study suggests that the insoluble fibre or protein in SC helps reverse diet-induced metabolic syndrome. PMID:25875119

  8. Solar spectral conversion for improving the photosynthetic activity in algae reactors.

    PubMed

    Wondraczek, Lothar; Batentschuk, Miroslaw; Schmidt, Markus A; Borchardt, Rudolf; Scheiner, Simon; Seemann, Benjamin; Schweizer, Peter; Brabec, Christoph J

    2013-01-01

    Sustainable biomass production is expected to be one of the major supporting pillars for future energy supply, as well as for renewable material provision. Algal beds represent an exciting resource for biomass/biofuel, fine chemicals and CO2 storage. Similar to other solar energy harvesting techniques, the efficiency of algal photosynthesis depends on the spectral overlap between solar irradiation and chloroplast absorption. Here we demonstrate that spectral conversion can be employed to significantly improve biomass growth and oxygen production rate in closed-cycle algae reactors. For this purpose, we adapt a photoluminescent phosphor of the type Ca0.59Sr0.40Eu0.01S, which enables efficient conversion of the green part of the incoming spectrum into red light to better match the Qy peak of chlorophyll b. Integration of a Ca0.59Sr0.40Eu0.01S backlight converter into a flat panel algae reactor filled with Haematococcus pluvialis as a model species results in significantly increased photosynthetic activity and algae reproduction rate.

  9. Contact Inhibition: Also a Control for Cell Proliferation in Unicellular Algae?

    PubMed

    Costas, E; Aguilera, A; Gonzalez-Gil, S; López-Rodas, V

    1993-02-01

    According to traditional views, the proliferation of unicellular algae is controlled primarily by environmental conditions. But as in mammalian cells, other biological mechanisms, such as growth factors, cellular aging, and contact inhibition, might also control algal proliferation. Here we ask whether contact inhibition regulates growth in several species of unicellular algae as it does in mammalian cells. Laboratory cultures of the dinoflagellate Prorocentrum lima (Ehrenberg) Dodge show contact inhibition at low cell density, so this would be an autocontrol mechanism of cell proliferation that could also act in natural populations of P. lima. But, Synechocystis spp., Phaeodactylum tricornutum (Bohlin), Skeletonema costatum (Greville), and Tetraselmis spp. do not exhibit contact inhibition in laboratory cultures because they are able to grow at high cellular density. Apparently their growth is limited by nutrient depletion or catabolite accumulation instead of contact inhibition. Spirogyra insignis (Hassall) Kutz, Prorocentrum triestinum Schiller, and Alexandrium tamarense (Halim) Balech show a complex response, as they are able to grow in both low and high cell density medium. These results suggest that contact inhibition is more adaptative in benthic unicellular algae.

  10. Divergent growth strategies between red algae and kelps influence biomechanical properties.

    PubMed

    Krumhansl, Kira A; Demes, Kyle W; Carrington, Emily; Harley, Christopher D G

    2015-11-01

    Morphology and material properties are the main components of the mechanical design of organisms, with species groups developing different optimization strategies in the context of their physical environment. For intertidal and subtidal seaweeds, possessing highly flexible and extensible tissues allows individuals to bend and reconfigure in flow, thereby reducing drag. Previous research has shown that aging may compromise these qualities. Tissue age increases with distance from the blade's meristem, which differs in its position on kelps and red algae. Here, we assess whether longitudinal patterns of blade material properties differ between these two algal groups according to tissue age. We performed tensile tests on tissues samples excised from various positions along the extent of blades in nine kelp species (basal growth) and 15 species of red algae (apical growth). We found that older tissues were less flexible and extensible than younger tissues in all species tested. As predicted, tissue near the basal meristem in kelp was more flexible and extensible than older tissue at the blade's distal end. The opposite pattern was observed for red algae, with the most flexible and extensible tissues found near the apical meristem at the distal ends of blades. We propose that divergent patterns in the distribution of material properties along blades may have different consequences for the performance of kelps and red algae. The positioning of younger tissues at the blade base for kelps may enable these species to attain larger body sizes in wave-swept habitats. © 2015 Botanical Society of America.

  11. Biodegradation of naproxen by freshwater algae Cymbella sp. and Scenedesmus quadricauda and the comparative toxicity.

    PubMed

    Ding, Tengda; Lin, Kunde; Yang, Bo; Yang, Mengting; Li, Juying; Li, Wenying; Gan, Jay

    2017-08-01

    Naproxen is one of the most prevalent pharmaceuticals and of great environment concern. Information about bioremediation of naproxen by algae remains limited and no study has been reported on the degradation mechanism and the toxicity of NPX on algae. In this study, both Cymbella sp. and Scenedesmus quadricauda showed complete growth inhibition (100%) at 100mgL -1 within 24h. Biochemical characteristics including chlorophyll a, carotenoid contents and enzyme activities for these two microalgae were affected by NPX at relatively high concentrations after 4d of exposure. Degradation of naproxen was accelerated by both algae species. Cymbella sp. showed a more satisfactive effect in the bioremediation of NPX with higher removal efficiency. A total of 12 metabolites were identified by LC-MS/MS and the degradation pathways of naproxen in two algae were proposed. Hydroxylation, decarboxylation, demethylation, tyrosine conjunction and glucuronidation contributed to naproxen transformation in algal cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Algae-Produced Pfs25 Elicits Antibodies That Inhibit Malaria Transmission

    PubMed Central

    Gregory, James A.; Li, Fengwu; Tomosada, Lauren M.; Cox, Chesa J.; Topol, Aaron B.; Vinetz, Joseph M.; Mayfield, Stephen

    2012-01-01

    Subunit vaccines are significantly more expensive to produce than traditional vaccines because they are based primarily on recombinant proteins that must be purified from the expression system. Despite the increased cost, subunit vaccines are being developed because they are safe, effective, and can elicit antibodies that confer protection against diseases that are not currently vaccine-preventable. Algae are an attractive platform for producing subunit vaccines because they are relatively inexpensive to grow, genetically tractable, easily scaled to large volumes, have a short generation time, and are devoid of inflammatory, viral, or prion contaminants often present in other systems. We tested whether algal chloroplasts can produce malaria transmission blocking vaccine candidates, Plasmodium falciparum surface protein 25 (Pfs25) and 28 (Pfs28). Antibodies that recognize Pfs25 and Pfs28 disrupt the sexual development of parasites within the mosquito midgut, thus preventing transmission of malaria from one human host to the next. These proteins have been difficult to produce in traditional recombinant systems because they contain tandem repeats of structurally complex epidermal growth factor-like domains, which cannot be produced in bacterial systems, and because they are not glycosylated, so they must be modified for production in eukaryotic systems. Production in algal chloroplasts avoids these issues because chloroplasts can fold complex eukaryotic proteins and do not glycosylate proteins. Here we demonstrate that algae are the first recombinant system to successfully produce an unmodified and aglycosylated version of Pfs25 or Pfs28. These antigens are structurally similar to the native proteins and antibodies raised to these recombinant proteins recognize Pfs25 and Pfs28 from P. falciparum. Furthermore, antibodies to algae-produced Pfs25 bind the surface of in-vitro cultured P. falciparum sexual stage parasites and exhibit transmission blocking activity. Thus

  13. Titanium dioxide nanoparticles enhance inorganic arsenic bioavailability and methylation in two freshwater algae species.

    PubMed

    Luo, Zhuanxi; Wang, Zhenhong; Yan, Yameng; Li, Jinli; Yan, Changzhou; Xing, Baoshan

    2018-07-01

    The effect of titanium dioxide nanoparticles (nano-TiO 2 ) on the bioaccumulation and biotransformation of arsenic (As) remains largely unknown. In this study, we exposed two freshwater algae (Microcystis aeruginosa and Scenedesmus obliquus) to inorganic As (arsenite and arsenate) with the aim of increasing our understanding on As bioaccumulation and methylation in the presence of nano-TiO 2 . Direct evidence from transmission electron microscope (TEM) images show that nano-TiO 2 (anatase) entered exposed algae. Thus, nano-TiO 2 as carriers boosted As accumulation and methylation in these two algae species, which varied between inorganic As speciation and algae species. Specifically, nano-TiO 2 could markedly enhance arsenate (As(V)) accumulation in M. aeruginosa and arsenite (As(III)) accumulation in S. obliquus. Similarly, we found evidence of higher As methylation activity in the M. aeruginosa of As(III) 2 mg L -1 nano-TiO 2 treatment. Although this was also true for the S. obliquus (As(V)) treatment, this species exhibited higher As methylation compared to M. aeruginosa, being more sensitive to As associated with nano-TiO 2 compared to M. aeruginosa. Due to changes in pH levels inside these exposed algae, As dissociation from nano-TiO 2 inside algal cells enhanced As methylation. Accordingly, the potential influence of nanoparticles on the bioaccumulation and biotransformation of their co-contaminants deserves more attention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Draft genome sequence of carbapenem-resistant Shewanella algae strain AC isolated from small abalone (Haliotis diversicolor).

    PubMed

    Huang, Yao-Ting; Cheng, Jan-Fang; Chen, Shi-Yu; Hong, Yu-Kai; Wu, Zong-Yen; Liu, Po-Yu

    2018-06-19

    Shewanella algae is an environmental marine bacteria and an emerging opportunistic human pathogen. Moreover, there are increasing reports of strains showing multi-drug resistance, particularly carbapenem-resistant isolates. Although S. algae have been found in bivalve shellfish aquaculture, there is very little genome-wide data on resistant determinants in S. algae from shellfish. In the study, we aimed to determine the whole genome sequence of carbapenem-resistant S. algae strain AC isolated from small abalone in Taiwan. Genome DNA was sequenced using an Illumina MiSeq platform using 250bp paired-end reads. De novo genome assembly was performed using Velvet v1.2.07. The whole genome was annotated and several candidate genes for antimicrobial resistance were identified. The genome size was calculated at 4,751,156bp, with a mean G+C content of 53.09%. A total of 4,164 protein-coding sequences, 7 rRNAs, 85 tRNAs, and 5 non-coding RNAs were identified. The genome contains genes associated with resistance to β-lactams, trimethoprim, tetracycline, colistin, and quinolone resistance. Multiple efflux pump genes were also detected. Small abalone is a potential source of foodborne drug resistant S. algae. The genome sequence of a carbapenem-resistant S. algae strain AC isolated from small abalone will provide valuable information for further study of the dissemination of resistance genes at the human-animal interface. Copyright © 2018. Published by Elsevier Ltd.

  15. Microbial Community Analysis of Colored Snow from an Alpine Snowfield in Northern Japan Reveals the Prevalence of Betaproteobacteria with Snow Algae.

    PubMed

    Terashima, Mia; Umezawa, Kazuhiro; Mori, Shoichi; Kojima, Hisaya; Fukui, Manabu

    2017-01-01

    Psychrophilic algae blooms can be observed coloring the snow during the melt season in alpine snowfields. These algae are important primary producers on the snow surface environment, supporting the microbial community that coexists with algae, which includes heterotrophic bacteria and fungi. In this study, we analyzed the microbial community of green and red-colored snow containing algae from Mount Asahi, Japan. We found that Chloromonas spp. are the dominant algae in all samples analyzed, and Chlamydomonas is the second-most abundant genus in the red snow. For the bacterial community profile, species belonging to the subphylum Betaproteobacteria were frequently detected in both green and red snow, while members of the phylum Bacteroidetes were also prominent in red snow. Furthermore, multiple independently obtained strains of Chloromonas sp. from inoculates of red snow resulted in the growth of Betaproteobacteria with the alga and the presence of bacteria appears to support growth of the xenic algal cultures under laboratory conditions. The dominance of Betaproteobacteria in algae-containing snow in combination with the detection of Chloromonas sp. with Betaproteobacteria strains suggest that these bacteria can utilize the available carbon source in algae-rich environments and may in turn promote algal growth.

  16. Micro-algae come of age as a platform for recombinant protein production

    PubMed Central

    Specht, Elizabeth; Miyake-Stoner, Shigeki

    2010-01-01

    A complete set of genetic tools is still being developed for the micro-alga Chlamydomonas reinhardtii. Yet even with this incomplete set, this photosynthetic single-celled plant has demonstrated significant promise as a platform for recombinant protein expression. In recent years, techniques have been developed that allow for robust expression of genes from both the nuclear and plastid genome. With these advances, many research groups have examined the pliability of this and other micro-algae as biological machines capable of producing recombinant peptides and proteins. This review describes recent successes in recombinant protein production in Chlamydomonas, including production of complex mammalian therapeutic proteins and monoclonal antibodies at levels sufficient for production at economic parity with existing production platforms. These advances have also shed light on the details of algal protein production at the molecular level, and provide insight into the next steps for optimizing micro-algae as a useful platform for the production of therapeutic and industrially relevant recombinant proteins. PMID:20556634

  17. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prochnik, Simon E.; Umen, James; Nedelcu, Aurora

    2010-07-01

    Analysis of the Volvox carteri genome reveals that this green alga's increased organismal complexity and multicellularity are associated with modifications in protein families shared with its unicellular ancestor, and not with large-scale innovations in protein coding capacity. The multicellular green alga Volvox carteri and its morphologically diverse close relatives (the volvocine algae) are uniquely suited for investigating the evolution of multicellularity and development. We sequenced the 138 Mb genome of V. carteri and compared its {approx}14,500 predicted proteins to those of its unicellular relative, Chlamydomonas reinhardtii. Despite fundamental differences in organismal complexity and life history, the two species have similarmore » protein-coding potentials, and few species-specific protein-coding gene predictions. Interestingly, volvocine algal-specific proteins are enriched in Volvox, including those associated with an expanded and highly compartmentalized extracellular matrix. Our analysis shows that increases in organismal complexity can be associated with modifications of lineage-specific proteins rather than large-scale invention of protein-coding capacity.« less

  18. Analysis of algae growth mechanism and water bloom prediction under the effect of multi-affecting factor.

    PubMed

    Wang, Li; Wang, Xiaoyi; Jin, Xuebo; Xu, Jiping; Zhang, Huiyan; Yu, Jiabin; Sun, Qian; Gao, Chong; Wang, Lingbin

    2017-03-01

    The formation process of algae is described inaccurately and water blooms are predicted with a low precision by current methods. In this paper, chemical mechanism of algae growth is analyzed, and a correlation analysis of chlorophyll-a and algal density is conducted by chemical measurement. Taking into account the influence of multi-factors on algae growth and water blooms, the comprehensive prediction method combined with multivariate time series and intelligent model is put forward in this paper. Firstly, through the process of photosynthesis, the main factors that affect the reproduction of the algae are analyzed. A compensation prediction method of multivariate time series analysis based on neural network and Support Vector Machine has been put forward which is combined with Kernel Principal Component Analysis to deal with dimension reduction of the influence factors of blooms. Then, Genetic Algorithm is applied to improve the generalization ability of the BP network and Least Squares Support Vector Machine. Experimental results show that this method could better compensate the prediction model of multivariate time series analysis which is an effective way to improve the description accuracy of algae growth and prediction precision of water blooms.

  19. Removal of estrone, 17alpha-ethinylestradiol, and 17beta-estradiol in algae and duckweed-based wastewater treatment systems.

    PubMed

    Shi, Wenxin; Wang, Lizheng; Rousseau, Diederik P L; Lens, Piet N L

    2010-05-01

    Many pollutants have received significant attention due to their potential estrogenic effect and are classified as endocrine disrupting compounds (EDCs). Because of possible ecological effects and increased attention for water reuse schemes, it is important to increase our understanding of the EDC removal capacities of various wastewater treatment systems. However, there has so far been little research on the fate and behavior of EDCs in stabilization pond systems for wastewater treatment, which represent an important class of wastewater treatment systems in developing countries because of their cost-effectiveness. The aim of this work is to study the fate and behavior of EDCs in algae and duckweed ponds. Because the synthetic hormone 17alpha-ethinylestradiol (EE2) and the natural hormones estrone (E1), as well as 17beta-estradiol (E2), have been detected in effluents of sewage treatment plants and been suggested as the major compounds responsible for endocrine disruption in domestic sewage; E1, E2, and EE2 were therefore chosen as target chemicals in this current work. Both batch tests and continuous-flow tests were carried out to investigate the sorption and biodegradation of estrogens in algae and duckweed pond systems. The applied duckweed was a Lemna species. The applied algae was a mixture of pure cultures of six different algae genera, i.e., Anabaena cylindrica, Chlorococcus, Spirulina platensis, Chlorella, Scenedesmus quadricauda, and Anaebena var. Synthetic wastewater were used in all tests. The concentrations of estrogens were measured with three different enzyme-linked immunosorbent assay kits specific for E1, E2, or EE2. When the concentrations of estrogens in water samples were below the lowest quantitative analysis range (0.05 microg/l), preconcentration of the water samples were performed by means of solid phase extraction (SPE) with C18 cartridges. The 6-day batch tests show that the presence of algae or duckweed accelerated the removal of the three

  20. Evaluation of the contamination of marine algae (Seaweed) from the St. Lawrence River and likely to be consumed by humans.

    PubMed

    Phaneuf, D; Côté, I; Dumas, P; Ferron, L A; LeBlanc, A

    1999-02-01

    The goal of the study was to assess the contamination of marine algae (seaweeds) growing in the St. Lawrence River estuary and Gulf of St. Lawrence and to evaluate the risks to human health from the consumption of these algae. Algae were collected by hand at low tide. A total of 10 sites on the north and south shores of the St. Lawrence as well as in Baie des Chaleurs were sampled. The most frequently collected species of algae were Fucus vesiculosus, Ascophyllum nodosum, Laminaria longicruris, Palmaria palmata, Ulva lactuca, and Fucus distichus. Alga samples were analyzed for metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn), iodine, and organochlorines. A risk assessment was performed using risk factors (e.g., RfD of the U.S. EPA, ADI of Health Canada, etc.). In general, concentrations in St. Lawrence algae were not very high. This was especially true for mercury and the organochlorines, concentrations of which were very low or below detection limits. Consequently, health risks associated with these compounds in St. Lawrence algae were very low. Iodine concentration, on the other hand, could be of concern with regard to human health. Regular consumption of algae, especially of Laminaria sp., could result in levels of iodine sufficient to cause thyroid problems. For regular consumers, it would be preferable to choose species with low iodine concentrations, such as U. lactuca and P. palmata, in order to prevent potential problems. Furthermore, it would also be important to assess whether preparation for consumption or cooking affects the iodine content of algae. Algae consumption may also have beneficial health effects. Scientific literature has shown that it is a good source of fiber and vitamins, especially vitamin B12. Copyright 1999 Academic Press.

