Science.gov

Sample records for algebraic multilevel preconditioner

  1. Performance of a parallel algebraic multilevel preconditioner for stabilized finite element semiconductor device modeling

    SciTech Connect

    Lin, Paul T. Shadid, John N.; Sala, Marzio; Tuminaro, Raymond S.; Hennigan, Gary L.; Hoekstra, Robert J.

    2009-09-20

    In this study results are presented for the large-scale parallel performance of an algebraic multilevel preconditioner for solution of the drift-diffusion model for semiconductor devices. The preconditioner is the key numerical procedure determining the robustness, efficiency and scalability of the fully-coupled Newton-Krylov based, nonlinear solution method that is employed for this system of equations. The coupled system is comprised of a source term dominated Poisson equation for the electric potential, and two convection-diffusion-reaction type equations for the electron and hole concentration. The governing PDEs are discretized in space by a stabilized finite element method. Solution of the discrete system is obtained through a fully-implicit time integrator, a fully-coupled Newton-based nonlinear solver, and a restarted GMRES Krylov linear system solver. The algebraic multilevel preconditioner is based on an aggressive coarsening graph partitioning of the nonzero block structure of the Jacobian matrix. Representative performance results are presented for various choices of multigrid V-cycles and W-cycles and parameter variations for smoothers based on incomplete factorizations. Parallel scalability results are presented for solution of up to 10{sup 8} unknowns on 4096 processors of a Cray XT3/4 and an IBM POWER eServer system.

  2. Performance of a parallel algebraic multilevel preconditioner for stabilized finite element semiconductor device modeling

    NASA Astrophysics Data System (ADS)

    Lin, Paul T.; Shadid, John N.; Sala, Marzio; Tuminaro, Raymond S.; Hennigan, Gary L.; Hoekstra, Robert J.

    2009-09-01

    In this study results are presented for the large-scale parallel performance of an algebraic multilevel preconditioner for solution of the drift-diffusion model for semiconductor devices. The preconditioner is the key numerical procedure determining the robustness, efficiency and scalability of the fully-coupled Newton-Krylov based, nonlinear solution method that is employed for this system of equations. The coupled system is comprised of a source term dominated Poisson equation for the electric potential, and two convection-diffusion-reaction type equations for the electron and hole concentration. The governing PDEs are discretized in space by a stabilized finite element method. Solution of the discrete system is obtained through a fully-implicit time integrator, a fully-coupled Newton-based nonlinear solver, and a restarted GMRES Krylov linear system solver. The algebraic multilevel preconditioner is based on an aggressive coarsening graph partitioning of the nonzero block structure of the Jacobian matrix. Representative performance results are presented for various choices of multigrid V-cycles and W-cycles and parameter variations for smoothers based on incomplete factorizations. Parallel scalability results are presented for solution of up to 108 unknowns on 4096 processors of a Cray XT3/4 and an IBM POWER eServer system.

  3. Multilevel filtering elliptic preconditioners

    NASA Technical Reports Server (NTRS)

    Kuo, C. C. Jay; Chan, Tony F.; Tong, Charles

    1989-01-01

    A class of preconditioners is presented for elliptic problems built on ideas borrowed from the digital filtering theory and implemented on a multilevel grid structure. They are designed to be both rapidly convergent and highly parallelizable. The digital filtering viewpoint allows the use of filter design techniques for constructing elliptic preconditioners and also provides an alternative framework for understanding several other recently proposed multilevel preconditioners. Numerical results are presented to assess the convergence behavior of the new methods and to compare them with other preconditioners of multilevel type, including the usual multigrid method as preconditioner, the hierarchical basis method and a recent method proposed by Bramble-Pasciak-Xu.

  4. Parallel multilevel preconditioners

    SciTech Connect

    Bramble, J.H.; Pasciak, J.E.; Xu, Jinchao.

    1989-01-01

    In this paper, we shall report on some techniques for the development of preconditioners for the discrete systems which arise in the approximation of solutions to elliptic boundary value problems. Here we shall only state the resulting theorems. It has been demonstrated that preconditioned iteration techniques often lead to the most computationally effective algorithms for the solution of the large algebraic systems corresponding to boundary value problems in two and three dimensional Euclidean space. The use of preconditioned iteration will become even more important on computers with parallel architecture. This paper discusses an approach for developing completely parallel multilevel preconditioners. In order to illustrate the resulting algorithms, we shall describe the simplest application of the technique to a model elliptic problem.

  5. Parallel Algebraic Multigrid Methods - High Performance Preconditioners

    SciTech Connect

    Yang, U M

    2004-11-11

    The development of high performance, massively parallel computers and the increasing demands of computationally challenging applications have necessitated the development of scalable solvers and preconditioners. One of the most effective ways to achieve scalability is the use of multigrid or multilevel techniques. Algebraic multigrid (AMG) is a very efficient algorithm for solving large problems on unstructured grids. While much of it can be parallelized in a straightforward way, some components of the classical algorithm, particularly the coarsening process and some of the most efficient smoothers, are highly sequential, and require new parallel approaches. This chapter presents the basic principles of AMG and gives an overview of various parallel implementations of AMG, including descriptions of parallel coarsening schemes and smoothers, some numerical results as well as references to existing software packages.

  6. Algebraic multigrid preconditioner for the cardiac bidomain model.

    PubMed

    Plank, Gernot; Liebmann, Manfred; Weber dos Santos, Rodrigo; Vigmond, Edward J; Haase, Gundolf

    2007-04-01

    The bidomain equations are considered to be one of the most complete descriptions of the electrical activity in cardiac tissue, but large scale simulations, as resulting from discretization of an entire heart, remain a computational challenge due to the elliptic portion of the problem, the part associated with solving the extracellular potential. In such cases, the use of iterative solvers and parallel computing environments are mandatory to make parameter studies feasible. The preconditioned conjugate gradient (PCG) method is a standard choice for this problem. Although robust, its efficiency greatly depends on the choice of preconditioner. On structured grids, it has been demonstrated that a geometric multigrid preconditioner performs significantly better than an incomplete LU (ILU) preconditioner. However, unstructured grids are often preferred to better represent organ boundaries and allow for coarser discretization in the bath far from cardiac surfaces. Under these circumstances, algebraic multigrid (AMG) methods are advantageous since they compute coarser levels directly from the system matrix itself, thus avoiding the complexity of explicitly generating coarser, geometric grids. In this paper, the performance of an AMG preconditioner (BoomerAMG) is compared with that of the standard ILU preconditioner and a direct solver. BoomerAMG is used in two different ways, as a preconditioner and as a standalone solver. Two 3-D simulation examples modeling the induction of arrhythmias in rabbit ventricles were used to measure performance in both sequential and parallel simulations. It is shown that the AMG preconditioner is very well suited for the solution of the bidomain equation, being clearly superior to ILU preconditioning in all regards, with speedups by factors in the range 5.9-7.7. PMID:17405366

  7. A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations.

    SciTech Connect

    Shadid, John Nicolas; Elman, Howard; Shuttleworth, Robert R.; Howle, Victoria E.; Tuminaro, Raymond Stephen

    2007-04-01

    In recent years, considerable effort has been placed on developing efficient and robust solution algorithms for the incompressible Navier-Stokes equations based on preconditioned Krylov methods. These include physics-based methods, such as SIMPLE, and purely algebraic preconditioners based on the approximation of the Schur complement. All these techniques can be represented as approximate block factorization (ABF) type preconditioners. The goal is to decompose the application of the preconditioner into simplified sub-systems in which scalable multi-level type solvers can be applied. In this paper we develop a taxonomy of these ideas based on an adaptation of a generalized approximate factorization of the Navier-Stokes system first presented in [25]. This taxonomy illuminates the similarities and differences among these preconditioners and the central role played by efficient approximation of certain Schur complement operators. We then present a parallel computational study that examines the performance of these methods and compares them to an additive Schwarz domain decomposition (DD) algorithm. Results are presented for two and three-dimensional steady state problems for enclosed domains and inflow/outflow systems on both structured and unstructured meshes. The numerical experiments are performed using MPSalsa, a stabilized finite element code.

  8. A multilevel preconditioner for domain decomposition boundary systems

    SciTech Connect

    Bramble, J.H.; Pasciak, J.E.; Xu, Jinchao.

    1991-12-11

    In this note, we consider multilevel preconditioning of the reduced boundary systems which arise in non-overlapping domain decomposition methods. It will be shown that the resulting preconditioned systems have condition numbers which be bounded in the case of multilevel spaces on the whole domain and grow at most proportional to the number of levels in the case of multilevel boundary spaces without multilevel extensions into the interior.

  9. Element Agglomeration Algebraic Multilevel Monte-Carlo Library

    SciTech Connect

    2015-02-19

    ElagMC is a parallel C++ library for Multilevel Monte Carlo simulations with algebraically constructed coarse spaces. ElagMC enables Multilevel variance reduction techniques in the context of general unstructured meshes by using the specialized element-based agglomeration techniques implemented in ELAG (the Element-Agglomeration Algebraic Multigrid and Upscaling Library developed by U. Villa and P. Vassilevski and currently under review for public release). The ElabMC library can support different type of deterministic problems, including mixed finite element discretizations of subsurface flow problems.

  10. Element Agglomeration Algebraic Multilevel Monte-Carlo Library

    Energy Science and Technology Software Center (ESTSC)

    2015-02-19

    ElagMC is a parallel C++ library for Multilevel Monte Carlo simulations with algebraically constructed coarse spaces. ElagMC enables Multilevel variance reduction techniques in the context of general unstructured meshes by using the specialized element-based agglomeration techniques implemented in ELAG (the Element-Agglomeration Algebraic Multigrid and Upscaling Library developed by U. Villa and P. Vassilevski and currently under review for public release). The ElabMC library can support different type of deterministic problems, including mixed finite element discretizationsmore » of subsurface flow problems.« less

  11. Meros Preconditioner Package

    Energy Science and Technology Software Center (ESTSC)

    2004-04-01

    Meros uses the compositional, aggregation, and overload operator capabilities of TSF to provide an object-oriented package providing segregated/block preconditioners for linear systems related to fully-coupled Navier-Stokes problems. This class of preconditioners exploits the special properties of these problems to segregate the equations and use multi-level preconditioners (through ML) on the matrix sub-blocks. Several preconditioners are provided, including the Fp and BFB preconditioners of Kay & Loghin and Silvester, Elman, Kay & Wathen. The overall performancemore » and scalability of these preconditioners approaches that of multigrid for certain types of problems. Meros also provides more traditional pressure projection methods including SIMPLE and SIMPLEC.« less

  12. Multigrid in energy preconditioner for Krylov solvers

    SciTech Connect

    Slaybaugh, R.N.; Evans, T.M.; Davidson, G.G.; Wilson, P.P.H.

    2013-06-01

    We have added a new multigrid in energy (MGE) preconditioner to the Denovo discrete-ordinates radiation transport code. This preconditioner takes advantage of a new multilevel parallel decomposition. A multigroup Krylov subspace iterative solver that is decomposed in energy as well as space-angle forms the backbone of the transport solves in Denovo. The space-angle-energy decomposition facilitates scaling to hundreds of thousands of cores. The multigrid in energy preconditioner scales well in the energy dimension and significantly reduces the number of Krylov iterations required for convergence. This preconditioner is well-suited for use with advanced eigenvalue solvers such as Rayleigh Quotient Iteration and Arnoldi.

  13. Algebraic dynamic multilevel (ADM) method for fully implicit simulations of multiphase flow in porous media

    NASA Astrophysics Data System (ADS)

    Cusini, Matteo; van Kruijsdijk, Cor; Hajibeygi, Hadi

    2016-06-01

    This paper presents the development of an algebraic dynamic multilevel method (ADM) for fully implicit simulations of multiphase flow in homogeneous and heterogeneous porous media. Built on the fine-scale fully implicit (FIM) discrete system, ADM constructs a multilevel FIM system describing the coupled process on a dynamically defined grid of hierarchical nested topology. The multilevel adaptive resolution is determined at each time step on the basis of an error criterion. Once the grid resolution is established, ADM employs sequences of restriction and prolongation operators in order to map the FIM system across the considered resolutions. Several choices can be considered for prolongation (interpolation) operators, e.g., constant, bilinear and multiscale basis functions, all of which form partition of unity. The adaptive multilevel restriction operators, on the other hand, are constructed using a finite-volume scheme. This ensures mass conservation of the ADM solutions, and as such, the stability and accuracy of the simulations with multiphase transport. For several homogeneous and heterogeneous test cases, it is shown that ADM applies only a small fraction of the full FIM fine-scale grid cells in order to provide accurate solutions. The sensitivity of the solutions with respect to the employed fraction of grid cells (determined automatically based on the threshold value of the error criterion) is investigated for all test cases. ADM is a significant step forward in the application of dynamic local grid refinement methods, in the sense that it is algebraic, allows for systematic mapping across different scales, and applicable to heterogeneous test cases without any upscaling of fine-scale high resolution quantities. It also develops a novel multilevel multiscale method for FIM multiphase flow simulations in natural subsurface formations.

  14. Multiple solution of linear algebraic systems by an iterative method with recomputed preconditioner in the analysis of microstrip structures

    NASA Astrophysics Data System (ADS)

    Ahunov, Roman R.; Kuksenko, Sergey P.; Gazizov, Talgat R.

    2016-06-01

    A multiple solution of linear algebraic systems with dense matrix by iterative methods is considered. To accelerate the process, the recomputing of the preconditioning matrix is used. A priory condition of the recomputing based on change of the arithmetic mean of the current solution time during the multiple solution is proposed. To confirm the effectiveness of the proposed approach, the numerical experiments using iterative methods BiCGStab and CGS for four different sets of matrices on two examples of microstrip structures are carried out. For solution of 100 linear systems the acceleration up to 1.6 times, compared to the approach without recomputing, is obtained.

  15. Preconditioners for the spectral multigrid method

    NASA Technical Reports Server (NTRS)

    Phillips, T. N.; Zang, T. A.; Hussaini, M. Y.

    1983-01-01

    The systems of algebraic equations which arise from spectral discretizations of elliptic equations are full and direct solutions of them are rarely feasible. Iterative methods are an attractive alternative because Fourier transform techniques enable the discrete matrix-vector products to be computed with nearly the same efficiency as is possible for corresponding but sparse finite difference discretizations. For realistic Dirichlet problems preconditioning is essential for acceptable convergence rates. A brief description of Chebyshev spectral approximations and spectral multigrid methods for elliptic problems is given. A survey of preconditioners for Dirichlet problems based on second-order finite difference methods is made. New preconditioning techniques based on higher order finite differences and on the spectral matrix itself are presented. The preconditioners are analyzed in terms of their spectra and numerical examples are presented.

  16. Preconditioners for the spectral multigrid method

    NASA Technical Reports Server (NTRS)

    Phillips, T. N.; Hussaini, M. Y.; Zang, T. A.

    1986-01-01

    The systems of algebraic equations which arise from spectral discretizations of elliptic equations are full and direct solutions of them are rarely feasible. Iterative methods are an attractive alternative because Fourier transform techniques enable the discrete matrix-vector products to be computed with nearly the same efficiency as is possible for corresponding but sparse finite difference discretizations. For realistic Dirichlet problem preconditioning is essential for acceptable convergence rates. A brief description of Chebyshev spectral approximations and spectral multigrid methods for elliptic problems is given. A survey of preconditioners for Dirichlet problems based on second-order finite difference methods is made. New preconditioning techniques based on higher order finite differences and on the spectral matrix itself are presented. The preconditioners are analyzed in terms of their spectra and numerical examples are presented.

  17. The construction of preconditioners for elliptic problems by substructuring, IV

    SciTech Connect

    Bramble, J.H.; Pasciak, J.E.; Schatz, A.H.

    1989-07-01

    We consider the problem of solving the algebraic system of equations which result from the discretization of elliptic boundary value problems defined on three-dimensional Euclidean space. We develop preconditioners for such systems based on substructuring (also known as domain decomposition). The resulting algorithms are well suited to emerging parallel computing architectures. We describe two techniques for developing these preconditioners. A theory for the analysis of the condition number for the resulting preconditioned system is given and the results of supporting numerical experiments are presented.

  18. Parallel Algebraic Multigrids for Structural mechanics

    SciTech Connect

    Brezina, M; Tong, C; Becker, R

    2004-05-11

    This paper presents the results of a comparison of three parallel algebraic multigrid (AMG) preconditioners for structural mechanics applications. In particular, they are interested in investigating both the scalability and robustness of the preconditioners. Numerical results are given for a range of structural mechanics problems with various degrees of difficulty.

  19. Scharz Preconditioners for Krylov Methods: Theory and Practice

    SciTech Connect

    Szyld, Daniel B.

    2013-05-10

    Several numerical methods were produced and analyzed. The main thrust of the work relates to inexact Krylov subspace methods for the solution of linear systems of equations arising from the discretization of partial di erential equa- tions. These are iterative methods, i.e., where an approximation is obtained and at each step. Usually, a matrix-vector product is needed at each iteration. In the inexact methods, this product (or the application of a preconditioner) can be done inexactly. Schwarz methods, based on domain decompositions, are excellent preconditioners for thise systems. We contributed towards their under- standing from an algebraic point of view, developed new ones, and studied their performance in the inexact setting. We also worked on combinatorial problems to help de ne the algebraic partition of the domains, with the needed overlap, as well as PDE-constraint optimization using the above-mentioned inexact Krylov subspace methods.

  20. Carburetor and fuel preconditioner

    SciTech Connect

    Brown, P.M.

    1991-12-24

    This patent describes an improved carburetor and fuel preconditioner device for internal combustion engines. It comprises a first atmospheric air intake conduit; a bubble chamber operable to hold liquid fuel at a selected level therein, the bubble chamber provided with one or more air ports located below the fuel level for receiving atmospheric air from the first air intake conduit for bubbling air through the fuel and the bubble chamber defining an air-fuel vapor chamber above the fuel level; a multiplicity of catalytic beads located within the bubble chamber in contact with the fuel and with air drawn through the ports; a second atmospheric air intake conduit for receiving an air supply separate from the first conduit, the second conduit provided with at least one venturi, the venturi in fluid communication with the vapor chamber of the bubble chamber for receiving a fuel-air vapor mixture therefrom and for mixing and conducting the same to an intake manifold of the internal combustion engine; and, control means consisting of at least one pill can, located between the vapor chamber of the bubble chamber and the second conduit for controlling the amount of fuel-air mixture entering the second conduit.

  1. Sparsifying preconditioner for soliton calculations

    NASA Astrophysics Data System (ADS)

    Lu, Jianfeng; Ying, Lexing

    2016-06-01

    We develop a robust and efficient method for soliton calculations for nonlinear Schrödinger equations. The method is based on the recently developed sparsifying preconditioner combined with Newton's iterative method. The performance of the method is demonstrated by numerical examples of gap solitons in the context of nonlinear optics.

  2. The construction of preconditioners for elliptic problems by substructuring, IV

    SciTech Connect

    Bramble, J.H.; Pasciak, J.E.; Schatz, A.H.

    1987-06-01

    We consider the problem of solving the algebraic system of equations which result from the discretization of elliptic boundary value problems defined on three dimensional Euclidean space. We develop preconditioners for such systems based on substructuring (also known as domain decomposition). The resulting algorithms are well suited to emerging parallel computing architectures. We describe two techniques for developing these precondictioners. A theory for the analysis of the condition number for the resulting preconditioned system is given and the results of supporting numerical experiments are presented. 16 refs., 2 tabs.

  3. A Performance Comparison of the Parallel Preconditioners for Iterative Methods for Large Sparse Linear Systems Arising from Partial Differential Equations on Structured Grids

    NASA Astrophysics Data System (ADS)

    Ma, Sangback

    In this paper we compare various parallel preconditioners such as Point-SSOR (Symmetric Successive OverRelaxation), ILU(0) (Incomplete LU) in the Wavefront ordering, ILU(0) in the Multi-color ordering, Multi-Color Block SOR (Successive OverRelaxation), SPAI (SParse Approximate Inverse) and pARMS (Parallel Algebraic Recursive Multilevel Solver) for solving large sparse linear systems arising from two-dimensional PDE (Partial Differential Equation)s on structured grids. Point-SSOR is well-known, and ILU(0) is one of the most popular preconditioner, but it is inherently serial. ILU(0) in the Wavefront ordering maximizes the parallelism in the natural order, but the lengths of the wave-fronts are often nonuniform. ILU(0) in the Multi-color ordering is a simple way of achieving a parallelism of the order N, where N is the order of the matrix, but its convergence rate often deteriorates as compared to that of natural ordering. We have chosen the Multi-Color Block SOR preconditioner combined with direct sparse matrix solver, since for the Laplacian matrix the SOR method is known to have a nondeteriorating rate of convergence when used with the Multi-Color ordering. By using block version we expect to minimize the interprocessor communications. SPAI computes the sparse approximate inverse directly by least squares method. Finally, ARMS is a preconditioner recursively exploiting the concept of independent sets and pARMS is the parallel version of ARMS. Experiments were conducted for the Finite Difference and Finite Element discretizations of five two-dimensional PDEs with large meshsizes up to a million on an IBM p595 machine with distributed memory. Our matrices are real positive, i. e., their real parts of the eigenvalues are positive. We have used GMRES(m) as our outer iterative method, so that the convergence of GMRES(m) for our test matrices are mathematically guaranteed. Interprocessor communications were done using MPI (Message Passing Interface) primitives. The

  4. Sparse matrix orderings for factorized inverse preconditioners

    SciTech Connect

    Benzi, M.; Tuama, M.

    1998-09-01

    The effect of reorderings on the performance of factorized sparse approximate inverse preconditioners is considered. It is shown that certain reorderings can be very beneficial both in the preconditioner construction phase and in terms of the rate of convergence of the preconditioned iteration.

  5. Equivariant preconditioners for boundary element methods

    SciTech Connect

    Tausch, J.

    1994-12-31

    In this paper the author proposes and discusses two preconditioners for boundary integral equations on domains which are nearly symmetric. The preconditioners under consideration are equivariant, that is, they commute with a group of permutation matrices. Numerical experiments demonstrate their efficiency for the GMRES method.

  6. Wavelet Sparse Approximate Inverse Preconditioners

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.; Tang, W.-P.; Wan, W. L.

    1996-01-01

    There is an increasing interest in using sparse approximate inverses as preconditioners for Krylov subspace iterative methods. Recent studies of Grote and Huckle and Chow and Saad also show that sparse approximate inverse preconditioner can be effective for a variety of matrices, e.g. Harwell-Boeing collections. Nonetheless a drawback is that it requires rapid decay of the inverse entries so that sparse approximate inverse is possible. However, for the class of matrices that, come from elliptic PDE problems, this assumption may not necessarily hold. Our main idea is to look for a basis, other than the standard one, such that a sparse representation of the inverse is feasible. A crucial observation is that the kind of matrices we are interested in typically have a piecewise smooth inverse. We exploit this fact, by applying wavelet techniques to construct a better sparse approximate inverse in the wavelet basis. We shall justify theoretically and numerically that our approach is effective for matrices with smooth inverse. We emphasize that in this paper we have only presented the idea of wavelet approximate inverses and demonstrated its potential but have not yet developed a highly refined and efficient algorithm.

  7. CIMGS: An incomplete orthogonal factorization preconditioner

    SciTech Connect

    Wang, X.; Bramley, R.; Gallivan, K.

    1994-12-31

    This paper introduces, analyzes, and tests a preconditioning method for conjugate gradient (CG) type iterative methods. The authors start by examining incomplete Gram-Schmidt factorization (IGS) methods in order to motivate the new preconditioner. They show that the IGS family is more stable than IC, and they successfully factor any full rank matrix. Furthermore, IGS preconditioners are at least as effective in accelerating convergence of CG type iterative methods as the incomplete Cholesky (IC) preconditioner. The drawback of IGS methods are their high cost of factorization. This motivates finding a new algorithm, CIMGS, which can generate the same factor in a more efficient way.

  8. Robust preconditioners for incompressible MHD models

    NASA Astrophysics Data System (ADS)

    Ma, Yicong; Hu, Kaibo; Hu, Xiaozhe; Xu, Jinchao

    2016-07-01

    In this paper, we develop two classes of robust preconditioners for the structure-preserving discretization of the incompressible magnetohydrodynamics (MHD) system. By studying the well-posedness of the discrete system, we design block preconditioners for them and carry out rigorous analysis on their performance. We prove that such preconditioners are robust with respect to most physical and discretization parameters. In our proof, we improve the existing estimates of the block triangular preconditioners for saddle point problems by removing the scaling parameters, which are usually difficult to choose in practice. This new technique is applicable not only to the MHD system, but also to other problems. Moreover, we prove that Krylov iterative methods with our preconditioners preserve the divergence-free condition exactly, which complements the structure-preserving discretization. Another feature is that we can directly generalize this technique to other discretizations of the MHD system. We also present preliminary numerical results to support the theoretical results and demonstrate the robustness of the proposed preconditioners.

  9. Construction of preconditioners for elliptic problems by substructuring. I

    SciTech Connect

    Bramble, J.H.; Pasciak, J.E.; Schatz, A.H.

    1986-07-01

    We consider the problem of solving the algebraic system of equations which arise from the discretization of symmetric elliptic boundary value problems via finite element methods. A new class of preconditioners for the discrete system is developed based on substructuring (also known as domain decomposition). The resulting preconditioned algorithms are well suited to emerging parallel computing architectures. The proposed methods are applicable to problems on general domains involving differential operators with rather general coefficients. A basic theory for the analysis of the condition number of the preconditioned system (which determines the iterative convergence rate of the algorithm) is given. Techniques for applying the theory and algorithms to problems with irregular geometry are discussed and the results of extensive numerical experiments are reported.

  10. Adaptive Algebraic Smoothers

    SciTech Connect

    Philip, Bobby; Chartier, Dr Timothy

    2012-01-01

    methods based on Local Sensitivity Analysis (LSA). The method can be used in the context of geometric and algebraic multigrid methods for constructing smoothers, and in the context of Krylov methods for constructing block preconditioners. It is suitable for both constant and variable coecient problems. Furthermore, the method can be applied to systems arising from both scalar and coupled system partial differential equations (PDEs), as well as linear systems that do not arise from PDEs. The simplicity of the method will allow it to be easily incorporated into existing multigrid and Krylov solvers while providing a powerful tool for adaptively constructing methods tuned to a problem.

  11. ROBUST ALGEBRAIC PRECONDITIONERS USING IFPACK 3.0.

    SciTech Connect

    Sala, Marzio; Heroux, Michael A.

    2005-01-01

    IFPACKprovidesasuiteofobject-orientedalgebraicpreconditionersforthesolutionofprecon-ditionediterativesolvers.IFPACKconstructorsexpectthe(distributed)realsparsematrixtobeanEpetraRowMatrixobject.IFPACKcanbeusedtodefinepointandblockrelaxationprecondition-ers,variousflavorsofincompletefactorizationsforsymmetricandnon-symmetricmatrices,andone-leveladditiveSchwarzpreconditionerswithvariableoverlap.ExactLUfactorizationsofthelocalsubmatrixcanbeaccessedthroughtheAMESOSpackages.IFPACK,aspartoftheTrilinosSolverProject,interactswellwithotherTrilinospackages.Inparticular,IFPACKobjectscanbeusedaspreconditionersforAZTECOO,andassmoothersforML.IFPACKismainlywritteninC++,butonlyalimitedsubsetofC++featuresisused,inordertoenhanceportability.3

  12. Fast wavelet based sparse approximate inverse preconditioner

    SciTech Connect

    Wan, W.L.

    1996-12-31

    Incomplete LU factorization is a robust preconditioner for both general and PDE problems but unfortunately not easy to parallelize. Recent study of Huckle and Grote and Chow and Saad showed that sparse approximate inverse could be a potential alternative while readily parallelizable. However, for special class of matrix A that comes from elliptic PDE problems, their preconditioners are not optimal in the sense that independent of mesh size. A reason may be that no good sparse approximate inverse exists for the dense inverse matrix. Our observation is that for this kind of matrices, its inverse entries typically have piecewise smooth changes. We can take advantage of this fact and use wavelet compression techniques to construct a better sparse approximate inverse preconditioner. We shall show numerically that our approach is effective for this kind of matrices.

  13. Approximate inverse preconditioners for general sparse matrices

    SciTech Connect

    Chow, E.; Saad, Y.

    1994-12-31

    Preconditioned Krylov subspace methods are often very efficient in solving sparse linear matrices that arise from the discretization of elliptic partial differential equations. However, for general sparse indifinite matrices, the usual ILU preconditioners fail, often because of the fact that the resulting factors L and U give rise to unstable forward and backward sweeps. In such cases, alternative preconditioners based on approximate inverses may be attractive. We are currently developing a number of such preconditioners based on iterating on each column to get the approximate inverse. For this approach to be efficient, the iteration must be done in sparse mode, i.e., we must use sparse-matrix by sparse-vector type operatoins. We will discuss a few options and compare their performance on standard problems from the Harwell-Boeing collection.

  14. An evaluation of parallel multigrid as a solver and a preconditioner for singular perturbed problems

    SciTech Connect

    Oosterlee, C.W.; Washio, T.

    1996-12-31

    In this paper we try to achieve h-independent convergence with preconditioned GMRES and BiCGSTAB for 2D singular perturbed equations. Three recently developed multigrid methods are adopted as a preconditioner. They are also used as solution methods in order to compare the performance of the methods as solvers and as preconditioners. Two of the multigrid methods differ only in the transfer operators. One uses standard matrix- dependent prolongation operators from. The second uses {open_quotes}upwind{close_quotes} prolongation operators, developed. Both employ the Galerkin coarse grid approximation and an alternating zebra line Gauss-Seidel smoother. The third method is based on the block LU decomposition of a matrix and on an approximate Schur complement. This multigrid variant is presented in. All three multigrid algorithms are algebraic methods.

  15. A black box at the end of the rainbow: searching for the perfect preconditioner.

    PubMed

    Ford, Judith M

    2003-12-15

    Solution of large systems of linear algebraic equations is required in many areas of science and technology, and when several million unknown variables are involved, this apparently simple problem can assume gargantuan proportions. During the last half century many methods have been developed with the aim of providing reliable and cost-effective solutions to a wide range of system types. Many of these use 'pre-conditioners' to improve efficiency. The end-user, perhaps with limited knowledge of the mathematical basis, is presented with the task of choosing between a bewildering array of competing linear solvers and preconditioners. Here we survey currently available techniques and consider the feasibility of producing 'black-box' software capable of solving any linear system without further user input. PMID:14667291

  16. Element-topology-independent preconditioners for parallel finite element computations

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Alexander, Scott

    1992-01-01

    A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.

  17. Towards an ideal preconditioner for linearized Navier-Stokes problems

    SciTech Connect

    Murphy, M.F.

    1996-12-31

    Discretizing certain linearizations of the steady-state Navier-Stokes equations gives rise to nonsymmetric linear systems with indefinite symmetric part. We show that for such systems there exists a block diagonal preconditioner which gives convergence in three GMRES steps, independent of the mesh size and viscosity parameter (Reynolds number). While this {open_quotes}ideal{close_quotes} preconditioner is too expensive to be used in practice, it provides a useful insight into the problem. We then consider various approximations to the ideal preconditioner, and describe the eigenvalues of the preconditioned systems. Finally, we compare these preconditioners numerically, and present our conclusions.

  18. A new Rayleigh quotient minimization algorithm based on algebraic multigrid.

    SciTech Connect

    Lehoucq, Richard B.; Hetmaniuk, Ulrich L.

    2005-01-01

    Mandel and McCormick [2] introduced the RQMG method, which approximately minimizes the Rayleigh quotient over a sequence of grids. In this talk, we will present an algebraic extension. We replace the geometric mesh information with the algebraic information defined by an AMG preconditioner. At each level, we improve the smoother to accelerate the convergence. With a series of numerical experiments, we assess the efficiency of this new algorithm to compute several eigenpairs.

  19. Teaching Algebra without Algebra

    ERIC Educational Resources Information Center

    Kalman, Richard S.

    2008-01-01

    Algebra is, among other things, a shorthand way to express quantitative reasoning. This article illustrates ways for the classroom teacher to convert algebraic solutions to verbal problems into conversational solutions that can be understood by students in the lower grades. Three reasonably typical verbal problems that either appeared as or…

  20. Cosine transform based preconditioners for total variation deblurring.

    PubMed

    Chan, R H; Chan, T F; Wong, C K

    1999-01-01

    In PDE image restoration problems, one has to invert operators which is a sum of a blurring operator and an elliptic operator with highly varying coefficient. We present a preconditioner for such operators, which can be used with the conjugate gradient (CG) method, and compare it with Vogel and Oman's product preconditioner. PMID:18267422

  1. A double-sweeping preconditioner for the Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Eslaminia, Mehran; Guddati, Murthy N.

    2016-06-01

    A new preconditioner is developed to increase the efficiency of iterative solution of the Helmholtz equation. The key idea of the proposed preconditioner is to split the domain of interest into smaller subdomains and sequentially approximate the forward and backward components of the solution. The sequential solution is facilitated by approximate interface conditions that ignore the effect of multiple reflections. The efficiency of the proposed method is tested using various 2-D heterogeneous media. We observe that the proposed preconditioner results in good convergence, with number of iterations growing very slowly with increasing frequency. We also note that the mesh size and number of subdomains do not affect the convergence rate. Finally, we find that the overall computational time is much smaller than that of the sweeping preconditioner.

  2. Construction of preconditioners for elliptic problems by substructuring, III

    SciTech Connect

    Bramble, J.H.; Pasciak, J.E.; Schatz, A.H.

    1988-10-01

    In earlier parts of this series of papers, we constructed preconditioners for the discrete systems of equations arising from the numerical approximation of elliptic boundary value problems. The resulting algorithms are well suited for implementation on computers with parallel architecture. In this paper, we will develop a technique which utilizes these earlier methods to derive even more efficient preconditioners. The iterative algorithms using these new preconditioners converge to the solution of the discrete equations with a rate that is independent of the number of unknowns. These preconditioners involve an incomplete Chebyshev iteration for boundary interface conditions which results in a negligible increase in the amount of computational work. Theoretical estimates and the results of numerical experiments are given which demonstrate the effectiveness of the methods.

  3. A fast map-making preconditioner for regular scanning patterns

    SciTech Connect

    Næss, Sigurd K.; Louis, Thibaut E-mail: thibaut.louis@astro.ox.ac.uk

    2014-08-01

    High-resolution Maximum Likelihood map-making of the Cosmic Microwave Background is usually performed using Conjugate Gradients with a preconditioner that ignores noise correlations. We here present a new preconditioner that approximates the map noise covariance as circulant, and show that this results in a speedup of up to 400% for a realistic scanning pattern from the Atacama Cosmology Telescope. The improvement is especially large for polarized maps.

  4. A Portable MPI Implementation of the SPAI Preconditioner in ISIS++

    NASA Technical Reports Server (NTRS)

    Barnard, Stephen T.; Clay, Robert L.; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    A parallel MPI implementation of the Sparse Approximate Inverse (SPAI) preconditioner is described. SPAI has proven to be a highly effective preconditioner, and is inherently parallel because it computes columns (or rows) of the preconditioning matrix independently. However, there are several problems that must be addressed for an efficient MPI implementation: load balance, latency hiding, and the need for one-sided communication. The effectiveness, efficiency, and scaling behavior of our implementation will be shown for different platforms.

  5. Scalable Parallel Algebraic Multigrid Solvers

    SciTech Connect

    Bank, R; Lu, S; Tong, C; Vassilevski, P

    2005-03-23

    The authors propose a parallel algebraic multilevel algorithm (AMG), which has the novel feature that the subproblem residing in each processor is defined over the entire partition domain, although the vast majority of unknowns for each subproblem are associated with the partition owned by the corresponding processor. This feature ensures that a global coarse description of the problem is contained within each of the subproblems. The advantages of this approach are that interprocessor communication is minimized in the solution process while an optimal order of convergence rate is preserved; and the speed of local subproblem solvers can be maximized using the best existing sequential algebraic solvers.

  6. Filtering Algebraic Multigrid and Adaptive Strategies

    SciTech Connect

    Nagel, A; Falgout, R D; Wittum, G

    2006-01-31

    Solving linear systems arising from systems of partial differential equations, multigrid and multilevel methods have proven optimal complexity and efficiency properties. Due to shortcomings of geometric approaches, algebraic multigrid methods have been developed. One example is the filtering algebraic multigrid method introduced by C. Wagner. This paper proposes a variant of Wagner's method with substantially improved robustness properties. The method is used in an adaptive, self-correcting framework and tested numerically.

  7. A multigrid preconditioner for the semiconductor equations

    SciTech Connect

    Meza, J.C.; Tuminaro, R.S.

    1994-12-31

    Currently, integrated circuits are primarily designed in a {open_quote}trial and error{close_quote} fashion. That is, prototypes are built and improved via experimentation and testing. In the near future, however, it may be possible to significantly reduce the time and cost of designing new devices by using computer simulations. To accurately perform these complex simulations in three dimensions, however, new algorithms and high performance computers are necessary. In this paper the authors discuss the use of multigrid preconditioning inside a semiconductor device modeling code, DANCIR. The DANCIR code is a full three-dimensional simulator capable of computing steady-state solutions of the drift-diffusion equations for a single semiconductor device and has been used to simulate a wide variety of different devices. At the inner core of DANCIR is a solver for the nonlinear equations that arise from the spatial discretization of the drift-diffusion equations on a rectangular grid. These nonlinear equations are resolved using Gummel`s method which requires three symmetric linear systems to be solved within each Gummel iteration. It is the resolution of these linear systems which comprises the dominant computational cost of this code. The original version of DANCIR uses a Cholesky preconditioned conjugate gradient algorithm to solve these linear systems. Unfortunately, this algorithm has a number of disadvantages: (1) it takes many iterations to converge (if it converges), (2) it can require a significant amount of computing time, and (3) it is not very parallelizable. To improve the situation, the authors consider a multigrid preconditioner. The multigrid method uses iterations on a hierarchy of grids to accelerate the convergence on the finest grid.

  8. A universal preconditioner for simulating condensed phase materials.

    PubMed

    Packwood, David; Kermode, James; Mones, Letif; Bernstein, Noam; Woolley, John; Gould, Nicholas; Ortner, Christoph; Csányi, Gábor

    2016-04-28

    We introduce a universal sparse preconditioner that accelerates geometry optimisation and saddle point search tasks that are common in the atomic scale simulation of materials. Our preconditioner is based on the neighbourhood structure and we demonstrate the gain in computational efficiency in a wide range of materials that include metals, insulators, and molecular solids. The simple structure of the preconditioner means that the gains can be realised in practice not only when using expensive electronic structure models but also for fast empirical potentials. Even for relatively small systems of a few hundred atoms, we observe speedups of a factor of two or more, and the gain grows with system size. An open source Python implementation within the Atomic Simulation Environment is available, offering interfaces to a wide range of atomistic codes. PMID:27131533

  9. A universal preconditioner for simulating condensed phase materials

    NASA Astrophysics Data System (ADS)

    Packwood, David; Kermode, James; Mones, Letif; Bernstein, Noam; Woolley, John; Gould, Nicholas; Ortner, Christoph; Csányi, Gábor

    2016-04-01

    We introduce a universal sparse preconditioner that accelerates geometry optimisation and saddle point search tasks that are common in the atomic scale simulation of materials. Our preconditioner is based on the neighbourhood structure and we demonstrate the gain in computational efficiency in a wide range of materials that include metals, insulators, and molecular solids. The simple structure of the preconditioner means that the gains can be realised in practice not only when using expensive electronic structure models but also for fast empirical potentials. Even for relatively small systems of a few hundred atoms, we observe speedups of a factor of two or more, and the gain grows with system size. An open source Python implementation within the Atomic Simulation Environment is available, offering interfaces to a wide range of atomistic codes.

  10. Construction of preconditioners for elliptic problems by substructuring. II

    SciTech Connect

    Bramble, J.H.; Pasciak, J.E.; Schatz, A.H.

    1987-07-01

    We give a method for constructing preconditioners for the discrete systems arising in the approximation of solutions of elliptic boundary value problems. These preconditioners are based on domain decomposition techniques and lead to algorithms which are well suited for parallel computing environments. The method presented in this paper leads to a preconditioned system with condition number proportional to d/h where d is the subdomain size and h is the mesh size. These techniques are applied to singularly perturbed problems and problems in the three dimensions. The results of numerical experiments illustrating the performance of the method on problems in two and three dimensions are given.

  11. The Design and Implementation of hypre, a Library of Parallel High Performance Preconditioners

    SciTech Connect

    Falgout, R D; Jones, J E; Yang, U M

    2004-07-17

    The increasing demands of computationally challenging applications and the advance of larger more powerful computers with more complicated architectures have necessitated the development of new solvers and preconditioners. Since the implementation of these methods is quite complex, the use of high performance libraries with the newest efficient solvers and preconditioners becomes more important for promulgating their use into applications with relative ease. The hypre library [14, 17] has been designed with the primary goal of providing users with advanced scalable parallel preconditioners. Issues of robustness, ease of use, flexibility and interoperability have also been important. It can be used both as a solver package and as a framework for algorithm development. Its object model is more general and flexible than most current generation solver libraries [9]. hypre also provides several of the most commonly used solvers, such as conjugate gradient for symmetric systems or GMRES for nonsymmetric systems to be used in conjunction with the preconditioners. Design innovations have been made to enable access to the library in the way that applications users naturally think about their problems. For example, application developers that use structured grids, typically think of their problems in terms of stencils and grids. hypre's users do not have to learn complicated sparse matrix structures; instead hypre does the work of building these data structures through various conceptual interfaces. The conceptual interfaces currently implemented include stencil-based structured and semi-structured interfaces, a finite-element based unstructured interface, and a traditional linear-algebra based interface. The primary focus of this paper is on the design and implementation of the conceptual interfaces in hypre. The paper is organized as follows. The first two sections are of general interest.We begin in Section 2 with an introductory discussion of conceptual interfaces and

  12. S-Preconditioner for Multi-fold Data Reduction with Guaranteed User-Controlled Accuracy

    SciTech Connect

    Jin, Ye; Lakshminarasimhan, Sriram; Shah, Neil; Gong, Zhenhuan; Chang, C. S.; Chen, Jacqueline H.; Ethier, Stephane; Kolla, Hemanth; Ku, Seung-Hoe; Klasky, S.; Latham, Robert J.; Ross, Rob; Schuchardt, Karen L.; Samatova, Nagiza F.

