Partial Fractions in Calculus, Number Theory, and Algebra
ERIC Educational Resources Information Center
Yackel, C. A.; Denny, J. K.
2007-01-01
This paper explores the development of the method of partial fraction decomposition from elementary number theory through calculus to its abstraction in modern algebra. This unusual perspective makes the topic accessible and relevant to readers from high school through seasoned calculus instructors.
ERIC Educational Resources Information Center
Bair, Sherry L.; Rich, Beverly S.
2011-01-01
This article characterizes the development of a deep and connected body of mathematical knowledge categorized by Ball and Bass' (2003b) model of Mathematical Knowledge for Teaching (MKT), as Specialized Content Knowledge for Teaching (SCK) in algebraic reasoning and number sense. The research employed multiple cases across three years from two…
The Algebra of Complex Numbers.
ERIC Educational Resources Information Center
LePage, Wilbur R.
This programed text is an introduction to the algebra of complex numbers for engineering students, particularly because of its relevance to important problems of applications in electrical engineering. It is designed for a person who is well experienced with the algebra of real numbers and calculus, but who has no experience with complex number…
NASA Astrophysics Data System (ADS)
Dankova, T. S.; Rosensteel, G.
1998-10-01
Mean field theory has an unexpected group theoretic mathematical foundation. Instead of representation theory which applies to most group theoretic quantum models, Hartree-Fock and Hartree-Fock-Bogoliubov have been formulated in terms of coadjoint orbits for the groups U(n) and O(2n). The general theory of mean fields is formulated for an arbitrary Lie algebra L of fermion operators. The moment map provides the correspondence between the Hilbert space of microscopic wave functions and the dual space L^* of densities. The coadjoint orbits of the group in the dual space are phase spaces on which time-dependent mean field theory is equivalent to a classical Hamiltonian dynamical system. Indeed it forms a finite-dimensional Lax system. The mean field theories for the Elliott SU(3) and symplectic Sp(3,R) algebras are constructed explicitly in the coadjoint orbit framework.
NASA Technical Reports Server (NTRS)
Iachello, Franco
1995-01-01
An algebraic formulation of quantum mechanics is presented. In this formulation, operators of interest are expanded onto elements of an algebra, G. For bound state problems in nu dimensions the algebra G is taken to be U(nu + 1). Applications to the structure of molecules are presented.
Role of division algebra in seven-dimensional gauge theory
NASA Astrophysics Data System (ADS)
Kalauni, Pushpa; Barata, J. C. A.
2015-03-01
The algebra of octonions 𝕆 forms the largest normed division algebra over the real numbers ℝ, complex numbers ℂ and quaternions ℍ. The usual three-dimensional vector product is given by quaternions, while octonions produce seven-dimensional vector product. Thus, octonionic algebra is closely related to the seven-dimensional algebra, therefore one can extend generalization of rotations in three dimensions to seven dimensions using octonions. An explicit algebraic description of octonions has been given to describe rotational transformation in seven-dimensional space. We have also constructed a gauge theory based on non-associative algebra to discuss Yang-Mills theory and field equation in seven-dimensional space.
On the binary expansions of algebraic numbers
Bailey, David H.; Borwein, Jonathan M.; Crandall, Richard E.; Pomerance, Carl
2003-07-01
Employing concepts from additive number theory, together with results on binary evaluations and partial series, we establish bounds on the density of 1's in the binary expansions of real algebraic numbers. A central result is that if a real y has algebraic degree D > 1, then the number {number_sign}(|y|, N) of 1-bits in the expansion of |y| through bit position N satisfies {number_sign}(|y|, N) > CN{sup 1/D} for a positive number C (depending on y) and sufficiently large N. This in itself establishes the transcendency of a class of reals {summation}{sub n{ge}0} 1/2{sup f(n)} where the integer-valued function f grows sufficiently fast; say, faster than any fixed power of n. By these methods we re-establish the transcendency of the Kempner--Mahler number {summation}{sub n{ge}0}1/2{sup 2{sup n}}, yet we can also handle numbers with a substantially denser occurrence of 1's. Though the number z = {summation}{sub n{ge}0}1/2{sup n{sup 2}} has too high a 1's density for application of our central result, we are able to invoke some rather intricate number-theoretical analysis and extended computations to reveal aspects of the binary structure of z{sup 2}.
Algebraic K-theory, K-regularity, and -duality of -stable C ∗-algebras
NASA Astrophysics Data System (ADS)
Mahanta, Snigdhayan
2015-12-01
We develop an algebraic formalism for topological -duality. More precisely, we show that topological -duality actually induces an isomorphism between noncommutative motives that in turn implements the well-known isomorphism between twisted K-theories (up to a shift). In order to establish this result we model topological K-theory by algebraic K-theory. We also construct an E ∞ -operad starting from any strongly self-absorbing C ∗-algebra . Then we show that there is a functorial topological K-theory symmetric spectrum construction on the category of separable C ∗-algebras, such that is an algebra over this operad; moreover, is a module over this algebra. Along the way we obtain a new symmetric spectra valued functorial model for the (connective) topological K-theory of C ∗-algebras. We also show that -stable C ∗-algebras are K-regular providing evidence for a conjecture of Rosenberg. We conclude with an explicit description of the algebraic K-theory of a x+ b-semigroup C ∗-algebras coming from number theory and that of -stabilized noncommutative tori.
Computer algebra and transport theory.
Warsa, J. S.
2004-01-01
Modern symbolic algebra computer software augments and complements more traditional approaches to transport theory applications in several ways. The first area is in the development and enhancement of numerical solution methods for solving the Boltzmann transport equation. Typically, special purpose computer codes are designed and written to solve specific transport problems in particular ways. Different aspects of the code are often written from scratch and the pitfalls of developing complex computer codes are numerous and well known. Software such as MAPLE and MATLAB can be used to prototype, analyze, verify and determine the suitability of numerical solution methods before a full-scale transport application is written. Once it is written, the relevant pieces of the full-scale code can be verified using the same tools I that were developed for prototyping. Another area is in the analysis of numerical solution methods or the calculation of theoretical results that might otherwise be difficult or intractable. Algebraic manipulations are done easily and without error and the software also provides a framework for any additional numerical calculations that might be needed to complete the analysis. We will discuss several applications in which we have extensively used MAPLE and MATLAB in our work. All of them involve numerical solutions of the S{sub N} transport equation. These applications encompass both of the two main areas in which we have found computer algebra software essential.
Class Numbers and Groups of Algebraic Groups
NASA Astrophysics Data System (ADS)
Platonov, V. P.; Bondarenko, A. A.; Rapinčuk, A. S.
1980-06-01
The class number of an algebraic group G defined over a global field is the number of double cosets of the adele group GA with respect to the subgroups of integral and principal adeles. In most cases the set of double cosets has the natural structure of an abelian group, called the class group of G. In this article the class number of a semisimple group G is computed, and it is proved that any finite abelian group can be realized as a class group.Bibliography: 24 titles.
Fusion rule algebras from graph theory
NASA Astrophysics Data System (ADS)
Caselle, M.; Ponzano, G.
1989-06-01
We describe a new class of fusion algebras related to graph theory which bear intriguing connections with group algebras. The structure constants and the matrix S, which diagonalizes the fusion rules, are explicitly computed in terms of SU(2) coupling coefficients.
Fourier theory and C∗-algebras
NASA Astrophysics Data System (ADS)
Bédos, Erik; Conti, Roberto
2016-07-01
We discuss a number of results concerning the Fourier series of elements in reduced twisted group C∗-algebras of discrete groups, and, more generally, in reduced crossed products associated to twisted actions of discrete groups on unital C∗-algebras. A major part of the article gives a review of our previous work on this topic, but some new results are also included.
Geometric Algebra Software for Teaching Complex Numbers, Vectors and Spinors.
ERIC Educational Resources Information Center
Lounesto, Pertti; And Others
1990-01-01
Presents a calculator-type computer program, CLICAL, in conjunction with complex number, vector, and other geometric algebra computations. Compares the CLICAL with other symbolic programs for algebra. (Author/YP)
Vertex operator algebras and conformal field theory
Huang, Y.Z. )
1992-04-20
This paper discusses conformal field theory, an important physical theory, describing both two-dimensional critical phenomena in condensed matter physics and classical motions of strings in string theory. The study of conformal field theory will deepen the understanding of these theories and will help to understand string theory conceptually. Besides its importance in physics, the beautiful and rich mathematical structure of conformal field theory has interested many mathematicians. New relations between different branches of mathematics, such as representations of infinite-dimensional Lie algebras and Lie groups, Riemann surfaces and algebraic curves, the Monster sporadic group, modular functions and modular forms, elliptic genera and elliptic cohomology, Calabi-Yau manifolds, tensor categories, and knot theory, are revealed in the study of conformal field theory. It is therefore believed that the study of the mathematics involved in conformal field theory will ultimately lead to new mathematical structures which would be important to both mathematics and physics.
Imperfect Cloning Operations in Algebraic Quantum Theory
NASA Astrophysics Data System (ADS)
Kitajima, Yuichiro
2015-01-01
No-cloning theorem says that there is no unitary operation that makes perfect clones of non-orthogonal quantum states. The objective of the present paper is to examine whether an imperfect cloning operation exists or not in a C*-algebraic framework. We define a universal -imperfect cloning operation which tolerates a finite loss of fidelity in the cloned state, and show that an individual system's algebra of observables is abelian if and only if there is a universal -imperfect cloning operation in the case where the loss of fidelity is less than . Therefore in this case no universal -imperfect cloning operation is possible in algebraic quantum theory.
Algebraic methods in system theory
NASA Technical Reports Server (NTRS)
Brockett, R. W.; Willems, J. C.; Willsky, A. S.
1975-01-01
Investigations on problems of the type which arise in the control of switched electrical networks are reported. The main results concern the algebraic structure and stochastic aspects of these systems. Future reports will contain more detailed applications of these results to engineering studies.
The arithmetic theory of algebraic groups
NASA Astrophysics Data System (ADS)
Platonov, V. P.
1982-06-01
CONTENTS Introduction § 1. Arithmetic groups § 2. Adèle groups § 3. Tamagawa numbers § 4. Approximations in algebraic groups § 5. Class numbers and class groups of algebraic groups § 6. The genus problem in arithmetic groups § 7. Classification of maximal arithmetic subgroups § 8. The congruence problem § 9. Groups of rational points over global fields § 10. Galois cohomology and the Hasse principle § 11. Cohomology of arithmetic groups References
Excision in algebraic K-theory and Karoubi's conjecture.
Suslin, A A; Wodzicki, M
1990-12-15
We prove that the property of excision in algebraic K-theory is for a Q-algebra A equivalent to the H-unitality of the latter. Our excision theorem, in particular, implies Karoubi's conjecture on the equality of algebraic and topological K-theory groups of stable C*-algebras. It also allows us to identify the algebraic K-theory of the symbol map in the theory of pseudodifferential operators. PMID:11607130
Excision in algebraic K-theory and Karoubi's conjecture.
Suslin, A A; Wodzicki, M
1990-01-01
We prove that the property of excision in algebraic K-theory is for a Q-algebra A equivalent to the H-unitality of the latter. Our excision theorem, in particular, implies Karoubi's conjecture on the equality of algebraic and topological K-theory groups of stable C*-algebras. It also allows us to identify the algebraic K-theory of the symbol map in the theory of pseudodifferential operators. PMID:11607130
Shifted genus expanded W ∞ algebra and shifted Hurwitz numbers
NASA Astrophysics Data System (ADS)
Zheng, Quan
2016-05-01
We construct the shifted genus expanded W ∞ algebra, which is isomorphic to the central subalgebra A ∞ of infinite symmetric group algebra and to the shifted Schur symmetrical function algebra Λ* defined by Okounkov and Olshanskii. As an application, we get some differential equations for the generating functions of the shifted Hurwitz numbers; thus, we can express the generating functions in terms of the shifted genus expanded cut-and-join operators.
Algebraic theory of recombination spaces.
Stadler, P F; Wagner, G P
1997-01-01
A new mathematical representation is proposed for the configuration space structure induced by recombination, which we call "P-structure." It consists of a mapping of pairs of objects to the power set of all objects in the search space. The mapping assigns to each pair of parental "genotypes" the set of all recombinant genotypes obtainable from the parental ones. It is shown that this construction allows a Fourier decomposition of fitness landscapes into a superposition of "elementary landscapes." This decomposition is analogous to the Fourier decomposition of fitness landscapes on mutation spaces. The elementary landscapes are obtained as eigenfunctions of a Laplacian operator defined for P-structures. For binary string recombination, the elementary landscapes are exactly the p-spin functions (Walsh functions), that is, the same as the elementary landscapes of the string point mutation spaces (i.e., the hypercube). This supports the notion of a strong homomorphism between string mutation and recombination spaces. However, the effective nearest neighbor correlations on these elementary landscapes differ between mutation and recombination and among different recombination operators. On average, the nearest neighbor correlation is higher for one-point recombination than for uniform recombination. For one-point recombination, the correlations are higher for elementary landscapes with fewer interacting sites as well as for sites that have closer linkage, confirming the qualitative predictions of the Schema Theorem. We conclude that the algebraic approach to fitness landscape analysis can be extended to recombination spaces and provides an effective way to analyze the relative hardness of a landscape for a given recombination operator. PMID:10021760
Algebraic Theories and (Infinity,1)-Categories
NASA Astrophysics Data System (ADS)
Cranch, James
2010-11-01
We adapt the classical framework of algebraic theories to work in the setting of (infinity,1)-categories developed by Joyal and Lurie. This gives a suitable approach for describing highly structured objects from homotopy theory. A central example, treated at length, is the theory of E_infinity spaces: this has a tidy combinatorial description in terms of span diagrams of finite sets. We introduce a theory of distributive laws, allowing us to describe objects with two distributing E_infinity stuctures. From this we produce a theory of E_infinity ring spaces. We also study grouplike objects, and produce theories modelling infinite loop spaces (or connective spectra), and infinite loop spaces with coherent multiplicative structure (or connective ring spectra). We use this to construct the units of a grouplike E_infinity ring space in a natural manner. Lastly we provide a speculative pleasant description of the K-theory of monoidal quasicategories and quasicategories with ring-like structures.
Integrable maps from Galois differential algebras, Borel transforms and number sequences
NASA Astrophysics Data System (ADS)
Tempesta, Piergiulio
A new class of integrable maps, obtained as lattice versions of polynomial dynamical systems is introduced. These systems are obtained by means of a discretization procedure that preserves several analytic and algebraic properties of a given differential equation, in particular symmetries and integrability (see Tempesta, 2010 [40]). Our approach is based on the properties of a suitable Galois differential algebra, that we shall call a Rota algebra. A formulation of the procedure in terms of category theory is proposed. In order to render the lattice dynamics confined, a Borel regularization is also adopted. As a byproduct of the theory, a connection between number sequences and integrability is discussed.
Quantum field theories on algebraic curves. I. Additive bosons
NASA Astrophysics Data System (ADS)
Takhtajan, Leon A.
2013-04-01
Using Serre's adelic interpretation of cohomology, we develop a `differential and integral calculus' on an algebraic curve X over an algebraically closed field k of constants of characteristic zero, define algebraic analogues of additive multi-valued functions on X and prove the corresponding generalized residue theorem. Using the representation theory of the global Heisenberg algebra and lattice Lie algebra, we formulate quantum field theories of additive and charged bosons on an algebraic curve X. These theories are naturally connected with the algebraic de Rham theorem. We prove that an extension of global symmetries (Witten's additive Ward identities) from the k-vector space of rational functions on X to the vector space of additive multi-valued functions uniquely determines these quantum theories of additive and charged bosons.
Geometric and Algebraic Approaches in the Concept of Complex Numbers
ERIC Educational Resources Information Center
Panaoura, A.; Elia, I.; Gagatsis, A.; Giatilis, G.-P.
2006-01-01
This study explores pupils' performance and processes in tasks involving equations and inequalities of complex numbers requiring conversions from a geometric representation to an algebraic representation and conversions in the reverse direction, and also in complex numbers problem solving. Data were collected from 95 pupils of the final grade from…
Do malaria parasites follow the algebra of sex ratio theory?
Schall, Jos J
2009-03-01
The ratio of male to female gametocytes seen in infections of Plasmodium and related haemosporidian parasites varies substantially, both within and among parasite species. Sex ratio theory, a mainstay of evolutionary biology, accounts for this variation. The theory provides an algebraic solution for the optimal sex ratio that will maximize parasite fitness. A crucial term in this solution is the probability of selfing by clone-mates within the vector (based on the clone number and their relative abundance). Definitive tests of the theory have proven elusive because of technical challenges in measuring clonal diversity within infections. Newly developed molecular methods now provide opportunities to test the theory with an exquisite precision. PMID:19201653
Topics in Number Theory: The Number Game.
ERIC Educational Resources Information Center
Batra, Laj, Ed.; And Others
This teacher's guide contains nine topics in number theory. Suggested questions for the teacher, short investigations, and possible exercises for the student are included. Chapter 1 is an introduction to sequences and series using geoboard activities involving triangular numbers, square numbers, rectangular numbers, and pentagonal numbers. The…
Misconceptions in Rational Numbers, Probability, Algebra, and Geometry
ERIC Educational Resources Information Center
Rakes, Christopher R.
2010-01-01
In this study, the author examined the relationship of probability misconceptions to algebra, geometry, and rational number misconceptions and investigated the potential of probability instruction as an intervention to address misconceptions in all 4 content areas. Through a review of literature, 5 fundamental concepts were identified that, if…
Australian Curriculum Linked Lessons: Reasoning in Number and Algebra
ERIC Educational Resources Information Center
Day, Lorraine
2014-01-01
The Reasoning Proficiency in number and algebra is about children making sense of the mathematics by explaining their thinking, giving reasons for their decisions and describing mathematical situations and concepts. Lorraine Day notes, children need to be able to speak, read and write the language of mathematics while investigating pattern and…
Metric Lie 3-algebras in Bagger-Lambert theory
NASA Astrophysics Data System (ADS)
de Medeiros, Paul; Figueroa-O'Farrill, José; Méndez-Escobar, Elena
2008-08-01
We recast physical properties of the Bagger-Lambert theory, such as shift-symmetry and decoupling of ghosts, the absence of scale and parity invariance, in Lie 3-algebraic terms, thus motivating the study of metric Lie 3-algebras and their Lie algebras of derivations. We prove a structure theorem for metric Lie 3-algebras in arbitrary signature showing that they can be constructed out of the simple and one-dimensional Lie 3-algebras iterating two constructions: orthogonal direct sum and a new construction called a double extension, by analogy with the similar construction for Lie algebras. We classify metric Lie 3-algebras of signature (2, p) and study their Lie algebras of derivations, including those which preserve the conformal class of the inner product. We revisit the 3-algebraic criteria spelt out at the start of the paper and select those algebras with signature (2, p) which satisfy them, as well as indicate the construction of more general metric Lie 3-algebras satisfying the ghost-decoupling criterion.
Imaginary numbers are not real—The geometric algebra of spacetime
NASA Astrophysics Data System (ADS)
Gull, Stephen; Lasenby, Anthony; Doran, Chris
1993-09-01
This paper contains a tutorial introduction to the ideas of geometric algebra, concentrating on its physical applications. We show how the definition of a “geometric product” of vectors in 2-and 3-dimensional space provides precise geometrical interpretations of the imaginary numbers often used in conventional methods. Reflections and rotations are analyzed in terms of bilinear spinor transformations, and are then related to the theory of analytic functions and their natural extension in more than two dimensions (monogenics), Physics is greatly facilitated by the use of Hestenes' spacetime algebra, which automatically incorporates the geometric structure of spacetime. This is demonstrated by examples from electromagnetism. In the course of this purely classical exposition many surprising results are obtained—results which are usually thought to belong to the preserve of quantum theory. We conclude that geometric algebra is the most powerful and general language available for the development of mathematical physics.
Symmetric linear systems - An application of algebraic systems theory
NASA Technical Reports Server (NTRS)
Hazewinkel, M.; Martin, C.
1983-01-01
Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.
Topological insulators and C*-algebras: Theory and numerical practice
Hastings, Matthew B.; Loring, Terry A.
2011-07-15
Research Highlights: > We classify topological insulators using C* algebras. > We present new K-theory invariants. > We develop efficient numerical algorithms based on this technique. > We observe unexpected quantum phase transitions using our algorithm. - Abstract: We apply ideas from C*-algebra to the study of disordered topological insulators. We extract certain almost commuting matrices from the free Fermi Hamiltonian, describing band projected coordinate matrices. By considering topological obstructions to approximating these matrices by exactly commuting matrices, we are able to compute invariants quantifying different topological phases. We generalize previous two dimensional results to higher dimensions; we give a general expression for the topological invariants for arbitrary dimension and several symmetry classes, including chiral symmetry classes, and we present a detailed K-theory treatment of this expression for time reversal invariant three dimensional systems. We can use these results to show non-existence of localized Wannier functions for these systems. We use this approach to calculate the index for time-reversal invariant systems with spin-orbit scattering in three dimensions, on sizes up to 12{sup 3}, averaging over a large number of samples. The results show an interesting separation between the localization transition and the point at which the average index (which can be viewed as an 'order parameter' for the topological insulator) begins to fluctuate from sample to sample, implying the existence of an unsuspected quantum phase transition separating two different delocalized phases in this system. One of the particular advantages of the C*-algebraic technique that we present is that it is significantly faster in practice than other methods of computing the index, allowing the study of larger systems. In this paper, we present a detailed discussion of numerical implementation of our method.
Topological insulators and C∗-algebras: Theory and numerical practice
NASA Astrophysics Data System (ADS)
Hastings, Matthew B.; Loring, Terry A.