  1. Algae-Derived Dietary Ingredients Nourish Animals

    NASA Technical Reports Server (NTRS)

    2015-01-01

    In the 1980s, Columbia, Maryland-based Martek Biosciences Corporation worked with Ames Research Center to pioneer the use of microalgae as a source of essential omega-3 fatty acids, work that led the company to develop its highly successful Formulaid product. Now the Nutritional Products Division of Royal DSM, the company also manufactures DHAgold, a nutritional supplement for pets, livestock and farm-raised fish that uses algae to deliver docosahexaenoic acid (DHA).

  2. A Multi-Platform Optical Sensor for In Vivo and In Vitro Algae Classification.

    PubMed

    Ng, Chee-Loon; Chen, Qing-Qing; Chua, Jia-Jing; Hemond, Harold F

    2017-04-20

    Differentiation among major algal groups is important for the ecological and biogeochemical characterization of water bodies, and for practical management of water resources. It helps to discern the taxonomic groups that are beneficial to aquatic life from the organisms causing harmful algal blooms. An LED-induced fluorescence (LEDIF) instrument capable of fluorescence, absorbance, and scattering measurements; is used for in vivo and in vitro identification and quantification of four algal groups found in freshwater and marine environments. Aqueous solutions of individual and mixed dissolved biological pigments relevant to different algal groups were measured to demonstrate the LEDIF's capabilities in measuring extracted pigments. Different genera of algae were cultivated and the cell counts of the samples were quantified with a hemacytometer and/or cellometer. Dry weight of different algae cells was also measured to determine the cell counts-to-dry weight correlations. Finally, in vivo measurements of different genus of algae at different cell concentrations and mixed algal group in the presence of humic acid were performed with the LEDIF. A field sample from a local reservoir was measured with the LEDIF and the results were verified using hemacytometer, cellometer, and microscope. The results demonstrated the LEDIF's capabilities in classifying and quantifying different groups of live algae.

  3. A Multi-Platform Optical Sensor for In Vivo and In Vitro Algae Classification

    PubMed Central

    Ng, Chee-Loon; Chen, Qing-Qing; Chua, Jia-Jing; Hemond, Harold F.

    2017-01-01

    Differentiation among major algal groups is important for the ecological and biogeochemical characterization of water bodies, and for practical management of water resources. It helps to discern the taxonomic groups that are beneficial to aquatic life from the organisms causing harmful algal blooms. An LED-induced fluorescence (LEDIF) instrument capable of fluorescence, absorbance, and scattering measurements; is used for in vivo and in vitro identification and quantification of four algal groups found in freshwater and marine environments. Aqueous solutions of individual and mixed dissolved biological pigments relevant to different algal groups were measured to demonstrate the LEDIF’s capabilities in measuring extracted pigments. Different genera of algae were cultivated and the cell counts of the samples were quantified with a hemacytometer and/or cellometer. Dry weight of different algae cells was also measured to determine the cell counts-to-dry weight correlations. Finally, in vivo measurements of different genus of algae at different cell concentrations and mixed algal group in the presence of humic acid were performed with the LEDIF. A field sample from a local reservoir was measured with the LEDIF and the results were verified using hemacytometer, cellometer, and microscope. The results demonstrated the LEDIF’s capabilities in classifying and quantifying different groups of live algae. PMID:28425963

  4. Effects of some air pollutants and meteorological conditions on airborne algae and protozoa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, P.E.

    1973-10-01

    The effects of meteorological conditions and specific air pollutants on the viability of airborne algae and protozoa were investigated. Such investigations will be of interest to medical researchers because these organisms are the source of many allergies. The three air pollutants that were continuously measured and recorded were sulfur, hydrocarbons, and particulate matter. During the experiment, 25 different species of algae and 19 species of protozoa were collected from the atmosphere and cultured at the Westinghouse environmental Station Laboratory in Raleigh, North Carolina. The algae and protozoa were collected over a one-year period (Jan-Dec 1971) by using a sequential samplermore » that moved air through a membrane filter at the rate of 15 ft/sup 3//hr. Every two hours a new filter was sequentially moved in to replace the old one. The results indicated a relationship between wind speed, wind direction, temperature, dewpoint, particulate matter, barometric pressure, and rainfall to the percent frequency of positive culture tubes and number of cell/ft/sup 3/ of air. Further studies are necessary to determine the interrelationships between the physical and chemical character of various air masses and their effect on the survival of algae and protozoa.« less

  5. Antitumor effects of Marginisporum crassissimum (Rhodophyceae), a marine red alga.

    PubMed

    Hiroishi, S; Sugie, K; Yoshida, T; Morimoto, J; Taniguchi, Y; Imai, S; Kurebayashi, J

    2001-06-26

    Marginisporum crassissimum (Yendo) Ganesan, a marine red alga found in the ordinal coastal sea around Japan, revealed antitumor (antimetastatic) effects in vitro and in vivo. In in vitro experiments, extracts of this alga inhibited not only the growth of several tumor cell lines, such as B16-BL6 (a mouse melanoma cell line), JYG-B (a mouse mammary carcinoma cell line) and KPL-1 (a human mammary carcinoma cell line), but also invasion of B16-BL6 cells in a culture system. In in vivo experiments, the lung metastasis of B16-BL6 cells inoculated to the tail vein of B57BL/6J mice was inhibited by intraperitoneal administration of an extract from the alga. In addition, life prolongation of B57BL/6J mice inoculated with B16-BL6 cells was also observed by the intraperitoneal administration of the extract. An effective substance showing B16-BL6 growth inhibition in vitro was partially purified by filtration and hydrophobic column chromatography, and was revealed to be sensitive to trypsin-digestion and heat-treatment. The molecular weight of the substance was greater than 100 kDa. This is the first study demonstrating antitumor (antimetastatic) effects of M. crassissimum.

  6. Distribution of periphytic algae in wetlands (Palm swamps, Cerrado), Brazil.

    PubMed

    Dunck, B; Nogueira, I S; Felisberto, S A

    2013-05-01

    The distribution of periphytic algae communities depends on various factors such as type of substrate, level of disturbance, nutrient availability and light. According to the prediction that impacts of anthropogenic activity provide changes in environmental characteristics, making impacted Palm swamps related to environmental changes such as deforestation and higher loads of nutrients via allochthonous, the hypothesis tested was: impacted Palm swamps have higher richness, density, biomass and biovolume of epiphytic algae. We evaluated the distribution and structure of epiphytic algae communities in 23 Palm swamps of Goiás State under different environmental impacts. The community structure attributes here analyzed were composition, richness, density, biomass and biovolume. This study revealed the importance of the environment on the distribution and structuration of algal communities, relating the higher values of richness, biomass and biovolume with impacted environments. Acidic waters and high concentration of silica were important factors in this study. Altogether 200 taxa were identified, and the zygnemaphycea was the group most representative in richness and biovolume, whereas the diatoms, in density of studied epiphyton. Impacted Palm swamps in agricultural area presented two indicator species, Gomphonema lagenula Kützing and Oedogonium sp, both related to mesotrophic to eutrophic conditions for total nitrogen concentrations of these environments.

  7. Sustainable Use Of Macro-Algae For Biogas Production In Latvian Conditions: A Preliminary Study Through An Integrated Mca And Lca Approach

    NASA Astrophysics Data System (ADS)

    Pastare, Laura; Romagnoli, Francesco; Lauka, Dace; Dzene, Ilze; Kuznecova, Tatjana

    2014-12-01

    The study focuses on sustainability evaluation of an algae-based energy system in Latvia with a holistic and integrated approach of multi-criteria analysis combined with life cycle assessment (including a practical side - biogas yield experiments of locally available algae). The study shows potential for sustainable use of algae in Latvian conditions and thus that algal biomass can be utilized for the production of biogas. The most sustainable and feasible scenario of using algae for biogas energy production foresees the collection of algae biomass from natural water bodies. Important beneficial effects through the use of algae are related to avoiding global warming potential (GWP) and eutrophication impacts. Biogas batch experiments carried out with the local macrophyte C.demersum have shown a methane yield of 554 l CH4/kg VS.

  8. Effects of different strategies of mineral supplementation (marine algae alone or combined with rumen boluses) in organic dairy systems.

    PubMed

    López-Alonso, M; Rey-Crespo, F; Orjales, I; Rodríguez-Bermúdez, R; Miranda, M

    2016-10-01

    This study was designed to evaluate the effect of marine algae supplementation alone or in combination with a regular mineral supplement (rumen boluses) to improve the mineral status in organic dairy cattle and their effect on the milk mineral composition, milk production, composition (% of fat and protein) and quality (SCC). Thirty-two Holstein Friesian lactating cows were randomly selected and assigned to the algae (A), boluses (B), algae+boluses (AB) and control group (C). For the algae groups (A, AB), a supplement composed of Sea Lettuce (80%), Japanese Wireweed (17.5%) and Furbelows (2.5%) was formulated to be given to the cows at the rate of 100 g/animal per day (A1) for the length of 4 weeks. In the second half of the experiment (weeks 5-8), the algae mixture was reformulated and the proportion of Furbelows was increased from 2.5% to 5.0% with a subsequent decrease of Lettuce to 77.5% (A2). In the boluses group (B), each cow received 2 boluses after calving. Blood (serum) and milk samples were collected at 2 and 4 week intervals, respectively, and analysed for trace element concentrations by ICP-MS. Information related to the milk composition and SCC during a 305-day lactation for each animal were obtained from the Dairy Records Management System. The supplementation with algae, boluses or the combination of both treatments showed a statistically significant effect on the iodine (algae), selenium (boluses) and cobalt (algae+boluses) status of the animals. In milk, treatments had a statistical significant increase on iodine, and a tendency to increase selenium concentrations. The assayed algae mixture combined with another source of selenium could be an effective tool to improve the mineral status in serum and milk. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  9. Bacterial community composition associated with freshwater algae: species specificity vs. dependency on environmental conditions and source community.

    PubMed

    Eigemann, Falk; Hilt, Sabine; Salka, Ivette; Grossart, Hans-Peter

    2013-03-01

    We studied bacterial associations with the green alga Desmodesmus armatus and the diatom Stephanodiscus minutulus under changing environmental conditions and bacterial source communities, to evaluate whether bacteria-algae associations are species-specific or more generalized and determined by external factors. Axenic and xenic algae were incubated in situ with and without allelopathically active macrophytes, and in the laboratory with sterile and nonsterile lake water and an allelochemical, tannic acid (TA). Bacterial community composition (BCC) of algae-associated bacteria was analyzed by denaturing gradient gel electrophoresis (DGGE), nonmetric multidimensional scaling, cluster analyses, and sequencing of DGGE bands. BCC of xenic algal cultures of both species were not significantly affected by changes in their environment or bacterial source community, except in the case of TA additions. Species-specific interactions therefore appear to overrule the effects of environmental conditions and source communities. The BCC of xenic and axenic D. armatus cultures subjected to in situ bacterial colonization, however, had lower similarities (ca. 55%), indicating that bacterial precolonization is a strong factor for bacteria-algae associations irrespective of environmental conditions and source community. Our findings emphasize the ecological importance of species-specific bacteria-algae associations with important repercussions for other processes, such as the remineralization of nutrients, and organic matter dynamics. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. Algae as an electron donor promoting sulfate reduction for the bioremediation of acid rock drainage.

    PubMed

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, Jim A

    2016-11-05

    This study assessed bioremediation of acid rock drainage in simulated permeable reactive barriers (PRB) using algae, Chlorella sorokiniana, as the sole electron donor for sulfate-reducing bacteria. Lipid extracted algae (LEA), the residues of biodiesel production, were compared with whole cell algae (WCA) as an electron donor to promote sulfate-reducing activity. Inoculated columns containing anaerobic granular sludge were fed a synthetic medium containing H2SO4 and Cu(2+). Sulfate, sulfide, Cu(2+) and pH were monitored throughout the experiment of 123d. Cu recovered in the column packing at the end of the experiment was evaluated using sequential extraction. Both WCA and LEA promoted 80% of sulfate removal (12.7mg SO4(2-) d(-1)) enabling near complete Cu removal (>99.5%) and alkalinity generation raising the effluent pH to 6.5. No noteworthy sulfate reduction, alkalinity formation and Cu(2+) removal were observed in the endogenous control. In algae amended-columns, Cu(2+) was precipitated with biogenic H2S produced by sulfate reduction. Formation of CuS was evidenced by sequential extraction and X-ray diffraction. LEA and WCA provided similar levels of electron donor based on the COD balance. The results demonstrate an innovative passive remediation system using residual algae biomass from the biodiesel industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. CONTROL TECHNOLOGY EXTRACTION OF MERCURY FROM GROUNDWATER IMMOBILIZED ALGAE

    EPA Science Inventory

    Bio-Recovery Systems, Inc. conducted a project under the Emerging Technology portion of the United States Environmental Protection Agency (EPAs) Superfund Innovative Technology Evaluation (SITE) Program to evaluate the ability of immobilized algae to adsorb mercury from contamina...

  12. Biosorption: An Interplay between Marine Algae and Potentially Toxic Elements-A Review.

    PubMed

    Bilal, Muhammad; Rasheed, Tahir; Sosa-Hernández, Juan Eduardo; Raza, Ali; Nabeel, Faran; Iqbal, Hafiz M N

    2018-02-19

    In recent decades, environmental pollution has emerged as a core issue, around the globe, rendering it of fundamental concern to eco-toxicologists, environmental biologists, eco-chemists, pathologists, and researchers from other fields. The dissolution of polluting agents is a leading cause of environmental pollution of all key spheres including the hydrosphere, lithosphere, and biosphere, among others. The widespread occurrence of various pollutants including toxic heavy metals and other emerging hazardous contaminants is a serious concern. With increasing scientific knowledge, socioeconomic awareness, human health problems, and ecological apprehensions, people are more concerned about adverse health outcomes. Against this background, several removal methods have been proposed and implemented with the aim of addressing environmental pollution and sustainable and eco-friendly development. Among them, the biosorption of pollutants using naturally inspired sources, e.g., marine algae, has considerable advantages. In the past few years, marine algae have been extensively studied due to their natural origin, overall cost-effective ratio, and effectiveness against a broader pollutant range; thus, they are considered a potential alternative to the conventional methods used for environmental decontamination. Herein, an effort has been made to highlight the importance of marine algae as naturally inspired biosorbents and their role in biosorption. Biosorption mechanisms and factors affecting biosorption activities are also discussed in this review. The utilization of marine algae as a biosorbent for the removal of numerous potentially toxic elements has also been reviewed.

  13. Alteration of the gastrointestinal microbiota of mice by edible blue-green algae.

    PubMed

    Rasmussen, H E; Martínez, I; Lee, J Y; Walter, J

    2009-10-01

    To characterize the effect of edible blue-green algae (cyanobacteria) on the gastrointestinal microbiota of mice. C57BL/6J mice were fed a diet supplemented with 0% or 5% dried Nostoc commune, Spirulina platensis or Afanizominon flos-aquae (w/w) for 4 weeks. Molecular fingerprinting of the colonic microbiota using denaturing gradient gel electrophoresis revealed that administration of N. commune induced major alterations in colonic microbiota composition, while administration of S. platensis or A. flos-aquae had a more subtle impact. Community profile analysis revealed that administration of N. commune did not reduce microbial diversity indices of the colonic microbiota. Despite its pronounced effects on the bacterial composition in the colon, total bacterial numbers in the gut of mice fed N. commune were not reduced as assessed by quantitative real-time PCR and bacteriological culture. The results presented here show that administration of blue-green algae, and especially N. commune, alters colonic microbiota composition in mice with limited effects on total bacterial numbers or microbial diversity. Blue-green algae are consumed in many countries as a source of nutrients and to promote health, and they are intensively studied for their pharmaceutical value. Given the importance of the gut microbiota for many host functions, the effects of blue-green algae on gut microbial ecology revealed during this study should be considered when using them as food supplements or when studying their pharmaceutical properties.

  14. Biosorption: An Interplay between Marine Algae and Potentially Toxic Elements—A Review

    PubMed Central

    Bilal, Muhammad; Rasheed, Tahir; Raza, Ali; Nabeel, Faran

    2018-01-01

    In recent decades, environmental pollution has emerged as a core issue, around the globe, rendering it of fundamental concern to eco-toxicologists, environmental biologists, eco-chemists, pathologists, and researchers from other fields. The dissolution of polluting agents is a leading cause of environmental pollution of all key spheres including the hydrosphere, lithosphere, and biosphere, among others. The widespread occurrence of various pollutants including toxic heavy metals and other emerging hazardous contaminants is a serious concern. With increasing scientific knowledge, socioeconomic awareness, human health problems, and ecological apprehensions, people are more concerned about adverse health outcomes. Against this background, several removal methods have been proposed and implemented with the aim of addressing environmental pollution and sustainable and eco-friendly development. Among them, the biosorption of pollutants using naturally inspired sources, e.g., marine algae, has considerable advantages. In the past few years, marine algae have been extensively studied due to their natural origin, overall cost-effective ratio, and effectiveness against a broader pollutant range; thus, they are considered a potential alternative to the conventional methods used for environmental decontamination. Herein, an effort has been made to highlight the importance of marine algae as naturally inspired biosorbents and their role in biosorption. Biosorption mechanisms and factors affecting biosorption activities are also discussed in this review. The utilization of marine algae as a biosorbent for the removal of numerous potentially toxic elements has also been reviewed. PMID:29463058

  15. Integrating Algae with Bioenergy Carbon Capture and Storage (ABECCS) Increases Sustainability

    NASA Astrophysics Data System (ADS)

    Beal, Colin M.; Archibald, Ian; Huntley, Mark E.; Greene, Charles H.; Johnson, Zackary I.