    2011-12-14

    The growing gap between the massive amounts of data generated by petascale scientific simulation codes and the capability of system hardware and software to effectively analyze this data necessitates data reduction. Yet, the increasing data complexity challenges most, if not all, of the existing data compression methods. In fact, lossless compression techniques offer no more than 10% reduction on scientific data that we have experience with, which is widely regarded as effectively incompressible. To bridge this gap, in this paper, we advocate a transformative strategy that enables fast, accurate, and multi-fold reduction of double-precision floating-point scientific data. The intuition behind our method is inspired by an effective use of preconditioners for linear algebra solvers optimized for a particular class of computational dwarfs (e.g., dense or sparse matrices). Focusing on a commonly used multi-resolution wavelet compression technique as the underlying solver for data reduction we propose the S-preconditioner, which transforms scientific data into a form with high global regularity to ensure a significant decrease in the number of wavelet coefficients stored for a segment of data. Combined with the subsequent EQ-calibrator, our resultant method (called S-Preconditioned EQ-Calibrated Wavelets (SPEQC-WAVELETS)), robustly achieved a 4- to 5- fold data reduction while guaranteeing user-defined accuracy of reconstructed data to be within 1% point-by-point relative error, lower than 0:01 Normalized RMSE, and higher than 0:99 Pearson Correlation. In this paper, we show the results we obtained by testing our method on six petascale simulation codes including fusion, combustion, climate, astrophysics, and subsurface groundwater in addition to 13 publicly available scientific datasets. We also demonstrate that application-driven data mining tasks performed on decompressed variables or their derived quantities produce results of comparable quality with the ones for

  13. Multilevel domain decomposition for electronic structure calculations

    SciTech Connect

    Barrault, M. . E-mail: maxime.barrault@edf.fr; Cances, E. . E-mail: cances@cermics.enpc.fr; Hager, W.W. . E-mail: hager@math.ufl.edu; Le Bris, C. . E-mail: lebris@cermics.enpc.fr

    2007-03-01

    We introduce a new multilevel domain decomposition method (MDD) for electronic structure calculations within semi-empirical and density functional theory (DFT) frameworks. This method iterates between local fine solvers and global coarse solvers, in the spirit of domain decomposition methods. Using this approach, calculations have been successfully performed on several linear polymer chains containing up to 40,000 atoms and 200,000 atomic orbitals. Both the computational cost and the memory requirement scale linearly with the number of atoms. Additional speed-up can easily be obtained by parallelization. We show that this domain decomposition method outperforms the density matrix minimization (DMM) method for poor initial guesses. Our method provides an efficient preconditioner for DMM and other linear scaling methods, variational in nature, such as the orbital minimization (OM) procedure.

  14. jShyLU Scalable Hybrid Preconditioner and Solver

    Energy Science and Technology Software Center (ESTSC)

    2012-09-11

    ShyLU is numerical software to solve sparse linear systems of equations. ShyLU uses a hybrid direct-iterative Schur complement method, and may be used either as a preconditioner or as a solver. ShyLU is parallel and optimized for a single compute Solver node. ShyLU will be a package in the Trilinos software framework.

  15. Contraction pre-conditioner in finite-difference electromagnetic modelling

    NASA Astrophysics Data System (ADS)

    Yavich, Nikolay; Zhdanov, Michael S.

    2016-09-01

    This paper introduces a novel approach to constructing an effective pre-conditioner for finite-difference (FD) electromagnetic modelling in geophysical applications. This approach is based on introducing an FD contraction operator, similar to one developed for integral equation formulation of Maxwell's equation. The properties of the FD contraction operator were established using an FD analogue of the energy equality for the anomalous electromagnetic field. A new pre-conditioner uses a discrete Green's function of a 1-D layered background conductivity. We also developed the formulae for an estimation of the condition number of the system of FD equations pre-conditioned with the introduced FD contraction operator. Based on this estimation, we have established that the condition number is bounded by the maximum conductivity contrast between the background conductivity and actual conductivity. When there are both resistive and conductive anomalies relative to the background, the new pre-conditioner is advantageous over using the 1-D discrete Green's function directly. In our numerical experiments with both resistive and conductive anomalies, for a land geoelectrical model with 1:10 contrast, the method accelerates convergence of an iterative method (BiCGStab) by factors of 2-2.5, and in a marine example with 1:50 contrast, by a factor of 4.6, compared to direct use of the discrete 1-D Green's function as a pre-conditioner.

  16. Comparison of iterative methods and preconditioners for two-phase flow in porous media using exact and approximate Jacobians

    NASA Astrophysics Data System (ADS)

    Büsing, Henrik

    2013-04-01

    Two-phase flow in porous media occurs in various settings, such as the sequestration of CO2 in the subsurface, radioactive waste management, the flow of oil or gas in hydrocarbon reservoirs, or groundwater remediation. To model the sequestration of CO2, we consider a fully coupled formulation of the system of nonlinear, partial differential equations. For the solution of this system, we employ the Box method after Huber & Helmig (2000) for the space discretization and the fully implicit Euler method for the time discretization. After linearization with Newton's method, it remains to solve a linear system in every Newton step. We compare different iterative methods (BiCGStab, GMRES, AGMG, c.f., [Notay (2012)]) combined with different preconditioners (ILU0, ASM, Jacobi, and AMG as preconditioner) for the solution of these systems. The required Jacobians can be obtained elegantly with automatic differentiation (AD) [Griewank & Walther (2008)], a source code transformation providing exact derivatives. We compare the performance of the different iterative methods with their respective preconditioners for these linear systems. Furthermore, we analyze linear systems obtained by approximating the Jacobian with finite differences in terms of Newton steps per time step, steps of the iterative solvers and the overall solution time. Finally, we study the influence of heterogeneities in permeability and porosity on the performance of the iterative solvers and their robustness in this respect. References [Griewank & Walther(2008)] Griewank, A. & Walther, A., 2008. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, SIAM, Philadelphia, PA, 2nd edn. [Huber & Helmig(2000)] Huber, R. & Helmig, R., 2000. Node-centered finite volume discretizations for the numerical simulation of multiphase flow in heterogeneous porous media, Computational Geosciences, 4, 141-164. [Notay(2012)] Notay, Y., 2012. Aggregation-based algebraic multigrid for convection

  17. Earth Algebra.

    ERIC Educational Resources Information Center

    Schaufele, Christopher; Zumoff, Nancy

    Earth Algebra is an entry level college algebra course that incorporates the spirit of the National Council of Teachers of Mathematics (NCTM) Curriculum and Evaluation Standards for School Mathematics at the college level. The context of the course places mathematics at the center of one of the major current concerns of the world. Through…

  18. Kiddie Algebra

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2009-01-01

    As educators and policymakers search for ways to prepare students for the rigors of algebra, teachers in the Helena, Montana, school system are starting early by attempting to nurture students' algebraic-reasoning ability, as well as their basic number skills, in early elementary school, rather than waiting until middle or early high school.…

  19. Parallel iterative solvers and preconditioners using approximate hierarchical methods

    SciTech Connect

    Grama, A.; Kumar, V.; Sameh, A.

    1996-12-31

    In this paper, we report results of the performance, convergence, and accuracy of a parallel GMRES solver for Boundary Element Methods. The solver uses a hierarchical approximate matrix-vector product based on a hybrid Barnes-Hut / Fast Multipole Method. We study the impact of various accuracy parameters on the convergence and show that with minimal loss in accuracy, our solver yields significant speedups. We demonstrate the excellent parallel efficiency and scalability of our solver. The combined speedups from approximation and parallelism represent an improvement of several orders in solution time. We also develop fast and paralellizable preconditioners for this problem. We report on the performance of an inner-outer scheme and a preconditioner based on truncated Green`s function. Experimental results on a 256 processor Cray T3D are presented.

  20. Parallel preconditioners for monolithic solution of shear bands

    NASA Astrophysics Data System (ADS)

    Berger-Vergiat, Luc; McAuliffe, Colin; Waisman, Haim

    2016-01-01

    Shear bands are one of the most fascinating instabilities in metals that occur under high strain rates. They describe narrow regions, on the order of micron scales, where plastic deformations and significant heating are localized which eventually leads to fracture nucleation and failure of the component. In this work shear bands are described by a set of four strongly coupled thermo-mechanical equations discretized by a mixed finite element formulation. A thermo-viscoplastic flow rule is used to model the inelastic constitutive law and finite thermal conductivity is prescribed which gives rise to an inherent physical length scale, governed by competition of shear heating and thermal diffusion. The residual equations are solved monolithically by a Newton type method at every time step and have been shown to yield mesh insensitive result. The Jacobian of the system is sparse and has a nonsymmetric block structure that varies with the different stages of shear bands formation. The aim of the current work is to develop robust parallel preconditioners to GMRES in order to solve the resulting Jacobian systems efficiently. The main idea is to design Schur complements tailored to the specific block structure of the system and that account for the varying stages of shear bands. We develop multipurpose preconditioners that apply to standard irreducible discretizations as well as our recent work on isogeometric discretizations of shear bands. The proposed preconditioners are tested on benchmark examples and compared to standard state of practice solvers such as GMRES/ILU and LU direct solvers. Nonlinear and linear iterations counts as well as CPU times and computational speedups are reported and it is shown that the proposed preconditioners are robust, efficient and outperform traditional state of the art solvers.

  1. Domain decomposed preconditioners with Krylov subspace methods as subdomain solvers

    SciTech Connect

    Pernice, M.

    1994-12-31

    Domain decomposed preconditioners for nonsymmetric partial differential equations typically require the solution of problems on the subdomains. Most implementations employ exact solvers to obtain these solutions. Consequently work and storage requirements for the subdomain problems grow rapidly with the size of the subdomain problems. Subdomain solves constitute the single largest computational cost of a domain decomposed preconditioner, and improving the efficiency of this phase of the computation will have a significant impact on the performance of the overall method. The small local memory available on the nodes of most message-passing multicomputers motivates consideration of the use of an iterative method for solving subdomain problems. For large-scale systems of equations that are derived from three-dimensional problems, memory considerations alone may dictate the need for using iterative methods for the subdomain problems. In addition to reduced storage requirements, use of an iterative solver on the subdomains allows flexibility in specifying the accuracy of the subdomain solutions. Substantial savings in solution time is possible if the quality of the domain decomposed preconditioner is not degraded too much by relaxing the accuracy of the subdomain solutions. While some work in this direction has been conducted for symmetric problems, similar studies for nonsymmetric problems appear not to have been pursued. This work represents a first step in this direction, and explores the effectiveness of performing subdomain solves using several transpose-free Krylov subspace methods, GMRES, transpose-free QMR, CGS, and a smoothed version of CGS. Depending on the difficulty of the subdomain problem and the convergence tolerance used, a reduction in solution time is possible in addition to the reduced memory requirements. The domain decomposed preconditioner is a Schur complement method in which the interface operators are approximated using interface probing.

  2. Parallel multigrid preconditioner for the cardiac bidomain model.

    PubMed

    Weber dos Santos, Rodrigo; Plank, Gernot; Bauer, Steffen; Vigmond, Edward J

    2004-11-01

    The bidomain equations are widely used for the simulation of electrical activity in cardiac tissue but are computationally expensive, limiting the size of the problem which can be modeled. The purpose of this study is to determine more efficient ways to solve the elliptic portion of the bidomain equations, the most computationally expensive part of the computation. Specifically, we assessed the performance of a parallel multigrid (MG) preconditioner for a conjugate gradient solver. We employed an operator splitting technique, dividing the computation in a parabolic equation, an elliptical equation, and a nonlinear system of ordinary differential equations at each time step. The elliptic equation was solved by the preconditioned conjugate gradient method, and the traditional block incomplete LU parallel preconditioner (ILU) was compared to MG. Execution time was minimized for each preconditioner by adjusting the fill-in factor for ILU, and by choosing the optimal number of levels for MG. The parallel implementation was based on the PETSc library and we report results for up to 16 nodes on a distributed cluster, for two and three dimensional simulations. A direct solver was also available to compare results for single processor runs. MG was found to solve the system in one third of the time required by ILU but required about 40% more memory. Thus, MG offered an attractive tradeoff between memory usage and speed, since its performance lay between those of the classic iterative methods (slow and low memory consumption) and direct methods (fast and high memory consumption). Results suggest the MG preconditioner is well suited for quickly and accurately solving the bidomain equations. PMID:15536898

  3. Domain decomposition preconditioners for the spectral collocation method

    NASA Technical Reports Server (NTRS)

    Quarteroni, Alfio; Sacchilandriani, Giovanni

    1988-01-01

    Several block iteration preconditioners are proposed and analyzed for the solution of elliptic problems by spectral collocation methods in a region partitioned into several rectangles. It is shown that convergence is achieved with a rate which does not depend on the polynomial degree of the spectral solution. The iterative methods here presented can be effectively implemented on multiprocessor systems due to their high degree of parallelism.

  4. Performance analysis of high quality parallel preconditioners applied to 3D finite element structural analysis

    SciTech Connect

    Kolotilina, L.; Nikishin, A.; Yeremin, A.

    1994-12-31

    The solution of large systems of linear equations is a crucial bottleneck when performing 3D finite element analysis of structures. Also, in many cases the reliability and robustness of iterative solution strategies, and their efficiency when exploiting hardware resources, fully determine the scope of industrial applications which can be solved on a particular computer platform. This is especially true for modern vector/parallel supercomputers with large vector length and for modern massively parallel supercomputers. Preconditioned iterative methods have been successfully applied to industrial class finite element analysis of structures. The construction and application of high quality preconditioners constitutes a high percentage of the total solution time. Parallel implementation of high quality preconditioners on such architectures is a formidable challenge. Two common types of existing preconditioners are the implicit preconditioners and the explicit preconditioners. The implicit preconditioners (e.g. incomplete factorizations of several types) are generally high quality but require solution of lower and upper triangular systems of equations per iteration which are difficult to parallelize without deteriorating the convergence rate. The explicit type of preconditionings (e.g. polynomial preconditioners or Jacobi-like preconditioners) require sparse matrix-vector multiplications and can be parallelized but their preconditioning qualities are less than desirable. The authors present results of numerical experiments with Factorized Sparse Approximate Inverses (FSAI) for symmetric positive definite linear systems. These are high quality preconditioners that possess a large resource of parallelism by construction without increasing the serial complexity.

  5. Multilevel Model Prediction

    ERIC Educational Resources Information Center

    Frees, Edward W.; Kim, Jee-Seon

    2006-01-01

    Multilevel models are proven tools in social research for modeling complex, hierarchical systems. In multilevel modeling, statistical inference is based largely on quantification of random variables. This paper distinguishes among three types of random variables in multilevel modeling--model disturbances, random coefficients, and future response…

  6. Triangular preconditioners for saddle point problems with a penalty term

    SciTech Connect

    Klawonn, A.

    1996-12-31

    Triangular preconditioners for a class of saddle point problems with a penalty term are considered. An important example is the mixed formulation of the pure displacement problem in linear elasticity. It is shown that the spectrum of the preconditioned system is contained in a real, positive interval, and that the interval bounds can be made independent of the discretization and penalty parameters. This fact is used to construct bounds of the convergence rate of the GMRES method used with an energy norm. Numerical results are given for GMRES and BI-CGSTAB.

  7. Circulant preconditioners with unbounded inverses: Why non-optimal preconditioners may possess a better quality than optimal ones

    SciTech Connect

    Tyrtyshnikov, E.E.

    1994-12-31

    There exist several preconditioning strategies for systems of linear equations with Toeplitz coefficient matrices. The most popular of them are based on the Strang circulants and the Chan optimal circulants. Let A-n be an n-by-n Toeplitz matrix. Then the Strang preconditioner S-n copies the central n/2 diagonals of A-n while other diagonals are determined by the circulant properties of S-n. The Chan circulant C-n coincides with the minimizer of the deviation A-n - C-n in the sense of the matrix Frobenius norm. At the first glance the Chan circulant should provide a faster convergence rate since it exploits more information on the coefficient matrix. The preconditioning quality is heavily dependent on clusterization of the preconditioned eigenvalues. According to recent results by R. Chan it is known that both considered circulants possess the clustering property if the coefficient Toeplitz matrices A-n are generated by a function which first belongs to the Wiener class and second is separated from zero. Both circulants provide approximately the same clustering rate, and therefore both should possess the same preconditioning quality. However, the most interesting case is the one when the generating function may take the zero value, and hence the circulants have unbounded in n inverses. In these cases the Strang preconditioners may appear to be singular and we recommend to use the so called improved Strang preconditioners (in which a zero eigenvalue of the Strang circulant is replaced by some positive value).

  8. Circulant preconditioners for Toeplitz matrices with piecewise continuous generating functions

    SciTech Connect

    Yeung, Man-Chung ); Chan, R.H. )

    1993-10-01

    The authors consider the solution of n-by-n Toeplitz systems T[sub n]x = b by preconditioned conjugate gradient methods. The preconditioner C[sub n] is the T. Chan circulant preconditioner, which is defined to be the circulant matrix that minimizes [parallel]B[sub n] - T[sub n][parallel][sub F] over all circulant matrices B[sub n]. For Toeplitz matrices generated by positive 2[pi]-periodic continuous functions, they have shown earlier that the spectrum of the preconditioned system C[sup [minus]1][sub n]T[sub n] is clustered around 1 and hence the convergence rate of the preconditioned system is superlinear. However, in this paper, they show that if instead the generating function is only piecewise continuous, then for all [epsilon] sufficiently small, there are O(log n) eigenvalues of C[sup [minus]1][sub n]T[sub n] that lie outside the interval (1 - [epsilon], 1 + [epsilon]). In particular, the spectrum of C[sup [minus]1][sub n]T[sub n] cannot be clustered around 1. Numerical examples are given to verify that the convergence rate of the method is no longer superlinear in general. 20 refs.

  9. A modified direct preconditioner for indefinite symmetric Toeplitz systems

    SciTech Connect

    Concus, P.; Saylor, P.

    1994-12-31

    A modification is presented of the classical $O(n{sup 2})$ algorithm of Trench for the direct solution of Toeplitz systems of equations. The Trench algorithm can be guaranteed to be stable only for matrices that are (symmetric) positive definite; it is generally unstable otherwise. The modification permits extension of the algorithm to compute an approximate inverse in the indefinite symmetric case, for which the unmodified algorithm breaks down when principal submatrices are singular. As a preconditioner, this approximate inverse has an advantage that only matrix-vector multiplications are required for the solution of a linear system, without forward and backward solves. The approximate inverse so obtained can be sufficiently accurate, moreover that, when it is used as a preconditioner for the applications investigated, subsequent iteration may not even be necessary. Numerical results are given for several test matrices. The perturbation to the original matrix that defines the modification is related to a perturbation in a quantity generated in the Trench algorithm; the associated stability of the Trench algorithm is discussed.

  10. Spectral analysis and structure preserving preconditioners for fractional diffusion equations

    NASA Astrophysics Data System (ADS)

    Donatelli, Marco; Mazza, Mariarosa; Serra-Capizzano, Stefano

    2016-02-01

    Fractional partial order diffusion equations are a generalization of classical partial differential equations, used to model anomalous diffusion phenomena. When using the implicit Euler formula and the shifted Grünwald formula, it has been shown that the related discretizations lead to a linear system whose coefficient matrix has a Toeplitz-like structure. In this paper we focus our attention on the case of variable diffusion coefficients. Under appropriate conditions, we show that the sequence of the coefficient matrices belongs to the Generalized Locally Toeplitz class and we compute the symbol describing its asymptotic eigenvalue/singular value distribution, as the matrix size diverges. We employ the spectral information for analyzing known methods of preconditioned Krylov and multigrid type, with both positive and negative results and with a look forward to the multidimensional setting. We also propose two new tridiagonal structure preserving preconditioners to solve the resulting linear system, with Krylov methods such as CGNR and GMRES. A number of numerical examples show that our proposal is more effective than recently used circulant preconditioners.

  11. Matrix-free constructions of circulant and block circulant preconditioners

    SciTech Connect

    Yang, Chao; Ng, Esmond G.; Penczek, Pawel A.

    2001-12-01

    A framework for constructing circulant and block circulant preconditioners (C) for a symmetric linear system Ax=b arising from certain signal and image processing applications is presented in this paper. The proposed scheme does not make explicit use of matrix elements of A. It is ideal for applications in which A only exists in the form of a matrix vector multiplication routine, and in which the process of extracting matrix elements of A is costly. The proposed algorithm takes advantage of the fact that for many linear systems arising from signal or image processing applications, eigenvectors of A can be well represented by a small number of Fourier modes. Therefore, the construction of C can be carried out in the frequency domain by carefully choosing its eigenvalues so that the condition number of C{sup T} AC can be reduced significantly. We illustrate how to construct the spectrum of C in a way such that the smallest eigenvalues of C{sup T} AC overlaps with those of A extremely well while the largest eigenvalues of C{sup T} AC are smaller than those of A by several orders of magnitude. Numerical examples are provided to demonstrate the effectiveness of the preconditioner on accelerating the solution of linear systems arising from image reconstruction application.

  12. Layout optimization with algebraic multigrid methods

    NASA Technical Reports Server (NTRS)

    Regler, Hans; Ruede, Ulrich

    1993-01-01

    Finding the optimal position for the individual cells (also called functional modules) on the chip surface is an important and difficult step in the design of integrated circuits. This paper deals with the problem of relative placement, that is the minimization of a quadratic functional with a large, sparse, positive definite system matrix. The basic optimization problem must be augmented by constraints to inhibit solutions where cells overlap. Besides classical iterative methods, based on conjugate gradients (CG), we show that algebraic multigrid methods (AMG) provide an interesting alternative. For moderately sized examples with about 10000 cells, AMG is already competitive with CG and is expected to be superior for larger problems. Besides the classical 'multiplicative' AMG algorithm where the levels are visited sequentially, we propose an 'additive' variant of AMG where levels may be treated in parallel and that is suitable as a preconditioner in the CG algorithm.

  13. Newton-Raphson preconditioner for Krylov type solvers on GPU devices.

    PubMed

    Kushida, Noriyuki

    2016-01-01

    A new Newton-Raphson method based preconditioner for Krylov type linear equation solvers for GPGPU is developed, and the performance is investigated. Conventional preconditioners improve the convergence of Krylov type solvers, and perform well on CPUs. However, they do not perform well on GPGPUs, because of the complexity of implementing powerful preconditioners. The developed preconditioner is based on the BFGS Hessian matrix approximation technique, which is well known as a robust and fast nonlinear equation solver. Because the Hessian matrix in the BFGS represents the coefficient matrix of a system of linear equations in some sense, the approximated Hessian matrix can be a preconditioner. On the other hand, BFGS is required to store dense matrices and to invert them, which should be avoided on modern computers and supercomputers. To overcome these disadvantages, we therefore introduce a limited memory BFGS, which requires less memory space and less computational effort than the BFGS. In addition, a limited memory BFGS can be implemented with BLAS libraries, which are well optimized for target architectures. There are advantages and disadvantages to the Hessian matrix approximation becoming better as the Krylov solver iteration continues. The preconditioning matrix varies through Krylov solver iterations, and only flexible Krylov solvers can work well with the developed preconditioner. The GCR method, which is a flexible Krylov solver, is employed because of the prevalence of GCR as a Krylov solver with a variable preconditioner. As a result of the performance investigation, the new preconditioner indicates the following benefits: (1) The new preconditioner is robust; i.e., it converges while conventional preconditioners (the diagonal scaling, and the SSOR preconditioners) fail. (2) In the best case scenarios, it is over 10 times faster than conventional preconditioners on a CPU. (3) Because it requries only simple operations, it performs well on a GPGPU. In

  14. Elliptic Preconditioner for Accelerating the Self-Consistent Field Iteration in Kohn--Sham Density Functional Theory

    SciTech Connect

    Lin, Lin; Yang, Chao

    2013-10-28

    We discuss techniques for accelerating the self consistent field (SCF) iteration for solving the Kohn-Sham equations. These techniques are all based on constructing approximations to the inverse of the Jacobian associated with a fixed point map satisfied by the total potential. They can be viewed as preconditioners for a fixed point iteration. We point out different requirements for constructing preconditioners for insulating and metallic systems respectively, and discuss how to construct preconditioners to keep the convergence rate of the fixed point iteration independent of the size of the atomistic system. We propose a new preconditioner that can treat insulating and metallic system in a unified way. The new preconditioner, which we call an elliptic preconditioner, is constructed by solving an elliptic partial differential equation. The elliptic preconditioner is shown to be more effective in accelerating the convergence of a fixed point iteration than the existing approaches for large inhomogeneous systems at low temperature.

  15. Multilevel and Diverse Classrooms

    ERIC Educational Resources Information Center

    Baurain, Bradley, Ed.; Ha, Phan Le, Ed.

    2010-01-01

    The benefits and advantages of classroom practices incorporating unity-in-diversity and diversity-in-unity are what "Multilevel and Diverse Classrooms" is all about. Multilevel classrooms--also known as mixed-ability or heterogeneous classrooms--are a fact of life in ESOL programs around the world. These classrooms are often not only multilevel…

  16. Multilevel Mixture Factor Models

    ERIC Educational Resources Information Center

    Varriale, Roberta; Vermunt, Jeroen K.

    2012-01-01

    Factor analysis is a statistical method for describing the associations among sets of observed variables in terms of a small number of underlying continuous latent variables. Various authors have proposed multilevel extensions of the factor model for the analysis of data sets with a hierarchical structure. These Multilevel Factor Models (MFMs)…

  17. Multi-Level iterative methods in computational plasma physics

    SciTech Connect

    Knoll, D.A.; Barnes, D.C.; Brackbill, J.U.; Chacon, L.; Lapenta, G.

    1999-03-01

    Plasma physics phenomena occur on a wide range of spatial scales and on a wide range of time scales. When attempting to model plasma physics problems numerically the authors are inevitably faced with the need for both fine spatial resolution (fine grids) and implicit time integration methods. Fine grids can tax the efficiency of iterative methods and large time steps can challenge the robustness of iterative methods. To meet these challenges they are developing a hybrid approach where multigrid methods are used as preconditioners to Krylov subspace based iterative methods such as conjugate gradients or GMRES. For nonlinear problems they apply multigrid preconditioning to a matrix-few Newton-GMRES method. Results are presented for application of these multilevel iterative methods to the field solves in implicit moment method PIC, multidimensional nonlinear Fokker-Planck problems, and their initial efforts in particle MHD.

  18. Preconditioner-based contact response and application to cataract surgery.

    PubMed

    Courtecuisse, Hadrien; Allard, Jérémie; Duriez, Christian; Cotin, Stéphane

    2011-01-01

    In this paper we introduce a new method to compute, in real-time, the physical behavior of several colliding soft-tissues in a surgical simulation. The numerical approach is based on finite element modeling and allows for a fast update of a large number of tetrahedral elements. The speed-up is obtained by the use of a specific preconditioner that is updated at low frequency. The preconditioning enables an optimized computation of both large deformations and precise contact response. Moreover, homogeneous and inhomogeneous tissues are simulated with the same accuracy. Finally, we illustrate our method in a simulation of one step in a cataract surgery procedure, which require to handle contacts with non homogeneous objects precisely. PMID:22003632

  19. Twisted Quantum Toroidal Algebras

    NASA Astrophysics Data System (ADS)

    Jing, Naihuan; Liu, Rongjia

    2014-09-01

    We construct a principally graded quantum loop algebra for the Kac-Moody algebra. As a special case a twisted analog of the quantum toroidal algebra is obtained together with the quantum Serre relations.

  20. Algebraic vs physical N = 6 3-algebras

    SciTech Connect

    Cantarini, Nicoletta; Kac, Victor G.

    2014-01-15

    In our previous paper, we classified linearly compact algebraic simple N = 6 3-algebras. In the present paper, we classify their “physical” counterparts, which actually appear in the N = 6 supersymmetric 3-dimensional Chern-Simons theories.

  1. Two level preconditioner of steady Stokes-Brinkman equation with jumps in coefficients

    NASA Astrophysics Data System (ADS)

    Hasal, Martin

    2016-06-01

    We suggest to solve saddle point system, which arises from mixed finite element method for the presented Stokes-Brinkman model, by GMRES solver with preconditioner which leads to solving symmetric positive definite system in every GMRES iteration. This preconditioner is ill-conditioned, hence we use several types of approximate inverse as preconditioning for this symmetric positive definite system. We present numerical results for an incompressible flow problem in a domain with jumps in coefficients.

  2. Incomplete Augmented Lagrangian Preconditioner for Steady Incompressible Navier-Stokes Equations

    PubMed Central

    Tan, Ning-Bo; Huang, Ting-Zhu; Hu, Ze-Jun

    2013-01-01

    An incomplete augmented Lagrangian preconditioner, for the steady incompressible Navier-Stokes equations discretized by stable finite elements, is proposed. The eigenvalues of the preconditioned matrix are analyzed. Numerical experiments show that the incomplete augmented Lagrangian-based preconditioner proposed is very robust and performs quite well by the Picard linearization or the Newton linearization over a wide range of values of the viscosity on both uniform and stretched grids. PMID:24235888

  3. Incomplete augmented Lagrangian preconditioner for steady incompressible Navier-Stokes equations.

    PubMed

    Tan, Ning-Bo; Huang, Ting-Zhu; Hu, Ze-Jun

    2013-01-01

    An incomplete augmented Lagrangian preconditioner, for the steady incompressible Navier-Stokes equations discretized by stable finite elements, is proposed. The eigenvalues of the preconditioned matrix are analyzed. Numerical experiments show that the incomplete augmented Lagrangian-based preconditioner proposed is very robust and performs quite well by the Picard linearization or the Newton linearization over a wide range of values of the viscosity on both uniform and stretched grids. PMID:24235888

  4. Multilevel ensemble Kalman filtering

    DOE PAGESBeta

    Hoel, Hakon; Law, Kody J. H.; Tempone, Raul

    2016-06-14

    This study embeds a multilevel Monte Carlo sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF) in the setting of finite dimensional signal evolution and noisy discrete-time observations. The signal dynamics is assumed to be governed by a stochastic differential equation (SDE), and a hierarchy of time grids is introduced for multilevel numerical integration of that SDE. Finally, the resulting multilevel EnKF is proved to asymptotically outperform EnKF in terms of computational cost versus approximation accuracy. The theoretical results are illustrated numerically.

  5. Block recursive LU preconditioners for the thermally coupled incompressible inductionless MHD problem

    NASA Astrophysics Data System (ADS)

    Badia, Santiago; Martín, Alberto F.; Planas, Ramon

    2014-10-01

    The thermally coupled incompressible inductionless magnetohydrodynamics (MHD) problem models the flow of an electrically charged fluid under the influence of an external electromagnetic field with thermal coupling. This system of partial differential equations is strongly coupled and highly nonlinear for real cases of interest. Therefore, fully implicit time integration schemes are very desirable in order to capture the different physical scales of the problem at hand. However, solving the multiphysics linear systems of equations resulting from such algorithms is a very challenging task which requires efficient and scalable preconditioners. In this work, a new family of recursive block LU preconditioners is designed and tested for solving the thermally coupled inductionless MHD equations. These preconditioners are obtained after splitting the fully coupled matrix into one-physics problems for every variable (velocity, pressure, current density, electric potential and temperature) that can be optimally solved, e.g., using preconditioned domain decomposition algorithms. The main idea is to arrange the original matrix into an (arbitrary) 2×2 block matrix, and consider an LU preconditioner obtained by approximating the corresponding Schur complement. For every one of the diagonal blocks in the LU preconditioner, if it involves more than one type of unknowns, we proceed the same way in a recursive fashion. This approach is stated in an abstract way, and can be straightforwardly applied to other multiphysics problems. Further, we precisely explain a flexible and general software design for the code implementation of this type of preconditioners.

  6. Multilevel additive Schwarz method for the h-p version of the Galerkin boundary element method

    NASA Astrophysics Data System (ADS)

    Heuer, N.; Stephan, E. P.; Tran, T.

    1998-04-01

    We study a multilevel additive Schwarz method for the h-p version of the Galerkin boundary element method with geometrically graded meshes. Both hypersingular and weakly singular integral equations of the first kind are considered. As it is well known the h-p version with geometric meshes converges exponentially fast in the energy-norm. However, the condition number of the Galerkin matrix in this case blows up exponentially in the number of unknowns M. We prove that the condition number kappa(P) of the multilevel additive Schwarz operator behaves like O(root Mlog(2) M). Asa direct consequence of this we also give the results for the 2-level preconditioner and also for the h-p version with quasi-uniform meshes. Numerical results supporting our theory are presented.

  7. The Effects of Representations, Constructivist Approaches, and Engagement on Middle School Students' Algebraic Procedure and Conceptual Understanding

    ERIC Educational Resources Information Center

    Ross, Amanda; Willson, Victor

    2012-01-01

    This study examined the effects of types of representations, constructivist teaching approaches, and student engagement on middle school algebra students' procedural knowledge and conceptual understanding. Data gathered from 16 video lessons and algebra pretest/posttests were used to run three multilevel structural equation models. Symbolic…

  8. Historical Topics in Algebra.

    ERIC Educational Resources Information Center

    National Council of Teachers of Mathematics, Inc., Reston, VA.

    This is a reprint of the historical capsules dealing with algebra from the 31st Yearbook of NCTM,"Historical Topics for the Mathematics Classroom." Included are such themes as the change from a geometric to an algebraic solution of problems, the development of algebraic symbolism, the algebraic contributions of different countries, the origin and…

  9. Algebraic multigrid preconditioning within parallel finite-element solvers for 3-D electromagnetic modelling problems in geophysics

    NASA Astrophysics Data System (ADS)

    Koldan, Jelena; Puzyrev, Vladimir; de la Puente, Josep; Houzeaux, Guillaume; Cela, José María

    2014-06-01

    We present an elaborate preconditioning scheme for Krylov subspace methods which has been developed to improve the performance and reduce the execution time of parallel node-based finite-element (FE) solvers for 3-D electromagnetic (EM) numerical modelling in exploration geophysics. This new preconditioner is based on algebraic multigrid (AMG) that uses different basic relaxation methods, such as Jacobi, symmetric successive over-relaxation (SSOR) and Gauss-Seidel, as smoothers and the wave front algorithm to create groups, which are used for a coarse-level generation. We have implemented and tested this new preconditioner within our parallel nodal FE solver for 3-D forward problems in EM induction geophysics. We have performed series of experiments for several models with different conductivity structures and characteristics to test the performance of our AMG preconditioning technique when combined with biconjugate gradient stabilized method. The results have shown that, the more challenging the problem is in terms of conductivity contrasts, ratio between the sizes of grid elements and/or frequency, the more benefit is obtained by using this preconditioner. Compared to other preconditioning schemes, such as diagonal, SSOR and truncated approximate inverse, the AMG preconditioner greatly improves the convergence of the iterative solver for all tested models. Also, when it comes to cases in which other preconditioners succeed to converge to a desired precision, AMG is able to considerably reduce the total execution time of the forward-problem code-up to an order of magnitude. Furthermore, the tests have confirmed that our AMG scheme ensures grid-independent rate of convergence, as well as improvement in convergence regardless of how big local mesh refinements are. In addition, AMG is designed to be a black-box preconditioner, which makes it easy to use and combine with different iterative methods. Finally, it has proved to be very practical and efficient in the

  10. Deformations of 3-algebras

    SciTech Connect

    Figueroa-O'Farrill, Jose Miguel

    2009-11-15

    We phrase deformations of n-Leibniz algebras in terms of the cohomology theory of the associated Leibniz algebra. We do the same for n-Lie algebras and for the metric versions of n-Leibniz and n-Lie algebras. We place particular emphasis on the case of n=3 and explore the deformations of 3-algebras of relevance to three-dimensional superconformal Chern-Simons theories with matter.

  11. Quantum cluster algebras and quantum nilpotent algebras

    PubMed Central

    Goodearl, Kenneth R.; Yakimov, Milen T.

    2014-01-01

    A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197

  12. A framework for the construction of preconditioners for systems of PDE

    SciTech Connect

    Holmgren, S.; Otto, K.

    1994-12-31

    The authors consider the solution of systems of partial differential equations (PDE) in 2D or 3D using preconditioned CG-like iterative methods. The PDE is discretized using a finite difference scheme with arbitrary order of accuracy. The arising sparse and highly structured system of equations is preconditioned using a discretization of a modified PDE, possibly exploiting a different discretization stencil. The preconditioner corresponds to a separable problem, and the discretization in one space direction is constructed so that the corresponding matrix is diagonalized by a unitary transformation. If this transformation is computable using a fast O(n log{sub 2} n) algorithm, the resulting preconditioner solve is of the same complexity. Also, since the preconditioner solves are based on a dimensional splitting, the intrinsic parallelism is good. Different choices of the unitary transformation are considered, e.g., the discrete Fourier transform, sine transform, and modified sine transform. The preconditioners fully exploit the structure of the original problem, and it is shown how to compute the parameters describing them subject to different optimality constraints. Some of these results recover results derived by e.g. R. Chan, T. Chan, and E. Tyrtyshnikov, but here they are stated in a {open_quotes}PDE context{close_quotes}. Numerical experiments where different preconditioners are exploited are presented. Primarily, high-order accurate discretizations for first-order PDE problems are studied, but also second-order derivatives are considered. The results indicate that utilizing preconditioners based on fast solvers for modified PDE problems yields good solution algorithms. These results extend previously derived theoretical and numerical results for second-order approximations for first-order PDE, exploiting preconditioners based on fast Fourier transforms.

  13. Adaptive Multilevel Second-Generation Wavelet Collocation Elliptic Solver: A Cure for High Viscosity Contrasts

    NASA Astrophysics Data System (ADS)

    Kevlahan, N. N.; Vasilyev, O. V.; Yuen, D. A.

    2003-12-01

    An adaptive multilevel wavelet collocation method for solving multi-dimensional elliptic problems with localized structures is developed. The method is based on the general class of multi-dimensional second generation wavelets and is an extension of the dynamically adaptive second generation wavelet collocation method for evolution problems. Wavelet decomposition is used for grid adaptation and interpolation, while O(N) hierarchical finite difference scheme, which takes advantage of wavelet multilevel decomposition, is used for derivative calculations. The multilevel structure of the wavelet approximation provides a natural way to obtain the solution on a near optimal grid. In order to accelerate the convergence of the iterative solver, an iterative procedure analogous to the multigrid algorithm is developed. For the problems with slowly varying viscosity simple diagonal preconditioning works. For problems with large laterally varying viscosity contrasts either direct solver on shared-memory machines or multilevel iterative solver with incomplete LU preconditioner may be used. The method is demonstrated for the solution of a number of two-dimensional elliptic test problems with both constant and spatially varying viscosity with multiscale character.

  14. Algorithmically scalable block preconditioner for fully implicit shallow-water equations in CAM-SE

    DOE PAGESBeta

    Lott, P. Aaron; Woodward, Carol S.; Evans, Katherine J.

    2014-10-19

    Performing accurate and efficient numerical simulation of global atmospheric climate models is challenging due to the disparate length and time scales over which physical processes interact. Implicit solvers enable the physical system to be integrated with a time step commensurate with processes being studied. The dominant cost of an implicit time step is the ancillary linear system solves, so we have developed a preconditioner aimed at improving the efficiency of these linear system solves. Our preconditioner is based on an approximate block factorization of the linearized shallow-water equations and has been implemented within the spectral element dynamical core within themore » Community Atmospheric Model (CAM-SE). Furthermore, in this paper we discuss the development and scalability of the preconditioner for a suite of test cases with the implicit shallow-water solver within CAM-SE.« less

  15. Algorithmically scalable block preconditioner for fully implicit shallow-water equations in CAM-SE

    SciTech Connect

    Lott, P. Aaron; Woodward, Carol S.; Evans, Katherine J.

    2014-10-19

    Performing accurate and efficient numerical simulation of global atmospheric climate models is challenging due to the disparate length and time scales over which physical processes interact. Implicit solvers enable the physical system to be integrated with a time step commensurate with processes being studied. The dominant cost of an implicit time step is the ancillary linear system solves, so we have developed a preconditioner aimed at improving the efficiency of these linear system solves. Our preconditioner is based on an approximate block factorization of the linearized shallow-water equations and has been implemented within the spectral element dynamical core within the Community Atmospheric Model (CAM-SE). Furthermore, in this paper we discuss the development and scalability of the preconditioner for a suite of test cases with the implicit shallow-water solver within CAM-SE.

  16. Domain-decomposable preconditioners for second-order upwind discretizations of multicomponent systems

    SciTech Connect

    Keyes, D.E. . Dept. of Mechanical Engineering); Gropp, W.D. )

    1990-01-01

    Discrete systems arising in computational fluid dynamics applications often require wide stencils adapted to the local convective direction in order to accommodate higher-order upwind differencing, and involve multiple components perhaps coupling strongly at each point. Conventional exactly or approximately factored inverses of such operators are burdensome to apply globally, especially in problems complicated by non-tensor-product domain geometry or adaptive refinement, though their forward'' action is not. Such problems can be solved by iterative methods by using either point-block preconditioners or combination space-decoupled/component-decoupled preconditioners that are based on lower-order discretizations. Except for a global implicit solve on a coarse grid, each phase in the application of such preconditioners has simple locally exploitable structure. 16 refs., 2 figs., 3 tabs.

  17. Learning Algebra in a Computer Algebra Environment

    ERIC Educational Resources Information Center

    Drijvers, Paul

    2004-01-01

    This article summarises a doctoral thesis entitled "Learning algebra in a computer algebra environment, design research on the understanding of the concept of parameter" (Drijvers, 2003). It describes the research questions, the theoretical framework, the methodology and the results of the study. The focus of the study is on the understanding of…

  18. Realizations of Galilei algebras

    NASA Astrophysics Data System (ADS)

    Nesterenko, Maryna; Pošta, Severin; Vaneeva, Olena

    2016-03-01

    All inequivalent realizations of the Galilei algebras of dimensions not greater than five are constructed using the algebraic approach proposed by Shirokov. The varieties of the deformed Galilei algebras are discussed and families of one-parametric deformations are presented in explicit form. It is also shown that a number of well-known and physically interesting equations and systems are invariant with respect to the considered Galilei algebras or their deformations.

  19. Algebraic theory of molecules

    NASA Technical Reports Server (NTRS)

    Iachello, Franco

    1995-01-01

    An algebraic formulation of quantum mechanics is presented. In this formulation, operators of interest are expanded onto elements of an algebra, G. For bound state problems in nu dimensions the algebra G is taken to be U(nu + 1). Applications to the structure of molecules are presented.

  20. Orientation in operator algebras

    PubMed Central

    Alfsen, Erik M.; Shultz, Frederic W.

    1998-01-01

    A concept of orientation is relevant for the passage from Jordan structure to associative structure in operator algebras. The research reported in this paper bridges the approach of Connes for von Neumann algebras and ourselves for C*-algebras in a general theory of orientation that is of geometric nature and is related to dynamics. PMID:9618457

  1. Developing Thinking in Algebra

    ERIC Educational Resources Information Center

    Mason, John; Graham, Alan; Johnson-Wilder, Sue

    2005-01-01

    This book is for people with an interest in algebra whether as a learner, or as a teacher, or perhaps as both. It is concerned with the "big ideas" of algebra and what it is to understand the process of thinking algebraically. The book has been structured according to a number of pedagogic principles that are exposed and discussed along the way,…

  2. Connecting Arithmetic to Algebra

    ERIC Educational Resources Information Center

    Darley, Joy W.; Leapard, Barbara B.

    2010-01-01

    Algebraic thinking is a top priority in mathematics classrooms today. Because elementary school teachers lay the groundwork to develop students' capacity to think algebraically, it is crucial for teachers to have a conceptual understanding of the connections between arithmetic and algebra and be confident in communicating these connections. Many…

  3. Applied Algebra Curriculum Modules.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Marshall.

    This collection of 11 applied algebra curriculum modules can be used independently as supplemental modules for an existing algebra curriculum. They represent diverse curriculum styles that should stimulate the teacher's creativity to adapt them to other algebra concepts. The selected topics have been determined to be those most needed by students…

  4. Profiles of Algebraic Competence

    ERIC Educational Resources Information Center

    Humberstone, J.; Reeve, R.A.

    2008-01-01

    The algebraic competence of 72 12-year-old female students was examined to identify profiles of understanding reflecting different algebraic knowledge states. Beginning algebraic competence (mapping abilities: word-to-symbol and vice versa, classifying, and solving equations) was assessed. One week later, the nature of assistance required to map…

  5. Ternary Virasoro - Witt algebra.

    SciTech Connect

    Zachos, C.; Curtright, T.; Fairlie, D.; High Energy Physics; Univ. of Miami; Univ. of Durham

    2008-01-01

    A 3-bracket variant of the Virasoro-Witt algebra is constructed through the use of su(1,1) enveloping algebra techniques. The Leibniz rules for 3-brackets acting on other 3-brackets in the algebra are discussed and verified in various situations.