2011-07-01
We apply ideas from C∗-algebra to the study of disordered topological insulators. We extract certain almost commuting matrices from the free Fermi Hamiltonian, describing band projected coordinate matrices. By considering topological obstructions to approximating these matrices by exactly commuting matrices, we are able to compute invariants quantifying different topological phases. We generalize previous two dimensional results to higher dimensions; we give a general expression for the topological invariants for arbitrary dimension and several symmetry classes, including chiral symmetry classes, and we present a detailed K-theory treatment of this expression for time reversal invariant three dimensional systems. We can use these results to show non-existence of localized Wannier functions for these systems. We use this approach to calculate the index for time-reversal invariant systems with spin-orbit scattering in three dimensions, on sizes up to 12 3, averaging over a large number of samples. The results show an interesting separation between the localization transition and the point at which the average index (which can be viewed as an "order parameter" for the topological insulator) begins to fluctuate from sample to sample, implying the existence of an unsuspected quantum phase transition separating two different delocalized phases in this system. One of the particular advantages of the C∗-algebraic technique that we present is that it is significantly faster in practice than other methods of computing the index, allowing the study of larger systems. In this paper, we present a detailed discussion of numerical implementation of our method.
From string theory to algebraic geometry and back
Brinzanescu, Vasile
2011-02-10
We describe some facts in physics which go up to the modern string theory and the related concepts in algebraic geometry. Then we present some recent results on moduli-spaces of vector bundles on non-Kaehler Calabi-Yau 3-folds and their consequences for heterotic string theory.
A Cohomology Theory of Grading-Restricted Vertex Algebras
NASA Astrophysics Data System (ADS)
Huang, Yi-Zhi
2014-04-01
We introduce a cohomology theory of grading-restricted vertex algebras. To construct the correct cohomologies, we consider linear maps from tensor powers of a grading-restricted vertex algebra to "rational functions valued in the algebraic completion of a module for the algebra," instead of linear maps from tensor powers of the algebra to a module for the algebra. One subtle complication arising from such functions is that we have to carefully address the issue of convergence when we compose these linear maps with vertex operators. In particular, for each , we have an inverse system of nth cohomologies and an additional nth cohomology of a grading-restricted vertex algebra V with coefficients in a V-module W such that is isomorphic to the inverse limit of the inverse system . In the case of n = 2, there is an additional second cohomology denoted by which will be shown in a sequel to the present paper to correspond to what we call square-zero extensions of V and to first order deformations of V when W = V.
Some Ideas About Number Theory.
ERIC Educational Resources Information Center
Barnett, I. A.
The material in this booklet is designed for non-professional mathematicians who have an interest in the theory of numbers. The author presents some elementary results of number theory without involving detailed proofs. Much of the material has direct application for secondary school mathematics teachers. A brief account of the nature of number…
Algebraic isomorphism in two-dimensional anomalous gauge theories
Carvalhaes, C.G.; Natividade, C.P.
1997-08-01
The operator solution of the anomalous chiral Schwinger model is discussed on the basis of the general principles of Wightman field theory. Some basic structural properties of the model are analyzed taking a careful control on the Hilbert space associated with the Wightman functions. The isomorphism between gauge noninvariant and gauge invariant descriptions of the anomalous theory is established in terms of the corresponding field algebras. We show that (i) the {Theta}-vacuum representation and (ii) the suggested equivalence of vector Schwinger model and chiral Schwinger model cannot be established in terms of the intrinsic field algebra. {copyright} 1997 Academic Press, Inc.
K-theory of locally finite graph C∗-algebras
NASA Astrophysics Data System (ADS)
Iyudu, Natalia
2013-09-01
We calculate the K-theory of the Cuntz-Krieger algebra OE associated with an infinite, locally finite graph, via the Bass-Hashimoto operator. The formulae we get express the Grothendieck group and the Whitehead group in purely graph theoretic terms. We consider the category of finite (black-and-white, bi-directed) subgraphs with certain graph homomorphisms and construct a continuous functor to abelian groups. In this category K0 is an inductive limit of K-groups of finite graphs, which were calculated in Cornelissen et al. (2008) [3]. In the case of an infinite graph with the finite Betti number we obtain the formula for the Grothendieck group K0(OE)=Z, where β(E) is the first Betti number and γ(E) is the valency number of the graph E. We note that in the infinite case the torsion part of K0, which is present in the case of a finite graph, vanishes. The Whitehead group depends only on the first Betti number: K1(OE)=Z. These allow us to provide a counterexample to the fact, which holds for finite graphs, that K1(OE) is the torsion free part of K0(OE).
Category of trees in representation theory of quantum algebras
Moskaliuk, N. M.; Moskaliuk, S. S.
2013-10-15
New applications of categorical methods are connected with new additional structures on categories. One of such structures in representation theory of quantum algebras, the category of Kuznetsov-Smorodinsky-Vilenkin-Smirnov (KSVS) trees, is constructed, whose objects are finite rooted KSVS trees and morphisms generated by the transition from a KSVS tree to another one.
Algebraic K-theory of discrete subgroups of Lie groups.
Farrell, F T; Jones, L E
1987-05-01
Let G be a Lie group (with finitely many connected components) and Gamma be a discrete, cocompact, torsion-free subgroup of G. We rationally calculate the algebraic K-theory of the integral group ring ZGamma in terms of the homology of Gamma with trivial rational coefficients. PMID:16593834
Algebraic K-theory of discrete subgroups of Lie groups
Farrell, F. T.; Jones, L. E.
1987-01-01
Let G be a Lie group (with finitely many connected components) and Γ be a discrete, cocompact, torsion-free subgroup of G. We rationally calculate the algebraic K-theory of the integral group ring ZΓ in terms of the homology of Γ with trivial rational coefficients. PMID:16593834
Forms and algebras in (half-)maximal supergravity theories
NASA Astrophysics Data System (ADS)
Howe, Paul; Palmkvist, Jakob
2015-05-01
The forms in D-dimensional (half-)maximal supergravity theories are discussed for 3 ≤ D ≤ 11. Superspace methods are used to derive consistent sets of Bianchi identities for all the forms for all degrees, and to show that they are soluble and fully compatible with supersymmetry. The Bianchi identities determine Lie superalgebras that can be extended to Borcherds superalgebras of a special type. It is shown that any Borcherds superalgebra of this type gives the same form spectrum, up to an arbitrary degree, as an associated Kac-Moody algebra. For maximal supergravity up to D-form potentials, this is the very extended Kac-Moody algebra E 11. It is also shown how gauging can be carried out in a simple fashion by deforming the Bianchi identities by means of a new algebraic element related to the embedding tensor. In this case the appropriate extension of the form algebra is a truncated version of the so-called tensor hierarchy algebra.
DeWolf, Melissa; Bassok, Miriam; Holyoak, Keith J
2015-05-01
To understand the development of mathematical cognition and to improve instructional practices, it is critical to identify early predictors of difficulty in learning complex mathematical topics such as algebra. Recent work has shown that performance with fractions on a number line estimation task predicts algebra performance, whereas performance with whole numbers on similar estimation tasks does not. We sought to distinguish more specific precursors to algebra by measuring multiple aspects of knowledge about rational numbers. Because fractions are the first numbers that are relational expressions to which students are exposed, we investigated how understanding the relational bipartite format (a/b) of fractions might connect to later algebra performance. We presented middle school students with a battery of tests designed to measure relational understanding of fractions, procedural knowledge of fractions, and placement of fractions, decimals, and whole numbers onto number lines as well as algebra performance. Multiple regression analyses revealed that the best predictors of algebra performance were measures of relational fraction knowledge and ability to place decimals (not fractions or whole numbers) onto number lines. These findings suggest that at least two specific components of knowledge about rational numbers--relational understanding (best captured by fractions) and grasp of unidimensional magnitude (best captured by decimals)--can be linked to early success with algebraic expressions. PMID:25744594
Pattern vectors from algebraic graph theory.
Wilson, Richard C; Hancock, Edwin R; Luo, Bin
2005-07-01
Graph structures have proven computationally cumbersome for pattern analysis. The reason for this is that, before graphs can be converted to pattern vectors, correspondences must be established between the nodes of structures which are potentially of different size. To overcome this problem, in this paper, we turn to the spectral decomposition of the Laplacian matrix. We show how the elements of the spectral matrix for the Laplacian can be used to construct symmetric polynomials that are permutation invariants. The coefficients of these polynomials can be used as graph features which can be encoded in a vectorial manner. We extend this representation to graphs in which there are unary attributes on the nodes and binary attributes on the edges by using the spectral decomposition of a Hermitian property matrix that can be viewed as a complex analogue of the Laplacian. To embed the graphs in a pattern space, we explore whether the vectors of invariants can be embedded in a low-dimensional space using a number of alternative strategies, including principal components analysis (PCA), multidimensional scaling (MDS), and locality preserving projection (LPP). Experimentally, we demonstrate that the embeddings result in well-defined graph clusters. Our experiments with the spectral representation involve both synthetic and real-world data. The experiments with synthetic data demonstrate that the distances between spectral feature vectors can be used to discriminate between graphs on the basis of their structure. The real-world experiments show that the method can be used to locate clusters of graphs. PMID:16013758
NASA Astrophysics Data System (ADS)
Hoppe, Jens
Over the past years, associative algebras have come to play a major role in several areas of theoretical physics. Firstly, it has been realized that Yang Baxter algebras [1] constitute the relevant structure underlying 1+1 dimensional integrable models; in addition, their relation to braid groups, the theory of knots and links, and the exchange algebras of 1+1 dimensional conformal field theories [2] has been quite well understood by now. Secondly, deformations of Poisson structures that appeared in 2+1 dimensional field theories as infinite dimensional symmetry algebras possess underlying associative structures, which have also been studied in some detail (concerning higher spin theories see, e.g., [3, 4] and references therein, concerning the enveloping algebra of sl(2, C) see, e.g., [5], concerning deformations of diffAT2 — the Lie algebra of infinitesimal area preserving diffeomorphisms of the Torus — see [6, 7, 8, 9]). Ideas on how both investigations could eventually converge (i.e., a relation between 2+1 and 1+1 dimensions) have, e.g., been expressed in [10]. As indicated by the two subtitles there will be two parts to my paper: the first one presents a view on something I met long ago [11], and recently got interested in again [5, 7, 9, 12], while the second part introduces some algebraic structures that seem to be interesting, and possibly new.
Non-simply laced Lie algebras via F theory strings
NASA Astrophysics Data System (ADS)
Bonora, L.; Savelli, R.
2010-11-01
In order to describe the appearance in F theory of the non-simply-laced Lie algebras, we use the representation of symmetry enhancements by means of string junctions. After an introduction to the techniques used to describe symmetry enhancement, that is algebraic geometry, BPS states analysis and string junctions, we concentrate on the latter. We give an explicit description of the folding of D 2n to B n , of the folding of E 6 to F 4 and that of D 4 to G 2 in terms of junctions and Jordan strings. We also discuss the case of C n , but we are unable in this case to provide a string interpretation.
ERIC Educational Resources Information Center
Stanford Univ., CA. School Mathematics Study Group.
Not all of mathematics can be taught in formal textbooks. Just as an English course can be enlivened by selections from literature, a mathematics course can gain depth and interest from special readings. This volume can be read in conjunction with the SMSG First Course in Algebra or Intermediate Mathematics. It introduces the subject of number…
From symmetries to number theory
Tempesta, P.
2009-05-15
It is shown that the finite-operator calculus provides a simple formalism useful for constructing symmetry-preserving discretizations of quantum-mechanical integrable models. A related algebraic approach can also be used to define a class of Appell polynomials and of L series.
NASA Astrophysics Data System (ADS)
Nakayama, Kazunori; Takahashi, Fuminobu; Yanagida, Tsutomu T.
2011-05-01
We propose that the stability of dark matter is ensured by a discrete subgroup of the U(1)B-L gauge symmetry, Z(B-L). We introduce a set of chiral fermions charged under the U(1)B-L in addition to the right-handed neutrinos, and require the anomaly-cancellation conditions associated with the U(1)B-L gauge symmetry. We find that the possible number of fermions and their charges are tightly constrained, and that non-trivial solutions appear when at least five additional chiral fermions are introduced. The Fermat theorem in the number theory plays an important role in this argument. Focusing on one of the solutions, we show that there is indeed a good candidate for dark matter, whose stability is guaranteed by Z(B-L).
On the algebraic K-theory of the complex K-theory spectrum
NASA Astrophysics Data System (ADS)
Ausoni, Christian
2010-03-01
Let p>3 be a prime, let ku be the connective complex K-theory spectrum, and let K(ku) be the algebraic K-theory spectrum of ku. We study the p-primary homotopy type of the spectrum K(ku) by computing its mod (p,v_1) homotopy groups. We show that up to a finite summand, these groups form a finitely generated free module over a polynomial algebra F_p[b], where b is a class of degree 2p+2 defined as a higher Bott element.
Calculation of exchange energies using algebraic perturbation theory
Burrows, B. L.; Dalgarno, A.; Cohen, M.
2010-04-15
An algebraic perturbation theory is presented for efficient calculations of localized states and hence of exchange energies, which are the differences between low-lying states of the valence electron of a molecule, formed by the collision of an ion Y{sup +} with an atom X. For the case of a homonuclear molecule these are the gerade and ungerade states and the exchange energy is an exponentially decreasing function of the internuclear distance. For such homonuclear systems the theory is used in conjunction with the Herring-Holstein technique to give accurate exchange energies for a range of intermolecular separations R. Since the perturbation parameter is essentially 1/R, this method is suitable for large R. In particular, exchange energies are calculated for X{sub 2}{sup +} systems, where X is H, Li, Na, K, Rb, or Cs.
COMMENT: Comment on `Dirac theory in spacetime algebra'
NASA Astrophysics Data System (ADS)
Baylis, William E.
2002-06-01
In contrast to formulations of the Dirac theory by Hestenes and by the present author, the formulation recently presented by Joyce (Joyce W P 2001 J. Phys. A: Math. Gen. 34 1991-2005) is equivalent to the usual Dirac equation only in the case of vanishing mass. For nonzero mass, solutions to Joyce's equation can be solutions either of the Dirac equation in the Hestenes form or of the same equation with the sign of the mass reversed, and in general they are mixtures of the two possibilities. Because of this relationship, Joyce obtains twice as many linearly independent plane-wave solutions for a given momentum eigenvalue as exist in the conventional theory. A misconception about the symmetry of the Hestenes equation and the geometric significance of the algebraic spinors is also briefly discussed.
The role of difficulty and gender in numbers, algebra, geometry and mathematics achievement
NASA Astrophysics Data System (ADS)
Rabab'h, Belal Sadiq Hamed; Veloo, Arsaythamby; Perumal, Selvan
2015-05-01
This study aims to identify the role of difficulty and gender in numbers, algebra, geometry and mathematics achievement among secondary schools students in Jordan. The respondent of the study were 337 students from eight public secondary school in Alkoura district by using stratified random sampling. The study comprised of 179 (53%) males and 158 (47%) females students. The mathematics test comprises of 30 items which has eight items for numbers, 14 items for algebra and eight items for geometry. Based on difficulties among male and female students, the findings showed that item 4 (fractions - 0.34) was most difficult for male students and item 6 (square roots - 0.39) for females in numbers. For the algebra, item 11 (inequality - 0.23) was most difficult for male students and item 6 (algebraic expressions - 0.35) for female students. In geometry, item 3 (reflection - 0.34) was most difficult for male students and item 8 (volume - 0.33) for female students. Based on gender differences, female students showed higher achievement in numbers and algebra compare to male students. On the other hand, there was no differences between male and female students achievement in geometry test. This study suggest that teachers need to give more attention on numbers and algebra when teaching mathematics.
Algebraic expression of the IBM3 hamiltonian in terms of various quantum numbers
NASA Astrophysics Data System (ADS)
Hasegawa, M.
1991-04-01
The properties of the IBM3 hamiltonian are algebraically studied. The IBM3 hamiltonian determined microscopically has as characteristic that the isospin T, rmrather than the spin J, is essential to classifying the energy spectra. The T-dependence of the two-body boson interactions is expressed in terms of the Casimir operators or quantum numbers of various groups. This algebraic approach makes preparations for phenomenological understanding of light nuclei with definite isospin.
K-theory of the chair tiling via AF-algebras
NASA Astrophysics Data System (ADS)
Julien, Antoine; Savinien, Jean
2016-08-01
We compute the K-theory groups of the groupoid C∗-algebra of the chair tiling, using a new method. We use exact sequences of Putnam to compute these groups from the K-theory groups of the AF-algebras of the substitution and the induced lower dimensional substitutions on edges and vertices.
Solutions in bosonic string field theory and higher spin algebras in AdS
NASA Astrophysics Data System (ADS)
Polyakov, Dimitri
2015-11-01
We find a class of analytic solutions in open bosonic string field theory, parametrized by the chiral copy of higher spin algebra in AdS3. The solutions are expressed in terms of the generating function for the products of Bell polynomials in derivatives of bosonic space-time coordinates Xm(z ) of the open string, the form of which is determined in this work. The products of these polynomials form a natural operator algebra realizations of w∞ (area-preserving diffeomorphisms), enveloping algebra of SU(2) and higher spin algebra in AdS3. The class of string field theory solutions found can, in turn, be interpreted as the "enveloping of enveloping," or the enveloping of AdS3 higher spin algebra. We also discuss the extensions of this class of solutions to superstring theory and their relations to higher spin algebras in higher space-time dimensions.
The Clifford algebra of physical space and Dirac theory
NASA Astrophysics Data System (ADS)
Vaz, Jayme, Jr.
2016-09-01
The claim found in many textbooks that the Dirac equation cannot be written solely in terms of Pauli matrices is shown to not be completely true. It is only true as long as the term β \\psi in the usual Dirac factorization of the Klein–Gordon equation is assumed to be the product of a square matrix β and a column matrix ψ. In this paper we show that there is another possibility besides this matrix product, in fact a possibility involving a matrix operation, and show that it leads to another possible expression for the Dirac equation. We show that, behind this other possible factorization is the formalism of the Clifford algebra of physical space. We exploit this fact, and discuss several different aspects of Dirac theory using this formalism. In particular, we show that there are four different possible sets of definitions for the parity, time reversal, and charge conjugation operations for the Dirac equation.
NASA Astrophysics Data System (ADS)
Méliot, Pierre-Loïc
2010-12-01
In this thesis, we investigate the asymptotics of random partitions chosen according to probability measures coming from the representation theory of the symmetric groups S_n and of the finite Chevalley groups GL(n,F_q) and Sp(2n,F_q). More precisely, we prove laws of large numbers and central limit theorems for the q-Plancherel measures of type A and B, the Schur-Weyl measures and the Gelfand measures. Using the RSK algorithm, it also gives results on longest increasing subsequences in random words. We develop a technique of moments (and cumulants) for random partitions, thereby using the polynomial functions on Young diagrams in the sense of Kerov and Olshanski. The algebra of polynomial functions, or observables of Young diagrams is isomorphic to the algebra of partial permutations; in the last part of the thesis, we try to generalize this beautiful construction.
Equivariant algebraic vector bundles over representations of reductive groups: theory.
Masuda, M; Petrie, T
1991-01-01
Let G be a reductive algebraic group and let B be an affine variety with an algebraic action of G. Everything is defined over the field C of complex numbers. Consider the trivial G-vector bundle B x S = S over B where S is a G-module. From the endomorphism ring R of the G-vector bundle S a construction of G-vector bundles over B is given. The bundles constructed this way have the property that when added to S they are isomorphic to F + S for a fixed G-module F. For such a bundle E an invariant rho(E) is defined that lies in a quotient of R. This invariant allows us to distinguish nonisomorphic G-vector bundles. This is applied to the case where B is a G-module and, in that case, an invariant of the underlying equivariant variety is given too. These constructions and invariants are used to produce families of inequivalent G-vector bundles over G-modules and families of inequivalent G actions on affine spaces for some finite and some connected semisimple groups. PMID:11607220
NASA Astrophysics Data System (ADS)
Peng, Jie; Kan, Haibin
It is well known that Boolean functions used in stream and block ciphers should have high algebraic immunity to resist algebraic attacks. Up to now, there have been many constructions of Boolean functions achieving the maximum algebraic immunity. In this paper, we present several constructions of rotation symmetric Boolean functions with maximum algebraic immunity on an odd number of variables which are not symmetric, via a study of invertible cyclic matrices over the binary field. In particular, we generalize the existing results and introduce a new method to construct all the rotation symmetric Boolean functions that differ from the majority function on two orbits. Moreover, we prove that their nonlinearities are upper bounded by 2^{n-1}-\\binom{n-1}{\\lfloor\\frac{n}{2}\\rfloor}+2(n-6).
Geary, David C; Hoard, Mary K; Nugent, Lara; Rouder, Jeffrey N
2015-12-01
The relation between performance on measures of algebraic cognition and acuity of the approximate number system (ANS) and memory for addition facts was assessed for 171 ninth graders (92 girls) while controlling for parental education, sex, reading achievement, speed of numeral processing, fluency of symbolic number processing, intelligence, and the central executive component of working memory. The algebraic tasks assessed accuracy in placing x,y pairs in the coordinate plane, speed and accuracy of expression evaluation, and schema memory for algebra equations. ANS acuity was related to accuracy of placements in the coordinate plane and expression evaluation but not to schema memory. Frequency of fact retrieval errors was related to schema memory but not to coordinate plane or expression evaluation accuracy. The results suggest that the ANS may contribute to or be influenced by spatial-numerical and numerical-only quantity judgments in algebraic contexts, whereas difficulties in committing addition facts to long-term memory may presage slow formation of memories for the basic structure of algebra equations. More generally, the results suggest that different brain and cognitive systems are engaged during the learning of different components of algebraic competence while controlling for demographic and domain general abilities. PMID:26255604
ERIC Educational Resources Information Center
Naval Education and Training Program Development Center, Pensacola, FL.