    2018-03-01

    Bioenergy carbon capture and storage (BECCS) has been proposed to reduce atmospheric CO2 concentrations, but concerns remain about competition for arable land and freshwater. The synergistic integration of algae production, which does not require arable land or freshwater, with BECCS (called "ABECCS") can reduce CO2 emissions without competing with agriculture. This study presents a technoeconomic and life-cycle assessment for colocating a 121-ha algae facility with a 2,680-ha eucalyptus forest for BECCS. The eucalyptus biomass fuels combined heat and power (CHP) generation with subsequent amine-based carbon capture and storage (CCS). A portion of the captured CO2 is used for growing algae and the remainder is sequestered. Biomass combustion supplies CO2, heat, and electricity, thus increasing the range of sites suitable for algae cultivation. Economic, energetic, and environmental impacts are considered. The system yields as much protein as soybeans while generating 61.5 TJ of electricity and sequestering 29,600 t of CO2 per year. More energy is generated than consumed and the freshwater footprint is roughly equal to that for soybeans. Financial break-even is achieved for product value combinations that include 1) algal biomass sold for 1,400/t (fishmeal replacement) with a 68/t carbon credit and 2) algal biomass sold for 600/t (soymeal replacement) with a 278/t carbon credit. Sensitivity analysis shows significant reductions to the cost of carbon sequestration are possible. The ABECCS system represents a unique technology for negative emissions without reducing protein production or increasing water demand, and should therefore be included in the suite of technologies being considered to address global sustainability.

  16. Cellulose synthase (CesA) genes in the green alga Mesotaenium caldariorum.

    PubMed

    Roberts, Alison W; Roberts, Eric M; Delmer, Deborah P

    2002-12-01

    Cellulose, a microfibrillar polysaccharide consisting of bundles of beta-1,4-glucan chains, is a major component of plant and most algal cell walls and is also synthesized by some prokaryotes. Seed plants and bacteria differ in the structures of their membrane terminal complexes that make cellulose and, in turn, control the dimensions of the microfibrils produced. They also differ in the domain structures of their CesA gene products (the catalytic subunit of cellulose synthase), which have been localized to terminal complexes and appear to help maintain terminal complex structure. Terminal complex structures in algae range from rosettes (plant-like) to linear forms (bacterium-like). Thus, algal CesA genes may reveal domains that control terminal complex assembly and microfibril structure. The CesA genes from the alga Mesotaenium caldariorum, a member of the order Zygnematales, which have rosette terminal complexes, are remarkably similar to seed plant CesAs, with deduced amino acid sequence identities of up to 59%. In addition to the putative transmembrane helices and the D-D-D-QXXRW motif shared by all known CesA gene products, M. caldariorum and seed plant CesAs share a region conserved among plants, an N-terminal zinc-binding domain, and a variable or class-specific region. This indicates that the domains that characterize seed plant CesAs arose prior to the evolution of land plants and may play a role in maintaining the structures of rosette terminal complexes. The CesA genes identified in M. caldariorum are the first reported for any eukaryotic alga and will provide a basis for analyzing the CesA genes of algae with different types of terminal complexes.

  17. Occurrence and Importance of Plant Lipids: A Promising Insight into Algae.

    PubMed

    Halima, Nihed B

    2017-01-01

    Lipids are biomolecules with interesting structural variability. They are involved in many processes such as the storage of energy, in nutrition and are also of relevance for signal transduction processes, in apoptosis, cell differentiation and phagocytosis, etc. Macroalgae and microalgae are a promising and very diverse group of organisms. These living arganisms inhabit a vaste range of ecosystems from the Antarctic to the Deserts. They account for above half the primary productivity at the base of the food chain because of their multiple nutritional products including, for instance, lipids. Recently, studies on the oleaginous algae encompass their uses for commercial exploitations with applications ranging from human health food, animal feed, aquaculture, nutraceutical, biofuels and others. In this article, updated knowledge of lipids and recent research studies for algae's valorization performed by several authors were reviewed. Special attention was paid to lipids accumulation and their characterization. The selection of the prominent species of algae will be of great importance to satisfy the corresponding valorization process. Patents identified with algal lipids composition, production and application are presented. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Biosorption of lead and nickel by biomass of marine algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holan, Z.R.; Volesky, B.

    Screening tests of different marine algae biomass types revealed a high passive biosorptive uptake of lead up to 270 mg Pb/g of biomass in some brown marine algae. Members of the order Fucales performed particularly well in this descending sequence: Fucus > Ascophyllum > Sargassum. Although decreasing the swelling of wetted biomass particles, their reinforcement by crosslinking may significantly affect the biosorption performance. Lead uptakes up to 370 mg Pb/g were observed in crosslinked Fucus vesiculosus and Ascophyllum nodosum. At low equilibrium residual concentrations of lead in solution, however, ion exchange resin Amberlite IR-120 had a higher lead uptake thanmore » the biosorbent materials. An order-of-magnitude lower uptake of nickel was observed in all of the sorbent materials examined.« less

  19. Coralline algae elevate pH at the site of calcification under ocean acidification.

    PubMed

    Cornwall, Christopher E; Comeau, Steeve; McCulloch, Malcolm T

    2017-10-01

    Coralline algae provide important ecosystem services but are susceptible to the impacts of ocean acidification. However, the mechanisms are uncertain, and the magnitude is species specific. Here, we assess whether species-specific responses to ocean acidification of coralline algae are related to differences in pH at the site of calcification within the calcifying fluid/medium (pH cf ) using δ 11 B as a proxy. Declines in δ 11 B for all three species are consistent with shifts in δ 11 B expected if B(OH) 4 - was incorporated during precipitation. In particular, the δ 11 B ratio in Amphiroa anceps was too low to allow for reasonable pH cf values if B(OH) 3 rather than B(OH) 4 - was directly incorporated from the calcifying fluid. This points towards δ 11 B being a reliable proxy for pH cf for coralline algal calcite and that if B(OH) 3 is present in detectable proportions, it can be attributed to secondary postincorporation transformation of B(OH) 4 - . We thus show that pH cf is elevated during calcification and that the extent is species specific. The net calcification of two species of coralline algae (Sporolithon durum, and Amphiroa anceps) declined under elevated CO 2 , as did their pH cf . Neogoniolithon sp. had the highest pH cf , and most constant calcification rates, with the decrease in pH cf being ¼ that of seawater pH in the treatments, demonstrating a control of coralline algae on carbonate chemistry at their site of calcification. The discovery that coralline algae upregulate pH cf under ocean acidification is physiologically important and should be included in future models involving calcification. © 2017 John Wiley & Sons Ltd.

  20. C-13 dynamics in benthic algae: Effects of light, phosphorus, and biomass development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Walter; Fanta, S.E.; Roberts, Brian J

    2008-07-01

    We performed three experiments in indoor streams and one experiment in a natural stream to investigate the effects of growth factors on {delta}{sup 13}C levels in benthic microalgae. In the indoor streams, algae grown under conditions of high light and high phosphorus had {delta}{sup 13}C values that were 16% higher than those in algae grown under conditions of low light and low phosphorus. Light effects were much stronger than phosphorus effects. The effects of both factors increased in strength as algal biomass accrued, and by the end of the experiments, algal {delta}{sup 13}C and biomass were highly correlated. In themore » natural stream, algae exposed to direct sunlight were enriched 15% over shaded algae, corroborating the strong effect of light in the indoor streams. Growth factors such as light and nutrients probably reduce discrimination against {delta}{sup 13}C (raising {delta}{sup 13}C values) in benthic microalgae by causing CO{sub 2} depletion both within individual cells and within the assemblage matrix. However, because the most marked fractionation occurred in older and thicker assemblages, CO{sub 2} depletion within the assemblage matrix appeared to be more important than depletion within individual cells. In the absence of carbon-concentrating mechanisms, elevated {delta}{sup 13}C suggests that inorganic carbon may limit the growth of benthic algae. The extensive range of d13C values (-14{per_thousand} to -36{per_thousand}) created by light and nutrient manipulations in this study easily encompassed the mean {delta}{sup 13}C values of both C{sub 3} and C{sub 4} terrestrial plants, indicating the challenge aquatic ecologists face in identifying carbon sources for higher trophic levels when light and nutrient conditions vary.« less

  1. The physiological responses of Vallisneria natans to epiphytic algae with the increase of N and P concentrations in water bodies.

    PubMed

    Song, Yu-Zhi; Wang, Jin-Qi; Gao, Yong-Xia; Xie, Xue-Jian

    2015-06-01

    To reveal the mechanism of submerged plants decline in progressively eutrophicated freshwaters, physiological responses of Vallisneria natans to epiphytic algae were studied in simulation lab by measuring plant physiological indexes of chlorophyll content, malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity based on a 2 × 4 factorial design with two epiphytic conditions (with epiphytic algae and without) and four levels of N and P concentrations in water (N-P[mg.L(-1)]: 0.5, 0.05; 2.5, 0.25; 4.5, 0.45; 12.5, 1.25). Compared with control (non-presence of epiphytic algae), chlorophyll contents of V. natans were significantly decreased (p < 0.01) for the presence of epiphytic algae under any concentrations of N and P in water bodies. While the presence of epiphytic algae induced peroxidation of membrane lipids, MDA contents of V. natans had significantly increased (p < 0.05) by comparing with control. SOD activity significantly enhanced (p < 0.05) with the presence of epiphytic algae in the treatments of T2 and T3 in the whole culture process by comparing with control, sometimes reaching an extremely significant level (p < 0.01). However, in the treatments of T1 and T4, SOD activity had no obvious change with the presence of epiphytic algae (p < 0.05) by comparing with control. At the end of the experiment, the effects of epiphytic algae on chlorophyll content and SOD activity in the leaves of V. natans were increased at first and then decreased with the concentrations of N and P in water, and MDA content became higher with the increase of N and P. concentrations. Repeated measurement data testing showed that the effects of epiphytic algae on the chlorophyll content and MDA content and SOD activity were significant, respectively (p < 0.001), the effects of epiphytic algae were combining with effects of concentrations of N and P (p < 0.001), respectively, and their interaction (p < 0.001). Our observations

  2. Pretreatment of algae-laden and manganese-containing waters by oxidation-assisted coagulation: Effects of oxidation on algal cell viability and manganese precipitation.

    PubMed

    Lin, Jr-Lin; Hua, Lap-Cuong; Wu, Yuting; Huang, Chihpin

    2016-02-01

    Preoxidation is manipulated to improve performance of algae and soluble manganese (Mn) removal by coagulation-sedimentation for water treatment plants (WTPs) when large amount of soluble Mn presents in algae-laden waters. This study aimed to investigate the effects of preoxidation on the performance of coagulation-sedimentation for the simultaneous removal of algae and soluble Mn, including ionic and complexed Mn. NaOCl, ClO2, and KMnO4 were used to pretreat such algae-laden and Mn containing waters. The variation of algal cell viability, residual cell counts, and concentrations of Mn species prior to and after coagulation-sedimentation step were investigated. Results show that NaOCl dosing was effective in reducing the viability of algae, but precipitated little Mn. ClO2 dosing had a strongest ability to lower algae viability and oxidize ionic and complexed soluble Mn, where KMnO4 dosing oxidized ionic and complexed Mn instead of reducing the viability of cells. Preoxidation by NaOCl only improved the algae removal by sedimentation, whereas most of soluble Mn still remained. On the other hand, ClO2 preoxidation substantially improved the performance of coagulation-sedimentation for simultaneous removal of algae and soluble Mn. Furthermore, KMnO4 preoxidation did improve the removal of algae by sedimentation, but left significant residual Mn in the supernatant. Images from FlowCAM showed changes in aspect ratio (AR) and transparency of algae-Mn flocs during oxidation-assisted coagulation, and indicates that an effective oxidation can improve the removal of most compact algae-Mn flocs by sedimentation. It suggests that an effective preoxidation for reducing algal cell viability and the concentration of soluble Mn is a crucial step for upgrading the performance of coagulation-sedimentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effects of non-steroidal anti-inflammatory drugs on cyanobacteria and algae in laboratory strains and in natural algal assemblages.

    PubMed

    Bácsi, István; B-Béres, Viktória; Kókai, Zsuzsanna; Gonda, Sándor; Novák, Zoltán; Nagy, Sándor Alex; Vasas, Gábor

    2016-05-01

    In recent years measurable concentrations of non-steroidal anti-inflammatory drugs (NSAIDs) have been shown in the aquatic environment as a result of increasing human consumption. Effects of five frequently used non-steroidal anti-inflammatory drugs (diclofenac, diflunisal, ibuprofen, mefenamic acid and piroxicam in 0.1 mg ml(-1) concentration) in batch cultures of cyanobacteria (Synechococcus elongatus, Microcystis aeruginosa, Cylindrospermopsis raciborskii), and eukaryotic algae (Desmodesmus communis, Haematococcus pluvialis, Cryptomonas ovata) were studied. Furthermore, the effects of the same concentrations of NSAIDs were investigated in natural algal assemblages in microcosms. According to the changes of chlorophyll-a content, unicellular cyanobacteria seemed to be more tolerant to NSAIDs than eukaryotic algae in laboratory experiments. Growth of eukaryotic algae was reduced by all drugs, the cryptomonad C. ovata was the most sensitive to NSAIDs, while the flagellated green alga H. pluvialis was more sensitive than the non-motile green alga D. communis. NSAID treatments had weaker impact in the natural assemblages dominated by cyanobacteria than in the ones dominated by eukaryotic algae, confirming the results of laboratory experiments. Diversity and number of functional groups did not change notably in cyanobacteria dominated assemblages, while they decreased significantly in eukaryotic algae dominated ones compared to controls. The results highlight that cyanobacteria (especially unicellular ones) are less sensitive to the studied, mostly hardly degradable NSAIDs, which suggest that their accumulation in water bodies may contribute to the expansion of cyanobacterial mass productions in appropriate environmental circumstances by pushing back eukaryotic algae. Thus, these contaminants require special attention during wastewater treatment and monitoring of surface waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Study of Selecting on Light Source Used for Micro-algae Cultivation in Space

    NASA Astrophysics Data System (ADS)

    Ai, Weidang; Ai, Weidang; Guo, Shuang-Sheng; Gao, Feng; Tang, Yong-Kang; Qin, Li-Feng

    To select suitable light source for micro-algae cultivation in future space station, the selected Spirulina plastensis(No.7) were cultured under different lightening qualities, including six light sources that were made up of different combinations of red and blue light-emitting diode(LED). The growth, photosynthetic efficiency and nutrition quality of the Spirulina, were analyzed. From the experiments, the red light may promote the cumulation of biomass of the Spirulina, and the cumulating rate was the highest under all red light source, but the syntheses of protein, phycobiliprotein, β-carotene, VE and other nutrients needs a certain portion of blue light; yet, the complete blue light condition is not favorable to the growth of Spirulina, and may bring pollution by chlorella and other kinds of micro-algae. It is concluded that the LEDs can be used as the light resource of micro-algae cultivation. The normal growth and development of microalgae need two light sources of both red and blue LEDs. The comprehensive analyses of the various factors that affect the growth of Spirulina, such as nutrition quality and photosynthetic activities, etc., showed that the combination of 80% red and 20% blue LED is the optimum one among those tested combinations. Key word: light-emitting diode; micro-algae; controlled ecological life support system (CELSS); space cultivation

  5. Response of High Latitude Coralline Algae to pCO2 and Thermal Stress

    NASA Astrophysics Data System (ADS)

    Garlick-Ott, K.; Williams, B.; Chan, P. T. W.; Westfield, I. T.; Rasher, D.; Ries, J. B.; Adey, W.; Halfar, J.

    2016-12-01

    The impacts of recent and future anthropogenic increases in atmospheric pCO2 causing ocean acidification and temperature on high-latitude oceans, and the marine organisms that inhabit them, are varied and poorly understood. The ecologically important crustose coralline alga Clathromorphum compactum may be particularly vulnerable to ocean acidification due to the relatively high solubility of its high Mg-calcite skeleton . This species of coralline algae is abundant throughout coastal mid-to-high latitude areas of the northern hemisphere, and calcifies annually-banded skeletons with longevities of up to 650 years. Here we used micro-computed tomography (micro-CT) to evaluate the impact of decreasing seawater pH and increasing temperature on skeletal density of algal specimens cultured in a fully crossed pCO2 (280, 400, 700, 2800 µatm) and temperature (6.5, 8.7, 12.4 °C) laboratory experiment. To examine the natural variability in coralline algal skeletal density, additional long-lived wild C. compactum specimens were collected along a latitudinal transect extending from the Gulf of Maine to the Canadian Arctic Archipelago. Density time series generated from the wild specimens spans the past several decades to century, and were used to evaluate other environmental parameters that may influence the skeletal density of coralline algae. This research will evaluate the resiliency of this alga to future environmental change.

  6. A novel membrane bioreactor inoculated with symbiotic sludge bacteria and algae: Performance and microbial community analysis.

    PubMed

    Sun, Li; Tian, Yu; Zhang, Jun; Li, Lipin; Zhang, Jian; Li, Jianzheng

    2018-03-01

    This study combined sludge MBR technology with algae to establish an effective wastewater treatment and low membrane fouling system (ASB-MBR). Compared with control-MBR (C-MBR), the amelioration of microbial activity and the improvement of sludge properties and system environment were achieved after introducing algae resulting in high nutrients removal in the combined system. Further statistical analysis revealed that the symbiosis of algae and sludge displayed more remarkable impacts on nutrients removal than either of them. Additionally, membrane permeability was improved in ASB-MBR with respect to the decreased concentration, the changed of characteristics and the broken particular functional groups of extracellular polymeric substances (EPSs). Moreover, the algae inoculation reduced sludge diversity and shifted sludge community structure. Meantime, the stimulated bacteria selectively excite algal members that would benefit for the formation of algal-bacterial consortia. Consequently, the stimulated or inhibited of some species might be responsible for the performance of ASB-MBR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Turbulence characteristics inferred from time-lagged satellite imagery of surface algae in a shallow tidal sea

    NASA Astrophysics Data System (ADS)

    Marmorino, George O.; Smith, Geoffrey B.; Miller, W. D.