  6. A limited-memory, quasi-Newton preconditioner for nonnegatively constrained image reconstruction.

    PubMed

    Bardsley, Johnathan M

    2004-05-01

    Image reconstruction gives rise to some challenging large-scale constrained optimization problems. We consider a convex minimization problem with nonnegativity constraints that arises in astronomical imaging. To solve this problem, we use an efficient hybrid gradient projection-reduced Newton (active-set) method. By "reduced Newton," we mean that we take Newton steps only in the inactive variables. Owing to the large size of our problem, we compute approximate reduced Newton steps by using the conjugate gradient (CG) iteration. We introduce a limited-memory, quasi-Newton preconditioner that speeds up CG convergence. A numerical comparison is presented that demonstrates the effectiveness of this preconditioner. PMID:15139424

  7. Analysis of semi-Toeplitz preconditioners for first-order PDEs

    SciTech Connect

    Hemmingsson, L.

    1994-12-31

    A semi-Toeplitz preconditioner for nonsymmetric, nondiagonally dominant systems of equations is studied. The preconditioner solve is based on a Fast Modified Sine Transform. As a model problem the author studies a system of equations arising from an implicit time-discretization of a scalar hyperbolic PDE. Analytical formulas for the eigenvalues of the preconditioned system are derived. The convergence of a minimal residual iteration is shown to be dependent only on the grid ratio in space and not on the number of unknowns.

  8. Iterative time independent calculation of the cumulative reaction probability within a basis adapted preconditioner

    NASA Astrophysics Data System (ADS)

    Woittequand, F.; Monnerville, M.; Briquez, S.

    2006-01-01

    A band preconditioner matrix coupled to an iterative approach based on the generalized minimal residual (GMRes) method is presented to determine the cumulative reaction probability (CRP) N( E). The CRP is calculated using the Seideman, Manthe and Miller Lanczos-based boundary condition method [J. Chem. Phys. 96 (1992) 4412; 99 (1993) 3411]. Using this basis adapted preconditioner, the iterative GMRes scheme is found to be more efficient than a direct method based on the LU decomposition. The efficiency of this approach is illustrated by calculating the CRP for the H + O 2 → HO + O reaction, assuming zero total angular momentum.

  9. Computer algebra and operators

    NASA Technical Reports Server (NTRS)

    Fateman, Richard; Grossman, Robert

    1989-01-01

    The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.

  10. JTpack90: A parallel, object-based, Fortran 90 linear algebra package

    SciTech Connect

    Turner, J.A.; Kothe, D.B.; Ferrell, R.C.

    1997-03-01

    The authors have developed an object-based linear algebra package, currently with emphasis on sparse Krylov methods, driven primarily by needs of the Los Alamos National Laboratory parallel unstructured-mesh casting simulation tool Telluride. Support for a number of sparse storage formats, methods, and preconditioners have been implemented, driven primarily by application needs. They describe the object-based Fortran 90 approach, which enhances maintainability, performance, and extensibility, the parallelization approach using a new portable gather/scatter library (PGSLib), current capabilities and future plans, and present preliminary performance results on a variety of platforms.

  11. Multilevel Concatenated Block Modulation Codes for the Frequency Non-selective Rayleigh Fading Channel

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Rhee, Dojun

    1996-01-01

    This paper is concerned with construction of multilevel concatenated block modulation codes using a multi-level concatenation scheme for the frequency non-selective Rayleigh fading channel. In the construction of multilevel concatenated modulation code, block modulation codes are used as the inner codes. Various types of codes (block or convolutional, binary or nonbinary) are being considered as the outer codes. In particular, we focus on the special case for which Reed-Solomon (RS) codes are used as the outer codes. For this special case, a systematic algebraic technique for constructing q-level concatenated block modulation codes is proposed. Codes have been constructed for certain specific values of q and compared with the single-level concatenated block modulation codes using the same inner codes. A multilevel closest coset decoding scheme for these codes is proposed.

  12. Multilevel Interventions: Measurement and Measures

    PubMed Central

    Charns, Martin P.; Alligood, Elaine C.; Benzer, Justin K.; Burgess, James F.; Mcintosh, Nathalie M.; Burness, Allison; Partin, Melissa R.; Clauser, Steven B.

    2012-01-01

    Background Multilevel intervention research holds the promise of more accurately representing real-life situations and, thus, with proper research design and measurement approaches, facilitating effective and efficient resolution of health-care system challenges. However, taking a multilevel approach to cancer care interventions creates both measurement challenges and opportunities. Methods One-thousand seventy two cancer care articles from 2005 to 2010 were reviewed to examine the state of measurement in the multilevel intervention cancer care literature. Ultimately, 234 multilevel articles, 40 involving cancer care interventions, were identified. Additionally, literature from health services, social psychology, and organizational behavior was reviewed to identify measures that might be useful in multilevel intervention research. Results The vast majority of measures used in multilevel cancer intervention studies were individual level measures. Group-, organization-, and community-level measures were rarely used. Discussion of the independence, validity, and reliability of measures was scant. Discussion Measurement issues may be especially complex when conducting multilevel intervention research. Measurement considerations that are associated with multilevel intervention research include those related to independence, reliability, validity, sample size, and power. Furthermore, multilevel intervention research requires identification of key constructs and measures by level and consideration of interactions within and across levels. Thus, multilevel intervention research benefits from thoughtful theory-driven planning and design, an interdisciplinary approach, and mixed methods measurement and analysis. PMID:22623598

  13. Multigrid solvers and multigrid preconditioners for the solution of variational data assimilation problems

    NASA Astrophysics Data System (ADS)

    Debreu, Laurent; Neveu, Emilie; Simon, Ehouarn; Le Dimet, Francois Xavier; Vidard, Arthur

    2014-05-01

    In order to lower the computational cost of the variational data assimilation process, we investigate the use of multigrid methods to solve the associated optimal control system. On a linear advection equation, we study the impact of the regularization term on the optimal control and the impact of discretization errors on the efficiency of the coarse grid correction step. We show that even if the optimal control problem leads to the solution of an elliptic system, numerical errors introduced by the discretization can alter the success of the multigrid methods. The view of the multigrid iteration as a preconditioner for a Krylov optimization method leads to a more robust algorithm. A scale dependent weighting of the multigrid preconditioner and the usual background error covariance matrix based preconditioner is proposed and brings significant improvements. [1] Laurent Debreu, Emilie Neveu, Ehouarn Simon, François-Xavier Le Dimet and Arthur Vidard, 2014: Multigrid solvers and multigrid preconditioners for the solution of variational data assimilation problems, submitted to QJRMS, http://hal.inria.fr/hal-00874643 [2] Emilie Neveu, Laurent Debreu and François-Xavier Le Dimet, 2011: Multigrid methods and data assimilation - Convergence study and first experiments on non-linear equations, ARIMA, 14, 63-80, http://intranet.inria.fr/international/arima/014/014005.html

  14. Efficient solution of two-sided nonlinear space-fractional diffusion equations using fast Poisson preconditioners

    NASA Astrophysics Data System (ADS)

    Moroney, Timothy; Yang, Qianqian

    2013-08-01

    We develop a fast Poisson preconditioner for the efficient numerical solution of a class of two-sided nonlinear space-fractional diffusion equations in one and two dimensions using the method of lines. Using the shifted Grünwald finite difference formulas to approximate the two-sided (i.e. the left and right Riemann-Liouville) fractional derivatives, the resulting semi-discrete nonlinear systems have dense Jacobian matrices owing to the non-local property of fractional derivatives. We employ a modern initial value problem solver utilising backward differentiation formulas and Jacobian-free Newton-Krylov methods to solve these systems. For efficient performance of the Jacobian-free Newton-Krylov method it is essential to apply an effective preconditioner to accelerate the convergence of the linear iterative solver. The key contribution of our work is to generalise the fast Poisson preconditioner, widely used for integer-order diffusion equations, so that it applies to the two-sided space-fractional diffusion equation. A number of numerical experiments are presented to demonstrate the effectiveness of the preconditioner and the overall solution strategy.

  15. On the multi-level solution algorithm for Markov chains

    SciTech Connect

    Horton, G.

    1996-12-31

    We discuss the recently introduced multi-level algorithm for the steady-state solution of Markov chains. The method is based on the aggregation principle, which is well established in the literature. Recursive application of the aggregation yields a multi-level method which has been shown experimentally to give results significantly faster than the methods currently in use. The algorithm can be reformulated as an algebraic multigrid scheme of Galerkin-full approximation type. The uniqueness of the scheme stems from its solution-dependent prolongation operator which permits significant computational savings in the evaluation of certain terms. This paper describes the modeling of computer systems to derive information on performance, measured typically as job throughput or component utilization, and availability, defined as the proportion of time a system is able to perform a certain function in the presence of component failures and possibly also repairs.

  16. Recent developments in multilevel optimization

    NASA Technical Reports Server (NTRS)

    Vanderplaats, Garret N.; Kim, D.-S.

    1989-01-01

    Recent developments in multilevel optimization are briefly reviewed. The general nature of the multilevel design task, the use of approximations to develop and solve the analysis design task, the structure of the formal multidiscipline optimization problem, a simple cantilevered beam which demonstrates the concepts of multilevel design and the basic mathematical details of the optimization task and the system level are among the topics discussed.

  17. A Richer Understanding of Algebra

    ERIC Educational Resources Information Center

    Foy, Michelle

    2008-01-01

    Algebra is one of those hard-to-teach topics where pupils seem to struggle to see it as more than a set of rules to learn, but this author recently used the software "Grid Algebra" from ATM, which engaged her Year 7 pupils in exploring algebraic concepts for themselves. "Grid Algebra" allows pupils to experience number, pre-algebra, and algebra…

  18. Connecting Algebra and Chemistry.

    ERIC Educational Resources Information Center

    O'Connor, Sean

    2003-01-01

    Correlates high school chemistry curriculum with high school algebra curriculum and makes the case for an integrated approach to mathematics and science instruction. Focuses on process integration. (DDR)

  19. Efficient multilevel eigensolvers with applications to data analysis tasks.

    PubMed

    Kushnir, Dan; Galun, Meirav; Brandt, Achi

    2010-08-01

    Multigrid solvers proved very efficient for solving massive systems of equations in various fields. These solvers are based on iterative relaxation schemes together with the approximation of the "smooth" error function on a coarser level (grid). We present two efficient multilevel eigensolvers for solving massive eigenvalue problems that emerge in data analysis tasks. The first solver, a version of classical algebraic multigrid (AMG), is applied to eigenproblems arising in clustering, image segmentation, and dimensionality reduction, demonstrating an order of magnitude speedup compared to the popular Lanczos algorithm. The second solver is based on a new, much more accurate interpolation scheme. It enables calculating a large number of eigenvectors very inexpensively. PMID:20558872

  20. Teaching Structure in Algebra

    ERIC Educational Resources Information Center

    Merlin, Ethan M.

    2013-01-01

    This article describes how the author has developed tasks for students that address the missed "essence of the matter" of algebraic transformations. Specifically, he has found that having students practice "perceiving" algebraic structure--by naming the "glue" in the expressions, drawing expressions using…

  1. Ready, Set, Algebra?

    ERIC Educational Resources Information Center

    Levy, Alissa Beth

    2012-01-01

    The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this…

  2. Linear-Algebra Programs

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

    1982-01-01

    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  3. Catching Up on Algebra

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2008-01-01

    A popular humorist and avowed mathphobe once declared that in real life, there's no such thing as algebra. Kathie Wilson knows better. Most of the students in her 8th grade class will be thrust into algebra, the definitive course that heralds the beginning of high school mathematics, next school year. The problem: Many of them are about three…

  4. A Primer on Multilevel Modeling

    ERIC Educational Resources Information Center

    Hayes, Andrew F.

    2006-01-01

    Multilevel modeling (MLM) is growing in use throughout the social sciences. Although daunting from a mathematical perspective, MLM is relatively easy to employ once some basic concepts are understood. In this article, I present a primer on MLM, describing some of these principles and applying them to the analysis of a multilevel data set on…

  5. Multilevel Modeling of Social Segregation

    ERIC Educational Resources Information Center

    Leckie, George; Pillinger, Rebecca; Jones, Kelvyn; Goldstein, Harvey

    2012-01-01

    The traditional approach to measuring segregation is based upon descriptive, non-model-based indices. A recently proposed alternative is multilevel modeling. The authors further develop the argument for a multilevel modeling approach by first describing and expanding upon its notable advantages, which include an ability to model segregation at a…

  6. Implementation of Hybrid V-Cycle Multilevel Methods for Mixed Finite Element Systems with Penalty

    NASA Technical Reports Server (NTRS)

    Lai, Chen-Yao G.

    1996-01-01

    The goal of this paper is the implementation of hybrid V-cycle hierarchical multilevel methods for the indefinite discrete systems which arise when a mixed finite element approximation is used to solve elliptic boundary value problems. By introducing a penalty parameter, the perturbed indefinite system can be reduced to a symmetric positive definite system containing the small penalty parameter for the velocity unknown alone. We stabilize the hierarchical spatial decomposition approach proposed by Cai, Goldstein, and Pasciak for the reduced system. We demonstrate that the relative condition number of the preconditioner is bounded uniformly with respect to the penalty parameter, the number of levels and possible jumps of the coefficients as long as they occur only across the edges of the coarsest elements.

  7. Stimulus protocol determines the most computationally efficient preconditioner for the bidomain equations.

    PubMed

    Bernabeu, Miguel O; Pathmanathan, Pras; Pitt-Francis, Joe; Kay, David

    2010-12-01

    The efficient solution of the bidomain equations is a fundamental tool in the field of cardiac electrophysiology. When choosing a finite element discretization of the coupled system, one has to deal with the solution of a large, highly sparse system of linear equations. The conjugate gradient algorithm, along with suitable preconditioning, is the natural choice in this scenario. In this study, we identify the optimal preconditioners with respect to both stimulus protocol and mesh geometry. The results are supported by a comprehensive study of the mesh-dependence properties of several preconditioning techniques found in the literature. Our results show that when only intracellular stimulus is considered, incomplete LU factorization remains a valid choice for current cardiac geometries. However, when extracellular shocks are delivered to tissue, preconditioners that take into account the structure of the system minimize execution time and ensure mesh-independent convergence. PMID:20876005

  8. A sweeping preconditioner for time-harmonic Maxwell's equations with finite elements

    NASA Astrophysics Data System (ADS)

    Tsuji, Paul; Engquist, Bjorn; Ying, Lexing

    2012-05-01

    This paper is concerned with preconditioning the stiffness matrix resulting from finite element discretizations of Maxwell's equations in the high frequency regime. The moving PML sweeping preconditioner, first introduced for the Helmholtz equation on a Cartesian finite difference grid, is generalized to an unstructured mesh with finite elements. The method dramatically reduces the number of GMRES iterations necessary for convergence, resulting in an almost linear complexity solver. Numerical examples including electromagnetic cloaking simulations are presented to demonstrate the efficiency of the proposed method.

  9. On domain decomposition preconditioner of BPS type for finite element discretizations of 3D elliptic equations

    NASA Astrophysics Data System (ADS)

    Korneev, V. G.

    2012-09-01

    BPS is a well known an efficient and rather general domain decomposition Dirichlet-Dirichlet type preconditioner, suggested in the famous series of papers Bramble, Pasciak and Schatz (1986-1989). Since then, it has been serving as the origin for the whole family of domain decomposition Dirichlet-Dirichlet type preconditioners-solvers as for h so hp discretizations of elliptic problems. For its original version, designed for h discretizations, the named authors proved the bound O(1 + log2 H/ h) for the relative condition number under some restricting conditions on the domain decomposition and finite element discretization. Here H/ h is the maximal relation of the characteristic size H of a decomposition subdomain to the mesh parameter h of its discretization. It was assumed that subdomains are images of the reference unite cube by trilinear mappings. Later similar bounds related to h discretizations were proved for more general domain decompositions, defined by means of coarse tetrahedral meshes. These results, accompanied by the development of some special tools of analysis aimed at such type of decompositions, were summarized in the book of Toselli and Widlund (2005). This paper is also confined to h discretizations. We further expand the range of admissible domain decompositions for constructing BPS preconditioners, in which decomposition subdomains can be convex polyhedrons, satisfying some conditions of shape regularity. We prove the bound for the relative condition number with the same dependence on H/ h as in the bound given above. Along the way to this result, we simplify the proof of the so called abstract bound for the relative condition number of the domain decomposition preconditioner. In the part, related to the analysis of the interface sub-problem preconditioning, our technical tools are generalization of those used by Bramble, Pasciak and Schatz.

  10. Semigroups and computer algebra in algebraic structures

    NASA Astrophysics Data System (ADS)

    Bijev, G.

    2012-11-01

    Some concepts in semigroup theory can be interpreted in several algebraic structures. A generalization fA,B,fA,B(X) = A(X')B of the complement operator (') on Boolean matrices is made, where A and B denote any rectangular Boolean matrices. While (') is an isomorphism between Boolean semilattices, the generalized complement operator is homomorphism in the general case. The map fA,B and its general inverse (fA,B)+ have quite similar properties to those in the linear algebra and are useful for solving linear equations in Boolean matrix algebras. For binary relations on a finite set, necessary and sufficient conditions for the equation αξβ = γ to have a solution ξ are proved. A generalization of Green's equivalence relations in semigroups for rectangular matrices is proposed. Relationships between them and the Moore-Penrose inverses are investigated. It is shown how any generalized Green's H-class could be constructed by given its corresponding linear subspaces and converted into a group isomorphic to a linear group. Some information about using computer algebra methods concerning this paper is given.

  11. Lie algebra extensions of current algebras on S3

    NASA Astrophysics Data System (ADS)

    Kori, Tosiaki; Imai, Yuto

    2015-06-01

    An affine Kac-Moody algebra is a central extension of the Lie algebra of smooth mappings from S1 to the complexification of a Lie algebra. In this paper, we shall introduce a central extension of the Lie algebra of smooth mappings from S3 to the quaternization of a Lie algebra and investigate its root space decomposition. We think this extension of current algebra might give a mathematical tool for four-dimensional conformal field theory as Kac-Moody algebras give it for two-dimensional conformal field theory.

  12. Leibniz algebras associated with representations of filiform Lie algebras

    NASA Astrophysics Data System (ADS)

    Ayupov, Sh. A.; Camacho, L. M.; Khudoyberdiyev, A. Kh.; Omirov, B. A.

    2015-12-01

    In this paper we investigate Leibniz algebras whose quotient Lie algebra is a naturally graded filiform Lie algebra nn,1. We introduce a Fock module for the algebra nn,1 and provide classification of Leibniz algebras L whose corresponding Lie algebra L / I is the algebra nn,1 with condition that the ideal I is a Fock nn,1-module, where I is the ideal generated by squares of elements from L. We also consider Leibniz algebras with corresponding Lie algebra nn,1 and such that the action I ×nn,1 → I gives rise to a minimal faithful representation of nn,1. The classification up to isomorphism of such Leibniz algebras is given for the case of n = 4.

  13. Coreflections in Algebraic Quantum Logic

    NASA Astrophysics Data System (ADS)

    Jacobs, Bart; Mandemaker, Jorik

    2012-07-01

    Various generalizations of Boolean algebras are being studied in algebraic quantum logic, including orthomodular lattices, orthomodular po-sets, orthoalgebras and effect algebras. This paper contains a systematic study of the structure in and between categories of such algebras. It does so via a combination of totalization (of partially defined operations) and transfer of structure via coreflections.

  14. Numerical experiments with applying approximate LU-factorizations as preconditioners for solving SLAEs with coefficient matrices from the "Sparse Matrix Market"

    NASA Astrophysics Data System (ADS)

    Georgiev, K.; Zlatev, Z.

    2012-10-01

    The solution of systems of linear algebraic equations (SLAEs) is very often the most time-consuming part of the computational process during the treatment of the original problems, because these systems can be very large (containing up to many millions of equations). It is, therefore, important to select fast, robust and reliable methods for the solution of SLAEs when large applications are to be run, also in the case where fast modern computers are available. Since the coefficient matrices of the systems are normally sparse (i.e., most of their elements are zeros), the first requirement is to exploit efficiently the sparsity. However, this is normally not sufficient when the systems are very large. The computation of preconditioners based on approximate LU-factorizations and their use in the efforts to increase further the efficiency of the calculations will be discussed in this paper. Computational experiments based on comprehensive comparisons of many numerical results that are obtained by using ten well-known methods for solving SLAEs (the direct Gaussian elimination and nine iterative methods) when the coefficient matrices are chosen from the "Sparse Matrix Market" are reported in this paper. Most of the methods are preconditioned Krylov sub-space algorithms.

  15. Multilevel DC link inverter

    DOEpatents

    Su, Gui-Jia

    2003-06-10

    A multilevel DC link inverter and method for improving torque response and current regulation in permanent magnet motors and switched reluctance motors having a low inductance includes a plurality of voltage controlled cells connected in series for applying a resulting dc voltage comprised of one or more incremental dc voltages. The cells are provided with switches for increasing the resulting applied dc voltage as speed and back EMF increase, while limiting the voltage that is applied to the commutation switches to perform PWM or dc voltage stepping functions, so as to limit current ripple in the stator windings below an acceptable level, typically 5%. Several embodiments are disclosed including inverters using IGBT's, inverters using thyristors. All of the inverters are operable in both motoring and regenerating modes.

  16. Developing Algebraic Thinking.

    ERIC Educational Resources Information Center

    Alejandre, Suzanne

    2002-01-01

    Presents a teaching experience that resulted in students getting to a point of full understanding of the kinesthetic activity and the algebra behind it. Includes a lesson plan for a traffic jam activity. (KHR)

  17. Algebraic integrability: a survey.

    PubMed

    Vanhaecke, Pol

    2008-03-28

    We give a concise introduction to the notion of algebraic integrability. Our exposition is based on examples and phenomena, rather than on detailed proofs of abstract theorems. We mainly focus on algebraic integrability in the sense of Adler-van Moerbeke, where the fibres of the momentum map are affine parts of Abelian varieties; as it turns out, most examples from classical mechanics are of this form. Two criteria are given for such systems (Kowalevski-Painlevé and Lyapunov) and each is illustrated in one example. We show in the case of a relatively simple example how one proves algebraic integrability, starting from the differential equations for the integrable vector field. For Hamiltonian systems that are algebraically integrable in the generalized sense, two examples are given, which illustrate the non-compact analogues of Abelian varieties which typically appear in such systems. PMID:17588863

  18. Algebraic Semantics for Narrative

    ERIC Educational Resources Information Center

    Kahn, E.

    1974-01-01

    This paper uses discussion of Edmund Spenser's "The Faerie Queene" to present a theoretical framework for explaining the semantics of narrative discourse. The algebraic theory of finite automata is used. (CK)

  19. On the relation between traditional iterative methods and modern multilevel/domain decomposition methods

    SciTech Connect

    Griebel, M.

    1994-12-31

    In recent years, it has turned out that many modern iterative algorithms (multigrid schemes, multilevel preconditioners, domain decomposition methods etc.) for solving problems resulting from the discretization of PDEs can be interpreted as additive (Jacobi-like) or multiplicative (Gauss-Seidel-like) subspace correction methods. The key to their analysis is the study of certain metric properties of the underlying splitting of the discretization space V into a sum of subspaces V{sub j}, j = 1{hor_ellipsis}, J resp. of the variational problem on V into auxiliary problems on these subspaces. Here, the author proposes a modified approach to the abstract convergence theory of these additive and multiplicative Schwarz iterative methods, that makes the relation to traditional iteration methods more explicit. To this end he introduces the enlarged Hilbert space V = V{sub 0} x {hor_ellipsis} x V{sub j} which is nothing else but the usual construction of the Cartesian product of the Hilbert spaces V{sub j} and use it now in the discretization process. This results in an enlarged, semidefinite linear system to be solved instead of the usual definite system. Then, modern multilevel methods as well as domain decomposition methods simplify to just traditional (block-) iteration methods. Now, the convergence analysis can be carried out directly for these traditional iterations on the enlarged system, making convergence proofs of multilevel and domain decomposition methods more clear, or, at least, more classical. The terms that enter the convergence proofs are exactly the ones of the classical iterative methods. It remains to estimate them properly. The convergence proof itself follow basically line by line the old proofs of the respective traditional iterative methods. Additionally, new multilevel/domain decomposition methods are constructed straightforwardly by now applying just other old and well known traditional iterative methods to the enlarged system.

  20. Aprepro - Algebraic Preprocessor

    Energy Science and Technology Software Center (ESTSC)

    2005-08-01

    Aprepro is an algebraic preprocessor that reads a file containing both general text and algebraic, string, or conditional expressions. It interprets the expressions and outputs them to the output file along witht the general text. Aprepro contains several mathematical functions, string functions, and flow control constructs. In addition, functions are included that, with some additional files, implement a units conversion system and a material database lookup system.

  1. Geometric Algebra for Physicists

    NASA Astrophysics Data System (ADS)

    Doran, Chris; Lasenby, Anthony

    2007-11-01

    Preface; Notation; 1. Introduction; 2. Geometric algebra in two and three dimensions; 3. Classical mechanics; 4. Foundations of geometric algebra; 5. Relativity and spacetime; 6. Geometric calculus; 7. Classical electrodynamics; 8. Quantum theory and spinors; 9. Multiparticle states and quantum entanglement; 10. Geometry; 11. Further topics in calculus and group theory; 12. Lagrangian and Hamiltonian techniques; 13. Symmetry and gauge theory; 14. Gravitation; Bibliography; Index.

  2. Covariant deformed oscillator algebras

    NASA Technical Reports Server (NTRS)

    Quesne, Christiane

    1995-01-01

    The general form and associativity conditions of deformed oscillator algebras are reviewed. It is shown how the latter can be fulfilled in terms of a solution of the Yang-Baxter equation when this solution has three distinct eigenvalues and satisfies a Birman-Wenzl-Murakami condition. As an example, an SU(sub q)(n) x SU(sub q)(m)-covariant q-bosonic algebra is discussed in some detail.

  3. Enhanced multi-level block ILU preconditioning strategies for general sparse linear systems

    NASA Astrophysics Data System (ADS)

    Saad, Yousef; Zhang, Jun

    2001-05-01

    This paper introduces several strategies to deal with pivot blocks in multi-level block incomplete LU factorization (BILUM) preconditioning techniques. These techniques are aimed at increasing the robustness and controlling the amount of fill-ins of BILUM for solving large sparse linear systems when large-size blocks are used to form block-independent set. Techniques proposed in this paper include double-dropping strategies, approximate singular-value decomposition, variable size blocks and use of an arrowhead block submatrix. We point out the advantages and disadvantages of these strategies and discuss their efficient implementations. Numerical experiments are conducted to show the usefulness of the new techniques in dealing with hard-to-solve problems arising from computational fluid dynamics. In addition, we discuss the relation between multi-level ILU preconditioning methods and algebraic multi-level methods.

  4. The Algebraic Way

    NASA Astrophysics Data System (ADS)

    Hiley, B. J.

    In this chapter, we examine in detail the non-commutative symplectic algebra underlying quantum dynamics. By using this algebra, we show that it contains both the Weyl-von Neumann and the Moyal quantum algebras. The latter contains the Wigner distribution as the kernel of the density matrix. The underlying non-commutative geometry can be projected into either of two Abelian spaces, so-called `shadow phase spaces'. One of these is the phase space of Bohmian mechanics, showing that it is a fragment of the basic underlying algebra. The algebraic approach is much richer, giving rise to two fundamental dynamical time development equations which reduce to the Liouville equation and the Hamilton-Jacobi equation in the classical limit. They also include the Schrödinger equation and its wave-function, showing that these features are a partial aspect of the more general non-commutative structure. We discuss briefly the properties of this more general mathematical background from which the non-commutative symplectic algebra emerges.

  5. DG Poisson algebra and its universal enveloping algebra

    NASA Astrophysics Data System (ADS)

    Lü, JiaFeng; Wang, XingTing; Zhuang, GuangBin

    2016-05-01

    In this paper, we introduce the notions of differential graded (DG) Poisson algebra and DG Poisson module. Let $A$ be any DG Poisson algebra. We construct the universal enveloping algebra of $A$ explicitly, which is denoted by $A^{ue}$. We show that $A^{ue}$ has a natural DG algebra structure and it satisfies certain universal property. As a consequence of the universal property, it is proved that the category of DG Poisson modules over $A$ is isomorphic to the category of DG modules over $A^{ue}$. Furthermore, we prove that the notion of universal enveloping algebra $A^{ue}$ is well-behaved under opposite algebra and tensor product of DG Poisson algebras. Practical examples of DG Poisson algebras are given throughout the paper including those arising from differential geometry and homological algebra.

  6. Multilevel techniques for nonelliptic problems

    NASA Technical Reports Server (NTRS)

    Jespersen, D. C.

    1981-01-01

    Multigrid and multilevel methods are extended to the solution of nonelliptic problems. A framework for analyzing these methods is established. A simple nonelliptic problem is given, and it is shown how a multilevel technique can be used for its solution. Emphasis is on smoothness properties of eigenvectors and attention is drawn to the possibility of conditioning the eigensystem so that eigenvectors have the desired smoothness properties.

  7. Multilevel Methods for the Poisson-Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Holst, Michael Jay

    We consider the numerical solution of the Poisson -Boltzmann equation (PBE), a three-dimensional second order nonlinear elliptic partial differential equation arising in biophysics. This problem has several interesting features impacting numerical algorithms, including discontinuous coefficients representing material interfaces, rapid nonlinearities, and three spatial dimensions. Similar equations occur in various applications, including nuclear physics, semiconductor physics, population genetics, astrophysics, and combustion. In this thesis, we study the PBE, discretizations, and develop multilevel-based methods for approximating the solutions of these types of equations. We first outline the physical model and derive the PBE, which describes the electrostatic potential of a large complex biomolecule lying in a solvent. We next study the theoretical properties of the linearized and nonlinear PBE using standard function space methods; since this equation has not been previously studied theoretically, we provide existence and uniqueness proofs in both the linearized and nonlinear cases. We also analyze box-method discretizations of the PBE, establishing several properties of the discrete equations which are produced. In particular, we show that the discrete nonlinear problem is well-posed. We study and develop linear multilevel methods for interface problems, based on algebraic enforcement of Galerkin or variational conditions, and on coefficient averaging procedures. Using a stencil calculus, we show that in certain simplified cases the two approaches are equivalent, with different averaging procedures corresponding to different prolongation operators. We also develop methods for nonlinear problems based on a nonlinear multilevel method, and on linear multilevel methods combined with a globally convergent damped-inexact-Newton method. We derive a necessary and sufficient descent condition for the inexact-Newton direction, enabling the development of extremely

  8. Multilevel fusion exploitation

    NASA Astrophysics Data System (ADS)

    Lindberg, Perry C.; Dasarathy, Belur V.; McCullough, Claire L.

    1996-06-01

    This paper describes a project that was sponsored by the U.S. Army Space and Strategic Defense Command (USASSDC) to develop, test, and demonstrate sensor fusion algorithms for target recognition. The purpose of the project was to exploit the use of sensor fusion at all levels (signal, feature, and decision levels) and all combinations to improve target recognition capability against tactical ballistic missile (TBM) targets. These algorithms were trained with simulated radar signatures to accurately recognize selected TBM targets. The simulated signatures represent measurements made by two radars (S-band and X- band) with the targets at a variety of aspect and roll angles. Two tests were conducted: one with simulated signatures collected at angles different from those in the training database and one using actual test data. The test results demonstrate a high degree of recognition accuracy. This paper describes the training and testing techniques used; shows the fusion strategy employed; and illustrates the advantages of exploiting multi-level fusion.

  9. Multilevel turbulence simulations

    SciTech Connect

    Tziperman, E.

    1994-12-31

    The authors propose a novel method for the simulation of turbulent flows, that is motivated by and based on the Multigrid (MG) formalism. The method, called Multilevel Turbulence Simulations (MTS), is potentially more efficient and more accurate than LES. In many physical problems one is interested in the effects of the small scales on the larger ones, or in a typical realization of the flow, and not in the detailed time history of each small scale feature. MTS takes advantage of the fact that the detailed simulation of small scales is not needed at all times, in order to make the calculation significantly more efficient, while accurately accounting for the effects of the small scales on the larger scale of interest. In MTS, models of several resolutions are used to represent the turbulent flow. The model equations in each coarse level incorporate a closure term roughly corresponding to the tau correction in the MG formalism that accounts for the effects of the unresolvable scales on that grid. The finer resolution grids are used only a small portion of the simulation time in order to evaluate the closure terms for the coarser grids, while the coarse resolution grids are then used to accurately and efficiently calculate the evolution of the larger scales. The methods efficiency relative to direct simulations is of the order of the ratio of required integration time to the smallest eddies turnover time, potentially resulting in orders of magnitude improvement for a large class of turbulence problems.

  10. A parallel multigrid-based preconditioner for the 3D heterogeneous high-frequency Helmholtz equation

    SciTech Connect

    Riyanti, C.D. . E-mail: C.D.Riyanti@tudelft.nl; Kononov, A.; Erlangga, Y.A.; Vuik, C.; Oosterlee, C.W.; Plessix, R.-E.; Mulder, W.A.

    2007-05-20

    We investigate the parallel performance of an iterative solver for 3D heterogeneous Helmholtz problems related to applications in seismic wave propagation. For large 3D problems, the computation is no longer feasible on a single processor, and the memory requirements increase rapidly. Therefore, parallelization of the solver is needed. We employ a complex shifted-Laplace preconditioner combined with the Bi-CGSTAB iterative method and use a multigrid method to approximate the inverse of the resulting preconditioning operator. A 3D multigrid method with 2D semi-coarsening is employed. We show numerical results for large problems arising in geophysical applications.

  11. An MPI implementation of the SPAI preconditioner on the T3E

    SciTech Connect

    Barnard, Stephen T.; Bernardo, Luis M.; Simon, Horst D.

    1997-09-08

    The authors describe and test spai_1.1, a parallel MPIimplementation of the sparse approximate inverse (SPAI) preconditioner.They show that SPAI can be very effective for solving a set of very largeand difficult problems on a Cray T3E. The results clearly show the valueof SPAI (and approximate inverse methods in general) as the viablealternative to ILU-type methods when facing very large and difficultproblems. The authorsstrengthen this conclusion by showing that spai_1.1also has very good scaling behavior.

  12. On Griess Algebras

    NASA Astrophysics Data System (ADS)

    Roitman, Michael

    2008-08-01

    In this paper we prove that for any commutative (but in general non-associative) algebra A with an invariant symmetric non-degenerate bilinear form there is a graded vertex algebra V = V0 Å V2 Å V3 Å ¼, such that dim V0 = 1 and V2 contains A. We can choose V so that if A has a unit e, then 2e is the Virasoro element of V, and if G is a finite group of automorphisms of A, then G acts on V as well. In addition, the algebra V can be chosen with a non-degenerate invariant bilinear form, in which case it is simple.

  13. Adaptive Algebraic Multigrid Methods

    SciTech Connect

    Brezina, M; Falgout, R; MacLachlan, S; Manteuffel, T; McCormick, S; Ruge, J

    2004-04-09

    Our ability to simulate physical processes numerically is constrained by our ability to solve the resulting linear systems, prompting substantial research into the development of multiscale iterative methods capable of solving these linear systems with an optimal amount of effort. Overcoming the limitations of geometric multigrid methods to simple geometries and differential equations, algebraic multigrid methods construct the multigrid hierarchy based only on the given matrix. While this allows for efficient black-box solution of the linear systems associated with discretizations of many elliptic differential equations, it also results in a lack of robustness due to assumptions made on the near-null spaces of these matrices. This paper introduces an extension to algebraic multigrid methods that removes the need to make such assumptions by utilizing an adaptive process. The principles which guide the adaptivity are highlighted, as well as their application to algebraic multigrid solution of certain symmetric positive-definite linear systems.

  14. Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction

    ERIC Educational Resources Information Center

    Wasserman, Nicholas H.

    2016-01-01

    This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…

  15. Computer Program For Linear Algebra

    NASA Technical Reports Server (NTRS)

    Krogh, F. T.; Hanson, R. J.

    1987-01-01

    Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.

  16. Algebraic geometric codes

    NASA Technical Reports Server (NTRS)

    Shahshahani, M.

    1991-01-01

    The performance characteristics are discussed of certain algebraic geometric codes. Algebraic geometric codes have good minimum distance properties. On many channels they outperform other comparable block codes; therefore, one would expect them eventually to replace some of the block codes used in communications systems. It is suggested that it is unlikely that they will become useful substitutes for the Reed-Solomon codes used by the Deep Space Network in the near future. However, they may be applicable to systems where the signal to noise ratio is sufficiently high so that block codes would be more suitable than convolutional or concatenated codes.

  17. Extended conformal algebras

    NASA Astrophysics Data System (ADS)

    Bouwknegt, Peter

    1988-06-01

    We investigate extensions of the Virasoro algebra by a single primary field of integer or halfinteger conformal dimension Δ. We argue that for vanishing structure constant CΔΔΔ, the extended conformal algebra can only be associative for a generic c-value if Δ=1/2, 1, 3/2, 2 or 3. For the other Δ<=5 we compute the finite set of allowed c-values and identify the rational solutions. The case CΔΔΔ≠0 is also briefly discussed. I would like to thank Kareljan Schoutens for discussions and Sander Bais for a careful reading of the manuscript.

  18. Teaching Arithmetic and Algebraic Expressions

    ERIC Educational Resources Information Center

    Subramaniam, K.; Banerjee, Rakhi

    2004-01-01

    A teaching intervention study was conducted with sixth grade students to explore the interconnections between students' growing understanding of arithmetic expressions and beginning algebra. Three groups of students were chosen, with two groups receiving instruction in arithmetic and algebra, and one group in algebra without arithmetic. Students…

  19. Assessing Elementary Algebra with STACK

    ERIC Educational Resources Information Center

    Sangwin, Christopher J.

    2007-01-01

    This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…

  20. Spinors in the hyperbolic algebra

    NASA Astrophysics Data System (ADS)

    Ulrych, S.

    2006-01-01

    The three-dimensional universal complex Clifford algebra Cbar3,0 is used to represent relativistic vectors in terms of paravectors. In analogy to the Hestenes spacetime approach spinors are introduced in an algebraic form. This removes the dependance on an explicit matrix representation of the algebra.

  1. Algebraic Artful Aids.

    ERIC Educational Resources Information Center

    Glick, David

    1995-01-01

    Presents a technique that helps students concentrate more on the science and less on the mechanics of algebra while dealing with introductory physics formulas. Allows the teacher to do complex problems at a lower level and not be too concerned about the mathematical abilities of the students. (JRH)

  2. From Arithmetic to Algebra

    ERIC Educational Resources Information Center

    Ketterlin-Geller, Leanne R.; Jungjohann, Kathleen; Chard, David J.; Baker, Scott

    2007-01-01

    Much of the difficulty that students encounter in the transition from arithmetic to algebra stems from their early learning and understanding of arithmetic. Too often, students learn about the whole number system and the operations that govern that system as a set of procedures to solve addition, subtraction, multiplication, and division problems.…

  3. Computer Algebra versus Manipulation

    ERIC Educational Resources Information Center

    Zand, Hossein; Crowe, David

    2004-01-01

    In the UK there is increasing concern about the lack of skill in algebraic manipulation that is evident in students entering mathematics courses at university level. In this note we discuss how the computer can be used to ameliorate some of the problems. We take as an example the calculations needed in three dimensional vector analysis in polar…

  4. The Power of Algebra.

    ERIC Educational Resources Information Center

    Boiteau, Denise; Stansfield, David

    This document describes mathematical programs on the basic concepts of algebra produced by Louisiana Public Broadcasting. Programs included are: (1) "Inverse Operations"; (2) "The Order of Operations"; (3) "Basic Properties" (addition and multiplication of numbers and variables); (4) "The Positive and Negative Numbers"; and (5) "Using Positive…

  5. Thinking Visually about Algebra

    ERIC Educational Resources Information Center

    Baroudi, Ziad

    2015-01-01

    Many introductions to algebra in high school begin with teaching students to generalise linear numerical patterns. This article argues that this approach needs to be changed so that students encounter variables in the context of modelling visual patterns so that the variables have a meaning. The article presents sample classroom activities,…

  6. Pre-Algebra.

    ERIC Educational Resources Information Center

    Kennedy, John

    This text provides information and exercises on arithmetic topics which should be mastered before a student enrolls in an Elementary Algebra course. Section I describes the fundamental properties and relationships of whole numbers, focusing on basic operations, divisibility tests, exponents, order of operations, prime numbers, greatest common…

  7. Computers in Abstract Algebra

    ERIC Educational Resources Information Center

    Nwabueze, Kenneth K.

    2004-01-01

    The current emphasis on flexible modes of mathematics delivery involving new information and communication technology (ICT) at the university level is perhaps a reaction to the recent change in the objectives of education. Abstract algebra seems to be one area of mathematics virtually crying out for computer instructional support because of the…

  8. Multilevel codes and multistage decoding

    NASA Astrophysics Data System (ADS)

    Calderbank, A. R.

    1989-03-01

    Imai and Hirakawa have proposed (1977) a multilevel coding method based on binary block codes that admits a staged decoding procedure. Here the coding method is extended to coset codes and it is shown how to calculate minimum squared distance and path multiplicity in terms of the norms and multiplicities of the different cosets. The multilevel structure allows the redundancy in the coset selection procedure to be allocated efficiently among the different levels. It also allows the use of suboptimal multistage decoding procedures that have performance/complexity advantages over maximum-likelihood decoding.

  9. Multilevel Ensemble Transform Particle Filtering

    NASA Astrophysics Data System (ADS)

    Gregory, Alastair; Cotter, Colin; Reich, Sebastian

    2016-04-01

    This presentation extends the Multilevel Monte Carlo variance reduction technique to nonlinear filtering. In particular, Multilevel Monte Carlo is applied to a certain variant of the particle filter, the Ensemble Transform Particle Filter (ETPF). A key aspect is the use of optimal transport methods to re-establish correlation between coarse and fine ensembles after resampling; this controls the variance of the estimator. Numerical examples present a proof of concept of the effectiveness of the proposed method, demonstrating significant computational cost reductions (relative to the single-level ETPF counterpart) in the propagation of ensembles.

  10. A General Multilevel SEM Framework for Assessing Multilevel Mediation

    ERIC Educational Resources Information Center

    Preacher, Kristopher J.; Zyphur, Michael J.; Zhang, Zhen

    2010-01-01

    Several methods for testing mediation hypotheses with 2-level nested data have been proposed by researchers using a multilevel modeling (MLM) paradigm. However, these MLM approaches do not accommodate mediation pathways with Level-2 outcomes and may produce conflated estimates of between- and within-level components of indirect effects. Moreover,…

  11. XML algebras for data mining

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Yao, JingTao

    2004-04-01

    The XML is a new standard for data representation and exchange on the Internet. There are studies on XML query languages as well as XML algebras in literature. However, attention has not been paid to research on XML algebras for data mining due to partially the fact that there is no widely accepted definition of XML mining tasks. This paper tries to examine the XML mining tasks and provide guidelines to design XML algebras for data mining. Some summarization and comparison have been done to existing XML algebras. We argue that by adding additional operators for mining tasks, XML algebras may work well for data mining with XML documents.

  12. On Dunkl angular momenta algebra

    NASA Astrophysics Data System (ADS)

    Feigin, Misha; Hakobyan, Tigran

    2015-11-01

    We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl( N ) version of the subalge-bra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.

  13. Algebraic connectivity and graph robustness.

    SciTech Connect

    Feddema, John Todd; Byrne, Raymond Harry; Abdallah, Chaouki T.