This textbook is one of a series of publications designed to provide information needed by Navy personnel whose duties require an elementary and general knowledge of the fundamental concepts of number systems, logic circuits, and Boolean algebra. Topic 1, Number Systems, describes the radix; the positional notation; the decimal, binary, octal, and…
ERIC Educational Resources Information Center
Yantz, Jennifer
2013-01-01
The attainment and retention of later algebra skills in high school has been identified as a factor significantly impacting the postsecondary success of students majoring in STEM fields. Researchers maintain that learners develop meaning for algebraic procedures by forming connections to the basic number system properties. The present study…
Quantum Computing and Number Theory
NASA Astrophysics Data System (ADS)
Sasaki, Yoshitaka
2013-09-01
The prime factorization can be efficiently solved on a quantum computer. This result was given by Shor in 1994. In the first half of this article, a review of Shor's algorithm with mathematical setups is given. In the second half of this article, the prime number theorem which is an essential tool to understand the distribution of prime numbers is given.
Clifford Algebra Cℓ 3(ℂ) for Applications to Field Theories
NASA Astrophysics Data System (ADS)
Panicaud, B.
2011-10-01
The multivectorial algebras present yet both an academic and a technological interest. Difficulties can occur for their use. Indeed, in all applications care is taken to distinguish between polar and axial vectors and between scalars and pseudo scalars. Then a total of eight elements are often considered even if they are not given the correct name of multivectors. Eventually because of their simplicity, only the vectorial algebra or the quaternions algebra are explicitly used for physical applications. Nevertheless, it should be more convenient to use directly more complex algebras in order to have a wider range of application. The aim of this paper is to inquire into one particular Clifford algebra which could solve this problem. The present study is both didactic concerning its construction and pragmatic because of the introduced applications. The construction method is not an original one. But this latter allows to build up the associated real algebra as well as a peculiar formalism that enables a formal analogy with the classical vectorial algebra. Finally several fields of the theoretical physics will be described thanks to this algebra, as well as a more applied case in general relativity emphasizing simultaneously its relative validity in this particular domain and the easiness of modeling some physical problems.
Teaching of Real Numbers by Using the Archimedes-Cantor Approach and Computer Algebra Systems
ERIC Educational Resources Information Center
Vorob'ev, Evgenii M.
2015-01-01
Computer technologies and especially computer algebra systems (CAS) allow students to overcome some of the difficulties they encounter in the study of real numbers. The teaching of calculus can be considerably more effective with the use of CAS provided the didactics of the discipline makes it possible to reveal the full computational potential of…
The "Number Crunch" Game: A Simple Vehicle for Building Algebraic Reasoning Skills
ERIC Educational Resources Information Center
Sugden, Steve
2012-01-01
A newspaper numbers game based on simple arithmetic relationships is discussed. Its potential to give students of elementary algebra practice in semi-"ad hoc" reasoning and to build general arithmetic reasoning skills is explored. (Contains 3 figures, 7 tables and 3 notes.)
Number Theory in the High School Classroom.
ERIC Educational Resources Information Center
Dence, Thomas
1999-01-01
Demonstrates some of the usefulness of number theory to students on the high school setting in four areas: Fibonacci numbers, Diophantine equations, continued fractions, and algorithms for computing pi. (ASK)
Perturbative quantization of Yang-Mills theory with classical double as gauge algebra
NASA Astrophysics Data System (ADS)
Ruiz Ruiz, F.
2016-02-01
Perturbative quantization of Yang-Mills theory with a gauge algebra given by the classical double of a semisimple Lie algebra is considered. The classical double of a real Lie algebra is a nonsemisimple real Lie algebra that admits a nonpositive definite invariant metric, the indefiniteness of the metric suggesting an apparent lack of unitarity. It is shown that the theory is UV divergent at one loop and that there are no radiative corrections at higher loops. One-loop UV divergences are removed through renormalization of the coupling constant, thus introducing a renormalization scale. The terms in the classical action that would spoil unitarity are proved to be cohomologically trivial with respect to the Slavnov-Taylor operator that controls gauge invariance for the quantum theory. Hence they do not contribute gauge invariant radiative corrections to the quantum effective action and the theory is unitary.
Algebraic methods for diagonalization of a quaternion matrix in quaternionic quantum theory
Jiang Tongsong
2005-05-01
By means of complex representation and real representation of a quaternion matrix, this paper studies the problem of diagonalization of a quaternion matrix, gives two algebraic methods for diagonalization of quaternion matrices in quaternionic quantum theory.
NASA Technical Reports Server (NTRS)
Byrnes, C. I.
1980-01-01
It is noted that recent work by Kamen (1979) on the stability of half-plane digital filters shows that the problem of the existence of a feedback law also arises for other Banach algebras in applications. This situation calls for a realization theory and stabilizability criteria for systems defined over Banach for Frechet algebra A. Such a theory is developed here, with special emphasis placed on the construction of finitely generated realizations, the existence of coprime factorizations for T(s) defined over A, and the solvability of the quadratic optimal control problem and the associated algebraic Riccati equation over A.
Relativistic theory of tidal Love numbers
Binnington, Taylor; Poisson, Eric
2009-10-15
In Newtonian gravitational theory, a tidal Love number relates the mass multipole moment created by tidal forces on a spherical body to the applied tidal field. The Love number is dimensionless, and it encodes information about the body's internal structure. We present a relativistic theory of Love numbers, which applies to compact bodies with strong internal gravities; the theory extends and completes a recent work by Flanagan and Hinderer, which revealed that the tidal Love number of a neutron star can be measured by Earth-based gravitational-wave detectors. We consider a spherical body deformed by an external tidal field, and provide precise and meaningful definitions for electric-type and magnetic-type Love numbers; and these are computed for polytropic equations of state. The theory applies to black holes as well, and we find that the relativistic Love numbers of a nonrotating black hole are all zero.
An Application of Number Theory to Cryptology.
ERIC Educational Resources Information Center
Snow, Joanne R.
1989-01-01
Discussed is an application of number theory to cryptology that can be used with secondary school students. Background on the topics is given first, followed by an explanation for use of the topic. (MNS)
Adèlic formulas for string amplitudes in fields of algebraic numbers
NASA Astrophysics Data System (ADS)
Vladimirov, V. S.; Sapuzhak, T. M.
1996-06-01
On the basis of the analysis on adèle groups (Tate's formula) for any field of algebraic numbers, a regularization of infinite adèlic products of gamma and beta functions of local fields is proposed. The formulas obtained are applied to representations of the four-point crossing symmetric Veneziano and Virasoro-Shapiro amplitudes through regularized adèlic products of the corresponding string (open and closed, resp.) amplitudes.
Teaching of real numbers by using the Archimedes-Cantor approach and computer algebra systems
NASA Astrophysics Data System (ADS)
Vorob'ev, Evgenii M.
2015-11-01
Computer technologies and especially computer algebra systems (CAS) allow students to overcome some of the difficulties they encounter in the study of real numbers. The teaching of calculus can be considerably more effective with the use of CAS provided the didactics of the discipline makes it possible to reveal the full computational potential of CAS. In the case of real numbers, the Archimedes-Cantor approach satisfies this requirement. The name of Archimedes brings back the exhaustion method. Cantor's name reminds us of the use of Cauchy rational sequences to represent real numbers. The usage of CAS with the Archimedes-Cantor approach enables the discussion of various representations of real numbers such as graphical, decimal, approximate decimal with precision estimates, and representation as points on a straight line. Exercises with numbers such as e, π, the golden ratio ϕ, and algebraic irrational numbers can help students better understand the real numbers. The Archimedes-Cantor approach also reveals a deep and close relationship between real numbers and continuity, in particular the continuity of functions.
NASA Astrophysics Data System (ADS)
Taormina, Anne
1993-05-01
The representation theory of the doubly extended N=4 superconformal algebra is reviewed. The modular properties of the corresponding characters can be derived, using characters sumrules for coset realizations of these N=4 algebras. Some particular combinations of massless characters are shown to transform as affine SU(2) characters under S and T, a fact used to completely classify the massless sector of the partition function.
Higher gauge theories from Lie n-algebras and off-shell covariantization
NASA Astrophysics Data System (ADS)
Carow-Watamura, Ursula; Heller, Marc Andre; Ikeda, Noriaki; Kaneko, Yukio; Watamura, Satoshi
2016-07-01
We analyze higher gauge theories in various dimensions using a supergeometric method based on a differential graded symplectic manifold, called a QP-manifold, which is closely related to the BRST-BV formalism in gauge theories. Extensions of the Lie 2-algebra gauge structure are formulated within the Lie n-algebra induced by the QP-structure. We find that in 5 and 6 dimensions there are special extensions of the gauge algebra. In these cases, a restriction of the gauge symmetry by imposing constraints on the auxiliary gauge fields leads to a covariantized theory. As an example we show that we can obtain an off-shell covariantized higher gauge theory in 5 dimensions, which is similar to the one proposed in [1].
Number Theory in the Elementary School.
ERIC Educational Resources Information Center
Beougher, Elton E.
The paper presents reasons for teaching topics from number theory to elementary school students: (1) it can help reveal why numbers "act" in a certain way when added, multiplied, etc., (2) it offers drill material in new areas of mathematics, (3) it can develop interest - as mathematical enrichment, (4) it offers opportunities for students to…
Laboratory Mathematics. Curriculum Booklet 6 - Number Theory.
ERIC Educational Resources Information Center
Rogers, Sandra
This booklet is one of a set of five booklets which comprise the basic curriculum for "Mathematics Laboratories for Disadvantaged Students," a nationally validated Title III ESEA project. This publication provides evaluation materials and student materials related to number theory. Topics included in this booklet are prime and composite numbers,…
Cluster Algebras from Dualities of 2d = (2, 2) Quiver Gauge Theories
NASA Astrophysics Data System (ADS)
Benini, Francesco; Park, Daniel S.; Zhao, Peng
2015-11-01
We interpret certain Seiberg-like dualities of two-dimensional = (2,2) quiver gauge theories with unitary groups as cluster mutations in cluster algebras, originally formulated by Fomin and Zelevinsky. In particular, we show how the complexified Fayet-Iliopoulos parameters of the gauge group factors transform under those dualities and observe that they are in fact related to the dual cluster variables of cluster algebras. This implies that there is an underlying cluster algebra structure in the quantum Kähler moduli space of manifolds constructed from the corresponding Kähler quotients. We study the S 2 partition function of the gauge theories, showing that it is invariant under dualities/mutations, up to an overall normalization factor, whose physical origin and consequences we spell out in detail. We also present similar dualities in = (2,2)* quiver gauge theories, which are related to dualities of quantum integrable spin chains.
Classification of operator algebraic conformal field theories in dimensions one and two
NASA Astrophysics Data System (ADS)
Kawahigashi, Yasuyuki
2006-03-01
We formulate conformal field theory in the setting of algebraic quantum field theory as Haag-Kastler nets of local observable algebras with diffeomorphism covariance on the two-dimensional Minkowski space. We then obtain a decomposition of a two-dimensional theory into two chiral theories. We give the first classification result of such chiral theories with representation theoretic invariants. That is, we use the central charge as the first invariant, and if it is less than 1, we obtain a complete classification. Our classification list contains a new net which does not seem to arise from the known constructions such as the coset or orbifold constructions. We also present a classification of full two-dimensional conformal theories. These are joint works with Roberto Longo.
Vantage Theory, VT2, and Number.
ERIC Educational Resources Information Center
Allan, Keith
2002-01-01
Reviews vantage theory and makes a claim that it does not replace, but coexists with a semantics for color terms. Identifies basic facts about countability in English, and presents further evidence of the fact that the grammar of number and quantification in English is exploited to reveal different conceptualizations of what is spoken of. Claims…
Chen Famin; Wu Yongshi
2010-11-15
We present a superspace formulation of the D=3, N=4, 5 superconformal Chern-Simons Matter theories, with matter supermultiplets valued in a symplectic 3-algebra. We first construct an N=1 superconformal action and then generalize a method used by Gaitto and Witten to enhance the supersymmetry from N=1 to N=5. By decomposing the N=5 supermultiplets and the symplectic 3-algebra properly and proposing a new superpotential term, we construct the N=4 superconformal Chern-Simons matter theories in terms of two sets of generators of a (quaternion) symplectic 3-algebra. The N=4 theories can also be derived by requiring that the supersymmetry transformations are closed on-shell. The relationship between the 3-algebras, Lie superalgebras, Lie algebras, and embedding tensors (proposed in [E. A. Bergshoeff, O. Hohm, D. Roest, H. Samtleben, and E. Sezgin, J. High Energy Phys. 09 (2008) 101.]) is also clarified. The general N=4, 5 superconformal Chern-Simons matter theories in terms of ordinary Lie algebras can be re-derived in our 3-algebra approach. All known N=4, 5 superconformal Chern-Simons matter theories can be recovered in the present superspace formulation for super-Lie algebra realization of symplectic 3-algebras.
Regular perturbation theory of relativistic corrections: II. Algebraic approximation
NASA Astrophysics Data System (ADS)
Rutkowski, A.; Kozłowski, R.; Rutkowska, D.
2001-01-01
A four-component equivalent of the Schrödinger equation, describing both the nonrelativistic electron and the nonrelativistic positron, is introduced. The difference between this equation and the Dirac equation is treated as a perturbation. The relevant perturbation equations and formulas for corrections to the energy are derived. Owing to the semibounded character of the Schrödinger Hamiltonian of the unperturbed equation the variational perturbation method is formulated. The Hylleraas functionals become then either upper or lower bounds to the respective exact corrections to the energy. In order to demonstrate the usefulness of this approach to the problem of the variational optimization of nonlinear parameters, the perturbation corrections to wave functions for the of hydrogenlike atoms have been approximated in terms of exponential basis functions. The Dirac equation in this algebraic approximation is solved iteratively starting with the solution of the Schrödinger equation.
Towards a loop representation of connection theories defined over a super Lie algebra
Urrutia, L.F. |
1996-02-01
The purpose of this contribution is to review some aspects of the loop space formulation of pure gauge theories having the connection defined over a Lie algebra. The emphasis is focused on the discussion of the Mandelstam identities, which provide the basic constraints upon both the classical and the quantum degrees of freedom of the theory. In the case where the connection is extended to be valued on a super Lie algebra, some new results are presented which can be considered as first steps towards the construction of the Mandelstam identities in this situation, which encompasses such interesting cases as supergravity in 3+1 dimensions together with 2+1 super Chern-Simons theories, for example. Also, these ideas could be useful in the loop space formulation of fully supersymmetric theories. {copyright} {ital 1996 American Institute of Physics.}
Towards a loop representation of connection theories defined over a super Lie algebra
Urrutia, Luis F.
1996-02-20
The purpose of this contribution is to review some aspects of the loop space formulation of pure gauge theories having the connection defined over a Lie algebra. The emphasis is focused on the discussion of the Mandelstam identities, which provide the basic constraints upon both the classical and the quantum degrees of freedom of the theory. In the case where the connection is extended to be valued on a super Lie algebra, some new results are presented which can be considered as first steps towards the construction of the Mandelstam identities in this situation, which encompasses such interesting cases as supergravity in 3+1 dimensions together with 2+1 super Chern-Simons theories, for example. Also, these ideas could be useful in the loop space formulation of fully supersymmetric theories.
An algebraic PT-symmetric quantum theory with a maximal mass
NASA Astrophysics Data System (ADS)
Rodionov, V. N.; Kravtsova, G. A.
2016-03-01
In this paper, we draw attention to the fact that the studies by V.G. Kadyshevsky devoted to the creation of the geometric quantum field theory with a fundamental mass have had great development recently, as regards a non-Hermitian algebraic approach to construction of the quantum theory. The central idea of such theories is to construct a new scalar product in which the average values of non-Hermitian Hamiltonians are real. Many studies in this field include both purely mathematical ones and those containing the discussion of experimental results. We consider the development of an algebraic relativistic pseudo-Hermitian quantum theory with a maximal mass and discuss its experimentally important corollaries.
Small numbers in supersymmetric theories of nature
Graesser, Michael L.
1999-05-01
The Standard Model of particle interactions is a successful theory for describing the interactions of quarks, leptons and gauge bosons at microscopic distance scales. Despite these successes, the theory contains many unsatisfactory features. The origin of particle masses is a central mystery that has eluded experimental elucidation. In the Standard Model the known particles obtain their mass from the condensate of the so-called Higgs particle. Quantum corrections to the Higgs mass require an unnatural fine tuning in the Higgs mass of one part in 10{sup {minus}32} to obtain the correct mass scale of electroweak physics. In addition, the origin of the vast hierarchy between the mass scales of the electroweak and quantum gravity physics is not explained in the current theory. Supersymmetric extensions to the Standard Model are not plagued by this fine tuning issue and may therefore be relevant in Nature. In the minimal supersymmetric Standard Model there is also a natural explanation for electroweak symmetry breaking. Supersymmetric Grand Unified Theories also correctly predict a parameter of the Standard Model. This provides non-trivial indirect evidence for these theories. The most general supersymmetric extension to the Standard Model however, is excluded by many physical processes, such as rare flavor changing processes, and the non-observation of the instability of the proton. These processes provide important information about the possible structure such a theory. In particular, certain parameters in this theory must be rather small. A physics explanation for why this is the case would be desirable. It is striking that the gauge couplings of the Standard Model unify if there is supersymmetry close to the weak scale. This suggests that at high energies Nature is described by a supersymmetric Grand Unified Theory. But the mass scale of unification must be introduced into the theory since it does not coincide with the probable mass scale of strong quantum gravity
NASA Astrophysics Data System (ADS)
Orantin, N.
2007-09-01
The 2-matrix model has been introduced to study Ising model on random surfaces. Since then, the link between matrix models and combinatorics of discrete surfaces has strongly tightened. This manuscript aims to investigate these deep links and extend them beyond the matrix models, following my work's evolution. First, I take care to define properly the hermitian 2 matrix model which gives rise to generating functions of discrete surfaces equipped with a spin structure. Then, I show how to compute all the terms in the topological expansion of any observable by using algebraic geometry tools. They are obtained as differential forms on an algebraic curve associated to the model: the spectral curve. In a second part, I show how to define such differentials on any algebraic curve even if it does not come from a matrix model. I then study their numerous symmetry properties under deformations of the algebraic curve. In particular, I show that these objects coincide with the topological expansion of the observable of a matrix model if the algebraic curve is the spectral curve of this model. Finally, I show that fine tuning the parameters ensure that these objects can be promoted to modular invariants and satisfy the holomorphic anomaly equation of the Kodaira-Spencer theory. This gives a new hint that the Dijkgraaf-Vafa conjecture is correct.
K-Theory of Crossed Products of Tiling C*-Algebras by Rotation Groups
NASA Astrophysics Data System (ADS)
Starling, Charles
2015-02-01
Let Ω be a tiling space and let G be the maximal group of rotations which fixes Ω. Then the cohomology of Ω and Ω/ G are both invariants which give useful geometric information about the tilings in Ω. The noncommutative analog of the cohomology of Ω is the K-theory of a C*-algebra associated to Ω, and for translationally finite tilings of dimension 2 or less, the K-theory is isomorphic to the direct sum of cohomology groups. In this paper we give a prescription for calculating the noncommutative analog of the cohomology of Ω/ G, that is, the K-theory of the crossed product of the tiling C*-algebra by G. We also provide a table with some calculated K-groups for many common examples, including the Penrose and pinwheel tilings.
Algebraic Characterization of the Vacuum in Light-Front Field Theory
NASA Astrophysics Data System (ADS)
Herrmann, Marc; Polyzou, Wayne
2016-03-01
In the light-front formulation of quantum field theory, the vacuum vector of an interacting field theory has a relatively simple relationship to the vacuum of a free field theory. This is a benefit over the usual equal-time formulation where the interacting vacuum vector has infinite norm with respect to the Hilbert space of the free field theory. By describing the vacuum as a positive linear functional on an operator algebra constructed from free fields with two distinct masses, it can be demonstrated that the complications associated with adding dynamics to the vacuum of a free theory are not present in the construction of the light-front vacuum. Instead, the complications are moved into defining a subalgebra of the light-front algebra which corresponds to the physically relevant algebra of local fields. These results can then be applied to interacting fields by first describing them in terms of asymptotic in or out fields. However, in order to treat local operators products, the vacuum functional may need to be modified to include states with zero eigenvalue of the generator of translations in the direction along the light front, x- =1/√(2) >x0-x3. This work supported by DOE contract No. DE-FG02-86ER40286.
LieART-A Mathematica application for Lie algebras and representation theory
NASA Astrophysics Data System (ADS)
Feger, Robert; Kephart, Thomas W.
2015-07-01
We present the Mathematica application "LieART" (Lie Algebras and Representation Theory) for computations frequently encountered in Lie algebras and representation theory, such as tensor product decomposition and subalgebra branching of irreducible representations. LieART can handle all classical and exceptional Lie algebras. It computes root systems of Lie algebras, weight systems and several other properties of irreducible representations. LieART's user interface has been created with a strong focus on usability and thus allows the input of irreducible representations via their dimensional name, while the output is in the textbook style used in most particle-physics publications. The unique Dynkin labels of irreducible representations are used internally and can also be used for input and output. LieART exploits the Weyl reflection group for most of the calculations, resulting in fast computations and a low memory consumption. Extensive tables of properties, tensor products and branching rules of irreducible representations are included as online supplementary material (see Appendix A).
Entanglement distillation protocols and number theory
Bombin, H.; Martin-Delgado, M.A.