    2017-09-01

    A pair of time-lagged satellite images of surface algae in the Great Barrier Reef lagoon is used to investigate characteristics of the horizontal velocity field at a spatial resolution as small as 4 m. A distinctive feature is the occurrence of surface patches that are relatively clear of algae and which grow in size. These patches are interpreted as resulting from the horizontally diverging motion associated with boils. The surface divergence in such boils can be as large as 0.01 s-1, as deduced directly from the imagery. Overall, root-mean-squared values of divergence, vorticity, and strain rate are 45, 58, and 170, respectively, when normalized by the Coriolis parameter. By observing the algae and its fluid environment simultaneously, the analysis thus provides a glimpse of how underlying hydrodynamic processes help shape the distribution of surface algae - under the calm winds that favor the formation of dense surface aggregations.

  8. A new index to assess chemicals increasing the greenhouse effect based on their toxicity to algae.

    PubMed

    Wang, Ting; Zhang, Xiaoxian; Tian, Dayong; Gao, Ya; Lin, Zhifen; Liu, Ying; Kong, Lingyun

    2015-11-01

    CO2, as the typical greenhouse gas causing the greenhouse effect, is a major global environmental problem and has attracted increasing attention from governments. Using algae to eliminate CO2, which has been proposed as an effective way to reduce the greenhouse effect in the past decades, can be disturbed by a growing number of artificial chemicals. Thus, seven types of chemicals and Selenastrum capricornutum (algae) were examined in this study, and the good consistency between the toxicity of artificial chemicals to algae and the disturbance of carbon fixation by the chemicals was revealed. This consistency showed that the disturbance of an increasing number of artificial chemicals to the carbon fixation of algae might be a "malware" worsening the global greenhouse effect. Therefore, this study proposes an original, promising index to assess the risk of deepening the greenhouse effect by artificial chemicals before they are produced and marketed. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. A novel process for enhancing oil production in algae biorefineries through bioconversion of solid by-products.

    PubMed

    Trzcinski, Antoine P; Hernandez, Ernesto; Webb, Colin

    2012-07-01

    This paper focuses on a novel process for adding value to algae residue. In current processes oleaginous microalgae are grown and harvested for lipid production leaving a lipid-free algae residue. The process described here includes conversion of the carbohydrate fraction into glucose prior to lipid extraction. This can be fermented to produce up to 15% additional lipids using another oleaginous microorganism. It was found that in situ enzymes can hydrolyze storage carbohydrates in the algae into glucose and that a temperature of 55 °C for about 20 h gave the best glucose yield. Up to 75% of available carbohydrates were converted to a generic fermentation feedstock containing 73 g/L glucose. The bioconversion step was found to increase the free water content by 60% and it was found that when the bioconversion was carried out prior to the extraction step, it improved the solvent extractability of lipids from the algae. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Competition between cyanobacteria and green algae at low versus elevated CO2: who will win, and why?

    PubMed

    Ji, Xing; Verspagen, Jolanda M H; Stomp, Maayke; Huisman, Jef

    2017-06-01

    Traditionally, it has often been hypothesized that cyanobacteria are superior competitors at low CO2 and high pH in comparison with eukaryotic algae, owing to their effective CO2-concentrating mechanism (CCM). However, recent work indicates that green algae can also have a sophisticated CCM tuned to low CO2 levels. Conversely, cyanobacteria with the high-flux bicarbonate uptake system BicA appear well adapted to high inorganic carbon concentrations. To investigate these ideas we studied competition between three species of green algae and a bicA strain of the harmful cyanobacterium Microcystis aeruginosa at low (100 ppm) and high (2000 ppm) CO2. Two of the green algae were competitively superior to the cyanobacterium at low CO2, whereas the cyanobacterium increased its competitive ability with respect to the green algae at high CO2. The experiments were supported by a resource competition model linking the population dynamics of the phytoplankton species with dynamic changes in carbon speciation, pH and light. Our results show (i) that competition between phytoplankton species at different CO2 levels can be predicted from species traits in monoculture, (ii) that green algae can be strong competitors under CO2-depleted conditions, and (iii) that bloom-forming cyanobacteria with high-flux bicarbonate uptake systems will benefit from elevated CO2 concentrations. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Size and structure of Chlorella zofingiensis /FeCl 3 flocs in a shear flow: Algae Floc Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyatt, Nicholas B.; O'Hern, Timothy J.; Shelden, Bion

    Flocculation is a promising method to overcome the economic hurdle to separation of algae from its growth medium in large scale operations. But, understanding of the floc structure and the effects of shear on the floc structure are crucial to the large scale implementation of this technique. The floc structure is important because it determines, in large part, the density and settling behavior of the algae. Freshwater algae floc size distributions and fractal dimensions are presented as a function of applied shear rate in a Couette cell using ferric chloride as a flocculant. Comparisons are made with measurements made formore » a polystyrene microparticle model system taken here as well as reported literature results. The algae floc size distributions are found to be self-preserving with respect to shear rate, consistent with literature data for polystyrene. Moreover, three fractal dimensions are calculated which quantitatively characterize the complexity of the floc structure. Low shear rates result in large, relatively dense packed flocs which elongate and fracture as the shear rate is increased. Our results presented here provide crucial information for economically implementing flocculation as a large scale algae harvesting strategy.« less

  12. The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii.

    PubMed

    Pérez-Pérez, María Esther; Couso, Inmaculada; Crespo, José L

    2017-07-12

    Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR) kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii . The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae.

  13. The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii

    PubMed Central

    Pérez-Pérez, María Esther; Crespo, José L.

    2017-01-01

    Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR) kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii. The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae. PMID:28704927

  14. Lead and cadmium concentrations in seawater and algae of the Tunisian coast.

    PubMed

    El Ati-Hellal, M; Hedhili, A; Hellal, F; Boujlel, K; Dachraoui, M; Bousnina, M; Ghorbel, H; Ndhif, M

    2005-01-01

    Both lead and cadmium are toxic trace metals, even in very weak concentrations. The aim of this study was to estimate lead and cadmium pollution in various sites of the Tunisian coast and to verify the possibility of modification of the algae bioconcentration power according to water physico-chemical conditions. Our study concerned 99 samples of algae and 99 samples of seawater, taken in different sites of the Tunisian littoral. The analysis was realized by atomic absorption spectrophotometry (oven graphite). In algae, Sfax site presented the highest concentrations of lead when Sousse site showed the lowest ones. In seawater, the most amounts of lead were observed in Bizerte, Mahdia and Sfax sites, and those of cadmium in Bizerte and Medenine coasts. Bizerte's coast seems to be the most exposed zone to pollution. Indeed, the intensification of sea traffic may take place on this pollution because hydrocarbons derived from petroleum contain some tetraethylic lead characterised by its great toxicity. Sousse's region is the least polluted zone; it might be due to the development of tourism and a strict regulation of pollution in this district.

  15. Nutritional and bioactive compounds of commercialized algae powders used as food supplements.

    PubMed

    Martínez-Hernández, Ginés B; Castillejo, Noelia; Carrión-Monteagudo, María Del M; Artés, Francisco; Artés-Hernández, Francisco

    2018-03-01

    The main nutritional/bioactive compounds (protein; aminoacids, AA; fucose; minerals; vitamins B12 and C; and total phenolic content, TPC) of nine commercial algae powders, used as food supplements, were studied. Undaria pinnatifida showed the highest protein/aminoacid contents (51.6/54.4 g 100 g -1 ). Among brown macroalgae, Himanthalia elongata showed the highest fucose content (26.3 g kg -1 ) followed by Laminaria ochroleuca (22.5 g kg -1 ). Mineral contents of 15-24% were observed in the algae, being particularly excellent sources of iodine (69.0-472.0 mg kg -1 ). Porphyra spp. and Palmaria palmata showed the highest vitamin B12 contents (667-674 µg kg -1 ). Vitamin C ranged among 490.4-711.8 mg kg -1 . H. elongata showed the highest total phenolic content (14.0 g kg -1 ). In conclusion, the studied algae are excellent sources of protein, AA, minerals, vitamin C and some of them presented particularly high vitamin B12 and fucose contents, which may have a potential use as food supplements.

  16. Evaluation of lipid extractability after flash hydrolysis of algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teymouri, Ali; Adams, Kameron J.; Dong, Tao

    Microalgae is identified as a promising feedstock for producing renewable liquid transportation fuels; however, lipids extraction from microalgae for downstream processing to biofuels is one of the important challenges for algal based biorefineries. This work aims at evaluating the potential of applying flash hydrolysis (FH) as a chemical-free technique to increase the lipids extractability of algal biomass as well as its integration with the hydrothermal liquefaction (HTL) of microalgae to enhance the biocrude yields and characteristics for fuel production. To this aim, the FH process was performed on three different algal species (Scenedesmus sp., Nannochloropsis sp., and Chlorella vulgaris) atmore » 280 degrees C and 10 s of residence time. Following FH, in addition to the nutrients rich hydrolysate, approximately, 40 wt% of solids containing almost all (>90 wt%) the lipids termed as biofuels intermediates (BI), were recovered. Kinetics study on lipids extractability from the BI and their lipid profile analyses were conducted for each algal species. The results showed that the FH process had significantly enhanced the lipids extractability. For all three algae species, lipid yields from BI were higher than that of the raw algae. Lipid yields of Chlorella vulgaris in the first 15 min were more than five times higher (52.3 +/- 0.8 vs. 10.7 +/- 0.9 wt%) than that of raw algae during n-hexane based solvent extraction. The kinetics of lipids extractability followed a zero-order reaction rate for all wet raw microalgae and the BI of Scenedesmus sp., while the BI recovered from the other two algal species were determined as a second-order reaction. Comparison of fatty acids profiles indicated the contribution of the FH process in saturating fatty acids. Subsequent to lipids extraction, a conventional hydrothermal liquefaction was performed at 350 degrees C and 1 h to compare the biocrude yields from raw versus BI of Chlorella vulgaris microalgae. The results showed

  17. Evaluation of lipid extractability after flash hydrolysis of algae

    DOE PAGES

    Teymouri, Ali; Adams, Kameron J.; Dong, Tao; ...

    2018-07-01

    Microalgae is identified as a promising feedstock for producing renewable liquid transportation fuels; however, lipids extraction from microalgae for downstream processing to biofuels is one of the important challenges for algal based biorefineries. This work aims at evaluating the potential of applying flash hydrolysis (FH) as a chemical-free technique to increase the lipids extractability of algal biomass as well as its integration with the hydrothermal liquefaction (HTL) of microalgae to enhance the biocrude yields and characteristics for fuel production. To this aim, the FH process was performed on three different algal species (Scenedesmus sp., Nannochloropsis sp., and Chlorella vulgaris) atmore » 280 degrees C and 10 s of residence time. Following FH, in addition to the nutrients rich hydrolysate, approximately, 40 wt% of solids containing almost all (>90 wt%) the lipids termed as biofuels intermediates (BI), were recovered. Kinetics study on lipids extractability from the BI and their lipid profile analyses were conducted for each algal species. The results showed that the FH process had significantly enhanced the lipids extractability. For all three algae species, lipid yields from BI were higher than that of the raw algae. Lipid yields of Chlorella vulgaris in the first 15 min were more than five times higher (52.3 +/- 0.8 vs. 10.7 +/- 0.9 wt%) than that of raw algae during n-hexane based solvent extraction. The kinetics of lipids extractability followed a zero-order reaction rate for all wet raw microalgae and the BI of Scenedesmus sp., while the BI recovered from the other two algal species were determined as a second-order reaction. Comparison of fatty acids profiles indicated the contribution of the FH process in saturating fatty acids. Subsequent to lipids extraction, a conventional hydrothermal liquefaction was performed at 350 degrees C and 1 h to compare the biocrude yields from raw versus BI of Chlorella vulgaris microalgae. The results showed

  18. Metabolic engineering of higher plants and algae for isoprenoid production.

    PubMed

    Kempinski, Chase; Jiang, Zuodong; Bell, Stephen; Chappell, Joe

    2015-01-01

    Isoprenoids are a class of compounds derived from the five carbon precursors, dimethylallyl diphosphate, and isopentenyl diphosphate. These molecules present incredible natural chemical diversity, which can be valuable for humans in many aspects such as cosmetics, agriculture, and medicine. However, many terpenoids are only produced in small quantities by their natural hosts and can be difficult to generate synthetically. Therefore, much interest and effort has been directed toward capturing the genetic blueprint for their biochemistry and engineering it into alternative hosts such as plants and algae. These autotrophic organisms are attractive when compared to traditional microbial platforms because of their ability to utilize atmospheric CO2 as a carbon substrate instead of supplied carbon sources like glucose. This chapter will summarize important techniques and strategies for engineering the accumulation of isoprenoid metabolites into higher plants and algae by choosing the correct host, avoiding endogenous regulatory mechanisms, and optimizing potential flux into the target compound. Future endeavors will build on these efforts by fine-tuning product accumulation levels via the vast amount of available "-omic" data and devising metabolic engineering schemes that integrate this into a whole-organism approach. With the development of high-throughput transformation protocols and synthetic biology molecular tools, we have only begun to harness the power and utility of plant and algae metabolic engineering.

  19. A cytotoxic hydroperoxy sterol from the brown alga, Nizamuddinia zanardinii

    PubMed Central

    2013-01-01

    Background The marine environment is a unique source of bioactive natural products, of which Nizamuddinia zanardinii is an important brown algae distributed in Oman Sea. Literature revealed that there is no report on phytochemistry and pharmacology of this valuable algae. Methods Bioguided fractionation of the methanolic extract of Nizamuddinia zanardinii, collected from Oman Sea, led to the isolation of a hydroperoxy sterol. Its structure was determined by analysis of the spectroscopic data as 24-hydroperoxy-24-vinyl cholesterol (HVC). In vitro cytotoxic activity of this compound was evaluated against HT29, MCF7, A549, HepG2 and MDBK cell lines. Results Although 24(R)-hydroproxy-24-vinylcholesterol has been previously reported from Sargassum and Padina species, it is the first report on the presence of this compound from N. zanardinii. This compound exhibited cytotoxicity in all cell lines (IC50, 3.62, 9.09, 17.96, 32.31 and 37.31 μg/mL respectively). HVC was also evaluated for apoptotic activity and demonstrated positive results in terminal deoxynucleotidyl transferase dUTP Nick End labeling (TUNEL) assay suggesting it a candidate for further apoptotic studies. Conclusions Nizamuddinia zanardinii, a remarkable brown algae of Oman Sea, is a good source of hydroproxy sterols with promising cytotoxic on various cell lines particularly human colon adenocarcinoma. PMID:23497504

  20. [Response of the algae Gymnodinium kovalevskii (Dinophyta) to exposure to synthetic detergents and distillation].

    PubMed

    Aĭzdaĭcher, N A

    2000-01-01

    The effects of synthetic detergents and combined effects of synthetic detergents and water freshening on growth characteristics of the alga Gymnodinium kovalevskii (Dinophyta) were studied. Low concentrations of synthetic detergents (0.1 and 1.0 mg/l) stimulated the algal growth. Elevated concentrations inhibited cell division, affected their motility and induced morphological changes. Contamination with synthetic detergents adversely affected the adaptation plasticity of algae with respect to salinity.

  1. Green Algae as Model Organisms for Biological Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.

    2015-01-01

    In the past decade, the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 μm to several millimeters), their geometric regularity, the ease with which they can be cultured, and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.

  2. A mechanistic investigation of the algae growth "Droop" model.

    PubMed

    Lemesle, V; Mailleret, L

    2008-06-01

    In this work a mechanistic explanation of the classical algae growth model built by M. R. Droop in the late sixties is proposed. We first recall the history of the construction of the "predictive" variable yield Droop model as well as the meaning of the introduced cell quota. We then introduce some theoretical hypotheses on the biological phenomena involved in nutrient storage by the algae that lead us to a "conceptual" model. Though more complex than Droop's one, our model remains accessible to a complete mathematical study: its confrontation to the Droop model shows both have the same asymptotic behavior. However, while Droop's cell quota comes from experimental bio-chemical measurements not related to intra-cellular biological phenomena, its analogous in our model directly follows our theoretical hypotheses. This new model should then be looked at as a re-interpretation of Droop's work from a theoretical biologist's point of view.

  3. Carbon budget of sea-ice algae in spring: Evidence of a significant transfer to zooplankton grazers

    NASA Astrophysics Data System (ADS)

    Michel, C.; Legendre, L.; Ingram, R. G.; Gosselin, M.; Levasseur, M.

    1996-08-01

    The fate of ice-bottom algae, before and after release from the first-year sea ice into the water column, was assessed during the period of ice-algal growth and decline in Resolute Passage (Canadian Arctic). During spring 1992 (from April to June), algae in the bottom ice layer and those suspended and sinking in the upper water column (top 15 m) were sampled approximately every 4 days. Ice-bottom chlorophyll a reached a maximum concentration of 160 mg m-2 in mid-May, after which it decreased to lower values. In the water column, chlorophyll a concentrations were low until the period of ice-algal decline (˜0.1 mg m-3), with most biomass in the <5-μm fraction. In both the suspended and sinking material, large increases of algal biomass occurred at the beginning of June, following the release of ice-algae into the water column. The input of ice-algal derived carbon to the upper water column and the proportions exported through sinking or remaining in suspension were assessed using a carbon budget for the two periods of ice-algal growth and decline. For each period the output terms closely balanced the input. The carbon budget showed that most of the biomass introduced into the upper water column remained suspended (>65% of total export) and that ice-algae were ingested by under-ice grazers after release from the ice. These results stress the importance of ice algae for pelagic consumers during the early stages of ice melt and show that the transfer of ice algae to higher trophic levels extends beyond the period of maximum algal production in the ice bottom.

  4. Anaerobic accumulation of short-chain fatty acids from algae enhanced by damaging cell structure and promoting hydrolase activity.