    2009-07-01

    Recent papers have used Fiedler's definition of algebraic connectivity to show that network robustness, as measured by node-connectivity and edge-connectivity, can be increased by increasing the algebraic connectivity of the network. By the definition of algebraic connectivity, the second smallest eigenvalue of the graph Laplacian is a lower bound on the node-connectivity. In this paper we show that for circular random lattice graphs and mesh graphs algebraic connectivity is a conservative lower bound, and that increases in algebraic connectivity actually correspond to a decrease in node-connectivity. This means that the networks are actually less robust with respect to node-connectivity as the algebraic connectivity increases. However, an increase in algebraic connectivity seems to correlate well with a decrease in the characteristic path length of these networks - which would result in quicker communication through the network. Applications of these results are then discussed for perimeter security.

  14. A domain decomposition method of stochastic PDEs: An iterative solution techniques using a two-level scalable preconditioner

    SciTech Connect

    Subber, Waad Sarkar, Abhijit

    2014-01-15

    Recent advances in high performance computing systems and sensing technologies motivate computational simulations with extremely high resolution models with capabilities to quantify uncertainties for credible numerical predictions. A two-level domain decomposition method is reported in this investigation to devise a linear solver for the large-scale system in the Galerkin spectral stochastic finite element method (SSFEM). In particular, a two-level scalable preconditioner is introduced in order to iteratively solve the large-scale linear system in the intrusive SSFEM using an iterative substructuring based domain decomposition solver. The implementation of the algorithm involves solving a local problem on each subdomain that constructs the local part of the preconditioner and a coarse problem that propagates information globally among the subdomains. The numerical and parallel scalabilities of the two-level preconditioner are contrasted with the previously developed one-level preconditioner for two-dimensional flow through porous media and elasticity problems with spatially varying non-Gaussian material properties. A distributed implementation of the parallel algorithm is carried out using MPI and PETSc parallel libraries. The scalabilities of the algorithm are investigated in a Linux cluster.

  15. Multilevel Modeling with Correlated Effects

    ERIC Educational Resources Information Center

    Kim, Jee-Seon; Frees, Edward W.

    2007-01-01

    When there exist omitted effects, measurement error, and/or simultaneity in multilevel models, explanatory variables may be correlated with random components, and standard estimation methods do not provide consistent estimates of model parameters. This paper introduces estimators that are consistent under such conditions. By employing generalized…

  16. Multilevel algorithms for nonlinear optimization

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia; Dennis, J. E., Jr.

    1994-01-01

    Multidisciplinary design optimization (MDO) gives rise to nonlinear optimization problems characterized by a large number of constraints that naturally occur in blocks. We propose a class of multilevel optimization methods motivated by the structure and number of constraints and by the expense of the derivative computations for MDO. The algorithms are an extension to the nonlinear programming problem of the successful class of local Brown-Brent algorithms for nonlinear equations. Our extensions allow the user to partition constraints into arbitrary blocks to fit the application, and they separately process each block and the objective function, restricted to certain subspaces. The methods use trust regions as a globalization strategy, and they have been shown to be globally convergent under reasonable assumptions. The multilevel algorithms can be applied to all classes of MDO formulations. Multilevel algorithms for solving nonlinear systems of equations are a special case of the multilevel optimization methods. In this case, they can be viewed as a trust-region globalization of the Brown-Brent class.

  17. Generalized Multilevel Structural Equation Modeling

    ERIC Educational Resources Information Center

    Rabe-Hesketh, Sophia; Skrondal, Anders; Pickles, Andrew

    2004-01-01

    A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent…

  18. Quartic Poisson algebras and quartic associative algebras and realizations as deformed oscillator algebras

    SciTech Connect

    Marquette, Ian

    2013-07-15

    We introduce the most general quartic Poisson algebra generated by a second and a fourth order integral of motion of a 2D superintegrable classical system. We obtain the corresponding quartic (associative) algebra for the quantum analog, extend Daskaloyannis construction obtained in context of quadratic algebras, and also obtain the realizations as deformed oscillator algebras for this quartic algebra. We obtain the Casimir operator and discuss how these realizations allow to obtain the finite-dimensional unitary irreducible representations of quartic algebras and obtain algebraically the degenerate energy spectrum of superintegrable systems. We apply the construction and the formula obtained for the structure function on a superintegrable system related to type I Laguerre exceptional orthogonal polynomials introduced recently.

  19. Algebraic Mean Field Theory

    NASA Astrophysics Data System (ADS)

    Dankova, T. S.; Rosensteel, G.

    1998-10-01

    Mean field theory has an unexpected group theoretic mathematical foundation. Instead of representation theory which applies to most group theoretic quantum models, Hartree-Fock and Hartree-Fock-Bogoliubov have been formulated in terms of coadjoint orbits for the groups U(n) and O(2n). The general theory of mean fields is formulated for an arbitrary Lie algebra L of fermion operators. The moment map provides the correspondence between the Hilbert space of microscopic wave functions and the dual space L^* of densities. The coadjoint orbits of the group in the dual space are phase spaces on which time-dependent mean field theory is equivalent to a classical Hamiltonian dynamical system. Indeed it forms a finite-dimensional Lax system. The mean field theories for the Elliott SU(3) and symplectic Sp(3,R) algebras are constructed explicitly in the coadjoint orbit framework.

  20. The Algebra Artist

    ERIC Educational Resources Information Center

    Beigie, Darin

    2014-01-01

    Most people who are attracted to STEM-related fields are drawn not by a desire to take mathematics tests but to create things. The opportunity to create an algebra drawing gives students a sense of ownership and adventure that taps into the same sort of energy that leads a young person to get lost in reading a good book, building with Legos®,…

  1. Algebraic Multigrid Benchmark

    SciTech Connect

    2013-05-06

    AMG2013 is a parallel algebraic multigrid solver for linear systems arising from problems on unstructured grids. It has been derived directly from the Boomer AMG solver in the hypre library, a large linear solvers library that is being developed in the Center for Applied Scientific Computing (CASC) at LLNL. The driver provided in the benchmark can build various test problems. The default problem is a Laplace type problem on an unstructured domain with various jumps and an anisotropy in one part.

  2. Vertex Algebras, Kac-Moody Algebras, and the Monster

    NASA Astrophysics Data System (ADS)

    Borcherds, Richard E.

    1986-05-01

    It is known that the adjoint representation of any Kac-Moody algebra A can be identified with a subquotient of a certain Fock space representation constructed from the root lattice of A. I define a product on the whole of the Fock space that restricts to the Lie algebra product on this subquotient. This product (together with a infinite number of other products) is constructed using a generalization of vertex operators. I also construct an integral form for the universal enveloping algebra of any Kac-Moody algebra that can be used to define Kac-Moody groups over finite fields, some new irreducible integrable representations, and a sort of affinization of any Kac-Moody algebra. The ``Moonshine'' representation of the Monster constructed by Frenkel and others also has products like the ones constructed for Kac-Moody algebras, one of which extends the Griess product on the 196884-dimensional piece to the whole representation.

  3. The tensor hierarchy algebra

    NASA Astrophysics Data System (ADS)

    Palmkvist, Jakob

    2014-01-01

    We introduce an infinite-dimensional Lie superalgebra which is an extension of the U-duality Lie algebra of maximal supergravity in D dimensions, for 3 ⩽ D ⩽ 7. The level decomposition with respect to the U-duality Lie algebra gives exactly the tensor hierarchy of representations that arises in gauge deformations of the theory described by an embedding tensor, for all positive levels p. We prove that these representations are always contained in those coming from the associated Borcherds-Kac-Moody superalgebra, and we explain why some of the latter representations are not included in the tensor hierarchy. The most remarkable feature of our Lie superalgebra is that it does not admit a triangular decomposition like a (Borcherds-)Kac-Moody (super)algebra. Instead the Hodge duality relations between level p and D - 2 - p extend to negative p, relating the representations at the first two negative levels to the supersymmetry and closure constraints of the embedding tensor.

  4. Priority in Process Algebras

    NASA Technical Reports Server (NTRS)

    Cleaveland, Rance; Luettgen, Gerald; Natarajan, V.

    1999-01-01

    This paper surveys the semantic ramifications of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. These enriched formalisms allow one to model system features such as interrupts, prioritized choice, or real-time behavior. Approaches to priority in process algebras can be classified according to whether the induced notion of preemption on transitions is global or local and whether priorities are static or dynamic. Early work in the area concentrated on global pre-emption and static priorities and led to formalisms for modeling interrupts and aspects of real-time, such as maximal progress, in centralized computing environments. More recent research has investigated localized notions of pre-emption in which the distribution of systems is taken into account, as well as dynamic priority approaches, i.e., those where priority values may change as systems evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables the efficient encoding of real-time semantics. Technically, this paper studies the different models of priorities by presenting extensions of Milner's Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of global and local pre- emption. In each case the operational semantics of CCS is modified appropriately, behavioral theories based on strong and weak bisimulation are given, and related approaches for different process-algebraic settings are discussed.

  5. The tensor hierarchy algebra

    SciTech Connect

    Palmkvist, Jakob

    2014-01-15

    We introduce an infinite-dimensional Lie superalgebra which is an extension of the U-duality Lie algebra of maximal supergravity in D dimensions, for 3 ⩽ D ⩽ 7. The level decomposition with respect to the U-duality Lie algebra gives exactly the tensor hierarchy of representations that arises in gauge deformations of the theory described by an embedding tensor, for all positive levels p. We prove that these representations are always contained in those coming from the associated Borcherds-Kac-Moody superalgebra, and we explain why some of the latter representations are not included in the tensor hierarchy. The most remarkable feature of our Lie superalgebra is that it does not admit a triangular decomposition like a (Borcherds-)Kac-Moody (super)algebra. Instead the Hodge duality relations between level p and D − 2 − p extend to negative p, relating the representations at the first two negative levels to the supersymmetry and closure constraints of the embedding tensor.

  6. A multigrid preconditioner and automatic differentiation for non-equilibrium radiation diffusion problems

    SciTech Connect

    Glowinski, Roland . E-mail: roland@math.uh.edu; Toivanen, Jari . E-mail: jatoivan@ncsu.edu

    2005-07-20

    We study the efficient solution of non-equilibrium radiation diffusion problems. An implicit time discretization leads to the solution of systems of non-linear equations which couple radiation energy and material temperature. We consider the implicit Euler method, the mid-point scheme, the two-step backward differentiation formula, and a two-stage implicit Runge-Kutta method for time discretization. We employ a Newton-Krylov method in the solution of arising non-linear problems. We describe the computation of the Jacobian matrix for Newton's method using automatic differentiation based on the operator overloading in Fortran 90. For GMRES iterations, we propose a simple multigrid preconditioner applied directly to the coupled linearized problems. We demonstrate the efficiency and scalability of the proposed solution procedure by solving one-dimensional and two-dimensional model problems.

  7. Wide-angle full-vector beam propagation method based on an alternating direction implicit preconditioner.

    PubMed

    Chui, Siu Lit; Lu, Ya Yan

    2004-03-01

    Wide-angle full-vector beam propagation methods (BPMs) for three-dimensional wave-guiding structures can be derived on the basis of rational approximants of a square root operator or its exponential (i.e., the one-way propagator). While the less accurate BPM based on the slowly varying envelope approximation can be efficiently solved by the alternating direction implicit (ADI) method, the wide-angle variants involve linear systems that are more difficult to handle. We present an efficient solver for these linear systems that is based on a Krylov subspace method with an ADI preconditioner. The resulting wide-angle full-vector BPM is used to simulate the propagation of wave fields in a Y branch and a taper. PMID:15005407

  8. Compactly Generated de Morgan Lattices, Basic Algebras and Effect Algebras

    NASA Astrophysics Data System (ADS)

    Paseka, Jan; Riečanová, Zdenka

    2010-12-01

    We prove that a de Morgan lattice is compactly generated if and only if its order topology is compatible with a uniformity on L generated by some separating function family on L. Moreover, if L is complete then L is (o)-topological. Further, if a basic algebra L (hence lattice with sectional antitone involutions) is compactly generated then L is atomic. Thus all non-atomic Boolean algebras as well as non-atomic lattice effect algebras (including non-atomic MV-algebras and orthomodular lattices) are not compactly generated.

  9. Scalability of preconditioners as a strategy for parallel computation of compressible fluid flow

    SciTech Connect

    Hansen, G.A.

    1996-05-01

    Parallel implementations of a Newton-Krylov-Schwarz algorithm are used to solve a model problem representing low Mach number compressible fluid flow over a backward-facing step. The Mach number is specifically selected to result in a numerically {open_quote}stiff{close_quotes} matrix problem, based on an implicit finite volume discretization of the compressible 2D Navier-Stokes/energy equations using primitive variables. Newton`s method is used to linearize the discrete system, and a preconditioned Krylov projection technique is used to solve the resulting linear system. Domain decomposition enables the development of a global preconditioner via the parallel construction of contributions derived from subdomains. Formation of the global preconditioner is based upon additive and multiplicative Schwarz algorithms, with and without subdomain overlap. The degree of parallelism of this technique is further enhanced with the use of a matrix-free approximation for the Jacobian used in the Krylov technique (in this case, GMRES(k)). Of paramount interest to this study is the implementation and optimization of these techniques on parallel shared-memory hardware, namely the Cray C90 and SGI Challenge architectures. These architectures were chosen as representative and commonly available to researchers interested in the solution of problems of this type. The Newton-Krylov-Schwarz solution technique is increasingly being investigated for computational fluid dynamics (CFD) applications due to the advantages of full coupling of all variables and equations, rapid non-linear convergence, and moderate memory requirements. A parallel version of this method that scales effectively on the above architectures would be extremely attractive to practitioners, resulting in efficient, cost-effective, parallel solutions exhibiting the benefits of the solution technique.

  10. Locally finite dimensional Lie algebras

    NASA Astrophysics Data System (ADS)

    Hennig, Johanna

    We prove that in a locally finite dimensional Lie algebra L, any maximal, locally solvable subalgebra is the stabilizer of a maximal, generalized flag in an integrable, faithful module over L. Then we prove two structure theorems for simple, locally finite dimensional Lie algebras over an algebraically closed field of characteristic p which give sufficient conditions for the algebras to be of the form [K(R, *), K( R, *)] / (Z(R) ∩ [ K(R, *), K(R, *)]) for a simple, locally finite dimensional associative algebra R with involution *. Lastly, we explore the noncommutative geometry of locally simple representations of the diagonal locally finite Lie algebras sl(ninfinity), o( ninfinity), and sp(n infinity).

  11. Quantum computation using geometric algebra

    NASA Astrophysics Data System (ADS)

    Matzke, Douglas James

    This dissertation reports that arbitrary Boolean logic equations and operators can be represented in geometric algebra as linear equations composed entirely of orthonormal vectors using only addition and multiplication Geometric algebra is a topologically based algebraic system that naturally incorporates the inner and anticommutative outer products into a real valued geometric product, yet does not rely on complex numbers or matrices. A series of custom tools was designed and built to simplify geometric algebra expressions into a standard sum of products form, and automate the anticommutative geometric product and operations. Using this infrastructure, quantum bits (qubits), quantum registers and EPR-bits (ebits) are expressed symmetrically as geometric algebra expressions. Many known quantum computing gates, measurement operators, and especially the Bell/magic operators are also expressed as geometric products. These results demonstrate that geometric algebra can naturally and faithfully represent the central concepts, objects, and operators necessary for quantum computing, and can facilitate the design and construction of quantum computing tools.

  12. Duncan F. Gregory, William Walton and the development of British algebra: 'algebraical geometry', 'geometrical algebra', abstraction.

    PubMed

    Verburgt, Lukas M

    2016-01-01

    This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s. PMID:26806075

  13. On the cohomology of Leibniz conformal algebras

    NASA Astrophysics Data System (ADS)

    Zhang, Jiao

    2015-04-01

    We construct a new cohomology complex of Leibniz conformal algebras with coefficients in a representation instead of a module. The low-dimensional cohomology groups of this complex are computed. Meanwhile, we construct a Leibniz algebra from a Leibniz conformal algebra and prove that the category of Leibniz conformal algebras is equivalent to the category of equivalence classes of formal distribution Leibniz algebras.

  14. Assessing Algebraic Solving Ability: A Theoretical Framework

    ERIC Educational Resources Information Center

    Lian, Lim Hooi; Yew, Wun Thiam

    2012-01-01

    Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…

  15. Comparison of iterative methods and preconditioners for the solution of miscible two-phase flow in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Büsing, Henrik

    2014-05-01

    The geological sequestration of CO2 is considered as one option to mitigate anthropogenic effects on climate change. To describe the behavior of CO2 underground we consider mass balance equations for the two phases, CO2 and brine, which include the dissolution of CO2 into the brine phase and of H2O into the gas phase (c.f. [1]). After discretization in time with the implicit Euler method and in space with the Box method (c.f. [2]), we end up with a nonlinear system of equations. Newton's method is used to solve these systems, where the required Jacobians are obtained by automatic differentiation (AD) (c.f. [3]). In contrast to approximate Jacobians via finite differences, AD gives exact Jacobians through a source code transformation. These exact Jacobians have the advantage that no additional errors are introduced by the derivative computation. In consequence, fewer Newton iterations are needed and a performance increase during derivative computation can be observed (c.f. [4]). During the initial stage of a CO2 sequestration scenario the movement of the CO2 plume is driven by advective and buoyancy forces. After injection is finished solubility and density driven flow become dominant. We examine the performance of different iterative solvers and preconditioners for these two stages. To this end, we consider standard ILU preconditioning with BiCGStab as iterative solver, as well as GMRES, and algebraic and geometric multigrid methods. Our test example considers, on the one hand, a homogeneous permeability distribution and, on the other hand, a heterogeneous one. In the latter case we sample a heterogeneous porosity field from a Gaussian distribution and, subsequently, derive the corresponding permeabilities after [5]. Finally, we examine to which extent the amount of dissolved CO2 depends on the heterogeneities in the reservoir. References [1] Spycher, N., Pruess, K., & Ennis-King, J., 2003. CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and

  16. How Structure Sense for Algebraic Expressions or Equations Is Related to Structure Sense for Abstract Algebra

    ERIC Educational Resources Information Center

    Novotna, Jarmila; Hoch, Maureen

    2008-01-01

    Many students have difficulties with basic algebraic concepts at high school and at university. In this paper two levels of algebraic structure sense are defined: for high school algebra and for university algebra. We suggest that high school algebra structure sense components are sub-components of some university algebra structure sense…

  17. Higher level twisted Zhu algebras

    SciTech Connect

    Ekeren, Jethro van

    2011-05-15

    The study of twisted representations of graded vertex algebras is important for understanding orbifold models in conformal field theory. In this paper, we consider the general setup of a vertex algebra V, graded by {Gamma}/Z for some subgroup {Gamma} of R containing Z, and with a Hamiltonian operator H having real (but not necessarily integer) eigenvalues. We construct the directed system of twisted level p Zhu algebras Zhu{sub p,{Gamma}}(V), and we prove the following theorems: For each p, there is a bijection between the irreducible Zhu{sub p,{Gamma}}(V)-modules and the irreducible {Gamma}-twisted positive energy V-modules, and V is ({Gamma}, H)-rational if and only if all its Zhu algebras Zhu{sub p,{Gamma}}(V) are finite dimensional and semisimple. The main novelty is the removal of the assumption of integer eigenvalues for H. We provide an explicit description of the level p Zhu algebras of a universal enveloping vertex algebra, in particular of the Virasoro vertex algebra Vir{sup c} and the universal affine Kac-Moody vertex algebra V{sup k}(g) at non-critical level. We also compute the inverse limits of these directed systems of algebras.

  18. Multilevel space-time aggregation for bright field cell microscopy segmentation and tracking.

    PubMed

    Inglis, Tiffany; De Sterck, Hans; Sanders, Geoffrey; Djambazian, Haig; Sladek, Robert; Sundararajan, Saravanan; Hudson, Thomas J

    2010-01-01

    A multilevel aggregation method is applied to the problem of segmenting live cell bright field microscope images. The method employed is a variant of the so-called "Segmentation by Weighted Aggregation" technique, which itself is based on Algebraic Multigrid methods. The variant of the method used is described in detail, and it is explained how it is tailored to the application at hand. In particular, a new scale-invariant "saliency measure" is proposed for deciding when aggregates of pixels constitute salient segments that should not be grouped further. It is shown how segmentation based on multilevel intensity similarity alone does not lead to satisfactory results for bright field cells. However, the addition of multilevel intensity variance (as a measure of texture) to the feature vector of each aggregate leads to correct cell segmentation. Preliminary results are presented for applying the multilevel aggregation algorithm in space time to temporal sequences of microscope images, with the goal of obtaining space-time segments ("object tunnels") that track individual cells. The advantages and drawbacks of the space-time aggregation approach for segmentation and tracking of live cells in sequences of bright field microscope images are presented, along with a discussion on how this approach may be used in the future work as a building block in a complete and robust segmentation and tracking system. PMID:20467468

  19. Handheld Computer Algebra Systems in the Pre-Algebra Classroom

    ERIC Educational Resources Information Center

    Gantz, Linda Ann Galofaro

    2010-01-01

    This mixed method analysis sought to investigate several aspects of student learning in pre-algebra through the use of computer algebra systems (CAS) as opposed to non-CAS learning. This research was broken into two main parts, one which compared results from both the experimental group (instruction using CAS, N = 18) and the control group…

  20. Abstract Algebra to Secondary School Algebra: Building Bridges

    ERIC Educational Resources Information Center

    Christy, Donna; Sparks, Rebecca

    2015-01-01

    The authors have experience with secondary mathematics teacher candidates struggling to make connections between the theoretical abstract algebra course they take as college students and the algebra they will be teaching in secondary schools. As a mathematician and a mathematics educator, the authors collaborated to create and implement a…

  1. Algebra and Algebraic Thinking in School Math: 70th YB

    ERIC Educational Resources Information Center

    National Council of Teachers of Mathematics, 2008

    2008-01-01

    Algebra is no longer just for college-bound students. After a widespread push by the National Council of Teachers of Mathematics (NCTM) and teachers across the country, algebra is now a required part of most curricula. However, students' standardized test scores are not at the level they should be. NCTM's seventieth yearbook takes a look at the…

  2. Statecharts Via Process Algebra

    NASA Technical Reports Server (NTRS)

    Luttgen, Gerald; vonderBeeck, Michael; Cleaveland, Rance

    1999-01-01

    Statecharts is a visual language for specifying the behavior of reactive systems. The Language extends finite-state machines with concepts of hierarchy, concurrency, and priority. Despite its popularity as a design notation for embedded system, precisely defining its semantics has proved extremely challenging. In this paper, a simple process algebra, called Statecharts Process Language (SPL), is presented, which is expressive enough for encoding Statecharts in a structure-preserving and semantic preserving manner. It is establish that the behavioral relation bisimulation, when applied to SPL, preserves Statecharts semantics

  3. Algebraic Multigrid Benchmark

    Energy Science and Technology Software Center (ESTSC)

    2013-05-06

    AMG2013 is a parallel algebraic multigrid solver for linear systems arising from problems on unstructured grids. It has been derived directly from the Boomer AMG solver in the hypre library, a large linear solvers library that is being developed in the Center for Applied Scientific Computing (CASC) at LLNL. The driver provided in the benchmark can build various test problems. The default problem is a Laplace type problem on an unstructured domain with various jumpsmore » and an anisotropy in one part.« less

  4. A multilevel stochastic collocation method for SPDEs

    SciTech Connect

    Gunzburger, Max; Jantsch, Peter; Teckentrup, Aretha; Webster, Clayton

    2015-03-10

    We present a multilevel stochastic collocation method that, as do multilevel Monte Carlo methods, uses a hierarchy of spatial approximations to reduce the overall computational complexity when solving partial differential equations with random inputs. For approximation in parameter space, a hierarchy of multi-dimensional interpolants of increasing fidelity are used. Rigorous convergence and computational cost estimates for the new multilevel stochastic collocation method are derived and used to demonstrate its advantages compared to standard single-level stochastic collocation approximations as well as multilevel Monte Carlo methods.

  5. The Algebra of Complex Numbers.

    ERIC Educational Resources Information Center

    LePage, Wilbur R.

    This programed text is an introduction to the algebra of complex numbers for engineering students, particularly because of its relevance to important problems of applications in electrical engineering. It is designed for a person who is well experienced with the algebra of real numbers and calculus, but who has no experience with complex number…

  6. Algebraic Squares: Complete and Incomplete.

    ERIC Educational Resources Information Center

    Gardella, Francis J.

    2000-01-01

    Illustrates ways of using algebra tiles to give students a visual model of competing squares that appear in algebra as well as in higher mathematics. Such visual representations give substance to the symbolic manipulation and give students who do not learn symbolically a way of understanding the underlying concepts of completing the square. (KHR)

  7. The Algebra of the Arches

    ERIC Educational Resources Information Center

    Buerman, Margaret

    2007-01-01

    Finding real-world examples for middle school algebra classes can be difficult but not impossible. As we strive to accomplish teaching our students how to solve and graph equations, we neglect to teach the big ideas of algebra. One of those big ideas is functions. This article gives three examples of functions that are found in Arches National…

  8. Online Algebraic Tools for Teaching

    ERIC Educational Resources Information Center

    Kurz, Terri L.

    2011-01-01

    Many free online tools exist to complement algebraic instruction at the middle school level. This article presents findings that analyzed the features of algebraic tools to support learning. The findings can help teachers select appropriate tools to facilitate specific topics. (Contains 1 table and 4 figures.)

  9. Condensing Algebra for Technical Mathematics.

    ERIC Educational Resources Information Center

    Greenfield, Donald R.

    Twenty Algebra-Packets (A-PAKS) were developed by the investigator for technical education students at the community college level. Each packet contained a statement of rationale, learning objectives, performance activities, performance test, and performance test answer key. The A-PAKS condensed the usual sixteen weeks of algebra into a six-week…

  10. Algebraic Thinking in Adult Education

    ERIC Educational Resources Information Center

    Manly, Myrna; Ginsburg, Lynda

    2010-01-01

    In adult education, algebraic thinking can be a sense-making tool that introduces coherence among mathematical concepts for those who previously have had trouble learning math. Further, a modeling approach to algebra connects mathematics and the real world, demonstrating the usefulness of math to those who have seen it as just an academic…

  11. Linear Algebra and Image Processing

    ERIC Educational Resources Information Center

    Allali, Mohamed

    2010-01-01

    We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)

  12. Algebra: Grades 8-12.

    ERIC Educational Resources Information Center

    Instructional Objectives Exchange, Los Angeles, CA.

    A complete set of behavioral objectives for first-year algebra taught in any of grades 8 through 12 is presented. Three to six sample test items and answers are provided for each objective. Objectives were determined by surveying the most used secondary school algebra textbooks. Fourteen major categories are included: (1) whole numbers--operations…

  13. Exploring Algebraic Patterns through Literature.

    ERIC Educational Resources Information Center

    Austin, Richard A.; Thompson, Denisse R.

    1997-01-01

    Presents methods for using literature to develop algebraic thinking in an environment that connects algebra to various situations. Activities are based on the book "Anno's Magic Seeds" with additional resources listed. Students express a constant function, exponential function, and a recursive function in their own words as well as writing about…

  14. Learning Algebra from Worked Examples

    ERIC Educational Resources Information Center

    Lange, Karin E.; Booth, Julie L.; Newton, Kristie J.

    2014-01-01

    For students to be successful in algebra, they must have a truly conceptual understanding of key algebraic features as well as the procedural skills to complete a problem. One strategy to correct students' misconceptions combines the use of worked example problems in the classroom with student self-explanation. "Self-explanation" is…

  15. Thermodynamics. [algebraic structure

    NASA Technical Reports Server (NTRS)

    Zeleznik, F. J.

    1976-01-01

    The fundamental structure of thermodynamics is purely algebraic, in the sense of atopological, and it is also independent of partitions, composite systems, the zeroth law, and entropy. The algebraic structure requires the notion of heat, but not the first law. It contains a precise definition of entropy and identifies it as a purely mathematical concept. It also permits the construction of an entropy function from heat measurements alone when appropriate conditions are satisfied. Topology is required only for a discussion of the continuity of thermodynamic properties, and then the weak topology is the relevant topology. The integrability of the differential form of the first law can be examined independently of Caratheodory's theorem and his inaccessibility axiom. Criteria are established by which one can determine when an integrating factor can be made intensive and the pseudopotential extensive and also an entropy. Finally, a realization of the first law is constructed which is suitable for all systems whether they are solids or fluids, whether they do or do not exhibit chemical reactions, and whether electromagnetic fields are or are not present.

  16. Invariants of triangular Lie algebras

    NASA Astrophysics Data System (ADS)

    Boyko, Vyacheslav; Patera, Jiri; Popovych, Roman

    2007-07-01

    Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants ('generalized Casimir operators') are found for three classes of Lie algebras, namely those which are either strictly or non-strictly triangular, and for so-called special upper triangular Lie algebras. Algebraic algorithm of Boyko et al (2006 J. Phys. A: Math. Gen.39 5749 (Preprint math-ph/0602046)), developed further in Boyko et al (2007 J. Phys. A: Math. Theor.40 113 (Preprint math-ph/0606045)), is used to determine the invariants. A conjecture of Tremblay and Winternitz (2001 J. Phys. A: Math. Gen.34 9085), concerning the number of independent invariants and their form, is corroborated.

  17. Conducting Multilevel Analyses in Medical Education

    ERIC Educational Resources Information Center

    Zyphur, Michael J.; Kaplan, Seth A.; Islam, Gazi; Barsky, Adam P.; Franklin, Michael S.

    2008-01-01

    A significant body of education literature has begun using multilevel statistical models to examine data that reside at multiple levels of analysis. In order to provide a primer for medical education researchers, the current work gives a brief overview of some issues associated with multilevel statistical modeling. To provide an example of this…

  18. A Multilevel Assessment of Differential Item Functioning.

    ERIC Educational Resources Information Center

    Shen, Linjun

    A multilevel approach was proposed for the assessment of differential item functioning and compared with the traditional logistic regression approach. Data from the Comprehensive Osteopathic Medical Licensing Examination for 2,300 freshman osteopathic medical students were analyzed. The multilevel approach used three-level hierarchical generalized…

  19. Multilevel Interventions: Study Design and Analysis Issues

    PubMed Central

    Gross, Cary P.; Zaslavsky, Alan M.; Taplin, Stephen H.

    2012-01-01

    Multilevel interventions, implemented at the individual, physician, clinic, health-care organization, and/or community level, increasingly are proposed and used in the belief that they will lead to more substantial and sustained changes in behaviors related to cancer prevention, detection, and treatment than would single-level interventions. It is important to understand how intervention components are related to patient outcomes and identify barriers to implementation. Designs that permit such assessments are uncommon, however. Thus, an important way of expanding our knowledge about multilevel interventions would be to assess the impact of interventions at different levels on patients as well as the independent and synergistic effects of influences from different levels. It also would be useful to assess the impact of interventions on outcomes at different levels. Multilevel interventions are much more expensive and complicated to implement and evaluate than are single-level interventions. Given how little evidence there is about the value of multilevel interventions, however, it is incumbent upon those arguing for this approach to do multilevel research that explicates the contributions that interventions at different levels make to the desired outcomes. Only then will we know whether multilevel interventions are better than more focused interventions and gain greater insights into the kinds of interventions that can be implemented effectively and efficiently to improve health and health care for individuals with cancer. This chapter reviews designs for assessing multilevel interventions and analytic ways of controlling for potentially confounding variables that can account for the complex structure of multilevel data. PMID:22623596

  20. Using Linear Algebra to Introduce Computer Algebra, Numerical Analysis, Data Structures and Algorithms (and To Teach Linear Algebra, Too).

    ERIC Educational Resources Information Center

    Gonzalez-Vega, Laureano

    1999-01-01

    Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)

  1. Structural optimization by multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; James, B.; Dovi, A.

    1983-01-01

    A method is described for decomposing an optimization problem into a set of subproblems and a coordination problem which preserves coupling between the subproblems. The method is introduced as a special case of multilevel, multidisciplinary system optimization and its algorithm is fully described for two level optimization for structures assembled of finite elements of arbitrary type. Numerical results are given for an example of a framework to show that the decomposition method converges and yields results comparable to those obtained without decomposition. It is pointed out that optimization by decomposition should reduce the design time by allowing groups of engineers, using different computers to work concurrently on the same large problem.

  2. Algebraic distance on graphs.

    SciTech Connect

    Chen, J.; Safro, I.

    2011-01-01

    Measuring the connection strength between a pair of vertices in a graph is one of the most important concerns in many graph applications. Simple measures such as edge weights may not be sufficient for capturing the effects associated with short paths of lengths greater than one. In this paper, we consider an iterative process that smooths an associated value for nearby vertices, and we present a measure of the local connection strength (called the algebraic distance; see [D. Ron, I. Safro, and A. Brandt, Multiscale Model. Simul., 9 (2011), pp. 407-423]) based on this process. The proposed measure is attractive in that the process is simple, linear, and easily parallelized. An analysis of the convergence property of the process reveals that the local neighborhoods play an important role in determining the connectivity between vertices. We demonstrate the practical effectiveness of the proposed measure through several combinatorial optimization problems on graphs and hypergraphs.

  3. Constraint algebra in bigravity

    SciTech Connect

    Soloviev, V. O.

    2015-07-15

    The number of degrees of freedom in bigravity theory is found for a potential of general form and also for the potential proposed by de Rham, Gabadadze, and Tolley (dRGT). This aim is pursued via constructing a Hamiltonian formalismand studying the Poisson algebra of constraints. A general potential leads to a theory featuring four first-class constraints generated by general covariance. The vanishing of the respective Hessian is a crucial property of the dRGT potential, and this leads to the appearance of two additional second-class constraints and, hence, to the exclusion of a superfluous degree of freedom—that is, the Boulware—Deser ghost. The use of a method that permits avoiding an explicit expression for the dRGT potential is a distinctive feature of the present study.

  4. Quantum algebra of N superspace

    SciTech Connect

    Hatcher, Nicolas; Restuccia, A.; Stephany, J.

    2007-08-15

    We identify the quantum algebra of position and momentum operators for a quantum system bearing an irreducible representation of the super Poincare algebra in the N>1 and D=4 superspace, both in the case where there are no central charges in the algebra, and when they are present. This algebra is noncommutative for the position operators. We use the properties of superprojectors acting on the superfields to construct explicit position and momentum operators satisfying the algebra. They act on the projected wave functions associated to the various supermultiplets with defined superspin present in the representation. We show that the quantum algebra associated to the massive superparticle appears in our construction and is described by a supermultiplet of superspin 0. This result generalizes the construction for D=4, N=1 reported recently. For the case N=2 with central charges, we present the equivalent results when the central charge and the mass are different. For the {kappa}-symmetric case when these quantities are equal, we discuss the reduction to the physical degrees of freedom of the corresponding superparticle and the construction of the associated quantum algebra.

  5. Using Homemade Algebra Tiles To Develop Algebra and Prealgebra Concepts.

    ERIC Educational Resources Information Center

    Leitze, Annette Ricks; Kitt, Nancy A.

    2000-01-01

    Describes how to use homemade tiles, sketches, and the box method to reach a broader group of students for successful algebra learning. Provides a list of concepts appropriate for such an approach. (KHR)

  6. Distance geometry and geometric algebra

    NASA Astrophysics Data System (ADS)

    Dress, Andreas W. M.; Havel, Timothy F.

    1993-10-01

    As part of his program to unify linear algebra and geometry using the language of Clifford algebra, David Hestenes has constructed a (well-known) isomorphism between the conformal group and the orthogonal group of a space two dimensions higher, thus obtaining homogeneous coordinates for conformal geometry.(1) In this paper we show that this construction is the Clifford algebra analogue of a hyperbolic model of Euclidean geometry that has actually been known since Bolyai, Lobachevsky, and Gauss, and we explore its wider invariant theoretic implications. In particular, we show that the Euclidean distance function has a very simple representation in this model, as demonstrated by J. J. Seidel.(18)

  7. Loop Virasoro Lie conformal algebra

    SciTech Connect

    Wu, Henan Chen, Qiufan; Yue, Xiaoqing

    2014-01-15

    The Lie conformal algebra of loop Virasoro algebra, denoted by CW, is introduced in this paper. Explicitly, CW is a Lie conformal algebra with C[∂]-basis (L{sub i} | i∈Z) and λ-brackets [L{sub i} {sub λ} L{sub j}] = (−∂−2λ)L{sub i+j}. Then conformal derivations of CW are determined. Finally, rank one conformal modules and Z-graded free intermediate series modules over CW are classified.

  8. Hopf algebras and Dyson-Schwinger equations

    NASA Astrophysics Data System (ADS)

    Weinzierl, Stefan

    2016-06-01

    In this paper I discuss Hopf algebras and Dyson-Schwinger equations. This paper starts with an introduction to Hopf algebras, followed by a review of the contribution and application of Hopf algebras to particle physics. The final part of the paper is devoted to the relation between Hopf algebras and Dyson-Schwinger equations.

  9. Sequential products on effect algebras

    NASA Astrophysics Data System (ADS)

    Gudder, Stan; Greechie, Richard

    2002-02-01

    A sequential effect algebra (SEA) is an effect algebra on which a sequential product with natural properties is defined. The properties of sequential products on Hilbert space effect algebras are discussed. For a general SEA, relationships between sequential independence, coexistence and compatibility are given. It is shown that the sharp elements of a SEA form an orthomodular poset. The sequential center of a SEA is discussed and a characterization of when the sequential center is isomorphic to a fuzzy set system is presented. It is shown that the existence, of a sequential product is a strong restriction that eliminates many effect algebras from being SEA's. For example, there are no finite nonboolean SEA's, A measure of sharpness called the sharpness index is studied. The existence of horizontal sums of SEA's is characterized and examples of horizontal sums and tensor products are presented.

  10. Curvature calculations with spacetime algebra

    SciTech Connect

    Hestenes, D.

    1986-06-01

    A new method for calculating the curvature tensor is developed and applied to the Scharzschild case. The method employs Clifford algebra and has definite advantages over conventional methods using differential forms or tensor analysis.

  11. GCD, LCM, and Boolean Algebra?

    ERIC Educational Resources Information Center

    Cohen, Martin P.; Juraschek, William A.

    1976-01-01

    This article investigates the algebraic structure formed when the process of finding the greatest common divisor and the least common multiple are considered as binary operations on selected subsets of positive integers. (DT)

  12. Cartooning in Algebra and Calculus

    ERIC Educational Resources Information Center

    Moseley, L. Jeneva

    2014-01-01

    This article discusses how teachers can create cartoons for undergraduate math classes, such as college algebra and basic calculus. The practice of cartooning for teaching can be helpful for communication with students and for students' conceptual understanding.

  13. Ada Linear-Algebra Program

    NASA Technical Reports Server (NTRS)

    Klumpp, A. R.; Lawson, C. L.

    1988-01-01

    Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.

  14. Semiclassical states on Lie algebras

    SciTech Connect

    Tsobanjan, Artur

    2015-03-15

    The effective technique for analyzing representation-independent features of quantum systems based on the semiclassical approximation (developed elsewhere) has been successfully used in the context of the canonical (Weyl) algebra of the basic quantum observables. Here, we perform the important step of extending this effective technique to the quantization of a more general class of finite-dimensional Lie algebras. The case of a Lie algebra with a single central element (the Casimir element) is treated in detail by considering semiclassical states on the corresponding universal enveloping algebra. Restriction to an irreducible representation is performed by “effectively” fixing the Casimir condition, following the methods previously used for constrained quantum systems. We explicitly determine the conditions under which this restriction can be consistently performed alongside the semiclassical truncation.

  15. GNSS algebraic structures

    NASA Astrophysics Data System (ADS)

    Lannes, A.; Teunissen, P. J. G.

    2011-05-01

    The first objective of this paper is to show that some basic concepts used in global navigation satellite systems (GNSS) are similar to those introduced in Fourier synthesis for handling some phase calibration problems. In experimental astronomy, the latter are at the heart of what is called `phase closure imaging.' In both cases, the analysis of the related structures appeals to the algebraic graph theory and the algebraic number theory. For example, the estimable functions of carrier-phase ambiguities, which were introduced in GNSS to correct some rank defects of the undifferenced equations, prove to be `closure-phase ambiguities:' the so-called `closure-delay' (CD) ambiguities. The notion of closure delay thus generalizes that of double difference (DD). The other estimable functional variables involved in the phase and code undifferenced equations are the receiver and satellite pseudo-clock biases. A related application, which corresponds to the second objective of this paper, concerns the definition of the clock information to be broadcasted to the network users for their precise point positioning (PPP). It is shown that this positioning can be achieved by simply having access to the satellite pseudo-clock biases. For simplicity, the study is restricted to relatively small networks. Concerning the phase for example, these biases then include five components: a frequency-dependent satellite-clock error, a tropospheric satellite delay, an ionospheric satellite delay, an initial satellite phase, and an integer satellite ambiguity. The form of the PPP equations to be solved by the network user is then similar to that of the traditional PPP equations. As soon as the CD ambiguities are fixed and validated, an operation which can be performed in real time via appropriate decorrelation techniques, estimates of these float biases can be immediately obtained. No other ambiguity is to be fixed. The satellite pseudo-clock biases can thus be obtained in real time. This is

  16. Hopf algebras and topological recursion

    NASA Astrophysics Data System (ADS)

    Esteves, João N.

    2015-11-01

    We consider a model for topological recursion based on the Hopf algebra of planar binary trees defined by Loday and Ronco (1998 Adv. Math. 139 293-309 We show that extending this Hopf algebra by identifying pairs of nearest neighbor leaves, and thus producing graphs with loops, we obtain the full recursion formula discovered by Eynard and Orantin (2007 Commun. Number Theory Phys. 1 347-452).

  17. ALGEBRA v.1.27

    Energy Science and Technology Software Center (ESTSC)

    2005-04-11

    The ALGEBRA program allows the user to manipulate data from a finite element analysis before it is plotted. The finite element output data is in the form of variable values (e.g., stress, strain, and velocity components) in an EXODUS II database. The ALGEBRA program evaluates user-supplied functions of the data and writes the results to an output EXODUS II database that can be read by plot programs.

  18. Algebraic multigrid domain and range decomposition (AMG-DD / AMG-RD)*

    DOE PAGESBeta

    Bank, R.; Falgout, R. D.; Jones, T.; Manteuffel, T. A.; McCormick, S. F.; Ruge, J. W.

    2015-10-29

    In modern large-scale supercomputing applications, algebraic multigrid (AMG) is a leading choice for solving matrix equations. However, the high cost of communication relative to that of computation is a concern for the scalability of traditional implementations of AMG on emerging architectures. This paper introduces two new algebraic multilevel algorithms, algebraic multigrid domain decomposition (AMG-DD) and algebraic multigrid range decomposition (AMG-RD), that replace traditional AMG V-cycles with a fully overlapping domain decomposition approach. While the methods introduced here are similar in spirit to the geometric methods developed by Brandt and Diskin [Multigrid solvers on decomposed domains, in Domain Decomposition Methods inmore » Science and Engineering, Contemp. Math. 157, AMS, Providence, RI, 1994, pp. 135--155], Mitchell [Electron. Trans. Numer. Anal., 6 (1997), pp. 224--233], and Bank and Holst [SIAM J. Sci. Comput., 22 (2000), pp. 1411--1443], they differ primarily in that they are purely algebraic: AMG-RD and AMG-DD trade communication for computation by forming global composite “grids” based only on the matrix, not the geometry. (As is the usual AMG convention, “grids” here should be taken only in the algebraic sense, regardless of whether or not it corresponds to any geometry.) Another important distinguishing feature of AMG-RD and AMG-DD is their novel residual communication process that enables effective parallel computation on composite grids, avoiding the all-to-all communication costs of the geometric methods. The main purpose of this paper is to study the potential of these two algebraic methods as possible alternatives to existing AMG approaches for future parallel machines. As a result, this paper develops some theoretical properties of these methods and reports on serial numerical tests of their convergence properties over a spectrum of problem parameters.« less

  19. Algebraic multigrid domain and range decomposition (AMG-DD / AMG-RD)*

    SciTech Connect

    Bank, R.; Falgout, R. D.; Jones, T.; Manteuffel, T. A.; McCormick, S. F.; Ruge, J. W.