2005-09-15
We show that the analysis of entanglement distillation protocols for qudits of arbitrary dimension D benefits from applying basic concepts from number theory, since the set Z{sub D}{sup n} associated with Bell diagonal states is a module rather than a vector space. We find that a partition of Z{sub D}{sup n} into divisor classes characterizes the invariant properties of mixed Bell diagonal states under local permutations. We construct a very general class of recursion protocols by means of unitary operations implementing these local permutations. We study these distillation protocols depending on whether we use twirling operations in the intermediate steps or not, and we study them both analytically and numerically with Monte Carlo methods. In the absence of twirling operations, we construct extensions of the quantum privacy algorithms valid for secure communications with qudits of any dimension D. When D is a prime number, we show that distillation protocols are optimal both qualitatively and quantitatively.
Scale-adaptive tensor algebra for local many-body methods of electronic structure theory
Liakh, Dmitry I
2014-01-01
While the formalism of multiresolution analysis (MRA), based on wavelets and adaptive integral representations of operators, is actively progressing in electronic structure theory (mostly on the independent-particle level and, recently, second-order perturbation theory), the concepts of multiresolution and adaptivity can also be utilized within the traditional formulation of correlated (many-particle) theory which is based on second quantization and the corresponding (generally nonorthogonal) tensor algebra. In this paper, we present a formalism called scale-adaptive tensor algebra (SATA) which exploits an adaptive representation of tensors of many-body operators via the local adjustment of the basis set quality. Given a series of locally supported fragment bases of a progressively lower quality, we formulate the explicit rules for tensor algebra operations dealing with adaptively resolved tensor operands. The formalism suggested is expected to enhance the applicability and reliability of local correlated many-body methods of electronic structure theory, especially those directly based on atomic orbitals (or any other localized basis functions).
The Casimir Effect from the Point of View of Algebraic Quantum Field Theory
NASA Astrophysics Data System (ADS)
Dappiaggi, Claudio; Nosari, Gabriele; Pinamonti, Nicola
2016-06-01
We consider a region of Minkowski spacetime bounded either by one or by two parallel, infinitely extended plates orthogonal to a spatial direction and a real Klein-Gordon field satisfying Dirichlet boundary conditions. We quantize these two systems within the algebraic approach to quantum field theory using the so-called functional formalism. As a first step we construct a suitable unital ∗-algebra of observables whose generating functionals are characterized by a labelling space which is at the same time optimal and separating and fulfils the F-locality property. Subsequently we give a definition for these systems of Hadamard states and we investigate explicit examples. In the case of a single plate, it turns out that one can build algebraic states via a pull-back of those on the whole Minkowski spacetime, moreover inheriting from them the Hadamard property. When we consider instead two plates, algebraic states can be put in correspondence with those on flat spacetime via the so-called method of images, which we translate to the algebraic setting. For a massless scalar field we show that this procedure works perfectly for a large class of quasi-free states including the Poincaré vacuum and KMS states. Eventually Wick polynomials are introduced. Contrary to the Minkowski case, the extended algebras, built in globally hyperbolic subregions can be collected in a global counterpart only after a suitable deformation which is expressed locally in terms of a *-isomorphism. As a last step, we construct explicitly the two-point function and the regularized energy density, showing, moreover, that the outcome is consistent with the standard results of the Casimir effect.
On the Algebraic K Theory of the Massive D8 and M9-Branes
NASA Astrophysics Data System (ADS)
Vancea, Ion V.
In this paper we review some basic relations of algebraic K theory and we formulate them in the language of D-branes. Then we study the relation between the D8-branes wrapped on an orientable compact manifold W in a massive Type IIA supergravity background and the M9-branes wrapped on a compact manifold Z in a massive d=11 supergravity background from the K-theoretic point of view. By interpreting the D8-brane charges as elements of K0(C(W)) and the (inequivalent classes of) spaces of gauge fields on the M9-branes as the elements of K0(C(Z)x{¯ {k}*}G) where G is a one-dimensional compact group, a connection between charges and gauge fields is argued to exists. This connection could be realized as a composition map between the corresponding algebraic K theory groups.
The theory of Enceladus and Dione: An application of computerized algebra in dynamical astronomy
NASA Technical Reports Server (NTRS)
Jefferys, W. H.; Ries, L. M.
1974-01-01
A theory of Saturn's satellites Enceladus and Dione is discussed which is literal (all constants of integration appear explicitly), canonically invariant (the Hori-Lie method is used), and which correctly handles the eccentricity-type resonance between the two satellites. Algebraic manipulations are designed to be performed using the TRIGMAN formula manipulation language, and computer programs were developed so that, with minor modifications, they can be used on the Mimas-Tethys and Titan-Hyperion systems.
ERIC Educational Resources Information Center
Christou, Konstantinos P.; Vosniadou, Stella
2012-01-01
Three experiments used multiple methods--open-ended assessments, multiple-choice questionnaires, and interviews--to investigate the hypothesis that the development of students' understanding of the concept of real variable in algebra may be influenced in fundamental ways by their initial concept of number, which seems to be organized around the…
Promoting Number Theory in High Schools or Birthday Problem and Number Theory
ERIC Educational Resources Information Center
Srinivasan, V. K.
2010-01-01
The author introduces the birthday problem in this article. This can amuse willing members of any birthday party. This problem can also be used as the motivational first day lecture in number theory for the gifted students in high schools or in community colleges or in undergraduate classes in colleges.
Extending the Number Line to Make Connections with Number Theory.
ERIC Educational Resources Information Center
Graviss, Tom; Greaver, Joanne
1992-01-01
Shares a coded version of the number line to provide concrete experiences for learning abstract concepts. Using the fundamental theorem of arithmetic, appropriate coded symbols are determined for the prime factorization of each natural number and used to study the concepts of greatest common divisor, least common multiple, square roots, and…
Representations of Conformal Nets, Universal C*-Algebras and K-Theory
NASA Astrophysics Data System (ADS)
Carpi, Sebastiano; Conti, Roberto; Hillier, Robin; Weiner, Mihály
2013-05-01
We study the representation theory of a conformal net {{A}} on S 1 from a K-theoretical point of view using its universal C*-algebra {C^*({A})}. We prove that if {{A}} satisfies the split property then, for every representation π of {{A}} with finite statistical dimension, {π(C^*({A}))} is weakly closed and hence a finite direct sum of type I∞ factors. We define the more manageable locally normal universal C*-algebra {C_ln^*({A})} as the quotient of {C^*({A})} by its largest ideal vanishing in all locally normal representations and we investigate its structure. In particular, if {{A}} is completely rational with n sectors, then {C_ln^*({A})} is a direct sum of n type I∞ factors. Its ideal {{K}_{A}} of compact operators has nontrivial K-theory, and we prove that the DHR endomorphisms of {C^*({A})} with finite statistical dimension act on {{K}_{A}}, giving rise to an action of the fusion semiring of DHR sectors on {K_0({K}_{A})}. Moreover, we show that this action corresponds to the regular representation of the associated fusion algebra.
NASA Technical Reports Server (NTRS)
Stoutemyer, D. R.
1977-01-01
The computer algebra language MACSYMA enables the programmer to include symbolic physical units in computer calculations, and features automatic detection of dimensionally-inhomogeneous formulas and conversion of inconsistent units in a dimensionally homogeneous formula. Some examples illustrate these features.
Modified large number theory with constant G
Recami, E.
1983-03-01
The inspiring ''numerology'' uncovered by Dirac, Eddington, Weyl, et al. can be explained and derived when it is slightly modified so to connect the ''gravitational world'' (cosmos) with the ''strong world'' (hadron), rather than with the electromagnetic one. The aim of this note is to show the following. In the present approach to the ''Large Number Theory,'' cosmos and hadrons are considered to be (finite) similar systems, so that the ratio R-bar/r-bar of the cosmos typical length R-bar to the hadron typical length r-bar is constant in time (for instance, if both cosmos and hadrons undergo an expansion/contraction cycle: according to the ''cyclical big-bang'' hypothesis: then R-bar and r-bar can be chosen to be the maximum radii, or the average radii). As a consequence, then gravitational constant G results to be independent of time. The present note is based on work done in collaboration with P.Caldirola, G. D. Maccarrone, and M. Pavsic.
On Algebraic Singularities, Finite Graphs and D-Brane Gauge Theories: A String Theoretic Perspective
NASA Astrophysics Data System (ADS)
He, Yang-Hui
2002-09-01
In this writing we shall address certain beautiful inter-relations between the construction of 4-dimensional supersymmetric gauge theories and resolution of algebraic singularities, from the perspective of String Theory. We review in some detail the requisite background in both the mathematics, such as orbifolds, symplectic quotients and quiver representations, as well as the physics, such as gauged linear sigma models, geometrical engineering, Hanany-Witten setups and D-brane probes. We investigate aspects of world-volume gauge dynamics using D-brane resolutions of various Calabi-Yau singularities, notably Gorenstein quotients and toric singularities. Attention will be paid to the general methodology of constructing gauge theories for these singular backgrounds, with and without the presence of the NS-NS B-field, as well as the T-duals to brane setups and branes wrapping cycles in the mirror geometry. Applications of such diverse and elegant mathematics as crepant resolution of algebraic singularities, representation of finite groups and finite graphs, modular invariants of affine Lie algebras, etc. will naturally arise. Various viewpoints and generalisations of McKay's Correspondence will also be considered. The present work is a transcription of excerpts from the first three volumes of the author's PhD thesis which was written under the direction of Prof. A. Hanany - to whom he is much indebted - at the Centre for Theoretical Physics of MIT, and which, at the suggestion of friends, he posts to the ArXiv pro hac vice; it is his sincerest wish that the ensuing pages might be of some small use to the beginning student.
The theory of Enceladus and Dione - An application of computerized algebra in dynamical astronomy
NASA Technical Reports Server (NTRS)
Jefferys, W. H.; Ries, L. M.
1975-01-01
The orbits of the satellites of the outer planets are poorly known, due to lack of attention over the past half century. We have been developing a new theory of Saturn's satellites Enceladus and Dione which is literal (all constants of integration appear explicitly), canonically invariant (the Hori-Lie method is used), and which correctly handles the eccentricity-type resonance between the two satellites. The algebraic manipulations are being performed using the TRIGMAN formula manipulation language, and the programs have been developed so that with minor modifications they can be used on the Mimas-Tethys and Titan-Hyperion systems.
The Many Pearls of Number Theory
ERIC Educational Resources Information Center
Prielipp, Robert W.
1970-01-01
Presents information about prime numbers which the elementary or junior high school teacher might introduce to students. Gives five definition statements followed by at least one theorem and its proof. Introduces some historical aspects to prime numbers. (RR)
ERIC Educational Resources Information Center
Store, Jessie Chitsanzo
2012-01-01
There is ample literature documenting that, for many decades, high school students view algebra as difficult and do not demonstrate understanding of algebraic concepts. Algebraic reasoning in elementary school aims at meaningfully introducing algebra to elementary school students in preparation for higher-level mathematics. While there is research…
ERIC Educational Resources Information Center
Lee, Kerry; Khng, Kiat Hui; Ng, Swee Fong; Ng Lan Kong, Jeremy
2013-01-01
In Singapore, primary school students are taught to use bar diagrams to represent known and unknown values in algebraic word problems. However, little is known about students' understanding of these graphical representations. We investigated whether students use and think of the bar diagrams in a concrete or a more abstract fashion. We also…
Algebra I, Package 03-03, Addition and Multiplication of Real Numbers.
ERIC Educational Resources Information Center
Thompson, Russ; Fuller, Albert
This teacher guide is part of the materials prepared for an individualized program for ninth-grade algebra and basic mathematics students. Materials written for the program are to be used with audiovisual lessons recorded on tape cassettes. For an evaluation of the program, see ED 086 545. In this guide, the teacher is provided with objectives for…
Figueroa-O'Farrill, Jose Miguel
2009-11-15
We phrase deformations of n-Leibniz algebras in terms of the cohomology theory of the associated Leibniz algebra. We do the same for n-Lie algebras and for the metric versions of n-Leibniz and n-Lie algebras. We place particular emphasis on the case of n=3 and explore the deformations of 3-algebras of relevance to three-dimensional superconformal Chern-Simons theories with matter.
Algebraic vs physical N = 6 3-algebras
Cantarini, Nicoletta; Kac, Victor G.
2014-01-15
In our previous paper, we classified linearly compact algebraic simple N = 6 3-algebras. In the present paper, we classify their “physical” counterparts, which actually appear in the N = 6 supersymmetric 3-dimensional Chern-Simons theories.
ERIC Educational Resources Information Center
Cavanagh, Sean
2009-01-01
As educators and policymakers search for ways to prepare students for the rigors of algebra, teachers in the Helena, Montana, school system are starting early by attempting to nurture students' algebraic-reasoning ability, as well as their basic number skills, in early elementary school, rather than waiting until middle or early high school.…
Classical and quantum Kummer shape algebras
NASA Astrophysics Data System (ADS)
Odzijewicz, A.; Wawreniuk, E.
2016-07-01
We study a family of integrable systems of nonlinearly coupled harmonic oscillators on the classical and quantum levels. We show that the integrability of these systems follows from their symmetry characterized by algebras, here called Kummer shape algebras. The resolution of identity for a wide class of reproducing kernels is found. A number of examples, illustrating this theory, are also presented.
A Geometrical Application of Number Theory
ERIC Educational Resources Information Center
Srinivasan, V. K.
2013-01-01
Any quadruple of natural numbers {a, b, c, d} is called a "Pythagorean quadruple" if it satisfies the relationship "a[superscript 2] + b[superscript 2] + c[superscript 2]". This "Pythagorean quadruple" can always be identified with a rectangular box of dimensions "a greater than 0," "b greater than…
The algebras of large N matrix mechanics
Halpern, M.B.; Schwartz, C.
1999-09-16
Extending early work, we formulate the large N matrix mechanics of general bosonic, fermionic and supersymmetric matrix models, including Matrix theory: The Hamiltonian framework of large N matrix mechanics provides a natural setting in which to study the algebras of the large N limit, including (reduced) Lie algebras, (reduced) supersymmetry algebras and free algebras. We find in particular a broad array of new free algebras which we call symmetric Cuntz algebras, interacting symmetric Cuntz algebras, symmetric Bose/Fermi/Cuntz algebras and symmetric Cuntz superalgebras, and we discuss the role of these algebras in solving the large N theory. Most important, the interacting Cuntz algebras are associated to a set of new (hidden!) local quantities which are generically conserved only at large N. A number of other new large N phenomena are also observed, including the intrinsic nonlocality of the (reduced) trace class operators of the theory and a closely related large N field identification phenomenon which is associated to another set (this time nonlocal) of new conserved quantities at large N.
Hopf algebras and topological recursion
NASA Astrophysics Data System (ADS)
Esteves, João N.
2015-11-01
We consider a model for topological recursion based on the Hopf algebra of planar binary trees defined by Loday and Ronco (1998 Adv. Math. 139 293-309 We show that extending this Hopf algebra by identifying pairs of nearest neighbor leaves, and thus producing graphs with loops, we obtain the full recursion formula discovered by Eynard and Orantin (2007 Commun. Number Theory Phys. 1 347-452).
Number Worlds: Visual and Experimental Access to Elementary Number Theory Concepts
ERIC Educational Resources Information Center
Sinclair, Nathalie; Zazkis, Rina; Liljedahl, Peter
2004-01-01
Recent research demonstrates that many issues related to the structure of natural numbers and the relationship among numbers are not well grasped by students. In this article, we describe a computer-based learning environment called "Number Worlds" that was designed to support the exploration of elementary number theory concepts by making the…
NASA Astrophysics Data System (ADS)
Putnam, Ian F.
2010-03-01
We investigate the C*-algebras associated to aperiodic structures called model sets obtained by the cut-and-project method. These C*-algebras are Morita equivalent to crossed product C*-algebras obtained from dynamics on a disconnected version of the internal space. This construction may be made from more general data, which we call a hyperplane system. From a hyperplane system, others may be constructed by a process of reduction and we show how the C*-algebras involved are related to each other. In particular, there are natural elements in the Kasparov KK-groups for the C*-algebra of a hyperplane system and that of its reduction. The induced map on K-theory fits in a six-term exact sequence. This provides a new method of the computation of the K-theory of such C*-algebras which is done completely in the setting of non-commutative geometry.
ERIC Educational Resources Information Center
Senarat, Somprasong; Tayraukham, Sombat; Piyapimonsit, Chatsiri; Tongkhambanjong, Sakesan
2013-01-01
The purpose of this research is to develop a multidimensional computerized adaptive test for diagnosing the cognitive process of grade 7 students in learning algebra by applying multidimensional item response theory. The research is divided into 4 steps: 1) the development of item bank of algebra, 2) the development of the multidimensional…
A Richer Understanding of Algebra
ERIC Educational Resources Information Center
Foy, Michelle
2008-01-01
Algebra is one of those hard-to-teach topics where pupils seem to struggle to see it as more than a set of rules to learn, but this author recently used the software "Grid Algebra" from ATM, which engaged her Year 7 pupils in exploring algebraic concepts for themselves. "Grid Algebra" allows pupils to experience number, pre-algebra, and algebra…
An Integrated Theory of Whole Number and Fractions Development
ERIC Educational Resources Information Center
Siegler, Robert S.; Thompson, Clarissa A.; Schneider, Michael
2011-01-01
This article proposes an integrated theory of acquisition of knowledge about whole numbers and fractions. Although whole numbers and fractions differ in many ways that influence their development, an important commonality is the centrality of knowledge of numerical magnitudes in overall understanding. The present findings with 11- and 13-year-olds…
Fermi-Dirac statistics and the number theory
NASA Astrophysics Data System (ADS)
Kubasiak, Anna; Korbicz, Jaroslaw K.; Zakrzewski, Jakub; Lewenstein, Maciej
2005-11-01
We relate the Fermi-Dirac statistics of an ideal Fermi gas in a harmonic trap to partitions of given integers into distinct parts, studied in number theory. Using methods of quantum statistical physics we derive analytic expressions for cumulants of the probability distribution of the number of different partitions.
Algebraic K-theory of spaces stratified fibered over hyperbolic orbifolds.
Farrell, F T; Jones, L E
1986-08-01
Among other results, we rationally calculate the algebraic K-theory of any discrete cocompact subgroup of a Lie group G, where G is either O(n, 1), U(n, 1), Sp(n, 1), or F(4), in terms of the homology of the double coset space Gamma\\G/K, where K is a maximal cocompact subgroup of G. We obtain the formula K(n)(ZGamma) [unk] [unk] congruent with [unk](i=0) (infinity)H(i)(Gamma\\G/K; [unk](n-i)), where [unk](j) is a stratified system of Q vector spaces over Gamma\\G/K and the vector space [unk](j)(GammagK) corresponding to the double coset GammagK is isomorphic to K(J)(Z(Gamma [unk] gKg(-1))) [unk] Q. Note Gamma [unk] gKg(-1) is a finite subgroup of Gamma. Earlier, a similar formula for discrete cocompact subgroups Gamma of the group of rigid motions of Euclidean space was conjectured by F. T. Farrell and W. C. Hsiang and proven by F. Quinn. PMID:16593733
Algebraic K-theory of spaces stratified fibered over hyperbolic orbifolds
Farrell, F. T.; Jones, L. E.
1986-01-01
Among other results, we rationally calculate the algebraic K-theory of any discrete cocompact subgroup of a Lie group G, where G is either O(n, 1), U(n, 1), Sp(n, 1), or F4, in terms of the homology of the double coset space Γ\\G/K, where K is a maximal cocompact subgroup of G. We obtain the formula Kn(ZΓ) [unk] [unk] ≅ [unk]i=0∞Hi(Γ\\G/K; [unk]n-i), where [unk]j is a stratified system of Q vector spaces over Γ\\G/K and the vector space [unk]j(ΓgK) corresponding to the double coset ΓgK is isomorphic to KJ(Z(Γ [unk] gKg-1)) [unk] Q. Note Γ [unk] gKg-1 is a finite subgroup of Γ. Earlier, a similar formula for discrete cocompact subgroups Γ of the group of rigid motions of Euclidean space was conjectured by F. T. Farrell and W. C. Hsiang and proven by F. Quinn. PMID:16593733
Hard-core lattice bosons: new insights from algebraic graph theory
NASA Astrophysics Data System (ADS)
Squires, Randall W.; Feder, David L.
2014-03-01
Determining the characteristics of hard-core lattice bosons is a problem of long-standing interest in condensed matter physics. While in one-dimensional systems the ground state can be formally obtained via a mapping to free fermions, various properties (such as correlation functions) are often difficult to calculate. In this work we discuss the application of techniques from algebraic graph theory to hard-core lattice bosons in one dimension. Graphs are natural representations of many-body Hamiltonians, with vertices representing Fock basis states and edges representing matrix elements. We prove that the graphs for hard-core bosons and non-interacting bosons have identical connectivity; the only difference is the existence of edge weights. A formal mapping between the two is therefore possible by manipulating the graph incidence matrices. We explore the implications of these insights, in particular the intriguing possibility that ground-state properties of hard-core bosons can be calculated directly from those of non-interacting bosons.
S-duality and the prepotential of N={2}^{star } theories (II): the non-simply laced algebras
NASA Astrophysics Data System (ADS)
Billó, M.; Frau, M.; Fucito, F.; Lerda, A.; Morales, J. F.
2015-11-01
We derive a modular anomaly equation satisfied by the prepotential of the N={2}^{star } supersymmetric theories with non-simply laced gauge algebras, including the classical B r and C r infinite series and the exceptional F 4 and G 2 cases. This equation determines the exact prepotential recursively in an expansion for small mass in terms of quasi-modular forms of the S-duality group. We also discuss the behaviour of these theories under S-duality and show that the prepotential of the SO(2 r + 1) theory is mapped to that of the Sp(2 r) theory and viceversa, while the exceptional F 4 and G 2 theories are mapped into themselves (up to a rotation of the roots) in analogy with what happens for the N=4 supersymmetric theories. These results extend the analysis for the simply laced groups presented in a companion paper.