    PubMed

    Feng, Leiyu; Chen, Yunzhi; Chen, Xutao; Duan, Xu; Xie, Jing; Chen, Yinguang

    2018-02-01

    Short-chain fatty acid (SCFAs) produced from harvested algae by anaerobic fermentation with uncontrolled pH was limited due to the solid cell structure of algae. This study, therefore, was undertaken to enhance the generation of SCFAs from algae by controlling the fermentation pH. pH influenced not only the total SCFAs production, but the percentage of individual SCFA. The maximal yield of SCFAs occurred at pH 10.0 and fermentation time of 6 d (3161 mg COD/L), which mainly contained acetic and iso-valeric acids and was nearly eight times that at uncontrolled pH (392 mg COD/L). Mechanism exploration revealed at alkaline pH, especially at pH 10.0, not only the cell structure of algae was damaged effectively, but also activities and relative quantification of hydrolases as well as the abundance of microorganisms responsible for organics hydrolysis and SCFAs production were improved. Also, the released microcystins from algae were removed efficiently during alkaline anaerobic fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Public Perception of Blue-Algae Bloom Risk in Hongze Lake of China

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Sun, Kai; Ban, Jie; Bi, Jun

    2010-05-01

    In this work we characterize the public perception of one kind of ecological risk—blue-algae bloom in Hongze Lake, China, based on the psychometric paradigm method. In the first survey of May 2008, 300 respondents of Sihong County adjacent to Hongze Lake were investigated, with a total of 156 questionnaires returned. Then in a second survey of July 2008, 500 respondents from the same research area were investigated, with 318 questionnaires collected. This research firstly attempted to explore the local respondents’ degree of concern regarding ecological changes to Hongze Lake in the last ten years. Secondly, to explore the public perception of blue-algae bloom compared to three typical kinds of hazards including earthquake, nuclear power and public traffic. T-test was used to examine the difference of risk perception in these four hazards over time. The third part of this research, with demographic analysis and nonparametric statistical test, predicted the different groups of respondents’ willingness to accept (WTA) risk of blue-algae bloom in two surveys. Using multiple linear regression analysis, the risk perception model explained 28.3% of variance in the WTA blue-algae bloom risk. The variables of Knowledge, Social effect, Benefit, Controllability and Trust in government were significantly correlated with WTA, which implied that these variables were the main influencing factors explaining the respondents’ willingness to accept risk. The results would help the Chinese government to comprehend the public’s risk perception of the lake ecosystem, inducing well designed communication of risks with public and making effective mitigation policies to improve people’s rational risk judgment.

  6. Public perception of blue-algae bloom risk in Hongze Lake of China.

    PubMed

    Huang, Lei; Sun, Kai; Ban, Jie; Bi, Jun

    2010-05-01

    In this work we characterize the public perception of one kind of ecological risk-blue-algae bloom in Hongze Lake, China, based on the psychometric paradigm method. In the first survey of May 2008, 300 respondents of Sihong County adjacent to Hongze Lake were investigated, with a total of 156 questionnaires returned. Then in a second survey of July 2008, 500 respondents from the same research area were investigated, with 318 questionnaires collected. This research firstly attempted to explore the local respondents' degree of concern regarding ecological changes to Hongze Lake in the last ten years. Secondly, to explore the public perception of blue-algae bloom compared to three typical kinds of hazards including earthquake, nuclear power and public traffic. T-test was used to examine the difference of risk perception in these four hazards over time. The third part of this research, with demographic analysis and nonparametric statistical test, predicted the different groups of respondents' willingness to accept (WTA) risk of blue-algae bloom in two surveys. Using multiple linear regression analysis, the risk perception model explained 28.3% of variance in the WTA blue-algae bloom risk. The variables of Knowledge, Social effect, Benefit, Controllability and Trust in government were significantly correlated with WTA, which implied that these variables were the main influencing factors explaining the respondents' willingness to accept risk. The results would help the Chinese government to comprehend the public's risk perception of the lake ecosystem, inducing well designed communication of risks with public and making effective mitigation policies to improve people's rational risk judgment.

  7. Defluviitalea phaphyphila sp. nov., a Novel Thermophilic Bacterium That Degrades Brown Algae.

    PubMed

    Ji, Shi-Qi; Wang, Bing; Lu, Ming; Li, Fu-Li

    2016-02-01

    Brown algae are one of the largest groups of oceanic primary producers for CO2 removal and carbon sinks for coastal regions. However, the mechanism for brown alga assimilation remains largely unknown in thermophilic microorganisms. In this work, a thermophilic alginolytic community was enriched from coastal sediment, from which an obligate anaerobic and thermophilic bacterial strain, designated Alg1, was isolated. Alg1 shared a 16S rRNA gene identity of 94.6% with Defluviitalea saccharophila LIND6LT2(T). Phenotypic, chemotaxonomic, and phylogenetic studies suggested strain Alg1 represented a novel species of the genus Defluviitalea, for which the name Defluviitalea phaphyphila sp. nov. is proposed. Alg1 exhibited an intriguing ability to convert carbohydrates of brown algae, including alginate, laminarin, and mannitol, to ethanol and acetic acid. Three gene clusters participating in this process were predicted to be in the genome, and candidate enzymes were successfully expressed, purified, and characterized. Six alginate lyases were demonstrated to synergistically deconstruct alginate into unsaturated monosaccharide, followed by one uronic acid reductase and two 2-keto-3-deoxy-d-gluconate (KDG) kinases to produce pyruvate. A nonclassical mannitol 1-phosphate dehydrogenase, catalyzing D-mannitol 1-phosphate to fructose 1-phosphate in the presence of NAD(+), and one laminarase also were disclosed. This work revealed that a thermophilic brown alga-decomposing system containing numerous novel thermophilic alginate lyases and a unique mannitol 1-phosphate dehydrogenase was adopted by the natural ethanologenic strain Alg1 during the process of evolution in hostile habitats. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. A UAV and S2A data-based estimation of the initial biomass of green algae in the South Yellow Sea.

    PubMed

    Xu, Fuxiang; Gao, Zhiqiang; Jiang, Xiaopeng; Shang, Weitao; Ning, Jicai; Song, Debin; Ai, Jinquan

    2018-03-01

    Previous studies have shown that the initial biomass of green tide was the green algae attaching to Pyropia aquaculture rafts in the Southern Yellow Sea. In this study, the green algae was identified with unmanned aerial vehicle (UAV), an biomass estimation model was proposed for green algae biomass in the radial sand ridge area based on Sentinel-2A image (S2A) and UAV images. The result showed that the green algae was detected highly accurately with the normalized green-red difference index (NGRDI); approximately 1340 tons and 700 tons of green algae were attached to rafts and raft ropes respectively, and the lower biomass might be the main cause for the smaller scale of green tide in 2017. In addition, UAV play an important role in raft-attaching green algae monitoring and long-term research of its biomass would provide a scientific basis for the control and forecast of green tide in the Yellow Sea. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Fabrication of Metal and Metal Oxide Nanoparticles by Algae and their Toxic Effects

    NASA Astrophysics Data System (ADS)

    Siddiqi, Khwaja Salahuddin; Husen, Azamal

    2016-08-01

    Of all the aquatic organisms, algae are a good source of biomolecules. Since algae contain pigments, proteins, carbohydrates, fats, nucleic acids and secondary metabolites such as alkaloids, some aromatic compounds, macrolides, peptides and terpenes, they act as reducing agents to produce nanoparticles from metal salts without producing any toxic by-product. Once the algal biomolecules are identified, the nanoparticles of desired shape or size may be fabricated. The metal and metal oxide nanoparticles thus synthesized have been investigated for their antimicrobial activity against several gram-positive and gram-negative bacterial strains and fungi. Their dimension is controlled by temperature, incubation time, pH and concentration of the solution. In this review, we have attempted to update the procedure of nanoparticle synthesis from algae, their characterization by UV-vis, Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, x-ray diffraction, energy-dispersive x-ray spectroscopy, dynamic light scattering and application in cutting-edge areas.

  10. A novel ether-linked phytol-containing digalactosylglycerolipid in the marine green alga, Ulva pertusa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishibashi, Yohei; Nagamatsu, Yusuke; Miyamoto, Tomofumi

    2014-10-03

    Highlights: • Alkaline-resistant galactolipid, AEGL, was found in marine algae. • The sugar moiety of AEGL is identical to that of digalactosyldiacylglycerol. • AEGL is the first identified glycolipid that possesses an ether-linked phytol. • AEGL is ubiquitously distributed in green, red and brown marine algae. - Abstract: Galactosylglycerolipids (GGLs) and chlorophyll are characteristic components of chloroplast in photosynthetic organisms. Although chlorophyll is anchored to the thylakoid membrane by phytol (tetramethylhexadecenol), this isoprenoid alcohol has never been found as a constituent of GGLs. We here described a novel GGL, in which phytol was linked to the glycerol backbone via anmore » ether linkage. This unique GGL was identified as an Alkaline-resistant and Endogalactosylceramidase (EGALC)-sensitive GlycoLipid (AEGL) in the marine green alga, Ulva pertusa. EGALC is an enzyme that is specific to the R-Galα/β1-6Galβ1-structure of galactolipids. The structure of U. pertusa AEGL was determined following its purification to 1-O-phytyl-3-O-Galα1-6Galβ1-sn-glycerol by mass spectrometric and nuclear magnetic resonance analyses. AEGLs were ubiquitously distributed in not only green, but also red and brown marine algae; however, they were rarely detected in terrestrial plants, eukaryotic phytoplankton, or cyanobacteria.« less

  11. Botanicals With Dermatologic Properties Derived From First Nations Healing: Part 2-Plants and Algae.

    PubMed

    Colantonio, Sophia; Rivers, Jason K

    Plants and algae have played a central role in the treatment of skin conditions in both traditional First Nations healing and in modern dermatology. The objective of this study was to examine the evidence supporting the dermatological use of seaweed, witch hazel, bearberry, and mayapple. Four plants and algae used in traditional First Nations treatments of skin disease were selected based on expert recommendations. Several databases were searched to identify relevant citations without language restrictions. Seaweed has potential clinical use in the treatment of acne and wrinkles and may be incorporated into biofunctional textiles. Witch hazel is an effective and well-tolerated treatment of inflammation and diaper dermatitis. Bearberry leaves contain arbutin, a skin-lightening agent that is an alternative for the treatment of hyperpigmentation. Mayapple contains podophyllotoxin, a treatment for condyloma accuminata, molluscum contagiosum, and recalcitrant palmoplantar warts. Common plants and algae are replete with bioactive agents that may have beneficial effects on the skin. Further research will open the door to new and innovative products in the future. Limitations of this study include that the scope of our study is limited to 4 plants and algae, a small sample of the breadth of plants used by First Nations for dermatological treatments.

  12. Ecological health monitoring of the Mekong River by using benthic algae in 2003-2004

    NASA Astrophysics Data System (ADS)

    Kunpradid, T.

    2005-05-01

    The monitoring of ecological health of the Mekong River by using benthic algae was carried out from 2003 - 2004. Thirty sampling sites along the Mekong River and its tributaries were selected in Laos, Thailand, Cambodia and Veitnam. In this investigation, the distribution of some species of benthic algae in different environments revealed that there was a significant relationship in the presence of them to the water quality, and these species could be used as a potential biomonitor of water quality in the Mekong River. One hundred and eighty six species of benthic diatoms and 46 species of macroalgae were found. Some dominant species of benthic algae could be used as biomonitors to assess water quality. Hydrodictyon recticulatum and Microspora floccosa and indicated clean-moderate water quality; Audouinella cylindrica, Cladophora glomerata, Achnanthes inflate and Cymbella turgidula indicated moderate water quality; Stigeoclonium flagelliforum, Aulacoseira granulata and Cymbella tumida indicated moderate-polluted water quality and Caloglossa leprieurii, Gomphonema parvulum and Nitzschia clausii indicated polluted water quality. The ecological health assessment of the Mekong River by using the species of benthic algae as biomonitors reveled that in the upstream and tributaries revealed moderate water quality. In contrast, some sites in the lower Mekong showed moderate-polluted to polluted water quality.

  13. [Structure of reef fish communities in Catalinas Islands and Ocotal beach, North Pacific of Costa Rica].

    PubMed

    Espinoza, Mario; Salas, Eva

    2005-01-01

    The reefs are heterogeneous systems that maintain a high diversity of organisms. Fish community structure varies within and among reefs, so it would be expected that reef structure and heterogeneity should affect fish communities inhabiting reefs. Four reef patches at Catalinas Islands (Sur, La Pared, Roca Sucia and Sombrero) and one in Ocotal beach (10 degrees 28'45" N; 85 degrees 52'35" W) were studied with visual censuses (July-December 2003). The structure and composition of fishes between Catalinas islands and Ocotal beach were different, and habitat structure and composition explain most of the variance founded. The presence of the fleshy algae Caulerpa sertularioides in Ocotal, and the corals Tubastrea coccinea and Pocillopora spp. at Catalinas Island explained the variability among sites and how it affected fish community structure and composition. The butterfly fish Johnrandallia nigrirostris, damselfish Microspathodon dorsalis, and surgeon fish Prionurus punctatus were directly correlated with the ahermatipic coral Tubastrea coccinea in Roca Sucia reef, while the angel fish Holacanthus passer was associated to reefs with a major percentage of rocky substrate. Other species such as the damselfish Abudefduf troschelli and Halichoeres dispilus were more abundant at Ocotal, where the algae C sertularioides dominated. The number and abundance of reef fishes was directly correlated with the rugosity index at the reefs of Roca Sucia and Ocotal, but not at reefs of La Pared and Sombrero.

  14. Stability and morphological and molecular-genetic identification of algae in buried soils

    NASA Astrophysics Data System (ADS)

    Temraleeva, A. D.; Moskalenko, S. V.; El'tsov, M. V.; Vagapov, I. M.; Ovchinnikov, A. Yu.; Gugalinskaya, L. A.; Alifanov, V. M.; Pinskii, D. L.

    2017-08-01

    Living cultural strains of the green algae `Chlorella' mirabilis and Muriella terrestris have been isolated from buried soils, and their identification has been confirmed by morphological and molecular-genetic analysis. It has been shown that the retention of their viability could be related to their small size and the presence of sporopollenin in cell walls. The effect of methods for the reactivation of dormant microbial forms on the growth of algae in paleosols has been estimated. The total DNA content has been determined in buried and recent background soils, and relationship between DNA and the presence and age of burial has been established.

  15. Muscle antioxidant (vitamin E) and major fatty acid groups, lipid oxidation and retail colour of meat from lambs fed a roughage based diet with flaxseed or algae.

    PubMed

    Ponnampalam, Eric N; Burnett, Viv F; Norng, Sorn; Hopkins, David L; Plozza, Tim; Jacobs, Joe L

    2016-01-01

    The effect of feeding flaxseed or algae supplements to lambs on muscle antioxidant potential (vitamin E), major fatty acid groups, lipid oxidation and retail colour was investigated. Lambs (n=120) were randomly allocated to one of 4 dietary treatments according to liveweight and fed the following diets for eight weeks: Annual ryegrass hay [60%]+subterranean clover hay [40%] pellets=Basal diet; Basal diet with flaxseed (10.7%)=Flax; Basal diet with algae (1.8%)=Algae; Basal diet with flaxseed (10.7%) and algae (1.8%)=FlaxAlgae. Flaxseed or algae supplementation significantly affected major fatty acid groups in muscle. The addition of algae (average of Algae and FlaxAlgae) resulted in lower vitamin E concentration in muscle (P<0.003; 1.0 vs 1.3mg/kg of muscle) compared with lambs fed a diet without algae (average of Basal and Flax). Increasing muscle EPA+DHA by algae supplementation significantly increased lipid oxidation, but retail display colour of fresh meat was not affected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. A novel antivirally active fucan sulfate derived from an edible brown alga, Sargassum horneri.

    PubMed

    Preeprame, S; Hayashi, K; Lee, J B; Sankawa, U; Hayashi, T

    2001-04-01

    A novel fucan sulfate (Hor-1) was isolated from the hot water extract of an edible brown alga, Sargassum horneri (Turner) C. Agardh. The fucan sulfate was revealed to have sugar linkage types, sulfate content and uronic acid content different from those of sodium hornan (Na-HOR), another fucan sulfate isolated from this alga. However, it exhibited inhibitory activity against replication of herpes simplex virus type 1 with similar potency to Na-HOR.

  17. Study of ecotoxicity of silver nanoparticles using algae

    NASA Astrophysics Data System (ADS)

    Kustov, L. M.; Abramenko, N. B.

    2016-11-01

    Silver nanoparticles have been prepared and tested for their ecotoxicity using Chlorella vulgaris Beijer. algae as a hydrobiotic test organism and a photometric method of control. The toxicity was supposed to originate from Ag+ ions released into the aqueous solution. Also, the toxicity of the stabilizing agent was found to be comparable to that of silver nanoparticles.

  18. Identification of aquatically available carbon from algae through solution-state NMR of whole (13)C-labelled cells.

    PubMed

    Akhter, Mohammad; Dutta Majumdar, Rudraksha; Fortier-McGill, Blythe; Soong, Ronald; Liaghati-Mobarhan, Yalda; Simpson, Myrna; Arhonditsis, George; Schmidt, Sebastian; Heumann, Hermann; Simpson, André J

    2016-06-01

    Green algae and cyanobacteria are primary producers with profound impact on food web functioning. Both represent key carbon sources and sinks in the aquatic environment, helping modulate the dissolved organic matter balance and representing a potential biofuel source. Underlying the impact of algae and cyanobacteria on an ecosystem level is their molecular composition. Herein, intact (13)C-labelled whole cell suspensions of Chlamydomonas reinhardtii, Chlorella vulgaris and Synechocystis were studied using a variety of 1D and 2D (1)H/(13)C solution-state nuclear magnetic resonance (NMR) spectroscopic experiments. Solution-state NMR spectroscopy of whole cell suspensions is particularly relevant as it identifies species that are mobile (dissolved or dynamic gels), 'aquatically available' and directly contribute to the aquatic carbon pool upon lysis, death or become a readily available food source on consumption. In this study, a wide range of metabolites and structural components were identified within the whole cell suspensions. In addition, significant differences in the lipid/triacylglyceride (TAG) content of green algae and cyanobacteria were confirmed. Mobile species in algae are quite different from those in abundance in 'classic' dissolved organic matter (DOM) indicating that if algae are major contributors to DOM, considerable selective preservation of minor components (e.g. sterols) or biotransformation would have to occur. Identifying the metabolites and dissolved components within algal cells by NMR permits future studies of carbon transfer between species and through the food chain, whilst providing a foundation to better understand the role of algae in the formation of DOM and the sequestration/transformation of carbon in aquatic environments.