    2015-10-29

    In modern large-scale supercomputing applications, algebraic multigrid (AMG) is a leading choice for solving matrix equations. However, the high cost of communication relative to that of computation is a concern for the scalability of traditional implementations of AMG on emerging architectures. This paper introduces two new algebraic multilevel algorithms, algebraic multigrid domain decomposition (AMG-DD) and algebraic multigrid range decomposition (AMG-RD), that replace traditional AMG V-cycles with a fully overlapping domain decomposition approach. While the methods introduced here are similar in spirit to the geometric methods developed by Brandt and Diskin [Multigrid solvers on decomposed domains, in Domain Decomposition Methods in Science and Engineering, Contemp. Math. 157, AMS, Providence, RI, 1994, pp. 135--155], Mitchell [Electron. Trans. Numer. Anal., 6 (1997), pp. 224--233], and Bank and Holst [SIAM J. Sci. Comput., 22 (2000), pp. 1411--1443], they differ primarily in that they are purely algebraic: AMG-RD and AMG-DD trade communication for computation by forming global composite “grids” based only on the matrix, not the geometry. (As is the usual AMG convention, “grids” here should be taken only in the algebraic sense, regardless of whether or not it corresponds to any geometry.) Another important distinguishing feature of AMG-RD and AMG-DD is their novel residual communication process that enables effective parallel computation on composite grids, avoiding the all-to-all communication costs of the geometric methods. The main purpose of this paper is to study the potential of these two algebraic methods as possible alternatives to existing AMG approaches for future parallel machines. As a result, this paper develops some theoretical properties of these methods and reports on serial numerical tests of their convergence properties over a spectrum of problem parameters.

  20. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1989-03-21

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration. 6 figs.

  1. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, David B.

    1987-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  2. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, David B.

    1989-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  3. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1985-08-23

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  4. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1985-06-24

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping lase pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  5. Algebraic Flux Correction II

    NASA Astrophysics Data System (ADS)

    Kuzmin, Dmitri; Möller, Matthias; Gurris, Marcel

    Flux limiting for hyperbolic systems requires a careful generalization of the design principles and algorithms introduced in the context of scalar conservation laws. In this chapter, we develop FCT-like algebraic flux correction schemes for the Euler equations of gas dynamics. In particular, we discuss the construction of artificial viscosity operators, the choice of variables to be limited, and the transformation of antidiffusive fluxes. An a posteriori control mechanism is implemented to make the limiter failsafe. The numerical treatment of initial and boundary conditions is discussed in some detail. The initialization is performed using an FCT-constrained L 2 projection. The characteristic boundary conditions are imposed in a weak sense, and an approximate Riemann solver is used to evaluate the fluxes on the boundary. We also present an unconditionally stable semi-implicit time-stepping scheme and an iterative solver for the fully discrete problem. The results of a numerical study indicate that the nonlinearity and non-differentiability of the flux limiter do not inhibit steady state convergence even in the case of strongly varying Mach numbers. Moreover, the convergence rates improve as the pseudo-time step is increased.

  6. Nonnumeric Computer Applications to Algebra, Trigonometry and Calculus.

    ERIC Educational Resources Information Center

    Stoutemyer, David R.

    1983-01-01

    Described are computer program packages requiring little or no knowledge of computer programing for college algebra, calculus, and abstract algebra. Widely available computer algebra systems are listed. (MNS)

  7. Iterative convergence acceleration of neutral particle transport methods via adjacent-cell preconditioners

    SciTech Connect

    Azmy, Y.Y.

    1999-06-10

    The author proposes preconditioning as a viable acceleration scheme for the inner iterations of transport calculations in slab geometry. In particular he develops Adjacent-Cell Preconditioners (AP) that have the same coupling stencil as cell-centered diffusion schemes. For lowest order methods, e.g., Diamond Difference, Step, and 0-order Nodal Integral Method (ONIM), cast in a Weighted Diamond Difference (WDD) form, he derives AP for thick (KAP) and thin (NAP) cells that for model problems are unconditionally stable and efficient. For the First-Order Nodal Integral Method (INIM) he derives a NAP that possesses similarly excellent spectral properties for model problems. The two most attractive features of the new technique are:(1) its cell-centered coupling stencil, which makes it more adequate for extension to multidimensional, higher order situations than the standard edge-centered or point-centered Diffusion Synthetic Acceleration (DSA) methods; and (2) its decreasing spectral radius with increasing cell thickness to the extent that immediate pointwise convergence, i.e., in one iteration, can be achieved for problems with sufficiently thick cells. He implemented these methods, augmented with appropriate boundary conditions and mixing formulas for material heterogeneities, in the test code APID that he uses to successfully verify the analytical spectral properties for homogeneous problems. Furthermore, he conducts numerical tests to demonstrate the robustness of the KAP and NAP in the presence of sharp mesh or material discontinuities. He shows that the AP for WDD is highly resilient to such discontinuities, but for INIM a few cases occur in which the scheme does not converge; however, when it converges, AP greatly reduces the number of iterations required to achieve convergence.

  8. Virasoro algebra in the KN algebra; Bosonic string with fermionic ghosts on Riemann surfaces

    SciTech Connect

    Koibuchi, H. )

    1991-10-10

    In this paper the bosonic string model with fermionic ghosts is considered in the framework of the KN algebra. The authors' attentions are paid to representations of KN algebra and a Clifford algebra of the ghosts. The authors show that a Virasoro-like algebra is obtained from KN algebra when KN algebra has certain antilinear anti-involution, and that it is isomorphic to the usual Virasoro algebra. The authors show that there is an expected relation between a central charge of this Virasoro-like algebra and an anomaly of the combined system.

  9. Invertible linear transformations and the Lie algebras

    NASA Astrophysics Data System (ADS)

    Zhang, Yufeng; Tam, Honwah; Guo, Fukui

    2008-07-01

    With the help of invertible linear transformations and the known Lie algebras, a way to generate new Lie algebras is given. These Lie algebras obtained have a common feature, i.e. integrable couplings of solitary hierarchies could be obtained by using them, specially, the Hamiltonian structures of them could be worked out. Some ways to construct the loop algebras of the Lie algebras are presented. It follows that some various loop algebras are given. In addition, a few new Lie algebras are explicitly constructed in terms of the classification of Lie algebras proposed by Ma Wen-Xiu, which are bases for obtaining new Lie algebras by using invertible linear transformations. Finally, some solutions of a (2 + 1)-dimensional partial-differential equation hierarchy are obtained, whose Hamiltonian form-expressions are manifested by using the quadratic-form identity.

  10. Scalable Adaptive Multilevel Solvers for Multiphysics Problems

    SciTech Connect

    Xu, Jinchao

    2014-12-01

    In this project, we investigated adaptive, parallel, and multilevel methods for numerical modeling of various real-world applications, including Magnetohydrodynamics (MHD), complex fluids, Electromagnetism, Navier-Stokes equations, and reservoir simulation. First, we have designed improved mathematical models and numerical discretizaitons for viscoelastic fluids and MHD. Second, we have derived new a posteriori error estimators and extended the applicability of adaptivity to various problems. Third, we have developed multilevel solvers for solving scalar partial differential equations (PDEs) as well as coupled systems of PDEs, especially on unstructured grids. Moreover, we have integrated the study between adaptive method and multilevel methods, and made significant efforts and advances in adaptive multilevel methods of the multi-physics problems.

  11. Ternary generalization of Heisenberg's algebra

    NASA Astrophysics Data System (ADS)

    Kerner, Richard

    2015-06-01

    A concise study of ternary and cubic algebras with Z3 grading is presented. We discuss some underlying ideas leading to the conclusion that the discrete symmetry group of permutations of three objects, S3, and its abelian subgroup Z3 may play an important role in quantum physics. We show then how most of important algebras with Z2 grading can be generalized with ternary composition laws combined with a Z3 grading. We investigate in particular a ternary, Z3-graded generalization of the Heisenberg algebra. It turns out that introducing a non-trivial cubic root of unity, , one can define two types of creation operators instead of one, accompanying the usual annihilation operator. The two creation operators are non-hermitian, but they are mutually conjugate. Together, the three operators form a ternary algebra, and some of their cubic combinations generate the usual Heisenberg algebra. An analogue of Hamiltonian operator is constructed by analogy with the usual harmonic oscillator, and some properties of its eigenfunctions are briefly discussed.

  12. Beyond Dirac - a Unified Algebra

    NASA Astrophysics Data System (ADS)

    Lundberg, Wayne R.

    2001-10-01

    A introductory insight will be shared regarding a 'separation of variables' approach to understanding the relationship between QCD and the origins of cosmological and particle mass. The discussion will then build upon work presented at DFP 2000, focussing on the formal basis for using 3x3x3 matrix algebra as it underlies and extends Dirac notation. A set of restrictions are established which break the multiple symmetries of the 3x3x3 matrix algebra, yielding Standard Model QCD objects and interactions. It will be shown that the 3x3x3 matrix representation unifies the algebra of strong and weak (and by extension, electromagnetic) interactions. A direct correspondence to string theoretic objects is established by considering the string to be partitioned in thirds. Rubik's cube is used as a graphical means of handling algebraic manipulation of 3x3x3 algebra. Further, its potential utility for advancing pedagogical methods through active engagement is discussed. A simulated classroom exercize will be conducted.

  13. Alternative Methods for Assessing Mediation in Multilevel Data: The Advantages of Multilevel SEM

    ERIC Educational Resources Information Center

    Preacher, Kristopher J.; Zhang, Zhen; Zyphur, Michael J.

    2011-01-01

    Multilevel modeling (MLM) is a popular way of assessing mediation effects with clustered data. Two important limitations of this approach have been identified in prior research and a theoretical rationale has been provided for why multilevel structural equation modeling (MSEM) should be preferred. However, to date, no empirical evidence of MSEM's…

  14. Algebraic Lattices in QFT Renormalization

    NASA Astrophysics Data System (ADS)

    Borinsky, Michael

    2016-04-01

    The structure of overlapping subdivergences, which appear in the perturbative expansions of quantum field theory, is analyzed using algebraic lattice theory. It is shown that for specific QFTs the sets of subdivergences of Feynman diagrams form algebraic lattices. This class of QFTs includes the standard model. In kinematic renormalization schemes, in which tadpole diagrams vanish, these lattices are semimodular. This implies that the Hopf algebra of Feynman diagrams is graded by the coradical degree or equivalently that every maximal forest has the same length in the scope of BPHZ renormalization. As an application of this framework, a formula for the counter terms in zero-dimensional QFT is given together with some examples of the enumeration of primitive or skeleton diagrams.

  15. Algebraic Lattices in QFT Renormalization

    NASA Astrophysics Data System (ADS)

    Borinsky, Michael

    2016-07-01

    The structure of overlapping subdivergences, which appear in the perturbative expansions of quantum field theory, is analyzed using algebraic lattice theory. It is shown that for specific QFTs the sets of subdivergences of Feynman diagrams form algebraic lattices. This class of QFTs includes the standard model. In kinematic renormalization schemes, in which tadpole diagrams vanish, these lattices are semimodular. This implies that the Hopf algebra of Feynman diagrams is graded by the coradical degree or equivalently that every maximal forest has the same length in the scope of BPHZ renormalization. As an application of this framework, a formula for the counter terms in zero-dimensional QFT is given together with some examples of the enumeration of primitive or skeleton diagrams.

  16. Moving frames and prolongation algebras

    NASA Technical Reports Server (NTRS)

    Estabrook, F. B.

    1982-01-01

    Differential ideals generated by sets of 2-forms which can be written with constant coefficients in a canonical basis of 1-forms are considered. By setting up a Cartan-Ehresmann connection, in a fiber bundle over a base space in which the 2-forms live, one finds an incomplete Lie algebra of vector fields in the fields in the fibers. Conversely, given this algebra (a prolongation algebra), one can derive the differential ideal. The two constructs are thus dual, and analysis of either derives properties of both. Such systems arise in the classical differential geometry of moving frames. Examples of this are discussed, together with examples arising more recently: the Korteweg-de Vries and Harrison-Ernst systems.

  17. A new solver for the elastic normal contact problem using conjugate gradients, deflation, and an FFT-based preconditioner

    NASA Astrophysics Data System (ADS)

    Vollebregt, E. A. H.

    2014-01-01

    This paper presents our new solver BCCG+FAI for solving elastic normal contact problems. This is a comprehensible approach that is based on the Conjugate Gradients (CG) algorithm and that uses FFTs. A first novel aspect is the definition of the “FFT-based Approximate Inverse” preconditioner. The underlying idea is that the inverse matrix can be approximated well using a Toeplitz or block-Toeplitz form, which can be computed using the FFT of the original matrix elements. This preconditioner makes the total number of CG iterations effectively constant in 2D and very slowly increasing in 3D problems. A second novelty is how we deal with a prescribed total force. This uses a deflation technique in such a way that CGs convergence and finite termination properties are maintained. Numerical results show that this solver is more effective than existing CG-based strategies, such that it can compete with Multi-Grid strategies over a much larger problem range. In our opinion it could be the new method of choice because of its simple structure and elegant theory, and because robust performance is achieved independently of any problem specific parameters.

  18. Generalized Galilean algebras and Newtonian gravity

    NASA Astrophysics Data System (ADS)

    González, N.; Rubio, G.; Salgado, P.; Salgado, S.

    2016-04-01

    The non-relativistic versions of the generalized Poincaré algebras and generalized AdS-Lorentz algebras are obtained. These non-relativistic algebras are called, generalized Galilean algebras of type I and type II and denoted by GBn and GLn respectively. Using a generalized Inönü-Wigner contraction procedure we find that the generalized Galilean algebras of type I can be obtained from the generalized Galilean algebras type II. The S-expansion procedure allows us to find the GB5 algebra from the Newton Hooke algebra with central extension. The procedure developed in Ref. [1] allows us to show that the nonrelativistic limit of the five dimensional Einstein-Chern-Simons gravity is given by a modified version of the Poisson equation. The modification could be compatible with the effects of Dark Matter, which leads us to think that Dark Matter can be interpreted as a non-relativistic limit of Dark Energy.

  19. Computer Algebra Systems in Undergraduate Instruction.

    ERIC Educational Resources Information Center

    Small, Don; And Others

    1986-01-01

    Computer algebra systems (such as MACSYMA and muMath) can carry out many of the operations of calculus, linear algebra, and differential equations. Use of them with sketching graphs of rational functions and with other topics is discussed. (MNS)

  20. Motivating Activities that Lead to Algebra

    ERIC Educational Resources Information Center

    Menon, Ramakrishnan

    2004-01-01

    Four activities consisting of puzzles are introduced, which help students to recognize the strength of algebraic generalizations. They also assist them to comprehend algebraic concepts, and enable them to develop their individual puzzles and games.

  1. Computational triadic algebras of signs

    SciTech Connect

    Zadrozny, W.

    1996-12-31

    We present a finite model of Peirce`s ten classes of signs. We briefly describe Peirce`s taxonomy of signs; we prove that any finite collection of signs can be extended to a finite algebra of signs in which all interpretants are themselves being interpreted; and we argue that Peirce`s ten classes of signs can be defined using constraints on algebras of signs. The paper opens the possibility of defining multimodal cognitive agents using Peirce`s classes of signs, and is a first step towards building a computational logic of signs based on Peirce`s taxonomies.

  2. Does Calculation or Word-Problem Instruction Provide A Stronger Route to Pre-Algebraic Knowledge?

    PubMed Central

    Fuchs, Lynn S.; Powell, Sarah R.; Cirino, Paul T.; Schumacher, Robin F.; Marrin, Sarah; Hamlett, Carol L.; Fuchs, Douglas; Compton, Donald L.; Changas, Paul C.

    2014-01-01

    The focus of this study was connections among 3 aspects of mathematical cognition at 2nd grade: calculations, word problems, and pre-algebraic knowledge. We extended the literature, which is dominated by correlational work, by examining whether intervention conducted on calculations or word problems contributes to improved performance in the other domain and whether intervention in either or both domains contributes to pre-algebraic knowledge. Participants were 1102 children in 127 2nd-grade classrooms in 25 schools. Teachers were randomly assigned to 3 conditions: calculation intervention, word-problem intervention, and business-as-usual control. Intervention, which lasted 17 weeks, was designed to provide research-based linkages between arithmetic calculations or arithmetic word problems (depending on condition) to pre-algebraic knowledge. Multilevel modeling suggested calculation intervention improved calculation but not word-problem outcomes; word-problem intervention enhanced word-problem but not calculation outcomes; and word-problem intervention provided a stronger route than calculation intervention to pre-algebraic knowledge. PMID:25541565

  3. Making Algebra Work: Instructional Strategies that Deepen Student Understanding, within and between Algebraic Representations

    ERIC Educational Resources Information Center

    Star, Jon R.; Rittle-Johnson, Bethany

    2009-01-01

    Competence in algebra is increasingly recognized as a critical milestone in students' middle and high school years. The transition from arithmetic to algebra is a notoriously difficult one, and improvements in algebra instruction are greatly needed (National Research Council, 2001). Algebra historically has represented students' first sustained…

  4. Spatial-Operator Algebra For Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo; Kreutz, Kenneth K.; Milman, Mark H.

    1991-01-01

    Report discusses spatial-operator algebra developed in recent studies of mathematical modeling, control, and design of trajectories of robotic manipulators. Provides succinct representation of mathematically complicated interactions among multiple joints and links of manipulator, thereby relieving analyst of most of tedium of detailed algebraic manipulations. Presents analytical formulation of spatial-operator algebra, describes some specific applications, summarizes current research, and discusses implementation of spatial-operator algebra in the Ada programming language.

  5. Applications of cascade multilevel inverters.

    PubMed

    Peng, Fang-zen; Qian, Zhao-ming

    2003-01-01

    Cascade multilevel inverters have been developed for electric utility applications. A cascade M-level inverter consists of (M-1)/2 H-bridges in which each bridge's dc voltage is supported by its own dc capacitor. The new inverter can: (1) generate almost sinusoidal waveform voltage while only switching one time per fundamental cycle; (2) dispense with multi-pulse inverters' transformers used in conventional utility interfaces and static var compensators; (3) enables direct parallel or series transformer-less connection to medium- and high-voltage power systems. In short, the cascade inverter is much more efficient and suitable for utility applications than traditional multi-pulse and pulse width modulation (PWM) inverters. The authors have experimentally demonstrated the superiority of the new inverter for power supply, (hybrid) electric vehicle (EV) motor drive, reactive power (var) and harmonic compensation. This paper summarizes the features, feasibility, and control schemes of the cascade inverter for utility applications including utility interface of renewable energy, voltage regulation, var compensation, and harmonic filtering in power systems. Analytical, simulated, and experimental results demonstrated the superiority of the new inverters. PMID:14566981

  6. Multilevel Complex Networks and Systems

    NASA Astrophysics Data System (ADS)

    Caldarelli, Guido

    2014-03-01

    Network theory has been a powerful tool to model isolated complex systems. However, the classical approach does not take into account the interactions often present among different systems. Hence, the scientific community is nowadays concentrating the efforts on the foundations of new mathematical tools for understanding what happens when multiple networks interact. The case of economic and financial networks represents a paramount example of multilevel networks. In the case of trade, trade among countries the different levels can be described by the different granularity of the trading relations. Indeed, we have now data from the scale of consumers to that of the country level. In the case of financial institutions, we have a variety of levels at the same scale. For example one bank can appear in the interbank networks, ownership network and cds networks in which the same institution can take place. In both cases the systemically important vertices need to be determined by different procedures of centrality definition and community detection. In this talk I will present some specific cases of study related to these topics and present the regularities found. Acknowledged support from EU FET Project ``Multiplex'' 317532.

  7. Multilevel sequential Monte Carlo samplers

    DOE PAGESBeta

    Beskos, Alexandros; Jasra, Ajay; Law, Kody; Tempone, Raul; Zhou, Yan

    2016-08-24

    Here, we study the approximation of expectations w.r.t. probability distributions associated to the solution of partial differential equations (PDEs); this scenario appears routinely in Bayesian inverse problems. In practice, one often has to solve the associated PDE numerically, using, for instance finite element methods and leading to a discretisation bias, with the step-size level hL. In addition, the expectation cannot be computed analytically and one often resorts to Monte Carlo methods. In the context of this problem, it is known that the introduction of the multilevel Monte Carlo (MLMC) method can reduce the amount of computational effort to estimate expectations, for a given level of error. This is achieved via a telescoping identity associated to a Monte Carlo approximation of a sequence of probability distributions with discretisation levelsmore » $${\\infty}$$ >h0>h1 ...>hL. In many practical problems of interest, one cannot achieve an i.i.d. sampling of the associated sequence of probability distributions. A sequential Monte Carlo (SMC) version of the MLMC method is introduced to deal with this problem. In conclusion, it is shown that under appropriate assumptions, the attractive property of a reduction of the amount of computational effort to estimate expectations, for a given level of error, can be maintained within the SMC context.« less

  8. GPU-based Multilevel Clustering.

    PubMed

    Chiosa, Iurie; Kolb, Andreas

    2010-04-01

    The processing power of parallel co-processors like the Graphics Processing Unit (GPU) are dramatically increasing. However, up until now only a few approaches have been presented to utilize this kind of hardware for mesh clustering purposes. In this paper we introduce a Multilevel clustering technique designed as a parallel algorithm and solely implemented on the GPU. Our formulation uses the spatial coherence present in the cluster optimization and hierarchical cluster merging to significantly reduce the number of comparisons in both parts . Our approach provides a fast, high quality and complete clustering analysis. Furthermore, based on the original concept we present a generalization of the method to data clustering. All advantages of the meshbased techniques smoothly carry over to the generalized clustering approach. Additionally, this approach solves the problem of the missing topological information inherent to general data clustering and leads to a Local Neighbors k-means algorithm. We evaluate both techniques by applying them to Centroidal Voronoi Diagram (CVD) based clustering. Compared to classical approaches, our techniques generate results with at least the same clustering quality. Our technique proves to scale very well, currently being limited only by the available amount of graphics memory. PMID:20421676

  9. The weak Hopf algebras related to generalized Kac-Moody algebra

    SciTech Connect

    Wu Zhixiang

    2006-06-15

    We define a kind of quantized enveloping algebra of a generalized Kac-Moody algebra G by adding a generator J satisfying J{sup m}=J{sup m-1} for some integer m. We denote this algebra by wU{sub q}{sup {tau}}(G). This algebra is a weak Hopf algebra if and only if m=2. In general, it is a bialgebra, and contains a Hopf subalgebra. This Hopf subalgebra is isomorphic to the usually quantum envelope algebra U{sub q}(G) of a generalized Kac-Moody algebra G.

  10. Algebra? A Gate! A Barrier! A Mystery!

    ERIC Educational Resources Information Center

    Mathematics Educatio Dialogues, 2000

    2000-01-01

    This issue of Mathematics Education Dialogues focuses on the nature and the role of algebra in the K-14 curriculum. Articles on this theme include: (1) "Algebra For All? Why?" (Nel Noddings); (2) "Algebra For All: It's a Matter of Equity, Expectations, and Effectiveness" (Dorothy S. Strong and Nell B. Cobb); (3) "Don't Delay: Build and Talk about…

  11. UCSMP Algebra. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2007

    2007-01-01

    "University of Chicago School Mathematics Project (UCSMP) Algebra," designed to increase students' skills in algebra, is appropriate for students in grades 7-10, depending on the students' incoming knowledge. This one-year course highlights applications, uses statistics and geometry to develop the algebra of linear equations and inequalities, and…

  12. Graphing Calculator Use in Algebra Teaching

    ERIC Educational Resources Information Center

    Dewey, Brenda L.; Singletary, Ted J.; Kinzel, Margaret T.

    2009-01-01

    This study examines graphing calculator technology availability, characteristics of teachers who use it, teacher attitudes, and how use reflects changes to algebra curriculum and instructional practices. Algebra I and Algebra II teachers in 75 high school and junior high/middle schools in a diverse region of a northwestern state were surveyed.…

  13. New family of Maxwell like algebras

    NASA Astrophysics Data System (ADS)

    Concha, P. K.; Durka, R.; Merino, N.; Rodríguez, E. K.

    2016-08-01

    We introduce an alternative way of closing Maxwell like algebras. We show, through a suitable change of basis, that resulting algebras are given by the direct sums of the AdS and the Maxwell algebras already known in the literature. Casting the result into the S-expansion method framework ensures the straightaway construction of the gravity theories based on a found enlargement.

  14. Build an Early Foundation for Algebra Success

    ERIC Educational Resources Information Center

    Knuth, Eric; Stephens, Ana; Blanton, Maria; Gardiner, Angela

    2016-01-01

    Research tells us that success in algebra is a factor in many other important student outcomes. Emerging research also suggests that students who are started on an algebra curriculum in the earlier grades may have greater success in the subject in secondary school. What's needed is a consistent, algebra-infused mathematics curriculum all…

  15. A Balancing Act: Making Sense of Algebra

    ERIC Educational Resources Information Center

    Gavin, M. Katherine; Sheffield, Linda Jensen

    2015-01-01

    For most students, algebra seems like a totally different subject than the number topics they studied in elementary school. In reality, the procedures followed in arithmetic are actually based on the properties and laws of algebra. Algebra should be a logical next step for students in extending the proficiencies they developed with number topics…

  16. Difficulties in Initial Algebra Learning in Indonesia

    ERIC Educational Resources Information Center

    Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja

    2014-01-01

    Within mathematics curricula, algebra has been widely recognized as one of the most difficult topics, which leads to learning difficulties worldwide. In Indonesia, algebra performance is an important issue. In the Trends in International Mathematics and Science Study (TIMSS) 2007, Indonesian students' achievement in the algebra domain was…

  17. Teaching Strategies to Improve Algebra Learning

    ERIC Educational Resources Information Center

    Zbiek, Rose Mary; Larson, Matthew R.

    2015-01-01

    Improving student learning is the primary goal of every teacher of algebra. Teachers seek strategies to help all students learn important algebra content and develop mathematical practices. The new Institute of Education Sciences[IES] practice guide, "Teaching Strategies for Improving Algebra Knowledge in Middle and High School Students"…

  18. Lessons for Algebraic Thinking. Grades K-2.

    ERIC Educational Resources Information Center

    von Rotz, Leyani; Burns, Marilyn

    Algebra is one of the top priorities of mathematics instruction for the elementary and middle grades. This book is designed to help K-2 teachers meet the challenge of making algebra an integral part of their mathematics instruction and realize both what to teach and how to teach central algebraic concepts. Classroom-tested lessons help teachers…

  19. Unifying the Algebra for All Movement

    ERIC Educational Resources Information Center

    Eddy, Colleen M.; Quebec Fuentes, Sarah; Ward, Elizabeth K.; Parker, Yolanda A.; Cooper, Sandi; Jasper, William A.; Mallam, Winifred A.; Sorto, M. Alejandra; Wilkerson, Trena L.

    2015-01-01

    There exists an increased focus on school mathematics, especially first-year algebra, due to recent efforts for all students to be college and career ready. In addition, there are calls, policies, and legislation advocating for all students to study algebra epitomized by four rationales of the "Algebra for All" movement. In light of this…

  20. Weaving Geometry and Algebra Together

    ERIC Educational Resources Information Center

    Cetner, Michelle

    2015-01-01

    When thinking about student reasoning and sense making, teachers must consider the nature of tasks given to students along with how to plan to use the tasks in the classroom. Students should be presented with tasks in a way that encourages them to draw connections between algebraic and geometric concepts. This article focuses on the idea that it…

  1. Inequalities, Assessment and Computer Algebra

    ERIC Educational Resources Information Center

    Sangwin, Christopher J.

    2015-01-01

    The goal of this paper is to examine single variable real inequalities that arise as tutorial problems and to examine the extent to which current computer algebra systems (CAS) can (1) automatically solve such problems and (2) determine whether students' own answers to such problems are correct. We review how inequalities arise in…

  2. Putting the Modern in Algebra

    ERIC Educational Resources Information Center

    Bosse, Michael J.; Ries, Heather; Chandler, Kayla

    2012-01-01

    Secondary school mathematics teachers often need to answer the "Why do we do that?" question in such a way that avoids confusion and evokes student interest. Understanding the properties of number systems can provide an avenue to better grasp algebraic structures, which in turn builds students' conceptual knowledge of secondary mathematics. This…

  3. Implementing Change in College Algebra

    ERIC Educational Resources Information Center

    Haver, William E.

    2007-01-01

    In this paper, departments are urged to consider implementing the type of changes proposed in Beyond Crossroads in College Algebra. The author of this paper is chair of the Curriculum Renewal Across the First Two Years (CRAFTY) Committee of the Mathematical Association of America. The committee has members from two-year colleges, four-year…

  4. Algebraic Activities Aid Discovery Lessons

    ERIC Educational Resources Information Center

    Wallace-Gomez, Patricia

    2013-01-01

    After a unit on the rules for positive and negative numbers and the order of operations for evaluating algebraic expressions, many students believe that they understand these principles well enough, but they really do not. They clearly need more practice, but not more of the same kind of drill. Wallace-Gomez provides three graphing activities that…

  5. Fuzzy-algebra uncertainty assessment

    SciTech Connect

    Cooper, J.A.; Cooper, D.K.

    1994-12-01

    A significant number of analytical problems (for example, abnormal-environment safety analysis) depend on data that are partly or mostly subjective. Since fuzzy algebra depends on subjective operands, we have been investigating its applicability to these forms of assessment, particularly for portraying uncertainty in the results of PRA (probabilistic risk analysis) and in risk-analysis-aided decision-making. Since analysis results can be a major contributor to a safety-measure decision process, risk management depends on relating uncertainty to only known (not assumed) information. The uncertainties due to abnormal environments are even more challenging than those in normal-environment safety assessments; and therefore require an even more judicious approach. Fuzzy algebra matches these requirements well. One of the most useful aspects of this work is that we have shown the potential for significant differences (especially in perceived margin relative to a decision threshold) between fuzzy assessment and probabilistic assessment based on subtle factors inherent in the choice of probability distribution models. We have also shown the relation of fuzzy algebra assessment to ``bounds`` analysis, as well as a description of how analyses can migrate from bounds analysis to fuzzy-algebra analysis, and to probabilistic analysis as information about the process to be analyzed is obtained. Instructive examples are used to illustrate the points.

  6. Entropy algebras and Birkhoff factorization

    NASA Astrophysics Data System (ADS)

    Marcolli, Matilde; Tedeschi, Nicolas

    2015-11-01

    We develop notions of Rota-Baxter structures and associated Birkhoff factorizations, in the context of min-plus semirings and their thermodynamic deformations, including deformations arising from quantum information measures such as the von Neumann entropy. We consider examples related to Manin's renormalization and computation program, to Markov random fields and to counting functions and zeta functions of algebraic varieties.

  7. Algebra for All. Research Brief

    ERIC Educational Resources Information Center

    Bleyaert, Barbara

    2009-01-01

    The call for "algebra for all" is not a recent phenomenon. Concerns about the inadequacy of math (and science) preparation in America's high schools have been a steady drumbeat since the 1957 launch of Sputnik; a call for raising standards and the number of math (and science) courses required for graduation has been a part of countless national…

  8. A New Age for Algebra

    ERIC Educational Resources Information Center

    Oishi, Lindsay

    2011-01-01

    "Solve for x." While many people first encountered this enigmatic instruction in high school, the last 20 years have seen a strong push to get students to take algebra in eighth grade or even before. Today, concerns about the economy highlight a familiar worry: American eighth-graders trailed their peers in five Asian countries on the 2007 TIMSS…

  9. Exploring Algebraic Misconceptions with Technology

    ERIC Educational Resources Information Center

    Sakow, Matthew; Karaman, Ruveyda

    2015-01-01

    Many students struggle with algebra, from simplifying expressions to solving systems of equations. Students also have misconceptions about the meaning of variables. In response to the question "Can x + y + z ever equal x + p + z?" during a student interview, the student claimed, "Never . . . because p has to have a different value…

  10. An Introduction to Algebraic Multigrid

    SciTech Connect

    Falgout, R D

    2006-04-25

    Algebraic multigrid (AMG) solves linear systems based on multigrid principles, but in a way that only depends on the coefficients in the underlying matrix. The author begins with a basic introduction to AMG methods, and then describes some more recent advances and theoretical developments

  11. Elementary Algebra Connections to Precalculus

    ERIC Educational Resources Information Center

    Lopez-Boada, Roberto; Daire, Sandra Arguelles

    2013-01-01

    This article examines the attitudes of some precalculus students to solve trigonometric and logarithmic equations and systems using the concepts of elementary algebra. With the goal of enticing the students to search for and use connections among mathematical topics, they are asked to solve equations or systems specifically designed to allow…

  12. Adventures in Flipping College Algebra

    ERIC Educational Resources Information Center

    Van Sickle, Jenna

    2015-01-01

    This paper outlines the experience of a university professor who implemented flipped learning in two sections of college algebra courses for two semesters. It details how the courses were flipped, what technology was used, advantages, challenges, and results. It explains what students do outside of class, what they do inside class, and discusses…

  13. Kinds of Knowledge in Algebra.

    ERIC Educational Resources Information Center

    Lewis, Clayton

    Solving equations in elementary algebra requires knowledge of the permitted operations, and knowledge of what operation to use at a given point in the solution process. While just these kinds of knowledge would be adequate for an ideal solver, human solvers appear to need and use other kinds of knowledge. First, many errors seem to indicate that…

  14. Algebra, Home Mortgages, and Recessions

    ERIC Educational Resources Information Center

    Mariner, Jean A. Miller; Miller, Richard A.

    2009-01-01

    The current financial crisis and recession in the United States present an opportunity to discuss relevant applications of some topics in typical first-and second-year algebra and precalculus courses. Real-world applications of percent change, exponential functions, and sums of finite geometric sequences can help students understand the problems…

  15. Algebra from Chips and Chopsticks

    ERIC Educational Resources Information Center

    Yun, Jeong Oak; Flores, Alfinio

    2012-01-01

    Students can use geometric representations of numbers as a way to explore algebraic ideas. With the help of these representations, students can think about the relations among the numbers, express them using their own words, and represent them with letters. The activities discussed here can stimulate students to try to find various ways of solving…

  16. Celestial mechanics with geometric algebra

    NASA Technical Reports Server (NTRS)

    Hestenes, D.

    1983-01-01

    Geometric algebra is introduced as a general tool for Celestial Mechanics. A general method for handling finite rotations and rotational kinematics is presented. The constants of Kepler motion are derived and manipulated in a new way. A new spinor formulation of perturbation theory is developed.

  17. Algebraic methods in system theory

    NASA Technical Reports Server (NTRS)

    Brockett, R. W.; Willems, J. C.; Willsky, A. S.

    1975-01-01

    Investigations on problems of the type which arise in the control of switched electrical networks are reported. The main results concern the algebraic structure and stochastic aspects of these systems. Future reports will contain more detailed applications of these results to engineering studies.

  18. Principals + Algebra (- Fear) = Instructional Leadership

    ERIC Educational Resources Information Center

    Carver, Cynthia L.

    2010-01-01

    Recent state legislation in Michigan mandates that all graduating seniors successfully pass algebra I and II. Numerous initiatives have been enacted to help mathematics teachers meet this challenge, yet school principals have had little preparation for the necessary curricular and instructional changes. To address this unmet need, university-based…

  19. Experts Question California's Algebra Edict

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2008-01-01

    Business leaders from important sectors of the American economy have been urging schools to set higher standards in math and science--and California officials, in mandating that 8th graders be tested in introductory algebra, have responded with one of the highest such standards in the land. Still, many California educators and school…

  20. The Exocenter of a Generalized Effect Algebra

    NASA Astrophysics Data System (ADS)

    Foulis, David J.; Pulmannová, Sylvia

    2011-12-01

    Elements of the exocenter of a generalized effect algebra (GEA) correspond to decompositions of the GEA as a direct sum and thus the exocenter is a generalization to GEAs of the center of an effect algebra. The exocenter of a GEA is shown to be a boolean algebra, and the notion of a hull mapping for an effect algebra is generalized to a hull system for a GEA. We study Dedekind orthocompleteness of GEAs and extend to GEAs the notion of a centrally orthocomplete effect algebra.

  1. Array algebra estimation in signal processing

    NASA Astrophysics Data System (ADS)

    Rauhala, U. A.

    A general theory of linear estimators called array algebra estimation is interpreted in some terms of multidimensional digital signal processing, mathematical statistics, and numerical analysis. The theory has emerged during the past decade from the new field of a unified vector, matrix and tensor algebra called array algebra. The broad concepts of array algebra and its estimation theory cover several modern computerized sciences and technologies converting their established notations and terminology into one common language. Some concepts of digital signal processing are adopted into this language after a review of the principles of array algebra estimation and its predecessors in mathematical surveying sciences.

  2. Multi-level block permutation

    PubMed Central

    Winkler, Anderson M.; Webster, Matthew A.; Vidaurre, Diego; Nichols, Thomas E.; Smith, Stephen M.

    2015-01-01

    Under weak and reasonable assumptions, mainly that data are exchangeable under the null hypothesis, permutation tests can provide exact control of false positives and allow the use of various non-standard statistics. There are, however, various common examples in which global exchangeability can be violated, including paired tests, tests that involve repeated measurements, tests in which subjects are relatives (members of pedigrees) — any dataset with known dependence among observations. In these cases, some permutations, if performed, would create data that would not possess the original dependence structure, and thus, should not be used to construct the reference (null) distribution. To allow permutation inference in such cases, we test the null hypothesis using only a subset of all otherwise possible permutations, i.e., using only the rearrangements of the data that respect exchangeability, thus retaining the original joint distribution unaltered. In a previous study, we defined exchangeability for blocks of data, as opposed to each datum individually, then allowing permutations to happen within block, or the blocks as a whole to be permuted. Here we extend that notion to allow blocks to be nested, in a hierarchical, multi-level definition. We do not explicitly model the degree of dependence between observations, only the lack of independence; the dependence is implicitly accounted for by the hierarchy and by the permutation scheme. The strategy is compatible with heteroscedasticity and variance groups, and can be used with permutations, sign flippings, or both combined. We evaluate the method for various dependence structures, apply it to real data from the Human Connectome Project (HCP) as an example application, show that false positives can be avoided in such cases, and provide a software implementation of the proposed approach. PMID:26074200

  3. Element Agglomeration Algebraic Multigrid and Upscaling Library

    Energy Science and Technology Software Center (ESTSC)

    2015-02-11

    ELAG is a serial C++ library for numerical upscaling of finite element discretizations. It provides optimal complexity algorithms to build multilevel hierarchies and solvers that can be used for solving a wide class of partial differential equation (elliptic, hyperbolic, saddle point problems) on general unstructured mesh. Additionally, a novel multilevel solver for saddle point problems with divergence constraint is implemented.

  4. Mediation from Multilevel to Structural Equation Modeling

    PubMed Central

    MacKinnon, David P.; Valente, Matthew J.

    2016-01-01

    Background/Aims The purpose of this article is to outline multilevel structural equation modeling (MSEM) for mediation analysis of longitudinal data. The introduction of mediating variables can improve experimental and nonexperimental studies of child growth in several ways as discussed throughout this article. Single-mediator individual-level and multilevel mediation models illustrate several current issues in the estimation of mediation with longitudinal data. The strengths of incorporating structural equation modeling (SEM) with multilevel mediation modeling are described. Summary and Key Messages Longitudinal mediation models are pervasive in many areas of research including child growth. Longitudinal mediation models are ideally modeled as repeated measurements clustered within individuals. Further, the combination of MSEM and SEM provides an ideal approach for several reasons, including the ability to assess effects at different levels of analysis, incorporation of measurement error and possible random effects that vary across individuals. PMID:25413658

  5. Automatic multilevel medical image annotation and retrieval.

    PubMed

    Mueen, A; Zainuddin, R; Baba, M Sapiyan

    2008-09-01

    Image retrieval at the semantic level mostly depends on image annotation or image classification. Image annotation performance largely depends on three issues: (1) automatic image feature extraction; (2) a semantic image concept modeling; (3) algorithm for semantic image annotation. To address first issue, multilevel features are extracted to construct the feature vector, which represents the contents of the image. To address second issue, domain-dependent concept hierarchy is constructed for interpretation of image semantic concepts. To address third issue, automatic multilevel code generation is proposed for image classification and multilevel image annotation. We make use of the existing image annotation to address second and third issues. Our experiments on a specific domain of X-ray images have given encouraging results. PMID:17846834

  6. Multilevel modeling in psychosomatic medicine research.

    PubMed

    Myers, Nicholas D; Brincks, Ahnalee M; Ames, Allison J; Prado, Guillermo J; Penedo, Frank J; Benedict, Catherine

    2012-01-01

    The primary purpose of this study is to provide an overview of multilevel modeling for Psychosomatic Medicine readers and contributors. The article begins with a general introduction to multilevel modeling. Multilevel regression modeling at two levels is emphasized because of its prevalence in psychosomatic medicine research. Simulated data sets based on some core ideas from the Familias Unidas effectiveness study are used to illustrate key concepts including communication of model specification, parameter interpretation, sample size and power, and missing data. Input and key output files from Mplus and SAS are provided. A cluster randomized trial with repeated measures (i.e., three-level regression model) is then briefly presented with simulated data based on some core ideas from a cognitive-behavioral stress management intervention in prostate cancer. PMID:23107843

  7. Multilevel Modeling in Psychosomatic Medicine Research

    PubMed Central

    Myers, Nicholas D.; Brincks, Ahnalee M.; Ames, Allison J.; Prado, Guillermo J.; Penedo, Frank J.; Benedict, Catherine

    2012-01-01

    The primary purpose of this manuscript is to provide an overview of multilevel modeling for Psychosomatic Medicine readers and contributors. The manuscript begins with a general introduction to multilevel modeling. Multilevel regression modeling at two-levels is emphasized because of its prevalence in psychosomatic medicine research. Simulated datasets based on some core ideas from the Familias Unidas effectiveness study are used to illustrate key concepts including: communication of model specification, parameter interpretation, sample size and power, and missing data. Input and key output files from Mplus and SAS are provided. A cluster randomized trial with repeated measures (i.e., three-level regression model) is then briefly presented with simulated data based on some core ideas from a cognitive behavioral stress management intervention in prostate cancer. PMID:23107843

  8. Formulation and Application of the Generalized Multilevel Facets Model

    ERIC Educational Resources Information Center

    Wang, Wen-Chung; Liu, Chih-Yu

    2007-01-01

    In this study, the authors develop a generalized multilevel facets model, which is not only a multilevel and two-parameter generalization of the facets model, but also a multilevel and facet generalization of the generalized partial credit model. Because the new model is formulated within a framework of nonlinear mixed models, no efforts are…

  9. Filiform Lie algebras of order 3

    SciTech Connect

    Navarro, R. M.