Stochastic-Conceptual Models Applied to Number Theory
NASA Astrophysics Data System (ADS)
Sotiropoulos, Megaklis Th.
2011-09-01
Concepts are defined as couples (O, A) of sets O and A: the object O (a set of none, or one or more elements) is assigned to the set A of these elements' (common) attributes. The objects change according to the sequence of attributes. Only couples of objects and attributes, that is concepts, are adequate for our world. The connections and links we need in databases and multimedia are expressed, naturally, by concepts, since concepts have been proved to dispose the order of a lattice (more complex and rich than linear and hierarchical ones). The lattice can be created by two algebraic operations: "intersection" as the multiplication and "symmetric-difference (!)" as the addition (!). There are, also, two other operations: the "union" and the "complement of a concept". Intersection and union (which cannot play the role neither of the addition nor of the multiplication) express similarities, while the other two operations express dissimilarities. The operation "complement of a concept" expresses the different, the uncommon, the variety. The symmetric-difference of two concepts has been proved to be a "distance" between them (in the mathematical sense!). We must not always see the natural numbers with their linear order (1,2,…,n,n+1,…), but is rather better to give them a more complex structure: the structure of a lattice. We need three operations: "union" of two numbers, "intersection" of two numbers and "complement" of a number. Research conclusion: the conceptual distance of (O1, A1) and (O2,A2) and is always a prime number! (conceptual means, from the point of view of the characteristic "divisibility" we are examining now and not the Euclidean or any other distance). This is the unique way the prime numbers are generated: not by unions and intersections(which express similarities), but by distances(differences)! …
Orientation in operator algebras
Alfsen, Erik M.; Shultz, Frederic W.
1998-01-01
A concept of orientation is relevant for the passage from Jordan structure to associative structure in operator algebras. The research reported in this paper bridges the approach of Connes for von Neumann algebras and ourselves for C*-algebras in a general theory of orientation that is of geometric nature and is related to dynamics. PMID:9618457
Twisted vertex algebras, bicharacter construction and boson-fermion correspondences
Anguelova, Iana I.
2013-12-15
The boson-fermion correspondences are an important phenomena on the intersection of several areas in mathematical physics: representation theory, vertex algebras and conformal field theory, integrable systems, number theory, cohomology. Two such correspondences are well known: the types A and B (and their super extensions). As a main result of this paper we present a new boson-fermion correspondence of type D-A. Further, we define a new concept of twisted vertex algebra of order N, which generalizes super vertex algebra. We develop the bicharacter construction which we use for constructing classes of examples of twisted vertex algebras, as well as for deriving formulas for the operator product expansions, analytic continuations, and normal ordered products. By using the underlying Hopf algebra structure we prove general bicharacter formulas for the vacuum expectation values for two important groups of examples. We show that the correspondences of types B, C, and D-A are isomorphisms of twisted vertex algebras.
NASA Astrophysics Data System (ADS)
Khudaverdian, H. M.
2014-03-01
We consider differential operators acting on densities of arbitrary weights on manifold M identifying pencils of such operators with operators on algebra of densities of all weights. This algebra can be identified with the special subalgebra of functions on extended manifold . On one hand there is a canonical lift of projective structures on M to affine structures on extended manifold . On the other hand the restriction of algebra of all functions on extended manifold to this special subalgebra of functions implies the canonical scalar product. This leads in particular to classification of second order operators with use of Kaluza-Klein-like mechanisms.
Prime Numbers, Quantum Field Theory and the Goldbach Conjecture
NASA Astrophysics Data System (ADS)
Sanchis-Lozano, Miguel-Angel; Barbero G., J. Fernando; Navarro-Salas, José
2012-09-01
Motivated by the Goldbach conjecture in number theory and the Abelian bosonization mechanism on a cylindrical two-dimensional space-time, we study the reconstruction of a real scalar field as a product of two real fermion (so-called prime) fields whose Fourier expansion exclusively contains prime modes. We undertake the canonical quantization of such prime fields and construct the corresponding Fock space by introducing creation operators bp\\dag — labeled by prime numbers p — acting on the vacuum. The analysis of our model, based on the standard rules of quantum field theory and the assumption of the Riemann hypothesis, allows us to prove that the theory is not renormalizable. We also comment on the potential consequences of this result concerning the validity or breakdown of the Goldbach conjecture for large integer numbers.
NASA Astrophysics Data System (ADS)
Vladimirov, Vasilii S.
1996-02-01
On the basis of analysis on the adele group (the Tate formula) of an algebraic number field, a regularization is constructed for the divergent adelic products of the gamma and beta functions of all (non-isomorphic) completions of this field. The formulae obtained are applied to representations of the four-point crossing-symmetric Veneziano amplitudes and Virasoro-Shapiro amplitudes in terms of regularized adelic products of string amplitudes (for open or closed strings) corresponding to all non-Archimedean completions of the algebraic number field under consideration.
Open-Closed Homotopy Algebras and Strong Homotopy Leibniz Pairs Through Koszul Operad Theory
NASA Astrophysics Data System (ADS)
Hoefel, Eduardo; Livernet, Muriel
2012-08-01
Open-closed homotopy algebras (OCHA) and strong homotopy Leibniz pairs (SHLP) were introduced by Kajiura and Stasheff in 2004. In an appendix to their paper, Markl observed that an SHLP is equivalent to an algebra over the minimal model of a certain operad, without showing that the operad is Koszul. In the present paper, we show that both OCHA and SHLP are algebras over the minimal model of the zeroth homology of two versions of the Swiss-cheese operad and prove that these two operads are Koszul. As an application, we show that the OCHA operad is non-formal as a 2-colored operad but is formal as an algebra in the category of 2-collections.
Lie algebra extensions of current algebras on S3
NASA Astrophysics Data System (ADS)
Kori, Tosiaki; Imai, Yuto
2015-06-01
An affine Kac-Moody algebra is a central extension of the Lie algebra of smooth mappings from S1 to the complexification of a Lie algebra. In this paper, we shall introduce a central extension of the Lie algebra of smooth mappings from S3 to the quaternization of a Lie algebra and investigate its root space decomposition. We think this extension of current algebra might give a mathematical tool for four-dimensional conformal field theory as Kac-Moody algebras give it for two-dimensional conformal field theory.
Avogadro's number and the kinetic theory of gases
NASA Astrophysics Data System (ADS)
Bryan, Ronald
2000-02-01
Since the rms speed vrms of gas molecules in a container does not depend on the number of molecules but only on the pressure, the volume, and the total mass of the gas, Bernoulli probably knew that his kinetic theory required an atmospheric vrms is approximately equal to 1100 mi/hr at STP. Concerns over such a high speed were no doubt lessened with measurement of Avogardo's number some 170 years later.
Learning Activity Package, Pre-Algebra.
ERIC Educational Resources Information Center
Evans, Diane
A set of ten teacher-prepared Learning Activity Packages (LAPs) for individualized instruction in topics in pre-algebra, the units cover the decimal numeration system; number theory; fractions and decimals; ratio, proportion, and percent; sets; properties of operations; rational numbers; real numbers; open expressions; and open rational…
ERIC Educational Resources Information Center
Smith, Authella; And Others
Documentation of the Coursewriter II Function FCALC is provided. The function is designed for use on the IBM 1500 instructional system and has three major applications: 1) comparison of a numeric expression in buffer 5 with a numeric expression in buffer 0; 2) comparison of an algebraic expression in buffer 5 with an algebraic expression in buffer…
A Successful Senior Seminar: Unsolved Problems in Number Theory
ERIC Educational Resources Information Center
Styer, Robert
2014-01-01
The "Unsolved Problems in Number Theory" book by Richard Guy provides nice problems suitable for a typical math major. We give examples of problems that have worked well in our senior seminar course and some nice results that senior math majors can obtain.
Quantum cluster algebras and quantum nilpotent algebras
Goodearl, Kenneth R.; Yakimov, Milen T.
2014-01-01
A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197
ERIC Educational Resources Information Center
Lung-Hsing, Kuo; Hung-Jen, Yang; Ying-Wen, Lin; Shang-Ming, Su
2011-01-01
In recent years, the "street teachers" issue has caused social concern in Taiwan. This study estimates the retirement of and needs for newly hired and public primary school teachers in 2010 using an algebraic model from the paper by Husssar (1999). This recursive methodology predicts the number of newly hired public primary school teachers due to…
Developing Thinking in Algebra
ERIC Educational Resources Information Center
Mason, John; Graham, Alan; Johnson-Wilder, Sue
2005-01-01
This book is for people with an interest in algebra whether as a learner, or as a teacher, or perhaps as both. It is concerned with the "big ideas" of algebra and what it is to understand the process of thinking algebraically. The book has been structured according to a number of pedagogic principles that are exposed and discussed along the way,…
Realizations of Galilei algebras
NASA Astrophysics Data System (ADS)
Nesterenko, Maryna; Pošta, Severin; Vaneeva, Olena
2016-03-01
All inequivalent realizations of the Galilei algebras of dimensions not greater than five are constructed using the algebraic approach proposed by Shirokov. The varieties of the deformed Galilei algebras are discussed and families of one-parametric deformations are presented in explicit form. It is also shown that a number of well-known and physically interesting equations and systems are invariant with respect to the considered Galilei algebras or their deformations.
Lepton number violation in theories with a large number of standard model copies
Kovalenko, Sergey; Schmidt, Ivan; Paes, Heinrich
2011-03-01
We examine lepton number violation (LNV) in theories with a saturated black hole bound on a large number of species. Such theories have been advocated recently as a possible solution to the hierarchy problem and an explanation of the smallness of neutrino masses. On the other hand, the violation of the lepton number can be a potential phenomenological problem of this N-copy extension of the standard model as due to the low quantum gravity scale black holes may induce TeV scale LNV operators generating unacceptably large rates of LNV processes. We show, however, that this issue can be avoided by introducing a spontaneously broken U{sub 1(B-L)}. Then, due to the existence of a specific compensation mechanism between contributions of different Majorana neutrino states, LNV processes in the standard model copy become extremely suppressed with rates far beyond experimental reach.
The Algebra of Lexical Semantics
NASA Astrophysics Data System (ADS)
Kornai, András
The current generative theory of the lexicon relies primarily on tools from formal language theory and mathematical logic. Here we describe how a different formal apparatus, taken from algebra and automata theory, resolves many of the known problems with the generative lexicon. We develop a finite state theory of word meaning based on machines in the sense of Eilenberg [11], a formalism capable of describing discrepancies between syntactic type (lexical category) and semantic type (number of arguments). This mechanism is compared both to the standard linguistic approaches and to the formalisms developed in AI/KR.
Very high Mach number shocks - Theory. [in space plasmas
NASA Technical Reports Server (NTRS)
Quest, Kevin B.
1986-01-01
The theory and simulation of collisionless perpendicular supercritical shock structure is reviewed, with major emphasis on recent research results. The primary tool of investigation is the hybrid simulation method, in which the Newtonian orbits of a large number of ion macroparticles are followed numerically, and in which the electrons are treated as a charge neutralizing fluid. The principal results include the following: (1) electron resistivity is not required to explain the observed quasi-stationarity of the earth's bow shock, (2) the structure of the perpendicular shock at very high Mach numbers depends sensitively on the upstream value of beta (the ratio of the thermal to magnetic pressure) and electron resistivity, (3) two-dimensional turbulence will become increasingly important as the Mach number is increased, and (4) nonadiabatic bulk electron heating will result when a thermal electron cannot complete a gyrorbit while transiting the shock.
Pseudorational Impulse Responses — Algebraic System Theory for Distributed Parameter Systems
NASA Astrophysics Data System (ADS)
Yamamoto, Yutaka
This paper gives a comprehensive account on a class of distributed parameter systems, whose impulse response is called pseudorational. This notion was introduced by the author in 1980's, and is particularly amenable for the study of systems with bounded-time memory. We emphasize algebraic structures induced by this class of systems. Some recent results on coprimeness issues and H∞ control are discussed and illustrated.
Teaching Algebra without Algebra
ERIC Educational Resources Information Center
Kalman, Richard S.
2008-01-01
Algebra is, among other things, a shorthand way to express quantitative reasoning. This article illustrates ways for the classroom teacher to convert algebraic solutions to verbal problems into conversational solutions that can be understood by students in the lower grades. Three reasonably typical verbal problems that either appeared as or…
Transportation Optimization with Fuzzy Trapezoidal Numbers Based on Possibility Theory
He, Dayi; Li, Ran; Huang, Qi; Lei, Ping
2014-01-01
In this paper, a parametric method is introduced to solve fuzzy transportation problem. Considering that parameters of transportation problem have uncertainties, this paper develops a generalized fuzzy transportation problem with fuzzy supply, demand and cost. For simplicity, these parameters are assumed to be fuzzy trapezoidal numbers. Based on possibility theory and consistent with decision-makers' subjectiveness and practical requirements, the fuzzy transportation problem is transformed to a crisp linear transportation problem by defuzzifying fuzzy constraints and objectives with application of fractile and modality approach. Finally, a numerical example is provided to exemplify the application of fuzzy transportation programming and to verify the validity of the proposed methods. PMID:25137239
Number theory, periodic orbits, and superconductivity in nanocubes
NASA Astrophysics Data System (ADS)
Mayoh, James; García-García, Antonio M.
2014-07-01
We study superconductivity in isolated superconducting nanocubes and nanosquares of size L in the limit of negligible disorder δ /Δ0≪1 and kFL≫1 for which mean-field theory and semiclassical techniques are applicable, with kF the Fermi wave vector, δ the mean level spacing, and Δ0 the bulk gap. By using periodic orbit theory and number theory we find explicit analytical expressions for the size dependence of the superconducting order parameter. Our formalism takes into account contributions from both the spectral density and the interaction matrix elements in a basis of one-body eigenstates. The leading size dependence of the energy gap in three dimensions seems to be universal as it agrees with the result for chaotic grains. In the region of parameters corresponding to conventional metallic superconductors, and for sizes L ≳10 nm, the contribution to the superconducting gap from the matrix elements is substantial (˜20%). Deviations from the bulk limit are still clearly observed even for comparatively large grains L ˜50 nm. These analytical results are in excellent agreement with the numerical solution of the mean-field gap equation.
Dynamical basis sets for algebraic variational calculations in quantum-mechanical scattering theory
NASA Technical Reports Server (NTRS)
Sun, Yan; Kouri, Donald J.; Truhlar, Donald G.; Schwenke, David W.
1990-01-01
New basis sets are proposed for linear algebraic variational calculations of transition amplitudes in quantum-mechanical scattering problems. These basis sets are hybrids of those that yield the Kohn variational principle (KVP) and those that yield the generalized Newton variational principle (GNVP) when substituted in Schlessinger's stationary expression for the T operator. Trial calculations show that efficiencies almost as great as that of the GNVP and much greater than the KVP can be obtained, even for basis sets with the majority of the members independent of energy.
Geometric Algebra for Physicists
NASA Astrophysics Data System (ADS)
Doran, Chris; Lasenby, Anthony
2007-11-01
Preface; Notation; 1. Introduction; 2. Geometric algebra in two and three dimensions; 3. Classical mechanics; 4. Foundations of geometric algebra; 5. Relativity and spacetime; 6. Geometric calculus; 7. Classical electrodynamics; 8. Quantum theory and spinors; 9. Multiparticle states and quantum entanglement; 10. Geometry; 11. Further topics in calculus and group theory; 12. Lagrangian and Hamiltonian techniques; 13. Symmetry and gauge theory; 14. Gravitation; Bibliography; Index.
NASA Astrophysics Data System (ADS)
McLenaghan, Raymond G.; Smirnov, Roman G.; The, Dennis
2004-03-01
We develop a new approach to the study of Killing tensors defined in pseudo-Riemannian spaces of constant curvature that is ideologically close to the classical theory of invariants. The main idea, which provides the foundation of the new approach, is to treat a Killing tensor as an algebraic object determined by a set of parameters of the corresponding vector space of Killing tensors under the action of the isometry group. The spaces of group invariants and conformal group invariants of valence two Killing tensors defined in the Minkowski plane are described. The group invariants, which are the generators of the space of invariants, are applied to the problem of classification of orthogonally separable Hamiltonian systems defined in the Minkowski plane. Transformation formulas to separable coordinates expressed in terms of the parameters of the corresponding space of Killing tensors are presented. The results are applied to the problem of orthogonal separability of the Drach superintegrable potentials.
A decoding problem in dynamics and in number theory.
Siegel, Ralph M.; Tresser, Charles; Zettler, George
1992-10-01
Given a homeomorphism f of the circle, any splitting of this circle in two semiopen arcs induces a coding process for the orbits of f, which can be determined by recording the successive arcs visited by the orbit. The problem of describing these codes has a two hundred year history (that we briefly recall) in the particular case when the arcs are limited by a point and its image; in modern language, it is the kneading theory of such maps, and as such is relevant for our understanding of dynamical problems involving oscillations. This paper deals with questions attached to the general case, a problem considered by many mathematicians in the 50's and 60's in the case where f is a rotation, and which has recently found some applications in physiology. We show that, except for trivial cases, any code determines the rotation number, up to the orientation, of the homeomorphism which generates it. In the case the code is periodic, we can also determine whether or not it can be generated in this way. An equivalent problem in arithmetic consists of finding +/-p, knowing a collection of classes in Z/qZ of the form {m,m+p,.,m+(k-1)p}, where 2number theoretic context. PMID:12779997
Algebraic Semantics for Narrative
ERIC Educational Resources Information Center
Kahn, E.
1974-01-01
This paper uses discussion of Edmund Spenser's "The Faerie Queene" to present a theoretical framework for explaining the semantics of narrative discourse. The algebraic theory of finite automata is used. (CK)
A modified large number theory with constant G
NASA Astrophysics Data System (ADS)
Recami, Erasmo
1983-03-01
The inspiring “numerology” uncovered by Dirac, Eddington, Weyl, et al. can be explained and derived when it is slightly modified so to connect the “gravitational world” (cosmos) with the “strong world” (hadron), rather than with the electromagnetic one. The aim of this note is to show the following. In the present approach to the “Large Number Theory,” cosmos and hadrons are considered to be (finite) similar systems, so that the ratio{{bar R} / {{bar R} {bar r}} of the cosmos typical lengthbar R to the hadron typical lengthbar r is constant in time (for instance, if both cosmos and hadrons undergo an expansion/contraction cycle—according to the “cyclical bigbang” hypothesis—thenbar R andbar r can be chosen to be the maximum radii, or the average radii). As a consequence, then gravitational constant G results to be independent of time. The present note is based on work done in collaboration with P. Caldirola, G. D. Maccarrone, and M. Pavšič.
Thermodynamic limit in number theory: Riemann-Beurling gases
NASA Astrophysics Data System (ADS)
Julia, B. L.
1994-03-01
We study the grand canonical version of a solved statistical model, the Riemann gas: a collection of bosonic oscillators with energies the logarithms of the prime numbers. The introduction of a chemical potential μ amounts to multiply each prime by e -μ, the corresponding gases could be called Beurling gases because they are defined by the choice of appropriate generalized primes when considered as canonical ensembles; one finds generalized Hagedorn singularities in the temperature. The discrete spectrum can be treated as continuous in its high energy region; this approximation allows us to study the high energy level density and is applied to Beurling gases. It is expected to be accurate for the high temperature behaviour. One model (the logarithmic gases) will be studied in more detail, it corresponds to the choice of all the integers strictly larger than one as Beurling primes; we give an explicit formula for its grand canonical thermodynamic potential F - μ N in terms of a hypergeometric function and check the approximation on the Hagedorn phenomenon. Related physical situations include string theories and quark deconfinement where one needs a better understanding of the nature of the Hagedorn transitions.
Quasifinite highest weight modules over the Lie algebra of differential operators on the circle
NASA Astrophysics Data System (ADS)
Kac, Victor; Radul, Andrey
1993-11-01
We classify positive energy representations with finite degeneracies of the Lie algebra W 1+∞ and construct them in terms of representation theory of the Lie algebrahat gl(infty ,R_m ) of infinites matrices with finite number of non-zero diagonals over the algebra R m =ℂ[ t]/( t m+1). The unitary ones are classified as well. Similar results are obtained for the sin-algebras.
Generator algebra of the asymptotic Poincare group in the general theory of relativity
Solovev, V.O.
1986-06-01
This paper obtains the Poisson brackets of the generators of the Hamiltonian formalism for general relativity with allowance for surface terms of aritrary form. For Minkowski space, there exists the asymptotic Poincare group, which is the semi-direct product of the Poincare group and an infinite subgroup for which the algebra of generators with surface terms closes. A criterion invariant with respect to the choice of the coordinate system on the hypersurfaces is obtained for realization of the Poincare group in asymptotically flat space-time. The ''background'' flat metric on the hypersurfaces and Poincare group that preserve it are determined nonuniquely; however, the numerical values of the generators do not depend on the freedom of this choice on solutions of the constraint equations. For an asymptotically Galilean metric, the widely used boundary cnoditins are determined more accurately. A prescription is given for application of the Arnowitt-Deser-Misner decomposition in the case of a slowly decreasing contribution from coordinate and time transformations.
Constraint algebra in bigravity
Soloviev, V. O.
2015-07-15
The number of degrees of freedom in bigravity theory is found for a potential of general form and also for the potential proposed by de Rham, Gabadadze, and Tolley (dRGT). This aim is pursued via constructing a Hamiltonian formalismand studying the Poisson algebra of constraints. A general potential leads to a theory featuring four first-class constraints generated by general covariance. The vanishing of the respective Hessian is a crucial property of the dRGT potential, and this leads to the appearance of two additional second-class constraints and, hence, to the exclusion of a superfluous degree of freedom—that is, the Boulware—Deser ghost. The use of a method that permits avoiding an explicit expression for the dRGT potential is a distinctive feature of the present study.