  19. Escherichia coli Behavior in the Presence of Organic Matter Released by Algae Exposed to Water Treatment Chemicals

    PubMed Central

    Bouteleux, C.; Saby, S.; Tozza, D.; Cavard, J.; Lahoussine, V.; Hartemann, P.; Mathieu, L.

    2005-01-01

    When exposed to oxidation, algae release dissolved organic matter with significant carbohydrate (52%) and biodegradable (55 to 74%) fractions. This study examined whether algal organic matter (AOM) added in drinking water can compromise water biological stability by supporting bacterial survival. Escherichia coli (1.3 × 105 cells ml−1) was inoculated in sterile dechlorinated tap water supplemented with various qualities of organic substrate, such as the organic matter coming from chlorinated algae, ozonated algae, and acetate (model molecule) to add 0.2 ± 0.1 mg of biodegradable dissolved organic carbon (BDOC) liter−1. Despite equivalent levels of BDOC, E. coli behavior depended on the source of the added organic matter. The addition of AOM from chlorinated algae led to an E. coli growth equivalent to that in nonsupplemented tap water; the addition of AOM from ozonated algae allowed a 4- to 12-fold increase in E. coli proliferation compared to nonsupplemented tap water. Under our experimental conditions, 0.1 mg of algal BDOC was sufficient to support E. coli growth, whereas the 0.7 mg of BDOC liter−1 initially present in drinking water and an additional 0.2 mg of BDOC acetate liter−1 were not sufficient. Better maintenance of E. coli cultivability was also observed when AOM was added; cultivability was even increased after addition of AOM from ozonated algae. AOM, likely to be present in treatment plants during algal blooms, and thus potentially in the treated water may compromise water biological stability. PMID:15691924

  20. Morphological and community changes of turf algae in competition with corals

    NASA Astrophysics Data System (ADS)

    Cetz-Navarro, Neidy P.; Quan-Young, Lizette I.; Espinoza-Avalos, Julio

    2015-08-01

    The morphological plasticity and community responses of algae competing with corals have not been assessed. We evaluated eight morphological characters of four species of stoloniferous clonal filamentous turf algae (FTA), including Lophosiphonia cristata (Lc) and Polysiphonia scopulorum var. villum (Psv), and the composition and number of turf algae (TA) in competition for space with the coral Orbicella spp. under experimental and non-manipulated conditions. All FTA exhibited morphological responses, such as increasing the formation of new ramets (except for Psv when competing with O. faveolata). Opposite responses in the space between erect axes were found when Psv competed with O. faveolata and when Lc competed with O. annularis. The characters modified by each FTA species, and the number and composition of TA species growing next to coral tissue differed from that of the TA growing at ≥3 cm. The specific and community responses indicate that some species of TA can actively colonise coral tissue and that fundamental competitive interactions between the two types of organisms occur within the first millimetres of the coral-algal boundary. These findings suggest that the morphological plasticity, high number, and functional redundancy of stoloniferous TA species favour their colonisation of coral tissue and resistance against coral invasion.

  1. Morphological and community changes of turf algae in competition with corals

    PubMed Central

    Cetz-Navarro, Neidy P.; Quan-Young, Lizette I.; Espinoza-Avalos, Julio

    2015-01-01

    The morphological plasticity and community responses of algae competing with corals have not been assessed. We evaluated eight morphological characters of four species of stoloniferous clonal filamentous turf algae (FTA), including Lophosiphonia cristata (Lc) and Polysiphonia scopulorum var. villum (Psv), and the composition and number of turf algae (TA) in competition for space with the coral Orbicella spp. under experimental and non-manipulated conditions. All FTA exhibited morphological responses, such as increasing the formation of new ramets (except for Psv when competing with O. faveolata). Opposite responses in the space between erect axes were found when Psv competed with O. faveolata and when Lc competed with O. annularis. The characters modified by each FTA species, and the number and composition of TA species growing next to coral tissue differed from that of the TA growing at ≥3 cm. The specific and community responses indicate that some species of TA can actively colonise coral tissue and that fundamental competitive interactions between the two types of organisms occur within the first millimetres of the coral−algal boundary. These findings suggest that the morphological plasticity, high number, and functional redundancy of stoloniferous TA species favour their colonisation of coral tissue and resistance against coral invasion. PMID:26244816

  2. Morphological and community changes of turf algae in competition with corals.

    PubMed

    Cetz-Navarro, Neidy P; Quan-Young, Lizette I; Espinoza-Avalos, Julio

    2015-08-05

    The morphological plasticity and community responses of algae competing with corals have not been assessed. We evaluated eight morphological characters of four species of stoloniferous clonal filamentous turf algae (FTA), including Lophosiphonia cristata (Lc) and Polysiphonia scopulorum var. villum (Psv), and the composition and number of turf algae (TA) in competition for space with the coral Orbicella spp. under experimental and non-manipulated conditions. All FTA exhibited morphological responses, such as increasing the formation of new ramets (except for Psv when competing with O. faveolata). Opposite responses in the space between erect axes were found when Psv competed with O. faveolata and when Lc competed with O. annularis. The characters modified by each FTA species, and the number and composition of TA species growing next to coral tissue differed from that of the TA growing at ≥ 3 cm. The specific and community responses indicate that some species of TA can actively colonise coral tissue and that fundamental competitive interactions between the two types of organisms occur within the first millimetres of the coral-algal boundary. These findings suggest that the morphological plasticity, high number, and functional redundancy of stoloniferous TA species favour their colonisation of coral tissue and resistance against coral invasion.

  3. Mychonastes desiccatus Brown sp. nova (Chlorococcales, Chlorophyta)--an intertidal alga forming achlorophyllous desiccation-resistant cysts

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Hinkle, G.; McKhann, H.; Moynihan, B.

    1988-01-01

    An intertidal Chlorella-like alga Mychonastes desiccatus Brown sp. nova, capable of forming achlorophyllous desiccation-resistant cysts, has been grown in unialgal culture. This small alga was first isolated from a dried sample of a well-studied microbial mat. The mat, located at North Pond, Laguna Figueroa, San Quintin, Baja California, Mexico, is a vertically-stratified microbial community which forms laminated sediments. Morphology, pigment composition and G+C content are within the range typical for the genus Chlorella s. 1. Unlike other chlorellae, however, upon desiccation M. desiccatus forms an achlorophyllous, lipid-filled cyst (thick-walled resting stage) in which no plastid is evident. Rewetting leads to chloroplast differentiation, excystment and recovery of the fully green alga. During desiccation, sporopollenin is deposited within a thickening cell wall. Encystment cannot be induced by growth in the dark. The formation of desiccation-induced cysts allows the alga to survive frequent and intermittent periods of dryness. These chlorellae tolerate wide ranges of acidity and temperature; they both grow and form cysts in media in which sodium ions are replaced with potassium. Although the cysts tolerate crystalline salts, the cell grow optimally in concentrations corresponding from three-quarters to full-strength seawater.

  4. EXTRACTION OF SUGARS FROM ALGAE FOR DIRECT CONVERSION TO BUTANOL

    EPA Science Inventory

    We will have a complete full scale design at the end of this project including algae growth and butanol production. Further, the group will have a working prototype for display at the National Mall.

  5. Fatty acid amides from freshwater green alga Rhizoclonium hieroglyphicum.

    PubMed

    Dembitsky, V M; Shkrob, I; Rozentsvet, O A

    2000-08-01

    Freshwater green algae Rhizoclonium hieroglyphicum growing in the Ural Mountains were examined for their fatty acid amides using capillary gas chromatography-mass spectrometry (GC-MS). Eight fatty acid amides were identified by GC-MS. (Z)-9-octadecenamide was found to be the major component (2.26%).

  6. Testing nanomaterial toxicity in unicellular eukaryotic algae and fish cell lines.

    PubMed

    Kroll, Alexandra; Kühnel, Dana; Schirmer, Kristin

    2013-01-01

    Nanoecotoxicology as a sub-discipline of ecotoxicology aims to identify and predict effects elicited on ecosystems by nano-sized materials (NM). Two key groups of model organisms in this context are algae and fish. In this chapter, we present considerations for testing NM with respect to their impact on unicellular algae and cell lines derived from various organs of fish.Based on currently available literature on NM effects in unicellular algae and fish cell lines, and our own experience, we provide guidance on test design, including principle test considerations, materials, NM presentation to cells, exposure, bioavailability, and effect assessment. Assessment needs to be based on a meaningful choice of exposure scenario(s) related to the research question. As a first step, one needs to address whether effects of NMs are to be investigated under environmentally relevant or probable conditions, which may include processes such as agglomeration, or whether NM effects from mono-dispersed particles are of interest, which may require special steps to ensure stable NM suspension. Moreover, whether effects on cells are to be studied in the short- or long-term is important with regard to experimental design. Preparation of NM suspensions, which can be done in aqueous media different from the exposure medium, is addressed with regard to energy input, sterility (as required for algae and fish cell exposure) and particle purity.Specified for the two model systems, algae and fish cell lines, availability and choice of culture media are presented and discussed with regard to impact on NM behavior. Light, temperature, and agitation, which are variables during exposure, are discussed. We further provide guidance on the characterization of the NM in the chosen aqueous exposure media regarding size, zeta potential and electrophoretic mobility. The state of NM in exposure media is decisive for their bioavailability and therefore for potential particle effects. Therefore, we present

  7. Low-magnesium calcite produced by coralline algae in seawater of Late Cretaceous composition

    PubMed Central

    Stanley, Steven M.; Ries, Justin B.; Hardie, Lawrence A.

    2002-01-01

    Shifts in the Mg/Ca ratio of seawater driven by changes in midocean ridge spreading rates have produced oscillations in the mineralogy of nonskeletal carbonate precipitates from seawater on time scales of 108 years. Since Cambrian time, skeletal mineralogies of anatomically simple organisms functioning as major reef builders or producers of shallow marine limestones have generally corresponded in mineral composition to nonskeletal precipitates. Here we report on experiments showing that the ambient Mg/Ca ratio actually governs the skeletal mineralogy of some simple organisms. In modern seas, coralline algae produce skeletons of high-Mg calcite (>4 mol % MgCO3). We grew three species of these algae in artificial seawaters having three different Mg/Ca ratios. All of the species incorporated amounts of Mg into their skeletons in proportion to the ambient Mg/Ca ratio, mimicking the pattern for nonskeletal precipitation. Thus, the algae calcified as if they were simply inducing precipitation from seawater through their consumption of CO2 for photosynthesis; presumably organic templates specify the calcite crystal structure of their skeletons. In artificial seawater with the low Mg/Ca ratio of Late Cretaceous seas, the algae in our experiments produced low-Mg calcite (<4 mol % MgCO3), the carbonate mineral formed by nonskeletal precipitation in those ancient seas. Our results suggest that many taxa that produce high-Mg calcite today produced low-Mg calcite in Late Cretaceous seas. PMID:12399549

  8. Colourful Cultures: Classroom Experiments with the Unicellular Alga Haematococcus pluvialis.

    ERIC Educational Resources Information Center

    Delpech, Roger

    2001-01-01

    Describes an investigation into the photosynthetic potential of the different developmental stages of the green unicellular alga Haematococcus pluvialis. Reviews the biotechnological applications of astaxanthin, the red pigment which can be extracted from Haematococcus pluvialis. (Author/MM)

  9. The Phantom Menace for Patients with Hepatobiliary Diseases: Shewanella haliotis, Often Misidentified as Shewanella algae in Biochemical Tests and MALDI-TOF Analysis.

    PubMed

    Byun, Jung-Hyun; Park, Hyunwoong; Kim, Sunjoo

    2017-03-24

    Although Shewanella algae has been known to have weak pathogenicity, case reports on infections with this species have been steadily increasing. S. algae and S. haliotis are difficult to distinguish from each other with conventional phenotypic methods. We reviewed the microbiological and clinical features of S. algae and S. haliotis infections at our institute. Bacterial culture and identification reports from patient samples from 2010 to 2014 were reviewed to screen the cases of Shewanella infections. In addition to conventional biochemical tests, 16S rRNA gene sequence analysis and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry were performed for 19 stored bacterial isolates. Medical records were reviewed for clinical characteristics and laboratory findings. All isolates were identified as S. algae by using VITEK 2. MALDI-TOF also identified all isolates as S. algae with a 99.9 confidence value. In contrast, 16S rRNA analysis identified 10 isolates as S. algae and 9 isolates as S. haliotis. Both S. algae (60%) and S. haliotis (77%) infections were strongly associated with diseases of the hepatobiliary tract and pancreas. To distinguish between S. algae and S. haliotis, 16S rRNA gene sequence analysis seems more accurate than biochemical tests or MALDI-TOF. Patients with underlying diseases in the hepatobiliary tract and pancreas seem to be susceptible to these marine pathogens.

  10. Comparative genomic analysis of retrogene repertoire in two green algae Volvox carteri and Chlamydomonas reinhardtii.

    PubMed

    Jąkalski, Marcin; Takeshita, Kazutaka; Deblieck, Mathieu; Koyanagi, Kanako O; Makałowska, Izabela; Watanabe, Hidemi; Makałowski, Wojciech

    2016-08-04

    Retroposition, one of the processes of copying the genetic material, is an important RNA-mediated mechanism leading to the emergence of new genes. Because the transcription controlling segments are usually not copied to the new location in this mechanism, the duplicated gene copies (retrocopies) become pseudogenized. However, few can still survive, e.g. by recruiting novel regulatory elements from the region of insertion. Subsequently, these duplicated genes can contribute to the formation of lineage-specific traits and phenotypic diversity. Despite the numerous studies of the functional retrocopies (retrogenes) in animals and plants, very little is known about their presence in green algae, including morphologically diverse species. The current availability of the genomes of both uni- and multicellular algae provides a good opportunity to conduct a genome-wide investigation in order to fill the knowledge gap in retroposition phenomenon in this lineage. Here we present a comparative genomic analysis of uni- and multicellular algae, Chlamydomonas reinhardtii and Volvox carteri, respectively, to explore their retrogene complements. By adopting a computational approach, we identified 141 retrogene candidates in total in both genomes, with their fraction being significantly higher in the multicellular Volvox. Majority of the retrogene candidates showed signatures of functional constraints, thus indicating their functionality. Detailed analyses of the identified retrogene candidates, their parental genes, and homologs of both, revealed that most of the retrogene candidates were derived from ancient retroposition events in the common ancestor of the two algae and that the parental genes were subsequently lost from the respective lineages, making many retrogenes 'orphan'. We revealed that the genomes of the green algae have maintained many possibly functional retrogenes in spite of experiencing various molecular evolutionary events during a long evolutionary time after

  11. Antibacterial activity of red algae (Gracilaria verrucosa) extract against Escherichia coli and Salmonella typhimurium

    NASA Astrophysics Data System (ADS)

    Dayuti, S.

    2018-04-01

    Red alga was widely used in several fields, including food, feed, phamacy and industrial point of view. The chemical analysis showed that red alga contained terpenoid, acetogenic, and aromatic compounds, which have a wide range of biological activities, such as anti-micobial, anti-inflammatory and anti-viral. The objectives of this research was to evaluate the effect of extraction solvent and time on antibacterial activity of red alga (Gracilaria verrucosa), and to explore the bioactive compound contained within Gracilaria verrucosa. The method in this study used descriptive reseach. These findings revealed that the highest inhibition activity among all extracts was obtained with the ratio of methanol:aquades (75:25) and extraction time around 72 hours against Escherichia coli and Salmonella typhimurium. The bioactive compounds of Gracilaria verrucosa tested by phytochemical analysisi consisted of flavonoid, alkaloid, and saponin. Those secondary metabolites may be approximated as antibactial substances.

  12. Sterols from Sargassum oligocystum, a brown algae from the Persian Gulf, and their bioactivity.

    PubMed

    Permeh, Parisa; Saeidnia, Soodabeh; Mashinchian-Moradi, Ali; Gohari, Ahmad R

    2012-01-01

    Sargassum oligocystum (Heterokontophyta) is one of the most abundant algae distributed in the Persian Gulf. In this study, the cytotoxic effects of this algae on brine shrimp larvae were evaluated and the main sterols of the algae identified. Separation and purification of the compounds was carried out using silica gel column chromatography and HPLC to obtain eight pure compounds, 1-8. Structural elucidation of the constituents was based on the data obtained from (1)H-NMR, (13)C-NMR, HSQC, HMBC, DEPT and EI-MS. The compounds separated from S. oligocystum were identified as 22-dehydrocholesterol (1), cholesterol (2), fucosterol (3), 29-hydroperoxystigmasta-5,24(28)-dien-3β-ol (4), 24-hydroperoxy-24-vinylcholesterol (5), a mixture of 24(S)-hydroxy-24-vinylcholesterol (6) and 24(R)-hydroxy-24-vinylcholesterol (7), and ostreasterol (8) based on their spectral data and from comparison with those previously reported in the literature.