    2014-04-15

    The aim of this work is to generalize a very important type of Lie algebras and superalgebras, i.e., filiform Lie (super)algebras, into the theory of Lie algebras of order F. Thus, the concept of filiform Lie algebras of order F is obtained. In particular, for F = 3 it has been proved that by using infinitesimal deformations of the associated model elementary Lie algebra it can be obtained families of filiform elementary lie algebras of order 3, analogously as that occurs into the theory of Lie algebras [M. Vergne, “Cohomologie des algèbres de Lie nilpotentes. Application à l’étude de la variété des algèbres de Lie nilpotentes,” Bull. Soc. Math. France 98, 81–116 (1970)]. Also we give the dimension, using an adaptation of the sl(2,C)-module Method, and a basis of such infinitesimal deformations in some generic cases.

  10. Atomic effect algebras with compression bases

    SciTech Connect

    Caragheorgheopol, Dan; Tkadlec, Josef

    2011-01-15

    Compression base effect algebras were recently introduced by Gudder [Demonstr. Math. 39, 43 (2006)]. They generalize sequential effect algebras [Rep. Math. Phys. 49, 87 (2002)] and compressible effect algebras [Rep. Math. Phys. 54, 93 (2004)]. The present paper focuses on atomic compression base effect algebras and the consequences of atoms being foci (so-called projections) of the compressions in the compression base. Part of our work generalizes results obtained in atomic sequential effect algebras by Tkadlec [Int. J. Theor. Phys. 47, 185 (2008)]. The notion of projection-atomicity is introduced and studied, and several conditions that force a compression base effect algebra or the set of its projections to be Boolean are found. Finally, we apply some of these results to sequential effect algebras and strengthen a previously established result concerning a sufficient condition for them to be Boolean.

  11. Atomic effect algebras with compression bases

    NASA Astrophysics Data System (ADS)

    Caragheorgheopol, Dan; Tkadlec, Josef

    2011-01-01

    Compression base effect algebras were recently introduced by Gudder [Demonstr. Math. 39, 43 (2006)]. They generalize sequential effect algebras [Rep. Math. Phys. 49, 87 (2002)] and compressible effect algebras [Rep. Math. Phys. 54, 93 (2004)]. The present paper focuses on atomic compression base effect algebras and the consequences of atoms being foci (so-called projections) of the compressions in the compression base. Part of our work generalizes results obtained in atomic sequential effect algebras by Tkadlec [Int. J. Theor. Phys. 47, 185 (2008)]. The notion of projection-atomicity is introduced and studied, and several conditions that force a compression base effect algebra or the set of its projections to be Boolean are found. Finally, we apply some of these results to sequential effect algebras and strengthen a previously established result concerning a sufficient condition for them to be Boolean.

  12. Multilevel transport solution of LWR reactor cores

    SciTech Connect

    Jose Ignacio Marquez Damian; Cassiano R.E. de Oliveira; HyeonKae Park

    2008-09-01

    This work presents a multilevel approach for the solution of the transport equation in typical LWR assemblies and core configurations. It is based on the second-order, even-parity formulation of the transport equation, which is solved within the framework provided by the finite element-spherical harmonics code EVENT. The performance of the new solver has been compared with that of the standard conjugate gradient solver for diffusion and transport problems on structured and unstruc-tured grids. Numerical results demonstrate the potential of the multilevel scheme for realistic reactor calculations.

  13. On conjugate gradient type methods and polynomial preconditioners for a class of complex non-Hermitian matrices

    NASA Technical Reports Server (NTRS)

    Freund, Roland

    1988-01-01

    Conjugate gradient type methods are considered for the solution of large linear systems Ax = b with complex coefficient matrices of the type A = T + i(sigma)I where T is Hermitian and sigma, a real scalar. Three different conjugate gradient type approaches with iterates defined by a minimal residual property, a Galerkin type condition, and an Euclidian error minimization, respectively, are investigated. In particular, numerically stable implementations based on the ideas behind Paige and Saunder's SYMMLQ and MINRES for real symmetric matrices are proposed. Error bounds for all three methods are derived. It is shown how the special shift structure of A can be preserved by using polynomial preconditioning. Results on the optimal choice of the polynomial preconditioner are given. Also, some numerical experiments for matrices arising from finite difference approximations to the complex Helmholtz equation are reported.

  14. Hecke-Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type

    NASA Astrophysics Data System (ADS)

    Khongsap, Ta; Wang, Weiqiang

    2009-01-01

    We introduce an odd double affine Hecke algebra (DaHa) generated by a classical Weyl group W and two skew-polynomial subalgebras of anticommuting generators. This algebra is shown to be Morita equivalent to another new DaHa which are generated by W and two polynomial-Clifford subalgebras. There is yet a third algebra containing a spin Weyl group algebra which is Morita (super)equivalent to the above two algebras. We establish the PBW properties and construct Verma-type representations via Dunkl operators for these algebras.

  15. ALGEBRA IIVer 1.22

    Energy Science and Technology Software Center (ESTSC)

    2003-06-03

    The ALGEBRA II program allows the user to manipulate data from a finite element analysis before it is plotted by evaluating algebraic expressions. The equation variables are dependent on the input database variable names. The finite element output data is in the form of variable values (e.g., stress, strain, and velocity components) in an EXODUS II database which can be read by plot programs. Code is written in a portable form as possible. Fortran codemore » is written in ANSI Standard FORTRAN-77. Machine-specific routines are limited in number and are grouped together to minimize the time required to adapt them to a new system. SEACAS codes has been ported to several Unix systems.« less

  16. Single axioms for Boolean algebra.

    SciTech Connect

    McCune, W.

    2000-06-30

    Explicit single axioms are presented for Boolean algebra in terms of (1) the Sheffer stroke; (2) disjunction and negation; (3) disjunction, conjunction, and negation; and (4) disjunction, conjunction, negation, 0, and 1. It was previously known that single axioms exist for these systems, but the procedures to generate them are exponential, producing huge equations. Automated deduction techniques were applied to find axioms of lengths 105, 131, 111, and 127, respectively, each with six variables.

  17. The algebras of large N matrix mechanics

    SciTech Connect

    Halpern, M.B.; Schwartz, C.

    1999-09-16

    Extending early work, we formulate the large N matrix mechanics of general bosonic, fermionic and supersymmetric matrix models, including Matrix theory: The Hamiltonian framework of large N matrix mechanics provides a natural setting in which to study the algebras of the large N limit, including (reduced) Lie algebras, (reduced) supersymmetry algebras and free algebras. We find in particular a broad array of new free algebras which we call symmetric Cuntz algebras, interacting symmetric Cuntz algebras, symmetric Bose/Fermi/Cuntz algebras and symmetric Cuntz superalgebras, and we discuss the role of these algebras in solving the large N theory. Most important, the interacting Cuntz algebras are associated to a set of new (hidden!) local quantities which are generically conserved only at large N. A number of other new large N phenomena are also observed, including the intrinsic nonlocality of the (reduced) trace class operators of the theory and a closely related large N field identification phenomenon which is associated to another set (this time nonlocal) of new conserved quantities at large N.

  18. Alternative algebraic approaches in quantum chemistry

    SciTech Connect

    Mezey, Paul G.

    2015-01-22

    Various algebraic approaches of quantum chemistry all follow a common principle: the fundamental properties and interrelations providing the most essential features of a quantum chemical representation of a molecule or a chemical process, such as a reaction, can always be described by algebraic methods. Whereas such algebraic methods often provide precise, even numerical answers, nevertheless their main role is to give a framework that can be elaborated and converted into computational methods by involving alternative mathematical techniques, subject to the constraints and directions provided by algebra. In general, algebra describes sets of interrelations, often phrased in terms of algebraic operations, without much concern with the actual entities exhibiting these interrelations. However, in many instances, the very realizations of two, seemingly unrelated algebraic structures by actual quantum chemical entities or properties play additional roles, and unexpected connections between different algebraic structures are often giving new insight. Here we shall be concerned with two alternative algebraic structures: the fundamental group of reaction mechanisms, based on the energy-dependent topology of potential energy surfaces, and the interrelations among point symmetry groups for various distorted nuclear arrangements of molecules. These two, distinct algebraic structures provide interesting interrelations, which can be exploited in actual studies of molecular conformational and reaction processes. Two relevant theorems will be discussed.

  19. Comparison of the deflated preconditioned conjugate gradient method and algebraic multigrid for composite materials

    NASA Astrophysics Data System (ADS)

    Jönsthövel, T. B.; van Gijzen, M. B.; MacLachlan, S.; Vuik, C.; Scarpas, A.

    2012-09-01

    Many applications in computational science and engineering concern composite materials, which are characterized by large discontinuities in the material properties. Such applications require fine-scale finite-element meshes, which lead to large linear systems that are challenging to solve with current direct and iterative solutions algorithms. In this paper, we consider the simulation of asphalt concrete, which is a mixture of components with large differences in material stiffness. The discontinuities in material stiffness give rise to many small eigenvalues that negatively affect the convergence of iterative solution algorithms such as the preconditioned conjugate gradient (PCG) method. This paper considers the deflated preconditioned conjugate gradient (DPCG) method in which the rigid body modes of sets of elements with homogeneous material properties are used as deflation vectors. As preconditioner we consider several variants of the algebraic multigrid smoothed aggregation method. We evaluate the performance of the DPCG method on a parallel computer using up to 64 processors. Our test problems are derived from real asphalt core samples, obtained using CT scans. We show that the DPCG method is an efficient and robust technique for solving these challenging linear systems.

  20. Algebraic Nonoverlapping Domain Decomposition Methods for Stabilized FEM and FV Discretizations

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Bailey, David (Technical Monitor)

    1998-01-01

    We consider preconditioning methods for convection dominated fluid flow problems based on a nonoverlapping Schur complement domain decomposition procedure for arbitrary triangulated domains. The triangulation is first partitioned into a number of subdomains and interfaces which induce a natural 2 x 2 partitioning of the p.d.e. discretization matrix. We view the Schur complement induced by this partitioning as an algebraically derived coarse space approximation. This avoids the known difficulties associated with the direct formation of an effective coarse discretization for advection dominated equations. By considering various approximations of the block factorization of the 2 x 2 system, we have developed a family of robust preconditioning techniques. A computer code based on these ideas has been developed and tested on the IBM SP2 using MPI message passing protocol. A number of 2-D CFD calculations will be presented for both scalar advection-diffusion equations and the Euler equations discretized using stabilized finite element and finite volume methods. These results show very good scalability of the preconditioner for various discretizations as the number of processors is increased while the number of degrees of freedom per processor is fixed.

  1. Comparison of an algebraic multigrid algorithm to two iterative solvers used for modeling ground water flow and transport

    USGS Publications Warehouse

    Detwiler, R.L.; Mehl, S.; Rajaram, H.; Cheung, W.W.

    2002-01-01

    Numerical solution of large-scale ground water flow and transport problems is often constrained by the convergence behavior of the iterative solvers used to solve the resulting systems of equations. We demonstrate the ability of an algebraic multigrid algorithm (AMG) to efficiently solve the large, sparse systems of equations that result from computational models of ground water flow and transport in large and complex domains. Unlike geometric multigrid methods, this algorithm is applicable to problems in complex flow geometries, such as those encountered in pore-scale modeling of two-phase flow and transport. We integrated AMG into MODFLOW 2000 to compare two- and three-dimensional flow simulations using AMG to simulations using PCG2, a preconditioned conjugate gradient solver that uses the modified incomplete Cholesky preconditioner and is included with MODFLOW 2000. CPU times required for convergence with AMG were up to 140 times faster than those for PCG2. The cost of this increased speed was up to a nine-fold increase in required random access memory (RAM) for the three-dimensional problems and up to a four-fold increase in required RAM for the two-dimensional problems. We also compared two-dimensional numerical simulations of steady-state transport using AMG and the generalized minimum residual method with an incomplete LU-decomposition preconditioner. For these transport simulations, AMG yielded increased speeds of up to 17 times with only a 20% increase in required RAM. The ability of AMG to solve flow and transport problems in large, complex flow systems and its ready availability make it an ideal solver for use in both field-scale and pore-scale modeling.

  2. Comparison of an algebraic multigrid algorithm to two iterative solvers used for modeling ground water flow and transport.

    PubMed

    Detwiler, Russell L; Mehl, Steffen; Rajaram, Harihar; Cheung, Wendy W

    2002-01-01

    Numerical solution of large-scale ground water flow and transport problems is often constrained by the convergence behavior of the iterative solvers used to solve the resulting systems of equations. We demonstrate the ability of an algebraic multigrid algorithm (AMG) to efficiently solve the large, sparse systems of equations that result from computational models of ground water flow and transport in large and complex domains. Unlike geometric multigrid methods, this algorithm is applicable to problems in complex flow geometries, such as those encountered in pore-scale modeling of two-phase flow and transport. We integrated AMG into MODFLOW 2000 to compare two- and three-dimensional flow simulations using AMG to simulations using PCG2, a preconditioned conjugate gradient solver that uses the modified incomplete Cholesky preconditioner and is included with MODFLOW 2000. CPU times required for convergence with AMG were up to 140 times faster than those for PCG2. The cost of this increased speed was up to a nine-fold increase in required random access memory (RAM) for the three-dimensional problems and up to a four-fold increase in required RAM for the two-dimensional problems. We also compared two-dimensional numerical simulations of steady-state transport using AMG and the generalized minimum residual method with an incomplete LU-decomposition preconditioner. For these transport simulations, AMG yielded increased speeds of up to 17 times with only a 20% increase in required RAM. The ability of AMG to solve flow and transport problems in large, complex flow systems and its ready availability make it an ideal solver for use in both field-scale and pore-scale modeling. PMID:12019641

  3. Computer algebra and transport theory.

    SciTech Connect

    Warsa, J. S.

    2004-01-01

    Modern symbolic algebra computer software augments and complements more traditional approaches to transport theory applications in several ways. The first area is in the development and enhancement of numerical solution methods for solving the Boltzmann transport equation. Typically, special purpose computer codes are designed and written to solve specific transport problems in particular ways. Different aspects of the code are often written from scratch and the pitfalls of developing complex computer codes are numerous and well known. Software such as MAPLE and MATLAB can be used to prototype, analyze, verify and determine the suitability of numerical solution methods before a full-scale transport application is written. Once it is written, the relevant pieces of the full-scale code can be verified using the same tools I that were developed for prototyping. Another area is in the analysis of numerical solution methods or the calculation of theoretical results that might otherwise be difficult or intractable. Algebraic manipulations are done easily and without error and the software also provides a framework for any additional numerical calculations that might be needed to complete the analysis. We will discuss several applications in which we have extensively used MAPLE and MATLAB in our work. All of them involve numerical solutions of the S{sub N} transport equation. These applications encompass both of the two main areas in which we have found computer algebra software essential.

  4. BLAS- BASIC LINEAR ALGEBRA SUBPROGRAMS

    NASA Technical Reports Server (NTRS)

    Krogh, F. T.

    1994-01-01

    The Basic Linear Algebra Subprogram (BLAS) library is a collection of FORTRAN callable routines for employing standard techniques in performing the basic operations of numerical linear algebra. The BLAS library was developed to provide a portable and efficient source of basic operations for designers of programs involving linear algebraic computations. The subprograms available in the library cover the operations of dot product, multiplication of a scalar and a vector, vector plus a scalar times a vector, Givens transformation, modified Givens transformation, copy, swap, Euclidean norm, sum of magnitudes, and location of the largest magnitude element. Since these subprograms are to be used in an ANSI FORTRAN context, the cases of single precision, double precision, and complex data are provided for. All of the subprograms have been thoroughly tested and produce consistent results even when transported from machine to machine. BLAS contains Assembler versions and FORTRAN test code for any of the following compilers: Lahey F77L, Microsoft FORTRAN, or IBM Professional FORTRAN. It requires the Microsoft Macro Assembler and a math co-processor. The PC implementation allows individual arrays of over 64K. The BLAS library was developed in 1979. The PC version was made available in 1986 and updated in 1988.

  5. Constructions of Factorizable Multilevel Hadamard Matrices

    NASA Astrophysics Data System (ADS)

    Matsufuji, Shinya; Fan, Pingzhi

    Factorization of Hadamard matrices can provide fast algorithm and facilitate efficient hardware realization. In this letter, constructions of factorizable multilevel Hadamard matrices, which can be considered as special case of unitary matrices, are inverstigated. In particular, a class of ternary Hadamard matrices, together with its application, is presented.

  6. BER estimation for multilevel modulation formats

    NASA Astrophysics Data System (ADS)

    Louchet, Hadrien; Kuzmin, Konstantin; Koltchanov, Igor; Richter, André

    2009-11-01

    We review existing BER estimation methods and propose alternative methods to assess the performance of multilevel modulation formats with both direct and coherent detection. The impact of digital signal processing (DSP) on the BER estimation procedure is discussed for the latter case. The different approaches are illustrated by simulating exemplary transmission systems.

  7. Single-Level and Multilevel Mediation Analysis

    ERIC Educational Resources Information Center

    Tofighi, Davood; Thoemmes, Felix

    2014-01-01

    Mediation analysis is a statistical approach used to examine how the effect of an independent variable on an outcome is transmitted through an intervening variable (mediator). In this article, we provide a gentle introduction to single-level and multilevel mediation analyses. Using single-level data, we demonstrate an application of structural…

  8. New multilevel codes over GF(q)

    NASA Technical Reports Server (NTRS)

    Wu, Jiantian; Costello, Daniel J., Jr.

    1992-01-01

    Set partitioning to multi-dimensional signal spaces over GF(q), particularly GF sup q-1(q) and GF sup q (q), and show how to construct both multi-level block codes and multi-level trellis codes over GF(q). Two classes of multi-level (n, k, d) block codes over GF(q) with block length n, number of information symbols k, and minimum distance d sub min greater than or = d, are presented. These two classes of codes use Reed-Solomon codes as component codes. They can be easily decoded as block length q-1 Reed-Solomon codes or block length q or q + 1 extended Reed-Solomon codes using multi-stage decoding. Many of these codes have larger distances than comparable q-ary block codes, as component codes. Low rate q-ary convolutional codes, work error correcting convolutional codes, and binary-to-q-ary convolutional codes can also be used to construct multi-level trellis codes over GF(q) or binary-to-q-ary trellis codes, some of which have better performance than the above block codes. All of the new codes have simple decoding algorithms based on hard decision multi-stage decoding.

  9. Engineering applications of heuristic multilevel optimization methods

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.

    1989-01-01

    Some engineering applications of heuristic multilevel optimization methods are presented and the discussion focuses on the dependency matrix that indicates the relationship between problem functions and variables. Coordination of the subproblem optimizations is shown to be typically achieved through the use of exact or approximate sensitivity analysis. Areas for further development are identified.

  10. Engineering applications of heuristic multilevel optimization methods

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.

    1988-01-01

    Some engineering applications of heuristic multilevel optimization methods are presented and the discussion focuses on the dependency matrix that indicates the relationship between problem functions and variables. Coordination of the subproblem optimizations is shown to be typically achieved through the use of exact or approximate sensitivity analysis. Areas for further development are identified.

  11. Using Multilevel Modeling in Counseling Research

    ERIC Educational Resources Information Center

    Lynch, Martin F.

    2012-01-01

    This conceptual and practical overview of multilevel modeling (MLM) for researchers in counseling and development provides guidelines on setting up SPSS to perform MLM and an example of how to present the findings. It also provides a discussion on how counseling and developmental researchers can use MLM to address their own research questions.…

  12. Multilevel Factor Models for Ordinal Variables

    ERIC Educational Resources Information Center

    Grilli, Leonardo; Rampichini, Carla

    2007-01-01

    This article tackles several issues involved in specifying, fitting, and interpreting the results of multilevel factor models for ordinal variables. First, the problem of model specification and identification is addressed, outlining parameter interpretation. Special attention is devoted to the consequences on interpretation stemming from the…

  13. Efficiently Exploring Multilevel Data with Recursive Partitioning

    ERIC Educational Resources Information Center

    Martin, Daniel P.; von Oertzen, Timo; Rimm-Kaufman, Sara E.

    2015-01-01

    There is an increasing number of datasets with many participants, variables, or both, in education and other fields that often deal with large, multilevel data structures. Once initial confirmatory hypotheses are exhausted, it can be difficult to determine how best to explore the dataset to discover hidden relationships that could help to inform…

  14. A Practical Guide to Multilevel Modeling

    ERIC Educational Resources Information Center

    Peugh, James L.

    2010-01-01

    Collecting data from students within classrooms or schools, and collecting data from students on multiple occasions over time, are two common sampling methods used in educational research that often require multilevel modeling (MLM) data analysis techniques to avoid Type-1 errors. The purpose of this article is to clarify the seven major steps…

  15. Multilevel training of binary morphological operators.

    PubMed

    Hirata, Nina S T

    2009-04-01

    The design of binary morphological operators that are translation-invariant and locally defined by a finite neighborhood window corresponds to the problem of designing Boolean functions. As in any supervised classification problem, morphological operators designed from training sample also suffer from overfitting. Large neighborhood tends to lead to performance degradation of the designed operator. This work proposes a multi-level design approach to deal with the issue of designing large neighborhood based operators. The main idea is inspired from stacked generalization (a multi-level classifier design approach) and consists in, at each training level, combining the outcomes of the previous level operators. The final operator is a multi-level operator that ultimately depends on a larger neighborhood than of the individual operators that have been combined. Experimental results show that two-level operators obtained by combining operators designed on subwindows of a large window consistently outperforms the single-level operators designed on the full window. They also show that iterating two-level operators is an effective multi-level approach to obtain better results. PMID:19229085

  16. The Economic Cost of Homosexuality: Multilevel Analyses

    ERIC Educational Resources Information Center

    Baumle, Amanda K.; Poston, Dudley, Jr.

    2011-01-01

    This article builds on earlier studies that have examined "the economic cost of homosexuality," by using data from the 2000 U.S. Census and by employing multilevel analyses. Our findings indicate that partnered gay men experience a 12.5 percent earnings penalty compared to married heterosexual men, and a statistically insignificant earnings…

  17. (Fuzzy) Ideals of BN-Algebras

    PubMed Central

    Walendziak, Andrzej

    2015-01-01

    The notions of an ideal and a fuzzy ideal in BN-algebras are introduced. The properties and characterizations of them are investigated. The concepts of normal ideals and normal congruences of a BN-algebra are also studied, the properties of them are displayed, and a one-to-one correspondence between them is presented. Conditions for a fuzzy set to be a fuzzy ideal are given. The relationships between ideals and fuzzy ideals of a BN-algebra are established. The homomorphic properties of fuzzy ideals of a BN-algebra are provided. Finally, characterizations of Noetherian BN-algebras and Artinian BN-algebras via fuzzy ideals are obtained. PMID:26125050

  18. Lax operator algebras and integrable systems

    NASA Astrophysics Data System (ADS)

    Sheinman, O. K.

    2016-02-01

    A new class of infinite-dimensional Lie algebras, called Lax operator algebras, is presented, along with a related unifying approach to finite-dimensional integrable systems with a spectral parameter on a Riemann surface such as the Calogero-Moser and Hitchin systems. In particular, the approach includes (non-twisted) Kac-Moody algebras and integrable systems with a rational spectral parameter. The presentation is based on quite simple ideas about the use of gradings of semisimple Lie algebras and their interaction with the Riemann-Roch theorem. The basic properties of Lax operator algebras and the basic facts about the theory of the integrable systems in question are treated (and proved) from this general point of view. In particular, the existence of commutative hierarchies and their Hamiltonian properties are considered. The paper concludes with an application of Lax operator algebras to prequantization of finite-dimensional integrable systems. Bibliography: 51 titles.

  19. Algebra: A Challenge at the Crossroads of Policy and Practice

    ERIC Educational Resources Information Center

    Stein, Mary Kay; Kaufman, Julia Heath; Sherman, Milan; Hillen, Amy F.

    2011-01-01

    The authors review what is known about early and universal algebra, including who is getting access to algebra and student outcomes associated with algebra course taking in general and specifically with universal algebra policies. The findings indicate that increasing numbers of students, some of whom are underprepared, are taking algebra earlier.…

  20. Coverings of topological semi-abelian algebras

    NASA Astrophysics Data System (ADS)

    Mucuk, Osman; Demir, Serap

    2016-08-01

    In this work, we study on a category of topological semi-abelian algebras which are topological models of given an algebraic theory T whose category of models is semi-abelian; and investigate some results on the coverings of topological models of such theories yielding semi-abelian categories. We also consider the internal groupoid structure in the semi-abelian category of T-algebras, and give a criteria for the lifting of internal groupoid structure to the covering groupoids.

  1. Stability of algebraically unstable dispersive flows

    NASA Astrophysics Data System (ADS)

    King, Kristina; Zaretzky, Paula; Weinstein, Steven; Cromer, Michael; Barlow, Nathaniel

    2015-11-01

    A widely unexplored type of hydrodynamic instability is examined - large-time algebraic growth. Such growth occurs on the threshold of (exponentially) neutral stability. A methodology is provided for predicting the algebraic growth rate of an initial disturbance, when applied to a class of partial differential equations describing wave propagation in dispersive media. There are several morphological differences between algebraically growing disturbances and the exponentially growing wave packets inherent to classical linear stability analysis, and these are elucidated in this study.

  2. Explicit travelling waves and invariant algebraic curves

    NASA Astrophysics Data System (ADS)

    Gasull, Armengol; Giacomini, Hector

    2015-06-01

    We introduce a precise definition of algebraic travelling wave solution of n-th order partial differential equations and prove that the only algebraic travelling waves solutions for the celebrated Fisher-Kolmogorov equation are the ones found in 1979 by Ablowitz and Zeppetella. This question is equivalent to study when an associated one-parameter family of planar ordinary differential systems has invariant algebraic curves.

  3. Finite-dimensional simple graded algebras

    SciTech Connect

    Bahturin, Yu A; Zaicev, M V; Sehgal, S K

    2008-08-31

    Let R be a finite-dimensional algebra over an algebraically closed field F graded by an arbitrary group G. In the paper it is proved that if the characteristic of F is zero or does not divide the order of any finite subgroup of G, then R is graded simple if and only if it is isomorphic to a matrix algebra over a finite-dimensional graded skew field. Bibliography: 24 titles.

  4. Algebraic logic of concepts and its machine implementation in the algebras of deontic and axiological notions

    NASA Astrophysics Data System (ADS)

    Manerowska, Anna; Nieznański, Edward; Mulawka, Jan

    2013-10-01

    Our aim is to present the algebra of concepts in two formal languages. First, after introducing a primary relation between concepts, which is subsumption, we shall specify in a language that uses quantifiers, the Boolean algebra of general concepts. Next, we shall note down the same algebra in simplified non-quantifying language, in order to use it as basis for two specific implementations, i.e. to create the Boolean algebras of deontic concepts and axiological concepts.

  5. FAST TRACK COMMUNICATION: \\ {P}\\ {T}-symmetry, Cartan decompositions, Lie triple systems and Krein space-related Clifford algebras

    NASA Astrophysics Data System (ADS)

    Günther, Uwe; Kuzhel, Sergii

    2010-10-01

    Gauged \\ {P}\\ {T} quantum mechanics (PTQM) and corresponding Krein space setups are studied. For models with constant non-Abelian gauge potentials and extended parity inversions compact and noncompact Lie group components are analyzed via Cartan decompositions. A Lie-triple structure is found and an interpretation as \\ {P}\\ {T}-symmetrically generalized Jaynes-Cummings model is possible with close relation to recently studied cavity QED setups with transmon states in multilevel artificial atoms. For models with Abelian gauge potentials a hidden Clifford algebra structure is found and used to obtain the fundamental symmetry of Krein space-related J-self-adjoint extensions for PTQM setups with ultra-localized potentials.

  6. Representations of Super Yang-Mills Algebras

    NASA Astrophysics Data System (ADS)

    Herscovich, Estanislao

    2013-06-01

    We study in this article the representation theory of a family of super algebras, called the super Yang-Mills algebras, by exploiting the Kirillov orbit method à la Dixmier for nilpotent super Lie algebras. These super algebras are an extension of the so-called Yang-Mills algebras, introduced by A. Connes and M. Dubois-Violette in (Lett Math Phys 61(2):149-158, 2002), and in fact they appear as a "background independent" formulation of supersymmetric gauge theory considered in physics, in a similar way as Yang-Mills algebras do the same for the usual gauge theory. Our main result states that, under certain hypotheses, all Clifford-Weyl super algebras {{Cliff}q(k) ⊗ Ap(k)}, for p ≥ 3, or p = 2 and q ≥ 2, appear as a quotient of all super Yang-Mills algebras, for n ≥ 3 and s ≥ 1. This provides thus a family of representations of the super Yang-Mills algebras.

  7. Difficulties in initial algebra learning in Indonesia

    NASA Astrophysics Data System (ADS)

    Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja

    2014-12-01

    Within mathematics curricula, algebra has been widely recognized as one of the most difficult topics, which leads to learning difficulties worldwide. In Indonesia, algebra performance is an important issue. In the Trends in International Mathematics and Science Study (TIMSS) 2007, Indonesian students' achievement in the algebra domain was significantly below the average student performance in other Southeast Asian countries such as Thailand, Malaysia, and Singapore. This fact gave rise to this study which aims to investigate Indonesian students' difficulties in algebra. In order to do so, a literature study was carried out on students' difficulties in initial algebra. Next, an individual written test on algebra tasks was administered, followed by interviews. A sample of 51 grade VII Indonesian students worked the written test, and 37 of them were interviewed afterwards. Data analysis revealed that mathematization, i.e., the ability to translate back and forth between the world of the problem situation and the world of mathematics and to reorganize the mathematical system itself, constituted the most frequently observed difficulty in both the written test and the interview data. Other observed difficulties concerned understanding algebraic expressions, applying arithmetic operations in numerical and algebraic expressions, understanding the different meanings of the equal sign, and understanding variables. The consequences of these findings on both task design and further research in algebra education are discussed.

  8. Multicloning and Multibroadcasting in Operator Algebras

    NASA Astrophysics Data System (ADS)

    Kaniowski, Krzysztof; Lubnauer, Katarzyna; Łuczak, Andrzej

    2015-12-01

    We investigate multicloning and multibroadcasting in the general operator algebra framework in arbitrary dimension, generalizing thus results obtained in this framework for simple cloning and broadcasting.

  9. On Realization of Generalized Effect Algebras

    NASA Astrophysics Data System (ADS)

    Paseka, Jan

    2012-12-01

    A well-known fact is that there is a finite orthomodular lattice with an order determining set of states which is not representable in the standard quantum logic, the lattice L(H) of all closed subspaces of a separable complex Hilbert space. We show that a generalized effect algebra is representable in the operator generalized effect algebra G(H) of effects of a complex Hilbert space H iff it has an order determining set of generalized states. This extends the corresponding results for effect algebras of Riečanová and Zajac. Further, any operator generalized effect algebra G(H) possesses an order determining set of generalized states.

  10. Literal algebra for satellite dynamics. [perturbation analysis

    NASA Technical Reports Server (NTRS)

    Gaposchkin, E. M.

    1975-01-01

    A description of the rather general class of operations available is given and the operations are related to problems in satellite dynamics. The implementation of an algebra processor is discussed. The four main categories of symbol processors are related to list processing, string manipulation, symbol manipulation, and formula manipulation. Fundamental required operations for an algebra processor are considered. It is pointed out that algebra programs have been used for a number of problems in celestial mechanics with great success. The advantage of computer algebra is its accuracy and speed.

  11. Banach Algebras Associated to Lax Pairs

    NASA Astrophysics Data System (ADS)

    Glazebrook, James F.

    2015-04-01

    Lax pairs featuring in the theory of integrable systems are known to be constructed from a commutative algebra of formal pseudodifferential operators known as the Burchnall- Chaundy algebra. Such pairs induce the well known KP flows on a restricted infinite-dimensional Grassmannian. The latter can be exhibited as a Banach homogeneous space constructed from a Banach *-algebra. It is shown that this commutative algebra of operators generating Lax pairs can be associated with a commutative C*-subalgebra in the C*-norm completion of the *-algebra. In relationship to the Bose-Fermi correspondence and the theory of vertex operators, this C*-algebra has an association with the CAR algebra of operators as represented on Fermionic Fock space by the Gelfand-Naimark-Segal construction. Instrumental is the Plücker embedding of the restricted Grassmannian into the projective space of the associated Hilbert space. The related Baker and tau-functions provide a connection between these two C*-algebras, following which their respective state spaces and Jordan-Lie-Banach algebras structures can be compared.

  12. Type-Decomposition of an Effect Algebra

    NASA Astrophysics Data System (ADS)

    Foulis, David J.; Pulmannová, Sylvia

    2010-10-01

    Effect algebras (EAs), play a significant role in quantum logic, are featured in the theory of partially ordered Abelian groups, and generalize orthoalgebras, MV-algebras, orthomodular posets, orthomodular lattices, modular ortholattices, and boolean algebras. We study centrally orthocomplete effect algebras (COEAs), i.e., EAs satisfying the condition that every family of elements that is dominated by an orthogonal family of central elements has a supremum. For COEAs, we introduce a general notion of decomposition into types; prove that a COEA factors uniquely as a direct sum of types I, II, and III; and obtain a generalization for COEAs of Ramsay’s fourfold decomposition of a complete orthomodular lattice.

  13. A Structure of BCI-Algebras

    NASA Astrophysics Data System (ADS)

    Chajda, Ivan

    2014-10-01

    Commutative BCI-algebras can be considered as semilattices whose sections are equipped with certain involutions. A similar view can be applied to commutative BCK-algebras. However, for general BCK-algebras a certain construction was settled by the author and J. Kühr (Miskolc Math. Notes 8:11-21, 2007) showing that they can be considered as structures essentially weaker than semilattices but still with certain involutions in sections. The aim of this paper is to involve a similar approach for BCI-algebras.

  14. Prospective Teachers' Views on the Use of Calculators with Computer Algebra System in Algebra Instruction

    ERIC Educational Resources Information Center

    Ozgun-Koca, S. Ash

    2010-01-01

    Although growing numbers of secondary school mathematics teachers and students use calculators to study graphs, they mainly rely on paper-and-pencil when manipulating algebraic symbols. However, the Computer Algebra Systems (CAS) on computers or handheld calculators create new possibilities for teaching and learning algebraic manipulation. This…

  15. Results of Using Algebra Tiles as Meaningful Representations of Algebra Concepts.

    ERIC Educational Resources Information Center

    Sharp, Janet M.

    Mathematical meanings can be developed when individuals construct translations between algebra symbol systems and physical systems that represent one another. Previous research studies indicated (1) few high school students connect whole number manipulations to algebraic manipulations and (2) students who encounter algebraic ideas through…

  16. Some C∗-algebras which are coronas of non-C∗-Banach algebras

    NASA Astrophysics Data System (ADS)

    Voiculescu, Dan-Virgil

    2016-07-01

    We present results and motivating problems in the study of commutants of hermitian n-tuples of Hilbert space operators modulo normed ideals. In particular, the C∗-algebras which arise in this context as coronas of non-C∗-Banach algebras, the connections with normed ideal perturbations of operators, the hyponormal operators and the bidual Banach algebras one encounters are discussed.

  17. Leibniz algebras associated with some finite-dimensional representation of Diamond Lie algebra

    NASA Astrophysics Data System (ADS)

    Camacho, Luisa M.; Ladra, Manuel; Karimjanov, Iqboljon A.; Omirov, Bakhrom A.

    2016-03-01

    In this paper we classify Leibniz algebras whose associated Lie algebra is four-dimensional Diamond Lie algebra 𝕯 and the ideal generated by squares of elements is represented by one of the finite-dimensional indecomposable D-modules Un 1, Un 2 or Wn 1 or Wn 2.

  18. Preconditioner and convergence study for the Quantum Computer Aided Design (QCAD) nonlinear poisson problem posed on the Ottawa Flat 270 design geometry.

    SciTech Connect

    Kalashnikova, Irina

    2012-05-01

    A numerical study aimed to evaluate different preconditioners within the Trilinos Ifpack and ML packages for the Quantum Computer Aided Design (QCAD) non-linear Poisson problem implemented within the Albany code base and posed on the Ottawa Flat 270 design geometry is performed. This study led to some new development of Albany that allows the user to select an ML preconditioner with Zoltan repartitioning based on nodal coordinates, which is summarized. Convergence of the numerical solutions computed within the QCAD computational suite with successive mesh refinement is examined in two metrics, the mean value of the solution (an L{sup 1} norm) and the field integral of the solution (L{sup 2} norm).

  19. The Algebra of Lexical Semantics

    NASA Astrophysics Data System (ADS)

    Kornai, András

    The current generative theory of the lexicon relies primarily on tools from formal language theory and mathematical logic. Here we describe how a different formal apparatus, taken from algebra and automata theory, resolves many of the known problems with the generative lexicon. We develop a finite state theory of word meaning based on machines in the sense of Eilenberg [11], a formalism capable of describing discrepancies between syntactic type (lexical category) and semantic type (number of arguments). This mechanism is compared both to the standard linguistic approaches and to the formalisms developed in AI/KR.

  20. Translating multilevel theory into multilevel research: Challenges and opportunities for understanding the social determinants of psychiatric disorders

    PubMed Central

    Dunn, Erin C.; Masyn, Katherine E.; Yudron, Monica; Jones, Stephanie M.; Subramanian, S.V.

    2014-01-01

    The observation that features of the social environment, including family, school, and neighborhood characteristics, are associated with individual-level outcomes has spurred the development of dozens of multilevel or ecological theoretical frameworks in epidemiology, public health, psychology, and sociology, among other disciplines. Despite the widespread use of such theories in etiological, intervention, and policy studies, challenges remain in bridging multilevel theory and empirical research. This paper set out to synthesize these challenges and provide specific examples of methodological and analytical strategies researchers are using to gain a more nuanced understanding of the social determinants of psychiatric disorders, with a focus on children’s mental health. To accomplish this goal, we begin by describing multilevel theories, defining their core elements, and discussing what these theories suggest is needed in empirical work. In the second part, we outline the main challenges researchers face in translating multilevel theory into research. These challenges are presented for each stage of the research process. In the third section, we describe two methods being used as alternatives to traditional multilevel modeling techniques to better bridge multilevel theory and multilevel research. These are: (1) multilevel factor analysis and multilevel structural equation modeling; and (2) dynamic systems approaches. Through its review of multilevel theory, assessment of existing strategies, and examination of emerging methodologies, this paper offers a framework to evaluate and guide empirical studies on the social determinants of child psychiatric disorders as well as health across the lifecourse. PMID:24469555

  1. Strengthening Effect Algebras in a Logical Perspective: Heyting-Wajsberg Algebras

    NASA Astrophysics Data System (ADS)

    Konig, Martinvaldo

    2014-10-01

    Heyting effect algebras are lattice-ordered pseudoboolean effect algebras endowed with a pseudocomplementation that maps on the center (i.e. Boolean elements). They are the algebraic counterpart of an extension of both Łukasiewicz many-valued logic and intuitionistic logic. We show that Heyting effect algebras are termwise equivalent to Heyting-Wajsberg algebras where the two different logical implications are defined as primitive operators. We prove this logic to be decidable, to be strongly complete and to have the deduction-detachment theorem.

  2. Automorphisms and Derivations of the Insertion-Elimination Algebra and Related Graded Lie Algebras

    NASA Astrophysics Data System (ADS)

    Ondrus, Matthew; Wiesner, Emilie

    2016-07-01

    This paper addresses several structural aspects of the insertion-elimination algebra {mathfrak{g}}, a Lie algebra that can be realized in terms of tree-inserting and tree-eliminating operations on the set of rooted trees. In particular, we determine the finite-dimensional subalgebras of {mathfrak{g}}, the automorphism group of {mathfrak{g}}, the derivation Lie algebra of {mathfrak{g}}, and a generating set. Several results are stated in terms of Lie algebras admitting a triangular decomposition and can be used to reproduce results for the generalized Virasoro algebras.

  3. Computational modeling and multilevel cancer control interventions.

    PubMed

    Morrissey, Joseph P; Lich, Kristen Hassmiller; Price, Rebecca Anhang; Mandelblatt, Jeanne

    2012-05-01

    This chapter presents an overview of computational modeling as a tool for multilevel cancer care and intervention research. Model-based analyses have been conducted at various "beneath the skin" or biological scales as well as at various "above the skin" or socioecological levels of cancer care delivery. We review the basic elements of computational modeling and illustrate its applications in four cancer control intervention areas: tobacco use, colorectal cancer screening, cervical cancer screening, and racial disparities in access to breast cancer care. Most of these models have examined cancer processes and outcomes at only one or two levels. We suggest ways these models can be expanded to consider interactions involving three or more levels. Looking forward, a number of methodological, structural, and communication barriers must be overcome to create useful computational models of multilevel cancer interventions and population health. PMID:22623597

  4. Multilevel Inverters for Electric Vehicle Applications

    SciTech Connect

    Habetler, T.G.; Peng, F.Z.; Tolbert, L.M.

    1998-10-22

    This paper presents multilevel inverters as an application for all-electric vehicle (EV) and hybrid-electric vehicle (HEV) motor drives. Diode-clamped inverters and cascaded H-bridge inverters, (1) can generate near-sinusoidal voltages with only fundamental frequency switching; (2) have almost no electromagnetic interference (EMI) and common-mode voltage; and (3) make an EV more accessible/safer and open wiring possible for most of an EV'S power system. This paper explores the benefits and discusses control schemes of the cascade inverter for use as an EV motor drive or a parallel HEV drive and the diode-clamped inverter as a series HEV motor drive. Analytical, simulated, and experimental results show the superiority of these multilevel inverters for this new niche.

  5. Multilevel resistive information storage and retrieval

    DOEpatents

    Lohn, Andrew; Mickel, Patrick R.

    2016-08-09

    The present invention relates to resistive random-access memory (RRAM or ReRAM) systems, as well as methods of employing multiple state variables to form degenerate states in such memory systems. The methods herein allow for precise write and read steps to form multiple state variables, and these steps can be performed electrically. Such an approach allows for multilevel, high density memory systems with enhanced information storage capacity and simplified information retrieval.

  6. Automatic Multilevel Parallelization Using OpenMP

    NASA Technical Reports Server (NTRS)

    Jin, Hao-Qiang; Jost, Gabriele; Yan, Jerry; Ayguade, Eduard; Gonzalez, Marc; Martorell, Xavier; Biegel, Bryan (Technical Monitor)

    2002-01-01

    In this paper we describe the extension of the CAPO parallelization support tool to support multilevel parallelism based on OpenMP directives. CAPO generates OpenMP directives with extensions supported by the NanosCompiler to allow for directive nesting and definition of thread groups. We report first results for several benchmark codes and one full application that have been parallelized using our system.

  7. Automatic Multilevel Parallelization Using OpenMP

    NASA Technical Reports Server (NTRS)

    Jin, Hao-Qiang; Jost, Gabriele; Yan, Jerry; Ayguade, Eduard; Gonzalez, Marc; Martorell, Xavier; Biegel, Bryan (Technical Monitor)

    2002-01-01

    In this paper we describe the extension of the CAPO (CAPtools (Computer Aided Parallelization Toolkit) OpenMP) parallelization support tool to support multilevel parallelism based on OpenMP directives. CAPO generates OpenMP directives with extensions supported by the NanosCompiler to allow for directive nesting and definition of thread groups. We report some results for several benchmark codes and one full application that have been parallelized using our system.

  8. Voltage balanced multilevel voltage source converter system

    DOEpatents

    Peng, F.Z.; Lai, J.S.

    1997-07-01

    Disclosed is a voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means. 15 figs.

  9. Voltage balanced multilevel voltage source converter system

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    1997-01-01

    A voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means.