NASA Astrophysics Data System (ADS)
Connes, Alain; Kreimer, Dirk
This paper gives a complete selfcontained proof of our result announced in [6] showing that renormalization in quantum field theory is a special instance of a general mathematical procedure of extraction of finite values based on the Riemann-Hilbert problem. We shall first show that for any quantum field theory, the combinatorics of Feynman graphs gives rise to a Hopf algebra which is commutative as an algebra. It is the dual Hopf algebra of the enveloping algebra of a Lie algebra whose basis is labelled by the one particle irreducible Feynman graphs. The Lie bracket of two such graphs is computed from insertions of one graph in the other and vice versa. The corresponding Lie group G is the group of characters of . We shall then show that, using dimensional regularization, the bare (unrenormalized) theory gives rise to a loop
Refactorable Numbers - A Machine Invention
NASA Astrophysics Data System (ADS)
Colton, Simon
1999-02-01
The HR (or Hardy-Ramanujan) program invents and analyses definitions in areas of pure mathematics, including finite algebras, graph theory and number theory. While working in number theory, HR recently invented a new integer sequence, the refactorable numbers, which are defined and developed here. A discussion of how HR works, along with details of well known sequences reinvented by HR and other new sequences invented by HR is also given.
C∗-algebras of Penrose hyperbolic tilings
NASA Astrophysics Data System (ADS)
Oyono-Oyono, Hervé; Petite, Samuel
2011-02-01
Penrose hyperbolic tilings are tilings of the hyperbolic plane which admit, up to affine transformations a finite number of prototiles. In this paper, we give a complete description of the C∗-algebras and of the K-theory for such tilings. Since the continuous hull of these tilings have no transversally invariant measure, these C∗-algebras are traceless. Nevertheless, harmonic currents give rise to 3-cyclic cocycles and we discuss in this setting a higher-order version of the gap-labeling.
Similarity Theory and Dimensionless Numbers in Heat Transfer
ERIC Educational Resources Information Center
Marin, E.; Calderon, A.; Delgado-Vasallo, O.
2009-01-01
We present basic concepts underlying the so-called similarity theory that in our opinion should be explained in basic undergraduate general physics courses when dealing with heat transport problems, in particular with those involving natural or free convection. A simple example is described that can be useful in showing a criterion for neglecting…
Microcomputer-Assisted Mathematics: Exploring Number Theory with a Microcomputer.
ERIC Educational Resources Information Center
Fischer, Frederic
1986-01-01
Presents three problems, each with a computer solution in BASIC programming language: (1) finding sum equals product for three-digit numbers; (2) finding cases of improper cancellation that give a correct answer; and (3) finding perfect numbers. Some suggestions for further investigation are included. (JN)
The Logical Syntax of Number Words: Theory, Acquisition and Processing
ERIC Educational Resources Information Center
Musolino, Julien
2009-01-01
Recent work on the acquisition of number words has emphasized the importance of integrating linguistic and developmental perspectives [Musolino, J. (2004). The semantics and acquisition of number words: Integrating linguistic and developmental perspectives. "Cognition 93", 1-41; Papafragou, A., Musolino, J. (2003). Scalar implicatures: Scalar…
Higher-order M-theory corrections and the Kac Moody algebra E10
NASA Astrophysics Data System (ADS)
Damour, Thibault; Nicolai, Hermann
2005-07-01
It has been conjectured that the classical dynamics of M-theory is equivalent to a null geodesic motion in the infinite-dimensional coset space E10/K(E10), where K(E10) is the maximal compact subgroup of the hyperbolic Kac Moody group E10. We here provide further evidence for this conjecture by showing that the leading higher-order corrections, quartic in the curvature and related 3-form-dependent terms, correspond to negative imaginary roots of E10. The conjecture entails certain predictions for which higher-order corrections are allowed: in particular corrections of type RM(DF)N are compatible with E10 only for M + N = 3k + 1. Furthermore, the leading parts of the R4, R7, ... terms are predicted to be associated with singlets under the {\\mathfrak{sl}}_{10} decomposition of E10. Although singlets are extremely rare among the 4400 752 653 representations of {\\mathfrak{sl}}_{10} appearing in E10 up to level ell <= 28, there are indeed singlets at levels ell = 10 and ell = 20 which do match with the R4 and the expected R7 corrections. Our analysis indicates a far more complicated behaviour of the theory near the cosmological singularity than suggested by the standard homogeneous ansätze.
NASA Astrophysics Data System (ADS)
Blanchard, Philippe; Hellmich, Mario; Ługiewicz, Piotr; Olkiewicz, Robert
Quantum mechanics is the greatest revision of our conception of the character of the physical world since Newton. Consequently, David Hilbert was very interested in quantum mechanics. He and John von Neumann discussed it frequently during von Neumann's residence in Göttingen. He published in 1932 his book Mathematical Foundations of Quantum Mechanics. In Hilbert's opinion it was the first exposition of quantum mechanics in a mathematically rigorous way. The pioneers of quantum mechanics, Heisenberg and Dirac, neither had use for rigorous mathematics nor much interest in it. Conceptually, quantum theory as developed by Bohr and Heisenberg is based on the positivism of Mach as it describes only observable quantities. It first emerged as a result of experimental data in the form of statistical observations of quantum noise, the basic concept of quantum probability.
3D Winding Number: Theory and Application to Medical Imaging
Becciu, Alessandro; Fuster, Andrea; Pottek, Mark; van den Heuvel, Bart; ter Haar Romeny, Bart; van Assen, Hans
2011-01-01
We develop a new formulation, mathematically elegant, to detect critical points of 3D scalar images. It is based on a topological number, which is the generalization to three dimensions of the 2D winding number. We illustrate our method by considering three different biomedical applications, namely, detection and counting of ovarian follicles and neuronal cells and estimation of cardiac motion from tagged MR images. Qualitative and quantitative evaluation emphasizes the reliability of the results. PMID:21317978
ERIC Educational Resources Information Center
Brown, Anne E.
Elementary number theory is a standard topic in the mathematical preparation of preservice elementary teachers. To understand elementary number theory, a student must be comfortable with the representation of natural numbers as the product of primes. This paper discusses methods for accomplishing this goal in a mathematics course. It also…
NASA Astrophysics Data System (ADS)
Setare, M. R.; Adami, H.
2016-08-01
The Chern-Simons-like theories of gravity (CSLTG) are formulated at first order formalism. In this formalism, the derivation of the entropy of a black hole on bifurcation surface, as a quasi-local conserved charge is problematic. In this paper we overcome these problems by considering the concept of total variation and the Lorentz-Lie derivative. We firstly find an expression for the ADT conserved current in the context of the CSLTG which is based on the concept of the Killing vector fields. Then, we generalize it to be conserved for all diffeomorphism generators. Thus, we can extract an off-shell conserved charge for any vector field which generates a diffeomorphism. The formalism presented here is based on the concept of quasi-local conserved charges which are off-shell. The charges can be calculated on any codimension two space-like surface surrounding a black hole and the results are independent of the chosen surface. By using the off-shell quasi-local conserved charge, we investigate the Virasoro algebra and find a formula to calculate the central extension term. We apply the formalism to the BTZ black hole solution in the context of the Einstein gravity and the Generalized massive gravity, then we find the eigenvalues of their Virasoro generators as well as the corresponding central charges. Eventually, we calculate the entropy of the BTZ black hole by the Cardy formula and we show that the result exactly matches the one obtained by the concept of the off-shell conserved charges.
NASA Astrophysics Data System (ADS)
Johansen, Stein E.
2014-12-01
The paper recapitulates some key elements in previously published results concerning exact and complete reconstitution of the field of natural numbers, both as ordinal and as cardinal numbers, from systematic unfoldment of the Fibonacci algorithm. By this natural numbers emerge as Fibonacci "atoms" and "molecules" consistent with the notion of Zeckendorf sums. Here, the sub-set of prime numbers appears not as the primary numbers, but as an epistructure from a deeper Fibonacci constitution, and is thus targeted from a "positive approach". In the Fibonacci reconstitution of number theory natural numbers show a double geometrical aspect: partly as extension in space and partly as position in a successive structuring of space. More specifically, the natural numbers are shown to be distributed by a concise 5:3 code structured from the Fibonacci algorithm via Pascal's triangle. The paper discusses possible implications for the more general relation between number theory and geometry, as well as more specifically in relation to hadronic mathematics, initiated by R.M. Santilli, and also briefly to some other recent science linking number theory more directly to geometry and natural systems.
Johansen, Stein E.
2014-12-10
The paper recapitulates some key elements in previously published results concerning exact and complete reconstitution of the field of natural numbers, both as ordinal and as cardinal numbers, from systematic unfoldment of the Fibonacci algorithm. By this natural numbers emerge as Fibonacci 'atoms' and 'molecules' consistent with the notion of Zeckendorf sums. Here, the sub-set of prime numbers appears not as the primary numbers, but as an epistructure from a deeper Fibonacci constitution, and is thus targeted from a 'positive approach'. In the Fibonacci reconstitution of number theory natural numbers show a double geometrical aspect: partly as extension in space and partly as position in a successive structuring of space. More specifically, the natural numbers are shown to be distributed by a concise 5:3 code structured from the Fibonacci algorithm via Pascal's triangle. The paper discusses possible implications for the more general relation between number theory and geometry, as well as more specifically in relation to hadronic mathematics, initiated by R.M. Santilli, and also briefly to some other recent science linking number theory more directly to geometry and natural systems.
Number crunching vs. number theory: computers and FLT, from Kummer to SWAC (1850-1960), and beyond
NASA Astrophysics Data System (ADS)
Corry, Leo
2008-07-01
The article discusses the computational tools (both conceptual and material) used in various attempts to deal with individual cases of FLT [Fermat's Last Theorem], as well as the changing historical contexts in which these tools were developed and used, and affected research. It also explores the changing conceptions about the role of computations within the overall disciplinary picture of number theory, how they influenced research on the theorem, and the kinds of general insights thus achieved. After an overview of Kummer's contributions and its immediate influence, the author presents work that favored intensive computations of particular cases of FLT as a legitimate, fruitful, and worth-pursuing number-theoretical endeavor, and that were part of a coherent and active, but essentially low-profile tradition within nineteenth century number theory. This work was related to table making activity that was encouraged by institutions and individuals whose motivations came mainly from applied mathematics, astronomy, and engineering, and seldom from number theory proper. A main section of the article is devoted to the fruitful collaboration between Harry S. Vandiver and Emma and Dick Lehmer. The author shows how their early work led to the hesitant introduction of electronic computers for research related with FLT. Their joint work became a milestone for computer-assisted activity in number theory at large.
The Weyl realizations of Lie algebras, and left-right duality
NASA Astrophysics Data System (ADS)
Meljanac, Stjepan; Krešić-Jurić, Saša; Martinić, Tea
2016-05-01
We investigate dual realizations of non-commutative spaces of Lie algebra type in terms of formal power series in the Weyl algebra. To each realization of a Lie algebra 𝔤 we associate a star-product on the symmetric algebra S(𝔤) and an ordering on the enveloping algebra U(𝔤). Dual realizations of 𝔤 are defined in terms of left-right duality of the star-products on S(𝔤). It is shown that the dual realizations are related to an extension problem for 𝔤 by shift operators whose action on U(𝔤) describes left and right shift of the generators of U(𝔤) in a given monomial. Using properties of the extended algebra, in the Weyl symmetric ordering we derive closed form expressions for the dual realizations of 𝔤 in terms of two generating functions for the Bernoulli numbers. The theory is illustrated by considering the κ-deformed space.
Quantitative K-Theory Related to Spin Chern Numbers
NASA Astrophysics Data System (ADS)
Loring, Terry A.
2014-07-01
We examine the various indices defined on pairs of almost commuting unitary matrices that can detect pairs that are far from commuting pairs. We do this in two symmetry classes, that of general unitary matrices and that of self-dual matrices, with an emphasis on quantitative results. We determine which values of the norm of the commutator guarantee that the indices are defined, where they are equal, and what quantitative results on the distance to a pair with a different index are possible. We validate a method of computing spin Chern numbers that was developed with Hastings and only conjectured to be correct. Specifically, the Pfaffian-Bott index can be computed by the ''log method'' for commutator norms up to a specific constant.
Array algebra estimation in signal processing
NASA Astrophysics Data System (ADS)
Rauhala, U. A.
A general theory of linear estimators called array algebra estimation is interpreted in some terms of multidimensional digital signal processing, mathematical statistics, and numerical analysis. The theory has emerged during the past decade from the new field of a unified vector, matrix and tensor algebra called array algebra. The broad concepts of array algebra and its estimation theory cover several modern computerized sciences and technologies converting their established notations and terminology into one common language. Some concepts of digital signal processing are adopted into this language after a review of the principles of array algebra estimation and its predecessors in mathematical surveying sciences.
Permutation centralizer algebras and multimatrix invariants
NASA Astrophysics Data System (ADS)
Mattioli, Paolo; Ramgoolam, Sanjaye
2016-03-01
We introduce a class of permutation centralizer algebras which underly the combinatorics of multimatrix gauge-invariant observables. One family of such noncommutative algebras is parametrized by two integers. Its Wedderburn-Artin decomposition explains the counting of restricted Schur operators, which were introduced in the physics literature to describe open strings attached to giant gravitons and were subsequently used to diagonalize the Gaussian inner product for gauge invariants of two-matrix models. The structure of the algebra, notably its dimension, its center and its maximally commuting subalgebra, is related to Littlewood-Richardson numbers for composing Young diagrams. It gives a precise characterization of the minimal set of charges needed to distinguish arbitrary matrix gauge invariants, which are related to enhanced symmetries in gauge theory. The algebra also gives a star product for matrix invariants. The center of the algebra allows efficient computation of a sector of multimatrix correlators. These generate the counting of a certain class of bicoloured ribbon graphs with arbitrary genus.
Algebra: A Challenge at the Crossroads of Policy and Practice
ERIC Educational Resources Information Center
Stein, Mary Kay; Kaufman, Julia Heath; Sherman, Milan; Hillen, Amy F.
2011-01-01
The authors review what is known about early and universal algebra, including who is getting access to algebra and student outcomes associated with algebra course taking in general and specifically with universal algebra policies. The findings indicate that increasing numbers of students, some of whom are underprepared, are taking algebra earlier.…
Li, Jing; Hong, Wenxue
2014-12-01
The feature extraction and feature selection are the important issues in pattern recognition. Based on the geometric algebra representation of vector, a new feature extraction method using blade coefficient of geometric algebra was proposed in this study. At the same time, an improved differential evolution (DE) feature selection method was proposed to solve the elevated high dimension issue. The simple linear discriminant analysis was used as the classifier. The result of the 10-fold cross-validation (10 CV) classification of public breast cancer biomedical dataset was more than 96% and proved superior to that of the original features and traditional feature extraction method. PMID:25868233
Béguinot, Jean
2014-01-01
Anne Chao proposed a very popular, nonparametric estimator of the species richness of a community, on the basis of a limited size sampling of this community. This expression was originally derived on a statistical basis as a lower-bound estimate of the number of missing species in the sample and provides accordingly a minimal threshold for the estimation of the total species richness of the community. Hereafter, we propose an alternative, algebraic derivation of Chao's estimator, demonstrating thereby that Chao's formulation may also provide centered estimates (and not only a lower bound threshold), provided that the sampled communities satisfy a specific type of SAD (species abundance distribution). This particular SAD corresponds to the case when the number of unrecorded species in the sample tends to decrease exponentially with increasing sampling size. It turns out that the shape of this “ideal” SAD often conforms approximately to the usually recorded types in nature, such as “log-normal” or “broken-stick.”. Accordingly, this may explain why Chao's formulation is generally recognized as a particularly satisfying nonparametric estimator.
ERIC Educational Resources Information Center
Schaufele, Christopher; Zumoff, Nancy
Earth Algebra is an entry level college algebra course that incorporates the spirit of the National Council of Teachers of Mathematics (NCTM) Curriculum and Evaluation Standards for School Mathematics at the college level. The context of the course places mathematics at the center of one of the major current concerns of the world. Through…
ERIC Educational Resources Information Center
Hagerty, Gary; Smith, Stanley; Goodwin, Danielle
2010-01-01
In 2001, Black Hills State University (BHSU) redesigned college algebra to use the computer-based mastery learning program, Assessment and Learning in Knowledge Spaces [1], historical development of concepts modules, whole class discussions, cooperative activities, relevant applications problems, and many fewer lectures. This resulted in a 21%…
New family of Maxwell like algebras
NASA Astrophysics Data System (ADS)
Concha, P. K.; Durka, R.; Merino, N.; Rodríguez, E. K.
2016-08-01
We introduce an alternative way of closing Maxwell like algebras. We show, through a suitable change of basis, that resulting algebras are given by the direct sums of the AdS and the Maxwell algebras already known in the literature. Casting the result into the S-expansion method framework ensures the straightaway construction of the gravity theories based on a found enlargement.
A Balancing Act: Making Sense of Algebra
ERIC Educational Resources Information Center
Gavin, M. Katherine; Sheffield, Linda Jensen
2015-01-01
For most students, algebra seems like a totally different subject than the number topics they studied in elementary school. In reality, the procedures followed in arithmetic are actually based on the properties and laws of algebra. Algebra should be a logical next step for students in extending the proficiencies they developed with number topics…
Secondary School Mathematics, Chapter 5, Number Theory, Chapter 6, The Integers. Student's Text.
ERIC Educational Resources Information Center
Stanford Univ., CA. School Mathematics Study Group.
The third student text in this SMSG series of 14 covers the following topics from number theory: the division algorithm, divisibility, prime numbers, prime factorization, common divisors and common multiples, and properties of the whole number system. A second chapter discusses properties and operations with integers. For a special edition of this…
ERIC Educational Resources Information Center
Boiteau, Denise; Stansfield, David
This document describes mathematical programs on the basic concepts of algebra produced by Louisiana Public Broadcasting. Programs included are: (1) "Inverse Operations"; (2) "The Order of Operations"; (3) "Basic Properties" (addition and multiplication of numbers and variables); (4) "The Positive and Negative Numbers"; and (5) "Using Positive…
ERIC Educational Resources Information Center
Kennedy, John
This text provides information and exercises on arithmetic topics which should be mastered before a student enrolls in an Elementary Algebra course. Section I describes the fundamental properties and relationships of whole numbers, focusing on basic operations, divisibility tests, exponents, order of operations, prime numbers, greatest common…
Vertex Algebras, Kac-Moody Algebras, and the Monster
NASA Astrophysics Data System (ADS)
Borcherds, Richard E.
1986-05-01
It is known that the adjoint representation of any Kac-Moody algebra A can be identified with a subquotient of a certain Fock space representation constructed from the root lattice of A. I define a product on the whole of the Fock space that restricts to the Lie algebra product on this subquotient. This product (together with a infinite number of other products) is constructed using a generalization of vertex operators. I also construct an integral form for the universal enveloping algebra of any Kac-Moody algebra that can be used to define Kac-Moody groups over finite fields, some new irreducible integrable representations, and a sort of affinization of any Kac-Moody algebra. The ``Moonshine'' representation of the Monster constructed by Frenkel and others also has products like the ones constructed for Kac-Moody algebras, one of which extends the Griess product on the 196884-dimensional piece to the whole representation.
Semigroups and computer algebra in algebraic structures
NASA Astrophysics Data System (ADS)
Bijev, G.
2012-11-01
Some concepts in semigroup theory can be interpreted in several algebraic structures. A generalization fA,B,fA,B(X) = A(X')B of the complement operator (') on Boolean matrices is made, where A and B denote any rectangular Boolean matrices. While (') is an isomorphism between Boolean semilattices, the generalized complement operator is homomorphism in the general case. The map fA,B and its general inverse (fA,B)+ have quite similar properties to those in the linear algebra and are useful for solving linear equations in Boolean matrix algebras. For binary relations on a finite set, necessary and sufficient conditions for the equation αξβ = γ to have a solution ξ are proved. A generalization of Green's equivalence relations in semigroups for rectangular matrices is proposed. Relationships between them and the Moore-Penrose inverses are investigated. It is shown how any generalized Green's H-class could be constructed by given its corresponding linear subspaces and converted into a group isomorphic to a linear group. Some information about using computer algebra methods concerning this paper is given.
NASA Astrophysics Data System (ADS)
Smith, A.; Siegel, Edward Carl-Ludwig
2011-03-01
Numbers: primality/indivisibility/non-factorization versus compositeness/divisibility/ factorization, often in tandem but not always, provocatively close analogy to nuclear-physics: (2 + 1)=(fusion)=3; (3+1)=(fission)=4[=2 x 2]; (4+1)=(fusion)=5; (5 +1)=(fission)=6[=2 x 3]; (6 + 1)=(fusion)=7; (7+1)=(fission)=8[= 2 x 4 = 2 x 2 x 2]; (8 + 1) =(non: fission nor fusion)= 9[=3 x 3]; then ONLY composites' Islands of fusion-INstability: 8, 9, 10; then 14, 15, 16, ... Could inter-digit Feshbach-resonances exist??? Possible applications to: quantum-information/ computing non-Shore factorization, millennium-problem Riemann-hypotheses proof as Goodkin BEC intersection with graph-theory "short-cut" method: Rayleigh(1870)-Polya(1922)-"Anderson"(1958)-localization, Goldbach-conjecture, financial auditing/accounting as quantum-statistical-physics; ...abound!!! Watkins [www.secamlocal.ex.ac.uk/people/staff/mrwatkin/] "Number-Theory in Physics" many interconnections: "pure"-maths number-theory to physics including Siegel [AMS Joint Mtg.(2002)-Abs.# 973-60-124] inversion of statistics on-average digits' Newcomb(1881)-Weyl(14-16)-Benford(38)-law to reveal both the quantum and BEQS (digits = bosons = digits:"spinEless-boZos"). 1881 1885 1901 1905 1925 < 1927, altering quantum-theory history!!!