  13. Biosynthetic Pathway and Health Benefits of Fucoxanthin, an Algae-Specific Xanthophyll in Brown Seaweeds

    PubMed Central

    Mikami, Koji; Hosokawa, Masashi

    2013-01-01

    Fucoxanthin is the main carotenoid produced in brown algae as a component of the light-harvesting complex for photosynthesis and photoprotection. In contrast to the complete elucidation of the carotenoid biosynthetic pathways in red and green algae, the biosynthetic pathway of fucoxanthin in brown algae is not fully understood. Recently, two models for the fucoxanthin biosynthetic pathway have been proposed in unicellular diatoms; however, there is no such information for the pathway in brown seaweeds to date. Here, we propose a biosynthetic pathway for fucoxanthin in the brown seaweed, Ectocarpus siliculosus, derived from comparison of carotenogenic genes in its sequenced genome with those in the genomes of two diatoms, Thalassiosira pseudonana and Phaeodactylum tricornutum. Currently, fucoxanthin is receiving attention, due to its potential benefits for human health. Therefore, new knowledge regarding the medical and nutraceutical properties of fucoxanthin from brown seaweeds is also summarized here. PMID:23820585

  14. Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms

    PubMed Central

    Holzinger, Andreas; Karsten, Ulf

    2013-01-01

    Although most green algae typically occur in aquatic ecosystems, many species also live partly or permanently under aeroterrestrial conditions, where the cells are exposed to the atmosphere and hence regularly experience dehydration. The ability of algal cells to survive in an air-dried state is termed desiccation tolerance. The mechanisms involved in desiccation tolerance of green algae are still poorly understood, and hence the aim of this review is to summarize recent findings on the effects of desiccation and osmotic water loss. Starting from structural changes, physiological, and biochemical consequences of desiccation will be addressed in different green-algal lineages. The available data clearly indicate a range of strategies, which are rather different in streptophycean and non-streptophycean green algae. While members of the Trebouxiophyceae exhibit effective water loss-prevention mechanisms based on the biosynthesis and accumulation of particular organic osmolytes such as polyols, these compounds are so far not reported in representatives of the Streptophyta. In members of the Streptophyta such as Klebsormidium, the most striking observation is the appearance of cross-walls in desiccated samples, which are strongly undulating, suggesting a high degree of mechanical flexibility. This aids in maintaining structural integrity in the dried state and allows the cell to maintain turgor pressure for a prolonged period of time during the dehydration process. Physiological strategies in aeroterrestrial green algae generally include a rapid reduction of photosynthesis during desiccation, but also a rather quick recovery after rewetting, whereas aquatic species are sensitive to drying. The underlying mechanisms such as the affected molecular components of the photosynthetic machinery are poorly understood in green algae. Therefore, modern approaches based on transcriptomics, proteomics, and/or metabolomics are urgently needed to better understand the molecular

  15. Effects of Tidally Driven Variation on the Response of Coralline Algae to Ocean Acidification

    NASA Astrophysics Data System (ADS)

    Ets-Hokin, J. M.; Fachon, E.; Donham, E. M.; Price, N.

    2016-02-01

    As atmospheric CO2 levels continue to rise, our oceans are becoming more acidic, making it difficult for calcareous organisms like coralline algae to calcify. Coralline algae are early colonizers after disturbances and foundational species that initiate succession by inducing larval settlement of many invertebrate species. However, coralline algae tend to be more susceptible to experimentally elevated pCO2 than other calcifiers, likely due to the higher magnesium content in their calcite skeleton, which can render them more soluble. Magnesium content varies between individuals and is context dependent, thus could be a mechanism of acclimation for algae recruiting to harsh environments. To test this hypothesis, we collected Corallina officinalis from tide pools that experience extreme daily variation and from a well-flushed site that experiences lower daily variation in seawater pH. Samples were placed for 22 days in 1L microcosms bubbled with air enriched with pCO2, with values ranging from preindustrial lows (280 uatm) to predicted highs over the next century (1120 uatm) over 6 treatment levels. C. officinalis collected in the isolated tide pools showed decreased growth ( 50%) both in net calcification (measured via buoyant weight method) and linear extension (visualized with fluorescent stain) in low and high pCO2 levels, with growth peaking at an optimal pCO2 value of approximatly 300 uatm similar to present-day conditions. In contrast C. officinalis collected from the flushed site had no response to pCO2 treatments but had significantly lower growth overall. Tide pool two showed higher inclusion of magnesium in its carbonate skeleton which could explain its more pronounced response to the pCO2 treatments. While living in harsh environments can acclimate coralline algae to high pCO2, overall growth rates are substantially lower and will likely be insufficient to alleviate effects of ocean acidification.

  16. A randomized controlled clinical study of the effect of daily intake of Ascophyllum nodosum alga on calculus, plaque, and gingivitis.

    PubMed

    van Dijken, Jan W V; Koistinen, S; Ramberg, Per

    2015-07-01

    The aim of this study is to evaluate, in a randomized controlled cross-over study, the effect of daily intake of the alga Ascophyllum nodosum on supragingival calculus, plaque formation, and gingival health over a 6-month period. Sixty-one adults with moderate to heavy calculus formation since their last yearly recall visit participated. In a randomized order over two 6-month periods, they swallowed two capsules daily, comprising a total of 500 mg dried marine alga powder (Ascophyllum nodosum, ProDen PlaqueOff®) or two negative control tablets. During the study, the participants maintained their regular oral habits. Their teeth were professionally cleaned at the start of each period and after the 6-month registrations. A wash out period of 1 month separated the two 6-month periods. Supragingival calculus (Volpe Manhold), gingivitis (Löe and Silness), gingival bleeding (Ainamo and Bay), and plaque (Quigley-Hein) were registered at screening and at the end of the two periods. Differences in oral health between the test and control periods were analyzed using a paired t test and Wilcoxon signed rank test. Fifty-five participants completed the study. After the alga intake, the mean calculus reduction was 52% compared to the control (p < 0.0001). Fifty-two participants showed less calculus formation in the alga group than in the control group. Plaque (p = 0.008) and gingival bleeding (p = 0.02) were also significantly less in the alga group. However, no significant difference was found between the groups for gingivitis (p = 0.13). The alga intake significantly reduced the formation of supragingival calculus and plaque and occurrence of gingival bleeding. The alga has a systemic effect on oral health. Daily intake of the alga Ascophyllum nodosum as an adjunct to customary oral hygiene showed a major reduction of supragingival calculus formation and reduced plaque formation. In addition, the calculus in the alga group was characterized by a more porous

  17. Feasibility Studies of Vortex Flow Impact On the Proliferation of Algae in Hydrogen Production for Fuel Cell Applications

    NASA Astrophysics Data System (ADS)

    Miskon, Azizi; A/L Thanakodi, Suresh; Shiema Moh Nazar, Nazatul; Kit Chong, Marcus Wai; Sobri Takriff, Mohd; Fakir Kamarudin, Kamrul; Aziz Norzali, Abdul; Nooraya Mohd Tawil, Siti

    2016-11-01

    The instability of crude oil price in global market as well as the sensitivity towards green energy increases, more research works being carried out to find alternative energy replacing the depleting of fossil fuels. Photobiological hydrogen production system using algae is one of the promising alternative energy source. However, the yield of hydrogen utilizing the current photobioreactor (PBR) is still low for commercial application due to restricted light penetration into the deeper regions of the reactor. Therefore, this paper studies the feasibility of vortex flow impact utilizing magnetic stirring in hydrogen production for fuel cell applications. For comparison of results, a magnetic stirrer is placed under a PBR of algae to stir the algae to obtain an even distribution of sunlight to the algae while the controlled PBR of algae kept in static. The produced hydrogen level was measured using hydrogen sensor circuit and the data collected were communicated to laptop using Arduino Uno. The results showed more cell counts and hydrogen produced in the PBR under the influence of magnetic stirring compared to static PBR by an average of 8 percent in 4 days.

  18. Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor

    USGS Publications Warehouse

    Fairchild, James F.; Ruessler, Shane; Carlson, A. Ron

    1998-01-01

    This study determined the relative sensitivity of five species of aquatic macrophytes and six species of algae to four commonly used herbicides (atrazine, metribuzin, alachlor, and metolachlor). Toxicity tests consisted of 96-h (duckweed and algae) or 14-d (submerged macrophytes) static exposures. The triazine herbicides (atrazine and metribuzin) were significantly more toxic to aquatic plants than were the acetanilide herbicides (alachlor and metolachlor). Toxicity studies ranked metribuzin > atrazine > alachlor > metolachlor in decreasing order of overall toxicity to aquatic plants. Relative sensitivities of macrophytes to these herbicides decreased in the order of Ceratophyllum > Najas > Elodea > Lemna > Myriophyllum. Relative sensitivities of algae to herbicides decreased in the order of Selenastrum > Chlorella > Chlamydomonas > Microcystis > Scenedesmus > Anabaena. Algae and macrophytes were of similar overall sensitivities to herbicides. Data indicated that Selenastrum, a commonly tested green alga, was generally more sensitive compared to other plant species. Lemna minor, a commonly tested floating vascular plant, was of intermediate sensitivity, and was fivefold less sensitive than Ceratophyllum, which was the most sensitive species tested. The results indicated that no species was consistently most sensitive, and that a suite of aquatic plant test species may be needed to perform accurate risk assessments of herbicides.

  19. Prokaryotic algae associated with Australian proterozoic stromatolites.

    NASA Technical Reports Server (NTRS)

    Licari, G. R.; Cloud, P.

    1972-01-01

    The most favorable sites in which to study the associations between stromatolites and the algae responsible for them are places where a variety of stromatolites of possibly early diagenetic or primary silica occupy a layer of substantial thickness of little metamorphosed ancient sediments. One such place is in northwestern Queensland, Australia. Five cases of association between stromatolites and blue-green algal nannofossils were observed within a 100-m sequence of carbonate rocks in that area.

  20. Direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Harvind K.; Muppaneni, Tapaswy; Patil, Prafulla D.

    This paper presents a single-step, environmentally friendly approach for the direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions. Ethanol was used for the simultaneous extraction and transesterification of lipids in algae to produce fatty acid ethyl esters at supercritical conditions. In this work the effects of process parameters dry algae to ethanol (wt./vol.) ratio (1:6-1:15), reaction temperature (245-270 C), and reaction time (2-30 min.) on the yield of fatty acid ethyl esters (FAEE) were studied. 67% conversion was achieved at 265 C and 20 min of reaction time. The calorific value of a purified biodiesel samplemore » produced at optimum conditions was measured to be 43 MJ/kg, which is higher than that of fatty acid methyl esters produced from the same biomass. The purified fatty acid ethyl esters were analyzed using GC-MS and FTIR. TGA analysis of algal biomass and purified FAEE was presented along with TEM images of the biomass captured before and after supercritical ethanol transesterification. This green conversion process has the potential to provide an energy-efficient and economical route for the production of renewable biodiesel production.« less

  1. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D.

    PubMed

    Matsuzaki, Motomichi; Misumi, Osami; Shin-I, Tadasu; Maruyama, Shinichiro; Takahara, Manabu; Miyagishima, Shin-Ya; Mori, Toshiyuki; Nishida, Keiji; Yagisawa, Fumi; Nishida, Keishin; Yoshida, Yamato; Nishimura, Yoshiki; Nakao, Shunsuke; Kobayashi, Tamaki; Momoyama, Yu; Higashiyama, Tetsuya; Minoda, Ayumi; Sano, Masako; Nomoto, Hisayo; Oishi, Kazuko; Hayashi, Hiroko; Ohta, Fumiko; Nishizaka, Satoko; Haga, Shinobu; Miura, Sachiko; Morishita, Tomomi; Kabeya, Yukihiro; Terasawa, Kimihiro; Suzuki, Yutaka; Ishii, Yasuyuki; Asakawa, Shuichi; Takano, Hiroyoshi; Ohta, Niji; Kuroiwa, Haruko; Tanaka, Kan; Shimizu, Nobuyoshi; Sugano, Sumio; Sato, Naoki; Nozaki, Hisayoshi; Ogasawara, Naotake; Kohara, Yuji; Kuroiwa, Tsuneyoshi

    2004-04-08

    Small, compact genomes of ultrasmall unicellular algae provide information on the basic and essential genes that support the lives of photosynthetic eukaryotes, including higher plants. Here we report the 16,520,305-base-pair sequence of the 20 chromosomes of the unicellular red alga Cyanidioschyzon merolae 10D as the first complete algal genome. We identified 5,331 genes in total, of which at least 86.3% were expressed. Unique characteristics of this genomic structure include: a lack of introns in all but 26 genes; only three copies of ribosomal DNA units that maintain the nucleolus; and two dynamin genes that are involved only in the division of mitochondria and plastids. The conserved mosaic origin of Calvin cycle enzymes in this red alga and in green plants supports the hypothesis of the existence of single primary plastid endosymbiosis. The lack of a myosin gene, in addition to the unexpressed actin gene, suggests a simpler system of cytokinesis. These results indicate that the C. merolae genome provides a model system with a simple gene composition for studying the origin, evolution and fundamental mechanisms of eukaryotic cells.

  2. Heavy metal, total arsenic, and inorganic arsenic contents of algae food products.

    PubMed

    Almela, C; Algora, S; Benito, V; Clemente, M J; Devesa, V; Súñer, M A; Vélez, D; Montoro, R

    2002-02-13

    The total arsenic, inorganic arsenic, lead, cadmium, and mercury contents of 18 algae food products currently on sale in Spain were determined. The suitability of the analytical methodologies for this type of matrix was confirmed by evaluating their analytical characteristics. The concentration ranges found for each contaminant, expressed in milligrams per kilogram of dry weight, were as follows: total arsenic, 2.3-141; inorganic arsenic, 0.15-88; lead, < 0.05-1.33; cadmium, 0.03-1.9; and mercury, 0.004-0.04. There is currently no legislation in Spain regarding contaminants in algae food products, but some of the samples analyzed revealed Cd and inorganic As levels higher than those permitted by legislation in other countries. Given the high concentrations of inorganic As found in Hizikia fusiforme, a daily consumption of 1.7 g of the product would reach the Provisional Tolerable Weekly Intake recommended by the WHO for an average body weight of 68 kg. A more comprehensive study of the contents and toxicological implications of the inorganic As present in the algae food products currently sold in Spain may be necessary, which might then be the basis for the introduction of specific sales restrictions.

  3. Longitudinal patterns and response lengths of algae in riverine ecosystems: A model analysis emphasising benthic-pelagic interactions.

    PubMed

    Jäger, Christoph G; Borchardt, Dietrich

    2018-04-07

    In riverine ecosystems primary production is principally possible in two habitats: in the benthic layer by sessile algae and in the surface water by planktonic algae being transported downstream. The relevance of these two habitats generally changes along the rivers' continuum. However, analyses of the interaction of algae in these two habitats and their controlling factors in riverine ecosystems are, so far, very rare. We use a simplified advection-diffusion model system combined with ecological process kinetics to analyse the interaction of benthic and planktonic algae and nutrients along idealised streams and rivers at regional to large scales. Because many of the underlying processes affecting algal dynamics are influenced by depth, we focus particularly on the impact of river depth on this interaction. At constant environmental conditions all state variables approach stable spatial equilibria along the river, independent of the boundary conditions at the upstream end. Because our model is very robust against changes of turbulent diffusion and stream velocity, these spatial equilibria can be analysed by a simplified ordinary differential equation (ode) version of our model. This model variant reveals that at shallower river depths, phytoplankton can exist only when it is subsidised by detaching benthic algae, and in turn, at deeper river depths, benthic algae can exist only in low biomasses which are subsidised by sinking planktonic algae. We generalise the spatial dynamics of the model system using different conditions at the upstream end of the model, which mimic various natural or anthropogenic factors (pristine source, dam, inflow of a waste water treatment plant, and dilution from e.g. a tributary) and analyse how these scenarios influence different aspects of the longitudinal spatial dynamics of the full spatial model: the relation of spatial equilibrium to spatial maximum, the distance to the spatial maximum, and the response length. Generally, our

  4. A New Noncalcified Dasycladalean Alga from the Silurian of Wisconsin

    USGS Publications Warehouse

    LoDuca, S.T.; Kluessendorf, Joanne; Mikulic, Donald G.

    2003-01-01

    Noncalcified thalli, consisting of a narrow main axis with numerous branched hairlike laterals in whorls and a subapical array of undivided clavate laterals, from the Silurian (Llandovery) Brandon Bridge Formation of southeastern Wisconsin, constitute the basis for a new genus and species of dasycladalean alga, Heterocladus waukeshaensis. A relationship within the family Triploporellaceae is indicated by the whorled arrangement of the laterals and the absence of gametophores on mature specimens. A compilation of occurrence data suggests that noncalcified dasyclads, as a whole, were more abundant and diverse during the Ordovician and Silurian than at any other time in their history. The heterocladous thallus architecture of this alga adds to a wide range of morphological variation documented among Ordovician and Silurian dasyclads, the sum of which indicates that Dasycladales underwent a significant evolutionary radiation during the early Paleozoic.

  5. Uranium biosorption by Padina sp. algae biomass: kinetics and thermodynamics.

    PubMed

    Khani, Mohammad Hassan

    2011-11-01

    Kinetic, thermodynamic, and equilibrium isotherms of the biosorption of uranium ions onto Padina sp., a brown algae biomass, in a batch system have been studied. The kinetic data were found to follow the pseudo-second-order model. Intraparticle diffusion is not the sole rate-controlling factor. The equilibrium experimental results were analyzed in terms of Langmuir isotherm depending with temperature. Equilibrium data fitted very well to the Langmuir model. The maximum uptakes estimated by using the Langmuir model were 434.8, 416.7, 400.0, and 370.4 mg/g at 10°C, 20°C, 30°C, and 40°C, respectively. Gibbs free energy was spontaneous for all interactions, and the adsorption process exhibited exothermic enthalpy values. Padina sp. algae were shown to be a favorable biosorbent for uranium removal from aqueous solutions.

  6. [THE MICROSCOPIC ALGAE AS HUMAN PATHOGENS].

    PubMed

    Roman, Manuel Casal

    2014-01-01

    Some microscopic algae can cause different infectious diseases in humans, including skin, bone, and disseminated. These little-known emerging disease are more severe in immunocompromised patients. The confirmatory microbiological diagnosis must be done differential with yeast-like fungi that can be confused. Anti-fungal drugs and surgery, being quite frequent treatment failure have been used in the treatment. Given the increase of immunosuppression in the current medicine and new possibilities of microbiological diagnostics, it is logical that these diseases tend to increase, by which all physician should know them.