  10. On the effectiveness of multilevel selection.

    PubMed

    Goodnight, Charles J

    2016-01-01

    Experimental studies of group selection show that higher levels of selection act on indirect genetic effects, making the response to group and community selection qualitatively different from that of individual selection. This suggests that multilevel selection plays a key role in the evolution of supersocial societies. Experiments showing the effectiveness of community selection indicate that we should consider the possibility that selection among communities may be important in the evolution of supersocial species. PMID:27562604

  11. Realizations of conformal current-type Lie algebras

    SciTech Connect

    Pei Yufeng; Bai Chengming

    2010-05-15

    In this paper we obtain the realizations of some infinite-dimensional Lie algebras, named 'conformal current-type Lie algebras', in terms of a two-dimensional Novikov algebra and its deformations. Furthermore, Ovsienko and Roger's loop cotangent Virasoro algebra, which can be regarded as a nice generalization of the Virasoro algebra with two space variables, is naturally realized as an affinization of the tensor product of a deformation of the two-dimensional Novikov algebra and the Laurent polynomial algebra. These realizations shed new light on various aspects of the structure and representation theory of the corresponding infinite-dimensional Lie algebras.

  12. Is Algebra Really Difficult for All Students?

    ERIC Educational Resources Information Center

    Egodawatte, Gunawardena

    2009-01-01

    Research studies have shown that students encounter difficulties in transitioning from arithmetic to algebra. Errors made by high school students were analyzed for patterns and their causes. The origins of errors were: intuitive assumptions, failure to understand the syntax of algebra, analogies with other familiar symbol systems such as the…

  13. Some Applications of Algebraic System Solving

    ERIC Educational Resources Information Center

    Roanes-Lozano, Eugenio

    2011-01-01

    Technology and, in particular, computer algebra systems, allows us to change both the way we teach mathematics and the mathematical curriculum. Curiously enough, unlike what happens with linear system solving, algebraic system solving is not widely known. The aim of this paper is to show that, although the theory lying behind the "exact solve"…

  14. A Technology-Intensive Approach to Algebra.

    ERIC Educational Resources Information Center

    Heid, M. Kathleen; Zbiek, Rose Mary

    1995-01-01

    Computer-Intensive Algebra (CIA) focuses on the use of technology to help develop a rich understanding of fundamental algebraic concepts in real-world settings using computing tools for easy access to numerical, graphical, and symbolic representations of mathematical ideas. (MKR)

  15. An Inquiry-Based Linear Algebra Class

    ERIC Educational Resources Information Center

    Wang, Haohao; Posey, Lisa

    2011-01-01

    Linear algebra is a standard undergraduate mathematics course. This paper presents an overview of the design and implementation of an inquiry-based teaching material for the linear algebra course which emphasizes discovery learning, analytical thinking and individual creativity. The inquiry-based teaching material is designed to fit the needs of a…

  16. Algebra in the Early Years? Yes!

    ERIC Educational Resources Information Center

    Taylor-Cox, Jennifer

    2003-01-01

    Suggests ways early years educators can begin teaching young children to think algebraically and prepare them for success in algebra. Focuses on ways to promote mathematical patterns, mathematical situations and structures, models of quantitative relationship, and change. Describes how first-graders used real object representations to better…

  17. Algebraic Thinking: A Problem Solving Approach

    ERIC Educational Resources Information Center

    Windsor, Will

    2010-01-01

    Algebraic thinking is a crucial and fundamental element of mathematical thinking and reasoning. It initially involves recognising patterns and general mathematical relationships among numbers, objects and geometric shapes. This paper will highlight how the ability to think algebraically might support a deeper and more useful knowledge, not only of…

  18. New directions in algebraic dynamical systems

    NASA Astrophysics Data System (ADS)

    Schmidt, Klaus; Verbitskiy, Evgeny

    2011-02-01

    The logarithmic Mahler measure of certain multivariate polynomials occurs frequently as the entropy or the free energy of solvable lattice models (especially dimer models). It is also known that the entropy of an algebraic dynamical system is the logarithmic Mahler measure of the defining polynomial. The connection between the lattice models and the algebraic dynamical systems is still rather mysterious.

  19. Solving Absolute Value Equations Algebraically and Geometrically

    ERIC Educational Resources Information Center

    Shiyuan, Wei

    2005-01-01

    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  20. Cartan calculus on quantum Lie algebras

    SciTech Connect

    Schupp, P.; Watts, P.; Zumino, B.

    1993-12-09

    A generalization of the differential geometry of forms and vector fields to the case of quantum Lie algebras is given. In an abstract formulation that incorporates many existing examples of differential geometry on quantum spaces we combine an exterior derivative, inner derivations, Lie derivatives, forms and functions au into one big algebra, the ``Cartan Calculus.``

  1. Low Performers Found Unready to Take Algebra

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2008-01-01

    As state and school leaders across the country push to have more students take algebra in 8th grade, a new study argues that middle schoolers struggling the most in math are being enrolled in that course despite being woefully unprepared. "The Misplaced Math Student: Lost in Eighth Grade Algebra," scheduled for release by the Brookings Institution…

  2. An algebraic approach to the scattering equations

    NASA Astrophysics Data System (ADS)

    Huang, Rijun; Rao, Junjie; Feng, Bo; He, Yang-Hui

    2015-12-01

    We employ the so-called companion matrix method from computational algebraic geometry, tailored for zero-dimensional ideals, to study the scattering equations. The method renders the CHY-integrand of scattering amplitudes computable using simple linear algebra and is amenable to an algorithmic approach. Certain identities in the amplitudes as well as rationality of the final integrand become immediate in this formalism.

  3. Calif. Laws Shift Gears on Algebra, Textbooks

    ERIC Educational Resources Information Center

    Robelen, Erik W.

    2012-01-01

    New laws in California have set the state on a course for some potentially significant changes to the curriculum, including a measure that revisits the matter of teaching Algebra 1 in 8th grade and another that revamps the state's textbook-adoption process and hands districts greater leeway in choosing instructional materials. The algebra-related…

  4. Success in Algebra among Community College Students

    ERIC Educational Resources Information Center

    Reyes, Czarina

    2010-01-01

    College algebra is a required course for most majors, but is viewed by many as a gatekeeper course for degree completion by students. With almost half a million students taking college algebra each year, faculty are experimenting with new course lengths of time that might result in higher success, completion, and retention rates for college…

  5. Using the Internet To Investigate Algebra.

    ERIC Educational Resources Information Center

    Sherwood, Walter

    The lesson plans in this book engage students by using a tool they enjoy--the Internet--to explore key concepts in algebra. Working either individually or in groups, students learn to approach algebra from a problem solving perspective. Each lesson shows learners how to use the Internet as a resource for gathering facts, data, and other…

  6. Algebraic Geodesics on Three-Dimensional Quadrics

    NASA Astrophysics Data System (ADS)

    Kai, Yue

    2015-12-01

    By Hamilton-Jacobi method, we study the problem of algebraic geodesics on the third-order surface. By the implicit function theorem, we proved the existences of the real geodesics which are the intersections of two algebraic surfaces, and we also give some numerical examples.

  7. Algebraic Formulas for Areas between Curves.

    ERIC Educational Resources Information Center

    Gabai, Hyman

    1982-01-01

    Korean secondary school students preparing for college learn about a simple algebraic formula for area bounded by a parabola and line. The approach does not seem well-known among American students. It is noted that, while the formula derivations rely on integration, algebra students could use the formulas without proofs. (MP)

  8. Classical and quantum Kummer shape algebras

    NASA Astrophysics Data System (ADS)

    Odzijewicz, A.; Wawreniuk, E.

    2016-07-01

    We study a family of integrable systems of nonlinearly coupled harmonic oscillators on the classical and quantum levels. We show that the integrability of these systems follows from their symmetry characterized by algebras, here called Kummer shape algebras. The resolution of identity for a wide class of reproducing kernels is found. A number of examples, illustrating this theory, are also presented.

  9. Young Mathematicians at Work: Constructing Algebra

    ERIC Educational Resources Information Center

    Fosnot, Catherine Twomey; Jacob, Bill

    2010-01-01

    This book provides a landscape of learning that helps teachers recognize, support, and celebrate their students' capacity to structure their worlds algebraically. It identifies the models, contexts, and landmarks that facilitate algebraic thinking in young students and provides insightful and practical methods for teachers, math supervisors, and…

  10. Focus on Fractions to Scaffold Algebra

    ERIC Educational Resources Information Center

    Ooten, Cheryl Thomas

    2013-01-01

    Beginning algebra is a gatekeeper course into the pipeline to higher mathematics courses required for respected professions in engineering, science, statistics, mathematics, education, and technology. Beginning algebra can also be a perfect storm if the necessary foundational skills are not within a student's grasp. What skills ensure beginning…

  11. Fourier theory and C∗-algebras

    NASA Astrophysics Data System (ADS)

    Bédos, Erik; Conti, Roberto

    2016-07-01

    We discuss a number of results concerning the Fourier series of elements in reduced twisted group C∗-algebras of discrete groups, and, more generally, in reduced crossed products associated to twisted actions of discrete groups on unital C∗-algebras. A major part of the article gives a review of our previous work on this topic, but some new results are also included.

  12. Situated Learning in an Abstract Algebra Classroom

    ERIC Educational Resources Information Center

    Ticknor, Cindy S.

    2012-01-01

    Advisory committees of mathematics consider abstract algebra as an essential component of the mathematical preparation of secondary teachers, yet preservice teachers find it challenging to connect the topics addressed in this advanced course with the high school algebra they must someday teach. This study analyzed the mathematical content…

  13. Teaching Algebra to Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Impecoven-Lind, Linda S.; Foegen, Anne

    2010-01-01

    Algebra is a gateway to expanded opportunities, but it often poses difficulty for students with learning disabilities. Consequently, it is essential to identify evidence-based instructional strategies for these students. The authors begin by identifying three areas of algebra difficulty experienced by students with disabilities: cognitive…

  14. Arithmetic and Cognitive Contributions to Algebra

    ERIC Educational Resources Information Center

    Cirino, Paul T.; Tolar, Tammy D.; Fuchs, Lynn S.

    2013-01-01

    Algebra is a prerequisite for access to STEM careers and occupational success (NMAP, 2008a), yet algebra is difficult for students through high school (US DOE, 2008). Growth in children's conceptual and procedural arithmetical knowledge is reciprocal, although conceptual knowledge has more impact on procedural knowledge than the reverse…

  15. Just Say Yes to Early Algebra!

    ERIC Educational Resources Information Center

    Stephens, Ana; Blanton, Maria; Knuth, Eric; Isler, Isil; Gardiner, Angela Murphy

    2015-01-01

    Mathematics educators have argued for some time that elementary school students are capable of engaging in algebraic thinking and should be provided with rich opportunities to do so. Recent initiatives like the Common Core State Standards for Mathematics (CCSSM) (CCSSI 2010) have taken up this call by reiterating the place of early algebra in…

  16. Fusion rule algebras from graph theory

    NASA Astrophysics Data System (ADS)

    Caselle, M.; Ponzano, G.

    1989-06-01

    We describe a new class of fusion algebras related to graph theory which bear intriguing connections with group algebras. The structure constants and the matrix S, which diagonalizes the fusion rules, are explicitly computed in terms of SU(2) coupling coefficients.

  17. NINTH YEAR MATHEMATICS. COURSE I, ALGEBRA.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany.

    THIS GUIDE OUTLINES THE MINIMUM MATERIAL FOR WHICH STUDENTS OF NINTH YEAR MATHEMATICS - COURSE 1 - ALGEBRA WERE HELD RESPONSIBLE ON THE REGENTS EXAMINATIONS BEGINNING IN JUNE, 1966. THE REPORT ALSO PRESENTS THE SCOPE AND CONTENT OF THE ALGEBRA COURSE AND POSSIBLE SUGGESTIONS FOR TEACHING THE MATERIAL TO STUDENTS. (RP)

  18. Modern Algebra, Mathematics: 5293.36.

    ERIC Educational Resources Information Center

    Edwards, Raymond J.

    This guidebook covers Boolean algebra, matrices, linear transformations of the plane, characteristic values, vectors, and algebraic structures. Overall course goals and performance objectives for each unit are specified; sequencing of units and various time schedules are suggested. A sample pretest and posttest are given, and an annotated list of…

  19. The Structural Algebra Option: A Discussion Paper.

    ERIC Educational Resources Information Center

    Kirshner, David

    The goal of this paper is to renew interest in the structural option to algebra instruction. Concern for the usual secondary school algebra curriculum related to simplifying expressions, solving equations, and rationalizing numerators and denominators is viewed from three pedagogical approaches: (1) structural approach, (2) empirical approach, and…

  20. Algebra: How Is It for You?

    ERIC Educational Resources Information Center

    Rickard, Caroline

    2008-01-01

    Shortly after starting work for the University of Chichester in the School of Teacher Education, the author was planning a session relating to algebra and found herself inspired by an article in MT182: "Algebraic Infants" by Andrews and Sayers (2003). Based on the making of families of "Multilink" animals, Andrews and Sayers (2003) claim that…

  1. Teaching Modeling and Axiomatization with Boolean Algebra.

    ERIC Educational Resources Information Center

    De Villiers, Michael D.

    1987-01-01

    Presented is an alternative approach to the traditional teaching of Boolean algebra for secondary school mathematics. The main aim of the approach is to use Boolean algebra to teach pupils such mathematical processes as modeling and axiomatization. A course using the approach is described. (RH)

  2. Loop realizations of quantum affine algebras

    SciTech Connect

    Cautis, Sabin; Licata, Anthony

    2012-12-15

    We give a simplified description of quantum affine algebras in their loop presentation. This description is related to Drinfeld's new realization via halves of vertex operators. We also define an idempotent version of the quantum affine algebra which is suitable for categorification.

  3. Deforming the Maxwell-Sim algebra

    SciTech Connect

    Gibbons, G. W.; Gomis, Joaquim; Pope, C. N.

    2010-09-15

    The Maxwell algebra is a noncentral extension of the Poincare algebra, in which the momentum generators no longer commute, but satisfy [P{sub {mu}},P{sub {nu}}]=Z{sub {mu}{nu}}. The charges Z{sub {mu}{nu}} commute with the momenta, and transform tensorially under the action of the angular momentum generators. If one constructs an action for a massive particle, invariant under these symmetries, one finds that it satisfies the equations of motion of a charged particle interacting with a constant electromagnetic field via the Lorentz force. In this paper, we explore the analogous constructions where one starts instead with the ISim subalgebra of Poincare, this being the symmetry algebra of very special relativity. It admits an analogous noncentral extension, and we find that a particle action invariant under this Maxwell-Sim algebra again describes a particle subject to the ordinary Lorentz force. One can also deform the ISim algebra to DISim{sub b}, where b is a nontrivial dimensionless parameter. We find that the motion described by an action invariant under the corresponding Maxwell-DISim algebra is that of a particle interacting via a Finslerian modification of the Lorentz force. In an appendix is it shown that the DISim{sub b} algebra is isomorphic to the extended Schroedinger algebra with its standard deformation parameter z, when b=(1/1-z).

  4. MODEL IDENTIFICATION AND COMPUTER ALGEBRA.

    PubMed

    Bollen, Kenneth A; Bauldry, Shawn

    2010-10-01

    Multiequation models that contain observed or latent variables are common in the social sciences. To determine whether unique parameter values exist for such models, one needs to assess model identification. In practice analysts rely on empirical checks that evaluate the singularity of the information matrix evaluated at sample estimates of parameters. The discrepancy between estimates and population values, the limitations of numerical assessments of ranks, and the difference between local and global identification make this practice less than perfect. In this paper we outline how to use computer algebra systems (CAS) to determine the local and global identification of multiequation models with or without latent variables. We demonstrate a symbolic CAS approach to local identification and develop a CAS approach to obtain explicit algebraic solutions for each of the model parameters. We illustrate the procedures with several examples, including a new proof of the identification of a model for handling missing data using auxiliary variables. We present an identification procedure for Structural Equation Models that makes use of CAS and that is a useful complement to current methods. PMID:21769158

  5. Multilevel sparse functional principal component analysis.

    PubMed

    Di, Chongzhi; Crainiceanu, Ciprian M; Jank, Wolfgang S

    2014-01-29

    We consider analysis of sparsely sampled multilevel functional data, where the basic observational unit is a function and data have a natural hierarchy of basic units. An example is when functions are recorded at multiple visits for each subject. Multilevel functional principal component analysis (MFPCA; Di et al. 2009) was proposed for such data when functions are densely recorded. Here we consider the case when functions are sparsely sampled and may contain only a few observations per function. We exploit the multilevel structure of covariance operators and achieve data reduction by principal component decompositions at both between and within subject levels. We address inherent methodological differences in the sparse sampling context to: 1) estimate the covariance operators; 2) estimate the functional principal component scores; 3) predict the underlying curves. Through simulations the proposed method is able to discover dominating modes of variations and reconstruct underlying curves well even in sparse settings. Our approach is illustrated by two applications, the Sleep Heart Health Study and eBay auctions. PMID:24872597

  6. Multilevel sparse functional principal component analysis

    PubMed Central

    Di, Chongzhi; Crainiceanu, Ciprian M.; Jank, Wolfgang S.

    2014-01-01

    We consider analysis of sparsely sampled multilevel functional data, where the basic observational unit is a function and data have a natural hierarchy of basic units. An example is when functions are recorded at multiple visits for each subject. Multilevel functional principal component analysis (MFPCA; Di et al. 2009) was proposed for such data when functions are densely recorded. Here we consider the case when functions are sparsely sampled and may contain only a few observations per function. We exploit the multilevel structure of covariance operators and achieve data reduction by principal component decompositions at both between and within subject levels. We address inherent methodological differences in the sparse sampling context to: 1) estimate the covariance operators; 2) estimate the functional principal component scores; 3) predict the underlying curves. Through simulations the proposed method is able to discover dominating modes of variations and reconstruct underlying curves well even in sparse settings. Our approach is illustrated by two applications, the Sleep Heart Health Study and eBay auctions. PMID:24872597

  7. Algebraic Apect of Helicities in Hadron Physics

    NASA Astrophysics Data System (ADS)

    An, Murat; Ji, Chueng

    2015-04-01

    We examined the relation of polarization vectors and spinors of (1 , 0) ⊕(0 , 1) representation of Lorentz group in Clifford algebra Cl1 , 3 , their relation with standard algebra, and properties of these spinors. Cl1 , 3 consists of different grades:e.g. the first and the second grades represent (1 / 2 , 1 / 2) and (1 , 0) ⊕(0 , 1) representation of spin groups respectively with 4 and 6 components. However, these Clifford numbers are not the helicity eigenstates and thus we transform them into combinations of helicity eigenstates by expressing them as spherical harmonics. We relate the spin-one polarization vectors and (1 , 0) ⊕(0 , 1) spinors under one simple transformation with the spin operators. We also link our work with Winnberg's work of a superfield of a spinors of Clifford algebra by giving a physical meaning to Grassmann variables and discuss how Grassman algebra is linked with Clifford algebra.

  8. Implementing abstract multigrid or multilevel methods

    NASA Technical Reports Server (NTRS)

    Douglas, Craig C.

    1993-01-01

    Multigrid methods can be formulated as an algorithm for an abstract problem that is independent of the partial differential equation, domain, and discretization method. In such an abstract setting, problems not arising from partial differential equations can be treated. A general theory exists for linear problems. The general theory was motivated by a series of abstract solvers (Madpack). The latest version was motivated by the theory. Madpack now allows for a wide variety of iterative and direct solvers, preconditioners, and interpolation and projection schemes, including user callback ones. It allows for sparse, dense, and stencil matrices. Mildly nonlinear problems can be handled. Also, there is a fast, multigrid Poisson solver (two and three dimensions). The type of solvers and design decisions (including language, data structures, external library support, and callbacks) are discussed. Based on the author's experiences with two versions of Madpack, a better approach is proposed. This is based on a mixed language formulation (C and FORTRAN + preprocessor). Reasons for not using FORTRAN, C, or C++ (individually) are given. Implementing the proposed strategy is not difficult.

  9. Algebraic K-theory, K-regularity, and -duality of -stable C ∗-algebras

    NASA Astrophysics Data System (ADS)

    Mahanta, Snigdhayan

    2015-12-01

    We develop an algebraic formalism for topological -duality. More precisely, we show that topological -duality actually induces an isomorphism between noncommutative motives that in turn implements the well-known isomorphism between twisted K-theories (up to a shift). In order to establish this result we model topological K-theory by algebraic K-theory. We also construct an E ∞ -operad starting from any strongly self-absorbing C ∗-algebra . Then we show that there is a functorial topological K-theory symmetric spectrum construction on the category of separable C ∗-algebras, such that is an algebra over this operad; moreover, is a module over this algebra. Along the way we obtain a new symmetric spectra valued functorial model for the (connective) topological K-theory of C ∗-algebras. We also show that -stable C ∗-algebras are K-regular providing evidence for a conjecture of Rosenberg. We conclude with an explicit description of the algebraic K-theory of a x+ b-semigroup C ∗-algebras coming from number theory and that of -stabilized noncommutative tori.

  10. PC Basic Linear Algebra Subroutines

    Energy Science and Technology Software Center (ESTSC)

    1992-03-09

    PC-BLAS is a highly optimized version of the Basic Linear Algebra Subprograms (BLAS), a standardized set of thirty-eight routines that perform low-level operations on vectors of numbers in single and double-precision real and complex arithmetic. Routines are included to find the index of the largest component of a vector, apply a Givens or modified Givens rotation, multiply a vector by a constant, determine the Euclidean length, perform a dot product, swap and copy vectors, andmore » find the norm of a vector. The BLAS have been carefully written to minimize numerical problems such as loss of precision and underflow and are designed so that the computation is independent of the interface with the calling program. This independence is achieved through judicious use of Assembly language macros. Interfaces are provided for Lahey Fortran 77, Microsoft Fortran 77, and Ryan-McFarland IBM Professional Fortran.« less

  11. Weak homological dimensions and biflat Koethe algebras

    SciTech Connect

    Pirkovskii, A Yu

    2008-06-30

    The homological properties of metrizable Koethe algebras {lambda}(P) are studied. A criterion for an algebra A={lambda}(P) to be biflat in terms of the Koethe set P is obtained, which implies, in particular, that for such algebras the properties of being biprojective, biflat, and flat on the left are equivalent to the surjectivity of the multiplication operator A otimes-hat A{yields}A. The weak homological dimensions (the weak global dimension w.dg and the weak bidimension w.db) of biflat Koethe algebras are calculated. Namely, it is shown that the conditions w.db {lambda}(P)<=1 and w.dg {lambda}(P)<=1 are equivalent to the nuclearity of {lambda}(P); and if {lambda}(P) is non-nuclear, then w.dg {lambda}(P)=w.db {lambda}(P)=2. It is established that the nuclearity of a biflat Koethe algebra {lambda}(P), under certain additional conditions on the Koethe set P, implies the stronger estimate db {lambda}(P), where db is the (projective) bidimension. On the other hand, an example is constructed of a nuclear biflat Koethe algebra {lambda}(P) such that db {lambda}(P)=2 (while w.db {lambda}(P)=1). Finally, it is shown that many biflat Koethe algebras, while not being amenable, have trivial Hochschild homology groups in positive degrees (with arbitrary coefficients). Bibliography: 37 titles.

  12. Phase Boundaries in Algebraic Conformal QFT

    NASA Astrophysics Data System (ADS)

    Bischoff, Marcel; Kawahigashi, Yasuyuki; Longo, Roberto; Rehren, Karl-Henning

    2016-02-01

    We study the structure of local algebras in relativistic conformal quantum field theory with phase boundaries. Phase boundaries are instances of a more general notion of boundaries that give rise to a variety of algebraic structures. These can be formulated in a common framework originating in Algebraic QFT, with the principle of Einstein Causality playing a prominent role. We classify the phase boundary conditions by the centre of a certain universal construction, which produces a reducible representation in which all possible boundary conditions are realized. For a large class of models, the classification reproduces results obtained in a different approach by Fuchs et al. before.

  13. Toward robust scalable algebraic multigrid solvers.

    SciTech Connect

    Waisman, Haim; Schroder, Jacob; Olson, Luke; Hiriyur, Badri; Gaidamour, Jeremie; Siefert, Christopher; Hu, Jonathan Joseph; Tuminaro, Raymond Stephen

    2010-10-01

    This talk highlights some multigrid challenges that arise from several application areas including structural dynamics, fluid flow, and electromagnetics. A general framework is presented to help introduce and understand algebraic multigrid methods based on energy minimization concepts. Connections between algebraic multigrid prolongators and finite element basis functions are made to explored. It is shown how the general algebraic multigrid framework allows one to adapt multigrid ideas to a number of different situations. Examples are given corresponding to linear elasticity and specifically in the solution of linear systems associated with extended finite elements for fracture problems.

  14. Algebraic method for finding equivalence groups

    NASA Astrophysics Data System (ADS)

    Bihlo, Alexander; Dos Santos Cardoso-Bihlo, Elsa; Popovych, Roman O.

    2015-06-01

    The algebraic method for computing the complete point symmetry group of a system of differential equations is extended to finding the complete equivalence group of a class of such systems. The extended method uses the knowledge of the corresponding equivalence algebra. Two versions of the method are presented, where the first involves the automorphism group of this algebra and the second is based on a list of its megaideals. We illustrate the megaideal-based version of the method with the computation of the complete equivalence group of a class of nonlinear wave equations with applications in nonlinear elasticity.

  15. The nth root of sequential effect algebras

    NASA Astrophysics Data System (ADS)

    Shen, Jun; Wu, Junde

    2010-06-01

    In 2005, Gudder [Int. J. Theor. Phys. 44, 2219 (2005)] presented 25 problems of sequential effect algebras, the 20th problem asked: In a sequential effect algebra, if the square root of some element exists, is it unique? In this paper, we show that for each given positive integer n >1, there is a sequential effect algebra such that the nth root of its some element c is not unique, and the nth root of c is not the kth root of c (k

  16. On computational complexity of Clifford algebra

    NASA Astrophysics Data System (ADS)

    Budinich, Marco

    2009-05-01

    After a brief discussion of the computational complexity of Clifford algebras, we present a new basis for even Clifford algebra Cl(2m) that simplifies greatly the actual calculations and, without resorting to the conventional matrix isomorphism formulation, obtains the same complexity. In the last part we apply these results to the Clifford algebra formulation of the NP-complete problem of the maximum clique of a graph introduced by Budinich and Budinich ["A spinorial formulation of the maximum clique problem of a graph," J. Math. Phys. 47, 043502 (2006)].

  17. Imperfect Cloning Operations in Algebraic Quantum Theory

    NASA Astrophysics Data System (ADS)

    Kitajima, Yuichiro

    2015-01-01

    No-cloning theorem says that there is no unitary operation that makes perfect clones of non-orthogonal quantum states. The objective of the present paper is to examine whether an imperfect cloning operation exists or not in a C*-algebraic framework. We define a universal -imperfect cloning operation which tolerates a finite loss of fidelity in the cloned state, and show that an individual system's algebra of observables is abelian if and only if there is a universal -imperfect cloning operation in the case where the loss of fidelity is less than . Therefore in this case no universal -imperfect cloning operation is possible in algebraic quantum theory.

  18. Contractions of affine Kac-Moody algebras

    NASA Astrophysics Data System (ADS)

    Daboul, J.; Daboul, C.; de Montigny, M.

    2008-08-01

    I review our recent work on contractions of affine Kac-Moody algebras (KMA) and present new results. We study generalized contractions of KMA with respect to their twisted and untwisted KM subalgebras. As a concrete example, we discuss contraction of D(1)4 and D(3)4, based on Z3-grading. We also describe examples of 'level-dependent' contractions, which are based on Z-gradings of KMA. Our work generalizes the Inönü-Wigner contraction of P. Majumdar in several directions. We also give an algorithm for constructing Kac-Moody-like algebras hat g for any Lie algebra g.

  19. Kinematical superalgebras and Lie algebras of order 3

    SciTech Connect

    Campoamor-Stursberg, R.; Rausch de Traubenberg, M.

    2008-06-15

    We study and classify kinematical algebras which appear in the framework of Lie superalgebras or Lie algebras of order 3. All these algebras are related through generalized Inonue-Wigner contractions from either the orthosymplectic superalgebra or the de Sitter Lie algebra of order 3.

  20. Alternative algebras admitting derivations with invertible values and invertible derivations

    NASA Astrophysics Data System (ADS)

    Kaygorodov, I. B.; Popov, Yu S.

    2014-10-01

    We prove an analogue of the Bergen-Herstein-Lanski theorem for alternative algebras: describe all alternative algebras that admit derivations with invertible values. We also prove an analogue of Moens' theorem for alternative algebras (a finite-dimensional alternative algebra over a field of characteristic zero is nilpotent if and only if it admits an invertible Leibniz derivation).

  1. Spinor-vector supersymmetry algebra in three dimensions

    NASA Astrophysics Data System (ADS)

    Shima, Kazunari; Tsuda, Motomu

    2006-06-01

    We focus on a spin-3/2 supersymmetry (SUSY) algebra of Baaklini in D = 3 and explicitly show a nonlinear realization of the SUSY algebra. The unitary representation of the spin-3/2 SUSY algebra is discussed and compared with the ordinary (spin-1/2) SUSY algebra.

  2. Becchi-Rouet-Stora-Tyutin operators for W algebras

    SciTech Connect

    Isaev, A. P.; Krivonos, S. O.; Ogievetsky, O. V.

    2008-07-15

    The study of quantum Lie algebras motivates a use of noncanonical ghosts and antighosts for nonlinear algebras, such as W-algebras. This leads, for the W{sub 3} and W{sub 3}{sup (2)} algebras, to the Becchi-Rouet-Stora-Tyutin operator having the conventional cubic form.

  3. Lie bialgebra structures on the Schroedinger-Virasoro Lie algebra

    SciTech Connect

    Han Jianzhi; Su Yucai; Li Junbo

    2009-08-15

    In this paper we shall investigate Lie bialgebra structures on the Schroedinger-Virasoro algebra L. We found out that not all Lie bialgebra structures on the Schroedinger-Virasoro algebra are triangular coboundary, which is different from the related known results of some other Lie algebras related to the Virasoro algebra.

  4. Alternatives to Multilevel Modeling for the Analysis of Clustered Data

    ERIC Educational Resources Information Center

    Huang, Francis L.

    2016-01-01

    Multilevel modeling has grown in use over the years as a way to deal with the nonindependent nature of observations found in clustered data. However, other alternatives to multilevel modeling are available that can account for observations nested within clusters, including the use of Taylor series linearization for variance estimation, the design…

  5. Matching Strategies for Observational Data with Multilevel Structure

    ERIC Educational Resources Information Center

    Steiner, Peter M.

    2011-01-01

    Given the different possibilities of matching in the context of multilevel data and the lack of research on corresponding matching strategies, the author investigates two main research questions. The first research question investigates the advantages and disadvantages of different matching strategies that can be pursued with multilevel data…

  6. A Multilevel Analysis of Parental Discipline and Child Antisocial Behavior

    ERIC Educational Resources Information Center

    Stoolmiller, Mike; Snyder, Jim

    2004-01-01

    We demonstrate graphical and analytical methods for multilevel (2- and 3-level) models using the analysis of observed microsocial interaction between parent-child dyads as an example. We also present multilevel path diagrams and argue that while not as compact as equations, path diagrams may communicate results better to a wider audience. The…

  7. Multilevel Higher-Order Item Response Theory Models

    ERIC Educational Resources Information Center

    Huang, Hung-Yu; Wang, Wen-Chung

    2014-01-01

    In the social sciences, latent traits often have a hierarchical structure, and data can be sampled from multiple levels. Both hierarchical latent traits and multilevel data can occur simultaneously. In this study, we developed a general class of item response theory models to accommodate both hierarchical latent traits and multilevel data. The…

  8. How does psychotherapy work? A case study in multilevel explanation.

    PubMed

    Roache, Rebecca

    2015-01-01

    Multilevel explanations abound in psychiatry. However, formulating useful such explanations is difficult or (some argue) impossible. I point to several ways in which Lane et al. successfully use multilevel explanations to advance understanding of psychotherapeutic effectiveness. I argue that the usefulness of an explanation depends largely on one's purpose, and conclude that this point has been inadequately recognised in psychiatry. PMID:26050687

  9. Top Element Problem and Macneille Completions of Generalized Effect Algebras

    NASA Astrophysics Data System (ADS)

    RieČanová, Z.; Kalina, M.

    2014-10-01

    Effect algebras (EAs), introduced by D. J. Foulis and M. K. Bennett, as common generalizations of Boolean algebras, orthomodular lattices and MV-algebras, are nondistributive algebraic structures including unsharp elements. Their unbounded versions, called generalized effect algebras, are posets which may have or may have not an EA-MacNeille completion, or cannot be embedded into any complete effect algebra. We give a necessary and sufficient condition for a generalized effect algebra to have an EA-MacNeille completion. Some examples are provided.

  10. I CAN Learn[R] Pre-Algebra and Algebra. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2009

    2009-01-01

    The I CAN Learn[R] Education System is an interactive, self-paced, mastery-based software system that includes the I CAN Learn[R] Fundamentals of Math (5th-6th grade math) curriculum, the I CAN Learn[R] Pre-Algebra curriculum, and the I CAN Learn[R] Algebra curriculum. College algebra credit is also available to students in participating schools…

  11. Clifford Algebras in Symplectic Geometry and Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Binz, Ernst; de Gosson, Maurice A.; Hiley, Basil J.

    2013-04-01

    The necessary appearance of Clifford algebras in the quantum description of fermions has prompted us to re-examine the fundamental role played by the quaternion Clifford algebra, C 0,2. This algebra is essentially the geometric algebra describing the rotational properties of space. Hidden within this algebra are symplectic structures with Heisenberg algebras at their core. This algebra also enables us to define a Poisson algebra of all homogeneous quadratic polynomials on a two-dimensional sub-space, {F}a of the Euclidean three-space. This enables us to construct a Poisson Clifford algebra, ℍ F , of a finite dimensional phase space which will carry the dynamics. The quantum dynamics appears as a realisation of ℍ F in terms of a Clifford algebra consisting of Hermitian operators.

  12. A note on derivations of Murray–von Neumann algebras

    PubMed Central

    Kadison, Richard V.; Liu, Zhe

    2014-01-01

    A Murray–von Neumann algebra is the algebra of operators affiliated with a finite von Neumann algebra. In this article, we first present a brief introduction to the theory of derivations of operator algebras from both the physical and mathematical points of view. We then describe our recent work on derivations of Murray–von Neumann algebras. We show that the “extended derivations” of a Murray–von Neumann algebra, those that map the associated finite von Neumann algebra into itself, are inner. In particular, we prove that the only derivation that maps a Murray–von Neumann algebra associated with a factor of type II1 into that factor is 0. Those results are extensions of Singer’s seminal result answering a question of Kaplansky, as applied to von Neumann algebras: The algebra may be noncommutative and may even contain unbounded elements. PMID:24469831

  13. Using computer algebra and SMT solvers in algebraic biology

    NASA Astrophysics Data System (ADS)

    Pineda Osorio, Mateo

    2014-05-01

    Biologic processes are represented as Boolean networks, in a discrete time. The dynamics within these networks are approached with the help of SMT Solvers and the use of computer algebra. Software such as Maple and Z3 was used in this case. The number of stationary states for each network was calculated. The network studied here corresponds to the immune system under the effects of drastic mood changes. Mood is considered as a Boolean variable that affects the entire dynamics of the immune system, changing the Boolean satisfiability and the number of stationary states of the immune network. Results obtained show Z3's great potential as a SMT Solver. Some of these results were verified in Maple, even though it showed not to be as suitable for the problem approach. The solving code was constructed using Z3-Python and Z3-SMT-LiB. Results obtained are important in biology systems and are expected to help in the design of immune therapies. As a future line of research, more complex Boolean network representations of the immune system as well as the whole psychological apparatus are suggested.

  14. Highest-weight representations of Brocherd`s algebras

    SciTech Connect

    Slansky, R.

    1997-01-01

    General features of highest-weight representations of Borcherd`s algebras are described. to show their typical features, several representations of Borcherd`s extensions of finite-dimensional algebras are analyzed. Then the example of the extension of affine- su(2) to a Borcherd`s algebra is examined. These algebras provide a natural way to extend a Kac-Moody algebra to include the hamiltonian and number-changing operators in a generalized symmetry structure.

  15. On \\delta-derivations of n-ary algebras

    NASA Astrophysics Data System (ADS)

    Kaygorodov, Ivan B.

    2012-12-01

    We give a description of \\delta-derivations of (n+1)-dimensional n-ary Filippov algebras and, as a consequence, of simple finite-dimensional Filippov algebras over an algebraically closed field of characteristic zero. We also give new examples of non-trivial \\delta-derivations of Filippov algebras and show that there are no non-trivial \\delta-derivations of the simple ternary Mal'tsev algebra M_8.

  16. Excision in algebraic K-theory and Karoubi's conjecture.

    PubMed

    Suslin, A A; Wodzicki, M

    1990-12-15

    We prove that the property of excision in algebraic K-theory is for a Q-algebra A equivalent to the H-unitality of the latter. Our excision theorem, in particular, implies Karoubi's conjecture on the equality of algebraic and topological K-theory groups of stable C*-algebras. It also allows us to identify the algebraic K-theory of the symbol map in the theory of pseudodifferential operators. PMID:11607130

  17. Excision in algebraic K-theory and Karoubi's conjecture.

    PubMed Central

    Suslin, A A; Wodzicki, M

    1990-01-01

    We prove that the property of excision in algebraic K-theory is for a Q-algebra A equivalent to the H-unitality of the latter. Our excision theorem, in particular, implies Karoubi's conjecture on the equality of algebraic and topological K-theory groups of stable C*-algebras. It also allows us to identify the algebraic K-theory of the symbol map in the theory of pseudodifferential operators. PMID:11607130

  18. On algebraic endomorphisms of the Einstein gyrogroup

    NASA Astrophysics Data System (ADS)

    Molnár, Lajos; Virosztek, Dániel

    2015-08-01

    We describe the structure of all continuous algebraic endomorphisms of the open unit ball B of ℝ3 equipped with the Einstein velocity addition. We show that any nonzero such transformation originates from an orthogonal linear transformation on ℝ3.

  19. Clifford algebras and physical and engineering sciences

    NASA Astrophysics Data System (ADS)

    Furui, Sadataka

    2013-10-01

    Clifford algebra in physical and engineering science are studied. Roles of triality symmetry of Cartan's spinor in axial anomaly of particle physics and quaternion and octonion in the memristic circuits are discussed.

  20. Positive basis for surface skein algebras

    PubMed Central

    Thurston, Dylan Paul

    2014-01-01

    We show that the twisted SL2 skein algebra of a surface has a natural basis (the bracelets basis) that is positive, in the sense that the structure constants for multiplication are positive integers. PMID:24982193

  1. Lisa's Lemonade Stand: Exploring Algebraic Ideas.

    ERIC Educational Resources Information Center

    Billings, Esther M. H.; Lakatos, Tracy

    2003-01-01

    Presents an activity, "Lisa's Lemonade Stand," that actively engages students in algebraic thinking as they analyze change by investigating relationships between variables and gain experience describing and representing these relationships graphically. (YDS)

  2. Lima Beans, Paper Cups, and Algebra.

    ERIC Educational Resources Information Center

    Loewen, A. C.

    1991-01-01

    An activity in which students use manipulative materials to help solve simple algebraic equations using the operations of adding inverses, removing opposites, and sharing equally is presented. Directions, examples, the rationale, and cautions are included. (KR)

  3. Supersymmetric extension of Galilean conformal algebras

    SciTech Connect

    Bagchi, Arjun; Mandal, Ipsita

    2009-10-15

    The Galilean conformal algebra has recently been realized in the study of the nonrelativistic limit of the AdS/CFT conjecture. This was obtained by a systematic parametric group contraction of the parent relativistic conformal field theory. In this paper, we extend the analysis to include supersymmetry. We work at the level of the coordinates in superspace to construct the N=1 super-Galilean conformal algebra. One of the interesting outcomes of the analysis is that one is able to naturally extend the finite algebra to an infinite one. This looks structurally similar to the N=1 superconformal algebra in two dimensions, but is different. We also comment on the extension of our construction to cases of higher N.

  4. Applications: Using Algebra in an Accounting Practice.

    ERIC Educational Resources Information Center

    Eisner, Gail A.

    1994-01-01

    Presents examples of algebra from the field of accounting including proportional ownership of stock, separation of a loan payment into principal and interest portions, depreciation methods, and salary withholdings computations. (MKR)

  5. Semigroups And Computer Algebra In Discrete Structures

    NASA Astrophysics Data System (ADS)

    Bijev, G.

    2010-10-01

    Some concepts in semigroup theory are interpreted in discrete structures such as finite lattices, binary relations, and finite semilattices. An algebraic approach to the pseudoinverse generalization problem in Boolean vector spaces is used. By analogy with the linear spaces in the linear algebra semilattice homomorphisms, isomorphisms, projections on Boolean vector spaces are defined and some properties of them are investigated in detail. Maps, corresponding to them in the linear algebra, are connected with matrices and their pseudouinverse. Important properties of these maps, which are essential for solving linear systems, remain the same in the Boolean vector spaces. Stochastic experiments using the maps defined and computer algebra methods have been made for solving linear equations Ax = b. The Hamming distance between b and the projection p(b) = Ax of b is equal or close to the least possible one, if the system has no solutions.

  6. Algebraic Sub-Structuring for Electromagnetic Applications

    SciTech Connect

    Yang, C.; Gao, W.G.; Bai, Z.J.; Li, X.Y.S.; Lee, L.Q.; Husbands, P.; Ng, E.G.; /LBL, Berkeley /UC, Davis /SLAC

    2006-06-30

    Algebraic sub-structuring refers to the process of applying matrix reordering and partitioning algorithms to divide a large sparse matrix into smaller submatrices from which a subset of spectral components are extracted and combined to form approximate solutions to the original problem. In this paper, they show that algebraic sub-structuring can be effectively used to solve generalized eigenvalue problems arising from the finite element analysis of an accelerator structure.

  7. Algebraic sub-structuring for electromagnetic applications

    SciTech Connect

    Yang, Chao; Gao, Weiguo; Bai, Zhaojun; Li, Xiaoye; Lee, Lie-Quan; Husbands, Parry; Ng, Esmond G.

    2004-09-14

    Algebraic sub-structuring refers to the process of applying matrix reordering and partitioning algorithms to divide a large sparse matrix into smaller submatrices from which a subset of spectral components are extracted and combined to form approximate solutions to the original problem. In this paper, we show that algebraic sub-structuring can be effectively used to solve generalized eigenvalue problems arising from the finite element analysis of an accelerator structure.

  8. Twisted Logarithmic Modules of Vertex Algebras

    NASA Astrophysics Data System (ADS)

    Bakalov, Bojko

    2016-07-01

    Motivated by logarithmic conformal field theory and Gromov-Witten theory, we introduce a notion of a twisted module of a vertex algebra under an arbitrary (not necessarily semisimple) automorphism. Its main feature is that the twisted fields involve the logarithm of the formal variable. We develop the theory of such twisted modules and, in particular, derive a Borcherds identity and commutator formula for them. We investigate in detail the examples of affine and Heisenberg vertex algebras.

  9. Edge covers and independence: Algebraic approach

    NASA Astrophysics Data System (ADS)

    Kalinina, E. A.; Khitrov, G. M.; Pogozhev, S. V.

    2016-06-01

    In this paper, linear algebra methods are applied to solve some problems of graph theory. For ordinary connected graphs, edge coverings and independent sets are considered. Some results concerning minimum edge covers and maximum matchings are proved with the help of linear algebraic approach. The problem of finding a maximum matching of a graph is fundamental both practically and theoretically, and has numerous applications, e.g., in computational chemistry and mathematical chemistry.