From the Law of Large Numbers to Large Deviation Theory in Statistical Physics: An Introduction
NASA Astrophysics Data System (ADS)
Cecconi, Fabio; Cencini, Massimo; Puglisi, Andrea; Vergni, Davide; Vulpiani, Angelo
This contribution aims at introducing the topics of this book. We start with a brief historical excursion on the developments from the law of large numbers to the central limit theorem and large deviations theory. The same topics are then presented using the language of probability theory. Finally, some applications of large deviations theory in physics are briefly discussed through examples taken from statistical mechanics, dynamical and disordered systems.
NASA Astrophysics Data System (ADS)
Masoero, Davide; Raimondo, Andrea; Valeri, Daniele
2016-06-01
We study the ODE/IM correspondence for ODE associated to {widehat{mathfrak{g}}}-valued connections, for a simply-laced Lie algebra {mathfrak{g}}. We prove that subdominant solutions to the ODE defined in different fundamental representations satisfy a set of quadratic equations called {Ψ}-system. This allows us to show that the generalized spectral determinants satisfy the Bethe Ansatz equations.
Realizations of conformal current-type Lie algebras
Pei Yufeng; Bai Chengming
2010-05-15
In this paper we obtain the realizations of some infinite-dimensional Lie algebras, named 'conformal current-type Lie algebras', in terms of a two-dimensional Novikov algebra and its deformations. Furthermore, Ovsienko and Roger's loop cotangent Virasoro algebra, which can be regarded as a nice generalization of the Virasoro algebra with two space variables, is naturally realized as an affinization of the tensor product of a deformation of the two-dimensional Novikov algebra and the Laurent polynomial algebra. These realizations shed new light on various aspects of the structure and representation theory of the corresponding infinite-dimensional Lie algebras.
Quantum computation using geometric algebra
NASA Astrophysics Data System (ADS)
Matzke, Douglas James
This dissertation reports that arbitrary Boolean logic equations and operators can be represented in geometric algebra as linear equations composed entirely of orthonormal vectors using only addition and multiplication Geometric algebra is a topologically based algebraic system that naturally incorporates the inner and anticommutative outer products into a real valued geometric product, yet does not rely on complex numbers or matrices. A series of custom tools was designed and built to simplify geometric algebra expressions into a standard sum of products form, and automate the anticommutative geometric product and operations. Using this infrastructure, quantum bits (qubits), quantum registers and EPR-bits (ebits) are expressed symmetrically as geometric algebra expressions. Many known quantum computing gates, measurement operators, and especially the Bell/magic operators are also expressed as geometric products. These results demonstrate that geometric algebra can naturally and faithfully represent the central concepts, objects, and operators necessary for quantum computing, and can facilitate the design and construction of quantum computing tools.
Higher level twisted Zhu algebras
Ekeren, Jethro van
2011-05-15
The study of twisted representations of graded vertex algebras is important for understanding orbifold models in conformal field theory. In this paper, we consider the general setup of a vertex algebra V, graded by {Gamma}/Z for some subgroup {Gamma} of R containing Z, and with a Hamiltonian operator H having real (but not necessarily integer) eigenvalues. We construct the directed system of twisted level p Zhu algebras Zhu{sub p,{Gamma}}(V), and we prove the following theorems: For each p, there is a bijection between the irreducible Zhu{sub p,{Gamma}}(V)-modules and the irreducible {Gamma}-twisted positive energy V-modules, and V is ({Gamma}, H)-rational if and only if all its Zhu algebras Zhu{sub p,{Gamma}}(V) are finite dimensional and semisimple. The main novelty is the removal of the assumption of integer eigenvalues for H. We provide an explicit description of the level p Zhu algebras of a universal enveloping vertex algebra, in particular of the Virasoro vertex algebra Vir{sup c} and the universal affine Kac-Moody vertex algebra V{sup k}(g) at non-critical level. We also compute the inverse limits of these directed systems of algebras.
Dual numbers and supersymmetric mechanics
NASA Astrophysics Data System (ADS)
Frydryszak, Andrzej M.
2005-11-01
We show that dual numbers, apart from the known practical applications to the description of a rigid body movements in three dimensional space and natural presence in abstract differential algebra, play a role in field theory and are related to supersymmetry as well. Relevant models are considered.
ERIC Educational Resources Information Center
Instructional Objectives Exchange, Los Angeles, CA.
A complete set of behavioral objectives for first-year algebra taught in any of grades 8 through 12 is presented. Three to six sample test items and answers are provided for each objective. Objectives were determined by surveying the most used secondary school algebra textbooks. Fourteen major categories are included: (1) whole numbers--operations…
Describing Pre-Service Teachers' Developing Understanding of Elementary Number Theory Topics
ERIC Educational Resources Information Center
Feldman, Ziv
2012-01-01
Although elementary number theory topics are closely linked to foundational topics in number and operations and are prevalent in elementary and middle grades mathematics curricula, little is currently known about how students and teachers make sense of them. This study investigated pre-service elementary teachers' developing understanding of…
ERIC Educational Resources Information Center
Hatch, Mary Jacqueline
In the winter of 1965, an experimental course in Elementary Number Theory was presented to a 6th grade class in the Hosmer School, Watertown, Massachusetts. Prior to the introduction of the present material, students had been exposed in class to such topics from the University of Illinois Arithmetic Project as lattices, number lines, frame…
On N = 2 compactifications of M-theory to AdS{sub 3} using geometric algebra techniques
Babalic, E. M.; Coman, I. A.; Condeescu, C.; Micu, A.; Lazaroiu, C. I.
2013-11-13
We investigate the most general warped compactification of eleven-dimensional supergravity on eight-dimensional manifolds to AdS{sub 3} spaces (in the presence of non-vanishing four-form flux) which preserves N = 2 supersymmetry in three dimensions. Without imposing any restrictions on the chirality of the internal part of the supersymmetry generators, we use geometric algebra techniques to study some implications of the supersymmetry constraints. In particular, we discuss the Lie bracket of certain vector fields constructed as pinor bilinears on the compactification manifold.
Filiform Lie algebras of order 3
Navarro, R. M.
2014-04-15
The aim of this work is to generalize a very important type of Lie algebras and superalgebras, i.e., filiform Lie (super)algebras, into the theory of Lie algebras of order F. Thus, the concept of filiform Lie algebras of order F is obtained. In particular, for F = 3 it has been proved that by using infinitesimal deformations of the associated model elementary Lie algebra it can be obtained families of filiform elementary lie algebras of order 3, analogously as that occurs into the theory of Lie algebras [M. Vergne, “Cohomologie des algèbres de Lie nilpotentes. Application à l’étude de la variété des algèbres de Lie nilpotentes,” Bull. Soc. Math. France 98, 81–116 (1970)]. Also we give the dimension, using an adaptation of the sl(2,C)-module Method, and a basis of such infinitesimal deformations in some generic cases.
Invariants of triangular Lie algebras
NASA Astrophysics Data System (ADS)
Boyko, Vyacheslav; Patera, Jiri; Popovych, Roman
2007-07-01
Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants ('generalized Casimir operators') are found for three classes of Lie algebras, namely those which are either strictly or non-strictly triangular, and for so-called special upper triangular Lie algebras. Algebraic algorithm of Boyko et al (2006 J. Phys. A: Math. Gen.39 5749 (Preprint math-ph/0602046)), developed further in Boyko et al (2007 J. Phys. A: Math. Theor.40 113 (Preprint math-ph/0606045)), is used to determine the invariants. A conjecture of Tremblay and Winternitz (2001 J. Phys. A: Math. Gen.34 9085), concerning the number of independent invariants and their form, is corroborated.
Coverings of topological semi-abelian algebras
NASA Astrophysics Data System (ADS)
Mucuk, Osman; Demir, Serap
2016-08-01
In this work, we study on a category of topological semi-abelian algebras which are topological models of given an algebraic theory T whose category of models is semi-abelian; and investigate some results on the coverings of topological models of such theories yielding semi-abelian categories. We also consider the internal groupoid structure in the semi-abelian category of T-algebras, and give a criteria for the lifting of internal groupoid structure to the covering groupoids.
ERIC Educational Resources Information Center
Ketterlin-Geller, Leanne R.; Jungjohann, Kathleen; Chard, David J.; Baker, Scott
2007-01-01
Much of the difficulty that students encounter in the transition from arithmetic to algebra stems from their early learning and understanding of arithmetic. Too often, students learn about the whole number system and the operations that govern that system as a set of procedures to solve addition, subtraction, multiplication, and division problems.…
Assessment of a transitional boundary layer theory at low hypersonic Mach numbers
NASA Technical Reports Server (NTRS)
Shamroth, S. J.; Mcdonald, H.
1972-01-01
An investigation was carried out to assess the accuracy of a transitional boundary layer theory in the low hypersonic Mach number regime. The theory is based upon the simultaneous numerical solution of the boundary layer partial differential equations for the mean motion and an integral form of the turbulence kinetic energy equation which controls the magnitude and development of the Reynolds stress. Comparisions with experimental data show the theory is capable of accurately predicting heat transfer and velocity profiles through the transitional regime and correctly predicts the effects of Mach number and wall cooling on transition Reynolds number. The procedure shows promise of predicting the initiation of transition for given free stream disturbance levels. The effects on transition predictions of the pressure dilitation term and of direct absorption of acoustic energy by the boundary layer were evaluated.
Analytic theory for the selection of a two-dimensional needle crystal at arbitrary Peclet number
NASA Technical Reports Server (NTRS)
Tanveer, S.
1989-01-01
An accurate analytic theory is presented for the velocity selection of a two-dimensional needle crystal for arbitrary Peclet number for small values of the surface tension parameter. The velocity selection is caused by the effect of transcendentally small terms which are determined by analytic continuation to the complex plane and analysis of nonlinear equations. The work supports the general conclusion of previous small Peclet number analytical results of other investigators, though there are some discrepancies in details. It also addresses questions raised on the validity of selection theory owing to assumptions made on shape corrections at large distances from the tip.
Analytic theory for the selection of 2-D needle crystal at arbitrary Peclet number
NASA Technical Reports Server (NTRS)
Tanveer, Saleh
1989-01-01
An accurate analytic theory is presented for the velocity selection of a two-dimensional needle crystal for arbitrary Peclet number for small values of the surface tension parameter. The velocity selection is caused by the effect of transcendentally small terms which are determined by analytic continuation to the complex plane and analysis of nonlinear equations. The work supports the general conclusion of previous small Peclet number analytical results of other investigators, though there are some discrepancies in details. It also addresses questions raised on the validity of selection theory owing to assumptions made on shape corrections at large distances from the tip.
NASA Astrophysics Data System (ADS)
Siegel, Edward
2011-04-01
Numbers: primality/indivisibility/non-factorization versus compositeness/divisibility /factor-ization, often in tandem but not always, provocatively close analogy to nuclear-physics: (2 + 1)=(fusion)=3; (3+1)=(fission)=4[=2 x 2]; (4+1)=(fusion)=5; (5+1)=(fission)=6[=2 x 3]; (6 + 1)=(fusion)=7; (7+1)=(fission)=8[= 2 x 4 = 2 x 2 x 2]; (8 + 1) =(non: fission nor fusion)= 9[=3 x 3]; then ONLY composites' Islands of fusion-INstability: 8, 9, 10; then 14, 15, 16,... Could inter-digit Feshbach-resonances exist??? Applications to: quantum-information and computing non-Shore factorization, millennium-problem Riemann-hypotheses physics-proof as numbers/digits Goodkin Bose-Einstein Condensation intersection with graph-theory ``short-cut'' method: Rayleigh(1870)-Polya(1922)-``Anderson'' (1958)-localization, Goldbach-conjecture, financial auditing/accounting as quantum-statistical-physics;... abound!!!
Rank of quantized universal enveloping algebras and modular functions
NASA Astrophysics Data System (ADS)
Majid, Shahn; Soibelman, Ya. S.
1991-04-01
We compute an intrinsic rank invariant for quasitriangular Hopf algebras in the case of general quantum groups U q (g). As a function of q the rank has remarkable number theoretic properties connected with modular covariance and Galois theory. A number of examples are treated in detail, including rank ( U q (su(3))) and rank ( U q ( e 8)). We briefly indicate a physical interpretation as relating Chern-Simons theory with the theory of a quantum particle confined to an alcove of g.
NASA Astrophysics Data System (ADS)
Obot, V.; Brown, B.; Wu, T.; Wunsch, G.; Miles, A.; Morris, P.; Lindstrom, M.; Allen, J.
The need to increase minority representation in science and engineering disciplines is well documented. Many strategies for achieving this goal have evolved over the years; yet, minority representation is still minimal. It appears that while students are naturally curious about the universe, once mention is made of mathematics as a pre-requisite to the study of science and engineering, interest seems to wane. Perhaps a possible way to get around this phobia is to incorporate the mathematics into the science courses and the science into the mathematics courses at the secondary level. This will require mathematics and science teachers to work together, re-enforcing each other so that lessons can be truly interdisciplinary. For the past two summers, we have conducted workshops for secondary school mathematics and science teachers in a large urban school district. The workshops are called "Algebra-Integrated Physics and Chemistry". These workshops are designed to introduce the teachers to mathematical modeling of physical and chemical phenomenon. T chnology (graphic calculators) is used to dis covere functions that model a particular process. We have modeled linear functions by looking at the Celsius and Fahrenheit scales. A simple experiment is heating water, measuring the temperature in both Celsius and Fahrenheit scales, plotting Celsius versus Fahrenheit temperatures, and determining their mathematical relationship. At this point, the science teacher can also go into a discussion of the meaning of temperature. In some cases readily available data can be analyzed. The ellipse and Kepler's third law is ideal when studying conic sections. In this case, available data can be used, and by plotting appropriately, cubic functions can be studied and motions of planets in their orbits near and far from the sun can be discussed. This new approach to mathematics and science will take the student to a certain comfort level so that statements such as either " I like science
Mean-field theory of spin-glasses with finite coordination number
NASA Technical Reports Server (NTRS)
Kanter, I.; Sompolinsky, H.
1987-01-01
The mean-field theory of dilute spin-glasses is studied in the limit where the average coordination number is finite. The zero-temperature phase diagram is calculated and the relationship between the spin-glass phase and the percolation transition is discussed. The present formalism is applicable also to graph optimization problems.
Modelling Problem-Solving Situations into Number Theory Tasks: The Route towards Generalisation
ERIC Educational Resources Information Center
Papadopoulos, Ioannis; Iatridou, Maria
2010-01-01
This paper examines the way two 10th graders cope with a non-standard generalisation problem that involves elementary concepts of number theory (more specifically linear Diophantine equations) in the geometrical context of a rectangle's area. Emphasis is given on how the students' past experience of problem solving (expressed through interplay…
Application of abelian holonomy formalism to the elementary theory of numbers
NASA Astrophysics Data System (ADS)
Abe, Yasuhiro
2012-05-01
We consider an abelian holonomy operator in two-dimensional conformal field theory with zero-mode contributions. The analysis is made possible by use of a geometric-quantization scheme for abelian Chern-Simons theory on S1 × S1 × R. We find that a purely zero-mode part of the holonomy operator can be expressed in terms of Riemann's zeta function. We also show that a generalization of linking numbers can be obtained in terms of the vacuum expectation values of the zero-mode holonomy operators. Inspired by mathematical analogies between linking numbers and Legendre symbols, we then apply these results to a space of Fp = Z/pZ, where p is an odd prime number. This enables us to calculate "scattering amplitudes" of identical odd primes in the holonomy formalism. In this framework, the Riemann hypothesis can be interpreted by means of a physically obvious fact, i.e., there is no notion of "scattering" for a single-particle system. Abelian gauge theories described by the zero-mode holonomy operators will be useful for studies on quantum aspects of topology and number theory.
An Instructional Model for Teaching Proof Writing in the Number Theory Classroom
ERIC Educational Resources Information Center
Schabel, Carmen
2005-01-01
I discuss an instructional model that I have used in my number theory classes. Facets of the model include using small group work and whole class discussion, having students generate examples and counterexamples, and giving students the opportunity to write proofs and make conjectures in class. The model is designed to actively engage students in…
ERIC Educational Resources Information Center
Campbell, Stephen R.
This discussion focuses upon potential implications of research conducted on preservice teachers' understanding of introductory topics from elementary number theory. Comments interlace three levels of consideration and recapitulate what is striking as some of the most interesting and important findings raised in the presentations, and flesh out…
NASA Astrophysics Data System (ADS)
Lannes, A.; Teunissen, P. J. G.
2011-05-01
The first objective of this paper is to show that some basic concepts used in global navigation satellite systems (GNSS) are similar to those introduced in Fourier synthesis for handling some phase calibration problems. In experimental astronomy, the latter are at the heart of what is called `phase closure imaging.' In both cases, the analysis of the related structures appeals to the algebraic graph theory and the algebraic number theory. For example, the estimable functions of carrier-phase ambiguities, which were introduced in GNSS to correct some rank defects of the undifferenced equations, prove to be `closure-phase ambiguities:' the so-called `closure-delay' (CD) ambiguities. The notion of closure delay thus generalizes that of double difference (DD). The other estimable functional variables involved in the phase and code undifferenced equations are the receiver and satellite pseudo-clock biases. A related application, which corresponds to the second objective of this paper, concerns the definition of the clock information to be broadcasted to the network users for their precise point positioning (PPP). It is shown that this positioning can be achieved by simply having access to the satellite pseudo-clock biases. For simplicity, the study is restricted to relatively small networks. Concerning the phase for example, these biases then include five components: a frequency-dependent satellite-clock error, a tropospheric satellite delay, an ionospheric satellite delay, an initial satellite phase, and an integer satellite ambiguity. The form of the PPP equations to be solved by the network user is then similar to that of the traditional PPP equations. As soon as the CD ambiguities are fixed and validated, an operation which can be performed in real time via appropriate decorrelation techniques, estimates of these float biases can be immediately obtained. No other ambiguity is to be fixed. The satellite pseudo-clock biases can thus be obtained in real time. This is
ERIC Educational Resources Information Center
Ozgun-Koca, S. Ash
2010-01-01
Although growing numbers of secondary school mathematics teachers and students use calculators to study graphs, they mainly rely on paper-and-pencil when manipulating algebraic symbols. However, the Computer Algebra Systems (CAS) on computers or handheld calculators create new possibilities for teaching and learning algebraic manipulation. This…
Results of Using Algebra Tiles as Meaningful Representations of Algebra Concepts.
ERIC Educational Resources Information Center
Sharp, Janet M.
Mathematical meanings can be developed when individuals construct translations between algebra symbol systems and physical systems that represent one another. Previous research studies indicated (1) few high school students connect whole number manipulations to algebraic manipulations and (2) students who encounter algebraic ideas through…
NASA Astrophysics Data System (ADS)
Siegel, Edward
2011-10-01
Numbers: primality/indivisibility/non-factorization versus compositeness/divisibility /factor-ization, often in tandem but not always, provocatively close analogy to nuclear-physics: (2 + 1)=(fusion)=3; (3+1)=(fission)=4[=2 × 2]; (4+1)=(fusion)=5; (5 +1)=(fission)=6[=2 × 3]; (6 + 1)=(fusion)=7; (7+1)=(fission)=8[= 2 × 4 = 2 × 2 × 2]; (8 + 1) =(non: fission nor fusion)= 9[=3 × 3]; then ONLY composites' Islands of fusion-INstability: 8, 9, 10; then 14, 15, 16,... Could inter-digit Feshbach-resonances exist??? Applications to: quantum-information/computing non-Shore factorization, millennium-problem Riemann-hypotheses proof as Goodkin BEC intersection with graph-theory ``short-cut'' method: Rayleigh(1870)-Polya(1922)-``Anderson'' (1958)-localization, Goldbach-conjecture, financial auditing/accounting as quantum-statistical-physics;... abound!!!
A note on derivations of Murray–von Neumann algebras
Kadison, Richard V.; Liu, Zhe
2014-01-01
A Murray–von Neumann algebra is the algebra of operators affiliated with a finite von Neumann algebra. In this article, we first present a brief introduction to the theory of derivations of operator algebras from both the physical and mathematical points of view. We then describe our recent work on derivations of Murray–von Neumann algebras. We show that the “extended derivations” of a Murray–von Neumann algebra, those that map the associated finite von Neumann algebra into itself, are inner. In particular, we prove that the only derivation that maps a Murray–von Neumann algebra associated with a factor of type II1 into that factor is 0. Those results are extensions of Singer’s seminal result answering a question of Kaplansky, as applied to von Neumann algebras: The algebra may be noncommutative and may even contain unbounded elements. PMID:24469831
Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms
NASA Astrophysics Data System (ADS)
Benayadi, Saïd; Makhlouf, Abdenacer
2014-02-01
The aim of this paper is to introduce and study quadratic Hom-Lie algebras, which are Hom-Lie algebras equipped with symmetric invariant nondegenerate bilinear forms. We provide several constructions leading to examples and extend the Double Extension Theory to this class of nonassociative algebras. Elements of Representation Theory for Hom-Lie algebras, including adjoint and coadjoint representations, are supplied with application to quadratic Hom-Lie algebras. Centerless involutive quadratic Hom-Lie algebras are characterized. We reduce the case where the twist map is invertible to the study of involutive quadratic Lie algebras. Also, we establish a correspondence between the class of involutive quadratic Hom-Lie algebras and quadratic simple Lie algebras with symmetric involution.
Structural chemistry and number theory amalgamized: crystal structure of Na11Hg52.
Hornfeck, Wolfgang; Hoch, Constantin
2015-12-01
The recently elucidated crystal structure of the technologically important amalgam Na11Hg52 is described by means of a method employing some fundamental concept of number theory, namely modular arithmetical (congruence) relations observed between a slightly idealized set of atomic coordinates. In combination with well known ideas from group theory, regarding lattice-sublattice transformations, these allow for a deeper mutual understanding of both and provide the structural chemist with a slightly different kind of spectacles, thus enabling a distinct viw on complex crystal structures in general. PMID:26634733
Highest-weight representations of Brocherd`s algebras
Slansky, R.