  7. Carotenoid Biosynthesis in the Primitive Red Alga Cyanidioschyzon merolae▿

    PubMed Central

    Cunningham, Francis X.; Lee, Hansel; Gantt, Elisabeth

    2007-01-01

    Cyanidioschyzon merolae is considered to be one of the most primitive of eukaryotic photosynthetic organisms. To obtain insights into the origin and evolution of the pathway of carotenoid biosynthesis in eukaryotic plants, the carotenoid content of C. merolae was ascertained, genes encoding enzymes of carotenoid biosynthesis in this unicellular red alga were identified, and the activities of two candidate pathway enzymes of particular interest, lycopene cyclase and β-carotene hydroxylase, were examined. C. merolae contains perhaps the simplest assortment of chlorophylls and carotenoids found in any eukaryotic photosynthetic organism: chlorophyll a, β-carotene, and zeaxanthin. Carotenoids with ɛ-rings (e.g., lutein), found in many other red algae and in green algae and land plants, were not detected, and the lycopene cyclase of C. merolae quite specifically produced only β-ringed carotenoids when provided with lycopene as the substrate in Escherichia coli. Lycopene β-ring cyclases from several bacteria, cyanobacteria, and land plants also proved to be high-fidelity enzymes, whereas the structurally related ɛ-ring cyclases from several plant species were found to be less specific, yielding products with β-rings as well as ɛ-rings. C. merolae lacks orthologs of genes that encode the two types of β-carotene hydroxylase found in land plants, one a nonheme diiron oxygenase and the other a cytochrome P450. A C. merolae chloroplast gene specifies a polypeptide similar to members of a third class of β-carotene hydroxylases, common in cyanobacteria, but this gene did not produce an active enzyme when expressed in E. coli. The identity of the C. merolae β-carotene hydroxylase therefore remains uncertain. PMID:17085635

  8. Reviving Algae from the (Almost) Dead | News | NREL

    Science.gov Websites

    to start functioning normally." "When we first started this, my boss used to tell people dozens of other labs nationwide, algae are like a junior high kid with great promise: slow to arise, but -milliliter vials in a 4-foot-high cryogenic tank, some frozen for as long as five years. A typical household

  9. Electricity generation through a photo sediment microbial fuel cell using algae at the cathode.

    PubMed

    Neethu, B; Ghangrekar, M M

    2017-12-01

    Sediment microbial fuel cells (SMFCs) are bio-electrochemical devices generating electricity from redox gradients occurring across the sediment-water interface. Sediment microbial carbon-capture cell (SMCC), a modified SMFC, uses algae grown in the overlying water of sediment and is considered as a promising system for power generation along with algal cultivation. In this study, the performance of SMCC and SMFC was evaluated in terms of power generation, dissolved oxygen variations, sediment organic matter removal and algal growth. SMCC gave a maximum power density of 22.19 mW/m 2 , which was 3.65 times higher than the SMFC operated under similar conditions. Sediment organic matter removal efficiencies of 77.6 ± 2.1% and 61.0 ± 1.3% were obtained in SMCC and SMFC, respectively. With presence of algae at the cathode, a maximum chemical oxygen demand and total nitrogen removal efficiencies of 63.3 ± 2.3% (8th day) and 81.6 ± 1.2% (10th day), respectively, were observed. The system appears to be favorable from a resources utilization perspective as it does not depend on external aeration or membranes and utilizes algae and organic matter present in sediment for power generation. Thus, SMCC has proven its applicability for installation in an existing oxidation pond for sediment remediation, algae growth, carbon conversion and power generation, simultaneously.

  10. Photochemoprevention of UVB-induced skin carcinogenesis in SKH-1 mice by brown algae polyphenols.

    PubMed

    Hwang, Hyejeong; Chen, Tong; Nines, Ronald G; Shin, Hyeon-Cheol; Stoner, Gary D

    2006-12-15

    Chronic exposure of the skin to ultraviolet B (UVB) radiation induces oxidative stress, which plays a crucial role in the induction of skin cancer. In this study, the effect of dietary feeding and topical application of brown algae polyphenols on UVB radiation-induced skin carcinogenesis in SKH-1 mice was investigated. SKH-1 hairless mice were randomly divided into 9 groups, including control, UVB control and treatment groups. They were treated orally (0.1% and 0.5% with AIN-76 diet, w/w) and topically (3 and 6 mg/0.2 ml of vehicle) with brown algae polyphenols and irradiated with UVB for 26 weeks. Dietary feeding (0.1% and 0.5%) of brown algae polyphenols significantly reduced tumor multiplicity (45% and 56%) and tumor volume (54% and 65%), and topical administration (3 and 6 mg) significantly decreased tumor multiplicity (60% and 46%) and tumor volume (66% and 57%), respectively, per tumor-bearing mouse. Dietary feeding and topical administration of the polyphenols also inhibited tumor incidence by 6% and 21%, respectively, but the results were not significant. Dietary and topical administration of the polyphenols markedly inhibited cyclooxygenase-2 activity and cell proliferation. These observations show that brown algae polyphenols have an antiphotocarcinogenic effect which may be associated with the prevention of UVB-induced oxidative stress, inflammation, and cell proliferation in the skin. Copyright 2006 Wiley-Liss, Inc.

  11. Interactions of CuO nanoparticles with the algae Chlorella pyrenoidosa: adhesion, uptake, and toxicity.

    PubMed

    Zhao, Jian; Cao, Xuesong; Liu, Xiaoyu; Wang, Zhenyu; Zhang, Chenchen; White, Jason C; Xing, Baoshan

    2016-11-01

    The potential adverse effects of CuO nanoparticles (NPs) have increasingly attracted attention. Combining electron microscopic and toxicological investigations, we determined the adhesion, uptake, and toxicity of CuO NPs to eukaryotic alga Chlorella pyrenoidosa. CuO NPs were toxic to C. pyrenoidosa, with a 72 h EC50 of 45.7 mg/L. Scanning electron microscopy showed that CuO NPs were attached onto the surface of the algal cells and interacted with extracellular polymeric substances (EPS) excreted by the organisms. Transmission electron microscopy (TEM) showed that EPS layer of algae was thickened by nearly 4-fold after CuO NPs exposure, suggesting a possible protective mechanism. In spite of the thickening of EPS layer, CuO NPs were still internalized by endocytosis and were stored in algal vacuoles. TEM and electron diffraction analysis confirmed that the internalized CuO NPs were transformed to Cu2O NPs (d-spacing, ∼0.213 nm) with an average size approximately 5 nm. The toxicity investigation demonstrated that severe membrane damage was observed after attachment of CuO NPs with algae. Reactive oxygen species generation and mitochondrial depolarization were also noted upon exposure to CuO NPs. This work provides useful information on understanding the role of NPs-algae physical interactions in nanotoxicity.

  12. Chemical Processing in High-Pressure Aqueous Environments. 9. Process Development for Catalytic Gasification of Algae Feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.

    Through the use of a metal catalyst, gasification of wet algae slurries can be accomplished with high levels of carbon conversion to gas at relatively low temperature (350 C). In a pressurized-water environment (20 MPa), near-total conversion of the organic structure of the algae to gases has been achieved in the presence of a supported ruthenium metal catalyst. The process is essentially steam reforming, as there is no added oxidizer or reagent other than water. In addition, the gas produced is a medium-heating value gas due to the synthesis of high levels of methane, as dictated by thermodynamic equilibrium. Asmore » opposed to earlier work, biomass trace components were removed by processing steps so that they did not cause processing difficulties in the fixed catalyst bed tubular reactor system. As a result, the algae feedstocks, even those with high ash contents, were much more reliably processed. High conversions were obtained even with high slurry concentrations. Consistent catalyst operation in these short-term tests suggested good stability and minimal poisoning effects. High methane content in the product gas was noted with significant carbon dioxide captured in the aqueous byproduct in combination with alkali constituents and the ammonia byproduct derived from proteins in the algae. High conversion of algae to gas products was found with low levels of byproduct water contamination and low to moderate loss of carbon in the mineral separation step.« less

  13. Temporal shifts in top-down vs. bottom-up control of epiphytic algae in a seagrass ecosystem

    USGS Publications Warehouse

    Whalen, Matthew A.; Duffy, J. Emmett; Grace, James B.

    2013-01-01

    In coastal marine food webs, small invertebrate herbivores (mesograzers) have long been hypothesized to occupy an important position facilitating dominance of habitat-forming macrophytes by grazing competitively superior epiphytic algae. Because of the difficulty of manipulating mesograzers in the field, however, their impacts on community organization have rarely been rigorously documented. Understanding mesograzer impacts has taken on increased urgency in seagrass systems due to declines in seagrasses globally, caused in part by widespread eutrophication favoring seagrass overgrowth by faster-growing algae. Using cage-free field experiments in two seasons (fall and summer), we present experimental confirmation that mesograzer reduction and nutrients can promote blooms of epiphytic algae growing on eelgrass (Zostera marina). In this study, nutrient additions increased epiphytes only in the fall following natural decline of mesograzers. In the summer, experimental mesograzer reduction stimulated a 447% increase in epiphytes, appearing to exacerbate seasonal dieback of eelgrass. Using structural equation modeling, we illuminate the temporal dynamics of complex interactions between macrophytes, mesograzers, and epiphytes in the summer experiment. An unexpected result emerged from investigating the interaction network: drift macroalgae indirectly reduced epiphytes by providing structure for mesograzers, suggesting that the net effect of macroalgae on seagrass depends on macroalgal density. Our results show that mesograzers can control proliferation of epiphytic algae, that top-down and bottom-up forcing are temporally variable, and that the presence of macroalgae can strengthen top-down control of epiphytic algae, potentially contributing to eelgrass persistence.

  14. [Ecological Effects of Algae Blooms Cluster: The Impact on Chlorophyll and Photosynthesis of the Water Hyacinth].

    PubMed

    Liu, Guo-feng; He, Jun; Yang, Yi-zhong; Han, Shi-qun

    2015-08-01

    The response of chlorophyll and photosynthesis of water hyacinth leaves in different concentrations of clustered algae cells was studied in the simulation experiment, and the aim was to reveal the mechanism of the death of aquatic plants during algae blooms occurred through studying the physiological changes of the macrophytes, so as to play the full function of the ecological restoration of the plants. And results showed the dissolved oxygen quickly consumed in root zone of aquatic plants after algae blooms gathered and showed the lack of oxygen (DO < 0.2 g x L(-1)); and the ORP was lower than -100 mV after 1 d, and it declined to -200 mV at the end of the experiment. There were lots of nutrients releasing to the water after the algae cell died and concentration of DTN in treatment 1 and 2 were 44.49 mg x L(-1) and 111.32 mg x L(-1), and the content of DTP were 2.57 mg x L(-1) and 9.10 mg x L(-1), respectively. The NH4+ -N concentrations were as high as 32.99 mg x L(-1) and 51.22 mg x L(-1), and the root zone with the anoxia, strong reducing, higher nutrients environment had a serious stress effects to the aquatic plants. The macrophytes photosynthesis reduced quickly and the plant body damaged with the intimidation of higher NH4+ -N concentration (average content was 45.6 mg x L(-1)) and hypoxia after algae cell decomposed. The average net photosynthesis rate, leaf transpiration rate of the treatment 2 reduced to 3.95 micromol (M2 x S)(-1), 0.088 micromol x (m2 x s)(-1), and only were 0.18 times, 0.11 times of the control group, respectively, at the end of the experiment, the control group were 22 micromol x (m2 x s)(-1), 0.78 micromol x (M2 x s)(-1). Results indicated the algae bloom together had the irreversible damage to the aquatic plants. Also it was found large amounts of new roots and the old roots were dead in the treatment 1, but roots were all died in the treatment 2, and leaves were yellow and withered. Experiment results manifested that the serious

  15. Maximizing Lipid Yield in Neochloris oleoabundans Algae Extraction by Stressing and Using Multiple Extraction Stages with N-Ethylbutylamine as Switchable Solvent

    PubMed Central

    2017-01-01

    The extraction yield of lipids from nonbroken Neochloris oleoabundans was maximized by using multiple extraction stages and using stressed algae. Experimental parameters that affect the extraction were investigated. The study showed that with wet algae (at least) 18 h extraction time was required for maximum yield at room temperature and a solvent/feed ratio of 1:1 (w/w). For fresh water (FW), nonstressed, nonbroken Neochloris oleoabundans, 13.1 wt % of lipid extraction yield (based on dry algae mass) was achieved, which could be improved to 61.3 wt % for FW stressed algae after four extractions, illustrating that a combination of stressing the algae and applying the solvent N-ethylbutylamine in multiple stages of extraction results in almost 5 times higher yield and is very promising for further development of energy-efficient lipid extraction technology targeting nonbroken wet microalgae. PMID:28781427

  16. Screening of proteins based on macro-algae from West Java coast in Indonesian marine as a potential anti-aging agent

    NASA Astrophysics Data System (ADS)

    Putri, Arlina Prima; Dewi, Rizna Triana; Handayani, Aniek Sri; Harjanto, Sri; Chalid, Mochamad

    2018-02-01

    Algae has been known as one of the potential marine bio-resources that have been used in many fields such as bio-energy, food, pharmaceutical and medical applications. Study of macro-algae or seaweed for medicine application, in particular, highlights to empower their ingredients as a promising antioxidant like anti-aging agent due to their diversity in biological activity. The tropical climate of Indonesia with the highest marine biodiversity puts this country an auspicious source of numerous alga species as a novel antioxidant source. A Sample of 29 species of macroalgae has been collected from Coast of Pari Island as a part of Seribu Islands, Indonesia. Screening and extracting of aqueous tropical marine alga protein as a potential source for an antioxidant agent has been done by using 2,2-diphenyl-1-picrylhydrazyl scavenging method, and protein contents have been determined by Lowry method. Sample number 26 of the phylum Rhodophyta have 9.00±0.03 % protein content, which is potential for nutritional food in form of nutraceutical. That sample demonstrated the maximum DPPH scavenging activity 79.27±1.81 %. Moreover, crude extract from another species from phylum Rhodophyta had the very lower IC50 (3.4333±0.29 mg/ml) followed by Chlorophyta species (7.1069±1.78 mg/ml). In general, this study found that algae from phylum Rhodophyta possess a high content of protein, high activity towards free radical. Nevertheless, algae acquire the lowest IC50 value not only dominated by Rhodophyta but also from phylum Chlorophyta. The conclusion of this study leads to empowering high antioxidant activity algae as an anti-aging agent, which can be used in pharmaceutical applications. Therefore, the next study should be concerned on the properties of the algae which has been known to be suitable for pharmaceutical fields.

  17. Study of the flow mixing in a novel ARID raceway for algae production

    DOE PAGES

    Xu, Ben; Li, Peiwen; Waller, P.

    2014-07-31

    A novel flow field for algae raceways has been proposed, which is fundamentally different from traditional paddlewheel-driven raceways. To reduce freezing and heat loss in the raceway during cold time, the water is drained to a deep storage canal. The ground bed of the new raceway has a low slope so that water, lifted by propeller pump, can flow down in laterally-laid serpentine channels, relying on gravitational force. The flow rate of water is controlled so that it can overflow the lateral channel walls and mix with the main flow in the next lower channel, which thus creates a bettermore » mixing. In order to optimize the design parameters of the new flow field, methods including flow visualization, local point velocity measurement, and CFD analysis were employed to investigate the flow mixing features. Different combinations of channel geometries and water velocities were evaluated. An optimized flow field design and details of flow mixing are presented. The study offers an innovative design for large scale algae growth raceways which is of significance to the algae and biofuel industry.« less

  18. Study of the flow mixing in a novel ARID raceway for algae production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ben; Li, Peiwen; Waller, P.

    A novel flow field for algae raceways has been proposed, which is fundamentally different from traditional paddlewheel-driven raceways. To reduce freezing and heat loss in the raceway during cold time, the water is drained to a deep storage canal. The ground bed of the new raceway has a low slope so that water, lifted by propeller pump, can flow down in laterally-laid serpentine channels, relying on gravitational force. The flow rate of water is controlled so that it can overflow the lateral channel walls and mix with the main flow in the next lower channel, which thus creates a bettermore » mixing. In order to optimize the design parameters of the new flow field, methods including flow visualization, local point velocity measurement, and CFD analysis were employed to investigate the flow mixing features. Different combinations of channel geometries and water velocities were evaluated. An optimized flow field design and details of flow mixing are presented. The study offers an innovative design for large scale algae growth raceways which is of significance to the algae and biofuel industry.« less

  19. Harvesting green algae from eutrophic reservoir by electroflocculation and post-use for biodiesel production.

    PubMed

    Valero, Enrique; Álvarez, Xana; Cancela, Ángeles; Sánchez, Ángel

    2015-01-01

    Each year there are more frequent blooms of green algae and cyanobacteria, representing a serious environmental problem of eutrophication. Electroflocculation (EF) was studied to harvest the algae which are present in reservoirs, as well as different factors which may influence on the effectiveness of the process: the voltage applied to the culture medium, run times, electrodes separation and natural sedimentation. Finally, the viability of its use to obtain biodiesel was studied by direct transesterification. The EF process carried out at 10V for 1min, with an electrode separation of 5.5cm and a height of 4cm in culture vessel, obtained a recovery efficiency greater than 95%, and octadecenoic and palmitic acids were obtained as the fatty acid methyl esters (FAMEs). EF is an effective method to harvest green algae during the blooms, obtaining the greatest amount of biomass for subsequent use as a source of biodiesel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. One Enzyme, Three Metabolites: Shewanella algae Controls Siderophore Production via the Cellular Substrate Pool.

    PubMed

    Rütschlin, Sina; Gunesch, Sandra; Böttcher, Thomas

    2017-05-18

    Shewanella algae B516 produces avaroferrin, an asymmetric hydroxamate siderophore, which has been shown to inhibit swarming motility of Vibrio alginolyticus. We aimed to elucidate the biosynthesis of this siderophore and to investigate how S. algae coordinates the production of avaroferrin and its two symmetric counterparts. We reconstituted the reaction in vitro with the main enzyme AvbD and the putative biosynthetic precursors, and demonstrate that multispecificity of this enzyme results in the production of all three cyclic hydroxamate siderophores that were previously isolated as natural products from S. algae. Surprisingly, purified AvbD exhibited a clear preference for the larger cadaverine-derived substrate. In live cells, however, siderophore ratios are maximized toward avaroferrin production, and we demonstrate that these siderophore ratios are the result of a regulation on substrate pool level, which may allow rapid evolutionary adaptation to environmental changes. Our results thereby give insights into a unique evolutionary strategy toward metabolite diversity. Copyright © 2017 Elsevier Ltd. All rights reserved.