  10. Sharply Dominating MV-Effect Algebras

    NASA Astrophysics Data System (ADS)

    Kalina, Martin; Olejček, Vladimír; Paseka, Jan; Riečanová, Zdenka

    2011-04-01

    Some open questions on Archimedean atomic MV-effect algebras are answered. Namely we prove that there are Archimedean atomic MV-effect algebras which are not sharply dominating. Equivalently, they don't have a basic decomposition of elements. Moreover, if their set of sharp elements (their center) is a complete lattice then they need not be complete lattices. The existence of infinite orthogonal sums of their elements is discussed.

  11. Stability of Lie groupoid C∗-algebras

    NASA Astrophysics Data System (ADS)

    Debord, Claire; Skandalis, Georges

    2016-07-01

    In this paper we generalize a theorem of M. Hilsum and G. Skandalis stating that the C∗-algebra of any foliation of nonzero dimension is stable. Precisely, we show that the C∗-algebra of a Lie groupoid is stable whenever the groupoid has no orbit of dimension zero. We also prove an analogous theorem for singular foliations for which the holonomy groupoid as defined by I. Androulidakis and G. Skandalis is not Lie in general.

  12. Vague Congruences and Quotient Lattice Implication Algebras

    PubMed Central

    Qin, Xiaoyan; Xu, Yang

    2014-01-01

    The aim of this paper is to further develop the congruence theory on lattice implication algebras. Firstly, we introduce the notions of vague similarity relations based on vague relations and vague congruence relations. Secondly, the equivalent characterizations of vague congruence relations are investigated. Thirdly, the relation between the set of vague filters and the set of vague congruences is studied. Finally, we construct a new lattice implication algebra induced by a vague congruence, and the homomorphism theorem is given. PMID:25133207

  13. Algebra and topology for applications to physics

    NASA Technical Reports Server (NTRS)

    Rozhkov, S. S.

    1987-01-01

    The principal concepts of algebra and topology are examined with emphasis on applications to physics. In particular, attention is given to sets and mapping; topological spaces and continuous mapping; manifolds; and topological groups and Lie groups. The discussion also covers the tangential spaces of the differential manifolds, including Lie algebras, vector fields, and differential forms, properties of differential forms, mapping of tangential spaces, and integration of differential forms.

  14. One-Equation Algebraic Model Of Turbulence

    NASA Technical Reports Server (NTRS)

    Baldwin, B. S.; Barth, T. J.

    1993-01-01

    One-equation model of turbulence based on standard equations of k-epsilon model of turbulence, where k is turbulent energy and e is rate of dissipation of k. Derivation of one-equation model motivated partly by inaccuracies of flows computed by some Navier-Stokes-equations-solving algorithms incorporating algebraic models of turbulence. Satisfies need to avoid having to determine algebraic length scales.

  15. The arithmetic theory of algebraic groups

    NASA Astrophysics Data System (ADS)

    Platonov, V. P.

    1982-06-01

    CONTENTS Introduction § 1. Arithmetic groups § 2. Adèle groups § 3. Tamagawa numbers § 4. Approximations in algebraic groups § 5. Class numbers and class groups of algebraic groups § 6. The genus problem in arithmetic groups § 7. Classification of maximal arithmetic subgroups § 8. The congruence problem § 9. Groups of rational points over global fields § 10. Galois cohomology and the Hasse principle § 11. Cohomology of arithmetic groups References

  16. Algorithmic Questions for Linear Algebraic Groups. Ii

    NASA Astrophysics Data System (ADS)

    Sarkisjan, R. A.

    1982-04-01

    It is proved that, given a linear algebraic group defined over an algebraic number field and satisfying certain conditions, there exists an algorithm which determines whether or not two double cosets of a special type coincide in its adele group, and which enumerates all such double cosets. This result is applied to the isomorphism problem for finitely generated nilpotent groups, and also to other problems.Bibliography: 18 titles.

  17. Algebraic operator approach to gas kinetic models

    NASA Astrophysics Data System (ADS)

    Il'ichov, L. V.

    1997-02-01

    Some general properties of the linear Boltzmann kinetic equation are used to present it in the form ∂ tϕ = - †Âϕ with the operators Âand† possessing some nontrivial algebraic properties. When applied to the Keilson-Storer kinetic model, this method gives an example of quantum ( q-deformed) Lie algebra. This approach provides also a natural generalization of the “kangaroo model”.

  18. Clifford algebras and Hestenes spinors

    NASA Astrophysics Data System (ADS)

    Lounesto, Pertti

    1993-09-01

    This article reviews Hestenes' work on the Dirac theory, where his main achievement is a real formulation of the theory within the real Clifford algebra Cl 1,3 ≃ M2 (H). Hestenes invented first in 1966 his ideal spinorsφ in Cl_{1,3 _2}^1 (1 - γ _{03} ) and later 1967/75 he recognized the importance of his operator spinors ψ ∈ Cl{/1,3 + } ≃ M2 (C). This article starts from the conventional Dirac equation as presented with matrices by Bjorken-Drell. Explicit mappings are given for a passage between Hestenes' operator spinors and Dirac's column spinors. Hestenes' operator spinors are seen to be multiples of even parts of real parts of Dirac spinors (real part in the decomposition C ⊗ Cl 1,3 and not in C ⊗ M4 (R)=M4 (C)). It will become apparent that the standard matrix formulation contains superfluous parts, which ought to be cut out by Occam's razor. Fierz identities of bilinear covariants are known to be sufficient to study the non-null case but are seen to be insufficient for the null case ψ†γ0ψ=0, ψ†γ0γ0123ψ=0. The null case is thoroughly scrutinized for the first time with a new concept called boomerang. This permits a new intrinsically geometric classification of spinors. This in turn reveals a new class of spinors which has not been discussed before. This class supplements the spinors of Dirac, Weyl, and Majorana; it describes neither the electron nor the neutron; it is awaiting a physical interpretation and a possible observation. Projection operators P±, Σ± are resettled among their new relatives in End(Cl 1,3 ). Finally, a new mapping, called tilt, is introduced to enable a transition from Cl 1,3 to the (graded) opposite algebra Cl 3,1 without resorting to complex numbers, that is, not using a replacement γμ → iγμ.

  19. From Atiyah Classes to Homotopy Leibniz Algebras

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Stiénon, Mathieu; Xu, Ping

    2016-01-01

    A celebrated theorem of Kapranov states that the Atiyah class of the tangent bundle of a complex manifold X makes T X [-1] into a Lie algebra object in D + ( X), the bounded below derived category of coherent sheaves on X. Furthermore, Kapranov proved that, for a Kähler manifold X, the Dolbeault resolution {Ω^{bullet-1}(T_X^{1, 0})} of T X [-1] is an L ∞ algebra. In this paper, we prove that Kapranov's theorem holds in much wider generality for vector bundles over Lie pairs. Given a Lie pair ( L, A), i.e. a Lie algebroid L together with a Lie subalgebroid A, we define the Atiyah class α E of an A-module E as the obstruction to the existence of an A- compatible L-connection on E. We prove that the Atiyah classes α L/ A and α E respectively make L/ A[-1] and E[-1] into a Lie algebra and a Lie algebra module in the bounded below derived category {D^+(A)} , where {A} is the abelian category of left {U(A)} -modules and {U(A)} is the universal enveloping algebra of A. Moreover, we produce a homotopy Leibniz algebra and a homotopy Leibniz module stemming from the Atiyah classes of L/ A and E, and inducing the aforesaid Lie structures in {D^+(A)}.

  20. Multilevel converters for large electric drives

    SciTech Connect

    Tolbert, L.M.; Peng, F.Z.

    1997-11-01

    Traditional two-level high frequency pulse width modulation (PWM) inverters for motor drives have several problems associated with their high frequency switching which produces common-mode voltage and high voltage change (dV/dt) rates to the motor windings. Multilevel inverters solve these problems because their devices can switch at a much lower frequency. Two different multilevel topologies are identified for use as a converter for electric drives, a cascade inverter with separate dc sources and a back-to-back diode clamped converter. The cascade inverter is a natural fit for large automotive all electric drives because of the high VA ratings possible and because it uses several levels of dc voltage sources which would be available from batteries or fuel cells. The back to back diode damped converter is ideal where a source of ac voltage is available such as a hybrid electric vehicle. Simulation and experimental results show the superiority of these two converters over PWM based drives.

  1. Multilevel analysis in road safety research.

    PubMed

    Dupont, Emmanuelle; Papadimitriou, Eleonora; Martensen, Heike; Yannis, George

    2013-11-01

    Hierarchical structures in road safety data are receiving increasing attention in the literature and multilevel (ML) models are proposed for appropriately handling the resulting dependences among the observations. However, so far no empirical synthesis exists of the actual added value of ML modelling techniques as compared to other modelling approaches. This paper summarizes the statistical and conceptual background and motivations for multilevel analyses in road safety research. It then provides a review of several ML analyses applied to aggregate and disaggregate (accident) data. In each case, the relevance of ML modelling techniques is assessed by examining whether ML model formulations (i) allow improving the fit of the model to the data, (ii) allow identifying and explaining random variation at specific levels of the hierarchy considered, and (iii) yield different (more correct) conclusions than single-level model formulations with respect to the significance of the parameter estimates. The evidence reviewed offers different conclusions depending on whether the analysis concerns aggregate data or disaggregate data. In the first case, the application of ML analysis techniques appears straightforward and relevant. The studies based on disaggregate accident data, on the other hand, offer mixed findings: computational problems can be encountered, and ML applications are not systematically necessary. The general recommendation concerning disaggregate accident data is to proceed to a preliminary investigation of the necessity of ML analyses and of the additional information to be expected from their application. PMID:23769622

  2. The treatment for multilevel noncontiguous spinal fractures

    PubMed Central

    Lian, Xiao Feng; Hou, Tie Sheng; Yuan, Jian Dong; Jin, Gen Yang; Li, Zhong Hai

    2006-01-01

    We report the outcome of 30 patients with multilevel noncontiguous spinal fractures treated between 2000 and 2005. Ten cases were treated conservatively (group A), eight cases were operated on at only one level (group B), and 12 cases were treated surgically at both levels (group C). All cases were followed up for 14–60 months (mean 32 months). Initial mobilisation with a wheelchair or crutches in group A was 9.2±1.1 weeks, which was significantly longer than groups B and C with 6.8±0.7 weeks and 3.1±0.4 weeks, respectively. Operative time and blood loss in group C were significantly more than group B. The neurological deficit improved in six cases in group A (60%), six in group B (75%) and eight in group C (80%). Correction of kyphotic deformity was significantly superior in groups C and B at the operated level, and increasing deformity occurred in groups A and B at the non-operated level. From the results we believe that three treatment strategies were suitable for multilevel noncontiguous spinal fractures, and individualised treatment should be used in these patients. In the patients treated surgically, the clinical and radiographic outcomes are much better. PMID:17043863

  3. Direct handling of equality constraints in multilevel optimization

    NASA Technical Reports Server (NTRS)

    Renaud, John E.; Gabriele, Gary A.

    1990-01-01

    In recent years there have been several hierarchic multilevel optimization algorithms proposed and implemented in design studies. Equality constraints are often imposed between levels in these multilevel optimizations to maintain system and subsystem variable continuity. Equality constraints of this nature will be referred to as coupling equality constraints. In many implementation studies these coupling equality constraints have been handled indirectly. This indirect handling has been accomplished using the coupling equality constraints' explicit functional relations to eliminate design variables (generally at the subsystem level), with the resulting optimization taking place in a reduced design space. In one multilevel optimization study where the coupling equality constraints were handled directly, the researchers encountered numerical difficulties which prevented their multilevel optimization from reaching the same minimum found in conventional single level solutions. The researchers did not explain the exact nature of the numerical difficulties other than to associate them with the direct handling of the coupling equality constraints. The coupling equality constraints are handled directly, by employing the Generalized Reduced Gradient (GRG) method as the optimizer within a multilevel linear decomposition scheme based on the Sobieski hierarchic algorithm. Two engineering design examples are solved using this approach. The results show that the direct handling of coupling equality constraints in a multilevel optimization does not introduce any problems when the GRG method is employed as the internal optimizer. The optimums achieved are comparable to those achieved in single level solutions and in multilevel studies where the equality constraints have been handled indirectly.

  4. Card Games and Algebra Tic Tacmatics on Achievement of Junior Secondary II Students in Algebraic Expressions

    ERIC Educational Resources Information Center

    Okpube, Nnaemeka Michael; Anugwo, M. N.

    2016-01-01

    This study investigated the Card Games and Algebra tic-Tacmatics on Junior Secondary II Students' Achievement in Algebraic Expressions. Three research questions and three null hypotheses guided the study. The study adopted the pre-test, post-test control group design. A total of two hundred and forty (240) Junior Secondary School II students were…

  5. Algebra Is a Civil Right: Increasing Achievement for African American Males in Algebra through Collaborative Inquiry

    ERIC Educational Resources Information Center

    Davies Gomez, Lisa

    2012-01-01

    Algebra is the gatekeeper of access to higher-level math and science courses, higher education and future earning opportunities. Unequal numbers of African-American males drop out of Algebra and mathematics courses and underperform on tests of mathematical competency and are thus denied both essential skills and a particularly important pathway to…

  6. Slower Algebra Students Meet Faster Tools: Solving Algebra Word Problems with Graphing Software

    ERIC Educational Resources Information Center

    Yerushalmy, Michal

    2006-01-01

    The article discusses the ways that less successful mathematics students used graphing software with capabilities similar to a basic graphing calculator to solve algebra problems in context. The study is based on interviewing students who learned algebra for 3 years in an environment where software tools were always present. We found differences…

  7. Developing "Algebraic Thinking": Two Key Ways to Establish Some Early Algebraic Ideas in Primary Classrooms

    ERIC Educational Resources Information Center

    Ormond, Christine

    2012-01-01

    Primary teachers play a key role in their students' future mathematical success in the early secondary years. While the word "algebra" may make some primary teachers feel uncomfortable or worried, the basic arithmetic ideas underlying algebra are vitally important for older primary students as they are increasingly required to use "algebraic…

  8. C∗-completions and the DFR-algebra

    NASA Astrophysics Data System (ADS)

    Forger, Michael; Paulino, Daniel V.

    2016-02-01

    The aim of this paper is to present the construction of a general family of C∗-algebras which includes, as a special case, the "quantum spacetime algebra" introduced by Doplicher, Fredenhagen, and Roberts. It is based on an extension of the notion of C∗-completion from algebras to bundles of algebras, compatible with the usual C∗-completion of the appropriate algebras of sections, combined with a novel definition for the algebra of the canonical commutation relations using Rieffel's theory of strict deformation quantization. Taking the C∗-algebra of continuous sections vanishing at infinity, we arrive at a functor associating a C∗-algebra to any Poisson vector bundle and recover the original DFR-algebra as a particular example.

  9. Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms

    NASA Astrophysics Data System (ADS)

    Benayadi, Saïd; Makhlouf, Abdenacer

    2014-02-01

    The aim of this paper is to introduce and study quadratic Hom-Lie algebras, which are Hom-Lie algebras equipped with symmetric invariant nondegenerate bilinear forms. We provide several constructions leading to examples and extend the Double Extension Theory to this class of nonassociative algebras. Elements of Representation Theory for Hom-Lie algebras, including adjoint and coadjoint representations, are supplied with application to quadratic Hom-Lie algebras. Centerless involutive quadratic Hom-Lie algebras are characterized. We reduce the case where the twist map is invertible to the study of involutive quadratic Lie algebras. Also, we establish a correspondence between the class of involutive quadratic Hom-Lie algebras and quadratic simple Lie algebras with symmetric involution.

  10. Three-algebra for supermembrane and two-algebra for superstring

    NASA Astrophysics Data System (ADS)

    Lee, Kanghoon; Park, Jeong-Hyuck

    2009-04-01

    While string or Yang-Mills theories are based on Lie algebra or two-algebra structure, recent studies indicate that Script M-theory may require a one higher, three-algebra structure. Here we construct a covariant action for a supermembrane in eleven dimensions, which is invariant under global supersymmetry, local fermionic symmetry and worldvolume diffeomorphism. Our action is classically on-shell equivalent to the celebrated Bergshoeff-Sezgin-Townsend action. However, the novelty is that we spell the action genuinely in terms of Nambu three-brackets: All the derivatives appear through Nambu brackets and hence it manifests the three-algebra structure. Further the double dimensional reduction of our action gives straightforwardly to a type IIA string action featuring two-algebra. Applying the same method, we also construct a covariant action for type IIB superstring, leading directly to the IKKT matrix model.

  11. Multi-Matrix Models and Noncommutative Frobenius Algebras Obtained from Symmetric Groups and Brauer Algebras

    NASA Astrophysics Data System (ADS)

    Kimura, Yusuke

    2015-07-01

    It has been understood that correlation functions of multi-trace operators in SYM can be neatly computed using the group algebra of symmetric groups or walled Brauer algebras. On the other hand, such algebras have been known to construct 2D topological field theories (TFTs). After reviewing the construction of 2D TFTs based on symmetric groups, we construct 2D TFTs based on walled Brauer algebras. In the construction, the introduction of a dual basis manifests a similarity between the two theories. We next construct a class of 2D field theories whose physical operators have the same symmetry as multi-trace operators constructed from some matrices. Such field theories correspond to non-commutative Frobenius algebras. A matrix structure arises as a consequence of the noncommutativity. Correlation functions of the Gaussian complex multi-matrix models can be translated into correlation functions of the two-dimensional field theories.

  12. Towards the development of multilevel-multiagent diagnostic aids

    SciTech Connect

    Stratton, R.C.; Jarrell, D.B.

    1991-10-01

    Presented here is our methodology for developing automated aids for diagnosing faults in complex systems. We have designed these aids as multilevel-multiagent diagnostic aids based on principles that should be generally applicable to any complex system. In this methodology, multilevel'' refers to information models described at successful levels of abstraction that are tied together in such a way that reasoning is directed to the appropriate level as determined by the problem solving requirements. The concept of multiagent'' refers to the method of information processing within the multilevel model network; each model in the network is an independent information processor, i.e., an intelligent agent. 19 refs., 15 figs., 9 tabs.

  13. Algebraic theory of recombination spaces.

    PubMed

    Stadler, P F; Wagner, G P

    1997-01-01

    A new mathematical representation is proposed for the configuration space structure induced by recombination, which we call "P-structure." It consists of a mapping of pairs of objects to the power set of all objects in the search space. The mapping assigns to each pair of parental "genotypes" the set of all recombinant genotypes obtainable from the parental ones. It is shown that this construction allows a Fourier decomposition of fitness landscapes into a superposition of "elementary landscapes." This decomposition is analogous to the Fourier decomposition of fitness landscapes on mutation spaces. The elementary landscapes are obtained as eigenfunctions of a Laplacian operator defined for P-structures. For binary string recombination, the elementary landscapes are exactly the p-spin functions (Walsh functions), that is, the same as the elementary landscapes of the string point mutation spaces (i.e., the hypercube). This supports the notion of a strong homomorphism between string mutation and recombination spaces. However, the effective nearest neighbor correlations on these elementary landscapes differ between mutation and recombination and among different recombination operators. On average, the nearest neighbor correlation is higher for one-point recombination than for uniform recombination. For one-point recombination, the correlations are higher for elementary landscapes with fewer interacting sites as well as for sites that have closer linkage, confirming the qualitative predictions of the Schema Theorem. We conclude that the algebraic approach to fitness landscape analysis can be extended to recombination spaces and provides an effective way to analyze the relative hardness of a landscape for a given recombination operator. PMID:10021760

  14. TBGG- INTERACTIVE ALGEBRAIC GRID GENERATION

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1994-01-01

    TBGG, Two-Boundary Grid Generation, applies an interactive algebraic grid generation technique in two dimensions. The program incorporates mathematical equations that relate the computational domain to the physical domain. TBGG has application to a variety of problems using finite difference techniques, such as computational fluid dynamics. Examples include the creation of a C-type grid about an airfoil and a nozzle configuration in which no left or right boundaries are specified. The underlying two-boundary technique of grid generation is based on Hermite cubic interpolation between two fixed, nonintersecting boundaries. The boundaries are defined by two ordered sets of points, referred to as the top and bottom. Left and right side boundaries may also be specified, and call upon linear blending functions to conform interior interpolation to the side boundaries. Spacing between physical grid coordinates is determined as a function of boundary data and uniformly spaced computational coordinates. Control functions relating computational coordinates to parametric intermediate variables that affect the distance between grid points are embedded in the interpolation formulas. A versatile control function technique with smooth cubic spline functions is also presented. The TBGG program is written in FORTRAN 77. It works best in an interactive graphics environment where computational displays and user responses are quickly exchanged. The program has been implemented on a CDC Cyber 170 series computer using NOS 2.4 operating system, with a central memory requirement of 151,700 (octal) 60 bit words. TBGG requires a Tektronix 4015 terminal and the DI-3000 Graphics Library of Precision Visuals, Inc. TBGG was developed in 1986.

  15. Role of division algebra in seven-dimensional gauge theory

    NASA Astrophysics Data System (ADS)

    Kalauni, Pushpa; Barata, J. C. A.

    2015-03-01

    The algebra of octonions 𝕆 forms the largest normed division algebra over the real numbers ℝ, complex numbers ℂ and quaternions ℍ. The usual three-dimensional vector product is given by quaternions, while octonions produce seven-dimensional vector product. Thus, octonionic algebra is closely related to the seven-dimensional algebra, therefore one can extend generalization of rotations in three dimensions to seven dimensions using octonions. An explicit algebraic description of octonions has been given to describe rotational transformation in seven-dimensional space. We have also constructed a gauge theory based on non-associative algebra to discuss Yang-Mills theory and field equation in seven-dimensional space.

  16. Boundary Lax pairs from non-ultra-local Poisson algebras

    SciTech Connect

    Avan, Jean; Doikou, Anastasia

    2009-11-15

    We consider non-ultra-local linear Poisson algebras on a continuous line. Suitable combinations of representations of these algebras yield representations of novel generalized linear Poisson algebras or 'boundary' extensions. They are parametrized by a boundary scalar matrix and depend, in addition, on the choice of an antiautomorphism. The new algebras are the classical-linear counterparts of the known quadratic quantum boundary algebras. For any choice of parameters, the non-ultra-local contribution of the original Poisson algebra disappears. We also systematically construct the associated classical Lax pair. The classical boundary principal chiral model is examined as a physical example.

  17. Lie algebra of conformal Killing–Yano forms

    NASA Astrophysics Data System (ADS)

    Ertem, Ümit

    2016-06-01

    We provide a generalization of the Lie algebra of conformal Killing vector fields to conformal Killing–Yano forms. A new Lie bracket for conformal Killing–Yano forms that corresponds to slightly modified Schouten–Nijenhuis bracket of differential forms is proposed. We show that conformal Killing–Yano forms satisfy a graded Lie algebra in constant curvature manifolds. It is also proven that normal conformal Killing–Yano forms in Einstein manifolds also satisfy a graded Lie algebra. The constructed graded Lie algebras reduce to the graded Lie algebra of Killing–Yano forms and the Lie algebras of conformal Killing and Killing vector fields in special cases.

  18. Classification of central extensions of Lax operator algebras

    SciTech Connect

    Schlichenmaier, Martin

    2008-11-18

    Lax operator algebras were introduced by Krichever and Sheinman as further developments of Krichever's theory of Lax operators on algebraic curves. They are infinite dimensional Lie algebras of current type with meromorphic objects on compact Riemann surfaces (resp. algebraic curves) as elements. Here we report on joint work with Oleg Sheinman on the classification of their almost-graded central extensions. It turns out that in case that the finite-dimensional Lie algebra on which the Lax operator algebra is based on is simple there is a unique almost-graded central extension up to equivalence and rescaling of the central element.

  19. Cantilevered multilevel LIGA devices and methods

    DOEpatents

    Morales, Alfredo Martin; Domeier, Linda A.

    2002-01-01

    In the formation of multilevel LIGA microstructures, a preformed sheet of photoresist material, such as polymethylmethacrylate (PMMA) is patterned by exposure through a mask to radiation, such as X-rays, and developed using a developer to remove the exposed photoresist material. A first microstructure is then formed by electroplating metal into the areas from which the photoresist has been removed. Additional levels of microstructure are added to the initial microstructure by covering the first microstructure with a conductive polymer, machining the conductive polymer layer to reveal the surface of the first microstructure, sealing the conductive polymer and surface of the first microstructure with a metal layer, and then forming the second level of structure on top of the first level structure. In such a manner, multiple layers of microstructure can be built up to allow complex cantilevered microstructures to be formed.

  20. Structural optimization by generalized, multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; James, B. B.; Riley, M. F.

    1985-01-01

    The developments toward a general multilevel optimization capability and results for a three-level structural optimization are described. The method partitions a structure into a number of substructuring levels where each substructure corresponds to a subsystem in the general case of an engineering system. The method is illustrated by a portal framework that decomposes into individual beams. Each beam is a box that can be further decomposed into stiffened plates. Substructuring for this example spans three different levels: (1) the bottom level of finite elements representing the plates; (2) an intermediate level of beams treated as substructures; and (3) the top level for the assembled structure. The three-level case is now considered to be qualitatively complete.

  1. Evolution of cooperation by multilevel selection.

    PubMed

    Traulsen, Arne; Nowak, Martin A

    2006-07-18

    We propose a minimalist stochastic model of multilevel (or group) selection. A population is subdivided into groups. Individuals interact with other members of the group in an evolutionary game that determines their fitness. Individuals reproduce, and offspring are added to the same group. If a group reaches a certain size, it can split into two. Faster reproducing individuals lead to larger groups that split more often. In our model, higher-level selection emerges as a byproduct of individual reproduction and population structure. We derive a fundamental condition for the evolution of cooperation by group selection: if b/c > 1 + n/m, then group selection favors cooperation. The parameters b and c denote the benefit and cost of the altruistic act, whereas n and m denote the maximum group size and the number of groups. The model can be extended to more than two levels of selection and to include migration. PMID:16829575

  2. Discrete fluorescent saturation regimes in multilevel systems

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Bhatia, A. K.

    1988-01-01

    Using models of multilevel atoms, the fluorescent process was examined for the ratio of the photooxidation rate, Pij, to the collisional oxidation rate, Cij, in the pumped resonance transition i-j. It is shown that, in the full range of the parameter Pij/Cij, there exist three distinct regimes (I, II, and III) which may be usefully exploited. These regimes are defined, respectively, by the following conditions: Pij/Cij smaller than about 1; Pij/Cij much greater than 1 and Pij much lower than Cki; and Pij/Cij much greater than 1 and Pij much higher than Cki, where Cki is the collisional rate populating the source level i. The only regime which is characterized by the sensitivity of fluorescent-fluorescent line intensity ratios to Pij is regime I. If regime III is reached, even fluorescent-nonfluorescent line ratios become independent of Pij. The analysis is applied to the resonant photoexcitation of a carbonlike ion.

  3. ADAPTIVE MULTILEVEL SPLITTING IN MOLECULAR DYNAMICS SIMULATIONS*

    PubMed Central

    Aristoff, David; Lelièvre, Tony; Mayne, Christopher G.; Teo, Ivan

    2014-01-01

    Adaptive Multilevel Splitting (AMS) is a replica-based rare event sampling method that has been used successfully in high-dimensional stochastic simulations to identify trajectories across a high potential barrier separating one metastable state from another, and to estimate the probability of observing such a trajectory. An attractive feature of AMS is that, in the limit of a large number of replicas, it remains valid regardless of the choice of reaction coordinate used to characterize the trajectories. Previous studies have shown AMS to be accurate in Monte Carlo simulations. In this study, we extend the application of AMS to molecular dynamics simulations and demonstrate its effectiveness using a simple test system. Our conclusion paves the way for useful applications, such as molecular dynamics calculations of the characteristic time of drug dissociation from a protein target. PMID:26005670

  4. Multi-level coupled cluster theory

    SciTech Connect

    Myhre, Rolf H.; Koch, Henrik; Sánchez de Merás, Alfredo M. J.

    2014-12-14

    We present a general formalism where different levels of coupled cluster theory can be applied to different parts of the molecular system. The system is partitioned into subsystems by Cholesky decomposition of the one-electron Hartree-Fock density matrix. In this way the system can be divided across chemical bonds without discontinuities arising. The coupled cluster wave function is defined in terms of cluster operators for each part and these are determined from a set of coupled equations. The total wave function fulfills the Pauli-principle across all borders and levels of electron correlation. We develop the associated response theory for this multi-level coupled cluster theory and present proof of principle applications. The formalism is an essential tool in order to obtain size-intensive complexity in the calculation of local molecular properties.

  5. Earning potential in multilevel marketing enterprises

    NASA Astrophysics Data System (ADS)

    Legara, Erika Fille; Monterola, Christopher; Juanico, Dranreb Earl; Litong-Palima, Marisciel; Saloma, Caesar

    2008-08-01

    Government regulators and other concerned citizens warily view multilevel marketing enterprises (MLM) because of their close operational resemblance to exploitative pyramid schemes. We analyze two types of MLM network architectures - the unilevel and binary, in terms of growth behavior and earning potential among members. We show that network growth decelerates after reaching a size threshold, contrary to claims of unrestricted growth by MLM recruiters. We have also found that the earning potential in binary MLM’s obey the Pareto “80-20” rule, implying an earning opportunity that is strongly biased against the most recent members. On the other hand, unilevel MLM’s do not exhibit the Pareto earning distribution and earning potential is independent of member position in the network. Our analytical results agree well with field data taken from real-world MLM’s in the Philippines. Our analysis is generally valid and can be applied to other MLM architectures.

  6. Permutation centralizer algebras and multimatrix invariants

    NASA Astrophysics Data System (ADS)

    Mattioli, Paolo; Ramgoolam, Sanjaye

    2016-03-01

    We introduce a class of permutation centralizer algebras which underly the combinatorics of multimatrix gauge-invariant observables. One family of such noncommutative algebras is parametrized by two integers. Its Wedderburn-Artin decomposition explains the counting of restricted Schur operators, which were introduced in the physics literature to describe open strings attached to giant gravitons and were subsequently used to diagonalize the Gaussian inner product for gauge invariants of two-matrix models. The structure of the algebra, notably its dimension, its center and its maximally commuting subalgebra, is related to Littlewood-Richardson numbers for composing Young diagrams. It gives a precise characterization of the minimal set of charges needed to distinguish arbitrary matrix gauge invariants, which are related to enhanced symmetries in gauge theory. The algebra also gives a star product for matrix invariants. The center of the algebra allows efficient computation of a sector of multimatrix correlators. These generate the counting of a certain class of bicoloured ribbon graphs with arbitrary genus.

  7. Spinor representations of affine Lie algebras

    PubMed Central

    Frenkel, I. B.

    1980-01-01

    Let [unk] be an infinite-dimensional Kac-Moody Lie algebra of one of the types Dl+1(2), Bl(1), or Dl(1). These algebras are characterized by the property that an elimination of any endpoint of their Dynkin diagrams gives diagrams of types Bl or Dl of classical orthogonal Lie algebras. We construct two representations of a Lie algebra [unk], which we call spinor representations, following the analogy with the classical case. We obtain that every spinor representation is either irreducible or has two irreducible components. This provides us with an explicit construction of fundamental representations of [unk], two for the type Dl+1(2), three for Bl(1), and four for Dl(1). We note the profound connection of our construction with quantum field theory—in particular, with fermion fields. Comparing the character formulas of our representations with another construction of the fundamental representations of Kac-Moody Lie algebras of types Al(1), Dl(1), El(1), we obtain classical Jacobi identities and addition formulas for elliptic θ-functions. PMID:16592912

  8. The kinematic algebras from the scattering equations

    NASA Astrophysics Data System (ADS)

    Monteiro, Ricardo; O'Connell, Donal

    2014-03-01

    We study kinematic algebras associated to the recently proposed scattering equations, which arise in the description of the scattering of massless particles. In particular, we describe the role that these algebras play in the BCJ duality between colour and kinematics in gauge theory, and its relation to gravity. We find that the scattering equations are a consistency condition for a self-dual-type vertex which is associated to each solution of those equations. We also identify an extension of the anti-self-dual vertex, such that the two vertices are not conjugate in general. Both vertices correspond to the structure constants of Lie algebras. We give a prescription for the use of the generators of these Lie algebras in trivalent graphs that leads to a natural set of BCJ numerators. In particular, we write BCJ numerators for each contribution to the amplitude associated to a solution of the scattering equations. This leads to a decomposition of the determinant of a certain kinematic matrix, which appears naturally in the amplitudes, in terms of trivalent graphs. We also present the kinematic analogues of colour traces, according to these algebras, and the associated decomposition of that determinant.

  9. A process algebra model of QED

    NASA Astrophysics Data System (ADS)

    Sulis, William

    2016-03-01

    The process algebra approach to quantum mechanics posits a finite, discrete, determinate ontology of primitive events which are generated by processes (in the sense of Whitehead). In this ontology, primitive events serve as elements of an emergent space-time and of emergent fundamental particles and fields. Each process generates a set of primitive elements, using only local information, causally propagated as a discrete wave, forming a causal space termed a causal tapestry. Each causal tapestry forms a discrete and finite sampling of an emergent causal manifold (space-time) M and emergent wave function. Interactions between processes are described by a process algebra which possesses 8 commutative operations (sums and products) together with a non-commutative concatenation operator (transitions). The process algebra possesses a representation via nondeterministic combinatorial games. The process algebra connects to quantum mechanics through the set valued process and configuration space covering maps, which associate each causal tapestry with sets of wave functions over M. Probabilities emerge from interactions between processes. The process algebra model has been shown to reproduce many features of the theory of non-relativistic scalar particles to a high degree of accuracy, without paradox or divergences. This paper extends the approach to a semi-classical form of quantum electrodynamics.

  10. Anatomically accurate high resolution modeling of human whole heart electromechanics: A strongly scalable algebraic multigrid solver method for nonlinear deformation

    PubMed Central

    Augustin, Christoph M.; Neic, Aurel; Liebmann, Manfred; Prassl, Anton J.; Niederer, Steven A.; Haase, Gundolf; Plank, Gernot

    2016-01-01

    Electromechanical (EM) models of the heart have been used successfully to study fundamental mechanisms underlying a heart beat in health and disease. However, in all modeling studies reported so far numerous simplifications were made in terms of representing biophysical details of cellular function and its heterogeneity, gross anatomy and tissue microstructure, as well as the bidirectional coupling between electrophysiology (EP) and tissue distension. One limiting factor is the employed spatial discretization methods which are not sufficiently flexible to accommodate complex geometries or resolve heterogeneities, but, even more importantly, the limited efficiency of the prevailing solver techniques which are not sufficiently scalable to deal with the incurring increase in degrees of freedom (DOF) when modeling cardiac electromechanics at high spatio-temporal resolution. This study reports on the development of a novel methodology for solving the nonlinear equation of finite elasticity using human whole organ models of cardiac electromechanics, discretized at a high para-cellular resolution. Three patient-specific, anatomically accurate, whole heart EM models were reconstructed from magnetic resonance (MR) scans at resolutions of 220 μm, 440 μm and 880 μm, yielding meshes of approximately 184.6, 24.4 and 3.7 million tetrahedral elements and 95.9, 13.2 and 2.1 million displacement DOF, respectively. The same mesh was used for discretizing the governing equations of both electrophysiology (EP) and nonlinear elasticity. A novel algebraic multigrid (AMG) preconditioner for an iterative Krylov solver was developed to deal with the resulting computational load. The AMG preconditioner was designed under the primary objective of achieving favorable strong scaling characteristics for both setup and solution runtimes, as this is key for exploiting current high performance computing hardware. Benchmark results using the 220 μm, 440 μm and 880 μm meshes demonstrate

  11. Anatomically accurate high resolution modeling of human whole heart electromechanics: A strongly scalable algebraic multigrid solver method for nonlinear deformation

    NASA Astrophysics Data System (ADS)

    Augustin, Christoph M.; Neic, Aurel; Liebmann, Manfred; Prassl, Anton J.; Niederer, Steven A.; Haase, Gundolf; Plank, Gernot

    2016-01-01

    Electromechanical (EM) models of the heart have been used successfully to study fundamental mechanisms underlying a heart beat in health and disease. However, in all modeling studies reported so far numerous simplifications were made in terms of representing biophysical details of cellular function and its heterogeneity, gross anatomy and tissue microstructure, as well as the bidirectional coupling between electrophysiology (EP) and tissue distension. One limiting factor is the employed spatial discretization methods which are not sufficiently flexible to accommodate complex geometries or resolve heterogeneities, but, even more importantly, the limited efficiency of the prevailing solver techniques which is not sufficiently scalable to deal with the incurring increase in degrees of freedom (DOF) when modeling cardiac electromechanics at high spatio-temporal resolution. This study reports on the development of a novel methodology for solving the nonlinear equation of finite elasticity using human whole organ models of cardiac electromechanics, discretized at a high para-cellular resolution. Three patient-specific, anatomically accurate, whole heart EM models were reconstructed from magnetic resonance (MR) scans at resolutions of 220 μm, 440 μm and 880 μm, yielding meshes of approximately 184.6, 24.4 and 3.7 million tetrahedral elements and 95.9, 13.2 and 2.1 million displacement DOF, respectively. The same mesh was used for discretizing the governing equations of both electrophysiology (EP) and nonlinear elasticity. A novel algebraic multigrid (AMG) preconditioner for an iterative Krylov solver was developed to deal with the resulting computational load. The AMG preconditioner was designed under the primary objective of achieving favorable strong scaling characteristics for both setup and solution runtimes, as this is key for exploiting current high performance computing hardware. Benchmark results using the 220 μm, 440 μm and 880 μm meshes demonstrate

  12. Novel multilevel inverter carrier-based PWM method

    SciTech Connect

    Tolbert, L.M.; Habetler, T.G.

    1999-10-01

    The advent of the transformerless multilevel inverter topology has brought forth various pulsewidth modulation (PWM) schemes as a means to control the switching of the active devices in each of the multiple voltage levels in the inverter. An analysis of how existing multilevel carrier-based PWM affects switch utilization for the different levels of a diode-clamped inverter is conducted. Two novel carrier-based multilevel PWM schemes are presented which help to optimize or balance the switch utilization in multilevel inverters. A 10-kW prototype six-level diode-clamped inverter has been built and controlled with the novel PWM strategies proposed in this paper to act as a voltage-source inverter for a motor drive.

  13. Squeezed light from conventionally pumped multi-level lasers

    NASA Technical Reports Server (NTRS)

    Ralph, T. C.; Savage, C. M.

    1992-01-01

    We have calculated the amplitude squeezing in the output of several conventionally pumped multi-level lasers. We present results which show that standard laser models can produce significantly squeezed outputs in certain parameter ranges.

  14. Integrated structure/control law design by multilevel optimization

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Schmidt, David K.

    1989-01-01

    A new approach to integrated structure/control law design based on multilevel optimization is presented. This new approach is applicable to aircraft and spacecraft and allows for the independent design of the structure and control law. Integration of the designs is achieved through use of an upper level coordination problem formulation within the multilevel optimization framework. The method requires the use of structure and control law design sensitivity information. A general multilevel structure/control law design problem formulation is given, and the use of Linear Quadratic Gaussian (LQG) control law design and design sensitivity methods within the formulation is illustrated. Results of three simple integrated structure/control law design examples are presented. These results show the capability of structure and control law design tradeoffs to improve controlled system performance within the multilevel approach.

  15. Multilevel Atomic Coherent States and Atomic Holomorphic Representation

    NASA Technical Reports Server (NTRS)

    Cao, Chang-Qi; Haake, Fritz

    1996-01-01

    The notion of atomic coherent states is extended to the case of multilevel atom collective. Based on atomic coherent states, a holomorphic representation for atom collective states and operators is defined. An example is given to illustrate its application.

  16. Computational algebraic geometry of epidemic models

    NASA Astrophysics Data System (ADS)

    Rodríguez Vega, Martín.

    2014-06-01

    Computational Algebraic Geometry is applied to the analysis of various epidemic models for Schistosomiasis and Dengue, both, for the case without control measures and for the case where control measures are applied. The models were analyzed using the mathematical software Maple. Explicitly the analysis is performed using Groebner basis, Hilbert dimension and Hilbert polynomials. These computational tools are included automatically in Maple. Each of these models is represented by a system of ordinary differential equations, and for each model the basic reproductive number (R0) is calculated. The effects of the control measures are observed by the changes in the algebraic structure of R0, the changes in Groebner basis, the changes in Hilbert dimension, and the changes in Hilbert polynomials. It is hoped that the results obtained in this paper become of importance for designing control measures against the epidemic diseases described. For future researches it is proposed the use of algebraic epidemiology to analyze models for airborne and waterborne diseases.

  17. An algebra of discrete event processes

    NASA Technical Reports Server (NTRS)

    Heymann, Michael; Meyer, George

    1991-01-01

    This report deals with an algebraic framework for modeling and control of discrete event processes. The report consists of two parts. The first part is introductory, and consists of a tutorial survey of the theory of concurrency in the spirit of Hoare's CSP, and an examination of the suitability of such an algebraic framework for dealing with various aspects of discrete event control. To this end a new concurrency operator is introduced and it is shown how the resulting framework can be applied. It is further shown that a suitable theory that deals with the new concurrency operator must be developed. In the second part of the report the formal algebra of discrete event control is developed. At the present time the second part of the report is still an incomplete and occasionally tentative working paper.

  18. Optical systolic solutions of linear algebraic equations

    NASA Technical Reports Server (NTRS)

    Neuman, C. P.; Casasent, D.

    1984-01-01

    The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.

  19. Metal complex modified azo polymers for multilevel organic memories

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Chen, Hong-Xia; Zhou, Feng; Li, Hua; Dong, Huilong; Li, You-Yong; Hu, Zhi-Jun; Xu, Qing-Feng; Lu, Jian-Mei

    2015-04-01

    Multilevel organic memories have attracted considerable interest due to their high capacity of data storage. Despite advances, the search for multilevel memory materials still remains a formidable challenge. Herein, we present a rational design and synthesis of a class of polymers containing an azobenzene-pyridine group (PAzo-py) and its derivatives, for multilevel organic memory storage. In this design, a metal complex (M(Phen)Cl2, M = Cu, Pd) is employed to modify the HOMO-LUMO energy levels of azo polymers, thereby converting the memory state from binary to ternary. More importantly, this approach enables modulating the energy levels of azo polymers by varying the coordination metal ions. This makes the achievement of high performance multilevel memories possible. The ability to tune the bandgap energy of azo polymers provides new exciting opportunities to develop new materials for high-density data storage.Multilevel organic memories have attracted considerable interest due to their high capacity of data storage. Despite advances, the search for multilevel memory materials still remains a formidable challenge. Herein, we present a rational design and synthesis of a class of polymers containing an azobenzene-pyridine group (PAzo-py) and its derivatives, for multilevel organic memory storage. In this design, a metal complex (M(Phen)Cl2, M = Cu, Pd) is employed to modify the HOMO-LUMO energy levels of azo polymers, thereby converting the memory state from binary to ternary. More importantly, this approach enables modulating the energy levels of azo polymers by varying the coordination metal ions. This makes the achievement of high performance multilevel memories possible. The ability to tune the bandgap energy of azo polymers provides new exciting opportunities to develop new materials for high-density data storage. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00871a

  20. Localization of Free Field Realizations of Affine Lie Algebras

    NASA Astrophysics Data System (ADS)

    Futorny, Vyacheslav; Grantcharov, Dimitar; Martins, Renato A.

    2015-04-01

    We use localization technique to construct new families of irreducible modules of affine Kac-Moody algebras. In particular, localization is applied to the first free field realization of the affine Lie algebra or, equivalently, to imaginary Verma modules.