1997-01-01
General features of highest-weight representations of Borcherd`s algebras are described. to show their typical features, several representations of Borcherd`s extensions of finite-dimensional algebras are analyzed. Then the example of the extension of affine- su(2) to a Borcherd`s algebra is examined. These algebras provide a natural way to extend a Kac-Moody algebra to include the hamiltonian and number-changing operators in a generalized symmetry structure.
Theory of exciton annihilation in complexes of a finite number of molecular sites.
Gülen, D
1990-11-01
A theory of the kinematics of singlet exciton annihilation in complexes of a finite number of molecular sites is developed. The theory is based on a specific scheme suggested earlier by Gülen, Wittmershaus, and Knox [Biophys J. 49:469-477 (1986)]. It is adequate to address the excitation kinetics and dynamics in such systems, especially under high excitation intensities. A Pauli master equation is formulated and is solved to give explicit expressions for observables such as quantum yield and fluorescence intensity. The excitation intensity dependence of the observables is taken into account by introducing Poisson statistics. Details relevant to its application to the annihilation of excitons in photosynthetic systems and its connection to earlier theories are presented. PMID:2134489
Representations of Super Yang-Mills Algebras
NASA Astrophysics Data System (ADS)
Herscovich, Estanislao
2013-06-01
We study in this article the representation theory of a family of super algebras, called the super Yang-Mills algebras, by exploiting the Kirillov orbit method à la Dixmier for nilpotent super Lie algebras. These super algebras are an extension of the so-called Yang-Mills algebras, introduced by A. Connes and M. Dubois-Violette in (Lett Math Phys 61(2):149-158, 2002), and in fact they appear as a "background independent" formulation of supersymmetric gauge theory considered in physics, in a similar way as Yang-Mills algebras do the same for the usual gauge theory. Our main result states that, under certain hypotheses, all Clifford-Weyl super algebras {{Cliff}q(k) ⊗ Ap(k)}, for p ≥ 3, or p = 2 and q ≥ 2, appear as a quotient of all super Yang-Mills algebras, for n ≥ 3 and s ≥ 1. This provides thus a family of representations of the super Yang-Mills algebras.
On the Design of Lifting Airfoils with High Critical Mach Number Using Full Potential Theory
NASA Astrophysics Data System (ADS)
Kropinski, M. C. A.
We wish to construct airfoils that have the highest free-stream Mach number for a given set of geometric constraints for which the flow is nowhere supersonic. Nonlifting airfoils that maximize the critical Mach number for a given cross-sectional area are known to possess long sonic segments at their critical speed. To construct lifting airfoils, we proceed under the conjecture that an airfoil with a high value of has the longest possible arc length of sonic velocity over its upper and lower surface. In Kropinski etal. (1995) the lifting problem was tackled in transonic small-disturbance theory. In this paper we numerically construct lifting airfoils with high using the full potential theory and we show that these airfoils have significantly higher than some standard airfoils. We also construct airfoils with higher values of the lift coefficient, by relaxing the speed constraint on the lower surface of the airfoil to have a value less than sonic.
Phase transitions in number theory: from the birthday problem to Sidon sets.
Luque, Bartolo; Torre, Iván G; Lacasa, Lucas
2013-11-01
In this work, we show how number theoretical problems can be fruitfully approached with the tools of statistical physics. We focus on g-Sidon sets, which describe sequences of integers whose pairwise sums are different, and propose a random decision problem which addresses the probability of a random set of k integers to be g-Sidon. First, we provide numerical evidence showing that there is a crossover between satisfiable and unsatisfiable phases which converts to an abrupt phase transition in a properly defined thermodynamic limit. Initially assuming independence, we then develop a mean-field theory for the g-Sidon decision problem. We further improve the mean-field theory, which is only qualitatively correct, by incorporating deviations from independence, yielding results in good quantitative agreement with the numerics for both finite systems and in the thermodynamic limit. Connections between the generalized birthday problem in probability theory, the number theory of Sidon sets and the properties of q-Potts models in condensed matter physics are briefly discussed. PMID:24329226
Number-conserving master equation theory for a dilute Bose-Einstein condensate
Schelle, Alexej; Wellens, Thomas; Buchleitner, Andreas; Delande, Dominique
2011-01-15
We describe the transition of N weakly interacting atoms into a Bose-Einstein condensate within a number-conserving quantum master equation theory. Based on the separation of time scales for condensate formation and noncondensate thermalization, we derive a master equation for the condensate subsystem in the presence of the noncondensate environment under the inclusion of all two-body interaction processes. We numerically monitor the condensate particle number distribution during condensate formation, and derive a condition under which the unique equilibrium steady state of a dilute, weakly interacting Bose-Einstein condensate is given by a Gibbs-Boltzmann thermal state of N noninteracting atoms.
Twisted Logarithmic Modules of Vertex Algebras
NASA Astrophysics Data System (ADS)
Bakalov, Bojko
2016-07-01
Motivated by logarithmic conformal field theory and Gromov-Witten theory, we introduce a notion of a twisted module of a vertex algebra under an arbitrary (not necessarily semisimple) automorphism. Its main feature is that the twisted fields involve the logarithm of the formal variable. We develop the theory of such twisted modules and, in particular, derive a Borcherds identity and commutator formula for them. We investigate in detail the examples of affine and Heisenberg vertex algebras.
Amano, Ken-Ichi; Liang, Yunfeng; Miyazawa, Keisuke; Kobayashi, Kazuya; Hashimoto, Kota; Fukami, Kazuhiro; Nishi, Naoya; Sakka, Tetsuo; Onishi, Hiroshi; Fukuma, Takeshi
2016-06-21
Atomic force microscopy (AFM) in liquids can measure a force curve between a probe and a buried substrate. The shape of the measured force curve is related to hydration structure on the substrate. However, until now, there has been no practical theory that can transform the force curve into the hydration structure, because treatment of the liquid confined between the probe and the substrate is a difficult problem. Here, we propose a robust and practical transform theory, which can generate the number density distribution of solvent molecules on a substrate from the force curve. As an example, we analyzed a force curve measured by using our high-resolution AFM with a newly fabricated ultrashort cantilever. It is demonstrated that the hydration structure on muscovite mica (001) surface can be reproduced from the force curve by using the transform theory. The transform theory will enhance AFM's ability and support structural analyses of solid/liquid interfaces. By using the transform theory, the effective diameter of a real probe apex is also obtained. This result will be important for designing a model probe of molecular scale simulations. PMID:27080590
NASA Astrophysics Data System (ADS)
Kimura, Yusuke
2015-07-01
It has been understood that correlation functions of multi-trace operators in SYM can be neatly computed using the group algebra of symmetric groups or walled Brauer algebras. On the other hand, such algebras have been known to construct 2D topological field theories (TFTs). After reviewing the construction of 2D TFTs based on symmetric groups, we construct 2D TFTs based on walled Brauer algebras. In the construction, the introduction of a dual basis manifests a similarity between the two theories. We next construct a class of 2D field theories whose physical operators have the same symmetry as multi-trace operators constructed from some matrices. Such field theories correspond to non-commutative Frobenius algebras. A matrix structure arises as a consequence of the noncommutativity. Correlation functions of the Gaussian complex multi-matrix models can be translated into correlation functions of the two-dimensional field theories.
Some Applications of Algebraic System Solving
ERIC Educational Resources Information Center
Roanes-Lozano, Eugenio
2011-01-01
Technology and, in particular, computer algebra systems, allows us to change both the way we teach mathematics and the mathematical curriculum. Curiously enough, unlike what happens with linear system solving, algebraic system solving is not widely known. The aim of this paper is to show that, although the theory lying behind the "exact solve"…
Twisted Quantum Toroidal Algebras
NASA Astrophysics Data System (ADS)
Jing, Naihuan; Liu, Rongjia
2014-09-01
We construct a principally graded quantum loop algebra for the Kac-Moody algebra. As a special case a twisted analog of the quantum toroidal algebra is obtained together with the quantum Serre relations.
NASA Astrophysics Data System (ADS)
Benioff, Paul
2015-05-01
The purpose of this paper is to put the description of number scaling and its effects on physics and geometry on a firmer foundation, and to make it more understandable. A main point is that two different concepts, number and number value are combined in the usual representations of number structures. This is valid as long as just one structure of each number type is being considered. It is not valid when different structures of each number type are being considered. Elements of base sets of number structures, considered by themselves, have no meaning. They acquire meaning or value as elements of a number structure. Fiber bundles over a space or space time manifold, M, are described. The fiber consists of a collection of many real or complex number structures and vector space structures. The structures are parameterized by a real or complex scaling factor, s. A vector space at a fiber level, s, has, as scalars, real or complex number structures at the same level. Connections are described that relate scalar and vector space structures at both neighbor M locations and at neighbor scaling levels. Scalar and vector structure valued fields are described and covariant derivatives of these fields are obtained. Two complex vector fields, each with one real and one imaginary field, appear, with one complex field associated with positions in M and the other with position dependent scaling factors. A derivation of the covariant derivative for scalar and vector valued fields gives the same vector fields. The derivation shows that the complex vector field associated with scaling fiber levels is the gradient of a complex scalar field. Use of these results in gauge theory shows that the imaginary part of the vector field associated with M positions acts like the electromagnetic field. The physical relevance of the other three fields, if any, is not known.
Type-Decomposition of an Effect Algebra
NASA Astrophysics Data System (ADS)
Foulis, David J.; Pulmannová, Sylvia
2010-10-01
Effect algebras (EAs), play a significant role in quantum logic, are featured in the theory of partially ordered Abelian groups, and generalize orthoalgebras, MV-algebras, orthomodular posets, orthomodular lattices, modular ortholattices, and boolean algebras. We study centrally orthocomplete effect algebras (COEAs), i.e., EAs satisfying the condition that every family of elements that is dominated by an orthogonal family of central elements has a supremum. For COEAs, we introduce a general notion of decomposition into types; prove that a COEA factors uniquely as a direct sum of types I, II, and III; and obtain a generalization for COEAs of Ramsay’s fourfold decomposition of a complete orthomodular lattice.
C*-Algebras Associated with Endomorphisms and Polymorphisms of Compact Abelian Groups
NASA Astrophysics Data System (ADS)
Cuntz, Joachim; Vershik, Anatoly
2013-07-01
A surjective endomorphism or, more generally, a polymorphism in the sense of Schmidt and Vershik [Erg Th Dyn Sys 28(2):633-642, 2008], of a compact abelian group H induces a transformation of L 2( H). We study the C*-algebra generated by this operator together with the algebra of continuous functions C( H) which acts as multiplication operators on L 2( H). Under a natural condition on the endo- or polymorphism, this algebra is simple and can be described by generators and relations. In the case of an endomorphism it is always purely infinite, while for a polymorphism in the class we consider, it is either purely infinite or has a unique trace. We prove a formula allowing to determine the K-theory of these algebras and use it to compute the K-groups in a number of interesting examples.
Algebraic Lattices in QFT Renormalization
NASA Astrophysics Data System (ADS)
Borinsky, Michael
2016-04-01
The structure of overlapping subdivergences, which appear in the perturbative expansions of quantum field theory, is analyzed using algebraic lattice theory. It is shown that for specific QFTs the sets of subdivergences of Feynman diagrams form algebraic lattices. This class of QFTs includes the standard model. In kinematic renormalization schemes, in which tadpole diagrams vanish, these lattices are semimodular. This implies that the Hopf algebra of Feynman diagrams is graded by the coradical degree or equivalently that every maximal forest has the same length in the scope of BPHZ renormalization. As an application of this framework, a formula for the counter terms in zero-dimensional QFT is given together with some examples of the enumeration of primitive or skeleton diagrams.
Algebraic Lattices in QFT Renormalization
NASA Astrophysics Data System (ADS)
Borinsky, Michael
2016-07-01
The structure of overlapping subdivergences, which appear in the perturbative expansions of quantum field theory, is analyzed using algebraic lattice theory. It is shown that for specific QFTs the sets of subdivergences of Feynman diagrams form algebraic lattices. This class of QFTs includes the standard model. In kinematic renormalization schemes, in which tadpole diagrams vanish, these lattices are semimodular. This implies that the Hopf algebra of Feynman diagrams is graded by the coradical degree or equivalently that every maximal forest has the same length in the scope of BPHZ renormalization. As an application of this framework, a formula for the counter terms in zero-dimensional QFT is given together with some examples of the enumeration of primitive or skeleton diagrams.
Classification of central extensions of Lax operator algebras
Schlichenmaier, Martin
2008-11-18
Lax operator algebras were introduced by Krichever and Sheinman as further developments of Krichever's theory of Lax operators on algebraic curves. They are infinite dimensional Lie algebras of current type with meromorphic objects on compact Riemann surfaces (resp. algebraic curves) as elements. Here we report on joint work with Oleg Sheinman on the classification of their almost-graded central extensions. It turns out that in case that the finite-dimensional Lie algebra on which the Lax operator algebra is based on is simple there is a unique almost-graded central extension up to equivalence and rescaling of the central element.
Banach Algebras Associated to Lax Pairs
NASA Astrophysics Data System (ADS)
Glazebrook, James F.
2015-04-01
Lax pairs featuring in the theory of integrable systems are known to be constructed from a commutative algebra of formal pseudodifferential operators known as the Burchnall- Chaundy algebra. Such pairs induce the well known KP flows on a restricted infinite-dimensional Grassmannian. The latter can be exhibited as a Banach homogeneous space constructed from a Banach *-algebra. It is shown that this commutative algebra of operators generating Lax pairs can be associated with a commutative C*-subalgebra in the C*-norm completion of the *-algebra. In relationship to the Bose-Fermi correspondence and the theory of vertex operators, this C*-algebra has an association with the CAR algebra of operators as represented on Fermionic Fock space by the Gelfand-Naimark-Segal construction. Instrumental is the Plücker embedding of the restricted Grassmannian into the projective space of the associated Hilbert space. The related Baker and tau-functions provide a connection between these two C*-algebras, following which their respective state spaces and Jordan-Lie-Banach algebras structures can be compared.
Lax operator algebras and integrable systems
NASA Astrophysics Data System (ADS)
Sheinman, O. K.
2016-02-01
A new class of infinite-dimensional Lie algebras, called Lax operator algebras, is presented, along with a related unifying approach to finite-dimensional integrable systems with a spectral parameter on a Riemann surface such as the Calogero-Moser and Hitchin systems. In particular, the approach includes (non-twisted) Kac-Moody algebras and integrable systems with a rational spectral parameter. The presentation is based on quite simple ideas about the use of gradings of semisimple Lie algebras and their interaction with the Riemann-Roch theorem. The basic properties of Lax operator algebras and the basic facts about the theory of the integrable systems in question are treated (and proved) from this general point of view. In particular, the existence of commutative hierarchies and their Hamiltonian properties are considered. The paper concludes with an application of Lax operator algebras to prequantization of finite-dimensional integrable systems. Bibliography: 51 titles.
NASA Astrophysics Data System (ADS)
Palmkvist, Jakob
2014-01-01
We introduce an infinite-dimensional Lie superalgebra which is an extension of the U-duality Lie algebra of maximal supergravity in D dimensions, for 3 ⩽ D ⩽ 7. The level decomposition with respect to the U-duality Lie algebra gives exactly the tensor hierarchy of representations that arises in gauge deformations of the theory described by an embedding tensor, for all positive levels p. We prove that these representations are always contained in those coming from the associated Borcherds-Kac-Moody superalgebra, and we explain why some of the latter representations are not included in the tensor hierarchy. The most remarkable feature of our Lie superalgebra is that it does not admit a triangular decomposition like a (Borcherds-)Kac-Moody (super)algebra. Instead the Hodge duality relations between level p and D - 2 - p extend to negative p, relating the representations at the first two negative levels to the supersymmetry and closure constraints of the embedding tensor.
NASA Technical Reports Server (NTRS)
Cleaveland, Rance; Luettgen, Gerald; Natarajan, V.
1999-01-01
This paper surveys the semantic ramifications of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. These enriched formalisms allow one to model system features such as interrupts, prioritized choice, or real-time behavior. Approaches to priority in process algebras can be classified according to whether the induced notion of preemption on transitions is global or local and whether priorities are static or dynamic. Early work in the area concentrated on global pre-emption and static priorities and led to formalisms for modeling interrupts and aspects of real-time, such as maximal progress, in centralized computing environments. More recent research has investigated localized notions of pre-emption in which the distribution of systems is taken into account, as well as dynamic priority approaches, i.e., those where priority values may change as systems evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables the efficient encoding of real-time semantics. Technically, this paper studies the different models of priorities by presenting extensions of Milner's Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of global and local pre- emption. In each case the operational semantics of CCS is modified appropriately, behavioral theories based on strong and weak bisimulation are given, and related approaches for different process-algebraic settings are discussed.
Palmkvist, Jakob
2014-01-15
We introduce an infinite-dimensional Lie superalgebra which is an extension of the U-duality Lie algebra of maximal supergravity in D dimensions, for 3 ⩽ D ⩽ 7. The level decomposition with respect to the U-duality Lie algebra gives exactly the tensor hierarchy of representations that arises in gauge deformations of the theory described by an embedding tensor, for all positive levels p. We prove that these representations are always contained in those coming from the associated Borcherds-Kac-Moody superalgebra, and we explain why some of the latter representations are not included in the tensor hierarchy. The most remarkable feature of our Lie superalgebra is that it does not admit a triangular decomposition like a (Borcherds-)Kac-Moody (super)algebra. Instead the Hodge duality relations between level p and D − 2 − p extend to negative p, relating the representations at the first two negative levels to the supersymmetry and closure constraints of the embedding tensor.
NASA Astrophysics Data System (ADS)
Fakhri, H.; Hashemzadeh, R.
It is shown that the space of spherical harmonics Ylm(θ ,φ ) whose 2l - m = p - 1 is given, represent irreducibly a cubic deformation of su(2) algebra, the so-called suΦp(2), with deformation function as Φ p(x) = (27)/(2)x2 + 3(7-3p2)x. The irreducible representation spaces are classified in three different bunches, depending on one of values 3k - 2, 3k - 1 and 3k, with k as a positive integer, to be chosen for p. So, three different methods for generating the spectrum of spherical harmonics are presented by using the cubic deformation of su(2). Moreover, it is shown that p plays the role of deformation parameter.
C∗-completions and the DFR-algebra
NASA Astrophysics Data System (ADS)
Forger, Michael; Paulino, Daniel V.
2016-02-01
The aim of this paper is to present the construction of a general family of C∗-algebras which includes, as a special case, the "quantum spacetime algebra" introduced by Doplicher, Fredenhagen, and Roberts. It is based on an extension of the notion of C∗-completion from algebras to bundles of algebras, compatible with the usual C∗-completion of the appropriate algebras of sections, combined with a novel definition for the algebra of the canonical commutation relations using Rieffel's theory of strict deformation quantization. Taking the C∗-algebra of continuous sections vanishing at infinity, we arrive at a functor associating a C∗-algebra to any Poisson vector bundle and recover the original DFR-algebra as a particular example.
Theory of viscous transonic flow over airfoils at high Reynolds number
NASA Technical Reports Server (NTRS)
Melnik, R. E.; Chow, R.; Mead, H. R.
1977-01-01
This paper considers viscous flows with unseparated turbulent boundary layers over two-dimensional airfoils at transonic speeds. Conventional theoretical methods are based on boundary layer formulations which do not account for the effect of the curved wake and static pressure variations across the boundary layer in the trailing edge region. In this investigation an extended viscous theory is developed that accounts for both effects. The theory is based on a rational analysis of the strong turbulent interaction at airfoil trailing edges. The method of matched asymptotic expansions is employed to develop formal series solutions of the full Reynolds equations in the limit of Reynolds numbers tending to infinity. Procedures are developed for combining the local trailing edge solution with numerical methods for solving the full potential flow and boundary layer equations. Theoretical results indicate that conventional boundary layer methods account for only about 50% of the viscous effect on lift, the remaining contribution arising from wake curvature and normal pressure gradient effects.
The Mach number of the cosmic flow - A critical test for current theories
NASA Technical Reports Server (NTRS)
Ostriker, Jeremiah P.; Suto, Yusushi
1990-01-01
A new cosmological, self-contained test using the ratio of mean velocity and the velocity dispersion in the mean flow frame of a group of test objects is presented. To allow comparison with linear theory, the velocity field must first be smoothed on a suitable scale. In the context of linear perturbation theory, the Mach number M(R) which measures the ratio of power on scales larger than to scales smaller than the patch size R, is independent of the perturbation amplitude and also of bias. An apparent inconsistency is found for standard values of power-law index n = 1 and cosmological density parameter Omega = 1, when comparing values of M(R) predicted by popular models with tentative available observations. Nonstandard models based on adiabatic perturbations with either negative n or small Omega value also fail, due to creation of unacceptably large microwave background fluctuations.
Baryon and lepton number violation in the electroweak theory at TeV energies
Mottola, E.
1990-01-01
In the standard Weinberg-Salam electroweak theory baryon and lepton number (B and L) are NOT exactly conserved. The nonconservation of B and L can be traced to the existence of parity violation in the electroweak theory, together with the chiral current anomaly. This subtle effect gives negligibly small amplitudes for B and L violation at energies and temperatures significantly smaller than M{sub w} sin{sup 2} {theta}{sub w}/{alpha} {approximately} 10 TeV. However, recent theoretical work shows that the rate for B and L nonconservation is unsuppressed at higher energies. The consequences of this for cosmology and the baryon asymmetry of the universe, as well as the prospects for direct verification at the SSC are discussed. 13 refs., 3 figs.